Burroughs @ \

PRICED ITEM

B 7000/ 6000
"ALGOL

REFERENCE MANUAL

Burroughs @

(B 7000/B 6000
ALGOL

REFERENCE MANUAL

Copyright © 1970, 1971, 1972, 1974, 1977, Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

Page No.

Title

A ..
ithruvi . .
1-1 thru 1-2
2-1 thru 2-11
2-12. . ..
3-1 thru 3-3
34
4-1 thru 4-72

5.1 thru 5-120

6-1 thru 6-33
6-34. . . .
A-1 thru A-5
A-6 .

LIST OF EFFECTIVE PAGES

Issue

Original
Original
Original
Original
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such

changes and/or additions.

Correspondence regarding this document should be addressed directly
to Burroughs Corporation, P.O. Box 4040, El Monte, California 91734,

Page No.

B-1 thru B-11 .
B-12 . . .
C-1 thru C-5
c6
D-1 thru D-35 .
D36 . . .
E-1 thru E-7
E-8
F-1 thru F-4
G-1 thru G4
H-1 thru H-5
H-6 .

Index-1 thru Index-35

Index-36 .

Attn: Publications Department, TIO—West.

Issue

Original
Blank
Original
Blank
Original
Blank

_Original

Blank
Original
Original
Original
Blank
Original
Blank

PREFACE

The purpose of this manual is to provide a reference document for the experienced programmer who is
familiar with the B 7000/B 6000 Extended ALGOL Language, hereinafter referred to as ALGOL, and the
B 7000/B 6000 Information Processing System. This reference manual is intended neither as a primer nor
as a tutorial document.

ALGOL is based on the definitive “Revised Report on the Algorithmic Language ALGOL 60’ (Communi-
cations of the ACM, Vol. 6, No. 1; January, 1963). .

ALGOL, in addition to implementing virtually all of ALGOL 60, has provisions for extensive communica-
tion between programs and input-output devices, enables editing of data, and implements diagnostic
mechanisms for program debugging.

This reference manual is divided into the following six sections and eight appendices:

Section 1, METALANGUAGE DEFINITION: this section explains the syntactical notation used
in defining the ALGOL language.

Section 2, LANGUAGE COMPONENTS: this section describes the elements that form the most
primitive structures in the language.

Section 3, PROGRAM STRUCTURE: this section describes the basic structure of an ALGOL
program.

Section 4, DECLARATIONS: this section describes how elements are aeclared prior to being
manipulated via statements and expressions.

Section 5, STATEMENTS: this section presents the language element (the <statement>) that
causes a specified action to be performed.

Section 6, EXPRESSIONS: this section describes the primary active element of the language.

Appendix A, RESERVED WORDS: this appendix is a list of ““words” that have been set aside for
specific purposes within ALGOL.

Appendix B, PROGRAM CHARACTER AND WORD FORMATS: this appendix illustrates and
describes the various characters and words (B 7000/B 6000) that can be used and accessed by the
programmer.

Appendix C, CHARACTER SETS AND CODING FORM.

Appendix D, COMPILE TIME OPTIONS: this appendix describes the compiler options available
to the user.

Appendix E, PROGRAM SOURCE AND OBJECT FILES: this appendix descnbes how compiler
communlcatlon is handled through various input and output files.

Appendix F, BATCH FACILITY: this appendix describes the method by which batch programs
can be grouped to reduce the cost of required system overhead functions.

e Appendix G, RUN-TIME FORMAT ERROR MESSAGES: this appendix lists and explains the
error messages that occur at run-time because of formatting errors.

e Appendix H, COMPILE-TIME FACILITIES: this appendix describes how ALGOL source data
can be compiled conditionally or interactively. '

As an additional aid, the language elements have been arranged in alphabetical sequence within each
section. .

ii

Section

TABLE OF CONTENTS

PREFACE
METALANGUAGE DEFINITION .

Scope of the Language
Syntax Description .

LANGUAGE COMPONENTS .

Language Components
Basic Symbol
Identifier .

Number

Remark

String . =

PROGRAM STRUCTURE .
Program Unit
DECLARATIONS

Declaration . . .

ALPHA Declaratlon

ARRAY Declaration . . .

ARRAY REFERENCE Declaratlon
BOOLEAN Declaration
DEFINE Declaration and DEFINE Invocatlon
DIRECT ARRAY Declaration .

DOUBLE Declaration .

DUMP Declaration . . .

EVENT and EVENT ARRAY Declaratlons
FILE Declaration . .

FORMAT Declaration . . .

FORWARD REFERENCE Declaratlon
INTEGER Declaration .

INTERRUPT Declaration

LABEL Declaration .

LIST Declaration . . .

MONITOR Declaration

PICTURE Declaration .

POINTER Declaration . . .
PROCEDURE Declaration .

REAL Declaration .

SWITCH Declaration . . .

SWITCH FILE Declaration . . .
SWITCH FORMAT Declaration .
SWITCH LABEL Declaration .

SWITCH LIST Declaration
TASK and TASK ARRAY Declaratlons .
TRANSLATETABLE Declaration

Page

- TABLE OF CONTENTS (Cont)
Section : Page

TRUTHSET Declaration v v v v v v v e . 4-69
TYPE Declaration . . . e e e e e e e s e 4-171
VALUE ARRAY Declaratlon e e e e e e e e s e e 4-72

5 STATEMENTS o o o o v v b e e e e 5-1

Statement . . 5
ACCEPT Statement . 5
ASSIGNMENT Statement e e e e e e e e e e e e s e e e 5
Arithmetic Assignmento 0oL 5—
Array Reference Assignment 5
Boolean Assignment 5
Pointer Assignment . 5
Task Assignment o0 5
ATTACH Statement« v v v v e e e e 5—
BREAKPOINT Statement« .« . . oo 5-12
CALL Statemento e 5-13
CASE Statement L oo e 5-15
CAUSE Statement . . . e e e e e e e e e e e e 5-17
CAUSEANDRESET Statement e e e e e e e e e s s e e e 5-18
CHANGEFILE Statement « « « v v v v v e 5-19
CHECKPOINT Statement « v v v v v v v v v . 5-20
CLOSE Statement . . e e e e e e e e e e e 5-25
CONDITIONAL Statement O, 5-27
CONTINUE Statement o v v v v v v v v 5-30
DEALLOCATE Statement « « « v v o v v v v v 5-31
DETACH Statement00 o e e 5-32
DISABLE Statement o e e e e 5-33
DISPLAY Statement e e 5-34
DO Statement 5-35
ENABLE Statement e e 5-36
EVENT Statement e e e 5-37
EXCHANGE Statement oo 5-38
FILL Statement« . e 5-39
FIX Statement e 5-40
FOR Statement o 5—-41
FREE Statement o e e e e 5—-46
GOTO Statemento 5—-47
I/OStatement 5-48
IF Statement . . e e e e e e e e e e e e e e s s e s e e 5-50
INTERRUPT Statement O, 5-51
INVOCATION Statement 552
ITERATION Statement v v v v v v v v v e e e 5-53
LIBERATE Statement o o« v v e e 5-54
LOCK Statement s 5-55
MERGE Statement . . . e e e e e e e e e e e e 5-56
MULTIPLE ATTRIBUTE ASSIGNMENT O 5-57
ON Statement . . . e e e e e e e e e e e e e e e e e e 5-58
PROCEDURE Statement e e e e e e e e e e e e e e e 5-61
PROCESS Statement v v v e e e e 5—-62
PROCURE Statement v v v v v v v v v e s e o 5—-63

iv

Section

TABLE OF CONTENTS (Cont)

PROGRAMDUMP Statement

READ Statement . .

REMOVEFILE Statement

REPLACE Statement
REPLACE FAMILY-CHANGE Statement .o
REPLACE POINTER-VALUED ATTRIBUTE Statement
RESET Statement .

RESIZE Statement .

REWIND Statement

RUN Statement .

SCAN Statement .

SEEK Statement .

SET Statement .

SORT Statement .

SPACE Statement .

STRING Statement .

SWAP Statement .

THRU Statement . .
UNCONDITIONAL Statement
VECTORMODE Statement .

WAIT Statement
WAITANDRESET Statement .

WHEN Statement

WHILE Statement

WRITE Statement

ZIP Statement .

EXPRESSIONS

Expression
Arithmetic Expressmn
Boolean Expression .
CASE Expression
Conditional Expression
Designational Expression .
Function Expression .
Arithmetic Function Demgnator
Arithmetic Intrinsic Names .
Boolean Function Designator .
Boolean Intrinsic Names .
Pointer Function Designator
Pointer Intrinsi¢ Names
Pointer Expression .

TABLE OF CONTENTS (Cont)

Appendix Page
A Reserved Words A-1

B Program Character and Word F ormats B-1

C Character Sets and Coding Form . C-1

D Compile-Time Options D-1

E Program Source and Object Flles E-1

F Batch Facility . F-1

G Run-Time Format Error Messages G-1

H Compile-Time Facilities H-1

LIST OF ILLUSTRATIONS
Figure Title Page
4-—1 Translation Table Indexing .. 4-68
4-2 Truthset Test 4-70
5-1 DO-UNTIL Loop « o v v v e e e e e e 5-35
5-2 FOR-DO Loop . . e e e e e e e e e 5-42
5-3 FOR-STEP-UNTIL Loop e e e e e e e e e s 5-43
5-4 FOR-STEP-WHILE Loop« .« .« « 5-44
5-5 FOR-WHILE Loop o o .. 5—45
5—-6 THRU Loop . . . 5-109
5-7 WHILE-DO LOOP 5-118
B—-1 Word Notation . . B-1
B-2 Bit Bytes (EBCDIC Code) .. B-2
B-3 6—Bit Characters (BCL Code) . B-2
B—4 4-Bit Digits (Packed BCD) B-3
B-5 Real Variable B—4
B-6 Integer Variable B-5
B-7 Boolean Variable . . B-6
B-8 First Word, Double- Precmon Varlable B-7
B-9 Second Word, Double-Precision Variable . B-7
B-10 String Descriptor (Non-Indexed) . B-9
B-11 String Descriptor (Indexed) . B-9
B—-12 Return Control Word B-11
D-1 Option Control Card . D4
D-2 Use of the Explicit SET . . D-31
E-1 ALGOL Compilation System . E-2
LIST OF TABLES

Table _ Title Page
6—1 Operator Precedence 6-5
6-2 Exponentiation Meaning . . . e e e 6—6
6-3 Types of Values Resulting from an Arlthmetlc Operatlon e e e 6—6
6—4 Truth Table . . . e e e e e e e e e e e e e e e e e e e 6—11
E-1 ALGOL Compiler Flles e e e s e -5

vi

Definition
METALANGUAGE

1. METALANGUAGE DEFINITION

SCOPE OF THE LANGUAGE

ALGOL 60 is a language designed to represent algorithms or procedures for calculation. Extended
ALGOL, hereinafter referred to as ALGOL, also includes facilities for communicating algorithms to
the B 7000/B 6000 Information Processing System. :

ALGOL employs a vocabulary of reserved words and symbols. These reserved words and symbols cannot
be used in a program for any purpose other than defined by the language description in this manual.

Reserved words and symbols are grouped in ways prescribed by the syntax to form the various constructs
of the language. Theseconstructs can be divided into five major categories: language components, prograr.
unit, declarations, statements, and expressions. :

Language components form the basis on which the entire ALGOL language is built.

A program unit is the smallest “‘compilable” grouping of syntactic entities. The typical ALGOL program
is a program unit, and it contains declarations, statements, and expressions to accomplish the program’s
objectives.

Declarations are provided in the language for giving the ALGOL compiler information about the
constituents of the program such as array sizes, the types of values that variables can assume, or the
existence of subroutines. Each such entity must be named by an identifier and all identifiers must be
declared before they are used.

Statements provide means of assigning values and results of computation, iterative mechanisms,
conditional and unconditional transfers of program control, and input/output operations. In order to
provide control points for transferring program control, statements can be labeled.

Expressions are rules by which values can be obtained by executing various operations on the primary
elements of which expressions are composed.

SYNTAX DESCRIPTION

The syntax of the language is described in Backus-Naur form (BNF) notation. The metalinguistic symbols
have the following meanings:

SYMBOL DESCRIPTION

<> Left and right broken brackets are used to contain one or more characters
representing a metalinguistic variable whose definition is given by a
metalinguistic formula.

= The symbol ::= means “is defined as”’, and’separates the metalinguistic variable
on the left of the formula from its definition on the right.

| The symbol | means “or.” This symbol separates alternative definitions of a
metalinguistic variable.

1-1

Definition

METALANGUAGE
Continued
{ } These braces are used-to enclose metalinguistic variables that are defined by the

meaning of the English language expression contained within the braces. The
convention is used only when it is impossible or impractical to use a
metalinguistic formula.

The above metalinguistic symbols are used in forming a metalinguistic formula. A metalinguistic formula
is a rule that produces a syntactically correct sequence of characters and/or symbols. The entire set of
such formulae defines the constructs of ALGOL.

Any mark or symbol in a metalinguistic formula that is not one of the above metalinguistic symbols
denotes itself. The juxtaposition of metalinguistic variables and/or symbols in a metalinguistic formula
denotes juxtaposition of these elements in the construct indicated.

Spaces have been used between language elements for readability in this document, but in general, spaces
cannot be used or omitted except as prescribed herein. -

The metalinguistic formula below is read as follows: An <identifier> is defined asa <letter>, or an
<identifier> followed by a <letter>, or an <identifier> followed by a <digit>.

<identifier> .= <letter> |
<identifier> <letter> |
<identifier> <digit>

The metalinguistic formula above also defines a recursive relationship by which a construct called an
<identifier> can be formed. Evaluation of the formula shows that an <identifier> begins with a
<letter>, the <letter> can stand alone, or it can be followed by any mixture of <letter>s and
<digit>s.

Language Components
LANGUAGE COMPONENTS

2. LANGUAGE COMPONENTS

LANGUAGE COMPONENTS

Syntax

<language components> :.= <basic symbol> |
<define invocation> |
<identifier> |
<number> |
<remark> |
<reserved word> |
<string> |
<program unit>

Semantics

<basic symbol>, <identifier>, »<number>, <remark>, and <string> are discussed in this section.

The <define invocation> is explained under the <define declaration>, although the <define
invocation> can be used anywhere in a program.

<reserved word>s are explained and listed in appendix A.

<program unit> is discussed in section 3, PROGRAM STRUCTURE.

Language Components
BASIC SYMBOL

BASIC SYMBOL
Syntax

<basic symbol> ::= <empty> |
<letter> |
<digit> |
<delimiter>
<empty> ::= {the null set of characters}
<letter>::=A | B |C|D|E|F
N/O|P|IQIRI|S
<digit>::=0 {12345
<delimiter> ::= <bracket> |
<operator> |
: <space>
<bracket>::=(|)| [| 1" | BEGIN | END | # | LB | RB
<operator> ::=<arithmetic operator> |
<logical operator> |
<relational operator> |
=
&
<arithmetic operator>::= + | * | TIMES | MUX | / | DIV | MOD | ** | —
<logical operator>::= AND | OR | NOT | EQV | IMP | | |
I =
I
I
l

[FIGIH|T |J |K|L|M|
ISITIUIVIWIXI|YI|Z
516171819

<relational operator> ::= LEQ I

LSS | ¢ |

EQL | = | IS |
NEQ | —= | ISNT |
GTR |) |

GEQ |)=

<space> ::= <single space> |

<space> <single space>
<single space> .= {one blank position }
Semantics
LETTERS

Only uppercase <letter>s are permitted. The lowercase <letter>s are specifically disallowed. Individual
<letter>s do not have particular meanings except as used in pictures and formats. -

DIGITS
<digit>s are used for forming <number>s, <identifier>s, and <string>s.
DELIMITERS

Delimiters are the class of <operator>s, <space>s, <bracket>s. As the word “delimiter” indicates, an
important function of these elements is to delimit the various entities that make up a program.

Each <delimiter> has a fixed meaning which, if not obvious, is explained elsewhere in this document
2-2

Language Components
BASIC SYMBOL

Continued

in the syntax of appropriate constructs. Delimiters and logical values are considered <basic symbol>s
of the language, having no relation to the individual <lJetter>s of which they are composed.
Consequently, the words that constitute the <basic symbol>s are reserved for specific use in the
language. A complete list of these words, called <reserved words>s, and details of the applicable
restrictions are given in appendix A.

SPACE

IN ALGOL 60, spaces have no significance since basic components of the language such as BEGIN are
construed as one symbol. However, in a machine implementation of such a language, this approach is
not convenient for the ALGOL programmer. In ALGOL, for instance, BEGIN is composed of five
letters, TRUE is composed of four, and PROCEDURE of nine. No <space> can appear between the
letters of a <reserved word>; otherwise, it is interpreted as two or more elements.

The <reserved word>s and <basic symbol>s are used, together with <variable>s and <number>s,
to form <expression>s, <statement>s, and <declaration>s. Because some of these constructs place
quantities that have been defined by the programmer next to <delimiter>s composed of <letter>s

it is necessary to separate one from the other. The <space> is used as a delimiter in these cases.
Therefore, a <space> must separate any two basic <language component>s of the following forms:

a. Multicharacter delimiter (except :=, **, @@,—=, (=,)=)).
b. Identifier.

c. Logical value.

d. Unsigned number.

Aside from these requirements, a <space> can appear, if desired, between any two <basic component>s
without affecting their meaning.

Language Components
IDENTIFIER

IDENTIFIER
Syntax

<identifier> ::= letter> |
<identifier> <letter> |
<identifier> <digit>

Semantics

<identifier>s have no intrinsic meaning. They name labels, variables, arrays, procedures, etc. An
<identifier> can be no more than 63 <character>s long and cannot include <space>s or

<visible special character>. An identifier must start with a letter, which can be followed by any
combination of letters or digits, or both. The same <identifier>> can be used to denote two different
entities only when the “‘scopes’ of these entities do not overlap. The multi-character symbols for
relational and logical operators can be declared as identifiers. However, if declared, they cannot be used
as operators within the scope of the declaration. Examples of legal and illegal identifiers are as follows:

LEGAL IDENTIFIERS - ILLEGAL IDENTIFIERS
A BEGIN
I 1776
B5 2BAD
YSQUARE $
TOOBAD X-Y
LONGTONS W-2 FORM
LAZYS8 <CAPTION>
PRESSURE SEC(X)
XOVERZ RATE-HR
D2P471GL NO.

NUMBER
Syntax

<number> ;.= <sign> <unsigned number>
<sign> ::=<empty> |
+ |

<unsigned number> ::= <decimal number> |
<exponent part> |
<decimal number> <exponent part>
<decimal number> .= <unsigned integer> |
<decimal fraction> |
<unsigned integer> <decimal fraction> |
<unsigned integer> .
<unsigned integer> ::= <digit> |
<unsigned integer> <digit>

<decimal fraction> ::= . <unsigned integer>
<exponent part> ::= @<integer> |
@@<jnteger>

<integer> ::= <sign> <unsigned integer>
Examples

UNSIGNED INTEGERS DECIMAL FRACTIONS

5 S5
69 .69
.013
INTEGERS EXPONENT PARTS
1776 @8
-62256 @-06
548 @+54
NUMBERS ILLEGAL NUMBERS
0 50 00.
+549755813887 1,505,278.00
1.75@-46 @63.4
-4.31468 5@8 8
-@2 1@2.5
375 1.667E-01

Semantics

Numbers can be of two basic types, integer or real.

Language Components
NUMBER

a

DECIMAL NUMBERS

.69
.546
3.98

UNSIGNED NUMBERS

99.44
@-11
1354.543@48
.1864@4

Language Components
NUMBER

Continued

No <space> can appear within an <unsigned integer>. All numbers that do not contain the
exponent <delimiter> (@®@) are considered to be single-precision.

The illegal number examples, given above, emphasize the fact that the only characters which are used to
form numbers are <digii>s and the <basic symbol>s ., @, +, and -. Note that no provision is made for
<space>s to occur inside <number>s.

NUMBER RANGES

The largest and smallest integers and numbers that can be represented are as follows (decimal versions
are approximate):

a. Any integer between and including plus and minus 549755813887 = 8**13-1 =
4"007FFFFFFFFF" can be represented in integer form.

b. The largest positive normalized single-precision number is 4.31359146674@68 = (8**13-1) 8*8863
4”1 FFFFFFFFFFF”, '

c¢. The smallest positive normalized single-precision number is 8.75811540203@47 = 8**(-51) =

~ 4”"3F9000000000”. The number zero and negative numbers with absolute value between the
largest and smallest values given above may be represented in real form. v

d. The largest positive normalized double-precision number is 1.94882938205028079124469@@
29603 = (8**26-1) *8**32767 = 4" |FFFFFFFFFFFFFFFFFFFFFFEF”.

e. The smallest positive normalized double-precision number is 1.9385458571375858335564@@-
29581 = 8**(-32742) = 4" 3F9000000000FF8000000000"". The number zero and positive and
negatiye numbers with absolute value between the largest and smallest values given above may be .
represented in double form.

COMPILER NUMBER CONVERSION

The ALGOL compiler can convert a maximum of 24 significant decimal digits of mantissa in double-
precision. The “effective exponent”, which is the explicit exponent value following the @@ sign minus the
number of digits to the right of the decimal point, must be less than 29604 in absolute value. For
example, the final fractional zero (0) cannot be specified in the smallest positive normalized double-
precision number shown above: -29581-(23 fractional digits) = -29604. Leading zeros are not counted in
determining the number of significant digits. For example, 0.0002 has one significant digit, whereas

1.002 has five significant digits.

SYMMETRY OF THE NUMBER SETS

The number sets are symmetrical with respect to zero, that is, the negative <number>
corresponding to any valid positive <number> can also be expressed in the language and the object
program.

EXPONENTS

The exponent part is a scale factor expressed as an integral power of 10. The exponent part @@
<integer > signifies that the entire number is a double-precision value.

3
|
[o)}

Language Components
REMARK

REMARK
Syntax

<remark> .= <end remark> |
<comment remark> |
<escape remark>
<end remark> ::= {any sequence of <letter>s, and <digit>s, and <space>s not containing the
reserved word END, ELSE, or UNTIL}
<comment remark> ::= COMMENT }any sequence of EBCDIC characters not containing a semicolon};
<escape remark> ::= % {any sequence of EBCDIC characters extending to the end of the logical source
record

Examples
The following program illustrates the syntactically correct uses of the COMMENT.

BEGIN

FILE F(KIND = PRINTER COMMENT:);

FORMAT COMMENT; FMT COMMENT; (A4, 16);

PROCEDURE P (X,COMMENT; Y,Z);

REAL X,Y COMMENT; , Z ; % PERCENT SIGN CAN BE USED HERE
X := Y + COMMENT; Z; % HERE TWO

IF COMMENT; 7) 5 THEN WRITE (F,{"OK"));

IF 4 COMMENT;)2 THEN WRITE(F, {“OK"));

IF 8) 5 THEN WRITE COMMENT; (F, { “OK"));

END OF PROGRAM.

The following program illustrates the improper use of the COMMENT.

BEGIN

FILE F(KIND=PRINTER);

FORMAT FMT(13,F10.3 COMMENT; , A4);

ARRAY A[0:99];

REAL X;

FORMAT (““ABC”, % CANNOT BE USED. “DEE");
WRITE(F, (“INVALID USE” COMMENT; >)

REPLACE POINTER(A) BY “ABCD COMMENT; EFGHIJ";
X := “AB,COMMENT; C*;

COMMENT CANNOT BE USED HERE COMMENT; EITHER;
END.

Semantics

Three methods are provided in the language to insert program documentation at various locations
throughout the source file. The <end remark> is allowed following the particular <lbasic
component>, END. The compiler recognizes the termination of the <end remark> upon finding
the reserved word END, ELSE, or UNTIL, or upon finding a non-alpha, non-numeric EBCDIC character.

The <comment remark> is allowed between any two <basic component>s, except within an
2-7

Language Components
REMARK

Continued

<editing specification> (refer to the <format declaration>) and except following the <editing
specification>s of a <format declaration> but prior to the end of the same <format declaration>.
The compiler considers the first semicolon encountered after the reserved word COMMENT as the
end of the <comment remark>. Note that since a <remark>, a <string>, and an <invocation>
are each <basic component>s, a <comment remark> is not recognized within a <string>, an
<invocation> or another <remark>. Also note that <string>s, and <escape remark>>s can each
contain the dollar character ($). Care must be exercised in the case of the <string> or the <comment
remark>> to ensure that these constructs do not contain a dollar character in position 1 of the
source record or a blank character followed by a dollar character in positions 1 and 2 of the source
record. An error in this respect causes the compiler to interpret the source record as a compiler
control record. The structure of the <escape remark> cannot lead to this error.

The percent sign (%) starting an <escape remark> must follow a <basic component> not contained in
an <editing specification>s. The <escape remark> extends from the starting percent sign and extends
to the start of the sequence number field. The compiler does not examine the <escape remark>. When
the percent sign is encountered that starts an <escape remark>, the compiler skips immediately to the
next source record before continuing the compilation process.

2-8

Language Components
STRING

STRING
Syntax

<string> ::= <simple string> |
<string> <simple string>
<simple string> ::= <numeric string> |
<alpha string>
<numeric string> ::= <binary code>"" <binary string> " |
<quaternary code> " <quaternary string> " |
<octal code> '' <octal string> "' |
<hexadecimal code> " <hexadecimal string> "
<binary code>::=1 | 10 | 12 | 120 | 13 | 130 | 14 | 140 | 16 | 160 |
17 | 170 | 18 | 180
<binary string> ::= <binary character> |
<binary string> <binary character>
<binary character> ::='0 | 1
<quaternary code>::=2 | 20 | 24 | 240 | 26 | 260-| 27 | 270 | 28 | 280
<quaternary string> .:= <quaternary character> |
<quaternary string> <quaternary character>
<quaternary character> ::=0 | 1 | 2 | 3
<octal code> ::=3 | 30 | 36 | 360
<octal string> .:= <octal character> |
<octal string> <octal character>
<octal character>:=0 |1 |2 31457
<hexadecimal code> ::=4 | 40 | 47 | 470 | 48 | 480
<hexadecimal string> ::= <hexadecimal character> |
<hexadecimal string> <hexadecimal character>
<hexadecimal character>::=0 | 1 | 2|13 14 |5]16|7]18]19]|A]|B]|
CID|E]|F
<alpha string> ::= <EBCDIC code> ** <EBCDIC string> " |
<BCL code> ‘' <BCL string> "' |
<ASCII code> " <ASCII string> "
<EBCDIC code> ::= <empty> | 8 | 80
<EBCDIC string>::= " |
<EBCDIC character> |
<EBCDIC string> <EBCDIC character>
<EBCDIC character> .= <letter> |

<digit> |
<visible special character>
<visible special character>::= . |, | [|1 | (1> 1<

) T+ =1/
=% & *1#1@]: ;8"
<BCL code>::=6 | 60
<BCL string> :.:= <EBCDIC string>
<ASCII code> ::=7 | 70

<ASCII string> ::= <EBCDIC string>

2-9

Language Components
STRING

Continued

Semantics
CHARACTER SIZE

Strings can be composed of binary (1-bit), quaternary (2-bit), octal (3-bit), hexadecimal (4-bit), BCL
(6-bit), ASCII (7-bit i 8-bit format), and EBCDIC (8-bit) characters.

STRING CODE

The string code determines the interpretation of the characters between the quotes. It specifies the
character set and, for strings of less than 48 bits, the justification. The first digit of the string code
specifies the character set in which the source string is written. The next non-zero digit (if any) specifies .
the internal character size of the string to be created by the compiler. If no next non-zero digit is
specified, the internal size is the same as the source size. If the internal size is different from the source
size, the length of the string must be an integral number of internal characters.

If the <string> contains fewer than 48 bits, a trailing zero in the string code specifies that the <string>
is to be left-justified within a word and that trailing zeroes are to fill out the remainder of the word.

If the <string> contains fewer than 48 bits, the absence of a trailing zero in the string code specifies that
the <string> is to be right-justified within a word and that leading zeroes are to fill out the remainder of
the word.

If the <string> contains 48 or more bits, the presence or absence of a trailing zero in the string code
is irrelevant.

If the string code is <empty>, its default value is 8 or 6 depending on the “default character size” of the
program. Note that 8-bit (EBCDIC) is assumed by the ALGOL compiler unless the programmer uses a
BCL compiler control card which indicates 6-bit.

ASCII CHARACTERS

An <ASCII code> can be used only with <ASCII string>s that contain only characters having
corresponding EBCDIC graphics, since these are the only characters recognized by the compiler.

The compiler translates each ASCII character into an 8-bit character, the nghtmost seven bits of which
are the ASCII representation of that graphic and the leftmost bit is a zero. ,

For characters that are not in the EBCDIC character set, the ASCII characters must be written as a
<hexadecimal string>, where each pair of hexadecimal ¢haracters represents the internal code of one
ASCII character, right-justified with a leading zero bit.

QUOTE CHARACTER

The quote character (") can appear only as the first <character> of a <simple string>. Strings with

internal quotes must be broken into separate simple strings by the use of three quotes in succession.
Notice the syntax for <EBCDIC string>.

9

—10

Language Components
STRING

Continued

STRING LENGTH

The maximum permissible string length depends upon the context in which the <string> is used. List '
elements and fill statements that consist only of a string can include strings up to 256 8-bit characters in
length. Strings used as primaries in arithmetic expressions are limited to a length of 48 bits.

A <string> less than 49 bits is represented internally as an 8-bit, 16-bit, or 48-bit literal (depending on
the number of bits in the <string>) in the code segment. A <string> longer than 48 bits is carried in
a “pool array” of the object program, and is referenced by a pointer whose character size is appropriate
for the string.

All string parameters are terminated with at least one null character. If the string ends on a word bound-
ary, an extra word is added to the array to contain the null. Thus, an ALGOL program can find the end
of the string by scanning WHILE) 48°00”.

COMPOSITE STRINGS
When a <string> is formed from simple strings of different character sizes, the following rules apply:

a. The justification specified by each string code after the first is ignored.

b. Every <character> must be aligned at a character boundary appropriate for that character
size. For example, 3 “6” 6 ““8” results in an error and must be replaced by 3 “6” 3 “0”° 6 “8”,
or 3 “06” 6 “8”,0r3 “60” 6 “8”.

¢. The maximum character size must be divisible by all character sizes that appear in the <string>.
Thus, it is impossible to mix 6-bit characters with 4-bit characters. For example, 3 “7” 2 “1”is
illegal. Note that 7-bit characters are really 8-bit characters with one unused bit.

-2-11/2-12

3. PROGRAM STRUCTURE

PROGRAM UNIT
Syntax

<program unit> = <block>. |
<compound statement>. |
<global part> <procedure declaration™. |

<global part> <procedure declaration>; |
<block> ::= <block head> ; <compound tail>

<block head> ::= BEGIN <declaration> |
<block head> ; <declaration>
<compound tail> ::= <statement> END |
<statement> ; <compound tail>
<compound statement> ::= BEGIN <compound tail>
<global part> = <empty> |
[<declaration list>]
<declaration list> .= <declaration> |
<declaration list> ; <declaration>

Examples

BEGIN REAL X; END.

BEGIN END.

PROCEDURE P; BEGIN END.

REAL PROCEDURE Q; BEGIN Q := 4 END.
PROCEDURE S; BEGIN REAL X; END;

Program Structure
PROGRAM UNIT

[REAL S; ARRAY BJ[1]; FILE LINE; PROCEDURE RD(V); VALUE V; REAL V; EXTERNAL;]

Semantics

A <block> is a <statement> that groups one or more <declaration>s and <statement>s intg a
logical entity. A <compound statement> is a <statement> that has no <declaration>s follgwmg the
BEGIN of a BEGIN-END pair; that is, a <compound statement> provides the means of grouping several

<statement>s into some form of logical unit.

A <compound statement>, and a <block> are recursive in that their definitions involve <statement>s

and/or <declaration>s. A <statement> can itself be a <statement>. The structure of <compound

statement>s and <block>s are illustrated as follows (S represents any <statement> and D represents

any <declaration>):

<compound statement>s
BEGIN S;S;S....;S; S END
BEGIN S;S;BEGIN S;BEGIN S;S END END; S END

<block>s
BEGIN D;D....;.D:S:S;S....;S;S; END
BEGIN D;D;S;BEGIN D;S END:BEGIN S:S;S END END

Program Structure

"PROGRAM UNIT
Continued

A <program>> that has the form of a <procedure declaration> is typically used as a unit that is bound
to a more complete program.

A <global part> allows global entities to be referenced by a separate <procedure declaration>. The global
entities must be declared prior to the <procedure declaration> itself. Any <program unit> that has a
<global part> is valid only for binding to a host.

Pragmatics

A <compound statement> is executed in-line and does not change the memory requirement of a
program. A <block> must be entered by the procedure entry operator and does modify the memory
requirement of a <program unit>. (Entering a <block> costs CPU resources; entering a <compound
statement> does not cost anything extra.)

A <program unit> can be preceded by <remark>; it cannot be followed by a <remark>.
SCOPE

Those portions of an ALGOL program where an <identifier>> can be used to successfully reference its
corresponding entity are defined to be the scope of that entity.

In one part of an ALGOL program, an <identifier> can reference an entity; and in another part of the
program, the same <identifier> can reference a different entity. The scope of each entity is defined in
such a way that at any point in the program, an <identifier> references at most one entity.

The scope of an entity is described by rules that define which parts of the program are included in the
scope, which parts of the program are excluded by the scope, and the uniqueness requirements placed
upon the choice of identifiers. Those general rules are described in the following paragraphs.

Local Entities

An <identifier> that is declared within a <block> is referred to as being “local” to that <block>.
The entity associated with that <identifier> inside the <block> is not associated with that
<identifier> outside the <block>. In other words, on entry to a <block>, the values of local entities
are undefined; on exit from the <block>, the values of local entities are lost, but those of “global”
entities (refer to GLOBAL ENTITIES) are retained. However, the <identifier> associated with some
entity may be referred to inside inner <block™s, where it becomes a global <identifier> relative to the
inner <block>s.

Global Entities
An identifier that appears within a <block> and is not declared within that <block> but is declared in

an outer <block> is referred to as being “global” to that <block>. Therefore, a global <identifier>
represents the same entity inside the <block> and outside of that <block>.

3-2

Program Structure

PROGRAM UNIT

Continued

As the following program illustrates, an <identifier™> can be local relative to one reference and global
relative to another reference.

BEGIN
FILE F (KIND = PRINTER);
REAL A;
A := 7; % FIRST STATEMENT OF OUTER BLOCK
BEGIN
LIST L1 (A);
INTEGER A;
LIST L2 (A);
A := 3; % FIRST STATEMENT OF INNER BLOCK
WRITE (F, (3R10.2),L1);
WRITE (F, (3R10.2), L2);
END OF INNER BLOCK
END OF PROGRAM.
In the preceding example, the <identifier>, A, appearsin <list> L1 as a global reference and
references the REAL A. In <list> L2, the identifier, A, references the INTEGER A.

Global entities can be used in inner blocks in the following ways:

a. To carry values into the <block> values that have been calculated in an outer block.

b. To carry into an outer <block> a value calculated inside the <block>.

¢. To preserve a value calculated within a <block> for use in a later entry to the same <<block>.

d. To transmit a value from one <block> to another <block> neither containing nor contained
within the first <block>.

3-3/3-4

DECLARATION

Syntax

<declaration> ::=

Semantics

4. DECLARATIONS

<array declaration> |

<array reference declaration> |
<define declaration> |
<direct array declaration> |
<dump declaration> |
<event declaration> |
<event array declaration> |
<file declaration> |

<format declaration> |
<forward reference declaration> |
<interrupt declaration> |
<label declaration> |

<list declaration> |
<monitor declaration> |
<picture declaration> |
<pointer declaration> |
<procedure declaration> |
<switch declaration> |

<task declaration> |

<task array declaration> |
<translatetable declaration> |
<truthset declaration> |
<type declaration> |

<value array declaration>

Declarations

DECLARATION

A <declaration™ defines certain properties of entities and relates these entities to <identifier>s.
Every <identifier> must be “declared” prior to using it in an ALGOL program. The compiler ensures
that subsequent usage of the <identifier> in the program is consistent with its declaration.

Declarations Declarations
ALPHA ALPHA

ALPHA DECLARATION
Syntax : .

<alpha declaration> ::= <local or own> ALPHA <identifier list>
<local or own> ::= <empty> |
OWN
<identifier list> ::= <identifier> |
: <identifier list> , <identifier>

Examples

ALPHA ALFA
ALPHA BETA, GAMMA, CHARS, ACCUM
OWN ALPHA MYPERSONALALPHA

Semantics

An <alpha declaration™ isused to declare <simple variable>s which can be used as alphanumeric
values. Character values are either six, 8-bit characters (normal) or eight, 6-bit characters (BCL).

The <Jocal or own> portion of the <alpha declaration> indicates whether the value of the specified
<simple variable> is to be retained upon exit from the <block> in which it is declared. A <simple
variable> declared to be OWN will retain its value when the program exits from the associated <block>,
and that “old’’ value will be the contents of the <simple variable> when the associated <block>

is re-entered.

Upon entry to a <block> containing <simple variable>s, the normal content of a non-OWN

<simple variable> is a zero (0); i.e., a 48-bit word with all bits off. To be truly compatible with
ALGOL-60, a programmer would explicitly zero the <simple variable>s with appropriate <assignment
statement>s.

Pragmatics
A <simple variable> declared as ALPHA is treated as a REAL in terms of storing and manipulation.

Appendix B contains additional information on the internal structure of an alpha <simple variable>
as implemented on the B 7000/B 6000 Information Processing System.

ARRAY DECLARATION

Syntax

Declarations
ARRAY

<array declaration> ::= <long/own specification> <array class> ARRAY <array list>

<lJong/own specification> .:= <local or own> |
LONG <local or own>
<array class> ::= <empty> |
' <type> |
<character type>
<type>:.:= ALPHA |
BOOLEAN |
DOUBLE |
INTEGER |
REAL
<character type> ::= HEX |
BCL |
ASCII |
EBCDIC
<array list> ::= <array segment> |
<array list> , <array segment>
<array segment> .= <array identifier list> | <bound pair list>] |
<array equivalence>
<array identifier list> ::= <array identifier> |
<array identifier list> , <array identifier>
<array identifier> ::= <identifier>
<bound pair list> ::=<bound pair> |
<bound pair list> , <bound pair>
<bound pair> ::= lower bound> : <upper bound>
<lower bound> ::= <arithmetic expression>
<upper bound> ::= <arithmetic expression>

<array row equivalence> = <array identifier> [<lower bound> | = <array row>

Examples

INTEGER ARRAY MATRIX [1:IF B2 THEN B + K ELSE B + I]

INTEGER ARRAY DOG [0:5, 0:25, 1:7, 4:16]

OWN REAL ARRAY GROUP [0:9]

OWN BOOLEAN ARRAY GATE [1:10, 3:9]

REAL ARRAY STUB [0:4, 1:6], CAD[400:500, 1:50]
ARRAY XRAY [X+Y+Z:3*A+B];

EBCDIC ARRAY GROUPE[0] = GROUP [*]

ARRAY PARTARAY [7] = MAJORARAY

LONG ARRAY BIGY [0:9999]

ARRAY SEGARAY [0:50000] R

Declarations
ARRAY

Continued

Semantics

An <array declaration> declares one or more identifiers to represent arrays of fixed but arbitrary
dimensions. Particular elements in an array are referenced by using the <array identifier> with a
<subscript list> in the form of a <subscripted variable>.

LONG ARRAYS

The LONG declarator affects one-dimensional arrays only. Normally a one-dimensional array greater than
1023 words (detected at compile-time) is automatically segmented at run-time into one or more rows of
256 words each. The LONG declarator is used to override this segmentation. The “long” control card option
may also override segmentation at run time if the array is declared to be longer than 1023 48-bit words.
(Refer to B 6800 System Operation Guide Reference Manual, form 5001563.)

The subscript bounds for an array are given in the first <bound pair list> following the <array
identifier>.

<bound pair list>

The <bound pair list> gives the lower and upper bounds of all subscripts taken in order from left-to-right.
The dimensions of the array equal the number of bound pairs in the <bound pair list>.

ARRAY <gype>s

All arrays declared in an <array declaration> are of the same <type>. If the <type> is omitted, it
becomes type REAL by default.

EXPRESSIONS USED AS BOUNDS

Expressions used as array dimension bounds are evaluated once, from left-to-right, upon entering the
<block> in which the array is declared. These expressions can depend only on values that are global to
that <block> or passed in as actual parameters.

<local or own>

If an array is declared to be OWN, it indicates that the array and its contents are to be retained upon exit
from the <block> in which it is declared, and therefore available upon subsequent re-entry into the
<block>. No OWN arrays with variable dimensions are allowed.

Arrays not declared ‘as OWN are completely re-established upon every entry into the <block> in which
they are declared. They are also completely deallocated upon exit from the <block> in which they
are declared.

<character type>s

A HEX array references data by means of a 4-bit string descriptor; a BCL array with a 6-bit string
descriptor; and ASCII and EBCDIC arrays with 8-bit string descriptors. .

%

Declarations
ARRAY

Continued

<array row equivalence>

The <array row equivalence> can be used to establish a “copy descriptor’ of the <array row> with a
different lower bound and/or character size.

Arrays not specified as <character type> are “word arrays’;i.e., each element is a 48-bit word. Note that
a DOUBLE array has two 48-bit words for each element. Word and character arrays may be passed as
parameters and used as <array row>s. In addition, character arrays may be used as <simple pointer
expressions>.
Restrictions
Arrays declared in the outermost <block> must use constant or constant expression bounds.
In all cases, upper bounds must not be less than their associated lower bounds.
Arrays cannot have more than 16 dimensions.
If an array with variable bounds is declared OWN:

a. Once the array is established, the bounds cannot be changed, and,

b. The values of the subscripts used in a <subscripted varzable> referencmg the array are valid only

if within the established bounds.

The maximum value of a <lower bound> is 131,071 ; the minimum value of a <lower bound>
is-131,071.

The maximum length of an array is 22° - 1.

When using the LONG declarator, the maximum array size is determined by the overlay size at cold-start
time.

The <array identifier> may be declared DIRECT. If so, then only DIRECT <array designator>s may be
assigned to it. However, non-DIRECT <array identifier>s may be assigned either DIRECT or non-DIRECT
<array identifier>s.

Declarations
ARRAY REFERENCE

ARRAY REFERENCE DECLARATION
Syntax

<array reference declaration> ::= <direct specifier> <array class>
ARRAY REFERENCE <array reference list>
<direct specifier> :.:= <empty> |
DIRECT
<array reference list> ::= <array reference segment> |
<array reference list> , <array reference segment>
<array reference segment> .= <array reference identifier list> [<integer lower bound list>]

<array reference identifier list> ::= <array reference identifier> |
<array reference identifier list> , <array reference identifier>

<array reference identifier> .= <identifier>
<integer lower bound list> ::= <integer> |
<integer lower bound list> , <integer>

Examples

ARRAY REFERENCE REFARRAY [3]

DIRECT ARRAY REFERENCE DIRREFARRAY [N] % N IS A DEFINED CONSTANT
EBCDIC ARRAY REFERENCE EBCDICREFARRAY [0]

DOUBLE ARRAY REFERENCE DOUBLEREFARRAY [1, 2, 3, 7]

Semantics

An <array reference declaration> is used to establish an <array reference variable>, whose purpose is
to contain a ““copy descriptor’’ of a genuine array. An <array reference variable> is initialized via the
<assignment statement> form of: <array reference variable> := <array designator>. Any

subsequent use of the <array reference identifier™> behaves like a reference to the <array designator>.
The lex level of the <array designator> (i.e., the level at which the array is declared) may not be greater
than that of the <array reference variable>; in other words, the <array reference variable> may not be
global to the <array designator>. ‘

The <array reference variable> may be declared DIRECT. If so, then only DIRECT <array
desighator>s may be assigned to it. However, non-DIRECT <array reference variable>s may be
assigned either DIRECT or non-DIRECT <array designator>s.

If <array class> is <empty>, REAL is assumed. If the number of dimensions of the <array reference
variable> and <array designator> is greater than one (single), their <array class> must agree. If

they are single-dimensioned, the <array class> of the <array designator> may be of any <type>;
the generated copy descriptor is modified as necessary to agree with the <array class> specified for the
<array reference variable>.

The number of dimensions of the <array reference variable> is determined by the number of lower
bounds in its declaration. There can be no more than 16 dimensions.

4.6

Declarations
BOOLEAN

BOOLEAN DECLARATION
Syntax

<Boolean declaration> ::= <local or own> BOOLEAN <identifier list> |
BOOLEAN <equation list>
<equation list> ::= <identifier list> |
<identifier> = <identifier> |
<equation list> , <identifier> = <identifier> |
<equation list> , <identifier list>

Examples

BOOLEAN BOOL
BOOLEAN DONE, ENDOFIT, ISHOULD, TOOLATE
BOOLEAN FLAG, BINT = INTGR, ALLDONE

Semantics

A <Boolean declaration> is used to de‘clare <simple variable>s which have a logical value of TRUE
or FALSE. ‘

The <Jocal or own> portion of the <Boolean declaration> indicates whether the value of the specified
<simple variable> is to be retained upon exit from the <block> in which it is declared. A <simple
variable> declared to be OWN will retain its value when the program exits from the associated <block>,
and that “old” value will be the contents of the <simple variable> when the associated <block> is
re-entered.

Upon entry to a <block> containing <simple variable>s, the normal content of a non-OWN Boolean
<simple variable>> is initialized to FALSE;i.e., a 48-bit word with all bits off. To be truly compatible with
ALGOL-60, a programmer would explicitly zero the <simple variable>s with appropriate <assignment
statement>s.

The <equation list> allows address equation among real, integer, and Boolean variables only. An
<identifier> may only be address equated to a previously declared local <identifier> or to an
<identifier> global to the block in which it is declared.

Pragmatics

The TRUE or FALSE condition of the <simple variable> is dependent on the low-order bit (bit 0)
of the word. Use of the <partial word part> allows all 48 bits to be tested and/or manipulated as needed.

Appendix B contains additional information on the internal structure of a Boolean <simple variable>
as implemented on the B 7000/B 6000 Information Processing System.

Declarations
DEFINE/Define Invocation

DEFINE DECLARATION and DEFINE INVOCATION

Syntax

<define declaration™ ::= DEFINE <definition list>
<definition list> ::= <definition> |
<definition list> , <definition>
<definition> ::= <defined identifier> <formal symbol part> = <text> #
<defined identifier> ::= <identifier>
<formal symbol part> ::= <empty> |
(<formal symbol list>)
<formal symbol list> ::= <formal symbol> |
<formal symbol list> , <formal symbol>
<formal symbol> ::= <identifier>
<text>: —{ any sequence of valid characters not including a free # }
<define invocation> ::= <defined identifier> <actual text part>
<actual text part> .= <empty> |
(<closed textlist>) |
[<closed text list>]
<closed text list> ::=<closed text> |
<closed text list> , <closed text>
<closed text> ::= {an actual text not containing unmatched bracketing
symbols or unbracketed commas }

Examples

DEFINE P = POINTER #

DEFINE BLANKIT = REPLACE P(LINEOUT) BY “ ‘ FOR 22 WORDS #
DEFINE XROOT=(-B + SQRT(B*B —4*A*C)) / (2*A) #
DEFINE INT=INTEGRATE (X, Y.,Z) #

DEFINE LP= (#, RP=) #, LEFTCHAR = [47:8] #

DEFINE FORI = FOR I := 1 STEP UNTIL #

DEFINE FORJ(A,B,C) = FOR J := A STEP B UNTIL C #
DEFINE TAX(X) = SIN(X) / COS(X) #

DEFINE MAXX(A1,A2) = IF A1>A2 THEN Al ELSE A2 #
DEFINE D1(X) = [31:8] #, D2(Y) = F4[X,Y] #

DEFINE DOIT(A,B) = W*A + Y.B #

DEFINE D(X,Y,Z) = XY Z #

Semantics

‘The <define declaration> causes the ALGOL compiler to save off the specified <text> until such time
as the associated <define identifier> is encountered as a <define invocation>. At that point, the saved
off <text> isretrieved and compiled as if the entire <tex?> were actually located at the position of
the <define invocation>.

A <definition> has two forms of syntax: (1), the “simple” define, and (2), the “parametric” define.
They are readily differentiated because the parametric define has a series of parameters (or <formal
symbol>s) enclosed in parentheses. The first six examples above are simple defines, and the last six
examples are parametric defines.

4-8

Declarations
DEFINE/Define Invocation

Continued

The <formal symbol>s are an essential part of a parametric define. References to the <formal symbol>s
cannot appear outside of the <text> of the corresponding parametric define.

<formal symbol>s function in a manner similar to <formal parameters> of the <procedure
declaration>.

Wherever the <formal symbol>s appear in the <text>, a substitution of the corresponding <closed
text> is made before compiling that part of the <tex¢>.

The <text> is bracketed on the left by an equal sign (=) and on the right by a pound sign (#). This equal
sign is said to be “matched’ with the pound sign. The <text> can be any sequence of characters not
containing a “free” pound sign. A free pound sign is any pound sign that is not in a <string>, not in a
<remark>, and not “matched” with an equal sign in a <define declaration> that is nested in the
<text>. The compiler interprets the first free pound sign as signaling the end of the <text>. That is, the
first free pound sign is “matched” by the compiler with the equal sign that started the <text>.

A <define invocation> causes the occurrence of the <defined indentifier> to be replaced by the
<text> associated with the <define identifier>. However, a <define invocation> may not appear in
the <format part list> of a <format declaration> nor in the <editing specification>s of a <read
statement> or <write statement>. Furthermore, if a <format declaration> or <editing specification>
is located within the <text> of a parametric define, it may not reference the <formal symbol>s of that
define. In other words, formats and defines are incompatible for invocation purposes.

The invocation of a parametric define causes textual substitution of the <closed text> into the indicated
position(s) of the associated <text>. A <closed text> need not be “simple’’; for instance, in the first of
the parametric define examples above, the invocation of FORJ could be:

FORJ (0, B*3, MAX(X, Y, Z))
which, if “expanded” would be:
FOR J := 0 STEP B*3 UNTIL MAX(X, Y, Z)
Pragmatics
If the ALGOL compiler encounters some type of syntax error while compiling the combination of the
<text>(s), <closed text>(s), and <formal symbol>(s) at the occurrence of the <define invocation>,

the appropriate error is indicated along with a printout of the expanded define.

A maximum of nine parameters are allowed in a parametric define.

To avoid problems with expanding a define, particularly when an <arithmetic expression> is “passed
in”, each occurrence of a <formal symbol> in the <text> of a parametric define should be enclosed
between parentheses. For example, DEFINE FORJ (A, B, C) = FOR J := (A) STEP (B) UNTIL (C) #.

Beware of passing an updating expression to a parametric define. Multiple use of the corresponding formal
symbol will cause multiple updates. For example, if DEFINE Q(E) = E + 2*¥E# and Q(X:=X+1) is
invoked, its define expandsinto X:=X+1 + 2*X:=X+1;

A syntax error will be generated when a define of a string is-concatenated.

Declarations
DIRECT ARRAY

DIRECT ARRAY DECLARATION
Syntax
<direct array declaration> ::= DIRECT <local or own> <array class> ARRAY <direct array list>

<direct array list> ::= <direct array segment> |
<direct array list> , <direct array segment>

<direct array segment> ::= <direct array identifier list> [<bound pair list>] |
<direct array equivalence>
<direct array identifier list> ::= <direct array identifier> |
<direct array identifier list> , <direct array identifier>
<direct array identifier> .= <identifier>
<direct array equivalence> ::= <direct array identifier> | <lower bound> | =
<single-dimension direct array>

<single-dimension direct array> ::= <direct array identifier> |

: <direct array identifier> [*]

Examples
DIRECT ARRAY DIRARY [0:29]
DIRECT OWN REAL ARRAY MYDIRREELARAY|[O:N]
DIRECT ARRAY DIREQVARAY|[5] = DIRARY
DIRECT EBCDIC ARRAY MULTIDIREBCARAY|[0:4, 0:20]
~ Semantics

A <direct array declaration> is required in order to perform Direct I/O. As stated under <I/O
statement>, Direct I/O is handled in such a manner as to avoid use of the normal 1/O facilities of the
system. The primary item involved is a Direct array.

A Direct array may be word oriented or character oriented.

Direct arrays may be utilized in every way that a non-Direct can be used.

A Direct array has certain <arithmetic-valued direct array attribute>s and <Boolean-valued direct array

attribute>s which can be programmatically interrogated and/or altered before, during, and after the actual
I/O operation.

4-10

Declarations
DIRECT ARRAY

Continued

Pragmatics

Since a Direct array can be used in performing Direct I/O operations, a Direct array is automatically LONG.
There can be no more than 16 dimensions.

NOTE

Direct arrays are also ‘“‘save’’ once they are used in any
way. Arbitrary use of Direct arrays in lieu of normal
arrays to avoid overlaying can seriously degrade overall
system efficiency.

Declarations
DOUBLE

DOUBLE DECLARATION

Syntax .

<double dec]aration> .= <local or own> DOUBLE <identifier list>
Examples '

DOUBLE DUBL
DOUBLE BIGNUMBER, GIGUNDOUS, DUBLPRECISION

Semantics

A <double declaration> is used to declare. <simple variable>s which can be used as double values,
that is, a 96-bit arithmetic entity (carried internally as 2 adjacent 48-bit words).

The <local or own> portion of the <double declaration> indicates whether the value of the specified
<simple variable> is to be retained upon exit from the <block> in which it is declared. A <simple
variable> is to be retained upon exit from the <block> in which it is declared. A <simple variable>
declared to be OWN will retain its value when the program exits from the associated <block>, and

that ““old” value will be the contents of the <simple variable> when the associated <block> is
re-entered.

Upon entry to a <block> containing <simple variable>s, the normal content of a non-OWN DOUBLE
<simple variable> is a zero (0); i.e., two 48-bit words with all bits off. To be truly compatible with
ALGOL-60, a programmer would explicitly zero the <simple variable>s with appropriate <assignment
statement>s.

Pragmatics

After an arithmetic calculation, the resulting value is stored ““as is”’ into the <simple variable>.

~ Appendix B contains additional information on the internal structure of a double <simple variable>
as implemented on the B 7000/B 6000 Information Processing System.

Declarations
DUMP

DUMP DECLARATION
Syntax

<dump declaration> ::= DUMP <dump part>
<dump part > .= <file identifier> (<dump list>) <control part> |
<dump part> , <file identifier> (<dump list>) <control part>
<dump list> ::= <dump element> |
<dump list> , <dump element>
<dump element> ;.= <simple variable> |
<array identifier> |
<label identifier>
<control part> ::= <label identifier> <label counter modulus> <dump parameters>
<label counter modulus> ::= <empty> |
: <unsigned integer>
<dump parameters> ::= <empty> |
(<label counter> <bounds part>)
<label counter> .= <empty> |
<simple variable>
<bounds part> .= <empty> |
<lower limit> |
,,<upper limit> |
<ower limit> , <upper limit>
<lower limit> .'= <arithmetic expression>
<upper limit> .= <arithmetic expression>

Examples

DUMP FYLE (A) LBL

DUMP FID (X, Y, ARAY, COWNTER) LOUP : 3

DUMP PRNTR (I, INFO, INDX) NEXT (DMPCOUNT, , DPHIGH)

DUMP LP (A, B, LBL1, ARAY) AGAIN : 5 (TALY, 20, 50)

DUMP LINEOUT (MISC, ITEM, ACCUM) MORE : 10 (DPCT, DPLOW, DPHIGH)

Semantics

The <dump declaration> allows surveillance of designated variables during execution of the user’s
program. The <dump declaration> declares which identifiers are to be placed under surveillance.
Diagnostic information requested by the <dump declaration> is written on the file designated by the
<file identifier>> when the <control part> parameters are satisfied, that is:

a. If the <label counter modulus> is <empty> and <dump parameters> is <empty>>, then

a dump of the <dump list> occurs every time execution control has passed to the <statement>

indicated by the <label identifier> in the <control part>.
b. If the <label counter modulus> is not <empty> and the <dump parameters> is <empty>,
a dump of the <dump list> occurs whenever “n MOD <label counter modulus> = 0, where
“n” is the number of times control has occurred at the label designated by <label identifier>.
c. If the <label counter> is <empty>, the number of times execution control has passed to the
<label identifier> must be greater than or equal to the <lower limit> and less than or equal

4-13

Declarations

DUMP

Continued

to the <upper limit>, and the number of times execution control has passed to the <label
identifier> must be evenly divisible by the <label counter modulus>.

. If the <label counter> is not <empty>>, the value of the designated <simple arithmetic variable>

is used to regulate the dumping. A dump of the <dump list> will occur when the value of the
<label counter> lies between the <lower limit> and the <upper limit> (inclusive), and the
number of times execution control has passed to the <label identifier> is evenly divisible by the
<label counter modulus>.

e. If <label counter modulus> is <empty>, 1 is assumed.
f.
g.

If dower limit> is <empty>, zero is assumed.
If <upper limit> is <empty>, infinity is assumed.

Pragmatics

The diagnostic information produced depends on the form(s) of the <dump element>s. When a dump
of the <dump list> occurs, the symbolic name (up to six characters) of each <dump item> is produced,
along with the following information:

a.

If the <simple variable> is of type REAL, DOUBLE, or ALPHA, a real value is printed. For
example, REEL = .10000000000 or DUBL = 0.0 or ALFA = 12698307.000. If the <simple
variable> is of type INTEGER, an integer value is printed. For example, INTEGER = 2. If the
<simple variable> is of type BOOLEAN, the Boolean condition is printed. For example,
BOOL = .FALSE..

. A dumped <array identifier> of an array of type REAL produces the 48 bits of each array

element, converted to a numeric value as if operated upon by the R <editing phrase type>. If the
array is of type BOOLEAN, the condition of each element is shown as .TRUE. or .FALSE.. If
the array is of type INTEGER, an integer is produced for each element position.

. A dumped <label identifier> shows the number of times execution control has passed the

specified <label identifier>, For example, L2=3.

Restrictions

The <array identifier> must be that of a single-dimensioned array. Only the first six characters of any
<identifier> are produced. <character type> arrays cannot be used in the <dump declaration>.

4-14

Declarations
EVENT/EVENT ARRAY

EVENT and EVENT ARRAY DECLARATIONS
Syntax

<event declaration> ::= EVENT <event identifier list>
<event identifier list> .:= <event identifier> |

<event identifier list> , <event identifier>
<event identifier> .= <identifier>
<event array declaration> ::= EVENT ARRAY <event segment list>
<event segment list> ::= <event segment> |

<event segment list> , <event segment>
<event segment> ::= <event array identifier list> [<bound pair list>]
<event array identifier list> ::=<event array identifier> |

<event array identifier list> , <event array identifier>

<event array identifier> ::= <identifier>
Examples

EVENT FILEA

EVENT E1, E2, E3, E4

EVENT ARRAY SWAPPEE [0:5]
Semantics
An <identifier> declared to be an <event identifier>, or an element of an event array is usually used
for purposes of synchronization. An event can be used either to indicate the completion of an activity
(e.g., the completion of a Direct I/O read or write operation) or as an interlock between participating
programs over the use of a shared resource(s).
Events can be used in synchronous manner by explicitly testing the state of the event at various
programmer-defined points during execution, or they can be used in an asynchronous manner by use of
the software interrupt facility.
Refer to <event statement> and <interrupt declaration>.
Pragmatics

The initial state of an event is not-happened (RESET) and available.

There can be no more than 16 dimensions.

Declarations
FILE

FILE DECLARATION

Syntax

<file declaration> ::= <direct specifier> FILE <file list>

<file list> ::= <file list part> |
<file list> , <file list part>
<file list part> .= <file identifier> |

<file identifier> (<nitial attribute list>)

<file identifier> ::= <identifier>

<initial attribute list> ::= <initial attribute> |
<initial attribute list> , <initial attribute>

<initial attribute> ::= <arithmetic-valued file attribute name> = <arithmetic file attribute value> |
: <Boolean-valued file attribute name> |
<Boolean-valued file attribute name> = <Boolean expression> |
<pointer-valued file attribute name> = <pointer expression> |
<pointer-valued file attribute name>= <string>
<translate-table-valued file attribute name>
<arithmetic file attribute value> .= <arithmetic expression> |
<mmnemonic file attribute value>

<arithmetic-valued file attribute name> ::=

AREACLASS | AREAS | AREASIZE |

ASSIGNTIME | ATTVALUE | ATTYPE |

BLOCK | BLOCKSIZE | BUFFERS |
CARRIAGECONTROL | CENSUS | COPIES |
CURRENTBLOCK | CYCLE | DATE | DENSITY |
DIRECTION | DISPOSITION | ERRORTYPE |
EXTMODE | FAMILYSIZE | FILEKIND |

FILETYPE | INTMODE | KIND | LABELTYPE |
LASTRECORD | LASTSTATION | LINENUM |
MAXRECSIZE | MINRECSIZE | MYUSE | PAGE |
PAGESIZE | PARITY | POPULATION |

PROTECTION | RECEPTIONS | RECORD |
RECORDINERROR | RECORDKEY | REEL |
ROWADDRESS | ROWSINUSE | SAVEFACTOR |
SECURITYTYPE | SECURITYUSE | SERIALNO |
SIZEMODE | SIZEOFFSET | SIZE2 | SPEED | STATE |
TAPEREELRECORD | TRANSLATE | TRANSMISSIONO |
TRANSMISSIONS | UNITNO | UNITS | UNITSLEFT |
USEDATE | VERSION | WIDTH

<mmnemonic file attribute value> .:= <density mnemonic> |
<errortype mnemonic> |
<extmode mnemonic> |
<filekind mnemonic> |
<intmode mnemonic> |
<kind mnemonic> |
<labeltype mnemonic> |
<myuse mnemonic> |
<parity mnemonic> |

Declarations
FILE

Continued

<protection mnemonic> |
<securitytype mnemonic> |
<securityuse mnemonic> |
<sizemode mnemonic> |
<speed mnemonic> |
<state mnemonic> |
<translate mnemonic> |
<units mnemonic>

<density mnemonic> .= HIGH | MEDIUM | LOW | SUPER
<errortype mnemonic>::= NOERROR | SUNOTREADY |
READPARITYERROR | READCHECKFAILURE
<extmode mnemonic> ::= SINGLE | HEX | BCL | EBCDIC |
. ASCII | BINARY
<filekind mnemonic> ::= ALGOLCODE | ALGOLSYMBOL |
BACKUPDISK | BACKUPPRINTER | BACKUPPUNCH | BASICCODE |
BASICSYMBOL | BINDERSYMBOL | BOUNDCODE | CDATA |
COBOLCODE | COBOLSYMBOL | CODEFILE |
COMPILERCODEFILE | CONTROLDECK | CSEQDATA |
DATA | DCALGOLCODE | DCALGOLSYMBOL | DIRECTORY |
ESPOLCODE | ESPOLSYMBOL | FORTRANCODE |
FORTRANSYMBOL | GUARDFILE | INTRINSICFILE |
JOBCODE | JOBDESCFILE | JOVIALCODE |
JOVIALSYMBOL | LIBRARYCODE | MCPCODEFILE |
PLICODE | PLISYMBOL | RECONSTRUCTIONFILE |
SEQDATA | SYSTEMDIRECTORY | SYSTEMDIRFILE |
VERSIONDIRECTORY | XALGOLCODE | XALGOLSYMBOL |
XDISKFILE | XFORTRANCODE | XFORTRANSYMBOL
<intmode mnemonic> .= ASCII | BCL | EBCDIC | HEX | SINGLE
<kind mnemonic> ::= CP | DC | DISK | DISKPACK |
DISPLAY | PACK | PAPER | PAPERPUNCH |
PAPERREADER | PETAPE | PRINTER | PTP |
PTR | PUNCH | READER | REMOTE | SPO |
TAPE | TAPE7 | TAPE9
<labeltype mnemonic> ::=- STANDARD | OMITTED | OMITTEDEOF
<myuse mnemonic> ::= CLOSED | IN | OUT | I0
<parity mnemonic> ::= STANDARD | NONSTANDARD
<protection mnemonic> ::= TEMPORARY | SAVE | PROTECTED
<securitytype mnemonic> ::= PRIVATE | CLASSA | CLASSB
<securityuse mnemonic> ::= SECURED | IN | OUT | IO
<sizemode mnemonic> ::= SINGLE | HEX | BCL | EBCDIC | ASCII
<speed mnemonic> ::= FAST | MEDIUMFAST | MEDIUMSLOW | SLOW
<state mnemonic>::= ATEND | |
BREAKHERE |
DATAERROR |
LOCKEDOUT |
NEWUSER |
NOINPUT |

Declarations
FILE

Continued

NORMAL |
PARITYERROR |
TIMEOUT
<tranmslate mnemomc> = DEFAULTTRANS |
FORCESOFT |
FULLTRANS |
NOSOFT |
NOTRANS |
SOFTONLY
<units mnemonic> :’= CHARACTERS | WORDS
<Boolean-valued file attribute name> ::= ATTERR |
CYLINDERMODE | DUPLICATED | ENABLEINPUT | EOF |
FLEXIBLE | INTERCHANGE | NULINPUT | OPEN |
OPTIONAL | PRESENT | READCHECK | RESIDENT |
SCREEN | SINGLEPACK | TRANSLATING | UPDATED
<pomter-valued file attribute name> = FAMILY | FORMMESSAGE |
INTNAME | PACKNAME | TITLE
<translate-table-valued file attribute name> :’= INPUTTABLE | OUTPUTTABLE

Examples

FILE FYLE
FILE TAPE (KIND=DISK,FILETYPE=8, BUFFERS=2,
INTMODE=EBCDIC)

FILE OFNI (KIND=DISK,BUFFERS=3,AREASIZE=30,
MAXRECSIZE=246, BLOCKSIZE=2560,
AREAS=100,

TITLE=“INFO.”)

Semantics

A <file declaration> associates a <file identifier> with a file. The attributes for that particular file
may or may not be specified in the <file declaration>. The attributes not specified in the <file
declaration> can be assigned by an appropriate <assignment statement> or through the use of Work
Flow Language statements at either compile-time or execution-time.

Any pointer <initial attribute> can be set equal to a character string constant as well as a <pomter
expression>.

A <Boolean-valued file attribute name> appearing without the “= <logical value>" part implies
“= TRUE.”

Pragmatics

There are two methods of performing I/O operations on the B 7000/B 6000 Information Processing System.
The first method is the simplest and is referred to as ‘““normal I/O” or as “‘regular I/0”. (Refer to
<I/O statement>.)

Declarations
FILE

Continued

Normal I/O is indicated when the <direct specifier> is <empty>. Normal I/O includes many
automatic facilities provided by the MCP, such as:

a. Buffering — the automatic overlap of program processing and I/O traffic from/to the peripheral
units.

b. Blocking — more than one logical record per physical block.

c. Translation — as needed between the character set of the unit and that required by the program.

Direct I/O is the indicated method when DIRECT is specified. The functions of buffering, blocking, and
translation (as described above) become the responsibility of the programmer. Furthermore, a DIRECT
ARRAY is required in order to READ from and/or WRITE to the specified file. Refer to the <read
statement> and <write statement>.

Both Non-Direct files and Direct files have numerous file attributes which can be interrogated and/or
altered. Direct I/O files have a number of additional attributes which are pertinent to Direct I/O only.
(Refer to the B 7000/B 6000 Input/Output Subsystem Reference Manual, form 5000185.)

4-19

Declarations
FORMAT

FORMAT DECLARATION
Syntax

<format declaration> ::= FORMAT <in-out part> <format part list>
<Jn-out part> .= <empty> |
IN |
ouT ‘
<format part list> ::= <format part> |
<format part list> , <format part>
<format part> ::= <format identifier> (<edztmg specifications>) |
<format identifier> (<editing specifications>)
<format identifier> :.= <identifier>
<editing speciﬁ'cations> si=<editing segment> |
<editing specifications>/ |
| <editing specifications> |
<editing specifications> | <editing segment> |
<editing specifications> , <editing segment>
<editing segment> .= <editing phrase> |
<repeat part> (<editing specifications>) |
<editing segment> , <repeat part> (<editing speczfzcatzons>)

<editing phrase> ::= <repeat part> <edmng phrase type> <fi eld width part>
<repeat part> .= <empty> |

<unsigned integer> |

*

<editing phrase type> ::= <simple string> |
Al C| DI E|IF|G|IHIT|J|K|L|]O|]P]| R
SI'TIU|I V| X| Z] $
<field width part> ::= <empty> |
<field width> <decimal places>
<field width> ::= <unsigned integer> | *
<decimal places> ::= <empty> |
. <unsigned integer> |
*

Examples

FORMAT HDG (“THIS REPORT SHOULD BE MAILED TO ROOM W-252")

FORMAT IN EDIT (X4, 216, 5E9.2, 3F5.1, X4)

FORMAT IN F1 (A6,5(X3,2E10.2,2F6.1),317),F2(A6.,G,A6)

FORMAT OUT FORM1 (X56, “HEADING”,X57),FORM?2 (X10,4A6/X7,
5A6/X2,5A6)

FORMAT FMT1 (*I*)

FORMAT FMT2 (*V*.%)

Semantics

A <format declaration> associates each of its <format idenvtifier>s with an <lediting specifications>.
<define identifier>s, <remark>s, and <formal symbol>s cannot be used in formats.

4-20

Declarations

FORMAT

Continued

A format can be referenced in a <read statement>, <write statement>, or a <switch format
declaration™>. In general, a <list> would also be referenced in those same statements, and the joint
purpose is to indicate a series of data items (specified by the <list>) along with the formatting action
(specified by the <format identifier>) to be performed on each of the data items.

<in-out part>

The <in-out part> has effect only upon the treatment of <simple string>s used with a format. Under
certain circumstances a <simple string>> (appearing as an <editing phrase type>>) is read-only. Any
~attempt to store into read-only entity results in a program execution error.

If the <in-out part> of a <format declaration> is OUT or <empty>, there is a run-time error if an
attempt is made to replace any <<simple string> in the format via a <read statement>. If the <in-out
part> is IN, <simple string>s within formats are not read-only and can be replaced. However, once a
<simple string> has been replaced, the format containing it is altered from its original definition in the
<format declaration>. When reading data into a format element to replace a <simple string>>, no more
characters can be transferred than appear in the <simple string>.

SLASH

Two fields in a format item list are separated by a comma, a slash, or a series of slashes. A slash is used to
indicate the end of a record. On input, any remaining characters in the current record are ignored when a
slash is encountered in the specification list. On output, the construction of the current record is termi-
nated and any subsequent output is placed in the next output record(s). Multiple slashes may be used to
skip several records of input or generate several blank records on output. The final right parenthesis of a
format also acts to indicate the end of the current record.

Carriage control occurs each time a slash appears in the format. With the <core-to-core file part>, a slash
in the format is ignored.

Example

<I> COMPILE FMT/TEST ALGOL; EBCDIC
BEGIN
FILE READER (KIND=READER) ,
LINE (KIND=PRINTER) ;
REAL A, B;
FORMAT FMT(12,/,12);
READ (READER, FMT, A,B);
WRITE(LINE, FMT, A ,B);
WRITE(LINE [SKIP 1] ,FMT, A B);
END.
<I> DATA
1234
5678
<I>END

4-21

Declarations

FORMAT

Continued

Produces the following output:

12
56
12
<to channel 1>
56
NOTE
For ease of explanation, lower case letters are used to
refer to the parts of an <editing phase>:
r = <repeat part>
w = <field width>
d = <decimal places>
Asterisks

If an asterisk (*) appears in a format specification list in place of the r, w, or d parts, then the I/O list will
be accessed once and the value of the I/O list element obtained will be used to replace the *. A new I/O
list element is required each time an * is encountered in the specification list.

<repeat part>

Format specifications and format list portions enclosed in parentheses may optionally be immediately
preceded by an unsigned nonzero integer constant. This constant indicates the number of times that
portion of the specification list is to be interpreted. If no such repeat count is indicated, a repeat count
of 1 is assumed.

If the outer right parenthesis of the format specification list is encountered before the I/O list is exhausted,
control reverts to the repeat count (if present) of the repeat specification group terminated by the last
preceding right parenthesis. If no other right parenthesis exists in the specification list, then control
reverts to the first left parenthesis of the specification list.

The following are proper examples of the use of repeat counts. In each case, the repeat count is 3.

3F10.4
3(A6/)
3(3A6,3(/112)))
If the <repeat part> is <empty>>, a value of 1 is assumed.

If the <repeat part> is an *, the number of repetitions is determined by the value of the corresponding
<list element> as follows: .

a. If the value is greater than 0, then repeat the number of times represented by the value.

4-22

Declarations
FORMAT

Continued

b. If the value is equal to 0, then repeat indefinitely.
c. If the value is less than 0, then skip to the corresponding right parenthesis.

Example

<[> COMPILE VAR/REPEAT ALGOL; EBCDIC
BEGIN
FILE LINE(KIND=PRINTER);
REAL A,B.C;
FORMAT FMT(*(A2,X1),*12);
A:=1; B:=2; C:=3;
WRITE(LINE ,FMT,2,“AB”*,“CD”,3,A,B,C);
WRITE(LINE,FMT,-3,1,A);
WRITE(LINE,FMT,0,“AB”,“CD”,“EF”);
END.
<I>END
Produces the following output:
ABbCDbb1b2b3
bl
ABbCDbEFDb

<width part>

When an asterisk used for the field width of a format phrase is given a zero or negative value at run-time, no
editing action occurs for that phrase; however, the next list element is skipped as if it had been edited by
the inactive editing phrase. (If a zero or negative field width occurs (at run-time) for a phrase with a repeat
part, enough list elements are skipped to satisfy the repeat count.)

E);ample

<I> COMPILE VAR/WIDTH ALGOL; EBCDIC
- BEGIN

FILE LINE(KIND=PRINTER);
REAL A;
FORMAT FMT(I*,A*);
A:=12;
WRITE(LINE,FMT,3,A);
WRITE(LINE,FMT,0,A,2,“AB”);
END.

<I>END

Produces the following output:

bl12

AB

Editing Phrase Actions

The actions of the various <lediting phrase type>s are explained in the following information, arranged in
alphabetical order according to the <editing phrase fype> -letter.

4-23

Declarations
FORMAT

Continued

<simple string> Format

The presence of a <simple string> in a format indicates that the characters enclosed by the quote marks
() are to be used as the data. The occurrence of a <simple string™> does not require a corresponding
<list element> when the format is used.

BCL strings (those with string codes of 6 or 3) are encoded as BCL characters, not EBCDIC characters.

To enable more efficient handling of string codes in formats, 1-bit, 2-bit and 7-bit strings are not allowed.
If no string code appears with a quoted string, the default character size (6-bit if the BCL compiler option
is set; 8-bit otherwise) will be used. The length of the 3-bit and 4-bit strings must be a multiple of 2 to
facilitate packing into 6-bit or 8-bit characters, respectively. Only the first digit of the string code is ever
used when encoding formats, since the extra information available in string code is meaningless in the case
of formats.

Example

WRITE(LINE,<4“C1C2”, 8“ABC’>);
$SET BCL
WRITE(LINE,<3“646566”, 6 HIJ"">);

Will produce the following output:
ABABC
DEFHIJ

A Format

The alphanumeric format specification Aw causes data to be transferred to or from internal storage as
EBCDIC (8-bit) or BCL (6-bit) characters.

NOTE

Prior to I1.7, the INTMODE of the file determined the
character size applied to list elements (except pointers).
On I1.7, the default character size (6-bit if $SSET BCL
appears, 8-bit otherwise) applies to list elements (other
than pointers). This gives the added flexibility of
writing BCL (6-bit) data to an EBCDIC (8-bit) file (and
vice versa) and similarly for input, with translation
occurring where necessary to preserve character data.

4-24

Declarations

FORMAT

Continued

Example

BEGIN

FILE F(KIND=PRINTER,INTMODE=EBCDIC);
WRITE(F, <A3>,8“ABC”);

$SET BCL

WRITE(F, <A3>, 6“ABC™);

END.

Output prior to I1.7:

ABC
m (where ? represents a nongraphic EBCDIC character)

OUTPUT on 11.7:

ABC
ABC

Pointers

On input, w characters are transferred from the input record to the pointer-designated location. On output,
w characters are transferred from the pointer-designated location to the output record. The <character
size> used is that of the pointer.

NOTE
For purposes of explanation of A and C formats, the

variable Q will be used, where the value of Q is derived
from the following table:

(default character size)

BCL EBCDIC
(precision) Single 8 6
Double 16 12

[if the list element is <pointer expression> FOR
<arithmetic expression>>, use the <arithmetic
expression> as the value of Q.]

Input

On input, the A-format specification causes the character string of width w in the external field to be
assigned to the corresponding simple variable or array element in the I/O list. Legal <list element>s are of
type ALPHA, INTEGER, BOOLEAN, DOUBLE, REAL, or POINTER.

If w is greater than or equal to Q, the right-most Q characters of the input field are transferred to the
<list element>. If w is less than Q, w characters of the input field are transferred to the <list element>,
right-justified. The unused high-order bits of the data word are set to zero.

4-25

Declarations
FORMAT

Continued

Input Examples

DEFAULT
CHARACTER EXTERNAL SPECIFICATION INTERNAL VALUE
SIZE STRING

8 ABCDEFGHIJKL A9 - 8“DEFGHI”

6 ABCDEFGHIJKL A9 6“BCDEFGHI”

8 AbCbEbGbIbK A4 40000’8“AbCb”

6 ABCDEFGHIJKL A4 6°‘0000ABCD”

(either) ABCDEFGHIJKL Al12 , ABCDEFGHIJKL
(pointer as <list element>)
8 ' ABCDEFGHIJKL Al12 40000°8“ABCDEFGHIJKL”
(8-bit pointer FOR 14)
6 ABCDEFGHIJKL Al12 6“JKL”
: (6-bit pointer FOR 3)
NOTE
If the corresponding <list element> is an INTEGER
variable, the w characters of the input field are stored
into this <list element> without integerization being
performed. If w is greater than 4, the INTEGER <list
element> can receive a noninteger value. (Refer to
Word Formats in appendix B.)
Output

On output, the A <editing phrase> causes the characters contained in the appropriate variable in the
<list element> to be converted into an external string of length w.

If w is greater than or equal to Q, the Q characters of the <list element> are placed right-justified in the
_ field, preceded by w minus Q blanks.

If w is less than Q the right-most w characters of the <list element> are written into the output field. If

the output character size is 8-bit and one of the character fields in the word contains a bit pattern that does
not correspond to an EBCDIC graphic,? (denoting an invalid character) would be printed in that position.

4-26

Declarations

FORMAT
Continued
Output Examples
DEFAULT
CHARACTER INTERNAL SPECIFICATION EXTERNAL
SIZE VALUE STRING
8 8“DEFGHI” A9 bbbDEFGHI
6 6“BCDEFGHI” A9 bBCDEFGHI
8 4°0000000000°8““A” A4 M7A
6 6“0000ABCD” A4 ABCD
8 8“ABCDEFG” All bbbbABCDEFG
(8-bit pointer FOR 7)
6 6“ABCDEFG” A4 DEFG
(6-bit pointer FOR 7)
C Format

The Cw format specification has the same effect as the Aw format specification except that characters are
placed into and taken from the leftmost portion of a word (or list element).

Input Examples

DEFAULT
CHARACTER EXTERNAL SPECIFICATION INTERNAL VALUE
SIZE STRING

8 ABCDEFGHIJKL Cc9 8“DEFGHI”

6 ABCDEFGHIJKL c9 6“BCDEFGHI”

8 ABCD C4 8““ABCD’4“0000”

6 ABCDEFGHIJKL C4 6 “ABCD0000

8 ABCDEFGHIJKL C12 8“ABCDEFGHIJKL’4“0000”

(8-bit pointer FOR 14)
6 ABCDEFGHIJKL Cl12 6“JKL”
(6-bit pointer FOR 3)
Output Examples
DEFAULT)
CHARACTER INTERNAL SPECIFICATION EXTERNAL

SIZE VALUE STRING
8 8“DEFGHI”’ C9 bbbDEFGHI
6 6 “BCDEFGHI” C9 bBCDEFGHI
8 8“ABCD”’40000” P C5 ABCD?
6 6 ABCD0000” ' C4 ABCD
8 8“ABCDEFG” Cl1 bbbbABCDEFG

(8-bit pointer FOR 7)
6 6“ABCDEFG” C4 ABCD
(6-bit pointer FOR 7) :

4-27

Declarations
FORMAT

Continued

D,E Formats
The format specifications Dw.d and Ew.d cause data appearing in an external character string as a numeric
constant to be associated with an internal storage location for purposes of input or output.

Correct action will occur for list elements of type ALPHA, INTEGER, REAL, DOUBLE or BOOLEAN.
Input

[In the following discussion and examples for input, the letter ““D’’ may be substituted wherever “E”’ is
used.] :

On input, the Ew.d specification causes the vaIue'of the numeric constant written with or without
exponential notation in a string of w input characters to be assigned to the corresponding I/O list element.

The Ew.d specification allows the input constant to contain as many decimal places as desired by use of the

. decimal place count, d. If no decimal point appears in the input string, a decimal point is implied as
specified by d. Thus, the input string 100EO when read using the specification E5.2 would be interpreted
as the numeric constant 1.E+0 with two implied decimal places in the input string. A decimal point is
assumed d places from either the right edge of the input field or from the E denoting the exponent, if
there is one.

The field width, w, must be greater than or equal to the specified number of decimal places, d. A blank is
interpreted as a zero.

Examples
EXTERNAL STRING SPECIFICATION INTERNAL VALUE
bbbbbb25046 El114 +2.5046
bbbbb25.046 ‘ El1.4 +25.046
-bb25046E-3 E114 -0.0025406
bb250.46E-3 El11.4 +0.25046
b-b25.04678 El114 -25.04678
Output

On output, the Dw.d and Ew.d specifications cause the value of the corresponding item in the I/O list to
be written as an output character string of length w, represénting a numeric constant expressed in
exponential notation. The exponent is adjusted so that the decimal point is positioned as specified by the
decimal place count, d.

The specified width of the output field, w, must be greater than or equal to the number of specified
decimal places, d, plus 7. This provides for a 4-character exponent part, a decimal point, a digit preceding
the decimal point, and a sign. If this rule is violated, the field will be filled with asterisks.

The Dw.d specification is essentially equivalent to the Ew.d specification except for the presence of a D
rather than an E in the exponent part of the output string.

4-28

Declarations

FORMAT

Continued

Furthermore, the number of characters necessary to represent the D exponent part depends upon the value
of the exponent. The following types of exponent parts may appear:

(4-character) D+XX where 01<XX<99
(4-character) +XXX where 100<XXX<999
(7-character) DXXXXX where 01000<XXXXX<99999

Output Examples

INTERNAL VALUE SPECIFICATIONS EXTERNAL STRING
+36.7929 E13.5 bb3.67929Eb01
-36.7929 E12.5 -3.67929Eb01
-36.7929 E11.5 3.67929Eb01
+36.7929 - E10.5 ol
1.234@@-73 D14.5 : bbb1.23400D-73
-789@@1234 D15.3 bb-7.890D+01236
6.54@@321 D9.2 b6.54+321

F Format

The real format specification Fw.d causes data appearing in an external character string as a real constant
to be associated with an internal storage location for purposes of input or output. Correct action will occur
for list elements of type ALPHA, INTEGER, REAL, DOUBLE, or BOOLEAN.

On input, the Fw.d specification causes the value of the real constant written with or without exponential
notation in a string of w input characters to be assigned to the corresponding I/O list element.

The decimal point may be positioned as indicated in the input string or located as desired via the decimal
place count, d. If no decimal point appears in the input string, a decimal point is implied as specified by d.
A decimal point is assumed d places from the right edge of the input field. Thus, the input string 1234
when read using the specification F4.2 would be interpreted as the real constant 12.34 with two implied
decimal places in the input string. '

The field width, w, must be greater than or equal to the specified number of decimal places, d, and must
include the decimal point and exponent field when either or both are present. A blank is interpreted as
a zero.

Examples
EXTERNAL STRING SPECIFICATION INTERNAL VALUE

36725931 F8.4 +3672.5931
3.672593 F8.4 3.672593
-367259. F8.4 -367259
-3672.E2 F8.4 -367200
367259E2 . F8.4 +3672.59
3.672E-1 F8.4 +.3672
367259 ; F6.6 +0.367259

' b-b3456 F7.2 -34.56

4-29

Declaratjons
FORMAT

Continued

Output

On output,bthe Fw.d specification causes the value of the corresponding item in the I/O list to be written as
an output character string of length w, representing a real constant expressed without using exponential
notation. The decimal point is adjusted such that d digits follow the decimal point.

The constant is right-justified over blanks within the field, and the specified width of the output field, w,
must be greater than or equal to the number of specified decimal places, d, plus 1. The possible presence
of a minus sign for a negative datum must be taken into consideration when specifying the field width.

The internal value is rounded to satisfy the decimal point specification, and the field will contain asterisks
if the value to be output has an integer part too large for the allotted field.

Examples
INTERNAL VALUE SPECIFICATION EXTERNAL STRING

+36.7929 F7.3 b36.793
+36.7934 F9.3 bbb36.793
-0.0316 F6.3 -0.032
0.0 F6.4 0.0000
0.0 F6.2 bb0.00
+579.645 : : F6.2 579.65
+579.645 F4.2 ke
-579.645 F6.2 lalolubat

G Format

The <field width part> must be <empty>. No <list element> corresponds to this editing letter.
BCL Files

On input, eight 6-bit characters from the input recerd are skipped. On output, eight BCL zeroes are written.

EBCDIC Files

On input, six 8-bit characters from the input record are skipped. On output, six EBCDIC zeroes are written.

4-30

Declarations
FORMAT

Continued

H, K Formats
NOTE
[For purposes of explanation of H and K formats, the
variable Q will be used, where the value of Q is derived

from the following table:

(format phrase)

H K
single 12 16

(precision)
double 24 32

Also, the term Characters will refer to hexadecimal
characters for H format, and octal characters for
K format.]

The Hw and Kw format specifications cause an external string of Characters in a field of width w to be
interpreted as a hexadecimal (H) or octal (K) value and associated with the corresponding list element for
purposes of input data transfer. Conversely, an internal value is converted to Characters and associated
with a corresponding list element for purposes of output data transfer. Legal list elements are of type
ALPHA, REAL, INTEGER, DOUBLE and BOOLEAN.

Input

. On input, the value represented by the Characters in the input field is assigned to the corresponding </ist
element> variable. Leading, trailing and embedded blanks are interpreted as zeroes. A minus (-) sign
causes bit 46 of the storage word (or the first word of a double) allocated to the variable to be
complemented.

If the input data is less than or equal to Q Characters long, it is stored right-justified in the storage location

(both words of a double are included). Unused high-order bits are set to zero. If w is greater than Q, the
leftmost w minus Q Characters must be blank, zero or minus; otherwise a data error will occur.

4-31

Declarations

FORMAT

Continued

Input Examples

EXTERNAL STRING SPECIFICATION INTERNAL VALUE
6F H2 400000000006F”’
1FFFFFFFFFFF H12 4“1FFFFFFFFFFF”

-16 H3 4400000000016

12340568 HS8 4000012340568

FFCb H4 4“00000000FFCO”

00C1C2C3C4C5C6 " H14 4“C1C2C3C4C5C6”

-ABCD HS 440000000000000000000ABCD”
(double)

123456789 ABCDEF H15 4000000000123456789ABCDEF”’
(double)

16 K2 3¢0000000000000016

1777777777777777 K16 3¢“1777777777777777”

-16 K3 3¢2000000000000016

1234b56 K7 30000000001234056”

77b K3 3¢0000000000000770

-567 K4 3¢2000000000000000000000000000567”

: (double)
1234567654321234567 K19 3¢00000000000001234567654321234567”
(double)
NOTE

If the input string contains a non-Character, an error
occurs, and the “data error” <action label>. of the
<read statement> is invoked (if specified).

Output

On output, the value of the <list element> is printed as a string of Characters right-justified over blanks in
a field of width w. If w is less than Q, the contents of the rightmost w*4 bits (H) or w*3 bits (K) of the
storage word (consider a double-precision variable as effectively a 96-bit word) are printed as a string of

w Characters. If w is greater than Q, the Q Characters of the <list element> are placed right-justified in
the output field, preceded by w minus Q leading blanks. Such output never contains a printed sign.

4-32

Declarations

FORMAT
Continued
Output Examples
INTERNAL VALUE SPECIFICATION EXTERNAL VALUE
4“0000E5551010” H5 51010
4“0000E5551010” H12 0000E5551010
4“0000E5551010” H16 bbbb0000ES5551010
8“123456” H12 F1F2F3F4F5F6
4000000000000000012345678” H4 5678
(double)
8“123456789bbb”’ ' H24 F1F2F3F4F5F6F7F8F9404040
(double)
30005677701234445” K5 34445
30005677701234445” K16 0005677701234445
30005677701234445” K18 bb0005677701234445
3400000000000000000000000001234567” K4 4567
(double)
I Format

The integer format specification Iw causes an external character string of width w to be associated with the
corresponding list element for purposes of data transfer. Legal list elements are of type ALPHA, REAL,
INTEGER, DOUBLE, or BOOLEAN.

Input

On input, the Iw specification causes the value of the integer constant in the input field to be assigned to
the corresponding list element. Any legal ALGOL integer constant is allowed in the field. Blank characters
are interpreted as zeroes. The magnitude of the value which may be input depends upon the type of the

list element.

Input Examples

EXTERNAL STRING SPECIFICATION INTERNAL VALUE
567 I3 +567
bb-329 16 -329
-bbbb27 17 =27
27bbb IS +27000
b-bb234 17 -234

Output

On output, the Iw specification causes the value of the corresponding list element to be printed as an integer
constant in a field of width w. The constant is right-justified over a field of blanks, and the plus sign is not
printed for non-negative quantities.

If the value of the list element requires a field larger than w, then w asterisks will be printed.

Floating-point values are rounded to an integer value before printing.

4-33

Declarations
FORMAT

Continued

Output Examples

INTERNAL VALUE SPECIFICATION EXTERNAL STRING
+23 14 bb23
-79 14 b-79
+67486 I5 67486
-67486 IS *okdokck
+978 Il *
0 I3 bb0
+3.6 12 b4

J Format

The integer format specification Jw causes an external character string of at most w characters to be
associated with the corresponding list element for purposes of data transfer. Legal list elements are of type
ALPHA, REAL, INTEGER, DOUBLE, or BOOLEAN.

Input

On input, the Jw specification functions identically to the Iw specification.

Output

On output, the Jw specification causes the value of the corresponding list element to be printed as an
integer constant in the minimum field necessary to contain the value without exceeding w. The plus sign
is not printed for non-negative quantities.

If the value to be printed requires more than w characters, w asterisks will be printed.

Floating-point values are rounded to an integer value before printing.

.)
Output Examples

INTERNAL VALUE SPECIFICATION EXTERNAL STRING
+23 J5 23
-23 J5 -23
+233 I3 233
-233 J3 ok
0 J3 0

K Format

[K format is discussed in conjunction with H format.]

4-34

Declarations

FORMAT

Continued

L Format

The logical format specification Lw causes the logical value indicated by the contents of a character string
of width w to be associated with the corresponding list element for purposes of data transfer. Legal list
elements are of type ALPHA, REAL, INTEGER, DOUBLE, or BOOLEAN.

Input

On input, the Lw specification causes the corresponding list element to be assigned the value TRUE (1) or
FALSE (0), depending on the contents of the field of width w. If the left-most non-blank characterisa T,
the variable is assigned the value TRUE; otherwise, the value FALSE is assigned. An all-blank field yields
the value FALSE. If the list element is a double, the first word is assigned the logical value and the second
word is set to zero.

Input Examples

EXTERNAL STRING SPECIFICATION INTERNAL VALUE

T L1 TRUE(4000000000001°%)

bbF L3 FALSE(4¢000000000000")

bbbTRU L6 TRUE(4“000000000001°*)

b L1 FALSE(4000000000000*)

T L1 TRUE(4¢°000000000001000000000000’)

(double)
Output

The list element may be a variable or an <expression>. If bit O of the corresponding list element (only the
first word of a double is considered) is ON or OFF, the logical value of the item is TRUE or FALSE,
respectively.

Output Examples

INTERNAL VALUE SPECIFICATION EXTERNAL STRING
0 L6 ,, bFALSE
1 LS bTRUE
2 L4 FALS
3 L3 TRU
4 L2 FA

4-35

Declarations

FORMAT

Continued

O Format ¥
NOTE
[For purposes of explanation of the O format, the

“variable Q will be used, where the value of Q is derived
from the following table:

(precision) (pointers)
single double 4-bit 6-bit 8-bit
BCL 8 16 12 8 6
(default char- pp oy 6 12 2 8 6

acter size)

For pointers, if Q (from the table) is greater than the
length (in characters) of the string pointed to, the value
of Q is the string length.]

On input, Q characters are transferred, unedited, from the input record to the list element. On output,

Q characters are transferred, unedited, to the output record from the list element. The <field width part>
must be <empty>. Legal list elements are of type ALPHA, REAL, INTEGER, DOUBLE, BOOLEAN, or
POINTER.

P,$ Formats

Format modifiers may be placed immediately to the left of a format specification used to edit a data item
for output. If a repeat count is used, it should be to the left of any modifiers used. More than one modifier
may be used with a format specification. A modifier may not be used on input.

For example, 2PR10.3 and 8P$F20.6 are valid, but $2F5.1 is not.

P Format Modifier

On output, this phrase may be used in conjunction with a numeric editing phrase to‘cause commas to be
inserted between digit triples to the left of the decimal point. (This phrase is not allowed on input.)

$ Format Modifier

On output, this phrase may be used in conjunction with a numeric editing phrase to place a dollar sign
immediately to the left of an edited item. (This phrase is not allowed on input.)

4-36

Declarations

FORMAT
Continued
Examples:
INTERNAL VALUE SPECIFICATION EXTERNAL STRING
17.347 $F10.2 bbbb$17.35
-1234567 PI10 -1,234,567
-1234567 P$715.2 bbbb$-1,234,567
1234567.11111 PF15.5 1,234,567.11111
1234567.1234 $PR15.5 bbb$1.23457E+06
1234567.1234 $PR15.0 bbbb$1,234,567.
R Format

The Rw.d format specification is a generalized numeric editing phrase which can be associated with an
S format scale factor. Correct action will occur for list elements of type ALPHA, REAL, INTEGER,
DOUBLE or BOOLEAN.

Input

On input, the contents of the input field are transferred to the list element in accordance with the D, E or
F formats (subject to the effects of an S format scale factor). A “D”, an “E” or an “@”’ can be used to
indicate the beginning of the exponent field. A number with an implied exponent indicator is treated as if
the exponent indicator is actually present. For example, 1.0-3 would be 1.0@-3. Blank characters are
interpreted as zeroes.

Output

On output, the value of the <list element> is placed in the field described by the field width. The number
used as the decimal exponent in the following algorithm is the exponent number of the normalized value of
the <ist element>, using scientific notation. For example, 376.42 normalized is 3.7642E2, where the

2 following the E is the decimal exponent. D format specification, E format specification, or F format
specification editing is used according to the following test:

If ABS (list element>)= 1 and
w = (decimal exponent+1) +1 + d + SIGNBIT

or ABS (list element>) <1 and
w=d + 1 + SIGNBIT and
(d = —(decimal exponent) or
w<d+1+5 +SIGNBIT)

then F <editing phrase> editing, else

If ABS (decimal exponent) < 99 and
w = d + 6 + SIGNBIT,

then E <editing phrase> editing, else

4-37

Declarations
FORMAT

Continued

If w >d +9 + SIGNBIT,

A

then D <lediting phrase> editing, else

Fill w character positions with asterisks, because w is too small.

LIST
EXTERNAL ELEMENT EXTERNAL
INPUT STRING TYPE SPECIFICATION OUTPUT STRING

-.333333bb REAL R10.4 bbb-0.3333
-.333333bb DOUBLE R104 bbb-0.3333
-.333333bb INTEGER R104 bbbb0.0000
3333.333E2 DOUBLE R104 3.3333D+05
3333.333E2 INTEGER R104 3.3333E+05 -
-.333bbbbb REAL R10.9 ek ok oo o ook o
-.333bbbbb INTEGER R10.9 .000000000
333.333E2b DOUBLE R10.4 3.3333D+22
bbbbbbbbbbbbb1.23D12 REAL R20.4 bb1230000000000.0000
bbbbbbbbbb1.23D12345 DOUBLE R20.4 bbbbbbb1.2300D+12345
bbbb4.3@68 REAL R10.4 4.3000E+68

S Format

Input

On input, the values associated with the subsequent R <editing phrase> are divided by the “power of 10
designated by the <integer> in S <integer>.

Output
The values associated with the subsequent R <editing phrase> are multiplied by the “powers of 10”
designated by the <integer> in S <integer>. More than one S <integer> phrase can appear in a format,

each phrase taking precedence over the preceding one. For example, the execution of the following
program excerpt:

READ(KARD, <R10.2>, A);

WRITE(LINE, <S3,R10.2>, A);
with input data of 10.00 and .54 yields

bb10000.00 and bbb540.00 as input.

4-38

Declarations
FORMAT

Continued

T Format

The buffer point is moved to the wth character position in the record. The <field width>, w, must be
greater than zero (0), that is, T1 moves the buffer pointer to the first character position in the record.
No <list element> corresponds to this editing letter.

Example:

<I>COMPILE T/FORMAT ALGOL; EBCDIC
BEGIN
FILE LINE(KIND=PRINTER), KARD(KIND=READER);
REAL A;
READ(KARD, <T7, A6>, A);
WRITE(LINE, <A6, T12, A6>, A, A);
WRITE(LINE, <X6, “123”, T1, A6>, A);
END.
<I>DATA
ABCDEFGHIJKLMN
<I>END

produces the following output:

GHIJKLbbbbbGHIJKL
GHIJKL123

U Format

The U editing specification is a flexible editing phrase which allows a great deal of freedom in the transfer of
formatted data. Legal list elements are of type ALPHA, REAL, INTEGER, DOUBLE or BOOLEAN.

Input
U format has yet to be implemented for input.
Output

On output, the U editing specification causes the data item to be output in a form best suited for the item.
REAL, INTEGER, and DOUBLE items are output in a format that combines readability with maximum
numerical significance. BOOLEAN items are output as “T”’ or “F”’ and occupy one character position in
the record. Character strings are treated as real. If the number of characters required to edit the item is
greater than the number left in the current record, the record is output and the item placed in the next
record.

The form Uw is similar to U, with the added restriction that the edited term may not exceed w characters.
If the data item cannot be edited into a field of w characters, a field of w asterisks is output.

The form Uw.d is similar to Uw, with the added restriction that the total field width occupied by the edited

item may not be less than d characters. In this case, the number of non-blank characters (those representing
the data item itself) may not exceed 3 characters. Thus, if A>w,d-w leading blanks will be inserted.

4-39

Declarations
FORMAT -

Continued

Output Examples

INTERNAL VALUE . SPECIFICATIONS EXTERNAL STRING

-123.4567 U -123.4567

789 U 789

1.5@@275 Ul10 1.5D+275
<otk - 1234567 U5 - 1.2+6
S he 1 - U104 - bbbl

123.456 U104 123.456

1 US.8 bbbbbbbl

123.456 Us.8 bbb123.5

V Format -

The V format specification allows a variable editing phrase letter to be supplied at run-time. When V
appears in a format specification list, the next list element is accessed to furnish the editing letter. Legal
list elements are of type ALPHA, REAL, INTEGER, DOUBLE, BOOLEAN or POINTER. The rightmost
character of the list element (only the first word of a double is considered) is used to supply the editing
letter. The editing letter extracted from the list element will be a 6-bit.character if the default character
size is BCL; otherwise, an 8-bit character is extracted. If the list element is a <pointer expression>, the
first character of the designated string is used as the editing letter..

Example:

REAL AB; -
DOUBLE D;-

FORMAT FMT1(V8.2),
FMT2(2V¥),
FMT3(*V*.*);

READ(KARD,FMTI, “R”, A);
B:=4“C1”; ,
WRITE(LINE,FMT2, B, 6, A, D);
D:=DOUBLE(4“C5” 0);
READ(KARD,FMT3, 2, D, 10, 4, A, B);

In the above program,

FMTI1 evaluates to R8.2 applied to list element A,
FMT?2 evaluates to 2A6 applied to list elements A and D,
FMT3 evaluates to 2E10.4 applied to list elements A and B.

4-40

Declarations
FORMAT
Continued

X Format

On input, w characters are skipped. On output, w blanks are inserted. No <list element> corresponds to
this editing letter.

Z Format

The general format specification Zw.d is a generalized floating point convefsion which may be used with list
elements of type ALPHA, REAL, INTEGER, DOUBLE or BOOLEAN. This specification is interpreted as
D.E,F,I or L format, depending upon the type and magnitude of the value of the list element.

Input

On input, the Zw.d specification is the same as D, E or F formats for ALPHA, REAL and DOUBLE list
elements. For INTEGER list elements, Z functions like Iw, and for BOOLEAN list elements, Z functions
like Lw.

Output

The output string will have a length of w characters, regardless of the value being read or written. For
BOOLEAN list elements, Lw is used. For INTEGER list elements, Iw is used.” For ALPHA, REAL or
DOUBLE list elements, a D, E or F format representation of the list element’s value is produced according
to the following criteria: If V is the absolute value of the list element, then for K=0,1,2,...,d, if
104-K-1<y<109-K, then formats F(w-4) . (d-K), X4 are used. If V<. 1 or V<109, then Ew.d is used. In
other words, Zw.d implies “‘output d significant digits”.

Output Examples _

INTERNAL VALUE SPECIFICATION EXTERNAL STRING
1.23@@250 Z12.6 1.230000+250
| I Z5.1 bbbbl
12345 Z5.1 12345
12 Z8.7 bbbbbb12
12345.678 - Z104 1.2346E+04
12 - 2104 bbbbbbbb12
12345678 Z6 bbb
1234 Z6 bb1234
1 (BOOLEAN) Z3 TRU

4-41

Declarations
FORWARD

FORWARD REFERENCE DECLARATION
Syntax

<forward reference declaration> .= <forward interrupt declaration> |
- <forward procedure declaration> |
<forward switch declaration>
<forward interrupt declaration> :'= INTERRUPT <interrupt identifier> ; FORWARD
<forward procedure declaration> .:= <procedure type> PROCEDURE <procedure heading> ;
: FORWARD
<forward switch declaration> ::= SWITCH <switch label identifier> FORWARD

Examples

SWITCH SELECT FORWARD
INTEGER PROCEDURE SUM (A,B.C);
VALUE A,B,C;
INTEGER A,B,C;
- FORWARD

Semantics

Before a procedure, switch, or interrupt can be used in a program, it must be declared. However, consider
the following situation: in the body of procedure #1, a reference is made to procedure #2. Likewise,
within the body of procedure #2, a call is made on procedure #1. Regardless of which procedure is
declared first, its body contains a reference to an undeclared entity. A similar situation can be construc-
ted with two switches, because these constructs also have the power of recursion.

To enable the ALGOL compiler to handle situations of this nature, the <forward reference declaration>
is necessary. Therefore, in the example given above, the body of procedure #1 might be a <block>
containing the <declaration> PROCEDURE TWO:; FORWARD. Later in this <block>, procedure

#2 is called and the compiler recognizes it. Finally, at some later point in the program, procedure #2 is
declared in full.

4-42

Declarations
INTEGER

INTEGER DECLARATION
Syntax

<integer declaration> ::= <local or own> INTEGER <identifier list> |
INTEGER <equation list>

Examples

INTEGER INTGR
INTEGER COUNT, VAL, NOEXPONENT
INTEGER INT=BOOL, CAL, NUM=REEL

Semantics

An <integer declaration> is used to declare <simple variable>s which can be used as integer values,
that is, an arithmetic value that is maintained as a value with an exponent of zero.

The <local or own> portion of the <integer declaration> indicates whether the value of the specified
<simple variable> is to be retained upon exit from the <block> in which it is declared. A <simple
variable> declared to be OWN will retain its value when the program exits from the associated <block>,
and that ““old” value will be the contents of the <simple variable> when the associated <block>

is re-entered.

Upon entry to a <block> containing <simple variable>s, the normal content of a non-OWN <simple
variable> is a zero (0); i.e., a 48-bit word with all bits off. To be truly compatible with ALGOL-60, a
programmer would explicitly zero the <simple variable>s with appropriate <assignment statement>s.
The <equation list> allows address equation among real, integer, and Boolean variables only. An
<identifier> may only be address-equated to a previously declared local <identifier> or to an
<identifier> global to the block in which it is declared.

Pragmatics

After an arithmetic calculation, the resulting value is iﬁtegerized and then stored into the <simple
variable>, in contrast to a real <simple variable> which is stored “as is.”

Appendix B contains additional information on the internal structure of an integer <simple variable>
as implemented on the B 7000/B 6000 Information Processing System.

4-43

Deciarations
INTERRUPT

INTERRUPT DECLARATION -
~ Syntax _
<interrupt declaration> ::= INTERRUPT <interrupt identifier> ; <unlabeled statement>
<interrupt identifier> ::= <identifier>
Example

INTERRUPT ERR; GO TO ABORT

INTERRUPT 1I1;

BEGIN
END

Semantics
The <interrupt declaration™ provides a means of forcing a process to depart from its current point of
control and execute the <unlabeled statement> associated with the <interrupt declaration>. The
process then normally returns to its previous point of control when the program “falls out the end” of
the <unlabeled statement>. However, this would not be the case if a <go to statement> is executed
within the <unlabeled statement> and the specified <label> is outside of the <unlabeled statement>.
An interrupt must be enabled (refer to - <enable statement>) and attached to an event by an <attach
statement> ‘before it can have any effect. The <disable statement> can temporarily render the associated
interrupt ineffective.
Pragmatics
An <interrupt declaration> can be thought of as describing an <unlabeled statement> (which can also
be a <block>) which is automatically entered upon the occurrence (CAUSE) of an event. The MCP

ensures when a program is executing the <unlabeled statement>, all other interrupts are queued until
the program exits from the <unlabeled statement>

4-44

Declarations
"LABEL

LABEL DECLARATION
Syntax

<label declaration> ::= LABEL <label identifier list>
<label identifier list> :.= <label identifier> |

<label identifier list> , <label identifier>
<label identifier> .= <identifier>

Examples

LABEL START
LABEL ENTER,EXIT,START,LOOP

Semantics

A <label declaration> declares each identifier in its <identifier list> as a <label identifier>. A

<label identifier> must appear in a <label declaration> in the head of the innermost block in which it -
is used to label a statement. If any <statement> in a <procedure body>> is labeled, the declaration of
this label must appear within the <procedure body>.

4-45

Declarations
LIST

LIST DECLARATION
Syntax‘

<list declaration> = LIST <list part list>
<list part list> = <list part> | <list part list> ,<list part>
<list part> = <list identifier> (<list segment>)
<list identifier> = <identifier>
<list segment> = <list element> | <list segment> , <list element>
list element> .= <unconditional list element> |
* <unconditional list element> |
<conditional list element> |
* <conditional list element >

<unconditional list element> .= <simple arithmetic expression> |

<simple Boolean> | <pointer expression> |

<pointer expression> FOR <arithmetic expression> |

<array row> | | <list segment>] | DO <list element> UNTIL
<Boolean expression> | .

<iteration clause>
<unconditional list element> |

<if clause> <unconditional list element> ELSE
<unconditional list element> |

CASE <arithmetic expression> OF (<list segment>)

<iteration clause> .= FOR <variable> := <for list> DO |
THRU <arithmetic expression> DO |
WHILE <Boolean expression> DO

<conditional list element> = <if clause> <list element> |
<jteration clause> <conditional list element> |
<if clause> <unconditional list element> ELSE
<conditional list element> |
DO list element> UNTIL <Boolean expression> |
CASE <arithmetic expression> OF (<list element>)

Examples

LIST L1 (X,Y,A,[J], FOR I := P STEP 1 UNTIL 5 DO B [I])
LIST ANSWERS (P + Q,Z,SQRT (R)), RESULTS (X1,X2,X3,X4/2)
LIST LIST3 (FOR I := 0 STEP 1 UNTIL 10 DO FOR J := 0, 3, 6
DO A[LJ])
LIST L4 (B AND C, NOT AB1, IF X = 0 THEN R1 ELSE R2)
LIST RESULTS (FOR I := 1 STEP 1 UNTIL N DO [A[I], FOR J :=1
STEP 1 UNTIL K DO [B[LJ], C[J]11])

4-46

Declarations
LIST

Continued

Semantics

A <list declaration> associates an ordered set of <list element>s with a <list identifier>. A <list
identifier> 1is usually used in conjunction with a <format identifier>> within a <read statement> or
<write statement> to indicate which entities are to be associated with the corresponding <editing
phrase>s of the specified format. Although the syntax of the <read statement> and <write
statement> allows the entities to be listed within the statement itself, a <Jist declaration> provides

a more convenient means of grouping the entities to be used. <list element>s can be either conditional
or unconditional. ‘

<unconditional list element>s

<unconditional list element>s are the usual entities found in <list segment>s. Essentiall); they are
built from arithmetic primaries, Boolean primaries, pointer primaries, and array rows.

<pointer expression> FOR <arithmetic expression>

<pointer expression> FOR <arithmetic expression>> allows the user to specify the amount of the string,
to which the pointer points, to be used as a list element. Thus, if P points at string “ABCDEFGHIJKL”,
P FOR 3 refers to the substring “ABC”.

Asterisks

Asterisks (*) prefixed to a list element only have meaning for free-field output (they are ignored for
other I/O). The asterisk prefixed to a list element will cause, under the control of free-field output, the
text of the list element to be output just prior to the edited value of the list element, with an equal
sign (=) inserted between the two. If the list element is a string under control of any other 1/0, the
prefixed asterisk is ignored.

4-47

Declarations

MONITOR

MONITOR DECLARATION
Syntax

<monitor declaration> ::= MONITOR <monitor part list>
<monitor part list> ::= <monitor part> |
<monitor part list> , <monitor part>
<mmonitor part> ::= <file or procedure zdentlf er> (<monitor list>)
<file or procedure identifier> ::= <file identifier> |
<procedure identifier>
<monitor list> ::= <monitor element> |
<monitor list> , <monitor element>
<mon1tor element> :: <szmple varzable> |
<label identifier> |
<array identifier>

Examples

MONITOR FYLE(A)
MONITOR PRNTR(X,LBL,ARAY)
MONITOR MONPROC(VAL,INDX,INFO)

Semantics

The diagnostic <monitor declaration> causes all subsequent occurrences of assignments of the form
<imonitor element> .= to produce monitoring action during execution of the program. Each time an
<identifier> included in the <nonitor list> is used in one of the ways described in the following
paragraphs, the <identifier> and its current value are written on the file or passed as parameters to the
procedure specified in the <tnonitor declaration>. In particular, the monitor action does not occur for
assignments within procedures that are declared before the <monitor declaration> is encountered, nor
does monitoring of a variable in the <lnonitor list> occur if this <identifier> is used as a call-by-name
<actual parameter> to a procedure that modifies the value(s) of its <formal parameter>s.

Pragmatics Ce

The diagnostic information produced depends on the form(s) of the <monitor element>s. When the
SLINEINFO compiler option is SET, and a <file identifier> is specified as the <monitor part>, the
stack number, an @ sign, a segment address, and a sequence number are printed in front of the symbolic
name of the <mnonitor element>. For example, 0143 @ 003:0003:4 (00007000). Diagnostic information
is provided as follows by the specified <monitor element>s:

a. When the <<tmonitor element> is a <simple variable>>, the symbolic name and the before and
after values of the <simple variable> are printed. For example, B =0:=13. The controlled variable
in a <for statement> cannot be monitored.

b. When the <lnonitor element> is a <label identifier™, the symbolic name of the label is shown.
For example, LABEL L.

c. If the <monitor element> is an <array identifier>, the symbolic name of the array and the
before and after values of the spemﬁed <array element> are printed. For example, ARAY
[12] =0:=12.

4-48

Declarations
MONITOR

Continued

The <file identifier> cannot be a file-valued task attribute.

The <monitor part> of the form <procedure identifier> (<monitor list>) produces the following
information when the applicable restrictions are observed. Note that printing of the <tnonitor element>
is not automatic when a <procedure identifier> is used. Printing must be performed by the procedure.
Also, the monitored procedure performs the specified operations depending on the values passed to it.

When the <simple variable> form is used, the format of the monitoring procedure must be in the follow-
ing general form:

' REAL PROCEDURE MON (NAME,VAL,SPELL);
The procedure must be of the same <<tnonitor list>. The procedure must have three arguments:

a. The first parameter (NAME) is the name of the <monitor element>; that is, the first parameter
is call-by-name parameter of the same <type> as the <monitor element>, This argument
(NAME) is normally used to store the value of the second argument (VAL).

b. The second parameter (VAL) is also of the same <type>. But, it is a call-by-value parameters and
contdins the value to be assigned to the <tnonitor element>.

c. The third and last parameter (SPELL) must be a call-by-value ALPHA variable. It contains the
name of the <monitor element> as a string of characters. Only the first six characters of the
symbolic name are passed into this <formal parameter>. If the symbolic name is less than six
characters, the symbolic name is left-justified and trailing blanks are added, up to six characters.

If the <monitor element> is to be assigned a value, it must be done by the monitoring proced\ire. The
value returned by the procedure can then be used, for example, in evaluating the remainder of an
<expression> in which the assignment is imbedded. For example, note that in the succeeding example

under <array identifiers>, the assignment statement “NAME:=MON:=VAL;” allows the subsequent use of
the value assigned to the <mionitor element>.

When the <Jabel identifier> form of the <monitor element> is used, the format of the monitoring
procedure must be in the following general format:

PROCEDURE MON (SPELL);

The procedure must be untyped. It must have only one parameter This parameter will contain the first six
characters of the symbolic name. If the symbolic name is less than six characters, the symbolic name is
left-justified and trailing blanks are added, up to six characters. For example, the monitoring procedure
could compare the symbolic names in the <monitor list> in order to identify a particular label. The
spelling of the labels follows the same rule as described under the <simple variable> form.

When the <monitor list> is of the form <array zdem‘zf er> the format of the monitoring procedure
must be in the following general format:

REAL PROCEDURE MON (D] ... DnNAME,VAL,SPELL);

The array to be monitored must have the same number of dimensions as the monitoring procedure. In
other words, the first D1 ... Dn parameters of the procedure must correspond to the dimensions of the
subscripted array variable. Each dimension parameter is a call-by-value integer. The last three parameters
are the same as in the <simple variable> case. Notice that formal parameter VAL is a <simple variable>.

4-49

Declarations
MONITOR
Continued

The value normally returned by the procedure is the value used to evaluate the remainder of the
<expression>, if any.

The following procedure could be used to monitor a two-dimensional array so that the values in the array
never become negative.

REAL PROCEDURE MON (D1, D2, NAME, VAL, SPELL);

VALUE D1, D2, VAL, SPELL;

REAL NAME, VAL;

ALPHA SPELL;

INTEGER D1, D2;

BEGIN

IF VAL ¢ 0 THEN GO TO ERROREXIT; % “BAD-GO-TO”
NAME:=MON:=VAL; % RETURN VALUE IN CASE OF FURTHER USE
END;

The occurrence of the <statement> B:=A[1,)] :=4; where A is monitored by MON, is equxvalent to
the <statement> B:=MON(LJ,A[LJ] 4,“A”);

An array may not be monitored if it is in the <ist> part of a <read statement> or <write statement>.

4-50

Declarations
PICTURE

PICTURE DECLARATION
Syntax

<picture declaration> ::= PICTURE <picture part list>
<picture part list> ::= <picture part> |

<picture part list> , <picture part>
<picture part> :.:= <picture identifier> (<picture>)
<picture identifier> ::= <identifier>
picture> ::= picture symbol> |

<picture> <picture symbol>

<picture symbol> ..= <string> |

<picture character> <repeat part value> |

<control character> |

<introduction> |

<picture skip> <repeat part value> |

<single picture character>
<picture character>:=A |D |E|F |1 | R |X|Z|9
<repeat part value> :.= <empty> |

(<unsigned integer>)
<control character> .:=Q | :
<introduction> ::= <introduction code> <new character> |
4 <introduction code> <hexadecimal character>

<introduction code> ::=B|C|M|N|P|U
<new character> ;.= <EBCDIC character> | *
<picture skip>::=) | {
<single picture character> ::=J | S

Examples

PICTURE Z9S (ZZZZ9)
PICTURE PF (“FIRST IS” X(1)A(1)}(10)X(1)“LATER 18" X(1)A(DI3)Y(11)A(3))
PICTURE USECS (ZZZ1999999)

PICTURE TIMENOW (“ "N:9(2)I9(2)I9(2))

Semantics

The <picture declaration> provides a means of performing generalized character editing. Pictures are
-used in <replace statement>s. The following editing operations can be performed:

. Unconditional character moves.
. Move characters with leading zero editing.
. Move characters with leading zero editing and floating character insertion.
. Move characters with conditional character insertion.
. Move characters with unconditional character insertion.
Move numeric part of characters only.
. Skip source characters, forward and reverse.
. Skip destination characters forward.
Insert overpunch sign on the previous character.

IO MO Q0 oS

4-51

Declarations
PICTURE
Continued

A <picture> consists of a named string of editing symbols that are enclosed in parentheses. The picture
editing symbols listed below can be combined in any order to perform a wide range of editing functions.

<introduction code>s
The output characters listed below are assumed for the <introduction code>s. Another character can be

substituted for the assumed character by the use of the <introduction> phrase, as defined in the syntax.
The two hexadecimal characters are assumed to represent a single - <EBCDIC character>.

. OUTPU'I_’ _ INTRODUCT ION NORMAL
CHARACTER CODE - USE
space (blank) B Replacement' of leading zeros
. C Conditional insert character
- M ‘Character insertion if minus
. N ‘Unconditional insert character
+ P Character insertion if plus
$ U Floating character insertion
<control character>s

The control characters shown below cause the following action:
CHARACTER ' ' ACTION

Q Inserts an 'overpunch sign in the preceding character position.
: Re-initiates leading zero replacement. -

<single picture character>s

- The <smgle pzcture character>s perform the followmg actlon

CHARACTER - o | ACTION
J If a move with float (E or F) has not mserted a float character, the float is
terminated and the U character is inserted. Otherwise, no operation is performed.
S A single P character is inserted if the s1gn is plus, otherwise, a single M character is
. mserted A

<pzcture characler>s

The <picture character>s listed below perform the following action:

CHARACTER , : Lo ACTION
A Moves the number of characters speclﬁed by the <repeat part value>.
D If an E or F float has not ended the B character is inserted. Otherwise, the C character
. is inserted.

4-52

Declarations

PICTURE
Continued
CHARACTER ACTION
E Moves the numeric part only for the number of characters specified by the <repeat:;

part value>, Suppresses leading zeros by substituting the B character. If the sign is plus,
a P character is inserted in front of the first non-zero number. Otherwise, an M character
is inserted and the float is ended.

A move numeric is performed with leading zeros replaced by the B character. A U
character is inserted in front of the first non-zero number, and the float action is ended.
The N character is inserted uhconditionally.

If an E or F float has not ended, the P character is inserted. Otherwise, the M character
is inserted.

The destination pointer is skipped forward by the number of characters specified in the
<repeat part value>.

A move numeric is performed with leading zeros replaced by blanks.

Moves the numeric part only of the number of characters specified
by the repeat field.

11

ON X =T

<picture skip>

The <picture skip> characters perform the following action:

CHARACTER ACTION
< The source pointer is skipped in reverse (to the left) by the number of charaéters
specified by the <repeat part value>.
) The source pointer is skipped forward (to the right) by the number of characters

specified by the <repeat part value>.
Pragmatics

One value array (also called an “edit table”) is generated for each <picture declaration> and therefo;e it
would generally be wise to collect all pictures under a single <picture declaration>. :

4-53

v Declarations
POINTER

POINTER DECLARATION
Syntax

<pointer declaration> ::= POINTER <pointer identifier list>
<pointer identifier list> ::= <pointer identifier> |

<pointer identifier list> , <pointer identifier>
<pointer identifier> ::= <identifier>

-

Examples

POINTER PTR
POINTER PTS,PTD,SORCE,DEST

Semantics

A pointer represents the relative address of a character position with respect to the beginning of a one-
dimensional array or an <array row>>. Thus, it is said to “‘point” to a character position. The <pointer
declaration> establishes each <identifier>> in the pointer list as a <pointer identifier>.

Pragmatics

Pointers are initialized via a <pointer assignment> statement. Any attempt to use a pointer prior to its
initialization will result in an INVALIDOP error.

A pointer should not be initialized to point into an <array row> which is “up-level.”” Stated in another

way, the <pointer declaration> should be at the same or higher lexicographical level as the referenced
declaration of the <array row>; it should not be lower. If it is lower, total system failure can occur.

4-54

Declarations
PROCEDURE

PROCEDURE DECLARATION
Syntax

<procedure declaration> .= <procedure type> PROCEDURE
<procedure heading>; <procedure body>
<procedure type> ::= <empty> |
<type>
<procedure heading> ::= <procedure identifier> <formal parameter part>
<procedure identifier> .= <identifier>
<formal parameter part> .= <empty> |
(<formal parameter list>) ; <value part> <specification part>
<formal parameter list> .= <formal parameter> |
<formal parameter list> <parameter delimiter> <formal parameter>
<formal parameter> ::= <identifier>
<value part> ::= <empty> |
VALUE <identifier list> ;
<specification part> ::= <specification> |
<specification part> ; <specification>
<specification> .= <specifier> <identifier list> | <procedure type>PROCEDURE <identifier list>
<formal parameter specifier> |
<array specification>
<specifier> ::= <direct specifier> FILE |
<direct specifier> SWITCH FILE |
EVENT)]|
FORMAT |
LABEL |
LIST |
PICTURE |
POINTER |
SWITCH |
SWITCH FORMAT |
SWITCH LIST |
TASK |
<type>
<formal parameter specifier> .= <empty> |
() ; FORMAL |
<value part> <specification part> ; FORMAL
<array specification> .= <direct specifier> <array type> <array specifier list>
<array type> .= <array class> |
EVENT |
TASK
<array specifier list> ::= <array specifier> |
<array specifier list> , <array specifier>
<array specifier> ::= <array identifier list> [<lower bound list> |
<lJower bound list> .= <specified lower bound> |
<lower bound list> , <specified lower bound>
<specified lower bound> ::= <integer> | *
<procedure body> :.= <unlabeled statement> |
EXTERNAL

4-55

Declarations -
PROCEDURE

Continued

Examples

PROCEDURE SIMPL; X := X + 1
PROCEDURE TUFFER (PARAM)
VALUE PARAM;
REAL PARAM;
X = X + PARAM
'REAL PROCEDURE RESULT (PARAM,FYLEIN);
REAL PARAM;
FILE FYLEIN;
BEGIN

RESULT := X + PARAM:

END
BOOLEAN PROCEDURE MATCH (A,B,C);
VALUE A,B,C;
INTEGER A,B.C;
MATCH := A=B OR A=C OR B=C
DOUBLE PROCEDURE MUCHO (DDBL1,DBL2,BOOL);
'VALUE DBL2,BOOL;
DOUBLE DBL2;
BOOLEAN BOOL;
" BEGIN
REAL LOCALX,LOCALY;

MUCHO := DOUBLE (LOCALX,LOCALY);
END OF MUCHO
PROCEDURE FURTHERON;
FORWARD
INTEGER PROCEDURE BOWNDIN (P1,P2,P3,P4);
VALUE P2, P4;
POINTER P1;
REAL P2, P3;
FILE P4;
EXTERNAL

Semantics
A <procedure declaration> defines the <procedure identifier> as the name of a procedure.

A procedure becomes a “function” by preceding the word PROCEDURE with a <type> and by

assigning a value or result to the procedure somewhere within the <procedure body>. (Refer to -

.EXAMPLES: RESULT, MATCH, and MUCHO.) This kind of procedure is more commonly referred to as
a “typed procedure’ and is known to return a result. Note that a typed procedure can be used either as a

4-56

t

Declarations
PROCEDURE

Continued

<statement> or as an <expression>. When used as a <statement>, the returned result is automatically
discarded. :

The purpose of the <formal parameter part> is to list the item(s) which will be “passed in” as parameters
when the procedure is invoked. As can be seen from the syntax, a <formal parameter part> is optional. If
it is supplied, a <value part> and <specification part> are then required.

The <value part> specifies which <formal parameter>s are to be *“called by value.” When a <formal
parameter> is called by value, the <formal parameter> is set to the value of the corresponding <actual
parameter>, Thereafter, the <formal parameter> is handled as a <variable> that is local to the
<procedure body>. That is, any change of value of the <variable> will not ramify outside the
<procedure body>.

NOTE

Only arithmetic, Boolean, and pointer expressions
may be given as <actual parameter>s to be called-
by-value. These expressions will be evaluated once,
before entry into the <procedure body>.

<formal parameter>s not in the <value part> are “called-by-name.” This means that wherever a
<formal parameter> called-by-name appears in the <procedure body>, the <formal parameter> is
replaced by the <actual parameter> and not its value. A call-by-name <formal parameter> is effectively
global to the <procedure body>, since any change in its value within the <procedure body> is effected
outside the <procedure body> on the corresponding <actual parameter>.

It is possible to pass an <arithmetic expression> as an <actual parameter> to a procedure where it has
an arithmetic variable specified as call-by-name. This situation results in a “thunk’ (also called ‘“‘accidental
entry” or ‘“‘spontaneous entry’”) into a compiler-generated typed procedure which is in fact the calculation
of the <arithmetic expression>. Note that this can be time-consuming if the arithmetic variable is
repeatedly referenced. Furthermore, an invalid operand interrupt error will occur if an attempt is made to
store into that item.

Every <formal parameter> must appear in the <specification part>.

The <array specification™> must be provided for every array passed into the procedure. The primary
purpose of the <array specification> is to specify the number of dimensions in the passed array and to
indicate the <specified lower bound> as desired within the <procedure body>.

A <specified lower bound> which is an <integer> denotes that the corresponding dimension of the -
<actual parameter> has a declared <lower bound> equal to this value. If an “*” is used as a <specified
lower bound>, it indicates that the corresponding dimension of the <actual parameter> has a declared
<lower bound> that may vary in value.

The EXAMPLES show how the <procedure body> of a procedure can vary in complexity from a basic
<unlabeled statement> to a <block>.

PROCEDURE FURTHERON shows the means of declaring that a procedure exists “later” in the program.
(More on this is said under <forward procedure declaration>.)

4-57

Declarations
PROCEDURE
Continued |

The last EXAMPLE illustrates the method of specifying a procedure that will be “bound in” as compared
to “compiled in”’ to the program. An attempt to reference the procedure that has not been bound in will
_result in a run-time error.

Pragmatics

.

Procedures may be called recursively;i.e., inside the <procedure body>, a procedure may invoke itself.

For purposes of efficiency, it is advisable to call-by-value as many <formal parameter>s as possible.
Secondly, the <specified lower bound>s should have a value of O for the <integer>.

Array rows that are passed by name as actual parameters to procedures will have their subscripts evaluated
at the time of the procedure call, rather than at the time the corresponding formal array is referenced.

FORMAL causes the compiler to generate more efficient code when passing procedures as parameters. That

is, when procedures are declared FORMAL, the compiler checks the parameters at compile-time; otherwise,
the parameters are checked at run-time.

4-58

Declarations
REAL

REAL DECLARATION
Syntax

<real declaration> .= <local or own> REAL <identifier list> |
REAL <equation list>

Examples

REAL REEL
REAL INDX, X, Y, TOTAL
REAL CALC=BOOL, INDX, VALV=INTGR

Semantics

A <real declaration> is used to declare <simple variable>s which can be used as real values, that is, an
arithmetic value which may or may not have an exponent.

The <Jocal or own> portion of the <real declaration> indicates whether the value of the specified
<simple variable> 1is to be retained upon exit from the <block> in which it is declared. A <simple
variable> declared to be OWN will retain its value when the program exits from the associated <block>,
and that “old” value will be the contents of the <simple variable> when the associated <block> is
re-entered.

Upon entry to a <block> containing <simple variable>s, the normal content of a non-OWN <simple
variable> 1is a zero (0); i.e., a 48-bit word with all bits off. To be truly compatible with ALGOL-60, a
programmer would explicitly zero the <simple variable>s with appropriate <assignment statement>s.
The <equation list> allows address equation among real, integer, and Boolean variables only. An
<identifier>> may only be address-equated to a previously declared local <identifier> or to an
<identifier> global to the block in which it is declared.

Pragmatics

After an arithmetic calculation, the resulting value is stored ‘‘as is” into the <simple variable>, in contrast
to an integer <simple variable>.

Appendix B contains additional information on the internal structure of a real <simple variable> as
implemented on the B 7000/B 6000 Information Processing System.

4-59

Declarations

SWITCH

'SWITCH DECLARATION
Syntax

<switch declaration> ::= <switch file declaration> |
<switch format declaration> |
<switch label declaration> |
<switch list declaration>

Examples

SWITCH FILE SWFILE := ...
SWITCH FORMAT SWFORM := . ..
SWITCH SWUTCH := ...

SWITCH LIST SWLIST := ...

<switch declaration>s and their corresponding designators provides an efficient means of dynamically
selecting one of many alternative entities of similar kind at a particular point during execution. The
entity selected by the use of a switch designator is determined by first evaluating its <subscript>. The
value of this <subscript> is then integerized by rounding, if not already integral, and is used as an index
into the list specified in the corresponding <switch declaration>.

With the exception of switch labels, the N elements in the list are numbered from 0 to N-1 in their order

of appearance, and if the index value lies outside this range, an INVALID INDEX error occurs. The range
for switch labels is 1 to N. (Refer to <switch label declaration>.)

4-60

Declarations
SWITCH FILE

SWITCH FILE DECLARATION
Syntax

<switch file declaration> .= <direct specifier> SWITCH FILE
<switch file identifier> = <switch file list>
<switch file identifier> .= <identifier>
<switch file list> ::= <file designator> |
<switch file list> , <file designator>
<file designator> ::= <file identifier> |
<switch file identifier> [<subscript> | |
<direct file identifier> |
<direct switch file identifier> [<subscript> |
<subscript> .= <arithmetic expression>
<direct switch file identifier> .= <identifier>
<direct file identifier> : .= <identifier>

Examples

SWITCH FILE SWHTAPE :
SWITCH FILE SWHUNIT :

TAPE1, TAPE2, TAPE3;
CARDOUT, TAPEOUT, PRINT;

Semantics

A <switch file declaration> associates an <identifier> with the <file designator>s in the <switch
file list>. Each <file designator> in a <switch file list> must reference a previously declared file.

Associated with each of the <file designator>s in the <switch file list> is an integer reference. The
references are 0, 1, 2, ..., obtained by counting the identifiers from left-to-right. This integer indicates
the position of the <file designator> in the list. The <file designator>s are referenced, according to
position, by switch <file designator>s.

If the switch <file designator> yields a value which is outside the range of the <switch file list>, the file
so referenced is undefined, and an INVALID INDEX error occurs.

Restriction
The <file designator>s of a <switch file declaration> must all be the same; i.e., if non-DIRECT, then

all members must be non-DIRECT. Normal and DIRECT files cannot be mixed in a <switch file
declaration>.

4-61

Declarations
SWITCH FORMAT

SWITCH FORMAT DECLARATION
Syntax

<switch format declaration> ::= SWITCH FORMAT <switch format identifier> := <switch format list>

<switch format identifier> ::= <identifier> '
<switch format list> ::= <switch format segment> |
. <switch format list> , <switch format segment>
<switch format segment> .= <format designator> |
(<editing specifications>) |
< <editing specifications>)
<format designator> .= <format identifier> |
<switch format identifier> [<subscript>]

Examples

SWITCH FORMAT SF:= (A6, 314, 12, X60) , (14,X2,214,312),
(X78.12) , (X2);
SWITCH FORMAT SWHFT := XF3 , XA3, BAF;

Semantics

The <switch format declaration> associates a <switch format identifier>> with the switch format
segments in the <switch format list>. Associated with each of the N <switch format segment>s is an
integer value from 0 to N-1, which is obtained by counting the segments as they appear from left-to-right.
When the corresponding <format designator> occurs, its integerized <subscript> selects the associated
<switch format segment>.

If a switch format designator yields a value which is outside the range of <switch format list>, the format
so referenced is undefined, and an INVALID INDEX error occurs.

A <simple string> in a <switch format declaration> is always read-only if the <switch format
segment> in which it appears is of the form (<editing specifications>).

4-62

Declarations
SWITCH LABEL

SWITCH LABEL DECLARATION
Syntax

<switch label declaration> ::= SWITCH <switch label identifier> := <switch label list>

<switch label identifier> ::= <identifier>
<switch label list> ::= <designational expression> |
<switch label list> , <designational expression>

Examples

SWITCH CHOOSEPATH := L1, L2, L3, L4,
SW1 [3], LAB

SWITCH SELECT := START, ERRORI,
CHOOSEPATH [I + 2]

Semantics

A <switch label declaration> declares an <identifier™> to represent a set of <designational
expression>s as denoted by the <switch label list>>. Associated with each <designational expression>,
in the order in which the <designational expression> appears in the <switch label list>, is an
<integer> from 1 to N, where N is the number of <designational expression>s in the <switch label
list>. If the index to the switch is an invalid value (< Qor > N), the instruction attempting to branch
to it is not executed, and, control proceeds to the next instruction. (Typically, the next statement would
be some form of error handling.)

Note that if a <designational expression> occurs within a <switch label list>, it could reference itself.

For example, if N = 4 in the declaration SWITCH SW := L1, L2, L3, SW[N];, the <designational
expression> is referencing itself. If it references itself, a STACKOVERFLOW condition occurs.

4—63

Declarations
SWITCH LIST

SWITCH LIST DECLARATION
Syntax
<switch list declaration> ::= SWITCH LIST <switch list identifier> := <switch list list>

<switch list identifier> ::= <identifier>
<switch list list> ::= <list designator> |

<list designator> , <switch list list>
<list designator> ::= <list identifier> |

<switch list identifier> [<subscript>]

Examples

SWITCH LIST CHOOSEPATH := L1, L2, L3, L4, SW1 [3], LAB
SWITCH LIST SELECT := START, ERRORI, CHOOSEPATH [I+2]

Semantics

A <switch list declaration> declares an <identifier> to represent a set of <list designator>s as
denoted by the <switch list list>. Associated with each <list designator>, in its order of appearance
in the <switch list list>, is an <integer> from 0 to N-1, where N is the number of <list designator>s
in the <switch list list>. If the index to the <switch list list> is a value which is outside the range of
the <switch list list>, the list so referenced is undefined, and an INVALID INDEX error occurs.

4-64

Declarations
SWITCH LIST

TASK and TASK ARRAY DECLARATIONS
Syntax

<task declaration> .= TASK <task identifier list>
<task identifier list> ..= <task identifier> |
<task identifier list> , <task identifier>
<task identifier> .= <identifier>
<task array declaration> ::= TASK ARRAY <task segment list>
<task segment list> ..= <task segment> |
<task segment list> , <task segment>
<task segment> ::= <task array identifier list> [<bound pair list>]
<task array identifier list> ::= <task array identifier> |
<task array identifier list> , <task array identifier>
<task array identifier> ..= <identifier>

Examples

TASK TSK

TASK TISKIT, TASKIT

TASK ARRAY TSKS [0:9]

TASK ARRAY PROGENY,CHILDREN [0:LIM]
Semantics
When a process or co-routine is invoked, a <task identifier> is associated with it. While the process or
co-routine remains active, various aspects of the process or co-routine can be altered and/or interrogated
via the task attributes. Refer to <arithmetic task attribute> and <Boolean task attribute>.,
A task array can have no more than 15 dimensions.

¥

4—-65

Declarations
TRANSLATETABLE

TRANSLATETABLE DECLARATION
Syntax

<translatetable declaration> ::= TRANSLATETABLE <translatetable list>
<tranmslatetable list> . .= <translatetable element> |
<translatetable list> , <translatetable element>
<translatetable element> ::= <translatetable zdentzfzer> (<translation list>)
<translatetable identifier> :.= <identifier>
<translation list> ::= <translation specifier> |
<translation list> , <translation specifier>
<translation specifier> ::= <source characters> TO <destination characters> |
<translatetable identifier>
<source characters> .= <string> |

<character set>
<destination characters> .= <string> |
<character set> |

<special destination character>
<character set> ::= BCL | EBCDIC | ASCII | HEX
- <special destination character> ::= <string>

Examples

TRANSLATETABLE TT1 (BCL TO EBCDIC, 6“+” TO 48 “4E”),
TT2 (4012345689ABCDEF” TO HEX),
'IT3 (8 ‘6(9’ TO 8‘6[9’)

TRANSLATETABLE EXPOSEALFA (EBCDIC TO “.”,
“ABCDEFGHIJKLMNOPQRSTUVWXYZ” TO *“ABCDEFGHIJKLMNOPQRSTUVWXYZ”,
“0123456789” TO “0123456789”)

Semantics

»

A <translatetable declaration> defines one or more translate tables that can be used with the <replace
statement>.

The <character set> element is equivalent to a string containing all characters in the specified set, in
ascending binary sequence, whose length is equal to the total number of characters in the set.

The scope of a <string> is the characters in the <string>. The length of a <string> is its length in
terms of its maximum internal character size.

Each succeeding <translation specifier> overrides, within its scope, previous <translation specifier>s.
Within a <translation list>, all source character sizes must be the same and all destination character
sizes must be the same, although the character sizes of the source and destination parts need not be

the same.

The length of the <destination part> must equal the length of the <source part>, unless the <special

4-66

Declarations
TRANSLATETABLE

destination character> is used, or if the <character set> is used for both the <source part> and the
<destination part>. If the <special destination character> is used, all characters within the scope of the
<source part> are translated to the <special destination character>; this character must be a string whose
length is one (1) in terms of its maximum internal character size.

Every translate table has a default base in which all source characters are translated to zero characters (all
bits OFF). The use of a <character set> for both the source and destination parts invokes the standard
table from the MCP and provides a way of obtaining a legitimate base upon which additional <translation
specifiers> can be used, if desired, to override certain parts of the standard table. The use of a <translate
table identifier> as a <translation specifier> can also be used to provide a base.

When strings of equal length are used for the source and destination parts, translation is based upon the

corresponding positions of the source and destination characters, starting from the left and proceeding to
the right.

TRANSLATION TABLE INDEXING

The size of the translation table is determined by the size of the <source part> characters (characters to
be translated): 4-bit characters, four-word table; 6-bit characters, 16-word table; 7- and 8-b1t characters,
64-word table. The translation table is one-dimensional read-only array.

Each word in the translation table (figure 4-1) has the following layout: the low-order 32 bits of each
word in the translation table are divided into four 8-bit fields, numbered from left-to-right, O to 3. (The
high-order 16 bits are zeros.)

When a <source part> character is to be translated, the character is divided into two parts: the “word
index” and the “field index”. The field index consists of the two low-order bits; the word index is the
remaining high-order bits.

The word index designates the word in the translation table in which the field index locates the character
to be used.

4-67

Declarations

TRANSLATETABLE
Continued
7 6 5 4 3 2 1 .0 <source part>
_ character to be
BITS: 1 1 0(0 0 0|0 1 translated "A"
\ 7 7
V \V/
word field
index index
translation
table
word WORD : empty flgld flild flgld flgld
[48]
[47:16] [31:8] [23:8] [15:8] [7:8]
- translation table word——»

Figure 4—1. Translation Table Indexing

4-68

Declarations
- TRUTHSET

TRUTHSET DECLARATION

Syntax

<truthset declaration> :.:= TRUTHSET <truthset list>
<truthset list>::= <truthset element> |
<truthset list> , <truthset element>
<truthset element> ::= <truthset identifier> (<membership expression>)
<truthset identifier> ::= <identifier>
<membership expression> ::= <membership secondary> |

<tmembership expression> <logical operator> <membership secondary>

<membership secondary> ::= <membership primary> |
NOT <membership primary>
<rnembership primary> :.:= <string> |
<truthset identifier> |
(<membership expression>) |
ALPHA | ALPHA6 | ALPHA7 | ALPHAS

Examples

TRUTHSET T(ALPHA)

TRUTHSET Z(ALPHA OR “-)

TRUTHSET NUMBERS (“0123478956)

TRUTHSET LETTERS(ALPHA AND NOT NUMBERS)
TRUTHSET HEXN(4“123”’), BCLN(6*“123”), ASCN(7“123”)

Semantics

The <truthset declaration> defines one or more truthsets that can be used with the <scan statement>,

the <replace statement>, and with the <table membership> Boolean primary.

All membership primaries of a <membership expression> must be of the same character type (4, 6, 7, or

8), thereby determining the type of the truthset. The character size of strings is obtained from the
maximum internal character size of the string.

The <mmembership expression> is evaluated according to the normal rules of precedence for Boolean
operators.

Pragmatics
The <truthset declaration> takes a string of characters and builds a “truth table” which allows a
programmer to do a truthset test that determines whether a given character is a member of a specified

string. The truth table is built from elements that a compiler can completely evaluate at compile-time.

All truthsets declared by a single declaration are made common to a single read-only array. Separate
declarations produce separate read-only arrays.

The truthset test references a bit in a read-only array by dividing the binary representation of the
character being tested into two parts: the low-order five bits are used as a bit index, and the three

4—-69

Declarations

TRUTHSET
Continued

high-order bits are used as a word index.
NOTE
If the source character is 4, 6, or 7 bits, the machine
adds high-order zero bits to make an 8-bit character

before the “indexing algorithm’” is used.

The word index selects a particular word in the read-only array. The bit index is then subracted from 31,
and the result is used to reference one of the low-order 32 bits in the selected word. As an algorithm:

ARAY[CHAR.[7:3].[31 — CHAR. [4:5]: 1]]

Finally, the test character is “legitimate” (in the specified string of the declaration) if, and only if, the
referenced bit is ON (=1).

Figure 4—2 shows that.the indexed bit, 13, is ON; therefore, the test character is valid.

Binary representation of the 7 6 5 4 3 2 1 O
test character (EBCDIC) X|X]X1]X X
. I\ /
"2" Vo v
WORD BIT
' INDEX INDEX
rgn "31-18=13"
HIGH LOW
ORDER ORDER
16 BITS 32 BITS
REPRESENTATION OF THE 7 A \ N\ 4 -\
<string> /ﬁ
8" 1 2 3 4 5 6" RS
®| x
character to be X
referenced
!: word 7 -

Figure 4—2. Truthset Test

4-170

Declarations
TYPE

TYPE DECLARATION
Syntax

<type declaration> ::= <alpha declaration> |
<Boolean declaration> |
<double declaration> |
<integer declaration> |
<real declaration>

Examples

ALPHA ...
BOOLEAN ...
DOUBLE. ..
INTEGER
REAL . ..

Semantics

A <type declaration> is used to declare <<simple variable>s which can be used in a manner appropriate
to the specified <type>. For example, a variable of <type> BOOLEAN is normally used in Boolean
statements and expressions. Note that the “type transfer function” can be used (as can the <equation
list> facility) to perform other kinds of operations on a variable than the specified <type> of the
variable. ‘

Pragmatics

The general use of each <simple variable> is as follows:

TYPE MEANING/DESCRIPTION

ALPHA Character values; either six, 8-bit characters (normal), or eight, 6-bit characters (BCL);
treated as <type> REAL.

BOOLEAN Logical values; a TRUE or FALSE test is dependent on the low-order bit (bit 0) of the
word; use of the <partial word part> allows all 48 bits to be tested and/or manipulated
as needed.

DOUBLE “Double-precision’ arithmetic values; a 96-bit entity (carried internally as two adjacent
48-bit words). . v

INTEGER Integer arithmetic values; a value which is maintained as a value with an exponent of
zero.

REAL Real arithmetic values; a value which may or may not have an exponent.

Appendix B contains more on the internal structure of each <simple variable> as implemented on the
B 7000/B 6000 Information Processing System.

4-71

Declarations
VALUE ARRAY

VALUE ARRAY DECLARATION
Syntax

<value array declaration> .= <array class>> VALUE ARRAY <value array list>
<value array list> ::= <value array segment> |
<value array list> , <value array segment>
<value array segment> .= <value array identifier> (<constant list>)
© <value array identifier> ::= <identifier>
<constant list> ::= <constant> |
<constant list> , <constant>
<constant> ::=<unsigned integer> (<constant list>) |
<number> |
<logical value> |
<string> |
<constant expression>)
<constant expression> ::= { an expression which can be entirely evaluated by the ALGOL compiler at
compile-time }

Examples
REAL VALUE ARRAY TEST (3(5, TRUE, “ABC”))
EBCDIC VALUE ARRAY XRAY (“ABCDEFGHIJK”)
VALUE ARRAY FOX (1,2,3), CAT (4,5,6) _
VALUE ARRAY DOG (2*N+6,7 & 5[3*N:4] & 1[47:1])
Semantics

A <value array declaration> defines a read-only one-dimensional array of values.

The <value array list> allows the user to specify multiplé value arrays of the same <type> in one
declaration. . ‘

The <unsigned integer> (<constant list>) form of <constant list> causes the values within the
parentheses to be repeated the number of times specified by the <unsigned integer>.

Pragmatics
The comma in the <constant list> causes word alignment of the next constant. <string>s greater than
48 bits are left-justified with trailing zeros inserted in the word. <string>s equal to or less than 48 bits
are right-justified with leading zeros inserted in the word. The <logical value> and <number>
<constant>s are also rightjustified with leading zeros inserted in the word.

The <constant expression> builds a 48-bit word from defines, concatenations, arithmetic and Boolean
operations, or anything that can be completely evaluated by the compiler at compile-time.

The MCP can overlay value arrays more efficiently, since they do not have to be written onto disk when
their space in coré is relinquished.

4-72

Statements
STATEMENT

5. STATEMENTS

STATEMENT
Syntax

<statement> ::= <labeled statement> |
<unlabeled statement>
<labeled statement> .= <label identifier> : <conditional statement> |
<label identifier> : <unconditional statement>
<unlabeled statement> :.= <conditional statement> |
<unconditional statement>

Examples
X:=1
LBL: READ (...
IF ALLDONE THEN ...
NEXTIN: WHILE BOOL DO ...
Semantics

<statement>s are the active elements of an ALGOL program. They indicate some type of operation
to be performed. <statement>s are normally executed sequentially, in the order in which they are

written. This sequential flow of execution may be altered by a <statement> which indicates its successor

to be other than the one which follows it in the program.

As can be seen in the syntax above, <statement>s may be labeled or unlabeled. The majority of
<statement>s in a program are usually unlabeled. Furthermore, the majority of <unlabeled state-
ment>s in a program are <unconditional statement>s.

This section is arranged in alphabetical order according to the <statement>.

Statements P
ACCEPT

ACCEPT STATEMENT
Syntax
<accept statement> .= ACCEPT (<pointer expression>)
Example

ACCEPT (POINTER(Z,8))

Semantics
The <accept statement> causes EBCDIC characters pointed at by the <pointer expression> to be
displayed on the display console. The maximum number of characters allowed is 430, and the last character
must be followed by the EBCDIC NULL character (4“00”*). The program is then suspended until the
appropriate input response is keyed in at a display console. The input is placed in the array row to which
the pointer points, and the program continues. The maximum number of input characters allowed is 960.
The <accept statement™ can be used asa <Boolean expression> such that the result is FALSE if an "
input message is not available. If its result is TRUE, an input message is available, and it is placed into the
array row. In either case, the program is not suspended, but it continues execution.
Pragmatics
The input is placed “left justified” in the array row; i.e., leading blanks are discarded. Following the first

non-blank character, the input is placed as-is in the array row and an EBCDIC NULL is placed at the end
of the input. :

5-2

Statements
ASSIGNMENT

ASSIGNMENT STATEMENT
Syntax

<assignment statement> ::= <arithmetic assignment> |
<array reference assignment> |
<Boolean assignment> |
<pointer assignment> |
<task assignment>

Examples

A=A+1

XRAY := ARAY [3,*¥]

BOOL := FALSE

PTR := POINTER(INARAY,6)
TSK.EXCEPTIONTASK := TSKIT

Semantics

The <assignment statement> causes the <expression> to the right of the := to be evaluated; the value
of the <expression> is then assigned to the entity, <variable>, or <partial word part> on the left.

The action of an <assignment statement> is as follows:

a. The <expression> following the := is evaluated.
b. The location of the <variable> is determined.
c. The resulting value is assigned to the <variable> or to the specified part thereof.

Pragmatics

The syntax, examples, semantics, and pragmatics of each form of the <assignment statement> are
individually discussed in the following pages.

NOTE

The various forms of the <assignment state-
ment> are not called <... statement>
because, in general, each of the forms can

be used as a form of an <expression>. For
example, “A := A + 1” would be a <statement>
if ““bracketed’” by semicolons (;). However, “IF
A := A + 1) 100 illustrates its use as an
<arithmetic expression>.

5-3

Statements
ASSIGNMENT
Arithmetic

ARITHMETIC ASSIGNMENT

Syntax

<arithmetic assignment> ::= <arithmetic variable> <partial word part> : = <arithmetic expression> |
<arithmetic attribute> : = <arithmetic expression> |
<type transfer variable> <partial word part> : = <arithmetic expression>
<arithmetic variable> ::= <variable>
<variable> :.= <simple variable> |
<subscripted variable>
<simple variable> ::= <identifier>

<subscripted variable> ::= <array name> | <subscript list>]
. <array name> .= <grray identifier> |

<array reference identifier> |

<value array identifier>
<subscript list> ::= <subscript> |

<subscrzpt list> <subscnpt>
<partial word part> ::= <empty> |
[<left bit> : <number of bits> |

<left bit> ::= <arithmetic expression>

<number of bits> ::= <arithmetic expression>

<arithmetic attribute> ::= <arithmetic file attribute> |

<arithmetic direct array attribute> |
<arithmetic task attribute>
<arithmetic file attribute> ::= <file designator> <disk row/copy specifications>
<arithmetic-valued file attribute name>
<disk row/copy specifications> ::= <empty> |
(<row/copy numbers>)
<row/copy numbers> ;= <row number> |
<row number> , <copy number>

<row number> ::= <agrithmetic expression>

<copy number> ::= <arithmetic expression>

<arithmetic direct array attribute> ::= <direct array row>

<Zarithmetic-valued direct array attribute name>
<direct array row> :: = <direct array identifier> |
<direct array identifier> | <row designator> |
<row designator> ::= ¥ |
<row> , *
<row> ::= <arithmetic expression> |
<row> , <arithmetic expression>

<arithmetic-valued direct array attribute name> .= IOADDRESS |
IOCHARACTERS |
IOCW |
IOERRORTYPE |
IOMASK |
IORECORDNUM |
IOTIME |
IOWORDS

Statements
ASSIGNMENT

Arithmetic — Continued

<arithmetic task attribute> '=<task designator> + <arithmetic-valued task attribute name>

<arithmetic-valued task attribute name>.'= CLASS |
COMPILETYPE |
COREESTIMATE |
DECLAREDPRIORITY |
ELAPSEDTIME |
HISTORY |
INITIATOR |
JOBNUMBER |
MAXCARDS |
MAXIOTIME |
MAXLINES |
MAXPROCTIME |
OPTION |
ORGUNIT |
PROCESSIOTIME |
PROCESSTIME |
RESTART |
STACKNO |
STACKSIZE |
STARTTIME |
STATION |
STATUS |
STOPPOINT |
SUBSPACES |
TARGETTIME |
TASKATTERR |
TASKVALUE |
TYPE

<type transfer variable>.'= REAL (<variable>) | INTEGER (<variable>) |

BOOLEAN (<variable>) | ALPHA (<variable>) |
DOUBLE (<variable>)

Examples

VAL:=7

ARAY [4,5].130:4] :=X
FYLE.AREAS :=50

FYLE (5). AREAS :=10
DIRARAY’IOCW:=41030"
TSK.COREESTIMATE := 10000

Semantics

In an <arithmetic assignment>>, the appropriate implicit <type> conversion (INTEGER, REAL, or
'DOUBLE) is performed as required.

Statements
ASSIG NM ENT

Arithmetic — Continued

If there is a difference between the declared <type> of the variable to the left of the := and the value to
be assigned to it, or if the left-side variables are of different arithmetic <type>s, the compiler reconciles
the differences, but this can cause a change (rounding to integer) in the value assigned.

The following rules apply:

a. If the left-side is of <type>REAL and the expression value is of <type> INTEGER, the
value is stored unchanged.

b. If the left-side list is of <type>> INTEGER and the expression value is of <type> REAL, the
value is rounded before it is stored. v

c. If the left-side list contains variables of different <type>s, assignment of the value is executed
from right-to-left. If, during this process, a real number is transferred to integer, this integer value
is assigned to all the following variables at the left of the integer variable, regardless of their type.

A multiple assignment of an <arithmetic attribute> or <arithmetic variable> <partial word part> is
allowed only if it is the first and the only <arithmetic attribute> or <arithmetic variable> <partial word
part> within the <arithmetic assignment> statement.

Example
The following compile syntactically correct.

X.[7:8]:=Y:=1;
FILEKIND :=Y :=1;

The following compile syntactically incorrect.

X.[7:8]1:=Y.[7:8]:=1;
FILE.KIND :=FILE1.KIND :=2;

Pragmatics

An “update replacement” can be specified with an asterisk (*) after the colon equal (:=) by an assignment
to an <arithmetic variable> whose <partial word part> is <empty>. For example, “A = *+1;”
produces the same results as “A :=A + 1;”. Updating a <subscripted variable> via this method is more
efficient.

<partial word part>
If non-<empty>>, the <left bit> part must specify a bit number of 47 thru 0, inclusive. The <number of

bits> must specify 48 thru 0, inclusive. If through the use of <variable>s a program violates either of
these requirements, an INVALID OP will occur.

Statements

ASSIGNMENT
Array Reference

ARRAY REFERENCE ASSIGNMENT
Syntax

<array reference assignemnt>.'=<array reference variable>:=<array designator>
<array reference variable>:'=<array reference identifier>
<array designator>.=<array name> |
<subarray designator>
<subarray designator>.=<array identifier> [<subscript part> <subarray part> | |
<array reference identifier> [<subscript part> <subarray part>}

<subscript part>.=<empty>

<subscript list>,
<subarray part>.=* |

<subarray part>, *

Examples

BOOLARAY := REELARAY
EBCDICARAY := INPUTARAY [*]
SUBARAY :=BIGARAY [N,**

- ARAYROVW := MULTIDIMARAY [LJ K, *]

Semantics

An <grray reference assignment> is used to generate a “copy descriptor” of an array or portion of an
array. Subsequent use of the <array reference variable>> references the array or portion thereof. (Refer
to <array reference declaration>:)

The lex level of the <array designator> may not be greater than that of the <array reference variable> .
i.e., the lex level of the <array reference variable>> may not be global to the <array designator>.

If the <array reference variable> is declared DIRECT, then only DIRECT <array designator>s may be
assigned to it. However, a non-DIRECT <array reference variable> may be assigned either DIRECT or
non-DIRECT <array designator>.

If the number of dimensions of <array reference variable>> and/or the <array designator> are greater
than one (1), their <array class>es must agree. If they are both single-dimensioned, the <array
designator> may have any <array class>; the generated copy descriptor is modified as necessary to agree
with the <array class> of the <array reference variable>.

Pragmatics

Typical uses of an <array reference assignment> would include:

1. amore efficient means of performing arithmetic operations on multi-dimensioned arrays;e.g.,
extract a particular row and avoid continual multi-indexing back to the same row each time.

2. concurrent but different usages of the same array;e.g., an array which contains either or both
BOOLEAN and REAL information.

5-7

Statements
ASSIGNMENT

Boolean

BOOLEAN ASSIGNMENT
Syntax

<Boolean assignment> ::= <Boolean variable> <partial word part> := <Boolean expression> |
<Boolean attribute> := <Boolean expression>
<Boolean variable> ::= <variable>
<Boolean attribute> ::= <Boolean file attribute> |
<Boolean direct array attribute> |
<Boolean task attribute>
<Boolean file attribute> ::= <file designator> <disk row/copy specifications>
. <Boolean-valued file attribute name>
<Boolean direct array attribute> ::= <direct array row> .
<Boolean-valued direct array attribute name>
<Boolean-valued direct array attribute name> ::= I0CANCEL |
IOCOMPLETE |
IOEOF |
IOPENDING |
IORESULT
<Boolean task attribute> ::= <task designator>.<Boolean-valued task attribute name>
<Boolean-valued task attribute name> ::= LOCKED

Examples
BOOL := TRUE
BOOLARAY [N].[30:1] := Q { VAL
HIGHER := PTR) PTS FOR 6

Semantics

A <Boolean assignment> is used to store Boolean information (which has either been declared
BOOLEAN or whose ‘<type> has been changed with the BOOLEAN type transfer function).

NOTE

The contents stored into a <Boolean variable>
are the result of a <Boolean expression>.

5-8

Statements

ASSIGNMENT
Pointer

POINTER ASSIGNMENT
Syntax

<pointer assignment> ::= <pointer variable> := <pointer expression>
<pointer variable> ::= <pointer identifier>

Examples

PTR := POINTER(ARAY)

PTS := EBCDICARAY|S]

PINFO := PTR + 17

POUT := POINTER(INSTUFF|[N] ,4)

Semantics

A <pointer assignment> is used to create a “pointer” which can then be used for various character
purposes such as editing, testing, and scanning. (Refer to <replace statement> and <scan statement>.)

Pragmatics

A <pointer assignment> causes the creation of a “copy descriptor” of an array. The <pointer variable>
(copy descriptor) can be set up with the needed <character size> via the <pointer designator> syntax.

CAUTION

Even though syntax allows it to be so, the <pointer
variable> should not be global to the declaration
of the array into which it “points.” Total system
failure can occur.

Statements

ASSIGNMENT
. Task

TASK ASSIGNMENT
Syntax

<task assignment> ::= <task-valued task attribute> := <task designator>
<task designator> .= <task identifier> |
<task array identifier> [<subscript list>]| |
MYSELF | _ ,
<task designator> . <task-valued task attribute>
<task-valued task attribute> ::= <task designator> . <task-valued task attribute name>
<task-valued task attribute name> ::= EXCEPTIONTASK |
PARTNER |
<task-valued task attribute name> . <task-valued task attribute name>

Examples

TISKIT.EXCEPTIONTASK := TASKIT

TSK.EXCEPTIONTASK := TASKARAY|[N]

TASKVARB.PARTNER := COHORT

MYSELF.PARTNER := COWORKERS[INDX]
MYSELF.PARTNER.EXCEPTIONTASK := MYSELF.PARTNER.PARTNER

Semantics

As can be seen in the syntax, a <task assignment> is used to assign either of the <task-valued attribute
name>s, EXCEPTIONTASK and PARTNER.

Briefly stated, the EXCEPTIONEVENT of a program’s EXCEPTIONTASK will be CAUSEd whenever
that program’s status changes; e.g., suspended, terminated.

The PARTNER task attribute is used in conjunction with the <continue statement>.

Statements
ATTACH

ATTACH STATEMENT
Syntax

<attach statement> ::= ATTACH <interrupt identifier> TO <event designator>
<event designator> .:= <event identifier> |

<event array identifier> [<subscript list>] |

<event-valued task attribute>
<event-valued task attribute> ::= <task designator>. <event-valued task attribute name>
<event-valued task attribute name> ::= EXCEPTIONEVENT

Examples

ATTACH THEPHONE TO THEBELL
ATTACH ANSWERHI TO MYSELF.EXCEPTIONEVENT

Semantics

The <attach statement> associates an interrupt with an event. The association is such that causing the
event interrupts the main program and places the interrupt code into execution (providing the interrupt
is enabled; refer to the <enable statement>).

Pragmatics

While different interrupts can be simultaneously attached to the same event, a particular interrupt can at
any one time be attached to only a single event. For this reason, if, at attach time, it is found that the
interrupt is already attached to an event, it is automatically detached from the old event and then attached
to the new event. Any pending invocations of the interrupt are lost.

It is possible to attach an interrupt to an event that is declared in a different <block>, for example, attach
a local interrupt to a formal event. This can lead to certain compile-time or run-time UP LEVEL ATTACH
errors if it is found potentially possible for the <block> containing the event to be exited prior to

exiting the <block> that contains the interrupt.

Statements
BREAKPOINT

BREAKPOINT STATEMENT

Syntax |

<breakpoint statement >.’= BREAKPOINT

Example

ON ANY FAULT, BEGIN BREAKPOINT; GO TO L; END;
Semantics

The <breakpoint statement> allows a user to interactively examine values of variables during the
execution of a program. ‘

Pragmatics
The execution of the <breakpoint statement> is a direct call on the BREAKPOINT intrinsic. This type
of call may be used anywhere in the code; it is especially useful in an <on statement> or a software

interrupt.

(Refer to the BREAKHOST and BREAKPOINT compiler options, appendix D, in order to create the
necessary environment for interactive debugging using the <breakpoint statement>.)

5-12

CALL STATEMENT

Syntax

Statements

CALL

<call statement> ::= CALL <procedure identifier> <actual parameter part> [<task designator>]
<actual parameter part> .= <empty> |

(<actual parameter list>)

<actual parameter list> ::= <actual parameter> | .
<actual parameter list> <parameter delimiter> <actual parameter>

<actual parameter> ::=

<expression> |

<array designator> |
<direct file identifier> |
<direct switch file identifier> |
<event designator> |
<event array identifier> |
<file designator> |

<switch file identifier> |
<format designator> |
<switch format identifier> |
<label identifier> |
<switch label identifier> |
<list designator> |

<switch list identifier> |
<picture identifier> |
<procedure identifier> |
<task designator> |

<task array identifier>

<parameter delimiter> ::= , |

)" <letter string> *'(

<letter string> ::=’{ any character string not containing a quote }

Examples

CALL COROOTEEN (X,Y,7, X+Y+Z) [TSK]
CALL HOME (OLDVAL,NEWVAL,FUNC) [TSKALAY[INDX]]

Semantics

The <call statement> initiates a procedure as a ‘“‘co-routine”. Initiation consists of setting up a separate
stack, transferring any parameters that are passed, (by name or by value) and beginning the execution of
its statements. Processing of the initiator is suspended.

The specified procedure cannot be typed.

Every co-routine has a “‘partner’ task to whom control can be passed via the <continue statement>.
The PARTNER task is set by default to the initiator, but may be changed by use of the appropriate
<task-valued task attribute>.

Statements
CALL
Continued

Local variables and call-by-value parameters retain their values as control is passed to/from the co-routine.

There is a “critical block” in the caller’s stack which cannot be exited until the co-routine is terminated.
An attempt by the caller to exit that <block> before the co-routine is terminated will cause the caller
(and all offspring) to be terminated.

A co-routine is terminated by exiting its own outermost block or by executing the statement “<task
designator> . STATUS :=-1;”.

The <actual parameter part> must agree with the <formal parameter part> of the callee, or a run-time
error will occur.

The <task designator> associates a task with the co-routine at initiation such that the MCP will set up
the co-routine according to certain constraints such as COREESTIMATE, STACKSIZE,
DECLAREDPRIORITY, and so forth. Refer to <arithmetic task attribute> and <Boolean task attribute>.

Pragmatics

As stated earlier, the <call statement> causes the initiation and set up of a separate stack as a co-routine.
Because of the overhead involved, a co-routine should be established once and then used via <continue
statement>s. If a <call statement™ is used as a <procedure statement>, overall system efficiency will
be severely degraded.

Statements
CASE

CASE STATEMENT
Syntax

<case statement>.'= CASE <arithmetic expression> OF <case body>
<case body>:= BEGIN <statement list> END |
BEGIN <numbered statement list> END
<numbered statement list>.'=<numbered statement group> |
<numbered statement group> ; <numbered statement list>
<numbered statement group>.=<number list> <statement list>
<number list>:=<unsigned integer>: |

ELSE : |
<unmsigned integer> : <number list> |
ELSE : <number list>

<statement list>..= <statement> |
<statement list> ; <statement>

Examples

CASE1OF

BEGIN
J.=1;
J :=20;

END;

CASEIOF
BEGIN

1:2:5:7: 3;
J1

J o=
Q o=
3:4:20: J =4
ELSE: GOTOBADCASEVALUE;
END:;

Semantics

The <case statement> provides a convenient means of dynamically selecting one of many alternative
statements for execution at a particular point in the processing of a program. There are two types of
<case body>s: implicitly numbered statements and explicitly numbered statements. The code is
selected differently for each type.

Statements
CASE

Continued

IMPLICITLY NUMBERED STATEMENTS

The <statement> to be executed is selected by first evaluating the <arithmetic expression> in the

<case head>. If its value is not integral, it is integerized by rounding and then used as an index to the
statements in the <case body>. The N statements in the <case body> are numbered O to N-1. The

<statement> corresponding to the index value is the <statement> executed. If the index value is less
than zero or greater than N, an INVALID INDEX interrupt is generated. Only one <statement> in the
<case body> can be selected each time the <case statement> is executed; however, this <statement>
can be a <compound statement>, <block>, another <case statement>, or a null statement. (A null
statement is a <dummy statement> that occupies a position in a <case statement>.)

EXPLICITLY NUMBERED STATEMENTS

This form of the <case statement> requires that the user explicitly numbet the statement groups. The
<numbered statement group>>s must lie within the range of O to N. If the integerized value of the
<arithmetic expression> is less than O or greater than N or the integerized value is not associated with
some <statement list>> an INVALID INDEX interrupt is generated. However, if an ELSE: has been
specified in a <number list>>, control is transferred to the <statement list> following the ELSE:. At the
end of each <numbered statement group>> a branch is generated to the <statement> following the
<case statement>.

Pragmatics

A <case statement>> cannot have more than 1024 <numbered statement group>s.

Statements
CAUSE

CAUSE STATEMENT

Syntax

<cause statement> ::= CAUSE (<event designator>)
Examples '

CAUSE (EVNT)
CAUSE (EVNTARAY|[INDX])
CAUSE (TSK.EXCEPTIONEVENT)

Semantics

The <cause statement> activates all tasks that are waiting on the event. Normally the <cause
statement> also sets the event to the HAPPENED state. (Refer to the <waitandreset statement> for
exceptions.)

If there is an enabled interrupt attached to the event, each cause of the event will result in one execution
of the interrupt code.

Pragmatics

“Activating a task™ does not guarantee that the task goes into immediate execution. Activating a task
consists of delinking the task from an event queue (each event has its own queue), and linking that task
in priority order into a system queue called the READYQ. The READYQ is a queue of all tasks that are
capable of running. Tasks are taken out of the READYQ when either a processor is assigned to the task
or the task must wait for something such as an I/O operation or an event to be caused. A task will only be
placed into actual execution when it is the top item in the READYQ and a processor is available.

A CAUSE of a HAPPENED event is essentially a no-op; i.e., the system does not “remember” every
cause unless an interrupt is attached to the event.

Statements
CAUSEANDRESET

CAUSEANDRESET STATEMENT
Syntax
<causeandreset statement> ::= CAUSEANDRESET (<event a’esignator>)
Examples
CAUSEANDRESET (EVNT)
CAUSEANDRESET (EVNTARAY[INDX])
CAUSEANDRESET (MYSELF.EXCEPTIONEVENT)

Semantics

The <causeandreset statement>> activates all tasks waiting on the event. It varies from the <cause
statement> in that the resultant state of the event is set to NOT HAPPENED.

Pragmatics

Refer to <cause statement>.

5-18

Statements
CHANGEFILE

- CHANGEFILE STATEMENT
Syntax

<changefile statement>.’= CHANGEFILE,(<directory element>,<directory element>)
<directory element>.'= <pointer expression> |

<array row> |

<directory string>

<directory string>.'= “<filetitle>.” |
“Lfiletitle> ON <packname>.”

Example Program
Program changes A/B to C/D and then removes C/D.

BEGIN

ARRAY A, B[0:44];

BOOLEAN B;

POINTER PA, PB;

PA:=POINTER (A[O]);

PB:= POINTER (B[O]);

REPLACE PA BY 8 “A/B.”;

REPLACE PB BY 8 “C/D.”;

IF B:= CHANGEFILE (PA PB) THEN ERROR;

IF B:= REMOVEFILE (8“C/D.”) THEN ERROR;
END.

Semantics

The <changefile statement> changes the names of directories and files without opening them. The
second <directory element> designates the title to which the first title is to be changed. If the change is
on a pack, the second title must be followed by “ON <packname>.”. An error is returned if the first title
includes a packname. The <changefile statement> returns a value of TRUE if an error occurred. The
error numbers, stored in [39:20], defining the failure are as follows:

a. 10 - first filename in error.
b. 20 - second filename in error.
c. 30 - filename has not been changed.

(Refer to the <removefile statement>.)

Statements
CHECKPOINT

CHECKPOINT STATEMENT
Syntax

<checkpoint statement>.:= CHECKPOINT (<device>, <disposition>)
<device>.:=DISK |
DISKPACK |
PACK |
<disposition> = LOCK |
PURGE

Example
BOOL := CHECKPOINT (DISK, PURGE)
Semantics

The checkpoint/rerun facility gives the programmer a tool to protect a program against the disruptive effects
of unexpected interruptions in its execution by periodically invoking the “checkpoint” procedures. This
procedure takes a complete snapshot of the job and stores it on disk. The job can then be restarted in case
its subsequent normal operation is interrupted. If a halt/load or other system interruption occurs, the job

is restarted either at the last ““no task active’ point or, if the operator permits, at the last checkpoint,
whichever is more recent. Checkpoint information can also be retained after a successful run to permit
restarting a job to correct a bad data situation.

The <device> options determine the media to be used for the checkpoint files.

The <disposition> option PURGE removes all files at successful termination of the job and protects the
job against system failures. The LOCK- option saves all files indefinitely and can be used to RESTART a
job even if it has terminated normally

Values returned by the <checkpomt statement> as a result of an attempted checkpoint are as follows:

[0:1] exception bit

[10:10] = completion code (refer to checkpoint/restart messages)
[25:12] = checkpoint number
[46:1] = restart flag (1 = restart)

Pragmatics

Files

When a checkpoint is invoked, the following files are created:

a. The checkpoint file — CP/<JN>/<CPN>
where <JN> is a four digit job number and <CPN>> is a three digit checkpoint number. If the
- PURGE option has been specified, the checkpoint number is always zero and each succeeding
checkpoint with purge removes the previous one (within the job). If the LOCK option is used, the
checkpoint number starts at a value of one for the first checkpoint and is incremented by one for

5-20

Statements
CHECKPOINT

Continued

each succeeding checkpoint with lock in the job. If the two types are mixed within a job, the
“locked” checkpoints use the ascending number and the “purged” checkpoints use zero, leaving
O-n at the completion of the job.

b. Temporary files — CP/<IN>/F<FN>
where <FN> is a three digit file number which starts at one and is incremented by one for each
temporary disk or system resource pack file.

c. Job files — CP/<IN>/JOBFILE
This file is created under the LOCK option only.

The LOCK/PURGE option also has an effect when the task terminates. If the task terminates abnormally
and the last checkpoint has used the PURGE option, then the checkpoint file (# 0) is changed to have the
next sequential checkpoint number and the jobfile is created if necessary. If the job terminates normally
and only purge checkpoints have been taken, the CP/<JN>> directory is removed.

Restarting

There are two ways a job may be restarted:

a. After a Halt/Load. The system will automatically attempt to restart any job that was active at
the time of a halt/load. If a checkpoint had been invoked since the last “‘no active task” point,
then the operator will be given an RSVP to determine whether the job should be restarted. He
can respond OK (restart at the last checkpoint), DS (don’t restart), or QT (don’t restart but save
the files for later restart if it was a checkpoint with purge).

b. <rerun> statement. A job may be restarted programmatically in the Workflow Language by use
of a <rerun statement>.

RERUN <JN>/<CPN>
Example: RERUN 1234/2 restarts job 1234 at checkpoint 2.
Conditions that can inhibit a successful restart are as follows:
a. Usercode invalid
b. OLAYROW different value
¢. Program recompiled since checkpoint
d. Different MCP level

e. Different intrinsics

5-21

Statements
CHECKPOINT

Continued

Restrictions

There are restrictions on the use of system features when used in conjunction with the checkpoint/rerun
facility. These restrictions which will inhibit a successful checkpoint are summarized as follows:

a. Direct I/O (direct arrays or direct files)
b. Data Comm I/O (open data comm files)
c. Open DMS sets

d. Interprogram communication (the task being checkpointed must have no children or siblings,
and its parent must be the WFL job)

e. Paper tape I/O

f. SPO files

g. Duplicated files

h. Output directly to line printer or card punch (backup is acceptable)
i. Task running in swap space

j. Checkpoints may not be taken inside sort input or output procedures (sort provides its own
restart capability)

k. Checkpoints may not be taken in a compile-and-go program, as this creats an IPC environment

Further Considerations

For jobs which take a large number of checkpoints with lock, the checkpoint number counts up to 999 and
then recycles to 1 (leaving O undisturbed). When this happens, the checkpoints previously numbered 1, 2,
etc. are lost as new ones using those numbers are created.

If a temporary disk file is open at checkpoint, it is locked under the CP directory. If it is subsequently
locked by the program, the name is changed to the current file title. At restart the file is looked for only
under the CP directory resulting in a NO FILE condition. To avoid this, all files which are to be eventually
locked should be opened with file attribute PROTECTION set to SAVE. (To remove the file, it must

be closed with purge.) True temporary files which are never locked do not have this problem. All data
files must be on the same medium as they were at the checkpoint. They do not have to be on the same
units or the same locations on disk or disk pack. They must necessarily retain the same characteristics
(blocking, etc.). The checkpoint/rerun system makes no attempt to restore the content of a file to the

~ state it was in at the time of the checkpoint. The file is merely repositioned. At this time, volume
numbers are not verified.

5-22

Statements
CHECKPOINT

Continued

As a result of the IPC restriction, CANDE (and currently RJE) may not be used to run a program with
checkpoints. The checkpoints will not be taken.

If a rerun is initiated and the job number is in use by another job, a new job number is supplied _and the
CP/<JN> directory node is changed to reflect the new job number.

When a job is restarted at some checkpoint which was not the last, subsequent checkpoints taken from the
restarted job continue in numerical sequence from the one used for the restart. Previous high-numbered
checkpoints are lost.

Checkpoint/Restart Messages

The following are a list of messages that can appear as the result of a checkpoint/restart.

CHECKPOINT MESSAGES COMPLETION VALUE
CHECKPOINT #nnn . . 0
INVALID AREA IN STACK 1
SYSTEM ERROR . . 2
BAD IPC ENVIRONMENT . . 3
NO USER DISK FORCPFILE . . . 4
10 ERROR DURING CHECKPOINT . 5
ROWS IN CP FILE > 1024 . 6
DIRECT FILE NOT ALLOWED 7
TOO MANY TEMPORARY DISK FILES 8
PAPER TAPE FILENOTALLOWED 9
DUPLICATED FILENOTALLOWED 10
CON FILE NOT ALLOWED . . R B
CARD PUNCH FILE NOT ALLOWED 12
OPEN REVERSED TAPE FILE NOT ALLOWED 13
DISKHEADER IN STACK R P
DMS AREA IN STACK o . .15
DIRECT ARRAYINSTACK 16
DIRECT DOPE VECTORINSTACK 17
SUBSPACEINSTACK 18
STACKMARK . . . R 1
SORT AREAINSTACK 20
REMOTE FILE NOT ALLOWED 21
ILLEGALCONSTRUCT 22
BDBASE ILLEGAL . . . X
TEMP FILE ONNAMEDPACK 24

5-23

Statements
CHECKPOINT

Continued

5-24

RESTART MESSAGES

RESTART PENDING (RSVP)
MISSING CHECKPOINT FILE

10 ERROR DURING RESTART
USECODE NO LONGER VALID
OPERATOR DSED RESTART
OPERATOR QTED RESTART

. MISSING CODE FILE

NOT ABLE TO RESTART
INVALID JOB FILE

ERR COPYING JOB FILE
RESTART AS CP/nnnn
MISSING JOB FILE

FILE POSITIONING ERROR
WRONG JOB FILE
WRONG CODE FILE
BAD CHECKPOINT FILE
BAD STACK NUMBER
WRONG MCP

Statements
CLOSE

CLOSE STATEMENT
Syntax .

<close statement> .= CLOSE (<file designator>) |
CLOSE (<file designator> , <close option>)
<close option> ::= * | PURGE | REEL | CRUNCH

Examples

CLOSE (FILEID)

CLOSE (FILEID, *)

CLOSE (FILEID, PURGE)
CLOSE (FILEID, REEL)
CLOSE (FILEID, CRUNCH)

Semantics
The <close statement> causes the referenced file to be closed.
With no <close option>, the following actions take place:

a. On a card output file, a card containing an ending label is punched. The file must be labeled.

b. On aline printer file, the printer is skipped to channel 1, an ending label is printed, and the
printer is again skipped to channel 1. The file must be labeled.

c. On an unlabeled tape output file, a double tape mark is written after the last block on tape
and the tape is rewound.

d. On alabeled tape output file, a tape mark is written after the last block on the tape; then an
ending label is written followed by a double tape mark and the tape is rewound.

e. On adisk file, if the file is a temporary file, the disk space is returned to the system.

f. The I/O unit is released to the system.

For all types of files, the buffer areas are returned to the system.
<close option>

If the “*” symbol is used and the file is a tape file, the I/O unit remains under program control and the
tape is not rewound. This construct is used to create multi-file reels.

When the “*”’ symbol is used on multi-file input tapes, and LABELTYPE = STANDARD, the following
actions can take place: If the value of the attribute DIRECTION is FORWARD, the tape is positioned
forward to a point just following the ending label of the file; if the value of the attribute DIRECTION
is REVERSE, the tape is positioned to a point just in front of the beginning label for the file; if the
end-of-file branch has been taken, no action is performed to position the file. On a single-file reel, the
action taken is the same as for a multi-file reel. The next reference to this file must be read in the
opposite direction from that of the prior read on the file; otherwise the program encounters end-of-file.

When the “*” symbol is used and LABELTYPE is not STANDARD, the tape is spaced over the tape
mark (or read) or a tape mark is written on output going forward. The essential difference is that with
OMITTEDEOF, labels are not spaced over; but, with STANDARD, labels are spaced over.

5-25

Statements
CLOSE

Continued

If the PURGE option is used, the file is closed, purged, and released to the system. If the file is a
permanent disk file, it is removed from the disk directory and the disk space is returned to the system.

If the REEL option is used, the file must be a multi-reel tape file. The current reel is closed and a
subsequent reference of the file implicitly opens the next reel. This is provided primarily for the use of
direct tape files, where the system does not automatically perform reel switching.

If the CRUNCH option is specified, the file must be a disk file. The unused portion of the last row
(beyond‘the end-of-file indicator) of disk space is returned to the system. Note that the file cannot be
“expanded”, but can be written inside of the end-of-file limit.

NOTE

All combinations of the <close statement> which
are not valid for the type of unit which is assigned
to the file are equivalent to the <rewind
Statement>.

5-26

Statements

CONDITIONAL

CONDITIONAL STATEMENT
Syntax

<conditional statement> ::= <if statement> |
<if statement> ELSE <statement> |
<jteration statement>

Examples

IF BOOL THEN GO TO EOJ

IF Q> VAL THEN X := O ELSE X := * + 1

IF NOGO THEN BEGIN ... END ELSE BEGIN ... END
WHILE BOOL DO ...

Semantics

The <conditional statement> causes its constituent statements to be executed or skipped depending
upon the logical value of the <Boolean expression>.

<if clause> <statement>

One of the permissible forms of a <conditional statement> is <if clause> <statement>. This form
operates as follows: The <statement> following the sequential operator THEN is executed if the logical
value of the preceding <Boolean expression> is TRUE; otherwise, that <statement> is ignored.

NOTE

In the examples that follow, BE represents any
<Boolean expression>, and S represents any
<statement>.

IF BE THEN S;

S
|-—FALSE——T

<if clause> <statement> ELSE <statement>

A second form of the <conditional statement> contains the sequential operator ELSE. This form of the
<conditional statement> operates as follows: If the logical value produced by the <Boolean expression>
is TRUE, the statement following the sequential operator THEN is executed and the statement following
the sequential operator ELSE is ignored. If the logical value of the <Boolean expression> is FALSE,

the statement following the sequential operator ELSE is executed and the statement following the
sequential operator THEN is ignored.

Statements
CONDITIONAL

Continued

[-TRUE J [i

IF BE THEN S ELSE S;

Lrazss——1] T

NESTED <conditional statement>s

The statements following the delimiters THEN and ELSE, or both, may be conditional statements or a
series of nested conditional statements.

The <Boolean expression>s in the <if clause>s of these statements are evaluated left-to-right in a
manner similar to the evaluation of the conditional arithmetic expression.

When using' nested <conditional statement™s, the programmer must remain aware of the necessity of
maintaining correspondence between the delimiters THEN and ELSE.

For explanatory purposes, assume that a given statement has equally matched THEN-ELSE pairs. In such

a case, the innermost THEN and the immediately following (the innermost) ELSE are treated as one of
pair, and from this center the pairs proceed outwards. This case is illustrated as follows:

Conditional S:

THEIIN(l) ‘ ELSE(4)
TH]lB}N(Z) EL1SE(3)
TH}l‘::N(S) EL%E(Z)
TH]rilN(4) EI?SE(l)
S;

If THEN appears more often than ELSE in the statement, the pairs of delimiters are matched as described
in the example above, and the first, and any following THEN not having a corresponding ELSE, causes
the program to transfer to the next statement if the <Boolean expression> yields a value of FALSE.
This case is illustrated as follows:

5-28

Statements
CONDITIONAL

Continued

Conditional S:

I
THEN(1)

I
THEN(2)
| |
THEN(3) ELSE(2)
| |
THEN(4) ELSE(1) '
S;
In the case illustrated by:
Conditional S:
|
THEN(1) ELSE(3)
[
THEN(2)
[|
THEN(3) ELSE(2)
' |
THEN (4) ELSE(1)
\J

S;

the ALGOL compiler would not produce the required result because ELSE(3) would be matched with
THEN(2) and, if the <Boolean expression> preceding THEN(1) yielded a value of FALSE, the program
would skip ELSE(3) and continue in sequence.

However, since a statement within a statement could itself be a <compound statement> or a <block>,
the correspondence of the delimiters could be established clearly by defining the nested <conditional
statement>s as <compound statement>s, the bracket words BEGIN and END indicating the different
levels of nomenclature.

ENTERING A <conditional statement>

A <go to statement> may lead to a <labeled statement> within a <conditional statement>. The
subsequent action is equivalent to what would occur if the <conditional statement> is entered at its
beginning and evaluation of the <<Boolean expression> causes the <labeled statement> to be executed.

5-29

Statements
CONTINUE

CONTINUE STATEMENT
Syntax

<continue statement> ::-= CONTINUE |
CONTINUE (<task designator>)

Examples

CONTINUE
CONTINUE (PROC1)

Semantics

The execution of <continue statement>s causes programmatic control to pass back and forth between
co-routines.

Because the execution of <continue statement>s causes control to alternate between primary and .
secondary co-routines, processing always continues at the point where it terminated.

The secondary co-routine uses the form without the <task designator> to pass control back to its
primary (often referred to as an “empty <continue statement>").

Pragmatics

A co-routine is a program (separate stack) that is established by means of a <call statement>. The
“caller” is referred to as the “primary” and the “callee” as the “secondary”.

Statements

DEALLOCATE

DEALLOCATE STATEMENT

Syntax

<deallocate statement> ::= DEALLOCATE (<array row>)

Examples

DEALLOCATE (ARAY)
DEALLOCATE (MATRIXARY [INDX,*])

Semantics

The <deallocate statement> causes the contents of the specified <array row> to be discarded and the
memory area to be returned to the system.

Pragmatics

When the <array row> is deallocated, it is made not present (all data is lost). When the <array row> is
used again, it is made present and each element is reinitialized to zero.

5-31

Statements
DETACH

DETACH STATEMENT

Syntax

<detach statement> ::= DETACH <interrupt indentifier>
Examples
DETACH THEPHONE
Semantics
The <detach statement> severs the association of an interrupt to an event. Any pending invocations of
the interrupt are discarded. Detaching an interrupt that is not attached is essentially a “no-operation”,

that is, no error mechanism invocation occurs.

The enabled/disabled condition of the interrupt is not changed by a <detach statement>; upon a
subsequent <attach statement> the condition is the same as it was before the <detach statement>.

5-32

Statements
DISABLE

DISABLE STATEMENT
Syntax

<disable statement> ::= DISABLE |
DISABLE <interrupt identifier>

Examples

DISABLE
DISABLE THEPHONE

Semantics

The <disable statement> consisting simply of “DISABLE” (i.e., does not specify a particular <interrupt
identifier>) is referred to as a ‘““general disable” and, as such, a flag is set which causes the system not to
look for interrupt code to execute for this task. The effect of this is as if all interrupts for the task have
been set to their disabled state. During this period, all interrupts whose associated events are caused are
placed in an interrupt queue of the task.

If the <disable statement> specifies an <interrupt identifier>, just that interrupt is disabled and the
system queues them until subsequently enabled.

The purpose of queueing interrupts is to guarantee that no interrupts will be “lost” during the time they
are attached. (See the <attach statement>.) Queueing continues until the appropriate <enable state-
ment> is executed.

Note that disablement or enablement of an interrupt is independent of its being attached or detached to
an event.

5-33

Statements
DISPLAY

DISPLAY STATEMENT
Syntax
<display statement> ::= DISPLAY (<pointer expression>)

Examples

DISPLAY (POINTER (Q,8))
DISPLAY (PTR)

Semantics
The <display statement> causes the EBCDIC characters pointed at by the <pointer expression> to be

displayed on the display console. The maximum number of characters allowed is 430. A message of less
than 25 characters must be terminated by the character 4“00”.

5-34

Statements
DO

DO STATEMENT

Syntax

<do statement> ::= DO <statement> UNTIL <Boolean expression>

Examples

DO UNTIL FALSE
DO ... UNTIL X=10000
DO BEGIN

END
UNTIL ALLDONE
DO J := J/2 UNTIL BUF[I:=I-J] LSS JOB

Semantics
The iterative <do statement> is executed as follows:

The <do statement> causes the <statement>> following DO to be executed and then the <Boolean
expression> to be evaluated. If the result is FALSE, the <statement> is executed again and the
<Boolean expression> re-evaluated. This sequence of operations continues until the value of the
<Boolean expression> is TRUE or until a <go to statement> is executed, at which time control passes
to the specified destination or the next program <statement>. Figure 5—1 illustrates the DO-UNTIL
loop.

IS
BOOLEAN
EXPRESSION
TRUE
?

TERMINATE
LOOP

ENTER EXECUTE
Loop STATEMENT

NO

Figure 5—1. DO-UNTIL Loop

5-35

Statements

ENABLE

ENABLE STATEMENT
Syntax

<enable statement> .:= ENABLE |
' ENABLE <interrupt identifier>

Examples

ENABLE
ENABLE THEPHONE

Semantics

An <enable statement> consisting simply of “ENABLE” (i.e., does not specify a particular <interrupt
identifier>) is referred to as a “general enable” and, as such, the system is allowed to look for and place
into execution all enabled interrupts that are in the interrupt queue of this task.

Previously disabled interrupts can be enabled by the task while in a general disabled state. These interrupts
will be executed when the flag is reset by the general <enable statement>, if the associated event is
caused after the interrupts have been enabled.

If the <enable statement> specifies an <interrupt identifier>, just that interrupt is enabled.

Note the enablement or disablement of an interrupt is independent of its being attached or detached from
an event,

5-36

Statements
EVENT

EVENT STATEMENT
Syntax

<event statement> ..= <cause Statement> |
<causeandreset statement> |
<fix statement> |
<free statement> |
<liberate statement> |
<procure statement> |
<reset statement> |
<set statement> |
<wait statement> |
<waitandreset statement>

EXamples

CAUSE (...
CAUSEANDRESET (...
FIX (...

FREE (...

LIBERATE (...
PROCURE (...

RESET (...

SET (...

WAIT ...
WAITANDRESET (...

Semantics
Events have two basic characteristics called HAPPENED and AVAILABLE. Each characteristic can be
in either of two states: TRUE or FALSE, often referred to as the HAPPENED bit or the AVAILABLE

bit. These characteristics can be interrogated via the HAPPENED and AVAILABLE Boolean intrinsics and
can be changed via the <event statement>s.

5-37

Statements
EXCHANGE

EXCHANGE STATEMENT
Syntax

<exchange statement> ::= EXCHANGE (<file designator> [<row/copy numbers> | ,
- <file designator> [<row/copy numbers> |)

Examples

EXCHANGE (FILE1[ROW6], FYLE2[ROWO])
EXCHANGE (MASTERFYLE[ROW2, COPY3], REBUILTFYLE[ROWO, COPY1])

Semantics

The <exchange statement> can be used to “trade” rows between two disk files. The <row number>
begins with zero (0), and the <copy number> begins with one (1). If a <copy number> is specified,
then only the rows for that copy are exchanged.

Pragmatics

The referenced file(s) cannot be in an opened state when the <exchange statement> is executed. The
two rows must be the same size. The specified <row number> as well as the specified <copy number>
must be legitimate. The referenced disk file cannot be a “code file”” of any kind.

If the system detects any type of error, the exchange is not actually performed and the program resumes

its execution. After using the <exchange statement> the row addresses should be checked (via
<arithmetic file attribute>s) to ensure that the exchange was successfully completed.

5-38

Statements
FILL

FILL STATEMENT
Syntax

<fill statement> ::= FILL <array row> WITH <value list>
<value list> ::= <initial value> |
<value list> , <initial value>
<initial value> .= <number> |
<string> |
<unsigned integer> (<value list>)

Examples

FILL MATRIX[*] WITH 458.54, +546, — 1354.54@6, 16@—12
FILL GROUP[1,*] WITH .25, “ALGOL”, * *“ *“, 4“FFFFF”, “365”

Semantics

The <fill statement> fills an <array row> with specified values. An initial value of the form <unsigned
integer> (<value list>) uses the <unsigned integer> as a repeat count and repeats the <value list>
the number of times indicated.

The row designator of the <array row> part indicates which row is to be filled, by designating a specific
value for each subscript position of the <array row>. The symbol * must appear in the rightmost sub-
script position of the row designator. If the value of a row designator is other than integer, it is rounded
to an integer in accordance with the rules applicable to <assignment statement>s.

Pragmatics

If the <value list> contains more values than the size of the <array row>, filling stops when the
<array row> is full.

The comma in the <value list> causes word alignment of the next <initial value>.<initial value>s less than
48 bits are right-justified with leading zeros inserted in the word. <initial value>s greater than 48 bits are
left-justified with trailing zeros inserted in the word.

If the size of array is longer than the supplied <value list>, the remainder of the <array row> is left
“as is.”

The length of the <value list> cannot exceed 4095 48-bit words.

The <fill statement> cannot be used with character arrays.

5-39

Statements
FIX

FIX STATEMENT

Syntax

<fix statement> ::= FIX (<event designator>)

Examples

FIX (EVNT)
FIX (EVENTARAY [INDX]) -

IF GOTIT := FIX (FYLELOCK) THEN
FIX (MYSELF.EXCEPTIONEVENT)

Semantics

Upon completion of the execution of the <fix statement>, the <event designator> referenced is NOT
AVAILABLE.

The <fix statement> (conditional procure function) is a Boolean function that examines the available
state of an event. If the state is AVAILABLE, the event is procured, the state set to NOT AVAILABLE,
and a FALSE returned. If the available state is NOT AVAILABLE, the function returns a TRUE,

leaving the available state unchanged.

5—-40

Statements
FOR

FOR STATEMENT
Syntax

<for statement> ::= FOR <variable> = <for list> DO <statement>
<for list> ::= <for list element> |
<for list> , <for list element>

<for list element> ::= <initial part> <iteration part>

<Jnitial part> ::= <arithmetic expression>

<iteration part> ::= <empty> |
STEP <arithmetic expression> UNTIL <arithmetic expression> |
STEP <arithmetic expression> WHILE <Boolean expression> |
WHILE <Boolean expression>

Examples
FOR 1 :=0 DO .
FOR J :=1 ST EP 1 UNTIL 255 DO . .

FOR INDX := 0, 1, 2, 10, 15, 37, 5, 16 DO ...

FOR X := 0 STEP 1 UNTIL 5, 29, 47 STEP 3 UNTIL LIM DO .
FOR NXT := BEG STEP AMT WHILE NOT DONE DO ...

FOR N := IX + 7 WHILE TARGET LEQ RANGE DO ...

Semantics

The <variable> in the <for statement> is referred to as the controlled variable. The <for statement>
can be best understood by isolating the following three distinct operational steps:

a. Value assignment to the controlled variable
b. Test of the limiting condition.
c. Execution of the <statement> followmg DO.

Each type of <for list element> specifies a different process. However, all have one property in common,
which is, the initial value assigned to the controlled variable is that of the leftmost <arithmetic
expression> in the <for list element>s.

The <for list element> determines what values are to be assigned to the controlled variable and what
test to make of the controlled variable to determine whether or not the <statement> following DO

is executed. When a <for list element> is exhausted, the next element in the <for list> is considered,
progressing from left-to-right. When all <for list element>s have been utilized, the <for list> is
considered exhausted and control continues with the next <statement> following the <for statement>.
It is possible for the <statement> following DO to transfer control outside the <for statement>, in
which case some <for list element>s may not be exhausted when the <for statement> is exited.

<arithmetic expression> <empty>
The format for this variation is as follows:

FOR YV : = AEXP1, AEXP2,. .., AEXPN DO S46; S

"5-41

Statements
FOR
Continued

When the <for list element> is simply an <arithmetic expression>>, there is only one value to be
assigned to the controlled variable. Since there is no limiting condition, no test is made. After assignment
of the <initial part> to the controlled variable, the <statement> following DO is executed. If more than

one <initial part>, the <initial part>s are assigned to the controlled variable consecutively until the
<for list> is exhausted.

Figure 5-2 illustrates the FOR-DO loop.

ENTER
LOOP
SET INDEX SET INDEX SET INDEX :
: EXECUT
75 INTiaL E o SECOND EXECUTE | __ _ISETINDE) EXECUTE | _|TERMINATE
VALUE STATEMENT VALUE STATEMENT VALUE STATEMENT LOOP

Figure 5—2. FOR-DO Loop
STEP <arithmetic expression> UNTIL <arithmetic expression>
When the <for list element> is of the form:
FOR V:= AEXP1 STEP AEXP2 UNTIL AEXP3

where AEXP1, AEXP2, and AEXP3 represent <arithmetic expression>s, the process described below is
used. A new value is assigned to the controlled variable, V, each time the <statement> following DO

is executed. First, an initial value, that of AEXP1, is assigned to the controlled variable. All subsequent
assignments are equivalent to: V :=V + AEXP2, and made immediately after the <statement> following

DO is executed. The limiting condition on the value of V is given by AEXP3, which is evaluated anew each
time through the loop.

A test is made immediately after each assignment of a value to V (including the first) to determine whether
whether or not the value of V has passed AEXP3. Whether AEXP3 is an upper or lower limit depends on
the sign of AEXP2. AEXP3 is an upper limit if AEXP2 is positive, and a lower limit if AEXP2 is negative.
If AEXP3 is an upper limit, then V has “passed” AEXP3 when the expression V LEQ AEXP3 is no longer
TRUE. If AEXP3 is a lower limit, then V has “passed” AEXP3 when the expression V GEQ AEXP3 is no
longer TRUE. If V has not passed AEXP3, the <statement> following DO is executed. Otherwise, the
<for list element> is exhausted. Figure 5-3 illustrates the FOR-STEP-UNTIL loop.

5-42

ENTER
Loop

¢

SET INDEX TO
INITIAL VALUE

Note

A step of O is not allowed in the <for statement>.

A run-time error will occur.

TERMINATE
LOOP

YES

Statements
FOR

Continued

HAS
INDEX
PASSED LIMIT

NO EXECUTE

VALUE STATEMENT

?

INCREMENT

I NDEX

Figure 5—3, FOR-STEP-UNTIL Loop

STEP <arithmetic expression> WHILE <Boolean expression>

When the <for list element> is of the form

FOR V := AEXP1 STEP AEXP2 WHILE BEXP DO S4,; S

where AEXP1 and AEXP2 are <arithmetic expression>s and BEXP is a <Boolean expression>>, the
process is described below. A new value is assigned to the controlled variable V if the BXEP is TRUE
each time the statement following DO is executed. First, the initial value AEXP1 is assigned to the
controlled variable. All subsequent assignments are equivalent to V := V+AEXP2 and are made
immediately after the <statement> following DO is executed. After each assignment to V, the
<Boolean expression> BEXP is evaluated, and as long as BEXP is TRUE, the <statement> following
DO is executed. This can be stated concisely as follows:

V = AEXP1

L3: IF BEXP THEN BEGIN Sy,; V := V+AEXP2; GO TO L3 END;

S

Figure 5—4 illustrates the FOR-STEP-WHILE loop.

5—-43

Statements

FOR
Continued
TERMINATE
LOOP
ENTER
LO*OP NO
IS
SET INDEX TO BOOLEAN YES EXECUTE INCREMENT
EXPRESSION L
INITIAL VALUE TRUE STATEMENT INDEX
?

Figure 5—4. FOR-STEP-WHILE Loop
WHILE <Boolean expression>

When the <for list element> is of the form WHILE <Boolean expression>, the controlled variable is
assigned the value of the <lnitial part>. A test is then made of the <Boolean expression> following
WHILE. If the logical value is TRUE, the <statement> following DO is executed. This process
continues, with the <for list element>s being assigned to the controlled variable, until the value of the

<Boolean expression> is FALSE, at which time control is transferred to the next <statement> in the
<program>. For example,

FOR V :=V + 1 WHILE V LEQ 5 DO ...

If V had the value of zero before execution of this statement, the statement between the BEGIN-END
delimiters would have been executed five times.

Figure 55 illustrates the FOR-WHILE Loop.

5-44

ENTER
LoopP

TERMINATE
LoopP

ASSIGN VALUE
TOCONTROLLED
VARIABLE

1S
BOOLEAN
EXPRESSION

TRUE
?

Statements
FOR

Continued

EXECUTE
STATEMENT

Figure 5—5. FOR-WHILE Loop

Statements
FREE

FREE STATEMENT
Syntax
<free statement> ::= FREE (<event designator>)
Examples
FREE (EVNT)

FREE (EVNTARAY [INDX])
IF WASPROCEDURED := FREE (FYLELOCK) THEN ...

Semantics

This statement, of arbitrary value and dangerous use, unconditionally resets the event state to
AVAILABLE. It does not activate any task suspended by an attempt to procure the event nor does it
activate any task waiting on the event.

The <free statement>> can be used as Boolean function that returns a FALSE if the event is already
AVAILABLE, and a TRUE is returned if the event was NOT AVAILABLE. In either case, the event is
unconditionally reset to AVAILABLE.

5-46

Statements
GO TO

GO TO STATEMENT
Syntax

<go to statement> ::= GO TO <designational expression> |
GO <designational expression>

Examples

GO TO LABEL1

GO LABEL2

GO TO IF K=1 THEN SELECT [2] ELSE START
GO TO SELECTIT [INDX]

Semantics

The <go to statement> transfers control to the <label> that is the value of the <designational
expression>.

If the <designational expression> specifies an invalid designation (only possible when using a <switch
label declaration>), control passes to the <statement> following the <go to statement>.

Labels must be declared in, and therefore are local to, the innermost block in which they appear as a
statement label. A <go to statement> cannot lead from outside a <block> to a point inside that
<block>; each <block> must be entered at the <block head> so that the associated declarations
can be invoked.

NOTE

Refer to <designational expression> for an
explanation of the “bad go to.”

5-47

Statements
I/0

1/0 STATEMENT
Syntax

<1/O statement> ::= <accept statement> |
‘ <close statement> |

<display statement> |
<lock statement> |
<read statement> |
<rewind statement> |
<seek statement> |
<space statement> |
<write statement>

Semantics

An <I/O statement> causes information to be exchanged between a program and its peripheral device(s),
or it allows the programmer to perform certain control functions.

The <accept statement> and <display statement> are unique in that the programmer is not required
to specify a “file” to/from which data is transferred. These two statements have a very limited syntax
and therefore are completely described elsewhere in this manual.

The remaining <I/O statement>s all reference a file which must be declared by the programmer (refer
to <file declaration>)"

A full treatment of ALGOL I/O is beyond the scope of this manual, but it is necessary to point out that
there are two distinct methods of I/O which the programmer can do. The first and typical method is
referred to as ‘““normal I/O” and the second method is called “Direct I/O”. These two methods are
explained separately under each of the <I/O statement>s which can be found elsewhere in this manual.
Briefly, however, the major difference between Normal I/O and Direct 1/0 has to do with “buffering”,
or the overlap of program execution and I/O operations. Whereas Normal I/O is normally overlapped
(i.e., it is automatic), Direct I/O can be used to achieve or avoid overlap as desired.

NORMAL [/O

Unless a file is declared to be DIRECT, it is by default handled in Normal I/O fashion. The amount of
buffering between the <I/O statement>s and program execution depends on the number of buffers
allocated for the file (refer to <file declaration™).

A Normal I/O <read statement> causes the automatic testing of the availability of the needed record.
The program is suspended in the <read statement> until such time as the record is actually available
for use. ‘

A <write statement> in Normal I/O transfers the specified data to a buffer and the program is

immediately released to begin execution of the next <statement>. If all the buffers are full at the
instant of the <write statement>, the program is suspended until such time as a buffer is available.

5-48

Statements
I/0
Continued

DIRECT 1/O

Direct I/O brings the programmer closer to the actual input/output operations. In certain situations, it
may be necessary to avoid any suspension of the program for any reason whatsoever. In other situations,
it may be necessary to perform non-standard I/O operations as well as to mask certain types of error
conditions which could arise.

To perform Direct I/O on a file (call it FID) the file must be declared as a DIRECT file. (Refer to <file
declaration>.)

The syntax for Direct I/O read or write operation employs the <arithmetic expression>, <array row>
form of <format and list part>>. Optional <action labels> of the [<event designator>] can be used.
The <array row> is called the user’s I/O area, and the <direct array identifier™> must be used for the
<array name> part in the <array row> construct. Thus to Direct read 10 words from FID into Direct
array A using the event EVT, READ(FID,10,A[*]) [EVT] would be written. When executing this
<statement>, the MCP establishes a relationship between the I/O area and the event EVT.

However, before any subsequent use of the I/O area can be made in the program, either for calculations or
for further I/O, the Direct I/O operation must be finished. The event mechanism can be used by having
EVT caused when the read operation is finished. The event can be inspected by means of the Boolean
intrinsic function HAPPENED, or by obtaining the I/O result descriptor, through the use of the WAIT
intrinsic on the Direct array. The user can also use a <wait statement> on the event to de-activate the
process until the event is caused. Once the operation has been completed, the event should be reset

before reusing it (see the <waitandreset statement>).

In Direct I/0, the I/O operations analogous to SPACE and REWIND are performed as if they are a read

or write operation, except that the IOCW direct array attribute is specifically set to the proper hardware
TOCW for the operation.

5—-49

Statements
IF

-IF STATEMENT
Syntax

<if statement> ::= <if clause> <statement>
<if clause> ::= IF <Boolean expression> THEN

Examples
IF ALLDONE THEN GO AWAY

IF ENDITALL := X=0 THEN
WHILE A) COWNT DO ...

Semantics

The <if statement> provides a means of making a conditional transfer of control based on data or
results of a computation.

The <statement> following THEN is executed if the <Boolean expression> results in a TRUE
condition. (Refer to <conditional statement> for more information on the use of the <if statement>.)

5-50

Statements
INTERRUPT

INTERRUPT STATEMENT

Syntax

<interrupt statement> ::= <attach statement> |
<detach statement> |
<disable statement> |
<enable statement>

Examples

ATTACH ...

DETACH ...

DISABLE ...

ENABLE ...
Semantics
A process can be interrupted upon the occurrence of a specific event if an interrupt has been declared,
attached to the event, and enabled. The paragraphs that follow describe briefly the <interrupt state-
ment>. (Refer to the specific <interrupt statement>> for more detail.)

<attach statement> and <detach statement>

The <attach statement> is used to associate an interrupt with an <event designator>. The <attach
statement> does not implicitly enable or disable an interrupt. If it has not been disabled, it is enabled.

The <detach statement> is used to sever the association between the interrupt and the event to which
it has been attached.

<enable statement> and <disable statement>

The <enable statement> and <disable statement> are used to explicitly enable and disable an
interrupt if one is specified. If none is specified, then all interrupts are enabled or disabled.

5-51

Statements
INVOCATION

INVOCATION STATEMENT

Syntax

<invocation statement> .= <call statement> |
<procedure statement> |

<process statement> |
<run statement>

Examples
CALL ...
PROCEDURE...

PROCESS .
RUN ...

Semantics

An <invocation statement> causes a previously declared procedure to be executed as a subroutme
an asynchronous process, a co-routine, or an mdependent program. :

With the exception of the <procedure statement>:

a. A separate stack is always initiated, and
b. - The specified procedure cannot be typed.

With the exception of the <run statement>, parameters may be passed by name or value. All parameters
passed in the <run statement> must be by value. .

Statements
ITERATION

ITERATION STATEMENT
Syntax

<iteration statement> .= <do statement> |
<for statement> |
<thru statement> |
<while statement>

Examples

DO BEGIN...; END UNTIL SWEAT

FOR X:= 0 STEP 1 UNTIL 5,29,47 STEP 3 UNTIL LIMIT DO ...
THRU MAXI ;= REAL (PTR,3) DO ...

WHILE INDX LEQ MAXVAL DO ...

Semantics

<Jteration statement>s provide methods of forming loops in a <program>. They allow for repetitive
execution of a <statement> zero or more times.

The various iterative mechanisms are described as follows:

a. The <do statement> causes the statement following DO to be executed and then the
<Boolean expression> to be evaluated. If the result is FALSE the <statement> is
executed again; if TRUE, control passes outside the <do statement>.

b. The <for statement> assigns an initial value to a controlled variable. It then proceeds to
execute and increment that variable until the limit has been passed.

c. The <thru statement> tests a repeat index, executes a <statement>, and then decrements
the repeat index by one.

d. The <while statement> evaluates a <Boolean expression>>, and if TRUE, the statement
is executed. If FALSE, control is passed outside the <while statement>.

5-53

Statements

LIBERATE

LIBERATE STATEMENT

Syntax

<liberate statement> ::= LIBERATE (<event designator>)
~ Examples

LIBERATE (EVNT)
LIBERATE (EVNTARAY[INDX])

Semantics

The <liberate statement>, when executed, produces several effects. First, the procure list is examined.
If there are no other tasks waiting to procure the event, the event state is set to AVAILABLE. If there
are other tasks waiting to procure the event, the event state is left marked as NOT AVAILABLE. Also,
all tasks waiting on the event are activated, that is, an implicit cause is executed. This can result in a
change to the HAPPENED state of the event, depending on whether the tasks that are waiting have
used <wuait statement> or the <waitandreset statement>. :

Pragmatics
Even though all waiting tasks are activated, they are linked into the READYQ in priority order (see the

<cause statement>). At this point, all tasks will attempt to procure the event (see the <procure
statement>).

5-54

Statements
LOCK

LOCK STATEMENT
Syntax

<lock statement> ::= LOCK (<file designator> <lock option>)
<lock option> .= <empty> |
» CRUNCH |
*

Examples

LOCK (FILEA)
LOCK (FYLE, CRUNCH)
LOCK (FYLE, *)

Semantics

The <Jock statement> causes the referenced file to be closed. If the file is tape, it is rewound and a
system message is printed that notifies the operator that the reel must be removed and saved. If the file
is not a disk file, the unit is made inaccessible to the system until the operator readies it again manually.
If the file is a disk file, it is retained as a permanent file on disk. The file buffer areas are returned to
the system.

A <Jock statement> which has a non-empty <lock option> performs the same action as the <close
statement> which specifies CRUNCH. The file must be a disk file. The unused portion of the last row

(beyond the end-of-file indicator) of disk space is returned to the system. The disk file can no longer be
expanded without being copied into a new file; however, the file can be written inside of the end-of-file
limit. :

5-55

Statements
MERGE

MERGE STATEMENT

Syntax

<merge statement> ::= MERGE (<output option>
<compare procedure>
<record length> |,

<merge option list>)
<merge option list> ::= <rmnerge option> |
<imerge option list> , <merge option>
<merge option> ::= <input option>> ‘
Example
MERGE (LINEOUT, COMP, 14, IN1, IN2)
Semantics

The <merge statement> causes data in all of the files specified by the <merge option list> to be
combined and returned. The <compare procedure> determines the manner in which the data is
combined. The <output option> specifies how the data is to be returned from the merge.

The <rmerge option list> must contain between two and eight input options, inclusive which must be files
or Boolean procedures. ‘

The <output option>, <compare procedure>, <record length>, and <input option> are as specified
for the <sort statement>. '

For more detailed information concerning the <mmerge statement>, refer to the B 6000 Series Operation
Guide Reference Manual.

5-56

Statements
MULTIPLE ATTRIBUTE ASSIGNMENT

MULTIPLE ATTRIBUTE ASSIGNMENT STATEMENT

Syntax

<multiple attribute assignment statement> .= <file identifier> (<initial attribute li<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>