
•I ' 

"' 

.. 

Printed in U.S.A. 

. . 

Burroughs~ 

... · .... .. . ~ .·. 

PRICED ITEM 

May 1977 5001639 



Burroughs~ 

B 7000/B 6000 

ALGOL 

REFERENCE MANUAL 

Copyright © 1970, 1971, 1972, 1974, 1977, Burroughs Corporation, Detroit. MiC:higan 48232 

PRICED ITEM 

Printed in U.S.A. May 1977 5001639 



Page No. 

Title 
A 
i thru vi 
1-1 thru 1-2 
2-1 thru 2-11 
2-12. 
3-1 thru 3-3 
3-4 
4-1 thru 4-72 
5-1 thru 5-120 
6-1 thru 6-33 
6-34. 
A-1 thru A-5 
A-6 . 

A 

LIST OF EFFECTIVE PAGES 

mue Page No. 

Original B-1 thru B-11 
Original B-12 
Original C-1 thru C-5 
Original C-6 
Original D-1 thru D-35 . 
Blank D-36 
Original E-1 thru E-7 
Blank E-8 
Original F-1 thru F-4 
Blank G-1 thru G-4 
Original H-1 thru H-5 
Blank H-6 
Original Index-I thru lndex-35 
Blank Index-36 . 

Burroughs believes that the information described in this 
manual is accurate and reliable, and much care has been 
taken in its preparation. However, no responsibility. financial 
or otherwise, is accepted for any consequences arising out of 
the use of this material. The information contained herein is 
subject to change. Revisions may be issued to advise of such 
changes and/or additions. 

Correspondence regarding this document should be addressed directly 
to Burroughs Corporation, P.O. Box 4040, El Monte, California 91734, 
Attn: Publications Department, TIO-West. 

mue 

Original 
Blank 
Original 
Blank 
Original 
Blank 

. Original 
Blank 
Original 
Original 
Original 
Blank 
Original 
Blank 



PREFACE 

The purpose of this manual is to provide a reference document for the experienced programmer who is 
familiar with the B 7000/D 6000 Extended ALGOL Language, hereinafter referred to as ALGOL, and the 
B 7000/B 6000 Information Processing System. This reference manual is intended neither as a primer nor 
as a tutorial document. 

ALGOL is based on the definitive "Revised Report on the Algorithmic Language ALGOL 60" (Communi­
cations of the ACM, Vol. 6, No. 1; January, 1963). 

ALGOL, in addition to implementing virtually all of ALGOL 60, has provisions for extensive communica­
tion between programs and input-output devices, enables editing of data, and implements diagnostic 
mechanisms for program debugging. 

This reference manual is divided into the following six sections and eight appendices: 

• Section 1, MET ALAN GU AGE DEFINITION: this section explains the syntactical notation used 
in defining the ALGOL language. 

• Section 2, LANGUAGE COMPONENTS: this section describes the elements that form the most 
primitive structures in the language. 

• Section 3, PROGRAM STRUCTURE: this section describes the basic structure of an ALGOL 
program. 

• Section 4, DECLARATIONS: this section describes how elements are declared prior to being 
manipulated via statements and expressions. 

• Section 5, STATEMENTS: this section presents the language element (the <statement>) that 
causes a specified action to be performed. 

• Section 6, EXPRESSIONS: this section describes the primary active element of the language. 

• Appendix A, RESERVED WORDS: this appendix is a list of "words" that have been set aside for 
specific purposes within ALGOL. 

• Appendix B, PROGRAM CHARACTER AND WORD FORMATS: this appendix illustrates and 
describes the various characters and words (B 7000/B 6000) that can be used and accessed by the 
programmer. 

• Appendix C, CHARACTER SETS AND CODING FORM. 

• Appendix D, COMPILE TIME OPTIONS: this appendix describes the compiler options av~ilable 
to the user. 

• Appendix E, PROGRAM SOURCE AND OBJECT FILES: this appendix describes how compiler 
communication is handled through various input and output files. 

• Appendix F, BATCH FACILITY: this appendix describes the method by which batch programs 
can be grouped to reduce the cost of required system overhead functions. 

i 



• Appendix G, RUN-TIME FORMAT ERROR MESSAGES: this appendix lists and explains the 
error messages that occur at run-time because of formatting errors. 

• Appendix H, COMPILE-TIME FACILITIES: this appendix describes how ALGOL source data 
can be compiled conditionally or interactively. 

As an additional aid, the language elements have been arranged in alphabetical sequence within each 
section. 

ii 



Section 

1 

2 

3 

4 

TABLE OF CONTENTS 

PREFACE ........ . 

METALANGUAGE DEFINITION 

Scope of the Language 
Syntax Description . . 

LANGUAGECOMPONENTS. 

Language Components 
Basic Symbol 
Identifier . 
Number . 
Remark . 
String . ~. 

PROGRAM STRUCTURE 

Program Unit . . 

DECLARATIONS 

Declaration . . . 
ALPHA Declaration 
ARRAY Declaration 
ARRAY REFERENCE Declaration 
BOOLEAN Declaration ..... 
DEFINE Declaration and DEFINE Invocation 
DIRECT ARRAY Declaration . . . . . . 
DOUBLE Declaration . . . . . . . . . 
DUMP Declaration . . . . . . . . . . 
EVENT and EVENT ARRAY Declarations . 
FILE Declaration . . . . . . . . 
FORMAT Declaration ...... . 
FORWARD REFERENCE Declaration 
INTEGER Declaration 
INTERRUPT Declaration 
LABEL Declaration . . 
LIST Declaration . . . 
MONITOR Declaration 
PICTURE Declaration . 
POINTER Declaration . 
PROCEDURE Declaration 
REAL Declaration . . . 
SWITCH Declaration . . 
SWITCH FILE Declaration 
SWITCH FORMAT Declaration 
SWITCH LABEL Declaration . 
SWITCH LIST Declaration . . 
TASK and TASK ARRAY Declarations 
TRANSLATETABLE Declaration .. 

Page 

i 

1-1 

1-1 
1-1 

2-1 

2-1 
2-2 
2-4 
2-5 
2-7 
2-9 

3-1 

3-1 

4-1 

4-1 
4-2 
4-3 
4-6 
4-7 
4-8 

4-10 
4-12 
4-13 
4-15 
4-16 
4-20 
4-42 
4-43 
4-44 
4-45 
4-46 
4-48 
4-51 
4-54 
4-55 
4-59 
4-60 
4-61 
4-62 
4-63 
4-64 
4-65 
4-66 

iii 



Section 

s 

iv 

TABLE OF CONTENTS (Cont) 

TRUTHSET Declaration . . 
TYPE Declaration . . . . 
VALUE ARRAY Declaration 

STATEMENTS . . . 

Statement . . .. 
ACCEPT Statement . 
ASSIGNMENT Statement 

Arithmetic Assignment 
Array Reference Assignment 
Boolean Assignment 
Pointer Assignment . . 
Task Assignment . . . 

ATTACH Statement .. 
BREAKPOINT Statement 
CALL Statement .... 
CASE Statement . . . . 
CAUSE Statement . . . . 
CAUSEANDRESET Statement 
CHANGEFILE Statement . 
CHECKPOINT Statement . 
CLOSE Statement .... 
CONDITIONAL Statement . 
CONTINUE Statement . 
DEALLOCATE Statement 
DETACH Statement 
DISABLE Statement 
DISPLAY Statement 
DO Statement . . . 
ENABLE Statement 
EVENT Statement . 
EXCHANGE Statement 
FILL Statement . 
FIX Statement 
FOR Statement . 
FREE Statement . 
GO TO Statement 
I/O Statement . . 
IF Statement . . 
INTERRUPT Statement 
INVOCATION Statement 
ITERATION Statement 
LIBERATE Statement 
LOCK Statement . . . . 
MERGE Statement . . . 
MULTIPLE ATTRIBUTE ASSIGNMENT 
ON Statement . . . . . 
PROCEDURE Statement 
PROCESS Statement . . 
PROCURE Statement . . 

Page 

4-69 
4-71 
4-72 

5-1 

5-1 
5-2 
5-3 
5-4 
5-7 
5-8 
5-9 

5-10 
5-11 
5-12 
5-13 
5-15 
5-17 
5-18 
5-19 
5-20 
5-25 
5-27 
5-30 
5-31 
5-32 
5-33 
5-34 
5-35 
5-36 
5-37 
5-38 
5-39 
5-40. 
5-41 
5-46 
5-47 
5-48 
5-50 
5-51 
5-52 
5-53 
5-54 
5-55 
5-56 
5-57 
5-58 
5-61 
5-62 
5-63 



Section 

TABLE OF CONTENTS (Cont) 

PROGRAMDUMP Statement 
READ Statement 
REMOVEFILE Statement . 
REPLACE Statement . . . 
REPLACE FAMILY-CHANGE Statement 
REPLACE POINTER-VALUED ATTRIBUTE Statement 
RESET Statement . 
RESIZE Statement . 
REWIND Statement 
RUN Statement . 
SCAN Statement . 
SEEK Statement . 
SET Statement 
SORT Statement . 
SPACE Statement 
STRING Statement . 
SWAP Statement . . 
THRU Statement 
UNCONDITIONAL Statement 
VECTORMODE Statement . 
WAIT Statement . . . . . 
WAITANDRESET Statement 
WHEN Statement 
WHILE Statement 
WRITE Statement 
ZIP Statement . 

6 EXPRESSIONS 

Expression . . 
Arithmetic Expression . 
Boolean Expression . . 
CASE Expression 
Conditional Expression 
Designational Expression . 
Function Expression . . 

Arithmetic Function Designator 
Arithmetic Intrinsic Names . 

Boolean Function Designator 
Boolean Intrinsic Names . 

Pointer Function Designator 
Pointer lntrinsiG Names 

Pointer Expression . . . . . 

Page 

5-64 
5-66 
5-77 
5-78 
5-88 
5-89 
5-90 
5-91 
5-92 
5-93 
5-94 
5-97 
5-98 
5-99 

5-104 
5-105 
5-108 
5-109 
5-110 
5-111 
5-114 
5-116 
5-117 
5-118 
5-119 
5-120 

6-1 

6-1 
6-2 
6-9 

6-14 
6-15 
6-16 
6-18 
6-19 
6-19 
6-29 
6-29 
6-30 
6-30 
6-31 

v 



Appendix 

A 
B 
c 
D 
E 
F 
G 
H 

Figure 

4-1 
4-2 
5-1 
5-2 
5-3 
5-4 
5-5 
5-6 
5-7 
B-1 
B-2 
B-3 
B-4 
B-5 
B-6 
B-7 
B-8 
B-9 
B--10 
B-11 
B-12 
D-1 
D-2 
E-1 

Table 

vi 

6-1 
6-2 
6-3 
6-4 
E-1 

TABLE OF CONTENTS (Cont) 

Reserved Words . . . . . . . . . 
Program Character and Word Formats. 
Character Sets and Coding Form . 
Compile-Time Options . . . . 
Program Source and Object Files . 
Batch Facility . . . . . . . . 
Run-Time Format Error Messages 
Compile-Time Facilities . . . . 

LIST OF ILLUSTRATIONS 

Translation Table Indexing 
Truthset Test . . 
DO-UNTIL Loop . . . . 
FOR-DO Loop . . . . 
FOR-STEP-UNTIL Loop. 
FOR-STEP-WHILE Loop 
FOR-WHILE Loop 
THRU Loop 
WHILE-DO LOOP 
Word Notation 
Bit Bytes (EBCDIC Code) 
6-Bit Characters (BCL Code) 
4-Bit Digits (Packed BCD) 
Real Variable . . 
Integer Variable . . . . 
Boolean Variable . . . . 

Title 

First Word, Double-Precision Variable . 
Second Word, Double-Precision Variable . 
String Descriptor (Non-Indexed) . 
String Descriptor (Indexed) . 
Return Control Word . 
Option Control Card . . . 
Use of the Explicit SET . . 
ALGOL Compilation System 

LIST OF TABLES 

Title 

Operator Precedence . . . . . . . . . . . 
Exponentiation Meaning . . . . . . . . . . 
Types of Values Resulting from an Arithmetic Operation 
Truth Table . . . . . 
ALGOL Compiler Files . . . . . . . . . . . . . 

Page 

A-1 
B-1 
C-1 
D-1 
E-1 
F-1 
G-1 
H-1 

Page 

4-68 
4-70 
5-35 
5-42 
5-43 
5-44 
5-45 

5-109 
5-118 

B-1 
B-2 
B-2 
B-3 
B-4 
B-5 
B-6 
B-7 
B-7 
B-9 
B-9 

B-11 
D-4 

D-31 
E-2 

Page 

6-5 
6-6 
6-6 

6-11 
E-5 



Definition 

METALANGUAGE 

1. METALANGUAGE DEFINITION 

SCOPE OF THE LANGUAGE 

ALGOL 60 is a language designed to represent algorithms or procedures for calculation. Extended 
ALGOL, hereinafter referred to as ALGOL, also includes facilities for communicating algorithms to 
the B 7000/B 6000 Information Processing System. 

ALGOL employs a vocabulary of reserved words and symbols. These reserved words and symbols cannot 
be used in a program for any purpose other than defined by the language description in this manual. 

Reserved words and symbols are grouped in ways prescribed by the syntax to form the various constructs 
of the language. These·constructs can be divided into five major categories: language components, prograr 
unit, declarations, statements, and expressions. 

Language components form the basis on which the entire ALGOL language is built. 

A program unit is the smallest "compilable" grouping of syntactic entities. The typical ALGOL program 
is a program unit, and it contains declarations, statements, and expressions to accomplish the program's 
objectives. 

Declarations are provided in the language for giving the ALGOL compiler information about the 
constituents of the program such as array sizes, the types of values that'variables can assume, or the 
existence of subroutines. Each such entity must be named by an identifier and all identifiers must be 
declared before they are used. 

Statements provide means of assigning values and results of computation, iterative mechanisms, 
conditional and unconditional transfers of program control, and input/output operations. In order to 
provide control points for transferring program control, statements can be labeled. 

Expressions are rules by which values can be obtained by executing various operations on the primary 
elements of which expressions are composed. 

SYNTAX DESCRIPTION 

The syntax of the language is described in Backus-Naur form (BNF) notation. The metalinguistic symbols 
have the following meanings: 

SYMBOL 

<> 

DESCRIPTION 

Left and right broken brackets are used to contain one or more characters 
representing a metalinguistic variable whose definition is given by a 
metalinguistic formula. 

The symbol : : =means "is defined as'', and' separates the metalinguistic variable 
on the left of the formula from its definition on the right. 

The symbol I means "or." This symbol separates alternative definitions of a 
metalinguistic variable. 

1-1 



Definition 

METALANGUAGE 
Continued 

{ These braces are used-to enclose metalinguistic variables that are defined by the 
meaning of the English language expression contained within the braces. The 
convention is used only when it is impossible or impractical to use a 
metalinguistic formula. 

The above metalinguistic symbols are used in forming a metalinguistic formula. A metalinguistic formula 
is a rule that produces a syntactically correct sequence of characters and/or symbols. The entire set of 
such formulae defines the constructs of ALGOL. 

Any mark or symbol in a metalinguistic formula that is not one of the above metalinguistic symbols 
denotes itself. The juxtaposition of metalinguistic variables and/or symbols in a metalinguistic formula 
denotes juxtaposition of these elements in the construct indicated. 

Spaces have been used between language elements for readability in this document, but in general, spaces 
cannot be used or omitted except as prescribed herein. 

The metalinguistic formula below is read as follows: An <identifier> is defined as a <Jetter>. or ari 
<identifier> followed by a <Jetter>, or an <identifier> followed by a <digit>. 

<identifier> : :=<Jetter> I 
<identifier> <Jetter> 
<identifier> <digit> 

The metalinguistic formula above also defines a recursive relationship by which a construct called an 
<identifier> can be formed. Evaluation of the formula shows that an <identifier> begins with a 
<Jetter>, the <Jetter> can stand alone, or it can be followed by any mixture of <Jetter>s and 
<digit>s. 

1-2 



2. LANGUAGE COMPONENTS 

LANGUAGE COMPONENTS 

Syntax 

<language components> : :=<basic symbol> I 
<define invocation> 
<identifier> I 
<number> I 
<remark> I 
<reserved word> 
<string> I 
<.program unit> 

Semantics 

Language Components 

LANGUAGE COMPONENTS 

<basic symbol>, <identifier>, <number>, <remark>, and <string> are discussed in this section. 

The <define invocation> is explained under the <define declaration>, although the <define 
invocation> can be used anywhere in a program. 

<reserved word>s are explained and listed in appendix A. 

<.program unit> is discussed in section 3, PROGRAM STRUCTURE. 

2-1 



Language Components 

BASIC SYMBOL 

BASIC SYMBOL 

Syntax 

<basic symbol>::= <empty> I 
<letter> I 
<.digit> I 
<.delimiter> 

<empty> : := {the null set of characters} 
<letter>::=AIBICIDIEIFIGIHll IJ IKILIM 

NIOIPIQIRISITIUIVIWIXIYIZ 
<.digit> : := o i I I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 
<.delimiter> : :=<bracket> I 

<.operator> I 
<space> 

<bracket>::= ( I ) I [ I ] I " I BEGIN I END I # I LB I RB 
<operator>::= <arithmetic operator> I 

<logical operator> I 
<relational operator> I 
:= I 
& 

<arithmetic operator>::= + I * I TIMES I MUX I / I DIV I MOD I ** I -
<logical operator>::= AND I OR I NOT I EQV I IMP I I I 
<relational operator>::= LEQ I ( = I 

LSS I ( I 
EQL I = I IS I 
NEQ j --i= I ISNT I 
GTR I > I 
GEQ I )= 

<space> : : = <single space> I 
<space> <single space> 

<single space>::= {one blank position} 

Semantics 

LETTERS 

Only uppercase <letter>s are permitted. The lowercase <letter>s are specifically disallowed. Individual 
<letter>s do not have particular meanings except as used in pictures and formats. · 

DIGITS 

<digit>s are used for forming <number>s. <identifier>s, and <string>s. 

DELIMITERS 

Delimiters are the class of <.operator>s, <space>s, <.bracket>s. As the word "delimiter" indicates, an 
important function of these elements is to delimit the various entities that make up a program. 

Each <delimiter> has a fixed meaning which, if not obvious, is explained elsewhere in this document 

2-2 



Language Components 

BASIC SYMBOL 

Continued 

in the syntax of appropriate constructs. Delimiters and logical values are considered <hasic symbol>s 
of the language, having no relation to the individual <Jetter>s of which they are composed. 
Consequently, the words that constitute the <hasic symbol>s are reserved for specific use in the 
language. A complete list of these words, called <reserved words>s, and details of the applicable 
restrictions are given in appendix A. 

SPACE 

IN ALGOL 60, spaces have no significance since basic components of the language such as BEGIN are 
construed as one symbol. However, in a machine implementation of such a language, this approach is 
not convenient for the ALGOL programmer. In ALGOL, for instance, BEGIN is composed of five 
letters, TRUE is composed of four, and PROCEDURE of nine. No <space> can appear between the 
letters of a <reserved word>; otherwise, it is interpreted as two or more elements. 

The <reserved word>s and <hasic symbol>s are used, together with <variable>s and <.number>s, 
to form <expression>s, <statement>s. and <declaration>s. Because some of these constructs place 
quantities that have been defined by the programmer next to <delimiter>s composed of <Jetter>s 
it is necessary to separate one from the other. The <space> is used as a delimiter in these cases. 
Therefore, a <space> must separate any two basic <language component>s of the following forms: 

a. Multicharacter delimiter (except:=,**, @@,-i=, (=, )=,). 
b. Identifier. 
c. Logical value. 
d. Unsigned number. 

Aside from these requirements, a <space> can appear, if desired, between any two <hasic component>s 
without affecting their meaning. 

2-3 



Language Components 

IDENTIFIER 

IDENTIFIER 

Syntax 

<identifier> : :=<Jetter> I 
<identifier> <letter> 
<identifier> <digit> 

Semantics 

<identifier>s have no intrinsic meaning. They name labels, variables, arrays, procedures, etc. An 
<identifier> can be no more than 63 <character>s long and cannot include <space>s or 
<iiisible special character>. An identifier must start with a letter, which can be followed by any 
combination of letters or digits, or both. The same <identifier> can be used to denote two different 
entities only when the "scopes" of these entities do not overlap. The multi-character symbols for 
relational and logical operators can be declared as identifiers. However, if declared, ~hey cannot be used 
as operators within the scope of the declaration. Examples of legal and illegal identifiers are as follows: 

2-4 

LEGAL IDENTIFIERS 

A 
I 
BS 
YSQUARE 
TOO BAD 
LONGTONS 
LAZY8 
PRESSURE 
XOVERZ 
D2P471GL 

ILLEGAL IDENTIFIERS 

BEGIN 
1776 
2BAD 
$ 
X-Y 
W-2 FORM 
<CAPTION> 
SEC(X) 
RATE-HR 
NO. 



NUMBER 

Syntax 

<.number> : :=<sign> <unsigned number> 
<sign> : :=<.empty> I 

+I 

<unsigned number> : := <decimal number> 
<.exponent part> I 
<decimal number> <exponent part> 

<decimal number>::= <unsigned integer> I 
<decimal fraction> I· 
<unsigned integer> <decimal fraction> 
<unsigned integer> . 

<unsigned integer> : :=<digit> I 
<unsigned integer> <digit> 

<decimal fraction>::= . <unsigned integer> 
<.exponent part>::= @<integer> I 

@@<integer> 
<integer>::= <sign> <unsigned integer> 

Examples 

UNSIGNED INTEGERS DECIMAL FRACTIONS 

5 .5 
69 .. 69 

.013 

INTEGERS EXPONENT PARTS 

1776 @8 
-62256 @-06 
548 @+54 

NUMBERS ILLEGAL NUMBERS 

0 50 00. 
+549755813887 1,505 ,278.00 

1. 75@-46 @63.4 
-4.31468 5@8 8 
-@2 1@2.5 

.375 l.667E-01 

Semantics 

Numbers can be of two basic types, integer or real. 

Language Components 

NUMBER 

DECIMAL NUMBERS 

.69 

.546 
3.98 

UNSIGNED NUMBERS 

99.44 
@-11 

1354.543@48 
.1864@4 

2-5 



Language Components 

NUMBER 

Continued 

No <space> can appear within an <unsigned integer>. All numbers that do not contain the 
exponent <.delimiter> (@@) are considered to be single-precision. 

The illegal number examples, given above, emphasize the fact that the only characters which are used to 
form numbers are <.digit>s and the <basic symbol>s ., @,+,and-. Note that no provision is made for 
<space>s to occur inside <number>s. 

NUMBER RANGES 

The largest and smallest integers and numbers that can be represented are as follows (decimal versions 
are approximate): 

a. Any integer between and including plus and minus 549755813887=8**13-1 = 
4"007FFFFFFFFF" can be represented in integer form. 

b. The largest positive normalized single-precision number is 4.31359146674@68 = (8**13-1) 8*8863 = 
4"1 FFFFFFFFFFF". 

c. The smallest positive normalized single-precision number is 8.75811540203@47 = 8**(-51) = 
4"3F9000000000". The number zero and negative numbers with absolute value between the 
largest and smallest values given above may be represented in real form. 

d. The largest positive normalized double-precision number is 1.94882938205028079124469@@ 
29603 = (8**26-1) *8**32767 = 4"1 FFFFFFFFFFFFFFFFFFFFFFF". 

e. The smallest positive normalized double-precision number is 1.9385458571375858335564@@-
2958 l = 8**(-32742) = 4" 3F9000000000FF8000000000". The number zero and positive and 
negati¥e numbers with absolute value between the largest and smallest values given above may be • 
represented in double form. 

COMPILER NUMBER CONVERSION 

The ALGOL compiler can convert a maximum of 24 significant decimal digits of mantissa in double­
precision. The "effective exponent", which is the explicit exponent value following the@@ sign minus the 
number of digits to the right of the decimal point, must be less than 29604 in absolute value. For 
example, the final fractional zero (0) cannot be specified in the smallest positive normalized double­
precision number shown above: -29581-(23 fractional digits)= -29604. Leading zeros are not counted in 
determining the number of significant digits. For example, 0.0002 has one significant digit, whereas 
1.002 has five significant digits. 

SYMMETRY OF THE NUMBER SETS 

The number sets are symmetrical with respect to zero, that is, the negative <number> 
corresponding to any valid positive <number> can also be expressed in the language and the object 
program. 

EXPONENTS 

The exponent part is a scale factor expressed as an integral power of 10. The exponent part@@ 
<.i11teger > signifies that the entire number is a double-precision value. 

2--6 



REMARK 

Syntax 

<.remark> : := <end remark> 
<comment remark> 
<escape remark> 

Language Components 

REMARK 

<end remark> : := {any sequence of <Jetter>s, and <digit>s, and <space>s not containing the 
reserved word END, ELSE, or UNTIL} 

<.comment remark>::= COMMENT {any sequence of EBCDIC characters not containing a semicolon}; 
<escape remark> : :=%{any sequence of EBCDIC characters extending to the end of the logical source 

record } 

Examples 

The following program illustrates the syntactically correct uses of the COMMENT. 

BEGIN 
FILE F(KIND = PRINTER COMMENT;); 
FORMAT COMMENT; FMT COMMENT; (A4, I6); 
POOCEDURE P (X,COMMENT; Y,Z); 
REAL X,Y COMMENT;, Z ; % PERCENT SIGN CAN BE USED HERE 
X := Y + COMMENT; Z; % HERE TWO 
IF COMMENT; 7 ) 5 THEN WRITE (F, ("OK")}; 
IF 4 COMMENT; ) 2 THEN WRITE(F, ("OK")); 
IF 8 ) 5 THEN WRITE COMMENT; (F, ("OK")>; 
END OF PROGRAM. 

The following program illustrates the improper use of the COMMENT. 

BEGIN 
FILE F(KIND=PRINTER); 
FORMAT FMT(13,Fl0.3 COMMENT; , A4); 
ARRAY A[0:99]; 
REAL X; 
FORMAT ("ABC", % CANNOT BE USED. "DEE''); 
WRITE(F,("INVALID USE" COMMENT;)); 
REPLACE POINTER(A) BY "ABCD COMMENT; EFGHIJ"; 
X := "AB,COMMENT; C"; 
COMMENT CANNOT BE USED HERE COMMENT; EITHER; 
END. 

Semantics 

Three methods are provided in the language to insert program documentation at various locations 
throughout the source file. The <end remark> is allowed following the particular <basic 
component>, END. The compiler recognizes the termination of the <end remark> upon finding 
the reserved word END, ELSE, or UNTIL, or upon finding a non-alpha, non-numeric EBCDIC character. 

The <.comment remark> is allowed between any two <basic component>s, except within an 

2-7 



Language Components 

REMARK 

Continued 

<editing specification> (refer to the <twmat declaration>) and except following the <editing 
specification>s of a <format declaration> but prior to the end of the same <format declaration>. 
The compiler considers the first semicolon encountered after the reserved word COMMENT as the 
end of the <comment remark>. Note that since a <remark>, a <string>, and an <invocation> 
are each <basic component>s, a <comment remark> is not recognized within a <string>, an 
<invocation> or another <remark>. Also note that <string>s, and <escape remark>s can each 
contain the dollar character($). Care must be exercised in the case of the <string> or the <comment 
remark> to ensure that these constructs do not contain a dollar character in position 1 of the 
source record or a blank character followed by a dollar character in positions 1 and 2 of the source 
record. An error in this respect causes the compiler to interpret the source record as a compiler 
control record. The structure of the <escape remark> cannot lead to this error. 

The percent sign(%) starting an <escape remark> must follow a <.basic component> not contained in 
an <editing specification>s. The <escape remark> extends from the starting percent sign and extends 
to the start of the sequence number field. The compiler does not examine the <escape remark>. When 
the percent sign is encountered that starts an <escape remark>, the compiler skips immediately to the 
next source record before continuing the compilation process. 

2-8 



STRING 

Syntax 

<string> : := <simple string> I 
<string> <simple string> 

<simple string> : := <numeric string> I 
<alpha string> 

<numeric string>::= <binary code> " <binary string> " I 
<.quaternary code> " <.quaternary string> " 
<nctal code> " <nctal string> " I 
<hexadecimal code> " <hexadecimal string> " 

Language Components 

STRING 

<binary code>::= l I IO I 12 I 120 I 13 I 130 I 14 I 140 I 16 I 160 I 
17 I 170 I 18 I 180 

<binary string> : := <binary character> I 
<binary string> <binary character> 

<binary character> : :=· 0 I 1 
<.quaternary code> : := 2 I 20 I 24 I 240 I 26 I 260 I 27 I 270 I 28 I 280 
<.quaternary string> : := <.quaternary character> I 

<.quaternary string> <.quaternary character> 
<quaternary character> : := 0 I 1 I 2 I 3 
<nctal code> : := 3 I 30 I 36 I 360 
<nctal string> : := <octal character> I 

<octal string> <octal character> 
<nctal character> : := 0 I 1 I 2 I 3 I 4 I 5 I 7 
<hexadecimal code> : := 4 I 40 I 4 7 I 4 70 I 48 I 480 
<hexadecimal string> : := <hexadecimal character> I 

<hexadecimal string> <hexadecimal character> 
<hexadecimal character> : := o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I A I B I 

CIDIEIF 
<alpha string> : := <EBCDIC code> " <EBCDIC string> " I 

<BCL code> " <BCL string> " I 
<ASCII code> " <ASCII string> " 

<EBCDIC code> : :=<empty> I 8 I 80 
<EBCDIC string> : := " I 

<EBCDIC character> I 
<EBCDIC string> <EBCDIC character> 

<EBCDIC character> : :=<letter> I 
<.digit> I 
<visible special character> 

<visible special character> : := • I , I [ I ] I ( I ) I + I - I I I ) I ( I 
=1%1&1*1#1@1: I; 1$1" 

<BCL code>::= 6 I 60 
<BCL string> : := <EBCDIC string> 
<ASCII code> : := 7 I 70 
<ASCII string> : := <EBCDIC string> 

2-9 



Language Components 

STRING 

Contim1ed 

Semantics 

CHARACTER SIZE 

Strings can be composed of binary (I-bit), quaternary (2-bit), octal (3-bit), hexadecimal ( 4-bit), BCL 
(6-bit), ASCII (7-bit in-8-bit format), and EBCDIC (8-bit) characters. 

STRING CODE 

The string code detennines the interpretation of the characters between the quotes. It specifies the 
character set and, for strings of less than 48 bits, the justification. The first digit of the string code 
specifies the character set in which the source string is written. The next non-zero digit (if any) specifies. 
the internal character size of the string to be created by the compiler. If no next non-zero digit is 
specified, the internal size is the same as the source size. If the internal size is different from the source 
size, the length of the string must be an integral number of internal characters. 

If the <string> contains fewer than 48 bits, a trailing zero in the string coqe specifies that the <string> 
is to be left-justified within a word and that trailing zeroes are to fill out the remainder of the word. 

If the <string> contains fewer than 48 bits, the absence of a trailing zero in the string code specifies that 
the <string> is to be right-justified within a word and that leading zeroes are to fill out the remainder of 
the word. 

If the <string> contains 48 or more bits, the presence or absence of a trailing zero in the string code 
is irrelevant. 

If the string code is <empty>, its default value is 8 or 6 depending on the "default character size" of the 
program. Note that 8-bit (EBCDIC) is assumed by the ALGOL compiler unless the programmer uses a 
BCL compiler control card, which indicates 6-bit. 

ASCII CHARACTERS 

An <ASCII code> can be used only with <ASCII string>s that contain only characters having 
corresponding EBCDIC graphics, since these are the only characters recognized by the compiler. 

The compiler translates each ASCII character into an 8-bit character, the rightmost seven bits of which 
are the ASCII representation of that graphic and the leftmost bit is a zero. 

For characters that are not in the EBCDIC character set, the ASCII characters must be written as a 
<Jzexadecimal string>; where each pair of hexadecimal characters represents the internal code of one 
ASCII character, right-justified with a leading zero bit. 

QUOTE CHARACTER 

The quote character(") can appear only as the first <character> of a <simple string>. Strings with 
internal quotes must be broken into separate simple strings by the use of three quotes in succession. 
Notice the syntax for <EBCDIC string>. 

2-10 



STRING LENGTH 

Language Components 

STRING 

Contfoued 

The maximum permissible string length depends upon the context in which the <.string> is used. List 
elements and fill statements that consist only of a string can include strings up to 256 8-bit characters in 
length. Strings used as primaries in arithmetic expressions are limited to a length of 48 bits. 

A <.string> less than 49 bits is represented internally as an 8-bit, 16-bit, or' 48-bit literal (depending on 
the number of bits in the <.string> ) in the code segment. A <.string> longer than 48 bits is carried in 
a "pool array" of the object program, and is referenced by a pointer whose character size is appropriate 
for the string. 

All string parameters are terminated with at least one null character. If the strim~ ends on a word bound­
ary, an extra word is added to the array to contain the null. Thus, an ALGOL program can find the end 
of the string by scanning WHILE ) 48"00". 

COMPOSITE STRINGS 

When a <string> is- formed from simple strings of different character sizes, the following rules apply: 

a. The justification specified by each string code after the first is ignored. 
b. Every <.character> must be aligned at a character boundary appropriate for that character 

size. For example, 3 "6" 6 "8" results in an error and must be replaced by 3 "6" 3 "O" 6 "8",. 
or 3 "06" 6 "8", or 3 "60" 6 "8". 

c. The maximum character size must be divisible by all character sizes that appear in the <.string>. 
Thus, it is impossible to mix 6-bit characters with 4-bit characters. For example, 3 "7" 2 "l" is 
illegal. Note that 7-bit characters are really 8-bit characters with one unused bit. 

. 2-11/2-12 





3. PROGRAM STRUCTURE 

PROGRAM UNIT 

Syntax 

<program unit>::= <hlock>. I 
<compound statement>. I 
<global part> <procedure declaration>. I 
<global part> <procedure declaration>; I 

<block>::= <block head> ; <compoundtail> 
<hlock head> : := BEGIN <declaration> I 

<block head> ; <declaration> 
<compound tail> : := <statement> END I 

<statement> ; <compound tail> 
<compound statement> : := BEGIN <compound tail> 
<global part>::= <empty> I 

[<declaration list>] 
<declaration list>::= <declaration> I 

<declaration list> ; <declaration> 

Examples 

BEGIN REAL X; END. 
BEGIN END. 
PROCEDURE P; BEGIN END. 
REAL PROCEDURE Q; BEGIN Q := 4 END. 
PROCEDURE S; BEGIN REAL X; END; 

Program Structure 

PROGRAM UNIT 

[REALS; ARRAY B[l]; FILE LINE; PROCEDURE RD(V); VALUE V; REAL V; EXTERNAL;] 

Semantics 

A <hlock> is a <statement> that groups one or more <declaration>s and <statement>s into a 
logical entity. A <compound statement> is a <statement> that has no <declaration>s following the 
BEGIN of a BEGIN-END pair; that is, a <compound statement> provides the means of grouping several 
<statement>s into some form of logical unit. 

A <compound statement>, and a <block> are recursive in that their definitions involve <statement>s 
and/or <declaration>s. A <statement> can itself be a <statement>. The structure of <compound 
statement>s and <hlock>s are illustrated as follows (S represents any <statement> and D represents 
any <declaration>): 

<compound statement>s 
BEGIN S;S;S; ... ;S; SEND 
BEGIN S;S;BEGIN S;BEGIN S;S END END; SEND 

<block>s 
BEGIN D;D; ... ;D;S;S;S; ... ;S;S; END 
BEGIN D;D;S;BEGIN D;S END;BEGIN S;S;S END END 

3-1 



Program Structure 

PROGRAM UNIT 

Continued 

A <:program> that has the form of a <.procedure declaration> is typically used as a unit that is bound 
to a more complete program. 

A <global part> allows global entities to be referenced by a separate <:procedure declaration>. The global 
entities must be declared prior to the <:procedure declaration> itself. Any <.program unit> that has a 
<global part> is valid only for binding to a host. 

Pragmatics 

A <compound statement> is executed in-line and does not change the memory requirement of a 
program. A <block> must be entered by the procedure entry operator and does modify the memory 
requirement of a <:program unit>. (Entering a <block> costs CPU resources; entering a <.compound 
statement> does not cost anything extra.) 

A <:program unit> can be preceded by <remark>; it cannot be followed by a <remark>. 

SCOPE 

Those portions of an ALGOL program where an <identifier> can be used to successfully reference its 
corresponding entity are defined to be the scope of that entity. 

In one part of an ALGOL program, an <identifier> can reference an entity; and in another part of the 
program, the same <identifier> can reference a different entity. The scope of each entity is defined in 
such a way that at any point in the program, an <identifier> references at most one entity. 

The scope of an entity is described by rules that define which parts of the program are included in the 
scope, which parts of the program are excluded by the scope, and the uniqueness requirements placed 
upon the choice of identifiers. Those general rules are described in the following paragraphs. 

Local Entities 

An <identifier> that is declared within a <block> is referred to as being "local" to that <block>. 
The entity associated with that <identifier> inside the <block> is not associated with that 
<identifier> outside the <block>. In other words, on entry to a <block>, the values of local entities 
are undefined; on exit from the <block>, the values of local entities are lost, but those of "global" 
entities (refer to GLOBAL ENTITIES) are retained. However, the <identifier> associated with some 
entity may be referred to inside inner <block>s, where it becomes a global <identifier> relative to the 
inner <block>s. 

Global Entities 

An identifier that appears within a <block> and is not declared within that <block> but is declared in 
an outer <block> is referred to as being "global" to that <block>. Therefore, a global <identifier> 
represents the same entity inside the <block> and outside of that <block>. 

3-2 



Program Structure 

PROGRAM UNIT 

Continued 

As the following program illustrates, an <identifier> can be local relative to one reference and global 
relative to another reference. 

BEGIN 
FILE F (KIND = PRINTER); 
REAL A; 
A := 7; % FIRST STATEMENT OF OUTER BLOCK 

BEGIN 
LIST LI (A); 
INTEGER A; 
LIST L2 (A); 
A := 3; % FIRST STATEMENT OF INNER BLOCK 
WRITE (F, \3RI0.2),Ll); 
WRITE (F, ( 3RI0.2 ), L2); 
END OF INNER BLOCK 

END OF PROGRAM. 

In the preceding example, the <identifier>, A, appears in <list> LI as a global reference and 
references the REAL A. In <list> L2, the identifier, A, references the INTEGER A. 

Global entities can be used in inner blocks in the following ways: 

a. To carry values into the <block> values that have been calculated in an outer block. 
b. To carry into an outer <block> a value calculated inside the <block>. 
c. To preserve a value calculated within a <block> for use in a later entry to the same <block>. 
d. To transmit a value from one <block> to another <block> neither containing nor contained 

within the first <block>. 

3-3/3-4 





4. DECLARATIONS 

DECLARATION 

Syntax 

<declaration> : := <array declaration> I 

Semantics 

<array reference declaration> 
<define declaration> I 
<direct array declaration> 
<dump declaration> I 
<event declaration> I 
<event array declaration> 
<file declaration> I 
<format declaration> I 
<forward reference declaration> 
<interrupt declaration> I 
<label declaration> I 
<list declaration> I 
<monitor declaration> I 
<pie ture declaration> I 
<pointer declaration> I 
<procedure declaration> 
<switch declaration> I 
<task declaration> I 
<task array declaration> I 
<translatetable declaration> 
<truthset declaration> I 
<type declaration> I 
<value array declaration> 

Declarations 

DECLARATION 

A <declaration> defines certain properties of entities and relates these entities to <identifier>s. 
Every <identifier> must be "declared" prior to using it in an ALGOL program. The compiler ensures 
that subsequent usage of the <identifier> in the program is consistent with its declaration. 

4-1 



Declarations 

ALPHA 

ALPHA DECLARATION 

Syntax 

<.alpha declaration> : :=<local or own> ALPHA <identifier list> 
<local or own> : := <.empty> I 

OWN 
<identifier list>::= <identifier> I 

<identifier list>, <identifier> 

Examples 

ALPHA ALFA 
ALPHA BET A, GAMMA, CHARS, ACCUM 
OWN ALPHA MYPERSONALALPHA 

Semantics 

Declarations 

ALPHA 

An <.alpha declaration> is used to declare <simple variable>s which can be used as alphanumeric 
values. Character values are either six, 8-bit characters (normal) or eight, 6-bit characters (BCL). 

The <local or own> portion of the <.alpha declaration> indicates whether the value of the specified 
<simple variable> is to be retained upon exit from the <block> in which it is declared. A <simple 
variable> declared to be OWN will retain its value when the program exits from the associated <block>, 
and that "old" value will be the contents of the <simple variable> when the associated <block> 
is re-entered. 

Upon entry to a <block> containing <simple variable>s, the normal content of a non-OWN 
<simple variable> is a zero (0); i.e., a 48-bit word with all bits off. To be truly compatible with 
ALGOL-60, a programmer would explicitly zero the <simple variable>s with appropriate <.assignment 
statement>s. 

Pragmatics 

A <simple variable> declared as ALPHA is treated as a REAL in terms of storing and manipulation. 

Appendix B contains additional information on the internal structure of an alpha <simple variable> 
as implemented on the B 7000/B 6000 Information Processing System. 

4-2 



Declarations 

AR RAY DECLARATION 

Syntax 

<array declaration> : := <Jong/own specification> <array class> ARRAY <array list> 
<Jong/own specification> : := <local or own> I 

LONG <local or own> 
<array class>::= <empty> I 

<type> I 
<character type> 

<type>::= ALPHA I 
BOOLEAN I 
DOUBLE_ I 
INTEGER I 
REAL 

<character type> : := HEX I 
BCL I 
ASCII I 
EBCDIC 

<array list> : := <array segment> I 
<array list> , <array segment> 

<array segment> : := <array identifier list> [ <bound pair list> ] I 
<array equivalence> 

<array identifier list> : :=<array identifier> I 
<array identifier list> , <array identifier> 

<array identifier> : :=<identifier> 
<bound pair list> : :=<bound pair> I 

<bound pair list> , <bound pair> 
<bound pair> : :=<lower bound> : <upper bound> 
<lower bound>::= <arithmetic expression> 
<upper bound> : := <arithmetic expression> 
<array row equivalence> ::=<array identifier> [<lower bound>] = <array row> 

Examples 

INTEGER ARRAY MATRIX [ 1 :IF B2 THEN B + K ELSE B + I] 
INTEGER ARRAY DOG [0:5, 0:25, 1 :7, 4: 16] 
OWN REAL ARRAY GROUP [0:9] 
OWN BOOLEAN ARRAY GATE [1:10, 3:9] 
REAL ARRAY STUB [0:4, 1:6], CAD[400:500, 1:50] 
ARRAY XRAY [X+Y+Z:3*A+B]; 
EBCDIC ARRAY GROUPE[O] = GROUP [*] 
ARRAY PARTARAY [7] = MAJORARAY 
LONG ARRAY BIGY [0:9999] 
ARRAY SEGARAY [0:50000] 

ARRAY 

4-3 



Declarations 

ARRAY 

Continued 

Semantics 

An <.array declaration> declares one or more identifiers to represent arrays of fixed but arbitrary 
dimensions. Particular elements in an array are referenced by using the <.array identifier> with a 
<subscript list> in the form of a <subscripted variable>. 

LONG ARRAYS 

The LONG declarator affects one-dimensional arrays only. Normally a one-dimensional array greater than 
1023 words (detected at compile-time) is automatically segmented at run-time into one or more rows of 
256 words each. The LONG declarator is used to override this segmentation. The "long" control card- option 
may also override segmentation at run time if the array is declared to be longer than 1023 48-bit words. 
(Refer to B 6800 System Operation Guide Reference Manual, form 5001563 .) 

The subscript bounds for an array are given in the first <hound pair list> following the <.array 
identifier>. 

<hound pair list> 

The <hound pair list> gives the lower and upper bounds of all subscripts taken in order from left-to-right. 
The dimensions of the array equal the number of bound pairs in the <hound pair list>. 

ARRAY <type>s 

All arrays declared in an <.array declaration> are of the same <type>. If the <type> is omitted, it 
becomes type REAL by default. 

EXPRESSIONS USED AS BOUNDS 

Expressions used as array dimension bounds are evaluated once, from left-to-right, upon entering the 
<block> in which the array is declared. These expressions can depend only on values that are global to 
that <block> or passed in as actual parameters. 

<local or own> 

If an array is declared to be OWN, it indicates that the array and its contents are to be retained upon exit 
from the <block> in which it is declared, and therefore available upon subsequent re-entry into the 
<hlock>. No OWN arrays with variable dimensions are allowed. · 

Arrays not declared as OWN are completely re-established upon every entry into the <hlock> in which 
they are declared. They are also completely deallocated upon exit from the <block> in which they 
are declared. 

<character type>s 

A HEX array references data by means of a 4-bit string descriptor; a BCL array with a 6-bit string 
descriptor; and ASCII and EBCDIC arrays with 8-bit string descriptors. 

4-4 



Declarations 

ARRAY 

Continued 

<array row equivalence> 

The <array row equivalence> can be used to establish a "copy descriptor" of the <array row> with a 
different lower bound and/or character size. 

Arrays not specified as <character type> are "word arrays"; i.e., each element is a 48-bit word. Note that 
a DOUBLE array has two 48-bit words for each element. Word and character arrays may be passed as 
parameters and used as <.array row>s. In addition, character arrays may be used as <.simple pointer 
expressions>. 

Restrictions 

Arrays declared in the outermost <block> must use constant or constant expression bounds. 

In all cases, upper bounds must not be less than their associated lower bounds. 

Arrays cannot have more than 16 dimensions. 

If an array with variable bounds is declared OWN: 

a. Once the array is established, the bounds cannot be changed, and, 
b. The values of the subscripts used in a <.subscripted variable> referencing the array are valid only 

if within the established bounds. 

The maximum value of a <:.lower bound> is 131,071 ; the minimum value of a <lower bound> 
is -131,071. 

The maximum length of an array is 22 0 - 1. 

When using the LONG declarator, the maximum array size is determined by the overlay size at cold-start 
time. 

The <.array identifier> may be declared DIRECT. If so, then only DIRECT <array designator>s may be 
assigned to it. However, non-DIRECT <.array identifier>s may be assigned either DIRECT or non-DIRECT 
<array identifier>s. 

4-5 



Declarations 

ARRAY REFERENCE 

ARRAY REFERENCE DECLARATION 

Syntax 

<array reference declaration> : :=<direct specifier> <array class> 
ARRAY REFERENCE <array reference list> 

<direct specifier> : :=<.empty> I 
DIRECT 

<array reference list>::= <array reference segment> I 
<array reference list> , <array reference segment> 

<array reference segment> : := <array reference identifier list> [ <integer lower bound list> 

<array reference identifier list> : := <array reference identifier> I 
<array reference identifier list>, <array reference identifier> 

<array reference identifier> : :=<identifier> 
<integer lower bound list>::= <integer> I 

<integer lower bound list> , <integer> 

Examples 

ARRAY REFERENCE REF ARRAY [ 3 J 
DIRECT ARRAY REFERENCE DIRREFARRAY [NJ % N IS A DEFINED CONSTANT 
EBCDIC ARRAY REFERENCE EBCDICREFARRAY [OJ 
DOUBLE ARRAY REFERENCE DOUBLEREFARRAY [1, 2, 3, 7J 

Semantics 

An <array reference declaration> is used to establish an <array reference variable>, whose purpose is 
to contain a "copy descriptor" of a genuine array. An <array reference variable> is initialized via the 
<assignment statement> form of: <array reference variable> := <array designator>. Any 
subsequent use of the <array reference identifier> behaves like a reference to the <array designator>. 
The lex level of the <array designator> (i.e., the level at which the array is declared) may not be greater 

' than that of the <array reference variable>; in other words, the <array reference variable> may not be 
global to the <array designator>. 

The <array reference variable> may be declared DIRECT. If so, then only DIRECT <array 
designator>s may be assigned to it. However, non-DIRECT <array reference variable>s may be 
assigned either DIRECT or non-DIRECT <array designator>s. 

If <array class> is <empty>, REAL is assumed. If the number of dimensions of the <array reference 
variable> and <array designator> is greater than one (single), their <array class> must agree. If 
they are single-dimensioned, the <array class> of the <array designator> may be of any <type>; 
the generated copy descriptor is modified as necessary to agree with the <array class> specified for the 
<array reference variable>. 

The number of dimensions of the <array reference variable> is determined by the number of lower 
bounds in its declaration. There can be no more than 16 dimensions. 

4-6 



BOOLEAN DECLARATION 

Syntax 

<Boolean declaration> : := <local or own> BOOLEAN <.identifier list> 
BOOLEAN <equation list> 

<equation list> : := <.identifier list> I 
<.identifier> = <.identifier> I 

Examples 

<equation list> , <.identifier> = <.identifier> 
<equation list> , <.identifier list> 

BOOLEAN BOOL 
BOOLEAN DONE, ENDOFIT, ISHOULD, TOOLATE 
BOOLEAN FLAG, BINT = INTGR, ALLDONE 

Semantics 

Dedarations 

BOOLEAN 

A <Boolean declaration> is used to declare <simple variable>s which have a logical value of TRUE 
or FALSE. 

The <local or own> portion of the <Boolean declaration> indicates whether the value of the specified 
<simple variable> is to be retained upon exit from the <block> in which it is declared. A <simple 
variable> declared to be OWN will retain its value when the program exits from the associated <block>, 
and that "old" value will be the contents of the <simple variable> when the associated <block> is 
re-entered. 

Upon entry to a <block> containing <simple variable>s, the normal content of a non-OWN Boolean 
<simple variable> is initialized to FALSE; i.e., a 48-bit word with all bits off. To be truly compatible with 
ALGOL-60, a programmer would explicitly zero the <simple variable>s with appropriate <assignment 
statement>s. 

The <equation list> allows address equation among real, integer, and Boolean variables only. An 
<.identifier> may only be address equated to a previously declared local <.identifier> or to an 
<.identifier> global to the block in which it is declared. 

Pragmatics 

The TRUE or FALSE condition of the <simple variable> is dependent on the low-order bit (bit 0) 
of the word. Use of the <partial word part> allows all 48 bits to be tested and/or manipulated as needed. 

Appendix B con,tains additional information on the internal structure of a Boolean <simple variable> 
as implemented on the B 7000/B 6000 Information Processing System. 

4-7 



Declarations 

DEFINE/Define Invocation 

DEFINE DECLARATION and DEFINE INVOCATION 

Syntax 

<.define declaration> : := DEFINE <.definition list> 
<tiefinition list> : := <.definition> I 

<.definition list> , <.definition> 
<.definition> : := <.defined identifier> <formal symbol part> = <text> # 
<.defined identifier> : := <identifier> 
<formal symbol part> : :=<empty> I 

(<formal symbol list> ) 
<formal symbol list>::= <formal symbol> I 

<formal symbol list> , <formal symbol> 
<fonnal symbol>::= <identifier> 
<text> : := {any sequence of valid characters not including a free # J 
<.define i11l'Ocatio11>: :=<.defined identifier> <actual text part> 
<actual text part>::= <empty> I 

( <closed text list> ) I 
[ <closed text list> ] 

<closed text list> : :=<closed text> I 
<closed text list> , <closed text> 

<closed text> : := {an actual text not containing unmatched bracketing 
symbols or unbracketed commas } 

Examples 

DEFINE P =POINTER# 
DEFINE BLANKIT = REPLACE P(LINEOUT) BY 11 11 FOR 22 WORDS# 
DEFINE XROOT=(-B + SQRT(B*B -4*A*C) ) /(2*A) # 
DEFINE INT=INTEGRATE (X, Y,Z) # 
DEFINE LP= (#, RP=) #, LEFTCHAR = [47:8) # 
DEFINE FORI =FOR I := 1 STEP UNTIL# 
DEFINE FORJ(A,B,C) = FOR J := A STEP B UNTIL C # 
DEFINE TAX(X) = SIN(X) / COS(X) # 
DEFINE MAXX(Al,A2) = IF Al>A2 THEN Al ELSE A2 # 
DEFINE Dl(X) = [31:8] #, D2(Y) = F4[X,Y] # 
DEFINE DOIT(A,B) = W*A + Y.B # 
DEFINE D(X,Y ,Z) = X Y Z # 

Semantics 

The <.define declaration> causes the ALGOL compiler to save off the specified <text> until such time 
as the associated <.define identifier> is encountered as a <.define invocation>. At that point, the saved 
off <text> is retrieved and compiled as if the entire <text> were actually located at the position of 
the <.define ilwocation>. 

A <.definition> has two forms of syntax: ( 1 ), the "simple" define, and (2), the "parametric" define. 
They are readily differentiated because the parametric define has a series of parameters (or <fonnal 
symbol>s) enclosed in parentheses. The first six examples above are simple defines, and the last six 
examples are parametric defines. 

4-8 



Declarations 

DEFINE/Define Invocation 

Continued 

The <formal symbol>s are an essential part of a parametric define. References to the <formal symbol>s 
cannot appear outside of the <text> of the corresponding parametric define. 

<formal symbol>s function in a manner similar to <formal parameters> of the <.procedure 
declaration>. 

Wherever the <formal symbol>s appear in the <text>, a substitution of the corresponding <closed 
text> is made before compiling that part of the <text>. 

The <text> is bracketed on the left by an equal sign(=) and on the right by a pound sign(#). This equal 
sign is said to be "matched" with the pound sign. The <text> can be any sequence of characters not 
containing a "free" pound sign. A free pound sign is any pound sign that is not in a <string>, not in a 
<remark>, and not "matched" with an equal sign in a <define declaration> that is nested in the 
<text>. The compiler interprets the first free pound sign as signaling the end of the <text>. That is, the 
first free pound sign is "matched" by the compiler with the equal sign that started the <text>. 

A <define invocation> causes the occurrence of the <defined indentifter> to be replaced by the 
<text> associated with the <define identifier>. However, a <define invocation> may not appear in 
the <format part list> of a <format declaration> nor in the <.editing specijlcation>s of a <read 
statement> or <write statement>. Furthermore, if a <format declaration> or <.editing specification> 
is located within the <text> of a parametric define, it may not reference the <formal symbol>s of that 
define'. In other words, formats and defines are incompatible for invocation purposes. 

The invocation of a parametric define causes textual substitution of the <closed text> into the indicated 
position(s) of the associated <text>. A <closed text> need not be "simple"; for instance, in the first of 
the parametric define examples above, the invocation of FORJ could be: 

FORJ (0, B*3, MAX(X, Y, Z)) 

which, if "expanded" would be; 

FOR J := 0 STEP B*3 UNTIL MAX(X, Y, Z) 

Pragmatics 

If the ALGOL compiler encounters some type of 'syntax error while compiling the combination of the 
<text>(s), <closed text>(s), and <formal symbol>(s) at the occurrence of the <define invocation>, 
the appropriate error is indicated along with a printout of the expanded define. 

A maximum of nine parameters are allowed in a parametric define. 

To avoid problems with expanding a define, particularly when an <arithmetic expression> is "passed 
in", each occurrence of a <formal symbol> in the <text> of a parametric define should be enclosed 
between parentheses. For example, DEFINE FORJ (A, B, C) = FOR J := (A) STEP (B) UNTIL (C) #. 

Beware of passing an updating expression to a parametric define. Multiple use of the corresponding formal 
symbol will cause multiple updates. For example, if DEFINE Q(E) = E + 2*E# and Q(X:=X+l) is 
invoked, its define expandsintoX:=X+l + 2*X:=X+l; 

A syntax error will be generated when a define of a string is concatenated. 

4-9 



Declarations 

DIRECT ARRAY 

DIRECTARRAY DECLARATION 

Syntax 

·<direct array declaration> : := DIRECT <J,ocal or own> <array class> ARRAY <direct array list> 

<direct array list> : := <direct array segment> I 
<direct array list> , <direct array segment> 

<direct array segment> : := <direct array identifier list> [ <bound pair list> ] I 
<direct array equivalence> 

<direct array identifier list> : ;::;: <direct array identifier> I 
·<direct array identifier list> , <direct array identifier> 

<direct array identifier> : :=<identifier> 
<direct array equivalence> : := <direct array identifier> [ <J,ower bound> ] = 

<.single-dimension direct array> 
<.single-dimension direct array> : := <direct array identifier> I 

· <direct array identifier> [ * ] 

Examples 

DIRECT ARRAY DIRARY [0:29) 
DIRECT OWN REAL ARRAY MYDIRREELARAY[O:N] 
DIRECT ARRAY DIREQV ARA Y[ SJ = DIRARY 
DIRECT EBCDIC ARRAY MULTIDIREBCARAY[0:4, 0:20) 

Semantics 

A <direct array declaration> is required in order to perform Direct I/O. As stated under <I/O 
statement>, Direct I/0 is handled in such a manner as to avoid use of the normal I/0 facilities of the 
system. The primary item involved is a Direct array. 

A Direct array may be word oriented. or character oriented. 

Direct arrays may be utilized in every way that a non-Direct can be used. 

A Direct array has certain <arithmetic-valued direct array attribute>s and <Boolean-valued direct array 
attribute>s which can be programmatically interrogated and/or altered before, during, and after the actual 
I/O operation. 

4-10 



Declarations 

DIRECT ARRAY 

Continued 

Pragmatics 

Since a Direct array can be used in performing Direct 1/0 operations, a Direct array is automatically LONG. 
There can be no more than 16 dimensions. 

NOTE 

Direct arrays are also "save" once they are used in any 
way. Arbitrary use of Direct arrays in lieu of normal 
arrays to avoid overlaying can seriously degrade overall 
system efficiency. 

4-11 



Declarations 

DOUBLE 

DOUBLE DECLARATION 

Syntax 

<.double declaration> : :=<local or own> DOUBLE <identifier list> 

Examples 

DOUBLE DUBL 
DOUBLE BIGNUMBER, GIGUNDOUS, DUBLPRECISION 

Semantics 

A <.double declaration> is used to declare, <simple variable>s which can be used as double values, 
that is, a 96-bit arithmetic entity (carried internally as 2 adjacent 48-bit words). 

The <local or own> portion of the <.double d~claration> indicates whether the value of the specified 
<simple variable> is to be retained upon exit from the <block> in which it is declared. A <simple 
variable> is to be retained upon exit from the <block> in which it is declared .. A <simple variable> 
declared to be OWN will retain its value when the program exits from the associated <block>, and 
that "old" value will be the contents of the <simple variable> when the associated <block> is 
re-entered. 

Upon entry to a <block> containing <simple variable>s, the normal content of a non-OWN DOUBLE 
<simple variable> is a zero (0); i.e., two 48-bit words with all bits off. To be truly compatible with 
ALGOL-60, a programmer would explicitly zero the <simple variable>s with appropriate <assignment 
statement>s. 

Pragmatics 

After an arithmetic calculation, the resulting value is stored "as is" into the <simple variable>. 

Appendix B contains additional information on the internal structure of a double <simple variable> 
as implemented on the B 7000/B 6000 Information Processing System. 

4-12 



DUMP DECLARATION 

Syntax 

<dump declaration> : := DUMP <dump ·part> 
<dump part>::= <file identifier> ( <dump list> ) <control part> I 

<dump part> , <.file identifier> ( <dump list> ) <control part> 
<dump list> : := <dump element> I 

<dump list> , <dump element> 
<dump element> : := <simple variable> I 

<array identifier> I 
<label identifier> 

<control part>::= <label identifier> <label counter modulus> <dump parameters> 
<label counter modulus>::= <empty> I 

• : <unsigned integer> 
<dump parameters>::= <empty> I 

( <label counter> <bounds part> ) 
<label counter>::= <empty> I 

<simple variable> 
<bounds part>::= <empty> I 

,<lower limit> I 
,,<upper limit> I 
,<lower limit> , <upper limit> 

<lower limit>::= <arithmetic expression> 
<upper limit> : :=<arithmetic expression> 

Examples 

DUMP FYLE (A) LBL 
DUMP FID (X, Y, ARAY, COWNTER) LOUP : 3 
DUMP PRNTR (I, INFO, INDX) NEXT (DMPCOUNT,, DPHIGH) 
DUMP LP (A, B, LBLl, ARAY) AGAIN : 5 (TALY, 20, 50) 

Declarations 

DUMP 

DUMP LINEOUT (MISC, ITEM, ACCUM) MORE : 10 (DPCT, DPLOW, DPHIGH) 

Semantics 

The <dump declaration> allows surveillance of designated variables during execution of the user's 
program. The <dump declaration> declares which identifiers are to be placed under surveillance. 
Diagnostic information requested by the <dump declaration> is written on the file designated by the 
<file identifier> when the <control part> parameters are satisfied, that is: 

a. If the <label counter modulus> is <empty> and <dump parameters> is <empty>, then 
a dump of the <dump list> ·occurs every time execution control has passed to the <statement> 
indicated by the <label identifier> in the <control part>. 

b. If the <label counter modulus> is not <empty> and the <dump parameters> is <empty>, 
a dump of the <dump list> occurs whenever "n MOD <label counter modulus> = O", where 
"n" is the number of times control has occurred at the label designated by <label identifier>. 

c. If the <label counter> is <empty>, the number of times execution control has passed to the 
<label identifier> must be greater than or equal to the <lower limit> and less than or equal 

4-13 



Declarations 

DUMP 

Continued 

to the <upper limit>, and the number of times execution control has passed to the <label 
identifier> must be evenly divisible by the <label counter modulus>. 

d. If the <label counter> is not <empty>, the value of the designated <simple arithmetic variable> 
is used to regulate the dumping. A dump of the <dump list> will occur when the value of the 
<label counter> lies between the <lower limit> and the <upper limit> (inclusive), and the 
number of times execution control has passed to the <label identifier> is evenly divisible by the 
<label counter modulus>. 

e; If <label counter modulus> is <empty>, 1 is assumed. 
f. If <lower limit> is <empty>, zero is assumed. 
g. If <upper limit> is <empty>, infinity is assumed. 

Pragmatics 

The diagnostic information produced depends on the form(s) of the <dump element>s. When a dump 
of the <dump list> occurs, the symbolic name (up to six characters) of each <dump item> is produced, 
along with the following information: 

a. If the <simple variable> is of type REAL, DOUBLE, or ALPHA, a real value is printed. For 
example, REEL= .10000000000 or DUBL = 0.0 or ALFA= 12698307 .000. If the <simple 
variable> is of type INTEGER, an integer value is printed. For example, INTEGER= 2. If the 
<simple variable> is of type BOOLEAN, the Boolean condition is printed. For example, 
BOOL = .FALSE.. . 

b. A dumped <array identifier> of an array of type REAL produces the 48 bits of each array 
element, converted to a numeric value as if operated upon by the R <editing phrase type>. If the 
array is of type BOOLEAN, the condition of each element is shown as . TRUR or .FALSE .. If 
the array is of type INTEGER, an integer is produced for each element position. 

c. A dumped <label identifier> shows the number of times execution control has passed the 
specified <label identifier>, For example, L2=3. 

Restrictions 

The <array identifier> must be that of a single-dimensioned array. Only the first six characters of any 
<identifier> are produced. <.character type> arrays cannot be used in the <dump declaration>. 

4-14 



• 

EVENT and EVENT ARRAY DECLARATIONS 

Syntax 

<.event declaration> : := EVENT <.event identifier list> 
<event identifier list> : := <event identifier> I 

<.event identifier list> , <event identifier> 
<event identifier> : :=<identifier> 
<.event array declaration> : := EVENT ARRAY <event segment list> 
<event segment list>::= <event segment> I 

<.event segment list> , <event segment> 
<event segment> : := <.event array identifier list> [ <bou_nd pair list> 
<event array identifier list> : :=<event array identifier> I 

Declarations 

EVENT/EVENT ARRAY 

<event array identifier list> , <.event array identifier> 
<event array identifier> : :=<identifier> 

Examples 

EVENT FILEA 
EVENT El, E2, E3, E4 
EVENT ARRAY SW APPEE [ 0: 5] 

Semantics 

An <identifier> declared to be an <.event identifier>, or an element of an event array is usually used 
for purposes of synchronization. An event can be used either to indicate the completion of an activity 
(e.g., the completion of a Direct 1/0 read or write operation) or as an interlock between participating 
programs over the use of a shared resource(s). 

Events can be used in synchronous manner by explicitly testing the state of the event at various 
programmer-defined points during execution, or they can be used in an asynchronous manner by use of 
the softwareinterrupt facility. 

Refer to <event statement> and <interrupt declaration>. 

Pragmatics 

The initial state of an event is not-happened (RESET) and available. 

There can be no more than 16 dimensions. 

4-15 



Declarations 

FILE 

FILE DECLARATION 

Syntax 

<file declaration> : :=<.direct specifier> FILE <file list> 
<file list> : := <file list part> I 

<file list> , <file list part> 
<file list part>::= <,file identifier> I 

<file identifier> ( <initial attribute list> ) 
<file identifier> : :=<identifier> 
<initial attribute list> : :=<initial attribute> I 

<initial attribute list> , <initial attribute> 

<initial attribute>::= <arithmetic-JJalued file attribute name> = <arithmetic file attribute value> 
<Boolean-valued file attribute name> I 
<Boolean-valued file attribute name> = <Boolean expression> I 
<pointer-JJalued file attribute name> = <pointer expression> I 
<pointer-valued file attribute name>= <string> 
<translate-table-JJalued file attribute name> 

<arithmetic file attribute value>::= <arithmetic expression> I 
<mnemonic file attribute value> 

<arithmetic-valued file attribute name>::= AREACLASS I AREAS I AREASIZE J 

ASSIGNTIME I ATTVALUE I ATTYPE I 
BLOCK I BLOCKSIZE I BUFFERS I 
CARRIAGECONTROL I CENSUS I COPIES I 
CURRENTBLOCK I CYCLE I DATE I DENSITY I 
DIRECTION I DISPOSITION I ERRORTYPE I 
EXTMODE I F AMIL YSIZE I FILEKIND I 
FILETYPE I INTMODE I KIND I LABELTYPE I 
LASTRECORD I LASTSTATION I LINENUM I 
MAXRECSIZE I MINRECSIZE I MYUSE I PAGE I 
PAGESIZE I PARITY I POPULATION I 
PROTECTION I RECEPTIONS I RECORD I 
RECORDINERROR I RECORDKEY I REEL I 
ROWADDRESS I ROWSINUSE I SAVEFACTOR I 
SECURITYTYPE I SECURITYUSE I SERIALNO I 
SIZEMODE I SIZEOFFSET I SIZE2 I SPEED I STATE I 
TAPEREELRECORD I TRANSLATE I TRANSMISSIONO I 
TRANSMISSIONS I UNITNO I UNITS I UNITSLEFT I 
USEDATE I VERSION I WIDTH 

<mnemonic file attribute value> : := <.density mnemonic> I 
<errortype mnemonic> I 
<extmodc mnemonic> I 
<filekind mnemonic> I 
<intmode mnemonic> I 
<kind mnemonic> I 
<labeltype mnemonic> 
<myuse mnemonic> I 
<parity mnemonic> I 

4-16 



Declarations 

FILE 

Continued 

<.protection mnemonic> I 
<security type mnemonic> I 
<securityuse mnemonic> I 
<sizemode mnemonic> I 
<speed mnemonic> I 
<state mnemonic> I 
<translate mnemonic> I 
<units mnemonic> 

<density mnemonic> : := HIGH I MEDIUM I LOW I SUPER 
<errortype mnemonic> : := NOERROR I SUNOTREADY I 

READPARITYERROR I READCHECKF AILURE 
<extmode mnemonic>::= SINGLE I HEX I BCL I EBCDIC I 

• ASCII I BINARY 
<filekind mnemonic> : := ALGOLCODE I ALGOLSYMBOL I 

BACKUPDISK I BACKUPPRINTER I BACKUPPUNCH I BASICCODE I 
BASICSYMBOL I BINDERSYMBOL I BOUNDCODE I CDATA I 
COBOLCODE I COBOLSYMBOL I CODEFILE I 
COMPILERCODEFILE I CONTROLDECK I CSEQDATA I 
DATA I DCALGOLCODE I DCALGOLSYMBOL I DIRECTORY I 
ESPOLCODE I ESPOLSYMBOL I FORTRANCODE I 
FORTRANSYMBOL I GUARDFILE I INTRINSICFILE I 
JOBCODE I JOBDESCFILE I JOVIALCODE I 
JOVIALSYMBOL I LIBRARYCODE I MCPCODEFILE I 
PLICODE I PLISYMBOL I RECONSTRUCTIONFILE I 
SEQDATA I SYSTEMDIRECTORY I SYSTEMDIRFILE I 
VERSIONDIRECTORY I XALGOLCODE I XALGOLSYMBOL I 
XDISKFILE I XFORTRANCODE I XFORTRANSYMBOL 

<intmode mnemonic>::= ASCII I BCL I EBCDIC I HEX I SINGLE 
<kind mnemonic>::= CP I DC I DISK I DISKPACK I 

DISPLAY I PACK I PAPER I P APERPUNCH I 
P APERREADER I PET APE 1 · PRINTER I PTP I 
PTR I PUNCH I READER I REMOTE I SPO I 
TAPE I TAPE7 I TAPE9 

<Jabeltype mnemonic>::=· STANDARD I OMITTED I OMITTEDEOF 
<myuse mnemonic>::= CLOSED I IN I OUT I IO 
<parity mnemonic>::= STANDARD I NONSTANDARD 
<protection mnemonic>::= TEMPORARY I SAVE I PROTECTED 
<securitytype mnemonic>::= PRIVATE I CLASSA I CLASSB 
<securityuse mnemonic> : := SECURED I IN I OUT I IO 
<sizemode mnemonic> : := SINGLE I HEX I BCL I EBCDIC I ASCII 
<speed mnemonic> : := FAST I MEDIUMF AST I MEDIUMSLOW I SLOW 
<state mnemonic>::= ATEND I I 

BREAKHERE I 
DATAERROR I 
LOCKEDOUT I 
NEWUSER I 
NOINPUT I 

4-17 



Declarations 

FILE 

Continued 

NORMAL I 
PARITYERROR 
TIMEOUT 

<translate mnemonic>::= DEFAULTTRANS 
FORCESOFT I 
FULLTRANS I 
NOSOFT I 
NOTRANS I 
SOFTONLY 

<units mnemonic>::= CHARACTERS I WORDS 
<Boolean-valued file attribute name>::= ATTERR I 

CYLINDERMODE I DUPLICATED I ENABLEINPUT I EOF I 
FLEXIBLE I INTERCHANGE I NULINPUT I OPEN I 
OPTIONAL I PRESENT I READCHECK I RESIDENT I 
SCREEN I SINGLEPACK I TRANSLATING I UPDATED 

<pointer~valued file attribute name> : := FAMILY I FORMMESSAGE I 
INTNAME I PACKNAME I TITLE 

<translate-table-valued file attribute name>::= INPUTTABLE I OUTPUTTABLE 

Examples 

FILE FYLE 
FILE TAPE (KIND=DISK,FILETYPE=8, BUFFERS=2, 

INTMODE=EBCDIC) 

FILE OFNI (KIND=DISK,BUFFERS=3,AREASIZE=30, 
MAXRECSIZE=246, BLOCKSIZE=2560, 
AREAS=lOO, 
TITLE="INFO. ") 

Semantics 

A <file declaration> associates a <file identifier> with a file. The attributes for that particular file 
may or may not be specified in the <file declaration>. The attributes not specified in the <file 
declaration> can be assigned by an appropriate <assignment statement> or through the use of Work 
Flow Language statements at either compile-time or execution-time. 

Any pointer <initial attribute> can be set equal to a character string constant as well as a <pointer 
expression>. 

A <Boolean-valued file attribute name> appearing without the"= <logical value>" part implies 
"=TRUE." 

Pragmatics 

There are two methods of performing I/O operations on the B 7000/B 6000 Information Processing System. 
The first method is the simplest and is referred to as "normal I/O" or as "regular I/O". (Refer to 
<J./O statement>.) 

4-18 



Declarations 

FILE 

Continued 

Normal I/O is indicated when the <direct specifier> is <empty>. Normal I/O includes many 
automatic facilities provided by the MCP, such as: 

a. Buffering - the automatic overlap of program processing and 1/0 traffic from/to the peripheral 
units. 

b. Blocking - more than one logical record per physical block. 
c. Translation - as needed between the character set of the unit and that required by the program. 

Direct I/O is the indicated method when DIRECT is specified. The functions of buffering, blocking, and 
translation (as described above) become the responsibility of the programmer. Furthermore, a DIRECT 
ARRAY is required in order to READ from and/or WRITE to the specified file. Refer to the <read 
statement> and <write statement>. 

Both Non-Direct files and Direct files have numerous file attributes which can be interrogated and/or 
altered. Direct I/O files have a number of additional attributes which are pertinent to Direct I/O only. 
(Refer to the B 7000/B 6000 Input/Output Subsystem Reference Manual, form 5000185.) 

4-19 



Declarations 

FORMAT 

FORMAT DECLARATION 

Syntax 

<format declaration>::= FORMAT <in-out part> <format part list> 
<in-out part> : :=<empty> I · 

IN I 
OUT . 

<format part list> : := <format part> I 
<format part list>. , <format part> 

<format part> : := <format identifier> ( <editing specifications> ) I 
<format identifier> ( <editing specifications> ) 

<format identifier> : :=<identifier> 
<editing specifications> : := <editing segment> I 

<editing specifications>/ I 
I <editing specifications> I 
<editing specifications> I <editing segment> 
<editing specifications>, <editing segment> 

<editing segment>::= <editing phrase> I 
<repeat part> { <editing specifications> ) I 
<editing segment> , <repeat part> ( <editing specifications> ) 

<editing phrase> : := <repeat part> <editing phrase type> <field width part> 
<repeat part>::= <empty> I · 

<unsigned integer> I 
* 

<editing phrase type> : :=<simple string> I 

• 

Al Cl DI El Fl GI HI I I JI Kl LI 01 PI RI 
SIT I UI VI XI Z I$ 

<field width part> : :=<empty> I 
<field width> <decimal places> 

<field width> : :=<unsigned integer> I * 
<decimal places> : :=<empty> I 

• <unsigned integer> 

* 
Exal'Tlples 

FORMAT HOG ("THIS REPORT SHOULD BE MAILED TO ROOM W-252") 
FORMAT IN EDIT (X4, 2I6, 5E9.2, 3F5.1, X4) 
FORMAT IN Fl (A6,5(X3,2E10.2,2F6.1 ),317),F2(A6,G,A6) 
FORMAT OUT FORMl (X56, "HEADING",X57),FORM2 (Xl0,4A6/X7, · 

5A6/X2,5A6) 
FORMAT FMTl (*I*) 
FORMAT FMT2 (*V*.*) 

Semantics 

A <format declaration> associates each of its <format identifier>s with an <editing specifications>. 
<t.lefine identifier>s. <remark>s. and <formal symbol>s cannot be used in formats. 

4-20 



Declarations 

FORMAT 

Continued 

A format can be referenced in a <read statement>, <write statement>, or a <switch format 
declaration>. In general, a <list> would also be referenced in those same statements, and the joint 
purpose is to indicate a series of data items (specified by the <list> ) along with the formatting action 
(specified by the <format identifier> ) to be performed on each of the data items. 

<in-out part> 

The <in-out part> has effect only upon the treatment of <simple string>s used with a format. Under 
certain circumstances a <simple string> (appearing as an <editing phrase type>) is read-only. Any 

. attempt to store into read-only entity results in a program execution error. 

If the <in-out part> 'of a <format declaration> is OUT or <empty>, there is a run-time error if an 
attempt is made to replace any <simple string> in the format via a <read statement>. If the <in-out 
part> is IN, <simple string>s within formats are not read-only and can be replaced. However, once a 
<simple string> has been replaced, the format containing it is altered from its original definition in the 
<format declaration>. When reading data into a format element to replace a <simple string>, no more 
characters can be transferred than appear in the <simple string>. 

SLASH 

Two fields in a format item list are separated by a comma, a slash, or a series of slashes. A slash is used to 
indicate the end of a record. On input, any remaining characters in the current record are ignored when a 
slash is encountered in the specification list. On output, the construction of the current record is termi­
nated and any subsequent output is placed in the next output record(s). Multiple slashes may be used to 
skip several records of input or generate several blank records on output. The final right parenthesis of a 
format also acts to' indicate the end of the current record. 

Carriage control occurs each time a slash appears in the format. With the <core-to-core file part>, a slash 
in the format is ignored. 

Example 

<I> COMPILE FMT/TEST ALGOL; EBCDIC 
BEGIN 
FILE READER (KIND=READER), 

LINE (KIND=PRINTER) ; 
REALA,B; 
FORMAT FMT(l2,/,I2); 
READ (READER, FMT, A,B); 
WRITE(LINE, FMT, A,B); 
WRITE(LINE [SKIP 1] ,FMT, A,B); 
END. 

<I> DATA 
1234 
5678 

<I>END 

4-21 



DeclaQttions 

FORMAT 

Continued 

Produces the following output: 
12 
56 
12 

<to channel l> 
56 

NOTE 

For ease of explanation, lower case letters are used to 
refer to the parts of an <.editing phase>: 

Asterisks 

r = <repeat part> 
w = <field width> 
d = <decimal places> 

If an asterisk(*) appears in a format specification list in place of the r, w, or d parts, then the 1/0 list will 
be accessed once and the value of the 1/9 list element obtained will be used to replace the *. A new 1/0 
list element is required each time an * is encountered in the specification list. 

<repeat part> 

Format specifications and format list portions enclosed in parentheses may optionally be immediately 
preceded by an unsigned nonzero integer constant. This constant indicates the number of times that 
portion of the specification list is to be interpreted. If no such repeat count is indicated, a repeat count 
of 1 is assumed. 

If the outer right parenthesis of the format specification list is encountered before the 1/0 list is exhausted, 
control reverts to the repeat count (if present) of the repeat specification group terminated by the last 
preceding right parenthesis. If no other right parenthesis exists in the specification list, then control 
reverts to the first left parenthesis of the specification list. 

The following are proper examples of the use of repeat counts. In each case, the repeat count is 3. 

3F10.4 
3(A6/) 
3(3A6,3(/Il 2)/) 

If the <repeat part> is <.empty>, a value of 1 .is assumed. 

If the <repeat part> is an *, the number of repetitions is determined by the value of the corresponding 
<list element> as follows: 

a. If the value is greater than 0, then repeat the number of times represented by the value. 

4-22 



b. If the value is equal to 0, then repeat indefinitely. 
c. If the value is less than 0, then skip to the corresponding right parenthesis. 

Example 

<I> COMPILE VAR/REPEAT ALGOL; EBCDIC 
BEGIN 
FILE LINE(KIND=PRINTER); 
REALA,B,C; 
FORMAT FMT(*(A2,Xl),*12); 
A:=l; B:=2; C:=3; 
WRITE(LINE ,FMT ,2, "AB", "CD" ,3 ,A,B ,C); 
WRITE(LINE,FMT,-3,1,A); 
WRITE(LINE,FMT ,0, "AB", "CD'', "EF"); 

END. 
<I>END 
Produces the following output: 
ABbCDbbl b2b3 
bl 
ABbCDbEFb 

<width part> 

Declarations 

FORMAT 

Continued 

When an asterisk used for the field width of a format phrase is given a zero or negative value at run-time, no 
editing action occurs for that phrase; however, the next list element is skipped as if it had been edited by 
the inactive editing phrase. (If a zero or negative field width occurs (at run-time) for a phrase with a repeat 
part, enough list elements are skipped to satisfy the repeat count.) 

Example 

<I> COMPILE VAR/WIDTH ALGOL; EBCDIC 
BEGIN 
FILE LINE(KIND=PRINTER); 
REALA; 
FORMAT FMT{I*,A*); 
A:=l2; 
WRITE(LINE ,FMT ,3 ,A); 
WRITE(LINE,FMT ,0 ,A,2, "AB"); 
END. 

<I>END 
Produces the following output: 
bl2 
AB 

Editing Phrase Actions 

The actions of the various <editing phrase type>s are explained in the following information, arranged in 
alphabetical order according to the <editing phrase type>· letter. 

4-23 



Declarations 

FORMAT 

Continued 

<simple string> Format 

The presence of a <simple string> in a format indicates that the characters enclosed by the quote marks 
(")are to be used as the data. The occurrence of a <simple string> does not require a corresponding 
<J.ist element> when the format is used. 

BCL strings (those with string codes of 6 or 3) are encoded as BCL characters, not EBCDIC characters. 

To enable more efficient handling of string codes in formats, 1-bit, 2-bit and 7-bit strings are not allowed. 
If no string code appears with a quoted string, the default character size ( 6-bit if the BCL compiler option 
is set; 8-bit otherwise) will be used. The length of the 3-bit and 4-bit strings must be a multiple of 2 to 
facilitate packing into 6-bit or 8-bit characters, respectively. Only the first digit of the string code is ever 
used when encoding formats, since the extra information available in string code is meaningless in the case 
of formats. 

Example 

WRITE(LINE,<4"C1C2'', 8"ABC">); 
$SET BCL 

WRITE(LINE,<3"646566", 6"HIJ">); 

Will produce the following output: 
AB ABC 
DEFHIJ 

A Format 

The alphanumeric format specification Aw causes data to be transferred to or from internal storage as 
EBCDIC (8-bit) or BCL (6-bit) characters. 

4-24 

NOTE 

Prior to II. 7, the INTMODE of the file determined the 
c.haracter size applied to list elements (except pointers). 
OnH.7, the default character size (6-bit if $SET BCL 
appears, 8~bit otherwise) applies to list elements (other 
than pointers). This gives the added flexibility of 
writing BCL (6-bit) data to an EBCDIC (8-bit) file (and 
vice versa) and similarly for input, with translation 
occurring where necessary to preserve character data. 



Example 

BEGIN 
FILE F(KIND=PRINTER,INTMODE=EBCDIC); 
WRITE(F, <A3> ,8 "ABC"); 
$SET BCL 
WRITE(F, <A3>, 6"ABC"); 
END. 

Output prior to 11.7: 

ABC 
??? (where? represents a nongraphic EBCDIC character) 

OUTPUT on 11.7: 

ABC 
ABC 

Pointers 

Declarations 

FORMAT 

Continued 

On input, w characters are transferred from the input record to the pointer-designated location. On output, 
w characters are transferred from the pointer-designated location to the output record. The <..character 
size> used is that of the pointer. 

(precision) 

Input 

NOTE 

For purposes of explanation of A and C formats, the 
variable Q will be used, where the value of Q is derived 
from the following table: 

(default character size) 
BCL EBCDIC 

Single 8 

Double 16 

[if the list element is <pointer expression> FOR 
<tirithmetic expression>, use the <tirithmetic 
expression> as the value of Q.] 

6 

12 

On input, the A-format specification causes the character string of width w in the external field to be 
assigned to the corresponding simple variable or array element in the 1/0 list. Legal <list element>s are of 
type ALPHA, INTEGER, BOOLEAN, DOUBLE, REAL, or POINTER. 

If w is greater than or equal to Q, the right-most Q chara.cters of the input field are transferred to the 
<list element>. If w is less than Q, w characters of the input field are transferred to the <list element>, 
right-justified. The unused high-order bits of the data word are set to zero. 

4-25 



Declarations 

FORMAT 

Continued 

Input Examples 

DEFAULT 
CHARACTER 

SIZE 

Output 

8 
6 
8 
6 

(either) 

8 

6 

EXTERNAL SPECIFICATION INTERNAL VALUE 
STRING 

ABCDEFGHIJKL A9 8"DEFGHI" 
ABCDEFGHIJKL A9 6"BCDEFGHI" 
AbCbEbGblbK A4 4"0000"8"AbCb" 
ABCDEFGHIJKL A4 6 "OOOOABCD" 
ABCDEFGHIJKL Al2 ABCDEFGHIJKL 

(pointer as <list element>) 
ABCDEFGHIJKL Al2 4"0000"8"ABCDEFGHIJKL" 

(8-bit pointer FOR 14) 
ABCDEFGHIJKL Al2 6"JKL" 

(6-bit pointer FOR 3) 

NOTE 

If the corresponding <list element> is an INTEGER 
variable, thew characters of the input field are stored 
into this <list element> without integerization being 
perfomied .. If w is greater than 4, the INTEGER <list 
element> can receive a noninteger value. (Refer to 
Word Formats in appendix B.) 

On output, the A <.editing phrase> causes the characters contained in the appropriate variable in the 
<list element> to be converted into an external string of length w. 

If w is greater than or equal to Q, the Q characters of the <list element> are placed right-justified in the 
field, preceded by, w minus Q blanks. 

If w is less than Q the right-most w characters of the <list element> are written into the output field. If 
the output character size is 8-bit and one of the character fields in the word contains a bit pattern that does 
not correspond to an EBCDIC graphic,? (denoting an invalid character) would be printed in that position. 

4-26 



Output Examples 

DEFAULT 
CHARACTER 

SIZE 

C Format 

8 
6 
8 
6 
8 

6 

INTERNAL 
VALUE 

8"DEFGHI" 
6"BCDEFGHI" 
4 "0000000000"8"A" 
6 "OOOOABCD" 
8"ABCDEFG" 
(8-bit pointer FOR 7) 
6"ABCDEFG" 
(6-bit pointer FOR 7) 

SPECIFICATION 

A9 
A9 
A4 
A4 
All 

A4 

Declarations 

FORMAT 

Continued 

EXTERNAL 
STRING 

bbbDEFGHI 
bBCDEFGHI 
???A 
ABCD 
bbbbABCDEFG 

DEFG 

The Cw format specification has the same effect as the Aw format specification except that characters are 
placed into and taken from the leftmost portion of a word (or list element). 

Input Examples 

DEFAULT 
CHARACTER 

SIZE 

8 
6 
8 
6 
8 

6 

Output Examples 

DEFAULT 
CHARACTER 

SIZE 

8 
6 
8 
6 
8 

6 

EXTERNAL 
STRING 

ABCDEFGHIJKL 
ABCDEFGHIJKL 
ABCD 
ABCDEFGHIJKL 
ABCDEFGHIJKL 

ABCDEFGHIJKL 

SPECIFICATION 

C9 
C9 
C4 
C4 
C12 

Cl2 

INTERNAL VALUE 

8"DEFGHI" 
6"BCDEFGHI" 
8"ABCD"4 "0000" 
6"ABCDOOOO" 
8"ABCDEFGHIJKL"4"0000" 
(8-bit pointer FOR 14) 
6"JKL" 
(6-bit pointer FOR 3) 

INTERNAL 
VALUE 

SPECIFICATION EXTERNAL 
STRING 

8"DEFGHI" 
6"BCDEFGHI" 
8"ABCD"4 "0000" 
6"ABCDOOOO" 
8"ABCDEFG" 
(8-bit pointer FOR 7) 
6"ABCDEFG" 
(6-bit pointer FOR 7) 

C9 
C9 
cs 
C4 
Cl l 

C4 

bbbDEFGHI 
bBCDEFGHI 
ABCD? 
ABCD 
bbbbABCDEFG 

ABCD 

4-27 



DeclaratiOns 

FORMAT 

Continued 

D,E Formats 

The format specifications Dw .d and Ew .d cause data appearing in an external character string as a numeric 
constant to be associated with an internal storage location for purposes of input or output. 

Correct action will occur for list elements of type ALPHA, INTEGER, REAL, DOUBLE or BOOLEAN. 

Input 

[In the following discµssion and examples for input, the letter "D" may be substituted wherever "E" is 
used.] 

On input, the Ew .d specification causes the value of the numeric constant written with or without 
exponential notation in a string of w input characters to be assigned to the corresponding 1/0 list element. 

The Ew .d specification allows the input constant to contain as many decimal places as desired by use of the 
. decimal place count, d. If no decimal point appears in the input string, a decimal point is implied as 

specified by d. Thus, the input string lOOEO when read using the specification E5.2 would be interpreted 
as the numeric constant l .E+O with two implied decimal places in the input string. A decimal point is 
assumed d places from either the right edge of the input field or from the E denoting the exponent, if 
there is one. 

The field width, w, must be greater than or equal to the specified number of decimal places, d. A blank is 
interpreted as a zero. 

Examples 

Output 

EXTERNAL STRING 

bbbbbb25046 
bbbbb25.046 
-bb25046E-3 
bb250.46E-3 
b-b25 .04678 

SPECIFICATION 

El 1.4 
Ell.4 
El 1.4 
El 1.4 
El 1.4 

INTERNAL VALUE 

+2.5046 
+25.046 
-0.0025406 
+0.25046 
-25.04678 

On output, the Dw.d and Ew.d specifications cause the value of the corresponding item in the 1/0 list to 
be written as an output character string of length w, representing a numeric constant expressed in 
exponential notation. The exponent is adjusted so· that the decimal point is positioned as specified by the 
decimal place count, d. 

The specified width of the output field, w, must be greater than or equal to the number of specified 
decimal places, d, plus 7. This provides for a 4-character exponent part, a decimal point, a digit preceding 
the decimal point, and a sign. If this rule is violated, the field will be filled with asterisks. 

The Dw .d specification is essentially equivalent to the Ew .d specification except for the presence of a D 
rather than an E. in the exponent part of the output string. 

4-28 



Declarations 

FORMAT 

Continued 

Furthermore, the number of characters necessary to represent the 0 exponent part depends upon the value 
of the exponent. The following types of exponent parts may appear: 

( 4-character) 
( 4-character) 
(7-character) 

Output Examples 

F Format 

INTERNAL VALUE 

+36.7929 
-36.7929 
-36.7929 
+36.7929 
1.234@@-73 
-789@@1234 
6.54@@321 

O±XX 
±XXX 
O±XXXXX 

where 
where 
where 

SPECIFICATIONS 

E13.5 
El2.5 
Ell.5 
EI0.5 
014.5 
015.3 
09.2 

Ol~XX~99 
100~XXX~999 

o 1 ooo~xxxx~99999 

EXTERNAL STRING 

bb3.67929Eb01 
-3.67929Eb01 
3.67929Eb01 
********** 
bbb 1.234000-73 
bb-7.8900+01236 
b6.54+321 

The real format specification Fw .d causes data appearing in an external character string as a real constant 
to be associated with an internal storage location for purposes of input or output. Correct action will occur 
for list elements of type ALPHA, INTEGER, REAL, DOUBLE, or BOOLEAN. 

On input, the Fw.d specification causes the value of the real constant written with or without exponential 
notation in a string of w input characters to be assigned to the corresponding I/O list element. 

The decimal point may be positioned as indicated in the input string or located as desired via the decimal 
place count, d. If no decimal point appears in the input string, a decimal point is implied as specified by d. 
A decimal point is assumed d places from the right edge of the input field. Thus, the input string 1234 
when read using the specification F4.2 would be interpreted as the real constant 12.34 with two implied 
decimal places in the input string. 

The field width, w, must be greater than or equal to the specified number of decimal places, d, and must 
include the decimal point and exponent field when either or both are present, A blank is interpreted as 
a zero. 

Examples 

• 

EXTERNAL STRING 

36725931 
3.672593 
-367259. 
,-3672.E2 
367259E2 
3.672E-1 
367259 
b-b3456 

SPECIFICATION 

F8.4 
F8.4 
F8.4 
F8.4 
F8.4 
F8.4 
F6.6 
F7.2 

INTERNAL VALUE 

+3672.5931 
3.672593 
-367259 
-367200 
+3672.59 
+.3672 
+0.367259 
-34.5~ 

4-29 



Declarations 

FORMAT 

Continued 

Output 

On output, the Fw.d specification causes the value of the corresponding item in the I/O list to be written as 
an output character string of length w, representing a real constant expressed without using exponential 
notation. The decimal point is adjusted such that d digits follow the decimal point. 

The constant is right-justified over blanks within the field, and the specified width of the output field, w, 
must be greater than or equal to the number of specified decimal places, d, plus 1. The possible presence 
of a minus sign for a negative datum must be taken into consideration when specifying the field width. 

The internal value is rounded to satisfy the decimal point specification, and the field will contain asterisks 
if the value to be output has an integer part too large for the allotted field. 

Examples 

G Format 

INTERNAL VALUE 

+36.7929 
+36.7934 
-0.0316 
0.0 
0.0 
+579.645 
+579.645 
-579.645 

SPECIFICATION 

F7.3 
F9.3 
F6.3 
F6.4 
F6.2 
F6.2 
F4.2 
F6.2 

EXTERNAL STRING 

b36.793 
bbb36.793 
-0.032 
0.0000 
bb0.00 
579.65 
**** 
****** 

The <field width part> must be <empty>. No <list element> corresponds to this editing letter. 

BCL Files 

On input, eight 6-bit characters from the input record are skipped. On output, eight BCL zeroes are written. 

EBCDIC Files 

On input, six 8-bit characters from the input record are skipped. On output, six EBCDIC zeroes are written . 

• 

4-30 



H, K Fonnats 

(precision) 

NOTE 

[For purposes of explanation of H and K fonnats, the 
variable Q will be used, where the value of Q is derived 
from the following table: 

(fonnat phrase) 
H K 

single 12 16 

double 24 32 

Also, the tenn Characters will refer to hexadecimal , 
characters for H fonnat, and octal characters for 
K fonnat.J 

Declarations 

FORMAT 

Continued 

The Hw and Kw format specifications cause an external string of Characters in a field of width w to be 
interpreted as a hexadecimal (H) or octal (K) value and associated with the corresponding list element for 
purposes of input data transfer. Conversely, an internal value is converted to Characters and associated 
with a corresponding list element for purposes of output data transfer. Legal list elements are of type 
ALPHA, REAL, INTEGER, DOUBLE and BOOLEAN. 

Input 

On input, the value represented by the Characters in the input field is assigned to the corresponding <list 
element> variable. Leading, trailing and embedded blanks are interpreted as zeroes. A minus (-) sign 
causes bit 46 of the storage word (or the first word of a double) allocated to the variable to be 
complemented. 

If the input data is less than or equal to Q Characters long, it is stored right-justified in the storage location 
(both words of a double are included). Unused high-order bits are set to zero. If w is greater than Q, the 
leftmost w minus Q Characters must be blank, zero or minus; otherwise a data error will occur. 

4-31 



Declarations 

FORMAT 

Continued 

Input Examples 

EXTERNAL STRING 

6F 
lFFFFFFFFFFF 
-16 
1234b568 
FFCb 
OOC1C2C3C4CSC6 
-ABCD 

123456789 ABCDEF 

16 
1777777777777777 
-16 
1234b56 
77b 
-567 

1234567654321234567 

SPECIFICATION 

H2 
H12 
H3 
H8 
H4 
H14 
HS 

HlS 

K2 
K16 
K3 
K7 
K3 
K4 

K19 

NOTE 

INTERNAL VALUE 

4"00000000006F" 
4" 1 FFFFFFFFFFF" 
4"400000000016" 
4"000012340568" 
4 "OOOOOOOOFFCO" 
4"ClC2C3C4CSC6" 
4 "40000000000000000000ABCD" 

(double) 
4"000000000123456789ABCDEF" 

(double) 
3"0000000000000016" 
3"1777777777777777" 
3"2000000000000016" 
3"0000000001234056" 
3"0000000000000770" 
3"2000000000000000000000000000567" 

(double) 
3"00000000000001234567654321234567" 

(double) 

If the input string contains a non:.Character, an error 
occurs, and the "data error" <action label> of the 
<read statement> is invoked (if specified). 

Output 

On output, the value of the <list element> is printed as a string of Characters right-justified over blanks in 
a field of width w. If w is less than Q, the contents of the rightmost w*4 bits (H) or w*3 bits (K) of the 
storage word (consider a double-precision variable as effectively a 96-bit word) are printed as a string of 
w Characters. If w is greater than Q, the Q Characters of the <list element> are placed right-justified in 
the output field, preceded by w minus Q leading blanks. Such output never contains a printed sign. 

4-32 



Output Examples 

INTERNAL VALUE SPECIFICATION 

4 "OOOOES 551010" HS 
4"0000E5551010" Hl2 
4"0000E5551010" Hl6 
8"123456" H12 
4"000000000000000012345678" H4 

(double) 
8"123456789bbb" H24 

(double) 
3"0005677701234445" KS 
3"0005677701234445" K16 
3"0005677701234445" Kl8 
3"00000000000000000000000001234567" K4 

(double) 

I Format 

Declarations 

FORMAT 

Continued 

EXTERNAL VALUE 

51010 
OOOOE5551010 
bbbb0000E5551010 
F1F2F3F4FSF6 
5678 

F1F2F3F4FSF6F7F8F9404040 

34445 
0005677701234445 
bb0005677701234445 
4567 

The integer format specification Iw causes an external character string of width w to be associated with the 
corresponding list element for purposes of data transfer. Legal list elements are of type ALPHA, REAL, 
INTEGER, DOUBLE, or BOOLEAN. 

Input 

Qn input, the Iw specification causes the value of the integer constant in the input field to be assigned to 
the corresponding list element. Any legal ALGOL integer constant is allowed in the field. Blank characters 
are interpreted as zeroes. The magnitude of the value which may be input depends upon the type of the 
list element. 

Input Examples 

Output 

EXTERNAL STRING 

567 
bb-329 
-bbbb27 
27bbb 
b-bb234 

SPECIFICATION 

13 
16 
17 
15 
17 

INTERNAL VALUE 

+567 
-329 
-27 
+27000 
-234 

On output, the lw specification causes the value of the corresponding list element to be printed as an integer 
constant in a field of width w. The constant is right-justified over a field of blanks, and the plus sign is not 
printed for non-negative quantities. 

If the value of the list element requires a field larger than w, then w asterisks will be printed. 

Floating-point values are rounded to an integer value before printing. 

4-33 



Declarations 

FORMAT 

Continued 

Output Examples 

INTERNAL VALUE 

J Format 

+23 
-79 
+67486 
-67486 
+978 
0 
+3.6 

SPECIFICATION 

14 
14 
15 
15 
11 
13 
12 

EXTERNAL STRING 

bb23 
b-79 
67486 
***** 
*. 
bbO 
b4 

The integer format specification Jw causes an external character string of at most w characters to be 
associated with the corresponding list element for purposes of data transfer. Legal list elements are of type 
ALPHA, REAL, INTEGER, DOUBLE, or BOOLEAN. 

Input 

On input, the Jw specification functions identically to the Iw specification. 

Output 

On output, the Jw specification causes the value of the corresponding list element to be printed as an 
integer constant in the minimum field necessary to contain the value without exceeding w. The plus sign 
is not printed for non-negative quantities. 

If the value to be printed requires more than w characters, w asterisks will be printed. 

Floating-point values are rounded to an integer value before printing. 
) 

Output Examples 

INTERNAL VALUE 

K Format 

+23 
-23 
+233 
-233 
0 

SPECIFICATION 

JS 
JS 
J3 
J3 
J3 

[K format is discussed in conjunction with H format.] 

4-34 

EXTERNAL STRING 

23 
-23 
233 
*** 
0 



Declarations 

FORMAT 

Continued 

LFormat 

The logical format specification Lw causes the logical value indicated by the contents of a character string 
of width w to be associated with the corresponding list element for purposes of data transfer. Legal list 
elements are of type ALPHA, REAL, INTEGER, DOUBLE, or BOOLEAN. 

Input 

On input, the Lw specification causes the corresponding list element to be assigned the value TRUE (1) or 
FALSE (0), depending on the contents of the field of width w. If the left-most non-blank character is a T, 
the variable is assigned the value TRUE; otherwise, the value FALSE is assigned. An all-blank field yields 
the value FALSE. If the list element is a double, the first word is assigned the logical value and the second 
word is set to zero. 

Input Examples 

EXTERNAL STRING 

Output 

T 
bbF 
bbbTRU 
b 
T 

SPECIFICATION 

Ll 
L3 
L6 
LI 
LI 

INTERNAL VALUE 

TRUE( 4"000000000001 ") 
FALSE( 4 "000000000000 ") 
TRUE( 4 "00000000000 l ") 
FALSE( 4 "000000000000") 
TRUE( 4"000000000001000000000000") 

(double) 

The list element may be a variable or an <expression>. If bit 0 of the corresponding list element (only the 
first word of a double is considered) is ON or OFF, the logical value of the item is TRUE or FALSE, 
respectively. 

Output Examples 

INTERNAL VALUE 

0 
1 
2 
3 
4 

SPECIFICATION 

L6 
LS 
L4 
L3 
L2 

EXTERNAL STRING 

bFALSE 
bTRUE 
PALS 
TRU 
FA 

4-35 



Declarations 

FORMAT 

Continued 

0 Format 

(default char-
acter size) 

NOTE 

[For purposes of explanation of the 0 format, the 
variable Q will be used, where the value of Q is derived 
from the following table: 

(precision) (pointers) 
single double 4-bit 6-bit 8-bit 

BCL 8 16 12 8 6 

EBCDIC 6 12 12 8 6 

For pointers, if Q (from the table) is greater than the 
length (in characters) of the string pointed to, the value 
of Q is the string length.] 

i 

On input, Q characters are transferred, unedited, from the input record to the list element. On output, 
Q characters are transferred, unedited, to the output record from the list element. The <field width part> 
must be <.empty>. Legal list elements are of type ALPHA, REAL, INTEGER, DOUBLE, BOOLEAN, or 
POINTER. 

P,$ Formats 

Format modifiers may be placed immediately to the left of a format specification used to edit a data item 
for output. If a repeat count is used, it should be to the left of any modifiers used. More than one modifier 
may be used with a format specification. A modifier may not be used on input. 

For example, 2PR10.3 and 8P$F20.6 are valid, but $2F5.l is not. 

P Format Modifier 

On output, this phrase may be used in conjunction with a numeric editing phrase to cause commas to be 
inserted between digit triples to the left of the decimal point. (This phrase is not allowed on input.) 

$ Format Modifier 

On output, this phrase may be used in conjunction with a numeric editing phrase to place a dollar sign 
immediately to the left of an edited item. (This phrase is not allowed on input.) 

4-36 



Declarations 

Examples: 

RFormat 

INTERNAL VALUE 

17.347 
-1234567 
-1234567 
1234567.11111 
1234567 .1234 
1234567 .1234 

SPECIFICATION 

$F10.2 
PllO 
P$Zl5.2 
PF15.5 
$PR15.5 
$PR15.0 

FORMAT 

Continued 

EXTERNAL STRING 

bbbb$17.35 
-1,234,567 
bbbb$- l ,234,567 
1,234,567.11111 
bbb$ l .23457E+06 
bbbb$ l ,234,567. 

The Rw.d format specification is a generalized numeric editing phrase which can be associated with an 
S format scale factor. Correct action will occur for list elements of type ALPHA, REAL, INTEGER, 
DOUBLE or BOOLEAN. 

Input 

On input, the contents of the input field are transferred to the list element in accordance with the D, E or 
F formats (subject to the effects of an S format scale factor). A "D'', an "E" or an "@" can be used to 
indicate the beginning of the exponent field. A number with an implied exponent indicator is treated as if 
the exponent indicator is actually present. For example, 1.0-3 would be l .0@-3. Blank characters are 
interpreted as zeroes. 

Output 

On output, the value of the <list element> is placed in the field described by the field width. The number 
used as the decimal exponent in the following algorithm is the exponent number of the normalized value of 
the <list element>, using scientific notation. For example, 376.42 normalized is 3.7642E2, where the 
2 following the E is the decimal exponent. D format specification, E format specification, or F format 
specification editing is used according to the following test: 

If ABS ( <list element> ) ;;;;i: 1 and 
w ;;;;i: (decimal exponent+ I) +1 + d + SIGNBIT 

or ABS ( <list element> ) < 1 and 
w ;;;;i: d + 1 + SIGNBIT and 
(d ;;;;i: -{decimal exponent) or 
w < d + 1 + 5 + SIGNBIT) 

then F <editing phrase> editing, else 

If ABS (decimal exponent)~ 99 and 
w ;;;;i: d + 6 +SIGNBIT, 

then E <editing phrase> editing, else 

4-37 



Declarations 

FORMAT 

Continued 
J 

( 

If w > d + 9 + SIGNBIT, .. 
. then D <.editing phrase> editing, else 

Fill w character positions with asterisks, because w is too small. 

EXTERNAL 
INPUT STRING 

-.333333bb 
-.333333bb 
-.333333bb 
3333.333E2 
3333.333E2 
-.333bbbbb 
-.333bbbbb 
333.333E2b 
bbbbbbbbbbbbb l .23D 12 
bbbbbbbbbb l .23D 12345 
bbbb4.3@68 

S Format 

Input 

LIST 
ELEMENT 

TYPE 

REAL 
DOUBLE 
INTEGER 
DOUBLE 
INTEGER 
REAL 
INTEGER 
DOUBLE 
REAL 
DOUBLE 
REAL 

SPECIFICATION 

Rl0.4 
Rl0.4 
Rl0.4 
Rl0.4 
Rl0.4 
Rl0.9 
Rl0.9 
Rl0.4 
R20.4 
R20.4 
Rl0.4 

EXTERNAL 
OUTPUT STRING 

bbb-0.3333 
bbb-0.3333 
bbbb0.0000 
3.3333D+05 
3.3333E+05 · 
********** 
.000000000 
3.3333D+22 
bbl230000000000.0000 
bbbbbbb l .2300D+ 12345 
4.3000E+68 

On input, the values associated with the subsequent R <.editing phrase> are divided by the "power of 10" 
designated by the <integer> in S <integer>. 

Output 

The values associated with the subsequent R <.editing phrase> are multiplied by the "powers of 1 O" 
designated by the <integer> in S <integer>. More than one S <integer> phrase can appear in a format, 
each phrase taking precedence over the preceding one. For example, the execution of the following 
program excerpt: 

READ(KARD, <RI 0.2>, A); 

WRITE(LINE, <S3,RJ0.2>, A); 

with input data of 10.00 and .54 yields 
bbl0000.00 and bbb540.00 as input. 

4-38 



Declarations 

FORMAT 

Continued 

T Format 

The buffer point is moved to the wth character position in the record. The <field width>, w, must be 
greater than zero (0), that is, Tl moves the buffer pointer to the first character position in the record. 
No <list element> corresponds to this editing letter. 

Example: 

<I>COMPILE T/FORMAT ALGOL; EBCDIC 
BEGIN 

FILE LINE(KIND=PRINTER), KARD(KIND=READER); 
REALA; 
READ(KARD, <T7, A6>, A); 
WRITE(LINE, <A6, Tl 2, A6>, A, A); 
WRITE(LINE, <X6, "123", Tl, A6>, A); 

END. 
<I>DATA 

ABCDEFGHIJKLMN 
<I>END 

produces the following output: 

GHIJKLbbbbbGHIJKL 
GHIJKL123 

UFormat 

The U editing specification is a flexible editing phrase which allows a great deal of freedom in the transfer of 
formatted data. Legal list elements are of type ALPHA, REAL, INTEGER, DOUBLE or BOOLEAN. 

Input 

U format has yet to be implemented for input. 

Output 

On output, the U editing specification causes the data item to be output in a form best suited for the item. 
REAL, INTEGER, and DOUBLE items are output in a format that combines readability with maximum 
numerical significance. BOOLEAN items are output as "T" or "F" and occupy one character posidon in 
the record. Character strings are treated as real. If the number of characters required to edit the item is 
greater than the number left in the current record, the record is output and the item placed in the next 
record. 

The form Uw is similar to U, with the added restriction that the edited term may not exceed w characters. 
If the data item cannot be edited into a field of w characters, a field of w asterisks is output. 

The form Uw .d is similar to Uw, with the added restriction that the total field width occupied by the edited 
item may not be less than d characters. In this case, the number of non-blank characters (those representing 
the data item itself) may not exceed 3 characters. Thus, if d>w ,d-w leading blanks will be inserted. 

4-39 



O~elarations. 

FQ>RMAT 

Oontinued· 

Output Examples 

r!tL · 
:··: b•' 

V Fopnat 

JNTERNAL VALUE 

-123.4S67 
789 
l.S@@27S 
1234567 
l 
123.4S6 
l 
123.4S6 

,SPECIFICATIONS 

u 
u 
UlO 
us 

.Ul0.4' 
Ul0.4 
US.8 
US.8 

·tt( ! • 

EXTERNAL STRING 

-123.4S67 
789 
l.SD+27S 
1.2+6 
'.bbbl 
123.4;S6 
bbbbbbbl 
bbbl23.S 

The V format specification allows a variable editing phrase letter to be supplied at run-time. When V 
appears in a format specification list, the next list element is accessed to furnish the editing letter. Legal 
list elements are of type ALPHA, REAL, INTEGER, DOUBLE, BOOLEAN or POINTER. The rightmost 
character of the list element (only the first word of a double is considered) is used to supply the editing 
letter. The editing le.tter extracted from the.list element will be a 6-bit.character if the default character 
size is BCL;.otherwise, an 8-bit 'Character is extracted. If the. list element is a <pointer expression>, the 
first c.haracter,of the designated string is used as the editing letter. 

Example,:. 

REALA,B; 
DOUBLED~ 

FORMAT FMTl(V8.2), 
FMT2(2V~), 
FMT3(*Vlf:.*); 

READ(KARD,FMTl, "R'', A); 
B:=4"Cl "; 
WRITE(LINE,FMT2, B, 6, A, D); 
D:=DOUBLE( 4 "CS" ,0); 
READ(KARD,FMT3, 2, D, 10, 4, A, B); 

In the above program, 

FMT l evaluates to R8 .2 applied to list element A, 
FMT2 evaluates to 2A6 applied to list elements A apd D, 
FMT3 evaluates to 2E10.4 applied to list elements A and B. 

4+40 



XFormat 

Declarations 

FORMAT 

Continued 

On input, w characters are skipped. On output, w blanks are inserted. No <list element> corresponds to 
this editing letter. 

Z Format 

The general format specification Zw.d is a generalized floating point conversion which may be used with list 
elements of type ALPHA, REAL, INTEGER, DOUBLE or BOOLEAN. This specification is interpreted as 
D,E,F ,I or L format, depending upon the type and magnitude of the value of the list element. 

Input 

On input, the Zw.d specification is the same as D, E or F formats for ALPHA, REAL and DOUBLE list 
elements. For INTEGER list elements, Z functions like lw, and for BOOLEAN list elements,Z functions 
like Lw. 

Output 

The output string will have a length of w characters; regardless of the value being read or written. For 
BOOLEAN list elements, Lw is used. For INTEGER list elements, Iw is used. For ALPHA, REAL or 
DOUBLE list elements, a D, E or F format representation of the list element's value is produced according 
to the following criteria: If Vis the absolute value of the list element, then for J(=0,1,2, ... ,d, if 
10d-K-l.;;;v<;10d-K, then formats F(w-4). (d-K), X4 are used. If V<. l or V~tod, then Ew.d is used. In 
other words, Zw.d implies "output d significant digits". 

Output Examples 

INTERNAL VALUE 

1.23@@250 
I 
12345 
12 
12345.678 
12 
12345678 
1234 
l (BOOLEAN) 

SPECIFICATION 

Zl2.6 
ZS.I 
ZS.I 
Z8.7 
Zl0.4 
Zl0.4 
Z6 
Z6 
Z3 

EXTERNAJ., STRING 

I .230000+2SO 
bbbbl 
1234S 
bbbbbb12 
1.2346E+o4 
bbbbbbbbl2 
•••••• 
bbl234 
TRU 

4-41 



Peclarations 

FORWARD 

FORWARD REFERENCE DECLARATION 

Synt;Jx 

<forward reference declaration> : := <forward interrupt declaration> I 
<forward procedure declaration> I 
<forward switch declaration> 

<forward interrupt declaration>::= INTERRUPI' <.interrupt identifier> ; FORWARD 
<forward procedure declaration> : := <procedure type> PROCEDURE <procedure heading> ; 

FORWARD 
<forward switch declaration> : := SWITCH <switch label identifier> FORWARD 

Examples 

SWITCH SELECT FORWARD 
INTEGER PROCEDURE SUM (A.B.C): 

VALUE A.B.C; . 
INTEGER A.B.C; 
FORWARD 

Semantics 

Before a procedure, switch, or interrupt can be used in a program, it must be declared. However, consider 
the following situation: in the body of procedure# l, a reference is made to procedure #2. Likewise, 
within the body of procedure #2, a call is made on procedure # 1. Regardless of which procedure is 
declared first, its body contains a reference to an undeclared entity. A similar situation can be construc­
ted with two switches, because these constructs also have the power of recursion. 

To enable the ALGOL compiler to handle situations of this nature, the <forward reference declaration> 
is necessary. Therefore, in the example given above, the body of procedure # l might be a <block> 
containing the <declaration> PROCEDURE TWO; FORWARD. Later in this <block>, procedure 
#2 is called and the compiler recognizes it. Finally, at some later point in the program, procedure #2 is 
declared in full. 

4-42 



Declarations 

INTEGER DECLARATION 

Syntax 

<integer declaration> : := <.J,ocal or own> INTEGER <identifier list> 
INTEGER <equation list> 

Examples 

INTEGER INTGR 
INTEGER COUNT, VAL, NO EXPONENT 
INTEGER INT=BOOL, CAL, NUM=REEL 

Semantics 

INTEGER 

An <integer declaration> is used to declare <.simple variable>s which can be used as integer values, 
that is, an arithmetic value that is maintained as a value with an exponent of zero. 

The <local or own> portion of the <integer declaration> indicates whether the value of the specified 
<.simple variable> is to be retained upon exit from the <.block> in which it is declared. A <.simple 
variable> declared to be OWN will retain its value when the program exits from the associated <block>, 
and that "old" value will be the contents of the <.simple variable> when the associated <.block> 
is re-entered. 

Upon entry to a <block> containing <.simple variable>s, the normal content of a non-OWN <.simple 
variable> is a zero (0); i.e., a 48-bit word with all bits off. To be truly compatible with ALGOL-60, a 
programmer would explicitly zero the <.simple variable>s with appropriate <assignment statement>s. 

The <equation list> allows address equation among real, integer, and Boolean variables only. An 
<identifier> may only be address-equated to a previously declared local <identifier> or to an 
<identifier> global to the block in which it is declared. 

Pragmatics 

After an arithmetic calculation, the resulting value is integerized and then stored into the <.simple 
variable>, in contrast to a real <.simple variable> which is stored "as is." 

Appendix B contains additional information on the internal structure of an integer <.simple variable> 
as implemented on the B 7000/B 6000 lnformation·Processing System. 

4-43 



Declarations 

INTERRUPT 

INTERRUPT DECLARATION 

Syntax 

<interrupt declaration>::= INTERRUPT ·<interrupt identifier> ; <.unlabeled statement> 

<interrupt identifier> : := <identifier> 

Example 

INTERRUPT ERR; GO TO ABORT 
INTERRUPT II; 

BEGIN 

END 

Semantics 

The <interrupt declaration> provides a means of forcing a Pl'OCess to depart from its current point of 
control and execute the <.unlabeled statement> associated with the <interrupt declaration>. The 
process then normally returns to its previous point of control when the program· "falls out the end" of 
the <.unlabeled statement>. However, this would not be the case if a <go to statement> is executed 
within the <.unlabeled statement> and the specified <label> ·is outside of the <.unlabeled statement>. 

An interrupt must be enabled (refer to. <enable statement>) and attached to an event by an <attach 
statement> before it can have any effect. The <disable statement> can temporarily render the associated 
interrupt ineffective. 

Pragmatics 

An <interrupt declaration> can be thought of as describing an <unlabeled statement> (which can also 
be a <block>) which is automatically entered upon the occurrence (CAUSE) of an event. The MCP 
ensures when a program is executing the <.unlabeled sJatement>, all other interrupts are queued until 
the program exits from the <.unlabeled statement>. 

4-44 



LABEL DECLARATION 

Syntax 

<label declaration> : := LABEL <label identifier list> 
<label identifier list>::= <label identifier> I 

<label identifier list> , <label identifier> 
<label identifier> : := <identifier> 

Examples 

LABEL START 
LABEL ENTER,EXIT,START,LOOP 

Semantics 

Declarations 

·LABEL 

A <label declaration> declares each identifier in its <identifier list> as a <label identifier>. A 
<label identifier> must appear in a <label declaration> in the head of the innermost block in which it 
is used to label a statement. If any <statement> in a <procedure body> is labeled, the declaration of 
this label must appear within the <procedure body>. 

4-45 



Declarations 

LIST 

LIST DECLARATION 

Syntax 

<list declaration> : := LIST <list part list> 
<list part list>::= <list part> I <list part list> ,<list part> 
<list part>::= <list identifier> (<list segment>) 
<list identifier>::= <identifier> 
<list segment>::= <list element> I <list segment>, <list element> 
<list element>::= <unconditional list element> I 

* <unconditional list element> I 
<conditional list element> I 
* <conditional list element> 

<unconditional list element>::= <simple arithmetic expression> I 
<simple Boolean> I <.pointer expression> I 
<.pointer expression> FOR <a.rithmetic expression> I 
<a.rray row> I [<list segment>] I DO <list element> UNTIL 

<Boolean expression> I 
<iteration clause> 

<unconditional list element> I 
<if clause> <unconditional list element> ELSE 

<unconditional list element> I 
CASE <a.rithmetic expression> OF (<list segment> ) 

<iteration clause>::= FOR <variable>:= <for list> DO I 
THRU <a.rithmetic expression> DO I 
WHILE <Boolean expression> DO 

<conditional list element>::= <if clause> <list element> I 

Examples 

<iteration clause> <conditional list element> I 
<if clause> <unconditional list element> ELSE 

<conditional list element> I 
DO <list element> UNTIL <Boolean expression> I 
CASE <a.rithmetic expression> OF ( <list element> ) 

LIST Lt (X,Y,A,[J], FOR I:= P STEP t UNTIL S DOB [I]) 
LIST ANSWERS (P + Q,Z,SQRT (R)), RESULTS (Xt,X2,X3,X4/2) 
LIST LIST3 (FOR I := 0 STEP t UNTIL 10 DO FOR J := 0, 3, 6 

DO A[l,J]) 
LIST L4 (BAND C, NOT ABt, IF X = 0 THEN Rt ELSE R2) 
LIST RESULTS (FOR I := t STEP t UNTIL N DO [A[I] , FOR J :=t 

STEP t UNTIL K DO [B[I,J], C[J]]]) 

4-46 



Declarations 

LIST 

Continued 

Semantics 

A <list declaration> associates an ordered set of <list element>s with a <list identifier>. A <list 
identifier> is usually used in conjunction with a <format identifier> within a <read statement> or 
<write statement> to indicate which entities are to be associated with the corresponding <editing 
phrase>s of the specified format. Although the syntax of the <read statement> and <write 
statement> allows the entities to be listed within the statement itself, a <list declaration> provides 
a more convenient means of grouping the entities to be used. <list element>s can be either conditional 
or unconditional. 

<unconditional list element>s 

<unconditional list element>s are the usual entities found in <list segment>s. Essentially they are 
built from arithmetic primaries, Boolean primaries, pointer primaries, and array rows. 

<pointer expression> FOR <arithmetic expression> 

<pointer expression> FOR <arithmetic expression> allows the user to specify the amount of the string, 
to which the pointer points, to be used as a list element. Thus, if P points at string "ABCDEFGHIJKL", 
P FOR 3 refers to the substring "ABC". 

Asterisks 

Asterisks (*) prefixed to a list element only have meaning for free-field output (they are ignored for 
other 1/0). The asterisk prefixed to a list element will cause, under the control of free-field output, the 
text of the list element to be output just prior to the edited value of the list element, with an equal 
sign (=) inserted between the two. If the list element is a string under control of any other 1/0, the 
prefixed asterisk is ignored. 

4-47 



Declarations 

MONITOR 

MONITOR DECLARATION 

Syntax 

<monitor declaration> : := MONITOR <monitor part list> 
<monitor part list> : := <monitor part> I 

· <monitor part list> , <monitor part> 
<monitor part> : :=<file or procedure identifier> ( <monitor list> ) 
<file or procedure identifier> : :~<file identifier> I 

<procedure identifier> 
<monitor list> : := <monitor element> I 

· <monitor list> , <monitor element> 
<monitor element> : := <simple variable> I 

<label identifier> I 
<array identifier> 

Examples 

MONITOR FYLE(A) 
MONITOR PRNTR(X,LBL,ARA Y) 
MONITOR MONPROC(V AL,INDX,INFO). 

Semantics 

The diagnostic <monitor declaration> causes all subsequent occurrences of assignments of the form 
<monitor element> := to produce monitoring action during execution of the program. Each time an 
<identifier> included in the <monitor list> is used in one of the ways described in the following 
paragraphs, the <identifier> and its current value are written on the file or passed as parameters to the 
procedure specified in the <monitor declaration>. In particular, the monitor action does not occur for 
assignments within procedures that are declared before the <monitor declaration> is encountered, nor 
does monitoring of a variable in the <monitor list> occur if this <identifier> is used as a call-by-name 
<actual parameter> to a procedure that modifies the value(s) of its <formal parameter>s. 

Pragmatics • 

The diagnostic information produced depends on the form(s) of the <monitor element>s. When the 
$LINEINFO compiler option is SET, and a <file identifier> is specified as the <monitor part>, the 
stack number, an@ sign, a segment address, and a sequence number are.printed in front of the symbolic· 
name of the <monitor element>. For example, 0143@ 003:0003:4 (00007000). Diagnostic information 
is provided as follows by the specified <monitor element>s: 

a. When the <monitor element> is a <simple variable>, the symbolic name and the before and 
after values of the <simple variable> are printed. For example, B =0:=13. The controlled variable 
in a <for statement> cannot be monitored. . 

b. When the <monitor element> is a <label identifier>, the symbolic name of the label is ·shown. 
For example, LABEL L. 

c. If the <monitor element> is an <array identifier>, the symbolic name of the array and the 
before and after values of the specified <array element> are printed. For example, ARA Y 
[12) =0:=12. . . ' ' 



The <file identifier> cannot be a file-valued task attribute. 

Declarations 

MONITOR 

Continued 

The <monitor part> of the form <procedure identifier> ( <monitor list> ) produces the following 
information when the applicable restrictions are observed. Note that printing of the <monitor element> 
is not automatic when a <procedure identifier> is used. Printing must be performed by the procedure. 
Also, the monitored procedure performs the specified operations depending on the values passed to it. 

When the <simple variable> form is used, the format of the monitoring procedure must be in the follow­
ing general form: 

REAL PROCEDURE MON (NAME,VAL,SPELL); 

The procedure must be of the same <monitor list>. The procedure must have three arguments: 

a. The first parameter (NAME) is the name of the <monitor element>; that is, the first parameter 
is call-by-name parameter of the same <type> as the <monitor element>. This argument 
(NAME) is normally used to store the value of the second argument (VAL). 

b. The second parameter (VAL) is also of the same <type>. But, it is a cail-by-value parameters and 
contains the value to be assigned to the <monitor element>. 

c. The third and last parameter (SPELL) must be a call-by-value ALPHA variable. It contains the 
name of the <monitor element> as a string of characters. Only the first six characters of the 
symbolic name are passed into this <formal parameter>. If the symbolic name is less than six 
characters, the symbolic name is left-justified and trailing blanks are added, up to six characters. 

If the <monitor element> is to be assigned a value, it must be done by the monitoring procedure. The 
value returned by the procedure can then be used, for example, in evaluating the remainder of an 
<expression> in which the assignment is imbedded. For example, note that in the succeeding example 
under <array identifiers>; the assignment statement "NAME:=MON:=VAL;" allows the subsequent use of 
the value assigned to the <monitor element>. 

When the <label identifier> form of the <monitor element> is used, the format of the monitoring 
procedure must be in the following general format: 

PROCEDURE MON (SPELL); 

The procedure must be untyped. It must have only one parameter. This parameter will contain the first six 
characters of the symbolic name. If the symbolic name is less than six characters, the symbolic name is 
left-justified and trailing blanks are added, up to six characters. For example~ the monitoring procedure 
could compare the symbolic names in the <.monitor list> in order to identify a particular label. The 
spelling of the labels follows the same rule as described under the <simple variable> form. 

When the <monitor list> is of the form <array identifier>, the format of the monitoring procedure 
must be in the following general format: 

REAL PROCEDURE MON (Dt ... Dn,NAME,VAL,SPELL); 

The array to be monitored must have. the same number of dimensions as .the monitoring procedure. In 
other words, the first Dt . . . Dn parameters of the procedure must correspond to the dimensions of the 
subscripted array variable. Each dimension parameter is a call-by-value integer. The last three parameters 
are the same as in the <simple variable> case. Notice that formal parameter VAL is a <simple variable>. 

4-49 



Declarations 
. r 

MONITOR 

Continued 

The value normally returned by the procedure is the value used to evaluate the remainder of the 
<expression>, if any. 

The following procedure could be used to monitor a two-dimensional array so that the values in the array 
never become negative. 

REAL PROCEDURE MON (DI, D2, NAME, VAL, SPELL); 
VALUE DI, D2, VAL, SPELL; 
REAL NAME, VAL; 
ALPHA SPELL; 
INTEGER DI, D2; 
BEGIN 
IF VAL ( 0 THEN GO TO ERROREXIT; % "BAD-GO-TO" 
NAME:=MON :=VAL; % RETURN VALUE IN CASE OF FURTHER USE 
END; . 

The occurrence of the <statement> B:=A[I,J] :=4; where A is monitored by MON, is equivalent to 
the <statement> B:=MON(I,J,A[I,J] ,4,"A"); 

An array may not be monitored if it is in the· <list> part of a <read statement> or <write statement>. 

4..:..50 



PICTURE DECLARATION 

Syntax 

<picture declaration> : := PICTURE <.picture part list> 
<.picture part list> : := <picture part> I 

<picture part list> , <picture part> 
<picture part>::= <picture identifier> ( <picture> ) 
<picture identifier> : := <identifier> 
<picture> : := <.picture symbol> I 

<picture> <picture symbol> 
<picture symbol> : := <string> I 

<picture character> <repeat part value> 
<control character> I 
<introduction> I 
<.picture skip> <repeat part value> I 
<single picture character> 

<picture character> : := A I D I E I F I I I R I X I Z I 9 
<repeat part value> : :=<empty> I 

( <unsigned integer> ) 
<control character> : := Q I : 
<introduction> : := <introduction code> <new character> I 

4 <introduction code> <hexadecimal character> 
<introduction code> : := B I C I M I N I P I U 
<new character> : := <EBCDIC character> I " 
<picture skip> : := ) I ( 
<single picture character> : := J I S 

Examples 

PICTURE Z9S (ZZZZ9) 

Declarations 

PICTURE 

PICTURE PF ("FIRST IS" X(l)A(t))(lO)X(l)"LATER IS" X(l)A(l)l(3))(1l)A(3)) 
PICTURE USECS (ZZZl999999l 
PICTURE TIMENOW (" "N:9(2)19(2)19(2)) 

Semantics 

The <picture declaration> provides a means of performing generalized character editing. Pictures are 
·used in <replace statement>s. The following editing operations can be performed: 

a. Unconditional character moves. 
b. Move characters with leading zero editing. 
c. Move characters with leading zero editing and floating character insertion. 
d. Move characters with conditional character insertion. 
e. Move characters with unconditional character insertion. 
f. Move numeric part of characters only. 
g. Skip source .characters, forward and reverse. 
h. Skip destination characters forward. 
i. Insert overpunch sign on the previous character. 

4-51 



Declarations 

PICtUAE 
Continued 

A <:picture> consists of a .named string of editing symbols that are enclosed in parentheses. The picture 
editing symbols listed below can be·combined in ariy order to perform a wide range of editing functions. 

<introduction code>s 

The output characters listed below are assumed for the <introduction code>s. Another character can be 
substituted for the assumed character by the use of the <introduction> phrase, as defined in the syntax. 
The two hexadecimal characters are assumed to represent a single <EBCDIC character>. 

OUTPUT. 
CHARACTER 

space (blank) .. 

+ 
$ 

<cotitrol character>s 

INTRODUCTION 
CODE 

8 
c 
M 
N 
P· 
u 

NORMAL 
USE 

Replacement of leading zeros 
Conditional insert character 
Character insertion if minus 
.·Unconditional insert character 
Character insertion if plus 

· .Floating character insertion 

The control character8 shown below cause the following actfon: 

CHARACTER ACTION 

Q · Inserts an. overpunch sign in the preceding character position. 
Re-initiates leading zero replacement. 

<single picture character>s 
. . . 

· The <single pi~ture character>s perform the following action: 

CHARACTER 

1· 

s 

ACTION. 

If a move with float (E or F) has not inserted a float character, the float is 
termhtated and the U character is inserted: Oth~rwise, no 9peration is performed. 
A single P character is inserted if the sign is plus; otherwise, a single M character is 

. inserted. · 

<:picture character>s 

The <:picture character>s. listed below perform the following action: 

CHARACTER ACTION 

A Moves the number of characters specified by the <repeat part value>. 
D If an E or F float has not erided, the B character is inserted. Otherwise, the C character 

.· is inserted. · · · 



Declarations 

PICTURE 

Continued 

CHARACTER ACTION 

E Moves the numeric part only for the number of characters specified by the <.repeat,1 
part value>. Suppresses leading zeros by substituting the B character. If the sign is plus, 
a P character is inserted in front of the first non-zero number. Otherwise, an M character 
is inserted and the float is ended. 

F A move numeric is performed with leading zeros replaced by the B character. A U 
character is inserted in front of the first non-zero number, and the float action is ended. 

I The N character is inserted U'hconditionally. 
R If an E or F float has not ended, the P character is inserted. Otherwise, the M character 

is inserted. 
X The destination pointer is skipped forward by the number of characters specified in the 

<.repeat part value>. 
Z A move numeric is performed with leading zeros replaced by blanks. 
9 Moves the numeric part only of the number of characters specified 

by the repeat field. 

<picture skip> 

The <picture skip> characters perform the following action: 

CHARACTER 

( 

) 

Pragmatics 

ACTION 

The source pointer is skipped in reverse (to the left) by the number of characters 
specified by the <.repeat part value>; 
The source pointer is skipped forward (to the right) by the number of characters 
specified by the <.repeat part value>. 

One value array (also called an "edit table") is generated for each <picture declaration> and therefore it 
would generally be wise to collect all pictures under a single <picture declaration>. 

4-53 



Declarations 

POINTER 

POINTER DECLARATION 

Syntax 

<pointer declaration> : := POINTER <pointer identifier list> 
<pointer identifier list> : := <pointer identifier> I 

<pointer identifier list> , <pointer identifier> 
<pointer identifier> : :=<identifier> 

Examples 

POINTER PTR 
POINTER PTS,PTD,SORCE,DEST 

Semantics 

A pointer represents the relative address of a character position with respect to the beginning of a one­
dimensional array or an <array row>. Thus, it is said to "point" to a character position. The <pointer 
declaration> establishes each <identifier> in the pointer list as a <pointer identifier>. 

Pragmatics 

Pointers ate initialized via a <pointer assignment> statement. Any attempt to use a pointer prior to its 
initialization will result in an INVALIDOP error. 

A pointer should not be initialized to point into an <array row> which is "up-level." Stated in another 
way, the <pointer declaration> should be at the same or higher lexicographical level as the referenced 
declaration of the <array row>; it should not be lower. If it is lower, total system failure can occur. 

4-54 



Declarations 

PROCEDURE 

PROCEDURE DECLARATION 

Syntax 

<procedure declaration>::= <procedure type> PROCEDURE 
<procedure heading>; <procedure body> 

<procedure type> : :=<.empty> I 
<type> 

<procedure heading> : :=<procedure identifier> <formal parameter part> 
<procedure identifier>::= <identifier> 
<formal parameter part>::= <.empty> I 

( <formal parameter list> ) ; <value part> <specification part> 
<formal parameter list>::= <formal parameter> I 

<formal parameter list> <parameter delimiter> <formal parameter> 
<formal parameter> : := <identifier> 
<value part>::= <.empty> I 

VALUE <identifier list> 
<specification part> : := <specification> I 

<specification part> ; <specification> 
<specification>::= <specifier> <identifier list> I <.procedure type> PROCEDURE <identifier list> 

<formal parameter specifier> I 
<array specification> 

<specifier>::= <direct specifier> FILE I 
<direct specifier> SWITCH FILE 
EVENT I 
FORMAT 
LABEL I 
LIST I 
PICTURE 
POINTER 
SWITCH I 
SWITCH FORMAT 
SWITCH LIST I 
TASK I 
<type> 

<formal parameter specifier>::= <.empty> I 
();FORMAL I 
<value part> <specification part> ; FORMAL 

<array specification>::= <direct specifier> <array type> <array specifier list> 
<array type> : := <array class> I 

EVENT I 
TASK 

<array specifier list> : :=<array specifier> I 
<array specifier list> , <array specifier> 

<array specifier>::= <array identifier list> [ <lower bound list> 
<lower bound list> : := <specified lower bound> I 

<lower bound list> , <specified lower bound> 
<specified lower bound> : := <integer> I * 
<procedure body> : :=<unlabeled statement> 

EXTERNAL 

4-55 



Declarations -

PROCEDURE 

Continued 

Examples 

PROCEDURE SIMPL; X := X + I 
PROCEDURE TUFFER (PARAM); 

VALUE i> ARAM; 
REAL PARAM; 
X := X + PARAM 

• 

. REAL PROCEDURE RESULT (PARAM,FYLEIN); 
REAL PARAM; 
FILE FYLEIN; 
BEGIN 

RESULT := X + PARAM; 

END 
BOOLEAN PROCEDURE MATCH (A,B,C); 

VALUE A,B,C; 
INTEGER A,B,C; 
MATCH := A=B OR A=C OR B=C 

DOUBLE PROCEDURE MUCHO (DDBLl ,DBL2,BOOL); 
VALUE DBL2,BOOL; 
DOUBLE DBL2; 
BOOLEAN BOOL; 
BEGIN 
REAL LOCALX,LOCALY; 

MUCHO := DOUBLE (LOCALX,LOCALY); 
END OF MUCHO 

PROCEDURE FURTHER ON; 
FORWARD 

INTEGER PROCEDURE BOWNDIN (Pl ,P2,P3,P4 ); 
VALUE P2, P4; 
POINTER Pl; 
REAL P2, P3; 
FILE P4; 
EXTERNAL 

Semantics 

A <procedure declaration> defines the <procedure identifier> as the name of a procedure. 

A procedure becomes a "function" by preceding the word PROCEDURE with a <type> and by 
assigning a value or result to the procedure somewhere within the <procedure body>. (Refer to 
EXAMPLES: RESULT, MATCH, and MUCHO.) This kind of procedure is more commonly referred to as 
a "typed procedure" and is known to return a result. Note that a typed procedure can be used either as .a 



Declarations 

PROCEDURE 
Continued 

<statement> or as an <.expression>. When used as a <statement>, the returned result is automatically 
discarded. 

The purpose of the <formal parameter part> is to list the item(s) which will be "passed in" as parameters 
when the procedure is invoked. As can be seen from the syntax, a <formal parameter part> is optional. If 
it is supplied, a <value part> and <specification part> are then required. 

The <value part> specifies which <formal parameter>s are to be "called by value." When a <formal 
parameter> is called by value, the <formal parameter> is set to the value of the corresponding <actual 
parameter>. Thereafter, the <formal parameter> is handled as a <variable> that is local to the 
<procedure body>. That is, any change of value of the <variable> will not ramify outside the 
<procedure body>. 

NOTE 

Only arithmetic, Boolean, and pointer expressions 
may be given as <actual parameter>s to be called­
by-value. These expressions will be evaluated once, 
before entry into the <procedure body>. 

<formal parameter>s not in the <value part> are "called-by-riame."This means that wherever a 
<formal parameter> called-by-name appears in the <procedure body>, the <formal parameter> is 
replaced by the <actual parameter> and not its value. A call-by-name <formal parameter> is effectively 
global to the <procedure body>, since any change in its value within the <procedure body> ·is effected 
outside the <procedure body> on the corresponding <actual parameter>. 

It is possible to pass an <arithmetic expression> as a,n <actual parameter> to a procedure where it has 
an arithmetic variable specified as call-by-name. This situation results in a "thunk" (also called "accidental 
entry" or "spontaneous entry") into a compiler-generated typed procedure which is in fact the calculation 
of the <arithmetic expression>. Note that this can be time-consuming if the arithmetic variable is 
repeatedly referenced. Furthermore, an invalid operand interrupt error will occur if an attempt is made to 
store into that item. 

Every <formal parameter> must appear in the <specification part>. 

The <array specification> must be provided for every array passed into the procedure. The primary 
purpose of the <array specification> is to specify the number of dimensions in the passed array and to 
indicate the <specified lower bound> as desired within the <procedure body>. 

A <specified lower bound> which is an <integer> denotes that the corresponding dimension of the · 
<actual parameter> has a declared <lower bound> equal to this value. If an"*" is used as a <specified 
lower bound>, it indicates that the corresponding dimension of the <actual parameter> has a declared 
<lower bound> that may vary in value. 

The EXAMPLES show how the <procedure body> of a procedure can vary in complexity from a basic 
<unlabeled statement> to a <block>. 

PROCEDURE FURTHERON shows the means of declaring that a procedure exists "later" in the program. 
(More on this is said under <forward procedure declaration>.) 

4-57 



Declarations 

PROCEDURE 
Continued 

The last EXAMPLE illustrates the method of specifying a procedure that will be "bound in" as compared 
to "compiled in" to the program. An attempt to reference the procedure that has not been bound in will 
result in a run-time error. 

Pragmatics .. 
Procedures may be calle<i recursively; i.e., inside the <procedure body>, a procedure may invoke itself. 

For purposes1of efficiency, it is advisable to call-by-value as many <formal parameter>s as possible. 
Secondly, the <specified lower bound>s should have a value of 0 for the <integer>. 

Array rows that are passed by name as actual parameters to procedures will have their subscripts evaluated 
at the time of the procedure call, rather than at the time the corresponding formal array is referenced. 

FORMAL causes the compiler to generate more efficient code when passing procedures as parameters. That 
is, when procedures are declared FORMAL, the compiler checks the parameters at compile-time; otherwise, 
the parameters are checked at run-time. 

I 

4-58 



Declarations 

REAL 

REAL DECLARATION 

Syntax 

<.real declaration> : :=<local or own> REAL <identifier list> 
REAL <equation list> 

Examples 

REAL REEL 
REALINDX,X, Y,TOTAL 
REAL CALC=BOOL, INDX, VALV=INTGR 

Semantics 

A <.real declaration> is used to declare <.simple variable>s which can be used as real values, that is, an 
arithmetic value which may or may not have an exponent. 

The <local or own> portion of the <.real declaration> indicates whether the value of the specified 
<.simple variable> is to be retained upon exit from the <block> in which it is declared. A <.simple 
variable> declared to be OWN will retain its value when the program exits from the associated <block>, 
and that "old" value will be the contents of the <.simple variable> when the associated <block> is 
re-entered. 

Upon entry to a <block> containing <.simple variable>s, the normal content of a non-OWN <.simple 
variable> is a zero (0); i.e., a 48-bit word with all bits off. To be truly compatible with ALGOL-60, a 
programmer would explicitly zero the <.simple variable>s with appropriate <assignment statement>s. 

The <equation list> allows address equation among real, integer, and Boolean variables only. An 
<identifier> may only be address-equated to a previously declared local <identifier> or to an 
<identifier> global to the block in which it is declared. 

Pragmatics 

After an arithmetic calculation, the resulting value is stored "as is" into the <.simple variable>, in contrast 
to an integer <.simple variable>. 

Appendix B contains additional information on the internal structure of a real <.simple variable> as 
implemented on the B 7000/B 6000 Information Processing System. 

4-59 



Declarations 

SWITCH 

, SWITCH DECLARATION 

Syntax 

<switch declaration> : := <switch file declaration> I 
<switch format declaration> 
<switch label declaration> I 
<switch list declaration> 

Examples 

SWITCH FILE SWFILE := .•. 
SWITCH FORMAT SWFORM := ... 
SWITCH SWUTCH := .•• 
SWITCH LIST SWLIST := •.. 

<switch declaration>s and their corresponding designators provides an efficient means of dynamically 
selecting one of many alternative entities of similar kind at a particular point during execution. The 
entity selected by the use of a switch designator is determined by first evaluating its <subscript>. The 
value of this <subscript> is then integerized by rounding, if not already integral, and is used as an index 
into the list specified in the corresponding <switch declaration>. 

With the exception of switch labels, the N elements in the list are numbered from 0 to N-1 in their order 
of appearance, and if the index value lies outside this range, an INV AUD INDEX error occurs. The range 
for switch labels is 1 to~· (Refer to <switch label declaration>.) 

4-60 



Declarations 

SWITCH FILE 

SWITCH FILE DECLARATION 

Syntax 

<switch file declaration> : := <direct spec~fi,er> SWITCH FILE 
<switch file identifier> := <switch file list> 

<switch file identifier> : := <identifier> 
<switch file list>::= <file designator> I 

<switch file list> , <file designator> 
<file designator> : := <file identifier> I 

<switch file identifier> [ <subscript> ] 
<direct file identifier> I 
<direct switch file identifier> [ <subscript> ] 

<subscript> : := <arithmetic expression> 
<direct switch file iaentifier> : :=<identifier> 
<direct file identifier> : :=<identifier> 

Examples 

SWITCH FILE SWHTAPE := TAPEl, TAPE2, TAPE3; 
SWITCH FILE SWHUNIT := CARDOUT, TAPEOUT, PRINT; 

Semantics 

A <switch file declaration> associates an <identifier> with the <file designator>s in the <switch 
file list>. Each <file designator> in a <switch file list> must reference a previously declared file. 

Associated with each of the <file designator>s in the <switch file list> is an integer reference. The 
references are 0, 1, 2, ... , obtained by counting the identifiers from left-to-right. This integer indicates 
the position of the <file designator> in the list. The <file designator>s are referenced, according to 
position, by switch <file designator>s. 

If the switch <file designator> yields a value which is outside the range of the <switch file list>, the file 
so referenced is undefined, and an INVALID INDEX error occurs. 

Restriction 

The <file designator>s of a <switch file declaration> must all be the same; i.e., if non-DIRECT, then 
all members must be non-DIRECT. Normal and DIRECT files cannot be mixed in a <switch file 
declaration>. 

4-61 



SWITCH FORMAT DECLARATION 

Syntax 

Declarations 

SWITCH FORMAT 

<switch format declaration> : := SWITCH FORMAT <switch format identifier> :=<switch format list> 
<switch format identifier> : := <identifier> 
<switch format list> : := <switch format segment> I 

<switch format list> , <switch format segment> 
<switch format segment>::= <format designator> I 

( <.editing specifications> ) I 
( <editing specifications> ) 

<format designator>::= <format identifier> I 
<switch format identifier> [ <subscript> 

Examples 

SWITCH FORMAT SF:= (A6, 3I4, I2, X60) , (I4,X2,2I4,3I2), 
(X78,I2) , (X2); 

SWITCH FORMAT SWHFT := XF3 , XA3, BAF; 

Semantics 

The <switch format declaration> associates a <switch format identifier> with the switch format 
segments in the <switch format list>. Associated with each of the N <switch format segment>s is an 
integer value from 0 to N-1, which is obtained by counting the segments as they appear from left-to-right. 
When the corresponding <format designator> occurs, its integerized <subscript> selects the associated 
<switch format segment>. 

If a switch format designator yields a value which is outside the range of <switch format list>, the format 
so referenced is undefined, and an INV AUD INDEX error occurs. 

A <simple string> in a <switch format declaration> is always read-only if the <switch format 
segment> in which it appears is of the form ( <.editing specifications> ). 

4-62 



Declarations 

SWITCH LABEL 

SWITCH LABEL DECLARATION 

Syntax 

<switch label declaration>::= SWITCH <switch label identifier>:= <switch label list> 

<switch label identifier> : :=<identifier> 
<switch label list> : := <.designational expression> I 

<switch label list> , <.designational expression> 

Examples 

SWITCH CHOOSEPATH := Ll, L2, L3, L4, 
SWl [3], LAB 

SWITCH SELECT := START, ERRORI, 
CHOOSEPATH [I + 2] 

Semantics 

A <switch label declaration> declares an <identifier> to represent a set of <.designational 
expression>s as denoted by the <switch label list>. Associated with each <.designational expression>, 
in the order in which the <.designational expression> appears in the <switch label list>, is an 
<integer> from 1 to N, where N is the number of <.designational expression>s in the <switch label 
list>. If the index to the switch is an invalid value ( < O ot > N ), the instruction attempting to branch 
to it is not executed, and, control proceeds to the neXt instruction. (Typically, the next statement would 
be some form of error handling.) 

Note that if a <.designational expression> occurs within a <switch label list>, it could reference itself. 
For example, if N = 4 in the declaration SWITCH SW:= Ll, L2, L3, SW[N] ;, the <.designational 
expression> is referencing itself. If it references itself, a STACKOVERFLOW condition occurs. 

4-63 



SWITCH LIST DECLARATION 

Syntax 

Declarations 

SWITCH LIST 

<switch list declaration> : := SWITCH LIST <switch list identifier> := <switch list list> 

<switch list identifier> : :=<identifier> 
<switch list list> : :=<list designator> I 

<list designator> , <switch list list> 
<list designator> : := <list identifier> I 

<switch list identifier> [ <subscript> l 

Examples 

SWITCH LIST CHOOSEPATH := Ll, L2, L3, IA, SWl [3], LAB 
SWITCH LIST SELECT :=START, ERRORI, CHOOSEPATH [1+2] 

Semantics 

A <switch list declaration> declares an <identifier> to represent a set of <list designator>s as 
denoted by the <switch list list>. Associated with each <list designator>, in its order of appearance 
in the <switch list list>, is an <integer> from 0 to N-1, where N is the number of <list designator>s 
in the <switch list list>. If the index to the <switch list list> is a value which is outside the range of 
the <switch list list>, the list so referenced is undefined, and an INVALID INDEX error occurs. 

4-64 



TASK and TASK ARRAY DECLARATIONS 

Syntax 

<task declaration>::= TASK <task identifier list> 
<task identifier list> : := <task identifier> I 

<task identifier list> , <task identifier> 
<task identifier> : := <identifier> 
<task array declaration> : := TASK ARRAY <task segment list> 
<task segment list> : := <task segment> I 

<task segment list> , <task segment> 
<task segment> : := <task array identifier list> [ <bound pair list> 
<task array identifier list> : :=<task array identifier> I 

<task array identifier list> , <task array identifier> 
<task array identifier> : := <identifier> 

Examples 

TASK TSK 
TASK TISKIT, TASKIT 
TASK ARRAY TSKS [0:9] 
TASK ARRAY PROGENY.CHILDREN [O:LIM] 

Semantics 

Declarations 

SWITCH LIST 

When a process or co-routine is invoked, a <task identifier> is associated with it. While the process or 
co-routine remains active, various aspects of the process or co-routine can be altered and/or interrogated 
via the task attributes. Refer to <arithmetic task attribute> and <Boolean task attribute>. 

A task array can have no more than 15 dimensions. 

4-65 



Declarations 

TRANSLATETABLE 

TRANSLATETABLE DECLARATION 

Syntax 

<.translate table declaration> : := TRANSLATETABLE <translate table list> 
<translate table list> : :=<translate table element> I 

<translatetable list> , <translatetable element> 
<translatetable element>::= <translatetable identifier> ( <translation list> ) 
<translate table identifier>::= <identifier> 
<translation list> : :=<translation specifier> I 

<translation list> , <translation specifier> 
<.translation specifier> : := <source characters> TO <.destination characters> 

<translatetable identifier> 
<source characters> : := <string> I 

<character set> 
<.destination characters> : := <string> I 

<character set> I 
<special destination character> 

<character set> : := BCL I EBCDIC I ASCII I HEX 
<special destination character> : :=<string> 

Examples 

TRANSLATETABLE TTl (BCL TO EBCDIC, 6"+" TO 48 "4E"), 
TT2 (4"012345689ABCDEF" TO HEX), 
TT3 ( 8 "(" TO 8"[ ") 

TRANSLATETABLE EXPOSEALFA (EBCDIC TO ".", 
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" TO "ABCDEFGHIJKLMNOPQRSTUVWXYZ", 
"0123456789" TO "0123456789") 

Semantics 

A <translatetable declaration> defines one or more translate tables that can be used with the <replace 
statement>. 

The <character set> element is equivalent to a string containing all characters in the specified set, in 
ascending binary sequence, whose length is equal to the total number of characters in the set. 

The scope of a <string> is the characters in the <string>. The length of a <string> is its length in 
terms of its maximum internal character size. 

Each succeeding <translation specifier> overrides, within its scope, previous <translation specifier>s. 

Within a <translation list>, all source character sizes must be the same and all destination character 
sizes must be the same, although the character sizes of the source and destination parts need not be 
the same. 

The length of the <.destination part> must equal the length of the <source part>, unless the <special 

4-66 



Declarations 

TRANSLATETABLE 

destination character> is used, or if the <character set> is used for both the <source part> and the 
<destination part>. If the <special destination character> is used, all characters within the scope of the 
<source part> are translated to the <special destination character>; this character must be a string whose 
length is one ( 1) in terms of its maximum internal character size. 

Every translate table has a default base in which all source characters are translated to zero characters (all 
bits OFF). The use of a <J:haracter set> for both the source and destination parts invokes the standard 
table from the MCP and provides a way of obtaining a legitimate base upon which additional <translation 
specifiers> can be used, if desired, to override certain parts of the standard table. The use of a <translate 
table identifier> as a <translation specifier> can also be used to provide a base. 

When strings of equal length are used for the source and destination parts, translation is based upon the 
corresponding positions of the source and destination characters, starting from the left and proceeding to 
the right. 

TRANSLATION TABLE INDEXING 

The size of the translation table is determined by the size of the <source part> characters (characters to 
be translated): 4-bit characters, four-word table; 6-bit characters, 16-word table; 7- and 8-bit characters, 
64-word table. The translation table is one-dimensional read-only array. 

Each word in the translation table (figure4-J) has the following layout: the low-order 32 bits of each 
word in the translation table are divided into four 8-bit fields, numbered from left-to-right, 0 to 3. (The 
high-order 16 bits are zeros.) 

When a <source part> character is to be translated, the character is divided into two parts: the "word 
index" and the "field index". The field index consists of the two low-order bits; the word index is the 
remaining high-order bits. 

The word index designates the word in the translation table in which the field index locates the character 
to be used. 

4-67 



Declarations 

TRANSLATETABLE 
Continued 

BITS: 

translation 

7 

1 I 
6 5 4 

1 I ol 0 

word 
index 

3 2 

I 0 I 0 

1 0 

'-v--1 
field 
index 

l 

<source part> 
character to be 
translated "A". 

table I I fi" ~ld I I C~~J WORD:-~ __ e_m_p_t_y ________________ f_i_·~-1-d---f-i_~_l_d_.__f_i_~_l_d__. 

4-68 

[47:16] [31:8] [23:8] [15:8] [7:8] 

~~.--~~~~~~-translation table word----1 

Figure 4-1. Translation Table Indexing 

" 



Declarations 

TRUTHSET 

TRUTHSET DECLARATION 

Syntax 

<.truthset declaration> : := TRUTHSET <.truthset list> 
<truthset list>::= <truthset element> I 

<.truthset list> , <.truthset element> 
<truthset element> : := <.truthset identifier> ( <membership expression> ) 
<.truthset identifier> : :=<identifier> 
<membership expression> : :=<membership secondary> I 

<membership expression> <logical operator> <membership secondary> 
<membership secondary>::= <membership primary> I 

NOT <membership primary> 
<membership primary> : := <string> I 

<.truthset identifier> I 
( <membership expression> ) I 
ALPHA I ALPHA6 I ALPHA 7 I ALPHAS 

Examples· 

TRUTHSET T(ALPHA) 
TRUTHSET Z(ALPHA OR"-") 
TRUTHSET NUMBERS ("0123478956") 
TRUTHSET LETTERSCALPHA AND NOT NUMBERS) 
TRUTHSET HEXN(4"123"), BCLN(6"123"), ASCN(7"123") 

Semantics 

The <truthset declaration> defines one or more truthsets that can be used with the <scan statement>, 
the <replace statement>, and with the <.table membership> Boolean primary. 

All membership primaries of a <membership expression> must be of the same character type (4, 6, 7, or 
8), thereby determining the type of the truthset. The character size of strings is obtained from the 
maximum internal character size of the string. 

The <membership expression> is evaluated according to the normal rules of precedence for Boolean 
operators. 

Pragmatics 

The <.truthset declaration> takes a string of characters and builds a "truth table" which allows a 
programmer to do a truthset test that determines whether a given character is a member of a specified 
string. The truth table is built from elements that a compiler can completely evaluate at compile-time. 

All truthsets declared by a single declaration are made common to a single read-only array. Separate 
declarations produce separate read-only arrays. 

The truthset test references a bit in a read-only array by dividing the binary representation of the 
character being tested into two parts: the low-order five bits are used as a bit index, and the three 

4-69 



Declarations 

TRUTHSET 

Continued 

high-order bits are used as a word index. 

NOTE 

If the source character is 4, 6, or 7 bits, the machine 
adds high-order zero bits to make an 8-bit character 
before the "indexing algorithm" is used. 

The word index selects a particular word in the read-only array. The bit index is then subracted from 31, 
and the result is used to reference one of the low-order 32 bits in the selected word. As an algorithm: 

ARAY[CHAR.[7:3].[31- CHAR. [4:5]: 1]] 

Finally, the test character is "legitimate" (in the specified string of the declaration) if, and only if, the 
referenced bit is ON (= 1 ). 

Figure 4-2 shows that.the indexed bit, 13, is ON; therefore, the test character is valid. 

Binary representation of the 

test character (EBCDIC) 

"2" 

REPRESENTATION OF THE 

<string> 

8" 1 2 3 4 5 6" 

+ character to be 
referenced 

7 

x 

HIGH 

WORD 
INDEX 
"7" 

ORDER 
16 BITS 
~ 

Figure 4-2. Truthset Test 

4-70 

3 2 1 0 

I I x I I 
BIT 
INDEX 

"31-18=13" 

LOW 
ORDER 

32 BITS 

.L 

x..111'. 
t x 

~ x 

x 

. 

~ 



Declarations 

TYPE DECLARATION 

Syntax 

<type declaration> : := <alpha declaration> I 
<Boolean declaration> I 
<.double declaration> I 
<integer declaration> I 
<real declaration> 

Examples 

ALPHA ... 
BOOLEAN .. . 
DOUBLE .. . 
INTEGER .. . 
REAL ... 

Semantics 

TYPE 

A <type declaration> is used to declare <simple variable>s which can be used in a manner appropriate 
to the specified <type>. For example, a variable of <type> BOOLEAN is normally used in Boolean 
statements and expressions. Note that the "type transfer function" can be used (as can the <equation 
list> facility) to perform other kinds of operations on a variable than the specified <type> of the 
variable. 

Pragmatics 

The general use of each <simple variable> is as follows: 

TYPE 

ALPHA 

BOOLEAN 

DOUBLE 

INTEGER 

REAL 

MEANING/DESCRIPTION 

Character values; either six, 8-bit characters (normal), or eight, 6-bit characters (BCL); 
treated as <type> REAL. 
Logical values; a TRUE or FALSE test is dependent on the low-order bit (bit 0) of the 
word; use of the <partial word part> allows all 48 bits to be tested and/or manipulated 
as needed. 
"Double-precision" arithmetic values; a 96-bit entity (carried internally as two adjacent 
48-bit words). . 
Integer arithmetic values; a value which is maintained as a value with an exponent of 
zero. 
Real arithmetic values; a value which may or may not have an exponent. 

Appendix B contains more on the internal structure of each <simple variable> as implemented on the 
B 7000/B 6000 Information Processing System. 

4-71 



Declarations 

VALUE ARRAY 

VALUE ARRAY DECLARATION 

Syntax 

<value array declaration> : := <.array class> VALUE ARRAY <value array list> 
<value array list> : := <value array segment> I 

<value array list> , <value array segment> 
<value array segment>::= <value array identifier> (<t:onstant list>) 
<value array identifier> : := <identifier> 
<t:onstant list> : := <t:onstant> I 

<t:onstant list> , <t:onstant> 
<t:onstant> : :=<unsigned integer> ( · <t:onstant list> ) I 

<number> I 
<logical value> I 
<string> I 
<t:onstant expression> 

<t:onstant expression> : := {an expression which can be entirely evaluated by the ALGOL compiler at 
compile-time } 

Examples 

REAL VALUE ARRAY TEST (3(5, TRUE, "ABC")) 
EBCDIC VALUE ARRAY XRAY ("ABCDEFGHIJK") 
VALUE ARRAY FOX (1,2,3), CAT (4,S,6) 
VALUE ARRAY DOG (2*N+6,7 & S[3*N:4] & 1[47:1]) 

Semantics 

A <value array declaration> defines a read-only one-dimensional array of values. 

The <value array list> allows the user to specify multiple value arrays of the same· <type> in one 
declaration. 

The <unsigned integer> (<t:onstant list>) form of <t:onstant list> causes the values within the 
parentheses to be repeated the number of times specified by the <unsigned integer>. 

Pragmatics 

The comma in the <t:onstant list> causes word alignment of the next constant. <string>s greater than 
48 bits are left-justified with trailing zeros inserted in the word. <string>s equal to or less than 48 bits 
are right-justified with leading zeros inserted in the word. The <logical value> and <number> 
<t:on.stant>s are also right-justified with leading zeros inserted in the word. 

The <t:onstant expression> builds a 48-bit word from defines, concatenations, arithmetic and Boolean 
operations, or anything that can be completely evaluated by the compiler at compile-time. 

The MCP can overlay value arrays more efficiently, since they do not have to be written onto disk when 
their space in core is relinquished. 

4-72 



Statements 

STATEMENT 

STATEMENT 

Syntax 

<statement> : := <labeled statement> I 
<unlabeled statement> 

6. STATEMENTS 

<labeled statement> : := <label identifier> : <.conditional statement> I 
<label identifier> : <unconditional statement> 

<unlabeled statement> : := <.conditional statement> I 
<unconditional statement> 

Examples 

x := 1 
LBL: READ ( ... 
IF ALLDONE THEN ... 
NEXTIN: WHILE BOOL DO ... 

Semantics 

<statement>s are the active elements of an ALGOL program. They indicate some type of operation 
to be performed. <statement>s are normally executed sequentially, in the order in which they are 
written. This sequential flow of execution may be altered by a <statement> which indicates its successor 
to be other than the one which follows it in the program. 

As can be seen in the syntax above, <statement>s may be labeled or unlabeled. The majority of 
<statement>s in a program are usually unlabeled. Furthermore, the majority of <unlabeled state­
ment>s in a program are <unconditional statement>s. 

This section is arranged in alphabetical order according to the <statement>. 

5-1 



Statements 

ACCEPT 

ACCEPT STATEMENT 

Syntax 

<accept statement>::= ACCEPT ( <.pointer expression> ) 

Example 

ACCEPT (POINTER(Z,8)) 

Semantics 

The <accept statement> causes EBCDIC characters pointed at by the <.pointer expression> to be 
displayed on the display console. The maximum number of characters allowed is 430, and the last character 
must be followed by the EBCDIC NULL character (4"00"). The program is then suspended until the 
appropriate input response is keyed in at a display console. The input is placed in the array row to which 
the pointer points, and the program continues. The maximum number of input characters allowed is 960. 

The <accept statement> can be used as a <Boolean expression> such that the result is FALSE if an 
input message is not available. If its result is TRUE, an input message is available, and it is placed into the 
array row. In either case, the program is not suspended, but it continues execution. 

Pragmatics 

The input is placed "left justified" in the array row; i.e., leading blanks are discarded. Following the first 
non-blank character, the input is placed as-is in the array row and an EBCDIC NULL is placed at the end 
of the input. 

5-2 



Statements 

ASSIGNMENT 

ASSIGNMENT STATEMENT 

Syntax 

<assignment statement> : := <arithmetic assignment> I 
<array reference assignment> 
<.Boolean assignment> I 
<pointer assignment> I 
<task assignment> 

Examples 

A :=A+ 1 
XRAY := ARAY [3,*] 
BOOL := FALSE 
PTR := POINTER(INARAY,6) 
TSK.EXCEPTIONTASK := TSKIT 

Semantics 

The <assignment statement> causes the <expression> to the right of the :=to be evaluated; the value 
of the <expression> is then assigned to the entity, <variable>, or <partial word part> on the left. 

The action of an <assignment statement> is as follows: 

a. The <expression> following the := is evaluated. 
b. The location of the <variable> is determined. 
c. The resulting value is assigned to the <variable> or to the specified part thereof. 

Pragmatics 

The syntax, examples, semantics, and pragmatics of each form of the <assignment statement> are 
individually discussed in the following pages. 

NOTE 

The various forms of the <assignment state­
ment> are not called <. .. statement> 
because, in general, each of the forms can 
be used as a form of an <expression>. For 
example, "A := A + l" would be a <statement> 
if "bracketed" by semicolons(;). However, "IF 
A := A + 1 ) 100" illustrates its use as an 
<arithmetic expression>. 

5-3 



Statements 

ASSIGNMENT 

Arithmetic 

ARITHMETIC ASSIGNMENT 

Syntax 

<arithmetic assignment> : := <arithmetic variable> <partial word part> : =<arithmetic expression> 
<arithmetic attribute> : =<arithmetic expression> I 
<.type transfer variable> <partial word part>:= <arithmetic expression> 

<arithmetic variable> : := <variable> 
<variable> : :=<simple variable> I 

<subscripted variable> 
<simple variable> : := <identifier> 
<subscripted variable> : := <array name> [ <subscript list> ] 
<array name> : :=<array identifier> I 

<array reference identifier> I 
<value array identifier> 

<subscript list> : :=<subscript> I 
<subscript list> , <subscript> 

<partial word part> : := <empty> I 
[ <left bit> : <.number of bits> ] 

<left bit> : := <arithmetic expression> 
<.number of bits> : := <arithmetic expression> 
<arithmetic attribute>::= <arithmetic file attribute> I 

<arithmetic direct array attribute> 
<arithmetic task attribute> 

<arithmetic file attribute> : :;:: <file designator> <disk row/copy specifications> 
.<arithmetic-valued file attribute name> 

<disk row/copy specifications>::= <empty> I 
(<row/copy tiumbers>) 

<row/copy numbers> :·:= <row number> I 
<row number> , <copy number> 

<row number> : := <arithmetic expression> 
<copy number> : := <arithmetic expression> 
<arithmetic direct array attribute> : := <direct array row> 

.<arithmetic-valued direct array attribute name> 
<direct array row> : := <direct array identifier> I 

<direct array identifier> [ <row designator> ] 
<row designator> : := * I 

<row>, * 
<row>::= <arithmetic expression> I 

<row> , <arithmetic expression> 
<arithmetic-valued direct array attribute name> : := IOADDRESS I 

IOCHARACTERS I 
IOCW I 
IOERRORTYPE I 
IOMASK I 
IORECORDNUM 
IOTIME I 
IO WORDS 

5-4 



Statements 

ASSIGNMENT 

Arithmetic - Continued 

<arithmetic task attribute> ::=<task designator> • <.arithmetic-valued task attribute name> 
<arithmetic-valued task attribute name>::= CLASS I 

- COMPILETYPE I 
COREESTIMATE I 
DECLAREDPRIORITY 
ELAPSEDTIME I 
HISTORY I 
INITIATOR I 
JOBNUMBER I 
MAXCARDS I 
MAXIOTIME I 
MAXLINES I 
MAXPROCTIME 
OPTION I 
ORGUNIT I 
PROCESSIOTIME 
PROCESSTIME I 
RESTART I 
STACKNO I 
STACKSIZE I 
STARTTIME I 
STATION I 
STATUS I 
STOPPOINT I 
SUBSPACES I 
T ARGETTIME I . 
TASKATTERR I 
TASKVALUE I 
TYPE 

<type transfer variable>::= REAL (<variable>) I INTEGER (<variable>) I 
BOOLEAN (<variable>) I ALPHA (<variable>) 
DOUBLE (<variable>) 

Examples 

VAL:=7 
ARAY [4,5].l30:4] :=X 
FYLE.AREAS := 50 
FYLE (5). AREAS := 10 
DIRARA Y'IOCW :=4 "1030" 
TSK.COREESTIMATE := 10000 

Semantics 

In an <arithmetic assignment>, the appropriate implicit <type> conversion (INTEGER, REAL, or 
DOUBLE) is performed as required. 

5-5 



Statements 

ASSIGNMENT 

Arithmetic - Continued 

If there is a difference between the declared <type> of the variable to the left of the := and the value to 
be assigned to it, or if the left-side variables are of different arithmetic <type>s, the compiler reconciles 
the differences, but this can cause a change (rounding to integer) in the value assigned. 

The following rules apply: 

a. If the left-side is of <type>REAL and tµe expression value is of <type> INTEGER, the 
value is stored unchanged. 

b. If the left-side list is of <type> INTEGER and the expression value is of <type> REAL, the 
value is rounded before it is stored. 

c. If the left-side list contains variables of different <type>s, assignment of the value is executed 
from right-to-left. If, during this process, a real number is transferred to integer, this integer value 
is assigned to all the following variables at the left of the integer variable, regardless of their type. 

A multiple assignment of an <a.rithmetic attribute> or <a.rithmetic variable> <.partial word part> is 
allowed only if it is the first and the only <a.rithmetic attribute> or <a.rithmetic varii:ilJle> <.partial word 
part> within the <a.rithmetic assignment> statement. 

Example 

The following compile syntactically correct. 

X.[7:8] :=Y:=l; 
FILE.KIND:= Y := 1; 

The following compile syntactically incorrect. 

X.[7:8] : = Y. [7:8] : = 1; 
FILE.KIND := FILEl.KIND := 2; 

Pragmatics 

An "update replacement" can be spedfied with an asterisk(*) after the colon equal(:=) by an assignment 
to an <a.rithmetic variable> whose <.partial word part> is <empty>. For example, "A:= *+l;" 
produces the same results as "A :=A+ 1 ;".Updating a <subscripted variable> via this method is more 
efficient. 

<.partial word part> 

If non-<empty>, the <left bit> part must specify a bit number of 47 thru 0, inclusive. The <number of 
bits> must specify 48 thru 0, inclusive. If through the use of <variable>s a program violates either of 
these requirements, an INVALID OP will occur. 

5-6 



Statements 

ASSIGNMENT 

Array Reference 

ARRAY REFERENCE ASSIGNMENT 

Syntax 

<a.rray reference assignemnt>::=<a.rray reference variable>:=<a.rray designator> 
<a.rray reference variable>::=<a.rray reference identifier> 
<a.rray designator>::=<a.rray name> I 

<subarray designator> 
<subarray designator>::=<a.rray identifier> [<subscript part> <subarray part> ] I 

<a.rray reference identifier> [<subscript part> <subarray part>} 
<subscript part>::=<empty> 

<subscript list>, 
<sub.array part>::=* I 

<subarray part>, * 

Examples 

BOOLARAY:=REELARAY 
EBCDICARAY := INPUTARAY (*] 
SUBARAY := BIGARAY [N,*,*] 
ARAYROW :=MULTIDIMARAY [I,J,K,*] 

Semantics 

An <a.rray reference assignment> is used to generate a "copy descriptor" of an array or portion of an 
array. Subsequent use of the <a.rray reference variable> references the array or portion thereof. (Refer 
to <a.rray reference declaration>:) 

The lex level of the <a.rray designator> may not be greater than that of the <a.rray reference variable>. 
i.e., the lex level of the <a.rray reference variable> may not be global to the <a.rray designator>. 

If the <a.rray reference variable> is declared DIRECT, then only DIRECT <a.rray designator>s may be 
assigned to it. However, a non-DIRECT <a.rray reference variable> may be assigned either DIRECT or 
non-DIRECT <a.rray designator>. 

If the number of dimensions of <a.rray reference variable> and/or the <a.rray designator> are greater 
than one ( 1 ), their <a.rray class>es must agree. If they are both single-dimensioned, the <a.rray 
designator> may have any <a.rray class>;· the generated copy descriptor is modified as necessary to agree 
with the <a.rray class> of the <a.rray reference variable>. 

Pragmatics 

Typical uses of an <a.rray reference assignment> would include: 

1. a more efficient means of performing arithmetic operations on multi-dimensioned arrays; e.g., 
extract a particular row and avoid continual multi-indexing back to the same row each time. 

2. concurrent but different usages of the same array; e.g., an array which contains either or both 
BOOLEAN and REAL information. 

5-7 



Statements 
".-, 

ASSIGNMENT 

Boolean 

BOOLEAN ASSIGNMENT 

Syntax 

<Boolean assignment> : := <Boolean variable> <partial word part> : = <Boolean expression> 
<Boolean attribute> :=<Boolean expression> 

<Boolean variable> : := <variable> 
<Boolean attribute> : := <Boolean file attribute> I 

<Boolean direct array attribute> 
<Boolean task attribute> 

<Boolean file attribute>::= <file designator> <disk row/copy specifications> 
. <Boolean-valued file attribute name> 

<Boolean direct array attribute> : :=<direct array row> . 
<Boolean-valued direct array attribute name> 

<Boolean-valued direct array attribute name> : := IOCANCEL I 
IOCOMPLETE 
IOEOF I 
IOPENDING I 
IO RESULT 

<Boolean task attribute> : := <task designator>. <Boolean-valued task attribute name> 
<Boolean-valued task attribute name> : :=.LOCKED 

Examples 

BOOL :=TRUE 
BOOLARAY [N] .[30:1] := Q ( VAL 
HIGHER := PTR ) PTS FOR 6 

Semantics 

A <Boolean assignment> is used to store Boolean information (which has either been declared 
BOOLEAN or whose "<type> has been changed with the BOOLEAN type transfer function). 

5-8 

NOTE 
The contents stored into a <Boolean variable> 
are the result of a <Boolean expression>. 



POINTER ASSIGNMENT 

Syntax 

<pointer assignment> : := <pointer variable> := <pointer expression> 
<pointer variable> : := <pointer identifier> 

Examples 

PTR := POINTER(ARA Y) 
PTS := EBCDICARAY[S] 
PINFO := PTR + 17 
POUT := POINTER(INSTUFF[N] ,4) 

Semantics 

Statements 

ASSIGNMENT 

Pointer 

A <pointer assignment> is used to create a "pointer" which can then be used for various character 
purposes such as editing, testing, and scanning. (Refer to <replace statement> and <scan statement>.) 

Pragmatics 

A <pointer assignment> causes the creation of a "copy descriptor" of an array. The <pointer vanable> 
(copy descriptor) can be set up with the needed <character.size> via the <pointer designator> syntax. 

,CAUTION 

Even though syntax allows it to be so, the <pointer 
variable> should not be global to the declaration 
of the array into which it "points." Total system 
failure can occur. 

5-9 



Statements 

ASSIGNMENT 

Task 

TASK ASSIGNMENT 

Syntax 

<task assignment> : :=<task-valued task attribute> :=<task designator> 
<task designator> : := <task identifier> I 

<task array identifier> [ <subscript list> ] I 
MYSELF I 
<task designator> . <task-valued task attribute> 

<task-valued task attribute> : := <task designator> • <task-valued task attribute name> 
<task-valued task attribute name> : := EXCEPTIONTASK I 

PARTNER I 
<task-valued task attribute name> . <task-valued task attribute name> 

Examples 

TISKIT.EXCEPTIONTASK := TASKIT 
TSK.EXCEPTIONTASK := TASKARAY[N] 
TASKVARB.PARTNER :=COHORT 
MYSELF.PARTNER := COWORKERS[INDX] 
MYSELF.PARTNER.EXCEPTIONTASK :=MYSELF.PARTNER.PARTNER 

Semantics 

As can be seen in the syntax, a <task assignment> is used to assign either of the <task-valued attribute 
name>s, EXCEPTIONTASK and PARTNER. 

Briefly stated, the EXCEPTIONEVENT of a program's EXCEPTIONTASK will be CAUSEd whenever 
that program's status changes; e.g., suspended, terminated. 

The PARTNER task attribute is used in conjunction with the <continue statement>. 

5-10 



Statements 

ATTACH STATEMENT 

Syntax 

<attach statement> : := ATTACH <interrupt identifier> TO <event designator> 
<event designator> : := <event identifier> I 

<event array identifier> [ <subscript list> ] I 
<event-valued task attribute> 

<event-valued task attribute> : := <task designator>. <event-valued task attribute name> 
<event-valued task attribute name> : := EXCEPTIONEVENT 

Examples 

ATTACH IBEPHONE TO THEBELL 
ATTACH ANSWERHI TO MYSELF.EXCEPTIONEVENT 

Semantics 

ATTACH 

The <attach statement> associates an interrupt with an event. The association is such that causing the 
event interrupts the main program and places the interrupt code into execution (providing the interrupt 
is enabled; refer to the <enable statement>). 

Pragmatics 

While different interrupts can be simultaneously attached to the same event, a particular interrupt can at 
any one time be attached to only a single event. For this reason, if, at attach time, it is found that the 
interrupt is already attached to an event, it is automatically detached from the old event and then attached 
to the new event. Any pending invocations of the interrupt are lost. 

It is possible to attach an interrupt to an event that is declared in a different <block>, for example, attach 
a local interrupt to a formal event. This can lead to certain compile-time or run-time UP LEVEL ATTACH 
errors if it is found potentially possible for the <block> containing the event to be exited prior to 
exiting the <block> that contains the interrupt. 

5-11 



Statements 

BREAKPOINT 

BREAKPOINT STATEMENT 

Syntax 

<breakpoint statement>::= BREAKPOINT 

Example 

ON ANY FAULT, BEGIN BREAKPOINT; GO TO L;END; 

Semantics 

The <breakpoint statement> allows a user to interactively examine values o{ variables during the 
execution of a program. · 

Pragmatics 

The execution of the <breakpoint statement> is a direct call on the BREAKPOINT intrinsic. This type 
of call may be used anywhere in the code; it is especially useful in an <on statement> or a software 
interrupt. 

(Refer to the BREAKHOST and BREAKPOINT compiler options, appendix D, in order to create the 
necessary environment for interactive debugging using the <breakpoint statement>.) 

5-12 



Statements 

CALL 

CALL STATEMENT 

Syntax 

<t:all statement> : := CALL <procedure identifier> <actual parameter part> [ <.task designator> ] 
<actual parameter part> : :=<empty> I 

( <actual parameter list> ) 
<actual parameter list> : := <actual parameter> I 

<actual parameter list> <parameter delimiter> <actual parameter> 

<actual parameter> : :=<expression> I 
<a"ay designator> I 
<direct file ident~fier> I 
<direct switch file identifier> 
<event designator> I 
<event array identifier> I 
<file designator> I 
<switch file identifier> I 
<format designator> I 
<switch format identifier> .1 
<label identifier> I 
<switch label identifier> 
<l.ist designator> I 
<switch list identifier> 
<picture identifier> I 
<procedure identifier> 
<.task designator> I 
<.task array identifier> 

<parameter delimiter> : := , I 
)" <Jetter string> "( 

<Jetter string> : :=t any character string not containing a quote } 

Examples 

CALL COROOTEEN (X,Y,7, X+Y+Z) [TSK] 
CALL HOME (OLDV AL,NEWV AL,FUNC) [TSKALA Y[INDX] ] 

Semantics 

The <t:all.statement> initiates a procedure as a "co-routine". Initiation consists of setting up a separate 
stack, transferring any parameters that are passed, (by name or by value) and beginning the execution of 
its statements. Processing of the initiator is suspended. 

The specified procedure cannot be typed. 

Every co-routine has a "partner" task to whom control can be passed via the <continue statement>. 
The PARTNER task is set by default to the initiator, but may be changed by use of the appropriate 
<.task-valued task attribute>. 

5-13 



Statements 

CALL 

Continued 

Local variables and call-by-value parameters retain their values as control is passed to/from the co-routine. 

There is a "critical block" in the caller's stack which cannot be exited until the co-routine is terminated. 
An attempt by the caller to exit that <block> before the co-routine is terminated will cause the caller 
(and all offspring) to be terminated. 

A co-routine is terminated by exiting its own outermost block or by executing the statement "<task 
designator>. STATUS:= -1;" . . 
The <actual parameter part> must agree with the <formal parameter part> of the callee, or a run-time 
error will occur. · 

The <task designator> associates a task with the co-routine at initiation such that the MCP will set up 
the co-routine according to certain constraints such as COREESTIMATE, STACKSIZE, 
DECLAREDPRIORITY, and so forth. Refer to <arithmetic task attribute> and <Boolean task attribute>. 

Pragmatics 

As stated earlier, ·the <call statement> causes the initiation and set up of a separate stack as a co-routine. 
Because of the overhead involved, a co-routine should be established once and then used via <continue 
statement>s. If a <call statement> is used as a <procedure statement>, overall system efficiency will 
be severely degraded. 

5~14 



Statements 

CASE STATEMENT 

Syntax 

<case statement>::= CASE <arithmetic expression> OF <case body> 
<case body>::= BEGIN <.statement list> END I 

BEGIN <numbered statement list> END 
<numbered statement list>::=<numbered statement group> I 

<numbered statement group> ; <numbered statement list> 
<numbered statement group>::=<number list> <.statement list> 
<number list>::=<u.nsigned integer>: I 

ELSE: I 

<unsigned integer>: <number list> 

ELSE : <number list> 

<.statement list>::= <.statement> I 
<.statement list> ; <.statement> 

Examples 

CASE I OF 
BEGIN 

J := 1; 
J :=20; 
BEGIN 

J := 3; 
K :=O; 

END; 
J := 4; 

END; 

CASE I OF 
BEGIN 

1:2:5:7: 

3:4:20: 

J := 3; 
Q := J-1; 
J :=4 

ELSE: GOTOBADCASEVALUE; 
END; 

Semantics 

CASE 

The <case statement> provides a convenient means of dynamically selecting one of many alternative 
statements for execution at a particular point in the processing of a program. There are two types of 
<:.r:ase body>s: implicitly numbered statements and explicitly numbered statements. The code is 
selected differently for each type. · 

5-15 



Statements 

CASE 

Continued 

IMPLICITLY NUMBERED STATEMENTS 

The <statement> to be executed is selected by first evaluating the <arithmetic expression> in the 
<case head>. If its value is not integral, it is integerized by rounding and then used as an index to the 
statements in the <case body>. The N statements in the <case body> are numbered 0 to N-l. The 
<statement> corresponding to the index value is the <statement> executed. If the index value is less 
than zero or greater than N, an INVALID INDEX interrupt is generated. Only one <statement> in the 
<case body> can be selected each time the <case statement> is executed; however, this <statement> 
can be a <compound statement>, <block>, another <case statement>, or a null statement. (A null 
statement is a <dummy statement> that occupies a position in a <case statement>.) 

EXPLICITLY NUMBERED STATEMENTS 

This form of the <case statement> r~quires that the user explicitly number the statement groups. The 
<numbered statement group>s must lie within the range of 0 to N. If the il}tegerized value of the 
<arithmetic expression> is less than 0 or greater than N or the integerized value is not associated with 
some <statement list> an INVALID INDEX interrupt is generated. However, if an ELSE: has been 
specified in a <number list>, control is transferred to the <statement list> following the ELSE:. At the 
end of each <numbered statement group> a branch is generated to the <statement> following the 
<case statement>. 

Pragmatics 

A <case statement> cannot have more than 1024 <numbered statement group>s. 

5-16 



Statements 

CAUSE STATEMENT 

Syntax 

<L:ause statement> : :=CAUSE ( <event designator> ) 

Examples 

CAUSE (EVNT) 
CAUSE (EVNTARAY[INDX]) 
CAUSE (TSK.EXCEPTIONEVENT) 

Semantics 

CAUSE 

The <L:ause statement> activates all tasks that are waiting on the event. Normally the <L:ause 
statement> also sets the event to the HAPPENED state. (Refer to the <waitandreset statement> for 
exceptions.) 

If there is an enabled interrupt attached to the event, each cause of the event will result in one execution 
of the interrupt code. 

Pragmatics 

"Activating a task" does not guarantee that the task goes into immediate execution. Activating a task 
consists of delinking the task from an event queue (each event has its own queue), and linking that task 
in priority order into a system queue called the READYQ. The READYQ is a queue of all tasks that are 
capable of running. Tasks are taken out of the READYQ when either a processor is assigned to the task 
or the task must wait for something such as an 1/0 operation or an event to be caused. A task will only be 
placed into actual execution when it is the top item in the READYQ and a processor is available. 

A CAUSE of a HAPPENED event is essentially a no-op; i.e., the system does not "remember" every 
cause unless an interrupt is attached to the event. 

5.-17 



Statements 

CAUSEANDRESET 

CAUSEANDRESET STATEMENT 

Syntax 

<causeandreset statement>::= CAUSEANDRESET ( <.event designator> ) 

Examples 

CAUSEANDRESET (EVNT) 
CAUSEANDRESET (EVNTARAY[INDX]) 
CAUSEANDRESET (MYSELF .EXCEPTIONEVENT) 

Semantics 

' ' ; . 

The <causeandreset statement> activates all tasks waiting on the event. It varies from the <cause 
statement> in that the resultant state of the event is set to NOT HAPPENED. 

Pragmatics 

Refer to <cause statement>. 

'.'. '· 

5-18 



CHANGEFILE STATEMENT 

Syntax 

Statements 

CHANGEFILE 

<changefile statement>::= CHANGEFILE.(<directory element>,<directory element>) 
<directory element>::= <pointer expression> I 

<a.rray row> I 
<directory string> 

<directory string>::= "<filetitle>." I 
"<filetitle> ON <.packname>." 

Example Program 

Program changes A/,B to C/D and then removes C/D. 

BEGIN 
ARRAY A, B [0:44); 
BOOLEANB; 
POINTER PA, PB; 
PA:= POINTER (A[O]); 
PB:= POINTER (B[O] ); 
REPLACE PA BY 8 "A/B."; 
REPLACE PB BY 8 "C/D."; 
IF B:= CHANGEFILE (PA,PB) THEN ERROR; 
IF B:= REMOVEFILE (8"C/D.") THEN ERROR; 

END. 

Semantics 

The <changefile statement> changes the names of directories and files without opening them. The 
second <directory element> designates the title to which the first title is to be changed. If the change is 
on a pack, the second title must be followed by "ON <packname>.". An error is returned if the first title 
includes a packname. The <changefile statement> returns a value of TRUE if an error occurred. The 
error numbers, stored in [39:20), defining the failure are as follows: · 

a. 10 - first filename in error. 
b. 20 - second filename in error. 
c. 30 - filename has not been changed. 

(Refer to the <removefile statement>.) 

5-19 



Statements 
' 

CHECKPOINT 

CHECKPOINT STATEMENT 

Syntax 

<checkpoint statement>::= CJ1ECKPOINT (<.device>, <.disposition>) 
<.device>::= DISK I 

DISKPACK I 
PACK I 

<.disposition> : := LOCK I 
PURGE 

Example 

BOOL :=CHECKPOINT (DISK, PURGE) 

Semantics 

The checkpoint/rerun facility gives the programmer a tool to protect a program against the disruptive effects 
of unexpected interruptions in its execution by _periodically invoking the "checkpoint" procedures. This 
procedure takes a complete snapshot of the job and stores it on disk. The job can then be restarted in case 
its subsequent normal operation is interrupted. If a halt/load or other system interruption occurs, the job 
is restarted either at the last "no task active" point or, if the operator permits, at the last checkpoint, 
whichever is more recent. Checkpoint information can also be retained after a successful run to permit 
restarting a job to correct a bad data situation. 

The <.device> options determine the media to be used for the checkpoint files. 

The <.disposition> option PURGE.removes all files at successful termination of the job and protects the 
job against system failures. The WCK .. ().ption saves all files indefinitely and can be used to RESTART a 
job even if it has terminated normally. 

Values returned by the <checkpoint statement> as a result of an attempted checkpoint are as follows: 

[0: 1] = 
[ 10: 10] = 
[25:12] -
[46:1] = 

exception bit , 
completion code (refer to checkpoint/restart messages) 
checkpoint number 
restart flag ( 1 = restart) 

Pragmatics 

When a check1Joint is invoked, the following files are created: 

5-:20 

a. The checkpoint file - CP/<JN>/<CPN> 
where <JN> is a four digit job number and <CPN> is a three digit checkpoint number. If the 
PURGE option has been specified, the checkpoint number is always zero and each succeeding 
checkpoint with purge removes the previous one (within the job). If the LOCK option is used, the 
checkpoint number starts at a value of one for the first checkpoint and is incremented by one for 



Statements 

CHECKPOINT 

Continued 

each succeeding checkpoint with lock in the job. If the two types are mixed within a job, the 
"locked" checkpoints use the ascending number and the "purged" checkpoints use zero, leaving· 
0-n at the completion of the job. 

b. Temporary files -CP/<JN>/F<FN> 
where <FN> is a three digit file number which starts at one and is incremented by one for each 
temporary disk or system resource pack file. 

c. Job files - CP/<JN>/JOBFILE 
This file is created under the LOCK option only. 

The LOCK/PURGE option also has an effect when the task terminates. If the task terminates abnormally 
and the last checkpoint has used the PURGE option, then the checkpoint file(# 0) is changed to have the 
next sequential checkpoint number and the jobfile is created if necessary. If the job terminates normally 
and only purge checkpoints have been taken, the CP/<JN> directory is removed. 

Restarting 

There are two ways a job may be restarted: 

a. After a Halt/Load. The system will automatically attempt to restart any job that was active at 
the time of a halt/load. If a checkpoint had been invoked since the last "no active task" point, 
then the operator will be given an RSVP to determine whether the job should be restarted. He 
can respond OK (restart at the last checkpoint), DS (don't restart), or QT (don't restart but save 
the files for later restart if it was a checkpoint with purge). 

b. <rerun> statement. A job may be restarted programmatically in the Workflow Language by use 
of a <rerun statement>. 

RERUN <JN>/<CPN> 

Example: RERUN 1234/2 restarts job 1234 at checkpoint 2. 

Conditions that can inhibit a successful restart are as follows: 

a. Usercode invalid 

b. OLA YROW different value 

c. Program recompiled since checkpoint 

d. Different MCP level 

e. Different intrinsics 

5-21 



Statements 

CHECKPOINT 

Continued 

Restrictions 

There are restrictions on the use of system features when used in conjunction with the checkpoint /rerun 
facility. These restrictions which will inhibit a successful checkpoint are summarized as follows: 

a. Direct I/O (direct arrays or direct files) 

b. Data Comm I/O (open data comm files) 

c. Open DMS sets 

d. Interprogram communication (the task being checkpointed must have no children or siblings, 
and its parent must be the WFL job) 

e. Paper tape I/O 

f. SPO files 

g. Duplicated files 

h. Output directly to line printer or card punch (backup is acceptable) 

i. Task running in swap space 

j. Checkpoints may not be taken inside sort input or output procedures (sort provides its own 
restart capability) 

k. Checkpoints may not be taken in a compile-and-go program, as this creats an IPC environment 

Further Considerations 

For jobs which take a large number of checkpoints with lock, the checkpoint number counts up to 999 and 
then recycles to 1 (leaving 0 undisturbed). When this happens, the checkpoints previously numbered 1, 2, 
etc. are lost as new ones using those numbers are created. 

If a temporary disk file is open at checkpoint, it is locked under the CP directory. If it is subsequently 
locked by the program, the name is changed to the current file title. At restart the file is looked for only 
under the CP directory resulting in a NO FILE condition. To avoid this, all files which are to be eventually 
locked should be opened with file attribute PROTECTION set to SA VE. (To remove the file, it must 
be closed with purge.) True temporary files which are never locked do not have this problem. All data 
files must be on the same medium as they were at the checkpoint. They do not have to be on the same 
units or the same locations on disk or disk pack. They must necessarily retain the same characteristics 
(blocking, etc.). The checkpoint/rerun system makes no attempt to restore the content of a file to the 
state it was in at the time of the checkpoint. The file is merely repositioned. At this time, volume 
numbers are not verified. 

5-22 



Statements 

CHECKPOINT 

Continued 

As a result of the IPC restriction, CANDE (and currently RJE) may not be used to run a program with 
checkpoints. The checkpoints will not be taken. 

If a rerun is initiated and the job number is in use by another job, a new job number is supplied _and the 
CP/<JN> directory node is changed to reflect the new job number. 

When a job is restarted at some checkpoint which was not the last, subsequent checkpoints taken from the 
restarted job continue in numerical sequence from the one used for the restart. Previous high-numbered 
checkpoints are lost. 

Checkpoint/Restart Messages 

The following are a list of messages that can appear as the result of a checkpoint/restart. 

CHECKPOINT MESSAGES COMPLETION VALUE 

CHECKPOINT #nnn 0 
INVALID AREA IN STACK . 1 
SYSTEM ERROR . . . . . 2 
BAD IPC ENVIRONMENT· . . 3 
NO USER DISK FOR CP FILE 4 
IO ERROR DURING CHECKPOINT S 
#ROWS IN CP FILE> 1024 . . . 6 
DIRECT FILE NOT ALLOWED . . 7 
TOO MANY TEMPORARY DISK FILES 8 
PAPER TAPE FILE NOT ALLOWED . 9 
DUPLICATED FILE NOT ALLOWED 10 
CON FILE NOT ALLOWED . . . . 11 
CARD PUNCH FILE NOT ALLOWED l2 
OPEN REVERSED TAPE FILE NOT ALLOWED 13 
DISKHEADER IN STACK . . . . 14 
DMS AREA IN STACK . . . . . 1 S 
DIRECT ARRAY IN STACK . . . 16 
DIRECT DOPE VECTOR IN STACK 17 
SUBSPACE IN ST ACK . . . . 18 
STACKMARK . . . . . . . . 19 
SORT AREA IN STACK . . . . 20 
REMOTE FILE NOT ALLOWED 21 
ILLEGAL CONSTRUCT . . . 22 
BDBASE ILLEGAL . . . . . 23 
TEMP FILE ON NAMED PACK 24 

5-23 



Statements 

CHECKPOINT 

Continued 

5-24 

RESTART MESSAGES 

RESTART PENDING (RSVP) 
MISSING CHECKPOINT FILE 
IO ERROR DURING RESTART 
USECODE NO LONGER VALID 
OPERATOR DSED'RESTART 
OPERATOR QTED RESTART 
MISSING CODE FILE 
NOT ABLE TO RESTART 
INVALID JOB FILE 
ERR COPYING JOB FILE 
RESTART AS CP/nnnn 
MISSING JOB FILE 
FILE POSITIONING ERROR 
WRONG JOB FILE 
WRONG CODE FILE 
BAD CHECKPOINT FILE 
BAD STACK NUMBER 
WRONGMCP 



CLOSE STATEMENT 

Syntax 

<.close statement> : :=CLOSE ( <file designator> ) I 
CLOSE ( <file designator> , <.close option> ) 

<.close option> : := * I PURGE I REEL I CRUNCH 

Examples 

CLOSE (FILEID) 
CLOSE (FILEID, *) 
CLOSE (FILEID, PURGE) 
CLOSE (FILEIU, REEL) 
CLOSE (FILEID, CRUNCH) 

Semantics 

The <close statement> causes the referenced file to be closed. 

With no <close option>, the following actions take place: 

' 

Statements 

CLOSE 

a. On a card output file, a card containing an ending label is punched. The file must be labeled. 
b. On a line printer file, the printer is skipped to channel 1, an ending label is printed, and the 

printer is again skipped to channel 1. The file must be labeled. 
c. On an unlabeled tape output file, a double tape mark is written after the last block on tape 

and the tape is rewound. 
d. On a labeled tape output file, a tape mark is written after the last block on the tape; then an 

ending label is written followed by a double tape mark and the tape is rewound. 
e. On a disk file, if the file is a temporary file, the disk space is returned to the system. 
f. The I/O unit is released to the system. 

For all types of files, the buffer areas are returned to the system. 

<.close option> 

If the"*" symbol is used and the file is a tape file, the' I/O unit remains under program control and the 
tape is not rewound. This construct is used to create multi-file reels. 

When the"*" symbol is used on multi-file input tapes, and LABELTYPE =STANDARD, the following 
actions can take place: If the value of the attribute DIRECTION is FORWARD, the tape is positioned 
forward to a point just following the ending label of the file; if the value of the attribute DIRECTION 
is REVERSE, the tape is positioned to a point just in front of the beginning label for the file; if the 
end-of-file branch has been taken, no action is performed to position the file. On a single-file reel, the 
action taken is the same as for a multi-file reel. The next reference to this file must be read in the 
opposite direction from that of the prior read on the file; otherwise the program encounters end-of-file. 

When the"*" symbol is used and LABELTYPE is not STANDARD, the tape is spaced over the tape 
mark (or read) or a tape mark is written on output going forward. The essential difference is that with 
OMITTEDEOF, labels are not spaced over; but, with STANDARD, labels are spaced over. 



Statements 

CLOSE 

Continued 

If the PURGE option is used, the file is closed, purged, and released to the system. If the file is a 
permanent disk file, it is removed from the disk directory and the disk space is returned to the system. 

If the REEL option is used, the file must be a multi-reel tape file. The current reel is closed and a 
subsequent reference of the file implicitly opens the next reel. This is provided primarily for the use of 
d.irect tape files, where the system does not automatically perform reel switching. 

If the CRUNCH option is specified, the file must be a disk file. The unused portion of the last row 
(beyond ·the end-of-file indicator) of disk space is returned to the system. Note that the file cannot be 
"expanded", but can be written inside of the end-of-file limit. 

5-26 

NOTE 

All combinations of the <close statement> which 
are not valid for the type of unit which is assigned 
to the file are equivalent to the <rewind 
statement>. 



Statements 

CONDITIONAL 

CONDITIONAL STATEMENT 

Syntax 

<.conditional statement> : := <if statement> I 

Examples 

<if statement> ELSE <statement> 
<iteration statement> 

IF BOOL THEN GO TO EOJ 
IF Q> VAL THEN X := 0 ELSE X := * + 1 
IF NOGO THEN BEGIN . . . END ELSE BEGIN . . . END 
WHILE BOOL DO ... 

Semantics 

The <.conditional statement> causes its constituent statements to be executed or skipped depending 
upon the logical value of the <Boolean expression>. 

<if clause> <statement> 

One of the permissible forms of a <.conditional statement> is <if clause> <statement>. This form 
operates as follows: The <statement> following the sequential operator THEN is executed if the logical 
value of the preceding <Boolean expression> is TRUE; otherwise, that <statement> is ignored. 

NOTE 

In the examples that follow, BE represents any 
<Boolean expression>, and S represents any 
<statement>. 

ITRUE11 s+ 

IF BE THEN S; 

l___FALSE t 

<if clause> <statement> ELSE <statement> 

A second form of the <conditional statement> contains the sequential operator ELSE.This form of the 
<.conditional statement> operates as follows: If the logical ·value produced by the <Boolean expression> 
is TRUE, the statement follmying the sequential operator THEN is executed and the statement following 
the sequential operator ELSE is ignored. If the logical value of the <Boolean expression> is FALSE, 
the statement following the sequential operator ELSE is executed and the statement following the 
sequential operator THEN is ignored. 

5-27 



Statements 

CONDITIONAL 

Continued 

ITRUE=11 1 
IF BE THEN S ELSE S· S 

L FALSE t &.-...( __ ___,...___,f 

NESTED <conditional statement>s 

The statements following the delimiters THEN and ELSE, or both, may be conditional statements or a 
'\eries of nested conditional statements. 

The <Boolean expression>s in the <if clause>s of these statements are evaluated left-to-right in a 
manner similar to the evaluation of the conditional arithmetic expression. 

When using nested <conditional statement>s, the programmer must remain aware of the necessity of 
maint~ining correspondence between the delimiters THEN and ELSE. 

For explanatory purposes, assume that a given statement has equally matched THEN-ELSE pairs. In such 
a case, the innermost THEN and the immediately following (the innermost) ELSE are treated as one of 
pair, and from this center the pairs proceed outwards. This case is illustrated as follows: 

Conditional S: 

I 
THEN(l) ELSE(4) 

-------------------------------~ 

THEN(2) ELSE(3) 
---------------------~ 

THEN(3) ELSE(2) ------------. 
THEN(4) ELSE(l) 

s· ' 

If THEN appears more often than ELSE in the statement, the pairs of delimiters are matched as described 
in the example above, and the first, and any following THEN not having a corresponding ELSE, causes 
the program to transfer to the next statement if the <Boolean expression> yields a value of FALSE. 
This case is illustrated as follows: 

5-28 



Conditional S: 

THEN(l) .-----------------------1 

In the case illustrated by: 

Conditional S: 

THEN(2) 
.-------------~ 

THEN(3) ELSE(2) 

ELSE(l) 
-------

THEN(4) 

THEN(l) 

THEN(2) 

ELSE(3) 

.-------------. 
THEN(3) ELSE(2) ,..----------., 

THEN(4) ELSE(l) 

s· ' 

S· 
' 

Statements 

CONDITIONAL 

Continued 

the ALGOL compiler would not produce the required result because ELSE( 3) would be matched with 
THEN(2) and, if the <Boolean expression> preceding THEN( 1) yielded a value of FALSE, the program 
would skip ELSE(3) and continue in sequence. 

However, since a statement within a statement could itself be a <compound statement> or a <block>, 
the correspondence of the delimiters could be established clearly by defining the nested <conditional 
statement>s as <compound statement>s, the bracket words BEGIN and END indicating the different 
levels of nomenclature. 

ENTERING A <conditional statement> 

A <go to statement> may lead to a <labeled statement> within a <conditional statement>. The 
subsequent action is equivalent to what would occur if the <conditional statement> is entered at its 
beginning and evaluation of the <Boolean expression> causes the <labeled statement> to be executed. 

5-29 



Statements 

CONTINUE 

CONTINUE STATEMENT 

Syntax 

<continue statement> : := CONTINUE I 

Examples 

CONTINUE 
CONTINUE (PROCl) 

Semantics 

CONTINUE ( <task designator> ) 

The execution of <continue statement>s causes programmatic control to pass back and forth between 
co-routines. 

Because the execution of <continue statement>s causes control to alternate between primary and. 
secondary co-routines, processing always continues at the point where it terminated. 

The secondary co-routine uses the form without the <task designator> to pass control back to its 
primary (often referred to as an "empty <continue statement>"). 

Pragmatics 

A co-routine is a program (separate stack) that is established by means of a <call statement>. The 
"caller" is referred to as the "primary" and the "callee" as the "secondary". 

5-30 



Statements 

DEALLOCATE 

DEALLOCATE STATEMENT 

Syntax 

<deallocate statement>::= DEALLOCATE ( <array row> ) 

Examples 

DEALLOCATE(ARAY) 
DEALLOCATE (MATRIXARY [INDX,*]) 

Semantics 

The <deallocate statement> causes the contents of the specified <array row> to be discarded and the 
memory area to be returned to the system. 

Pragmatics 

When the <array row> is deallocated, it is made not present (all data is lost). When the <array row> is 
used again, it is made present and each element is reinitialized to zero. 

5-31 



Statements 

DETACH 

DETACH STATEMENT 

Syntax 

<detach statement>::= DETACH <interrupt indentifier> 

Examples 

DETACH THEPHONE 

Semantics 

The <detach statement> severs the association of an interrupt to an event. Any pending invocations of 
the interrupt are discarded. Detaching an interrupt that is not attached is essentially a "no-operation", 
that is, no error mechanism invocation occurs. 

The enabled/disabled condition of the interrupt is not changed by a <detach statement>; upon a 
subsequent <attach statement> the condition is the same as it was before the <detach statement>. 

5-32 



DISABLE STATEMENT 

Syntax 

<disable statement> : := DISABLE I 
DISABLE <interrupt identifier> 

Examples 

DISABLE 
DISABLE THEPHONE 

Semantics 

Statements 

DISABLE 

The <disable statement> consisting simply of "DISABLE" (i.e., does not specify a particular <interrupt 
identifier>) is referred to as a "general disable" and, as such, a flag is set which causes the system not to 
look for interrupt code to execute for this task. The effect of this is as if all interrupts for the task have 
been set to their disabled state. During this period, all interrupts whose associated events are caused are 
placed in an interrupt queue of the task. 

If the <disable statement> specifies an <interrupt identifier>, just that interrupt is disabled and the 
system queues them until subsequently enabled. 

The purpose of queueing interrupts is to guarantee that no interrupts will be "lost" during the time they 
are attached. (See the <.attach statement>.) Queueing continues until the appropriate <.enable state­
ment> is executed. 

Note that disablement or enablement of an interrupt is independent of its being attached or detached to 
an event. 

5-33 



Statements 

DISPLAY 

DISPLAY STATEMENT 

Syntax 

<display statement> : := DISPLAY (<pointer expression> ) 

Examples 

DISPLAY (POINTER (Q,8)) 
DISPLAY (PTR) 

Semantics 

The <display statement> causes the EBCDIC characters pointed at by the <pointer expression> to be 
displayed on the display console. The maximum number of characters allowed is 430. A mess!lge of less 
than 25 characters must be terminated by the character 4 "00". 

5-34 



DO STATEMENT 

Syntax 

<do statement> : := DO <statement> UNTIL <.Boolean expression> 

Examples 

DO UNTIL FALSE 
DO ... UNTIL X=l 0000 
DO BEGIN 

... ' 

... ' 
END 
UNTIL ALLDONE 

DO J := J/2 UNTIL BUF[l:=I-J] LSS JOB 

Semantics 

The iterative <do statement> is executed as follows: 

Statements 

DO 

The <do statement> causes the <statement> following DO to be executed and then the <.Boolean 
expression> to be evaluated. If the result is FALSE, the <statement> is executed again and the 
<.Boolean expression> re-evaluated. This sequence of operations continues until the value of the 
<.Boolean expression> is TRUE or until a <go to statement> is executed, at which time control passes 
to the specified destination or the next program <statement>. Figure 5-1 illustrates the DO-UNTIL 
loop. 

ENTER ---------... LOOP 

EXECUTE 

STATEMENT 

Figure 5-1. DO-UNTIL Loop 

YES 

NO 

TERMINATE 

LOOP 

5-35 



Statements 

ENABLE 

ENABLE STATEMENT 

Syntax 

<enable statement> : := ENABLE I 
ENABLE <interrupt identifier> 

Examples 

ENABLE 
ENABLE THEPHONE 

Semantics 

An <enable statement> consisting simply of "ENABLE" (i.e., does not specify a particular <interrupt 
identifier>) is referred to as a "general enable" and, as such, the system is allowed to look for and place 
into execution all enabl~d interrupts that are in the interrupt queue of this task. 

Previously disabled interrupts can be enabled by the task while in a general disabled state. These interrupts 
will be executed when the flag is reset by the general <enable statement>, if the associated event is 
caused after the interrupts have been enabled. 

If the <enable statement> specifies an <interrupt identifier>, just that interrupt is enabled. 

Note the enablement or disablement of an interrupt is independent of its being attached or detached from 
an event, 

5-36 



EVENT STATEMENT 

Syntax 

<event statement> : := <.cause statement> I 
<.causeandreset statement> 
<fix statement> I 

Examples 

<free statement> I 
<liberate statement> I 
<procure statement> 
<reset statement> I 
<set statement> I 
<wait statement> I 
<waitandreset statement> 

CAUSE( ... 
CAUSEANDRESET ( ... 
FIX( .. . 
FREE( .. . 
LIBERATE ( .. . 
PROCURE( .. . 
RESET( ... 
SET( .. . 
WAIT .. . 
WAITANDRESET ( ... 

Semantics 

Statements 

EVENT 

Events have two basic characteristics called HAPPENED and AVAILABLE. Each characteristic can be 
in either of two states: TRUE or FALSE, often referred to as the HAPPENED bit or the AVAILABLE 
bit. These characteristics can be interrogated via the HAPPENED and AVAILABLE Boolean intrinsics and 
can be changed via the <event statement>s. 

5-37 



Statements 

EXCHANGE 

EXCHANGE STATEMENT 

Syntax 

<exchange statement> : := EXCHANGE ( <file designator> [ <row/copy numbers> ] , 
· <file designator> [ <row/copy numbers> ] ) 

Examples 

EXCHANGE (FILEl [ROW6], FYLE2[ROWO]) 
EXCHANGE (MASTERFYLE[ROW2, COPY3], REBUILTFYLE[ROWO, COPYl] ) 

Semantics 

The <exchange statement> can be used to "trade" rows between two disk files. The <row number> 
begins with zero (0), and the <.t:opy number> begins with one ( 1 ). If a <.t:opy number> is specified, 
then only the rows for that copy are exchanged. 

Pragmatics 

The referenced file(s) cannot be in an opened state when the <exchange statement> is executed. The 
two rows must be the same size. The specified <row number> as well as the specified <.t:opy number> 
must be legitimate. The referenced disk file cannot be a "code file" of any kind. · 

If the system detects any type of error, the exchange is not actually performed and the program resumes 
its execution. After using the <exchange statement> the row addresses should be checked (via 
<arithmetic file attribute>s ) to ensure that the exchange was successfully completed. 

5-38 



FILL STATEMENT 

Syntax 

<fill statement> : :=FILL <array row> WITH <value list> 
<value list> : := <initial value> I 

<value list> , <initial value> 
<initial value>::= <.number> I 

<string> I 
<unsigned integer> ( <value list> ) 

Examples 

FILL MATRIX[*] WITH 458.54, +546, - 1354.54@6, 16@-12 
FILL GROUP[ 1, *] WITH .25, "ALGOL", " " ", 4"FFFFF", "365" 

Semantics 

Statements 

FILL 

The <fill statement> fills an <array row> with specified values. An initial value of the form <unsigned 
integer> ( <value list> ) uses the <unsigned integer> as a repeat count and repeats the <value list> 
the number of times indicated. 

The row designator of the <array row> part indicates which row is to be filled, by designating a specific 
value for each subscript position of the <array row>. The symbol * must appear in the rightmost sub­
script position of the row designator. If the value of a row designator is other than integer, it is rounded 
to an integer in accordance with the rules applicable to <assignment statement>s. 

Pragmatics 

If the <value list> contains more values than the size "of the <array row>, filling stops when the 
<array row> is full. 

The comma in the <value list> causes word alignment of the next <initial value>.<initial value>s less than 
48 bits are right-justified with leading zeros inserted in the word. <initial value>s greater than 48 bits are 
left-justified with trailing zeros inserted in the word. 

If the size of array is longer than the supplied <value list>, the remainder of the <array row> is left 
"as is." 

The length of the <value list> cannot exceed 4095 48-bit words. 

The <fill statement> cannot be used with character arrays. 

5-39 



Statements 

FIX 

FIX STATEMENT 

Syntax 

<fix statement> : := FIX ( <.event designator> ) 

Examples 

FIX (EVNT) 
FIX (EVENTARAY [INDX]) 
IF GOTIT :=FIX (FYLELOCK) THEN 
FIX (MYSELF .EXCEPfIONEVENT) 

Semantics 

Upon completion of the execution of the <fix statement>, the <.event designator> referenced is NOT 
AVAILABLE. 

The <fix statement> (conditional procure function) is a Boolean function that examines the available 
state of an event. If the state is AVAILABLE, the event is procured, the state set to NOT AVAILABLE, 
and a FALSE returned. If the available state is NOT AVAILABLE, the function returns a TRUE, 
leaving the available state unchanged. 

5-40 



FOR STATEMENT 

Syntax 

<for statement> : := FOR <variable> := <for list> DO <statement> 
<for list> : := <for list element> I 

<for list> , <for list element> 
<for list element> : := <initial part> <iteration part> 
<initial part> : :=<arithmetic expression> 
<iteration part>::= <empty> I 

Examples 

STEP <arithmetic expression> UNTIL <arithmetic expression> 
STEP <arithmetic expression> WHILE <Boolean expression> I 
WHILE <Boolean expression> 

FOR I:= 0 DO ... 
FOR J := 1 STEP 1 UNTIL 255 DO ... 
FOR INDX := 0, 1, 2, 10, 15, 37, 5, 16 DO ... 
FOR X := 0 STEP 1 UNTIL 5, 29, 47 STEP 3 UNTIL LIM DO ... 
FOR NXT := BEG STEP AMT WHILE NOT DONE DO .. . 
FOR N :=IX+ 7 WHILE TARGET LEQ RANGE DO .. . 

Semantics 

Statements 

FOR 

The <variable> in the <for statement> is referred to as the controlled variable. The <for statement> 
can be best understood by isolating the following three distinct operational steps: 

a. Value assignment to the controlled variable. 
b. Test of the limiting condition. 
c. Execution of the <statement> following DO. 

Each type of <for list element> specifies a different process. However, all have one property in common, 
which is, the initial value assigned to the controlled variable is that of the leftmost <arithmetic 
expression> in the <for list element>s. 

The <for list element> determines what values are to be assigned to the controlled variable and what 
test to make of the controlled variable to determine whether or not the <statement> following DO 
is executed. When a <for list element> is exhausted, the next element in the <for list> is considered, 
progressing from left-to-right. When all <for list element>s have been utilized, the <for list> is 
considered exhausted and control continues with the next <statement> following the <for statement>. 
It is possible for the <statement> following DO to transfer control outside the <for statement>, in 
which case some <for list element>s may not be exhausted when the <for statement> is exited. 

<arithmetic expression> <empty> 

The format for this variation is as follows: 

FOR V : = AEXPl, AEXP2, ... , AEXPN DO Sdo; S 

. 5-41 



Statements 

FOR 

Continued 

When the <for list element> is simply an <arithmetic expression>, there is only one value to be 
assigned to the controlled variable. Since there is no limiting condition, no test is made. After assignment 
of the <initial part> to the controlled variable, the <statement> following DO is executed. If more than 
one <initial part>, the <initial part>s are assigned to the controlled variable consecutively until the 
<for list> is exhausted. 

Figure 5-2 illustrates the FOR-DO loop. 

ENTER 
LOOP 

SET INDEX 
TO INITIAL 

VALUE 

EXECUTE 

STATEMENT 

SET INDEX 
TO SECOND 

VALUE 

EXECUTE 

STATEMENT 

SET INDEX 
TO FINAL 

VALUE 

Figure 5-2. FOR-DO Loop 

STEP <arithmetic expression> UNTIL <arithmetic expression> 

When the <for list element> is of the form: 

FOR V:= AEXPl STEP AEXP2 UNTIL AEXP3 

EXECUTE 

STATEMENT 

ERMIN ATE 

LOOP 

where AEXPl, AEXP2, and AEXP3 represent <arithmetic expression>s, the process described below is 
used. A new value is assigned to the controlled variable, V, each time the <statement> following DO 
is executed. First, an initial value, that of AEXPl, is assigned to the controlled variable. All subsequent 
assignments are equivalent to: V := V + AEXP2, and made immediately after the <statement> following 
DO is executed. The limiting condition on the value of V is given by AEXP3, which is evaluated anew each 
time through the loop. 

A test is made immediately after each assignment of a value to V (including the first) to determine whether· 
whether or not the value of V has passed AEXP3. Whether AEXP3 is an upper or lower limit depends on 
the sign of AEXP2. AEXP3 is an upper limit if AEXP2 is positive, and a lower limit if AEXP2 is negative. 
If AEXP3 is an upper limit, then V has "passed" AEXP3 when the expression V LEQ AEXP3 is no longer 
TRUE. If AEXP3 is a lower limit, then V has "passed" AEXP3 when the expression V GEQ AEXP3 is no 
longer TRUE. If V has not passed AEXP3, the <statement> following DO is executed. Otherwise, the 
<for list element> is exhausted. Figure 5-3 illustrates the FOR-STEP-UNTIL loop. 

5-42 



ENTER 

LOOP 

SET INDEX TO 

INITIAL VALUE 

Note 

A step of 0 is not allowed in the <for statement>. 
A run-time error will occur. 

TERMINATE 

LOOP 

YES 

NO EXECUTE 

STATEMENT 

Figure 5-3, FOR-STEP-UNTIL Loop 

STEP <arithmetic expression> WHILE <Boolean expression> 

When the <for list element> is of the form 

FOR V := AEXPl STEP AEXP2 WHILE BEXP DO Sd0 ; S 

Statements 

FOR 

Continued 

INCREMENT 

INDEX 

where AEXPl and AEXP2 are <arithmetic expression>s and BEXP is a <Boolean expression>, the 
process is described below. A new value is assigned to the controlled variable V if the BXEP is TRUE 
each time the statement following DO is executed. First, the initial value AEXPl is assigned to the 
controlled variable. All subsequent assignments are equivalent to V := V+AEXP2 and are made 
immediately after the <statement> following DO is executed. After each assignment to V, the 
<Boolean expression> BEXP is evaluated, and as long as BEXP is TRUE, the <statement> following 
DO is executed. This can be stated concisely as follows: 

V := AEXPl 

L3: IF BEXP THEN BEGIN Sd0 ; V := V+AEXP2; GO TO L3 END; 
s 

Figure 5-4 illustrates the FOR-STEP-WHILE loop. 

5-43 



Statements 

FOR 

Continued 

ENTER 
LOOP 

SET INDEX TO 

INITIAL VALUE 

TERMINATE 

LOOP 

NO 

YES EXECUTE 

STATEMENT 

Figure 5-4. FOR-STEP-WHILE Loop 

WHILE <.Boolean expression> 

INCREMENT 

INDEX 

When the <for list element> is of the form WHILE <.Boolean expression>, the controlled variable is 
assigned the value of the <initial part>. A test is then made of the <.Boolean expression> following 
WHILE. If the logical value is TRUE, the <statement> following DO is executed. This process 
continues, with the <for list element>s being assigned to the controlled variable, until the value of the 
<.Boolean expression> is FALSE, at which time control is transferred to the next <statement> in the 
<program>. For example, 

FOR V := V + 1 WHILE V LEQ S DO ... 

If V had the value of zero before execution of this statement, the statement between the BEGIN-END 
delimiters would have been executed five times. 

Figure 5-5 illu~trates the FOR-WHILE Loop. 

5-44 



ENTER 
LOOP 

--.---4 
ASSIGN VALUE 

TO CONTROLLED 
VARIABLE 

TERMINATE 

LOOP 

NO 

YES 

Figure 5-5. FOR-WHILE Loop 

EXECUTE 

STATEMENT 

Statements 

FOR 

Continued 

5-45 



Statements 

FREE 

FREE STATEMENT 

Syntax 

<free statement> : := FREE ( <event designator> ) 

Examples 

FREE (EVNT) 
FREE (EVNT ARA Y [INDX]) 
IF WASPROCEDURED := FREE (FYLELOCK) THEN ... 

Semantics 

This statement, of arbitrary value and dangerous use, unconditionally resets the event state to 
AVAILABLE. It does not activate any task suspended by an attempt to procure the event nor does it 
activate any task waiting on the event. 

The <free statement> can be used as Boolean function that returns a FALSE if the event is already 
AVAILABLE, and a TRUE is returned if the event was NOT AVAILABLE. In either case, the event is 
unconditionally reset to AVAILABLE. 

5-46 



GO TO STATEMENT 

Syntax 

<go to statement> : := GO TO <.designational expression> 
GO <.designational expression> 

Examples 

GO TO LABELl 
GO LABEL2 
GO TO IF K=l THEN SELECT [2] ELSE START 
GO TO SELECTIT [INDX] 

Semantics 

Statements 

GO TO 

The <go to statement> transfers control to the <label> that is the value of the <.designational 
expression>. 

If the <.designational expression> specifies an invalid designation (only possible when using a <switch 
label declaration>), control passes to the <statement> following the <go to statement>. 

Labels must be declared in, and therefore are local to, the innermost block in which they appear as a 
statement label. A <go to statement> cannot lead from outside a <block> to a point inside that 
<block>; each <block> must be entered at the <block head> so that the associated declarations 
can be invoked. 

NOTE 

Refer to <.designational expression> for an 
explanation of the "bad go to." 

5-47 



Statements 

1/0 

1/0 S1ATEMENT 

Syntax 

<I/O statement> : := <accept statement> 
<L:(ose statement> I 
<display statement> 
<Jock statement> I 
<read statement> I 
<rewind statement> 
<seek statement> I 
<space statement> I 
<write statement> 

Semantics 

An <I/O statement> causes information to be exchanged between a program and its peripheral device(s), 
or it allows the programmer to perform certain control functions. 

The <accept statement> and <display statement> are unique in that the programmer is not required 
to specify a "file" to/from which data is transferred. These two statements have a very limited syntax 
and therefore are completely described elsewhere in this manual. 

The remaining <I/O statement>s all reference a file which must be declared by the programmer (refer 
to <file declaration>)· 

A full treatment of ALGOL 1/0 is beyond the scope of this manual, but it is necessary to point out that 
there are two distinct methods of 1/0 which the programmer can do. The first and typical method is 
referred to as "normal 1/0" and the second method is called "Direct 1/0". These two methods are 
explained separately under each of the <I/O statement>s which can be found elsewhere in this manual. 
Briefly, howev~r, the major difference between Normal 1/0 and Direct 1/0 has to do with "buffering", 
or the overlap of program execution and 1/0 operations. Whereas Normal 1/0 is normally overlapped 
(i.e., it is automatic), Direct 1/0 can be used to achieve or avoid overlap as desired. 

NORMAL 1/0 

Unless a file is declared to be DIRECT, it is by default handled in Normal 1/0 fashion. The amount of 
buffering between the <I/O statement>s and program execution depends on the number of buffers 
allocated for the file (refer to <file declaration>). 

A Normal 1/0 <read statement> causes the automatic testing of the availability of the needed record. 
The program is suspended in the <read statement> until such time as the record is actually available 
for use. 

A <write statement> in Normal 1/0 transfers the specified data to a buffer and the program is 
immediately released to begin execution of the next <statement>. If all the buffers are full at the 
instant of the <write statement>, the program is suspended until such time as a buffer is available. 

5-48 



DIRECT 1/0 

Statements 

1/0 

Continued 

Direct 1/0 brings the programmer closer to the actual input/output operations. In certain situations, it 
may be necessary to avoid any suspension of the program for any reason whatsoever. In other situations, 
it may be necessary to perform non-standard 1/0 operations as well as to mask certain types of error 
conditions which could arise. 

To perform Direct 1/0 on a file (call it FID) the file must be declared as a DIRECT file. (Refer to <file 
declaration>.) 

The syntax for Direct 1/0 read or write operation employs the <arithmetic expression>, <array row> 
form of <format and list part>. Optional <action labels> of the [<event designator>] can be used. 
The <array row> is called the user's 1/0 area, and the <direct array identifier> must be used for the 
<array name> part in the <array row> construct. Thus to Direct read 10 words from FID into Direct 
array A using the event EVT, READ(FID,10,A[*]) [EVT] would be written. When executing this 
<statement>, the MCP establishes a relationship between the 1/0 area and the event EVT. 

However, before any subsequent use of the 1/0 area can be made in the program, either for calculations or 
for further 1/0, the Direct 1/0 operation must be finished. The event mechanism can be used by having 
EVT caused when the read operation is finished. The event can be inspected by means of the Boolean 
intrinsic function HAPPENED, or by obtaining the 1/0 result descriptor, through the use of the WAIT 
intrinsic on the Direct array. The user can also use a <wait statement> on the event to de-activate the 
process until the event is caused. Once the operation has been completed, the event should be reset 
before reusing it (see the <waitandreset statement>). 

In Direct 1/0, the 1/0 operations analogous to SP ACE and REWIND are performed as if they are a read 
or write operation, except that the IOCW direct array attribute is specifically set to the proper hardware 
IOCW for the operation. 

5-49 



Statements 

IF 

·IF STATEMENT 

Syntax 

<if statement> : :=<if clause> <statement> 
<if clause> : := IF <Boolean expression> THEN 

Examples 

IF ALLDONE THEN GO AWAY 
IF ENDITALL := X=O THEN 

WHILE A ) COWNT DO ... 

Semantics 

The <if statement> provides a means of making a conditional transfer of control based on data or 
results of a computation. 

The <statement> following THEN is executed if the <Boolean expression> results in a TRUE 
condition. (Refer to <conditional statement> for more information on the use of the <if statement>.) 

5-50 



INTERRUPT STATEMENT 

Syntax 

<interrupt statement> : := <attach statement> I 
<.detach statement> I 
<.disable statement> I 
<.enable statement> 

Examples 

ATTACH .. . 
DETACH .. . 
DISABLE .. . 
ENABLE .. . 

Semantics 

Statements 

INTERRUPT 

A process can be interrupted upon the occurrence of a specific event if an interrupt has been declared, 
attached to the event, and enabled. The paragraphs that follow describe briefly the <interrupt state­
ment>. (Refer to the specific <interrupt statement> for more detail.) 

<attach statement> and <.detach statement> 

The <attach statement> is used to associate an interrupt with an <event designator>. The <attach 
statement> does not implicitly enable or disable an interrupt. If it has not been disabled, it is enabled. 

The <.detach statement> is used to sever the association between the interrupt and the event to which 
it has been attached. 

<.enable statement> and <.disable statement> 

The <.enable statement> and <.disable statement> are used to explicitly enable and disable an 
interrupt if one is specified. If none is specified, then all interrupts are enabled or disabled. 

5-51 



Statements 

INVOCATION· 

INVOCATION STATEMENT 

Syntax 

<invocation statement> : := <.call statement> I 
<procedure statement> 
<process statement> I 
<run statement> 

Examples 

CALL ... 
PROCEDURE ... 
PROCESS .. : 
RUN ... 

Semantics 

An <invocation statement> causes a previously declared procedure to be executed as a subroutin~. 
an asynchronous process, a co-routine, or an independent program. 

With the exception of the <procedure statement>: 

a. A separate stack is always initiated, and 
b. The specified procedure cannot be typed. 

With the exception of the <run statement>, parameters may be passed by name or value. All parameters 
passed in the <run statement> must be by value. 

5-52 



ITERATION STATEMENT 

Syntax 

<iteration statement> : := <do statement> I 
<for statement> I 
<thru statement> I 
<while statement> 

Examples 

DO BEGIN . .. ; END UNTIL SWEAT 
FOR X:= 0 STEP 1 UNTIL S,29,47 STEP 3 UNTIL LIMIT DO ... 
THRU MAXI := REAL (PTR,3) DO .. . 
WHILE INDX .LEQ MAXY AL DO .. . 

Semantics 

Statements 

ITERATION 

<iteration statement>s provide methods of forming loops in a <program>. They allow for repetitive 
execution of a <.statement> zero or more times. 

The various iterative mechanisms are described as follows: 

a. The <do statement> causes the statement following DO to be executed and then the 
<Boolean expression> to be evaluated. If the result is FALSE the <.statement> is 
exes;uted again; if TRUE, control passes outside the <do statement>. 

b. The <for statement> assigns an initial value to a controlled variable. It then proceeds to 
execute and increment that variable until the limit has been passed. 

c. The <thru statement> tests a repeat index, executes a <.statement>, and then decrements 
the repeat index by one. 

d. The <while statement> evaluates a <Boolean expression>, and if TRUE, the statement 
is executed. If FALSE, control is passed outside the <while statement>. 

5-53 



Statements 

LIBERATE 

LIBERATE STATEMENT 

Syntax 

<liberate statement>::= LIBERATE ( <event designator> ) 

Examples 

LIBERATE (EVNT) 
LIBERATE (EVNTARAY[INDX]) 

Semantics 

The <liberate statement>, when executed, produces several effects. First, the procure list is examined. 
If there are no other fasks waiting to procure the event, the event state is set to AVAILABLE. If there 
are other tasks waiting to procure the event, the event state is left marked as NOT AVAILABLE. Also, 
all tasks waiting on the event are activated, that is, an implicit cause is executed. This can result in a 
change to the HAPPENED state of the event, depending on whether the tasks that are waiting have 
used <wait statement> or the <waitandreset statement>. 

Pragmatics 

Even though all waiting tasks are activated, they are linked into the READYQ in priority order (see the 
<J::ause statement>). At this point, all tasks will attempt to procure the event (see the <procure 
statement>). 

5-54 



LOCK STATEMENT 

Syntax 

<Jock statement> : := LOCK ( <file designator> <Jock option> ) 
<Jock option> : :=<empty> I 

• CRUNCH I 
* 

Examples 

LOCK (FILEA) 
LOCK (FYLE. CRUNCH) 
LOCK (FYLE. *) 

Semantics 

Statements 

LOCK 

The <Jock statement> causes the referenced file to be closed. If the file is tape, it is rewound and a 
system message is printed that notifies the operator that the reel must be removed and saved. If the file 
is not a disk file, the unit is made inaccessible to the system until the operator readies it again manually. 
If the file is a disk file, it is retained as a permanent file on disk. The file buff er areas are returned to 
the system. 

A <Jock statement> which has a non-empty <Jock option> performs the same action as the <close 
statement> which specifies CRUNCH. The file must be a disk file. The unused portion of the last row 
(beyond the end-of-file indicator) of disk space is returned to the system. The disk file can no longer be 
expanded without being copied into a new file; however, the file can be written inside of the end-of-file 
limit. 

5-55 



Statements 

MERGE 

MERGE STATEMENT 

Syntax 

<merge statement> : :=MERGE. ( <output option> , 
<compare procedure> , 
<record length> , 
<merge option list> ) 

<merge option list> : := <merge option> I 
<merge option list> , <merge option> 

<merge option> : := <input option> 

Example 

MERGE (LINEOUT, COMP, 14, INl, IN2) 

Semantics 

The <merge statement> causes data in all of the files specified by the <merge option list> to be 
combined and returned. The <compare procedure> determines the manner in which the data is 
combined. The <output option> specifies how the data is to be returned from the merge. 

The <merge option list> must contain between two and eight input options, inclusive which must be files 
or Boolean procedures. 

The <output option>, <compare procedure>, <record length>, and <input option> are as specified 
for the <.sort statement>. 

For more detailed information concerning the <merge statement>, refer to the B 6000 Series Operation 
Guide Referenc~ Manual. 

5-56 

l 



Statements 

MULTIPLE ATTRIBUTE ASSIGNMENT 

MULTIPLE ATTRIBUTE ASSIGNMENT STATEMENT 

Syntax 

<multiple attribute assignment statement> : :=<file identifier> ( <initial attribute list> ) 

Example 

FYLE (BUFFERS = 3, INTMODE = 3, KIND = DISK) 
LINE(TITLE = P, INTNAME = Q); 

Semantics 

One intrinsic call SETs an attributes except when a <pointer-valued attribute name> appears in the 
<initial attribute list> and is initialized to a <pointer expression>, rather than a string. In this case, 
the compiler generates an intrinsic call distinct from the call that SETs the rest of the attributes in the list. 

A Boolean file attribute followed by a comma is assigned a value of TRUE; that is, in a <file declaration>, 
OPTIONAL has the same effect as OPTIONAL= TRUE. 

5-57 



Statements 

ON 

ON STATEMENT 

Syntax 

<nn statement> : := <.enabling on statement> I 
<disabling on statement> 

<.enabling on statement> : := ON <fault list> <fault information part> , <fault action> I 
· ON <fault list> <fault information part> <fault action> 

<fault list>::= <fault name> I 
<fault list> OR <fault name> 

<fault name> : := ANYF AULT I EXPONENTOVERFLOW I 
EXPONENTUNDERFLOW I INTEGER OVERFLOW I INV ALIDADDRESS I 
INV ALIDINDEX I INV ALIDOP I INV ALIDPROGRAMWORD I 
LOOP I MEMORYPARITY I MEMORYPROTECT I 
PROGRAMMEDOPERATOR I SCANPARITY I 
STRINGPROTECT I ZERODIVIDE 

<fault information part>::= <empty> I 
[ <fault stack history> ] I 
[ <fault stack history> : <fault number> ] 
[ : <fault number> ] 

<fault stack history>::= <array row> I 
<pointer expression> 

<fault number> : := <variable> 
<fault action> : := <.statement> 
<disabling on statement> : := ON <fault list> 

Examples 

ON ZERO DIVIDE OR INVALID INDEX [ :A[J]], 
BEGIN 
END 

ON ANYFAULT; 
ON MEMORY PROTECT OR LOOP : Q := 2; 
ON ZERODIVIDE OR INTEGEROVERFLOW; 
ON ANYFAULT [POINTR + 2 : Z], HANDLFALTS(Z); 
ON EXPONENTOVERFLOW[A[*]], RECOVER(A); 
ON ANYFAULT [:J]: 

Semantics 

BEGIN 
END; 

The <nn statement> is used to enable or disable an interrupt for one of 15 fault conditions. The 
interrupt remains enabled until one of the following occurs: 

a. The procedure or <block> that contains the <on statement> is exited. 
b. The interrupt is explicitly disabled. 
c. A new interrupt is enabled for the same fault condition. 

5-58 



Statements 

ON 

Continued 

Whenever the <block> that contains an <on statement> is exited, the interrupt status for that fault 
condition reverts to whatever was enabled when the <block> was entered. 

The interrupt <statement> must either be an unconditional GO TO, a <.compound statement>, or a 
<block> that contains an unconditional GO TO, since the interrupted code cannot be resumed. 

The <fault list> enables the user to arm severalfaults with respect to the same <fault action> (refer to 
the first and third examples, above), or to disarm one or more faults at the same time (refer to the fourth 
example, above). Note that the occurrence of any one Of the faults in the <fault list> is sufficient to 
cause transfer of control to the <fault action>. 

The non-<empty> <fault information part> provides the user with the stack history at the time of the 
occurrence of the fault, and/or the number corresponding to the fault kind (useful only wh~n more than 
one fault is armed with respect to the same <fault action>). The <fault number>, when indicated, is 
set to one of the following values upon occurrence of the corresponding fault: 

VALUE 

1 
2 
3 
4 
s 
7 
8 
9 

IO 
11 
12 
14 
15 
18 

FAULT 

ZERODIVIDE 
EXPONENTOVERFLOW 
EXPONENTUNDERFLOW 
INVALID INDEX 
INTEGER OVERFLOW 
MEMORYPROTECT 
INVALIDOP 
LOOP 
MEMORYPARITY 
SCANPARTIY 
INVALIDADDRESS 
STRINGPROTECT 
PROGRAMMEDOPERATOR 
INV ALIDPROGRAMWORD 

The format of the STACKHISTORY is the standard format: 

SSS:AAAA:Y ,#SSS:AAAA:Y ,# ... ,#SSS:AAAA:Y. 

or 

SSS:AAAA:Y#(DDDDDDDD),# ... ,#SSS:AAAA:Y#(DDDDDDDD). 

where SSS is the segment number, AAAA is the address, Y is the syllable,# is a blank space, 
DDDDDDDD is the line number (only present if LINEINFO has been SET during program compilation). 
The period(.) always terminates the last entry. 

Thus, in the fifth example, above, the STACKHISTORY begins at POINTER+ 2 and continues until 
either the area or the STACKHISTORY information is exhausted. 

Note that the <fault stack history> and the <fault number> are fixed, with respect to address, when 

5-59 



Statements 

ON 

Continued 

the <on statement> is executed; that is, when the fault is armed, not when the fault occurs. Thus, 
in the <on statement> 

ON ZERODIVIDE [A[I,*] :B[J]] : Q:=B[J] + Q 

The <array row> A[I, *] is determined by the value of I at the execution of the <.nn statement>, and 
not when any ZERODIVIDE actually occurs. This is also true for the <variable>s B[J] and J. 

The form ON <fault list> <fault information part> : <fault action>, which is known as the "go to" 
form, does not require the user to do a "bad go to" out of the <fault action>; the bad go to is 
performed by the system. Consequently, program control can continue from the <fault action>. For 
example, 

BEGIN 
ARRAY Z, Q [0:9999]; 

READ (FIL, 10000, Q); 
I:=O; 
ON ZERODIVIDE: Q[I): = 1.0E-47; 

L:Z[I) :=SQRT(6.32/Q[I] ); 
IF (I:=I + 1) ( 10000 THEN GO TO Lt; 

END; 

This example uses the hardware to check the value of Q [I] for zero, instead of doing so explicitly (the 
former is generally faster). 

Note that the "en.vironment" (i.e., stack) for the "go to" case has been cut back before control is trans­
ferred to the <fault action>. 

When using the form ON <fault list> <fault information part>, <fault action>, the user cannot do a 
"go to" to a label inside the <fault action> from outside the <fault action>. 

Unexpected results occur when a "go to" to a formal label (label passed as a parameter) is attempted. 

The <.disabling on statement> disables, or disarms, those faults corresponding to the <fault name>s 
in the <fault list>. · 

No block exit is required to deactivate the armed faults for the block. 

5-60 



Statements 

PROCEDURE 

PROCEDURE STATEMENT 

Syntax 

<procedure statement> : :=<procedure identifier> <actual parameter part> 

Examples 

SIMPL 
HEAVY (X,Y,A [*], SQRT (BINGO) + BASE) 
FANCY (Pl) "IS THE FIRST, THE NEXT IS SECOND" (P2) "THEN THIRD" (P3) 

Semantics 

A <procedure statement> causes a previously declared procedure to be executed. 

A typed procedure returns a value. However, when a typed procedure is used as a <procedure statement>, 
this value is ignored. 

The <actual parameter list> of the <procedure statement> must have the same number of entries as 
the <formal parameter list> of the <procedure declaration> heading. 

Formal and actual parameters must corresJ)ond in "type" and "kind" of quantities. The correspondence 
is obtained by taking the entries of these two lists in the same order. Parameters may be passed by name 
or by value. 

The normal use of a <procedure statement> is such that when the procedure is entered, program control 
is suspended at the point of the invocation until the referenced procedure "falls out" the end. At that 
time, program control resumes at the <statement> following the invocation. However, this would not 
be the case if within the referenced procedure, a "bad go to" is executed. (Refer to <procedure 
declaration>, <go to statement>, and <designational expression>.) 

5-61 



Statements 

PROCESS 

PROCESS STATEMENT 

Syntax 

<process statement> : :=PROCESS <procedure identifier> <actual parameter part> [ <task designator> ] 

Examples 

PROCESS AGENT [TSK] 
PROCESS ACHILD (OURARRAY,YOUREVENT[INDX] ,COWNT) [TSKARAY[INDX)) 

Semantics 

The <process statement> initiates a procedure as an asynchronous process. Initiation consists of setting 
up a separate stack for the process, transferring any parameters which are passed (by name or by value) 
and beginning the execution of its statements. The initiator then resumes execution and both are run in 
parallel (or concurrently, depending on processor availability). 

The specified procedure cannot be typed. 

An asynchronous process depends upon the initiator's stack for globals or call-by-name parameters. Thus 
for each process there is, in the initiator's stack, a "critical block" which cannot be exited until the 
process is terminated. The "critical block" is the <block> of highest lexicographic level which contains 
the declaration of the procedure itself, call-by-name parameters, or the <task designator>. This may be 
the <block> containing the <process statement>, the outer <block> of the program, or some 
<block> in between. An attempt by the initiator to exit that <block> before the process is terminated 
will cause the initiator and all its offspring to be terminated. 

A process can be terminated by exiting its own <block> or by executing the statement "<task 
designator>.STATVS := -1;". 

The <actual parameter part> must agree with the <formal parameter part> of the process, or a run­
time error will occur. 

The <task designator> associates a task with the process at initiation such the MCP will set up the 
process according to certain constraints such as COREESTIMATE, STACKSIZE, DECLAREDPRIORITY, 
and so forth. Furthermore, various task attributes can be interrogated while the process is rurtning. (Refer 
to <arithmetic task attribute> and <Boolean task attribute>.) 

5-62 



Statements 

PROCURE 

PROCURE STATEMENT 

Syntax 

<procure statement> : :=PROCURE ( <event designator> ) 

Examples 

PROCURE (EVNT) 
PROCURE (EVNTARAY[INDX]) 

Semantics 

The <procure statement> tests the available state of an event. If the event is NOT AVAILABLE, the 
task is suspended until some other task executes the <liberate statement>. If the event was 
AVAILABLE, the event state is set to NOT AVAILABLE, and the task continues in sequence. 

Pragmatics 

The <procure statement> provides a convenient method of sharing various resources by different 
programs/tasks. A convention should be established that a certain multi-usable resource or resources 
should not be used until a program/task has procured an event which is defined as the interlock. When 
its program/task has completed its use of the resource(s), it should execute a <liberate statement> on 
the event. (Refer to the <liberate statement>.) 

5-63 



Statements· 

PROGRAM DUMP 

PROGRAMDUMP STATEMENT 

Syntax 

<programdump statement> : := PROGRAMDUMP <optional parameters> 
<optional parameters>::= <empty> I 

( <parameter list> ) 
<parameter list> : := <parameter item> I 

<parameterlist> , <para1neteritem> 
<parameter item> : := ARRAY I ARRAYS I BASE I CODE I DBS I FILE I 

FILES I ALL I <o.rithmetic expression> 

Examples 

PROGRAMDUMP 
PROGRAMDUMP (ARRAYS) 
PROGRAMDUMP (ARRAYS, BASE, CODE, FILE) 
PROGRAMDUMP (ALL) 
PROGRAMDUMP(DUMPPARAM) 
PROGRAMDUMP (ARRAYS, DBS) 

Semantics 

Execution of the <progra1ndu1np statement> causes the MCP to print out (using the program's 
TASKFILE) the stack of the program. Several options are available as to which items of the stack are to 
be dumped and analyzed. 

If the <optional parameters> has the form of <empty>, the stack is printed/analyzed according to the 
specifications in the program's OPTION word. (See Task Attributes.) 

If the contents of the program's arrays are to be printed, the option ARRAYS must be specified. 

The bottom (or "base") of the user's stack will be printed if the BASE option is specified. The MCP uses 
the same portion of each stack to contain various words needed to control, identify, and log the 
program. 

The DBS <parameter item> causes the output of data base stacks and structure information blocks. 
DBS turns on bit 15 of the option word. 

Pragmatics 

A programmer can explicitly WRITE his own diagnostic/debugging information to the TASKFILE such 
that the PROGRAMDUMP and his information are coordinated (refer to <write state1nent>). 

The Segment Dictionary of the program is printed out as a separate stack if the CODE option is specified. 
Furthermore, the actual code will be printed for only those segments which are referenced by the 
program at the time of the <progra1ndump statement>. Note that VALUE ARRAYs in the Segment 
Dictionary will be printed when both CODE and ARRAYS are specified. 

If a program wants its files to be printed/analyzed, the FILES option must be specified. As each file is 
encountered, each word of the FIB is separately named and, in some cases, analyzed. Various bits of the 
<arithmetic expression> indicate the desired items: 



7:1=1 
8: l = l 
9: l = l 

10: 1 = 1 
10:4= 15 
15:1=1 

If the BASE of the us.er stack is to be dumped. 
If all encountered ARRAYS are to be printed. 

Statements 

PROGRAMDUMP 

Continued 

If CODE (i.e., the Segment Dictionary stack) segments are to be printed. 
If FILES are to be printed/analyzed. 
If ALL portions of the program are to be printed/analyzed. 
If the DBS data base stacks and structures are to be printed. 

When the MCP has completed printing/analyzing the specified items, control passes to the next 
executable statement. 

• 

5-65 



Statements· 

READ 

READ STATEMENT 

Syntax 

<read statement>::= READ (<file part> <format and list parts>) 
<action labels or finished event> 

<file part >::=<file designator> <record number or carriage control> 
<core-to-core part> 

<record number or carriage control>::= <empty> I 
[ <arithmetic expression> ] I 
[ LINE <arithmetic expression>] 
[NO ] I 
[SKIP <arithmetic expression> ] I 
[SPACE <arithmetic expression> ] I 
[STACKER <arithmetic expression> ] I 
[STATION <arithmetic expression> ] 
[STOP ] I 
[ TIMELIMIT <arithmetic expression> 

<core-to-core. part>:: =<core-to-core file part> <core-to-core blocking part> 
<core-to-core file part>::= <array row> I 

<pointer expression> I 
<subscripted variable> 

<core-to-core blocking part>::= <empty> I 
(<core-to-core record size>) 
(<core-to-core record size?, 
<core-to-core records per file part>) 

<core-to-core record size>:: =<arithmetic expression> 

<core-to-core records per file part>:::= <arithmetic expression> 

<format and list part>::= <empty> I 
, <format designator> I , <format designator>, <list> 
, «editing specifications» I 
, (<editing specifications», <list> I 
, * , <list> I, <free field part>, <list> I 
, <arithmetic expression> , <array row> I 
, <arithmetic expression>, <subscripted variable> I 
~<arithmetic expression> , <pointer expression'J> I 

<list>::= <list identifier> I <list segment> I <switch list identifier> 
[<subscript>] 

<free field part>::= <asterisk part> <number of columns> 
<slash part> <column width> 

<asterisk part>::= <empty> I * 
5-66 



<number of columns>::= <empty> I [<arithmetic expression>] 

<slash part> : :=/ I I I 

<column width>::= <empty> I [<arithmetic expression>] 

<array row>::= <array name> I <array name> [<row designator> 

<action labels or finished event>::= <emtpy> I 
[<Zabel J> : <Zabel 2> : <iabel 3> ] 
[<Zabel J> : <label 2>] I 
[ <Zabel J> : <label 3> ] I 
[<Zabel J>] I 
[ : <Zabel 2> : <Zabel 3> ] I 
[ : <label 2> ] I [ : <label 3> ] 
[<event designator> ] 

<l,abel J> ::=<designational expression> 

<l,abel 2>: :=<designational expression> 

<l,abel 3> : := <designational expression> 

Examples 

NOTE 

On any formatted 1/0 statement (excluding 
core-to-core 1/0), the number of characters 
allowed in the 1/0 record is determined solely 
by the MAXRECSIZE of the file. If the 
format requires more characters than con­
tained by the record to satisfy the list, a 
format error will result at run-time. 

READ (<file part> <format and list part>) 

READ (FILEID) 
READ (FILEID, FMT) 
READ (FILEID, FMT, LISTID) 
READ (FILEID, *, LISTID) 
READ (SPOFILE, FMT, A,B,C,) 
READ (SPOFILE, /,SIZE, LENGTH, MASS) 
READ (FILEID, FMT, 7, 2, A, B, C, ARRAY [A] , B+c.F) 
READ (FILEID, /, J, FOR I:= 0STEP1 UNTIL J DO ARRAY [I]) 

Statements 

READ 

Continued 

5-67 



• 

Statements 

READ 

Continued 

READ (FILEID,*,A,B,C,FOR A :=B*A STEP C UNTIL J DO ARRAY [I]) 
READ (SWFILEID[IF X > N THEN X+N ELSE OJ, 25, ARRY[2.*]) 
READ (FILEID, /, SWLISTID[I]) 
READ (FILEID, FMT, SWLISTID[I]) 
READ (SPOFILE, SWFMT[16] , A,B,C) 

READ (<file part> <format and list part>) <action labels or finished event> 

READ (FILEID) [EOFL:PARL] 
READ (FILED,/, L,M,N,ARRAY[2]) [EOFL] 
READ (FILEID[3] [NO]) [:PARL] 
READ (SWFILEID[14] {NO], A+EXP(B),ARRY[I,J,*]) [:PARSWL[M]] 
READ (FILEID [NO] , SWFMT[6+J], LISTID) [EOFSWL [Q*3]] 
READ (SWFILEID[A+B], *, SWLISTID[2+H/K]) [EOFL:PARL] 
READ (FILEID[NO]) [EOFSWL(I] :PARSWL[J]] 
READ (FYLE) [EOFL:PARL:DATAERRL] 
READ(DIRFYLE) [EVNT] 
READ (DIRFYLE, 30, DIRARA Y) [EVNT] 

Semantics 

The <read statement> allows data to be assigned to various program variables. The result of this 
<statement> depends on the form of the <file part> element and on the form of the <format and list 
part> element. 

<file part> 

READ 

NOTE 

Because the syntax of the <read statement> 
and the <write statement> are identical, the 
pragmatic differences between the syntactical 
items are explained in the folowing paragraphs. 

The <file part> form indicates where the data is to be found. 

WRITE 

The <file part> indicates where the data is to be written. WRITE (MYSELF.TASKFILE: .. ) allows the 
user to write to the program's taskfile (refer to <programdump statement>). 

<record number or carriage control> 

5-68 



Statements 

READ 

Continued 

READ 

If the <record number or carriage control> element is <empty>, the record addressed by the pointer is 
read; the record pointer is adjusted to point to the next record in the file. 

If the <record number or carriage control> element is an [ <a.rithmetic expression> ], its value indicates 
the relative address of the record in a file that is to be read. The record pointer is set to the specified 
address before the read is performed; the record pointer is not adjusted after the READ operation. 

If the <record number or carriage control> element is [NO], the buffer is not released after it has been 
read or written; i.e., the record can be read again, perhaps with a different format. 

If the <record number or carriage control> element is [SPACE <a.rithmetic expression>] the number of 
records specified in the <a.rithmetic expression> is skipped. Spacing is forward if the <a.rithmetic 
expression> is positive; backwards if negative. 

If the <record number or carriage control> element is [STATION <a.rithmetic expression>], the last 
station attribute is set to the value of the <a.rithmetic expression>. 

The [TIMELIMIT <a.rithmetic expression>] (relevant for REMOTE files only) element is a positive real 
number in units of seconds (fractional amount is allowed). If TIMELIMIT is zero (0), an indefinite wait 
is initiated. When the TIMELIMIT is greater than zero and no input is received within TIMELIMIT 
seconds, the <read statement> is terminated with a TIMELIMIT error. 

A TIMELIMIT error is reported by the logical I/O result descriptor having the attention bit [O: l] and 
bit [ 15: l] turned ON. For example, IF IORSLT : =READ (RMT [TIMELIMIT 15], 12, A) THEN IF 
IORSLT. [ 15:1] THEN %TIMELIMIT EXCEEDED GO AWAY; 

Note that the TIMELIMIT attribute becomes SET. This will effect all read/write operations within the 
program. 

WRITE 

If the <record number or carriage control> part is a [LINE <a.rithmetic expression> ] and the file is a 
line printer file, then the printer spaces forward to the specified line before printing. However, the 
following must be observed: --

a. The P AGESIZE file attribute must be SET or declared to be the number of lines on a page. 

b. Since normal default action for ALGOL is print-before-carriage-action, a subsequent <write 
statement> can overprint the line. 

c. The line number is RESET when [SKIP l] is used. 

The [SKIP <a.rithmetic expression>] part causes the line printer to skip to the channel indicated by the 
<a.rithmetic expression> after printing the current record. 

5-69 



Statements 

READ 

Continued 

The [SPACE <arithmetic expression>] part causes the line printer to space the number of lines denoted 
by the <arithmetic expression> after printing the current record. On other types of devices it causes the 
number of records signified by the <arithmetic expression> to be spaced. 

If the specified file is remote, the [STOP] part does not do a line feed or a carriage return. 

If the file is not a printer file, the <.record number or carriage control> part is interpreted as a record 
number as described previously under the <.read statement>. 

The [STACKER <arithmetic expression>] part allows pocket selection for card punch files. Legal values 
for the arithmetic expression are 0 or l. A 0 selects the normal pocket ; l selects the alternate pocket. 

The [STATION <arithJ1Jetic expression>] part sets the LASTSTATION attribute to the value of the 
<arithmetic expression>. 

If, when using the [TIMELIMIT <arithmetic expression>] part, the buff er doe~ not become available 
within TIMELIMIT seconds, the write operation is terminated with a TIMELIMIT error. 

CORE-TO-CORE I/O 

<core-to-core part> 

The <core-to-core part> indicates internal data transfer (i.e., no physical device is involved). If the 
<core-to-core blocking part> is <empty>, correct action will be taken for the <core-to-core file part>, 
just as it would be for a normal 1/0 statement; however, core-to-core 1/0 will be much faster. If the 
<core-to-core blocking part> is non-<empty>, the size and number of records into which the <core-to­
core ft le part> is to be blocked can be specified. 

<core-to-core file part> 

For HEX, BCL or .EBCDIC array rows or pointers as the <core-to-core file part> the default record size 
(i.e., the number of characters considered to be in the record) is dependent upon the character size of the 
array row or pointer and is determined by the actual length ofthe designated string. 

For single and double precision array rows or subscripted variables, the default record size is computed by 
multiplying the length ofthe array row (or remaining length of the array row when a subscripted 

5-70 



Statements 

READ 

Continued 

variable is used) times the number of characters per word, where characters per word is derived from the 
following table: 

(default character size) 

BCL EBCDIC 

single 8 6 
(precision) 

double 16 12 

<core-to-core blocking part> 

To specify a record size smaller than the default size, a value may be provided for the <core-to-core record 
size>. This value will always refer to record size in terms of characters. By supplying a value for <core-to­
core records per file part>, the file part may be blocked into more records than the default value of one. 

With formatted I/O, if the format requires more records than indicated by the <.core-to-core records per file 
part>, a run-time error will be given. Another consideration is that the format may require more characters 
than the <.core-to-core file part> contains. This will also result in a run-time error. In such a case, the 
number of characters indicated in the <.core-to-core blocking part> (this number is computed by multiply­
ing <core-to-core record size> times <core-to-core records per file part>) may appear to be large enough to 
satisfy the format, but the <.core-to-core blocking part> may indicate more characters than the <.core-to­
core file part> actually contains. The programmer must take care to ensure compatibility between the 
<core-to-core file part>, the <.core-to-core blocking part> and the format to avoid run-time errors. 

Examples 

REALB,C; 
ARRAY A[0:9]; 

EXl: READ (A(80), <TSO,A6,110> ,B,C); 

EX2: WRITE(A(l 5,3), <XS ,11 S> ,l ,2,3); 

EX3: WRITE(A(20,2), <XS,115> ,l,2,3); 

B:="bbITEM"; 
EX4: WRITE(A(lS,4),<".",X2,A6,12,X4>,B,l,B,2,B,3,B,4); 

5-71 



Statements 

READ 
Continued 

The statement labeled EXl would result in a run-time error (FORMAT ERROR #217) because the format 
requires 65 characters, but the file part (array A) contains only 60 characters. 

The statement labeled EX2 would result in a run-time error (FORMAT ERROR #117) because the format 
requires 20-character records, but 15-character records were specified in the blocking part. 

The statement labeled EX3 would result in a run-time error (FORMAT ERROR#120) because the 3 list 
elements will require repeating the format 3 times. Thus, 3 records are required but only 2 records were 
specified in the blocking part. · 

The statement labeled EX4 would fill array A with the following EBCDIC data: 

.bbbbITEMbl bbbb.bbbbITEMb2bbbb.bbbbITEMb3bbbb.bbbbITEMb4bbbb 

<format and list part> 

Read 

The<format and list part> element indicates the program variables to which file data is to be assigned and 
the manner in which the data is to be interpreted in assigning it to these variables. 

If the <format and list part> element is <empty> the input record is skipped. 

A <format designator> without a <Jis~> indicates that the referenced format contains a <string> into 
which corresponding characters of the input data are to be placed. The <string> in the format declaration 
is replaced by the <string> in the input data. 

A <format designator> with a <list> indicates that the input data is to be edited according to the speci­
fications of the referenced <format declaration> and assigned to the variables of the <list>. 

The symbol *, together with a <list>, specifies that the input data is to be processed as full words, and 
that it is to be assigned"to the variables of the <list> without being edited. The number of words read is 
determined by the number of <vatiables>in the<Jist> or the maximum record size, whichever is smaller. 

An <arithmetic expression> followed by an <array row>, <subscripted variable> element or <pointer 
expression> specifies that input data is to be processed as full words, and that is to be assigned, without 
being edited, to the elements of the designed <array row>, <subscripted variable> element, or the item 
referenced by the <pointer expression>. The maximum record size, the number of elements in the 
<array row>. <subscripted variable> element or the item referenced by the <pointer expression>, or 
the value of the <arithmetic expression> determines the number of words read, depending upon which 
is the smallest. If Direct I/O is not being used, and the UNITS attribute= I, and INTMODE=FO, then all 
counts represent characters, not words. 

FREE-FIELD 1/0 

The use of a free-field designator with the READ or WRITE statements allows I/O to be performed with 
editing, but without using a format statement. The appropriate format is selected automatically, but 
variations of the free-field designator give the user some control over the form of the output. 

5-72 



The general form for a free-format designator is: 

Input 

ar/sw 

where a is an optional asterisk (*), sis an optional 
second slash(/), and rand ware optional single 
precision arithmetic expressions enclosed in 
brackets. 

Statments 

READ 

Continued 

On input, only the simplest form consisting of a single slash(/) can be used. It allows input from records 
consisting of data items separated by commas. 

All blanks are ignored . .Character strings must be enclosed by quote marks("). 

The symbol I, together with a <list> specifies that the input data is represented in a free-field format. All 
free-field input is in the form of <free-field data>. 

The "syntax" for <free-field data> is as follows: 

<free-field data> : := <field> .<field delimiter> I 
<free-field data> <field> <field delimiter> 

<field>::= <empty> I <number> I <string> I 

<field delimiter>::=. I 
<Jetter> { any proper string not containing a comma}. 

· {if the field is a/. the end of the current record 
serves as a field delimiter } 

Examples 

l, 
2.5, 
2.48@-20, 
2@34, 
''THIS IS A STRING", 
1 DELIMITER, 
2.5 ANY COMMENT OR NOTE NOT CONTAINING A COMMA, 
2.48@-20 VALUE FOR Z* (-3), 
2 @ 34 ET CETERA, 

Each field, except the slash(/), is associated with the list element to which it corresponds according to 
position. 

All blanks in <free-field data> except those in strings are completely ignored. 

5-73 



Statements 

READ 

Continued 

Fields are handled as follows: 

a. A number that is represented as an integer is converted as type INTEGER unless it is larger than 
the largest allowable integer, in which case it is converted as type REAL. Numbers that contain 
a decimal fraction are converted as type REAL. 

b; Strings can be of any length. Each list element receives six or eight characters, depending on 
character size, until either the list or the string is exhausted. If the number of characters in 
the string is not a multiple of six, the last list element receives the remaining characters of the 
string. The string characters are stored right-justified in the list elements. 

c. An <emtpy> field causes the corresponding list element to be ignored. 

d. The/ field causes the remainder of the current buffer to be ignored. The buffer following the 
slash is considered the beginning of a new field: therefore, the slash field does not r~quire, or 
recognize, any field delimiter other than the end of the buffer in which it occurs. A slash field 
has no effect on list elements. The slash is a field by itself and must not be placed within another 
field or between a field and its delimiter. 

e. The asterisk(*) field terminates the <read statement>. The program continues with the next 
statement in sequence. The list element corresponding to the asterisk remains unchanged, as 
do any subsequent elements in the list. 

The logical values, for the purpose of free-field input, are as follows: an integer 1 (one) must be used in 
lieu of the logical value TRUE, and an integer 0 (zero) must be used in lieu of the logical value FALSE: 

Output 

On output, each value is edited into an appropriate format. An edited item is never split across a record 
boundary. If the record is too short to hold any reasonable representation of the item, a string of pound 
signs (#) is output in place of the item. 

Data items are normally separated by a comma and a space. If the optional second slash (/ /) is used, they are 
separated by two spaces. Note that output produced in this manner cannot be read by a free-field input 
statement. 

If the optional asterisk is used, the name of the data item and an equal sign(=) are output prior to the 
value of the data item. If the data item is not a variable name then the expression is output as the name 
of the data item. 

It is not uncommon for users of free-field 1/0 to want to control spacing of items; hence this feature is now 
offered. 

With columnized free-field output, each list element is output in a separate column. This process is con­
trolled by two column factors. These factors are the number (r) of columns per record and the width (w) 
of each column, where w is measured in characters. Both r and w are integerized if necessary. 

If r is zero, the number of columns per record will be determined from the value of wand the record length. 
If w is zero, the width of each column will be determined from the value of rand the record length. If both 

5-74 



Statements 

READ 

Continued 

rand w are zero, there .is no column structure to the output. If rand w are such that r columns of w 
characters cannot fit on one record, adjustments are made to both rand w. Note that the width of a 
column does not include the two-character delimiter; i.e., r*(w+2) must be less than or equal to the 
length of the record. 

Example 

ARRAY B [0:3]; 
WRITE (F, /,*A,*X+Y,*"HELL0",*7.2, 

*B [A] ,*SIN (X),*B,*PNTR FOR 3); 
produces 
A= 3.2, bX+Y = 2.4E+41, b HELLO, b CONST= 7 .2, b 

B[3] = -82.173, b SIN(X) = 0.241392156792, b 
B[O] =0.0,bB[l] =O.O,b,B[2] =682.173,b 
B[3] = -82.173,b PNTR=QZ#, b 

Write 

The <format and list part> part indicates which <variable>s contain the data and how the data is to be 
interpreted. 

If the <format and list part> is <empty>, a blank record is written. A <format identifier> alone indicates 
that the referenced <format declaration> contains one or more strings that constitute the entire output. 

A <format identifier> followed by a <list> indicates that the variables in the <list> are to be placed in a 
format, according to the specifications of the <format declaration>, and written as output. 

The * symbol followed by a <list> or <list identifier> specifies that the variables in the <list> are to be 
processed as full words and are to be written by the number of variables in the <list>or the maximum 
block length, whichever is smaller. When unblocked records are used, the buffer size is the maximum 
record length. 

An <arithmetic expression> used with an <array row>, <subscripted variable>, or <pointer expression> 
specifies that the elements of the designated <array row>,<subscripted variable> part, or item referenced 
by the <pointer expression> are to be processed as full words and are to be written as output without 
being edited. The number of words written is determined by the number of elements in the <arr!Jy rpw>, 
<subscripted variable> part, or item referenced by the <pointer expression>, the maximum block length, 
or the absolute value of the arithmetic expression, whichever is smallest. When unblocked records are 
being used, the buffer size is the maximum record length. If the UNITS attribute= 1, the INTMODE =/:= 0, 
then all counts represent characters, not words. 

<write statements> that do not reference a <format declaration> provide a faster output operation than 
those that require data to be edited. 

<action labels or finished event> 

<action labels or finished event> provide a means of transferring control from a <read statement>, <write 
statement>, or <space statement> when exception conditions occur. A branch to <labei I> takes place 
when an end-of-file condition occurs. A branch to <label 2> takes place if an irrecoverable parity error 
is encountered. A branch to <label 3> takes place if there is a conflict between the format and the data. 
If the appropriate label is not provided when an exception condition occurs, the program is terminated. 

5-75 



Statements 

READ 

Continued 

The [<event designator>] form can be used only for Direct 1/0; the event is caused when the 1/0 operation 
is finished. (Refer to the DIRECT 1/0 paragraph.) <action labels or finished event> cannot be used with 
the following read/write construct: <array row>, <arithmetic expression>, <array row>. 

Exception conditions occuring during a <read statement> or <write statement> can also be handled 
without the use of <action labels or finished event>. The 1/0 result word returned by the MCP 1/0 
routines can be used as a Boolean primary. Refer to B 6000 Series Operation Guide Reference Manual, form 
5001563, for a description of the contents of the 1/0 result word when an exception condition occurs. 

For example, 

IF BOOL := READ(FILEID, 14, A[*]) THEN GO TO ERRORCOND; 

When exception conditions are handled in this manner, <action labels or finished event> cannot be used; 
the user assumes all responsibility for handling exception conditions. Furthermore, this method cannot 
be used for Direct 1/0 or <read statements> of the form: READ (<array row>, <arithmetic expression>, 
<array row>). Also, <write statement>s of the form: WRITE (<array row>, <arithmetic expression>. 
<array row>) are excluded. 

A common 1/0 exception condition is break on output for remote programs. For example, 

5~76 

IF IORSLT :=WRITE (RMT ,12,A) THEN 
IF IORSLT.[13:1] THEN% BREAK ON OUTPUT 

BEGIN CLEANUP; GO XIT; END; 

NOTE 

Additional information pertaining to 1/0 operations 
can be found under the <I/O statement>. 



Statements 

REMOVEFILE 

REMOVEFILE STATEMENT 

Syntax 

<removefile statement> ::=REMOVEFILE (<.directory element>) 

Example 

BOOL:= 
REMOVEFILE ("MYTEST ON PACKFOUR.") 

Semantics 

The <removefile statement> provides the ability to remove directories and files without opening them. 
The <removefile staJement> also returns a value of TRUE if an error occurred. The error numbers, 
stored in [39 :20], defining the failure are as follows: 

a. 10 - filename in error 

b. 30 - filename not removed 

If a <pointer expression> is used as a <.directory element>, it must point to an array that contains the 
filetitle to be removed. 

(Refer to the <.changefile statement>.) 

5-77 



Statements 

REPLACE 

REPLACE STATEMENT 

Syntax 

<replace statement>::= REPLACE <destination> BY <source list> 

<destination> : := <update pointer> <pointer expression> 

<update pointer>::= <empty> I 
<pointer variable> : 

<source list> : : = <source part> I 
<source list> , <source part> 

<source part>::= <source> <transfer part> I 
<arithmetic expression> <optional unit count> 
<digit convert part> I 
<numeric convert part> I 

<translate part> I 
<pointer-valued attribute> 

<source> : :=<update pointer> <pointer expression> 

<transfer part>::= <unit count> I 
WITH <picture identifier> I 
<scan part> 

<unit count> : := FOR <arithmetic expression> <units> 
<units>::= <empty> I 

WORDS 
<scan part> : := <condition> I 

· FOR <count part> <condition> 

<condition> : := WHILE <relational operator> <arithmetic expression> I 
UNTIL <relational operator> <arithmetic expression> I 
WHILE IN <truthset table> I 
UNTIL IN <truthset table> 

<count part> : := <residual count> <arithmetic expression> 

<residual count>::= <empty> I 
<simple variable> : 

<truthset table> : := <subscripted variable> 
<truthset identifier> I 
ALPHA I 
ALPHA6 I 
ALPHA7 I 
ALPHAS 

<optional unit count> : :=<empty> I 
<unit count> 

<digit convert part>::= 
<arithmetic expression> FOR <arithmetic expression> DIGITS 
<arithmetic expression> FOR* DIGITS 

<numeric convert part>::= 

5-78 

<arithmetic expression> FOR * NUMERIC I 
<arithmetic expression> FOR <count part> NUMERIC 



Statements 

REPLACE 

Continued 

<translate part>::= <source> FOR <arithmetic expression> WITH <translate table> 
<translate table> : :=<.subscripted variable> I 

<translatetable identifier> 
ASCIITOBCL I 
ASCIITOEBCDIC I 
ASCIITOHEX I 
BCLTOASCII I 
BCLTOEBCDIC I 
BCLTOHEX I 
·EBCDICTOASCII I 
EBCDICTOBCL I 
EBCDICTOHEX I 
HEXTOASCII I 
HEXTOBCL I 
HEXTOEBCDIC 

Examples 

REPLACE PTR BY "A" 
REPLACE PTR:PTR BY "*" FOR 75 
REPLACE PTR BY ITEM 
REPLACE PRT BY (4"03").[7:48) FOR 1 
REPLACE PTR BY " " FOR N WORDS 
REPLACE PTR:PTR BY PST FOR 18 
REPLACE PTR BY PST:PST FOR NUM WORDS 
REPLACE PTR BY PINFO WITH PIC 
REPLACE PTR:PTR BY PST WHILE NEQ " " 
REPLACE PTR BY PST WHILE IN ALPHA 
REPLACE P BY X FOR * DIGITS 
REPLACE P BY X FOR SO NUMERIC 
REPLACE P BY X FOR * NUMERIC 
REPLACE PTR BY PST WHILE IN MYTRUTHTABLE 
REPLACE PTR BY PST UNTIL= "," 
REPLACE PTR:PTR BY PST:PST UNTIL IN ALPHA6 
REPLACE PTR BY PST FOR LNGTH WHILE ) "O" 
REPLACE PTR BY PST FOR LEFT:25 WHILE IN ACCEPTABLE 
REPLACE PTR BY PST FOR 120 UNTIL NEQ " " 
REPLACE PTR BY PST FOR M:N UNTIL IN ALPHA 
REPLACE PTR:PTR BY SUMTOTAL FOR 6 DIGITS 
REPLACE PTR BY FYLE.TITLE 
REPLACE PTR BY PST:PST FOR L WITH XLATTABLE 

Semantics 
The general explanation of string handling found under the <string statement> should be read and 
understood before attempting to use the following information. 

The <replace statement> causes character data from one or more data sources to be stored in a 
designated portion of an array row. The array row and the starting character position within the array 
row are both determined by the <pointer expression> part of the <destination>. The value of this 
<pointer expression> initializes the stack-destination-pointer. As each character is moved into the 

5-79 



Statements 

REPLACE 

Continued 

destination array row, the stack-destination-pointer is correspondingly incremented one character 
position. When the last character has been stored in the destination array row, the corresponding final 
value of the stack-destination-pointer is stored in the <pointer variable> of the <update pointer>, 
if the <update pointer> is not empty; otherwise, it is discarded. 

The <source list> specifies the data and the processing to be performed upon this data to obtain the 
character data to be stored in the destination array row. The <source list> consists of one or more 
<source part>s. Each <source part> specifies source data and the processing to be performed upon the 
data. All the data specified by a single <source part> is processed by a single method, but the various 
<source part>s of the <source list> can specify a variety of processing methods. 

B 7000/B 6000 Series hardware requires character size to be provided for destination-pointer expressions and 
for most classes of character transfer. Use of a HEX ARRAY, a BCL ARRAY, an ASCII ARRAY, or an 
EBCDIC ARRAY provides the character size for transfers into these types of arrays. When building an 
explicit POINTER from a non-character array, a character size should be provided. Failure to provide the 
correct character size, where required, re_sults in a run-time error (INV ALIDOP). 

With certain forms of the <source part>, provisions are made to store the final value of the stack-source­
pointer. With several <source part>s in a single <replace statement>, several "final values" for the 
stack-source-pointer arise. Corresponding to these final values are values of the stack-destination-pointer. 
These latter values are not accessible to the programmer. They serve as the initial values of the stack­
destination-pointer for the processing of each next <source part>. 

The <source> is the same syntactical construct encountered in the <scan statement>. The <source> 
contains a <pointer expression> that initializes the stack-source-pointer to a particular character 
position in an array row. The character size associated within this <pointer expression> must be the 
same as that character size associated with the <pointer expression> that initialized the stack­
destination-pointer. If the <update pointer> of the <source> is not <.empty>, the <pointer 
variable> specified by the <update pointer> is assigned the final value of the stack-source-pointer for 
this part of-the data being processed. 

Pragmatics 

The formal syntax of the <source part> can be rectucect to the tollowing·combinations: 

<arithmetic expression> 
<arithmetic expression> FOR <arithmetic expression> 
<arithmetic expression> FOR <arithmetic expression> WORDS 
<arithmetic expression> FOR <arithmetic expression> DIGITS 
<arithmetic expression> FOR * DIGITS 
<numeric convert part> 

<source> FOR <arithmetic expression> 
<source> FOR <arithmetic expression> WORDS 
<source> FOR <arithmetic expression> WITH <translate table> 

<source> FOR <.count part> WHILE <relational operator> <arithmetic expression> 
<source> FOR <.count part> UNTIL <relational operator> <arithmetic expression> 
<source> FOR <.count part> WHILE IN <truthset table> 
<source> FOR <.count part> UNTIL IN <truthset table> 

5-80 



<.sou;ce> WHILE <relational operator> <arithmetic expression> 
<.source> UNTIL <relational operator> <arithmetic expression> 

. <.source> WHILE IN <truthset table> 
<.source> UNTIL IN <truthset table> 

<.source> WITH <picture identifier> 

<pointer-valued attribute> 

Statements 

REPLACE 

Continued 

The remainder of the information pertaining to the <replace statement> is organized according to the 
above combinations. 

The first four combinations of <.source part> have the leading syntactical item of <arithmetic 
expression>. The exact structure of the <arithmetic expression> has an effect on how the item is 
actually created and handled to accomplish the intended operation. The three allowable structures are 
"short string" (a quoted string of characters equal to or less than 48 bits), a "long string" (a quoted string 
longer than 48 bits), and "non-string" (either <variable> or the result of arithmetic manipulations). For 
ease of reference, three pseudo BNF items of {short string l, {long string l, and {non-string} have been 
created and are used below in describing the first four combinations of <source part>. 

Each {short string} is represented by a 48-bit operand, within which the specified bits/characters are 
left-:justified and the remaining bits are filled to the right by appropriate repetitions of the {short string} 
Once the entire 48-bit operand is evaluated at compile-time, all traces of the character size of the {short 
string} are discarded. At execution-time, if the operand is used in a <.source part> where individual 
characters are to be copied from the operand, the size of the characters copied is determined by the 
character size of the stack-destination-pointer. Thus, if the character size of $e stack-destination-pointer 
and the character size of {short str,ing} are not the same, the results are likely to be unexpected and 
undesired by the programmer. 

Each {long string} is stored (at compile-time) in a portion of one of the special arrays (called POOL 
ARRAYS) created by the compiler for use at execution-time. A pointer is automatically created at 
execution-time that points at the beginning of the {long string} . The created pointer must have a character 
size appropriate for the specified string; therefore, a {long string} must have a character size of 4-, 6-, or 
8-bits. EBCDIC (8-bit) is the default character size unless the compiler is instructed otherwise. (Refer to 
appendix D.) 

<arithmetic expression> 

{ short string} . The stack-source-operand is initialized by the value of the {short string} (appro­
priately evaluated as described). The stack-integer-counter is initialized by the string length of the 
{short string}. Characters, of the size specified by the stack-destination-pointer, are copied from the 

48-bit stack-source-operand to where the stack-destination-pointer indicates until the stack-integer­
counter is decremented to zero. If all of the bits of the stack-source-operand are copied before 
completion of the copy process, the stack-source-operand is reused as required. 

{long string} . The stack-source-pointer is initialized by the value of the pointer that points to the first 
character of the {long string} in a POOL ARRAY. The stack-integer-counter is initialized to the length 
of the {long string} ; for example, 17 in the following: "12345"4"FFBBCC"8"123456789". The 
specified number (as indicated by the initial value of the stack-integer-counter) of characters is copied 
from the {long string} to where the stack-destination-pointer indicates. That is, the {long string} is 
copied exactly once. 

5-81 



Statements 

REPLACE 

Continued 

{non-string}. The <arithmetic expression> is appropriately evaluated into a 48-bit ope~and a.nd used 
to initialize the stack-source-operand. The entire 48-bit value of the stack-source-operand is copied, 
exactly once, to where the stack-destination-pointer indicates. The character size of the stack­
destination-pointer is irrelevant. 

<arithmetic expression> FOR <arithmetic expression> 

{ short string} FOR <arithmetic expression>. The stack-source-operand is initialized by the value 
of the {short string} . The stack-integer-counter is initialized by the <arithmetic expression>. 
Characters of the size specified by the stack-destination-pointer are copied from the 48-bit stack­
source-operand to where the stack-destination-pointer indicates until the stack-integer-counter has 
been decremented to zero. If the stack-source-operand is copied completely before the stack-integer­
counter is decremented to zero, the stack-source-operand is reused as many times as required. 

{long string} FOR <arithmetic expression>. The stack-source-pointer is initialized by the value of 
the created pointer that points to the first character in the {long string} in a POOL ARRAY. The 
stack-integer-counter is initialized to the value of the <arithmetic expression>. The specified 
number of characters are transferred to where the stack-destination-pointer indicates. 

The integerized value of the <arithmetic expression> must not exceed the string length, or the 
resulting action is undefined. (Subsequent data in the POOL ARRAY could be transferred and, 
eventually, the end of the POOL ARRAY could be encountered, resulting in a STRINGPROTECT 
error condition.) 

{non-string} FOR <arithmetic ~xpression>. The <arithmetic expression> preceding the reserved 
word FOR is evaluated into a 48-bit operand and used to initialize the stack-source-operand. The 
stack-integer-counter is initialized by the value of the <arithmetic expression> following the 
reserved word FOR. Characters, of a size specified by the stack-destination-pointer, are copied from 
the stack-source-operand and stored where the stack-destination-pointer indicates. As each character 
is copied, the stack-integer-counter is decremented. Copying continues until the stack-integer­
counter is decremented to zero. If more characters are to be copied than the 48-bit stack-source­
operand can provide in a single use, the stack-source-operand is reused as required. 

<arithmetic expression> FOR <arithmetic expression> WORDS 

{short string} FOR <arithmetic expression> WORDS. The stack-source-operand is initialized by the 
value of the {short string} . Tile stack-integer-counter is initialized by the <arithmetic expression>. 
The stack-destination-pointer is advanced to the next nearest word boundary if it is not already 
pointing to a word boundary. The entire 48-bit stack-source-operand is copied to where the stack­
destination-pointer indicates a number of times equal to the initial value of the stack-integer-
counter. 

{long string} FOR <arithmetic expression> WORDS. The stack-source-pointer is initialized by the 
value of the pointer that points to the first character of the {long string} in a POOL ARRAY. The 
stack-integer-counter is initialized to the value of the <arithmetic expression>. In this case, the 
data representation of the {long string} is placed, at compile time, in the POOL ARRAY, left­
justified to a word boundary. The stacK-destination-pointer is advanced to the next word boundary 
if it is not already at a word boundary. The represented data of the {long string} is copied, 48 bits 
at a time, to where the stack-destination-pointer indicates, until the specified number of words are 
transferred. If the number of words spe~ified by the stack-integer-counter exceeds the data 

5-82 



Statements 

REPLACE 

Continued 

repre~ented by the value of {long string} , the resulting action is undefined. (Possibly, subsequent 
data m the POOL ARRAY would be copied and, eventually, the end of the POOL ARRAY would be 
encountered, resulting in a STRINGPROTECT error condition.) 

{non-string} FOR <arithmetic expression> WORDS. The <arithmetic expression> preceding 
the reserved word FOR is evaluated into· a 48-bit operand and used to initialize the stack-source­
operand. The stack-integer-counter is initialized by the value of the <arithmetic expression> 
following the reserved word FOR. The stack-destination-pointer is advanced to the next word 
boundary, if it is not already pointing to a word boundary. The value of the stack-source-operand 
is copied to where the stack-destination-pointer indicates a number of times specified by the initial 
value of the stack-integer-counter. The character size of the stack-destination-pointer is irrelevant. 

<arithmetic expression> FOR <arithmetic expression> DIGITS 

The absolute value of the first <arithmetic expression> is evaluated, integerized to a single-precision 
operand, and used to initialize the stack-source-operand. The second <arithmetic expression> is 
evaluated, integerized to a single-precision operand, and used to initialize the stack-integer-counter. The 
value of the stack-source-operand is first transformed into a sequence of 12 decimal 4-bit characters. The 
value of the stack-integer-counter specifies how many of these decimal 4-bit characters (taken from the 
right-hand side) are to be selected for further transformation. If the stack-destination-pointer has a 
character size of 4, the selected characters are copied without further transformation to the destination 
array row. If the stack-destination-pointer has a character size of 6 or 8, either an appropriate 2-bit zone 
field is added to each character or an appropriate 4-bit zone field is added to each character before being 
copied to the destination: array row. The 2-bit zone field is l "00", and the 4-bit zone field is l "1111 ".If 
the stack-integer-counter has a value greater than 12, an INV ALIDOP occurs. If the value of the stack­
integer-counter is not large enough to include all non-zero decimal characters, the overflow flip-flop is 
set. This flip-flop can be tested by the Boolean intrinsic function whose name is OVERFLOW. 

The sign of the first <arithmetic expression> is placed in the external sign flip-flop. The significance 
of the value of the external sign flip-flop is explained in the discussion of the <.picture declaration>. 

The remaining combinations of <source part> have <source> as the first syntactical item. The syntax 
of <source> shows that a pointer with an optional <update pointer> is used to select the characters to 
be picked up and appropriately manipulated. The selected characters are either 4-, 6-, or 8-bits each, 
depending on the character size of the source pointer. The manipulation depends on the particular syntax 
used as well as the character sizes of the source and destination pointers. With the exception of the 
<translate part>, a mismatch between the source and destination character sizes will produce an invalid­
op interrupt. 

<arithmetic expression> FOR *DIGITS 

The absolute value of the <arithmetic expression> is evaluated and integerized to a single-precision 
operand. This operand is then transformed into a sequence of 12 decimal 4-bit characters. Leading zeros 
in this operand are ignored, and the remaining characters are transferred to the destination. If the 
destination pointer has a character size of 4 bits, the digits are transferred unmodified. If the character 
size is 6 or 8, the characters are augmented with zone bits of l "00" or l "1111 ",respectively. The over­
flow flip-flop is set if the <arithmetic expression> exceeds 12 digits in absolute value; the external sign 
flip-flop is set if the <arithmetic expression> is negative. 

5-83 



Statements 

REPLACE 

Continued 

<numerjc convert part> 

The <arithmetic expression> is evaluated. An intrinsic procedure is called to generate an EBCDIC 
character string representing the decimal value of the <arithmetic expression>. If the destination pointer 
has a character size of 8 bits, the resulting string is copied to the destination. If the character size is 
6 bits, the string is copied with EBCDIC-to-BCL translation. If the character size is 4 bits, a fatal run-time 
error occurs. 

If a <.count part> appears, it specified the maximum field width to be used; if the *appears, the field is 
unlimited (but never exceeds 36 characters). If a <residual count> appears, the <simple variable> is 
assigned the difference between the specified maximum field and the characters actually used. 

The form of the decimal representation is determined by the operand type (single/double), whether or not the 
the operand value is integral, the magnitude of the operand, the number of significant digits in its decimal 
representation, and upon the field width. The basic rule is the number will be represented as compactly as 

· possible, using integer, decimal-point or scientific notation as appropriate. 

For example, the following <numeric convert part>s generate the decimal representations given: 

123 FOR* NUMERIC 
12345678 FOR 8 NUMERIC 
12345678 FOR 6 NUMERIC 
123/100 FOR N:6NUMERIC 
1@@0/3 FOR* NUMERIC 

<source> FOR <arithmetic expression> 

123 
12345678 
1.23+7 
1.23 (N:=2) 
0.3333333333333333333333 

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter is initialized to the 
value of the <arithmetic expression>. The specified number of characters are transferred to where the 
stack-destination-pointer indicates. 

<source> FOR <arithmetic expression> WORDS 

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter is initialized to the 
value of the <arithmetic expression>. Both the stack-source-pointer and stack-destination-pointer must 
point at a word boundary. Either or both are automatically adjusted forward to word boundaries if 
necessary. The specified number of 48-bit words are transferred to where the stack-destination-pointer 
indicates. 

<source> FOR <arit~metic expression> WITH <translate table> 

The function of this construct is to retrieve characters from a source location, translate each such 
character (through the use of the specified translation table) into a possibly different character having a 
possibly different character size, and store each resulting character where the physical-destination-pointer 
indicates. 

The value of the <pointer expression> points to the first character to be translated. The stack-source­
pointer is initialized to the <pointer expression>. In the instance of the translation process, it is not 
required that the stack-destination-pointer and the stack-source-pointer have the same character size. 
Instead, the stack-source-pointer must have a character size equal to that of the characters in the array 

5-84 



Statements 

REPLACE 

Continued 

row being translated, and the stack-destination-pointer must have a character size equal to that of the 
resulting translated characters. 

The <arithmetic expression> indicates the number of characters to be translated. The stack-integer­
counter is initialized by the <arithmetic expression>. The stack-auxiliary-pointer is initialized to a 
pointer that indicates the location of the first word of a table to be used in the translation process. This 
pointer is derived from the <translate table>; it always points to the first character of the first word of 
the translation table, and its character size is absent. Normally, when a pointer value is used and its 
character size is absent, a default value of 8 is used. However, the character size of the pointer used to 
initialize the stack-auxiliary-pointer is irrelevant. The translation table is not examined sequentially, a 
character-at-a-time, but rather the data in the table is accessed by special indexing techniques implemented 
by hardware logic. 

INTRINSIC TRANSLATION TABLES. If the <translate table> is of the form ASCIITOBCL, 
ASCIITOEBCDIC, ASCIITOHEX, BCLTOASCII, BCLTOEBCDIC, BCLTOHEX, EBCDICTOASCII, 
EBCDICTOBCL, EBCDICTOHEX, HEXTOASCII, HEXTOBCL, or HEXTOEBCDIC, the stack­
auxiliary-pointer is initialized to a pointer that points to the appropriately supplied translation table. 
The function of each translation table is deduced from the name, for example, BCLTOEBCDIC implies 
that the table is to be used in translating characters from BCL to EBCDIC. 

<translatetable identifier>. If the <translate table> is of the form <translate table identifier>, a 
translation table will have been created by the ALGOL programmer through the use of the 
<translate table declaration>. A detailed discussion regarding_the construction of a translation table 
through the use of the <translate table declaration> is provided with the syntax description for the 
<translatetable declaration>. 

<subscripted variable>. If the <translate table> is of the form <subscripted variable>, the 
ALGOL programmer is responsible for creating a properly structured translation table that is 
contained entirely in the array row and begins with the word in the array row indicated by the 
<subscripted variable>. _(See Figure 4-1.) 

The next four combinations of the <source part> cause movement of characters from the source to the 
destination until either the specified number of characters have been transferred or until a source character 
fails/passes the specified test .. (Refer to the <scan statement>.) 

<count part> 

NOTE 

If the total number of specified characters are 
transferred, the TRUE/FALSE Flip-Flop is set to 
TRUE. It is set to FALSE if the transferring 
stopped due to the test (see the Boolean 
intrinsic TOGGLE), and the stack-source-pointer 
is left pointing at the character that failed/ 
passed the test. 

The syntax of <count part> shows that an <arithmetic expression> is the starting value of the number 
of characters to be transferred. A programmer may choose to have the <residual count> non-<empty>, 

5-85 



Statements 

REPLACE 

Continued 

in which case the value of the remaining count would be stored into the specified <simple arithmetic 
variable> at the completion of the <source part>. 

<source> FOR <.count part> WHILE <relational operator> <arithmetic expression> 

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter is initialized to the 
starting value of the <.count part>. Characters are then transferred from th.e source to the destination 
until either the stack-integer-counter is decremented to zero or a source character fails the test. 

<source> FOR <.count part> UNTIL <relational operator> <arithmetic expression> 

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter is initialized to the 
starting value of the <.count part>. Characters are then transferred from the source to the destination 
until either the stack-integer-counter is decremented to zero or a source character passes the test. 

<source> FOR <.count part> WHILE IN <truthset table> 

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter is initialized to 
the starting value of the <.count part>. Characters are then transferred from the source to the destination 
until either the stack-integer-counter is decremented to zero or a source character fails the test. (See the 
<truthset declaration> for further information regarding the <truthset table>.) 

<source> FOR <.count part> UNTIL IN <truthset table> 

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter is initialized to the 
starting value of the <.count part>. Characters are then transferred from the source to the destination 
until either the stack-integer-counter is decremented to zero or a source character passes the test. (See the 
<truthsetdeclaration> for further information regarding the <truthset table>.) 

The next four combinations of the <source part> cause movement of source characters to the destina­
tion until a source character fails/passes the specified test. In the frrst two cases, the <source character>s 
are tested against bits [7:8] or [5:6] or [3:4] of the <arithmetic expression>, depending on the 
character size of the <source>. In all cases, the stack-source-pointer is left pointing at the character 
that failed/passed the test. 

<source> WHILE <relational operator> <arithmetic expression> 

The stack-source-pointer is initialized to the source pointer. Characters are then transferred from the 
source to the destination until a source character fails the test. 

<source> UNTIL <relational operator> <arithmetic expression> 

The stack-source-pointer is initialized to the source pointer. Characters are then transferred from the 
source to the destination until a source character passes the test. 

<source> WHILE IN <truthset table> 

The stack-source-pointer is initialized to the source pointer. Characters are then transferred from the 
source to the destination until a source character fails the test. (See the <truthset declaration> for 
further information regarding the <truthset table>.) 

5-86 



Statements 

REPLACE 

Continued 

<source> UNTIL IN <truthset table> 

The stack-source-pointer is initialized to the source pointer. Characters are then transferred from the 
source to the destination until a source character passes the test. (See the <truthset declaration> for 
further information regarding the <truthset table> .) 

<source> WITH <picture identifier> 

The character data specified by <source> (which must be a pointer) is processed under control of the 
picture specified by the <picture identifier>. Details regarding the formation of a picture and the 
associated effect the picture has upon the processing of character data are described under the <picture 
declaration> description. 

<pointer-valued attribute> 

The string of characters indicated by the <pointer-valued attribute> is copied to where the stack­
destination-pointer indicates. The string of characters is formatted into the destination array row in a 
form suitable to serve in the <replace pointer-valued attribute statement> that changes the same kind of 
<pointer-valued attribute> (the character string ends with an 8"."). For example, the following sequence 
of statements is valid: 

REPLACE P BY Fl.TITLE; 
REPLACE F2.TITLE BY P; 

where Pis a <pointer identifier>, and Fl and F2 are <file identifier>s. 

All <pointer-valued attributes> have a character size of 8. At run-time, if the physical-destination­
pointer does not also have a character size of 8, an INV ALIDOP error condition occurs. 

If a <pointer-valued attribute> appears as a <source part> in a <replace statement>, that part of the 
statement is not implemented by in-line code. Instead, a call is made on an MCP procedure to complete 
this part of the <replace statement>. 

5-87 



Statements 

REPLACE FAMILY-CHANGE 

REPLACE FAMILY-CHANGE STATEMENT 

Syntax 

<replace family-change statement> : := REPLACE <family designator> 

<family designator> : := <file designator> . FAMILY 
<up or down> : := *+ I *-

<simple source> : := <string> I 
<pointer expression>. 

Examples 

BY <up or down> <simple source> 

REPLACE NETWORK.FAMILY BY *+ "PROCTOR7 ." 
REPLACE OATACOLLECTORS.FAMILY BY*- PTRTOSTANAME 

Semantics 

Once a remote file is opened, an ALGOL program can add stations to the family of the remote file or 
delete stations from the family of the remote file. The <replace family-change statement> is the 
ALGOL language construct provided for this purpose. The <family designator> specifies (through the 
<file designator>) the file whose attribute is to be changed, and the attribute name FAMILY specifies 
which attribute is to be changed. If a station is to be added to the family, <up or down> is *+. If the 
station is to be deleted from the family, <up or down> is*-. The <simple source> specifies the 
TITLE of the station involved. The <simple source> (as a value for an attribute) having a string of 
characters as its value must terminate with a period (8"."). (See further details under <replace pointer­
valued attribute statement>.) 

Pragmatics 

If in the <replace family-change statement> the <simple source> does not reference a valid station 
TITLE as specified in the current NOL-specified network, then after the completion of the <replace 
family-change statement> the following occurs: 

a. <file designator>.FAMILY is unchanged. 
b. <file designator>.ATTERR is TRUE. 
c. An appropriate error message is displayed on the SPO. 
d. The program continues. 

The <file designator>.ATTYPE is also set appropriately. If <upordown> is*- and the <simple 
source> specifies a valid station as defined by the current NOL description, but the specified station is 
not currently a member of the FAMILY, then the <replace family-change statement> makes no change 
to the specified FAMILY, indicates no error condition (such a situation is not considered to be an error), 
and control passes to the next statement of the program. 

If the remote file is closed and opened again, the family reverts to its NOL-specified value. 

In-line code is not generated by the compiler for the <replace family-change statement>. ~nstead, a call 
is made on an MCP procedure to complete the desired function. 

5-88 



Statements 

REPLACE POINTER-VALUED ATTRIBUTE 

REPLACE POINTER-VALUED ATTRIBUTE STATEMENT 

Syntax 

<replace pointer-valued attribute statement>::= REPLACE <pointer-valued attribute> 
BY <.simple source> I 

REPLACE <pointer-valued attribute> BY 
<pointer-valued attribute> 

<pointer-valued attribute> : :=<file designator> <disk row/copy specifications> 
. <pointer-valued file attribute name> I 

<task designator> . <pointer-valued task attribute name> 

<pointer-valued task attribute name>::= BACKUPPREFIX 
FILECARDS I 
NAME I 
USERCODE I 
CHARGECODE 

Examples 

REPLACE PYLE.TITLE BY "MASTER/PAYROLL." 
REPLACE FILEID(COPY2).TITLE BY PTRTONAME 
REPLACE TSK.NAME BY "SECOND/STACK." 
REPLACE T.NAME BY TS.NAME 

Semantics 

The <replace pointer-valued attribute statement> is the construct provided to change the value of a 
pointer-valued attribute to a <.simple source>. The <.simple source> represents or references the 
set of characters that are to become the new value of the pointer-valued attribute. 

Pragmatics 

If the <.simple source> is a <.string>, then the last character of the <.string> must be a period. The 
"effective" part of the <.string> terminates with the first period in the string. A maximum string 
length is associated with each <pointer-valued attribute>. If the effective part of the <.string> has a 
string length that is greater than the maximum value specified relative to the particular <pointer-valued 
attribute>, the new value of the <pointer-valued attribute> is the <.string> truncated on the right to 
the required length. 

If the <.simple source> is a <pointer expression>, at execution tim; the <pointer expression> 
must point to (or into) an <array row>. The <array row> must contain the string of characters that 
are to become the new value of the <pointer-valued attribute>. The <pointer expression> must point 
to the first character of this string of characters. Starting with the first character, characters are included 
in the value of the pointer-valued attribute until a period is encountered, or until the maximum number 
of characters is included, or the end of the array row is encountered. The latter results in an error condition. 

If a <pointer-valued attribute> is used in the source, the source attribute and the destination attribute must 
be the same. 

In-line code is not generated by the compiler for the <replace pointer-valued atttribute statement>. 
Instead, a call is made on an MCP procedure to complete the desired function. 

5-89 



Statements 

RESET 

RESET STATEMENT 

Syntax 

<reset statement> : := RESET ( <.event designator> ) 

Examples 

RESET (EVNT) 
RESET (EVNTARAY [INDX]) 

Semantics 

The <reset statement> resets an event to the NOT HAPPENED state. It does not cause any other 
action . 

.;· 

Pragmatics 

If a <reset statement> is used after a <wait statement> to restore the event, a "window" of time 
exists within which another task or tasks could cause the event. For this reason, a <waitandreset 
statement> or <.causeandreset statement> might prove to be more useful. 

5-90 



RESIZE STATEMENT 

Syntax 

<resize statement> : := RESIZE ( <array row> , 
<arithmetic expression> <retain old> ) 

<retain old> : := <empty> I 
, RETAIN 

Examples 

RESIZE (ARA Y, NEWSZ) 
RESIZE (INPUTDATA, FYLE.MAXRECSIZE, RETAIN) 
RESIZE (ARA Y[ 2, *],S) 

Semantics 

Statements 

RESIZE 

RESIZE ( <array row> , <arithmetic expression> ) causes the size of the specified <array row> to 
be changed to the size specified by the <arithmetic expression>. Information in the "new" <array 
row> is undefined. 

The RESIZE ( <array row>, <arithmetic expression>, RETAIN ) form resizes the array row, and the 
information in the "old" <array row> is transferred into the "new" <array row> until all the 
information is transferred or the end of the "new" <array row> is encountered. 

An <array row> in a multi-dimensioned array can be resized. 

5-91 



Statements 

REWIND 

REWIND STATEMENT 

Syntax 

<rewind statement> : :=REWIND ( <[lie designator> ) 

Example 

REWIND (FILEA) 

Semantics 

The <rewind statement> causes the referenced file to be closed. If the file is a paper tape or magnetic 
tape file, it is rewound. For disk files, the record pointer is reset to the first record of the file. The file 
buffer areas are returned to the system. The 1/0 unit remains under program control. 

Restriction 

On paper tape files, the <rewind statement> can be used only on input. 

5-92 



RUN STATEMENT 

Syntax 

Statements 

RUN 

<run statement> : := RUN <.procedure identifier> <actual parameter part> [ <task designator> ] 

Examples 

RUN SIMPL [TSK] 
RUN DOOER (X,Y,Z, "ABCD") [TSKARAY[INDX]] 

Semantics 

The <run statement> initiates a procedure as an independent task. Initiation consists of setting up a 
separate stack, initializing parameters (by value only), and beginning the execution of its statements. The 
initiator resumes execution and both run in parallel. The procedure must be compiled separately and 
declared EXTERNAL. All <actual parameter>s must be call-by-value. 

Unlike the <process statement>, which it resembles, there is no dependence upon the initiator. Thus 
there is no "critical block" and the initiator can even go to end-of-job while the external procedure 
continues. 

The contents of the <task designator> are simply copied by the MCP such that the initiated procedure 
has its own task variable. Prior to initiation, the task attributes can be initialized as needed. (Refer to 
<arithmetic task attribute> and <Boolean task attribute>.) 

Pragmatics 

Note that arrays and files cannot be declared value; therefore, procedures with array or file parameters 
cannot be invoked with a <run statement>. Also, a procedure with <pointer parameters>, whether or 
not it is declared value, cannot be invoked with a <run statement>. 

5-93 



Statements 

SCAN 

SCAN STATEMENT 

Syntax 

<scan statement> : := SCAN <source> <scan part> 

Examples 

SCAN PTR WHILE = " " 
SCAN PTR UNTIL NEQ 4"00" 
SCAN PTR:PTR WHILE IN ALPHA 
SCAN PTR UNTIL IN ALPHA6 
SCAN PTR:PTR WHILE IN ACCEPTABLE[O] 
SCAN PTR FOR SO WHILE ) "Z" 
SCAN PTR:PTR FOR X:80 UNTIL = "." 
SCAN PTR FOR RMNDR:960 WHILE NEQ 4"10" 
SCAN PTR:PTR FOR ZED:ZED WHILE IN ALPHAS 
SCAN PTR FOR 80 UNTIL IN GOODSTUFF [S] 

Semantics 

The general explanation of string handling found under the <string statement> should be read and 
understood before attempting to use the following information. 

The function of the <scan statement> is to examine a contiguous portion of character data in an array 
row, a character-at-a-time, in a left-to-right direction. 

<source> is always a <pointer expression> and the updated pointer can be stored at the completion of 
the <scan statement>. 

<scan part> is basically a testing operation to determine when to stop the <scan statement>. The 
programmer can specify that scanning is to stop after a given number of source characters or when a source 
character fails/passes a specified test. 

NOTE 

If the total number of source characters are completely 
scanned, the TRUE/FALSE Flip-Flop is set TRUE. 
It is set to FALSE if the scan terminated due to the 
test failing/passing (see the Boolean intrinsic 
TOGGLE), and the stack-source-pointer is left 
pointing at the character that failed/passed the test. 

As can be seen in the syntax of <scan part> (see <replace statement>), a <count part> would be 
used when a maximum number of source characters are to be scanned. A programmer may choose to have 
the <residual count> non-<.empty>, in which case the value of the remaining count would be stored 
into the specified c<simple arithmetic variable> at the completion of the <scan statement>. 

The syntax of <condition> shows that the <relational operator> specifies the test to use between 
the <arithmetic expression> and the source characters. 

5-94 



Statements 

SCAN 

Continued 

The most common form of the <a.rithmetic expression> is a one-character string; e.g.,".", 8"A",6"/", 
. 4 "00". However, a {non-string} item is allowed which contains the character against which source 
characters are tested. In either case, the stack-source-operand is initialized with the comparant:character 
in a right-justified format (bits [7 :8], [5 :6], or [3 :4] depending on the character size of the <source>). 

Pragmatics 

The formal syntax of the <scan statement> can be reduced to the following combinations: 

<source> FOR <.count part> WHILE <relational operator> <a.rithmetic expression> 
<source> FOR <count part> UNTIL <relational operator> <a.rithmetic expression> 
<source> FOR <count part> WHILE IN <truthset table> 
<source> FOR <.count part> UNTIL IN <truthset table> 

<source> WHILE <relational operator> <a.rithmetic expression> 
<source> UNTIL <relational operator> <.arithmetic expression> 

<source> WHILE IN <truthset table> 
<source> UNTIL IN <truthset table> 

The remainder of the information pertaining to the <scan statement> is organized according to the 
above combinations. Since all combinations of the <scan statement> begin with <source>, each 
description of a combination begins with the assumption that the stack-source-pointer has been initialized 
to the source pointer. 

The first four combinations of the <scan statement> cause source characters to be scanned. (skipped 
over), one-at-a-time, until either the specified number of characters have been examined or a source 
character fails/passes the test. · 

<source> FOR <.count part> WHILE <relational operator> <a.rithmetic expression> 

The stack-integer-counter is initialized to the starting value of the <.count part>. Characters are then 
scanned, one-at-a-time, until either the stack-integer-counter is decremented to zero or a source character 
fails the test. 

<source> FOR <.count part> UNTIL <relational operator> <.arithmetic expression> 

The stack-integer-counter is initialized to the starting value of the <.count part>. Characters are then 
scanned, one-at-a-time, until either the stack-integer-counter is decremented to zero or a source character 
passes the test. 

<source> FOR <.count part> WHILE IN <truthset table> 

The stack-integer-counter is initialized to the starting value of the <.count part>. Characters are then 
scanned, one-at-a-time, until the stack-integer-counter is decremented to zero or a source character 
fails the test. 

5-95 



Statements 

SCAN 

Continued 

<source> FOR <count part> UNTIL IN <truthset table> 

The stack-integer-counter is initialized to the starting value of the <count part>. Characters are then 
scanned, one-at-a-time, until the stack-integer~ounter is decremented to zero or a source character passes 
the test. 

The remaining four combinations of the <scan statement> cause source characters to be scanned 
(skipped over) until a source character fails/passes the test. If the source data does not contain a character 
which is being scanned for, the scan operation will eventually encounter the 'end of the array row and a 
SEG ARRAY ERROR. This error causes the program to be terminated unless the appropriate <.on 
statement> has been provided. 

<source> WHILE <relational operator> <arithmetic expression> 

Characters are scanned until a source character fails the test. 

<source> UNTIL <relational operator> <arithmetic expression> 

Characters are scanned until a source character passes the test. 

<source> WHILE IN <truthset table> 

Characters are scanned until a source character fails the test. (See the <truthset declaration> for further 
information regarding the <truthset table>.) 

<source> UNTIL IN <truthset table> 

Characters are scanned until a source character passes the test. (Refer to the <truthset declaration> for 
further information-regarding the <truthset table>.) 



SEEK STATEMENT 

Syntax 

<seek statement> : := SEEK ( <file designator> [ <record number> 1 ) 
<record number> : := <arithmetic expression> 

Example 

SEEK (FILEA [X+2*Y]) 

Semantics 

Statements 

SEEK 

The <seek statement> is used with randomly accessed disk files. It provides the means by which the 
buffer of a file can be filled in advance of an anticipated read or write on the record to which the <record 
number> points. 

The <file designator> must not be a direct file or a member of a direct switch file. 

5-97 



Statements 

SET 

SET STATEMENT 

Syntax 

<set statement>::= SET ( <.event designator> ) 

Examples 

SET (EVNT) 
SET (EVNTARAY [INDX]) 

Semantics 

The <set statement> sets an event to the HAPPENED state. It does not cause any other action; that is, 
the <set statement> does not activate a task or tasks waiting on the event. 

5-98 



SORT STATEMENT 

Syntax 

<sort statement> : := SORT ( <output option> , 
<input option> , 
<number of tapes> , 
<.compare procedure> , 
<record length> <size specifications> ) 
<restart specifications> 

<output option> : :=<file designator> I 
<output procedure> 

<output procedure>::= <procedure identifier> 

<input option> : :=<file designator> I 
<input procedure> 

<input procedure> : :=<procedure identifier> 

<number of tapes> : := <arithmetic expression> 

<.compare procedure> : := <procedure identifier> 

<record length>::= <arithmetic expression> 

<size specifications>::= <empty> I 
<.core size> I 
<.core size> <disk size> 
<core size> <.pack size> 

<.core size> : := , <arithmetic expression> 

<disk size> : := , <arithmetic expression> 

<restart specifications> : :=<empty> I 
[ RESTART= <arithmetic expression> 

<pack size>::= , PACK <size> 
<size>::= <empty> I 

<arithmetic expressions> 
Examples 

SORT (FILEOUT, FILEIN, 3, COMPEAR, 10) 

Statements 

SORT 

SORT (OUTPROC, INPROC, NUMOFTAPES, COMPARER, RECSZ, CORESZ, DSKSZ) 
[RESTART= PARAM] 

Semantics 

The <sort statement> provides a means whereby data, as specified by the <input option>, can be 
sorted and returned to the program as specified by the <output option>. The order in which the data 
is returned is determined by the <compare procedure>. 

<output option> 

If a <file designator> is specified as the <output option>, the <sort statement> writes the sorted 
output on this file. Upon completion of the <sort statement>, the file is closed. If the file is a disk file . 

5-99 



Statements 

SORT 

Continued 

with a non-zero SA VEF ACTOR, it is closed and locked. The output file must not be open when it is 
passed to the sort by the program. 

If an <output procedure> is specified as the <output option>, the <sort statement> calls on this 
procedure once for each sorted record and once to allow end-of-output action. This procedure must be 
untyped and must used two parameters. The first parameter must be call-by-value Boolean, and the second 
parameter must be a one-dimensional array with a constant (0) lower bound. The Boolean parameter is 
FALSE as long as the second parameter contains a sorted record. When all records are returned, the first 
parameter is TRUE and the second parameter must not be accessed. 

An example of an <output procedure> is as follows: 

PROCEDURE OUTPROC (8, A); 
VALUE B; 
BOOLEAN B; 
ARRAY A [OJ; 
IF B THEN CLOSE (FILEID, RELEASE) ELSE WRITE (FILEID, RECISIZE, A[*] ); 

<input option> 
\ 

If a <file designator> is used as the <input option>, the.records in that file are used as input to the 
<sort statement>. This file is closed after all of the file records are read by the <sort statement>. Disk 
files are closed with regular close action, and non-disk files are closed with release action. The input file 
must not be open when it is passed to the sort by the program. 

If an <input procedure> is used as the <input option>, the procedure is called to furnish input records 
to the <sort statement>. This <input procedure> must be a Boolean procedure with a one-dimensional 
array, with a constant (0) lower bound as its only parameter. This procedure, on each call, either inserts 
the next record to be sorted into its array parameter or returns the value TRUE, which indicates the end 

. of the input data. 

When a TRUE is returned by the <input procedure>, the <sort statement> does not use the contents 
of the array parameters and does not call on the <input procedure> again. 

An example of an <input procedure> that sorts N elements of array Q is as follows: 

BOOLEAN PROCEDURE INPROC (A); 
ARRAY A [OJ ; 
IF NOT (INPROC := (N := N-1) ( 0) 

THEN A [OJ := Q [NJ ; 

<number of tapes> 

The <number of tapes> specifies the number of tape files that can be used, if necessary, in the sorting 
process. If the value of the <arithmetic expression> is 0, no tapes are used. If the value of the 
<arithmetic expression> is less than 3, three tapes are used. If the value of the <arithmetic expression> 
is 8 or more, a maximum of eight tapes is used. If the value of the <arithmetic expression> is between 3 
and 8, the value specified is used. · · 

5-100 



Statements 

SORT 
Continued 

<compare procedure> 

The <compare procedure> is called by the <sort statement> to determine which of two records must 
be used next in the sorting process. The procedure must be a Boolean with exactly two parameters. Each 
of the parameters must consist of one-dimensional arrays with constant (0) lower bounds. The Boolean 
value that is returned by the procedure must be TRUE if the array given as the first parameter is to appear 
in the output before the array given as the second parameter. 

As an example, the following procedure could be used for sorting in ascending sequence: 

BOOLEAN PROCEDURE CMP (A, B); 
ARRAY A, B (0); 
CMP := A[O] ( B[{)]; 

The identifier CMP is TRUE if array A is less than array B. CMP is FALSE if array A is greater than or 
equal to array B. This results in the lower-valued array being passed to the output first. In the preceding 
example, word [0) is the control on which sorting is to be performed. 

For the actual comparison; two strings might be compared according to the EBCDIC collating sequence, 
or by using a string relation, or an arithmetic comparison might be performed by using an arithmetic 
relation. Also, the user could compare on different "keys" or fields in the records. The comparison tech­
nique is determined entirely by the user. 

<record length> 

The <record length> represents the length, in words, of the largest item that is presented to the <sort 
statement>. If the value of the <arithmetic expression> is not a positive integer, the largest integer 
that is not greater than the absolute value of the expression is used; that is, a record length of 12 is used 
if an expression has a value of -12.995. If the value of the <arithmetic expression> is 0, the program 
terminates. 

<size specfications> 

The <size specifications> ·allow the programmer to specify the amount of main memory and the amount 
of disk storage that can be used. 

The <core size>, if present, specifies the number of words of main memory that can be used. If the 
number is unspecified, a value of 12,000 words is assumed. 

The <disk size>, if present, specifies the amount of disk storage in words that can be used. If the amount 
is unspecified, a value of 600,000 words of disk storage is assumed. 

<restart specifications> 

The <restart specifications> give the sort the ability to resume processing at the most recent checkpoint 
following the discontinuance of a program. It is necessary for the program to provide logic to restore and 
maintain stack variables, arrays, files, pointers, etc., that are defined for, and by, the program. In other 
words, the program must provide the means to restore everything that is necessary for the program to 
continue from the point of interruption. This may be either a simple or difficult task and is entirely 
program-dependent. The restart capability is implemented only for disk sort. 

5-101 



Statements 

SORT 

Continued 

<pack size> 

The <pack size> allows programmatic specification of temporary files created by the <sort statment> to 
be on system resource pack rather than head-per-track disk. If <size> is <empty>, 600000 words of pack 
storage is assumed. 

Pragmatics 

SORT MODE 

The combination of the <disk size> entry and the <number of tapes> determines the sort mode as 
follows: 

a. Number of tapes i= 0, disk size= O; sort mode is tape only. 
b. Number of tapes -:F 0, disk size'* O; sort mode is Integrated-Tape-Disk (ITD). 
c. Number of tapes= 0, disk size -:F O; sort mode is disk only. 
d. Number of tapes= 0, disk size= O; sort mode is core sort. 

RESTART PARAMETER VALUES 

The sort inspects various bits of the <arithmetic expression> parameter to determine the course of 
action it is to take. To control the sort, individual bits and combinations of bits can be set by the program. 
The meaning of the various bits and the decimal values used in the <arithmetic expression> to represent 
various bit combinations are explained in the paragraphs that follow. 

Bit Values 

The value of the least-significant (rightmost) five bits of the <arithmetic expression> are passed to the 
sort to indicate desired action. The various bits and their meanings are as follows: 

BIT STATE 

0 ON 

0 OFF 

1 ON 

1 OFF 

2 ON 

5-102 

DESCRIPTION 

The program is restarting a previous sort. The sort tries to open its two disk files 
and obtain restart information. If it is successful in obtaining this information, 
the sort tries to continue from the last-known restart point. 

The sort is starting from the beginning. If the sort is restartable and previous 
sort files with identical titles exist, they are removed and replaced by new sort 
files. 

The program is requesting a restartable sort. The sort saves its two internal files 
·and can be restarted upon program request. If bit 2 is ON, bit 1 is set by default. 

A normal sort is requested and no sort files are saved (unless bit 2 is ON, which 
sets bit 1 by default). 

The program is requesting a restartable sort and desires extensive error recovery 
(from 1/0 errors). With this option set, the sort attempts to back-track and 
remerge strings, as necessary, when 1/0 errors occur during the accessing of 
either of the two sort files. To use this option, the program must provide at least 



BIT STATE 

2 

3 

3 

3 

4 

OFF 

ON 

OFF 

Statements 

SORT 

Continued 

DESCRIPTION 

three times as much disk space as required to contain the input data. If less disk 
space is provided, the sort emits an error message, changes to restartable-only 
mode, and continues the sort without further capability of back-tracking. 

Recovery from internal errors is not requested. 

Bit 3 has meaning only if a restartable sort is requested. The use of this option 
controls the sort during the stringing phase as the user input is being read by 
the sort. Use of this bit determines how the sort restarts (when a restart is 
requested) only if the restart occurs while the sort is in the stringi~g phrase. 

The program requires that the sort restart at the beginning of the user's input. It 
is the equivalent of starting an entirely new sort. In case the restarted sort passes 
from the stringing phase into the merge phase, it continues from the merge phase. 
This bit can be set during a restart, even if it is not initially set. Once set, it · 
cannot be reset by subsequent restarts. 

The program requires the ability to restart at the last restart point that occurred 
during the stringing phase. If the sort is still in the stringing phase, it skips over 
the records already processed and continues from the last restart point. If the 
sort is in the merge phase, it continues from the last merge phase restart point. 
Use of this option, that is, by not setting the bit, is normally less efficient because 
more strings are created during the stringing phase. 

This bit is reserved for expansion and is not currently used by the sort. 

ARRAYS IN SORT PROCEDURES 

If one or more sort procedures (input, output, or compare) are used, all must have the same specification 
for their array parameters. That is, if one declares its array parameter as an EBCDIC ARRAY, then all must 
declare their array parameters as EBCDIC or the procedures will not be syntactically accepted. 

In addition, when character arrays are used with a sort, the record length parameter is interpreted as the 
length in characters.. 

For more detailed information concerning use of the <sort statement>, refer to the B 6000 Series System 
Operation Guide Reference Manual, form 5001563. 

5-103 



Statements 

SPACE 

SPACE STATEMENT 

Syntax 

<space statement>::= SPACE ( <file designator> , <arithmetic expression> ) 
<action labels or finished event> 

Examples 

SPACE (FYLE,50) 
SPACE (FILEID, N) [LEONF:LPAR] 
SPACE (FILEID,-3) [LEOF:LPAR] 
SPACE (FILEID, A + B - C) [EVNT] 

Semantics 

The <space statement> is used to bypass input records without reading them. The value of the <arith­
metic expression> determines the number of records to be spaced and the direction of the spacing. If the 
<arithmetic expression> is positive, the records are spaced in a forward direction; if negative, in the 
reverse direction. 

When the <space statement> is used on output files, records are bypassed in a manner similar to input 
records. The <space statement> can be used as a <Boolean primary>. 

The <file designator> must not be a direct file or a member of a direct switch file. 

5-104 



STRING STATEMENT 

Syntax 

<string statement> : := <replace statement> 
<scan statement> I 

Examples 

<replace pointer-valued attribute statement> 
<replace family-change statement> 

REPLACE PTR BY 
SCAN PTR UNTIL ... 
REPLACE FXLE. TITLE BY 
REPLACE DATACOM.FAMILY BY *+ ... 

Semantics 

Statements 

STRING 

A <string statement> can be any one of the four <statement>s indicated in the syntax. 

The <replace statement> can be used to move string data into an array row. Within a single <replace 
statement>, the string data to be moved into an array row can arise from several sources. Each of these 
sources can be any of several different types. A source can be another array row, a <string>, the value 
of an <arithmetic expression>, or the character data indicated by a <.pointer-valued attribute>. 
Furthermore, as the character data is moved from a source to the destination, the characters can be ' 
translated or edited. Also, an <arithmetic expression> source can be treated as a binary integer and 
converted into the equivalent decimal number expressed as a string of numeric characters. 

The <scan statement> can be used to examine character data located in an array row. 

The <replace family-change statement> is the language construct provided to add data communication 
stations to a family of stations or to remove data communication stations from a family of stations. 

The <replace pointer-valued attribute statement> is the language construct provided to assign character 
data to where the <pointer-valued attribute> indicates. 

<string statement>s operate upon character data sequentially in a left-to-right fashion. 

Pragmatics 

Many of the B 7000/B 6000 Series Information Processing System instructions used in the implementation 
of the four <string statement>s require that certain data be placed in the stack prior to the execution of the 
individual instructions. During the execution of any one of these instructions, the associated stack data is 
modified. In describing how the varioU's forms of the <string statement> function, it is convenient to 
discuss how the stack data is initialized, what changes are made in the stack data, and what is done with 
the stack data at the end of the <statement> execution. To that end, the subject stack data items must 
be given names so that they can be discussed easily. The names to be used in the following explanations 
are as follows: 

5-105 



Statements 

STRING 

Continued 

a. Stack-source-pointer. 
b. Stack-destination-pointer. 
c. Stack-integer-counter. 
d. Stack-test-character. 
e. Stack-source-operand. 
f. Stack-auxiliary-pointer. 

The word "stack" has been chosen to allude to the fact that these parameters do not correspond to the 
logical elements in the extended ALGOL language, but rather that these parameters have a temporary 
existence in the stack while the statement is being executed. Not all of these parameters are required for 
each or any one <string statement>. 

The stack-source-pointer, the stack-destination-pointer, and the stack-auxiliary-pointer have the same 
internal structure as the <pointer variable>s that the programmer can declare in a program. These stack 
parameters are initialized either from <pointer expression>s that exist in the structure of the <string 
statement> or from previous corresponding stack parameters. 

The initial value of the stack-source-pointer points to the first source character to be used by the assoc­
iated instruction. As the execution of the instruction progresses, the stack-source-pointer is modified to 
point to each subsequent source character. When the instruction is complete, the stack-source-pointer 
points to the first "unprocessed" character in the source data. (What the "process" is depends upon the 
particular form of the <string statement>.) This final value can be stored into a <pointer variable>, if 
the programmer chooses, or it can be discarded. 

The initial value of the stack-destination-pointer points to the first destination character position to be 
used by the associated instruction. As the execution of the instruction progresses, the stack-destination­
pointer is modified to point to each subsequent destination character position. When the instruction is 
complete, the stack-destination-pointer points to the first unfilled character position in the destination 
data. If in mid-statement, this final value, corresponding to the completed processing of one element in 
the source list, is used as the initial value of a subsequent instruction, corresponding to processing 
commencement of the next element in the source list in the same statement. If at the end-statement, this 
final value can be stored into a <pointer variable>, if the programmer chooses, or it can be discarded. 

The initial value of the stack-auxiliary-pointer points to the first entry of a table of data to be used by the 
instruction in its execution. This table can be a translation table if the instruction is extracting characters 
from the source data, translating the characters to different characters (possibly containing a different 
number of bits per character), and storing the translated characters into the destination data string. This 
table can be a table of bits (one bit per character in the character set involved) that defines a character 
subset. (The characters associated with bits having a value of one (1) are in the subset, and the characters 
associated with bits whose values are zero (0) are not in the subset.) Several of the <string statement>s 
use such a table. Finally, this table can be a table containing instructions (of a special type), called a 
"PICTURE", which describes how the source string data is to be edited before being stored in the des­
tination string. 

The stack-integer-counter, when required by particular forms of the <string statement>, is initialized 
by an <atithmetic expression> supplied in the <string statement> by the programmer. The value of 
this <arithmetic expression> is integerized by the instruction requiring this parameter. The stack-integer­
counter has different meanings depending upon the particular form of the <string statement> involved. 
In some cases, the number of characters in a source string to be processed (number of characters trans-

. lated, number of words moved, number of characters moved) is dictated solely by this parameter. (The 

5-106 



Statements 

STRING 

Continued 

number of numeric characters to be placed into the destination string, while converting the value of an 
<arithmetic expression> to character form, is also dictated by the stack-integer-counter.) However, in 
some forms of the <.string statement> two controlling factors exist that dictate how many characters 
are to be processed from a source string. One factor is source-data-dependent, and is called a <.condi­
tion>. The other factor is a maximum count supplied by the stack-integer-counter and is initialized by 
an <arithmetic expression> supplied in the <.string statement>. With such a <.string statement> one 
could say, for example: "translate characters from the source string to the destination string until either 
14 characters have been transferred or a period is encountered in the source string, whichever comes 
first." What actually happens is the following: the stack-integer-counter is initialized with the value of 
<arithmetic expression>; as each character is processed, the stack-integer-counter is decremented; the 
process stops when either the <condition> is satisfied (a period encountered, for example) or the count 
equals zero; the final value of the stack-integer-counter is available for storage if the programmer chooses 
to store it; otherwise, the final value is discarded; the syntactical element specifying where this final value 
is to be stored is the <residual count>. 

The stack-test-character is initialized by an <arithmetic expression>, (usually, but not necessarily, of the 
form of a single-character string, such as "B".) Although the stack-test-character parameter is one entire 
B 7000/B 6000 word, which contains the single precision value of the <arithmetic expression>, only 
the right-most character position is used. When a <.condition> employing a <relational operator> is 
used in a <.string statement>, the stack-test-character must" contain the character against which the 
individual characters in the source string are compared. Several constructs in the B 7000/B 6000 Extended 
ALGOL Language cause the value of the TRUE-FALSE flip-flop to be established, that is, either set or 
reset. Those forms of the <.string statement> that involve both a <.condition> and a maximum count 
are among those constructs. At the end of each portion of a <.string statement>, which concerns a 
single body of source data, and contains both a <.condition> and a maximum count, the TRUE-FALSE 
flip-flop is set to TRUE if all of the data specified by the maximum count has been processed. This flip­
flop is set to FALSE if,not all of the data specified by the maximum count has been processed, that is, 
the <.condition> stopped the processing. (Recall that the value of the TRUE-FALSE flip-flop is returned 
as the functional value of the Boolean instrinsic function TOGGLE.) Obviously, if a <.string statement> 
involves several bodies of source data which, when processed, established the value of the TRUE-FALSE 
flip-flop, only the last established value can be obtained by the subsequent use of the TOGGLE function. 

The stack-source-operand is used when the source data is represented by the value of an <arithmetic 
expression> rather than located in an array row that is pointed into by the stack-source-pointer. The 
stack-source-operand occupies the same position in the stack that the stack-source-pointer would other­
wise occupy, and is initialized by the <arithmetic expression>. 

Refer to the information under the specific <.string statement>s for more detailed information. 

5-107 



Statements 

SWAP 

SWAP STATEMENT 

Syntax 

<swap statement> : := SW AP· ( <array identifier> , <a"ay identifier> ) 

Examples 

SWAP(ARAYA,ARAYB) 
SWAP (DIRECTARAYt, DIRECTARAY2) 

Semantics· 

The <swap statement> causes two multi-dimensional arrays to be interchanged. Note that they both !!!!!.!l 
be multi-dimensional. 

Pragmatics 

The arrays must have the same length, character size, and number of dimensions, and can be direct or 
non-direct. · 

Attempting to mix direct and non-direct arrays is not allowed. 

The two arrays must both belong to the same task. 

5-108 



THRU STATEMENT 

Syntax 

<.thru statement> : := THRU <arithmetic expression> DO <statement> 

Examples 

THRU 255 DO ... 
THRU 2*LIMIT DO ... 
THRU MAXI := REAL(PTR,3) DO ... 

Semantics 

The iterative <thru statement> is executed as follows: 

Statements 

THRU 

The absolute value of the <arithmetic expression> is evaluated and integerized. This value indicates the 
number of times the <statement> following DO is to be executed. The upper limit.is 2**39-1. Figure 5-6 
illustrates the THRU loop. 

ENTER 

LOOP 

STORE INITIAL 
SETTING OF 

REPEAT INDEX 

TERMINATE 

LOOP 

YES 

NO EXECUTE 

STATEMENT 

Figure 5-6. THRU Loop 

DECREMENT 

INDEX BY ONE 

5-109 



Statements 

UNCONDITIONAL 

UNCONDITIONAL STATEMENT 

Syntax 

<unconditional statement> : :=<empty> I 

Semantics 

· <assignment statement> 
<block> I 
<breakpoint statement> 
<case statement> I 
<changefile statement> I 
<checkpoint statement> I 
<compound statement> I 
<continue statement> I 
<.deallocate statement> I 
<event statement> I 
<exchange statement> 
<fill statement> I 
<go to statement> I 
<I/O statement> I 
<interrupt statement> I 
<invocation statement> 
<iteration statement> I 
<merge statement> I 
<multiple attribute assignment statement> 
<on statement> I 
<programdump statement> 
<removefile statement> I 
<replace statement> I 
<resize statement> I 
<sort statement> I 
<string statement> I 
<swap statement> I 
<vectormode statement> 
<when statement> I 
<zip statement> 

The first choice of <unconditional statement>s is <empty>. This is referred to as a "dummy state­
ment" since nothing is actually performed. For example, several <Zabel identifiers> could be grouped as: 

Ll:L2:L3: ... 

which is legal syntax since the intervening <statement>s are <empty>. Furthermore, it is sometimes 
easier to do Boolean testing "backwards" such as: 

IF A=B THEN ELSE X := X+l 

Note that this example is to show <empty> as an <unconditional statement> and not good ALGOL 
programming. 

The syntax for an <unconditional statement> is recursive; a <statement> can be a <block> or a 
<compound statement>, each of which in turn is composed of <statement>s. 

5-110 



Statements 

VECTORMODE 

VECTORMODESTATEMENT 

Syntax 

<vectormode statement> : :=DO VECTORMODE (<increment part> <vector part> FOR 
<arithmetic expression>) <vectormode compound statement> 

<increment part> : := <.empty> I 
[<vector increment>] , I 
[<vector increment>,<vector increment>], I 
[<vector increment>,<vector increment>, 
<vector increment>] , 

<vector increment>::= <arithmetic expression> 

<vector part> : := <vector reference>, I 
<vector reference>, <vector reference>, I 
<vector reference>, <vector reference>, <vector reference>, 

<vector name>::= <array row> I 
<subscripted variable> 

<vector reference> : :=<vector name> I 
<vector identifier>= <vector name> 

<vector identifier> : := <identifie,r> 

<vectormode compound statement> : := BEGIN <vector compound tail> I 
BEGIN <label declaration> <vector compound tail> I 

<vector statement> 

<vector compound tail> : := <vector statement> END I 
<vector statement> ; <vector compound tail> 

<vector statement> : := <.conditional statement> I 
<go to statement> I 
<assignment statement>. I 
<exitstatement> I 
<increment statement> 

<.exit statement> : := EXIT 
<increment statement>::= INCREMENT <address list> 

<address list> : := <vector address> I 
<vector address> , <address list> 

<vector address> : := <vector name> I 
<vector identifier> 

5-111 



Statements 

VECTORMODE 

Continued 

Examples 

DO VECTORMODE (ARRIDl[*], ARRID2[2, *], 
ARRID3 [K-2, I], FOR 100) BEGIN EXIT END; 

DO VECTORMODE (ARRIDl [*] ,AA=AARIDl [I], FOR X * A) BEGIN 
INCREMENT ARRIDl, AA END; 

DO VECTORMODE (ARRIDl [ *], FOR N) BEGIN EXIT END~. 
DO VECTORMODE (ARRIDl[K-1), RA[*], FOR N-l)BEGIN 

INCREMENT ARRIDl, RA END; 
DO VECTORMODE ([-1, -1, 1], A[*], B[*], C[*], FOR N) BEGIN ... END; 

Semantics 

From one of three vectors are specified in the DO VECTORMODE statement. 

The <increment part> allows from one to three <vector increment>s, as is allowed in extended vectormode. 
The <vector increment>s must be constant expressions with values of one or minus one when integerized. 
Omitted increments are assumed to be one for single-precision vectors and two for double-precision vectors. 

If a <vector increment> is specified for a double-precision vector, increment an even number of times to 
prevent indexing into the middle of a value. 

The <vector name> determines the vector's starting point in an array. The length of the vectors becomes 
a function of the value following FOR. 

The <vector name> cannot refer to a segmented array. In order to use an array that is longer than 1023 
words in vector mode, it must be declared LONG. 

If more than one of the vectors is in the same array, the second and third must have distinguishing 
identifiers since within the <vector compound statement> the vectors will be referred to only by 
<array name> withoµt subscripts, or by the <vector identifier> which is used to avoid ambiguity. 

For example, 

DO VECTORMODE (A[*], B=A[20], C=[40] FOR N) ... 

allows references to vectors A, B, and C, all within the array A. 

The <go to statement> is interpreted in the following manner. If the label is local to the vector mode 
block, only a branch forward is allowed. If the label is outside the vector mode block, vector mode is 
exited and code is executed to branch to that label. Because all labels inside the <vector compound 
statement> are local, no branching is permitted into the range of that statement. 

The <exit statement> specifies to exit vector mode and continue execution with the first executable 
statement following the <vector compound statement>. 

The <increment statement> increments the address of the vector element currently referenced by one 
( 1) for single-precision arrays and two (2) for double-precision arrays. 

5-112 



Statements 

VECTOR MODE 

Continued 

Pragmatics 

Arithmetic expressions in vector mode are strictly limited in form. They must meet the following 
requirements. 

a. Procedure calls of any sort are prohibited. This means any call on an intrinsic function 
that is not in-line (expressed or implied) is prohibited. For example, LN may not be called. 
Since exponentiation generally calls an intrinsic, non-constant, non-integer exponentiation 
is prohibited. 

b. Reference to any pointers or character arrays is prohibited throughout vector mode and its 
invocation. 

c. Reference to any file, call-by-name parameter at any level, array or subscripted variable 
(other than the <vector identifier>s themselves) is prohibited. Simple variables that are 
at any level or all call-by-value parameters may be referenced. 

Any arithmetic or logical variable in the stack can be referenced. However, no reference may be made 
that might cause an interrupt. This means, in particular, that call-by-name parameters, files, events, tasks, 
and pointers may not be referenced. 

It is more efficient to increment a vector address after a reference to it, rather. than before. There are no 
implied increments in a <vectormode statement>. Thus, if no such statements appear, the vector addresses 
are never incremented. For example: 

INCREMENT A, B; 

would increment the address for vectors A and B. 

INCREMENT A, A; 

would increment the address for vector A twice. 

5-113 



~tatements 

WAIT 

WAIT STATEMENT 

Syntax 

<wait statement> : := WAIT ( <wait parameter list> ) I 
WAIT ( <direct a"ay row> ) I 
WAIT 

<wait parameter list> : := <event list> I 
( <time> ) , <event list> 
( <time> ) 

<event list>::= <event designator> I 
<event list> , <event designator> 

<time>::= !the amount of time in seconds (fractional seconds allowed) l 
Examples 

WAIT (EVNT) 
WAIT (EVNTl, EVNT2, EVNT3) 
X := WAIT ((NAPTIME), WAKEUP, GOAWAY) 
WAIT (DIRECT ARRAY) 
RSLT := WAIT (DIRINPUT) 
WAIT 

Semantics 

The <wait statement> allows for the suspension of a task until: either a time period elapses or an event 
is caused, a previously initiated Direct <I/O statement> is finished, or a software interrupt occurs. 

The <wait statement> and the <waitandreset statement> (using a <wait parameter list>) are identical 
except for the state to which the caused event is set during the cause process. If all tasks are waiting 
on the event via the <wait statement>, the state of the event is set to HAPPENED. If any one task is 
waiting on the event via the <waitandreset statement>, the state of the event is set to NOT HAPPENED. 

The simplest form of WAIT (<wait parameter list>) is WAIT (<event designator>). When executed, 
the event is examined for being HAPPENED or NOT HAPPENED. If the event is HAPPENED, the 
<wait statement> . is essentially a "no-operation." If the event is NOT HAPPENED, the task is suspended 
until the event is CAUSEd. 

For the full WAIT (<wait parameter list>) syntax, a program is allowed to be suspended until any one 
event in the <event list> is caused or until the time as specified by the <time> element (in seconds) 
has elapsed. (Refer to the Pragmatics of the <when statement>.) 

The WAIT (<wait parameter list>) form can be used as an integer function that returns a value, starting 
at 1, which represents the position in the <wait parameter list> of the item that caused the task to be 
activated. For example, in the statement: 

T := WAIT ((.001), Bl, E2); 

"5-114 



Statements 

WAIT 

Continued 

the value of Tis 1 if elapsed time caused the task to be activated; however, in the following example: 

T := WAIT (El, E2, E3); 

the value of T is 2 if a cause on event E2 activated the task. The implementation of this mechanism con­
tains interlocks to guarantee that one and only one parameter can activate a task. 

The form WAIT (<direct array row>) is one of the ways a task can determine if a previously initiated 
Direct <I./O statement> has finished. This form can also be used as a Boolean function, in which case the 
result descriptor of the 1/0 operation will be returned when the 1/0 is completed. (Ref er to the B 6000 
Series Operation Guide Reference Manual, form 5001563, for both format and meaning of the returned 
value.) 

If the <wait statement> consists solely of WAIT, an MCP procedure is entered which suspends the task until 
an attached and enabled interrupt is invoked as a result of the associated event being CAUSEd. (Refer to 
<interrupt declatation>.) 

5'--115 



Statements 

WAITANDRESET 

WAITANDRESET STATEMENT 

Syntax 

<waitandreset statement> : := WAIT AND RESET ( <wait parameter list> ) 

Examples 

WAITANDRESET (EVNT) 
WAITANDRESET (EVNTl, EVNT2, EVNTARAY [INDX]) 
WAITANDRESET ((.S), FINI, GOAWAY) 
REASON := WAITANDRESET((SLEEPMAX),WAKEUP,LOOKAROUND) 

Semantics 

The <waitandreset statement> allows for the suspension of a program until the event is caused. !tis 
identical to the <wait statement> except that the event is reset to the NOT HAPPENED state before 
resuming execution of the program. 

5-116 



WHEN STATEMENT 

Syntax 

<when statement> : := WHEN ( <time> ) 

Examples 

WHEN (10) 
WHEN (2*Y+Z) 

Semantics 

Statements 

WHEN 

The execution of a <when statement> causes the MCP to suspend the processing of a program for the 
number of seconds specified by the <arithmetic expression> in parentheses. The number of seconds can 
be specified as either an integer or a fraction of a second. 

Pragmatics 

Depending on the amount of multiprocessing being performed and priorities of other programs in 
execution, the actual time that a program is suspended can vary widely in respect to the time specified 
by <time>, but it will be at least the <time> specified. 

5-117 



Statements 

WHILE 

WHILE STATEMENT 

Syntax 

<while statement> : := WHILE <Boolean expression> DO <.statement> 

Examples 

WHILE TRUE DO ... 
WHILE INDX LEQ MAXY AL DO ... 
WHILE J:= J+l LSS LIMIT DO SU := SVALUES[J] 

Semantics 

The iterative <while statement> is executed as follows. 

The <Boolean expression> is evaluated and, if the result is TRUE, the <.statement> following DO 
is executed. This sequence of events continues 1mtil the value is FALSE, or the <.statement> following 
DO transfers control outside the <iteration statement>. Figure 5-7 illustrates the WHILE-DO loop. 

5-118 

NO 

TERMINATE 

LOOP 

YES 

Figure 5-7. WHILE-DO LOOP 

EXECUTE 

STATEMENT 



WRITE STATEMENT 

Syntax 

<write statement> : := WRITE ( <write file part> <format and list part> ) 
<.action labels or finished event> 

<write file part> : := <file part> I 
<task designator> . <file-valued task attribute name> 

<file-valued task attribute name> : := TASKFILE 

Examples 

WRITE (FILEID) 
WRITE (SPOFILE, FMT, LISTID) 
WRITE (FILEID [NO], FMT) 
WRITE (SPOFILE, 10, ARRY[3,*]) 
WRITE (SWFILEID[O], X+Y-Z, ARRY[X,I,*]) 
WRITE (SPOFILE, /, LISTID) 
WRITE (FILEID, FMT, LISTID) 
WRITE (SWFILEIDr3J [PAGE]) 
WRITE (FILEID, /, A,B,C) 
WRITE (FILEID, SWFMT[A*I]) 
WRITE (FILEID, *, LISTID) 
WRITE (FILEID [5+1], /, SWLISTID[4]) 

·WRITE (FILEID, /, LISTID) 
WRITE (FILEID, *, A,B,C) 
WRITE (FILEID, FMT, A,B,C,D+SIN(X)) [:PARL] 
WRITE (FILEID, FMT, LISTID) [:PARSWL[M]] 
WRITE (SWFILEID[l], SWFMT[2], SWLISTID[3]) [:PARSWL[4]] 
WRITE (DIRFYLE,30,DIRARA Y) [EVNT] 
WRITE (MYSELF.TASKFILE, ("ABOVE DUMP BEFORE TRANSACTION")> 

Semantics 

Statements 

WRITE' 

The <write statement> causes data to be transferred from various program variables to a peri­
pheral :device. The result of this <statement> depends on the form of the <file part> and the 
<format and list part>. 

Because the syntax of the <.read statement> and the <write statement> are identical, the user is 
referred to the semantics of the <.read statement> for a discussion of the differences between the two 
statements. 

5-119 



Statements 

ZIP 

ZIP STATEMENT 

.Svntax 

<.zip statement> : := ZIP WITH <array row> I 
ZIP WITH <file designator> 

Examples 

ZIP WITH ARA Y 
ZIP WITH FYLE 

Semantics 

The <.zip statement> causes the MCP to activate the Work Flow Language compiler, using information 
in the <array row> or file referred to by the <file designator> as control cards and program 
parameter cards. 

ZIP WITH <array row> 

The information in the <array row> must appear as it normally would on punched cards; that is, as 
BCL or EBCDIC characters. The <array row> can be a BCL or EBCDIC string array row or a non-string 
array row. If the <array row> is not a string array, the character set expected by the ZIP intrinsic is 
determined by the setting of the BCL $option (refer to appendix D). The first character of the <array 
row> must be a question mark (EBCDIC 4"6F" or BCL 3"14".) The last "card" in the <array row> 
must contain the word END or END JOB followed by a period. The array row is processed as one punched 
card, but it can include more than 72 characters. A semicolon is used to separate control "cards" within the 
<array row>. Only one question mark character can appear in the <array row>. 

The MCP examines· the contents of the <array row> for correctness, and prints a message on the SPO 
if any errors are detected. "if no errors are detected, the control information is obeyed. In either case, 
program control passes to the next statement in sequence. 

ZIP WITH <file designator> 

All control cards should be EBCDIC records that comply with standard B 7000/B 6000 Series Workflow 
Language (WFL) syntax. If records within the file are BCL, all records following the <I> BCL record 
should be BCL-coded up to and including the <I> BCL record or the first control card of the next deck 
for stacked decks. Following the first control card of the next deck, if any, all subsequent control cards 
must again be EBCDIC-coded. 

Upon execution of a <.zip statement>, the file referenced by the <file designator> is passed to the 
MCP. The program then continues processing in sequence. 

5-120 

NOTE 
For both versions of the <.zip statement>, 
refer to B 7000/B 6000 Series Workflow 
Language Reference Manual for further 
information on the format and content of 
the control cards. 



6. EXPRESSIONS 

EXPRESSION 

Syntax 

<.expression> : := <arithmetic expr~ssion> 
<Boolean expression> I 
<.case expression> I 
<.conditional expression> I 
<designational expression> 
<func/ion expression> I 
<pointer expression> 

Examples 

X+Y 
A=B 
CASE N OF ( .. . 
IF BOOL THEN ... ELSE ... 
SWLBL[SWX] 
SQRT( ... 
POINTER( ... 

Semantics 

Expressions 

EXPRESSION 

<.expression>s are rules by which values can be obtained by executing various operations on the primaries 
of which <.expression>s are composed. In the case of conditional and case <.expression>s, the process 
is more complicated because one of several alternative <.expression>s must first be selected for evalua­
tion. 

6-1 



Expressions 

ARITHMETIC 

ARITHMETIC EXPRESSION 

Syntax 

<arithmetic expression> : := <simple arithmetic expression> I 
<final simple arithmetic expression> 
<conditional arithmetic expression> 

<simple arithmetic expression>::= <term> I 
<unary operator> <term> I 
<simple arithmetic expression> <adding operator> <term> 

<term> : := <factor> I 
<term> <multiplying operator> <factor> 

<factor> : := <primary> I 
<factor> ** <primary> 

<primary> : := <unsigned number> I 
<string> I 
<operand> <partial word part> I 
<primary> & <arithmetic expression> <concatenation> 

<operand> : := <arithmetic variable> I 
<arithmetic function designator> 
( <arithmetic expression> ) I 
<arithmetic case expression> I 
<arithmetic attribute> 

<arithmetic case expression> : := <case head> ( <arithmetic expression list> ) 
<arithmetic expression list> : :=<arithmetic expression> I 

<arithmetic expression list> , <arithmetic expression> 

<concatenation> : := [ <left bit-to> : <number of bits> ] I 
[ <left bit-to> : <left bit-from> : <number of bits> ] 

<left bit-to> : := <arithmetic expression> 

<left bit-from> : :=<arithmetic expression> 

<multiplying operator>::= * I / I DIV I MOD I MUX I TIMES 

<unary operator> : := <adding operator> 

<adding operator> : := + I -
<final simple arithmetic expression> : :=<final term> I 

<unary operator> <final term> 
<simple arithmetic expression> 

<adding operator> <final term> 
<final term> : :=<final factor> I 

<term> <multiplying operator> <final factor> 
<final factor>::= <arithmetic variable> :=<arithmetic expression> I 

<arithmetic attribute> :=<arithmetic expression> I 

6-2 

<factor> ** <arithmetic variable> := <arithmetic expression> I 
<factor> ** <arithmetic attribute> :=<arithmetic expression> 



<.conditional arithmetic expression> : :=<if clause> <arithmetic expression> ELSE 
<arithmetic expression> 

Examples 

Semantics 

FACTORS 

VALID INVALID 

5.678 -9.81 
CHARLIE +DCB 
(14+3.142) B-A 

X*-3 
10-16 

TERMS 

VALID INVALID 

5.678 -13.6 
MABEL -(A+B) 
KXF2 A+B 
SUM/N L*-A 
(A+B)/(C-D) *ENTIER (60) 
2*(X+Y) 4(AC) 

ARITHMETIC EXPRESSIONS 

VALID 

COS (A+B)+C 
Y*3 
+8 
(-B+SQRT(D))/(A+A) 
-T*3 
5.678 
THETA 

INVALID 

3X +4Y+ Z 
A(X + 5) 
A+ X*(B + X*(C + X*(D + X*E)))) 
P*[X + Y + Z] 
X + Y*-X + Z**2 

Expressions 

ARITHMETIC 

Continued 

Arithmetic expressions yield numerical values by combining primaries in accordance with specified 
operations. The operators+,-,*, and I have the conventional mathematical meanings of addition, 
subtraction, multiplication, and division, respectively. Variables or function designators used as primaries 
in an <arithmetic expression> must be of an arithmetic <type>, that is, REAL, INTEGER, or 
DOUBLE. 

PRECISION OF EXPRESSIONS 

The value of an <arithmetic expression> can be expressed in single-or double-precision, depending 

6-3 



Expressions 

ARITHMETIC 

Continued 

upon the precision of its constituents or, in the case of MUX, the <operator> involved. The precision 
of an <arithmetic expression> is double if any <variable>, <function expression>, or <number> 
of which it is composed is of <type> DOUBLE, or if two terms are combined by the double-precision 
multiplication <operator> MUX. By examining the tag fields of the operands being combined, the 
hardware automatically extends the stack registers, when necessary, to accommodate extended precision 
numbers; thus special operators are not required. The MUX <operator> allows one to obtain a double­
precision result from the multiplication of two single-precision operands. 

The precision of a <case expression> value is double if any <.expression> in its <expression list> is of 
<type> DOUBLE. Likewise, the precision of a <conditional arithmetic expression> is double if either 
<arithmetic expression> is double. In either case, single-precision arithmetic expressions are adjusted to 
dou hie-precision, when necessary, by ex tension with zeros. 

OPERATORS 

The DIV operator denotes integer division. It has the following mathematical meaning: 

Y DIV Z = SIGN(\:/Z)*ENTIER(ABS(Y/Z)) 

The MOD operator denotes -remainder and has the following meaning: 

Y MOD Z = Y-(Z*(SIGN(Y/Z)*ENTIER(ABS(Y /Z)))) 

The MUX operator multiplies either single- or dou hie-precision operands, which yield a double-precisioll. 
result. The **operator denotes exponentiation. No two operators can be adjacent, and implied multipli­
cation is not allowed. The TIMES operator denotes multiplication, as does the * operator. 

PRECEDENCE OF <arithmetic operator>s 

The sequence in which operations are performed is determined by the precedence of the operators 
involved. The order of precedence is as follows: 

a. first: ** 
b. second: *,/,MOD, DIV, MUX, TIMES 
c. third:+,-

When operators have the same order of precedence, the sequence of operation is determined by the order 
of the appearance, from left-to-right. Parentheses can be used in normal mathematical fashion to 
override the usual order of precedence. 

6-4 



MATHEMATICAL 
EXPRESSION 

AXB 

A+~ 
2 

X+ 1 
y 

D+E2 
2A 

4(X + Y)3 

M-N 
p + 5 x 10 -6 

(M + N) 

<primary>s 

Table 6-1. Operator Precedence 

EQUIVALENT 
ALGOL EXPRESSION 

A*B 

A +B/2 

(X + l)/Y 

(D + E **2)/(2 *A) 

4 * (X + Y) ** 3 

(M - N)/(M + N) ** P + 5 @-6 

Expressions 

ARITHMETIC 

Continued 

NON-EQUIVALENT 
ALGOL EXPRESSION 

AB 

X+ l/Y 

(D + E **2)/(2 A 

4 * x + y ** 3 

Parenthesized expressions are treated as <primary>s; that is, they are evaluated by themselves and the 
resulting value is subsequently combined with the other elements of the <expression>. Thus the normal 
precedence of operators can be overriden by the judicious placement of parentheses. Strings used as 
<primary>s must not exceed 48 bits in length; a <string> used as a <primary> is interpreted as either 
<type> REAL or <type> INTEGER depending upon its value. 

EXAMPLES 

EXPONENTIATION 

5.678 
SIGMA 
YI 
(X-Y) 
COS(T) 
ABS(a-X/Y) 
((GEE+HAW)/PLOU) 
(AX64*2+B) 

+7 
SINX 
A/B 
-Z 
+(X-Y) 

The meaning of the double asterisks, exponentiation, * *, depends upon the <type>s and the values of 
the primaries involved. Table 6-2 explains the various meanings of Y**Z. 

6-5 



Expressions 

ARITHMETIC 

Continued 

Y)O 
Y(O 
Y=O 

Table 6-2. Exponentiation Meaning 

Z-TYPE INTEGER Z-TYPE REAL 

z > 0 Z=O z(o z)o Z=O z(o 

Note l l Note 2 Note 3 l Note 3 
Note l l Note 2 Note4 l Note4 

0 Note 4 Note 4 0 Note 4 Note4 

Note l: Y**Z = Y*Y*Y ... *Y(Z times) 
Note 2: Y**Z = the reciprocal of Y*Y*Y ... *Y(ABS(Z)times) 
Note 3: Y**Z = EXP(Z*LN(Y)) 
Note 4: Value of expression is undefined. 

<type>s OF RESULTING VALUES 

The <type> of value resulting from an arithmetic operation depends on the <.operator> and the 
<type> of operands being combined, except when the resulting value is undefined. Table 6-3 describes 
the <type> of quantity that results from various combinations of operands. 

Table 6-3. Types of Values Resulting from an Arithmetic Operation 

OPERAND OPERAND 
ON LEFT ON RIGHT +,-, * I DIV MOD ** MUX 

INTEGER INTEGER Note 3 REAL INTEGER INTEGER Note 1 DOUBLE 
INTEGER REAL REAL REAL INTEGER REAL Note 2 DOUBLE 
INTEGER DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE Note 2 DOUBLE 
REAL INTEGER REAL REAL INTEGER REAL Note 2 DOUBLE 
REAL REAL REAL REAL INTEGER REAL Note 2 DOUBLE 
REAL DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE 
DOUBLE any DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE 

Note l: If the operand on the right is negative, or the absolute value of the 
result is greater than 2**39, REAL; otherwise, INTEGER. 

Note 2: If the operand on the right is zero, INTEGER; otherwise, REAL. 

Note 3: If the absolute value of the result is less than 2**39, INTEGER; 
otherwise, REAL. 

The <type> of a <case expression> or a <conditional arithmetic expression> is DOUBLE if any of 
its constituent <expression>s are of <type> DOUBLE (PRECISION OF EXPRESSIONS, above). If 
the conditional or case <expression> contains any <expression>s of <type> REAL, its type is 
REAL; otherwise, its <type> is INTEGER, that is, a conditional or case <expression>s is of <type> 
INTEGER if and only if all its constituent <expression>s are of that <type>. 

6-6 



Expressions 

ARITHMETIC 

Continued 

<concatenation> 

The <concatenation> form of <arithmetic expression> provides an efficient method of forming a 
<primary> from selected parts of two or more <primary>s. A <concatenation> <primary> is formed 
by linking part of a <primary> with the specified portion of an <arithmetic expression> value. Since 
<arithmetic expression> is recursive with respect to <concatenation>, any number of <concatenation> 
terms can be used in constructing a <primary>. 

The <left bit-to> part of <concatenation> term defines the leftmost bit location of the data field in the 
destination word. The <left bit-from> part defines the leftmost bit location of the data field in the 
source word. The <number of bits> part specifies the length of the data field to be moved from the 
source field to the destination field. 

If the [ <left bit-to> : <number of bits> ] form of the <concatenation> term is specified, the 
source field is assumed to start at <number of bits> -1, that is, the source field is assumed to be the low 
order <number of bits> in the source word. 

If more than one <concatenation> term is used in an <expression>, then these are evaluated from 
left-to-right. 

Examples 

The value of each of the succeeding expressions, when X=32767, Y= 1024, and Z= l, is as follows: 

EXPRESSION 

Y & (2*Z) [ 11: 1 :2) 
Y&Z[9:0:1] &X[3:13:4] 
Z&Y[40:10:2] &Z[45:0:1] 
X& Z [47:0:1) 
Y & (2*Z) [ 11: 1 :2) +5 
Y &(4*Z+l) [9:6:7) &X [14:14:15) 

<partial word part> 

2048 
1551 

VALUE 

Floating point 1/64 
32767 
2053 
32767 

The <partial word part> term allows operations to be performed on any contiguous field within a word 
rather than the whole word. The <left bit> part defines the leftmost bit location of the field. The 
<number of bits> part specifies the length of the field. 

The <left bit-from> part of a <concatenation> and the <left bit> part of a <partial word part> 
must lie within the range of 0 through 47, where bit 0 is the rightmost, or least-significant, bit in the word. 
The <number of bits> must lie within the range of 0 through 48. If <number of bits> exceeds the 
number of bits remaining in either the source or destination words, these fields are continued at bit 
number 47, leftmost, of the same word. 

If through the use of <variable>s a program exceeds the starting bit number limits of 0 through 47 or 
the limit of <number of bits> of 0 through 48, an INV ALIDOP will occur. 

6-7 



Expressions 

ARITHMETIC 

Continued 

Examples 

The value of each of the succeeding expressions, when X=32767, Y=2, and Z=4 (represented as integers), 
is as follows: 

6-8 

EXPRESSION 

X.[5:6] 
IF Z.[3:2] =Y THEN 47 

ELSE 23 
((X+ I )*Y*Z).[ 23 :6] 
X.[7:48] 

VALUE 

63 

23 
1 

4 "FF000000007F" 



BOOLEAN EXPRESSION 

Syntax 

<Boolean expression> : :=<.simple Boolean> I 
<final simple Boolean> I 
<conditional Boolean expression> 

<.simple Boolean> : := <implication> I 
<.simple Boolean> EQV <implication> 

<implication> : := <Boolean term> I 
<implication> IMP <Boolean term> 

<Boolean term> : := <Boolean factor> I 
<.Boolean term> OR <Boolean factor> 
<Boolean term> I <Boolean factor> 

<Boolean factor>::= <Boolean secondary> I 
<Boolean factor> AND <Boolean secondary> 

<Boolean secondary> : :=<Boolean primary> I 
NOT <Boolean primary> 

<Boolean primary> : :=<logical value> I 
<relation> I 
<Boolean operand> <partial word part> I 

Expressions 

BOOLEAN 

<Boolean primary> & <Boolean expression> <.concatenation> 
<table membership> I 
<string relation> I 
<pointer relation> 

<logical value> : := TRUE I FALSE 
<relation> : := <arithmetic expression> <relational operator> <arithmetic expression> 

<Boolean operand> : := <Boolean variable> I 
<Boolean function designator> 
( <Boolean expression> ) I 
<Boolean case expression> I 
<Boolean attribute> 

<Boolean case expression>::= <case head> ( <Boolean expression list> ) 

<Boolean expression list> : := <Boolean expression> I 
<Boolean expression list> , <Boolean expression> 

<table membership> : := <arithmetic expression> IN <table pointer> 
<pointer expression> IN <table pointer> 

<table pointer> : := ALPHA I ALPHA6 I ALPHA 7 I ALPHAS I 
<truthset identifier> I <.subscripted variable> 

<string relation> : :=<update pointer> <pointer expression> <relational operator> 
. <update pointer> <pointer expression> FOR <arithmetic expression> 

<update pointer> <pointer expression> <relational operator> <string> I 
~pdate pointer> <pointer expression> <relational operator> <string> 

FOR <arithmetic expression> 

6-9 



Expressions 

.BOOLEAN 

Continued 

<pointer relation>::= <pointer expression> <equality operator> <pointer expression> 

<equality operator>::== I NEQ I EQL I I= 
<final simple Boolean> : := <final implication> I 

<simple Boolean> EQV <final implication> 

<final implication> : := <final Boolean term> I 
<implication> IMP <final Boolean term> 

<final Boolean term>::= <final Boolean factor> I 
<Boolean term> OR <final Boolean factor> 
<Boolean term> 1· <final Boolean factor> 

<final Boolean factor>::= <final Boolean secondary> I 
<Boolean factor> AND <final Boolean secondary> 

<final Boolean secondary>::= <Boolean assignment> I 
NOT <Boolean assignment> 

<conditional Boolean expression> : := <if clause> <Boolean expression> 
ELSE <Boolean expression> 

Examples 

6-10 

A=B 

BOOLEAN PRIMARIES 

VALID 

-1=0 
1-A)B*(-E) 
(X=Y OR W-K( 4) 

VALID 

BOOLEAN FACTORS 

X=O AND Yt=O . 
A)l AND (B=O OR C(D) 
(A=B OR C=D) AND (X ( 2 ORY ( 2) 

BOOLEAN EXPRESSIONS 

VALID 

I=O-AND J=O ORK GEQ 1 

INVALID 

ANEQBORC=D 
1-W*2 

INVALID 

ANEQBORC=D 
l+AAND Z)O 

INVALID 

(B*2-4XAXC) 



Semantics 

Expressions 

BOOLEAN 

Continued 

Boolean expressions are rules for computing logical values. These expressions are analogous to arithmetic 
expressions in that they combine Boolean primaries according to fully recursive operations. " 

LOGICAL OPERA TORS 

The logical operators are defined by table 6-4. 

Table 6-4. Truth Table 

OPERAND A OPERAND B NOTA AANDB AORB AIMPB AEQVB 

TRUE TRUE FALSE TRUE TRUE TRUE TRUE 
TRUE FALSE FALSE FALSE TRUE FALSE FALSE 
FALSE TRUE TRUE FALSE TRUE TRUE FALSE 
FALSE FALSE TRUE FALSE FALSE TRUE TRUE 

The Boolean operations defined above are performed on all 48 bits of the copy(s) of the operand(s) 
involved, on a bit-by-bit basis. For example, NOT TRUE is not equivalent to FALSE because NOT 
complements all 48 bits of the constant TRUE, whereas all 48 bits of the constant FALSE are OFF. 

PRECEDENCE OF <logical operator>s 

First 
Second 
Third 
Fourth 
Fifth 
Sixth 
Seventh 

<arithmetic expression>s 
<relation>s 
NOT 
AND 
OR 
IMP 
EQV 

The <logical operator>s (NOT, AND, OR, IMP, EQV) are performed upon <Boolean primary>s. 
These <Boolean primary>s must be evaluated before they can be used as the operands upon which the 
<logical operator>s operate. For example, a <relation> is a <Boolean primary>. It consists of an 
<arithmetic expression>, a <relational operator>, and a second <arithmetic expression>. These two 
<arithmetic expression>s must be evaluated. Next, the truth of the stated relation between these two 
<arithmetic expression>s must be evaluated. This last evaluation produces a value of either TRUE or 
FALSE, and this value is the operand upon which subsequent <logical operator>s can act. When a group 
of <Boolean primary>s is connected by <logical operator>s forming a <Boolean expression>,· the 
order in which the adjacent Boolean operands are combined by the intervening <logical operator> to 
form a new Boolean operand is determined by a precedence rule. 

For this rule to be described easily, imagine parentheses around the <Boolean expression> of any 
<Boolean assignment>. Also imagine parentheses around the entire <Boolean assignment>. Note that 
these imagined parentheses make the subject <Boolean expression>s and <Boolean assignment>s 
(if any) into imagined <Boolean operand>s which are themselves <Boolean primary>s. Tge precedence 

6-11 



Expressions 

BOOLEAN 

Continued 

rule then is: (1) evaluate a <Boolean primary> (real or imagined) before combining it with an adjacent 
<Boolean primary>, (2) apply NOT whenever it appears to the <Boolean primary> on its right 
forming a new operand, (3) these newly formed operands and the other <Boolean primary >s form the 
operands upon which the <logical operator>s AND, OR, IMP, and EQV operate, (4) if one of these 
operands is bounded on both sides by the same operator (from the group AND, OR, IMP, and EQV), 
then apply the operator on the left first, (5) if one of these operands is bounded on both sides by 
different operators (from the group AND, OR, IMP, and EQV), then apply the operator of higher prece­
dence. The order is AND, OR, IMP, and EQV, with AND being the highest. 

TABLE MEMBERSHIP 

The <table membership> construct allows the programmer to test whether a giyen character is a member 
of a predefined table referenced by the <table pointer>. The character in question can be either a 
character in a <string> or a character in an <array row> referenced by a <pointer expression>. 

The <subscripted variable> construct allows several tables to be contained in one <array row>, and the 
value of the <.subscript> always indicates the beginning of the desired table. ALPHA, ALPHA6, and 
ALPHAS can be thought of as reserved <.subscripted variable>s, ALPHAS is a <table pointer> for 
EBCDIC letters and digits; ALPHA6 functions similarly for BCL letters and digits. ALPHA is the same as 
ALPHAS if the default <character size> has been specified as S-bit; if the default <character size> is 
6-bit, ALPHA is equivalent to ALPHA6. 

(Refer to the <truthset declaration> for a description of how the <table membership> test references 
a bit in memory.) 

<string relation>s 

The <string relation> construct causes two pointers or a pointer and a <string> to be compared 
according to the EBCDIC collating sequence. The <arithmetic expression> specifies the number of 
characters to be compgred, that is, the repeat count. If a literal <string> follows the <relational 
operator> and a repeat count has been specified, the <string> is concatenated with itself, if necessary, 
to form a 48-bit <primary>. The comparison is repeated until the repeat count is exhausted. If no repeat 
count is ~pecified the string characters are compared once. 

<pointer relation>s 

A <pointer relation> determines whether two pointer expressions refer to the same character position 
in the same <array row>. If the <character size> of the two pointer expressions is unequal, the 
comparison always tests FALSE. 

<concatenation> 

The concatenation form of a <Boolean expression> provides an efficient means of forming a <Boolean 
prirnary> from selected parts of two or more <Boolean primary>s. It operates in the same way as the 
concatenation form of an <arithmetic expression>, except that it operates on <Boolean primary>s. 

Th~ construct <relation> & (<relation> ) <concatenation> has not been implemented. 

6-12 



<partial word part> 

Expressions 

BOOLEAN 

Continued 

The operation of the <partial word part> construct is directly analogous to that of the <partial word 
part> construct as described in the paragraphs on <arithmetic expression> and <arithmetic assignment>. 

IS AND ISNT OPERATORS 

The IS <relational operator> is used with arithmetic operands. It differs from the = sign in that it 
compares bit patterns for equality without doing normalization. For example, two REAL numbers, 
Rt .. and R2, can have the same arithmetic value but different mantissas and exponents. In this case, the 
statement Rt = R2 is a TRUE statement because normalization takes place before the comparison. How­
ever, the statement Rt IS R2 is a FALSE statement because the comparison is done without normalization. 
The ISNT operator is the negation of the IS operator. 

In addition, <relational operator>s other than IS and ISNT detect that a +0 hardware representation 
and a -0 hardware representation are equal. The same is true for a +0 and -0 exponent in the 48-bit 
hardware representation. Thus 4"400000000000" compared to 4"000000000000" tests TRUE if the= 
sign is used, but tests FALSE when using the <relational operator> IS. 

6-13 



Expressions 

CASE 

CASE EXPRESSION 

Syntax 

<case expression> : := <case head> ( <.expression list> ) 

<case head> : := CASE <arithmetic expression> OF 

<.expression list> : := <arithmetic expression list> I 

Examples 

<Boolean expression list> 
<designational expression list> 
<pointer expression list> 

CASE N OF (2, 20, 100, 37) 
CASE X.[27:4] OF (TRUE,FALSE,TRUE,TRUE) 
CASE TSTS[INDX] OF (LBL1,LBL2,AGAIN,NEXT,MORE) 
CASE CHAR.SZF OF (PTR,PTS,POINTER(ARRAY),PTEMP,POLO) 

Semantics 

<case expression>s provide a convenient means of selecting one of many alternative expressions of the same 
kind to be evaluated at a particular point during the execution of a program. The <.expression> to be 
evaluated is selected as follows: the <arithmetic expression> in the <case head> is evaluated and 
integerized by rounding if its value is not integral. This value is then used as an index into the <.expression 
list>. The component expressions of the <.expression list> are indexed sequentially from 0 through 
N-1, where N is the number of expressions in the list. The indexed <.expression> is then evaluated and 
its value is the value of the <case ~xpression>. If the value of the index lies outside the range 0 to 
N-1, an INV ALIDOP interrupt occurs. 

6-14 



CONDITIONAL EXPRESSION 

Syntax 

<conditional expression> : := <conditional arithmetic expression> 
<conditional Boolean expression> I 
<conditional designational expression> 
<conditional pointer expression> 

Examples 

IF BOOL THEN 47 ELSE 95 
IF A=B THEN BOOL ELSE FALSE 
IF ALLDONE IBEN EOJLBL ELSE NEXTLBL 
IF CHAR.SZF=4 THEN PTRINEBCDIC ELSE PTRINBCL 

Semantics 

Expressions 

CONDITIONAL 

<expression>s of the form <if clause> <expression> ELSE <expression> are called <conditional 
expression>s. Depending upon either the value of the <.Boolean expression> in the <if clause> or, if 
one or both of the alternative <expression>s are themselves conditional, the values of the <.Boolean 
expression>s in several <if clause>s, or an <expression> are selected for evaluation. All alternative 
<expression>s must be of the same type. 

The selection process proceeds as follows: first, the <.Boolean expression> following the first <if 
clause> is evaluated; if the resulting value is TRUE, the <expression> following the mE'.N delimiter 
is evaluated, and the <expression> following the delimiter ELSE is ignored; otherwise, the 
<expression> following the ELSE delimiter is evaluated. If either of the alternative <expression>s 
is conditional, the process is repeated until an unconditional <expression> is selected for evaluation. 

6-15 



Expressions 

DESIGNATIONAL 

DESIGNATIONAL EXPRESSION 

Syntax 

<.designational expression> : := <label designator> I 
<case head> ( <.designational expression list> ) I 
<conditional designational expression> 

<label designator>::= <label identifier> I 
<switc.h label identifier> [ <subscript> ] 

<conditional designational expression> : :=<if clause> <.designational expression> 
ELSE <.designational expression> 

<designational expression list> : := <.designational expression> I 
<.designational expression list> , <.designational expression> 

Examples 

CHOOSEPATH[I + 2] 
CASE X OF (GOTDATA,GOTERR,GOTREAL,GOTCHANGE,EXCADE) 
IF K = 1 THEN SELECT[2] ELSE START 

Semantics 

A <.designational expression> identifies a predefined label. As is true of other <expression>s, designa­
tional expressions may be differentiated as designational and <conditional designational expression>s. 

<.designational expression> 

The process of evaluating a <.designational expression> depends upon the constructs from which it is 
formed. If a <.designational expression> is a <label designator>, the value of the expression is self­
evident. When a <.designational expression> is a <switch label identifier>, the actual numerical value 
of the subscript expression designates one of the elements in the <switch list list>. The element selected 
can be any form of the <.designational expression> which is evaluated as stated above, or it can be a 
<.conditional designational expression> which is evaluated as stated below. 

If a , <.designational expression> is formed from a <.designational expression> in parentheses, the latter 
is evaluated according to the applicable rules. 

<.conditional designational expression> 

The evaluation of a <.conditional designational expression> proceeds as follows: 

a. The <Boolean expression> contained in the <if clause> is evaluated. 
b. If a logical value of TRUE results, the <.designational expression> follow.ing the <if clause> 

is evaluated, thus completing the evaluation of the <.conditional designational expression>. 
c. If the logical value produced by the <if clause> is FALSE, the <.designational expression> 

following the delimiter ELSE is evaluated, thereby completing the evaluation of the <.designa­
tional expression>. 

6-16 



Expressions 

DESIGNATIONAL 

Continued 

Since the <designational expression>s following the delimiters THEN and ELSE, or both, can be 
<£:onditional designational expression>s, the analysis of the operation of a <designational expression> 
becomes recursive in a manner similar to that of the conditional arithmetic and <Boolean expression>s. 
However, in the case of a <designational expression>, the result produced is always a label. 

<.switch label identifier> [ <.subscript> ] 

The selection of the label in the <.switch label list> is defined by positive integer values 1, 2, 3, ... , 
N, where N is the number of entries in the <.switch label list>. If the value of the <.subscript> is of a 
<type> other than INTEGER, it is rounded to an integer in accordance with the rules applicable to the 
evaluation of <.subscript>s. If the value of the <.subscript> is outside the range of the <.switch label 
list>, program control continues in sequence, without any error indication. Refer to <.switch label 
declaration>. 

BAD GO TO 

Labels must be declared in, and therefore are local to, the innermost block in which they appear as a 
statement label. For example, a <.go to statement> cannot lead from outside a block to a point inside 
that block; each block must be entered at the <block head> so that the associated declarations can 
be invoked. 

A "bad go to" is the situation where a .qlesignational expression> requires cutting back the lexicographic 
level; i.e., a branch of program control td a more global <block>. In order to accomplish a "bad go to", 
the MCP is invoked to discard any locally declared items which take memory space other than the stack 
itself (sometimes referred to as "non-stack items"), for example, locally declared files, arrays, and 
interrupts. Note that upon re-entry into that <block>, all those items would have to be re-established. 
For these reasons, it is best to declare frequently used non-stack items in the outermost <block>. 
Furthermore, frequently entered <block>s should only contain stack items. Failure to observe these 
rules will result in inefficient system use during program execution. 

6-17 



Expressions 

FUNCTION 

FUNCTION EXPRESSION 

Syntax 

<function expression>: :=<arithmetic function designator> 
<Boolean function designator> I 
<pointer function designator> 

Semantics 

A function defines a single value which is the result of a specific set of operations on given parameters. 
Some functions are done "in-line" while others cause actual procedure entry. In either case, the value 
returned is a <primary> of the <type> specified for the function. 

The <actual parameter part> must agree with the <formal parameter part> to which it corresponds 
both in the number and types of parameters. If the <formal parameter> is of <type> INTEGER, 
REAL, ALPHA, or DOUBLE, the <actual parameter> must be one of these four types, but not neces­
sarily the same as its formal counterpart. If a mismatch occurs, the action that takes place depends upon 
whether the <formal parameter> is called-by-name or called-by-value. If it is called-by-value, the 
<type> of the <actual parameter> is converted to the <type> of the <formal parameter> before 
the latter is assigned its value. If the <formal parameter> is called-by-name, the appropriate conversion 
takes place each time the <formal parameter> is referenced. 

6-18 



Expression 

FUNCTION 

Arithmetic 

ARITHMETIC FUNCTION DESIGNATOR 

Syntax 

<arithmetic function designator> : :=<arithmetic function identifier> <actual parameter part> 

<arithmetic function identifier> : :=<procedure identifier> I 
<arithmetic intrinsic name> -<arithmetic intrinsic name> : := {a name of an arithmetic intrinsic "known" by the ALGOL compiler} 

Arithmetic Intrinsic Names 

The following arithmetic functions are intrinsic to ALGOL. For the purpose of <type> conversion, all 
arithmetic parameters are assumed to be called-by-value. 

Parameters are <type> REAL or INTEGER, unless otherwise indicated. The following notation is used 
in the intrinsic list: 

ABBREVIATION 

<ae> 
<be> 
<pe> 

MEANING 

<arithmetic expression> 
<Boolean expression> 
<pointer expression> 

(Refer to the B 7000/B 6000 System Operation Guide Reference Manual, form 5001563, for a detailed 
description of the arithmetic intrinsics.) 

FUNCTION 

ABS(<ae>) 

ARCCOS(<ae>) 

ARCSIN(<ae>) 

ARCTAN(<ae>) 

ARCTAN2(<aeJ>,<ae2>) 

ATANH(<ae>) 

PARAMETER(S) 

real,real 

RESULT 

Real. Absolute value of <ae>. 

Real. Principal value of arccosine of <ae>, 
-1 ( <ae> ( I. 

Real. Principal value of the arcsine of <ae>, 
-1 ( <ae> ( I. 

Real. Principal value of the arctangent of 
<ae>. 

Real. The principal value of the arctangent 
of <aeJ> I <ae2>. 

Real. Hyperbolic arctangent of <ae>. 

6-19 



Expressions 

FUNCTION 

Arithmetic - Continued 

FUNCTION 

CHECKSUM(<array row>, 
<ael>,<ae2>) 

COMBINEPPBS( <array row>, 
<array row>) 

COMPILETIME( <ae>) 

COS(<ae>) 

COSH(<ae>) 

6-20 

PARAMETER(S) 

integer 

20 

21 

22 

RESULT 

Real. Returns a hash function of all bits for 
words of the <array row> between <ael> 
and <ae2> for use in parity checking. 

The hash function is generated by performing 
the logical equivalence function of each 48-bit 
array word and a 48-bit accumulator. The 
accumulator is cyclicly shifted left one bit at 
each step. 

Returns the new sfze of the second array. This 
function is used for combining program 
parameter blocks (PPBS). Each array is 
assumed to contain a PPB. The two arrays 
are combined with the second array taking 
precedence. The second array is resized, if 
necessary. As a result, the arrays cannot be 
direct arrays. The arrays must be Boolean, 
real, or integer non-read only arrays (i.e., no 
value arrays). 

Any attempt to access COMBINEPPBS except 
by a compiler results in the stack being ds-ed 
at execution time. 

Obtains various system time values, retained 
at compile-time, for use by the object pro­
gram. The form of the value returned by the 
COMPILETIME intrinsic is the same as the 
TIME intrinsic for the same argument. The 
returned value is computed by the compiler, 
using the TIME intrinsic at compile-time. The 
argument must be a constant. (Refer to 
TIME intrinsic.) 

Allows the user t~ gain access to the compiler 
version number in integer form. COMPILE­
TIME(20) DIV 10 yields the mark number. 
COMPILETIME(20) MOD· l 0 yields the 
level number. 

Gives the version cycle in integer form. 

Gives the patch number in integer form. 

Real. Cosine of <ae>. 

Real. Hyperbolic cosine of <ae>. 



FUNCTION 

COTAN(<ae>) 

DABS(<ae>) 

DAND(<aeJ>,<ae2>) 

DARCCOS(<at>) 

DARCSIN(<ae>) 

DARCTAN(<ae>) 

DARCTAN2(<ael>,<ae2>) 

DCOS(<ae>) 

DCOSH(<ae>) 

DELTA(<.pel>,<.pe2>) 

DERF(<ae>) 

DERFC(<ae>) 

DEQV(<ael>,<ae2>) 

DEXP(<ae>) 

DGAMMA(<ae>) 

DIMP( <ae 1 >,<ae2>) 

DINTEGER(<ae>) 

PARAMETER(S) 

double 

double 

double 

double 

double 

double, double 

double 

double 

double 

double 

double, double 

double 

double 

double, double 

Expressions 

FUNCTION 

Arithmetic - Continue1 

RESULT 

Real. Cotangent of <ae>. 

Double. Absolute value of <ae>. 

Double. (<ael>) and (<ae2>). 

Double. Principal value of the arccosine of 
<ae>, -1 ( <ae> ( 1. 

Double. Principal value of the arcsine of 
<ae>, ~ l ( <ae> ( I. 

Double. Principal value of the arctangent of 
<ae>. 

Double. The principal value of the arctan­
gent of <ael> I <a2>. 

Double. Cosine of <ae>: 

Double. Hyperbolic cosine of <ae>. 

Integer. The number of characters given by 
<.pe2> minus <.pel>. Because DELTA 
must contend with such cases as segmented 
arrays, it is expensive in CPU time. (Refer 
to RJ?:AL (<.pe>).) 

Double. The value of the standard error 
function at <ae> ERF (-<ae>) = ERF 
(<ae>) at <ae>, poles at non-positive 
integers . 

. Double. The complement of the value of the 
standard error function, 

Double. (<ael>) EQV (<ae2>). 

Double. e raised to the <ae> power. 

Double. The value of the gamma function at 
<ae>. 

Double. (<ael>) IMP (<ae2>). 

Returns a double-precision integer value 
equal to ENTIER(<ae> +0.5). 

6-21 



Expressions 

FUNCTION 

Arithmetic - Continued 

FUNCTION 

DLGAMMA(<ae>) 

DLN(<ae:>) 

DLOG(<ae>) 

DMAX(<aeJ>, ... ,<aen>) 

DMIN(<aeJ>, ... ,<aen>) 

DNABS(<ae>) 

DNOT(<ae>) 

DOR(<ael>,<ae2>) 

DOUBLE(<ae>) 

DOUBLE( <ae J>,<ae2>) 

DOUBLE(<update pointer> 
<.pe>, <ae>) 

PARAMETER(S) 

double 

double 

double 

double, ... ,double 

double 

double 

double 

double, double 

DSCALELEFT(<aeJ>, <ae2>) double, real 

DSCALERIGHT(<aeJ>, <ae2>) double, real 

6-22 

RESULT 

Double. The value of the natural logarithm 
of the gamma function at <ae>. 

Double. Natural logarithm of <ae>. 

Double. Logarithm to base 10 of <ae>. 

Double. Maximum of the values <ael>, 
... ,<aen>: N ) 1. 

Double. Minimum of the values <ael>, ... 
', <aen>: N ) I. 

Double. Negative DOUBLE absolute value 
of <ae>. 

Double. Complement of <ae>. 

Double. (<ael>) OR (<ae2>). 

Returns the double value equal to the single 
REAL <ae>. 

Returns the double value with first part 
equal to <aeJ> and second part equal 
to <ae2>. 

This function returns as an extended pre­
cision value, the decimal value represented 
by the string of characters starting with the 
character indicated by the pointer expression. 
The length of the string as determined from 
the arithmetic expression must be less than 
24. A zone bit configuration of 1101 for 
8-bit characters or 10 for 6-bit characters 
in the least-significant character position 
causes the result to be negative. With 4-bit 
characters, a 1101 in the most-significant· 
character position yields a negative value. 
The state of the <pointer expression> 
at the exhaustion of the count can be "" 
preserved by an <update pointer>. 

Double. Vahle of <aeJ> multiplied by 
(10 raised to the <ae2> power). 

Double. Rounded result of <aeJ> divided by 
(10 raised to the <ae2> power). 



FUNCTION PARAMETER(S) 

DSCALERIGHTT(<aeJ>, <ae2>) double, real 

DSIN(<ae>) 

DSINH(<ae>) 

DSQRT(<ae>) 

DTAN(<ae>) 

DTANH( <ae>) 

ENTIER(<ae>) 

ERF(<ae>) 

ERFC(<ae>) 

EXP(<ae>) 

FIRSTONE(<ae>) 

FIRSTWORD(<ae>) 

FIRSTWORD( <ae>, 
<arithmetic variable>) 

double 

double 

double 

double 

double 

real 

Expressions 

FUNCTION 

Arithmetic - Continued 

RESULT 

Double. Truncated result of <aeJ> divided 
by ( 10 raised to the <ae2> power). 

Double. Sine of <ae>. 

Double. Hyperbolic sine of <ae>. 

Double. The square root of <ae>. 

Double. Tangent of <ae>. 

Double. Hyperbolic tangent of <ae>. 

Returns the largest integer not greater than 
the value of the arithmetic expression. 

The ENTIER function is frequently mis­
understood to perform simple truncation. 
The following examples show that this i~ 
not the case. 

ENTIER (2.6) = 2; ENTIER (3.1) = 3; 
ENTIER (-0.01) = -1; ENTIER 

(-3.4) = -4; 
ENTIER (-1.8) = -2. 

Real. The value of the standard error func­
tion at <ae> ERF(<-ae>) = -ERF(<ae>) 
at <ae>, pole at non-positive integers. 

Real. The complement of the value of the 
standard error function. 

Real. e:(epsilon) raised to the <ae> power. 

Integer. Bit number of leftmost nonzero bit 
in <ae>, plus one. It is set to 0 if no non­
zero bit is found. 

Returns the first word of the double expres­
sion <ae> unchanged. 

Returns the first word of the double expres­
sion <ae> unchanged. It stores the second 
word of the expression <ae> in <arith­
metic variable>. 

6-23 



Expressions 

FUNCTION 

Arithmetic - Continued 

FUNCTION 

GAMMA( <.ae>) 

INTEGER( <.ae>) 

INTEGER 
(<update pointer> 
<pointer expression>, <.ae>) 

INTEGERT(<.ae>) 

LINENUMBER 

LISTLOOKUP 

PARAMETER(S) 

(<.aeJ>, <.arrayr:_ow>, <.ae2>) 

LN(<.ae>) 

6-24 

RESULT 

Real. The value of the gamma function at 
<.ae>. 

Returns ENTIER( <.ae>+0.5 ). 

This function returns, as a single-precision 
integer, the decimal value represented by the 
string characters starting with the character 
indicated by the pointer expression. The 
largest integer value that can be returned is 
549, 755, 813, 887. The length of the string 
as determined from the arithmetic expression 
must be less than 24. A zone bit configuration 
of 1101 for 8-bit characters or 10 for 6-bit 
characters in the least significant character 
position causes the result to be negative. With 
4-bit characters, a leading 1101 results in a 
negative value. 

Integerizes the value of the arithmetic expres­
sion by truncation. For example, 
ENTIER(-1.2) = -2, while INTEGERT 
(-1.2) = -1. 

Integer. Returns the sequence number of the 
card being read. 

A linked list of words is searched as follows: 
The <.array row> is indexed by <.ae2> 
and the word is extracted. Each word con­
tains a value (in[ 47:28]) and. a link (in 
[ 19:20]) into the next word. If the value in 
the extracted word is greater than or equal 
to <.aeJ>, the operation stops and the 

\ index to the word whose link points to the 
word with that value is returned. If the test 
fails, the link of the extracted word is used 
as an index in the <.array row>; a new 
word is extracted and the process is repeated. 
A word with a link of zero terminates the 
list. Note that the value of a word is tested 
only if the link field is non-zero. If the 
linked list is exhausted (a word with a link 
o( z~ro is encountered) a value of -1 is 
returned. 

Real. Natural logarithm of <.ae>. 



FUNCTION 

LNGAMMA(<ae>) 

LOG(<ae>) 

MASK SEARCH 
(<ael>,<ae2>,< ... >) 

MAX(<ael>, ... ,<aen>) 

MIN(<ael>, ... ,<aen>) 

NABS(<ae>) 

NORMALIZE(<ae>) 

ONES(<ae>) 

POTL[<ae>] 
POTC[<ae>] 
POTH[<ae>] 

PARAMETER(S) 

<aeJ> 

<ae2> 

< ... > 

real, ... ,real 

real, . . . ,real 

double 

Expressions 

FUNCTION 

Arithmetic - Continued 

RESULT 

Real. The value of the natural logarithm of 
the gamma function at <ae>. 

Real. Logarithm to base 10 <ae>. 

<ael> is the bit pattern to search for. 

<ae2> is the mask to be used in the search. 

< ... > is an array that is a single-precision, 
single-dimensioned, nonsegmented array or an 
array row or subscripted variable. 

The following operation begins at the last 
word of the array (if no subscript is given) or 
at the specified word (if the subscript is given): 
A word is extracted and logically "ANDed" 
with <ae2> and compared (IS) with <ael>. 
If the result IS <ael>, the index of the 
extracted word is returned. If not, the index 
is decremented, and the operation is repeated 
until a match is found or the bottom of the 
array is encountered, in which case the 
result is -1. 

Real. Maximum of the values <ael >, 
... ,<aen>: N ) 1. 

Real. The minimum of <ael>, ... ,<aen>: 
N) 1. 

Real. Negative absolute value of <ae>. 

Double. Converts a double-precision aper- · 
and to "rounded" single-precision operand. 

Integer. Number of nonzero bits in <ae>. 

Provides the value of 10**1, where I is an 
integer (0 ~I< 29604), from three tables 
which are double precision read-only arrays. 

The value of 10**1 can be computed using the 
arithmetic expression: 

POTL[l.[5 :6]] *POTC[I[ 11 :6]] * 
POTH[I.[14:3]] 

6-25 



Expressions 

FUNCTION 

Arithmetic - Continued 

FUNCTION 

POTL[<ae>J 
POTC[<ae>J 
POTH[<ae>J (Cont) 

RANDOM(<ae>) 

READLOCK(<ae>, 
<arithmetic variable>) 

REAL(<be>) 

REAL(<ae>) 

REAL(<pe>) 

REAL(<pe>,<ae>) 

SCALELEFT( <ae J>, <ae2>) 

SCALERIGHT(<aeJ>, <ae2>) ,, 

SCALERIGHTF(<ae J>, <ae2>) 

6-26 

PARAMETER(S) 

real, 
call-by-name 

double 

RESULT 

For example, 

RESULT:= POTL[X]; % WHEREX < 69 

DEFINE POT (T) = 
(POTL[T.[5 :6]] *POTC[T.[ 11 :6)] * 

POTL[T.[14:3]] )#; 
ONEDIVTENTOI := 1/POT(I); 

Generates a random number between 0 and 
l. The value of the argument is changed 
each time RANDOM is referenced. 

Real. Taking only one memory cycle, <ae> 
is stored into the <arithmetic variable> 
and the prior content of the <arithmetic 
variable> is returned. 

Returns the real value represented by the 
<Boolean expression> <be>. All bits of 
<be> are used. 

Returns the double expression <ae> nor­
malized and rounded to a single. 

Returns, as a real value, the value of the 
string descriptor <pe> with its tag SET to 
zero. (Refer to appendix B.) 

Returns, as a real value, a bit image of the 
string of <ae> characters starting with the 
character indicated by the pointer expres­
sion <pe>. All bits of each character are 
used. 

Integer. Value of <ael> multiplied by 
(10 raised to the <ae2> power). 

Integer. Rounded result of <ael> divided 
by ( 10 raised to the <ae2> power). 

Left-justified packed decimal number (4-bit 
decimal) remainder of <aeJ> divided by 
(10 raised to the <ae2> power). The 
number of significant digits returned is 
equal to <ae2>. The external sign FLIP­
FLOP is set to the sign of <aeJ> for use 
with the PICTURE editing phrases. 



FUNCTION 

SCALERIGHTT(<aeJ>, <ae2>) 

SECONDWORD( <ae>) 

SIGN(<ae>) 

SIN(<ae>) 

SINGLE(<ae>) 

SINH(<ae>) 

SIZE(< ... >) 

SQRT(<ae>) 

TAN(<ae>) 

TANH(<ae>) 

TIME(<ae>) 

PARAMETER(S) 

double 

double 

<array designator> 

-<[Jointer identifier> 

<variable> 

Expressions 

FUNCTION 

Arithmetic - Continued 

RESULT 

Integer. Truncated result of <ael> 
divided by ( 10 raised to the <ae2> power). 

Returns the second word of the double 
expression <a.e> unchanged. 

Integer. + 1 if <ae> ) 0, O if <a.e> = 0, -1 
if <a.e> ( 0. 

Real. Sine of <a.e>. 

Returns the double expression <ae> nor­
malized and truncated to a single. 

Real. Hyperbolic sine of <a.e>. 

Integer. If a single-dimensioned array or a 
row of a multi-dimensioned array, it returns 
the size in units appropriate to the array, e.g. 
bytes, digits, or words. 

If a multi-dimensioned array, it returns the 
size of the first unspecified dimension. 

The character size ( 4, 6, or 8) unless the 
<pointer identifier> is uninitialized, result­
ing in the value zero. 

Real. The square root of <a.e>, <ae> ) 0. 

' 
Real. Tangent of <a.e>. 

Real. Hyperbolic tangent of <ae>. 

TIME (<ae>) makes various system time 
- values available. 

In-line code is generated for the cases where 
<ae> is an unsigned integer with one of the 
following values: l, 4, 11, or 14. For all other 
cases, the value of <a.e> is passed to an 
intrinsic function that yields the correct 
time as the result. Thus the code 11:=1; 
J== TIME(II); takes longer to execute than 
11:=1; 1== TIME(l);. 

6-27 



Expressions 

FUNCTION 

Arithmetic - Continued 

FUNCTION 

TIME(<ae>) (Cont) 

VALUE (mnemonic) 

6-28 

PARAMETER(S) 

0 

1 

2 

3 

4 

5 

,6 

7 

IO 

11 

12 

13 

14 

15 

16 

Mnemonic File 
Attribute 

RESULT 

Returns the current date in BCL characters 
(in the format: 6"YYDDD", where YY is 
the year and DDD is the day of the year). 

Returns as an integer value the time of day, 
in sixtieths of a second. 

Returns as an integer value the elapsed 
processor time of the program, in sixtieths 
of a second. 

Returns as an integer value the elapsed 1/0 
time of the program, in sixtieths of a second. 

Returns as an i}\teger value the contents of a 
6-bit machine clock that increments every 
sixtieth of a second. 

Returns month, day, year as six BCL charac­
ters right-justified (in the format: 
6"00MMDDYY"). 

Returns a unique number for the time and date. 

Returns the year, month, day, hour, minute, 
second, and day of the week. 

Same as TIME(O), except time is expressed in 
EBCDIC characters (in the format 
8"YYDDD"). 

Same as TIME(l ), except time is expressed in 
multiples of 2.4 microseconds. 

Same as TIME(2), except time is expressed in 
multiples of 2.4 microseconds. 

Same as TIME(3), except time is expressed in 
multiples of 2.4 microseconds. 

Returns the time since the last Halt/Load in 
2.4 microseconds. 

Current date (in the format: 8"MMDDYY"). 

Similar to TIME(6). 

Integer value of the mnemonic value. (Refer 
to B6800 1/0 Subsy'stems Reference Manual, 
form 5000185.) 



Expressions 

FUNCTION 

Boolean 

BOOLEAN FUNCTION DESIGNATOR 

Syntax 

<Boolean function designator> : := <Boolean function identifier> <actual parameter part> 

<Boolean function identifier> : := <procedure identifier> I 
<Boolean intrinsic name> 

<Boolean intrinsic name>: :={a name of a Boolean intrinsic "known" by the 
ALGOL compiler} 

Boolean Intrinsic Names 

The following Boolean functions are intrinsic to ALGOL. 

FUNCTION PARAMETER(S) 

AVAILABLE(<event designator>) 

BOOLEAN(<ae>) 

HAPPENED(<event designator>) 

OVERFLOW 

READLOCK (<be>, <Boolean variable>) 

TOGGLE 

RESULT 

Returns TRUE if the event is available and 
FALSE if not. 

Returns the value of <ae> as a Boolean. If 
<ae> is DOUBLE then <ae> is truncated 
first. 

Returns TRUE if the event has happened 
and FALSE if not. 

Boolean. Returns the value of the OVER­
FLOW flip-flop. 

Boolean. Taking only one memory cycle, 
<be> is stored into the <Boolean 
variable> and the prior content of the 
<Boolean variable> is returned. 

Boolean. Returns the value of the TRUE­
FALSE flip-:flop. It is SET or RESET by the 
scan and replace statements. 

6-29 



Expressions 

FUNCTION 

Pointer 

POINTER FUNCTION DESIGNATOR 

Syntax 

<pointer function designator> : := POINTER ( <pointer parameters> ) I 
READ LOCK ( <pointer expression> , <pointer variable> ) 

<pointer parameters> : := <array part> I 
<array part> , <t:haracter size> I 
<a"ay part> , <pointer primary> 

<t:haracter size> : := 4 I 6 I 8 
<a"ay part>::= <array row> I 

<subscripted variable> 

Pointer Intrinsic Names 

The following pointer function is intrinsic to ALGOL. 

FUNCTION 

READLOCK (<pe>, 
<pointer variable>) 

6-30 

PARAMETER(S) RESULT 

Taking only one memory cycle, <.pe> is 
stored into the <pointer variable> and the 
prior content of the <pointer variable> is 
returned. 



POINTER EXPRESSION 

Syntax 

<pointer expression> : :=<conditional pointer expression> 
<simple pointer expression> 

Expressions 

POINTER 

<conditional pointer expression>::= <if clause> <pointer expression> ELSE <pointer expression> 

<simple pointer expression> : :=<pointer primary> <skip> 
<pointer assignment> I 
<character array part> 

<pointer primary>::= <pointer identifier> I 
( <pointer expression> ) I 
<case head> ( <pointer expression list> ) I 
<pointer function designator> 

<skip>::= <empty> I 
<adding operator> <primary> I 
<adding operator> <arithmetic variable> := <arithmetic expression> 

<pointer expression list> : := <pointer expression> I 
<pointer expression list> , <pointer expression> 

<character array part>::= <character array name> I 
<character array row> I 
<subscripted character array variable> 

<character array name>::= <character array identifier> I 
<direct character array identifier> 

<character array identifier> : :=<identifier> 

<direct character array identifier> : :=<identifier> 

<character array row>::= <character array name> [ <row designator> 

<subscripted character array variable> : := <character array name> 

Examples 

PTR 
PTS+lS 

[ <subscript list> ] 

PTEMP + (X*Y) % NOTE THE NEED FOR PARENS HERE 
PSORCE - INDX := X * Y % BUT NOT HERE 
ARAY % WORD ARRAY 
INXARAY[N] 
HEXARA Y % CHARACTER ARRAY 
CASE VAL OF (PTR,PTS,PTEMP,PSORCE) 
POINTER(INF0,6) 
READLOCK(PTR,POLD) 

6-31 



Expressions 

POINTER 

Continued 

Semantics 

A <pointer expression> refers to a character position in an <array row>. Actually, it is an indexed or 
unindexed string descriptor, depending upon whether or not it points to the beginning of an <array 
row>. <pointer expression>s can take various forms in accordance with the primaries of which they are 
composed. Identifiers used as pointer primaries must be declared in a <pointer declaration>. If a 
<pointer expression> is enclosed in parentheses, it is evaluated first and its value is used as a <pointer 
primary>. 

If the <array part> is of the form <array name>, the <array name> must reference a one-dimensional 
array. 

POINTER INITIALIZATION 

A pointer can be initialized either by a <pointer assignment> or by appearing as an <update pointer> 
in a <scan statement>, <replace statement>, or <string relation>. 

POINTER ADJUSTMENT 

If the <skip> construct is not <.empty>, the pointer is adjusted by L characters to the right or left, 
where Lis the absolute value of the <arithmetic expression>. If the <adding operator> is+, skipping 
is to the right; if it is-, skipping is to the left. Skipping to the right is defined to be incrementing the 
value of the character index and skipping to left as decrementing it. 

<pointer parameters> 

NOTE 

A <skip> of the form +L, where L is less than or equal 
to zero, causes no adjustment of the pointer. 

The <array part> of the <pointer parameters> construct can be an <array row>, in which case the 
pointer references the beginning of the indicated row; or an <array identifier>, in which case the pointer 
references the first word of the array, which must be one-dimensional; or a <subscripted variable>, in 
which case the pointer references the indicated word. The <£haracter size> part indicates the length, in 
bits, of the characters in the referenced array. If the <£haracter size> does not appear, it is assumed to 
be the default value. 

The <array part>, <pointer primary> alternative allows the use of another pointer to designate the 
size of a newly initialized pointer. For example, 

POINTER P,Q; ARRAY A[O:S); REAL R; 
P:=POINTER(A,Q); P:=POINTER(A,CASE R OF (Q,P)); 

6-32 



Pragmatics 

Expression 

POINTER 

Continued 

The use of a <.pointer expression> to skip up and down an array for more than a few words is expensive. 
To guard against the user "wandering out" of an array into core that is assigned to other arrays, each word 
of the source and/or destination is accessed in order to ensure that no memory protected words (at either 
end of the array) are encountered. For pointer moves greater than 18 bytes, it is much better to re-index 
from the base of the array by use of the POINTER (<.pointer parameters>) intrinsic for word arrays or 
simply re-index the descriptor for character arrays. 

6-33/6-34 





APPENDIX A. RESERVED WORDS 

RESERVED WORDS 

All reserved words in B 7000/B 6000 Extended ALGOL have the syntactical structure of <identifier>s. 
The reserved words are divided into three types: type 1, type 2, and type 3. 

Type 1 reserved words are those words that cannot be used as identifiers, that is, they cannot be associat­
ed with any entity, declared or specified, in the <.program>. In the reserved word list, type 1 reserved 
words are denoted by ( 1 ). For example, DIRECT ( 1 ). 

Type 2 reserved words are those words that can be declared to be <identifier>s (overriding their 
previous meaning). That is, everywhere within the scope of the declared or specified entity, the type 2 
reserved word references the declared or specified entity and not the function normally referenced by 
the reserved word. In the reserved word list, type 2 reserved words are denoted by {2). For example, 
FORMAL(2). 

Type 3 reserved words are those words that can be declared to be identifiers, but, where used in the 
language as specified by the syntax, have the reserved meaning. They are therefore "context sensitive". 
In other words, whenever an <identifier> that coincidentally spells a reserved word of type 3 is used 
in the language where the syntax calls for a reserved word of type 3, the <identifier> is not considered 
by the compiler to be a reference to some entity, but rather the reserved word of type 3. If, however, the 
<identifier> appears in the language where the syntax does not call for a reserved word of type 3, the 
<identifier> is taken by the compiler to be a reference to some entity declared or specified in the 
<.program>, in which case the particular entity being referenced is determined by the rules of scope. 
Note the difference in the following example: 

BEGIN 
FILE F; 
REAL KIND; 
% IN THE NEXT STATEMENT, "KIND" REFERENCES THE REAL VARIABLE 
KIND := 4.5; 
% IN THE NEXT STATEMENT, "KIND" IS A TYPE THREE RESERVED WORD 
FILE.KIND := VALUE (PRINTER); 
WRITE (F, <"KIND =", RS.2>, KIND); 
END. 

Reserved words of type 3 are file mnemonics, file attributes, or task attributes. In the reserved word list, 
type 3 reserved words are denoted by (3,T) or (3,F), where the T signifies a task attribute., and the F 
signifies either a file mnemonic or file attribute. For example, EXCEPTIONTASK (3,T). 

A-1 



ABS (2) 
ACCEPT (2) 
ALGOLCODE (3 ,F) 
ALGOLSYMBOL (3,F) 
ALPHA (1) 
AND (2) 
ARCCOS (2) 
ARCSIN (2) 
ARCTAN (2) 
ARCTAN2 (2) 
AREA CLASS (3 ,F) 
AREAS (3,F) 
AREASIZE (3,F) 
ARRAY (1) 
ASCII (1) 
ASCIITOBCL (2) 
ASCIITOEBCDIC (2) 
ASCIITOHEX (2) 
ASSIGNTIME (3 ,F) 
ATANH (2) 
ATEND (3,F) 
ATTACH (2) 
ATTERR (3,F) 
ATTRIBUTERR (3,F) 
A TTV ALUE (3 ,F) 
ATTYPE (3,F) 
AVAILABLE (2) 

BACKUP (3 ,F) 
BACKUPDISK (3,F) 
BACKUPPREFIX (3, T) 
BASICCODE (3,F) 
BASICSYMBOL (3,F) 
BCL (1) 
BCLTOASCII (2) 
BCLTOEBCDIC (2) 
BCLTOHEX (2) 
BEGIN (1) 
BINDERSYMBOL (3,F) 
BLOCK (3,F) 
BLOCKSIZE (3,F) 
BOOLEAN(l) 
BOUNDCODE (3,F) 
BREAKHERE (3,F) 
BREAKPOINT (2) 
BUFFERS (3 ,F) 
BY (2) 

A-2 

RESERVED WORDS 

CALL(2} 
CARRIAGECONTROL (3,F) 
CASE (2) 
CAUSE (2) 
CAUSEANDRESET (2) 
CDATA(3,F) 
CENSUS (3 ,F) 
CHARACTERS (3,F) 
CHECKPOINT (2) 
CLASS (3,T) 
CLASSA (3,F) 
CLASSB (3,F) 
CLASSC (3 ,F) 
CLOSE (2) 
CLOSED (3,F) 
COBOLCODE (3,F) 
COBOLSYMBOL (3,F) 
CODEFILE (3,F) 
COMMENT (1) 
COMPILERCODEFILE (3,F) 
COMPILETIME (2) 
CONTINUE ( 1) 
CONTROLDECK (3,F) 
COPIES (3 ,F) 
COREESTIMATE (3,T) 
cos (2) 
COSH (2) 
COTAN (2) 
CRUNCHED (3 ,F) 
CSEQDATA (3,F) 
CURRENTBLOCK (3 ,F) 
CYCLE (3,F) 
CYLINDERMODE (3,F) 

DABS (2) 
DANO (2) 
DARCCOS (2) 
DARCSIN (2) 
DARCTAN (2) 
DARCTAN2 (2) 
DATA (3,F) 
DATAERROR (3,F) 
DATE (3,F) 
DCALGOLCODE (3,F) 
DCALGOLSYMBOL (3,F) 
DCOS (2) 
DCOSH (2) 

DEALWCATE (2) 
DECKGROUPNO (3 ,T) 
DECLAREDPRIORITY (3,T) 
DEFINE(2) 
DELTA(2) 
DENSITY (3 ,F) 
DEQV (2) 
DETACH (2) 
DEXP (2) 
DGAMMA(2) 
DIGIIS (2) 
.DIGITS (2) 
DIMP (2) 
DINTEGER (2) 
DIRECT (1) 
DIRECTION (3,F) 
DIRECTORY (3,F) 
DIRECTORYCONTROL (2) 
DISABLE (2) 
DISK (3,F) 
DISKHEADER (1) 
DISKPACK (3,F) 
DISPLAY (2) 
DISPOSITION (3,F) 
DIV (2) 
DLGAMMA(2) 
DLN (2) 
DLOG(2) 
DMAX(2) 
DMIN (2) 
DNABS (2) 
DNOT (2) 
DO (1) 
DOUBLE(!) 
DSCALELEFT (2) 
DSQRT (2) 
DTAN (2) 
DTANH (2) 
DUMP (2) 
DUPLICATED (3,F) 

EBCDIC (1) 
EBCDICTOASCII (2) 
EBCDICTOBCL (2) 
EBCDICTOHEX (2) 
ELAPSEDT™E (3,T) 
ELSE (1) 



ENABLE(2) 
ENABLEINPUT (3,F) 
END (1) 
ENTER (2) 
EOF (3,F) 
EOFBITS (3,F) 
EOFSEGMENT (3,F) 
EQL (2) 
EQV (2) 
ERF (2) 
ERFC (2) 
ERRORTYPE (3,F) 
ESPOLCODE (3,F) 
ESPOLSYMBOL (3,F) 
EUNUMBER (3,F) . 
EVENT (I) 
EXCEPTIONEVENT (3,T) 
EXCEPTIONTASK (3,T) 
EXCLUSIVE (3,F) 
EXTMODE (3,F) 

FALSE (I) 
FAMILY (3 ,F) 
FAMILYSIZE (3,F) 
FAST (3,F) 
FILE (I) 
FILECARDS (3,T) 
FILEKIND (3 ,F) 
FILETYPE (3 ,F) 
FILL (2) 
FIRSTONE (2) 
FIRSTWORD (2) 
FIX (2) 
FLEXIBLE (3 ,F) 
FOR (I) 
FORMAL(2) 
FORMAT(2) 
FORMESSAGE (3,F) 
FORMMESSAGE (3,F) 
FORTRANCODE (3,F) 
FORTRANSYMBOL (3,F) 
FORWARD (2) 
FREE (2) 

GAMMA(2) 
GEQ (2) 
GO (1) 

RESERVED WORDS (Cont) 

GTR (2) 
GUARDFILE (3,F) 

HAPPENED (2) 
HEX(l) 
HEXTOASCII (1) 
HEXTOBCL (I) 
HEXTOEBCDIC (1) 
ffiGH(3,F) 
ffiSTORY (3 ,T) 

IAD (3,F) 
IF (1) 
IMP (2) 
IN (2) 
INCREMENT (2) 
INITIATOR (3,T) 
INTEGER (1) 
INTEGERT (2) 
INTERCHANGE (3,F) 
INTERRUPT (2) 
INTMODE (3,F) 
INTNAME (3,F) 
INTRINSICINFO (2) 
INTRINSICFILE (3,F) 
IO (3,F) 
IOADDRESS (2) 
IOADJUST (2) 
IOCANCEL (2) 
IOCHARACTERS (2) 
IOCLOCKS (3,F) 
IOCOMPLETE (2) 
IOCW(2) 
IOEOF (2) 
IOINERROR (3,F) 
IOERRORTYPE (2) 
IOMASK (2) 
IOPENDING (2) 
IORECORDNUM (2) 
IORESULT (2) 
IOTIME (2) 
IOWORDS (2) 
IS (2) 
ISNT (2) 

JOBNUMBER (3,F) 
JOVIALCODE (3,F) 
JOVIALSYMBOL (3,F) 

KIND (3,F) 

LABEL (1) 
LABELTYPE (3,F) 
LASTACCESSDATE (3,F) 
LASTRECORD (3,F) 
LASTSTATION (3,F) 
LB (2) 
LEQ (2) 
LIBERATE (2) 
LIBRARYCODE (3,F) 
LINE (2) 
LINENUM (3,F) 
LIST (1) 
LISTLOOKUP (2) 
LN (2) 
LNGAMMA (2) 
LOCK (2) 
LOCKED (3,T) 
LOCKEDOUT ~,F) 
LOG (2) 
LONG (1) 
LOW (3,F) 
LSS (2) 

MASKSEARCH (2) 
MAX (2) 
MAXCARDS (3,T) 
MAXIOTIME (3, T) 
MAXLINES (3,T) 
MAXPROCTIME (3,T) 
MAXRECSIZE (3 ,F) 
MCPCODEFILE (3,F) 
MEDIUM (3,F) 
MEDIUMFAST (3,F) 
MEDIUMSLOW (3,F) 
MEMORYDUMP (2) 
MERGE(2) 
MESSAGE(l) 
MIN (2) 
MINRECSIZE (3,F) 
MOD (2) 
MODE(3,F) 

A-3 



MONITOR(2) 
MUX (2) 
MYSELF (2) 
MYUSE (3,F) 

NABS (2) 
NAME (3,T) 
NEQ (2) 
NEWUSER (3,F) 
N0(2) 
NOERROR (3,F) 
NOINPUT (3,F) 
NONSTANDARD (3,F) 
NORMAL (3,F) 
NORMALIZE (2) 
NOT (2) 
NUMBER(2) 

OF(2) 
OMITTED (3,F) 
OMITTEDEOF (3,F) 
ON(2) 
ONES (2) 
OPEN (3,F),,,,, 
OPTION (3 ,T) 
OPTIONAL (3,F) 
OR(2) 
ORGUNIT (3,T) 
OTHERUSE (3,F) 
OUT (3,F) 
OVERFLOW (2) 
OWN (1) 

PACKHEADER (3,F) 
PACKNAME (3,F) 
PACKREBUILD (3 ,F) 
PAGE(3,F) 
PAGESIZE (3,F) 
PAPER (3,F) 
PAPERPUNCH (3,F) 
PAPERREADER (3,F) 
PARITY (3 ,F) 
PARITYERROR (3,F) 
PARTNER (3,T) 
PETAPE (3,F) 
PICTURE (2) 
PLICODE (3,F) 

A-4 

RESERVED WORDS (Cont) 

PLISYMBOL (3,F) 
POINTER (1) 
PO PU LA TION (3 ,F) 
POTC (2) 
POTL (2) 
PRESENT (3,F) 
PRINTER (3,F) 
PRIVATE (3,F) 
PROCEDURE (1) 
PROCESS (2) 
PROCESSIOTIME (3,T) 
PROCESSTIME (3,T) 
PROCURE(2) 
PROGRAMDUMP (2) 
PROPERTY (I) 
PROTECTED (3 ,F) 
PROTECTION (3,F) 
PUNCH (3,F) 
PURGE(2) 

QUEUE (1) 

RANDOM(2) 
RB (2) 
READ (2) 
READCHECK (3,F) 
READCHECKF AILURE (3,F) 
READER (3,F) 
READLOCK (2) 
READPARITYERROR (3,F) 
REAL (1) 
RECEPTIONS (3,F) 
RECONSTRUCTIONFILE (3,F) 
RECORD (3,F) 
RECORDINERROR (3,F) 
RECORDKEY (3,F) 
REEL(3,F) 
REFERENCE (1) 
REMOTE (3,F) 
REPLACE(2) 
RESET (2) 
RESIDENT (3,F) 

· RESIZE (2) 
RESTART (3,T) 
REVERSE (3,F) 
REWIND (2) 
ROWADDRESS (3,F) 

ROW CLASS (3 ,F) 
ROWS (3,F) 
ROWSINUSE (3 ,F) 
ROWSIZE (3 ,F) 
RUN (2) 

SAVEFACTOR (3,F) 
SAVE(3,F) 
SCALELEFT (2) 
SCALERIGHT (2) 
SCALERIGHTF (2) 
SCALERIGHTT (2) 
SCAN (2) 
SCREEN (3,F) 
SDIGITS (2) 
SECONDWORD (2) 
SECURED (3 ,F) 
SECURITYGUARD (3,F) 
SECURITYTYPE (3 ,F) 
SECURITYUSE (3 ,F) 
SEEK (2) 
SEQDATA (3,F) 
SERIALNO (3,F) 
SET (2) 
SIGN (2) 
SIN (2) 
SINGLE(2) 
SINGLEPACK (3,F) 
SINH (2) 
SIZE (2) 
SIZE2 (3,F) 
SIZEMODE (3,F) 
SIZEOFFSET (3,F) 
SKIP (2) 
SLOW (3,F) 
SORT(2) 
SPACE (2) 
SPEED (3,F) 
SPO (3,F) 
SQRT (2) 
STACKER(2) 
STACKHISTORY (3,T) 
STACKNO (3,T) 
STACKSIZE (3,T) 
STANDARD (3,F) 
ST ARTTIME (3 ,T) 
STATE(3,F) 



STATION (2) 
STATIONSDENIED (3,F) 
STATUS (3,T) 
STEP (1-) 
STOP (2) 
STOPPOINT (3,T) 
SUBSPACES (3,T) 
SUNOTREADY (3,F) 
SUPER (3,F) 
SWAP (2) 
SWITCH (1) 
SYSTEMDIRECTORY (3,F) 
SYSTEMDIRFILE (3,F) 

TAN (2) 
TANH (2) 
TAPE(3,F) 
TAPE7 (3,F) 
TAPE9 (3,F) 
TAPEREELRECORD (3,F) 
TARGETTIME (3,T) 
TASK(l) 
TASKATTERR (3,T) 
T ASKFILE (3, T) 
TASKVALUE (3,T) 
TEMPORARY (3,F) 
THEN (1) 
THRU (2) 
TIME (2) 
TIMELIMIT (2) 
TIMEOUT (3,F) 
TIMES (2) 
TITLE (3,F) 
T0(2) 
TOGGLE(2) 
TRANSLATETABLE (1) 
TRANSMISSIONO (3 ,F) 
TRANSMISSIONS (3,F) 
TRUE (1) 
TRUTHSET (1) 
TYPE (3,T) 

RESERVED WORDS (Cont) 

UNITNO (3 ,F) 
UNITS (3,F) 
UNITSLEFT (3 ,F) 
UNTIL (1) 
UPDATED (3,F) 
UPDATEFILE (3,F) 
USEDATE (3,F) 
USERCODE (3,T) 
USERDATA (2) 
USERDATALOCATOR (2) 
USERDATAREBUILD (2) 

VALUE (1) 
VECTORMODE (2) 
VERSION (3 ,F) 
VERSIONDIRECTORY (3,F) 

WAIT (2) 
WAITANDRESET (2) 
WHEN (2) 
WHILE (1) 
WIDTH (3,F) 
WITH (2) 
WORDS (2) 
WRITE (2) 

XALGOLCODE (3,F) 
XALGOLSYMBOL (3,F) 
XDISKFILE (3,F) 
XFORTRANCODE (3,F) 
XFORTRANSYMBOL (3,F) 

ZIP (1) 

A-5/A-6 





APPENDIX B. PROGRAM CHARACTER AND WORD FORMATS 

WORD NOTATION 

The notation [m:n] is used in this manual to describe data word fields. The 48 accessible bits of a data 
word are considered to be numbered, with the left-most bit being bit 47 and the right-most bit being bit 0. 
In the notation used here, m denotes the number of the left-most bit of the field being described, and n 
denotes the number of bits in the field. For example, the word field (figure B-1) shown here (bits 28 
through 24) would be described by [ 28: 5] : 

47 43 39 35 31 i~i~i~i~~i 23 19 15 11 7 3 

46 42 38 34 30 lil~l~l~li 22 18 14 10 6 2 

45 41 37 33 29 !iii~i!~~ii 21 17 13 9 5 1 

44 40 36 32 ~j~j~i~ji~j i~ili~i~j~j 20 16 12 8 4 0 

Figure B-1. Word Notation 

Hexadecimal forms are used extensively in the manual to indicate word contents. Such forms are particu­
larly suited to describing the value of a data word, since each digit in a hexadecimal form indicates the 
contents of a four-bit field. Such fields can be visualized as columns in the preceding picture of a data word. 

SIGNS OF NUMERIC FIELDS 

The sign of a numeric field is represented as follows: 

8-bit characters 

6-bit characters 

4-bit digits 

The sign is in the zone bits of the least significant character (bits 7 through 4 of 
the field). A bit configuration of 1101 ( 4 "D") indicates a negative number; any 
other bit configuration indicates a positive number. 

The sign is in the zone bits of the least significant character (bits 5 and 4 of the field). 
A bit configuration of l 0 indicates a negative number; any other bit configuration 
indicates a positive number. 

·The sign is carried as a separate digit, and it is the most significant digit of the field. 
A bit configuration of 1101 (4"D") indicates a negative number; any other bit con­
figuration indicates a positive number. 

B-1 



CHARACTER REPRESENTATION 

Figures B-2 through B-4 illustrate the various character formats within a word. 

0 
50 

0 
49 

0 
48 

B-2 

47 43 

46 42 

45 41 

44 40 
'---y---../ 

MOST SIGNIFICANT 
CHARACTER 

39 35 

38 34 

37 3.3 

36 32 

31 27 23 19 

30 26 22 18 

29 25 21 17 

28 24 20 16 

Figure B-2. 8-Bit Bytes (EBCDIC Code) 

MOST SIGNIFICANT 
CHARACTER 

0 2 

~~ 

47 43 39 35 31 

46 42 38 34 30 

45 41 37 33 29 

44 40 36 32 28 

27 23 19 

26 22 18 

25 21 17 

24 20 16 

Figure B-3. 6-Bit Characters (BCL Code) 

15 

14 

.13 

12 

15 

14 

13 

12 

11 7 3 

10 6 2 

9 5 1 

8 4 0 

'--v----" 
LEAST SIGNIFICANT 

CHARACTER 

6 

~ 

11 7 3 

10 6 2 

9 5 1 

8 4 0 

~ 
7 

LEAST SIGNIFICANT 
CHARACTER 



CHARACTER REPRESENTATION (Cont) 

0 2 4 5 . 6 7 8 9 10 11 

r-- -:;i 
1PARITY1 

~~~~~~~~,,-A-.. ,,-J'-..~ ,.A-... 

: 51: 47 43 

050 

049 

048 

46 42 

45 41 

44 ·40 
~ 

MOST SIGNIFICANT 
CHARACTER 

39 35 31 27 23 19 

38 34 30 26 22 18 

37 33 29 25 21 17 

36 32 28 24 20 16 

Figure B-4. 4-Bit Digits (Packed BCD) 

15 11 7 3 

14 10 6 2 

13 9 5 1 

12 8 4 0 
~ 

LEAST SIGNIFICANT 
CHARACTER 

B-3 



SINGLE-PRECISION OPERAND 

Real Variable 

The real variable (figure B-5) requires one word of storage. 

E 
47 _X_43 

M46 ~2 
~5 ~ E41 

ri 
44 T4o 

FIELD 

Tag 
47 
M 
E 
44=>39 
38=> 0 

39 

38 

37 

36 

35 31 27 23 19 15 11 

34 30 l§i .A~ "~ LA 14 10 
IYI l""nl I '"""" """ 33 29 25 21 17 13 9 

32 28 24 20 16 12 8 

USE 

0 
Not used 
Sign of mantissa: 1 = negative, 0 = positive 
Sign of exponent: 1 =negative, 0 =positive 
Exponent 
Mantissa 

Figure B-5. Real Variable 

'7 3 

6 2 

5 1 

4 0 

A real variable requires one word of storage. Real (floating-point) values are represented internally in 
signed-magnitude mantissa-and-exponent notation. The sign of the mantissa is denoted by bit 46, and the 
sign of the exponent is denoted by bit 45 of the data word. A minus sign is denoted by a l in the 
appropriate bit. The magnitude of the exponent of the data item is contained in bits 44 through 39; 
hence, the exponent may not exceed a magnitude of 2**6 -1 (i.e., 63). The magnitude of the mantissa 
of the data item is contained in bits 38 through 0. This latter word field is identical to the magnitude 
field of a data word containing an integer value. Thus, an integer data word may be considered to be a 
real data word with an exponent field containing all zeros. 

The value represented by a real data word may be obtained by the formula: 

(mantissa)* 8 **(exponent) 

The magnitude of the mantissa is stored, left-normalized, within its word field. Therefore, the internal 
representation of the real value 0.5 (or .SEO) in hexadecimal and octal form is 26COOOOOOOOO and 
01154000000000000, respectively. The exponent in this· example is -13 and the mantissa is 4*8** 12. 

B-4 



INTEGER VARIABLE 

An integer variable (figure B-6) requires one word of storage. 

r--:;i 
. 1PARITY1 

~ 511 

0 50 

0 49 

0 48 

47 

s46 

045 

044 

0 0 
43 39 

042 38 

0 41 37 

0 40 36 

FIELD 

Tag 
47 
s 
45 => 39 
38=> 0 

35 31 27 23 19 15 

34 30 ~ ba. ;?.2 p_.jg ~14 
! IVI I"'\ tw'ni I 11 va... I~ 

33 29 25 21 17 13 

32 28 24 20 16 12 

USE 

0 
Not used 
Sign bit (0 =positive, l = negative) 
Must contain all zeros 
Magnitude 

Figure B-6. Integer Variable 

11 7 3 

10 6 2 

9 5 1 

8 4 0 

Integer values are represented internally in signed-magnitude notation. The sign of the value is denoted 
by bit 46 of the data word involved. This bit is 0 for positive values and l for negative values. The magni­
tude of the value is stored, right-justified in bits 38 through 0 and is preceded by zeros. 

For example, the internal representation of the integer l 0 described in hexadecimal form is as follows: . 
OOOOOOOOOOOA 

The following is the internal representation of -10: 

40000000000A 

The internal representation of 99999999999 is as follows: 

00174876E7FF 

Finally, a hexadecimal form of: 

007FFFFFFFFF 

places into the data word the decimal quantity 549755813887, the maximum quantity an integer 
variable may possiJ:>ly represent. A larger hexadecimal value would place a non-zero value in the [ 45:7] 
field of the data word, violating the internal format requirement of an integer value. B-5 



BOOLEAN VARIABLE 

A Boolean variable (figure B-7) requires one word of storage. 

r-- -:;i 
1PARITY 1 

: 51: 

050 

0 49 

048 

FIELD 

Tag 
47 =>O 

0 

USE 

0 
A shaded V indicates a Boolean value can be used. 
Boolean value for <if clause> syntax. 

Figure B-7. Boolean Variable 

Logical operations are performed on all 48 bits of the operand(s) involved, on a bit-by-bit basis. 

However, when using the <if clause> syntax, only the low-order bit (bit 0) is significant: 0 is FALSE, 
l is TRUE. 

In the diagram above, the shaded V's represent the ability to use each bit of the entire 48-bit word as an 
individual Boolean value. This can be easily accomplished by means of <partial word part> and 
<.concatenation> syntax. 

B-6 



DOUBLE-PRECISION OPERAND 

Dou hie-Precision Variable 

A double-precision variable (figures B-8 and B-9) requires two adjacent words of storage. 

47 ~43 
t.\6 

Ip 
okl 

~5 ~a 
N 

44 T4o 

FIELD 

Tag 
M 
E 
44 =>39 
39=> 0 

39 35 31 27 23 19 15 

38 34 30 _rm 'N21' IS~ ' 14 

37 33 29 25 
~MS 

21 ~) 17 13 

36 32 28 24 20 16 12 

USE 

2 
Sign of mantissa: 1 = negative, 0 = positive. 
Sign of exponent: 1 = negative, 0 = positive. 
Exponent, least-significant portion. 
Mantissa, most-significant portion. 

Figure B-8. First Word, Double-Precision Variable 

11 

10 

9 

8 

43 39 35 31 27 23 19 15 11 

42 38 34 30 14 10 

41 37 33 29 25 13 9 

T44 40 36 32 28 24 20 16 12 8 

FIELD 

Tag 
47 => 39 
38=> 0 

USE 

2 
Exponent, most-significant portion. 
Mantissa, least-significant portion. 

Figure B-9. Second Word, Double-Precision Variable 

7 3 

6 2 

5 1 

4 0 

7 . :l 

6 2 

5 1 

4 0 

B-7 



Double-precision values are represented internally in signed-magnitude mantissa-and-exponent notation, 
with a most-significant part and a least-significant part. The sign of the mantissa of the data item is 
contained in bit 46 of the first data word, and the sign of the exponent is contained in bit 45 of the first 
word. A minus sign is denoted by a 1 in the appropriate bit. The magnitude of the exponent of the data 
item is contained in a total of 15 bits. The first nine of these 15 bits (the most-significant part of the 
magnitude of the exponent) are contained in bits 47 through 39 of the second data word. The remaining 
six of these 15 bits (the least-significant part of the magnitude of the exponent) are contained in bits 44 
through 39 of the first data word. 

The magnitude of the mantissa of the data item is contained in a total of 78 bits which are divided in 
half, with each half being placed into one of the two data words. The first 39 bits (the most-significant 
part of the magnitude of the mantissa) are contained in bits 38 through 0 of the first data word. The 
remaining 39 bits (the least-significant part of the magnitude of the mantissa) are contained in bits 38 
through 0 of the second data word. The mantissa sign bit applies to both portions of the mantissa. 

The value represented by a double-precision data word pair may be obtained by the formula: 

((most-significant part of mantissa) 
+(least-significant part of mantissa)*8**(-13)) 
*8**((most-significant part of exponent) 

+(least-significant part of exponent)*2**6) 

The magnitude of the mantissa is stored, left-normalized, within the total 78..:bit field in which it is 
contained. 

As an example, the internal two-word representation of the double-precision value 1 DO in hexadecimal 
form is: 

261000000000 
000000000000 

The contents of the first of these two data words are identical to the contents of a data word representing 
the real value 1 EO. When a value which does not exceed the limits of a real variable is assigned to a double­
precision data wotd pair, then that data word pair can be represented in a form that will contain all zeros 
in the second data word; the first data word will contain a representation of the value identical to that 
which would have been formed if the value had been assigned to a real variable. 

B-8 



STRING DESCRIPTOR 

The non-indexed and indexed string descriptors (figures B-10 and B-11) are described and illustrated 
as follows: 

fPARITY1 
I I 

: 51: 

r---;i 
1PARITY 1 

: 51: 

P47 

C46 

045 

S44 

p 47 

c46 

I 45 

S44 

FIELD 

Tag 
p 
c 
45 
s 
R 
sz 
39 => 20 
39 =>36 
35 => 20 
19 => 0 

R43 39 35 31 27 23 19 15 11 7 

~f NG" .. H AD p~~ :s~ 
I"' 42 38 30 26 22 18 14 
~ M ~E1~ f(O ,OR~ R 

37 33 29 25 21 9 5 ~41 
I~ 

1d 
:1 ~ISl 

40 36 32 28 24 20 16 8 4 

Figure B-10. String Descriptor (Non-Indexed) 

R43 1.'39 35 31 27 23 19 15 11 7 

~8 W( ~RD AD PRE SS 
1~42 34 30 26 22 18 14 10 6 
rv 1:7 IN l)E~ (f ~1~ OR ~ ~ 1-41 67 33 29 25 21 17 9 
rz:- x Pl St ~) 4 40 36 32 28 24 20 16 12 8 

Figure B-11. String Descriptor (Indexed) 

USE 

5 
Presence bit: 1 =present, 0 =absent. 
Copy bit: 1 =copy, 0 =MOM (original). , 
Index bit: 1 = indexing has taken place, 0 = indexing required. 
Segmented bit: 1 =segmented data, 0 =non-segmented data. 
Read-only bit: 1 =read only, 0 =read or write. 
Character size: 100 = 8-bit, 011 = 6-bit, 010 = 4-bit. 
Length of memory area (bit 45 = 0), or 
Index (bit 45 = 1 ). 
Word index (bit 45 = 1 ). 
(bit 4 7 = 1) main memory address, or 
(bit 4 7 = 0) disk address. 

R 

3 

2 

1 

0 

3 

2 

1 

0 

B-9 



The type transfer function REAL (<pointer expression>) returns, as a real value, the string descriptor 
with its tag set to zero. Depending on the point in time of accessing the string descriptor, the descriptor 
may or may not be "indexed", i.e., pointing beyond the very beginning of the <a"ay row>. The 
typical use of the REAL (<pointer expression>) is to determine the amount of indexing that has taken 
place. 

B-10 



RETURN CONTROL WORD 

The return control word (figure B-12) is described and illustrated as follows: 

r- -;i 
1PARITYI 

: 51: 

FIELD 

Tag 
ES 
0 
T 
F 
TFOF 
PSR 
32 => 20 
N 
LL 
13 =>O 

ESITF p N 
47 OF 39 35 31 27· 23 19 15 11 7 3 

046 
s L L 

42 38 34 30 26 22 18 14 10 6 2 

T45 R PIP SD IN[ •EX 
41 37 33 

F44 40 36 32 

0 
External sign flip-flop. 
Overflow flip-flop. 
True/false flip-flop. 
Float flip-flop. 

29 

28 

USE 

True/false occupied flip-flop. 
Program syllable (0 through 5). 

25 21 

24 20 

PIR: index to the program base register. 
l = control state, 0 = normal state. 

17 13 9 5 

16 12 8 4 

The lexicographical level of the calling procedure (at procedure entry). 
SD INDEX: segment descriptor index; if bit 13 = 0, add value 
specified by bits 12: 13 to D[ O] ; if bit 13 = 1, add value specified by 
bits 12: 13 to D [ 1] . 

Figure B-12. Return Control Word 

1 

0 

When the <arithmetic-valued task attribute> STOPPOINT is retrieved, the Return Control Word (with 
TAG=O) is returned. Note that the program associated with the task variable must in fact be stopped 
(either suspended or terminated); otherwise, the returned value is zero. 

B-11/B-12 





APPENDIX C. CHARACTER SETS AND CODING FORM 

CHARACTER SET 

The character set for the ALGOL language consists of the 256 characters in the Extended Binary Coded 
Decimal Interchange Code (EBCDIC) character set. 

An ALGOL source program is represented by a set of ordered external records. The external records 
could come from tape, disk, card, remote device, etc. The character set of these external records may be 
EBCDIC, ASCII, or BCL. The external records from a remote device are often represented in the ASCII 
character set. If the external records are cards, these cards could have been punched in BCL or EBCDIC. 
However, regardless of these variations in the source external records, at compile-time, they are trans­
formed into EBCDIC internal records by the B 7000/B 6000 System. 

All subsequent remarks in this manual about the ALGOL character set pertain to the contents of these 
internal source records. 

Default Character Size 

Although the ALGOL source language is constructed only from the EBCDIC character set (whose 
character size is 8-bits), resulting object programs can work with character data whose character size is 
6-bit (the BCL character set). In such object programs, when an assumption must be made concerning 
the character size (because the size was not explicitly supplied in the source language), the default size 
is 8-bit unless a BCL compiler option card is used, in which case the default size is 6-bit. (Refer to 
appendix D.) 

CODING FORM 

To facilitate keypunching, as well as to provide the programmer with a suggested format to follow in 
writing his program, printed programming forms are often used. An example of such a form appears in 
figure C-1. 

It might be noted at this point that the compiler does not consider the information provided to it as a 
series of disjoint cards. Rather it treats the information as a continuous string of characters starting with 
the first column of a card, ending with column 72, and followed immediately by column 1 of the next 
card. 

C-1 



(J 
I 

N 

DATA REPRESENTATION 

EBCDIC BCL EBCDIC DECIMAL EBCDIC BCL BCL BCL USASCII 
GRAPHIC GRAPHIC HEX. INTERNAL VALUE CARD CODE OCTAL INTERNAL EXTERNAL CARD CODE X3.4-1967 

Blank 40 0100 0000 64 No Punches 60 11 0000 01 0000 No Punches 010 0000 
[ 4A 0100 1010 74 12 8 2 33 01 1011 11 1100 12 8 4 101 1011 

4B 0100 1011 7S 12 8 3 32 01 1010 111011 12 8 3 0101110 
< 4C 0100 1100 76 12 8 4 36 011110 111110 12 8 6 0111100 
( 4D 0100 1101 77 12 8 s 3S 01 1101 111101 12 8 s 010 1000 
+ 4E 0100 1110 78 12 8 6 11 1010 010 1011 
I ~ 4F 01001111 79 12 8 7 37 01 1111 111111 12 8 7 1111100 
& so 0101 0000 80 12 34 01 1100 11 0000 12 010 0110 
1 SA 0101 1010 90 11 8 2 76 111110 011110 0 8 6 101 1101 
$ SB 0101 1011 91 11 8 3 S2 10 1010 10 1011 11 8 3 010 0100 .. 
* SC 0101 1100 92 11 8 4 S3 10 1011 10 1100 11 8 4 010 1010 
) SD 0101 1101 93 11 8 s SS 10 1101 10 1101 11 8 s 010 1001 

, SE 0101 1110 94 11 8 6 S6 101110 10 1110 11 8 6 011 1011 
< SF 01011111 9S 11 8 7 S7 101111 101111 11 8 7 

---, ' 

60 0110 0000 96 11 S4 10 1100 10 0000 11 1011111 
I 61 0110 0001 97 0 1 61 11 0001 01 0001 0 1 0101111 

6B 01101011 107 0 8 3 72 11 1010 01 1011 0 8 3 010 1100 
' 4 8 4 % 6C 0110 1100 108 0 8 73 11 1011 01 1100 0 010 0101 

~ 6D 01101101 109 0 8 s 74 111100. 01 1010 0 8 2 010 1101 
> 6E 0110 1110· 110 0 8 6 16 00 1110 00 1110 8 6 0111110 
? 6F 01101111 111 0 8 7 14 00 1100 00 0000 * 0111111 

7A 01111010 122 8 2 lS 00 1101 00 1101 8 s 011 1010 
# 7B 01111011 123 8 3 12 00 1010 00 1011 8 3 010 0011 
@ 7C 01111100 124 8 4 13 00 1011 00 1100 8 4 100 0000 
, > 7D 0111 1101 12S 8 s 17 00 1111 001111 8 7 0100111 
= 7E 01111110 126 8 6 7S 111101 01 1101 0 8 s 0111101 

7F 01111111 127 8 7 77 11 llfl 011111 0 8 7 010 0010 



EBCDIC BCL EBCDIC DECIMAL EBCDIC BCL BCL BCL USASCII 
GRAPHIC GRAPHIC HEX. INTERNAL VALUE CARD CODE OCTAL INTERNAL EXTERNAL CARD CODE X3.4-1967 

(+)PZ + co I IOO 0000 I92 I2 0 20 OI 0000 II lOIO I2 0 
A CI I IOO OOOI I93 I2 I 2I 01 OOOI I 1 OOOI I2 1 IOO OOOI 
B C2 1100 OOIO J94 12 2 22 OI OOIO I I OOIO I2 2 IOO OOIO 
c C3 1100 OOI I I95 I2 3 23 OI 00 I I I I OOI I I2 3 IOO OOI I 
D C4 I IOO OIOO I96 I2 4 24 OI OIOO I I OIOO I2 4 IOO OIOO 
E cs I IOO OIOI I97 I2 5 25 QI OIOI I I OIOI I2 5 IOO OIOl 
F C6 IIOOOlIO I9B 12 6 26 01 01 IO II 0110 I2 6 IOOOIIO 
G C7 I 100 OI I I I99 I2 7 27 OI OIIl Il OIII I2 7 IOOOIII 
H CB I IOO IOOO 200 I2 B 30 OI IOOO I I IOOO I2 B IOO IOOO 
I C9 l IOO IOOI 20I 12 9 31 OI IOOI 1 I IOOI I2 9 100 IOOI 

(!)MZ x DO 1 IOI 0000 20B I I 0 40 IO 0000 IO IOIO I I 0 010 OOOI 
J DI I IOI OOOI 209 I I I 4I IO OOOI IO OOOI I I I IOO IOIO 
K D2 I IOI OOIO 2IO I I 2 42 IO OOIO IO 0010 I I 2 IOO IOll 
L D3 IIOIOOII 21I I I 3 43 IO OOI I IO OOI I I I 3 IOO I IOO 
M D4 I IOI OIOO 2I2 I I 4 44 IO 0100 IO 0100 I I 4 IOO I IOI 
N D5 I IOI OIOI 2I3 I I 5 45 IO OIOI IO OIOI I I 5 IOO IIIO 
0 D6 IIOlOIIO 214 I I 6 46 IO 01 IO IO 0110 I I 6 100 I 1 I I 
p D7 IIOI OIII 2I5 I I 7 47 IOOIII IOOIII I I 7 IOI 0000 
Q DB I IOI 1000 2I6 I I B 50 IO 1000 IO IOOO I I B IOI OOOI 
R D9 I IOI IOOI 2I7 I 1 9 SI IO 1001 IO IOOI 1 I 9 IOI 0010 
¢ EO 1I10 0000 224 0 B 2 00 0000 
s E2 IIIOOOIO 226 0 2 62 I I OOIO OI OOIO 0 2 IOI OOI I 
T E3 I I IO 0011 227 0 3 63 1 I 001 I OI 0011 0 3 lOI OIOO 
u E4 11IOOIOO 22B 0 4 64 I I OIOO QI OIOO 0 4 lOI OIOI 
v E5 IIIOOIOI 229 0 5 65 I I OIOI· OI OIOI 0 5 IOI OI IO 
w E6 IIIOOIIO 230 0 6 66 I I 0110 OI 0110 0 6 IOI 011 I 
x E7 IIIOOIII 23I 0 7 67 II OllI OI OIII 0 7 IOI IOOO 
y EB I I IO IOOO 232 0 B 70 I I IOOO OI IOOO 0 B IOI IOOI 
z E9 1110 I 001 233 0 9 7I II IOOI OI IOOI 0 9 IOI IOIO 

0 FO 1111 0000 240 0 00 00 0000 00 IOIO 0 OI I 0000 
I Fl I I I I OOOI 24I I OI 00 OOOI 00 OOOI I OI I OOOI 
2 F2 IIIIOOIO 242 2 02 00 OOIO 00 OOIO 2 OI I OOIO 
3 F3 I I I I 00 I I 243 3 03 00 OOI l 00 OIOO 3 OI I 0100 

I) 4 F4 IIIIOIOO 244 
i 

4 04 00 OIOO 00 OIOO 4 OI I OIOO 
w 



n 
I 
~ 

EBCDIC BCL EBCDIC DECIMAL EBCDIC 
GRAPHIC GRAPHIC HEX. INTERNAL VALUE CARD CODE 

5 F5 11110101 245 
6 F6 1111 0110 246 
7 F7 11110111 247 
8 F8 1111 1000 248 
9 F9 11111001 249 

I. EBCDIC 0100 1110 also translates to BCL 11 1010. 

2. EBCDIC 1100 1111 is translated to BCL 00 0000 with an 
additional flag bit on the most-significant bit line (8th bit). This 
function is used by the unbuffered printer to stop scanning. 

5 
6 
7 
8 
9 

3. EBCDIC 1110 0000 is translated to BCL 00 0000 with an addi­
tional flag bit on the next to most significant bit line (8th bit). 
As the print drums have 64 graphics and spaces, this signal can be 
u~ed to print the 64th graphic. The 64th graphic is a "CR" for 
BCL drums and a "¢" for EBCDIC drums. 

NOTES 

BCL BCL BCL USASCII 
OCTAL INTERNAL EXTERNAL CARD CODE XJ.4-1967 

05 00 0101 00 0101 5 011 0101 
06 00 0110 00 0110 6 0110110 
07 00 0111 00 0111 7 011 Olli 
10 00 1000 00 1000 8 011 1000 
11 00 1001 00 1001 9 011 1001 

4. The remaining 189 EBCDIC codes are translated to BCL 
00 0000 (?code). 

5. The EBCDIC graphics and BCL graphics are the same except as 
follows: 

BCL 

> 
x (multiply) 

< 

-::/= 

~ 

EBCDIC 

(single quote) 

-, (not) 

(underscore) 

(or) 



n 
I 
VI 

---n 
I 

O'\ 

PROGRAM ID 

5 10 

5 10 

SYMBOLS TO USE 

15 20 

EXTENDED ALGOL CODING FORM 
COST CENTER" 

PROGRAMMER 
EXTENOEO ALGOL PROGRAM 

25 30 

SOURCE PROGRAM CODE 
(columns 1- 72) 

35 40 45 50 55 60 

I I I I I I I I I I I I I I I I I I I I I I I I I I 

I I I I I I I I I I I I I I I I I I I I I I I I 

' I I I I I I I I I I I I I I I I I • I I I I I I I I 

SEQUENCE NO. 

65 70 73 

SOURCE PROGRAM 
SEQUENCE NUMBERS 
(The sequence numbers 
in columns 73- 80 are 
not executed, but are re-

8 

produced on the source 

, I , , , printout.) 

I I I I I I I I I I I I I I I I 

15 20 25 30 35 40 45 50 55 60 65 70 173 8 

I FOR DIGIT ONE, I FOR LETTER i, 0 FOR DIGIT ZERO, <f> FOR LETTER 0, X FOR LETTER X, © FOR MULTIPLY OPERATOR 

Figure C-1. Extended ALGOL Coding Form FORM 1038452 





APPENDIX D. COMPILE-TIME OPTIONS 

COMPILER CONTROL STATEMENTS 

The user is provided with the compile-time ability to control the manner in which the compiler processes 
the source input that it accepts. The user can specify the manner in which the compiler is to receive the 
source input, the consequences of certain syntax errors, and the form of the generated compiler output. 
The compiler control statement is the medium by which these constraints are communicated to the 
compiler. Such statements are entered into the compiler by cards in the same manner as source language 
statements. Compiler control statements, entered as input to the compiler via option control cards, can 
occur at any point in the compiler input files and must contain only compiler control information. 

Option control cards are recognized either unconditionally or when the compiler is looking for the 
next syntactic item; the difference in the treatment oepends on the column where the $ sign is found. 

Option control cards with a $ sign in either column 1 or 2 (in the latter case with a blank in column 
one) are unconditionally recognized and processed. Option control cards with a $ sign in columns 3 
through 72 are recognized only when the compiler is expecting a new syntactic item. In particular, 
such an option control card is not recognized in at least the following instances: 

a. following a % 
b. while processing a format specification (an entire format set of phrases is treated as only 

one syntactic item) 
c. within commentary 
d. while OMITting 
e. following the @ in a numeric constant 

Columns 73 through 80 are reserved for an eight-digit sequence number. All blanks in columns 73 
through 80 represent the lowest-value sequence number. An option control card with no other com­
piler information causes the card image in the secondary input file that has the same sequence number 
to be ignored. 

The basic element of compiler control information is the compiler option, which can be invoked by the 
appearance of its name on an option control card. Two mutually exclusive states are associated with the 
majority of these options: SET and RESET; various compiler functions are dependent upon the states of 
such options. Default states are assigned to these compiler options, and the desired state of such an option 
can be specified on an option control card. Such option control cards can also contain arguments 
associated with the option. The balance of compiler options are parameter options with which no states 
are associated. The functions performed by these latter options are initiated by the appearance on an 
option control card of the ay>propriate option name and any related arguments. 

Option control cards can contain the following information items in addition to the initial $ and the 
terminal sequence number: 

a. Option actions that assign states to indicated standard options. 
b. Option names and/or associated option arguments, that is, literals, etc., that are connected with 

the function of the options. 

D-1 



OPTION CONTROL CARDS 

Syntax 

· <option control card>::=$ <option list> <option group list> 

<option list> : :=<.empty> I . 
<option list> <option> 

<option group list> : :=<.empty> I 
<option group list> <option group> 

<option>::= AREACLASS I ASCII I AUTOBIND I 
BCL I BEGINSEGMENT I BIND I BINDER I BREAKHOST I BREAKPOINT I B7700TOG I 
CHECK I CODE I 
DOUBLESPACE I DUMPINFO I 
ENDSEGMENT I ERRLIST I EXTERNAL I 
FORMAT I 
GO I GOTO I 
HOST I 
INCLNE.W I INCLSEQ I INCLUDE I INITIALIZE I INSTALLATION I INTRINSICS I 
LEVEL I LIBRARY I 1LINEINFO I LIST I LISTDELETED I LISTINCL I LISTOMITTED I 

LISTP I LOADINFO I 
MAKEHOST I MCP I MERGE I 
NEW I NEWSEQERR I NOBINDINFO I NOSTACKARRA YS I NOXREFLIST I 
OMIT I OPTIMIZE I 
PAGE I PURGE I 
SEGS I SEGDESCABOVE I SEPCOMP I SEQ I SEQERR I SINGLE I STACK I STATISTICS I 

STOP I 
TIME I 
USE I 
<user option> I 

. VERSION I VOID I VOIDT I 
WRITEAFTER I 
XDEC I XREF I XREFFILES I XREFS I 
$ 

<option group> : := <option action> <option list> <parameter> I 
<user option> 

<option action>::= POP I 
RESET I 
SET 

<parameter> : := <.error limit> I 
<sequence increment> 
<sequence base> I 
<areaclass value> I 
<outer level> 

<.error limit> : := LIMIT <unsigned integer> 

<sequence increment> : := +<unsigned integer> 

<sequence base> : := <unsigned integer> 

<outer level> : := LEVEL <unsigned integer> 

<areaclass value>::= <unsigned integer> 
<user option> : := {word used for specific user option} 

D-2 



OPTION ACTIONS 

A purpose of a compiler control statement could be the assignment of a desired state (SET or RESET) 
with an indicated compiler option(s). Such a control statement must begin with either an explicit or an 
implicit <option action>. An explicit <option action> is defined as one of the following mnemonics: 
SET, RESET, or POP. 

An implicit <option action> is indicated when a compiler control statement contains only the names of 
options and no explicit <option action>. In the latter case, all options named in the compiler control 
statement are assigned the state SET, and all other options are assigned the state RESET. 

If a compiler control statement begins with the <option action> SET, the options following the <option 
action> are assigned the state SET; the states of all other options are unchanged. If the compiler control 
statement begins with the <option action> RESET, the options following the <option action> are 
assigned the state RESET; the states of all other options are unchanged. If the specified <option action> 
is POP, then the options indicated revert to their immediate previous states; their states become RESET 
if these options have not been changed previously from their default states. The states of all other options 
are unchanged. The following statements are examples of compiler control statements employing the 
SET, RESET, and POP <option action>s. 

$SET LIST SINGLE INCLNEW 
$RESET VOID 
$ POP NEW NEWSEQERR 
$ SET SEQ O+ 100 

An option that has a default state of RESET is initially assigned a 48-bit stack word filled with zeros; an 
option that has a default state of SET is initially assigned a 48-bit stack word with a l on top and zeros in 
the remaining positions. The top stack position denotes the state of the option at any tithe. Each SET 
option action causes the stacks allocated to the designated standard options to be pushed down one bit 
and a 1 to be placed on the top of each of these stacks. Each RESET causes the appropriate option stacks 
to be pushed down one bit and a 0 to be placed on the tops of these stacks. POP causes the stacks corres­
ponding to the designated options to be POPped up one bit, causing the associated options to revert to 
their immediate previous states. Since the size of these option stacks is 48 bits, a maximum history of 48 
states can be recorded. When an option control card appears that has a standard option name and an 
implicit option action, the resultant action is identical to that which would have resulted had all 48 bits of 
each standard option stack been RESET and followed by an explicit SET performed on each indicated 
option. For example, after the appearance of an option control card containing: · 

$CODE 

the history stack for the CODE option contains a 1 in the top stack psoition and all zeros in the following 
positions. The history stack for each of the other compiler options (LIST, VOIDT, etc.) would then con-
tain all zeros. A compiler control statement that applies to compiler options begins with an explicit or 
implicit <option action> and contains a list of options to which the <option action> is to apply. This 
statement ends when the next implicit <option action> is encountered on the compiler control .card or when 
a percent sign is encountered or column 72 of the card is reached. The compiler options affected by the 
compiler control card retain the indicated states for all input cards with sequence numbers greater than the 
sequence number on the compiler control card that has the control statement, or the physically succeed-
ing input cards for a deck in which all sequence numbers are blank, until another compiler control card is 
encountered that alters the option states. A compiler control statement can also contain any parameter 

D-3 



option name except INCLUDE, and the action initiated by the appearance of the option name still results. 
The following illustration (figure D-1) is an example of a card that has compiler control statements 
employing option actions: 

$ SET SINGLE LIST SEQ 10+5 RESET BCL 0000-1070 

Figure D-1. Option Control Card 

The option control card assigns the state SET to the options SINGLE, LIST, and SEQ, with the 
sequencing arguments of 10 and +5. It also assigns the state RESET to the option BCL. The card has the 
sequence number 00001070 in columns 73 through 80. 

OPTIONS 

The compiler recognizes the following identifiers as valid compiler option names: 

D-4 

AREA CLASS 
ASCII 
AUTO BIND 
BCL 
BEGIN SEGMENT 
BIND 
BINDER 
BREAKHOST 
BREAKPOINT 
B7700TOG 
CHECK 
CODE 
DOUBLESPACE 
DUMPINFO 
END SEGMENT 
ERRLIST 
EXTERNAL 
FORMAT 

GO 
GOTO 
HOST 
INCLNEW 
INCLSEQ 
INCLUDE 
INITIALIZE 
INSTALLATION 
INTRINSICS 
LEVEL 
LIBRARY 
LIMIT 
LINEINFO 
LIST 
LISTDELETED 
LISTINCL 
LIST OMITTED 
LISTP 

LOAD INFO 
MAKEHOST 
MCP 
MERGE 
NEW 
NEWSEQERR 
NO BIND INFO 
NOSTACKARRAYS 
NOXREFLIST 
OMIT 
OPTIMIZE 
PAGE 
PURGE 
SEGDESCABOVE 
SEGS 
SEPCOMP 
SEQ 
SEQ ERR 

SINGLE 
STACK 
STATISTICS 
STOP 
TIME 
USE 
<user option> 
VERSION. 
VOID 
VO IDT 
WRITEAFTER 
XDECS 
XREF 
XREFFILES 
XREFS 
$ 



The appearance of a <parameter> option on an option control card with an implicit <nption action> 
(no SET, RESET, or POP) does not result in the RESETting of any options. The names of these parameter 
options are themselves compiler control statements and can appear on an option control card with other 
compiler control statements, except for the INCLUDE and GO TO options, which must appear alone on 
an option control card. · 

NOTE 

The appearance of a one-to eight-digit unsigned 
integer or such an integer preceded by a + symbol 
constitutes a parameter control statement used as 
an argument associated with the SEQ option. 

The appearance on an option control card of any option name that is not contained in the preceding list 
constitutes a compilation error, except for the <user option> option name. 

The compiler options are discussed alphabetically in the following paragraphs. The default state of each 
<nption> is indicated in parentheses following the <nption> name; the function performed by the 
<nption> is discussed in the paragraph accompanying the same. 

The default state of the LIST option is SET and the default state of the balance of the standard options is 
RESET unless the compiler is employed by the CANOE Language. If the compiler is called from CANOE, 
the default state of the ERRLIST option is SET and the default state of the balance of the standard 
options is RESET. 

<.empty> has no effect on other <nption>s, However, if there is a card image on the symbolic file with 
the same sequence number as the <.empty> <nption control card>, the image on the symbolic file is 
deleted. 

The compiler options are as follows: 

AREACLASS (RESET) 

The AREACLASS option assigns the value specified in the <areaclass value> to the AREACLASS f~le 
attribute of the object code file when such a file is produced by the compiler. 

ASCII 

The ASCII option sets the default character size to 7-bit. Character arrays can be declared to be of 
type ASCII. Pointers become ASCII pointers by giving them a length attribute of seven (although 
each ASOI character still takes up eight bits). 

ASCII may be used in the TRUTHSET and TRANSLATETABLE constructs to permit software 
comparisons and translations within the ASCII character set. However, because of hardware limita­
tions, it is not permitted to replace an ASCII pointer for a specified 'number of digits. In addition, 
the integer and double type transfer functions for pointers are not available for ASCII pointers. 
These may result in errors at execution time. 

D-5 



AUTOBIND (RESET) 

The AUTOBIND compiler option combines the processes of compiling and program binding into one job. 
During compilation, the compiler produces a set of instructions to be passed to the binder. In many 
cases, these binder instructions are self-sufficient for binding purposes and the user need not be concerned 
with binder control cards. In those cases where binder instructions are required, the user can insert 
binder control cards. 

The AUTOBIND compiler option can be SET or RESET at any point .throughout compilation. However, 
it is recommended that it be SET or RESET only once at the beginning of compilation for the following 
reasons: 

a. Only the status of the AUTOBIND compiler option at the end of compilation is significant. 
Specifically, if four procedures are being compiled, the first three with the AUTOBIND option 
RESET and the last one with the AUTOBIND option SET, the binder still attempts to bind all 
four procedures to the specified host. 

b. A compiler-and-go on a separate procedure with the AUTOBIND option RESET will not be 
executed. If the AUTOBIND option is SET throughout compilation, execution of the resultant 
program takes place after binding. 

In ALGOL, a separate procedure compiled at level two or an outer block may serve as a "host" for bind­
ing. Separate ALGOL procedures compiled at level three (default level) may be bound into a host. At 
most, one host may be compiled in a job along with any number of separate procedures. The host must 
be the last program unit compiled. If an appropriate host file is compiled with AUTOBIND SET, it is 
assumed to be the host for binding. This assumption cannot be overridden by either of the methods 
given next for specifying a host. If no eligible host is being compiled, a host must be specified. Two 
methods are available: 

<l> COMPILER FILE HOST (TITLE= FILEDI/ .... /FILEIDN) 

or a BINDER host card, such as 

$ HOST IS FILEDI/ ... ./FILEIDN 

The code file of any level three procedure compiled with AUTOBIND. SET is marked as non-executable. 
If not executed via inter-program communication, the procedure must be bound into a host file by the 
binder before being executed. 

Code files of any compiled level three procedures (or higher) are purged after being bound into a host 
by AUTOBIND. To retain such as a code file, it is necessary to refer to it specifically in a binder con­
trol statement. Either of the following statements will allow the procedure's code file to remain:· 

$ BIND PROCEDURENAME 

or 

$ EXTERNAL PROCEDURENAME 

D-6 



The first statement performs the same function as the default compiler-generated bind statement, 
except the code file will not be purged. The second statement instructs the binder not to bind the 
procedure into the host even though it has been compiled with AUTOBIND SET and there is an 
external reference to it in the host. 

BCL (RESET) 

The BCL option SETs the default character size of the object programs, pointers, strings and data 
to 6-bit. 

BEGINSEGMENT (RESET) 

The BEGINSEGMENT and ENDSEGMENT options allow user control of procedure and block seg­
mentation. Procedures and blocks encountered between the BEGINSEGMENT and ENDSEGMENT 
options are placed in the same segment. The BEGINSEGMENT option must appear before the 
declaration of the first procedure or block to be included in the user segment. The ENDSEGMENT 
option must appear after the last source image of the last procedure or block in the user segment. 
The first procedure or block in the user segment must be the one that the compiler normally seg­
ments. Only procedures and blocks completely contained within a procedure or block in the seg­
ment can be included in a user segment. External procedures cannot be declared in a user segment. 

User segments can be nested, that is, a BEGINSEGMENT can appear in a user segment. In this case an 
ENDSEGMENT option applies to the user segment currently being compiled. 

If a BEGINSEGMENT option appears before the beginning of a separately compiled procedure, an 
ENDSEGMENT option control card is assumed at the end of the procedure, even if none appears. The 
driver procedure created for procedures compiled at lex-level 3 is always in a different segment. 

The BEGINSEGMENT and ENDSEGMENT options can be SET, RESET, or POPped. The printout for 
segment information is modified for user segments. User segments are numbered consecutively in a pro-
gram, beginning with 1. That is, the first BEGINSEGMENT creates USERSEGMENTl. The second 
BEGINSEGMENT creates USERSEGMENT2. At the beginning of a user segment, its segment number is 
printed out. The length of each user segment is printed at its end. Procedures or blocks that are normally 
segmented, but are not because of user segmentation, print out as being "in" a particular segment. 

Forward procedure declarations are not affected by user segmentation. 

A procedure or block cannot be split across user segments. 

If more than one BEGINSEGMENT option control card appears before a procedure, the warning message 
EXTRA $BEGINSEGMENT IGNORED is printed. If an ENDSEGMENT option control card appears when 
the user is not controlling segmentation, the warning message EXTRA ENDSEGMENT IGNORED is 
printed. 

Another purpose of BEGINSEGMENT and ENDSEGMENT is to allow the adroit programmer the ability 
to segregate infrequently called procedures from frequently called procedures; that is, group frequently 
called procedures into one segment to reduce page faults of code segments. 

D-7 



BIND (autobinding only) 

Format is similar to dollar sign ($) option, except that it is used to pass control statements to BINDER 
when autobinding. 

BINDER (autobinding only) 

Allows passing of compiler options when autobinding. The compiler "strips off' the word BINDER and 
passes the rest of the card intact as an option card to BINDER. · 

BREAKHOST (RESET) 

This option must be set in the outer block of any program which uses BREAKPOINT in order to create 
the necessary environment for inter~ctive debugging. A part of this environment is the creation of a 
remote file. Note that this option must be set after the first BEGIN of the program. 

If a program to be debugged has a remote input file, then this option must be modified to allow the 
BREAKPOINT intrinsic to pick up the user's remote file as only one remote input file may be open per 
station. In this case, the syntax is $SET BREAKHOST (INFILENAME), where INFILENAME is the 
name of the user's remote file. (Refer to the BREAKPOINT compiler option.) 

BREAKPOINT 

In the range of the SET, POP pair each ALGOL statement has a call on the BREAKPOINT intrinsic 
emitted after it.. A user program's execution will stop (break) after each statement in this range to allow 
debugging via BREAKPOINT commands. (Refer to the BREAKHOST compiler option.) 

EXAMPLE PROGRAM: 

4000000 
4000500 
4001000 
4002000 
4003000 
4003100 
4004000 
4005000 
4006000 
4007000 
400SOOO 
4009000 
4001000 
4011000 

D-S 

BEGIN 
ARRAY D[0:5,0:S]; 
REAL R, S; 
$SET BREAKHOST 
BOOLEAN BOO; 
EBCDIC ARRAY EB[O:lOO]; 
ARRAY A[O:ll]; 
POINTER P4, PS; 
PROCEDURE PROC; 

BEGIN 
REAL L; 

$SET BREAKPOINT 
L :=R; 
S :=REAL (NOT FALSE); 

4012000 
4013000 
4015000 
4016000 
4017000 
401SOOO 
401S100 
4019000 
4020000 
4021000 
4022000 
4023000 
4024000 

$POP BREAKPOINT 
END; 

$SET BREAKPOINT 
PS :=POINTER(A); 
P4 :=POINTER(A[5) ,4); 
REPLACE P8 BY "ABCK" FOR 44; 
REPLACE EB BY "ABCDEF"; 
D[0,6] :=474; 
BOO:=TRUE; 
R:=4" 1234567"; 
S:=66; 
PROC; 
END. 



After a program is linked to the BREAKPOINT intrinsic, the program's execution will cause calls on the 
intrinsic after each statement in the range of a $SET,POP BREAKPOINT pair and at each explicit 
BREAKPOINT call. In the example program, execution will proceed normally until statement 4016000 
where BREAKPOINT will be called. BREAKPOINT will thereafter be called after each statement and in 
procedure PROC. 

BREAKPOINT INTRINSIC 

Commands to the BREAKPOINT INTRINSIC are grouped into three modes: identifier mode,/ mode, 
and & mode. 

IDENTIFIER MODE 

This mode allows access to values of variables in an ALGOL program. The syntax for this mode is: 

(number) L: ] =3 •FOR (number) 

----1~ F 0 R (number) ----------------.-t 

Example commands are: 

R 

A[0-6) 

D[ 1,2) 
P8 FOR 11 

/MODE 

(number) 

%CAUSES BREAKPOINT TO RETURN THE 
%VALUE OF R 
% VALUE OF FIRST SIX ELEMENTS OF 
%ARRAY A 
% VALUE OF D[l,2] 
% RETURNS 11 CHARACTERS POINTED AT 
% BY P8 

1 . 

Commands in this mode must have a I as the first CHARACTER of the command line. These commands 
affect the present or future state of BREAKPOINT by changing the output mode of identifiers, indicating 
where in a user program execution has been stopped, or allowing a program's execution to continue. 
The syntax for this mode is: 

D-9 



I TYPE % 

ASCII 

BCL 

DECIMAL 

EBCDIC 

HEX 

OCTAL 

CONTINUE 

(number) 

+(number) 

WHERE 

Command names need not be typed to their full length for recognition. 

FORMAITING CONTROL COMMANDS -

/BCL 
/EBCDIC 
/DECIMAL 
/HEX 
/OCTAL 
/TYPE 

VARIABLE OUTPUT IN BCL 
VARIABLE OUTPUT IN EBCDIC 
VARIABLE OUTPUT IN DECIMAL 

• VARIABLE OUTPUT IN HEX 
VARIABLE OUTPUT IN OCTAL 
VARIABLE OUTPUT ACCORDING TO ITS DECLARATION IN 
THE USER'S PROGRAM. THIS IS THE DEFAULT 
OUTPUT MODE. 

Each new I line of"a formatting output command causes the previous formats to be reset and the com­
mands following the I to be the output types until new / formats are input. 

EXECUTION STATE OUTPUT 

/WHERE 

Outputs the sequence number where the program's execution is stopped. 

CONTINUATION OF PROGRAM EXECUTION 

In the range of a $SET, POP BREAKPOINT pair it is often desired that BREAKPOINT action not 
be taken after every statement. To provide this capability, two forms of skip commands are pro­
vided. 

/CONTINUE<s'eqno> 

This causes the user program to execute until <s-eqno> is reached. 

D-10 



/CONTINUE +<skip no> 

This causes <skipno> statements to be skipped. This command is useful when there exists more 
than one statement on a line. 

/CONTINUE and /CONTINUE+ 1 are equivalent. 

Example commands: 

/EBCDIC H DECIMAL 
/C 73201000 

&MODE 

Commands in this mode must have an & as the first character of the command line. $ mode commands 
affect the last identifier that was examined in identifier mode. These commands allow the last identifier 
to be output in different formats, its address couple to be observed, and its value to be modified. 

& % 

ASCII 

BCL 

DECIMAL 

EBCDIC 

HEX 

OCTAL 

TYPE 

ADDRESS 

ALTER {val) 

Command names need not be typed to their full length for recognition. 

FORMATTING CONTROL 

&BCL 
&EBCDIC 
&DECIMAL 
&HEX 
&OCTAL 
&TYPE 

VARIABLE OUTPUT IN BCL 
VARIABLE OUTPUT IN EBCDIC 
VARIABLE OUTPUT IN DECIMAL 
VARIABLE OUTPUT IN HEX 
VARIABLE OUTPUT IN OCTAL 
VARIABLE. OUTPUT ACCORDING TO ITS 
DECLARATION IN THE USER'S PROGRAM. 

D-11 



ADDRESS COUPLE OUTPUT 

&ADDRESS 
Outputs the address couple of the last identifier. 

VALUE MODIFICATION 

&ALTER 
Changes the value of the last real, integer or Boolean identifier looked at in the 
identifier mode to <val>. <val> must presently be an integer. Arrays and 
pointers may not now be modified. 

Example commands 

&HEX EBC OCTAL T 
&ALTER -465 

An example BREAKPOINT conversation would be as follows. BREAKPOINT replies have an * on the 
left. Values refer to the example program above. 

* 

* 
* 
* 

* 
* 
* 

* 
* 
* 
* 
* 
* 

* 
* 

* 
* 
* 
* 

D-12 

BREAK @ 4016000 
R 
R = 
0.0 
/CONTINUE+3 
BREAK @ 4019000 
/CONTINUE 4010000 
BREAK @ 4010000 
R 
R = 
19088743.0 
/HEX EBCDIC 
R 
R = 
EBC ????'!? 
HEX 000001234567 
A[0-1) 
A[0-1] = 
EBC ABCKAB ABCKAB 
HEX ClC2C3D2ClC2 ClC2C3D2ClC2 
/TYPE 
D[0,4-7] 
D[0,4-7] = 
0.0 0.0 474.0 0.0 
&HEX BCL OCTAL 
HEX 000000000000 000000000000 OOOOOOOOOlDA 000000000000 
BCL 00000000 00000000 0000007. 00000000 
OCT 0000000000000000 0000000000000000 0000000000000732 
OCT 0000000000000000 
&ADDRESS 



* D IS (2 , 2) 
P8 FOR 11 

* PS FOR 11 
* ABCKABABCKA 

& 
* EIGHT-BIT POINTER INDEX= 0 + 0 

BOO 
* BOO= TRUE 

EB [2] FOR 3 
* CDE 

s 
* s = 66.0 

&ALTER -79 
* s = -79.0 

/WHERE 
*. BREAK @ 4010000 

/CONTINUE+ 1111 

B7700TOG (RESET) 

The B7700TOG option causes optimized code to be generated for the B7700 system. When running on 
B6700 system software, it is reset by default. 

CHECK (RESET) 

The CHECK option causes sequence errors to be flagged on both the TAPE and NEWT APE files. If the 
sequence error occurs on the TAPE file, the message SEQERR followed by the sequence number of the 
last source image is printed at the right-hand side of the source image on the printout. If the sequence 
error occurs on the NEWTAPE file, the message on the printout is NEWTAPE SEQ ERROR followed by 
the sequence number of the last source image, and the message NEWTAPE SEQ ERR is displayed on the 
SPO. On a CANOE file, the sequence number of the card that caused the sequence error and the sequence 
number of the previous source image appear on the line following the source image. 

Note that if NEW is not SET and resequencing is occurring, the old sequence number is the sequence 
number that is used. 

CODE (RESET) 

The code option causes the printout to contain the compiler-generated object code. LIST must be SET 
to produce the printout. 

DOUBLESPACE 

The DOUBLESP ACE option must be SET during compilation of the compiler in order to get double 
space default; otherwise, single spacing is the default. 

DUMPINFO (RESET) 

Refer to LOADINFO option. 

D-13 



ENDSEGMENT (RESET) 

Refer to BEGINSEGMENT option. 

ERRUST (RESET) 

The ERRLIST option causes syntax error information for CANOE to be written on the ERRORFILE file. 
When a compilation error is detected in the source input, the offending line of text, an error message, and 
a pointer to the syntactical item in question are written on' two lines in the ERRORFILE file. This option 

Js provided primarily for use when the compiler is called from a remote terminal by the CANOE language, 
but it can be used regardless of the manner in which the compiler is called. When the compiler is called 
from CANOE, the default state of the ERRLIST option is SET and ERRORFILE is automatically equated 
to the remote device involved. 

EXTERNAL (autobinding only) 

The EXTERNAL option causes designated <program unit>s to remain external to 1ihe program. 
(BINDER will normally attempt to bind all external <program unit>s.) 

FORMAT (RESET) 

If the FORMAT option is SET while the LIST option is SET, several blank lines are inserted after each 
procedure in the input printout to aid readability. 

GO TO (cannot be SET pr RESET) 

This compiler option, when used, should appear with no other options on a option control card and must 
not be preceded by an <Dption action>. This option is intended for use with symbolic disk files. It does 
not work on tape files. 

Syntax 

<go specification> : := <go part> <sequence number> 

<go part> : := GO I 
GOTO 

Semantics 

The <sequence number> is the sequence number appearing on a card image in the TAPE file. The 
GO TO compiler option causes TAPE, the secondary symbolic input file, to be repositioned so that 
the next card image used from this file by the compiler is the first card image with a sequence number 
greater than or equal to <sequence number>. 

This option cannot be used in a <define declaration> or in INCLUDEd text. 

The TAPE file must be properly sequenced in ascending order; that is, each sequence number on each 
card image in the file must be greater than the preceding sequence number. One can "go to" a lower 
sequence number. This sequencing method is necessary because a "binary search" is performed to 
find the <sequence number>. 

D-14 



HOST 

The HOST option specifies the title of the host file. This option is always SET, except for intrinsic bind­
ing. Refer to the AUTOBIND option. (Refer to the B 7000/B 6000 Program ~inder Reference Manual.) 

INCLNEW (RESET) 

If both the NEW and INCLNEW options are SET, INCLUDEd text is used as output to the NEWTAPE 
file. If the INCLNEW option is RESET, the INCLUDEd text is not used as output to the NEWTAPE 
file. However, $INCLUDE cards that are contained in the CARD and TAPE files are used as output to 
the NEWTAPE file when the $ sign is in column 2. If the NEW option is RESET, the state of the 
INCLNEW option is ignored. 

INCLSEQ (RESET) 

When SET, INCLSEQ resequences an included file (SEQ must also be SET). The INCLNEW option 
must be SET for an included file to have its card images in the NEWTAPE file. 

INCLUDE (cannot be SET or RESET) 

The <include car<l> is a special compiler control option that permits indirect source language input to 
the compiler from files other than the CARD and TAPE files. The user can specify on these cards that 
portions of other files are to be included in the source language input. The INCLUDEd card images are 
compiled in place of the <include car<l>. It is possible that the INCLUDEd card images can themselves 
contain INCLUDE cards, and in this way INCLUDEd text can be nested up to five levels deep. The 
blocking structure of the INCLUDEd files must follow the same rules required of the CARD file. 

Syntax 

<include card> : := $INCLUDE <file option> <start option> <stop option> 
<file option> ::= <empty> I 

<internal name> I 
<title> I 
<label equating option> 

<start option> : := <empty> I 
*I 
<sequence number> 

<stop option> : := <empty> I 
- <sequence number> 

<internal name> : := <identifier> 
<title> : := {quoted string containing file title } 

<label equating option> : := <internal name> = <title> 

<sequence number> : := {unsigned integer up to 8 digits long anywhere in columns 2 through 72 } 

D-lS 



Examples' 

A compiler control card that has an INCLUDE compiler control statement can contain no other 
cqntrol information other than that statement. Valid examples of INCLUDE compiler control cards 
are as follows: 

$INCLUDE FILES 00001000 - 09000000 
$INCLUDE 
$INCLUDE "SOURCE/XYZ" - 900 
$INCLUDE * 
$INCLUDE INCLFILE 
$INCLUDE INCL = "SYMBOL/ALGOL/INCLUDEl." 

Semantics 

The <file option> specifies the file to be included. The <start option> specifies the sequence 
number of the first card image to be included from the file. The <sequence number> forms of the 
<start option> should be used only on properly sequenced ffies. The <stop option> specifies the 
sequence number of the last card image to be included from the file. 

The first INCLUDE card example above instructs the compiler to accept as input at this point of the 
input file all records from the library file indicated by the <internal name> FILES beginning with 
the card image with the sequence number 00001000, or the next higher sequence number, and 
terminating with the card image with the sequence number 9000000, or the preceding lower 
sequence number if no card image in the file has this number. 

If the <internal name> is used, as in the first example, the name is used for purposes of label­
equating. The <title> of the FILES file can be specified on a FILE system control card. This card 
follows the COMPILE control card, which initiates the compilation, For example, 

<I>FILE FILES (TITLE= SOURCE/INPUT/INCL) 

The preceding card indicates that the <title> of the included file is SOURCE/INPUT /INCL; the 
file is a disk file, since the FILE card in this example does not change the value of the KIND 
attribute from the default specification. 

If the <title> option is used, as in the third example, the string specifies the title of the actual file 
to be included. The <internal name> allows greater flexibility than <title> because the actual 
file name of the included file can be altered by simply changing the label-equating (file) card at the 
beginning of the program deck. 

If <file option> is <empty>, as in the second example, then the same file as the one specified on 
the previous <include card> at the same level of nesting is included. Therefore, the first <include 
card> at any of the five possible levels of nesting must contain either an <internal name> or a 
<title>. 

The second example instructs the compiler to accept as input at this point of the input file a portion 
of the file accessed by the last INCLUDE card in this deck at this level. This card images to be included 
consist of all records remaining in the included file following the last record of that file accessed 

D-16 



by the preceding INCLUDE card referencing that file. If, for example, the example card is in the same 
deck as the first example card and no other INCLUDE cards intervene, the <include file> that is 
accessed is the FILES file, and the first record that is included is the card image with the next 
sequence number after 09000000. 

The third example instructs the compiler to accept as input at this point of the input file a portion of 
the file with the <title> of SOURCE/XYZ. The card images to be included consist of all records 
remaining in the file between the last record included from that file at this level and the record with 
the sequence number immediately higher than 00000900. 

If the asterisk(*) form of the <start option> is used, inclusion begins at the point at which it left 
off the previous time that inclusion took place on the file at the particular level of nesting. For 
example, if the fourth example card is in the same deck as the third example card and no other 
INCLUDE cards intervene at the particular nesting level, the records that are included are the 
remaining card images in the SOURCE/XYZ file up to the card with the sequence number 
immediately higher than 00000900. 

If the <start option> is <empty>, the inclusion begins with the first record of the file. And, if 
the <stop option> is <empty>, then the last record of the file is the last record included. When 
the <start option> and/or the <stop option> are used, the sequence numbers of the file must be 
in ascending order. 

The fifth example instructs the compiler to accept as input at this point of the input file a portion 
of the file with the internal name INCLFILE. The card images that are included consist of all records 
remaining in the file between the last record included from that file at this level and the end of the 
file. 

The final example illustrates how both <internal name> and <title> are specified on a $INCLUDE 
card. In this way a default title, "SYMBOL/ALGOL/INCLUDE!.", is associated with an <internal 
name>, INCL. This allows label equating various files. For example, the WFL statement <I> ALGOL 
FILE INCL = SYMBOL/ ALGOL/INCLUDE2 causes the file with the <title> "SYMBOL/ ALGOL/ 
INCLUDE!." to be replaced by the file with the <title> SYMBOL/ALGOL/INCLUDE2. 

Source files suitable for use by INCLUDE compiler control statements can be produced by the 
compiler via the NEWT APE file. 

INITIALIZE (autob~nding only) 

The INITIALIZE option is used in intrinsic binding for the purpose of allowing non-ESPOL intrinsic 
to refer to MCP procedures with fixed addresses. 

INSTALLATION (RESET) 

If the INSTALLATION option is SET, installation intrinsics can be referenced by the program. This 
option must be SET before the beginning of the program. For example, before the first BEGIN in a 
block program, before global declarations in a separately compiled procedure with global declarations, or 
before the first procedure in separately compiled procedures without globals, setting this option at any 
other time has no effect. 

D-17 



SETting the INSTALLATION option causes the compiler to search the MCP intrinsic directory for all 
intrinsics that can be referenced by an ALGOL program. It puts the identifiers for all such intrinsics into 
the INFO file table of the compiler. 

Syntax 

<installation compiler option> : := INSTALLATION <number-list> 

<number-list> : := <number-element> I 
<number-element> <number-Us t> I 
<.number-element> , <number-list> 
<empty> 

<.number-element> : := <install-no I> 
<install-nor> <install-no2> 

Semantics 

<install-nol> and <install-no2> are unsigned integers between one and 2047, inclusive. <.number­
element>s must be in ascending sequence, with no number repeated. 

Note that an INSTALLATION compiler card with no <number-list> is equivalent to the <number­
list> 100-2047. 

The installation intrinsics that are loaded are either those included in a range or explicitly stated on 
the last installation setting encountered. 

A syntax error is emitted if the <.number-list> is not in ascending sequence, if any of the ranges 
specified overlap, or if the second number in a range is not larger than the first number. Numbers 
larger than 2047 are treated as if they are 2047. 

INTRINSICS (RESET) 

The INTRINSICS option causes compilation of a procedure at lex-level two and allows for global declara­
tions, declarations enclosed in brackets preceding the procedure. Such global declarations are not 
normally allowed when compiling separate procedures to be used as installation intrinsics. The code-file 
title is the same as if compiled at lex-level three. Thus, the separate procedures being compiled can be 
bound afterwards into the intrinsic file. When used with the BINDER program for binding procedures to 
intrinsic files, INTRINSICS must be SET before the first source.statement. 

LEVEL (cannot be SET or RESET) 

The <outer level> parameter controls the lexicographic (lex) level at which the compilation is to occur. 

The proper format for this option is as follows: 

LEVEL <unsigned integer> 

where the <unsigned integer> corresponds to the desired lex-level number. The LEVEL option should 
not be preceded by an <option action>. This option allows the user to override the lexicographic levels 

D-18 



assigned by the compiler. The default level is 2 for programs and 3 for separately compiled procedures. 
Only LEVEL option control cards that appear before the start of source language input are considered by 
the compiler. 

LIBRARY (RESET) 

When compiling multiple procedures, such as the intrinsics, it is more efficient to set the LIBRARY 
option. This causes all object program code, if more than one <program unit> is being compiled, 
to be put in one file and marked as a multiprocedure code file. Binder control cards for binding these 
procedures, either to a host or an intrinsic file, have to be changed, however. If, for example, some 
procedures were compiled as "A/B", then the BIND option card would have to be changed from: 

BIND = FROM A/=; 

to 

BIND = FROM A./B; 

The LIBRARY option is initialized to TRUE when compiling from CANOE or when using the 
SEPCOMP facility. (Refer to the B 7000/B 6000 Program Binder Reference Manual, form 
5001456.) 

LIMIT (cannot be SET or RESET) 

The <error limit> parameter allows the user to control compiler error terminations. The proper format 
for the LIMIT option is as follows: 

LIMIT <unsigned integer> 

Compilation is terminated if the number of errors detected by the compiler equals the <unsigned 
integer>. A limit of zero (0) indicates than an "infinite" number of errors are to be allowed. The 
LIMIT option must appear only on an option control card that precedes the first source language input 
statement. If no LIMIT statement appears, a default error limit of 150 is assigned unless the compilation 
is initiated through CANOE, in which case the default error is 10. 

LINEINFO (RESET) 

The LINEINFO compiler option provides source line identification information at the point in a program 
where an error has occurred. The option saves sequence or line number information at compile time and 
its relation to the code emitted at compile time. Because an additional significant amount of disk storage 
may be required in the code file of a compiled program it is not desirable to SET the option for "debugged" 
programs. 

LIST (SET; RESET for CANOE and BINDER) 

The LIST option causes a printout to be generated on the compiler output LINE file. The contents of 
such printouts are specified in the preceding paragraphs describing compiler features. If the LIST option 
is RESET, only syntax error messages are listed. 

D-19 



When the LIST option is never SET for a compilation, that is, for non-CANOE compilations; or when the 
LIST option is RESET by an option control card, that is, the first card of the input deck, a printout can 
be genereated by SETting the TIME compiler option. The printout contains only compilation trailer 
information. 

LISTDELETED (RESET) 

When SET, the LISTDELETED compiler option causes the inclusion in the printout of card images from 
the secondary input file TAPE that are replaced, voided, or deleted during the compilation. Four asterisks 
appear on the printout to the left of each of these source images. The following words appear to the right 
of the source images: REPLACED, if the source image is replaced by a card in the primary input file; 
VOIDT, if the card image is voided from the input file by the VOIDT compiler option; or DELETED, if 
the card image is deleted by an option control card with a $ sign in column 1 and no option action, 
options, or parameters. 

LISTINCL (RESET) 

The LISTINCL compiler option controls the printout of cards from included files. The LIST and LIST­
INCL compiler options must both be SET if a printout of the included file is desired. 

A page eject is suppressed in an included file if the PAGE option is present and if the LIST and LISTINCL 
are not both SET. 

LISTOMITTED' (SET) 

When the.LISTOMITTED option is RESET, source code cards being OMITted will not appear on the 
printout. However, the SETting and POPping of dollar cards will be printed if the LIST option is SET. 

This option is designed to aid in following program logic where many combinations of OMITting are 
frequently used. 

LISTP (RESET) 
'•' .•· 

When SET, the LISTP option causes patches and input records from the compiler CARD file to be 
included on the printout while records from the compiler TAPE file are excluded. This option is effective. 
only if the LIST option is RESET. If the LIST option is SET, the state of LISTP is ignored. Therefore, 
the LISTP or the LIST option causes a printout to be generated when SET. 

LOADINFO (RESET) 

The LOADINFO and DUMPINFO options enable the user to save or load the contents of the main table 
in the compiler via the file. The tables saved included INFO, ADDL, TEXT, and STACKHEAD arrays, 
plus several simple variables. 

D-20 



The options are used in conjunction with the separate compilation of procedures. Typically, all global 
declarations are compiled and then the tables are dumped to file INFO. Subsequent compilations of 
procedures merely load the INFO file and go to the start of the procedure symbolic. For example, · 

<I>COMPILE MAKE/INFOFILE ALGOL LIBRARY 

<I>ALGOL FILE INFO=MY/INFO 

<I>DATA 
[ 

{global declarations} 
$ DUMPINFO 
] 
END. 

<I>END 

<I>COMPILE MY /PROGRAM ALGOL LIBRARY 

<I>ALGOL FILE INFO=MY/INFO 

<I>DATA 

%%% LOAD THE GLOBALS INTO TABLES. 
[ 
$ LOADINFO 
{ additional global declarations} 
] 

{separate procedure declaration } 

<I>END 

In order to facilitate their use with intermediate level global binding, the DUMPINO and LOADINFO 
options can be followed by either an internal file name or an external file name and terminated with a 
period enclosed in quotes. This file name information is in a format similar to the INCLUDE option. 
This permits selective INFO file dumping at several points and selective INFO file loading more than 
once throughout a compilation. 

The DUMPINFO and LOADINFO compiler options must be the last options appearing on an option 
card. 

When a new LOADINFO operation is done, all old INFO file structures in ALGOL are removed. Thus, 
compiling different portions of the same program, even if they operate in different environments, can 
now be done in the same compilation. 

The LOADINFO option changes all variables in the INFO file to globals and all procedures already com­
piled to be forward. This means that an INFO file created by a DUMPINFO operation that is done 
immediately before a procedure in a normal compilation is suitable for future use as globals if that 
procedure is to be compiled separately. 

Caution is generally required only when variables with the same name are declared at different levels; a 
separate compilation can only access the last such variable seen before the LOADINFO operation 
occurred. 

D-21 



MAKEHOST (RESET) 

An automatic separate compilation and binding facility is particularly helpful for development work 
on large ALGOL programs, since the amount of control information required by the compiler to 
replace procedures in host pr9grams has been reduced to a minimum (refer to SEPCOMP option). This 
facility is intended as a supplement to, not a replacement for, other methods of compiling and binding 
ALGOL procedures. Given only the name of the host program to be changed, and the patches to 
change it, the compiler is able to separately compile and bind to the host program only those proce­
dures which are being changed. This method requires that certain information be associated with the 
host program, information that is not normally collected and saved during the compilation of a pro­
gram. 

MAKEHOST requests that this information be saved when compiling a block program or procedure at 
level two. This option cannot be explicitly referenced after the appearance of the first syntactical item. 

If MAKEHOST is SET, information is saved in the code file of the program about the symbolic file 
used or created by the compilation, the sequence ranges of all procedure bodies declared in the outer 
block of the program, and the dedarative environment of the outer block. The environment of the 
outer block is similar to the information obtained by the DUMPINFO dollar option, and enables level 
three procedures to be compiled separately within this environment. 

Additional environments may be saved, if desired, in order that procedures at levels greater than three 
may be replaced. Additional environments can only be specified immediately following the setting of 
the MAKEHOST option. 

Syntax 

<additional-environment> : := <empty> I (<environment-list>) 

<environment-list> : := <environment> I <environment-list>, 
<environment> 

<environment> : ::::;. <procedure-identifier> I <procedure-identifier> OF 
<environment> 

Examples 

$ SET MAKEHOST 
$ SET MAKEHOST (PASSONE, PASSTWO) 
$ SET MAKEHOST (P ASSONE, PASSTWO, WRAPUP OF PASSTWO) 

In the example, the last dollar card overrides the first two, saving the environments of PASSONE, 
PASSTWO and WRAPUP OF PASSTWO irt addition to the environment of the outer block. The 
<environment-list> may extend across several card images, a precedent arising more out of necessity 
than desire .. The current implementation, for reasons of simplicity, requires environments to be fully 
qualified through level three procedure identifiers. If an environment is never found during the course 
of compilation, the compiler lists the unknown environment, along with a syntax error. Environments 
may appear in any order, without regard to the actual block structure of the host program. 

D-22 



Finally, when making a host program, SET the NEW dollar option if there are any changes to the 
host program. The default symbolic file associated with the host program is the title of the 
NEWTAPE file if one has been created, otherwise it is the title of the TAPE file. 

MCP (RESET) 

The MCP option causes all value arrays, translate tables, truthsets, and constant pools to be allocated 
at level 2. It must be SET before compiling the first syntactical item of a program. 

MERGE (RESET) 

When SET, the MERGE compiler option causes primary input, CARD file, to be merged with secondary 
input, TAPE file, to form the total input to the compiler. If matching sequence numbers occur, the 
primary input overrides. If the MERGE option is RESET, only primary input is used and secondary input 
is totally ignored. Therefore, the total input to the compiler when the MERGE option is SET consists 
of all card images from the CARD file, all card images from the TAPE file that do not have sequence 
numbers that can· be found on cards in the CARD file, and all card images inserted into the text in these 
files by INCLUDE control cards. Card images in the CARD file also override INCLUDE compiler control 
cards in the TAPE file if conflicts in sequence numbers are encountered. 

NEW (RESET) 

When the state of the NEW option is SET, the merged input from the CARD and TAPE files is placed on 
the updated symbolic output file NEWTAPE. This file is coded in EBCDIC and is structured in 14-word 
records and 420-word blocks. Therefore, it can later be used as input to the compiler through the TAPE 
file. Text inserted into the CARD and/or TAPE files is placed in the NEWT APE file if the INCLNEW 
compiler option is SET. Otherwise, if the INCLNEW option is RESET and the NEW option is SET, the 
INCLUDE cards are placed on the NEWTAPE file rather than the INCLUDEd text. All option control 
cards other than the INCLUDE cards in the merged CARD and TAPE file input are placed on the NEW­
TAPE file when NEW is SET and only if the initial $ sign on these cards is in card column 2. 

The NEW option can be SET and RESET as necessary by option control cards appearing at any point in 
the input file. Such option control cards can also be placed on the NEWTAPE file if the $signs on these 
cards are in column 2. 

The contents of the NEWTAPE file can be monitored as follows: When both the NEW and the LIST 
options are SET, the NEWT APE file contains all the source language statements that the LINE file 
contains, depending upon the state of the INCLNEW option, and all option control cards appearing in the 
LINE file that have their initial $sign in card column 2. INCLUDE option control cards rather than 
INCLUDEd file text are placed in the NEWTAPE file when the INCLNEW option is RESET, but the 
INCLUDEd text is placed in the LINE file regardless of the state of the INCLNEW option. 

The NEWTAPE file is created despite the occurrence of syntax errors in the source input. This file can be 
used as a secondary input for a later compilation or as an INCLUDEd file. 

The NEWT APE file can be label-equated so that, for example, the output goes to magnetic tape. 

D-23 



NEWSEQERR (RESET) 

The NEWSEQERR option causes all non-ascending sequence record numbers on the NEWT APE file to be 
flagged (equal record numbers are flagged). If sequence errors occur and the NEWSEQERR option is 
SET, the NEWTAPE file is not locked, the message NEWTAPE NOT LOCKED is displayed on the SPO, 
and the message NEWTAPE NOT LOCKED <number of errors> NEWTAPE SEQUENCE ERRORS is 
printed on the printout. The NEWSEQERR option is effective even if the CHECK option is RESET. 

NOBINDINFO (RESET, autobinding only) 

When SET, the NOBINDINFO option causes the binder to purge all binder information from the resultant 
code file. The resultant code file cannot then be used as input to the binder. 

NOSTACKARRAYS (RESET) 

When SET, the B 7700 NOSTACKARRAYS option suppresses the allocation of arrays with the stack, 
that is, it prevents short arrays from being allocated within the stack. 

NOXREFLIST (RESET) 

The NOXREFLIST compiler option and the XREF compiler option, when SET, prevent SYSTEM/ 
XREF ANALYZER from being initiated by the compiler. (The NOXREFLIST option has no effect if 
XREF is not SET.) The 1file XREF/<code file name> is created where <code file name> is the name 
of the code file generated by the compiler. SYSTEM/XREF ANALYZER can then be run using 
XREF/<code file name> as described under the XREF compiler option. 

The NOXREFLIST compiler option makes possible the label equating of XREF output to printer backup 
tape or the combining of XREF output with the rest of the job output. 

The following example shows the label equating of XREF output to printer backup tape. 

<I> RUN SYSTEM/XREFANALYZER (132); 
FILE XREFFILE (TITLE= XREF/CODEFILENAME); 
FILE LINE (KIND = PRINTER , BACKUPKIND = TAPE) 

OMIT (RESET) 

The OMIT option causes card images from both the CARD and the TAPE files, other than $ cards, to be 
ignored, that is, they can be listed and/or written on a new symbolic file but not compiled. On the 
printout they are flagged by the word OMIT. 

The OMIT $ card, when SET, causes $ cards in columns 3 through 72 that would otherwise be processed 
to be ignored. However, $ cards with the $ sign in columns 1 and 2 will continue to be processed. This 
permits flexibility in nested omits. 

OPTIMIZE (RESET) 

When SET, additional analysis of Boolean expressions used'for conditional branches is performed, and 
code is generated to permit early termination of the expression evaluation. That is, AND and OR 

D-24 



operations become conditional branches. For example, the code generated when OPTIMIZE is SET and 
RESET is as follows: 

If A= B AND C=D THEN 

SET RESET 

VALC on A VALC on A 
VALC on B VALC on B 
EQUL EQUL 
BRFL-LINK VALC on C 
VALC on C VALC on D 
VALC on D EQUL 
EQUL LAND 

PAGE (cannot be SET or RESET) 

The PAGE compiler option must appear on an option card without an option action preceding it. When 
a PAGE option card appears, the printout is spaced to the top of the next page, but only if the LIST 
option is SET. 

PURGE (autobinding only) 

The PURGE option causes all input files specified in the <file list> to be removed from the disk direc­
tory after binding. Only files opyned by the binder will be purged. 

SEGDESCABOVE (RESET) 

The SEGDESCABOVE option is used when compiling large programs which have difficulty addressing 
the segment dictionary. 

Syntax 

<segdescabove card> : := $ <option action> <number part> 

<number part> : :=<empty> I <unsigned integer> 

When the compiler is compiling a host, this option causes all segment descriptors to be allocated starting 
at the specified Dl slot. Numbers must be in the range from 3 to 4096; if no <unsigned integer> is 
given, a default value of 2048 is assumed. This option is intended for generating host files and is ignored 
when compiling separate procedures (ones that are bound into a host file). The option is invalid for 
batch and cannot be modified once a compile has begun. The BINDER recognizes this special host and 
preserves the SEGDESCABOVE specification. Care should be taken when using this option as nonseg­
ment descriptors may not fill the space below the segment descriptors; these unused slots occupy "save" 
memory when the program us running. 

SEGS (RESET) 

The SEGS option causes the printout to contain the beginning and ending segment messages. Note that 
setting the LIST option also sets the SEGS option. Therefore, $ RESET SEGS must follow $ SET LIST. 

D-25 



SEPCOMP 

SEPCOMP invokes the automatic separate compilation and binding facility (refer to MAKEHOST option). 
As a dollar option, SEPCOMP has some peculiar distinctions. It cannot be explicitly referenced after 
the beginning of the compilation nor are multiple SEPCOMP option settings allowed since, when first 
SET, it initiates the preprocessing of the card file input. The title of the host program can be specified 
either as a string immediately following the word SEPCOMP on the dollar card or by label equating the 
ALGOL compiler's FILE HOST. The optional string specification has precedence over label equation. 
The following compile decks both specify a host file titled "A/HOST". 

Examples 

(deck 1) 

?COMPILE A/B WITH ALGOL FOR LIBRARY 
?DATA 
$ SEPCOMP "A/HOST" LIST STACK 
$ SET LINEINFO 

% PATCH CARD <seq-number> 
?END 

(deck 2) 

?COMPILE A/B WITH ALGOL FOR LIBRARY 
?ALGOL FILE HOST=A/HOST 
?DATA 
$ SEPCOMP LIST STACK 
$ SET LISTDELETED 

% PATCH CARD <seq-number> 
?END 

Once the host file title is known, the patch cards must be provided. Dollar cards with blank sequence 
numbers are accepted following the dollar card setting the SEPCOMP option and prior to the first 
"patch card." A patch card is a card having a non-blank sequence number, at least one is required. 
Among patch cards having non-blank sequence numbers, sequence errors are not allowed. SEPCOMP 
examines the patch cards, decides which procedures can be compiled, and takes care of generating binder 
control information for replacing these procedures in the host programs. SEPCOMP always tries to com­
pile procedures a:t the highest possible lex level. Therefore, the number of extra environments specified 
when making a host program has an effect on choices available to SEPCOMP. 

SEPCOMP sets several other dollar options automatically in an effort to simplify operation. The MERGE 
option is unavailable for use during SEPCOMP control. References to this option are ignored after 
SEPCOMP has been SET. Setting the MERGE option prior to setting SEPCOMP is illegal since it des­
troys the default label equation of the symbolic file to be merged with the patches. The title of the 
default symbolic file is associated with the host program, but this title can be overridden by label equa­
tion of the. ALGOL compile file TAPE. SEPCOMP SETS both the AUTOBIND and LIBRARY options, 
causing all procedures to be compiled into one multi-program code file, a temporary file left open for 
the use of the binder. Explicitly resetting AUTOBIND will prevent the binder from being called and 
result in the code file being locked on disk if compiled for library. Explicitly resetting LIBRARY 
will cause each procedure compiled to be put in a separate and permanent code file. Binding may still 

D-26 



occur, but at a somewhat slower rate. If procedures are put in separate code files, the title of the code 
file is determined in the standard way, with the procedure name replacing the last identifier from the 
title on the compile card. Procedures compiled at lex-level four and higher have the name of their 
environment used in the code-file name also. For example, if two level-four procedures are compiled having 
the same name but different environments, such as: 

? COMPILE A/HOST WITH ALGOL FOR LIBRARY 
? DATA 
$ SEPCOMP "A/HOST" 
$ RESET LIBRARY 

% PATCH CARD TO Q OF PASSONE 
% PATCH CARD TO Q OF PASSTWO 

?END 

<seq-number> 
<seq-number> 

Two code files would be produced (A/PASSONE/Q and A/PASSTWO/Q) in addition to the new host file 
"A/HOST" assuming PASSONE and PASSTWO were specified as extra environments when "A/HOST" 
was made. 

The special information associated with the host program is always copied over by the binder to the 
code file of the new program so it also may be used as a host, as in the previous example. This infor­
mation is not, however, "updated" either by the binder or the compiler during the SEPCOMP process. 
It is possible for this information to come to inaccurately reflect the actual structure and content of the 
host program with which it is associated. 

Because of the order of the code file, it is much faster to bind to a bound host than to an unbound 
host. For this reason, it may be advantageous to SET AUTOBIND when compiling a host program 
just to get the binder to rearrange the code file. 

SEQ (RESET) 

The proper format of the SEQ option is as follows: 

SEQ <sequence base> <sequence increment> 

If the SEQ option is SET, the printout and the new secondary source language file, NEWTAPE, contain 
new sequence numbers as defined by the <sequence base> and <sequence increment>. If the 
<sequence base> and <sequence increment> are unspecified, a base of l 000 and increment of l 000 
are assumed. 

This option has effect only when the LIST and/or NEW options are also SET. The sequence numbers that 
appear on the card images in these files when the SEQ option is RESET are identical to the sequence 
numbers on the corresponding cards in the input file. 

When the SEQ option is SET, sequencing begins with the default sequence number 00001000 and con­
tinues in default increments of l 000. These default sequencing parameters can be overridden a~follows: 
The appearance of a one- to eight-digit unsigned integer on a option control card is assumed to !le a 
control statement associated with the SEQ option when this integer is not immediately preceded on the 
card by the option name INCLUDE, LEVEL, or LIMIT. This integer is employed as a sequencing argu­
ment when the state of the SEQ option is SET. If the integer is preceded by a plus sign(+), the integer is 

D-27 



used as the sequence number increment size. Otherwise, the integer is used as the sequence number at 
which sequencing is to start as soon as SEQ is SET. Both of these arguments can be specified, overriding 
the default values of 1000. 

The sequencing arguments can appear on the same option control card as that SETting the SEQ option, 
on a preceding option control card, or on a later option control card. The following are examples of a 
sequencing argument appearing on the same option control card as the SEQ option: 

$SET SEQ 100 
$SEQ 20+1 
$RESET CODE SET SEQ LIST +200 

In the first example, sequencing of the LINE and NEWT APE files begins at the sequence number 
00000100 and continues in default increments of 1000 if no other sequencing increment is specified on a 
previous option control card. In the second example, sequencing begins at the sequence number 
00000020 and proceeds in increments of 1. In the third example, if this is the first time SEQ is SET 
and no other initial sequence number has been specified on a previous option control card, sequencing 
begins at the sequence number 00001000, and proceeds in increments of 200. Otherwise, sequencing 
begins at a sequence number 200 greater than the last sequence number assigned, or at the initial 
sequence number assigned by an appropriate preceding option control card. An example of an option 
control card format that specifies sequencing arguments but not the SETting of the SEQ option is as 
follows: 

($ 100 + 100 00005000 I 

This compiler control card specifies that, when the state of the SEQ option is SET, sequencing begins 
with the sequence number 00000 l 00 and proceeds in increments of 100. The standard option states are 
not affected because this card contains only parameter control information and no standard option 
names. If the SEQ option is SET when this control card appears, these two sequencing arguments take 
effect immediately. 

SEQ~RR (RESET)· 

The SEQERR option causes sequence errors on the TAPE file to be flagged. If sequence errors occur and 
the SEQERR option is SET, the code file is not locked, the message CODE FILE NOT LOCKED is 
displayed on the SPO, and the message CODE FILE NOT LOCKED <number of errors> TAPE 
SEQUENCE ERRORS is printed on the printout. 

<sequencelJase> and <sequence increment> 

The <sequence base> option contains the sequence number that is assigned, if the SEQ option is 
SET, to the next source language card image that is used as output. After each card image is used as 
output, the <sequence base> is increased by the <sequence increment>. 

D-28 



SINGLE (SET) 

The SINGLE option causes the printout to be single-spaced. When the SINGLE option is RESET, the 
printout is double-spaced. The default value of SINGLE is a compiler compile-time option. 

ST ACK (RESET) 

The STACK option causes the printout to contain relative stack addresses in the form of address 
couples for all program variables. LIST must be SET. 

STATISTICS (RESET) 

When SET, the STATISTICS compiler option gathers timing statistics. The option is examined at the 
beginning of each procedure or block, and if it is SET at that time, timing statistics are gathered for that 
procedure or block. Although the option may be altered at any time, only its status at the beginning of 
procedures and blocks is significant for determining whether timings are made. 

If statistics are taken for a procedure or block, then the frequency of that procedure or block is 
measured, along with the length of time spent in that procedure or block. When the program is completed 
for any reason (including both normal EOJ and DS-ing), the statistics are printed out on the diagnostic 
file. · 

On the output listing, an asterisk(*) indicates that there is some doubt about the timings for the specific 
procedure name that precedes the asterisk. In addition, timings are invalid for any procedure or block 
that is entered by a "bad go to." Only the first six characters of any identifier are printed on the printout. 

For any procedure or block that has statistics gathered, it is possible to break down the timings to the 
label level within that procedure by setting the option LABELS. LABELS must appear in parentheses 
immediately after the word STATISTICS on the option card. It may be preceded by SET or RESET. 
If both are omitted, SET is assumed. For example, 

$ SET STATISTICS (LABELS) 

will begin timing label breakpoints, and 

$ SET STATISTICS (RESET LABELS) 

will end timing of label breakpoints. SET or RESET inside the parentheses only has effect for the 
duration of the parentheses. 

STOP (autobinding only) 

The STOP option causes the BINDER to stop interpreting input statements and option cards, causing 
them to be flushed out. 

D-29 



TIME (RESET) 

The TIME option causes trailer information, such as number of errors, number of segments, and 
compilation time, to be printed on the printout. The TIME option is SET by default when the LIST 
option is SET. 

No source cards are listed, assuming the LIST option has been RESET for the entire input deck and no 
errors occurred. Therefore, since this trailer information is printed when the LIST option is SET, the 
state of the TIME option is significant only when the LIST option is RESET. 

<user option> (RESET) 

If a word on an option control card is not recognized as one of the <nption>s, it is considered to be 
a <user option>. It can be manipulated exactly like any other option, that is, it can be SET, RESET, 
or POPped. 

Any option, standard or user, can be SET from any <user option> by using an equal sign. The format 
is SET <nption> = <nption expression>, where <nption expression> : := <nption> I NOT 
<nption>. For example, 

$SET MODULE 

$ SET OMIT = MODULE 
$ SET LIST = NOT MODULE 

The preceding example defines and SETs a <user option> called MODULE. Later, OMIT and LIST are 
SET and RESET, respectively, if MODULE is still SET. If a <user option> is not explicitly SET, it is 
RESET by default. .. 

Boolean operations can be performed by setting the <nption>s equal to <Boolean expression>s 
composed of* (itself), EQV, IMP, OR, AND, NOT, TRUE, FALSE, and <user option>s. For 
example, 

$ SET OMIT = OPTl AND OPT2 OR NOT. OPT3 
$ SET OMIT = * OR OPT4 

The following illustration, figure D-2, shows the organization of a card deck that describes the method 
by which specific portions of source input code can be compiled and placed on a printout simply by 
setting a single user option. 

·o-3o 



_C:r> ENO @ 
r r r 

L 

_{__ (source input cards) 

_c> POP OMIT LIST ® 
L. 

L. 

L. 

_{__ (source input cards) 

_L $ ® 
~ 

SET LIST = NOT MYOPT 

{$ SET OMIT= MYOPT· ® il 
/$ ® 

il 
POP OMIT LIST 

"" i--

.._. 

~ 
~ v 

i--

i--

~ 

z 
L 

L 

_{_ (source input cards) 

_{__ $ SET LIST = MYOPT ® 
L$ SET OMIT = NOT MYOPT © 

L 

L 

r-
_{__ · s0urce input cords) 

_l~> SET MYOP,T ® 
"""" i.Y 

<I> COMP! LE VERSION/ONE ALGOL LIBRARY; EBCDIC ® i.Y 
i--

~ 

~ 

il il 
~ 

~"" 
i--

Figure D-2. Use of the Explicit SET 

D-31 



CARD 

@ 

® 

© 

@ 

® 
® 
© 
® 
CD 

DESCRIPTION 

The first card is an MCP system control card that contains the COMPILE, LIBRARY 
and EBCDIC control statements. 

Card@ defines and SETs a user option called MYOPT. 

Card @ RESETs or SETs the standard compiler option OMIT if MYOPT is SET or 
RESET, respectively. 

Card @ SETs or RESETs the standard compiler option LIST if MYOPT is SET or 
RESET, respectively. 

Card @returns OMIT and LIST to their previous states. 

Card ® SETs or RESETs OMIT if MY OPT is SET or RESET, respectively. 

Card @ RESETs or SETs LIST if MYOPT is SET or RESET, respectively., 

Card @ returns OMIT and LIST to their previous states. 

The final card is the END system control card. 

In figure D-2, when MYOPT is SET, the source language information on the cards following @ is 
included in the compilation and in the output printout. The source language information on the cards 
following card @ is not included in either the compilation or printout. 

Conversely, if MY OPT is RESET, accomplished by removing card @, the information on the cards 
following card @ is not included, and the information on the cards following card @ is included in 
the compilation and printout. 

The source language information on the cards immediately following cards @ and @ is included in 
both compilation and output printouts whether or not MYOPT is SET. 

USE (autobinding only) 

USE provides BINDER a technique for matching identifiers in a host with differing identifiers in a 
separate <program unit>. 

D-32 



VERSION (SET, RESET, and POP are ignored by the compiler) 

The VERSION compiler option allows the user to specify an initial version number for a source program, 
to replace an existing version number, or to append an existing version number. 

Syntax 

<version compiler option> : :=<replace version> I 
<append version> 

<replace version> : := $ VERSION <version increment> . <cycle increment> 
<patch number> 

<version increment>::= <2 digit integer> 

<cycle increment> : := <3 digit integer> 

<patch number>::= <.empty> I 
. <3 digit integer> 

<append version> : := $ VERSION+ <version increment> 
. + <cycle increment> <patch number> 

Examples 

$ VERSION 25.010.010 
$ VERSION +Ol.+001.010 

When compiling with the NEW compiler option SET and a VERSION compiler card appears in the 
symbolic, and if the patch deck contains a <replace version> or <append version>, the new 
symbolic is updated to the version, cycle, and patch number on the last VERSION compiler card in 
the patch deck. The sequence number must be less than the one in the symbolic. 

COMPILETIME(20), COMPILETIME(21 ), and COMPILETIME(22) give the user the ability to access 
the version, cycle, and patch numbers, respectively. 

VOID (RESET) 

If the VOID option is SET, all input, other than$ cards, from the TAPE and the CARD files is ignored 
by the compiler until the VOID option is RESET or POPped into a RESET state. The ignored input is 
neither listed nor included in the updated symbolic file regardless of the states of the LIST and NEW 
options. The VOID option can be RESET, once it is SET, only by a option control card in the CARD file. 

VOIDT (RESET) 

If the VOIDT option is SET, all secondary input, other than$ cards, from the TAPE file is ignored by the 
compiler until the VOIDT option is RESET or POPped into a RESET state. Therefore, while the VOIDT 
option is SET, only primary input is compiled. The ignored input is neither listed nor included in the 
updated symbolic file regardless of the states of the LIST and NEW options. The VOIDT option can be 
RESET, once it is SET, only by an option control card in the CARD file. 

D-33 



WRITEAFTER (RESET) 

The WRITEAFTER option implements the ability to write after carriage control. This option is SEf 
around a <file declaration>, a <switch file declaration>, or an 1/0 statement. If SET around a 
<file declaration>, it pertains· to aH 1/0 statements where that file name explicitly appears. If SET around 
a <switch file declaration>, it pertains to those 1/0 statements explicitly using the switch FILEID. If 
SET around an 1/0 statement, it pertains to that particular 1/0 statement. 

XDECS (RESET) 

The XDECS compiler option, when SET, causes program declarations to be recorded for cross-referencing 
purposes when the XREF option is SET. This option is initially SET when the XREF option is SET and 
can be SET, RESET, or POPped as many times as desired. The XDECS option.is provided for use with 
the XREF option in order to select the portions of source code to be examined for information concern­
ing declaration locations. XREF must be SET. 

XREF (RESET) 

When SET, the XREF compiler option causes, in the event of successful compilation, an index of all 
identifiers used in the compiled program to be written on the LINE file. This operation is accomplished 
by initiating the SYSTEM/XREF ANALYZER program at the end of the compilation and giving to it a 
file containing the necessary information. These identifiers are arranged according to the EBCDIC 
collating sequence numbers of the card images on which the identifier appears. The LIST option need not 
be SET to generate a printout of this cross-reference information. The XREF option should be SET before 
any of the source input processed. This option cannot be RESET or POPped once it is SET. 

User options are also included when XREF is SET. 

The line width, in characters, of the XREF output can be specified when the XREF option is SET. It is 
done as follows: 

$ SET XREF <optional unsigned integer> 

where <optional unsigned in·teger> can be in the range 72 < <optional unsigned integer> < 132. 

If the optional unsigned integer is not specified, the default is taken as 13 2. 

If the SYSTEM/XREF ANALYZER Program is executed with control cards, the line width, in characters, 
must be specified as a parameter. For example, 

<I>RUN SYSTEM/XREFANALYZER (<line width>); 
FILE XREFFILE 
(TITLE = XREF /<.codefilename> ); 
END. 

D-34 



XREFFILES (RESET) 

The XREFFILES compiler option, when SET, causes files to be saved for SYSTEM/ 
INTERACTIVEXREF. These files have the titles XREFREFS/<code file name> and 
XREFDECS/<code file name> where <code file name> is the name of the code file the 
compiler is generating. 

When XREFFILES and XREF are both SET, the SYSTEM/XREFANALYZER run produces 
the files and the printed output. The XREFFILES compiler option has no effect if the 
NOXREFLIST compiler option is SET (i.e., files for SYSTEM/INTERACTIVEXREF are not 
generated). 

Running SYSTEM/XREF ANALYZER with a negative task value creates the same files as the 
XREFFILES compiler option. 

XREFS (RESET) 

The XREFS compiler option, when SET, causes program identifier references to be noted for cross­
referencing purposes when the XREF option is SET. This option is initially SET when XREF option is 
SET, and can be SET, RESET, or POPped as many times as desired. The XREFS option is provided for 
use with the XREF option to select the portions of source code to be examined for information concern­
ing the location of identifier references. The only references that are cross-referenced are references of 
identifiers that are declared in portions of the source file where the XDECS option is SET. 
XREF must be SET. 

$(RESET) 

When SET, the dollar sign ($) option causes the printout of all subsequent <option control card> images 
when the LIST option is SET. This option appears as $SET$ or $ $. 

D-35/D-36 





APPENDIX E. PROGRAM SOURCE AND OBJECT Fl LES 

COMPILER FILES 

Compiler communication is handled through various input and output files (figure E-1 ). Cards, disk, or 
magnetic tape can be specified as source language input media. Input must be in the input format defined 
in the preceding sections. The compiler has the capability of merging, on the basis of sequence numbers, 
input from cards, tape, or disk. When inputs are being merged, indications of text insertions or replace­
ments can be made to appear on the printout. In addition to the printout, the compiler can also generate 
updated symbolic files. These files can be created in addition to the compiler-generated output code file. 

Input Files 

The primary compiler input file is a card file with the internal name CARD; the secondary input file is a 
serial disk file with the internal name TAPE. The presence of the primary file (CARD) is requited for each· 
compilation; the presence of the secondary file (TAPE) is optional for each compilation. When two card 
images, one from the CARD file·and the other the TAPE file have the same sequence number, the former 
is primary and is compiled, and the latter is ignored. This is the standard mode of handling source language 
input. File CARD can be either BCL-coded with I 0-word records or EBCDIC-coded with 14-word records 
and can be either blocked or unblocked. File TAPE can be BCL-coded with I 0-word records and 150-word 
blocks, or EBCDIC-coded with a 14- or 15-word record and 420- or 450-word blocks. Both the CARD file 
and the TAPE file can be label-equated (via the FILE system control card) to change the TITLE and 
KIND of the file. The TAPE file is used as input only when the MERGE SEPCOMP compiler option is SET. 

Additional files can be used as input to the compiler through the use of the INCLUDE compiler option. 
These files may be either BCL-coded with I 0-word records or EBCDIC-coded with 14- or 15-word records 
(similar to the TAPE file). These INCLUDEd files are, by default, disk files, and their internal names or 
titles are as specified on the INCLUDE compiler option cards. 

E-1 



I... 

. 
PRIMARY INPUT FILE 

(CARD) 

OPTIONAL SECONDARY 

INPUT FILE 

(TAPE) 

OPTIONAL SOURCE 

FILES INPUT BY 

$ INCLUDE CARDS 

" 
COMPILER INPUT FILES 
(SOURCE LANGUAGE 

INPUT AND COMPILER 
CONTROL STATEMENTS) 

Output Files . 

J 

ALGOL 

COMPILER 

OPTIONAL UPDATED 
SYMBOLIC FILE 

(NEWTAPE) 

OBJECT CODE FILE n (CODE) 

l OPTIONAL LINE 

-- PRINTER LISTING 

(LINE) - ....... 

OPTIONAL ERROR 
MESSAGE LISTING 

(ERRORFILE I 

""" _,,,) 

\. J 

COMPILER-GENERATED 
OUTPUT FILES 

Figure E-1. ALGOL Compilation System 

- OPTIONAL 
PROGRAM 
EXECUTION 

Output files produced by the compiler consist of the object code file, an updated symbolic file, a line 
printer printout, and an error message file. The object code file has the internal name CODE and is saved 
on disk after the compilation unless the COMPILE system control card specifies compilation for syntax 
only, or unless syntax errors are detected in the source language input by the compiler. If compile-and-go is 
specified by the COMPILE system control card, then the object file is discarded after the code is executed. 
If compilation for library is specified, then the object code file is saved on disk. The title of the saved 
code file is identical to the program name appearing on the COMPILE system control card except in the 
case of separately compiled procedures. When subprograms are compiled separately, the title of the 
resultant object code library file consists of the program name appearing on the COMPILE system control 
card, with the right".'most identifier in the program name replaced by the subprogram name. If there is only 
one identifier in the program name, this name is assigned as the code file title. ' 

The compiled program is logically segmented within the resultant code file by program unit (procedure 
or subroutine). The code for each program unit begins at a physical disk segment boundary and fills as 
many disk segments as required within the limits of the system. An extremely long program unit may 
require more than one program segment, in which case it is automatically segmented as follows: (Such 
segmentation does not occur for separate compilations except for a main program.) As 'the amount of 
code generated for a program unit reaches 8192 words or 30* A words, where A is the numeric value of 

E-2 



the AREASIZE of the code file, whichever is less, program unit segmentation occurs. The code for the 
program unit is then contained in two program segments. This segmentation can occur more than once, 
depending on the size of the program unit. 

The updated symbolic file is, by default, a disk file generated only if the compiler option NEW is SET. 
This file contains the compilation source input or a selected portion of this input as specified by the 
states of the NEW and INCLNEW compiler options. It can be used as the TAPE file or an INCLUDEd file 
for a succeeding compilation. This output file has the internal file name NEWTAPE and contains 
EBCDIC-coded 14- or 15-word records in 420- or 450-word blocks. 

The line printer printout is an optional print file that is created unless the compiler option LIST and TIME 
are RESET. (The LIST option is SET by default unless the compilation is initiated through CANOE.) The 
file has the internal name LINE, consists of 22-word EBCDIC-coded records; and contains the following 
information: 

a. Source and compiler control statements used as input to the compiler. 
b. Code segmentation information other than source input. 
c. Error messages -and error count. 
d. Number of input card images scanned. 
e. Elapsed compilation time. 
f. Processing time required for the compilation. 
g. Estimated size of the working stack when the program is executed. 
h. Estimated size of the program files artd related storage. 
i. Total number of words of object code generated. 

'j. Stack address assignments. 
k. Number of segments in the generated program. 
I. Number of disk segments required for the program code file. 
m. Estimated core storage required (in words). 
n. Title of the generated code file. 
o. Compilation date of the compiler. 

Depending upon the specified setting of the LIST, CODE, STACK, and TIME compiler options, the line 
printer printout can contain more (or less) information than the basic items listed above. If either the 
MERGE or SEPCOMP compile-time option is set and the LIST or LISTP compile-time option is also 
set then card images from the CARD file are denoted on the printout by a P if they replace a card from 
the TAPE file and by a C otherwise. The C or P appears after the card contents. 

The output error-message file with the internal file name and assigned title of ERRORFILE is an optional 
line printer file that is created when the ERRLIST compiler option is SET. This file is normally employed 
for compilations initiated through CANOE, in which case ERRLIST is SET by default and the ERROR­
FILE file is assigned to the remote device involved. The ERRORFILE file can also be used for compila­
tions initiated through the card reader. This file is assigned EBCDIC-coded 12-word records that result in a 
a line width of 72 characters, allowing the file to be used as output to a remote terminal or card punch 
without truncation of text. When a syntax error is detected, the offending card image is written on this 
file with an error message and indicator of the syntactical item in question being written on the following 
line of text. The error message consists of an explanatory message and pointer(*) that indicates the 

\ probable location of the error. The asterisk is usually positioned one character past the "off ender". 

E-3 



Compiler File Table 

Table E-1, ALGOL Compiler Files, lists the internal name of the file, that is, the name used when the 
file is declared within the compiler, the purpose served by the file, the default KIND of the file, the 
code used to store file data, the default record size (MAXRECSIZE) and block size (BLOCKSIZE) of the 
file, and a brief commentary on the specific file. The attributes of any of these files can be changed by 
the use of FILE system control cards directed to the compiler. 

E-4 



tr1 
I 
VI 

INTERNAL 
NAME 

CARD 

TAPE 

Can be 
specified 
on INCLUDE 
Compiler Con-
trol Card 

PURPOSE KIND 

Input Card CARD 
File READER 

Input Disk DISK 
File 

Library In- DISK 
elude File 

Table E- 1. ALGOL Compiler Files 

RECORD BLOCK 
CODE SIZE SIZE COMMENTS 

EBCDIC 14 Words Blocked Required for each compilation. Pri-
or mary compiler input file; may be 
Unblocked label-equated to change file attributes. 

BCL 10 Words CANOE file is equated to this file 
automatically for compilations initiat-
ed through CANOE. Default title is 
CARD. 
BUFFERS= 5. 
FILETYPE = 7. 

EBCDIC 14 or 15 420 or 450 Optional file; need not be present for 
Words Words for each compilation. Secondary com-

BCL IO Words 150 Words piler input file; selected as input by 
setting MERGE or SEPCOMP com-
piler option. Can be label-equated 
to change file attributes as desired. 
The default title is TAPE. 
FILETYPE = 7. 

EBCDIC 14 Words 420 Words Optional input file opened by $IN-
CLUDE card that has appropriate file 

BCL 10 Words 150 Words title or internal file name. Five levels 
(maximum) of nesting permitted. (Re-
fer to discussion of INCLUDE option.) 
FILETYPE = 7. 



tTJ 
I 
0\ 

INTERNAL 
NAME 

CODE 

NEWT APE 

PURPOSE KIND 

Object Code DISK 
File 

Updated DISK 
Symbolic 
Output 
File 

Table Ee::... 1. ALGOL Compiler Files (Cont) 

RECORD BLOCK 
CODE SIZE SIZE 

Hexadecimal 30 Words 150 Words 

EBCDIC 15 Words 450 Words 

COMMENTS 

Generated object code file. Saved or dis-
carded and assigned a title as indicated by 
compilation method. For CANDE com-
pilations, the title becomes: 
USERCODE/<usercade>/OBJECT /<file-title>. 
The default file title after compilation is the 
program name on COMPILE card (modified 
by subprogram ID when separate compilation 
is used). 

Optional output file produced when 
NEW compiler option is SET. This file 
contains portions of the source input 
and is label-equatable. It is suitable for 
use as a TAPE file for a later compila-
ti on. 
BUFFERS= 2. 
AREASIZE = 1000 . 

. AREAS=60. -



m 
I 

..._;i -m 
I 

00 

INTERNAL 
NAME 

LINE 

ERROR-
FILE 

PURPOSE KIND 

Line Printer LINE 
Printout PRINTER 

or 
DAT ACOM 

Error LINE 
Listing PRINTER 
Output 
File LINE 

PRINTER 
(KIND= 7) 

Table E-1. ALGOL Compiler Files (Cont) 

RECORD BLOCK 
CODE SIZE SIZE COMMENTS 

EBCDIC 22 Words 22 Words Optional and label-equatable file. 
Produced when either the compiler 
option LIST or TIME is SET. 

EBCDIC 12 Words 12 Words Optional error listing file produced 
when ERRLIST compiler is SET. 
Contains card images and error mes-

EBCDIC 12 Words 12 Words sages. Automatically provided for 
c CANOE input. 





APPENDIX F. BATCH FACILITY 

INTRODUCTION 

In certain situations, such as an educational environment, it may be possible to submit as a group a number 
of programs having the following characteristics: 

a. The programs are to be compiled for syntax or compiled and executed. 
b. If a program has no syntax errors and execution is requested, the execution time is relatively small. 
c. Each program requires no more than one printer file and no more than one card reader file. 
d. No program requires operator intervention. 
e. No tasking is being used in the programs. 

The batch facility is available so that groups of these programs may share the cost of many required system 
overhead functions normally associated with each job, such as job initialization and termination, linking 
with intrinsics, memory allocation, etc. Sharing these tasks promotes better use of system resources. 

DECK SET-UP 

Each job, which must conform to the restrictions discussed below, is set up as follows. All option control 
cards must have the format as described in Appendix D. 

$JOB {optional job title} 
program 

$entry 
data, if any 

The first card in the deck is a $JOB card, which is used to indicate the beginning of the program. Option­
ally, a job title may appear on the $JOB card; this title is used to identify printed output produced by the 
compiler. Following the $JOB card is the source program, complete with the normal collection of option 
control cards, etc. 

The next item is the $ENTRY card. This card is used to indicate the end of the program. It is also used to 
indicate that execution is desired if there are no errors. If the $ENTRY card is missing, the compiler 
assumes that execution of this program is not required, i.e., only a compile for syntax has been requested. 

Finally, if the program uses a data block, then the data deck appears after the $ENTRY card. Note that the 
$ENTRY card is required for execution regardless of whether or not there is a data deck. 

In addition, there are two compiler options which apply to the execution of each job. The two options, 
PROCESSTIME and IOTIME, perform the same functions as the corresponding system control cards. 

For example: 

$ PROCESSTIME = 2.2 PROCESSIOTIME = S 

would result in an upper limit of 2.2 seconds on execution time and 5 seconds in I/O time. There is no way 
to limit elapsed time, since programs cannot control the elapsed time. 

F-1 



If PROCESSTIME or IOTIME is set prior to the first $JOB card, the values become upper limits to the 
PROCESSTIME and·IOTIME for individual user programs. Any individual user may be restricted to lower 
limits by the inclusion of PROCESSTIME or IOTIME option control cards following the $JOB card. 

USING THE BATCH FACILITY 

The job decks are placed together to form a single deck. This combined deck is preceded by the usual 
. system control cards invoking the ALGOL compiler and followed by the <I>END system control card. 
This single deck is then processed by the system. The output produced is a single printer file having each 
compiler printout followed by its corresponding printed output. 

Example of a batch ofthree ALGOL jobs: 

F-2 

<I> COMPILE BATCHX ALGOL; DATA 
$ PROCESSTIME = 5 .5 IOTIME = 1 
$.JOB ONE 
$ SET LIST SEQ 
BEGIN 
FILE READER(KIND =READER); 
INTEGER I; 
ARRAY Z[0:2]; 
READ (READER,/, FOR I := 0 STEP 1 UNTIL 2 

DOZ [I]); 
END. 
$ENTRY 
2.315, 3.71828, .5772, 
$JOB TWO 
BEGIN 
INTEGER A.B.C; . 
A:= B + + C; % A SYNTAX ERROR 
END. 
$ENTRY 
$JOB THREE 
BEGIN 
LABEL AGAIN; 
REALX; 
AGAIN: X := 355/133; 
GOTO AGAIN; 
END. 
<I>END 

NOTE 

No job in this three-job batch will be allowed more than S .S seconds of 
processor time (beware of job three!), nor more than 1 second of 1/0 
time. Note also that job #1 will compile correctly and run, using the one­
card data deck immediately following its $ENTRY card; that job #2 has 
a syntax error, but would have run had it been error free (it has no data 
deck, however); and that job #3, despite being syntactically correct, will 
not run without an $ENTRY card. 



RESTRICTIONS 

Each of these restrictions must be met in order for a job to be a candidate for successful processing by the 
batch facilities of the ALGOL compiler. 

a. The printer file may not be explicitly opened, closed, or have its attributes changed. Attempts to 
do this will terminate the job. 

b. Binding is not allowed. No compiler option pertinent to binding is valid. 
c. Missing functions are fatal errors. 
d. The <wait statement> is allowed but has no effect. 
e. Any program action requiring operator intervention is a fatal execution error. 
f. Only one printer file is allowed. If two or more printer files are declared, their output will be 

joined into a single file. Similarly, at most, one reader file is allowed. 
g. The following compiler option cards are invalid or ignored when using the batch facilities: 

ERRLIST, LIBRARY, LINEINFO, NEW, TIME, XREF. 
h. All job decks must be punched with the same card codes (EBCDIC, BCL, or ASCII). The system 

control card preceding the job decks (DATA, EBCDIC, ASCII, or BCL) must also indicate the 
proper card code. 

i. Tasking is disallowed. 

IMPLEMENTATION SCHEME 

The goal of the implementation has been to eliminate as much normal system overhead as possible by 
reducing the number of tasks initiated in the system within the natural running environment of the B 7000/ 
B 6000 Information Processing System. 

In order to eliminate many initiations of a compiler, the individual jobs are collected into a batch and 
presented as one file to the Batching Compiler. This obviously reduces the number of compiles to one 
compile, enabling the compiler to "get up to speed". The compilation process for each individual job is 
virtually the same as for non-batched jobs and yields equally efficient object code. When the compiler 
finishes compiling the last individual job, it generates special object code in the outer block to link each 
individual job to the next one. Should any individual job have syntax errors, or specify COMPILE FOR 
SYNTAX, it is not linked into the other jobs. The code of all individual jobs resides in one code file or 
disk at the end of the compile. 

The printed output from the compiler is directed to a backup disk file with an altered BDBASE so that it 
will not be printed by AUTOPRINT. Logging information regarding the compile is also saved in this file. 
The execution of the code is: 

1. Build the D2 stack. 

2. Call BATCHMONITOR passing it a procedure which serially calls each individual job. 

3. BATCHMONITOR processes the procedure passed to it. If any job should cause a fatal 
execution error, BATCHMONITOR reprocesses the procedure, which sequences automatically 
to the next individual job. 

F-3 



4. BATCHMONITOR rewinds the two backup printer files, extracts the logging information, and 
collates the output into a new printer file. 

5. Return to the MCP. 

The compiler makes attempts to· share arrays from one individual job with succeeding jobs, eliminating 
many presence bit interrupts. ,Additionally, all jobs share the same printer file and intrinsics and may even 
share the same code segments. The individual jobs run serially and share the same stack space. 

One job is protected from previous jobs by the BATCHMONITOR, a DCALGOL intrinsic. Should one job 
have an error, the execution is reinitiated by BATCHMONITOR at the next individual job. Should a job use 
an excessive amount of either 1/0 time or processor time, this fact is noticed by BATCHMONITOR, and the 
individual job is terminated. Likewise, BATCHMONITOR enforces the rule that no RSVP messages are 
allowed, by terminating the job that causes one. 

BATCHMONITOR extracts the logging information from the two printer files and summarizes it at the end 
of the output of each individual job. This is easily modified to interface with the accounting system of a 
given installation. Additionally, two words in each log record furnished by the compiler and the individual 
job are spares to facilitate any installation extensions. 

F-4 



APPENDIX G. RUN-TIME FORMAT ERROR MESSAGES 

The meanings of the various format error numbers pertaining to free-field input are as follows: 

NUMBER 

400 

416 

420 

442 

443 

444 

462 

467 

473 

484 

ERROR MESSAGE 

An error on input occurred wh~n the intrinsic did a logical I/0. 

Attempted recursive I/O --evaluation of a list element caused a READ/WRITE/CLOSE on 
the current file. 

Input from the <core-to-core file part> requires more records than allowed by the 
<core-to-core records per file part>. [Note: The default is one record per file part.] . 
Hex string for single-precision list element contains more than 12 significant digits. 

Unmatched quote for hex string, or non-hex character encountered in hex string. 

Hex string for double-precision list element contains more than 24 significant digits. 

Quoted string has not been exhausted, but next list element is a pointer (unresolvable 
ambiguity). 

Input value exceeded the maximum value that the list element is capable of representing. 

Unmatched quote. 

An expression may not b~ used as a list element which receives a value on input. 

The meanings of the various format error numbers pertaining to output are as follows: 

NUMBER 

100 

102 

103 

104 

105 

ERROR MESSAGE 

An error Qn output occurred when the intrinsic did a logical I/O. 

Format was V specifier, and list element did not produce an A, C, D, E, F, G, H, I, J, K, L, 
0, P, R, S, T, U, X, or Z. [Note: If the list element is single precision, the rightmost charac­
ter is used. If the list element is double precision,, the rightmost character of the first (most 
significant) word is used. If the list element is a pointer, the character it points to is used.] 

Format was V specifier of the form rV, and the resultant specifier needed a field width: 
e.g., 2V ~ 21. 

Format was V specifier of the form rV, and the resultant specifier needed a field width and 
decimal places: e.g., 2V ~ 2E. 

Format was V specifier of the form rVw, and the resultant specifier needed decimal places: 
e.g., 2V* ~ 2F6. 

G-1 



NUMBER 

106 

107 

109 

110 

111 

113 

114 

116 

117 

120 

131 

132 

133 

163 

ERROR MESSAGE 

Format specifier evaluated to Fw.d form, and d<O. 

Format specifier evaluated to Ew.d or Dw.d, and d<O. 

Format specifier evaluated to Zw, and corresponding list element was neither of type integer 
nor type Boolean (expressions of type integer or Boolean are edited under Zw .d as Iw or Lw, 
respectively). Therefore, the decimal places are considered missing. 

The list contains an element whose type is inappropriate for its associated·format phrase. 
[Note that a pointer or a long (>48 bits) string cannot be used with a numeric editing 
phrase.] 

Format specifier evaluated to Zw.d, and Zw.d logic chosen to edit the expression under Ew.d, 
but d<l. 

Format specifier evaluated to Ew.d or Dw.d, and w~d. 

Dynamic w or d part of format specifier evaluated to a value greater than the maximum 
integer allowed, 549755813887. · 

Attempted recursive I/O - evaluation of a list element caused a read/write/close on the 
current file. 

Record overflow - an attempt was made to output more characters than the record can have. 

Output to the <core-to-core file part> requires more records than allowed by the <core-to­
core records per file part>. [Note: The default is one record per file part.] 

Dynamic r part of format specifier evaluated to a value greater than the maximum real 
allowed, 4.31359146673* 10**68. 

Dynamic w part of format specifier evaluated to a value greater than the maximum integer 
allowed, 549755813887. 

Dynamic d part of format specifier evaluated to a value grearer than the maximum integer 
allowed, 549755813887. 

Maxrecsize not large enough to allow freefield write. 

The meanings of the various format error numbers pertaining to formatted input are as follows: 

NUMBER ERROR MESSAGE 

200 An error on input occurred when the intrinsic did a logical I/O. 

G-2 



NUMBER 

202 

203 

204 

205 

206 

207 

209 

210 

213 

214 

216 

217 

218 

220 

231 

232 

ERROR MESSAGE 

Format was V specifier, and list element did not produce an A, C, D, E, F, G, H, I, J, K, L, 
0, P, R, S, T, X, or Z. [Note: If the list element is single precision, the rightmost character 
is used. If the list element is double precision, the rightmost character of the first (most 
significant) word is used. If the list element is a pointer, the character it points to is used.] 

Format was V specifier of the form rV, and the resultant specifier needed a field width: 
e.g., 2V => 21. 

Format was V specifier of the form rV, and the resultant specifier needed a field width and 
decimal places: e.g., 2V => 2E. 

Format was V specifier of the form rVw, and the resultant specifier needed decimal places: 
e.g., 2V* => 2F6. 

Format specifier evaluated to Fw.d form, and d<O. 

Format specifier evaluated to Ew.d or Dw.d, and d<O. 

Format specifier evaluated to Zw, and corresponding list element was neither of type integer 
nor type Boolean (expressions of type integer or Boolean are edited under Zw .d as Iw or Lw, 
respectively). Therefore, the decimal places are considered missing. 

The list contains an element whose type is inappropriate for its associated format phrase. 
[Note that a pointer or a long (>48 bits) string cannot be used with a numeric editing 
phrase.] 

Format specifier evaluated to Ew.d or Dw.d, and w,.;;;d. 

Dynamic word part of format specifier evaluated to a value greater than the maximum 
integer allowed, 549755813887. 

Attempted recursive 1/0 - evaluation of a list element caused a read/write/close on the 
current file. 

Record overflow - an attempt was made to input more characters than the record has. 

Invalid data for H or K format phrase. 

Input from the <core-to-core file part> requires more records than allowed by the <core-to­
core records per file part>. [Note: the default is one record per file part.] 

Dynamic r part of format specifier evaluated to a value greater than the maximum real 
allowed, 4.31359146673* 10**68. 

Dynamic w part of format specifier evaluated to a value greater than the maximum integer 
allowed, 549755813887. 

G-3 



NUMBER 

233 

250 

271 

281 

284 

285 

286 

291 

292 

293 

294 

295 

G-4 

ERROR MESSAGE 

Dynamic d part of format specifier evaluated to a value greater than the maximum integer 
allowed, 549755813887. 

The U format phrase has yet to be implemented for input. 

The $ and P format modifiers are not allowed on input. 

Invalid data fo;r I format phrase. 

An expression as a list element which receives a value on input is not allowed. 

The list element was type real, but the input value exceeded the maximum real allowed, 
4.31359146673* 10**68. 

The list element was type integer or Boolean, but the input value exceeded the maximum 
integer allowed, 549755813887. 

While inputting a constant using a numeric editing phrase, a non-digit was detected in the 
exponent part following at least one legitimate digit. 

While inputting a constant using a numeric editing phrase, two or more exponent signs were 
detected. 

While inputting a constant using a numeric editing phrase, an illegal character was detected 
after the exponent sign and before the exponent value. 

WJtile inputting a constant using a numeric editing phrase, an illegal character was detected 
past the decimal point. 

While inputting a constant using a numeric editing phrase, two or more mantissa signs were 
detected. 



APPENDIX H. COMPILE-TIME FACILITIES 

INTRODUCTION 

The compile-time facility is used conditionally and/or interactively to compile ALGOL source data, the 
following description consists of (1) the declaration and use of compile-time variables; (2) compile-time 
identifiers; (3) compile-time statements; and (4) dollar card options, the ALGOL compiler must be compiled 
with the option CTPROC set in order to include these features in compilations. 

COMPILE-TIME VARIABLES 

Syntax 

<compile-time variable declaration>::= NUMBER <CT var list> 
<CT var list>::= <CT var> I <CT var list> ,<CT var> 
<CT var>::= <identifier> I <identifier>::= <initial value> I <identifier> [ <vector length> ] 
<initial value>::= <arithmetic expression> 
<vector length> : :=<arithmetic expression> 

Semantics 

An identifier declared to be a NUMBER is a "number variable'', or an arithmetic compile-time variable. A 
number variable represents a single-precision arithmetic value. It may be used wherever an arithmetic value 
is allowed; it represents the value most recently assigned to it. The value of a number variable may be 
changed at any time during compilation by means of a <compile-time 'LET' statement>. A number 
variable may be declared with an <initial value>. By default, the <initial value> is zero. The <initial 
value> must be a constant <arithmetic expression>. 

A vector of number variables may be declared by specifying its length in brackets. The members of a vector 
of number variables are referenced like subscripted variables. The subscript must be an arithmetic constant 
expression, greater than or equal to zero, and less than the declared vector length. The <vector length> 
must be a constant <arithmetic expression>. 

COMPILE TIME IDENTIFIERS 

Synta" 

<compile-time identifier>::= <identifier> <apostrophe> <numberid> I 
<identifier> <apostrophe> <compile-time variable> 

Semantics 

A <compile-time identifier> is formed by combining a compile-time variable with an <identifier>. The 
<compile-time identifier> may appear anywhere a normal identifier may be used, including declarations. 
No blank characters may appear between the <identifier> and the <apostrophe>. The created 
<identifier> is the original <identifier> followed by an <apostrophe>, followed by numeric characters 
corresponding to the value of the compile-time variable, with leading zeros suppressed. 

H-1 



COMPILE-TIME STATEMENTS 

Compile-time statements are introduced by the apostrophe. They are recognized at a very primitive level in 
the compiler and may, therefore, appear "almost anywhere," such as between any two normal language 
elements, 

The compile-time statements are intended to provide a convenient method for altering the normal control of 
compilation, primarily via conditional and iterative compilation. 

The compile-time statements (all introduced by an apostrophe) are as follows: 

a. BEGIN 
b. IF 
c. THRU 
d. FOR 
e. WHILE 
f. DEFINE 
g. INVOKE 
h. LET 

In the syntax which follows, the term "text" refers to any ALGOL text, including complete compile-time 
statements. 

Complete compile-time statements are always terminated by semicolons. However, compile-time statements 
which are components or other statements are terminated by 'END or 'ELSE. Note that these rules are the 
same as for normal ALGOL statements. 

'BEING STATEMENT 

Syntax 

<compile-time begin>::= 'BEGIN <text> 'END <comments> 

Semantics 

The <compile-time begin stmt> delimits a portion of ALGOL text. It is normally used in conjunction 
with the 'IF, 'THRU and 'FOR statements. If the statement is not skipped, the ALGOL compiler processes 
all the delimited text; otherwise, the compiler ignores the text. Anything following the 'END up to the 
first special character, END, ELSE or UNTIL is considered to be <comments> and is ignored. 

'IF STATEMENT 

Syntax 

<compile-time if stmt> : := 'IF <Boolean expression> THEN <ctstmt> I 
'IF <Boolean expression> THEN <ctstmt> 'ELSE <ctstmt> 

Semantics 

This statement provides for conditional compilation of ALGOL text. 

H-2 



The <Boolean expression> must be a constant expression. IfTRUE, the <ctstmt> following THEN is 
processed. If FALSE, the <ctstmt> following 'ELSE is processed, if present. 

'THRU STATEMENT 

Syntax 

<compile-time thru stmt> ::= 'THRU <arithmetic expression> DO <ctstmt> 

Semantics 

The <compile-time thru stmt> provides iterative compilation of ALGOL text. The <arithmetic 
expression> must be a constant expression, greater than or equal to zero. 

The <ctstmt> following DO is processed the specified number of times. If zero, the statement is skipped. 

'FOR STATEMENT 

Syntax 

<compile-time for stmt>: := 'FOR <numberid> := <aexp-1> STEP <aexp-2> UNTIL <aexp-3> 
DO<ctstmt> 

Semantics 

The <compile-time for stmt> provides for iterative compilation of ALGOL text. Each AEXP must be a 
constant <arithmetic expression>. <aexp-2> may be positive or negative, but must not be zero. 

The action of this statement is similar to the ALGOL <for statement>. An exception is that <aexp-2> 
and <aexp-3> are evaluated only once, at the beginning of the operation. They are not re-evaluated, even 
though their components may change value. 

'WHILE STATEMENT 

Syntax 

<compile-time while stmt> ::='WHILE <Boolean expression> DO <ctstmt> 

Semantics 

The <compile-time while stmt> provides for iterative compilation of ALGOL text. The <Boolean 
expression> must be a constant expression. Priof to the iterations, the <Boolean expression> is 
evaluated. If it is TRUE, the <ctstmt> is processed; if it is FALSE, the entire statement is finished. 

'DEFINE STATEMENT 

Syntax 

<compile-time define stmt> ::='DEFINE <identifier>= <ctstmt> 

H-3 



Semantics 

The <.compile-time define stmt> declares an <identifier> to represent a <.ctstmt>. 

The <.ctstmt> is stored away, to be processed when referenced in a subsequent <compile-time invoke stmt>. 

'INVOKE STATEMENT 

Syntax 

<.compile-time invoke stmt> ::='INVOKE <identifier> 

Semantics 

The <.compile-time invoke stmt> causes the <.ctstmt>, previously associated with the <identifier> in a 
<.compile-time define stmt> to be processed. · 

'LET STATEMENT 

Syntax 

<.compile-time let stmt> ::= 'LEf <.number variable> := <aexp-2> 
<nu.mber variable>::= <.numberid> I <.numberid> [aexp-2] 

Semantics 

This statement is used to modify the value of a compile-time variable. <aexp-1> must be a constant 
<arithmetic expression>. If the sµbscripted form is used, the <.numberid> must have been declared as a 
vector of number vatjables; <aexp-2> must be greater than or equal to zero and less than the declared 
<vector length>. 

COMPILER OPTIONS 

H-4 

• CTMON 

If CTMON is SET, all assignments to compile-time variables are monitored on the line printer listing. 
That is, the current value of a <.compile-time variable> when it is referenced, and the new value 
when it is changed are printed. 

• CTLIST 

If CTLIST is SET, all card images processed are printed on tqe line printer listing. In particular, during 
during iterative compile-time statements, card images which are processed repeatedly are printed 
repeatedly. They are identified by ·an asterisk (*) where the P or C usually appears. If CTLIST is 
RESET (default), card images are printed the first time they are processed. 



• LISTSKIP 

If LISTSKIP is RESET, the printing of skipped card images is suppressed. If LISTSKIP is SET 
(default), card images are printed whether or not they are skipped (provided other listing options 
are set appropriately). 

• LISTINCL 

If LISTINCL is SET, card images from the INCLUDE file are printed on the line printer listing 
(provided other listing options are set appropriately). If LISTINCL is RESET (default), included 
cards are not printed. 

• CITRACE 

If CITRACE is SET, values of all expressions which are components of compile-time statements 
are printed on the line printer listing. 

H-5/H-6 





INDEX 

In the page number column, the page number to the left of the semicolon refers to the text page that first 
uses or describes the metalinguistic item in the Extended . ALGOL syntax. 

ITEM PAGE 

A ................................................. 2-2, 2-7, 2-9, 4-8, 4-20, 4-51, 6-19 
ABS ........................................................................... 6-19 
<accept statement> ......................................................... 5-2; 5-48 
accidental entry ................................................................. 4-57 
<action labels or finished event> ................................. 5-67; 5-75, 5-104, 5-119 
<actual parameter> ...... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13; 6-18 
<actual parameter list> ........................................................... 5-13; 
<actual parameter part> ................................ 5-13; 5-61, 5-62, 5-93, 6-18, 6-19 
<actual text part> ................................................................ 4-8; 
<adding operator> ........................................................... 6-2; 6-31 
<address list> . ................................................................. 5-111; 
ALGOLCODE ................................................................... 4-17 
ALGOLSYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
ALPHA ...................................................... 4-2, 4-3, 6-9, 4-69, 5-78 
<alpha declaration> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2; 4-71 

entering, exiting a< block> ..................................................... 4-2 
<alpha string> ................................................................... 2-9; 
alphanumeric editing ......................................................... 4-24, 4-27 

values ...................................................................... 4-2 
ALPHA6 .............................................................. 6-9, 4-69, 5-78 
ALPHA7 .............................................................. 6-9, 4-69, 5-78 
ALPHAS .............................................................. 6-9, 4-69, 5-78 
AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2, 6-10 
ANY .................................... ~ ............................. 2-7, 4-8, 5-12 
ANYFAULT .................................................................... 5-58 
ARCCOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19 
ARCSIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19 
ARCTAN ....................................................................... 6-19 
ARCTAN2 ...................................................................... 6-19 
AREACLASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 
AREAS ............ : ........................................................... 4-16 
AREASIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 
<arithmetic assignment> .. • ................................................ 5-4; 5-3, 6-2 
<arithmetic attribute> ........................................................ 5-4; 6-2 
<arithmetic case expression> ....... ................................................. 6-2; 
<arithmetic direct array attribute> ................................................... 5-4; 

Index-1 



ITEM PAGE 

<arithmetic expression> ....... 6-2; 4-3, 4-16, 4-46, 4-61, 5-4, 5-15, 5-41, 5-64, 5-66, 5-78, 
5-91, 5-97, 5-99, 5-104, 5-109, 5-111, 6-1, 6-2, 6-3, 

6-9, 6-14 
<arithmetic expression list> ................................•.................. 6-2; 6-14 
<arithmetic file attribute> ......................................... ·. . . . . . . . . . . . . . . . 5-4; 
<arithmetic file attribute value> .................................................... 4-16; 
<arithmetic function designator> .......................................... 6-19; 6-2, 6-18 
<arithmetic function identifier> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19; 
<arithmetic intrinsic name> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 6-19; 
arithmetic intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19 

operation, resulting values ................................................... '. . . 6-6 
<arithmetic operator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2; 
arithmetic operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 

precedence ............................. ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 
<arithmetic task attribute> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 5-5; 
<arithmetic variable>......................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4; 6-2 
<arithmetic-valued direct array attribute name> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4; 
<arithmetic-valued file attribute name> .......................................... 4-16; 5-4 
<arithmetic-valued task attribute name> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5; 
armed faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-60 
ARRAY ......................................... 4-3, 4-6, 4-10, 4-15, 4-65, 4-72, 5-64 
<array class> ........................................... 4-3; 4-3, 4-6, 4-10, 4-55, 4-72 
<array declaration> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3; 4-1 
<array designator> ................... ........................................ 5-7; 5-13 

lexic level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 
<array equivalence> .............................................................. 4-3; 
<array identifier> ....................................... 4-3; 4-13, 4-48, 5-4, 5-7, 5-108 
<array identifier list> . ........................................................ 4-3; 4-55 
<array list> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3; 
<array name> ........................................................... 5-4; 5-7, 5-67 
<array part> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 6-30; 
<array reference assignment> ................................................... 5-7; 5-3 
<array reference declaration> ................................................... 4-6; 4-1 

single-dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 
<array reference identifier> ................................................ 4-6; 5-4, 5-7 
<array reference identifier list> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6; 
<array reference list>................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6; 
<array reference segment> . .................. ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6; 
<array reference variable> ..................................................... . 5-7; 4-6 
<array row> ................. 5-67; 4-46, 5-31, 5-39, 5-58, 5-66, 5-91, 5-111, 5-120, 6-32 
<array row equivalence> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3; 
<array segment> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3; 
<array specification> ............ , ................................................. 4-5 5; 
<array specifier> ................................................................ 4-55; 
<array specifier list> ............................................................. 4-5 5; 
<array type> ................................................................... ·4-55; 

lndex-2 



ITEM PAGE 

ARRAYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-64 
character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 
direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 
one-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 
subscript bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 
VALUE .................................................................... 4-72 

ASCII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3, 4-17, 4-66 
ASCII characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 
<ASCII code> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9; 
<ASCII string> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9; 
ASCIITOBCL ......... : ............................................ ·. . . . . . . . . . . . . 5-78 
ASCIITOEBCDIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-78 
ASCIITOHEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-78 
assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 

arithmetic ...................................... ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 
array reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 
Boolean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 
multiple attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-57 
pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 
task ....................................................................... 5-10 

<assignment statement> ............................................... 5-3; 5-110, 5-111 
ASSIGNTIME .......................................... I •••••••••••••••••••••••• 4-16 
asterisk 

<close statement> ........................................................... 5-25 
<format and list part> ........................................................ 5-66 
free field format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-72 

<asterisk part> . .................................................................. 5-66; 
asynchronous process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-62 
ATANH ............. , .......................................................... 6-19 
ATEND ........................................................................ 4-17 
ATTACH ....................................................................... 5-11 
<attach statement> .................................................... 5-11; 4-44, 5-51 
ATTERR .................................................................. 4-18, 5-88 
ATTVALUE .................................................................... 4-16 
ATTYPE ....................................................................... 4-16 
AVAILABLE ................................................................... 5-37 
AVAILABLE (Boolean intrinsic) ..................................................... 6-29 

B ..................................................................... 2-2, 2-9, 4-51 
BACKUPDISK ................................................................... 4-17 
BACKUPPREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-89 
BACKUPPRINTER ...................................... ; .................. ~ . . . . . 4-17 
BACKUPPUNCH ................................................................. 4-17 
Backus-Naur syntax notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
bad go to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 7 
BASE ......................................................................... 5-64 
BASIC ................... .'. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 

Index-3 



ITEM PAGE 

<basic symbol> .............................................................. 2-2; 2-1 
BASICCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
BASICSYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 

batch facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F-1 
BCL ................................................................. 4-3, 4-17, 4-66 
< BCL code.> ................................... ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9; 
< BCL string> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-?; 
BCLTOASCII ................................................................... 5-78 
BCLTOEBCDIC . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-78 
BCLTOHEX ............................................................. · ........ 5-78 
BEGIN ......................................................... 2-2, 3-1, 5-15, 5-111 
BEGIN-END pair .......................................................... ·. . . . . . . . 3-1 
BINARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
<binary character> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9; 
<binary code>.................................................................. 2-9; 
< binary string> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9; 
BINDERSYMBOL ............................................................... 4-17 
BLOCK ........................................................................ 4-16 
<block> .................................................................. 3-1; 5-110 

entering ..................................................................... 3-2 
<block head> ................................................................... 3.,-l; 
BLOCKSIZE .................. : ................................................. 4-16 
BOOLEAN .................................................... 4-3, 4-7, 5-8, 6-9, 6-29 
BOOLEAN (intrinsic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29 
<Boolean assignment> ................................................... 5-8; 5-3, 6-10 
<Boolean attribute> ........ , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8; 6-9 
<Boolean case expression> ......................................................... 6-9; 
<Boolean declaration> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7; 4-71 

<partial word part> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 
entering, exiting a <block> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 
<Boolean direct array attribute> ..................................................... 5-8; 
<Boolean expression> ............. 6-9; 4-16, 4-46, 5-8, 5-35, 5-41, 5-50, 5-118, 6-1, 6-10 
< Boolean expression list> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9; 6-14 
<Boolean factor> ........................................................... 6-9; 6-10 
<Boolean file attribute> . ....... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8; 
<Boolean function designator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29; 6-9, 6-18 
<Boolean function identifier> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29; 
Boolean intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29 
< Boolean intrinsic name> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29; 
<Boolean operand> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9; 
<Boolean prin'li:lry> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9; 

1/0 result word .............................................................. 5-76 
<Boolean secondary> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9; 
<Boolean task attribute> .............................................. 1'.' •••••••••• 5-8; 
<Boolean term> .................... ; ............................... . 1 

••••••• 6-9; 6-10 
<Boolean variable> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8; 6-9 
<Boolean-valued direct array attribute name> ......................................... 5-8; 
<Boolean-valued file attribute name> ........................... , . . . . . . . . . . 4-18; 4-16, 5-8 

Index-4 



ITEM PAGE 

<Boolean-valued task attribute name> . ................................................ 5-8; 
<bound pair> ................................................................... 4-3; 
<bound pair list> ................................................ 4-3;4-10,4-15,4-65 
BOUNDCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
<bounds part> ................................................................. 4-13; 
<bracket> ................................................................. ·.... 2-2; 
BREAKHERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
<breakpoint statement> ................................................... 5-12; 5-110 
BREAKPOINT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 
broken brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
BUFFERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 
BY ............................................................ _ .... 5-79, 5-88, 5-89 

c ............................................................... 2-2, 2-9, 4-20, 4-51 
CALL ......................................................................... 5-13 
call-by-name ..................................................................... 4-57 
call-by-value ...................................................................... 4-57 
<call statement> ............................ ; ..............•............... 5-13; 5-52 
CARRIAGECONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 
carriage control ................................................................ .' 5-69 
CASE......................................................................... 4-16 
<case body> ............................................................ .- ..... 5-15; 
<case expression> ........................................................... 6-14; 6-1 

implicitly numbered statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16 
explicitly numbered statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16 

<case head> ................................................. 6-14; 6-2, 6-9, 6-16, 6-31 
<case statement> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15; 5-110 
CAUSE ........................................................................ 5-17 
<cause statement> . ......................................................... 5-17; 5-37 
CAUSEANDRESET .............................................................. 5-18 
< causeandreset statement> ................................................... 5-18; 5-37 
CDATA ........................................................................ 4-17 
CENSUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 
character 

arrays ...................................................................... 4-5 
default size ............................................................. 2-10, C-1 
editing ...................................................................... 4-51 
scanning data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-94 
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . C-1 

CHANGEFILE ......... , ........................................................ 5-19 
<changeftlestatement> ..................................................... 5-19; 5-110 
<character array identifier> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6:..._31; 
<character array name> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31; 
<character array part> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31; 
<character array row> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31; 
character representation 

EBCDIC code ................................................................ B-2 
BCLcode ................................................................... B-2 

Index-5 



ITEM PAGE 

packed BCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . B-3 
<character set> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-66; 
<character size> . .............................. ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30; 
<character type> ........................................................ 4-3; 4-3, 4-14 
CHARACTERS ................ : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.....: 17 
CHARGECODE ........................... .'. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-89 
<checkpoint statement> .................................................... 5-20; 5-110 
CHECKSUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20 
CLASS ............................................ · .. ·.......................... 5-5 
CLASSA .............................................................. ·. . . . . . . . . 4-17 
CLASSB ................................................................. : ..... 4-17 
CLOSE ........................................................................ 5-25 
<close option> ...................................... ; ............................ 5-25; 
<close statement> ..................................................... 5-25; 5-48, 5-55 
CLOSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
<closed text>................................................................... 4-8; 
<closed text list>............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8; 
COBOLCODE .............. .' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
COBOLSYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
CODE ......................................................................... 5-64 
CODEFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
coding form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1 
'colon equals symbol ............... ·. . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
<column width> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-67; 
COMBINEPPBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20 
COMMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 . 
<comment remark>..................................................... . . . . . . . . . . 2-7; 
<compare procedure> ................................................ 5-99; 5-56, 5-101 
compiler · 

compile-time facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H-1 
control statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1 
files ..................... ·,................................................. E-1 
option actions .. ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-3 
option syntax .................. ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-2 
option list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-4 
options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-1 

COMPILERCODEFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
COMPILETIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 6-20 
COMPILETYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 
<compound statement> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1; 5-110 
< compo.und tail> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1; 
<concatenation> ............................................... · ... 6-2; 6-7, 6-9, 6-12 
<condition> ....................................................... 5-78; 5-94, 5'-'-107 
<conditional arithmetic expression> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3; 6-2, 6-15 
<conditional Boolean expression> ............................... ... ; . . . . . . 6-10; 6-9, 6-15 
< conditional designational expression> ..................................... ·. . . . 6-16; 6-15 
<conditional expression> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15; 6-1 
<conditional list element>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 4-46; 

Index-6 



ITEM PAGE 

< conditional pointer expression> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31 ; 6-15 
conditional procure function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-40 
<conditional statement> ............................................... 5-27; 5-1, 5-111 

entering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29 
nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-28 

<constant> . .................................................................... 4-72; 
<constant expression> ............................................................ .4-72; 
<constant list> ................................................................. 4-72; 
CONTINUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30 
<continue statement> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30; 5-10, 5-110 
<control character> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 4-51; 4-52 
<control part>...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13; 
CONTROLDECK ................................................................ 4-17 
controlled variable............................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-41, 5-53 
COPIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 
<copy number> .............................................................. 5-4; 4-5 
<core size> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-99; 
<core-to-core blocking part> .................................................. 5-66; 5-71 
<core-to-core file part> ... ', . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-66; 5-70 

core-to-core 1/0 .............................................................. 5-70 
< core-to-core part> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-66; 5-70 
<core-to-core record size> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-66; 5-71 
<core-to-core records per file part>............................................ 5-66; 5-71 
COREESTIMATE . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5, 5-14, 5-62 
coroutine 

<call statement> ............................................................ 5-13 
<continue statement> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30 
critical block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 
partnertasks ................................................................ 5-13 
<task identifier':> ............................................................ 4-12 

cos .......................................................................... 6-20 
COSH ......................................................................... 6-20 
COTAN ........................................................................ 6-21 
<count part> .............................................................. 5-78; 5-94 
CP ............................................................................ 4-17 
critical block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-62 
CRUNCH. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25, 5-55 
CSEQDATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
CYCLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 
CYLINDE~ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18 

D ............................................................... 2-2, 2-9, 4-20, 4-51 
DABS ......................................................................... 6-21 
DAND ...... ~ ................. ; ................................................ 6-21 
DARCCOS ..................................................................... 6-21 
DARCSIN .............................................................. · ......... 6-21 
DARCTAN ...................................................................... 6-21 
DARCTAN2 .................................................................... 6-21 

Index-7 



ITEM PAGE 

DATA .................................. ; ....................................... 4-17 
DATAERROR ................................................................... 4-17 
DATE .......................................................................... 4-16 
DBS ............................................................................ 5-64 
DC ............................................................................. 4-17 
DCOS ........................................ · .................................. 6-21 
DCOSH ................................ _. ........................................ 6-21 
DCALGOLCODE ................................................................. 4-17, 
DCALGOLSYMBOL .................................. ; ............................ 4-17 
DEALLOCATE ................................................................... 5-31 
<deallocate statement> ...................................................... 5-31; 5-110 
<decimal fraction> ................................................................ 2-5 
<decimal number> ................................................................ 2-5 
< declaration> ............................................................... 4-1 ; 3-11 
<declaration list> .................................................................. 3-1 
declarations ........................................................................ 4-1 

ALPHA ............................................................. .' .......... 4-2 
ARRAY ..................................................................... 4-3 
ARRAY REFERENCE ............................... ; .......................... 4-6 
BOOLEAN ................................................................... 4-7 
DEFINE ...................................................................... 4-8 
DIRECT ARRAY ............................................................. 4-10 
DOUBLE .................................................................... 4-12 
DUMP .............................. ; ....................................... 4-13 
EVENT and EVENT ARRAY .................................................... 4-15 
FILE ....................................................................... 4-16 
FORMAT ................................................................... 4-20 
.forward reference ............................................................. 4-42 
INTEGER ................................................................... 4-43 
INTERRUPT ................................................................. 4-44 
LABEL ...................................................................... 4-45 
LIST ....................................................................... 4-46 
MONITOR .............................. ~ ................................... 4-48 
PICTURE ......... ,. ................................ : ........................ 4-51 
POINTER ................................................. · .................. 4-54 
PROCEDURE ................................. : .............................. 4-55 
REAL ........................................ · .............................. 4-59 
SWITCH .................................................................... 4-60 
SWITCH FILE ................................................................ 4-61 
SWITCH FORMAT ......................................... : .................. 4-62 
SWITCH LABEL .............................................................. 4-63 
SWITCH LIST ................................................................ 4-64 
TASK and TASK ARRAY ...................................................... 4-65 
TRANSLATETABLE .......................................................... 4-66 
TRUTHSET ............................•...................... _. .......... · .... 4-69 
type ........................................................................ 4-71 
VALUE ARRAY ............................................................ · .. 4-72 

DECLAREDPRIORITY ................................................... 5-5, 5-14, 5-62 

Index 8 



ITEM PAGE 

default character size ........................................................... 2-10, C-1 
DEFAULTTRANS ................................................................ 4-18; 
DEFINE ......................................................................... 4-8 
< define declaration> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 ;4-1 

invocation .................................................................... 4-9 
parametric ............. · . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 
simple ....................................................................... 4-8 

< define invocation> ....................................................... 4-8; 2-1 ;4-9 
<defined identifier> .......................................................... 4-8; 4-20 
<definition> ..................................................................... 4-8; 
<definition list> .................................................................. 4-8 
<delimiter> . ..................................................................... 2-2 
DELTA ......................................................................... 6-21 
delimiters ....................................................................... 5-73 

field ......................................................................... 5-73 
multicharacter ................................................................. 2-3 

DENSITY ....................................................................... 4-16 
<density mnemonic> . ......................................................... 4-17 ;4-16 
DEQV .......................................................................... 6-21 
DERF .......................................................................... 6-21 
DERFC ......................................................................... 6-21 
<designational expression> ...................................... 6-16;4-63, 5-47, 5-67, 6-1 
<designational expression list> ................................................. 6-16; 6-14 
<destination> ........ :.; ....................................................... . 5-78; 
<destination characters> . .......................................................... 4-66; 
DETACH ............................................................. · ........... 5-32 
<detach statement> .......................................................... 5-32; 5-51 
<device> ....................................................................... . 5-20 
DEXP .......................................................................... 6-21 
DGAMMA ....................................................................... 6-21 
diagnostic mechanisms ........................................................ 4-13, 4-48 
<digit> ........................................................ 2-2; 2-4, 2-5, 2-7, 2-9 
<.digit convert part> .............................................................. 5-78; 
DIGITS ......................................................................... 5-78 
DIMP ........................................................................... 6-21 
DINTEGER ...................................................................... 6-:--21 
DIRECT .......................................................... 4-6, 4-10, 4-18, 5-7 
DIRECT ARRAY ................................................................. 4-18 
< direct array declaration> . ..................................................... 4-10; 4-1 
<direct array equivalence> ......................................................... 4-10; 
<direct a"ay identifier> ....................................................... 4-10; 5-4 
<direct array identifier list> ....................................................... .4-10; 
< direct array list> ................................................................ 4-10; 
<direct array row> ...................................................... 5-4;5-8, 5-114 
<direct array segment> ............................................... , ........... . 4-10; 
direct arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 

system efficiency .............................................................. 4-11 

Index -9 



ITEM PAGE 

<direct character array identifier> . ................................................... 6-31; 
<direct file identifier> . ....................................................... 4-61; 5-13 
direct I/O ................................................................... 4-10, 5-49 
DIRECT Sales ............................................................... 4-61, 5-48 
<direct specifier> ............... , ................................. 4-6; 4-16, 4-55, 4-61 
<direct switch ftle identifier> .................................................. 4-61; 5-13 
DIRECTION ........................ ._ ....................................... 4-16, 5-25 
DIRECTORY .................................................................... 4-17 
<directory element> ........................ ....... : ............................... 5-19 
<directory string> .................... : ............................................ 5-19 
DISABLE ....................................................................... 5-33 
<disable statement> .................................................... 5-33, 4-44, 5-51 
<disabling on statement> .......................................................... 5-58; 
DISK ........................................................................... 4-17 
<disk row/copy specification> .............................................. 5-4; 5-8, 5-89 
<disk size> .................................................................... . 5-99; 
DISKPACK ........................................................................ 4-17 
DISPLAY .................... · ............................................... 4-17, 5-34 
<display statement> ......................................................... 5-34; 5-48 
DISPOSITION .................................................... · ................ 4-16 
<disposition> ................ .- .................................................. 5-20 
DIV ........................ -: ................................................ 2-2, 6-2 
DLGAMA ....................................................................... 6-22 
DLN ........................................................................... 6-22 
DLOG .......................................................................... 6-22 
DMAX .......................................................................... 6-22 
DMIN .......................................................................... 6-22 
DNABS ....................................................................... '.. 6-22 
DNOT .......................................... , .................... · ........... 6-22 
DO .............................................. .4-46, 5-35, 5-41, 5-109, 5-111, 5-118 
<do statement> . ............................................................ 5-35; 5-53 
DOR ............................................................................ 6-22 
DOUBLE .................................................................... 4-3, 4-12 
DOUBLE (arithmetic intrinsic) ............................................. ~ ......... 6-28 . . 
<double declaration> ........................................................ 4-12; 4-71 

96-bit entity ................................................................. 4-12 
entering, exiting a< block> . .................................................... 4-12 

double precision operand ............................................................ B-7 
DO-UNTIL loop .................................................................... 5-35 
DSCALELEFT ................................................................... 6-22 
DSCALERIGHT .................................................................. 6-22 
DSCALERIGHT .................................................................. 6-23 
DSIN ............................................................................. 6-23 
DSINH ......................................................................... 6-23 
DSQRT ......................................................................... 6-23 

Index-10 



ITEM PAGE 

DTAN .......................................................................... 6-23 
DTANH ......................................................................... 6-23 
dummy statement ........................................................... 5-15, 5-110 
DUMP .......................................................................... 4-13 
<dump declaration> .......................................................... 4-13; 4-1 
<dump element> . ................................................................ 4-13; 
<dump list> ................. .................................................... 4-13; 
<dump parameters> ......... ...................................................... 4-13; 
<dump part> ................................................................... . 4-13; 
DUPLICATED ................................................................... 4-18 

E ........................................................... 2-2, 2-9, 4-20, 4-28, 4-51 
EBCDIC .......................................................... 2-7, 4-3, 4-17, 4-66 
<EBCDIC character> .......................................................... 2-9; 4-51 
< EBCDIC code> ................................................................... 2-9; 
EBCDIC NULL character ............................................................ 5-2 
<EBCDIC string> ............................................ , ................... . 2-9; 
EBCDICTOASCII .................................................................. 5-78 
EBCDICTOBCL .................................................................. 5-78 
EBCDICTOHEX ......•.............................................................. 5-78 
edit table ........................................................................ 4-53 
<editing phrase> ......... ........................................................ 4-20; 
<editing phrase type> . ............................................................ 4-20; 
< editing segment> . ............................................................... 4-20; 
<editing specifications> . ............................................ 4-20; 2-8, 4-62, 5-66 
efficiency 

<call statement> ... ........................................................... 5-14 
bad go to ................................... , ................................ 6-17 

ELAPSED TIME ....................................................... ~ ........... 5-5 
ELSE .............................................. 2-7, 6-3,4-46, 5-27, 6-10, 6-16, 6-31 
<empty> ................. ....................... 2-2; 2-5, 2-9, 4-2, 4-3, 4-6, 4-8, 4-13, 

4-20, 4-51, 4-55, 5-4, 5-7, 5-13, 5-41, 5-55, 5-58, 
5-64, 5-66, 5-78, 5-91, 5-99, 5-110, 6-31 

ENABLE ........................................................................ 5-36 
enabled interrupt .................................................................. 5-17 
<enable statement> ................................. ' ......................... 5-3p; 5-51 
ENABLEINPUT ................................. ; ................................ 4-18 
<enabling on statement> . .......................................................... 5-58; 
END ........................................................ 2-2, 2-7, 3-1, 5-15, 5-111 
<.end remark> .................................................................... 2-7; 
ENTlER ........................................................................ 6-23 
EOF ........................................................................... 4-18 
EQL ....................................................................... 2-2, 6-10 
<equality operator> .............................................................. 6-10; 
<equation list> ......................................................... 4-7 ;4-43, 4-59 

Index-I I 



ITEM PAGE 

EQV ................................................................... 2-2, 6-9, 6-10 
ERF ............................................................................ 6-23 
ERFC .......................................................................... 6-23 
error messages, format, run-time ........................................................ G-1 
ERRORTYPE .................................................................... 4-16 
< errortype mnemonic> . ...................................................... 4-17; 4-16 
<escape remark> . ................................................................. 2-7; 
ESPOLCODE .............................................•...................... 4-17 
ESPOLSYMBOL ............................................................. · .... 4-17 
EVENT ........................................................ 4-15, 4-55, 5-37, 5-114 
event . 

direct 1/0 ................................................................... 4-15 
. initial state ................................................................... 4-15 
queue ...................................................................... ·5-17 

< event array declaration> ...................................................... 4-15; 4-1 
<event array identifier> .. ................................................ 4-15; 5-11, 5-13 
< event array identifier list> . ....................................................... .4-15; 
<event declaration> . ........................................................... 4-15; 4-1 
<event designator> .................................... 5__:11; 5-13; 5-17, 5-18, 5-40, 5-46, 

5-54,S-63,5-66,5-90,S-98,5~114 
<event identifier> ........................................................... 4-15; S-11 
<event identifier list> ............................................................... 4-15; 
<event list> ...................... ............................................... S-114; 
<event segment> ................................................................ . 4-15; 
< ev.ent segment list> .............................................................. 4-15; 
<event statement> .......................................................... 5-37; 5-110 
<event-valued task attribute> ....................................................... 5-11; 
<event-valued task attribute name> . .................................................. 5-11; 
exception: conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ~ 7 6 
EXCEPTIONEVENT._. .............................................................. 5-10, 5-11 
EXCEPTIONTASK ................................................................ 5-10 
EXCHANGE ...................................................................... 5-38 
<exchange statement> .. , .................................................... 5-38; 5-110 
EXIT .......................................................................... S-111 
editing a <block> . ................................................................. 4-2 
<exit statement> ........................... ..................................... 5-11 l; 
EXP ............................................................................. 6-23. 
<exponent part> .................................................................. . 2-5; 
exponentiation .................................................................... 6-5 
exponents ........................................................................ 2-6 
EXPONENTOVERFLOW ........................................................... 5-58 
EXPONENTUNDERFLOW .......................................................... 5-58 
<expression> ............. ; .........•....................................... . 6-1;5-13 
expressions .................................. '. ................ · · · · · · · · · · · · · · · · · · · · 6-1 

arithmetic ........................... · ...................... · · · · · · · · · · · · · · · · · · · 6-2 
Boolean ................................................. · · · ·. · · · · · · · · · · · · · · · · ; 6-9 

Index - 12 



ITEM PAGE 

case ... · ..................................................................... 6-14 
conditional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15 
designational ................................................................. 6-16 
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18 
pointer ................................. , ................................... 6-31 
precision ..................................................................... 6-3 

< expression list> ................................................................. 6-14 
Extended ALGOL, description ........................................................ 1-1 
EXTERNAL ................................................................ 4-55. 5-93 
EXTMODE .............. ........................................................ 4-16 
< ex tmode mnemonic> ....................................................... 4-17; 4-16 

F . ............................................................... 2-2, 2-9, 4-20, 4-51 
<factor> ........................................................................ 6-2; 
FALSE .......................................................................... 6-9 
FAMILY ................................................................... 4-18, 5-88 
<family designator> .............................................................. 5-88; 
F AMIL YSIZE .................................................................... 4-16 
FAST .......................................................................... 4-17 
<fault action> ... ................................................................ 5-58; 
<fault information part> . .......................................................... 5-58; 
<fault list> ..................................................................... 5-58, 
<fault name> ...... .............................................................. 5-59 
<fault number> .................................................................. 5-58 
<fault stack history> . ............................................................. 5-58; 
<field width> ................................................................... 4-20 
<field width part> .. ............................. ; ................................ 4-20 
FILE ............................... · ............................ 4-16, 4-55, 4-61, 5-64 
<file declaration> ............................................................ 4-16; 4-1 
<file designator> ... ...................................... 4-61; 5-4; 5-8, 5-13, 5-25, 5-38, 

5-55,5-66,5-88,5-89,5-92,5-97,5-99,5-104,5-120 
<file identifier> ............................................. 4-16; 4-13; 4-49, 4-61, 5-57 
<file list> ....... ................................................................ 4-16; 
<file list part> ................................................................... . 4-16; 
<file or procedure identifier> . ................................................. 4-48; 4-48 
<file part> .......................................................... . 5-66; 5-67, 5-119 
<file-valued task attribute name> .................................................. . 5-119; 
FILECARDS .. ................................................................... 5-89 
FILEKIND ...................................................................... 4-16 
<ftlekind mnemonic> .. ...................................................... 4-17; 4-16 
FILES .......................................................................... 5-64 
FILETYPE ...................................................................... 4-16 
FILL ..... .................................................. ~ ................... 5-39 
<Jill statement>. ... .................... -. ................................... 5-39; 5-110 
<final Boolean factor> ............................................................ 6-10; 

Index-13 



ITEM PAGE 

<final Boolean secondary> ........................................................ . 6-10; 
<final Boolean term> ............................................................. 6-10; 
<final factor> ... ................................................................. 6-2; 
<final implication> .............................................................. . 6-10; 
<final simp}e arithmetic expression> .................... ............................... 6-2; 
<final simple Boolean> .................... .................................... 6-10; 6-9 
<final term> .......... : ... ......................................... : ............. 6-2; 
FIRSTONE ...................................................................... 6-23 
FIRSTWORD .................................................................... 6-23 
FIX .......................................................................... :. 6-23 
<fix statement> . ......................................................... ' ... 5-40; 5-37 
FLEXIBLE ...................................................................... 4-18 
FOR ...................................................... 4-46, 5-41, 5-78, 5-111, 6-9 
FOR-D04oop .................................................................... 5-42 
FOR-STEP-UNTIL loop ............................................................ 5-43 
FOR-STEP-WHILE loop ............................................................ 5-44 
FOR-WHILE loop ................................................................. 5-45 
<for list> ..... · .. ........................................................... 5-41; 4-46 
<for list element> ................................................................ 5-41; 
<for statement> ...... : ......... , ........................................... 5-41; 5-53 
FORCESOFT .................................................................... 4-18; 
FORMAL ....................................................................... 4-55; 
<formal parameter> ......................................................... 4-55, 6-18 
<formal parameter list> ...... ...................................................... 4-55; 
<formal parameter part> . ..................................................... 4-55; 6-18 
<formal parameter specifier> ...................................................... .4-55; 
<formal symbol> ............................................................. 4-8; 4-20 
<formal symbol list> .............................................................. . 4~8; 
<formal symbol part> ............................................................. . 4-8; 
format error messages, run-time ........................................................ G-1 
FORMAT ............................................................. 4-20, 4-55, 4-62 
<format and list part> ................................................. . 5-66; 5-72, 5-119 
<format declaration> ......................................................... 4-20; 4-1 

asterisks (*) .................................................................. 4-22 
editing phrase actions .......................................................... 4-23 
<in-out part> .. .............................................................. 4-21 
quote(") .................................................................... 4-24 
<repeat part> ............................................................... 4-22 
slash(/) ............... '· ...................................................... 4-21 
<width part> . ............................................................... 4-23 
specifications 
<simple string> .............................................................. 4-24 
A ........................................................................... 4-24 
c .......................................................................... 4-27 
D .......................................................................... 4-28 
E .......................................................................... 4-28 

lndex-14 



ITEM PAGE 

F .......................................................................... 4-29 
G .......................................................................... 4-30 
H .......................................................................... 4-31 
I ................. , ........................................................ 4-33 
J .......................................................................... 4-34 
K .......................................................................... 4-31 
L .......................................................................... 4-35 
0 ........................................................ •,• ................ 4-36 
p .................................................... ~ ..................... 4-36 
R .................................................... · ...................... 4-37 
s .......................................................................... 4-38 
T .......................................................................... 4-39 
U .......................................................................... 4-39 
v .......................................................................... 4-40 
X ........................................................................... 4-41 
z .......................................................................... 4-41 
$ .......................................................................... 4-41 

<format designator> .. ................................................. .4-62; 5-13, 5-66 
<format identifier> . ......................................................... 4-20; 4-62 
<format part> .................................................................. . 4-20; 
<format part list> ...... .......................................................... 4-20; 
FORMMESSAGE ................................................................. 4-18 
FORTRANCODE ................................................................. 4-17 
FORTRANSYMBOL ... · ............................................................ 4-17 
FORWARD ... .,, .................................................................. 4-42 
<forward interrupt declaration> .................................................... .4-42; 
<forward procedure declaration> ................................................... .4-42; 
<forward reference declaration> . ................................................ 4-42; 4-1 

recursion .................................................................... 4-42 
<forward switch declaration> ... .................................•................. .4-42; 
FREE ...................... , ................................................ 4-8, 5-46 
<free field part> ................................... , ............................. . 5-66; 
free-field format ............................. ,. ..................................... 5-72 
<free statement> ............................................................ 5-46; 5-37 
FULLTRANS .................................................................... 4-18; 
function 

arith1netic ................................................................... 6-19 
Boolean ..................................................................... 6-29 
expression ................................................................... 6-18 
pointer ..................................................................... 6-30 

<function expression> ... ...................................................... 6-18; 6-1 

G .......................................................................... 2-2, 4-20 
general 

disable .................................. '. ................................... 5-33 
enable ...................................................................... 5·-36 

Index-15 



ITEM PAGE 

GAMMA ........................................................................ 6-24 
GEQ ............................................................................ 2-2 
GO ............................................................................ 5-47 
global, concept of .................................................................. 3-2 
<global part> ................................................................. 3-1; 3-2 
<go to statement> .. ............................................ 5-47, 5-29, 5-110, 5-111 

entepng, exiting a< block> ............... ...................................... 5-47 
bad go to ................................................................... 5-47 

GTR ............................................................................ 2-2 
GUARDFILE ................................................. · ................... 4-17 

ff .......................................................................... 2-2, 4-20 
HAPPENED ................................................................ 5-16, 5-37 
HAPPENED (Boolean intrinsic) ...................................................... 6-29 
HEX ................................................................... 4-3, 4-17, 4-66 
<hexadecimal character> . ...................................................... 2-9; 4-51 
<hexadecimal code> .............................................................. . 2-9; 
hexadecimal editing ........................................ : ....................... 4-31 
<hexadecimal string> .............................................................. 2-9 
HEXTOASCII .................................................................... 5-78 
HEXTOBCL ..................................................................... 5-78 
HEXTOEBCDIC .................................................................. 5-78 
HIGH .......................................................................... 4-17 
HISTORY ........ · ......................................................... ; ....... 5-5 

• I ............................................................... 2-2, 4-20, 4-51, 5-48 
<I/O statement> ........ .................................................... 5-48; 5-110 
<identifier> ................... .' .... 2-4, 2-1, 3-2, 4-1, 4-2, 4-3, 4-6, 4-7, 4-8, 4:--10, 4-15, 

4-16, 4-20, 4-44, 4-46, 4-51, 4-54, 4-55, 4-61, 4-62,4-63, 4-64, 
4-64, 4-65, 4-66, 4-69, 4-69, 4-72, 5-4, 5-111, 6-31 

<identifier list> . ........................................ .4-2, 4-7, 4-12, 4-43, 4-55, 4-59 
IF ............................................................................. 5-50 
<if clause> ................................................... 5-50 4-46; 6-3, 6-10, 6-16 

6-31 
<if statement> . ............................................................. 5-50; 5-27 
IMP .................................................................... 2-2, 6-9, 6-10 
<implication> ............................................................... 6-9; 6-10 
IN ........................................................ 6-9, 4-17, 4-20, 5-78, 5-114 
<in-out part> . ................................................................... 4-20; 
INCREMENT ............................................... -. ................... 5-111 
<increment part> ............................................................... 5-111; 
<increment statement> . ........................................•................. 5-111; 
independent procedures ............................................................ 5-93 

Index - 16 



ITEM PAGE 

< initial attribute> ................................................................ 4-16 
<initial attribute list> . ....................................................... 4-16; 5-57 
<initial part> . ........................................... · ........................ 5-41; 
<initial value> .................................................................. . 5-39; 
INITIATOR ...................................................................... 5-5 
<input option> . ...................................................... 5-99; 5-56, 5-100 
<input procedure> ............................................................... 5-99; 
INPUTTABLE .................................................................... 4-18 
INTEGER ............. : ..................................................... 4-3; 4-43 
INTEGER (arithmetic intrinsic) ...................................................... 6-24 
<integer> .. ................................................................. 2-5; 4-55 
<integer declaration> ........................................................ 4-43; 4-71 

address equation .............................................................. 4-43 
entering, exiting a <block> ..................................................... 4-43 
integerization ................................................................ 4-43 

<integer lower bound list> ......................................................... .4-6; 
INTEGEROVERFLOW ............................................................. 5-58 
INTEGERT ....................................................................... 6-24 
INTERCHANGE .................................................................. 4-18 
interlocks ...................................................................... 5-115 
INTERRUPT .......................................................... .4-42, 4-44, 5-51 
<interrupt declaration> . ....................................................... 4-44, 4-1 
<interrupt identifier> .................................. .4-44, 4-42, 5-11, 5-32, 5-33, 5-36 
<interrupt statement> .. ..................................................... 5-51; 5-110 
interrupts 

attach ..................................................................... 5-115 
attaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 
enabled .................................................................... 5-115 
invocation .............................................................. 5-11, 5-32 

INTMODE ....................................................................... 4-16 
< intmode mnemonic> . ....................................................... 4-17; 4-16 
INTNAME ....................................................................... 4-18 
INTRINSIC ................................................................. 6-19, 6-29 
intrinsic names 

arithmetic ................................................................... 6-19 
Boolean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29 
pointer ..................................................................... 6-31 

INTRINSICFILE .................................................................. 4-17 
<introduction> ...... ............................................................ 4-51; 
<introduction code> . ........................................................ 4-51; 4-52 
INVALIDADDRESS ............................................................... 5-58 
INVALIDINDEX ............................................................ 4-61, 5-58 
INVALIDOP ................................................................. 5-6, 5-58 
INVALIDPROGRAMWORD ......................................................... 5-58 
<invocation statement> .. .................................................... 5-52; 5-110 

Index - 17 



ITEM PAGE 

I0 ............................................................................. 4-17 
IO, core-to-core ................................................................... 5-70 
I/O editing ....................................................................... 5-72 
I/O result word ............................................................. 5-76, 5-115 
IOADDRESS ...................................................................... 5--4 
IOCANCEL ....................................................................... 5-8 
IOCHARACTERS .................................................................. 5-4 
IOCOMPLETE .................................................................... 5-8 
IOCW ...................................................................... 5-4, 5-49 
IOEOF .......................................................................... 5-8 
IOERRORTYPE ................................................................... 5-4 
IOMASK ......................................................................... 5-4 
IOPENDING ...................................................................... 5-8 
IORECORDNUM .................................................................. 5-4 
IORESULT ....................................................................... 5-8 
IOTIME .......................................................................... 5-4 
IOWORDS ........................................................................ 5-4 
IS ......................................................................... 2-2, 6-13 
ISNT ....................................................................... 2-2, 6-13 
ITO (integrated-tape-disk) ......................................................... 5-102 
<iteration clause> .......... ...................................................... 4-46; 
< interation part> . ................................................................ 5-41; 
< interation statement> ................ ................................. 5-53; 5-27, 5-110 

J ..................................................................... 2-2, 4-20, 4-51 
JOBCODE ....................................................................... 4-17 
JOBDESCFILE ............................. : ..................................... 4-17 
JOBNUMBER ..................................................................... 5-5 
JOVIALCODE ................................................................... 4-17 
JOVIALSYMBOL ................................................................. 4-17 

K .......................................................................... 2-2, 4-20 
KIND .......................................................................... 4-16 
< kind mnemonic> . .......................................................... 4-17; 4-16 

L .......................................................................... 2-2, 4-20 
LABEL ............................................................... 4-45, 4-55, 4-63 
<label counter> .............. ............................................... 4-13; 4-14 
<label counter modulus> . ..................................................... 4-13; 4-14 
<label declaration> . ................................................... .4-45; 4-1, 5-111 
<label designator> . .............................................................. 6-16; 
<label identifier> ............................................. 4-45; 4-13, 4-48, 5-1, 4-12 

6-16 
<label identifier list> . ............................................................ .4_:_45; 
<label I> .................................................................. 5-67;5-67 
<label 2> . ................................................................. 5-67; 5-67 
<label 3> .................................................................. 5-67; 5-67 

Index - 18 



ITEM PAGE 

< labeled statement> .......................................................... 5-1; 5-29 
LABELTYPE ............................................................... 4-16, 5-25 
< labeltype mnemonic> .. ..................................................... 4~17; 4-16 
<language components> ... , ........................................................ 2-1 
LASTRECORD ................................................................... 4-16 
LASTSTATION .................................................................. 4-16 
LB .............................................................................. 2-2 
<left bit>. ....................................................................... 5-4; 
<left bit-from> ................................................................... 6-2; 
<left bit-to> ..................................................................... 6-2 
LEQ ............................................................................ 2-2 
<letter>. ..... ...................................................... 2-2; 2-4, 2-7, 2-9 

uppercase .................................................................... 2-2 
lowercase ..................................................................... 2-2 

<letter string> . .................................................................. 5-13; 
LIBERATE ...................................................................... 5-54 
<liberate statement> . ........................................................ 5-54, 5-37 
LIBRARYCODE .................................................................. 4-17 
LINE ........................................................................... 5-66 
LINENUM ....................................................................... 4-16 
LINENUMBER ......................................... ··- ......................... 6-24 
LIST ........................................................................... 4-55 
<list> . ......................................................................... 5-66; 
<list declaration> ............................................................ 4-46;4-1 
<list designator> ............................................................. 4-64; 5-13 
<list element> ... ................................................................ 4-46; 
<list identifier> .. ..................................................... .4-46; 4-64, 5-66 
<list part> .. ............................................................... 4-46; 5-66 
<list part list> . .................................................................. 4-46; 
<list segment> . ............................................................. 4-46; 5-66 
LISTLOOKUP ..................................................................... 6-24 
LN .............................................................................. 6-24 
LNGAMMA ...................................................................... 6-25 
local, concept of ............................................................. 3-2, 5-112 
<local or own> .......................................... .4-2, 4-3, 4-7, 4-10, 4-12, 4-43 

4-59 
LOCK .......................................................................... 5-55 
<lock option> ... ................................................................ 5-55 
<lock statement> ........................................................... 5-55; 5-48 
LOCKED ......................................................................... 5-8 
LOCKEDOUT .................................................................... 4-17 
LOG ........................................................................... 6-25 
logical editing ................................ ~ ................................... 4-35 
<logical operator> . ........................................................... 2-2; 4-69 
logical operators 

precedence .................................................................. 6-11 
<logical value> .......................................................... 6-9; 2-3, 4-72 

Index - 19 



ITEM PAGE 

LONG ..................................................................•.. 4-3, 5-112 
LONG arrays ...................................................................... 4-4 
long string: ...................................................................... 5-81 
<long/own specification> ........................................................... 4-3; 
LOOP .......................................................................... 5-58 
LOW ............................................................................ 4-17 
<lower bound> .............................................................. 4-3 ;4-10 

. <lower bound list> ............................................................... 4-55; 
< lower limit> .......... · ......................................................... 4-13; 
LSS ............................................................................. 2-2 

M .......................................................................... 2-2, 4-5.1 
MASKSEARCH ................................................................... 6-25 
MAX ........................................•.................................. 6-25 
MAXCARDS ................................. · ..................................... 5-.5 
MAXIOTIME ..................................................................... 5-5 
MAXLINES .................................. · ..................................... 5-5 
MAXPROCTIME ................................................................... 5-5 
MAXRECSIZE ................................................................... 4-16 
MCPCODEFILE .................................................................. 4-17 
MEDIUM ........................................................................ 4-17 
MEDIUMF AST ................................................................... 4-17 
MEDIUMSLOW .................................................................... 4-17 
<membership expression> . ......................................................... 4-69; 
< membership primary >. ........................................................... 4-69; 
<membership secondary> ......................................................... . 4-69; 
MEMORYPARITY ....... , ........................................................ 5-58 
MEMORYPROTECT ............................................................... 5-58 
MERGE ......................................................................... 5-'56 
<merge option> . ................................................................. 5-56; 
<merge option list> ............................................................... 5-56; 
<merge statement> . ........................................................ 5-56; 5-110 
Metalanguage 

definition ...................................................... : . . . . . . . . . . . . . 1-1 
formula .......... : ............................................................ 1-2 
symbols ....................................................................... 1-2 
recursiveness·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 

MIN ............................................................................ 6-25 
MINRECSIZE ................................................................. ' .... 4-16 
<mnemonic file attribute value> .................................................... . 4-16; 
MOD ....................................................................... 2-2, 6-2 ; 
MONITOR ...................................................................... 4-48 
<monitor declaration> ..................... : ........ .- ...........•............. 4-48, 4-1 
<monitor element> ................... ............................. ; .............. 4-48; 
<monitor list> . ... · .................................... · ........................... 4-48; 
<monitor part> . ................................................................. 4-48; 
<monitor part list> ............................................................... 4-48; 

Index - 20 



ITEM PAGE 

multiple assignments ................................................................ 5-6 
<multiple attribute assignment statement> .................................. ..... 5-57, 5-110 
<multiplying operator> .................. ........................................... 6-2; 
MUX . ....................................................................... 2-2, 6-2 
MYSELF ................................................................... 5-10, 5-68 
MYUSE ............................................ .............................. 4-16 
< myuse mnemonic> ......................................................... 4-17; 4-16 

N .......................................................................... 2-2, 4-51 
NABS .......................................................................... 6-25 
NAME .......................................................................... 5-89 
NEQ ....................................................................... 2-2, 6-10 
nested< conditional statement>s . .................................................... 5-28 
<new character> . ................................................................. 4-51; 
NEWUSER ...................................................................... 4-17 
NO ............................................................................ 5-66 
NOERROR ...................................................................... 4-17 
NOINPUT ....................................................................... 4-17 
NONSTANDARD . ................................................................ 4-17 
non-string .................................................................. 5-82, 5-95 
NORMAL ....... ................................................................ 4-17 
NORMALIZE .................................................................... 6-25 
normal 1/0 ................................................................. 4-19, 5-48 
NO SOFT . ................ · ....................................................... 4-18 
NOT ...................................................... 2-2, 2-7, 4-8, 6-9, 4-69, 6-10 
NOTRANS ...................................................................... 4-18 
NULINPUT . ......................................... · ............................ 4-18 
NULL ........................................................................... 2-2 
null statement· .................................................................... 5-16 
<number> ........................................................ 2-5; 2-1, 4-72, 5-39 
<number list> .................................................................. . 5-15, 
<number of bits> ...................................................... · ....... 5-4; 6-2 
<number of columns> . ............................................................ 5-66; 
<number of tapes> ................................................... . 5-66; 5-99; 5-100 
<numbered statement group> ....... ................................................ 5-15; 
<numbered statement list> ......................................................... 5-15; 
Numbers 

compiler conversion ............................................................ 2-6 
exponents .................................................................... 2-6 
ranges ...................................................... ~ ................ 2-6 
set symmetry .................................................................. 2-6 
significant digits .................................... · ............................ 2-6 

NUM.ERIC ............................................. ........................... 5-78 
<numeric convert part> . ........................................................... 5-78; 
<numeric string> ................... ............................................... 2-9; 

Index - 21 



ITEM PAGE 

0 ......... · ............................................................ 2-2, 4-20, 5-48 
<octal character> ................................................................. 2-9; 
<octal code> .. ..... ; .................... , .· ....................................... 2-9; 
octal editing ............................. , ....................................... 4-31 
<octal string>'. .......................... , ........................................ 2-9; 
OF ......................... · ............................................ 4-46, 5-15, 6-14 
OMITTED ....................................................................... 4-17 
OMITTEDEOF .............................................. ; ............... 4-17, 5-25 
ON ............................................................................ 5-58 
<on statement> . ........................................................... 5 ..-58; 5-110 
ONES .......................................................................... 6-25 
OPEN ........................................................................... 4-18 
<operand> ................ ....................................................... 6-2; 
<operator> ...................................................................... 2-2; 
operators ......................... , . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 

precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 
arithmetic .................................................................. 6-4 
logical ....... , ........................ · ................ ·. . . . . . . . . . . . . . . . . . . . . 6-11 

OPTION ...................................................... , ............. 5-5, 5-64 
OPTIONAL ................................................................. 4-18, 5-57 
<optional parameters> ............................................................ 5-64; 
<optional unit count>.;· .... ; .................. ; .................................... . 5-78; 
OR ............................................................... 2-2, 6-9, 5-58, 6-10 
ORGUNIT ........................................................................ 5-5 
OUT ...........................•.... ,· ...................................... 4-17, 4~20 
<output option>. ....... , ................................................... 5-99; 5-56 
<output procedure> ..... , .............................................. , .... 5-99; 5-56 
OUTPUTTABLE ................•............................. ; .............. , .... 4-18 
OVERFLOW (Boolean intrinsic) ....................... , .............................. 6-29 
OVERFLOW flip-flop .............................................................. 5-83 
OWN ...................................... , ....................... ; ... 4-2, 4-12, 4-59 

p ..................................................................... 2~2, 4-20, 4-51 
PACK .................... ; ................................................. 4-17, 5-99 
PACKNAME .................................................•......... ; ........ · .. 4-18 
<pack size> ........... .......................................................... 5-99; 
PAGE .......................................................................... 4-16 
PAGESIZE ................................................................. 4-16, 5-69 
PAPER ......................................................................... 4-17 
P APERPUNCH ..................................................................... 4-17 
PAPERREADER .................................................................. 4-17 
parametric define .................................... ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 
<parameter delimiter> ... ................................................ 5-13; 4-55; 5-13 
<parameter item> ............................................................... . 5-64; 
<parameter list> ................................................................. 5-64; 

Index - 22 



ITEM PAGE 

PARITY ........................................................................ 4-16 
<parity mnemonic>. ............................. ; ........................... 4-17; 4-16 
PARITYERROR ............ ....................................................... 4-17 
<partial word part> ......................................... . 5-4, 5-8, 6-2, 6-7, 6-9, 6-13 
PARTNER ...................................................................... 5-10 
PETAPE ........................................... ; ..... , ...................... 4-17 
PICTURE ................................... : ............ ; .......... .4-51, 4-55, 5-106 
<picture> .......................................•.... : ......................... 4-51; 
<picture character> . .................... : .............................. .4-51; 4-49, 4-52 
<picture declaration> ............................... ; ........................ ; 4-51; 4-1 
<picture identifier> ............................................... : .... .4-51;5-13, 5-78 
<picture part>. .............. · .................. : ................................ . 4-51; 
<picture part list> . ................................ , ....................•......... 4-51; 
<picture skip> . ............................................................. 4-51; 4~53 
<picture symbol> ........................................................... · .. , .. . 4-51; 
PLICODE ....................................... , ............ ·· .................. 4-17; 
PLISYMBOL .................................. ...... , ... , ......................... 4-17 
POINTER ..................................•.......... . 5-9, 4-54, 4-55, 5-89, 6-30, 6-31 
pointer 

initialization .......................................... · .................. 4-54, 6-32 
adjustment ........... : .....................•..... , ........................... ·. 6-32 
<format declaration> ......................................................... 4-25 
intrinsics .................................... ; ....•................•......... 6-31 

<pointer assignment>.: ............................. , ............... 5-9, 4-54, 5-3, 6-31 
<pointer expression> ....... , ............................. . 6-31;4-16,4-46, 5-2, 5-9, 5-34 

5-58,5-66,5-78,5-88,6-1,6-9 
6-'- 10, 6-30, 6-31 

<pointer expression list> . .................................................... 6:_31; fr-14, 
<pointer function designator> ........................................ : ... . 6-30; 6~18, 6-31 
<pointer identifier>. ..................................•................. .4-54; 5-9, 6-31 
<pointer identifier list> . ........................... , ...... , ........................ 5-54; 
<pointer parameters> ................ : ....................................... 6-30; 6-32 
<pointer primary> . ................................. • ................... 6-31; 6-29, 6-30 
<pointer relation> . ................................... , ....................... 6-1 O; 6-9 
<pointer variable> .................................................. 5-9, 6-29, 5-78, 6-30 

system failure ................ : ................................................ 5-9 
<pointer-valued attribute> ..........................•.................... 5-89; 5-78, 5-'-88 
<pointer-valued file attribute name> .. ..................................... .4-18; 4-16, 5-89 
<pointer-valued task attribute name> ................................................. 5-89 
POOL ARRAYS ............. , ............................................... 2-11, 5_.::81 
POPULATION ............ ; ................. ; .... ~ ....................... : .. · ..... 4_.::f6 
POSITION . .............................................................. · ......... 2-2 
POTL .......................................................................... 6-25 
POTC ................................. ............................... '. .. : ...... 6-25 
POTH .......................................................................... 6-25 
PRESENT ....................................................................... 4-18 

Index - 23 



ITEM PAGE 

<primary> ......................................... , ................... . 6-2; 6-5, 6-31 
PRINTER ....................................................................... 4-17 
PRIVATE ....................................................................... 4-17 
PROCEDURE .......................................................... 4-42, 4-55, 5-61 
<procedure body> ................. · .......................................... 4-55; 4-45 
<procedure decl(l,ration> .................................................. .4-55; 3-1, 4-1 
procedure entry operator ............................................................ 3-2 
<procedure heading> . ........................................................ 4-55; 4-42 
<procedure identifier> ........................... .4-55; 4-48, 5-13, 5-61, 5-62, 5-93, 5-99, 

6-19, 6-29 
<procedure statement> .... ................................................... 5-61; 5...:_52 
<procedure type> ........................................................... 4-5 5; 4-42 
PROCESS ....................................................................... 5-62 
process, invoking ...................................................... ~ ........... 4-65 
<process statement> ........ ............................................ 5-62; 5-52,.5-93 
PROCESSIOTIME ................................................................... 5-5 
PROCESSTIME .................................................................... 5-5 

· PROCURE ...................................................................... 5-63 
procure list ...................................................................... 5-54 
<procure statement> ......................................................... 5-63; 5-37 
PROGRAM ....................................................................... 3-1 
program source and object files ......................................................... E-2 
program structure .................................................................. 3-1 
<program unit> . .............................................................. 3-1; 3-1 
PROGRAMDUMP ................................................................. 5-64; 
<programdump statement> ................................................... 5-64; 5-110 
PROGRAMMEDOPERATOR ........................................................ 5-58 
PROTECTED .................................................................... 4-17 
PROTECTION .................................................................... 4-16 
<protection mnemonic> . ..................................................... 4-17; 4-16 
PTP ........................................... · ................................. 4-17 
PTR ............................................................................ 4-17 
PUNCH ......................................................................... 4-17 
PURGE ......................................................................... 5-25 

Q ................................................... " ...................... 2-2, 4-51 
<quaternary character> . ............................................................ 2-9; 
< quaternary code> ................................................................ 2-9; 
<quaternary string> . ............................................................... 2-9; 
QUOTE ......................................................................... 5-13 
quote character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 

R .................................................... ; .. , ............. 2-2, 4-20, 4-51 
RANDOM ....................................................................... 6-26 
randomly accessed disk files .......................................................... 5-97 . 

Index - 24 



ITEM PAGE 

RB .............................................................................. 2-2 
READ .......................................................................... 5-66 
<read statement> ........................................................... 5-66; 5-48 
READCHECK . ................................................................... 4-18 
READCHECKF AILURE. ........................................................... 4-1 7 
READER ....................................................................... 4-17 
READ LOCK . .................................................................... 6-30 
READLOCK (arithmetic intrinsic) .................................................... 6-26 
READLOCK (Boolean intrinsic) ...................................................... 6-29 
READLOCK (pointer intrinsic) ....................................................... 6-30 
READPARITYERROR ... .......................................................... 4-17 
READYQ .................................................................. 5-54; 5-17 
REAL . ........................................................... · .......... 4-3, 4-59. 
READL (arithmetic intrinsic) ........................................................ 6-26 
<real declaration> . .......................................................... 4-59; 4-71 

address equation .............................................................. 4-59 
entering, exiting a< block> . .................................................... 4-59 

RECEPTIONS .................................................................... 4-16 
RECONSTRUCTIONFILE .......................................................... 4-17 
RECORD ........................................................................ 4-16 
<record length> ...... ................................................ .4-99, 5-56, 5-101 
<record number> ................................................................ 5-97; 
<record number or carriage control> . ............................................ 5-66; 5-68 
RECORDINERROR ............................................................... 4-16 
RECORDKEY .................................................................... 4-16 
recursion .............................................................. 3-1,4-42, 5-110 

metalinguistic formula ........................................................... 1-2 
REEL ..................................................................... 4-16, 5-25 
regular 1/0 . ...................................................................... 4-18 
<relation> • ...................................................................... 6-9; 
<relational operator> ............................................... 2-2, 5-78, 5-94, 6-9 
<remark> ............................................................. . 2-7, 2-1, 4-20 
REMOTE .................................................................. 4-17, 5-69 
REMOVEFILE ................................................................... 5-77 
< removefile statement> . ..................................................... 5-77, 5-110 
repeat 

count ....................................................................... 5-43 
index ....................................................................... 5-53 

<repeat part> ................................................................... 4-20 
<repeat part value> . ..... ; ........................................................ 4-51; 
REPLACE ... .......................................................... 5-79, 5-88, 5--89 
<replace family-change statement>. ............................................ 5-88, 5-105 
<replace pointer-valued attribute statement> ..................................... 5-89, 5-105 
<replace statement> ....................................... 5-78; 4-51, 4-66, 5-105, 5-110 

intrinsic translation tables ....................................................... 5-85 

Index - 25 



ITEM PAGE 

<reserved wor<f> ........................................................ : .·., ....... 2-1 
reserved world list ......................................................... '. . . .. . . . . A-1 
RESET ......................... : ; : ; ..................................... · .. : ..... 5-90 
<-reset statement> . ............... ; .......................................... 5-90; 5-3·7 
RESIDENT ............... : ..................... : ................................. ·4-18 
<residual count> .............. ; ....... : .............................. . 5-78, 5-94, 5-107 
RESIZE. : ......... : . : : : .- ....... : : ; ...... : ............................. ' .......... 5-91 
.<resize statement> ...... : .... : ..................... ' ....................... . 5-91;5-llO 
.resource sharing ....... : .......... : .................. : . : ........................ ~ ·~ . 5-63 
RESTART .... · ............... : ... : ......................................•...... 5-5, 5-99 
<restart specifications> . ......................... : ........................... 5-99; 5-101 
RETAIN ......... · ..................... · ............ :: ..... ~ ....................... 5-91 
<retainol<J,> ....................... : ............................. , ............. . 5-91; 
Return Control Word ............................................................... B-11 
REWIND ................. :· ................................................. 5-49, 5_:__92 
<rewind statement> .............. : ................ : .................... 5-92, 5-26, 5-48 
<row> ............... : ... ......................................................... 5-4; 
<row designator> .... : ............................................... · ... 5_:_:_4; 5-66, 6-31 
<row number> ................... : ............................. ·· ................... 5-4; 
<row/copy numbers> ....................... : .................. : .............. 5-4; 5-38 
ROWADDRESS .................... : ................. : ..................•......... 4_:_:_16 
ROWSINUSE ................................................. ~ .................. 4-16 
RUN ...................... .- .................................................... 5-93 
<run statement> ......... ~ .... ; ... : .......................................... 5-93; 5-52 

s ................................. .- ..... • ..................... 2-2, 2-7, 4-8, 4-20, 4-51 
SAVE .......................................................................... 4-17 
SAVEFACTOR .............. : ... .- ........ : ............. .- .......... _ .. -......... 4-16, 5-99 
scale factor 

exponents ..................................................... : .. -.-~ ......... 6-26 
SCALERIGHT ................................................................... 6-26 
SCALERIGHTF .................................... .- ............................. 6-26 
SCALERIGHTT ........................•............................... : ......... 6-27 
SCAN .......................... ; ................................................ 5-94 
<scan part> . ............. : ................................................. 5-78; 5-:-94 
<scan statement> .......................................................... 5-94; 5-105 
SCANPARITY ................................................................... 5-58 
scope 

concept .......... : ............................................................ 3-2 
local entities ..................................... ~ ............................ 3-2 
global entities .................................................. _ ............... 3-2 

scientific notation ............................................................ 4-28, 4-32 
SCREEN ........... : ................ : ........................................... 4-18 
SECONDWORD ..... : ............ : .......... : .................................... 6-27 
'SECURITYUSE ................. :· ................................................. 4-16 
SECURED ........................................................ : .............. 4-17 

Index - 26 



ITEM PAGE 

SECURITYTYPE ...................................................... · ........... 4-16 
<security type mnemonic> . ......................................................... 4-17; 
<security use mnemo.nic. )> ..••.•••.••••••••••••••••••••••••••••••••••.••••••.••••••• 4-17; 
SEEK ........................ · .......................... , ........................... 5-97 
<seek statement> ............................... ~ ............................. 5-97, 5-48 
SEG ARRAYerror ................................................................. 5-96 
Segment Dictionary ....... · .......................................................... 5-64 
segmented array· ................. " ....... ; ........................... ~ .•......... 4-4, 5-112 
SEQDATA ...................................................................... 4-17 
sequential record formating .......................................................... 4-21 
SERIALNO ...................................................................... 4-16 
SET .................................................•........................... 5-98 
<set statement> . .... , ....................................................... 5-98, 5-37 
short string ................................................................. 5-81, 5-82 
SIGN ............................................ · ............................... 6-27 
<sign> ........................................ , ................................. 2-5; 
signs of numeric fields ................................................................. B-1 
<simple arithmetic expression> . ...................................................... 6-2 
<simple Boolean> ......................................................... · ... 6-9; 6-10 
simple define ................................................... .' .................. 4-8 
<simple pointer expression> .............. · .......................................... 6-31; 
<simple source> ..............................................•............. 5-88; 5-89 
<simple string> . .............................................................. 2-9; 4-62 
<simple variable> ........................................ S---4; 4-2, 4-13, 4-43, 4-48, 5-78 
SIN ................•....................................•....................... 6-27 
SING LE ................................................ , ..... ; ................. 4-17 
SINGLE (arithmetic intrinsic) ........................................................ 6-27 
<single picture character> . .................................................... 4-51; 4-52 
single precision o"perand 

real variable ...... , ............... · ..... " ........................ · ................ B-4 
integer variable .................. ~ ... , ; , ..... ; .. ••. ;·_, ; .. , .......................... B-5 
Boolean variable ................................................................. B-6 

<single space> .. .................................................................... 2-2; 
<single-dimension direct array> . ...................... ~ ......................... 4-10; 4-3, 
SINGLEPACK ........... , ... , ................................. , .......... ·~ ... , ............. 4-18 
SINH ..................... -..... · ... ·.·;. ; .. ; ...... · .......... '.'. ......... · .. " ............. ·6-27 
SIZE ...................................... · ..................................... 6-27 
<size> .......................................................................... 5-99; 
<size specifications> ........................................................ 5-99; 5-101 
SIZEMODE ........................................................................ 4-16 
< sizemode mnemonic> .................................. ' ............................ 4-17; 
SIZEOFFSET ..................................................................... 4-16 
SIZE2 .......................... · ................................................. 4-16 
SKIP ......................... · ........................... _ ....................... 5-66 
<skip> ........... · .............................................................. . 6-31; 

lndex-27 



ITEM PAGE 

slash 
<format and list part> ......................................................... 5-73 
free field format .............................................................. 5-74 

<slash part> .... '. ............................................................... 5-67; 
SLOW ........................................................................... 4-17 
SOFTONLY ..................................................................... 4-18 
SORT .......................................................................... 5-99 
<sort statement> ....... .................................................... 5-99, 5-110 

restart parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-102 
sort mode .................................................................. 5-102 

SOURCE ......................................................................... 2-7 
<source> ................................................................... 5-78; 5-94 
<source characters> ........................................................... ~ .. . 4-66; 
<source list> ................... · ................................................. 5-78; 
<source part> ............................................................ ,. 5-78; 5-80 

replace pragmatics ............................................................. 5-80 
scan pragmatics ............................................................... 5-95 

SPACE .............................................................. 5-49, 5-66, 5-104 
space ............................................................................ 2-3 
<space> .............. : ...................................................... 2-2; 2-'-7 
<space statement> .......................................................... 5-104; 5-48 
<special destination character> ...................................................... 4-66; 
<specification> ........ .......................................................... 4-55; 
<specification part> .................................. ,· ........................... 4-5 5; 
<specified lower bound> . .......................................................... 4-55; 
< specifier> ..................................................................... 4-5 5; 
SPEED ......................................................................... 4-16 
<speed mnemonic> . .............................................................. 4-17; 
spontaneous entry ...................•............................................. 4-57 
SORT ........................................................................... 6-27 
stack~auxiliary-poin ter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-106 
stack-destination-pointer ....................................................... 5-79, 5-106 
STACKER .........................................................•............. 5-66 
stack ·history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-99 
STACKHISTORY ................................................................. 5-59 
stack-interger-counter ................................................... 5-81, 5-95, 5-106 
STACKNO ....................................................................... 5-5 
STACKOVERFLOW ............................................................... 4-63 
STACKSIZE ............................................... ~ ............ 5-5, 5-14, 5-62 
stack-source-operand ................................................... , 5-81, 5-9 5, 5-107 
stack-source-pointer ......................................................... 5-80, 5-106 
stack-test-character ............................................................... 5-107 
STANDARD ..................................................................... 4-17 
STARTTIME ....................................................................... 5-5 
STATE .......................................................................... 4-16 
<state mnemonic> .................................. .............................. 4-17; 

lndex-28 



ITEM PAGE 

<statement> ..................................... 5-1;3-l, 5-15, 5-27, 5-35, 5-41, 5-50, 
5-58, 5-109, 5-118 

<statement list > ................................................... ,' ........... 5-15 
STATION ................................................................... 5-5,5-66 
STATUS ......................................................................... 5-5 
STEP ........................................................................... 5-41 

• STOP ........................................................................... 5-66 
STOPPOINT ...................................................................... 5-5 
statements ........................................................................ 5-1 

ACCEPT ..................................................................... 5-2 
assignment .................................................................... 5-3 
ATTACH .................................................................... 5-11 
BREAKPOINT ............................................................... 5-12 
CALL ...................................................................... 5-13 
CASE ...................................................................... 5-15 
CAUSE ..................................................................... 5-17 
CAUSEANDRESET ........................................................... 5-18 
CHANGEFILE ............................................................... 5-19 
CHECKPOINT ............................................................... 5-20 
CLOSE ..................................................................... 5-25 
conditional .................................... , .............................. 5-27 
CONTINUE .................................................................. 5-30 
DEALLOCATE ............ : ................................................... 5-31 
DETACH ....... ' ............................................................. 5-32 
DISABLE .......................................... ' ............... ,,, ........ 5-33 
DISPLAY ................................................................... 5-34 
DO ........................................................................ 5-35 
ENABLE .................................................................... 5-36 
event ....................................................................... 5-37 
EXCHANGE .................................. ,', ............................. 5-38 
FILL ....................................................................... 5-39 
FIX ........................................................................ 5-40 
FOR ....................................................................... 5-41 
FREE ...................................................................... 5-46 
GO TO ......................... ,, ........................................... 5-47 
I/O ..............................................•......................... 5-48 
IF ......................................................................... 5-50 
interrupt .................................................................... 5-51 
invocation ................................................................... 5-52 
interation ............................................................. ,, ..... 5-53 
LIBERATE .................................................................. 5-54 
LOCK ...................................................................... 5-55 
MERGE ..................................................................... 5-56 
multiple attribute assignment .................................................... 5-57 
ON ........................................................................ 5-58 
procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-61 
PROCESS ..................................... ; ............................. 5-62 

Index-29 



ITEM PAGE 

PROCURE ..................•... : ............................. ·· ...... ·.·· .. 5-63 
PROGRAMDUMP ..................... .- ....................................... 5-64 
READ ....................................................................... 5-66 
REMOVEFILE ........................................................... _ .... 5-77 
REPLACE ................................................................... 5-78 
REPLACE family-change ........................................................ · 5-88 
REPLACE pointer-valued attribute ................................................ 5-89 ' 
RESET ............................................................ .r •••••••• 5-90 
RESIZE ..................................................................... 5-91 
REWIND .................................................................... 5-92 
RUN ....................................................................... 5-93 
SCAN ............................................................... _ ....... 5-94 
SEEK ...................................................................... 5-97 
SET ........................................................................ 5-98 
SORT ...................................................................... 5-99 
SPACE .................................................................... 5-104 
string ........................................................................ 5-105 
SWAP ..................................................................... 5-108 
THRU ..................................................................... 5-109 
unconditional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-110 
VECTORMODE ............................................................. 5-111 
WAIT ..................................................................... 5-114 
WAITANDRESET ............. : .............................................. 5-116 
WHEN ..................................................................... 5-117 
WHILE .................................................................... 5-118 
WRITE ..... · ............................................................... 5-119 
ZIP ...................................... , ................................ 5-120 

<string> ............................................... 2-9, 2-1, 4-16, 4-51, 4-66, 5-69, 
4-72, 5-39, 5-88, 6-2, 6-9 

code ....................................................................... 2-10 
composite ................................................................... 2-11 
length ...................................................................... 2-11 
long .............................................................. ". .......... 5-81 
non-................................................................... 5-81, 5-95 
short .......... · .................................. -........................... 5-81 

string descriptor 
indexed ...................................................................... B-9 
non-indexed .......................... -........................................ B-9 

<string relation> ............................. · ................................ 6-9, 6-12 
<string statement> ........................................................ 5-104; 5-110 
STRINGPROTECT ............................................................ 5-58, 5-82 
<subarray designator > ............................................................. 5-7; 
< subarray part> . .................................................................. 5-7; 
<subscript> . .......................................... .4-61; 4-62, 4-64, 5-4, 5-66, 6--:16 

subscript bounds ............................................................... 4-4 

Index-30 



ITEM PAGE 

<subscript list> .......................................... . 5-4, 4-4, 5-7, 5-10, 5-11, 6-31 
<subscript part> .................................................................. 5-7 
<subscripted character array variable> ................................................ 6-31; 
<subscripted variable> .................................. 5-4; 4-4, 4-5, 5-6 5-66, 5-78, 5-79, 

5-111, 6-9, 6-30 
SUBSPACES ....................................................................... 5-5 
SUNOTREADY .................................................................. 4-17 
SUPER .......................................................................... 4-17 
SWAP ......................................................................... 5-108 
<swap statement> ......................................................... 5-108; 5-110 
SWITCH 
<switch declaration> . ......................................................... 4-60; 4-1 
<switch file declaration> . ..................................................... 4-61; 4-60 
<switch file identifier> ...................................................... . 4-61;5-13 
<switch file list> ................................................................. 4-61 ; 
<switch format declaration> . .............................................. ~ ... 4-62; 4-60 
<switch format identifier> .................................................... 4-62; 5-13 
<switch format list> .............................................................. 4-62; 
<switch format segment> ......................................................... .4-62; 
<switch label declaration>. .................................................... 4-63; 4-60 
<switch label identifier> ........................................... 4-63; 4-42, 5-13, 6-16 
<switch label list> . ................................................................ 4-63; 
<switch list declaration> . ..................................................... 4-64; 4-60 
<switch list identifier> ................................................. .4-64; 5-13, 5-66 
<switch list list> ................................................................. 4-64; 
symbols, multicharacter ............................................................. 2-3 
SYSTEMDIRECTORY ............................................................. 4-17 
SYSTEMDIRFILE ......................................... , ...................... 4-17 

T .......................................................................... 2-2, 4-20 
< table membership> ............................................................... 6-9 
table membership ................................................................. 6-12 
< table pointer> . ................................................................... 6-9 
TAN ........................................................................... 6-27 
TANH .......................................................................... 6-27 
TAPE .......................................................................... 4-17 
tape mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25 
TAPEREELRECORD .............................................................. 4-16 
tape reels 

multi-file .................................................................... 5-25 
single-file .................................................................... 5-25 

TAPE7 ......................................................................... 4-17 
TAPE9 ......................................................................... 4-17 
TARGETTIME ....................................................... .' ............ 5-5 
TASK .......................................... ~ ..................... 4-55, 4-65, 5-10 
task activation .................................................................... 5-17 

Index-31 



ITEM PAGE 

< task array declaration> ........................................................ 4-65; 4-1 
<task array identifier>. ................................................. .4-65;5-10, 5-13 
< task array identifier list> . ......................................................... 4-65; 
<task assignment>. . .......................................................... 5-10; 5-3 
< task declaration >. ........................................................... 4-65; 4-1 
<task designator> ............................ 5-10; 5-5, 5-8, 5-11, 5-13, 5-30, 5-62, 5-89, 

5-93, 5-119 
< task identifier> ............................................................ 4-65; 5-10 
<task identifier list> ............................................... · ............... 4-65; 
< task segment> . ........................................................ ~ ........ 4-65; 
<task segment list> . ............................................................... 4-65; 
<task-valued task attribute> ........................................................ 5-1 O; 
<task-valued task attribute name>. . .................................................. 5-10; 
TASKATTERR .............................................................. , ..... 5-5 
TASKFILE ................................................................ 5-64, 5-119 
TASKVALUE ... · .................................................................. 5-5 
TEMPORARY ..................................................................... 4-17 
<term> .... ...................................................................... 6-2; 
<text> .......................................................................... . 4-8; 
THEN .....................................•............................... 5-27; 5-50 
THEN-ELSE pairs ......................................................... · ........ 5-28 
THRU ..................................................................... 4-46, 5-109 
THRU loop ..................................................................... 5-109 
< thru statement> ................................................. ~ ....... 5-109; 5-53 
"thunk" · ......... · ................................................................ 4-57 
TIME (arithmetic intrinsic) .......................................................... 6-27 
<.time> ................................................................. 5-114; 5-117 
TIMELIMIT ....................... ; ............ : ................................. 5-66 
TIMEOUT ....................................................................... 4-17 
TIMES ....................................................................... 2-2, 6-2 
TITLE ..................................................................... 4-18, 5-88 
TO ........................................................................ 4-66, 5-11 
TOGGLE (Boolean intrinsic) ......................................................... 6-29 
TOGGLE ............................................................. 5-85, 5-94, 5-107 
< transfer part> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 8; 
TRANSLATE ..................................................................... 4-16 
<translate mnemonic> ............. ........................................... 4-18; 4-17 
<translate part> . ............ · ..................................................... 5-79 
<translate tableX ............................................................... 5-79; 
< translate-table-valued file attribute name> ......................................... · · .4-18; 
TRANSLATETABLE .............................................................. 4-66 
< translatetable declaration> .................................................... 4-66; 4-1 
< translatetable element> .......................................................... ;4-66; 
< translate table identifier> . .................................................... 4-66; 5-79 
< translate table list> . ......................................................... 4-66; 5-79 

Index-32 



ITEM PAGE 

TRANSLATING .................................................................. 4-18 
< translation list> . ................................................................ 4-66; 
<translation specifier> . ....................................................... , .... 4-66; 
translation table ............................................................ 4-67, 5-106 
TRANSMISSIONO ................................................................ 4-16 
TRANSMISSIONS ................................................................. 4-16 
TRUE ........................................................................... 6-9 
TRUE/FALSE flip-flop .................................................. 5-85, 5-94, 5-107 
truth table .................................................................. 4-69, 6-11 
TRUTHSET ..................................................................... 4-69 
< truthset declaration> ..... .................................................... 4-69; 4-1 
< truthset element> .............................................................. . 4-69; 
< truthset identifier> .................................................... .4-69; 6-9, 5-78 
< truthset list> . ............................................................... ~ .. 4-69; 
< truthset table> ................................................................. 5-78; 
truthset test ...................................................................... 4-70 
TYPE ........................................................................... 5-5 
<type> .................................................................... 4-3; 4-55 

resulting values ................................................................ 6-6 
< type declaration> ........................................................... 4-71 ; 4-1 
type transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-71 
<type transfer variable> .................................................. 5-5, 5-61, 4-56 

u ..................................................................... 2-2, 4-20, 4-51 
<unary operator> ................................................................ . 6-2; 
<unconditional list element> ...... ................•................................. 4-46; 
<unconditional statement> .................................................... 5-110; 5-1 
<unit count> .... ................................................................ 5-78; 
UNITNO ........................................................................ 4-16 
UNITS ........................................................................... 4-16 
<units> ....................................................................... . 5-78; 
<units Mnemonic> .......................................................... 4-18; 4-17 
UNITSLEFT ............................... · ........................... ; .......... 4-16 
<unlabeled statement> ............ ........................................ 5-1; 4-4, 4-55 
<unsigned integer> .......................................... 2-5; 4-13, 4-20, 4-51, 4-72, 

5-15, 5-39 
<unsigned number> . ........................................................... 2-5; 6-2 
UNTIL ..... · ................................................ 2-7, 4-43, 5-35, 5-41, 5-78 
UNTIL IN ....................................................................... 5-78 
<Up or down> ................................................................... 5-88; 
<update pointer> ........................................................... 5-78; 6-10 
update replacement ................................................................. 5-6 
UPDATED ..... , ................................................................ 4-18 
UP LEVEL ATTACH errors ......................................................... 5-11 
<upper bound> . .................................................................. 4-3 
<upper limit> ..... .............................................................. 4-13; 
USEDATE .................................................... · ................... 4-13 

Index-33 



ITEM PAGE 

USERCODE ........................................................................ 5-89 
user's 1/0 area· ................................ ~ ............................ ; ~ ...... 5-49 

v .......................................................................... 2-2, 4-20 
VALUE ...... , .............................................................. 4-55, 4-72 
VALUE (arithmetic intrinsic) ........................................................ 6-28 
< value array declaration> ....................................................... 4-72; 4-1 
<value array identifier> . ....................................... · ................ 4-72; 5-4 
<value array list> . .................. · .............................................. 4-72; 
<value array segment>. ...................... : ................................. ~ .. . 4-72; 
<value list> ................................................................... 5-39; 
<value part>.· .................................................................. . 4-55; 
<variable> . .............................................. 5-4; 4-46, 5-8, 5-41, 5:--58, 6-2 
<vectoraddress> ................................... : ....................... ; ... . 5-111; 
< vector compound tail> ....................... ; .................................. 5-111 ; 
<vector identifier> . ~ ............................................................ 5-111; 
< vector increment> . ............................................................... 5-111 ; 
<vector name> ........... · ........................................................ 5-111; 
< vector part> ... -............................................................... 5-111; 
<vector reference> .............................................................• 5-111; 
< vector statement> . ....•......................................................... 5-111; 
vectors ............... , ......................................................... 5-111 
VECTORMODE ................................................................. 5-111 
< vectormode compound statement> ................................................ 5-111; 
< vectormode statement>. ......... ; ......................................... 5-111; 5-110 
VERSION ....................................................................... 5-16 
VERSIONDIRECTORY ............................................................. 4-17 
vertical printout spacing ............................................................. 4-21 
<visible special character> ..... , ............. · ........................................ . 2-9; 

w ............................................................................... 2-2 
WAIT ......................................................................... 5-114 
<wait parameter list> ...................................................... 5-114; 5-116 
<wait statement> ........................................................... 5-114; 5-37 
WAITANDRESET .......................... · ...................................... 5-116 
< waitandreset statement>. ........... ~ ................................•...... 5-117; 5-37 
WHEN ......................................................... ; ............... 5..,..117 
<when statement> .......................................................... 5-117; 5-110 
WHILE .......................................................... 4-46, 5-41, 5 .. -118,5-78 
WHILE IN ........................... : ........................................... 5-78 
WHILE-DO loop ................................................................. 5-118 
<while statement> . ......................................................... 5-118; 5-53 
WIDTH ......................................................... · ................ 5-16 
WITH ..................................................................... 5-39, 5-79 
word notation ..........................................•........................... B-1 
WORDS .................................................... : ................ 4-17, 5-78 

Index-'-34 



ITEM PAGE 

WRITE ........................................................................ 5-119 
<write file part> ................................................................ 5-119 
<write statement> .......................................................... 5-119; 5-48 

x ..................................................................... 2-2, 4-20,4-51 
XALGOLCODE .................................................................. 4-17 
XALGOLSYMBOL ................................................................ 4-17 
XDISKFILE ..................................................................... 4-17 
XFORTRANCODE ................................................................ 4-17 
XFORTRANSYMBOL ............................................................. 4-17 

Y ............................................................................... 2-2 

z ..................................................................... 2-2, 4-20, 4-51 
ZERODIVIDE .................................................................... 5-58 
ZIP ............................................................................ 5-120 
<zip statement> .......................................................... 5-120; 5-110 
$ ........................................................................... •.•. 4-20 

lndex-35/Index-36 




