Burroughs

B 5000/B 6000/
B 7000 Series
Generalized Message
Control System

(GEMCOQOS)

USER'S/REFERENCE MANUAL

PRICED ITEM

eeeeeeeeeeee

1096567

Burroughs

B 5000/B 6000/
B 7000 Series
Generalized Message
Control System

(GEMCOS)

USER’'S/REFERENCE MANUAL

Copyright © 1982 Burroughs Corporation, Detroit, Michigan 48232
\ PRICED ITEM

Printed in U.S.A. November 1982 1096567

The names, places and/or events depicted herein are not intended to
correspond to any individual, group or association existing, living or
otherwise. Any similarity or likeness of the names, places, and/or
events with the names of any individual living or otherwise, or that of
any group or association is purely coincidental and unintentional.

Burroughs believes that the application package described in this
manual is accurate and reliable, and much care has been taken in its .
preparation. However, no responsibility, financial or otherwise, can be
accepted for any consequences arising out of the use of this material,
including loss of profit, indirect, special, or consequential damages.
There are no warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the application
package will be in full compliance with laws, rules and regulations of
the jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

Any comments or suggestions regarding this document should be forwarded to Documentation, Systems
Development Group, Burroughs Corporation, 3519 West Warner Avenue, Santa Ana, CA 92704.

1096567

TABLE OF CONTENTS

Section Title

INTRODUCTION . .
1 THE GEMCOS SYSTEM
SYSTEM CAPABILITIES .
Transaction Control Language
Access Control
Routing
Formatting
Paging . .
Dynamic Volume Control
Recovery . .
Network Control .
Summary .
2 SYSTEM OVERVIEW
DATA ORGANIZATION
Files
Queue Structure
DATA BASE RELATIONSHIPS
INFORMATION FLOW
3 TRANSACTION CONTROL LANGUAGE
SYNTAX CONVENTIONS
Metalinguistic Symbols
Metalinguistic Formulas
CHARACTER SET
BASIC SYMBOLS . .
BASIC COMPONENTS .
Identifiers
Generalized Identlflers
Integers
Strings .
Logical Values
DECK DESCRIPTION
CONTROL SECTION
DIRECTORY
DIRECTORY OLD
DUMP
DUMP OLD
GENERATE
IAD
LIST . .
LIST OLD
LOG
LOG ERROR .
LOG INPUT
LOG OUTPUT
NOFORMATS
REGENERATE

.
—

LAKNS A

WWWWINNDNNDN

PP PY
A SRS

W W w
I NN

@
(V|

P L LWL W W
b O©bdodododoadrd

'('»({)l [}
VRCRCRVRVY

w

- 310
. 310

iv

TABLE OF CONTENTS (Cont)

Title

SEQUENCECONTROL Statement .
UPDATEFMT . .

DEFINE SECTION

DEFINE Invocation

GLOBAL SECTION

ADMINPROGRAM Statement
BATCHIOKEY Statement .
CHECKPOINTINTERVAL Statement
CONTINUOUSPROCESSING Statement
CONTROL AUDIT Statement
CONTROLPERMANENT Statement
CONTROLLEDPAGING Statement
FORMATGENERATOR Statement
QUEUERECORDSIZE Statement
LOGOFFMKE Statement

LOGONMKE Statement . .
MASTERCOMPUTE Statement .
MAXBATCHIJOBS Statement .
MAXNEWACCESSKEYS Statement
MAXNEWFORMATS Statement
MAXNEWMKES Statement
MAXRUNNING Statement . .
MULTIPLESTAIDENT Statement .
MYNAME Statement . .
PAGINGPERMANENT Statement .
QUEUEBLOCKSIZE Statement
RECALLPROGRAM Statement
SERVICEMESSAGE IDENT Statement .
SUBSYSTEMS Statement
SYSTEMMONITOR Statement
SYSTEMMONIDENT Statement
SYSTEMNETWORKCONTROL Statement

SYSTEMNETWORKCONTROLIDENT Statement .

SYSTEMOBJECTIOKEY Statement
SYSTEMPREFIX Statement

FORMAT AND FUNCTION SECTION

FUNCTION Declarations
FORMAT Declarations
< format declaration>
< format part list>
< special action list>
<local declaration>
<line count statement>
<page begin-end phrase>
< format description>
<REM or variable list>
<editing specifications> .

TABLE OF CONTENTS (Cont)

Section Title Page
<variabie segment>336
<fixed segment>336
<editing phrase list>336
<editing string>336
<location specifier>337
<item phrase> .. .337
<case statement>« . . .+ o«339
<set variable statement>339
<header declaration> O I 14
<break variable statement>34
<end-of-line statement > G 13 |

Editing Errors . . . e 2 9
Formatting of MCS Error Responses R = 1.3
Field Sequence349
SYSTEM SECTION 35
ACCESSCONTROL Statement 351
ADMINKEY Statement 35
ARCHIVALAUDIT Statement 352
AUTOENABLE Statement . 353
AUTORECOVERY Statement 353
CLEARRESTART Statement 354
FLUSHRECOVERY Statement 354
HOST Statement « v v v « o 354
RECALLKEY Statement . 355
SUBSYSTEM Statement « . « « « « « 355
PROGRAM SECTION G o)
ACCESSCONTROLPROGRAM Statement . X]
AP300STATUS Statement « . « v« « « 359
CHARGECODE Statement « .« « 359
COMMONSIZE Statement « 360
CONTROLBIT Statement . . G 2610
CONVERSATIONSIZE Statement e e e e e e s s s 360
DECLAREDPRIORITY Statement 361
EDITOR Statement « « v « v v v v v v o . . . 361
FAMILY Statement . . G Y |
FORMATMAKER Statement . X Y]
HOST Statement . . . e e e e e s 362
INACTIVETIMEOUT Statement . o
INVALIDMESSAGES Statement 363
MAXCOPIES Statement
MAYNOTBEASSIGNED Statement G 1 Y3
MINCOPIES Statement « « . . « 364
MODIFY Statement . . O Y)
MULTIPLEINPUTS Statement e o)
PERMANENT Statement « v « « v v « v v v v o . . 365
REMARKS Statement . . . - oY
RESTARTPROGRANtSmwnwm G Y o)
RETURNMESSAGES Statement 366

1096567

TABLE OF CONTENTS (Cont)

Section Title Page
SERVICE Statement « v v v v v v e 367
SUBSPACES Statement « « v o v v v v o367
SUBSYSTEM Statement « v v v v v v v o367
TESTPROGRAM Statement o o o o368
TIMEOUT Statement « + o o « v v v v v« o368
TITLE Statement . . e e e 369
TRANSMISSIONERRORMESSAGES Statement 3469
USERCODE Statement « « « v v v37
INPUTQUEUE SECTION v v v v v v v v30
ARCHIVALAUDIT Statement « « « v v v v31
AUDIT Statement « « v v v v e et e e 312
AUDITINPUT Statement« v « v v o v v v v373
MEMORYLIMIT Statement « « « v v v o373
MKE Statement e e e e e e 3T3
NOINPUT Statement « o « v v v v v e v .. .34
QUEUEDEPTH Statement « « v v v37
RECOVERY Statement « v v v v v v e i v v . .35
TIMELIMIT Statement « « o « v o v v v v35
WAITFORAUDIT Statement v « « o v v v376
STATION SECTION v v v v v v v v o376
ADDRESS Statement . . . P
ALTERNATE STATIONS Statement 380
ASSIGNTOPROGRAM Statement38l
BROADCAST Statement « « o o o o o o38
COMPUTE Statement . . e 382
CONTINUOUSLOGON Statement 38
CONVERSATIONAL Statement38
DIALIN Statement . . . e e e e e e e e e e .3'83
FIXEDLENGTHMKE Statement 383
FLUSHOUTPUT Statement . . R &
FORMATTEDBLOCKEDOUTPUT Statement 3384
FORMSCOMPOSE Statement 384
HOST ACCESSKEY Statement38
IDENTIFY Statement « o o o v v v e e .. 384
INDIVIDUALID Statement « . o 386
INTERCEPT Statement o v . v v . v386
LINE Statement . . . 3'86
LINEANALYZER Statement G o .
LOGICALACK Statement . . . G . ¥
MAYNOTBEINTERCEPTED Statement3-88
MAXUSERS Statement .3-88
MYUSE Statement . . . P o . 1.1
NODUPLICATES Statement 389
NOLINE Statement « « « « « v « «38
NOQUEUE Statement « « « v « v38
NOTITLE Statement . . G o

ONEOUTPUTPERBACKUP Statement C e e e e e e e ... 390

TABLE OF CONTENTS (Cont)

Section Title Page
PORTSIZE Statement 39
PORTSTATION Statement « . .« 39
PROGRAMACK Statement 393
REMARKS Statement « « « v « « 393
ROUTEHEADER Statement 393
SERVICEMESSAGES Statement 394
SETMCSREQUESTSET Statement 394
SIGNON Statement « « . v v v 395
SPECIAL Statement « . « « v 395
STATIONBIT Statement « . « 395
STAMASTER Statement« 396
STASYSTEM Statement . . . e e e s 397
STATK»&KBTNAMESmwmﬂn e e e s 397
STATIONMESSAGEKEY Statement 397
STATIONTIMEOUT Statement 398
STATIONYOURNAME Statement 398
SYSTEMNETWORKCONTROLSTATION Statement e e e o 398
TEST Statement . . . e e e o399
TRANSACTIONMODE Statement e
TYPE Statement . . . e o o)
USERCONTROL Statement e o)
USERIDMASK Statement .3101
VALIDUSERS Statement . . e [0 |
VARIABLEMKEPOSITION Statement e e e e 3102
VARIABLEUSERIDPOSITION Statement 3102

DEVICE SECTION3103
FORMATSIN Statement .3104
FORMATSOUT Statement . . . e e e e e 3104
NONFORMATTEDMKES Statement G 1 (O B)
STALIST Statement .3-105

AREA STATION SECTION .3105
AREA STALIST Statement3106

OUTPUTROUTING SECTION3107

MESSAGE SECTION .. .3108

FILE GENERATION .. .3110
Option Control Cards .3111
TCL-Directing Options« «3112

4 APPLICATION PROGRAMS 4-1

TRANSACTION PROCESSORS 4-1
User Program Interface 41
Process Program Interface 45

GETMESSAGE Procedure 47
SENDMESSAGE Procedure 47
Port Program Interface 47
Editor Program Interface . 412
Service Program Interface 414
OBJECT JOB INTERFACE 417

1096567 vii

TABLE OF CONTENTS (Cont)

Section Title Page
BATCH JOB INTERFACE . . . e S Vi
ALTERNATIVE TO THE BATCH INTERFACE e S £
USER ROUTING PROCEDURE42

CONVERSATIONAL INTERFACE 42
5 RECOVERY o v v o i i e s s
NO RECOVERY o v o v i e o s s s s
CHECKPOINT RECOVERY o 52
SYNCHRONIZED RECOVERY o 52

TCL Syntax . . . N b
Recovery-Related Conventxons U L
Restart TP v v v v e e e 56
Restart AT€a e ST
Program Interface . . . e 58
WAITFORAUDIT Program Example. -
The Recovery Cycle ..517

Recovery of a Process Program520
Output Message Analysis522
Archival Recovery . . . T
Recovery of a Non- DBMS Transactlon s 0
Synchronized Recovery of Batch Jobs525
Synchronized Recovery of TP-to-TP Transactions526
Transaction Processing System (TPS) Recovery527

TCL Requirements . . . - £

TPS Programming Conventlons O 04

Sample TPS Program: « v o . o529

Summary . . R 2 3 |
6 FORMATTING AND PAGING P < |
INPUT FORMATTING v v v v v v v v v v .. 6l

OUTPUT FORMATTING v v v v v o62
FORMS REQUEST« o o« o .. 6-2
PAGED FORMATS v v v v v63
Display Paging63
Update Paging 064
The Paging Dialogue « v v v v v o65
FORMAT LIBRARIES6066
Library Parameters .. .68
Initialization69
Input Formatting611
Output Formatting . . . Y S O |
Paged Format Imtxallzatlon Y S |
Paged Input 612
Paged Output« v v« o o613
Message Recall613

Format Library Updating .6-14

Notes . . . e S
DEMONSTRATION FILES Y S

7 ACCESS CONTROL . . . B |

INTERNAL MCS ACCESS CONTROL MECHANISM T S |
viii

1096567

TABLE OF CONTENTS (Cont)

Section

8

9

USER-SUPPLIED ACCESS CONTROL MODULE

Station Bits . .
Individual Identlflcatlon

Title

NETWORK MANAGEMENT AND CONTROL

SYSTEM DEFINED INPUT MESSAGE

ASSIGN INPUT Message
CHANGE INPUT Message
CLOSE INPUT Message
COMPUTE INPUT Message
$ INPUT Message
INTERCEPT INPUT Message
MODE INPUT Message .
QUIT INPUT Message
REFRESH OUTPUT Message
SWITCH INPUT Message .

SYSTEMCONTROLMESSAGES

Inclusive Identification List
Specific Identification List
ADD Request .
ATTACH Request
CHANGE Request
CLEAR Request .
DISABLE Request
Semantics:

DUMP Request

ENABLE Request .
INTERROGATE Request
MOVE Request
RECOVER Request
RELEASE Request . .
RUN PROGRAM Request .
STATUS Request
SUBTRACT Request
SYSTEM Request

TABLE Request .
UPDATE Request
WHERE Request

ZIP Request

SYSTEM ERROR MESSAGES .

DATA COMMUNICATION ERROR Message

INPUT MESSAGE PROCESSING ERROR Message
OUTPUT MESSAGE PROCESSING ERROR Message .

PROCESSING PROGRAM ERROR Message

System Service Messages .
CONTINUOUS PROCESSING

Option Selection .

On-Line Datacom Dumps

Page

7-1
7-3

8-1
8-2
8-2
8-3

8-4

89
. 89
. 810
. 811
. 811
. 812
. 812
. 813
. 814
. 816
. 8-16
. 8-17
. 823
. 823
. 824
. 825
. 825
. 827
. 8-30
. 8-31
. 831
. 831
. 832
. 8-36
. 8-36
. 8-38
. 841
. 845

8-45

' 846

. 846
. 8-49
. 849
. 850
. 851

9-1
9-1

ix

TABLE OF CONTENTS (Cont)

Section Title Page
10 AUXILIARY PROGRAMS« o . v101
Message Recall . 0 |
Station-To-Station Admlmstratlve Messages . . {025

11 PROGRAM GENERATION AND MAINTENANCE R & B |
Contents of Release Tape O) £ |

Product Generation . .11-3

Product Maintenance . 11-5

Usage and Examples . & R

12 MCS/NDL INTERFACE R 225 |
13 COMPUTER-TO-COMPUTER COMMUNICATION FE . g 2 |
GEMCOS ROUTEHEADER CONVENTIONS13
Variable Field Routeheader .13

Fixed Field Routeheader .132

Field Definitions . e e 4 294

Return Messages to Program T 2

Access Control e e oo ... 133

Suspension ‘& Resumption133
Formatting e e e e e e .134

FILE TRANSFER PROGRAM R 'Y
Operation R < 2 oY

COPY Command O 0 2

ABORT Command « . . «138

WHAT Command« .« v v v « o13-8

NEWTC Command « . . « v v v v v v138

CHGTC Command . . R 2

A COMMON AREA LAYOUT . . A-l
B DATACOM SYSTEM DISK FILES . B-1
C THE CONTROL WORDS ARRAY . C-1
RECALL MESSAGE QUEUEC-10

D HOW TO READ THE MCS STATION MONITOR . D-1
TYPE 1 ACTION e e e e e e e e . D-1

TYPE 2 ACTION . D-1

TYPE 3 ACTION . D2

TYPE 4 ACTION . D=2

TYPE 5 ACTION . D-3

E MCS ERROR MESSAGES .. . E-1
MESSAGES DISPLAYED ON THE SUPERVISORY CONSOLE . E-1
MESSAGES APPEARING AT STATIONS. . . E-2
MESSAGES TO A SYSTEM NETWORK CONTROL STATION (SPO) .E-2
RECOVERY-RELATED MESSAGES e e e e e e . E-5

. F-1

DUMP CONTROL INFORMATION
DOCUMENTATION OF TRANSACTION CONTROL LANGUAGE REPORT

LISTING - - - - €

Q™

INTRODUCTION

With the advent of on-line date processing in a multi-task environment (multiple programs run-
ning concurrently), programming requirements have greatly broadened in size and complexity.
Modern programming must attack a diverse variety of processing concerns to meet the increasing
demands of the multi-task environment, including such problem areas as:

EESS I\ R

Formatting data appropriately for each hardware device in the network.

Preventing multiple programs from updating the same record simultaneously.
Encoding data properly for transmission to or from the network.

Ensuring that messages from the network and from programs running in the central sys-
tem are properly routed to their destination.

Maintaining orderly communication between the computer and devices in the network,
particularly in environments where several devices share the same line to cut communica-
tion costs.

. Recovering running programs, data bases, and messages or transactions in the event of

failure.

. Preventing unauthorized access to programs and/or data bases.

To relieve the application programmer of these and other major problems common to the on-
line, multitask environment, Burroughs has created a series of software modules which together
comprise the B 6000/B 7000 Series Generalized Message Control System (GEMCOS). To meet the
unique needs of the user community, the system is available in three distinct versions:

1096567

1.

3.

Basic version:

. Message Control System (MCS).

. Transaction Control Language (TCL).

Access control.

. Message routing.

Checkpoint recovery.

Network control.

Any other features described in this manual and not explicitly included in the Advanced
or Total versions.

®omo oo o

. Advanced version:

All of the features of the Basic version.

. Message formatting.

Message paging.

. Administrative message switching between stations on the network.
Retransmission of output, upon request.

a0 op

Total version:

a. All of the features of the Basic and Advanced versions.
b. Dynamic Volume Control.
c. Synchronized data base/data communications recovery.

X1

xii

This manual describes the Total GEMCOS version. For users of the Basic version or the Ad-
vanced version, only the appropriate sections of the manual apply. The user should note that
the size of this manual does not indicate an inherent complexity in the use of GEMCOS. On
the contrary, a major consideration from the user viewpoint is that GEMCOS is relatively simple
to learn, install, and interface with other software. The manual itself provides many examples;
it serves as a user’s manual, an operator manual, and, in addition, contains maintenance instruc-
tions.

This manual is for use with Burroughs GEMCOS program product as designated by the following
style identification numbers:

1. Basic Version: B7000 MCB, B6000 MCB, and B5000 MCB.
2. Advanced Version: B7000 MCA, B6000 MCA, and B5000 MCA.
3. Total Version: B7000 MCT, B6000 MCT, and B5000 MCT.

Sections 1 and 2 of the manual present a general overview of the system and its capabilities. Sec-
tion 3 describes the syntax conventions used to create the Transaction Control Language used
by the system and defines the syntactical format requirements for each section within the lan-
guage. Application program interfacing is discussed in section 4. Section 5 details recovery and
restart procedures for the various program types and includes recommendations for selecting ap-
propriate recovery conventions to achieve optimum efficiency. Input/output formatting, forms re-
quest, and display and update paging are discussed in section 6. Use of the GEMCOS-supplied
Access Control module is described in section 7. Management and control of the system network
is discussed in section 8, which presents the syntax specifications for system-defined input mes-
sages, System Control messages, System Error messages, and System Service messages. Section
9 provides a complete discussion of the GEMCOS continuous processing capability. The auxiliary
programs used to initiate message recall and create administrative message switching are described
in section 10. Section 11 summarizes the contents of the GEMCOS-supplied release tape and con-
tains procedures for compiling and maintaining the Message Control System (MCS). A sample
request/control set test environment is documented in section 12 to familiarize the user with the
MCS/NDL (Network Definition Language) interface. Appendixes A thru G provide information
concerning the Control Area Layout, the Control Words array, Data Communications System
disk files, dump control, and MCS error messages.

1096567

Title

B 6000/B 7000 Series Generalized Message
Control System (GEMCOS) Capabilities Manual

B 6000/B 7000 Series Generalized Message
Control System (GEMCOS) Formatting Guide

B 6000/B 7000 DMS II Data and
Structure Definition Language (DASDL)
Reference Manual

B 6000/B 7000 DMS II Host Language
Interface Reference Manual

B 6000/B 7000 NDL Language
Reference Manual

B 6000/B 7000 Data Communications Functional
Description

B 6000/B 7000 DCALGOL. Reference Manual

B 7000/B 6000 Input/Output Subsystem
Information Manual

The material in this manual is supplemented by the following documents which pertain to Mes-
sage Control Systems, Network Controller Interfaces, and Data Management Systems:

Form Number
1100211

1100344

5001498

5001498

5001522

5000060

5011430
5001779

xiii

1096567

SECTION 1
THE GEMCOS SYSTEM

A Message Control System (MCS) provides the data-communications user with a viable interface
between the Data Communications Processor (DCP) and the application programs that are to
process transactions associated with remote terminals. The DCP is pictured as the "heart” of the
physical network input/output (I/O). The MCS is envisioned as the brain of the data-communica-
tions system, providing the intelligence necessary for objective decision-making regarding the stat-
us of messages once they are assembled. The MCS and DCP(s) work together to provide overall
control of the data communications system. As a result, a user’s application programs can be
designed, and even implemented, independent of the network/terminal environment in which they
operate.

Burroughs B 6000/B 7000 Series Generalized Message Control System (GEMCOS) is a software
package designed to provide users with an MCS that is tailored to meet the specific requirements
of a given installation. The MCS is transaction-oriented and provides users with the flexibility
to meet a broad range of throughput and processing requirements. GEMCOS anticipates and pro-
vides for a dynamic operating environment, allowing reconfiguration of data communications sta-
tions, lines and adapters during the running of the system.

SYSTEM CAPABILITIES

Flexibility and efficiency are the keywords denoting Burroughs B 6000/B 7000 Series GEMCOS.
Following is a list of GEMCOS features and capabilities, all of which are described in greater
detail in subsequent sections.

Transaction Control Language

The Transaction Control Language (TCL) is utilized to provide information such as message
routing criteria and MCS option selection. The TCL is also used to describe access-control re-
quirements, message formatting and paging criteria, re-entrant criteria for User programs, and
the types of recovery selected for User programs. In addition, the TCL compiler optionally pro-
vides the user with a hard-copy record of the data-communications system description.

The language is free-form in structure, using key words to describe both the environment and
the requirements of the data communications user. The result of a TCL compilation is the gener-
ation of a set of customized tables which are interpreted by the MCS.

Control cards and internal file names which need to be file-equated are the same as Burroughs’
ALGOL and COBOL compilers. This adherence to system standards minimizes the learning pro-
cess involved in using GEMCOS.

Access Control

Access Control is optionally available on a station-by-station basis. If Access Control is declared
to be in effect for a given station, the legitimate users of that station can be specified. Additional-
ly, a valid sign-on procedure at the station is required to gain access to the system. Specific
limitations can be described, determining which transactions are to be allowed for the particular
user signing on at the station. A mechanism is also provided which allows a user-written program
to participate in the evaluation of sign-ons prior to granting access.

1-1

Routing

Many types of message routing are provided by the MCS. Messages can be routed from: station
to station(s); station to Transaction Processor; Transaction Processor to station(s); Transaction
Processor to Transaction Processor; Transaction Processor to broadcast lists (areas); and Batch
Transaction Processor to Transaction Processor. In instances where a message is to be routed
to a station, a chain of alternate stations can be specified in the TCL, to which the message is
routed should the station be out of service.

Station-to-station(s) messages are considered to be administrative messages which flow through
the system and are audited and delivered to the specified destination stations.

Routing for station-to-Transaction-Processor transactions is normally determined by examination
of the message key (defined in the TCL) which is contained within the message. An option also
exists for a station to attach itself to a Transaction Processor. When a station is attached to a
Transaction Processor, message keys are not expected by the MCS. Transaction Processors can
address output to specific stations on a station-by-station basis, or to a group of stations referred
to as an "area.” A label is associated with a list of stations in the TCL. This list is considered
to be an area, and output messages are broadcast to all stations listed for the area. A rotary
list can also be associated with an output area, in which case the output message is delivered
to that station within the list which has the shortest queue at request time. The area feature al-
lows users to make a final determination of output distribution after programs are written. This
means that Transaction Processors can be written without knowledge of the network with which
they interact. Association of area labels and lists occurs at the time of TCL generation.

A Batch Transaction Processor is a special type of user-written program which can read a tape,
disk, or card file and route transactions to Transaction Processors via the MCS queues. A Trans-
action Processor processing a transaction in this mode is expected to issue a response back to
the Batch Transaction Processor to indicate completion. This mechanism provides for concurrent
batch/on-line updating of the same data fields within a data base, while still allowing synchro-
nized data base recovery.

A Transaction Processor can address output to be submitted to another Transaction Processor.
The routing may be either by program number of the destination, as specified in the TCL, or
by the message key contained in the routed message.

Formatting

Formatting of messages, independent of Transaction Processors, is provided as an option via a
special subset of the TCL. The formatting feature of GEMCOS allows the user to take advantage
of various terminal capabilities while, at the same time, providing device-independence at the ap-
plication program level. A user writing an application is not required to know hardware-control
codes or buffer capacity for the various terminals on the network. Rather, the application pro-
grammer is only concerned with data strings at the point of MCS interface. A user independently
describes the formatting in the TCL by device class to be performed by the MCS on those data
strings.

Some of the capabilities provided under formatting include:

Forms retrieval.

Format modification without compilation of or interruption to application programs.
Paging of both input and output, including forms.

. Numeric field verification.

Variable-length fields, with zero/space fill and right/left justification.

. Variable-sequence fields.

AW A W

Paging

Paging occurs when a string of characters constituting a single logical message must be physically
segmented because the string exceeds the buffer capacity of the terminal involved. In effect, the
MCS acts as an extension to that terminal’s buffer capacity. Multiple types of terminals, each
having a different buffer capacity, can be utilized for the same multipage transaction. The
physical segmentation for each type varies, based upon buffer capacity. This variation is transpar-
ent to the application program involved. Three types of paging are provided: input paging, dis-
play paging, and update paging; each of which is described in detail in section 6.

Dynamic Volume Control

Parallel processing of a wide variety of transactions is considered to be the normal mode through-
out the total system. All stations are serviced for output concurrently, and it is not necessary
for a message to one station to be delivered before a message to some other station is initiated.

Parallel processing of multiple transactions by a single application program is readily available
through the Dynamic Volume Control feature of GEMCOS and can be totally transparent to the
application programmer. Operating in this mode allows multiple executions of the same program
code to be in process for separate transactions at any point in time. In addition, these multiple
executions of program code can run concurrently on multiple-processor systems. Only one copy
of the machine code is present in the Dynamic Volume Control mode. This feature enables the
user to adapt to changing network demands. Thus, response time can be minimized through par-
allel processing. Based upon user specifications, the MCS initiates new executions of User pro-
grams as dictated by run-time transaction loads. Conversely, as volumes drop, the MCS initiates
termination procedures for programs.

Recovery

GEMCOS provides numerous recovery capabilities within the TCL. The user has the flexibility
to analyze application-oriented needs and select the recovery options required on a program-by-
program basis.

Recovery capabilities range from a rather conventional checkpoint/restart technique to an auto-
matic-transaction queue, application-programs, and data base rollback-and-synchronization
scheme. Once again, the emphasis is on providing users with the flexibility to easily adapt in or-
der to effectively meet a broad range of on-line data processing requirements.

Network Control

In order to dynamically effect certain levels of control over the data-communications processing
environment, the user has the capability to identify certain Network Control stations. Such sta-
tions may participate in various network-management type transactions. The MCS notifies these
stations of various exceptional conditions as they occur. Network Control stations are permitted
to make various inquiries of the MCS. In addition, these stations may dynamically alter a subset
of the TCL features. Included within the scope of a Network Control station is the ability to
notify the MCS that the on-line network is being physically reconfigured. The system takes ap-
propriate action such that only those stations experiencing reconfiguration need be temporarily
out of service.

1096567

14

The flexibility, convenience and efficiency of GEMCOS are further enhanced by the following
built-in features:

1. A variety of statistical information concerning stations, programs, and MCS. In addition
to real-time accessible statistics, a set of files is provided containing input and output mes-
sages. From these files, the user can obtain statistics concerning peak-load conditions, net-
work utilization, response times, etc. This allows fine tuning of a system following initial
implementation.

2. Retransmission of output upon request. This feature can be useful in the event of paper
jams or tears at a printer.

3. Detection and diagnosis of a variety of error conditions and recovery from such condi-
tions.

4. A Line Analyzer Software module contained within the MCS. This module is designed
to work in conjunction with a hardware component (known as the Line Analyzer) to trou-
bleshoot various modem/adaptor-oriented problems.

5. Network Control Station monitoring of transmissions to/from stations on the network,
transparent to the network.

6. The capability to pass to Transaction Processors fixed data relating to input stations and/
or the particular transaction type.

7. Permanent or Temporary Transaction Processor descriptions. This description determines
whether a program normally terminates when there are no input transactions queued for
some user-defined period of time. Describing a program as permanent does not mean that
the code segments for that program will permanently reside in main memory.

8. An interface between generalized, user-written routines and Transaction Processors which
allows the user to perform special functions such as editing, accounting, or file handling
procedures, which might be common to all transactions and applications.

9. Administrative message switching between stations on the network.

10. Routing headers for computer-to-computer transmission.

11. Higher-level programming languages. Assembler code is not used on the B 6000/B 7000
Series. The MCS is capable of interfacing combinations of COBOL and ALGOL. A Port
type program may be written in PL/I.

Summary

GEMCOS is a Program Product Development Aid that provides B B 6000/B 7000 Series users
with the capability to easily and rapidly obtain a tailored MCS. The package attacks a wide range
of data-communications problems that are commonly encountered within the user community.
The goal of GEMCOS is to make many such problems transparent to the applications program-
mer.

Network characteristics, including terminal formats and names, can be transparent to User pro-
grams. Dynamic Volume Control provides the flexibility for the running system to adapt, without
human intervention, in order to deal effectively with changes in transaction mixture. GEMCOS
plays the major role in effectively recovering from failures and in maintaining data base integrity
in the process. Further, the user is not locked into attempting to maintain a fixed environment.
As application-oriented requirements change, or new hardware needs arise, the user can readily
adapt in terms of altering:

1. Central site hardware configuration.

2. Central site software structure.

3. Network configuration, including types of terminals.
4. Application/data base design.

1096567

SECTION 2
SYSTEM OVERVIEW

This section outlines the data organization, queue structure, and information flow through GEM-
COS. The user need not be familiar with the information contained in this section to set up the
communications network. If interested in the structure and information flow, the GEMCO user
should refer :» figure 2-1.

DATA ORGANIZATION

The data is organized in files and queues, as discussed below.

Files

The primary files maintained by the system are the Input Queue file, the Output Queue file, and
the Control file. They are maintained on disk and serve several functions. The Input Queue file
serves as the queue for incoming messages and the input audit. The Output Queue file is the
vehicle used to queue outgoing messages, audit output data, and retrieve messages for retransmis-
sion. The Control file contains pointers into the Input and Output Queue files for recovery pur-
poses. File layouts and descriptions are contained in appendix B.

An additional file, the Format file, is created if the user specifies any formats. It contains coded
format descriptions, including information required for message mapping and paging. A file lay-
out and description appear in appendix B

Queue Structure

Whenever possible, the individual queues maintained within the MCS are discussed in the se-
quence in which they are utilized. All queues are first-in, first-out (FIFO).

The Primary queue is the interface between the MCS and the DCP. All input is received from
the DCP via this queue with the exception of paged messages.

The Curresit queue is assigned to individual stations in place of the Primary queue when a mes-
sage is to be paged. Subsequent input from the station passes through the Current queue until
the paged message is compleie. The station is then re-assigned to the Primary queue.

There is at least one, and at most three, Input queues for each Transaction Processor (TP) plus
a system Error Message Input queue. Once an input message is validated by the Input stack, the
routing module determines the destination and places the message into the appropriate Input
queue.

2-1

2-2

The Editor queue, consisting of one queue for each row in the Common array, is the recipient
of the message at the top of the Input queue. From the Editor queue, the message passes to
the Editor program, if one exists, and then to the Common area, for the User program to pro-
cess. If no Editor program exists, the message passes directly from the Editor queue to the Com-
mon array currently used by that User program.

The Output queue is a single queue for output messages to all stations. There is never more than
one message per station resident in the Output queue. If more than one output message is ready
for a station, the remaining messages for that station are "tanked” in the Output Queue file.
As soon as a station acknowledges receipt of a message, the MCS retrieves the next one queued
for the station and initiates its transmission.

L959601

REMOTE
STATIONS

DCP

A\

bDCC

PRIMARY
QUEUE

INPUT
(HANDLER)

/ INPUT

e~ DCWRITES ———

PAGER
QUEUE

PAGER
{OUTFORMAT)

4

OBUECT

\

~—]

DCWRITES

OUTPUT

(OUTFORMAT)

Py

QUEUE

*.. JCONTROL FILE

BACKUP

=

FORMAT
FILE

OUTPUT
QUEUE
FILE

INFORMAT
(INPUT)

EDITOR

USER
PGM

SERVICE

GE TMES SAGE o=
(
[J
R @
% COMMON ARRAY
g -‘]*—
S
E
v
€
R
Y
T
0
N
[
SENDMESSAGE .
N\ ;
| [
CONTROL PROCESS

PGM

PGM

Figure 2-1. 3 7000/B 6000 Series GEMCOS Flow

~“~ZMm<m

ZCO —~4RN=-Z203TIO0Z <0

2-4

DATA BASE RELATIONSHIPS

The MCS manages its own files and does not make use of an external Data Base Management
System.

Although the MCS has no direct relationship with an external Data Base Manager, it interacts
with, and performs services for, Transaction programs which utilize the services of DMS II. This
results in an implicit relationship between the MCS and DMS II, which directly affects some
MCS logic. The MCS passes to Transaction Processors (TPs) data which must be stored in restart
data sets. The structure of the internal queue files is affected by this relationship as well. The
MCS stores data gathered by TPs in its Output Queue file so it can have knowledge of the data
base during recovery processing. The details of recovery processing are discussed in section 5.

A standard Restart Transaction Processor is provided. Users wishing to utilize a Restart TP are
required to store information in the DMS II Restart Area in a predefined manner. These recovery
conventions are specified in section 5.

The MCS is also designed to function effectively in a non-DMS II environment.

INFORMATION FLOW

The MCS is comprised of three permanent stacks (Input, Output, and Process-everything) which
direct and control the information flow within it, and a fourth permanent stack (BACKUP) re-
sponsible for checkpointing transient table information. A fifth stack (Control), which is option-
ally permanent, handles Network Control commands and also plays a role in certain types of
message routing.

The Input stack is the main MCS stack. It is the Input stack’s responsibility to route messages
from the Primary queue to other pairts of the system to be acted upon, to audit the input mes-
sages as required, and to maintain table information reflecting the current status of the physical
and logical characteristics of the network.

All messages in the Primary queue are removed into a DCALGOL message variable (MSG) which
involves no movement of data. Upon removal, each message is examined and acted upon accord-
ing to its type. There are four major types of messages:

1. Results from calls on the DCWRITE function.

2. Messages indicating station or line errors.

3. Messages indicating the results of output transmissions to the network from the Output
stack.

4. Input messages from either the stations in the network or from an Object program which
has written to a remote file.

Results from calls on the DCWRITE function are handled by updating the relevant in-core tables
and causing the event on which the Backup stack ”sleeps,” if the need exists for the newly up-
dated table(s) to be checkpointed.

Messages indicating station or line errors are linked into the System Error Messages Input queue.
The Process-everything stack services this Input queue and generates appropriate error messages
which are sent to all System Monitor stations.

Messages indicating the completion of an output transmission are inserted into the Output Result
queue in order to trigger the Output stack to send the next output, if any, to the station involved.

Input messages are queued on disk in the MCS Input queue file, which also serves as an audit
file. The Input Queue file consists of a series of linked lists, one for each set of transaction codes
(Input queues) defined in the TCL, and two system-defined linked lists for System Control mes-
sages and System Error messages (Control queue and Error queue) which are handled by the
Control and Process-everything stacks, respectively. Each input message is first examined to de-
termine if it is a message to be linked into the System Control Messages’ Input queue. This is
done by isolating the first syntactic item from the front of the message (or at the message key
position, if specified in the TCL for this station) and searching a table of reserved system-defined
message keys, among which are the Object job I/0 keys. If the message is not a System Control
message and the originating station is not ASSIGNed to a TP, a search of a table of transaction
codes is made to determine into which Input queue the message should be linked. If no matching
transaction code is found in the table, the message is linked into the System Error messages’ In-
put queue to be handled directly by Process-everything, or into a TP’s Input queue as specified
in the TCL. If a station is ASSIGNed to a TP, the message is placed directly into the TP’s Input
queue, bypassing the search of the transaction code table.

After determining to which Input queue the message belongs, the message is moved from the
MSG variable to a buffer which is then written to the Input Queue file. The MSG is then inserted
into its respective in-core processing queue (Iququeue). One Iququeue exists for each linked list
within the Input Queue file. An event is then caused, if necessary, to "wake up” the Process-
everything stack to further route the message to the correct TP.

The Process-everything stack sleeps on the Master-event (sometimes referred to as the MCS event)
which is passed to all application programs. Whenever this event is caused, either by some appli-
cation program or by some module within the MCS itself, Process-everything wakes up and
"looks” for work.

Process-everything first examines all rows of the Common array that are assigned to User pro-
grams. If it finds a 1 in Common [0], it knows the User program has indicated there is an output
message to be sent to the network. After it picks up and processes output messages, Process-
everything looks through all its Input queues. If there is a Transaction Processor ready to receive
input, Process-everything passes to it the next queued input message. Having processed all output
and input at the application program interface level, Process-everything sleeps, until the Master-
event is caused.

The Process-everything stack services TPs in two ways, depending on the type of TP:

1. When servicing a User-type TP, it calls on the Get-message procedure.
2. When servicing a Process-type TP, the Process-everything stack wakes up the TP so that
it may call on the Get-message procedure.

(A more detailed description of the various types of application program interfaces is provided
in section 4.)

1096567

2-6

The Get-message procedure is passed a DCALGOL queue as a parameter into which a message
from an Iququeue is inserted. In the case of a User-type TP, this queue is the Editor queue asso-
ciated with its row in Common. If the User TP uses an Editor program, an event associated with
the TP’s Editor program is caused, waking up the Editor so that the Editor can perform whatever
functions are necessary on the message in the Editor’s queue. It then moves the "edited” message
to the TP’s Common area and wakes up the TP. If the TP does not use an Editor, the message
is moved directly into the TP’s Common area from the Editor queue by Process-everything, and
an event is caused which activates the TP.

The discussion up to this point has assumed that the input message can be contained within one
input audit file record. In the case of a multiple-record input message, only the last record of
the message is inserted into the Iququeue by the Input stack. The Get-message procedure would
have to read the additional records from the input file and insert them into its queue parameter
together with the last record obtained from the Iququeue. The user is allowed to define the input
file’s record size in the TCL so that the amount of disk I/Os involved with an input message
can be controlled.

After the TP receives an input message in the Common area, it may pass control to an Editor
and/or Service program to have various functions performed. As an end result, the TP generates
an output message in the Common area and causes the Process-everything event so that the Pro-
cess-everything stack forwards the output message to the destination designated by the TP in the
control words portion of the Common area. The possible types of destinations are a station, a
group of stations (Area), all Network Control stations, all System Monitor stations, or another
TP. The Process-everything stack calls on the Send-message procedure, which moves the message
from a source pointer passed to Send-message as a parameter (which, in the case of a User-type
TP, points to the TP’s Common area) to an array row corresponding to the TP (Prorecord-area),
and from the Prorecord-area to a buffer. The message is then written to the input or output
‘file, depending on the type of destination routing specified by the TP. The Prorecord-area is nec-
essary to hold any intermediate pieces of an output message generated by a TP. (The TP need
not pass control to the MCS with a complete output in the Common area but, rather, just a
portion of the output message which may not be large enough to write to the input or output
file.)

As mentioned previously, Process-type programs are simply awakened by the Process-everything
stack as they do their own calls on the Get-message and Send-message procedures which are
passed as parameters to all Process-type TPs. The Control stack of the MCS falls into this
category and is treated by Process-everything in exactly the same fashion as all other Process-
type TPs. The Control stack handles Object job I/O by linking the message into the proper Out-
put queue (a linked list in the MCS’ output audit file). In the case of Object job input, i.e.,
input from a station to an Object job, the Output queue is a reserved linked list in the output
file to which all Object job input is routed. Administrative messages (station-to-station or station-
to-area) are also handled by the Control stack via the Send-message procedure.

Each time an input message is processed, either by a User or Process TP or the Control stack
(or by the Process-everything stack itself in the case of System Error Messages), the Process-eve-
rything stack causes the event on which the Backup stack sleeps so that the appropriate in-core
Input queue pointer can be checkpointed.

When the Send-message procedure links an output message into a station or Object job’s Output
Queue file, it checks to see if the Output queue was previously empty. If so, it inserts the output
message into the Output stack’s Request queue, which wakes up the Output stack if it is sleeping.
In the event that at least one or more output messages already exist in thé Output Queue file
for the station or Object job, this insertion is not done. The Output stack eventually links to
this output after sending any previous output messages to the station or Object job. This means
that the Output stack must read the Output Queue file to obtain the output message. This con-
vention is used to prevent flooding the Output queue with output messages to any particular sta-
tion

The Output stack’s function is to retrieve messages from the Output queue and/or the Output
Queue file into an array. From this array, one block-at-a-time of the message is transposed to
a DCALGOL message variable, and a DCWRITE call is made using the message variable. A
"block” in this context corresponds to the buffersize of the terminal or Object job to which the
message is being forwarded in addition to the physical characteristics (page and width) of the
terminal. In the case of unbuffered terminals, a default block size is used. As a result of the
DCWRITE call, result messages are generated by the DCP for these blocks. They are received
by the Input stack in the Primary queue and are forwarded to the Output stack via the Output
Result queue. If the result message indicates a successful operation, the next block of the message
is sent, if any blocks remain. If none remain, the next message for the station, if any, is started.

Each time a message is initiated to a station, the first two blocks are immediately sent in order
to provide a buffering effect as additional blocks are sent upon receipt of result messages. Upon
receipt of the result message for the last block of a message, the Output stack causes the event
on which the Backup stack sleeps, so that the station’s in-core Output queue pointer can be
checkpointed.

As output messages are generated by the Send-message procedure, they are marked as formatted
outputs when applicable, with an indication of whether the format to be applied involves multiple
pages. The Output and Pager stacks share a global Formatter procedure with which formats are
applied to output messages. Nonpaged formatted output is handled directly by the Output stack.

Formatted pages of output are handled by a separate asynchronous stack (Pager) which is in-
voked by the Output stack. Each output in the Output queue is examined by the Output stack
to determine if it is a paged, formatted output; if so, the output is inserted into the Pager queue
which the Pager stack services. The Pager stack attaches all stations currently in Paging mode
to a single current queue from which all subsequent inputs from these stations are received. Upon
completion of the paging process for a station, the Pager stack returns the station to its normal
status, and subsequent inputs from the station are received by the Input stack in the Primary
queue. At the same time, the Pager stack also routes any updated pages accumulated for the
station to the Primary queue.

1096567

1096567

SECTION 3
TRANSACTION CONTROL LANGUAGE

The Transaction Control Language (TCL) provides the user with a means to describe a system
in terms of station attributes and routing criteria. In addition, the TCL is used to describe access-
control requirements, formatting and mapping criteria, re-entrant criteria for Transaction Proces-
sors (TPs), and to provide a variety of other information necessary to the operation of the Mes-
sage Control System (MCS).

The language has a free-form structure, utilizing key words to describe the data communications
environment. As a by-product of a TCL Compilation, the user receives a hard-copy record de-
scribing the environment for use as a reference document.

The TCL compiler performs extensive syntax checking of the TCL. In addition, once the driver
tables are built, the TCL performs a consistency check.

Syntax errors are textual and are output to the line printer. For user convenience, messages ap-
pear immediately after the line in error. Error messages output as the result of the consistency
check are also textual, but they appear at the end of the report.

SYNTAX CONVENTIONS

The following is a discussion of the Backus-Naur form (BNF) used to describe the syntax of the
TCL.

Metalinguistic Symbols

A metalanguage is a language used to describe other languages. A metalinguistic symbol is a sym-
bol used in a metalanguage to define the syntax of a language. The following metalinguistic sym-
bols are used in this document:

Symbol Meaning

< > Left and right broken brackets are used to contain one or more digits
and/or letters representing a metalinguistic variable whose definition is
given by a metalinguistic formula.

= This symbol means: is defined as. The metalinguistic variable to the left
of this symbol is defined by the metalinguistic formula on its right.

/ This symbol represents the word OR and is used to separate the various
options possible when defining a metalinguistic symbol. Please note that
the conventional symbol of a vertical bar is not used in this document
to represent the word OR.

] Brackets are used to enclose English-language definitions of metalinguistic
variables. This formulation is used only when it is impossible or
impractical to use a metalinguistic formula.

Metalinguistic Formulas

Metalinguistic symbols are used in forming a metalinguistic formula. A metalinguistic formula
is a rule which produces an allowable sequence of characters and/or symbols. These formulas
are used to define the syntax of the TCL. The syntax, combined with the semantics contained
in this manual, defines the TCL.

In a metalinguistic formula, any mark or symbol which is not one of those defined above is to
be read according to its conventional uses (e.g. periods, commas, etc.). The juxtaposition of the
metalinguistic variables and/or symbols in a metalinguistic formula denotes the juxtaposition of
those elements in the corresponding construct.

Example:

<identifier> ::1=
<letter> / <identifier> <letter> /
<identifier> <digit>

This metalinquistic formula is read as follows:

An identifier is defined as a letter, or an identifier followed by a letter, or an identifier fol-
lowed by a digit.

‘The metalinguistic formula above defines a recursive relationship by which a construct called an

identifier may be formed. That is, evaluation of the formula shows that an identifier begins with
a letter. The letter may stand alone, or it may be followed by a sequence of letters and digits..

NOTE
Beginning with the heading CHARACTER SET, all information con-
tained in this section is presented in the following order: 1) Item to be
defined (Set, Description, Section, Statement, Command or Declaration);
2) Syntax; 3) Semantics 4) Pragmatics, if applicable; and 5) Examples,
if any.

CHARACTER SET

The character set for which the language is defined is drawn from the extended binary-coded de-
cimal interchange code (EBCDIC) character set.

Syntax:

<character set> ::i=
< string character> /
< string bracket character> / <empty>

<string character> ::=
<letter> / <digit> / <special character >

<letter> ::=
A/B/C/D/E/F/G/H/1/J/K/L/M/
N/O/P/Q/R/S/T/U/N /W/X/Y/Z

<digit> := 0/1/2/3/4/5/6 /7 /8 /9

<special character> ::=
./ ,/ <slash> / =/ :/;/(/)/
$/*/-/#/ @ / & / <single space>

<slash> = /

<space> ::= <single space> / <space> <single space>
<single space> ::= [one horizontal position]

<string bracket character> ::= "
<empty> ::= [the null string of symbols}

Semantics:

The character set for the MCS and UTILITY define is a 52-character subset of the EBCDIC
character set containing letters, digits, special characters, the string bracket character, and the
space.

BASIC SYMBOLS

Syntax:

<basic symbol> ::1= <letter> / <digit> / <delimiter>
<delimiter> ::= <assignment operator> / <separator>
<assignment operator> :i= =

<separator> :i= , / ./ :/ <space> / ;/ (/)
Semantics:

Only upper-case letters are permitted. Delimiters separate various entities that make up a system
definition.

1096567

34

BASIC COMPONENTS

Syntax:

<basic component> ::=
<identifier> / <generalized identifier> /
<integer> / <string> / <logical value>

Semantics:

<basic component>s are the primary structures of the language.
Identifiers

Syntax:

<identifier> ::=
<letter> / <identifier> <letter> / <identifier> <digit>

Semantics:

The maximum length of an identifier is 17 characters. Spaces may not appear as part of an iden-
tifier.

Generalized Identifiers
Syntax:

< generalized identifier> ::=
<identifier> /
< generalized identifier> <slash> <identifier>

Semantics:

A <generalized identifier > may contain a maximum of 14 <identifier>s separated by slashes.
An <identifier> used as an <identifier component > must be less than or equal to 17 charac-
ters.

Example:

COMPUTERROOM/TTY35

1096567

Integers

Syntax:

<integer> ::= <digit> / <integer> <digit>
Semantics:

Only positive integers are allowed. A space may not appear within an integer. Integers are limited
to eight digits.

Strings
Syntax:
<general string> ::=

<EBCDIC code> <string> /
< hexadecimal code> <hexadecimal string>

<EBCDIC code> ::= 8 / <empty>
<string> ::= <EBCDIC string> / <EBCDIC unit string>
<EBCDIC string> ::= "<character concatenation>"

<character concatenation> ::=
<string character> /
<character concatenation> <string character>

<EBCDIC unit string> ::=
" <string character>" / " <string bracket character>"

<hexadecimal code> ::= 4

<hexadecimal string> ::= ”<hex string>"

<hex string> ::= <hex pair> / <hex string> <hex pair>
<hex pair> ::= <hex character> <hex character>

<hex character> ::= 0/1/2/3/4/5/6/7/8/9/A/B/C/D/E/F

<hex unit string> ::= <hexadecimal code> ”<hex pair>"

<1-byte string> =
<EBCDIC code> <EBCDIC unit string> /
<hexadecimal code> " <hex pair>"

Semantics:

The maximum length of a string is 120 characters. Strings containing internal quotes must be
broken into separate <strings> containing three quotes in succession.

Logical Values

Syntax:

<logical value> ::= TRUE/FALSE
Semantics:

A logical value consists of the two possible conditions that a Boolean may assume.

DECK DESCRIPTION

Syntax:

<deck description> ::=
<control section> /
<control section> <define section> <global section>
< definition section list>;

< definition section list> ::=
< definition section> /
< definition section list> <definition section>

< definition section> ::=
BEGIN
<system section> <program section> <station section>
<message section> <area section> <device section>
<output routing section>
END

Semantics:

The <control section> can be the only section if the tasks requested do not require the <defini-
tion section>.

Each <definition section> describes a separate "system” or "application.” A system is defined
as a group of related stations, programs, areas, devices and messages which are logically separate
from other systems. The separation is complete, and inter-system communication is prevented by
the MCS. A maximum of eight such ”systems” may be declared.

Example:

CONTROL = LIST, GINERATZ;
GLOB AL

SYSTEMMONITAR = CMPT.
SYSTEMSPO = CMPT.
MAXRUNNING = 3.

BEGIN
SYSTEM S0S (1):
PROGRAM EVERYTHING (i2) USER:
INPUTQUEUE IGULl (1):
MKZ = MKZ1 (1,1)s MKE2 (1,2)s MKE3.
TITLEZ = PRG/ZEVERYTHING.
CIMMONSIZE = 300,
TIMEQUT = 304,
REMARKS = "PRICESSES EVERYTHING™.
STATION ONLYZONE (1):
LINE = 3:30:2,
ADDRESS TAA,
REMARKS "THE ONLY STATIONT.
McSSAGE T:ST "THEE QUICK BROWN FOX JUMPED™,
TUVER THE LAZY 00GS BACK"™, 4™QD25".
AREA GENERAL BRUADCAST (1):
STALIST = UNLY/CONE,

i on

cNO

CONTROL SECTION

Syntax:
<control section> ::= CONTROL = <control list> ;

<control list> ::=
<control task> / <control list>, <control task>

<control task> 1=
LIST <list list> / LIST OLD <list list> /
< generation task> /
DUMP / DUMP OLD / LOG /
LOG INPUT / LOG OUTPUT / LOG ERROR /
DIRECTORY <directory list> /
DIRECTORY OLD <directory list> /
UPDATEFMT / NOFORMATS /
IAD

<list list> ::=
<list task> / <list list>" <list task> / <empty>

<list task> ::=
STATION / PROGRAM / INPUTQUEUE / AREA / MESSAGE

1096567

3-7

3-8

< generation task> ::=
GENERATE <sequence specification> /
REGENERATE <sequence specification>

<sequence specification> ::=
<empty> / ,<sequence control statement>

<directory list> ::=
<directory task> /
<directory list> <directory task> /
<empty>

<directory task> ::=
PROGRAM / INPUTQUEUE / STATION / LINE / AREA

Semantics:
The <control section> defines the task that is to be performed.

The <control list> defines the individual task or combination of tasks to be performed.

DIRECTORY

DIRECTORY produces a report-oriented listing of all programs, Input queues, lines, stations,
and areas visible to the system. If a <directory list> is supplied, then a report is generated for
only those <directory task >s specified. The current files are used to produce these reports. The
format of the Directory listing is presented in appendix G.

DIRECTORY OLD

DIRECTORY OLD produces a DIRECTORY using the old files. The format of the Directory
Old listing is presented in appendix ‘G.

DUMP

DUMP accepts card or keyboard information and dumps the current files selectively. Syntax and
examples for auxiliary programs are presented in appendix F.

DUMP OLD

DUMP OLD dumps the old files. Syntax and examples for auxiliary programs are presented in
appendix F.

1096567

GENERATE
GENERATE creates a new set of files as defined by the <definition section>.

A check is made to determine if there is an existing control file present with the same name as
the file to be generated. If this is the case, an error message is written, and no new files are
generated. The existing file must either be removed or, if in production mode, have their names
changed.

IAD

IAD indicates that the Control file and/or any other MCS files are present on installation allo-
cated disk. The Utility program does not check the presence of the Control file during a GENER-
ATE or REGENERATE when IAD is specified in the Control statement. Existing MCS files
should be preserved since they are rewritten when this syntax is used.

LIST

LIST causes table information saved on disk to be printed out. If a <list list> is supplied, then
table information for only those <list task>s specified is printed. The format of printed table
information is presented in appendix G.

LIST OLD

LIST OLD causes a LIST of the old files to be printed. The internal and external names of files
used by the Utility program are presented in appendix B. The format of the printed files is pres-
ented in appendix G.

LOG

LOG creates a log file with one record for each message received and a separate log file with
one record for each message sent. The old disk files are used. The format of the log files gener-
ated is presented in appendix B.

LOG ERROR

LOG ERROR lists the messages in the Error Input queue related to data communication prob-
lems.

LOG INPUT

LOG INPUT creates a partial LOG containing only messages received.

LOG OUTPUT

LOG OUTPUT creates a partial LOG containing only messages sent.

NOFORMATS

NOFORMATS allows the user to compile the TCL without compiling the formats in the TCL.
To avoid format compilation the following actions should be taken.

1. Specify NOFORMATS on the control statement.

2. Place a "$ SET FORMATS " compiler option statement before the first format or func-
tion in the TCL source.

3. Place a "$ POP FORMATS"” compiler option statement after the last format in the TCL
source.

The FORMATS compiler option cards will have an effect only if the control card has NOFOR-
MATS specified. The control statement NOFORMATS will have no effect if the compiler option
cards are not present.

REGENERATE

REGENERATE creates a new set of “clean” files as defined in the old control file. All unpro-
cessed input and output messages are copied over from the old set of files into the new set of
files. During REGENERATE, the total TCL parameters are not passed or required.

Refer to the GENERATE statement above for the actions taken when a set of files is present
with the same name as the files to be generated.

SEQUENCECONTROL Statement

Syntax:

<sequence control statement> ::=
SEQUENCECONTROL = <status> <mode> <sequence number>

<status> ::= FIRST / RERUN / <empty>
<mode> ::= PRODUCTION / TEST / <empty>
<sequence number> ::= <integer>

Semantics:

Because of the importance of the Data Base Sequence Number (DBSN) in the recovery scheme,
this syntax exists to:

1. Carry the current DBSN from an old set of files to a new set of regenerated files.

2. Ensure the continuity of the DBSN by ensuring the sequence of MCS files from one gen-
eration to the next.

This is a required statement if any Input queue has been declared with RECOVERY = TRUE.

3-10

1096567

Two sets of files are referenced: the old set of files which is already in existence (internal names
IQUSO, OQUSO, and CQUSO) and the new set which is to be created (internal names IQUS,
OQUS, and CQUS). These files may be label-equated.

The <sequence control statement> is used to indicate the SEQUENCE NUMBER of this TCL
run. The <sequence number> must be 1 greater than the number used in the old set of files.
If the data on this card does not match with the old control file, the TCL terminates without
generating a new set of files. Either the proper files must then be loaded or the sequence control
card changed to be consistent with the old files. Care must be taken to ensure that the correct
old files are being used with the correct sequence control card when creating new TCL files.

The <status> statement indicates the type of TCL run being made. If FIRST is specified, new
files are generated without regard to a set of old files. The DBSN is set to 0, and the <sequence
number > is inserted into the new files. If RERUN is specified, this is a run of the TCL against
a set of old (previously used) files to generate a new set of files. In this case, the DBSN of the
old set of files is inserted into the DBSN of the new set, and the <sequence number > is inserted
into the new files.

The default of <empty> provides the same results as RERUN but may be used only once
against an old set of files; thereafter, it is prohibited. If it is desired to regenerate against such
a set of files again, RERUN must be specified.

The <mode statement> indicates whether PRODUCTION or TEST files are being created. If
PRODUCTION files are being created, this fact is displayed on the console printer and entered
into the system log. The default value is PRODUCTION. If this is not the first run, this state-
ment must be consistent with the old set of files being used. Test files are treated the same as
production files except that no logging is done.

The <sequence number> is an integer between 0 and 99999999 and must be 1 greater than the
number in the old set of files. If the highest number is reached, the sequence starts over again.

Example:

For a first production run:

SEQUENCECONTROL = FIRST, PRODUCTION, 1.

For a second run with the previous control files:

SEQUENCECONTROL = 2.

3-11

3-12

UPDATEFMT

UPDATEFMT allows recompilation of the format section of the TCL deck without the need for
a new generation. This may be done while the MCS is running. The update process involves the
following steps:

1.

The TCL source file that is to be updated should be the secondary input file "tape” to
a "merge” run of the TCL compiler. Patch cards, including a patch card to the Control
section to specify UPDATEFMT, should comprise the primary input file, thus identifying
those areas of the format section that are to be updated. If file-equate cards were used
for the original TCL generation, they should also be included in the update run.

When defines are used in formats or functions and the define is being patched, at least
one card in the format or function that invokes the define should also be patched in or-
der to recognize that the change is being made through a define. The card image in the
format or function may be identical to the original card image.

Changes to old formats may be unit-tested by entering a Network Control command to
put the appropriate station in a practice mode. While in practice mode, the patched for-
mat is invoked for that station, and word [3].[47:1] of the Common area has a value of
1 for all transactions entered on that station. All stations concurrently in data mode oper-
ate as though no patches were made.

. For patched formats that have been tested, the patched format may be enforced on all

stations by entering an UPDATE FORMAT Network Control command. A more com-
plete description of the UPDATE FORMAT Network Control command is presented un-
der UPDATE REQUEST in section 8.

. The number of new formats compiled must fall within the MAXNEWFORMATS value

specified in the most recent TCL generation. Each new format compiled in successive up-
date runs decreases this value by one. New formats may be made visible to the MCS by
entering an UPDATE DEVICE Network Control command. A more complete description
of the UPDATE DEVICE Network Control command is presented under UPDATE RE-
QUEST in section 8.

Although new functions may not be declared, updates to existing functions are unrestricted. New
formats may be declared, and changes to existing formats are unrestricted. When function or for-
mat declarations span multiple card images, only those card images that need be changed are
necessary in the update patch deck. New card images may be added in the appropriate card se-

quence.

DEFINE SECTION

Syntax:

< define section> ::=
DEFINE < definition list>. /
<define section> <define section> /
<empty>

< definition list> ::=
<definition> / <definition>, <definition list>

<definition> ::=
< define name>
<optional define parameter list> = <text> #

<define name> ::= <identifier>

<optional define parameter list> ::=
(< define parameter list>) / <empty>

< define parameter list> ::=
< define paramenter> /
<define parameter>, <define parameter list>

< define parameter> ::= <identifier>

<text> 1= R
[Any sequence of valid characters except a # not in

quotation marks.]
Semantics:

The DEFINE section causes the language processor to save off the specified <text> until such
time as the <define name> is encountered in a <define invocation>. At that point, the saved
<text> is inserted in place of the <define invocation>. Defines may be nested up to five (5)
deep. They may only be declared between sections. The length of the <define name> is limited
to 18 characters. Once a define is specified, it is valid throughout the rest of the TCL text.

A definition has two forms of syntax: the ”simple” define and the “parametric” define. They
are readily differentiated because the parametric define has a series of parameters (or <define
parameter >s) enclosed in parentheses. A <define parameter> of one <definition> may not
be used in the <define parameter list> of a parametric define invocation nested within it.

DEFINE Invocation

Syntax:
<define invocation> ::= < define name> <actual text part>
<actual text part> 1= (<closed text list>) / <empty>

<closed text list> ::=
<closed text> / <closed text>, <closed text list> /
<empty>

<closed text> ::=
[An actual text not containing unmatched parentheses
or quotes, or not containing unbracketed commas.]

1096567

3-13

3-14

Semantics:

The <define invocation> can be used within any section of the TCL. Its purpose is to minimize
duplication of information where such duplication may be required. A define may be invoked
only after it is declared.

A <define invocation> causes the <define name> to be replaced by the <text> associated
with the <define name>. The invocation of a parametric define causes text substitution of the
<closed text> into the indicated position(s) of the associated <text>. A <closed text> need
not be “simple.”

Example:
DEFINE GROUTI = ABI, AB2, XY37, ACDI126#.

STATION MY/STATION (16):
VALIDUSERS = GROUTI1

In the preceding example, valid-users for MY/STATION would be the four user-codes defined
in GROUT1. GROUTI could be invoked in other station descriptions as well.

Example:
DEFINE FORMDEF (A,B,C) = A, VI1:V1 OR B(C)#.

In the preceding parametric define example, an invocation for FORMDEF could be:

FORMDEF (Al, 6, (Al5, "COST = $",A4))

which, if "expanded,” would be:

Al, V1:V1 OR 6((AlS, "COST = $",A4))

GLOBAL SECTION

Syntax:
<global section> ::= <global definition> / <empty>
<global definition> ::= GLOBAL: <global statement list>

< global statement list> ::=
< global statement> /
<global statement list >
< global statement >

<global statement> ::=
< administrative program statement> /
<batch io key statement> /
<checkpoint interval statement> /
<continuous processing statement> /
<control audit statement> /
<control permanent statement> /
<controlled paging statement> /
<format and function statement> /
<format generator statement> /
<log off message key statement> /
<log on message key statement> /
<master compute statement> /
<max batch jobs statement> /
<max new access keys statement> /
<max new formats statement> /
<max new mkes statement> /
<max running statement> /
<multiple station ident statement> /
<my name statement> /
< paging permanent statement> /
<port max statement> /
<queue block size statement>
< queue record size statement> /
<recall program statement> /
< service message ident statement> /
<subsystems statement> /
<system monitor statement> /
<system monitor ident statement> /
<system network control statement> /
<system network control ident statement> /
<system object io key statement> /
<system prefix statement> /
<zip compile statement> /
<zip compile save statement >

Semantics:

The <global section> specifies information which pertains to general operation of the MCS. The
data specified in this section applies to all systems defined in subsequent sections.

Example:

GLOBAL:
CONTROLPERMANENT = TRUE.
LOGONMKE = LOGON.
LOGOFFMKE = LOGOFF.

1096567

3-16

ADMINPROGRAM Statement

Syntax:

<administrative program statement> ::=
ADMINPROGRAM =
< program name> (< program number>)
< global program classfication> :
< global program description>/
<empty >

<global program classification> ::= USER / PROCESS / PORT

< global program description> ::=
<global program statement>/
< global program description>
<global program statement>

<global program statement> ::=
<program title statement> /
<multiple inputs statement> /
<permanent statement> /
<common size statement> /
<timeout statement> /
<remarks statement> /
<max copies statement> /
< global input queue section>

<global input queue section> ::=
INPUTQUEUE
<input queue name>
(<input queue number>) :
<global input queue description>

< global input queue description> ::=
< global input queue statement> /
< global input queue description>
<global input queue statement>

<global input queue statement> ::=
<queue depth statement> /
<time limit statement> / <empty>

Semantics:

The <administrative program statement> defines an administrative message switching program
used to route messages from one station to another station, to a list of stations, or to an "area.”
The message key to be used by this program must be defined at the system level using the <ad-
ministrative message key statement> syntax. A standard administrative message switching pro-
gram is supplied with the GEMCOS System. Details on this program are presented in section
10.

BATCHIOKEY Statement

Syntax:

<batch io key statement> ::=
BATCHIOKEY = <special character>. / <empty>

Semantics:

The <batch io key statement> is used to specify the message key appended to the handshake
between a batch program and the MCS. If a BATCHIOKEY is not specified, batch programs
may not be run.

Example:
BATCHIOKEY = *
CHECKPOINTINTERVAL Statement

Syntax:

<checkpoint interval statement> ::=
CHECKPOINTINTERVAL = <integer>. / <empty>

Semantics:

The <checkpoint interval statement> specifies the amount of time, in seconds, which should
elapse between checkpoints of the audit files.

The checkpoint consists of writing current information relative to the status of the Input and
Output Queue files.

A word of caution is appropriate here: If checkpoints are taken too frequently, throughput can
be impaired; if not frequent enough, recovery time can be increased unnecessarily.

If the statement is omitted, the interval is 30 seconds.
CONTINUOUSPROCESSING Statement
Syntax:

<continuous processing statement> ::=
CONTINOUSPROCESSING = <logical value>. / <empty>

Semantics:

The <continuous processing statement> specifies that the MCS is to run in a continuous-pro-
cessing environment. If the statement is omitted, FALSE is assumed. For more information, refer
to section 9.

1096567

3-17

3-18

CONTROL AUDIT Statement

Syntax:

<control audit statement> ::=
CONTROLAUDIT = <logical value>. / <empty>

Semantics:

The <control audit statement> specifies whether input to the GEMCOS CONTROL stack will
be audited in the input audit file. The default value is true (all inputs audited).

CONTROLPERMANENT Statement

Syntax:

<control permanent statement> ::=
CONTOLPERMANENT = <logical value>. / <empty>

Semantics:

The <control permanent statement> specifies whether the Control program, a system-defined
Process program, is to be run as a permanent or as a nonpermanent program. Refer to <perma-
nent statement> in the Program section. If not specified, Control is nonpermanent.

CONTROLLEDPAGING Statement

Syntax:

<controlled paging statement> ::=
CONTROLLEDPAGING = <integer>. / <empty>

Semantics:

The <controlled paging statement > specifies the maximum number of stations to be in Paging
mode at any point in time.

This statement is intended to give the user some measure of control over the resources required
to provide message paging.

Use of this statement does not preclude any station from working with paged messages, but it
can delay a station once the maximum is reached.

If this statement is omitted, no limitation is placed upon the number of stations concurrently
in Paging mode.

1096567

FORMATGENERATOR Statement

Syntax:

< format generator statement> ::=
FORMATGENERATOR = <logical value>. / <empty>

Semantics:

The <format generator statement> is used to define the on-line FORMATGENERATOR pro-
gram that allows a user to create and test formats and forms on-line from any station, transpar-
ent to the rest of the network. This program is available as a separately priced program product.

If this statement is TRUE, an entry is made in the program table as if the following TCL syntax
had been declared:

PROGRAM FORMATGENERATOR (255) USER:
INPUTQUEUE FORMATMAKERQUE(255):
TITLE = GEMCOS/REFORM.
TIMEOUT = 600.
COMMONSIZE = 400.
AUDITINPUT = FALSE.
REMARKS = "HANDLES FORMAT MAKING CAPABILITIES.”
FORMATMAKER = TRUE.

A terminal operator uses the FORMATGENERATOR program by assigning his or her station
to the program and entering into a conversation with it. Refer to the GEMCOS Format
Generator User/Reference Manual for a complete description of this program.

QUEUERECORDSIZE Statement

Syntax:

< queue record size statement> ::=
<input/output queue record size statement> /
<input/output queue record size statement>
< queue record size statement>

<input/output queue record size statement> ::=
INPUTQUEUERECORDSIZE = <integer>. /
OUTPUTQUEUERECORDSIZE = <integer>. / <empty>

Semantics:

The < queue record size statement> specifies the record size, in words, of the input and/or out-
put queue disk files. The minimum size that may be specified is 30 words, and the maximum
size is 300 WORDS.

The default record size for the Input Queue file is 30 words. The default record size for the Out-
put Queue file is 60 words.

3-19

3-20

LOGOFFMKE Statement

Syntax:

<log-off message key statement> ::=
LOGOFFMKE = <identifier>. / <empty>

Semantics:

The <log-off message key statement> specifies the message key used to remove an operator’s
access to a station following log-on to the station. This message key may be used only at stations
where SIGNON = TRUE is specified. Additional information on access control is presented in
section 7.

Example:
LOGOFFMKE = LOGOFF.
LOGONMKE Statement

Syntax:

<log-on message key statement> ::=
LOGONMKE = <identifier>. / <empty>

Semantics:

The <log-on message key statement> specifies the message key which allows user access to a
specified set of stations (refer to <valid user statement> in the STATION section) and a
specified set of message keys (refer to <access control statement> in the SYSTEM section) when
the internal MCS access control is being used. This message key may be used only at a station
where SIGNON = TRUE is specified.

Example:
LOGONMKE = LOGON.

MASTERCOMPUTE Statement

Syntax:

<master compute statement> ::=
MASTERCOMPUTE = <logical value>. / <empty>

Semantics:

The <master compute statement> specifies whether the compute function is usable by all sta-
tions in the network. Individual station usability can be controlled in the Station section. The
compute function is discussed in detail in section 8. If this statement is not specified, FALSE
is assumed.

1096567

MAXBATCHJOBS Statement
Syntax:

<max batch jobs statement> ::=
MAXBATCHJOBS = <integer>. / <empty>

Semantics:

The <max batch jobs statement> specifies the maximum number of Batch jobs that may con-
currently interface the MCS. The maximum that may be specified is 15 Batch jobs. If the state-
ment is omitted, no Batch jobs may interface the MCS.

MAXNEWACCESSKEYS Statement

Syntax:

<max new access keys statement> ::=
MAXNEWACCESSKEYS = <integer>. / <empty>

Semantics:

The <max new access keys statement> specifies the maximum number of new access keys that
may be added through an UPDATE ACCESSKEY Network Control command before a new
TCL generation is required. Default value is S.

MAXNEWFORMATS Statement

Syntax:

<max new formats statement> ::=
MAXNEWFORMATS = <integer>. / <empty>

Semantics:

The <max new formats statement> specifies the maximum number of new formats that may
be added through an UPDATE DEVICE Network Control command before a new TCL
generation is required. Default value is 5.

MAXNEWMKES Statement

Syntax:

<max new mkes statement> ::=
MAXNEWMKES = <integer>. / <empty>

3-21

3-22

Semantics:

The <max new mkes statement> specifies the maximum number of new message keys or mes-
sage IDs that may be added through an UPDATE MKE Network Control command before a
new TCL generation is required. Default value is 5.

MAXRUNNING Statement

Syntax:
<maxrunning statement> ::= MAXRUNNING = <integer>./<empty>
Semantics:

The <max running statement > specifies the number of Common areas through which User-type
programs may run. This statement can be used to control the maximum number of User pro-
grams or copies of programs allowed to run concurrently. This statement must be specified and
may have a value between 1 and 254.

MULTIPLESTAIDENT Statement

Syntax:

<multiple station ident statement> ::=
MULTIPLESTAIDENT = <ident identifier>. / <empty>

<ident identifier> ::=
<identifier> / <integer> / <string>

Semantics:

The < multiple station ident statement> specifies the <ident identifier > to be placed at the end
of the title line when a message is directed to more than one destination. The <ident identifier >
may not be greater than 17 characters long. If this statement is omitted, MULTIPLE is assumed.

Example:
MULTIPLESTAIDENT = HOST.
MYNAME Statement

Syntax:
<my name statement> ::= MYNAME = <identifier>. / <empty>

Semantics:

The <my name statement> causes the MYNAME attribute of the PORT file used by GEMCOS
to communicate with PORTSTATIONS to be set to <identifier>. Every processs which commu-
nicates with a PORTSTATION must set the YOURNAME attribute of its port subfile to <iden-
tifier>. Refer to the PORTSTATION statement in the station section for a more complete expla-
nation. The default value of MYNAME is null.

1096567

PAGINGPERMANENT Statement

Syntax:

< paging permanent statement> ::=
PAGINGPERMANENT = <logical value>. / <empty>

Semantics:

The <paging permanent statement> specifies whether the message paging module is to remain
permanently in the mix. If it is FALSE or omitted, the module is executed when paging is to
be performed and goes to EOJ when it has nothing left to do.

QUEUEBLOCKSIZE Statement

Syntax:

< queue block size statement> ::=
QUEUEBLOCKSIZE = <integer>. / <empty>

Semantics:

The < queue block size statement> specifies the number of disk records preallocated per input
queue and station when running in a continuous-processing environment.

Default value is 50, and maximum value is FILEAREASIZE (defined to be 4096). When CON-
TINUOUSPROCESSING is FALSE, QUEUEBLOCKSIZE has no effect. For more information,
refer to section 9.

RECALLPROGRAM Statement

Syntax:

<recall program statement> ::=
RECALLPROGRAM =
< program name>
(<program number>)
< global program classification>:
<global program description>

Semantics:

The <recall program statement> defines the Recall program used to recall any output message
inserted into a queue either by its message number or by the date and time. The message key
to be used by this program must be defined at the system level using the <recall message key
statement > syntax. A standard Recall program is supplied with the GEMCOS system. Details
on this and other auxiliary programs are presented in section 10.

3-23

3-24

SERVICEMESSAGE IDENT Statement

Syntax:

<service message ident statement> ::=
SERVICEMESSAGE <ident identifier>. / <empty>

Semantics:

The <service message ident statement > specifies the <ident identifier> to be placed at the end
of the title line when a service message is generated. The <ident identifier> may not be greater
than 17 characters long. If this statement is not specified, SERVICEMESSAGE is assumed.

Example:
SERVICIEMESSAGE = SERVICE/MESSAGE.
SUBSYSTEMS Statement

Syntax:

<subsystems statement> ::=
SUBSYSTEMS: < specific list> / <empty>

< specific list> 1=
<specific item> /
<specific item> < specific list>

< specific item> ::=
CONTROL = <identifier>/
PAGER = <identifier>/
OUTPUT = <identifier>/
PROCESSEVERYTHING = <identifier>/
BACKUP = <identifier>

Semantics:

The purpose of this syntax is to allow the user to specify whether the GEMCOS stacks are to
run out of a particular subsystem. For this syntax to be valid, the MCS and UTILITY must have
been compiled with the SUBSYSTEMS option set. The system software used must allow the Sub-
systems task attribute to be used.

Example:

SUBSYSTEMS:
PAGER = LOCALIL.
CONTROL = LOCAL2.

SYSTEMMONITOR Statement

Syntax:

<system monitor statement> ::=
SYSTEMMONITOR = <station name list>.

<station nam - list> ::=

<station nume list> /

<station name list>, <station name>
<station name> ::= < generalized identifier >

Semantics:

The <system monitor statement> specifies the station or stations to receive messages that are
of a system nature. Up to four stations can compose the <station name list>. This is a required
statement, and at least one station must be declared as a system monitor. The <station name>s
declared must be declared in the STATION section.

Example:
SYSTEMMONITOR = ANY/STA.
SYSTEMMONIDENT Statement

Syntax:

< system monitor ident statement> ::=
SYSTEMMONIDENT = <ident identifier>. / <empty>

Semantics:

The <system monitor ident statement > specifies the <ident identifier > to be placed at the end
of the title 'ine when a message is directed to the system monitors. The <ident identifier> may
not be greater than 17 characters long. If this statement is not specified, SYSMON is assumed.

Example:
SYSTEMMONIDENT = MONITOR.

SYSTEMNETWORKCONTROL Statement

Syntax:

<system network control statement> ::i=
SYSTEMSPO = <station name list>.

1096567 3-25

3-26

Semantics:

The <system network control statement> specifies the station or stations that can issue system
control messages. Up to four stations can compose the <station name list>. This is a required
statement, and at least one station must be declared as a System Network Control station. Unless
AUTOENABLE is set to TRUE for a system, these stations are the only elements which are auto-
matically enabled when the MCS initializes the network.

Example:
SYSTEMSPO = SPO/STA
SYSTEMNETWORKCONTROLIDENT Statement

Syntax:

<system network control ident statement> ::=
SYSTEMSPOINDENT = <ident identifier>. / <empty>

Semantics:

The <system network control ident statement> specifies the <ident identifier> to be placed
at the end of the title line when a message is directed to the System Network Control stations.
The <ident identifier> may not be greater than 17 characters long. If this statement is not
specified, SYSSPO is assumed.

Example:
SYSTEMSPOIDENT = SPOS.
SYSTEMOBJECTIOKEY Statement

Syntax:

<system object io key statement> ::=
SYSTEMOBIJECTIOKEY = <special character>. / <empty>

Semantics:

The <system object io key statement> specifies the key preceding each message to and from
an external Object program communicating with the MCS. If the statement is not specified, exter-
nal object programs may not communicate with the MCS.

Example:

SYSTEMOBIJECTIOKEY = &.

SYSTEMPREFIX Statement

Syntax:

<system prefix statement> :: =
SYSTEMPREFIX = <ident identifier> / <empty>

Semantics:

The <system prefix statement> specifies the <ident identifier> used to prefix the system name
in service messages. The <ident identifier> may not be longer than 17 characters.

Example:

SYSTEMPREFIX = MICHIGAN.

FORMAT AND FUNCTION SECTION

Syntax:

<format and function statement> ::=
<format section> / <empty>

< format section> :: =
< function declaration list >
< format declaration list>

< function declaration list> ::=
< function declaration> /
< function declaration list> < function declaration> /
<empty>

< format declaration list> ::=

< format declaration> /
< format declaration list> <format declaration>

Semantics:

The formats and related constructs for input and output formatting are described in this section.

FUNCTION Declarations

Syntax:
< function declaration> ::= FUNCTION < function part list>.

< function part list> ::=
< function part> /
< function part list>, <function part>

1096567 3-27

3-28

< function part> ::=
< function designator>
< justification and fill part> (<translation list>)

< function designator> ::= <identifier>

<justification and fill part> ::=
[EXTERNAL: < function type>
INTERNAL: < function type>] /
<empty>

<function type> ::= INTEGER / ALPHA / UNEDITED

<translation list> ::=
<translate pair> /
< translation list>, <translate pair>

<translate pair> ::= <external string>:<internal string>

<external string> ::=
[Any string of no more than six characters]

<internal string> =
[Any string of no more than six characters]

Semantics:

Functions are used with formats. They allow a format to translate a string of length N into a
string of length M where 0<N<7 and 0<M<7.

< External string>s and <internal string>s are limited to a maximum of six characters each.

On input, an <external string> is translated into the associated <internal string>. On output,
an <internal string> is translated into its associated <external string>.

The <external string>s and <internal string>s are stored in a pair of associated arrays. The
mask-search intrinsic is used to search the appropriate array and return a string from the associ-
ated array.

1096567

Examples of functions used in formats are shown following the section on the semantics of < for-
mat declaration>s.

Examples:

FUNCTION GENDER (" MALE":"1", "FEMALE":"2").

FUNCTION DAY (IIlII: IISUNII, 112”: /IMON/I’ ”3": IITUESII’ II4II: IIWED/I’ "5 II: IITHUN’
!I6II: IIFRIII’ II7II: IISATII).

FUNCTION NUM! ("ONE’: "01”, "TWO’: "02", "THREE’": "03", "FOUR’: "04",
IIFIVEII : [IOS n , IISIXII : ”06’/ s ” SEVEN " : ”07 ”n s IIEIGHTI! : II08H y "NINE n : II091I s IITENII :
4 lOII , /IELEVEN”: n 1 1 II)

FUNCTION NUM2 [EXTERNAL: ALPHA, INTERNAL: INTEGER] ("ONE": "01",
IITWOII . ”02" s IITHREEII . IIO3 " s IIFOUR II: IIO4II s IIFIVEII: ”05 n s IISIX " : II06II R " SEVEN n .
II07 n y IIEIGHTII : 1108/1 s /ININE " . I109II R IITENII . n 10" y /IELEVENII : n 1 1 II).

If the <justification and fill part> is <empty>, it is assumed that both the <external string>s
and <internal string>s are unedited. By using the <justification and fill part>, the user may
make either of these strings unedited, integer, or alpha.

An unedited string of less than six characters in length is right-justified within a 6-character word
with leading nulls (4”00").

An integer string of less than six characters is right-justified with\trailL% ZEros.

An alpha string of less than six characters is left-justified with trailing blanks.

Within a given function, as long as all <internal string>s are of the same length and all <exter-
nal string>s are of the same length, it makes little difference whether the strings are unedited,
integer, or alpha. However, if strings vary in length, the use of integer or alpha strings can help
to avoid confusion. Suppose a function is declared as follows:

Example:

FUNCTION TEST ("1”:"ME”",”11":"SOME").

On input, a search for an <external string> of ”1” would result in a match with "11” because
its right-most position contains ”1” and the mask-search looks only at bits [7:8]. A similar phe-
nomenon would occur on output with a search for an <internal string> of "ME”, which would
result in a match with "SOME”. (The mask-search always starts at the end of an array and
searches backward). This problem could be avoided by declaring the function as follows:

FUNCTION TEST
[EXTERNAL:INTEGER,INTERNAL:ALPHA]
(I/ 1 n : IIMEII s " 1 1 ”n : IISOME/I).

Now, if asked to search for ”1”, the mask-search would actually search for "000001”, and if
asked to search for "ME”, would look for "ME "”.

3-29

3-30

FORMAT Declarations

Syntax:
<format declaration> ::= FORMAT <format part list>.

<format part list> ::=
<format part> /
<format part list> <format part>

<format part> :: =
<format designator> < format specification>

<format specification> ::=
LIBRARY / LIBPAGED /
<special action part> (<local declaration part>
<line count statement> < format description>)

< format designator> ::= <identifier>
<special action part> ::= [<special action list>] / <empty>

<special action list> ::=
<special action> /
<special action list>, <special action>

<special action> ::=
UPDATE <input specification>/RESIDENT/ SEQUENTIAL

<input specification> ::=
,NPUT : <format designator> / <empty>

<local declaration part> ::=
VARIABLE <variable declaration list>; / <empty>

<variable declaration list> ::=
<variable declaration> /
<variable declaration>, <variable declaration list>

<variable declaration> ::=
<variable identifier >
<optional location specifier> FOR <integer>

<variable identifier> ::= V1/V2/V3/V4/V5/V6

<optional location specifier> ::=
<location specifier> / <empty>

1096567

<line count statement> ::= LINECOUNT = <integer>; / <empty>

< format description> ::=
<editing specifications> / <page format list>

<page format list> ::=
<page format> / <page format list>,<page format>

<page format> ::=
PAGE [<page number>] <page repeat>:
<editing specifications >

<page number> ::=
<integer>/ <page end phrase> * <page begin phrase>

<page end phrase> ::= <simple string list>
<page begin phrase> ::= <simple string list>

<simple string list> ::1=
<simple string>/ <simple string>, <simple string list>

<simple string> ::=
<EBCDIC code> <EBCDIC string>/
< hexadecimal code> < hexadecimal string>

<page repeat> 1=
REPEAT ON <REM or variable list> / <empty>

<REM or variable list> ::=
<REM or variable> /
<REM or variable>,<REM or variable list >

<REM or variable> ::= REM / <variable identifier >
<editing specifications> ::=

<editing segment> /
<editing specifications >, <editing segment >

<editing segment> ::= <fixed segment> / <variable segment>
<variable segment> ::= [<fixed segment>]
<fixed segment> ::= <editing phrase list>

<editing phrase list> ::=
<editing phrase> /
<editing phrase list>, <editing phrase>

3-31

<editing phrase> ::=
<editing string> / <location specifier /
<item phrase> / <case statement> /
<set variable statement> /
<header declaration> / <break variable statement> /
<end-of-line statement >

<editing string> ::= <skip field> / <simple string>
<skip field> ::= X<integer> / X(<variable field delimiter>)
<variable field delimiter> ::= <one-byte string>

<location specifier> ::=
@ <integer> / @ + <integer> / @ — <integer>

<item phrase> ::=
<repeat part> (<fixed segment>) /
<repeat part> <item phrase part> /
T(<function designator>, <item phrase part>,
<internal size>)

<repeat part> ::=
<integer> /
<update variable> <REM or variable> OR <integer> /
<empty >

<update variable> ::= <variable identifier>: / <empty>

<item phrase part> ::=
<item type> <field width> / <F item type>

<item type> := A/1/B/J/C/L

<field width> ::=
<integer> / (<variable field specifier>)

<F item type> ::=
<optional sign> <optional dollar> <optional comma>
F <integer> . <integer> /
<optional dollar> <optional comma> F <integer>.
<integer > <optional sign>

<optional sign> ::= S / <empty>
<optional dollar> ::= $ / <empty>
<optional comma > ::= P / <empty>

3-32

<internal size> ::= <integer>

<variable field specifier> ::=
<variable field delimiter>, <internal size>

<case statement> ::=
CASE <optional variable identifier >
(<statement lists> < optional else>)/
<empty >

<optional variable identifier> ::=
<variable identifier>/ <empty>

<statement lists> ::=
<statement list> / <statement lists>, <statement list>

<statement list> ::= <integer> : (<editing phrase list>)
<optional else> ::= ELSE: (<editing phrase list>) / <empty>

<set variable statement> ::=
<variable identifier> FOR <integer> / <empty>

<header declaration> ::=
H<integer> (<heading string list>) /
H<integer>/ <empty>

<heading string list> ::=
<heading string> /
<heading string> <heading string list>

<heading string> ::=
<simple string list> /
<repeat part> <item type> <field width>

<break variable statement> ::=
BREAK < variable identifier> / <empty>

<end-of-line statement> ::= </> / <empty>

Semantics:

<format declaration>

The <format declaration> is used for declaring a format to be applied to a message on its way
into or out of the MCS. In general, a format is applied to an input message or an output message
but not both. An exception to this is the update format which is discussed under <special ac-
tion>. Which format is applied to which message is determined by statements in the DEVICE
section.

1096567 3-33

3-34

<format part list>

The <format part list> allows several formats to be described in one <format declaration>.
Each <format part> describes a particular message format.

< special action list>

A <special action part> after the <format identifier> may indicate that the format is a
resident format, an update format, a sequential format, or any combination thereof.

A resident format is kept in an array instead of on disk. This facility is provided for small, fre-
quently used formats. It is intended to save the I/O overhead that would otherwise be required
to retrieve a format from disk before using it. This feature should be used with care since its
overuse could require significant amounts of main memory.

An update format is one that displays a formatted message on a screen device and allows the
terminal operator to change unprotected fields and transmit the screen back to the MCS. This
feature has meaning only for paged formats. When a screen is formatted, fields can be re-ar-
ranged. When the screen is returned to the MCS, it must be put back in the same sequence that
it was in before formatting. You might say it must be "unformatted.” For any update format,
the system automatically "unformats” the message when returned. There are two important re-
strictions which must be observed when declaring an update format: 1) <editing string>s (refer
to Syntax for FORMAT DECLARATIONS) may be used only in untransmittable fields (outside
the scope of forms characters), and 2) <editing string>s must not be used within transmittable
fields. (See the discussion below on the use of the C and L <item type>s to alleviate these re-
strictions.)

The <input specification> feature allows the user to specify an input format to be applied to
the message after all of the update paging dialogue is completed (after the X paging dialogue
character has been transmitted and the "unformat” has been applied). This feature is only al-
lowed for update formats. It enables the user to reduce the amount of data being written to the
input audit and sent to the program. The <format identifier> must be previously specified in
the TCL syntax.

A sequential format may be used only on messages whose fields are in the proper sequence. Ab-
solute or negative location specifiers (@) cannot be used in a sequential format. For long mes-
sages which are in the proper sequence, the MCS does not have to read the entire message from
disk before formatting it. This feature is intended to allow the user to avoid the memory over-
head that might otherwise be associated with a large, paged message.

<local declaration>

A <local declaration part> may be included in a nonupdate output <format declaration> to
declare variables that are used in a <repeat part> within a <format declaration>. Values for
variables declared are the first items extracted from the internal message. During each variable
assignment, the "internal message pointer” is adjusted by a combination of the <optional loca-
tion specifier > and the internal character length of the variable as specified in the variable decla-
ration. Variable values contained in the internal message should be expressed as EBCDIC charac-
ters with a value not greater than 255.

1096567

<line count statement>

The <line count statement> defines the line count for a paged format. The definition must oc-
cur at the beginning of the format and can have any value from 1 to 255. The line count may
be defined only for a paged update or display format. Once it is defined, a line count work area
is established; when the defined line maximum is met, a page break occurs, clearing the line count
work area to zero.

<page begin-end phrase>

A <page begin-end phrase> may be defined at the beginning of the format, but is only allowed
on update or display paged formats. The definition may be composed of strings only. A format
with this definition always begins "broken” terminal outputs with the PAGE BEGIN string. It
also appends the PAGE END string to all "broken” terminal outputs. The <page begin-end
phrase> is invoked by the <break variable statement > syntax or when the line count work area
reaches the specified line maximum.

Example:

FORMAT ABC (LINECOUNT = 24;
PAGE[4"27E60000",*, 4"0C0000", "[+]", / I
4"0C0000", "[+]", 4"0D25", / ,
A6,4"0D25", 1,
V1 FOR 2,
V1 OR 20 (16, 4"0D25",/),
V2 FOR 2,
BREAKYV2,
V2 OR 20 (A8, 4"0D25",/),
4"27E60000”, "X").

< format description>

A <format description> consists of <editing specifications> or, in the case of a paged format,

page numbers interspersed with <editing specifications>. (Refer to <editing specifications > be-
low.)

<REM or variable list>

Variables and update variables are used to represent repeated occurrences of data. They are
initially assigned values from the user TP message and can be counted down by using update
variables. When used in a <page repeat>, that page of a format is repeated as long as the
variables are greater than zero.

"REM”, used in the <page repeat> and the <repeat part>, refers to an internal reserved
variable that has meaning after any repeat expression. Its use is primarily to provide for a “total
line” capability. The “total line” is to be executed after all repeats are exhausted. A specific
definition of REM is provided below:

REM = IF (L-V)<0 THEN 0 ELSE (L-V)

where L is the literal maximum of a repeat, and V is a variable. For example, a repeat expression
might be:

V1 or 12

3-35

3-36

If V1 were greater than 12, the repeat expression above would be executed the literal maximum
of 12. All 12 of the repeat applications would be used, and REM would be O after the repeat.
If V1 were 9, however, the repeat would be terminated by V1, and in this case, would be 3 after
the repeat. '

<editing specifications>

The <editing specifications > consist of one or more <editing segment>s separated by commas.
Each <editing segment> can be fixed or variable.

<variable segment>

A <variable segment> is a <fixed segment> surrounded by brackets. In order to be meaning-
ful, at least two <editing phrase>s within a <variable segment> must have a <variable field
specifier > for the <field width>. This feature allows the user to describe a message which con-
tains two or more fields, the sequence of which is unknown; however, they may be identified
by the < 1-byte string> delimiting them. The exact meaning of this is made clearer by the exam-
ple of the system format file in appendix B, under SYSTEM FORMAT FILES.

< fixed segment>

A <fixed segment> is an <editing phrase list> which can be surrounded by parentheses and
preceded by a <repeat part>. The <repeat part> may be an unsigned integer (which simply
means that the <editing phrase list> is repeated <integer> times) or it may be a variable repeat
expression. If the value of the variable is zero when a repeat is encountered, editing phrases
bounded by the repeat are skipped. A variable repeat expression must include a maximum repeat
count which is used to terminate the repeat if the variable count has not been reached. When
an <update variable> is specified, the <update variable is assigned the value of the variable,
decremented by one for each repeat, until the repeat is terminated.

<editing phrase list>

An <editing phrase list> is one or more <editing phrase>s separated by commas. An <editing
phrase> can be one of three things: 1) an <editing string>, 2) a <location specifier>, or 3)
an <item phrase>. '

<editing string>

An <editing string> is either a <simple string>, such as "XYZ"” or 4"F12B”, or a <skip
field> such as X3 or X(”,”). When a <simple string> is encountered during the application
of a format, it is inserted into the formatted message. When a <skip field > is encountered on
input, spaces are skipped in the incoming, raw data message. X3 causes three spaces to be
skipped. X(”,”) causes spaces to be skipped until a comma is encountered in the raw data mes-
sage. When a <skip field> is encountered on output, it causes blanks to be inserted in the out-
going, formatted message. X3 would cause three blanks to be inserted. X(< variable field delimit-
er>) is undefined for output messages.

<location specifier>

A <location specifier > is used to manipulate the "internal message pointer.” On input, it manip-
ulates a pointer to the formatted message; on output, it manipulates a pointer to the raw, unfor-
matted message. The <location specifier> should be envisioned as referencing the Common ar-
ray as a message is in the process of being moved in (input) or out (output). This internal pointer
normally moves one character at a time to the right as <editing phrase>s are processed. The
<location specifier> allows it to be "manually” set or adjusted. When a sign is present, it is
adjusted forward or backward by <integer> characters. If no sign is present, it is set to the
position specified by the <integer>. Care must be taken on input not to overlay good data when
using this feature.

<item phrase>

<Item phrase>s come in a variety of forms, all of which involve an <item type>. There are
seven <item type>s:

ALPHA

TABBED ALPHA

ALPHA - OUT ONLY

FIXED FIELD

INTEGER

TABBED INTEGER

ALPHA - IN ONLY LOCATION SPECIFIER-OUT
ONLY

N~—=m O W

There are basically two differences between alpha fields and integer fields: 1) Integer fields are
edited to make sure that they contain only digits or blanks (no imbedded blanks), and 2) Justifi-
cation and blank/zero fill are different. On input, if a source alpha field is smaller than the desti-
nation, the data is left-justified with trailing blanks. On input, if an integer is smaller than its
destination integer field (regardless of the size of the source field), the integer is right-justified
with leading zeroes. This means that a 3-digit integer may appear anywhere within a 10-digit field
on input and is right-justified with leading zeroes in the formatted message. On output, the use
of a <variable field specifier > as the <field width> of an <item phrase> results in data com-
pression by removal of trailing blanks in alpha fields and leading zeroes or blanks in integer
fields. In both cases, the <delimiter> is inserted after the compressed field in the formatted mes-
sage.

The simplest form of an <item phrase> is one with a fixed field size such as A6 or 19. An
A6 <item phrase> results in the unedited move of six characters from the raw message to the
formatted message. An I9 <item phrase> moves nine characters and is subject to the editing
rules mentioned in the preceding paragraph.

B and J <item phrase>s are the same as A and I phrases, respectively, except that on input,
a field in the incoming message can end early if a tab character (4”05") is encountered. Thus,
in a B10 phrase in an input message, characters are transferred until either 10 characters have
been moved or a tab character, is encountered. If the transfer is terminated by a tab character,
trailing blanks are added to the field in the formatted message in order to fill out all 10 charac-
ters. On output, B and J behave exactly the same as A and I.

1096567 337

3-38

When a <variable field specifier > is used in an input message in A or I fields, a variable length
field delimited by <variable field delimiter > (which can be any <one-byte string>) is moved
into a field of <internal size> characters in the formatted message. A <variable field specifier >
used with B or J fields on input allows the user to substitute any <one-byte string> for the
normal tab character (4”05"). Thus, B(4"05",10) is the same as B10.

The C <item type> is for use in update formats only. It is intended for use in alphanumeric
data fields in untransmittable areas on a screen device (not within forms characters). Since other
<item types> may be used only in transmittable fields, the C <item type> is necessary to allow
critical data to be shown to the terminal operator and returned to the TP unchanged in an update
transaction on a screen device.

The F <item type> allows editing of numeric fields on input and output. The allowable charac-
ters in this field depend on the syntax selected for the field; alpha characters and blanks are never
allowed. Justification and zero fill follow the same rules as for I (integer) fields.

The complete syntax for the F field takes one of two forms:

a. <S> <$> <P> FW.D
b. <$> <P> FW.D <S>

Delimiters (< >) indicate the syntactic item is optional. In the first form, S indicates a leading
sign, while in the second form it indicates a trailing sign. The $ indicates a leading dollar sign.
P indicates that comma insertion is to occur on output and comma scan/deletion is to occur on
input. F is the <item type>. W indicates an integer that represents the total field width; how-
ever, W does not include the number of commas and the decimal point. The period acts as a
delimiter between the integers W and D. D indicates an integer less than or equal to W and repre-
sents the number of decimal places in the field.

The L <item type> is for use only in update formats to relieve the restriction that <editing
string> may not be declared within transmittable fields (within the scope of forms characters).
Strings may be inserted into transmittable fields only if the transmittable field which contains
the string is followed by an L <item type> whose field length is exactly the same as the length
of the string.

NOTE
The paging dialogue character in a transmittable field should not be re-
flected by a corresponding L field.

Any of the <item phrase>s discussed thus far may be repeated by using a <repeat part> in
front of the <item type>.

The T(<function designator>, <item type> <field width>, <internal size>) form of <item
phrase>, when used on an input message, translates a field in the incoming message described
by <item type> <field width> into a field of the same type and <internal size> characters
long in the formatted message. The translation is defined by the <function designator> which
was previously declared as a function. This provides a capability similar to that provided by a
translate table in ALGOL. The function can be declared to translate any N characters into any
M characters where 0<N<7 and 0<M<7. On output, a field the width of <internal size> is
translated into a field described by <item type> <field width>.

<case statement>

The <case statement> allows the selection of editing phrases based on a variable or on the two
characters beginning at the current internal pointer location in the message. When the <selection
expression> is <empty>, the CASE assumes the value of these next two characters. If the
ELSE form of the <statement list> is used, it must be the last of the <statement list>s. If
no ELSE <statement list> is used, a format error occurs when an undefined value is used as
the <selection expression>.

The <case statement> may be used in output, input, paged update, or display formats. The
< selection expression> (either type) of the <case statement> is not sent to the terminal on out-
put and is re-established from the original message on input (unformat) of paged update.

Example:
FORMAT OUTONLY (VARIABLE V1 FOR 2;
CASE V1 (1: (A6, "CASE 1")
2: (A3, "CASE 2")
ELSE: ("CASE 3"))).
OUTPUT MESSAGE "02ABC”
SENT TO TERMINAL "ABCCASE 2"
FORMAT INONLY (A4,
CASE (01: (A6, "CASE 1”)
02: (A3, "CASE 2")
ELSE: ("CASE 3"))). -
INPUT FROM TERMINAL "MKE101ABCDEF”
EDITOR’S MESSAGE TO TP "MKE1ABCDEFCASE 1”

<set variable statement>

A variable can be set in any spot in the format. The <integer> represents the number of charac-
ter positions from the current pointer location that are integerized to establish the variable. The
<integer> can be from 1 to 3 digits, and the maximum value of the variable is 255. The charac-
ters used to set the variable are not sent to the terminal. When update paging is used during
the input (unformat) phase, the variable is re-established from the internal message.

Example:

FORMAT VAR (A3,
V1 FOR 3, V1 OR 10 (I1, 4"0D")).

OUTPUT MESSAGE "ABC00297"

SENT TO TERMINAL "ABC9<CR>7<CR>"

1096567 3-39

3-40

<header declaration>

A format sequence may be defined as a header. Any number of headers may be nested, up tc
a level of 15. The strings are saved, and they precede the message after the page break. Header
levels are defined by the integer following the H in the syntax. A header of a given level replaces
any previously declared header of the same level and deletes all headers of greater levels. HN-
deletes all headers greater than or equal to that level.

Example:

FORMAT XXX C[UPDATZ] (LINECOUNT=10;
PAGELA"27Z00ULUU"»*sa™3CILO0">™0 +] RESULTS CONTINUED"™,
4"0D25", /1:

4"0CU000", (41 PATIENT TEST RESULTS"»4™3D25",/,
HIL("PATI'ENT NAME"»4"00"» /)

V1l FOR 2,

V1 OR 20iCH2(C15+345547"00"»/),

h3(™ TEST NUMBER TEST RESULTS™»4"0D",7)»
V2 FOR 2,

V2 OR 23CCASECULz(™L"5A45"] ("5 A6,"]
("»A2,"1", 4T0Dp",/)
02:("("»A4,"] [",A1»™] (",A10,"]
C A2 1" 4" 0" /s))
HZ");
4"27:600007,7X"),

<break variable statement>

The <break variable statement> causes a test of certain conditions and invokes a page break
when required. A comparison of VM to the line-count work area can be done by the syntax
BREAKVM. If VM plus the line-count work area is greater than the line-count definition, a page

break occurs.

<end-

of-line statement>

An end-of-line character has been defined as ”/”. This character causes the line-count work area
to be incremented by 1.

Example:

FORMAT ABC (LINECOUNT = 24;
PAGE[4"27E60000",*,4"0C0000","[+1",/]: % "BEGIN-END"

In this

1096567

4"0C0000","[+1",4"0D25",/,
A6,4"0D25"/"

V1 FOR 2,

V1 OR 20(16,4"0D25,/),

V2 FOR 2,

BREAKYV2,

V2 OR 20(A8,4"0D25",/),
4//27E6OOII’!IX/I).

example, if V1 were 15 and V2 were 23, the following would occur:

. The screen would be cleared, a "[+]” would appear on the first line followed by a car-

riage return/linefeed (CRLF) and the line-count work area would be counted up to 1.

. One line of A6 format would be applied, the CRLF inserted, and the line-count work

area would be counted up to 2.

. The value of V1 should be extracted from the message, and V1 would be 15.
. Fifteen lines of 16 followed by CRLF would be executed, and the line-count work area

would be incremented to 17.

. The value of V2 would be extracted from the message, and V2 would be 23.
. V2 would be added to the line-count work area and the sum (40) would be found to be

greater than the line count (24).

. A page break would occur with all strings before the "*” applied to the current text be-

fore transmitting, and all strings after the "*” applied to the beginning of the next text
to be transmitted. The line-count work area would be set to zero and then counted up
to 1.

. Twenty lines of A8 followed by CRLF would be executed and the line-count work area

would be counted up to 21.

341

Editing Errors

When errors are detected on output, the message is sent to its normal destination, and an error
"message is sent to a system monitor specifying what type of error occurred.

When an error is detected on input, the ”standard editor” sets the format error bit in COMMON.
If necessary, the user may obtain more information about the error by changing the editor or
writing another. Additional information may be obtained in the following manner:

0: Z NON=DIGIT IN INTZGEK FICZLD
i Z TARGET OF TKANSLATE FUNCTION NOT FOUND
23 % DELIMITER MISSING Ok VARTA3LE FIELD TOO LONG
3: 2 ATTEMPT TO USC VARIABLE SEQUENCE UN OUTPUT
43 %2 FORMATTED MLSSAGI NEEZDS LARGER DESTINATION ARKAY
5: % I'NVALID VARIASLE ASSIGNMENT VALUE
b: Z LUCATION SPECIFIithk OUT OF BOUNDS
l: X MESSAGE TOJ LONG
&2 2 INVALIO FIXED FORMAT
10: Z REPEAT INDZX TOC LARGt FOR PAGE BREAK
64: 4 TOO MANY DELIMITZRS FOUND IN VARIABLE SEQUEINCE
65: 2 I'NVALID OP CODE = COULD BE USING WRONG FORMAT
Z FILE
66: % UNDEFINED DELIMITEE
b7 X I'NVALID CASE NUM3EF
101: Z FAULT IN FORMATTZR: ZERODIVIDE
102: 2 FAULT IN FORMATTZIR: EXPONENTOVERFLOW
ly3: Z FAULT IN FORMATTZIR: EXPONENTUNDERFLOW
i04: Z FAULT IN FORMATTIR: INVALIDINDEX
105: 2 FAULT IN FORMATIER: INTEGEROVERFLOW
w7: X FIAULT IN FORMATTER: MEMURYPROTECT
108: % FAULT IN FORMATTZIR: INVALIDOP
109: ¥ FAULT IN FORMATTER: LOOP
11lv:s 2 FIAULT IN FORMATTZIR: MEMURYPARITY
111: % FAULT IN FORMATTCR : SCANPARITY
112: X FAULT IN FORMATTZR: INVALIDADDREZSS
113: Z PAULT IN FORMATTZIR: STACKOVERFLUOW
114: % FAULT IN FOFMATTZR: STRINGPROTECT
115: % FAULT IN FOKMATTCK: PROGRAMMEDOPERATOR
l11é: Z FAULT IN FORMATTZh: INVALIDPROGRAMWORD
ELSE: % ROOM FOR FUTURE ZXPANSION
END;

Thas RESULT .C0:11=1 IF AN ERRUR WAS DETECTED
RESULT.L7:71= SRRCR NUMBckK
RESULT.[23:161=CHARACTER POSITION IN MESSAGE

UF OFFENCING CHARACTER OK LOCATION SPECIFTER
RESULT.(39:161=L0CATION JF DESTINATION

POINTER WHEN ERROR QCCURRED
RESULT.(47:81=0P CODE UNDER EXECUTIUN WHEN

tREOR UCCURRED

342

Figures 3-1 and 3-2 provide graded examples of increasing complexity of formats applied to input
messages and output messages. Figure 3-3 provides more complex examples involving variable
field sizes, sequenced fields, and tabs. Figure 3-4 provides examples of formats involving translate

functions.

Message As It <tditing Specifications> Message As It
Input/ Appears at the Appliad to ¥Message Appears to the
Qutput Terminal In Transit User Frograwm
Input/ SHAKESPLARE Ali SHAKESPEARE
Qutput
Inputy/ lube 14 1666
Qutput
Input/ SPECIAL #x/ ALD SPECIAL#«/
Qutput
Input/ ADM63302 A3, 15 ADM639C2
Qutput
Input ADM 639.,2 A3, 17 ADMGOB39X2
Input ADMB3902 A3 17 ADM0O06 2902
Input/ ALPHAGAMMA Al ALPHAGAMMA
Qutput
Input/ ALPHAGAMMA A5, AS ALPHAGAMMA
Output
Inputs ALPEAGAMMA 245 ALPHAG AMY A
Qutput
Input/s AB123XY 456 A2,13,A2,13 AB123XY456
Qutput
Input/ ABLl23XxY45H 2(A2,13) AB123XY456
Qutput
Input AB123XY456 110 AB123XY456

(error flag set)

Input AB13XY 456 112 0CAB123Xy 456

(error flac set)

Figure 3-1. Graded Examples of <editing specifications> Applied to Input and

1096567

Output Messages

343

344

Input/
Qutput

Input

Inputy/
OQutput

OQutput
Input
Input

Qutput
Output
Inputy

Qutput

Inputys
Qutput

Input

Input/
Qutput

Output
Input

Input/
Qutput

Input

Qutput

Input/
Qutput

Input/
Qutput

Message As It
Appears at the
Terminal

DOE s JOHN

VOE JOHN

DUE »JOHN
DOE,JOHN
RIGHT

RIGHTFACE

)

NAME: [HARRYIC
>

ALPHA

DOE »JUHN

DOE»JCHN

AB123XY 456

02710/75
A12343850678

A2 43 68

1234XY

1234XY
(monitor naotified
of error)

+5123,456.78

2.1"

<zditing specifications>
Applied to Message
In Transit

A3sX1s A4

A3, X1, A4

ASs™s "5 AL
A3,",", A4
AS,B"FACZ"

AS»E"FACE"™

"NAME: ("5A5,"1",4"12"

33, A5

399Ab,31s A4

35, A3 s Xirals Al

429355130 43542538513

12,2C(=/"»12)
2(A2-2(X1»11))

2(A1,2(X1»11))

Io

Io

SEPF8.2

F3.18

Messace As It
Appears to the
User Program

JOE JUHN

DOE JOHN

DOEJOHN
DOE,» JOH
RIGHTFACZ

RIGHT

HARKRY

ALPHA

JOHNDOE.

JOHNDOE

ABXY123456

021075
A24368

A24868
1234XY
(error flag set)
1234XY

12345678

=21

Figure 3-2. Graded Examples of <editing specifications> Applied to Input and

Output Messages

Message As 1t <tditing specifications> Message As It

Input/ Appears at the Applied to Message Appears to the
Qutput Terminat In Transit User Progranm
Inputy/ i5¢p 1C"P",5) 00015
Output
Input/ ES ACTS" »3) E
Qutput
Input/ ZS15°P A("S"53),1("P",5) £ C0O01L€S
Qutput
Input/ DOE» JOHN A(","5,6),X1, Ab DOE JOHN
Qutput
Input SHAKESPCZAREs, 3ILL AC","5»56)sX1r AD SHAKESHBILL
(error flag set)
Input 12345 I("x",4) 2345
(error flag set)
T
Input AlBZA 36 ALB2
B8
Input WASHINGTONGEORGE 810,312,106 WASHINGTUN GEOKRGE
r .
Input DOEAJOHN B10,3i2, A6 D0E JOHN
8
Input SHAKE SPZAKEBTLL Blh»3125 06 SHAKESPEAR EBILL
T T
Input SHAKESPCARBASBILL 810,312,146 SHAKZSPEAR EABILL
8 8
T T
Input SHAKESPCAREABILLA 831GC,3i2,76 SHAKESPEAR E
B8 3
Input DOE»JOHN B("»™"5,10),312, A0 DJE JOHN
Input WASHINGTONGZORGL 3(",",10),312,A6 WASHINGTON GEOQOHGE

Figure 3-3. More Complex Examples: Variable Field Sizes, Sequenced Fields, and
Tabs (Sheet 1 of 2)

1096567 345

3-46

Input/
Qutput

Input
Input

Output

Input

Input
Input
Input

Input

Input
Input
Input

Input

Message As It
Appears at the
Terminat

WASHINGTON»GEDRGE
SHAKESPEARE,BILL

o0& £5815L421]

1234:56?3 *
8
123456738 *
DUEBJUHNA
JUEAJUANS

DJEAJUIHNS

ABC#123456+X

456+A8C#123X

456*RSTUVABC#12 X

456xRSTUVABC#L2 X

<cditing specifications>
Applied to Message
In Transit

BC"s" 510)s3125 A6
3C("»"»,10)312, 46

Coes™I™sAT»™1"

Jb6s 16,41

J("5",6),16, A1
(A(™A",6),A("BE",»6)]
[AC"B"»€) »A("A"56)]
CAC™B"»6),X3,A("A",6)]
NOTE X3 PHRAS: ABOVE
IGNORZC
[CAC"#"+6),13,1("*",4)]),4Al
CACT#7,6),13,1("*",4)]),A1

CAC" 2" ,6),I3,1("*",4)1,A1

Message As It
Appears to the
User Progranm

WASHINGTON »GEORG

SHAKESPEAR E»8ILL

DOE SE15042

00123400567 €«

00123400067 €~
JIHN 0QE
JOHN 00E
JOHN DOE

ABC 1230456X
ABC 123u456X

TUvABC012)456X

CAC"#",6),1353111("*",4)) TUVABCO12 0456X

sAL

Figure 3-3. More Complex Examples: Variable Field Sizes, Sequenced Fields and Tabs

(Sheet 2 of 2)

1096567

Input/

Qutput Terainal <gditing specifications> User Programs
Input ONE MALE TC(NUM1sA3»1)» 11
TCGENDER» AG,1)
Input/ F CQURFEMALE T(NUML,sA4»1)» 42
Output TCGENDER» A6,1)
Inputys Two3 TCNUM2,A3,1)»TC(DAY,AL,3) 2TUE
Qutput
Input SIX#X TINUMZ,A("8756)52),5A1 06X
Input ELEVEN#X TINUMZ, AC™#756)52)5A1L 11X
Input THENTY#X TO(NUMZ,A(™"#",6),2),A1 21X
(error flag set)
Qutput C(FOUR) "(">TINUM2»A(™)"56),2) 04
Input WED TCOAY,» A3,1) ?
(error flag set)
Output ?2? TCDAY»A3,1) 2
(moni tor
notified)
Input/ ONE X TC(NUMZ2,A6,1), Al 1X
OQutput
Output ELEVENX T(NUM1,A5,1)5A1 1X
Input/ MALE TC(GENDER, AB,1) 1
Output
Input MALE TCGENDERsALSs]1) 2

Figure 3-4. Examples of Formats Involving Translate Functions

The functions used may be found in the examples given in the description of functions in this
section.

The last two pairs of examples in figure 3-4 illustrate a problem that can arise when function
elements vary in length and are identical in their right-most positions. This problem may be
avoided by using the <justification and fill part> as in NUM2; this results in the mask-search
examining all six characters, including leading zeros and trailing blanks.

347

348

Formatting of MCS Error Responses

Certain MCS error responses may be reformatted by device class by means of output formatting.
For each error response provided below, the MCS inserts an output-message-id into the control
words array of the output message. If the error output-message-id is associated with a format
for the device in question, the error response is formatted accordingly before being released to
the station. The error output-message-IDs are:
ID Meaning

SECERR Security error

INVMKE Invalid message key

BUSY Input received while station is in transaction mode.

TRNERR Transmission error

UPDDIS Updates disabled message

LONOK Log-on accepted messages

LOFOK Log-off accepted messages

Pragmatics:

It is helpful when working with formats to think of the MCS as shown in figure 3-5.

TERMINAL
PUT F
INPUT FORMAT APPLIED > TRANSACTION
MESSAGE COMMON |<—®1 PROCESSOR
d
OUTPUT FORMAT APPLIED
FIELDS FIELDS
VARIABLE FIXED

Figure 3-5. Interrelationship of Fixed Fields in Common and Possible Variable Fields
at Terminal

The format is meant to describe the relationship between the fixed fields in common and the
corresponding and possibly variable fields at the terminal.

When a format is applied to a message, data fields can be moved, expanded, or compressed.
Fields can be moved in such a way as to change their order. For fields described as integer fields
(I editing phrase), leading zeros are inserted (when necessary) on input. For alphanumeric fields
(A editing phrases), trailing blanks are inserted on input when necessary.

1096567

Field Sequence

To understand field sequencing, think of the message as existing in two forms: one at the termi-
nal and one in Common. Imagine a pointer into each form of the message as shown in figure
3-6.

| T
MESSAGE AT TERMINAL MESSAGE IN COMMON

Figure 3-6. Terminal and Common Message Pointers

The fields in the message at the terminal can be variable in length and even variable in sequence
(on input only). The fields in the message in Common must be fixed in both length and sequence.

The pointers PT and PC in figure 3-6 both begin pointing at the first character position (position
1) in their respective messages. As editing phrases in a format are applied to data fields, the data
is moved from one message to the other, and these pointers are updated. Unless specifically in-
structed to do otherwise, these pointers are updated by moving them to the right by the number
of characters moved. For instance, suppose an input message of "ABC 123" is applied to a for-
mat which begins with an A4 editing phrase. After applying the A4, the situation that would
then exist is shown in figure 3-7. PT may be advanced without affecting PC by using X editing
phrases. (PT, in general, may be moved only to the right). Given the situation shown in figure
3-7, the comma in the message can be skipped over with an X1 editing phrase.

PC may be moved in either direction without affecting PT by using a location specifier
(@ < unsigned integer>). In figure 3-7, PC is now pointing at position 5. An @8 editing phrase
may be used to advance to position 8 before transferring any more characters. Figure 3-8 is an
updated picture of figure 3-7 after applying an X1 and an @8 editing phrase.

11- Pf
ABCD,123 ABCD
MESSAGE AT TERMINAL MESSAGE IN COMMON

Figure 3-7. lllustration of Pointer Updates

349

| !

ABCD,123 - -1 ABCD

MESSAGE AT TERMINAL MESSAGE IN COMMON
Figure 3-8. Pointer Update After Applying an X1 and an @8 Editing Phrase

Fin?.lly, an I3 editing phrase is processed. Figure 3-9 shows the final status of the messages and
their respective pointers after applying the editing specifications: A4, X1, @8, and I3.

I PC
ABCD,123 - ABCD 123

MESSAGE AT TERMINAL MESSAGE IN COMMON

Figure 3-9. Pointer Update After Applying Specifications A4, X1, @8, and 13

SYSTEM SECTION

Syntax:

<system section> ::=
SYSTEM <system name> (<system number>):
< system description>

<system name> ::= <identifier> / <string> / <integer>
<system number> ::= <integer>
< system description> ::= <system statement list >

<system statement list> ::=
<system statement> /
<system statement list> /
<system statement >

<system statement> =
<access control statement> /
< administrative message key statément> /
<archival audit statement> /
< autoenable statement>/
<auto recovery statement> /
<clear restart statement> /
< flush recovery statement> /

3-50

1696567

<host statement> /

<recall message key statement> /
<subsystem statement> /
<empty>

Semantics:

The SYSTEM section specifies information relative to an individual system. This section is re-
quired if CONTROL = GENERATE is specified in the GLOBAL section.

The <system name> specifies the name of the system. It is used in output titles and service
messages, if they were not defined in the GLOBAL section.

The <system number> may not be a duplicate of another <system number>.
A maximum of eight systems may be declared.

Example:

SYSTEM SOS (1):
ADMINKEY = ADM.
RECALLKEY = RECALL.

ACCESSCONTROL Statement
Syntax:

<access control statement> ;=
ACCESSCONTROL = <association list>. / <empty>

<association list> ::=
< association> /
< association list> < association>

<association> ::= ACCESSKEY <access code> =
<access mke list>.

<access code> ::= <identifier>
<access mke list> ::= <mke list> / ALL
<mke list> ::= <mke> / <mke lisi> <mke>

3-51

3-52

Semantics:

The <access control statement> specifies to the system the valid users of the system and the
message keys each valid user is allowed to enter into the system. If ALL is specified, this user
may input any message key without restriction. For more information on ACCESSCONTROL,
refer to section 7.

Example:

ACCESSCONTROL =
ACCESSKEY ABI1234
ACCESSKEY AB5678

ADMINKEY Statement

INQ, DX6, XYZ.
INQ, X14, P67.

Syntax:

< administrative message key statement> ::=
ADMINKEY = <identifier>. / <empty>

Semantics:

.The <administrative message key statement> defines the message key which is used to identify

administrative messages.

If this syntax is used, an administrative program must be defined in the GLOBAL section.
Specifications for the GEMCOS-supplied administrative program are presented in section 10.

All messages headed by this administrative message key are routed to the administrative program.
ARCHIVALAUDIT Statement
Syntax:

<archival audit statement> ::=
ARCHIVALAUDIT = <logical value>. / <empty>

Semantics:

ARCHIVALAUDIT = TRUE allows a selective period dump to tape of all messages in the audit
files related to all ARCHIVALAUDIT = TRUE or RECOVERY = TRUE queues for archival
storage. If the statement is omitted, FALSE is assumed.

1096567

Whenever the TCL files are generated or regenerated with the <status> parameter of the <se-
quence control statement> not equal to FIRST (refer to GLOBAL section of TCL syntax), or
CONTINUOUS PROCESSING is TRUE and a 7DUMP DATACOM Network Control command
is entered, the old Input and Output queues are dumped to a tape in a form which can be used
by Archival Recall and by Archival Recovery.

NOTE
The network, the on-line TPs, and GEMCOS CANNOT be active during
the regeneration phase.

For each archival dump, an entry is made in a ledger file. Each entry in the file contains the
date, sequence-control number of that generation of files, and the serial numbers of the tapes
used to store the archival dump. If, during the regeneration of the TCL files, the utility does
not find a ledger file, it creates a new one; however, to maintain the integrity of the archival
recovery mechanism and the archival retransmission of messages, the same ledger file should be
present for all TCL regenerations. This ensures that an accurate history of the network is main-
tained. The internal name of the ledger file is ADTLEGFILE; the file may be file-equated. The
layout of the ledger file is contained in Appendix B.

AUTOENABLE Statement

Syntax:

< autoenable statement> ::=
AUTOENABLE = <logical value. / <empty>

Sémantics:

AUTOENABLE = TRUE specifies that all input queues, programs and stations in this system
will be automatically enabled when the MCS is run. If FALSE is specified, then the operator
must enter an ENABLE system control message to allow the MCS to start processing transactions
for this system. The default value is FALSE.

AUTORECOVERY Statement

Syntax:

<auto recovery statement> ::=
AUTORECOVERY = <logical value>. / <empty>

Semantics:

AUTORECOVERY = TRUE indicates that recovery is initiated automatically, following a TP
failure. If the failure occurs in transaction state, the TP is first automatically disabled and
cleared; then synchronized recovery is initiated. When recovery is complete, all programs, input
queues, and stations in the system are automatically enabled. When AUTORECOVERY =
FALSE, a DISABLE, CLEAR, and subsequent ENABLE must be operator-initiated.

If a TP fails outside of transaction state, or if a TP fails while processing a nonsynchronized
recoverable transaction, the TP is allowed to run again. If the user does not want the program
to run again, the TP’s TASKVALUE.[39:8] should be set to high values. The default value is
FALSE.

3-53

CLEARRESTART Statement

Syntax:

<clear restart statement> ::=
CLEARRESTART = <logical value>. / <empty>

Semantics:

The <clear restart statement > specifies whether a system’s RESTART PROGRAM is to be initi-
ated when starting up GEMCOS to clear the Restart data sets. This is not done if the prior termi-
nation of the MCS resulted from a Halt/Load. If this statement is not specified, FALSE is as-
sumed.

Pragmatics:

CLEARRESTART = TRUE insures that there are no extraneous records in the restart data set
which reflect some prior condition of the input and output audit files. If this option is not set
to TRUE, it is the user’s responsibility to insure that the restart data set is empty after each
queue generation or regeneration.

FLUSHRECOVERY Statement

Syntax:

<flush recovery statement> ::=
FLUSHRECOVERY = <logical value>. / <empty>

Semantics:

FLUSHRECOVERY = TRUE indicates that no recovery of any kind is performed for this sys-
tem after a TP abort or a system halt/ load (refer to section 5).

HOST Statement

Syntax:

<host statement> ::= HOST = <identifier>. / <empty>
Semantics:

The <host statement> specifies the <host name> attribute to be used when initiating the Port
transaction processing programs in the system. In order to use the <host statement>, the
PORTS compile time option must be SET when compiling the MCS and UTILITY. The <identi-
fier> may be changed by a Network Control command.

3-54

1096567

RECALLKEY Statement

Syntax:

<recall message key statement> ::=
RECALLKEY = <identifier>. / <empty>

Semantics:

The <recall message key statement > defines the message key used to route a recall message to
the Recall program.

If this syntax is used, a Recall program must be defined in the GLOBAL section. Specifications
for the GEMCOS-supplied Recall program are presented in section 10.

Example:
RECALLKEY = RECALL.

SUBSYSTEM Statement

Syntax:
<subsystem statement> ::= SUBSYSTEM = <identifier. / <empty>
Semantics:

The <subsystem statement> specifies the <identifier> attribute to be used in initiating all Port
transaction processing programs in this system. This <identifier > may be changed by a Network
Control command. The MCS and the utility must both be compiled with the SUBSYSTEMS §
compile option set.

PROGRAM SECTION

Syntax:
<program section> ::= <program define list>

<program define list> ::=
<program define> /
<program define list> <program define>

<program define> ::=
PROGRAM <program name> (<program number>)
< program classification>:
<program description>

3-55

<program name> :: = <identifier>
<program number> :: = <integer>

<program classification> ::=
USER / PROCESS / PORT / SERVICE / EDITOR

<program description> ::= <program statement list>

<program statement list> ::=
<program statement> /
<program statement list> <program statement>

<program statement> ::=
<access control program statement> /
<AP300 status statement> /
<chargecode statement> /
<common size statement> /
<control bit statement> /
<conversationsize statement> /
<declared priority statement> /
<editor statement> /
< family statement> /
< formatmaker statement> /
<host statement> /
<inactive timeout statement> /
<invalid messages statement> /
<max copies statement> /
<may not be assigned statement> /
<min copies statement> /
<modify statement> /
<multiple inputs statement> /
< permanent statement> /
<remarks statement> /
<restart program statement> /
<return messages statement> /
<service statement> /
<subspaces statement> /
<subsystem statement> /
<test program statement> /
<timeout statement> /
<title statement> /
<transmission error message statement> /
<usercode statement> /
<input queue section>

3-56

Semantics:

The PROGRAM section is the means by which data communications tasks are defined to the
MCS. The programs are either User programs which run in the mix or Process programs which
are a part of the data communications system.

If there are any nonpermanent programs declared in the TCL, the PROGRAM section may not
define more than <max running — 1> User programs with PERMANENT = TRUE, because
each permanent program is assigned a row of Common which is the communication link between
User programs and the MCS.

A <program define > must contain a <program name>, <program number> < program clas-
sification>, and <title statement>. If the <program classification> is User, Port, or Process,
then the definition must also contain an <input queue section> and a <timeout statement>.
User and Port programs must also contain a <common size statement>.

The <program name> and <program number> may not be a duplicate of another <program
define>. A <program number> may range from 1 to 98 or from 100 to 255. Program number
99 is the Control program. If the Format Generator is declared in the GLOBAL Section, it is
assigned Program number 255.

The <program classification> defines the interface which the program uses with the data com-
munications system. The five classifications (User, Process, Port, Service, and Editor) are de-
scribed in section 4.

A Service program must be defined before it is referenced by a <service statement> in a User
program. An Editor program must be defined before it is referenced by an <editor statement >
in a User or Port program.

A Process program may not use a Service or Editor program. A Port program may not use a
Service program. Not all <program statement>s are valid for a given <program classifica-
tion>. See individual <program statements>s for restrictions.

1096567 3-57

3-58

Example:

PROGRAM FIR(1) SERVICE:
TITLE = PRG/DC/FIR.
CONTROLBIT = 2.

PROGRAM EDIT(2) EDITOR:

TITLE = PRG/DC/EDITOR.
CONTROLBIT = 3.
PROGRAM DRIVE (98) USER:
TITLE = 1D99.
COMMONSIZE = 300.
MULTIPLEINPUTS = TRUE.
PERMANENT = TRUE.
SERVICE = FIR.
EDITOR = EDIT.
TIMEOUT = 60.
INPUTQUEUE 1QUI1(1):
MKE = MKE(,1), MKE2(1,2).
REMARKS = "DRIVER INQUIRY PROGRAM".

PROGRAM TPI(1) PORT:

TITLE = MYPORT/PROG.
INPUTQUEUE 1QU2(2):

MKE = MKE3(1,3), MKE4(1,4).
TIMEOUT = 60.
PERMANENT = TRUE.

ACCESSCONTROLPROGRAM Statement
Syntax:

<access control program statement> ::=
ACCESSCONTROLPROGRAM = <logical value>. / <empty>

Semantics:

The <access control program statement > specifies whether this program handles all sign-on and
sign-off requests from stations in this system.

The MCS routes all <sign on> messages to this program. The program, in turn, must return
either an indicator or an access key which the MCS uses to validate subsequent message keys
that are input from the station.

If the statement is omitted, FALSE is assumed.

1096567

Pragmatics:

Only one program within a system may have ACCESSCONTROLPROGRAM = TRUE. The
message keys described for this program are considered to be sign-on or sign-off message keys
by the MCS.

If a system has no program description containing ACCESSCONTROLPROGRAM = TRUE,
default sign-on control prevails. Default is that sign-on consists of <log-on message key> and

user code for all stations with SIGNON = TRUE. The interface between the MCS and an access
control program is described in section 7.

An ACCESSCONTROLPROGRAM is the only program that can send ? Network control com-
mands to the Control program via the TP-TO-TP mechanism.

NOTE
The Access Control module need not return an access control error to
the MCS but may send a message directly back to the station.

AP300STATUS Statement
Syntax:

<AP300 status statement> ::=
AP300STATUS = <logical value>. / <empty>

Semantics:

When a program is specified as AP300STATUS = TRUE, it will receive all messages from any
stations in the same system which have TYPE = AP300. Only one program per system may have
AP300STATUS = TRUE. The default value is FALSE.

CHARGECODE Statement

Syntax:

< chargecode statement> ::=
CHARGECODE = <identifier>. / <empty>

Semantics:

The <chargecode statement> specifies the CHARGECODE under which this program will run.
If the statement is omitted, the program is run with no CHARGECODE.

Example:

CHARGECODE = MYCHARGE.

3-59

3-60

COMMONSIZE Statement

Syntax:

<common size statement> ::=
COMMONSIZE = <integer>. / <empty>

Semantics:

The <common size statement > specifies the length in words of the Common area used to inter-
face this program with the MCS. This statement is required for all User and Port programs. The
size must be greater than 23 and less than or equal to 4000. The <common size statement>
may not be specified for Process, Editor, or Service programs.

Example:
COMMONSIZE = 300.
CONTROLBIT Statement

Syntax:

<control bit statement> ::=
CONTROLBIT = <integer>. / <empty>

Semantics:

The <control bit statement > specifies the bit number used to indicate when an Editor or Service
program has control of the Common area. Acceptable values range from 2 to 255. The control
bit value for each Service and Editor program must be unique, and the <control bit statement >
may not be specified for Process, User, or Port programs. The control-bit value of a User or
Port program is always 0. The control-bit value for the MCS is 1.

Example:

CONTROLBIT = 10.
CONVERSATIONSIZE Statement
Syntax:

<conversation size statement> ::=
CONVERSATIONSIZE = <integer>. / <empty>

1096567

Semantics:

The <conversation size statement> specifies the size of the program’s Conversation area in
words. The Conversation area is part of the Common area beginning at word 23 (the beginning
of the text area for nonconversational programs) and extending for <conversation size> words.
The Conversation area is null on the first message of the day and on the first message after an
End-of-Conversation. Text immediately follows the Conversation area, and word 7 of Common,
the length word, does not include the length of the Conversational data. See the <conversational
statement > in the STATION SECTION and a more detailed description of the CONVERSA-
TION feature in Section 4.

DECLAREDPRIORITY Statement

Syntax:

<declared priority statement> ::=
DECLAREDPRIORITY = <integer>. / <empty>

Semantics:

The <declared priority statement> specifies the system task priority that is used by the MCS
when the task is initiated. The <integer> may be changed by a Network Control command.
Default value is 60.

EDITOR Statement

Syntax:

<editor statement> ::= EDITOR = <program name>. / <empty>
Semantics:

The <editor statement > specifies the Editor program that this program may use. An Editor pro-
gram must be defined prior to its appearance in an <editor statement>. An <editor statement >
may not appear in a Service, Editor, or Process program definition.

Example:
EDITOR = EDIT.

FAMILY Statement

Syntax:

<family statement> ::=
FAMILY [any valid MCP syntax for the
family attribute]. / <empty >

3-61

3-62

Semantics:

The < family statement> allows a family attribute to be attached to the program when it is initi-
ated by the MCS. The string must be valid MCP syntax for the family attribute. If no family
is specified, the task is initiated with the same family as the MCS.

Example:
FAMILY DISK = MYPACK OTHERWISE DISK.

FORMATMAKER Statement

Syntax:

< formatmaker statement> ::=
FORMATMAKER = <logical value>. / <empty>

Semantics:

FORMATMAKER = TRUE specifies that this program is a format generator. Refer to the
<format generator statement> in the GLOBAL section and to the B B 6000/B 7000 Series
GEMCOS Format Generator User/Reference manual, form 1121340, for more information. The
default value is FALSE.

Example:
FORMATMAKER = TRUE.
HOST Statement
Syntax:
<host statement> ::= HOST = <identifier> / <empty>
Semantics:

The <host statement> specifies the <host name> attribute to be used when initiating this
transaction processing program. In order to use the <host statement>, the PORTS compile time
option must be TRUE. This statement is valid only for a Port program definition.

NOTE
When the <host statement> is declared at the program level, synchro-
nized recovery may be impacted.

The <identifier> may be changed by a Network Control command.

INACTIVETIMEOUT Statement
Syntax:

<inactive timeout statement> ::=
INACTIVETIMEOUT = <integer>. / <empty>

Semantics:

The <inactive timeout statement > defines the amount of time (in seconds) that may elapse with-
out any activity from this program before considering it inactive. The value of this statement
may be between 1 and 4095 and is only valid for User, Port, or Process programs. When a User,
Port, or Process program has no input for this amount of time, the MCS automatically sends
the program to EOJ. A value of 4095. causes the program to remain in the mix permanently.

If this statement is omitted, the default value is 4095.
INVALIDMESSAGES Statement
Syntax:

<invalid messages statement> ::=
INVALIDMESSAGES = <logical value>. / <empty>

Semantics:

The <invalid messages statement > specifies whether the program is to receive all messages which
.are unrecognizable to the MCS, i.e., messages which do not contain a <mke> defined in any
program’s <mke list> and which are not among the system-defined input messages. Only one
program may be defined with INVALIDMESSAGES = TRUE. This program must be a Process

program.
NOTE
There need not be an INVALIDMESSAGES = TRUE program. When
the program is not specified, the MCS responds to invalid messages by
printing out an error message.
Example:

INVALIDMESSAGES = TRUE.

MAXCOPIES Statement

Syntax:

<max copies statement> ::= MAXCOPIES = <integer>. / <empty>

1096567 3-63

3-64

Semantics:

The <max copies statement> specifies the maximum number of copies of this program that may
be executed concurrently. The dynamic execution of additional copies is controlled by the
<queue depth statement> and the <time limit statement>. A maximum of seven copies of a
program may be declared in this statement. This maximum may be changed by means of a Net-
work Control command, but it may never be made greater than the value specified here.

If this statement is omitted, one copy is assumed.

MAYNOTBEASSIGNED Statement

Syntax:

<may not be assigned statement> ::=
MAYNOTBEASSIGNED = <logical value>. / <empty>

Semantics:

The <may not be assigned statement> specifies if a station should be allowed to assign itself
to this program. This implies certain protocols and agreements between the station and program.

Value TRUE would indicate that the station may not be assigned. If not specified, FALSE is
assumed.

MINCOPIES Statement

Syntax:

<min copies statement> ::= MINCOPIES = <integer>. / <empty>
Semantics:

The <min copies statement> specifies the number of copies of this program that will remain
in the mix despite the queue depth and time limit criteria for multiple copies. The <min copies
statement > may only be used if the <max copies statement> is defined. Default is 0.

MODIFY Statement

Syntax:

<modify statement> ::= MODIFY = <logical value>./ <empty>

1096567

Semantics:

The <modify statement > specifies that the program modifies a data base and that all transac-
tions to the program may be denied when a Network Control command is entered to disable up-
dates. A subsequent Network Control command to enable updates re-allows all transactions to
the program. If the statement is not specified, FALSE is assumed. The <modify statement>
may not be specified for a Service or Editor program.

Example:

MODIFY TRUE.
MODIFY = FALSE.

MULTIPLEINPUTS Statement

Syntax:

<multiple inputs statement> ::=
MULTIPLEINPUTS = <logical value>. / <empty>

Semantics:

The <multiple inputs statement > specifies whether the program can accept more than one mes-
sage per BOJ. The program goes to EOJ when no more messages are available to process (unless
the program is specified to be permanent). The < multiple inputs statement> may not be
specified for a Service or Editor program. If the statement is omitted, FALSE is assumed.

Example:
MULTIPLEINPUTS = TRUE.
MULTIPLEINPUTS = FALSE.

PERMANENT Statement

Syntax:

<permanent statement> ::=
PERMANENT = <logical value>. / <empty>

Semantics:

The <permanent statement> specifies if the program stays in the mix after BOJ. If PERMA-
NENT = TRUE, the program remains in the mix until system EOJ, until a control message
forces an EOJ, or until the INACTIVETIMEOUT expires. The program must be a MULTIP-
LEINPUTS = TRUE program. A NOINPUT = TRUE program may not be a permanent pro-
gram. The <permanent statement> may not be specified for a Service or Editor program. If
the statement is omitted, FALSE is assumed.

Example:

PERMANENT TRUE.
PERMANENT = FALSE.

3-65

3-66

REMARKS Statement

Syntax:

<remarks statement> ::= REMARKS = <remarks string>./ <empty>
<remarks string> ::= <string> / <remarks string>, <string>
Semantics:

The <remarks statement > specifies a <string> that is to be saved for documentation purposes.
CONTROL = LIST is used to print out this listing. The maximum length of a <remarks
string> is 100 characters. The <remarks statement> is not required.

Example:
REMARKS = "DRIVER INQUIRY PROGRAM".

RESTARTPROGRAM Statement

Syntax:

<restart program statement> ::=
RESTARTPROGRAM = <logical value>./
<empty >

Semantics:

The <restart program statement> identifies the program responsible for providing restart data
to the MCS during recovery. One program with RESTARTPROGRAM = TRUE must be de-
clared for each system which has a RECOVERY = TRUE input queue.

If the statement is omitted, FALSE is assumed. Detailed information regarding recovery is pre-
sented in section 3.

RETURNMESSAGES Statement
Syntax:

<return messages statement> ::=
RETURNMESSAGES = <logical value>. / <empty>

Semantics:

The <return messages statement> specifies whether the program is to receive all messages re-
turned to the MCS by a ROUTEHEADER = TRUE station. Only a Process program may be
defined with RETURNMESSAGES = TRUE.

Example:

RETURNMESSAGES = TRUE.

1096567

SERVICE Statement

Syntax:
<service statement> ::= SERVICE = <program name>./ <empty>

Semantics:

The <service statement > specifies the Service program that a User program may use. A Service
program must be defined prior to its appearance in a <service statement>. A <service state-
ment> may not appear in a Service, Editor, Port, or Process program definition. The Service
program interface is discussed in detail in section 4.

Example:

SERVICE FIR.
SERVICE = FMR.

SUBSPACES Statement

Syntax:
<subspaces statement> ::= SUBSPACES = <integer>. / <empty>
Semantics:

The <subspaces statement> specifies the system subspaces attribute that is established by the
MCS when the task is initiated. The <integer> must be a valid subspaces value, and may be
changed by a Network Control command.

SUBSYSTEM Statement
Syntax:

<subsystem statement> ::=
SUBSYSTEM = <identifier>. / <empty>

Semantics:

The <subsystem statement > specifies the <identifier> to be used as the SUBSYSTEM attribute
when initiating this transaction processing program. The <identifier> may be changed by a Net-
work Control command. The MCS and the utility must both be compiled with the SUBSYS-
TEMS §$ compile option set.

3-67

3-68

TESTPROGRAM Statement

Syntax:

<test program statement> ::=
TESTPROGRAM = <logical value>. / <empty>

Semantics:

The <test program statement> is used to specify whether this program is in test status. When
TESTPROGRAM = TRUE, the MCS strips the <message key> from all input messages routed
to this program.

This method of program testing offers flexibility because test versions of programs can be seen
"side-by-side” with their production-status counterparts.

If the <test program statement> is omitted, FALSE is assumed.
Pragmatics:

The message keys for test programs are really dummy message keys designed for routing messages
to the test programs. Messages must also contain the REAL message-key immediately following
the test message-key.

The MCS performs routing based upon the test message-key and removes it from the message
prior to passing the message to the program. The program receives the message just as if it were
in the Production mode. The fact that the program is in TEST mode is passed to the program
in the COMMON area or in the CONTROLWORDS array.

Example:

Station inputs: TST6 ABCI123 <message text>
MCS does routing based upon "TST6”
MCS passes: "ABC123 <message text>" to test program

TIMEOUT Statement

Syntax:

<timeout statement> ::= TIMEOUT = <integer>. / <empty>
Semantics:

The <time-out statement > defines the amount of time (in seconds) that must elapse before the
MCS considers the program as having timed out after a pass of control to the program by the
MCS. The <timeout statement> may have a value between 1 and 4095 inclusively and is re-
quired for all User, Port, and Process programs. If the program does not respond within this
amount of time, a nonfatal warning is sent to the system monitors.

TITLE Statement

Syntax:

<title statement> ::=
TITLE = <optional user code>
< generalized identifier >
<pack specification>

<optional user code password> ::= (<user code>) / <empty>
<pack specification> ::= ON <pack id> / <empty>

<user code> ::= <identifier>

Semantics:

The <title statement > specifies the name of the program to be executed. This statement is re-
quired for all programs. The optional user code associated with the program is printed on the
TCL listing but is not printed on any directory listing. The user code is printed on a table listing.
The optional user code is used by GEMCOS when processing the TP; it is not used by GEMCOS
in any way as part of the access control mechanism for transaction routing or sign-ons. The use
of user code in the title affects only the finding of the code file of this program by GEMCOS
and does not mean that the program will run under this usercode. The <usercode statement>
causes the program to run under a particular usercode.

Example:
TITLE = 1D99.
TITLE = PRG/DC/1VOl ON MYPACK.
TITLE = (USERCODE)TEST/PROG.

TRANSMISSIONERRORMESSAGES Statement

Syntax:

< transmission error message statement> ::=
TRANSMISSIONERRORMESSAGES = <logical value>. / <empty>

3-69

3-70

Semantics:

The <transmission error message statement> specifies whether the program is to receive mes-
sages from the MCS that indicate an error has occurred during input from a station. These mes-
sages are usually responded to with a message indicating that the station should resend the mes-
sage since it had a transmission error. Only one program may be defined with TRANSMIS-
SIONERRORMESSAGES = TRUE. This program must be a Process-type program,

NOTE
A transmission error message program need not be defined for a system.
In this case, the MCS automatically sends a warning message to the sta-
tion when transmission errors occur.

Example:
TRANSMISSIONERRORMESSAGES = TRUE.
USERCODE Statement

Syntax:
<usercode statement> ::= USERCODE = <identifier>./ <empty>
Semantics:

The <usercode statement> specifies the usercode under which the program will run. If it is
omitted, the program will run under the same usercode as GEMCOS.

Example:

USERCODE = MYUSER.

INPUTQUEUE SECTION

Syntax:
<input queue section> ::= <input queue define list>

<input queue define list> ::=
<input queue define> /
<input queue define list> <input queue define>

<input queue define> ::=
INPUTQUEUE <input queue name> (<input queue number>):
<input queue description>

1096567

<input queue name> ::= <identifier>
<input queue number> ::= <integer>

<input queue description> ::=
<input queue statement list> /
<no input statement >

<input queue statement list> ::=
<input queue statement> /

<input queue statement list> <input queue statement>

<input queue statement> ::=
<archival audit statement> /
<audit statement> /
<audit input statement> /
<memory limit statement> /
<message key statement> /
< queue depth statement> /
<recovery statement> /
<time limit statement> /
<wait for audit statement> /
<empty>

Semantics:

The <input queue section> is used to define the Input queues through which User, Port, and
Process programs run. Up to three Input queues per User or Port program may be defined, but
only one Input queue may be defined for a Process program. They are processed from a low
to a high order of priority in the order that they are defined. The highest priority queue for a
program must be empty before GEMCOS looks for other input for that program.

If a <no input statement > is specified, only one queue may be specified, and this must be the
only statement in the <input queue section>.

The <input queue name> and <input queue number> may not be a duplicate of another <in-
put queue define>. An <input queue number> may range from 1 to 999. The <input queue
section> may be defined only for User, Port, or Process programs.

ARCHIVALAUDIT Statement

Syntax:

<archival audit statement> ::=

ARCHIVALAUDIT = <logical value>. / <empty>

Semantics:

When ARCHIVALAUDIT = TRUE, the input queue is audited on the Archival Audit tapes.
Recoverable input queues are also audited on the Archive tapes whenever ARCHIVALAUDIT

= TRUE in the SYSTEM Section.

3-71

3-72

AUDIT Statement

Syntax:

<audit statement> ::= AUDIT = DUPLICATE./ <empty>

Semantics:

The <audit statement> specifies the type of audit to be performed against this input queue.

When AUDIT = DUPLICATE, the Utility program creates duplicate control, input, and output
files for additional recovery protection. During the running of the MCS, all messages through
this queue and their corresponding outputs are written to the duplicate audit files, as well as to
the primary audit files.

Pragmatics:

All output associated with an input transaction is audited in duplicate. Such transactions are pres-
ented to the TP with MSG-DUPAUDIT (COMMON]16].[1:1]) set to 1. If a TP does not want
certain output messages audited twice (even though they are in response to an input message
which was audited in duplicate), it may designate this by resetting MSG-DUPAUDIT
(COMMONI[16].[1:1] to 0. If this bit is so reset by the TP, and the TP wants subsequent output
messages to be audited in duplicate for the same input transaction, then it must set the bit back
to 1.

If duplicate audit files exist, a program can cause any output to be audited in duplicate by setting
this bit to 1, even if the corresponding input message was not audited in duplicate.

When the MCS encounters a parity error while attempting to read an Input, Output, or Control
record from the first (or primary) audit file, it then attempts to read the same record from the
corresponding duplicate audit file. If successful, the MCS then rewrites this record back to the
primary audit file.

While the same amount of disk space is used, the GEMCOS implementation of duplicate audit
differs from the MCP’s implementation in that only those 1/Os selected by the user are dupli-
cated.

In order to take full advantage of the parallel writes that are done to the duplicate audit files
and to safeguard against the loss of both sets of a given audit file in the event of a spindle fail-
ure, the user may want to label-equate the duplicate files to packs other than those on which
the primary audit files reside. If the user has more than one disk-pack controller, the two sets
of queue files ideally should be split evenly across the controllers to prevent a controller malfunc-
tion from corrupting both sets of queue files.

When no inputqueues are declared in the TCL with AUDIT = DUPLICATE specified, only a
single set of queue files is generated by the TCL compiler.

1096567

AUDITINPUT Statement

Syntax:

<audit imput statement> ::=
AUDITINPUT = <logical value>. / <empty>

Semantics:

The <audit input statement > specifies whether or not input to this queue will be audited in the
input audit files. Setting AUDITINPUT = FALSE will preclude any recovery, including resub-
mission of transactions which cause a program to abort, for this input queue. Queues which have
AUDITINPUT = FALSE may not specify RECOVERY = TRUE, ARCHIVALAUDIT =
TRUE or AUDIT = DUPLICATE. The default value is TRUE.

MEMORYLIMIT Statement

Syntax:

<memory limit statement> ::=
MEMORYLIMIT = <integer>. / <empty>

Semantics:

The <memory limit statement> is used to specify the number of messages allowed to queue up
in memory before being tanked to disk. Its value must be between 1 and 255. Since only the
last block of a message is placed in the memory queue, only one input block per message is af-
fected by this statement. The default value for MEMORYLIMIT is 1.

Pragmatics:

Varying MEMORYLIMIT has a potentially high impact on disk I/0 versus main-memory re-
quirements and thus on throughput.

MKE Statement
Syntax:

<message key statement> ::=
MKE = < message key list>. /
<message key statement> < message key statement >

<message key list> ::=
<message key identifier> /
<message key list>,<message key identifier >

<message key identifier> ::=
<mke> <user control statement> < module-function indices>

3-73

<mke> 1=
<identifier> / <integer> / <string> /
< hexadecimal code> <hex string>

<user control statement> ::= :USERCONTROL / <empty>

< module-function indices> ::=
(<integer>, <integer>) / <empty>

Semantics:

The <message key statement> defines the message tag codes to be accepted by the program,
as well as certain attributes associated with each message tag code.

When specified, the <user control statement> indicates that the message key is processed by
the INPUTUSERHOOK procedure. (Refer to Section 4 for a discussion of this procedure.)

The <module-function indices> specify a pair of integers which accompany a message contain-
ing this message key to the COMMON area for the convenience of the user programmer. If the
< module-function indices > are <empty>, zeros are returned to the COMMON area with mes-
sages containing this message key. Appendix A presents a layout of COMMON indicating the
location of the module and function indices in the message passed to a User program.

Pragmatics:

If the message key is specified as an identifier, the first character must be non-numeric. If the
message key is an integer, it must be all numeric. Message keys specified as either EBCDIC or
hexidecimal strings must not begin with a space, and variable-length message keys with the same
specification must use alphanumeric characters.

Example:
MKE = ABCI23(123,1), ABC456(456,1).
MKE = ABX456.
MKE = 1234(678,23).

MKE = ABX457(1,2), 4"1AC1OD"(1,3).
NOINPUT Statement
Syntax:

<no input statement> :: =
NOINPUT = <logical value>. / <empty>

3-74

1096567

Semantics:

If the <no input statement> is set TRUE, this is a queue to be used by a NOINPUT program.
No other <inputqueue statement> may be used, and only one <inputqueue section> may be
specified for a program with NOINPUT = TRUE.

A NOINPUT program must be run by inputting a ?RUN Network Control command.
QUEUEDEPTH Statement
Syntax:

<queue depth statement> ::=
QUEUEDEPTH = <integer>. / <empty>

Semantics:

The <queue depth statement > specifies the number of messages which can back up in the queue
before an additional copy of the program is executed.

If MAXCOPIES is greater than 1, and this statement is omitted, the queue depth is set to a
high value, and no additional copies of the program are executed.

RECOVERY Statement

Syntax:

<recovery statement> ::= RECOVERY = <logical value>. / <empty>
Semantics:

The <recovery statement > is used to indicate whether the program under which this Input queue
is defined will participate in the data base/data communications synchronized recovery
mechanism. If RECOVERY = FALSE, then this Input queue is recovered using the Checkpoint
recovery mechanism.

If this statement is omitted, FALSE is assumed. A detailed discussion of recovery conventions
is presented in section 5.

TIMELIMIT Statement

Syntax:

<time limit statement> ::= TIMELIMIT = <integer>. / <empty>

3-75

3-76

Semantics:

The <time limit statement> specifies the length of time, in seconds, which should elapse be-
tween the point the queue depth rises above the limit specified by the <queue depth statement >
and the point the MCS should invoke copies of this program. Copies are terminated based on
INACTIVETIMEOUT.

When MAXCOPIES is greater than one and this statement is omitted, the time limit is set to
a high value, and no extra copies of the program are executed.

WAITFORAUDIT Statement
Syntax:

<wait for audit statement> ::=
WAITFORAUDIT = <logical value>. / <empty>

Semantics:

The <wait for audit statement> specifies whether the program for which this Input queue is
defined, while processing messages from this queue, will delay issuing END TRANSACTION to
the data-base manager until after the output primary message has been audited.

If WAITFORAUDIT = FALSE, it is possible, but unlikely, for duplicate processing of input
to occur during recovery. It is also remotely possible for input messages to be reprocessed in a
sequence different from the original sequence.

If the statement is omitted, FALSE is assumed. Recovery conventions are discussed in detail in
section 5.

NOTE
WAITFORAUDIT = TRUE does not imply RECOVERY = TRUE.

STATION SECTION

Syntax:
<station section> ::= <station define list>

<station define list> ::=
<station define> /
< station define list> <station define>

1096567

<station define> ::=
STATION <station name> (<station number>):
<station description> /

SWITCHSTATION <station name> (<station number>):

<switch station description >
<station number> ::= <integer>
<station description> ::= <station statement list>

< station statement list> ::=
< station statement> /
< station statement list> < station statement >

<station statement> ::=
< address statement> /
< alternate stations statement> /
<assign to program statement> /
< broadcast statement> /
<compute statement> /
< continuous log-on statement> /
< conversational statement> /
<dial in statement> /
<fixed length mkes statement> /
< flush output statement> /
< formatted blocked output statement> /
<forms compose statement> /
<host accesskey statement> /
<identify statement> /
<individual id statement> /
<intercept statement> /
<line analyzer statement> /
<line statement> /
<logical ack statement> /
<may not be intercepted statement> /
<maximum users statement> /
<my use statement> /
<no duplicates statement /
<no line statement> /
<no queue statement> /
<no title statement> /
<one output per backup statement> /
< portsize statement> /
< portstation statement> /
<program acknowledge statement> /
<remarks statement> /
<routing header statement> /
<service messages statement> /
<set MCS request set statement> /

3-77

3-78

<sign-on statement> /

<special statement> /

<station bit statement list> /

<station hostname statement> /
<station master statement> /

<station message key statement> /
<station system statement> /

<station your name statement> /
<system network control station statement>
<test statement> /

<transaction mode statement> /

<type statement> /

<user control statement> /

<user id mask statement> /

<valid users statement> /

<variable mke position statement> /
<variable user id position statement> /
<empty>

<switch station description> ::=
<switch station statement list>

<switch station statement list> ::=
<switch station statement> /
<switch station statement list> <switch station statement>

<switch station statement> ::=
<sign-on statement> / <valid users statement> / <empty>

Semantics:
The STATION section defines station functions and relations to the MCS.

A <station define> must contain a <station name> and a <station number>. In order for
the MCS to associate the station declaration with a physical terminal, the station name should
be one declared in the NDL. The station number may not be a duplicate of another <station
number >. A <station number> may range from 1 to 200000.

A <switch station define> must contain a <station name> and a <station number>. This
station may be switched between systems. A normal station must occur in one system (the system
that the station would belong to initially). A SWITCHSTATION declaration must occur in the
STATION section of each system to which it may be switched, and the station name and number
must be the same in all declarations. Under the SWITCHSTATION, only SIGNON, VALIDUS-
ERS, FIXEDMKE and FORMSCOMPOSE may be specified. The switch stations may appear in
the appropriate DEVICE section within the systems the station can be switched between.

Example of STATION Define:

STATION SYSTEM/MONITOR (101):

TEST = TRUE.

SERVICEMESSAGES = TRUE.

LINE = 0:0:1.

ADDRESS = "AA".

REMARKS = "YE OLD SYSTEM MONITOR ”.

Example of SWITCHSTATION Define:

BEGIN SYSTEM SYS 1 (1):
ACCESSCONTROL = ACCESSKEY 84123
MKE1, MKE2.

STATION DEMOI (1):
SIGNON = TRUE.
VALIDUSERS = ALL.

STATION DEMO2 (2):
SIGNON = TRUE.
VALIDUSERS = 84123.

DEVICE TDI (1):
STALIST = DEMOI, DEMO2.
END
BEGIN SYSTEM SYS2 (2):
ACCESSCONTROL = ACCESSKEY 85100 = MKE3, MKE4.

STATION DEMO3 (3)
SIGNON = TRUE.
VALIDUSERS = ALL.

SWITCHSTATION DEMO2 (2):
SIGNON = TRUE.
VALIDUSERS = 85100.

DEVICE TD2 (2):
STALIST = DEMO3, DEMO2.
END

1096567 3-79

ADDRESS Statement

Syntax:

<address statement> ::= ADDRESS = <address part>.
<address part> ::= <address> / <address pair> / NULL
<address> ::= <string>

<address pair> ::= (<address>, <address>)

Semantics:

The <address statement> specifies the poll and select address characters for the station. The
station address is not required and is for documentation only.

Example:

ADDRESS = "AB”.
ALTERNATE STATIONS Statement
Syntax:

< alternate stations statement> ::=
ALTERNATE =
< alternate station list>. /
<empty>

< alternate station list> ::=
< alternate station> /
< alternate station list>, <alternate station>

< alternate station> ::= <station name>

3-80

1096567

Semantics:

The <alternate stations statement> specifies an alternate which may be used for output when
the specified station is marked as inoperative. If several alternates are specified, each is checked
for being operative with the first specified as having the highest priority. If all alternates are
disabled, the alternates to the alternates are also checked, down to any level until all possibilities
are exhausted.

Output to an alternate of a station on a line will be invoked only when the station is specifically
disabled by a system control message. Output to an alternate of a station having no line (NO-
LINE = TRUE) will be invoked only when the station is enabled.

Example:

ALTERNATE = CMPT, SSVR.
ASSIGNTOPROGRAM Statement
Syntax:

< assign to program statement> ::=
ASSIGNTOPROGRAM = <program name>. / <empty>

Semantics:

The <assign to program statement> allows a station to assign itself permanently to a program.
In this case, all messages are routed directly to and from the program without having to enter
message keys at the station.

BROADCAST Statement
Syntax:

<broadcast statement> ::=
BROADCAST = <logical value>. / <empty>

Semantics:

The <broadcast statement> specifies that the station has been physically optioned to receive
messages under a broadcast select. If it is not specified, FALSE is assumed.

3-81

I-8L

Pragmatics:

If a message is to be sent to a group of stations (area), and the group includes all stations on
a line, all of which have BROADCAST = TRUE, then the MCS issues a special broadcast select
write for the line. All stations on the line which have been physically optioned to receive messages
under a broadcast select will receive the message, including stations which are not attached to

GEMCOS.

Example:

BROADCAST = TRUE.

COMPUTE Statement

Syntax:
<compute statement> ::= COMPUTE = <logical value>. / <empty>
Semantics:

The <compute statement > specifies if this station is allowed to use the compute function of
the CONTROL process. This statement need not be specified unless to override the <master
compute statement> specified in the GLOBAL section. Detailed information on the use of the
Compute function is presented in section 8.

Example:
COMPUTE = TRUE.
CONTINUOUSLOGON Statement

Syntax:

<continuous log-on statement> ::=
CONTINUOUSLOGON = <logical value>. / <empty>

Semantics:

The <continuous log-on statement> specifies whether the MCS should "remember” who was
logged on to the station following a termination of the network (either normally or abnormally).
Additionally, if the station’s station bits had been changed during a valid log-on or log off, the
<continuous log-on statement> specifies that the current value of the station bits should also
be "remembered.” If the statement is omitted or FALSE, all users logged on to the station when
the MCS terminates are automatically logged off when the MCS is started again.

1096567

CONVERSATIONAL Statement

Syntax:

<conversational statement> 1=
CONVERSATIONAL = <logical value>. / <empty>

Semantics:

The <conversational statement> specifies that the station may enter into a dialogue with a pro-
gram. When this statement is set to TRUE, a Conversational row is assigned to the station in
anticipation of in-core storage of a conversation. If conversations are never stored in core, the
row is never accessed. Deallocation of the row is under control of the user TP. The size of the
row depends on the size of the Conversational area of the particular program in conversation
with the station. See Section 4 for a more complete description.

DIALIN Statement

Syntax:
<dial-in statement> ::= DIALIN = <logical value>. / <empty>
Semantics:

The <dial-in statement > indicates those stations which are specified in NDL to be dial-in sta-
tions. This statement in the TCL is for documentation only. Refer to the IDENTIFY statement
and the NOLINE statement for further details of dial-in capabilities.

FIXEDLENGTHMKE Statement

Syntax:

< fixed length mkes statement> ::=
FIXEDMKE = <integer>. / <empty>

Semantics:

The < fixed length mkes statement > indicates that this station handles only fixed-length message
keys. All message keys entered through this station must be <integer> characters long. FIXED-
MKE may take on a value between 1 and 15. For a fixed-length message key station, it is as-
sumed that the first <integer> bytes (after skipping leading blanks) of the message starting at
MKEPOSITION (refer to the <variable mke position statement> at the end of the STATION
section) constitute the message key. For variable length message-key stations, it is assumed that
the first nonalphanumeric character (after skipping leading blanks) terminates the message key.

3-83

3-84

FLUSHOUTPUT Statement

Syntax:

< flush output statement> ::=
FLUSHOUTPUT = <logical value>. / <empty>

Semantics:

The < flush output statement > specifies that this station’s Output Message queue be purged after
a synchronized recovery.

FORMATTEDBLOCKEDOUTPUT Statement

Syntax:

<formatted blocked output statement> ::=
FORMATTEDBLOCKEDOUTPUT = <logical value>. / <empty>

Semantics:

The <formatted blocked output statement > specifies if the MCS is to block output to this buf-
fered terminal even though it has been formatted. This option is intended for large formatted
output messages to hard-copy devices when users want to avoid the necessity of terminal operator
intervention to request subsequent pages of output.

If the statement is FALSE or omitted, formatted output is transmitted unblocked.
FORMSCOMPOSE Statement
Syntax:

< forms compose statement> ::=
FORMSCOMPOSE = <message-id>. / <empty>

Semantics:

The <forms compose statement> allows a user to specify a format that is delivered to a station
when it is enabled. In this manner tab settings and special messages may be delivered to specific
stations when they are enabled. In the DEVICE section where the station is specified, a format
must be related to the given message-ID using the FORMATSOUT syntax.

1096567

HOST ACCESSKEY Statement

Syntax:

<host accesskey statement> ::=
HOSTACCESSKEY = <identifier>. / <empty>

Semantics:

The <identifier> specified in the <host accesskey statement> is placed in the accesskey field
in the routeheader of a TYPE = ROUTEHEADER station and is used for security checking.
Refer to section 13 for a more complete discussion. The default value is blanks.

Example:
HOSTACCESSKEY = HACKER.

IDENTIFY Statement

Syntax:

<identify statement> ::=
IDENTIFY = <logical value>. / <empty>

Semantics:

The <identify statement> specifies those stations on a dial-in line which are required to identify
themselves before being enabled at initial connect time.

A TCL station name should be entered on the terminal in response to the IDENTITY RE-
QUIRED prompt. This station name should not exist in the NDL source deck (i.e., it should
be declared in the TCL as NOLINE = TRUE). To acknowledge a successful identification,
IDENTITY ACCEPTED is sent to the terminal. The terminal then assumes the TCL station attri-
butes of this station declaration in the TCL.

If IDENTIFY = FALSE for a terminal, it assumes the characteristics of the corresponding TCL
declaration.

For each unsuccessful attempt, an error message is sent to the network monitor stations, and
another prompt is sent to the terminal.

If all stations on a line are IDENTIFY = FALSE, they are all enabled at initial connect time.
If there is at least one IDENTIFY = TRUE station on the line, then the IDENTIFY = FALSE
stations are enabled when one of the IDENTIFY = TRUE stations identifies itself.

When the line is disconnected, stations revert to their original state and require identification.

3-85

3-86

INDIVIDUALID Statement

Syntax:

<individualid statement> ::=
INDIVIDUALID = <logical value>. / <empty>

Semantics:

The <individualid statement> specifies if the station is to have a special individual identifier
associated with each user who is logged on to the station. When TRUE, the MCS accepts a 2-
word identifier from the Access Control module with each valid log-on request. This 2-word iden-
tifier is passed to the application program with each transaction entered by the user. Access Con-
trol is discussed in detail in section 7.

If the statement is omitted, FALSE is assumed. This feature is not compatible with the CON-
TINUOUSLOGON feature and should not be specified TRUE on a station for which CON-
TINUOUSLOGON = TRUE.

INTERCEPT Statement

Syntax:

<intercept statement> ::=
INTERCEPT = <logical value>. / <empty>

Semantics:

The <intercept statement> specifies whether the station can intercept input and/or output mes-
sages from another station in the network. All stations can be intercepted except those which
are defined as MAYNOTBEINTERCEPTED = TRUE. Interception is started and stopped by
a control message issued by an intercept station. Interception is transparent to the intercepted
station. If the <intercept statement> is omitted, FALSE is assumed.

Example:

INTERCEPT = TRUE.

LINE Statement

Syntax:

<line statement> ::= LINE = <dcp address>. / <empty>
<dcp address> ::= <dcp> : <cluster> : <adapter>
<dcp> ::= <integer>

1096567

<cluster> ::= <integer>
<adapter> ::= <integer>
Semantics:

The <line statement> defines the port where the station is attached. <dcp> ranges from 0 to
7. <cluster> and <adaptor> range from 0 to 15. This statement is for documentation only.

Example:
LINE = 0:01:3.

LINEANALYZER Statement

Syntax:

<line analyzer statement> ::=
LINEANALYZER = <logical value>. / <empty>

Semantics:

The <line analyzer statement> specifies whether this station is a line monitor using a DLM
adapter and associated DCP requests. If true, then all input from the specified station is passed
directly to an analyzer section of the MCS for analysis and printer output. If the statement is
not specified, FALSE is assumed.

Example:
LINEANALYZER = TRUE.

LOGICALACK Statement

Syntax:

<logical ack statement> ::=
LOGICALACK = <logical value>. / <empty>

Semantics:

The <logical ack statement> specifies how the NDL LOGICALACK option should be set for
this station. When LOGICALACK = TRUE, input messages from this station are not acknowl-
edged until after the message is audited by the MCS. If PROGRAMACK is also TRUE, the ac-
knowledgement is delayed until after the receiving program indicates the message is processed.
For a User program, this is done when the program indicates it is finished with the transaction
(pass of control of 3). Process programs are informed when PROGRAMACK is TRUE, and they
may specifically request that the MCS acknowledge the station by means of a special SEND-
MESSAGE call (refer to appendix C). If a Process program does not specifically request the sta-
tions to be acknowledged, the MCS acknowledges after the transaction is complete.

If the <logical ack statement> is omitted, FALSE is assumed.

3-87

3-88

MAYNOTBEINTERCEPTED Statement
Syntax:

<may not be intercepted statement> ::=
MAYNOTBEINTERCEPTED = <logical value>. / <empty>

Semantics:

The <may not be intercepted statement> specifies if the station can be intercepted by an IN-
TERCEPT = TRUE station. Value TRUE indicates that it cannot be intercepted. If the state-
ment is not specified, FALSE is assumed.

Example:
MAYNOTBEINTERCEPTED = TRUE.
MAXUSERS Statement

Syntax:

<maximum users statement> ::=
MAXUSERS = <integer>. / <empty>

Semantics:

The <maximum users statement> specifies the maximum number of operators or users which
can be concurrently signed on to the specified station. If the statement is omitted, one (1) is as-
sumed. If the maximum number of users is greater than 1, then each user signing on to the sta-
tion must precede any input, including the log-on, with a 1-character identifier. This 1-character
identifier is removed from the message which is presented to the TP but is passed to the TP
in the control section of its Common area row. The layout of COMMON, indicating the location
of the identifier in the message, is presented in appendix A.

MYUSE Statement

Syntax:
<my use statement> ::= MYUSE = <my use specifier>. / <empty>

<my use specifier> ::=
<input only my use> / <output only my use>/
<input — output my use>

<input only my use> ::= IN/1
<output only my use> ::= OUT/2
<input — output my use> := 10/3

1096567

Semantics:

The <my use statement> specifies the I/O capability of the station. If it is not specified, the
NDL MYUSE is used.

Example:
MYUSE = 10.
MYUSE = 2

NODUPLICATES Statement

Syntax:

<no duplicates statement> ::=
NODUPLICATES = <logical value>. / <empty>

Semantics:

The <no duplicates statement> specifies that the MCS is to hold back possible duplicate mes-
sages during recovery. If it is not specified, FALSE is assumed, and possible duplicate messages
are released during recovery. A detailed discussion on output message analysis is presented in sec-
tion 5. Utilization of this option is not normally recommended except in instances where retrans-
mission of the last output delivered to a station could produce unfavorable results.

NOLINE Statement

Syntax:

<no line statement> ::= NOLINE = <logical value>. / <empty>
Semantics:

The <no line statement> specifies that this station has no equivalent station defined in NDL.
This staticn can be attached to a dial-in station and can have messages directed to it by an appli-
cation program. Alternate stations can be specified for this station so that output can be pro-
cessed from its queue.

NOQUEUE Statement

Syntax:

<no queue statement> ::=
NOQUEUE = <logical value>. / <empty>

3-89

390

Semantics:

The <no queue statement > specifies the station’s ability to queue output from the data commu-
nications system. It is set to TRUE if only one output message can be sent for each input to
the system. This parameter would be used to accommodate another manufacturer’s system which
could not accept more than one response for each input. If the statement is not specified, FALSE
is assumed.

Example:

NOQUEUE = TRUE.
NOTITLE Statement
Syntax:

<no title statement> ::=
NOTITLE = <logical value>. / <empty>

Semantics:

The <no title statement > specifies whether the station’s output messages should start with the
date-time title. If not specified, FALSE is assumed, and the title is attached to the output mes-
sage. The title is always built and forwarded to the output audit unless the program generating
the output sets the NOTITLE flag in COMMON when passing control to the MCS.

Example:
NOTITLE = TRUE.
NOTITLE = FALSE.

ONEOUTPUTPERBACKUP Statement

Syntax:

<one output per backup statement> ::=
ONEOUTPUTPERBACKUP = <logical value>. / <empty>

Semantics:

The <one output per backup statement> indicates whether the next output to a station should
be held up until the audit file receives acknowledgement that the previous output has been deliv-
ered. If the statement is FALSE or <empty>, no output is held up. If TRUE, then the
maximum number of possible duplicate messages at this station after recovery is reduced to one.

1096567

PORTSIZE Statement

Syntax:
<portsize statement> ::= PORTSIZE = <integer>. / <empty>
Semantics:

The <portsize statement > only has meaning for a station with PORTSTATION = TRUE. The
MCS and the utility must both be compiled with the PORTS $ option set. It specifies the
maximum number of characters that GEMCOS will read from or write to the port associated
with this station. Messages received by GEMCOS from a port station will be truncated at the
largest value of all PORTSIZEs for all portstations. Messages sent by GEMCOS to a port station
will be sent in pieces of its PORTSIZE length. The default value of PORTSIZE is 2000 and the
maximum value is 3000.

PORTSTATION Statement

Syntax:
< portstation statement> ::= <logical value>. / <empty>

Semantics:

When PORTSTATION is set true, GEMCOS attempts to receive input and output via a PORT
file rather than a datacom station. If the station is a TYPE = ROUTEHEADER station then
GEMCOS may communicate with a GEMCOS on another host in a BNA network. Alternately,
the user may write a program which uses a PORT file to simulate a GEMCOS station. File attri-
butes of PORT used by GEMCOS may be specified in the TCL by the use of the MYNAME
statement in the global section, or the STATIONHOSTNAME, STATIONYOURNAME and
PORTSIZE statements in the station section. The internal name of the PORT file used by GEM-
COS is HOSTPORT and the default title is GEMPORT. The MCS and the utility must both
be compiled with the PORTS $ option set. The default value of PORTSTATION is false.

391

392

Examples:

1. This example allows a program on the host named OPOTIKI to open a port and act like

a GEMCOS station.

STATION ITSAFORT (1):
PORTSTATION = TRUE.
STATIONHOSTNAME = OPOTIKI.
NOTITLE = TRUE.

2. This example shows the TCLs required to allow a GEMCOS on Host Whakatane to com-

municate with GEMCOS on Host Taneatua.

Examples:

1. This example allows a program on the host named
JPOTIK] to open a port and act Like a GEMCOS
station.

STATION ITSAFORT (1):
PORTSTATION = TRUE.
STATIONHOSTNAME = O0POTIKI.
NOTITLE = TRUE.

2e This example shows the TCLs required to allow a
GEMCOS on Host Whakatane to communicate with

GEMCOS on Host Taneatua.

% TCL on Host Taneatua

STATION WHAKATANE (2):
% WHAKATANE 1S HOSTNAME BY DEFAULT

PORTSTATIGN
TYPE
STATIONYDURNAME
NOTITLE

AKE

oo n

TRUE.
ROUTEHZADER.
OHOPE.

TRUE.

WHAKAI» WHAKAZ,

Z TCL on Host Whakatane

MYNAME = (HOPE.
%z MATCHES STATIONYOURNAME ABOVE

STATICN X(1):
PORTSTATION = TRUE.
TYPE = ROUTEHEADER.
STATICNHOSTNAME = TANEATUA.
NOTITLE = TKUE.
MKE = TANE1,TANE2.

PROGRAMACK Statement

Syntax:

< program acknowledge statement> ::=
PROGRAMACK = <logical value>. / <empty>

Semantics:

The <program acknowledge statement> is used in conjunction with the NDL LOGICALACK
statement and specifies whether a program should acknowledge an input message. If specified
TRUE, and NDL LOGICALACK is TRUE, messages are acknowledged only when the program
indicates they should be. Refer to the discussion for the <logical ack statement>.

If the statement is omitted, FALSE is assumed.

Example:

PROGRAMACK = TRUE.

REMARKS Statement

Syntax:

<remarks statement> ::=
REMARKS = <remarks string>. / <empty>

<remarks string> ::= <string> / <remarks string>, <string>
Semantics:

The <remarks statement > specifies a <string> that is to be saved for documentation purposes.
CONTROL = LIST is used to print out this listing. The maximum length of a <remarks
string> is 100 characters. The <remarks statement> is not returned.

ROUTEHEADER Statement

Syntax:

<routing header statement> ::=
ROUTEHEADER = <logical value>. / <empty>

393

394

Semantics:

The <routing header statement > specifies whether the station begins each message with a rout-
ing header and expects each message directed to it to be preceded by a routing header. This im-
plies that the station is a computer or message concentrator which services another set of stations.
The routing header is transmitted with the message throughout the datda communications system
and returned to the station preceding the output message. If the statement is not specified,
FALSE is assumed. An alternative type of routeheader may be made by specifying TYPE =
ROUTEHEADER. See section 13, computer-to-computer communication for a more complete
discussion.

SERVICEMESSAGES Statement

Syntax:

<service messages statement> =
SERVICEMESSAGES = <logical value>./ <empty>

Semantics:

The <service messages statement> specifies whether the station is to receive service messages.
If not specified, FALSE is assumed.

Example:

SERVICEMESSAGES TRUE.
SERVICEMESSAGES = FALSE.

SETMCSREQUESTSET Statement

Syntax:

<set MCS request set statement> ::=
SETMCSREQUESTSET = <logical value>./ <empty>

Semantics:

The <set MCS request set statement > allows a station to change NDL request sets when switch-
ing from some other MCS to GEMCOS and back again. GEMCOS assumes that any station for
which SETMCSREQUESTSET = TRUE is specified uses NDL request set number 5. The re-
quest set number for the station is changed to 5 whenever the station is released to GEMCOS
and is then changed to 1 whenever the station is released to some other MCS.

If the statement is omitted or FALSE, and the station is assigned to GEMCOS in the NDL, then
request set 1 is assumed. If it is omitted or FALSE and the station is not assigned to GEMCOS
in the NDL, the request set is not changed when the station is released from GEMCOS.

1096567

SIGNON Statement

Syntax:
<sign-on statement> ::= SIGNON = <logical value>. / <empty>
Semantics:

The <sign-on statement> is used to indicate whether users must sign on to this station prior
to ‘entering transactions. If this statement is omitted, FALSE is assumed.

If SIGNON = TRUE, the operator at the station must sign on as one of the valid users listed
in the <valid users statement>. If VALIDUSERS = ALL, the station operator must sign on
as one of the users listed in the <access control statement> of the <system section>.

SPECIAL Statement

Syntax:
<special statement> ::= SPECIAL = <logical value>./ <empty>
Semantics:

The <special statement > specifies whether the station is assumed to be part of the special group
of stations. A special station is "enabled” immediately after a communication error occurs if the
station is not marked "down” and the error was not a line error. Special stations also may put
stations back in service. (Refer to $§ INPUT MESSAGE in section 8.) If this statement is not
specified, FALSE is assumed.

Example:
SPECIAL = TRUE.

STATIONBIT Statement

Syntax:

<station bit statement list> ::=
<station bit statement> /
<station bit statement list> <station bit statement>/
<empty>

<station bit statement> ::= STATIONBIT <sta-bit specifier>.
<sta-bit specifier> ::=

<individual sta-bit specifier> /
< field sta-bit specifier >

395

3-96

< field sta-bit specifier> ::=
(<bit number>:<field length>) = <sta-bit value>

<sta-bit value> ::= <integer> / <hex string>

<field length> ::= [a number from 1 to 48]
<bit number> ::= [a number from 0 to 47]
Semantics:

Associated with each station are up to 48 bits of logical data. These bits are passed to application
programs along with the input message to be processed. The <station bit statement list>
specifies the value of these bits. The <bit number>s are the same as when they are passed to
the application program. Any bit not specified is assumed FALSE.

The station bits may be assigned a value either individually or in groups. If the bits are to be
assigned values in groups, the first <bit number > is the starting bit of the field, and the < field
length > is the length of the field. If the <sta-bit value> is an integer, it must be small enough
to fit in the field specified. If the <sta-bit value> is a hexadecimal string, it must contain an
even number of digits; the bits are extracted from the string from left to right.

The station bits may be altered by an Access Control program during a valid sign-on or sign-
off verification (refer to section 7).

Example:

STATIONBIT(0) = TRUE.
STATIONBIT(10) = TRUE.
STATIONBIT(13:14) = 4097.
STATIONBIT(30:15) = 4"7FFC".

STAMASTER Statement

Syntax:

< station master statement> ::=
STAMASTER = <logical value>. / <empty>

Semantics:

The <station master statement> specifies whether the station is to be considered master. Nor-
mally, a station is a slave to the data communications system; but in some cases, if the station
is a computer, the station is in control of the message flow. This information is passed to the
Data Communications Controller (DCC) which could use it to relieve line contention in com-
puter-to-computer communication. If the statement is omitted, FALSE is assumed.

Example:
STAMASTER = TRUE.
STAMASTER = FALSE.

1096567

STASYSTEM Statement

Syntax:

<station system statement> ::=
STASYSTEM = <string>. / <empty>

Semantics:

The <station system statement> specifies a system name to be used in the message title if a
message is switched from this station. If the statement is not specified, then the system name
is used.

Example:
STASYSTEM = "MYSYSTEM"”.

STATIONHOSTNAME Statement

Syntax:

<station host name statement> ::=
STATIONHOSTNAME = <identifier>. / <empty>

Semantics:

The <station host name statement> only has meaning for a station with PORTSTATION =
TRUE. The HOSTNAME attribute of the PORT SUBFILE used by GEMCOS for this station
is set to <identifier >. The MCS and the utility must both be compiled with the PORTS $ option
set. The default value of STATIONHOSTNAME is the station name.

STATIONMESSAGEKEY Statement

Syntax:

<station message key statement> ::=
MKE = <station message key list>.

<station message key list> ::=
<mke>/<mke>, <station message key list>

<mke> 1=
<identifier> / <integer> / <string> /
< hexadecimal code> < hexadecimal string>

3-97

3-98

Semantics:

The <station message key statement > provides a means of station-to-station communication. A
message entered from station A, which contains a message key declared in the TCL for station
B will be routed directly to station B. If station B is a ROUTEHEADER = TRUE station, a
routeheader will be added and any reply from station B will be directed back to station A. Pro-
grams may not route to a station by message key.

Example:
MKE = AB2, 123, "20X", 4"C1C2F3".
STATIONTIMEOUT Statement

Syntax:

<station time out statement> ::=
STATIONTIMEOUT = <logical value>./ <empty>

Semantics:

The <station timeout statement> specifies whether the station should be disabled by timeout
errors. If TRUE is specified, and no good results are received from the station within six minutes
of a transmission to the station, the station will timeout. If FALSE is specified, the station will
not time out. This statement is similarly used by PAGER to determine whether a station should
automatically be taken out of paging mode after ten minutes with no paging activity. If this state-
ment is omitted, FALSE is assumed.

STATIONYOURNAME Statement
Syntax:

< station your name statement> ::=
STATIONYOURNAME = <identifier>. / <empty>

Semantics:

The <station your name statement> only has meaning for a station with PORTSTATION =
TRUE. The YOURNAME attribute of the PORT SUBFILE used by GEMCOS to this station
is set to <identifier>. The MCS and the utility must both be compiled with the PORTS $ option
set. The default value of STATIONYOURNAME is null.

SYSTEMNETWORKCONTROLSTATION Statement

Syntax:

<system network control station statement> ::=
SYSTEMSPOSTATION = <logical value>./ <empty>

1096567

Semantics:

The <system network control station statement> specifies whether the station can send system
control messages. The system sets this attribute to TRUE for any stations named in the <system
network control statement> in the GLOBAL section. If this statement is not specified, FALSE
is assumed.

TEST Statement

Syntax:
<test statement> ::= TEST = <logical value>. / <empty>
Semantics:

The <station test statement> specifies whether the station is part of a test group of stations.
If this statement is not specified, FALSE is assumed. These stations may be enabled or disabled
as a group using the "ENABLE TEST” or "DISABLE TEST” Network Control commands. They
could be used to test a portion of the physical system before enabling the entire system.

Example:

TEST = TRUE.
TEST = FALSE.

TRANSACTIONMODE Statement

Syntax:

<transaction mode statement> ::=
TRANSACTIONMODE = <logical value>./ <empty>

Semantics:

The <transaction mode statement> specifies whether a station is allowed to transmit a new in-
put before receiving the response for the previous input transaction. If TRUE, the MCS returns
the error response BUSY for any input from the station prior to transmitting a response to the
current transaction for the station.

The BUSY response may not reach the station as the next event following the discarding of the
transaction in error. The valid response from a TP to the initial input, or queued secondary mes-
sages generated to the station as the result of other transactions on the network, can be transmit-
ted before the BUSY notification is delivered.

If this statement is omitted, FALSE is assumed, and the MCS accepts input from the station
at the operator’s direction.

3-99

3-100

TYPE Statement

Syntax:

<type

statement> ::=

TYPE = <type value>./ <empty>

<type
ST

Semant

value> 1=
ANDARD / AP300 / MT600 / MT700 / ROUTEHEADER

ics:

The <type statement> is used to specify to GEMCOS whether this station requires special han-
dling. The meanings of the <type value>s are as follows:

1.
2.

STANDARD specifies no special handling is required. This is the default value.
AP300 specifies that the station is to be treated as a Burroughs AP300 printing terminal.
Any messages received from this station are assumed to be status messages and are sent
to the program in its system which has been defined to be AP300STATUS = TRUE.
If no such program exists, the status is stored in the station table and is printed as part
of a ?STATUS system control message.

. MT600 and MT700 <type value>s are synonymous. They specify that the station is to

be treated as one of the Burroughs MT600 or MT700 family of terminals. Any input mes-
sage containing a valid header ("DC4 <char> DC1") undergoes the following transfor-
mation:

a. The header is stripped from the message.
b. The MSG-MTCHAR field (COMMON]19].[47:8]) and CONTROLWORDS|8].[43:8]

are set to <char>.

c. If there is a trailer on the message ("DC4 E DC1"), it is stripped from the message

and the MSG-MTDEL field (COMMONJ19].[39:1]) and CONTROLWORDS]|8].[44:1]
are set to 1.

d. When a message is sent from a program to a station of TYPE = MT600 or MT700,

4.

the COMMON AREA fields are checked. If the MSG-MTCHAR field or
CONTROLWORDS|8].[43:8] is zero, then no header is put on the message. If the
MSG-MTCHAR field or CONTROLWORDS]J8].[43:8] contains a character, then it is
used in the header and put on the message. A trailer is appended if MSG-MTDEL or
CONTROLWORDSI8].[44:1] is equal to 1.

ROUTEHEADER specifies that a standard GEMCOS ROUTEHEADER will be added to
every message sent to this station and will be expected on every message received from
this station. It is used in computer-to-computer communication between GEMCOS MCS’s
on different Burroughs systems. See section 13 Computer to Computer Communication
for a more complete discussion.

1096567

USERCONTROL Statement

Syntax:

<user control statement> ::=
USERCONTROL = <logical value>./ <empty>

Semantics:

When the <user control statement> is set to TRUE for a station, all transactions entered at
that station will be processed by the INPUTUSERHOOK procedure. (Refer to section 4 for a
discussion of this procedure.)

USERIDMASK Statement
Syntax:

<user id mask statement> ::=
USERIDMASK = <integer >. / <empty>

Semantics:

When a multi-user station is in use, the <user id mask statement> is ANDed with the user-
ID entered at log-on by the operator. This forms the internal user-ID associated with that log-
on. Thus, depending on the mask that is selected, only certain bits of the user-ID character would
be used.

The default value for the USERIDMASK is 255. This means that all bits of the user-ID are used.

VALIDUSERS Statement

Syntax:

<valid users statement> ::=
VALIDUSERS = <accesskey list>. / <empty>

<accesskey list> 1=
<access code> / <access code>,<access key list> / ALL

3-101

3-102

Semantics:

A list of valid user codes can be declared to enforce user code validation at sign-on time. ALL
indicates any user can sign on. If the statement is omitted and <signon> is TRUE, ALL is as-
sumed. This statement has no meaning if <sign-on> is FALSE.

Example:

VALIDUSERS ALL.
VALIDUSERS = 84080,84090, HATCH.

VARIABLEMKEPOSITION Statement

Syntax:

<variable mke position statement> ::=
MKEPOSITION = <integer>. / <empty>

Semantics:

The <variable mke position statement> allows the user to specify, on a station basis, at what
position in the message the message key will appear.

The default value is 0, which has one of the following effects.

1. For a single user station, the MKE is expected to start at the first token in the message.

2. For a multi-user station with no user-ID position specified, the MKE is expected to start
at the second token in the message (preceded by the user-ID).

3. For a multi-user station with a user-ID position specified, the MKE is expected to start
at the first token in the message. Care must be taken in this case if standard GEMCOS
access control is used.

VARIABLEUSERIDPOSITION Statement

Syntax:

<variable user id position statement> ::=
USERIDPOSITION = <integer>. / <empty>

Semantics:

The <variable user id position statement> allows the user to specify at what position in the
message the user-ID of a multi-user station will appear.

Default value for the USERIDPOSITION is 0. This value indicates that the user-ID is the first
token

DEVICE SECTION

Syntax:
<device section> ::= <device define list> / <empty>

<device define list> ::=
<device define> /
<device define list> <device define>

<device define> ::=
DEVICE = <device name>
(<device number>): <device description>

<device name> ::= <identifier>
<device number> ::= <integer>

<device description> ::=
<station list statement> <device statement list>

<device statement list> ::=
<device statement> /
<device statement list> <device statement> / <empty>

<device statement> ::=
<input formats statement> /
<output formats statement> /
<nonformatted mkes statement >

Semantics:

The <device section> is used to group stations by device class and to provide information neces-
sary for formatting input and output messages. It is in this section that the intersection of device
class and message key or message-ID is identified for use in locating the proper format to be
applied to a message.

Example:

DEVICE TD800 (7):
STALIST = ABC123, TCXY2.
FORMATSIN:
ABFMT = INQ, TC4(10), 1236(20).
FORMATSOUT:
OUTFMT = 672, XY17, TD4.
NONFORMATTEDMKES = MKI1(10), MK2(20).

1096567 3-103

3-104

FORMATSIN Statement

Syntax:

<input formats statement> ::=
FORMATSIN: <input formats list>

<input formats list> ::=
<input format association> /
<input formats list> <input format association>

<input format association> ::= <format-id> = <mke list>.
<format-id> ::= <identifier>
<mke list> ::=

<mke specification> / <mke list>, <mke specification>

<mke specification> ::= <mke> <item count>
<item count> ::= (<integer>) / <empty>
Semantics:

The <input formats statement> specifies which format to apply to an input message from a
station in this device class when it contains one of the listed message keys.

The MCS determines if a message is to be formatted by searching a table. The table coordinates
are message key and device class. This statement, therefore, is used to determine the message
key coordinates for each format which applies to this device class.

Also associated with a message key and a device class may be an <item count>. If specified,
this number is passed to the TP through the control area of the TP’s Common row. The layout
of COMMON, indicating the location of the item count in the message passed to a TP, is pre-
sented in appendix A. The <item count> has no meaning to the MCS, and its utilization is
user defined.

FORMATSOUT Statement
Syntax:

<output formats statement> ::=
FORMATSOUT: <output formats list>

<output formats list> ::=
<output format association> /
<output formats list> <output format association>

<output format association> ::= <format-id> = <msg-id list>.

<msg-id list> ::= < message-id> / <msg-id list >, <message-id >
< message-id> ::= <identifier>
Semantics:

The <output formats statement> specifies information similar to the information specified in
the <input formats statement >, only with regard to output messages. The <message-id> is the
identifier placed in word 9 of the Common area by the User program with an output message
to be formatted (see Appendix A). Each <format-id> must be six characters or less. Note care-
fully the difference between message keys (which are used as routing criteria for input messages
and which help determine input formatting) and output message-ids (which are used for determin-
ing output formatting).

NONFORMATTEDMKES Statement

Syntax:

<nonformatted mkes statement> ::=
NONFORMATTEDMKES = <mke list>.

Semantics:

The <nonformatted mkes statement> specifies nonformatted message keys which have an
<item count> associated with them. This <item count> is passed on to the TP associated with
this MKE when it is entered through a station of this device class. This statement is optional
and need only be used for message keys which do not undergo input formatting in this device
but which have an item count associated with them.

STALIST Statement

Syntax:

<station list statement> ::= STALIST = <station name list>.
Semantics:

The <station list statement> specifies all the stations to be considered as part of this device
class.

AREA STATION SECTION

Syntax:

<area section> ::= <area list> / <empty>

1096567 3-105

3-106

<area list> ::= <area define> / <area define> <area list>

<area define> ::=
AREA <area type> <area name>
(<area number>): <area description>

<area type> ::= BROADCAST / ROTARY/ <empty>

<area name> : = <identifier>
<area number> ::= <integer>
<area description> ::= <area statement list>

<area statement list> ::=
<area statement> /
<area statement list>, <area statement>

<area statement> ::= <area station list statement>
Semantics:

The AREA section allows for the logical grouping of stations. This section is not required, but
it could supply valuable information to the data communications system.

An <area define> must contain an <area name> and <area number>. The <area name>
and <area number> may not be a duplicate of any other <area define>. An <area number >
may range from 1 to 89.

If <area type> is BROADCAST, a message addressed to <area number> is delivered to all
stations defined within that area. If <area type> is ROTARY, a message addressed to <area
number > is delivered to the station defined in the area which has the smallest number of mes-
sages queued for it at that time. If <area type> is empty, BROADCAST is assumed.

AREA STALIST Statement

Syntax:

<area station list statement> ::=
STALIST = <area station name list>.

<area station name list> ::=
<area station list> / <all station designator>

<all station designator> ::= = <slash> = / ALL

1096567

<area station list> ::=
<area station name> /
<area station list>, <area station list>

<area station name> ::=
<station name> / NOT <station name> /
<group station name> / <area name>

<group station name> ::=
<partial station name> <slash> =

<partial station name> ::= <generalized identifier >
Semantics:

The required <area station list statement> specifies the stations or subareas that are to be con-
sidered in the area. The NOT <station name> <area station name> is used to exclude stations
and should follow an <all station designator> or <group station name>.

If an <area name> is used in the STALIST, this area is treated as a subarea and must be de-
clared in a previous <area define>. Messages sent to the main area are also sent to stations
that were specified in the subarea according to the type of the subarea. If a station has been
specified in both the main area and a subarea or in two subareas to a main area, there is the

possibility of a message being sent twice to that station. GEMCOS/UTILITY will warn of this
possibility but will not mark it an error.

Example:

AREA ALLVEHICLES(1):

STALIST = VEHO, VEH/NORTH,VEH/=.
AREA ROTARY TOILAB2 (2):

STALIST = ABCDEF, LOPIU, ABCI123.
AREA TOALLABS (3):

STALIST = STAI, STA2, TOILAB2,

OUTPUTROUTING SECTION

Syntax:

<output routing section> ::=
OUTPUTROUTING: <routing list> /
<empty>

<routing list> ::=
<routing description> /
<routing description> <routing list>

3-107

3-108

<routing description> ::=
<msgid routing statement >
<station list statement >

<msgid routing statement> ::=
MSGIDROUTING <msgid name> = <area name>.

< station list statement> ::= STALIST = <station name list>.

Semantics:

The <output routing section> must follow the STATION, AREA, and DEVICE sections. The
<msgid name>, <area name>, and <station name>s must be previously specified in the TCL
syntax.

The <output routing section> allows a message being sent to the originating station to be
rerouted to an area of stations based on a message-ID. The MCS detects that the message-ID
being sent to the originating station uses output routing and reroutes the message to the appropri-
ate area.

Example:
OUTPUTROUTING:
MSGIDROUTING MSGID1 = AREAI.
STALIST = STAI1,STA2.
MSGIDROUTING MSGID2 = AREA2.

STALIST = STA2.

In the above example, if a TP sends a message to STA2 with MSGID1 in COMMON [9], the
message is sent to all stations in AREAL. If the message is sent to STA2 with MSGID2 in COM-
MON [9], the message is sent to all stations in AREA2. If the message is sent to STA1 with
MSGID2 in COMMON [9], the message is sent only to STAI, since no output routing is specified
for this combination of station and output message-ID.

MESSAGE SECTION

Syntax:
<message section> ::= <message list> / <empty>

<message list> 1=
<message define> /
<message list> < message define>

<message define> ::=
MESSAGE < message name> = < message text>.

<message name> ::=
INVALIDMESSAGEKEY / SECURITYERROR/
UPDATESDISABLED / TRANSMISSIONERROR /
BUSYMESSAGE / LOGONOK / LOGOFFOK /
<mke>

<message text> 1=
< message string> / <message text>, <message string>

< message string> ::=
<EBCDIC code> <string> /
< hexadecimal code> <hex string>

Semantics:

The <message section specifies replacement messages for standard system messages and/or one
message that is accessible to all stations by a message key.

<Message name> INVALIDMESSAGEKEY corresponds to the message returned to a station
when an input message does not contain a valid message key.

<Message name> SECURITYERROR corresponds to the message returned to a station when
an input message contains a valid message key, but the user has violated access control restric-
tions.

<Message name> TRANSMISSIONERROR corresponds to the message returned to a station
when an input message was not received properly.

<Message name> UPDATESDISABLED corresponds to the message returned when an input
message for a MODIFY = TRUE program is entered while UPDATES have been disabled by
a Network Control command.

<Message name> BUSYMESSAGE corresponds to the message returned to a <transaction
mode > station when an input is attempted before a reply is received to the previous input.

< Message name>s LOGONOK and LOGOFFOK correspond to the messages sent to a station
following successful logon or logoff.

<Message name> <mke> specifies a "canned” message that is recallable by <mke> from a
station.

Example:

MESSAGE INVALIDMESSAGEKEY = "INVALID MESSAGE KEY”.

MESSAGE SECURITYERROR = "INVALID MESSAGE KEY”.

MESSAGE TRANSMISSIONERROR = "TRANSMISSION ERROR PLEASE RE-SEND”".

MESSAGE 77 = "TELTYPE TEST MESSAGE”, 4"0D25",
"ABCDEFGHIJKLMNOPQRSTUVWXYZ - 123456789".

1096567 3-109

FILE GENERATION

GEMCOS/UTILITY uses and/or generates certain files to accomplish its tasks. These files may
be label-equated to suit user needs. The following is a partial list of the internal names, external
names, and file descriptions of the files needed to initiate a system. A list of all files'is provided
in appendix B.

Internal External File
Name Name Description
CARD CARD Card reader, 80-character/ record source
images.
LINE LINE Line printer, 120-character / record
source and <list> output.
TAPE DATACOM/ Disk, 14-word records, blocked
DEFINITION/ 30 library source images.
DECK
NEWTAPE DATACOM Disk, 14-word records,
DEFINITION/ blocked 30 <new> library
NEWDECK source images.
CQuUS DATACOM/ Disk, 30-word records,
QUEUE/ unblocked Queue Control
CONTROL file.
IQUS DATACOM/ Disk, unblocked Input Queue
QUEUE/INPUT file. The default record size is 30 words.
OoQUsS DATACOM/ Disk, unblocked Output Queue
QUEUE/OUTPUT file. The default record size is 60 words.
FMTFILE DATACOM/ Disk, 30-word records,
QUEUE/FORMATS unblocked Format file.
IQUSDUP DATACOM/ Optional Duplicate Input
QUEUE/ Queue file. Attributes
DUPLICATE/ are same as IQUS.
INPUT
OQUSDUP DATACOM/ Optional Duplicate Output
QUEUE/ Queue file. Attributes
DUPLICATE/ are same as OQUS.
OUTPUT
CQUSDUP DATACOM/ Optional Duplicate Control
QUEUE/ file. Attributes are same
DUPLICATE/ as CQUS.

CONTROL

1096567

The following are the control cards necessary to generate a set of tables describing the data com-
munications environment. All generated files are label-equated. The $ card options and patching
capabilities available in the Utility program are similar to the ones used in Burroughs standard

compilers and are defined in the syntax description which follows. Sequence numbers should ap-
pear in columns 73-80.

?RUN GEMCOS/UTILITY
7FILE CQUS(TITLE = MYFILE/CQUS)
?FILE IQUS(TITLE = MYFILE/IQUS)
?FILE OQUS(TITLE = MYFILE/OQUYS)
?FILE FMTFILE(TITLE = MYFILE/FMT)
"DATA CARD
$SET LIST SINGLE

(TCL DEFINITION DECK)
?7END

The result of a TCL compilation is the generation of the files needed to drive the MCS. These

are the Input Queue file, the Output Queue file, and the Control file. A Format file is generated
if formats are specified.

Depending on user specifications, a hard-copy listing of the TCL definition deck plus a listing
of the various tables and directories generate by the TCL compiler may be output.

Option Control Cards
Syntax:

<option control card> ::=
$ <option list> <option group list>

<option group list> ::=
<option group> / <option group list> <option group>/

<empty>
<option group> ::= <option action> <option list>
<option action> ::= SET / RESET / POP / <empty>/

<option list> ::=
<option> / <option list> <option> /
<empty>

<option> ::=
LIST / NEW / FORMATS /SEQ <sequence base> < sequence

increment> / MERGE / SINGLE / SEQERR /
SYNTAX / PAGE / VOID /

VOIDT / CHECK / PATCH <patch specification>

3-111

3-112

<patch specification> ::=
NEWFORMATS / <generalized identifier >

<sequence base> ::= <integer> / <empty>
<sequence increment> ::= + <integer> / <empty>
Semantics:

The function of the <option control card>s in the MCS definition deck is to change the current
state of various compilation options. Associated with each option is a 48-bit stack in which the
history of the state of that option is stored. The bit at the top of the stack represents the current
state of the option. As with any other push-down stack mechanism, stored information is re-
trieved on a last-in, first-out basis. An option whose default value is RESET is initially assigned
a stack filled with zeros, whereas an option whose default value is SET is initially assigned a
stack with a 1 on top and zeroes elsewhere. SET causes the option stacks corresponding to the
options following it to be pushed down one bit and a 1 to be put on top of these stacks. RESET
causes the option stacks corresponding to the options following it to be pushed down one bit
and a 0 to be put on top of these stacks. POP simply causes the option stacks corresponding
to the options following it to be pushed up one bit.

Control cards must have the $ symbol appearing in either column 1 or in column 2. The options
to be manipulated are specified following the dollar sign ($), with one or more spaces following
each option. No option may continue past column 72. $ Control cards may be interspersed at
any point within the source language inputs. $ Control cards do not appear in a NEW source
file unless the $ symbol is in column 2.

An <option list> with no <option action> causes all options which appear on the list to be
SET, and all options not on the list to be RESET. Exceptions to this are the $ PAGE option,
which only causes the page option to be set, and the $§ PATCH option which causes the inclusion
of a patch file.

LIST is set prior to system definition, and all other options are RESET.
TCL-Directing Options
CHECK. CHECK causes the source input to be sequence-checked with sequence errors listed.

FORMATS. FORMATS may be set before the start of the first function or format and POPped
after the last format to specify to the utility where the functions and formats start and end while
doing a NONFORMATS compile. See the description of the NOFORMATS < control task> for
more information.

LIST. LIST causes a line printer output listing to be generated. If LIST is RESET, only syntax
error messages and the offending cards are listed.

MERGE. MERGE causes primary input on CARD to be merged with secondary input on TAPE.
If matching sequence numbers occur, the primary input overrides. If MERGE is RESET, secon-
dary input is totally ignored.

NEW. NEW causes a new source file to be created on a serial disk file known as NEWTAPE.
This file is coded in EBCDIC and is structured in 14-word records and 420-word blocks. Thus,
it may later be used as input through the file TAPE.

PAGE. The appearance of the word PAGE causes the output listing to be skipped to the top
of a new page.

PATCH. A $ PATCH card in a compile of the main TCL source file initiates a presence check
on the file title specified. If the file is present, it is included, and VOID is set until another $
PATCH or $§ POP PATCH card is encountered. All files in the New Format Directory file,
TCL/NEW/FORMATS, are included in the compile if the <patch specification> is NEWFOR-
MATS.

Example:

FORMAT FOUT [UPDATE]
(Page[l] : A10, T (FUNCI, A6, 2),X1,A6,
PAGE[2] : A6, A6, A6,

PAGE[3] : A6, A6, A6,).
$ PATCH FORMAT!

PATCH FORMAT2

.
.
$
.
.
.
$ POP PATCH

SEQ. When SEQ is SET, the line printer output listing and the new secondary source file con-
tains new sequence numbers as defined by the <sequence base> and <sequence increment>.
As each image is output, it is assigned a sequence number equal to the value of the <sequence
base>. The <sequence base> is then increased by the <sequence increment>. If the <se-
quence base> and <sequence increment> are unspecified, a base of 0 and an increment of 100
are assumed.

SEQERR. SEQERR causes sequence errors to be flagged as errors if CHECK is set.

1096567 3-113

3-114

SEQUENCE BASE AND INCREMENT. Sequence Base contains the sequence number assigned
to the source image that is output if SEQ is SET. As each image is output, the sequence base
is increased by the sequence increment.

SINGLE. SINGLE causes the listing to be single-spaced. When SINGLE is RESET, the listing
is double-spaced.

SYNTAX. SYNTAX is used to override the <control section> specification. Thus, a generate
can be done, but the files are not written to disk.

VOID. If VOID is SET, all input from TAPE and CARD is ignored until VOID is RESET or
popped into RESET state.

VOIDT. If VOIDT is SET, all input from TAPE is ignored until VOIDT is RESET or popped
into RESET state.

1096567

SECTION 4
APPLICATION PROGRAMS

There are five classifications of application programs which can be defined in the Transaction
Control Language (TCL). A program’s classification defines the interface which it uses with
GEMCOS and generally the types of tasks it performs. In addition to these five program classifi-
cations, there are two types of remote file interfaces; programs using these interfaces need not
be declared in the TCL. The user may also have an optional procedure to alter transaction rout-
ing. A conversational capability is also provided.

TRANSACTION PROCESSORS

The five program classifications include three types of Transaction Processors (TPs) as indicated
by a <program classification> of USER, PROCESS, or PORT.

User Program Interface

A User program may be written in COBOL68 or ALGOL and must be compiled as a procedure
with five parameters. These parameters are passed to the User program when the MCS initiates
it. The first four parameters are events; the fifth is a computational array row. The parameters
are:

1. MASTEREVENT -~ caused by the User program after it has placed an output message
into the Common area for transmission to the network.

2. SERVICEEVENT - not a requirement of the interface. It is provided as a "hook” in
the event the user wishes to employ a Service program to perform certain editing type
functions not provided by the MCS, or to perform other functions, such as installation-
written data base management, transparent to the User program. The event is caused by
the User program when it requires the message in the Common area to be serviced.

3. EDITOREVENT - not a requirement of the interface. It is provided in case the user
employs an Editor program. Editor programs are similar to Service programs, except that
they receive input directly from the Message Control System (MCS) and, in turn, pass
the input to the User programs. The event is caused by the User program when it passes
control of a message back to the Editor program.

4. USEREVENT - caused by the MCS or an Editor after an input message is placed into
the Common area to inform the User program that a message is to be processed. It is
also caused by an Editor program or Service program to return control of the Common
area to the User program after the Editor or Service program has been given control ex-
plicitly by the User Program.

5. COMMONAREA - a global MCS computational array row. The MCS associates one
row of the array for each active User program. This row is used to pass control informa-
tion and message text back and forth between the MCS and the associated User program
and between the User program and its Editor and Service programs.

In addition, the MCS sets a User program’s Task-value to 4 when it wants the program to go
to End-of-Job. The User program must check its Task value each time the MCS wakes it up.
If its Task-value is 4, a User program should not reference its COMMONAREA but proceed
immediately through its EOJ logic.

Figures 4-1 and 4-2 show the basic declarations for COBOL and ALGOL User programs.

The COMMONAREA has a length as defined by the <common size statement> in the TCL
program description. The first 23 words are defined by the MCS and are used: 1) by the MCS
to pass information concerning the current input message and 2) by the User program to pass
information concerning the current output message. The layout of the control portion of the
COMMONAREA is described in appendix A.

] DATA DIVISION

77 MASTOREVENT USAGE IS EVENT RECEIVED 3Y
REFERENCE.

77 SERVICEEVENT USAGE IS EVENT RECEIVED BY
REFERENCE.

77 EDITOREVENT USAGE IS EVENT RECEIVED BY
REFERENCE.

77 USEREVENT USAGE IS EVENT RECEIVED BY
REFERENCE.

01 COUMMONAREA USAGE IS COMPUTATIONAL RECEIVED
BY REFERENCE.
92 COMMON PICTURE 9(B8) USAGE IS COMPUTATIONAL
OCCURS 1000 T]1MES.

PROCEDURE DIVISION
USI'NG MASTEREVENT
SERVICEEVENT
EDITOREVENT
USEREVENT
COMMONAREA.

<program>

STOP RUN.

Figure 4-1. COBOL User Program Basic Declarations

PROCEDURE USER (MASTEREVENT,

SERVICEEVENT,»

EDITOREVENT, !
| USEREVENT,
: COMMONAREA)

EVENT MASTEREVENT,
SERVICEEVENT,
EDITOREVENT,
USEREVENTS

ARRAY" COMMGNAREALD 17

BEGIN
<progr am>

END.

Figure 4-2. ALGOL User Program Basic Declarations

The control information is filled by the MCS on input, and certain parts of the control informa-
tion must be changed by a User program on output. Although there are many ways to control
the output message, for most transactions the user needs to insert values only into WORDI[1],
WORDI[7], and WORDI0]. Following is an outline of all the words which can be altered by the
User program to tell the MCS what to do with the output message. A more detailed discussion
of the various fields is contained in appendix A.

WORDI0]:

Access to the COMMONAREA is controlled by the various events described above and by infor-
mation contained in Word[0] of the COMMONAREA itself. Word[0] is used to indicate who
is or who should be in control of the COMMONAREA. The User program’s control-bit value
is 0. The Editor and Service programs’ control-bit values are specified in the TCL. The MCS
has a control-bit value of 1.

The last thing a User program should do before causing the Master-event is to set WORD|0]
to 1. This gives the MCS immediate control of the Common row.

WORDI[1]:
The contents of this word dictate to the MCS what to do with the current output message.
WORD[4]:

This word controls the destination and, to some degree, the form of the current output message.
On input, WORDI4] is set up to return all responses to the originator. Any deviation from this
must be caused by the User program.

1096567

4-3

4-4

WORDI6]:

One field of this word can be used to override the UPDATE characteristics of a format and allow
it to be used as a DISPLAY-only format.

WORDI[7]:

Various fields of this word contain the character length of the message text and the character
offset (if any) from WORD[23]. The word also allows the output message to be sent without
an audit.

WORDI8]:

This word contains the station bits of the originator of the message as defined in the TCL. The
contents of this word may be changed by an Access Control program during a valid log-on or
log-off attempt.

WORDI[9]:

This word contains the output message-ID which indicates the format to be applied to the output
message. The output message-ID is a maximum of six characters and must be left-justified with
trailing spaces. If the contents of this word do not comprise a valid output message-ID, no out-
put formatting is performed.

WORDSJ11], [12], and [13]:

Normally this word contains the name of the station that originated the message. If the user
wishes to route a message based on the name of the destination station, the station name is
placed here. Using station-numbering conventions for output routing is more efficient than utiliz-
ing station names.

WORDI16]:

This word contains the WAITFORAUDIT bit which the User program may reset in order to re-
lease messages to a station prematurely. (Refer to CONVENTIONS FOR A WAITFORAUDIT
= TRUE SPECIFICATION in Section 5.)

WORDI[17]:

The User program mast store the Data Base Sequence Number that it acquires in this word. (Re-
fer to RESTART AREA in Section 5.)

WORD([18]:

This word contains the transaction-state bit which must be turned on whenever a User program
enters transaction state. (Refer to table 5-1 and item f under CONVENTIONS FOR A RECOV-
ERY = TRUE SPECIFICATION in Section 5.)

1096567

No other words of the COMMONAREA should be altered by a User program. A User program
waiting for an input message should sleep on its User-event. When this event is caused by the
MCS, the User program should wake up, reset its USEREVENT, check its TASKVALUE, and
then look at the COMMONAREA to find out what to do. While processing the input message,
the User program may temporarily pass control of its COMMONAREA to the MCS in order
to send secondary messages (WORD[1] of the COMMONAREA would have the value 2) to sta-
tions or to ask for some service of the MCS. If this is done, the User program must then sleep
on its USER-EVENT until the MCS causes the event to give the program control of the COM-
MONAREA again. In the last pass of control to the MCS for an input message, WORD[1] of
the COMMONAREA would have the value 3; this informs the MCS that the User program is
finished with the current message and is waiting for the next one. The program should then go
back to sleep waiting on its USEREVENT for the next input message.

Process Program Interface

A Process program interface has been established for the more sophisticated user. This interface
is more efficient than the User program interface and features additional capabilities, but it pre-
cludes the use of Editor and Service programs.

Process programs obtain and send data just as it appears within the internal queues of the MCS.
A Process program must be written in DCALGOL (or DMALGOL if it accesses a DMS II data
base) and must be compiled ds a procedure with five parameters. These parameters are passed
to the Process program when the MCS initiates it. The first parameter is an array, the next two
parameters are events, and the last two are procedures. The parameters are:

1. CONTROLWORDS - an array that controls a Process program’s interface to SEND-
MESSAGE and GETMESSAGE. (This is described in detail in appendix C.)

2. MASTEREVENT - caused by the Process program to indicate that a message has been
prepared for transmission to the network.

3. PROCESSEVENT - caused by the MCS to indicate that a message for the Process pro-
gram has been received from the network.

4. GETMESSAGE - a procedure called upon by the Process program for service and to
obtain the message from the Input queue.

5. SENDMESSAGE - a procedure called upon by the Process program for service and to
place a message into the Output queue for transmission to the network.

4-5

4-6

In addition, the MCS sets a Process program’s Task-value to 4 when it wants the program to
go to End-of-job. The Process program must check its Task-value each time the MCS wakes it
up. Before terminating, the Process program must set its Task-value to 1 and cause the MAS-
TEREVENT. Figure 4-3 shows the basic declarations for a Process program.

PROC.DURE PROCESS (CCNTROLWOFRDS»
MASTEFZVINT,
PEICESSEVENT,
GETMCSSAGESs
SENDMESSAGE);
ARhAY CUNTRILAURDSLED S

IVENT MASTEZREVINT,
PRICZSSEZVENTS

PROCCOUKL GZTMISSAGE,
ScNDMZS3aGES

BEGIN i
<progran>

ENUe

Figure 4-3. Basic Declarations for a Process Program

The Process program sleeps on its PROCESSEVENT waiting for input. When the MCS realizes
that it has input for a Process program, it causes the PROCESSEVENT. The PROCESSEVENT
wakes up the Process program which can then obtain the input in a DCALGOL queue by passing
the queue as a parameter to GETMESSAGE. The Process program uses the DCALGOL RE-
MOVE function to move the message from its queue into a local storage area.

When the Process program has output to send, it uses the SENDMESSAGE procedure. When
the Process program has finished processing an input message and has sent the last output, it
should set its Task-value to 3 and cause the MASTEREVENT to tell the MCS that it is ready
for another input. The Process program then goes back to sleep waiting for the next input.

Process programs may send output via SENDMESSAGE after they have already indicated to
GEMCOS that they are finished processing the current transaction. The transaction must be a
secondary type, and the WAITFORAUDIT bit must be reset. The program should not set its
Task-value to 3 or cause the MASTEREVENT after using the SENDMESSAGE procedure.

1096567

GETMESSAGE Procedure

The GETMESSAGE procedure of the MCS is the vehicle used to obtain input messages for TPs.
This procedure is passed as a parameter to Process programs and, therefore, an explanation of
its functions is presented here. GETMESSAGE expects two parameters: an array of control infor-
mation and a DCALGOL queue.

The array of ~ontrol information must be filled by the program to tell GETMESSAGE exactly
what to do. During execution, GETMESSAGE fills this control array with pertinent data about
the task it has just performed.

GETMESSAGE places the desired input message in the DCALGOL queue and then returns con-
trol to the caller. The DCALGOL queue may have several pieces of data in it depending upon
the number of records required to hold the input transaction.

Each message in the DCALGOL queue is a piece of an entire message. Each piece contains a
header with information about the data. The actual text of the message follows the header and
contains message keys and valid data. A description of the header information in each piece of
the message appears in appendix B as the Input Queue file description layout.

The layout of the array of control information, which controls the action of GETMESSAGE,
is provided in appendix C.

SENDMESSAGE Procedure

The SENDMESSAGE procedure of the MCS is the vehicle used to send output messages to sta-
tions. This procedure is passed as a parameter to Process programs. SENDMESSAGE expects
two parameters: an arrav of control information and a pointer to the output text. The array of
control information (this should be the same array passed to GETMESSAGE) must be filled by
the program to tell SENDMESSAGE what to do. SENDMESSAGE moves the output text from
the pointer and writes it to the output audit file. The layout of the array of control information
which controls the actions of SENDMESSAGE is provided in appendix C.

Port Program Interface

A Port-type program interface enables Transaction Processors to interface to the Network using
the "Ports” feature of B 6000/B 7000 Systems. The presence of a Port-type interface program
in the TCL generation initially requires DCALGOL compilation of the GEMCOS MCS to include
Port interface code by setting the PORTS $ option.

4-7

4-8

Port program conventions are basically the same as normal user TP conventions in GEMCOS,
except for the following differences:

1.

Port programs are processed by the MCS with no parameters. The Port program should
contain a port file declaration of TPPORT. A sample COBOL74 Port file declaration is
in figure 4-4. The MCS will process each Port program with the task file cards attribute
set to the correct value for that program.

. Anytime a User program waits or its USEREVENT or WAITFORAUDITEVENT, the

Port Program waits on a read of its Port file.

. Whereas a User program is passed the Common row that contains the transaction mes-

sage, the Port program reads its Port file. The Port file should have a 01 level corre-
sponding to that in Figure 4-4,

. When a User program is ready to give control back to the MCS (for primary output,

secondary output, or other MCS requests), it sets up the Common row and causes the
MASTEREVENT. When a Port program wants the same functions performed, it sets up
the Port file area and writes to the Port. With both types of interface, the program is
returned control either as a result of the request, or when the next message is available.

. A recoverable Port TP must use WAITFORAUDIT. A WAITFORAUDIT User TP tests

COMMON]16].[0:1] to see if it must wait on the WAITFORAUDIT after sending its pri-
mary output but before exiting transaction state, A WAITFORAUDIT Port program per-
forms the same function by first writing the primary output to its port. It then checks
the low order digit at WORD [16] and, if set, reads a message from the Port. This mes-
sage indicates audit is complete and also contains an updated DBSN in WORD [17] to
be stored in the restart data set. It then exits transaction state and returns to the main
loop.

Port programs may not use a Service program.

Some of the fields in the Port file description are in different words and/or bits than the User
common description. To provide a guide as to the purpose of each field, a mapping is provided
below between the name given in the MSG-area description in figure 4-4 and the field description
in Appendix A.

SEE FIELD DESCRIPTION

MSG-AREA FIELD NAME: IN APPENDIX A FOR:

MSG-CONTROL
MSG-RECOVERY
MSG-RETRY
MSG-RERUN
MSG-PRODISABLED
MSG-PASSER
MSG-DISPLAY
MSG-ACTION
MSG-STA-NO
MSG-MODE
MSG-ASSIGN
MSG-ORIOBJORSTA
MSG-MSGTYPE
MSG-RETRTEHDR
MSG-OVRRTEHDR

COMMONI[0]
COMMONI6].[42:2]
COMMONI6].[45:3]
COMMONI6].[46:1]
COMMONI6].[47:1]
COMMONI1].[26:3]
COMMONI6].[40:1]
COMMONI[1].[23:24]
COMMONI[2].[23:24]
COMMONI[3].[47:1]
COMMONI[3].[44:1]
COMMONT[3].[43:1]
COMMONI[3].[42:3]
COMMONI[4].[43:1]
COMMONI[4].[42:1]

1096567

MSG-AREA FIELD NAME:

MSG-ORINUM
MSG-TITLE
MSG-DESTTYPE
MSG-CRLF
MSG-DEST
MSG-DATE
MSG-TIME
MSG-EDIBIT
MSG-PROG-NUM
MSG-FMTERR
MSG-LENGTHIN
(ALSO RESULT INDICATORS
REQUEST RESULTS
MSG-QBYPASS
MSG-OFFSET
MSG-LENGTHOUT
MSG-STABITS
MSG-MESSAGE-ID
MSG-RESTART-DATA
MSG-REL-IQU
MSG-STA-NAMEWORD
MSG-MODULE
MSG-FUNCTION
MSG-USER-ID
MSG-ITEM-COUNT
MSG-DUPAUDIT
MSG-WAITAUDIT
MSG-DBSN
MSG-TRANSTATE
MSG-MTCHAR
MSG-MTDEL
MSG-PRIORITY
MSG-SSN
MSG-CONV-SIZE
MSG-CONV-END
MSG-CONV-DEALLOC
MSG-CONV-CORESTORE
MSG-CONV-DISKSTORE
MSG-USERIDI1
MSG-USERID2

SEE FIELD DESCRIPTION
IN APPENDIX A FOR:

COMMONI[3].[17:18]
COMMONI4].[41:2]
COMMONI[4].[39:8]
COMMONI4].[31:8]
COMMONI4].[19:20]
COMMONI[5].[47:24]
COMMONI5].[23:24]
COMMONI6].[35:8]
COMMONI6).[7:8]
COMMONIJ[7].[47:1]
COMMONI[7].[46:47]
COMMON[7]
COMMON[7])
COMMONI[7].[46:1]
COMMON(7].[39:20]
COMMONI(7].[19:20]
COMMONIS8]
COMMONI[9]
COMMON(10]
COMMONIJ10].[7:8]
COMMON]11] THRU COMMON[13]
COMMONT[14]
COMMONI[15]
COMMONI16].[47:8]
COMMONI16].[39:16]
COMMONI[16].[1:1]
COMMON(16].[0:1]
COMMONI[17]
COMMON(18].[0:1]
COMMON(19].[47:8]
COMMON(19].[39:1]
COMMONI6].[39:1]
COMMONT[3].[39:22]
COMMONI[20].[47:12]
COMMONI4].[23:1]
COMMONI4].[22:1]
COMMONI4].[21:1]
COMMONI4].[20:1]
COMMON|[21]
COMMONJ[22]

49

FD TPPORT. "}
« THIS TP I'S DECLARED IW THE TCL wITH COMMONSIZE = 343 |}
vl TPCOMMON=AREA PIC X(343).
01 COMMON=AREA COMP.
¢G3 COMMON=CONTROL.

05 WOROSOTHRU22 JCCURS 23 TIMES PIC 9(12).
03 COMMON=TEXT.
w5 COMMONCHAR CCCURS 32y TIMES PIC 939(12).]

IR AR SRR R R R REE S REEZE SRS ERRREE R Rl R RS2 R R 2R R RRE R R SN
. QUTPUT 4ESSAGE AREA *
I E 2 EREEERZ AR R A SRR R R E R AREER R REE R RS R R R XS E RS RREE R LR]
01 MSG=AREA.
03 MSG=CONTROL-AFEA.

¥5 MSG=CINTROL PIC 9C12) COMP. |}

05 MSG=WaKD PIC 9(12) COMP.

05 MSG=ACTIONARD REDEFINES MSG-WORDI1.

4-10

47 MSG-RECOVERY PIC 9 COMP.

J7 M3G=RETRY PIC 9 COMP.

d7 MSG-REZRUN PIC 9 COMP.

J7 MSG=PRUDISABLED PIC 9 COMP.

J7 MSG-PASSER PIC % COMP.

07 MSG-DISPLAY PIC 9 COMP.

J7 MSL=ACTION PIC 9(6) COMP.
05 M5G-WORDZ2 PIC 9(i2) COMP.
05 MSG-ORIWURD FEDEZFINEZS MSG-=WORDZ2.

s7 FILLER PIC 9C4) COMP.

J7 MSG=STA=NI PIC 9(8) COMP.
05 M5G-WORD3 PIC 9(12) COMP.

U3 MSG-VARIABLEWRD REZDEFINES MSG=WORD3.

7 MSG-MOJE PIC 9 COMP.

97 MSG=ASSIGN PIC 9 COMP.

37 M3G-OFIG0BJOFRSTA PIC 9 COMP.

J7 MS5G-MSGTYPE PIC 9 COMP.

)7 MSG=RETRTZHOR PIC 9 COMP.

97 M3G=0OVRRTE HDR PIC 9 COMP.

J7 MSG=ORINUM PIC 9(6) COMP.
05 MSG=WQORD4 PIC 9(C12) COMP.

95 MSG=OCSSTWRD REDEFINES MSG=WORD4.

J7 MSG-TITLE PIC 9 COMP.

07 MSG=DESTTYPE PIC 99 COUMP.

é7 MSG=CRLF PIC 9 COMP.

97 FILLER PIC 99 COMP.

J7 MSG=DEST PIC J(®8) COMP.,
¥5> MSG=WORDS PIC 9C12) COMP,

05
05

MSG=DATETIMZIWRD

REDEFINES MSG=WIRDS.

9(6) COMP.

9(6) COMP.
9C(12) COMP.

9(b6) CUMP.
9(3) COMP,

07 MSu=DATE PIC
s7 MSG-TIME PIC
MSG=WORDG PIC
MSG=FROGWORD REDERINES MSG=WORDb6.
37 FILLER PIC
J7 MSG=EDIBIT PIC
d7 MSG=PRUG-NUM PIC

9(3) COMP.

Figure 4-4. MSG-Area Description (Sheet 1 of 2)

03

03

05 MSG-WORD? PIC 9C12) COMP.
5 MSG-LENGTHINWIRD REDEFINES MSG=WORD7.

)7 MSG-FMTERR PIC 9 COMP.
J7 MSG=LENGTHIN PIC 9C11) COMF.
45> M3G-LENGTHOUTAORD REDEFINES MSG=WORD7 .
J7 MSG-QBYPASS PIC 9 COMP.
07 MSG-O0FFSET PIC 9(b6) COMP.
47 MSG=LENGTADOUT PIC 9(5) COMP.
05 MSG-=STABITS PIC X(®).
05 MSG-MESSAGE-ID PIC X(®).
¥d> MSG-RCSTART=DATA PIC X(®6).
05 MSG-RISTARTNUM REDEFINES MSG=RESTART=DATA.
07 FILLER PIC 9(10) COMP.
)7 MSG=REL=IAUV PIC 9C2) COMP.
05 MSG-WOKI11THRUL3 PIC X(18).
05 MSG-STA-NAMEWIKL FEDEFINZS
MSG=WOKRDILTHRUL3.
97 MSG-STA-NAME=CHAR PIC X
OCCURS 18 TIMcZS.
9> M3G=MODULE PIC 9C12) COMP.
05 MSG~FUNCTIGN PIC 9Ci2) COMP.
05 MSG-wW3drD16 PIC X(B).
v> MSG-AUDITWRD REDEFINLZS MSG-=WORD1l6.
J7 MSG=USER=ID PIC X.
J7 MSG=ITIM=COUNT PIC 9(5) COMP.
J7 FILLER PIC 9(3) COMP.
d7 MSG-DUPAUDIT PIC 9 COMP.
J7 MSG=WAITAUUIT PIC 9 CUOMP.
05 MSG=0BSN PIC X(®).
05 MSG-TRANSFATEL PIC 9C12) COMF.
W5 MSG=WORD19 PIC 9C12) COMF.
05 M3G=SSNWORD REDEFINES MSG=WORD19.
J7 MSG=MTCHAR PIC X
s7 M3IG=MTDEL PIC 9 COMP.
J7 MSG=PRIGRITY PIC 9 COMP.
J?7 MSG=SSN PIC X(4).
45 MSG=WORDZZ , P1C 9(12) COMP.
05 M5G~CONVWORD REDEFINES MSG=WORD20.
J7 MSG=CIAWV=S5IZCZ PIC 9(C4) CUMP.
vf MSue=CONV=END PiC 9% COMP.
J7 MSG-CONV-DEALLOC PIC 9 COMP.

07 MSG=CONV-CURESTORE PIC 9 COMP.
J7 MSG~CONV=D)ISKSTORE PIC 9 COMP.

07 FILLER PIC 9(4) COMP.
@5 MSG=USERIDIL PIC X(b).
05 MSG-UScRIDZ PIC X(b).
MSG=TEXT~ARCZA caump
95 MOG=TEXT JCCURS 326 TIMES PIC 9(C12).

MSG=TZXTCHAR RZDEFINES MSG-TEXT=AREA.
05 MSG-TZXT=CHAF PIC X
GCCURS 1927 TIMES
INDEXED BY MSG=TEXT=INDEXL
MSG=TEXT=INDEX.

1096567

Figure 4-4. MSG-Area Description (Sheet 2 Of 2)

4-11

4-12

Editor Program Interface

The fourth program classification is invoked in the TCL by a <program classification> of
Editor. The Editor program interface was established for users who wish to manipulate the input
message prior to transmission of the message to a User program. An Editor program must be
written in DCALGOL (or DMALGOL if it accesses a DMS II data base) as a procedure with
eight parameters.

These parameters are passed to the Editor when the MCS initiates it. The first three parameters
are events; the fourth is an event array; the fifth is a 2-dimensional computational array; the
sixth, a queue array; the seventh, a procedure; and the eighth, a single-dimension array. The pa-
rameters are:

1. MASTEREVENT - caused by the Editor program if it places an output message into
the COMMONAREA for transmission back to the network.

2. EDITOREVENT - caused by the MCS after an input message is placed into an Editor
queue to inform the Editor program that a message is to be processed.

3. USERTOMEEVENT - an event passed to User programs which they cause in order to
pass control back to the Editor. (A port program passes control back to the Editor by
placing the Editor’s control-bit value in COMMONI[0] and writing to its port. The MCS
then gives control of the COMMON row to the Editor by causing the EDITOREVENT).

4. USEREVENTARRAY - an array of the USEREVENTS of all User programs in the
TCL. The appropriate event within the array is caused by the Editor when it has finished
manipulating the data in the COMMONAREA and wishes to pass control to the User
program. The index into the array is contained in WORDI6].[19:8] of the COM-
MONAREA for User TP’s. This array is not used for port TP’s. The EDITOR passes
control to the port TP by setting WORD[1] of COMMON to its regular action value plus
20 (i.e., 25 instead of 5, 36 instead of 16, 39 instead of 19), WORDI[0] to 1, and causing
the MASTEREVENT. This causes the MCS to write the message to the program’s port
file with the value 5, 16 or 19 in WORD[1] of COMMON.

5. COMMONAREAS - a 2-dimensional array of the COMMONAREAS of all User pro-
grams defined in the TCL. An Editor must scan all rows of the array looking for rows
which belong to associated User programs and which contain the Editor’s control-bit val-
ue in WORDIO0].

6. DATAQUEUES — an array of queues, one queue for each User program, through which
the Editor receives input messages. The index into this array is the array row number of
the current row of the COMMONAREAS array on which the Editor is currently working.

7. FORMATTER - the input formatting module of the MCS. This is passed to all Editors
so that they can format the input message prior to passing it to the User program.

8. EDTDSC - a single-dimension array which duplicates the data in all COMMON-
WORDI[0]’s and contains Port and size information. The Editor scans this array for its
control-bit value prior to its scan of COMMON.

Additional information is passed to an Editor in its Task-value. Field [36:8] contains the Editor’s
control-bit value as specified in the TCL. This value is the control-bit value the Editor must look
for in the EDTDSC and then in MSG-CONTROL (WORDI[0]) of the COMMONAREA. The
MCS sets the COMMONAREASs the Editor must scan. The MCS sets the Editor’s Task-value
to 4 when it wants the Editor to go to End-of-Job. The Editor must check its Task-value each
time it resets its EDITOREVENT.

Figure 4-5 shows the basic declaration for an Editor program.

An Editor program can handle more than one program. If a program elects to have an Editor
program, the MCS gives all input messages for the program directly to the Editor program. The
Editor program must then pass the input on to the program. Since the Editor program can work
on several programs, it must have access to all common rows and User-events and must have
an EDITOREVENT which wakes it up. The Editor program also has an array of DCALGOL
queues in which to receive inputs from the MCS and the MASTEREVENT to wake up Process-
everything.

PROCEDURE EDITOR (MASTEREVENT,
EDITORKEVENT»
USERTOMEEVENT»
USEREVENTARRAY,
COMMONAREAS,
DATAQUEUES,
FORMATTER.,
cDTOSC);

EVENT MASTEREVENT,
EDITOREVENT,
USERTOMEZVENT
EVENT ARKAY USZREVENTARRAY (015
ARKAY COMMONAREAS (9,015]
QUEUE ARRAY DATAQUEUES (015
BOULEAN PROCEZDURE FORMATTERS
ARRAY £DTOSC (.15)

BEGIN
<program>
END.

Figure 4-5. Basic Declaration for an Editor Program

The Editor program receives input from the MCS in a DCALGOL queue, processes it and places
it in the program’s Common row. The processing which the Editor does on the input message
can involve using the MCS procedure FORMATTER which is passed to the Editor as a
parameter. Once the Editor is finished with an input message, it causes the correct User-event,
and the User program takes over. For a Port program, the Editor program passes the message
back to the MCS which then writes it to the correct Port file, and the Port program takes over.

1096567 4-13

4-14

Since a User program has the EDITOREVENT, it too can wake up its Editor at any time to
do additional work on a message. The Editor wakes up but does not know which User program
needs assistance. It finds this out by checking EDTDSC for a specific control-bit value. This con-
trol bit value is defined for an Editor in the TCL. It must be placed in WORD[0] by a User
program before causing the EDITOREVENT. Therefore, the Editor first checks EDTDSC for
its value and, if found, it checks the associated COMMONWORDI0] for its value. Once the
Editor finds the correct Common row, it performs its duty and causes the User-event (or in the
case of a Port program, sends it back to the MCS which writes it back to the Port program).
The Editor removes its control-bit value from WORDI[0] and replaces it with the user’s control-bit
value, which is 0. This interplay between program and Editor can continue until the message is
properly processed. When the message is ready to be sent to the MCS, WORD[0] must be set
to 1 (the MCS’s control-bit value), and the MASTEREVENT must be caused (or the Port file
written) to wake up Process-everything. This action may be performed by the Editor or the pro-
gram.

When an Editor wakes up and finds a row of the COMMONAREAS to be processed, it must
determine what to do with the row. By convention, the MCS places the value 7 into WORDI[1]
of the COMMONAREA row and into EDTDSCII].[45:1] (where I is the common row index) to
indicate that this is a new input message and that the Editor must get the message from the ap-
propriate queue. The user may devise passes of control conventions between the program and
Editor as long as they do not conflict with the MCS’s conventions.

A skeletal Editor program is supplied on the release tape to provide users with the standard in-
put-formatting capability. In its supplied form, it can process any input message by calling upon
FORMATTER. However, any other processing of messages, or any pass of control to the Editor
from a User program, must be added to the supplied Editor program.

Service Program Interface

The fifth program classification is invoked in the TCL by a <program classification> of Service.
The Service program interface was established to allow the user to perform certain editing type
functions not provided by the MCS. It can also perform functions such as data base manage-
ment, transparent to the User program. Port programs may not make use of a Service program.

Like an Editor, a Service program can handle many User programs. Unlike the Editor, however,
it never receives a message from the MCS; it does not have any DCALGOL queues or the proce-
dure FORMATTER passed to it. A Service program may be written in COBOL or ALGOL and
must be compiled as a procedure with four parameters. These parameters are passed to the Serv-
ice program when the MCS initiates it. The first two parameters are events, the third is an event
array, and the fourth is a 2-dimensional computational array. These parameters are:

1. MASTEREVENT - can be caused by the Service program if it places an output message
into the COMMONAREA for transmission back to the network.

2. SERVICEEVENT - caused by the User program when it desires a message in the COM-
MONAREA to be serviced by the Service program.

3. USEREVENTARRAY - an array of the USEREVENTS of all User Programs defined
in the TCL. The appropriate event within the array is caused by the Service program
when it has finished manipulating the data in the COMMONAREA and wishes to pass
control back to the User program. The index into the array is contained in
WORDI6].[19:8] of the COMMONAREA. (This index is base 0 and must be incremented
by 1 if the Service program is written in COBOL.)

4. COMMONAREAS — a 2-dimensional computational array of the COMMONAREAS of
all User programs defined in the TCL. A Service program must scan all rows of the array
looking for rows which contain the Service program’s control-bit in WORDI[0].

1096567

Additional information is passed to a Service program in its Task-value. Field [36:8] contains
the Service program’s control-bit value as specified in the TCL. This value is the control-bit value
that the Service program must look for in WORD[0] of each row of the COMMONAREAS ar-
ray. Field [7:8] contains the number of rows of COMMONAREAs (base 1) the Service program
must scan for its control-bit value. The MCS sets the Service program’s Task-value to 4 when
it wants the Service program to go to End-of-Job. The Service program must check its Task-
value each time it resets its SERVICEEVENT.

Figures 4-6 and 4-7 show the basic declarations for COBOL and ALGOL Service programs.

A Service program sleeps on its SERVICEEVENT until a User program causes its event. The
Service program wakes up, resets its event, and starts to scan all of the rows of COM-
MONAREAS searching for its control-bit value in WORDIJ0]. For each such row it finds, the
Service program services the message and, generally, passes control of the row back to the User
program by moving 0 to WORD[0] of the COMMONAREA and causing the appropriate event
within the USEREVENTARRAY. The Service program may also send messages to areas or sta-
tions or ask for other MCS services. The COMMONAREA layout in appendix A provides the
appropriate control fields.

A Service program is not supplied with the MCS. Therefore, all processing and passes of control
to the Service program must be written by the customer. The source code of a sample Service
program is included on the release tape.

NOTE
The Service program interface is not available for Port type programs.

4-15

4-16

DATA DIVISION

77 MASTEREVENT USAGE IS CVENT RECEIVED 8Y REFERENCE.
77 SERVICEEVENT USAGE IS EVENT KECEZIVED 8Y REFERENCE.

01 USEREVENTARRAY USAGE 1S EVENT
RECEIVED BY REFERENCE.
02 EVENTARRAY OCCURS 128 TIMES.

01 COMMUNAREAS USAGE 15 CUMPUTATIONAL

RECEIVED BY REFERENCE.
02 COMMONARRAY OQCCURS 128 TIMES.
93 COMMON PICTURE 9(8) OCCURS 10U TIMES.

PROCEDURE DIVISION.

USING MASTEREVENT
SERVICEEVENT
USEREZVENTARRAY
CUMMONAREAS.

gprograa>

STOP RUN.

Figure 4-6. Basic COBOL Declarations for a Service Program

PRUCEDURE SERVICE (MASTERZVENT,
SERVICEEVENT,
USEREZVENTARFAY,
COMMONAREAS)?

EVENT MASTEREVENT,
SERVICEEVENT#

EVENT ARKAY USEREVENTARRAY (01,

ARRAY COMMONAREAS Li1,4u 15

BEGIN

ENDe.

Figure 4-7. Basic ALGOL Declarations for a Service Program

OBJECT JOB INTERFACE

A remote file interface has been established within GEMCOS in the form of the Object job appli-
cation program. An Object job is an externally compiled program which can communicate with
a particular station as well as with any and all TPs defined in the TCL.

Object jobs communicate with the rest of the network by reading and writing into a file whose
KIND attribute has been declared to be REMOTE and which has been file-equated to a valid
station within the network. An Object job may be attached to multiple stations by declaring each
one as a separate remote file; however, each station in the network may be attached to only one
Object job at a time. Object jobs are not declared in the TCL. If Object jobs are to be used,
an Object I/0 key must be defined in the GLOBAL section (refer to section 3). This Object I/0
key is a l-character key which must precede each message between an Object job and the station
to which it is attached.

Messages transmitted from the station or sent out by the Object job without the Object I/0 Key
are routed to the appropriate TP based on the message key. Responses from the TP are routed
back to the originator (station or Object).

All messages sent by the Object job, either to its associated station or to a TP, must be termi-
nated by a 4”FF” in the last character. All responses from a TP back to an Object job are re-
ceived in pieces of 80 characters each, or up to the next Carriage Return character (4”OD") in
the message. Each piece of the response is obtained by reading the remote file. The last piece
is marked by 4"FF” in the last character. If the last piece is exactly 80 characters, the 4"FF”
will be in the eighty-first character.

BATCH JOB INTERFACE

Batch jobs are a specific subset of Object jobs which can route messages only to TPs. Batch
jobs must follow the conventions outlined below; in return, they are addressed by the GEMCOS
synchronized recovery mechanism.

A station named BATCHLSN must be declared in NDL. All Batch jobs must communicate with
the MCS by reading and writing a remote file containing only this station.

Prior to routing any messages to a TP, the batch job must perform a handshake with the MCS
by writing a record with the following format:

1. The first character of the handshake message must be a reserved message key, defined
as the Batch I/0 key in the TCL <global section> which identifies the message as a
Batch job handshake.

2. The next three characters of the handshake message should contain the system number
in decimal form. The system number is defined in the TCL and facilitates the MCS’s
routing of Batch-job-to-TP messages.

1096567 4-17

4-18

3. After writing the handshake message to the MCS, the Batch job should read its remote
file in order to receive the MCS’s response to the handshake. One of the following re-
sponses is then returned:

a. NO in the first two characters of the response to indicate the handshake was denied.
This occurs if the number of Batch jobs exceeds the maximum as specified in the GLO-
BAL section of the TCL.

b. Computational zero in the first word of the response to indicate that the Batch job
should execute normally without recovery.

¢. Computational nonzero in the first word of the response to indicate that the Batch job
should execute its recovery code (refer to section 5).

After a successful handshake, the Batch job may begin sending messages to TPs. The first four
characters of each transaction initiated by a Batch job comprise a numeric field containing a user-
supplied transaction counter. Typically, this counter might be a pointer into a serial file being
processed by the Batch job. This transaction counter is used in the recovery mechanism and is
further explained in secticn S.

As with Object jobs, all messages sent by the Batch job (including the handshake) must be termi-
nated by 4"FF", and all responses are received in a maximum of 80-character pieces. The last
piece is terminated by 4”FF”. If the last piece is exactly 80 characters, then 4"FF” will be in
the eighty-first character.

The actual message which is to be routed to a TP (i.e., the message key and associated text)
should appear immediately following the first four characters of the message. These first four
characters are stripped from the message before it is presented to the TP.

Before sending an input transaction to the MCS (i.e., writing to its remote file), a Batch job
must first receive a response (i.e., read of its remote file) to the previous input transaction sub-
mitted. This one-in, one-out convention is used to regulate the rate at which Batch jobs may sub-
mit input transactions to the MCS. This regulation becomes a function of the message volume
from the "live” network. It is these messages with which the Batch jobs transactions are compet-
ing. The goal here is to prevent a Batch job from flooding a TP Input queue with transactions
at the expense of response time to the "live” network. In addition, a one-in, one-out message
flow is necessary for complete recovery integrity.

Any number of Batch programs up to the maximum declared in the TCL may be running at
the same time. Every Batch program must be reading and writing the same remote file. This is
the file which contains the station BATCHLSN.

ALTERNATIVE TO THE BATCH INTERFACE

The batch interface feature of GEMCOS enables the user to process batch transactions concur-
rently with real-time transactions and still have the synchronized recovery capability. Since the
fast response of the real-time transaction is of prime concern to the user, the Batch interface
has been implemented in a manner to prevent it from inhibiting the real-time system. Some users
have a need, during periods of low real-time transaction activity, to give the batch processing
requirements equal priority. The alternative approach to batch processing allows the user to es-
tablish equal priority for the batch processing and maintain the synchronized recovery feature
requirements.

1096567

The batch processing program is written following the normal conventions for a synchronized
recovery transaction processor. The program is initiated by a station input transaction. The initi-
ating station should not be switched to another system while the batch processing is in progress.

The initiating station input transaction should cause the batch processing program to do the fol-
lowing:

1. Establish a beginning transaction sequence number for recovery purposes in its own local
storage area.

2. Locate the starting point in the batch input file.

3. Open the data base.

4. Get a GEMCOS DBSN.

5. Create and send a secondary message to the initiating station. This message will acknowl-
edge the start transaction and free the station for other work.

6. Create and send a primary message TP-TO-TP NO WAIT to itself using the DBSN ac-

quired. The text should contain the established transaction sequence number plus 1 and
the batch input file location.

The normal transaction processing flow for the program is:

Receive GEMCOS input transaction.

Increment internal transaction sequence number.

Locate batch record based on information in the input transactions.

Perform data base update following the normal synchronized recovery conventions.
Create and send a primary message TP-TO-TP NO WAIT to itself, using the DBSN ac-
quired. The text should contain the current transaction sequence number plus 1 and the
batch input file record location.

W AW -

The recovery initiation of a batch processing program can be determined by checking the status
of the recovery indicator in the Common area. When this type of initiation occurs, the program
should:

1. Store the input message transaction sequence number minus 1 in the program’s local
transaction sequence number.
2. Enter the normal transaction processing flow of the program.

The recovery transaction input message should be handled as follows:

1. If the input message transaction sequence number of the transaction is greater than the
program’s local transaction sequence number, then enter the normal transaction flow.

2. If the input transaction sequence number of the message is less than or equal to the inter-
nal transaction sequence number, the transaction should be ignored. This is done by send-
ing a primary message to the originating station with a length of zero and a DBSN of
Zero.

The Common retry indicator must be observed during this type of processing. The rejection of
an abort-causing batch transaction should follow the normal transaction flow, omitting step 4.

The batch processing program still processes real-time station input transactions during the TP-
to-TP mode. The real-time input can be used to stop the batch processing or alter its normal
flow (e.g. monitor transactions).

4-19

4-20

USER ROUTING PROCEDURE

When using the station user control statement or the message-key user control statement, the IN-
PUTUSERHOOK procedure is invoked. This procedure may be written by the user in DCAL-
GOL. It should be compiled at level 4 and the object code bound into the MCS. Figure 4-8 is
a sample of the procedure, to which the user may add the appropriate DCALGOL code in order
to generate the desired transaction codes.

The sample routing procedure scans the input message text and generates transaction code, which
is simply the original message key. It should insert this valid transaction code, followed by a peri-
od, into the array to which TRANCODE points. This transaction code is used by the MCS to

-route the message to the correct program. The maximum length of the transaction code is 23

characters.

If the user-written procedure is not bound into the MCS, and some form of user control is
specified in the TCL, the default INPUTUSERHOOK procedure is processed.

PROCEDUKE INPJTUSERHIOK (%

MSGTEXT, POINTEK TO THE START OF THE MESSAGE
TEXT

MSGLENGTH» CHARACTZK LENGTH OF THE MESSAGE TEXT

TRANCODES POINTER TO TRANSACTION CODE PASSED

BACK TO GEMCOS AND USED TO DETERMINE
MESSAGE ROUTING AND FORMATTING. THE

TRANSACTION CODE IS A MAXIMUM 23
CHARACTEZRS LONG AND

1S TERMINATED BY A PERIOD

THE INPUT QUEUE TABLE USED BY THE
MCS. THE VALUES IN THIS TABLE MAY
BE USED B8Y THE USER TO DETERMINE
MESSAGE ROUTING

INPUTQULZUE,

STACONV» THE ORIGINATING STATION'S
CINVCRSATION AREA
MKES); THE DICTIONARY OF MESSAGE KEYS FOR

L P FL P OSE P PE L PO PP PP PO g WP

THIS SYSTEM
VALUE MSGTEXT,%
TRANCODE»%
MSGLENGTH; %
POINTER MSGTEXT,%
TRANCODES X
INTEGER MSGLENGTHS %
ARRAY INPUTQUEUELO,01;%
ARRAY STACINVL) 15%
ARRAY MKESCO01;
BEGINZ
POINTER PTEXTS ¥
INTEGER LENGTH3Z
SCAN PTEXT:MSGTEXT FOR LENGTH:MSGLENGTHY
WHILD EQL ™ "5 %
IF PTEXT 3E£Q "1 THENX
REPLACE TRANCUODE 3Y PTEXT FOR
MINC23,MSGLENGTHIZX
WHILE GEQ "1%","." %
ELSE %
IF PTEXT LSS "A"™ THEN %
REPLACE TRANCODE BY PTEXT FOR 1,"." %
ELSEZ
REPLACE TRANCODE BY PTEXT FOR
MINC(23,LENGTH)X
WHILE GEQ "A","." ;%
ENDS %

1096567

Figure 4-8. Sample of User Routing Procedure

4-21

4-22

CONVERSATIONAL INTERFACE

The GEMCOS Conversational capability allows a station to enter into a dialogue with a program.
There are two TCL attributes related to this capability:

1. CONVERSATIONAL - This is a Boolean station attribute directing the station to par-
ticipate in a dialogue with a program. When it is set to TRUE, a Conversational row
is assigned to the station in anticipation of in-memory storage of a conversation. If con-
versations are never stored in memory, the row is never accessed. Deallocation of the row
is under control of the user TP. The size of the row depends on the size of the Conversa-
tional area of the particular program in conversation with the station.

2. CONVERSATIONSIZE — This is a program attribute specifying the size of the pro-
gram’s Conversational area in words. The Conversational area is part of the Common
area beginning in word 23 (the beginning of the text area for nonconversational programs)
and extending for <conversation size > words. The Conversation area is null on the first
message of the day and on the first message after the end of a conversation. Text immedi-
ately follows the Conversation area, and word 7 of the Common, the length word, does
not include conversational data.

Storage of the conversation is under control of the user TP on primary output to the station.
Bits in the Common row are examined on primary output to determine if the Conversation area
should be stored in memory and/or on the audit trail, or if the conversation has ended and the
Conversational storage area for the station should be deallocated. The following bits affect con-
versation storage and should be set on primary output.

1. MSG-CONV-END (COMMON]I4].[23:1]): Value 1 indicates End-of-Conversation. The
next input from the destination station produces nulls in the program’s Conversational
area.

2. MSG-CONV-DEALLOC (COMMONJ4].[22:1]): Value 1 tells the MCS to deallocate the
station’s storage area. This word is examined only if MSG-CONV-END (COMMON
[4].[23:1)) = 1.

3. MSG-CONV-CORESTORE (COMMONI4].[21:1]): Value 1 tells the MCS to store the
program’s Conversational area in the station’s in-memory Conversational storage area.

4. MSG-CONV-DISKSTOR (COMMONI4].[20:1]): Value 1 tells the MCS to store the pro-
gram’s Conversational area on the station’s audit trail.

When conversations are audited on the station’s audit trail and the program participates in the
GEMCOS synchronized recovery, the Conversational area for the program is also recovered and
reflects the conversation as it existed for any reprocessed inputs.

When conversations are audited on the station’s audit trail for checkpoint recovery programs,
the Conversational area reflects the conversation as it existed after the last input that had a
matching output in the audit trail.

SECTION 5
RECOVERY

B 5000/B 6000/B 7000 Series GEMCOS provides a broad range of recovery capabilities within
the Transaction Control Language (TCL). This allows the user the flexibility to analyze applica-
tion-oriented needs and then select the recovery options required.

Recovery is the re-establishment of normal processing. It is necessary when failure occurs, inter-
rupting normal processing of transactions until some corrective action is taken.

It is assumed that the user wants to minimize exposure to situations where file and/or data base
reloads are required following a failure. Under such conditions, the on-line user network normal-
ly remains in a nonproductive state while reprocessing takes place for all transactions that have
occurred since the time the data base was last dumped to some form of backup storage. The
time loss due to this nonproductive state is based directly upon several main factors:

1. Data base size.

2. Length of time since last data base dump.

3. Transaction volumes since last data base dump.
4. Transaction-throughput capacity.

Further, it is highly desirable to free user programmers from recovery concerns to the maximum
extent possible. Recovery solutions are extremely complex for an integrated, batch/on-line system
where a data base is being updated in a multiprogramming environment.

The goal of B 5000/B 6000/B 7000 Series GEMCOS is to make the recovery process transparent
to application programs. In return, the user is expected to follow several straightforward pro-
gramming conventions for normal processing. These conventions vary slightly, based upon the
level of recovery required.

Although the Message Controt System (MCS) was designed to be "ignorant” of any Data Man-
agement System, and contains no data management code embedded within it, the recovery mech-
anism fully accommodates DMS II (Burroughs Data Management System — Version 2). The re-
covery mechanism works with any Data Management System as long as the programming conven-
tions discussed in this chapter are followed.

NO RECOVERY

Among the recovery options available to the user is the specification that no recovery be applied
to a "failed” system. This option is not a default option of any of the other TCL recovery op-
tions. The "no recovery” option must be explicitly specified for a system by means of the fol-
lowing TCL syntax in the <system section>.

FLUSHRECOVERY = TRUE

All Input and Output queues are flushed at the beginning of the recovery mechanism for that
system. The result is that no unprocessed transactions are processed, and all undelivered output
is discarded.

1096567

5-1

In addition, all programs in a system where FLUSHRECOVERY = TRUE are notified that a
recovery mechanism was initiated. This notification message can be identified by a value of 7
in MSG-RECOVERY (COMMON]/3].[42:3]). When programs which receive this restart message
are ready to receive input from the network, they should give control of COMMON back to the
MCS by generating a primary output. This primary output may be NULL (i.e., length = zero).
Any output whose destination is the originator is directed to the network control stations.

CHECKPOINT RECOVERY

In the present implementation, the MCS automatically generates an audit trail of input/output
transaction images to either disk or disk pack. Generation of this audit trail is transparent to
the application program. The audit trail is utilized by the MCS during the recovery process in
order to re-establish its internal message queues. One relatively simple type of recovery, requiring
no special programming conventions, is based on the MCS Checkpointing System. The MCS peri-
odically writes information pertaining to the status of transaction flow to either disk or disk
pack. These writes are called checkpoints. Checkpoints relate to the audit trail, and their frequen-
cy is controllable, to a large extent, in the TCL. Following a failure, the MCS re-establishes
queue pointers based upon the last checkpoint.

Input queue pointers are positioned to the first input (after the last checkpoint position) which
does not have a primary output message being audited. This is an attempt to eliminate as many
duplicate messages at the stations as possible, and to eliminate unnecessary reprocessing of trans-
actions. This level of recovery is sufficient for many applications (normally non-DMS installa-
tions).

SYNCHRONIZED RECOVERY

A higher level of recovery is provided which calls for the MCS to synchronize application pro-
grams and transaction queues with the state of associated DMS II data bases following an auto-
matic "rollback” resulting from a failure. The reason that DMS II rolls back a data base in time
is to back out logical data base updates that were partially completed at failure time. (A single
logical update transaction normally results in multiple data base updates.) During recovery the
MCS performs an audit trail analysis relative to the rolled-back data base state, such that input
transactions which were backed off the data base are "recycled” for application processing. Input
transactions which were successfully audited by the MCS prior to failure, which have not yet
reached the point where they are passed to an application program for processing, are requeued.
Transactions falling into the "recycle” classification can be reprocessed so that the identical up-
date sequence to the data base is maintained.

1096567

The MCS does not just hand to each program its particular transactions in the same sequence
that the program received them prior to failure. Rather, if specified, the MCS attacks the more
complex problem of reestablishing the exact sequence of events that occurred on the data base.
This recovery technique considers the fact that some variable number of independent program
executions could be receiving transactions in parallel, where each transaction could result in mul-
tiple updates to the data base in parallel. This feature can be extremely important when multiple
transactions which result in access to common data can be asynchronously flowing through the
system at the same time. Synchronized recovery is oriented toward allowing application programs
and terminal operators to ride through failures without any need to know that such failures have
occurred. At the same time, data bases can be maintained which are in total agreement with any
messages delivered to the network prior to the time of failure. Additionally, for input transac-
tions recycled because of a data base rollback, an analysis is performed by the MCS on applica-
tion-generated output in order to eliminate duplicate transmissions to the network. The following
messages are generated during a normal MCS synchronized recovery cycle:

Message Meaning
*RECOVERY CYCLE INITIATED Recovery begins.
*RESTART TP INVOKED The user’s restart TP has been invoked.
*RECOVERY STACK INVOKED A separate stack for recovery has been invoked.
*RECOVERY STACK COMPLETED The separate recovery stack goes to End-of-Job.
*RESTART TP COMPLETED The restart TP was sent to End-of-Job.

*SYSTEM <number> RECOVERED Recovery process ends.

TCL Syntax

This type of synchronized recovery can be invoked for any Input queue by means of special Input
queue syntax in the TCL. Two levels of synchronized recovery can be invoked depending upon
the syntax used. Each level assumes that certain programming conventions are followed by the
user.

The first level of synchronized recovery is invoked by the user by specifying RECOVERY =
TRUE for an Input queue. This indicates that the programmer is going to follow several straight-
forward programming conventions. In return, the MCS attempts to synchronize the data-commu-
nications recovery with the data base recovery. In most instances, the MCS is successful; how-
ever, at this level of recovery, the MCS cannot guarantee that a fully synchronized recovery will
take place. There can be input transactions recycled unnecessarily, possibly resulting in extraneous
updates to a data base and/or there might be lost output messages. This may be perfectly accept-
able in some environments (especially where duplicate data base updates are protected against by
the designs of the application programs); in others, however, the results could be unfavorable.

To eliminate such potential risks, a second level of synchronized recovery can be invoked by addi-
tionally specifying WAITFORAUDIT = TRUE for an Input queue. If the user follows the pro-
gramming conventions dictated by this syntax, the MCS provides a fully synchronized data base/
data communications recovery.

5-3

5-4

Recovery-Related Conventions

The conventions which must be followed by the user in order to ensure a synchronized recovery
are detailed below.

CONVENTIONS FOR A RECOVERY = TRUE SPECIFICATION

The following are the conventions for a RECOVERY = TRUE specification:

1. A User program must claim transaction-related resources prior to using any of them. In
particular, this means locking all necessary data management records before entering
transaction state. In many situations, this might entail locking just a particular node
within a data hierarchy.

2. A User program must not unlock any transaction resources until the transaction is com-
plete. In particular, this means allow the DMS II END-TRANSACTION to unlock data
management records.

3. After transaction resources are locked, a User program should obtain a Data Base Se-
quence Number (DBSN) from the MCS and store it in the MSG-DBSN field of the COM-
MONAREA (Word 17). The program receives two additional parameters from the MCS:
a LOCKEVENT and a pointer to a Global DBSN. To obtain its DBSN value, the pro-
gram should lock the LOCKEVENT, increment the DBSN by one, move it to the COM-
MONAREA, and unlock the LOCKEVENT. The DBSN stamp normally goes in all out-
put messages generated by the corresponding input transaction.

4. A User program must send messages to stations according to the following set of proto-
cols:

a. "Secondary outputs” are sent first: These are outputs which are passed to the MCS with
MSG-ACTION (WORD[1] of the COMMONAREA) set to 2. The value 2 in the action
word signifies to the MCS that the User program is not finished with the current trans-
action and wishes to send more output. After extracting the appropriate information
from the COMMONAREA, the MCS passes control back to the User program for fur-
ther processing.

b. The last output generated during normal processing by a User program as a result of
receiving a given input transaction is termed the "primary output.” By strictest defini-
tion, the primary output of a transaction is a message sent by the User program with
value 3 in MSG-ACTION and directed to the originating station. The value 3 in the
action word signifies to the MCS that the User program is done with the current trans-
action. In actuality, the last output associated with an input transaction need not result
in a message being delivered to the originating station. The last output (i.e., action
word = 3) of a User program could have a length of 0 which results in no message
being delivered, or the program could cause its last output to deliver a message to some
station other than the originator. In both cases, the MCS automatically generates a
"dummy” primary output for the originating station.

c. Generally, all outputs should be generated after the DBSN is obtained so that all output
messages are stamped with it. There are instances when the user may want to generate
an output before the DBSN is obtained; for instance, in order to shorten the time the
program must be in DMS II transaction state. This may be done safely as long as all
other guidelines for DBSN, primary output and WAITFORAUDIT (when WAIT-
FORAUDIT = TRUE) are followed. User programs must set the MSG-DBSN field in
the COMMONAREA to its maximum value (all bits = 1) in this case. This allows the
message to participate in the output message analysis explained later in this section.
When issuing secondary output after the DBSN is obtained, the “real” DBSN should
be placed in the COMMONAREA.

1096567

5. A User program must cause the DMS II restart information to be forwarded to the DMS
II audit trail when leaving transaction state, as opposed to when entering it.

6. A User program must inform the MCS whenever it passes into transaction state by setting
the TRANSACTION STATE bit (Word [18].[0:1] to one for a USER program or TASK-
VALUE to -1 for a Port program). Likewise, it must inform the MCS when it passes
out of transaction state by resetting the TRANSACTION STATE bit to O.

7. A User program must immediately pass control back to the MCS with MSG-ACTION
(COMMONAREA WORDI1]) set to 20 whenever a DMS II abort exception is received.
Remember, however, that the program must have control of its COMMONAREA row
in order to accomplish the pass of control. In this case, the program should not wait on
its WAITFORAUDIT event, even if the WAITFORAUDIT bit is one (value = 1).

CONVENTIONS FOR A RECOVERY = TRUE, WAITFORAUDIT = TRUE SPECIFICA-
TION

The following are the conventions for a RECOVERY = TRUE, WAITFORAUDIT = TRUE
specification:

1. If RECOVERY = TRUE and WAITFORAUDIT = TRUE syntax is used, an additional
convention must be followed. This is a guarantee by the user that he or she will not exit
from transaction state until the MCS had audited the primary output for the transaction.
The MCS sets or resets the MSG-WAITAUDIT field (COMMONAREA WORD[16].[0:1])
for each transaction, based on whether the message key was defined in a WAITFORAU-
DIT = TRUE Input queue. If the bit is one, the User program should wait for the audit
of the primary output of the current transaction before exiting from transaction state. The
MCS passes an event to the User program to coordinate waiting for the audit.

2. In a WAITFORAUDIT = TRUE transaction, secondary messages are not released to
their respective destination stations until the primary output is received by the MCS and
is audited. Even though it ensures that messages received at a station reflect a completed
transaction, this holding back of secondary messages might not be desirable in some in-
stances. For instance, the User program might want to release the originating station from
transaction mode before the primary output is sent.

The User program can cause any output message to be immediately released to its desti-
nation by setting the WAITFORAUDIT bit to zero. If this is output to the originating
station, then that station is released from transaction mode. The use of this feature, how-
ever, does have some recovery implications. A message is released before the transaction
is completed. This message, already received at the station could reflect some state of
the data base which would be true if recovery were not necessary, but which is no longer
true after recoyery. This could happen if the original transaction had not obtained a
DBSN before recovery was required. The order in which the transaction is reprocessed
would be determined by the order in which it was originally entered into the system, not
in the order of data base updating. If the user wishes any succeeding messages to follow
the WAITFORAUDIT conventions, thus ensuring their integrity, the WAITFORAUDIT
bit must be reset back to one.

5-5

5-6

The proper sequence of events for a User program which has RECOVERY = TRUE or both
RECOVERY = TRUE and WAITFORAUDIT = TRUE specified for one of its Input queues
is outlined in the following basic logic flow example.

INITIALIZE.
OPEN DATABASZ.
I'NITIALIZE KESTART DATA SET.,
SLEEP.
WAIT AND RESET USEREVENT.
LOCK DATABASE RZCGRDS TGO BE UPDATED.
SET TRANSACTIONSTATt BIT IN COMMON.
BEGIN=TRANSACTION WITH NO-AUDIT.
O3TAIN DBSN MOVE TO COMMON.
MOVE RESTART INFURMATION TO RESTART ARES.

UPDATE DATABASE.

SEND SECONDARY QUTPUTS.

SAVE WAITFORAUDIT FLAG FROM COMMON.

SEND PRIMARY OUTPUT.

CHECK WAITFORAUCIT FLAG

AND WAITCAUDITEVENT) IF APPROPRIATE.

END=TRANSACTION WITH AUDIT.
RESET TRANSACTIONSTATE 8IT IN COMMON.
GO TO SLELP.

- -y

Figure 5-1. Outline of the Basic Logic Flow of a RECOVERY =TRUE and/or
WAITFORAUDIT =TRUE User Program

Restart TP

Every system that has a RECOVERY = TRUE Input queue must have a Restart program de-
fined. The Restart program is defined in the program section of the TCL, like other User pro-
grams, with the following special syntax:

RESTARTPROGRAM = TRUE.
Only one Restart program may be defined for a system.

When DMS II rolls back a data base, the Restart program is processed by the MCS as the first
step in its synchronized recovery mechanism. The Restart program retrieves all of the data-base
restart data of Transaction Processors (TPs) that are involved in the recovery mechanism, sorts
it, and passes it to the MCS. The Restart program waits until notified by the MCS that recovery
is complete, then deletes the restart data and goes to End-of-Job.

GEMCOS supplies a fully documented COBOL source file of a sample Restart program to be
used with DMS II. This sample demonstrates the proper passes of control from the Restart pro-
gram to the MCS, as well as the logic flow within the program. This sample source file can be
patched by the user to replace the naming conventions of the restart data set used by GEMCOS
with the user’s data names.

Restart Area

Each User program may have associated with it from one to three Input queues from which it
receives input. Each program is required to save information about the transactions it processes
out of each of its queues in the DMS II restart data set. Some information to be stored is sup-
plied by the MCS in the control portion of the COMMONAREA passed to the User program.
Other information is acquired as a result of the recovery conventions.

MSG-RESTART-DATA (WORD[10] of the COMMONAREA) contains data which must be
stored in the restart data set. This word has four fields:

Field Description

[47:8] Input queue number as defined in the TCL in
which this message resides.

[39:8] An index into the MCS’s program table.
[31:24] Disk address of this input message.

[7:8] Relative Input queue in which this message resides.

The relative Input queue has a value of 1, 2, or 3 and relates this message to one of three input
queues which may be associated with the User program. MSG-RESTART-DATA must be stored
in one word of the restart data set.

MSG-SSN (COMMONAREA [3].[39:22]) must also be stored in the restart data set. It contains
the system serial number, a unique message number assigned to the message at input and carried
with it throughout all phases.

This field must be stored in one word of the restart data set.

The last piece of information to be stored is the Data Base Sequence Number (DBSN), which
must be stored in one word of the restart data set. Transactions which have a primary output
containing a DBSN of 0 are not recycled during recovery, nor are such transactions archived.
This enables the user to intermix update transactions with inquiry transactions in an Input queue
declared with RECOVERY = TRUE, without having these inquiry transactions recycled when
a recovery cycle is invoked.

A TP, then, must store three words of data in the restart data set for each of three possible
Input queues. In addition, all restart areas must be linked with a common key so that the Restart
program can retrieve all of the restart data for the recovery mechanism. These considerations
point to the restart data set definition for a DMS II data base as shown in figure 5-2. This defini-
tion is the one assumed by the COBOL-68 Restart program symbol supplied with the system.

1096567

For COBOL-74 programs the fields declared as REAL (S11) in figure 5-2 should be changed to
ALPHA (6). This definition is assumed by the COBOL-74 Restart program symbol supplied with
the system.

RESTARTAREA RESTART DATA SET

(GEMCOS-LITERAL ALPHA(6)
GEMCOS=I'NTERFACE GROUP
(GEMCOS=DATA REAL (Si11);
GEMCOS=DBSN REAL (S11);3
GEMCOS=SSN REAL (S11))

OCCURS 3 TIMES)S
RESTARTSET SET OF RESTARTAREA

KEY IS GEMCOS~LITERAL DUPLICATESS

Figure 5-2. Recommended DMS |l Restart Data Set Definition for USER Programs

Program Interface

A User program that declares RECOVERY = TRUE for one of its queues in the TCL receives
two additional parameters from the MCS: a LOCKEVENT and a pointer to the Global DBSN.

In addition, if a User program has WAITFORAUDIT = TRUE declared for one of its queues
in the TCL, it receives one additional parameter: a WAITFORAUDIT event.

The WAITFORAUDIT event is used by the User program to coordinate the MCS’s auditing of
the primary message and the User program waiting for the audit to be completed before leaving
DMS 1II transaction state.

Figures 5-3 and 5-4 show the basic declarations necessary for COBOL and ALGOL User pro-
grams with RECOVERY = TRUE specified. Figures 5-5 and 5-6 show the basic declarations nec-
essary for COBOL and ALGOL User programs with RECOVERY = TRUE and WAITFORAU-

'DIT = TRUE specified.

Table 5-1 (following RECOVERY OF A PROCESS PROGRAM) summarizes the various fields
mentioned in the preceding recovery discussion and indicates where the fields are located within
the COMMON array.

DATA DIVISTON.

77 MASTEREVENT USAGE IS EVENT RECEIVED BY REFERENCE.
77 SERVICHEVENT USAGE IS ZVENT RECEIVED BY REFERENCE.
77 EDITOREVENT USAGE IS EVENT RECEIVED BY REFERENCE.
77 USEREVINT USAGEZ IS cVENT RECEIVED BY REFLRENCE.
77 LOCKEVZNT USAGE IS EVENT RECEIVED 8Y REFERENCE.
77 OATABASE=SEQUENCE~NUMBEZR PIC S9(11) COMP

RECEIVED BY REFERENCE.

21 COMMON=AREA USAGE IS COMPUTATIONAL
RECEIVED BY REFERENCE.
02 CUMMON PICTURE 9(8) USAGE IS COMPUTATIONAL
OCCURS 1000 TIMES.

PROCEDURE DIVISION
USING
MASTERE (ENT
SERVICEEVENT
EDITOREVENT
USEREVENT
CUMMON=AREA
LOCKEVENT
DATABASE=SEQUENCE-NUMBER.

<progr:am>

STOP RUN.

1096567

Figure 5-3. COBOL User Program Declarations for a RECOVERY = TRUE
Specification

5-10

PROCEDURE USER

EVENT

ARRAY
RE AL

BEGIN

END;

CMASTEREVENT,
SERVICEEVENT,
EDITORZVENT,
USEREVENT,
COMMONS»
LOCKEVENT,
DBSN);

MASTERE VENT,
SERVICEEVENT,
EDITOREVENT,
USEREVENT,
LOCKEVENTS
COMMON 2215

DBSNW;

<program>

Figure 5-4. ALGOL User Program Declarations for a RECOVERY

Specification

TRUE

1096567

DATA DIVISION.

7
'y
77
17
7
77

77

01

MASTEZREVENT USAGc IS ZVENT RECEIVED BY REFERENCE.
SERVICEEVENT USAGE IS EVENT RzCEIVED BY REFERENCE.
EDITOREVENT USAGE IS ZVENT RECEIVED 8Y REFERENCE.
USCREVENT USAGE 1S EVINT RECEIVED BY REFERENCE.
LOCKEVENT USAGE IS EVINT RECEIVED BY REFERENCE.
DATABASE~SEQUZNCE~WUMBER PIC 59(C11) COMP RECEIVED
3Y REFERENCE.
WAITFORAUDITEVENT USAGE IS EVENT RECEIVED BY
REFERENCE.

COMMON=~-ARKEA USAGE 1S COMPUTATIONAL RECEIVED
BY REFERENCE.

02 CUOMMON PICTURE 9(3) USAGE IS COMPUTATIONAL
JCCUKS 1000 TIMES.

PROUCEODOURE OIVISION

USI NG
MASTERZVENT
SERVICLEVENT
EDITOKEZVENT
USEREVENT
COMMON=AREA
LOCKEVENT
DATABASE=SEQUINCI~NUMBER
WAITFORAUDITEVENT.

<program>

STOP RUN.

Figure 5-5. COBOL User Program Declarations for RECOVERY RECOVERY = TRUE

and WAITFORAUDIT = TRUE Specification

5-12

PROCEDURE USER

EVENT

ARRAY
RE AL
BEGIN

END?

COMMON (€015

DBSN’

<pragram>

(MASTEREVENT,

SERVICEEVENT,
ECITORKEVENT,
USSREVENT,

COMMON»

LOCKEVENT,

DBSN>»

WAI TFORAUDITEVENT)S

MASTEREVENT»
SERVICEEVENT»
EDITOREVENT»
USEREVENT,

LOCKEVENT,
WAITFORAUDITEVENTS

Figure 5-6.

ALGOL User Program Declarations for RECOVERY
WAITFORAUDIT = TRUE Specification

= TRUE and

1096567

WAITFORAUDIT Program Example

The following is an example of a RECOVERY = TRUE, WAITFORAUDIT = TRUE User pro-
gram., The program illustrates all of the programming conventions necessary for the MCS to pro-
vide a fully synchronized recovery.

Example:

IDENTIFICATION DIVISION.
PROGRAM=ID. SAMPLE WAITFJRAUDIT CUBOL.
ENVIRINMENT ODIVISION.
CONFIGURATION SECTION.
SOURCE~COMPUTER. B6700.
UBJECT~=COMPUTER. 836700,
INPUT=0UTPUT SECTION.
DATA DIVISION.
DATA-BASE SECTION.
DB GEMCOSDJY ALL.
01 GEMCUOS-D3 STANDARD DATA SET(#2).
GEMCO3-DB=SET SET(#3, AUTO) OF GEMCOS=DB KEY 1S
GEMCOS=VALUZ.
02 GEMCOS=VALUE PIC 9(3) cOoupr=2,.
01 RESTARTAREA RESTAFRT DATA SET (#4).
RESTARTSET SET (#5» AJTO0) OF RESTARTAREA KEY IS
GEMCOS=LITER AL,
02 KESTARTTYPEZ PIC 9 CIMP=2.
¢Z TC CUMP=4.
02 GEMCOS-LIiTEZRAL PIC X(6) DISPLAY.
02 GEMCOS=INTLRFACE CCTURS 3.
W3 LZMCOS=DATA PIC S92C11) COMP,
03 GEMCUS=DBSN PIC S9C11) COMP.
03 GEMCOS=SSN PIC S9(11) COMP.
WORKING=STORAGE SECTIJN.
KRR R R AR KRR K R KR A AR KRR AKX RN RI R AR, AN S
* THIS IS THE COMMUN AxcA PASSED FROM THE MCs »
* T0 THE USER PRJGRAM. IT MUST BE DECLARED *
* AN 01 WITH USAGE = CO9MP REF., NOTZ THAT THE =
* 01 ITEM ITSELF MUST BE COMP, NOT JUST THE *
* *
x L]

3

N X % % ¥ % B X X X N X %

INDIVIDUAL I'TEMS.

(AR R R LSRR R SRS R R RS NREEERRRERl Rl R X

01 COMMCN=-AREA COMP REF.
v3 COMMON=CUNTROL.
05 WORD=Q PIC S9(11).
05 WORD=-1 PIC S§9(11).
£S5 WORD=2 PIC S9(1l).
05 WORD=3 PIC 59(11).
05 WIkD=4 PIC S9C11).
L5 WORD=S PIC S9(11).
05 WURD=6 PIC S59(C11).
05 WORD=-7 PIC 59(C1l1).

5-13

01
01
vl
77
17
77
77
7
i
77
o7
77
77

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

IC

$9(11).
S9(11).
59(11).
$9(11).
$9(11).
59(11).
59(11).
59(11).
59(11).
59C11).
S9(11).
S9C11).
59(11).
$3C11).
$9(11).

P
03 COMMON=TEXT OCCURS 320 TIMES PIC S9(11).

¢> WORD=8
05 WORD=9
05 WORD=-10
U5 WORD-11
05 WORD=-12
05 WORD=-13
V> WORD=14
05 WORD=15
5 WORD=1d
05 WORD=17
U5 WOkD=18
05 WOKD=19
05 WORD=2)D
U5 WORD=21
05 WORD-22
ONE
2RO
HIGH=VAL UES
EVENTIN
EVENTOUT
SERVICE=EVENT
EDITOR=EVENT
DBSN=EVINT
WAITFORAUDIT=EVENT
DB SN
AUDITFLAG

GEMCOS~TQUINDEX
EOT=ABORT-FLAG
PROCEDURE DIVISI'UN

USING EVENTOUT

P1C S

9(11) COMP VALUE 1.

PIC S9(11) COMP VALUE 0.

PIC S
EVENT
EVENT
EVENT
EVENT
EVENT
EVENT

J(11) COMP VALUE 65535,
REF.

REF .

REF.

REF.

REF.

REF.

PIC S9(11) COMP REF.
PIC S9(C11) COMP.

PI1C S
PIC S

SERVICE=EVENT

EDITOF=EVENT

EVENTIN

COMMON=AREA
DBSN=EVEINT

DBSN

9(11) COMP VvaALUE O.
9(11) COMP.

AAITFORAUDIT=EVENT,

MAIN=CONTRGL SECTIUN.
100=INIT1ALIZE.

gPE

N SYSTEM FI1LES AND

INITIALIZE PRUGRAM RESOURCES.

OPEN UPDATE GEMCOSDS

ON EXCEPTION

WAIT AND RESET EVENTIN
PERFORM DMS-ERROR=ANALYSIS THRU DMS=ERROR=EXIT

MOVE 2 TO W0RD~-1
MOVE 1 TO WORD-=0
CAUSE EVENTOUT

WAIT AND RESET EVENTIN
SET MYSELF (TASKVALUE) TO HIGH=VALUES

STOP RUN
ELSE

* % ¥ % *» % ¥

1096567

AR AR A AR A AT RAR KRR RN AR AR A AR AN Ak Ak

* % % * R

OPENED UPDATE.

LER R RS AR ESRERELEREEERRERERRRERERSLRRRRRER S

CREATE RESTARTAREA

MJIVE "GEMCOS™ TO GEMCOS-LITERAL

MOVE 5 TO GEMCOS=DBSN(1)

GEMCOS=-DBSN(2)
GEMCOS~-DBSN(3).

20U ~-SLEEP.

WAIT AND RcSET EVENTIN.
IF MYSELF(TASKVALUZ) = 4

STUP RUN.

EOT=A30RT-FLAG = 1

MOVE O TO £OT=ASORT=FLAG
MOVE 23 TO WORD=1

MOVE 1 TU WORD=C

CAUSE EVENTOUT

GO TO 29.-SLcEP.

300~-LOCK=RECUORDS.

* % % % x % X %

LOCK DATABASE RECORDS
TU 8E UPDATED

MOVE ONZ TO WIORD=18€0:0:11.
BEGIN=TRANSACTION NU=AUDIT RESTARTAREA
ON EXCEPTION

MOVE ZERO Tu HWOKD=13[0:0:11
IF OMSTATUSCABORT)
40vE 24 TJ WORD-1
MOVE 1 TO WOKD=O
CAUSE EVENTCUT
GO TO 23u~-5LcEP
£LSE
PERFOURM OMS-ERROR=ANALYSIS THRU
OMS~ERRIK=EXIT
G0 TUO 4D00-5ENO=PRIMARY,

THE FOLLOWING CODE INITIALIZES
THE RESTART AREA. THIS MUST BE
DONE WHENEVER THE DATABASE IS

*
*
*
*
*
*

L2 R R ERERE AR RS RS ERRLERRRLRRsRRERRR R RRRRREEREED]

®
*
*
*
*
*
*

AFTER THE BEZGIN-TRANSACTION, THE FiRST

THING WE DO 1S EXTRACT THE DATABSASE SEQUENCE

NAMBER FOR THIS TRANSACTION» LOCK THE EVENTS»

ADD 1 TO THE PASSED D3SN PARAMETER, AND SAVE

IT IN WORD 17 OF THE COMMON AREA TO PASS BACK
TO THE #CS. THEN UNLOCK THE EVENT.

I E RS SRS R RL SRR ERSERRRlREEREElEERsRt Rl REEEERE]

*
*
*
*
*
*
*

5-15

5-16

* % % % % % % % X % % %

LOCK D3SN=CVENT.

ADD 1 Tu DBSN.

MOVE DBSN TO WORD=17.

UNLOCK DBSN=EVENT.
[222 X EEZ RS R AR XSRS R AR R B R EEETREEIEIEIEEIET ST EEEE RS EFEX X E R
* THIS CODE SETS UP THE KESTART AREA FOR THIS *
* TRANSACTION. FIRST WS EXTRACT THE RELATIVE *
* QUEYE INDEX FOK THZ TRANSACTION TO BE USED *
* AS AN INDEX INTO THE RESTAFT ARFA *
* GRUUP (A GHOUP OCCURRING 3 TIMESs GNCE FOR *
* EACH OF THE THREE POSSIBLE QUEUES WHICH MAY *
* BE ASSUCIATED WITH A USER PROGRAM). SAVE *
* THE DBSN JUST ACQUIFRED, WORD 10 *
* OF THE COMMON ARZA» AND THEZ SYSTEM SERIAL *
* NUMBER CNWORD €31.039:221) 1IN THE RESTART AREA. =*
* *

[ZE 2 2R ELZEEF A AR AR REEREESERRES RS AR ERIR R R R RS R A 2R B K

MOVE WORD=1lu TO GEMCOS=IQUINDEX (73:7:81.

MOVE WORD=17 TO GEMCIS~DBSN(GEMCOS=IQUINDEX).

MOVE WORD=10 TO GEMCOS~DATAC(GEMCOS~-IQUINDEX).

MOVE WJORD=3 TO GWEMCUS~=SSNC(GEMCNS=IQUINDEX)
[39:21:221,

UPDATE THE DATABASE.
SEND SECOUNJUARY QUTPUTS.

FORMULATE THe PRIMARY QUTPUT.

400=SZ NO=PRIMARY.

* % % % % 2 » % % ¥

* % % % ¥ %

MOVE 3 TO WURD=~1.

KRR Rk R AR AR AR AR KRR A AR AR E R RN AR NR KRN AR ARR RN RN R KRR N ®
SAVE THE WALTFIRAUDIT FLAG FROM THE COMMON *
AREAs THIS INOICATZS WHETHER WE HAVEZ TO WAIT *
FOR THE PRIMARY MEISSAGE TU 3% -AUDITED BEFORE *
PROCEEDING. THIS 31T MUST BE CAPTURED. BEFQRE *
PASSI'NG CONTRJIL TJ THE MCS WITH THE PRIMARY *
MESSAGEs OTHCZRWISE THE MCS MIGHT CHANGE THE *
CUMMON AREA BEFURE WZ GET A CHANCE TO CAPTURE *
THE BIT. *
2 R R R R R L R T I IIITIIII I
MOVE WORD=16 TO AUDITFLAGLO:0:11.

MOVE 1 TO WORD=v.«

CAUSE EVENTOUT.

* % % % ¥ % % %

LA R AR RS RS ERRE SRR ERALERERNEERRERLRLREEIEE R R A RS N

* We HAVE JUST SENT CUT THE PRIMARY MESSAGE. *
* NOW CHECK If WZI MUST WAIT FOR IT TO B8t AUDITED *
* 3cFORE PROCEEDING. IF YES THEN WAIT ON THE EVENT»
* AND WHeN 1T HAPPENS, DON'T FORGET TO RESET 1T. *

I 2222 RS REE R AR SRR RS R Rl R RSS2 XE 222 R R R AR RREE R X

IfF AUDITFLAG cQUAL TO 1
WALT AND ReSET WAITFURAUDIT=EVENT

* i e e T L L T T L T r T
* *

N ~ *
* * THE PRIMARY OUTPUT HAS BEEN AUDITED. WE MAY NOW EXIT »
* * FRUM TRANSACTIUN STATZ. WHEN WE DO» WE CAUSE THE ®
* * RoOSTART INFORMATION T3 BE AUDITED. *
* LR R R R R N R R R T

IF WORD=18 = 1
“ND-TRANSACTIUN AUDIT RESTARTAREA
N EXCEPTION
ELSE
MUVE ZERJ TU WIRD=-18(0:0:11.
GO TO 2p33-SLEEP.
L R L R R L R R AR A I I T I T T ™™

DMS=ERROK=ANALYSIS

* DETERMINE TYPC 'GF OMS Il ERFOR
* SET UP ERKOR MESSAGE IN COMMON=TEXT AREA
* TO 8E SENT AS A PRIMARY MESSAGE.

UMS=ERROR=£XiT.
EXIT.

The Recovery Cycle

The GEMCOS recovery cycle can be initiated under any of the following conditions:

1. By Network Control command. However, do not initiate recovery by Network Control
command unless directed to do so by a system error message.

2. When a User program passes the abort indicator back to the MCS (WORDIJ1] of the
COMMONAREA = 20). Actually, this only causes the MCS to evaluate the status of
all User programs and to start recovery for reasons defined in 4 below.

3. When the MCS is restarted after it has abnormally terminated or after the operating sys-
tem has abnormally terminated (if there was a RECOVERY = TRUE program in the
mix at the time of the failure).

4. When a User, Port, or Process program abnormally terminates while in DMS II transac-
tion state.

In the first three cases, recovery is initiated automatically when the situation is recognized by
the MCS. In the fourth case, recovery is initiated after the aborted program is disabled and
cleared by the operator. If desired, these DISABLE and CLEAR commands could be made auto-
matic by using AUTORECOVERY = TRUE.

‘The recovery mechanism uses two disk files per system to collect and sort the input transactions
to be processed. The names of the two files are SRCFILEnnn and RECFILEnnn (where nnn =
the GEMCOS SYSTEM number).

An auditor file is also created by the recovery cycle. The name of this file is EXCEPFILEnnn/
hhmm (where nnn = the GEMCOS System number, and hhmm = the creation time in hours
and minutes). The auditor records contain control information in the same format as the input
and output audit records (refer to appendix B). The user must link to the audit files if the com-
plete text of the records is required (in the case of multiple-record input/output).

1096567 5-17

5-18

The auditor file differs slightly from the format shown in appendix B in the following ways:

Word Value Meaning

[INPUTRECORDSIZE]. 0 Input Record
[13:1]

1 Output record

[INPUTRECORDSIZE]. 0 Input transaction reprocessed
[11:5] during recovery

! Input transaction reprocessed during recovery
which had previously caused a TP to abort.

2 Output record never delivered (has link to
corresponding input record within it).

Any transaction which is recycled to a User program during recovery is flagged with the MSG-
RECOVERY field (WORDI6].[42:2]) of the COMMONAREA set to one of the following values:

Value Meaning

0 The system is not in recovery mode.

1 The system is in recovery mode caused by a TP abort.
2 The system is performing an archival recovery.
3

The system is in recovery mode caused by a halt/load
or an abnormal termination of the MCS.

In addition, a transaction which causes a User program to abnormally terminate is resubmitted
with the MSG-RETRY field in the COMMONAREA (WORDI6].[45:3]) incremented by one. The
retry-counter field represents the number of times a transaction was resubmitted for processing,
after causing a User program to terminate abnormally. The MCS always resubmits an aborted
transaction. The User program must decide how to process the transaction.

During recovery, the system is disabled. When recovery is completed (as reported at the network
control stations), the system must be enabled with an ENABLE command. If recovery is initiated
by the abnormal termination of a TP, the TP itself must be specifically enabled. These enables
could be made automatic by using AUTORECOVERY = TRUE, and the recovery mechanism
would be capable of running completely without operator intervention.

Figure 5-7 shows the sequence of events at a Network Control station during recovery after a
User program has abnormally terminated in DMS II transaction state. The transaction which
caused the program to terminate (DMS1B) is resubmitted during the recovery cycle with the retry-
counter field incremented to a value of one. The program action is to ignore the recycled transac-
tion.

Messages preceded by ? are control commands input by the Network Control operator. Messages
preceded by * are messages output by the main MCS stack. Messages preceded by # are messages
output by the Network Control stack.

OMS18. 12349 #228.12+«

*

PROGR AM TERMINATED: 0303:3084 TEST/DMS/PEOG/1 ON PACK:
INPUTGUCUE: DMSQUEUZI28(28), NAME: OMTESTLG(18).
MCSSAGE ADDREZSS:59», MESSAGE #i0s STATION: TTY2(1).

OIVIDE BY ZEFO 4 00C:04D3:0, 018:000D:5.

0303 RECOVERY CYCLE WILL 8E INVOKED FOR SYSTEM (1)
WHEN PROGRAM (10)-3084 IS DISABLED AND CLEARED

20IsABLE PC10) = 35034

¥

0304 PRUGKAM (10) DISABLED

2CLEAR P (L)

#

*

*

0304 PROGFAM (10) CLEZARED

0304 RECOVERY CYCLE INITIATED FOR SYSTEM (1)
3324 KZSTART TP INVOKEC FOR SYSTEM (1)

0304 KeCOVERY STACK INVCKED FOR SYSTEM (1)

0305 RECOVERY STACK COMPLETED FOR SYSTEM (1)

DMS1EB. 12849 422E .12~ TEANSACTIOUN IGNORED

*

0306 RZSTART TP CUMPLZTED FOR SYSTEM (1)

o
W
o
o
(%)

SYSTEM (1) RcCOV

[ag]

RED

ZENAELE ALL

0306 MGTZS5TSYSY (1) ALL INABL:ZD

FoNABLE PCi0)

Y397 PRUGRFAM (1) ENAZLEID

1096567

Figure 5-7. User Program — Abnormal Termination Recovery Cycle

5-19

5-20

Recovery of a Process Program

The programming conventions necessary for the recovery of Process programs are the same as
for User programs. The difference is that the various pieces of control information necessary to
satisfy. these conventions are found in the CONTROLWORDS array passed to the Process pro-
gram rather than in the COMMONAREA passed to a User program.

Similar to User programs, Process programs receive additional parameters to coordinate the re-
covery process. A RECOVERY = TRUE Process program receives the LOCKEVENT and a
pointer to the Global DBSN. A RECOVERY = TRUE, WAITFORAUDIT = TRUE Process
program also receives the WAITFORAUDITEVENT. See figures 5-8 and 5-9 for the basic decla-
rations of a RECOVERY = TRUE and a RECOVERY = TRUE, WAITFORAUDIT = TRUE
Process program.

Table 5-1 summarizes the various fields mentioned in the recovery discussion of the preceding
pages and indicates where the fields are located within the CONTROLWORDS array.

PROCEDURE PROCESSPROG (CONTROLWOKDS»
MASTEREVENT,
PROCESSEVENT,
GETMESSAGE,
SENDMESSAGE,
LOCKEVENT»
08SN)

ARRAY CONTRCOLWORDSIED I,
EVENT MASTEREVENT,
PROCESSEVENT>
LOCKEVENTS
PROCEDURE GETMESSAGS,
! SENOMESSAGES
REAL DBSNS
BEGI'N
<program> f

END;

Figure 5-8. Process Program Declarations for a RECOVERY = TRUE Specification

1096567

PROCEDURE PROCESSPRIG (CONTROL WOKDS»
MASTEREVENT»
PROCESSEVENT» |
GETMESSAGE.
SENDMESSAGE »
LOCKEVENT, 1
DBSN» !
WALTFORAUDITEVENT)
ARKAY COINTHOLWORDSIOD; !
EVENT MASTERZIVENT. |
PROCESSZIVENT, {
LOCKEVCENT»
WAITFORAUDITEVENTS 1
PROCEDUKE GCTMESSAGZ »

SENOMCSSAGES L
REAL DBSN; !

<progr am>

END 5 [

Figure 5-9. Process Program Declarations for a RECOVERY = TRUE, WAITFORAUDIT
= TRUE' Specification

The transaction conventions within the Process program relative to record locking, BEGIN and
END transactions, DBSN retrieval, restart information store, and WAITFORAUDIT should be
the same as described for User-type programs. When an abort exception is detected on a DMSII
BEGIN transaction, the program should reset the transaction state bit, place 20 into the Task-
value, and cause the MASTEREVENT. When an abort exception is detected on a DMSII END
transaction, the program, upon receiving the next input (PROCESSEVENT), should place 20 in
the Task-value and cause the MASTEREVENT. The Process program should only make one pri-
mary-type SENDMESSAGE call, and it should be the last SENDMESSAGE call, before setting
its Task-value to 3 and causing the MASTEREVENT. A WAITFORAUDIT = TRUE Process
program should wait for its WAITFORAUDIT-EVENT after setting its Task-value to 3 and caus-
ing the MASTEREVENT.

5-21

5-22

Table 5-1. Summary of Recovery Fields

Field
Description

System serial number

Transaction retry-counter

Transaction is being reprocessed
by recovery.

Input queue number as defined
in the TCL in which this message
resides.

Index into MCS’s program table
Disk address of input record

Relative Input queue in which
this message resides

WAITFORAUDIT bit

DBSN passed back to MCS to
stamp output messages.

TRANSACTIONSTATE bit
(Port programs must also set
TASKVALUE to -1)

Field in
COMMONAREA

MSG-SSN
([31.[39:22])

MSG-RETRY
([6].[45:3])

MSG-RECOVERY
(6].[42:2))

[10].[47:8]

[10].[39:8]
[10].[31:24]
MSG-REL-IQU
([10].[7:8])
MSG-WAITAUDIT
([16].[0:11])
MSG-DBSN

(%))
MSG-TRANSTATE
([18].[0:1])

Field in
CONTROLWORDS ARRAY

[4].[23:24]

[4].[37:3]

[16].[47:2]

[4].[32:8]

[16].[39:8]
[16].[23:24]

[4].134:2]

[16].[42:1]

[18].[39:39]

[16].[41:1]

Output Message Analysis

Output to the network may be generated by transactions which are recycled during recovery. In
order to maintain the integrity of messages received at terminals and attempt to avoid duplica-
tion, the MCS does an extensive analysis of output messages generated during recovery.

If the messages generated by the original processing of the transaction were not released to the
network prior to the fault, the old messages are deleted and the new messages are sent out. If
the old messages were released to the network prior to the fault, the new messages generated
during recovery are not sent.

There are circumstances during the recovery cycle when it is not possible to determine if a partic-
ular message was received at a terminal or not. The MCS realizes that if it releases the message
during recovery, it might be releasing a duplicate message. If NODUPLICATES = TRUE is
specified for a terminal, possible duplicate messages are not released. Instead, a warning message
is sent to the terminal, stating that a possible duplicate message is being held up. Along with
the warning, instructions are provided on how to recall the message using the REFRESH Net-
work Control command.

1096567

In order to reduce the maximum number of such possible duplicates to one for a given station,
the following TCL syntax may be specified in the STATION section:

ONEOUTPUTPERBACKUP = TRUE.

This prevents the next output for this station from being released until the acknowledgement of
the last output is audited by the MCS.

Archival Recovery

There are instances when it might become necessary to reconstruct the sequence of events per-
formed upon the data as initiated by the data communications network over a period of many
days. Conditions necessitating such action might arise if DMS II reconstruction should fail, or
if a TP bug has contaminated the data base beginning several days ago. The archival recovery
mechanism is the means by which to accomplish this reconstruction of events.

Archival recovery uses the archival audit dumps created each time the Transaction Control files
are generated or regenerated, or when a 7DUMP DATACOM Network Control command is en-
tered in a CONTINUOUSPROCESSING environment. Further information is presented under
the ARCHIVALAUDIT statement syntax contained in section 3. The file description of the ar-
chive tape is given in appendix B. To initiate an archival recovery, the program GEMCOS/
ARCHREC should be executed with all system files (input/output, control, format, and ledger)
label-equated as needed. Certain controlling information must be supplied either by card or
through the display console, beginning with a card file verification check to determine if the file
is present. The acceptable card file is CARD.

The following information must be supplied:

1. The systems to be recovered. (One system, many systems, or ALL systems may be
specified.)

2. The date on which the audit files were (re)generated.

3. The sequence control number of the files on the archival dump. (This is the same number
that appeared on the sequence control statement when the files were originally generated.)

4. The name of the MCS, if other than GEMCOS/MCS.

5. The date and time that the archive tape was created (date and time used in tape name).

This information must be supplied in free format according to the following syntax:

<archival recovery request> ::=
RECOVER <system specification >
<gen dump specification >
<MCS title specification>

<system specification> ::=
SYSTEMS <optional equal> (<system list>)

<gen dump specification> ::=
< gendate specification >
<sequence control specification> /
<dump date specification> <dump time specification>

5-23

<optional equal> ::= =/<empty>
<system list> ::= ALL/<system specification list>

<system specification list> ::=
< system number >/
<system specification list>, <system number>

<system number> ::= <integer>

< gendate specification> ::= GENDATE <optional equal> <date>
<date> ::= <month> <slash> <day> <slash> <year>
<month> ::= <integer>

<day> ::= <integer>

<year> ::= <integer>

<sequence control specification> ::=
SC <optional equal> <integer>

<dump date specification> ::=
DUMPDATE <optional equal> <date>

<dump time specification> ::=
DUMPTIME <optional equal> <integer>

<MCS title specification> ::=
MCSTITLE <optional equal> [a valid MCS title] / <empty>

Before initiating the archival recovery mechanism, the operator must ensure that the data base
is loaded from a dump tape that reflects the state of the data base at the START of the archival
dump.

The GEMCOS/ARCHREC program scans the ledger file to determine which archival dump tapes
to use during the recovery cycle. It then reads the archival tape, writes the files to disk, and pro-
ceeds to RUN the MCS to initiate recovery. Messages are printed at Network Control stations
to indicate the status of the recovery cycle.

The Input queues can be selectively recovered. The recovery stack first awaits a response to an
ACCEPT for specification of nonrecoverable queues to retrieve from audit tapes.

Example:

DISPLAY: ENTER NONRECOVERABLE IQUS
ACCEPT: ALL, NONE, IQ#, OR IQ NAME

5-24

When an individual Input queue name or number is specified, the ACCEPT is repeated as below
until END is specified.

ACCEPT: END, IQ#, or IQ NAME
The ACCEPT cycle is then repeated for recoverable Input queues.

If there are valid messages in the current MCS files at the time it becomes necessary to initiate
the archival recovery mechanism, the files should be regenerated as the next generation of MCS
files, in order to create an archival dump of these current files. This new archival dump can then
be processed as part of the recovery mechanism.

The archival recovery mechanism recovers only one generation of TCL files, i.e., one archival
dump. Queues are built and the MCS is processed. When the MCS goes to EOJ, if additional
archival tape information is contained in the ledger file, the operator has the option of recovering
the next generation of TCL files. Otherwise, the archival recovery program GEMCOS/ARCH-
REC must be run again with parameters for the next archival dump.

During archival recovery, no messages generated by TPs are released to terminals except those
whose destination is specifically the System Network Control station.

Recovery of a Non-DBMS Transaction

If a TP terminates abnormally while not in transaction state, the recovery mechanism is not initi-
ated. When the MCS recognizes that a TP has terminated outside of its control (i.e., abnormal
program termination, premature termination by an operator, or a "normal” program termination
without being told by the MCS), it sends a system error message to the Network Control stations.
That program is then inoperative until the operator takes appropriate action.

The operator must DISABLE, CLEAR, and then ENABLE the aborted TP. This activates the
program and resubmits the transaction which caused it to abort with the retry-counter field incre-
mented by one. If desired, the DISABLE, CLEAR, and ENABLE commands could be made au-
tomatic by specifying AUTORECOVERY = TRUE in the System section.

Synchronized Recovery of Batch Jobs

Before opening the remote file BATCHLSN, a Batch job should check the value of its RE-
STARTED task attribute. A restarted Batch job (i.e., MYSELF(RESTARTED) = TRUE) must
wait on some form of operator intervention before opening the remote file. The operator can
allow a restarted Batch job to continue when the MCS has initialized the Primary queue and
all its stacks are running. This procedure must be followed to prevent duplicate MCS stacks from
entering the mix after a Halt Load.

If the Batch job’s handshake is accepted by the MCS, the MCS returns a computational number
in the first word of the response. This number is the transaction count of the last transaction
received (as indicated by the first four characters of the original transaction initiated by the Batch
job) and audited by the MCS from this Batch job. Since this transaction count is typically a
pointer into a serial file being processed by the Batch job, a nonzero count returned would indi-
cate the number of records of the serial file that must be skipped before the batch job can contin-
ue processing the file.

1096567 5-25

5-26

During recovery, all stations are disabled, including OBJECTSTA, the station through which
Batch jobs correspond with the MCS.

NOTE
OBJECTSTA does not appear in either the NDL or the TCL specifica-
tions.

An ENABLE ALL Network Control command does not enable OBJECTSTA. It must be done
explicitly by specifying ENABLE S OBJECTSTA when OBJECTSTA has output queued for it.
In order not to confuse the response to the handshake with the response to an input entered prior
to the failure, OBJECTSTA must not be enabled until all Batch jobs have received their re-
sponses to the handshake message. This means that a Batch job must wait for some form of
operator intervention if it receives a nonzero response to its handshake. The operator can allow
all Batch jobs to continue after they have all received responses to their handshakes (i.e., when
they are all waiting).

There may be many output messages queued for a Batch job during the recovery cycle. These
messages comprise the responses to the last transaction audited by the MCS prior to the failure.
In order to cause the Batch job to synchronize any subsequent input with its corresponding out-
put, the user may wish to transmit a special "marker” transaction. This causes all the responses
queued for the Batch job to be read until the response to the marker transaction is encountered.
All subsequent responses received by the Batch job can then be properly associated with their
corresponding input.

A detailed discussion of the Batch Job Interface is provided in Section 4.

Synchronized Recovery of TP-to-TP Transactions

Two types of TP-to-TP transactions are possible. In type I TP-to-TP transactions, the originating
TP continues normal processing after emitting the transaction and does not wait for a response
from the destination TP. All responses from the destination TP are routed normally, including
the primary output which is routed to the station which entered the original transaction. Even
though the individual type I transactions are recoverable, a sequence of such transactions from
a TP is not recoverable, and duplicates may result if a synchronized recovery is required. Type
I transactions are indicated by placing a 2 in MSG-DESTTYPE (COMMON]/4].[39:8]).

In type II TP-to-TP transactions, the primary output of the destination TP is directed back to
the originating TP. These type II TP-to-TP transactions are addressed by the GEMCOS synchro-
nized recovery mechanism, and recovery is transparent to the secondary TPs.

The following must be performed by the originating TP to invoke type II TP-to-TP transactions:

1. Place the message into the text section of the COMMON AREA.
2. Place value 2 into MSG-ACTION ([COMMON][1].[23:24]) to indicate the end of the cur-
rent message to destination.

NOTE
The message may be released to the MCS in segments by using value 0
for the first segments and value 2 for the last.

1096567

3. Place value 7 in MSG-DESTTYPE (COMMONI[4].[39:8]) to indicate that the destination
is a TP and that the primary response should be directed back to the originating program.

4. Place value 0 in MSG-DEST (COMMON(/4].[19:20]) to indicate routing of the message
is to be by the message key which is part of the message.

5. Place value 1 in MSG-CONTROL (COMMON]I0}]) and cause the MCS event.

Messages directed to a TP using this mechanism are given priority over messages directed to the
TP from a terminal via the standard queueing mechanism. All secondary messages sent out by
the destination TP are routed normally to stations, areas, etc. No secondary messages can be
routed back to the originating TP. A primary output whose destination is the originator is deliv-
ered to the originating TP. If the primary output is not directed to the originator, a dummy out-
put of length 0 is sent to the originating TP.

The normal MCS synchronized recovery mechanism is capable of handling TP-to-TP messages
which are larger than the destination TP’s Common row. The response sent back to the originat-
ing TP, however, must not be larger than the originating TP’s Common row. A TP may not
direct a message to itself. The destination TP may not send out a TP-to-TP message other than
a response message to the originator.

After sending out a TP-to-TP message as indicated above, the originating TP waits on its input
event for the response. If the response is normal, value 6 is returned in MSG-ACTION
(COMMON][1]), the response is returned in the text portion of COMMON, and the length of
the response is returned in MSG-LENGTHIN (COMMONI7)).

If the response is not normal, value 5 is returned in MSG-ACTION (COMMON [1]), and a result
indicator is returned in MSG-LENGTHIN (COMMONI7)):

Value Meaning

137 Indicates either that the destination program was inoperative (NOP) or that
the destination program abnormally terminated while processing the message.

138 Indicates that the response of the destination TP was larger than the Common
row of the originating TP.

If the TP-to-TP messages cause data base updating, the following conventions are required to
allow these messages to be properly handled by the recovery mechanism.

1. The originating TP must lock all data base resources which might be updated while the
TP-to-TP dialogue is taking place. The user might want to use a "soft-lock” on some crit-
ical node (e.g., an account number), which would prevent accessing of records lower in
the hierarchy. The use of a "real” DMS II lock on a critical node could cause contention
among the originating and destination TPs.

2. If the originating TP has to enter DMS II transaction state to set the soft lock, it should
not acquire a DBSN. It must then leave transaction state before directing messages to
other TPs. When leaving transaction state, the restart data should NOT be written to the
DMS II audit trail.

3. When all TP-to-TP messages are sent and responded to, the originating TP should enter
DMS II transaction state, obtain a DBSN, remove the soft-lock if one was necessary, gen-
erate the primary output, update the restart set work area, and leave transaction state.
This causes the restart data to be written onto the DMS II audit trail.

5-27

5-28

Each destination TP may process its transaction exactly the same as if it came from a terminal
instead of another TP. If the destination TP must know who the originator is, it can check MSG-
MSGTYPE (COMMON]/3].[42:3]). The MCS places one of the following values in this field to
indicate the originator of the message:

Value Meaning
0 A normal station message.

1 The message was generated by a program, but the response is sent to station
at which the original input message was entered.

2 The message is a system-defined input message.

The message was generated by a program, and the response will go back to
the originating program.

During a recovery involving TP-to-TP transactions, there is no convenient way for the originating
TP to determine which subtransactions are reflected on the data base within a given total input
transaction currently being recycled. This is not a major problem in situations where recovery
was NOT caused by abnormal termination of one of the destination TPs that was involved in
the processing of the overall transaction. In such situations, the retry counter for the input trans-
action from the network remains set at zero. The input transaction can basically be processed
as though it was never seen before (although the application may ignore any soft locks for the
transaction that may still be on). GEMCOS performs an output analysis during recovery such
that any subtransaction (secondary input) not rolled off the data base and resubmitted by the
originating TP, is not redelivered to the destination TP. Instead, the corresponding original re-
sponse of the destination TP is extracted from the Output Audit queue for redelivery to the ori-
ginating TP. This analysis is based upon the DBSNs contained in the previous response to the
recycled subtransactions. Thus, destination TPs should WAITFORAUDIT when issuing re-
sponses.

There is a potential problem when the retry counter for the original input from the network is
incremented as a result of the abnormal termination of one of the destination TPs in the TP-
to-TP sequence. During recovery, the originating TP must first make the decision of whether to
retry the transaction sequence, which could result in another recovery. If processing of the trans-
action must be bypassed, the original transaction might be partially reflected on the data base.
Additionally, GEMCOS still expects a primary output to be generated to the originating station
for that input to clear Transaction mode. If the transaction must be bypassed, the originating
TP must notify someone of the problem so that some sort of exception-handling can be invoked.

Transaction Processing System (TPS) Recovery

This type of recovery is used in a Transaction Processing System (TPS) environment. A system
may have either TPS recovery or synchronized recovery specified, but not both.

Input queue pointers are positioned to the first input (after the last checkpoint position) which
does not have a primary output message being audited. All inputs without outputs are resub-
mitted to the programs. The first message resubmitted for each Input queue is marked in a spe-
cial way. It is then the responsibility of the program to check whether this message has already
been applied to the data base. (Refer to SAMPLE TPS PROGRAM below for more detail.)

TCL Requirements

The following TCL options should be set:

1.
2.

RECOVERY = FALSE.
WAITFORAUDIT = TRUE.

TPS Programming Conventions

The following are the conventions for TPS programming:

1.

Each input message should have a unique identifier. This identifier should be saved in
the Output Transaction record. It is recommended that the COMMONAREA field MSG-
SSN (WORD]J3].[39:22]) be used.

After sending a primary output and causing the MCS event, the program may wait on
the AUDITEVENT, but it is not necessary to do so. In either case, the MCS ensures that
the output gets audited before the program is given a new input message.

. If a program has more than one Input queue defined, it should log on more TRUSERS

(call on LOGONTRUSERS). The TCL queue-ID could be used as the TRUSER-ID string.
Each call on PROCESSTRNORESTART should use the ID-number associated with the
appropriate queue. During recovery, the program has access to the last response for each
queue.

. To execute a transaction the program can call on PROCESSTRNORESTART. During re-

covery, we can retrieve the last output transaction record with a call on RETURN-
LASTRESPONSE. The input message number can be compared with the number saved
in the Output Transaction record to determine whether this transaction has already been
applied to the data base. If it has, the output needs only to be sent back to the user.
Otherwise, this message should be reprocessed.

. Please note that multiple copies are disallowed in conjunction with TPS at the present

time.

. During a recovery following a halt/load, the MCS resubmits all input messages that had

no primary output. The first message of each queue has a value of 3 in MSG-RECOV-
ERY (WORDI6].[42:2]) of its COMMONAREA. This is to signal to the TP that this in-
put does not have an‘output but that the transaction could have been applied to the data
base. It is up to the TP to decide whether to resubmit the input to the TPS or merely
to send the output to the user.

. The same applies to a TP that died while processing a transaction. Its Input queues are

marked and a value of 3 appears in the COMMONAREA field MSG-RECOVERY
(WORDI6].[42:2]).

Sample TPS Program:

1096567

JIOENTIFICATION OIVISION.
ENVIRONMINT DIVISIIi.
DATA DIVISION.
DATA=BASE SECTION.

08 MYD3 ALL.
TRANSACTIUN SECTIGN.
138 MYTR3.

31 TK=iN.

0i TR=0UT.

WORKING=STORAGE SECTION.

5-29

PROCEDURE DIVISION USING o o o o o o @
INITIALIZE.
CALL "UPENTRBASZ OF MYTRB/CODE/HOSTLIB™ USING
UPD TIMEOUT GIVING ERKR-INDICATOK.
IF IE.F\R'INDICATCR GTP % cecoervon e
MIVE PrCGRAM=-NG UF GEMCOS=COM TO ID=STR1.
MOVE INPUTQ-REL OF GEMCOS=-COM TO ID-STR2.
CALL "LOGONTRUSEK OF MYTRB/CODE/HOSTLIB USING
1D=STR I0-NUM GIVING ERR-INDICATOR.
1F ERR=INDICATCR GTR O ssceceqovoe
MESSAGZI=LOGP.
WAIT AND RESET IVENT=IN.
IF MYSELF (TASKVALUZ) = 4 GO TO EDJ.
MOVE GIMCIS=RETRY T3 TEMP=-RETRY (45:2:3).
IF TEMP=KITRY CTR i
MOVE ™ISRCR IN TRANSACTION™ TO GEMCOS-TEXT
MUVE 29 TC GEMCOS~LENGTH
a0 T3 SZNL=1T.
MOVE GEMCOS-RECIVERY TO TEMP=-RECOVERY (42:1:2).
IF T<MP=RZCOVERY = 3
PERFOKRM CRICK=RECOVERY THRU CHECK=RECOVERY=EXIT.
IF SKIP =1
4J0ve O TO SKIP
GO0 TJ BUILI=CUTPUT.
PERFORM PRUOCESS=INPUT THRU PRJICESS=INPUT=-EXIT.,
3UILD=0UTPUT.
MOVZ CORRZSPONDING OUTFORMAT 3F TR=DUT TO GEMCOS-TEXT.
MOVE JUT-LENGTH TO GEMCOS=LENGTH.
SEND=IT.
MIVE 3 TO GEMCOS-ACTION.
MOVE 1 TGO GZMCCS-CONTROL.
CAUSE EVINT=JUT.
GO TO MESSAGEZ=L]OP.
EQCJ.
STOP KUN.

CHECK=RECOVERY.

CALL "RETURNLASTREPONSE OF MYTRB/CODE/HOSTLIB™ USING
ID=NUN TR=JUT GIVING ERR-INDICATOR.

1F ERR‘INDICQIC? sevecsosscs e

MOVE GEMCOS=5SN TO TLMP=SSN (39:21:22).

1F TEMP~=SSN = SSN OF DUTFORMAT OF TR=0UT
MOVE 1 TO SKIP.

CHECK=RECOVERY=-EXIT.
EXIT.

5-30

1096567

PROICCSS=INPUT,.
CREATE INFORMAT UF TH=IN.
MOVE CURKZISPONDING GEMCOS=TEXT TU INFORMAT OF TR=IN.
MOVZ GeMCO5=5SN TO TEMP=SSN (39:21:22).
MOVE TEMP=SSN T3 SSN OF INFORMAT OF TR=IN.
CALL "PROCESSTHENORESTART OF MYTRB/CODE/Z/HOSTLIE™ USING
ID=NUM TR=IN TR=0UT GIVING ERR=INDIC/TIRK.
1F ERR=INDICATOR eeececocsne
PROCESS=INPUT=EXIT.
EXIT,

Summary

GEMCOS plays the major role in effectively recovering from system failures gnd in maintaining
data base and network integrity in the process. GEMCOS provides a wide range of recovery capa-
bilities, freeing the user from recovery concerns to the maximum extent possible. The high-level
flexibility offered by the system allows the user to analyze application requirements and then se-
lect the recovery options best suited to meet specific data processing needs.

5-31

1096567

SECTION 6
FORMATTING AND PAGING

The Transaction Control Language (TCL) section describes the syntax and semantics of the lan-
guage constructs associated with formatting (refer to section 3).

The Message Control System (MCS) retrieves format descriptions based on both message-identifi-
cation key and the device class of the station involved and applies the format to the data. This
allows tremendous flexibility at the stations, transparent to the application programmer. For ex-
ample, the application program can tell the MCS to output a given message to two stations on
the same network. If those two stations are described as being in different device classes, the
resulting output can be drastically different based upon two different format descriptions pro-
vided in the TCL. Such data-field characteristics as length, sequence, form information, and
whether certain fields are required or optional, can vary from station to station. Conversely, two
different stations can supply input for the same type of transaction under different formats, and

the data arrives at the application program in a standard format. In fact, in cases where each.

input field from a terminal is delimited by a unique key, the sequence of data entry can vary
from transaction to transaction at the same station, even though the same type of transaction
is being repetitively performed. Such activity is transparent to the application program under the
formatting feature of GEMCOS.

INPUT FORMATTING

Formatting of an input message is accomplished if and only if:

1. An Editor program is defined for the destination User program.
2. The message key of the input transaction is associated with a particular format in the
<device section> of the TCL for the device containing the originating station.

The Editor receives its input through the Editor queues. The standard Editor supplied with GEM-
COS is designed to do message formatting and to insert the edited message into the COM-
MONAREA for the User program to process. The standard Editor sets up COMMONAREA,
just as the MCS would do if no editor were being used, i.e., the control-word MSG-CONTROL
(COMMON(1]), the action word MSG-ACTION (COMMONI2]) and the message-length-word
MSG-LENGTHIN (COMMONIJ7]) contain values just as if the MCS itself had passed control
directly to the User program. (Conventions are different for Editors of Port type programs).

If a nonstandard Editor program is used (i.e., one written by the user), any interface connection
between the Editor and User program may be used. For instance, the User program may give
control back to the Editor program (by causing its event) as long as the Editor was programmed
in this case to look for the message in the COMMONAREA. If it is necessary for the User pro-
gram to know the length of the input message, then it is the Editor’s responsibility to ensure
that the length of the message passed to the User program is correctly specified in MSG-
LENGTHIN (WORDI7] of the Common Area).

OUTPUT FORMATTING

Formatting of an output message is accomplished if and only if the following two conditions are
met:

1. There is an association between an output message-ID and the desired format specified
in the <device section> of the TCL for the device containing the destination station.
2. A TP places the output message-ID into MSG-MESSAGE-ID (word [9] of the Common

area).

The format is retrieved and processed with the appropriate data from the message inserted as
required by the format. The resulting message is released to the terminal.

FORMS REQUEST

To request a blank form, a station transmits an output message-ID with no data, including no
special terminating character, as required at a variable length message-key station. The following
is an example of an unpaged forms request invoked at a terminal.

Example:
DEFINE
FF = 4"0C"#4,
CR = 4"0OD"#4,
LF = 4"25"#4,
FOR = 4”12”#,
TAB = 4"05"#.

FORMAT F1 (FF, "[MKELl.]", Xl,
"INSERT QUANTITY [”, IS, "]",
CR, LF, X8,

"INSERT TYPE [", A3, "}",
FORM, TAB).

DEVICE TD800(1):
STALIST = TD69.

FORMATSOUT:
F1 = FMI100.

The forms request as it would appear on the screen is:
FM100
The result of the forms request as it would appear on the screen is:

[MKE1.] INSERT QUANTITY []
INSERT TYPE []

1096567

To invoke unpaged output editing, the following message is placed in the text portion of the mes-
sage by a TP:

12345BT1

I5 A3
with "FM100 " in MSG-MESSAGE-ID (word[9] of the COMMONAREA).

The message as it would appear at the terminal is:

[MKEIL.] INSERT QUANTITY [12345]
INSERT TYPE [BT1]

PAGED FORMATS

If an output format is paged, certain additional restrictions and conventions must be followed.
When a paged output format is to be applied to a message before it is sent to a terminal, the
terminal enters into paging mode. Each page of the format is applied to the appropriate part
of the message and sent to the terminal at the request of the terminal operator. The terminal
operator may browse at will through the output pages.

Display Paging

Display paging allows the terminal operator to browse through output pages as described above
and review the requested data. While in display paging mode, upon each transmission of data
from the terminal, the MCS looks only at the first character of the data transmitted, takes the
appropriate action, and discards the remainder of the transmitted message, if any. The following
is an example of a display paging dialogue.

Example:
DEFINE

HOME = 4"3C"#,
FF = 4"0C"#,
CR = 4"0D"#,
LF = 4"25"#,
FORM = 4"12"#,
TAB = 4"05"#.

FORMAT F2 (PAGEJ1]:
FF, "+ PART NAME "“, AlQ,
CR, LF, X2,
"PART NUMBER ", IS,
HOME, "+",

PAGE[2):
FF, "+ NUMBER IN STOCK ", IS,
CR, LF, X2,

"REORDER NUMBER ”, IS,
HOME, " +").

64

The message placed in the text portion of the message by a TP is:

BIG WIDGET039870010000100

The message as it would appear on the screen for pages 1 and 2 is:

Page 1 Page 2
+ PART NAME BIG WIDGET + NUMBER IN STOCK 00100
PART NUMBER 03987 REORDER NUMBER 00100

Update Paging

In addition to enabling the terminal operator to browse through pages to review data, update
paging also allows updating of any protected data as the browsing is done. As each page is dis-
played on the screen, the operator may insert or change information in the unprotected fields
of the format. Each time the operator transmits a paging request, the current screen is transmit-
ted as well and is used by GEMCOS to update the raw message accordingly. If that page is re-
called to the screen at a later time in the paging dialogue, the newly updated information is dis-
played in the form. When finished inserting or updating data, the terminal operator can discon-
tinue paging and transmit the entire message to a TP.

The following example illustrates an update message format and its effect on output and input
messages. The + and X which appear in this example are paging dialogue characters, explained
subsequently. When the operator has finished updating fields, only the operator-accessible (un-
protected fields) are transmitted. This data is used to update the original message. In this exam-
ple, note the use of the L <item type> following the <editing string> within an unprotected
field. This feature is very useful when it is desirable to have the update format insert a message
key into the updated message.

Example:

FORMAT F2 [UPDATE]

(PAGE[1]:FF "[+MKE2.] ", LS,
" PRODUCT: " , C7, X4,
" STOCK# ", C5, CR, LF, X18,
" REORDER POINT [”, 14, "]",
FORM, TAB,

PAGE[2]:FF, "[X] NUMBER ON ORDER [’,
4, "]", CR, LF, X4,
"EXPECTED DELIVERY [",16,"]",
FORM, TAB).

The message placed in the text area of COMMONAREA by the User program is then:
00000WIDGETS7641201002500010180

L5 C7T C514 14 16

109657

Page 1, as it would appear on the screen after the previous message is formatted, is as follows:

[+MKE2.] PRODUCT: WIDGETS STOCK# 76412
REORDER POINT [0100]

The operator updates the REORDER POINT field, which changes the screen to:

[+MKE2.] PRODUCT: WIDGETS STOCK# 76412
REORDER POINT [0150]

When the page is transmitted, the following data is returned to the MCS:

+MKE2.0150

The raw message after the update is completed would appear as:

MKE2.WIDGETS76541201502500010180

Page 2 then appears on the screen as follows:

[X] NUMBER ON ORDER [2500]
EXPECTED DELIVERY [010180]

The operator updates the NUMBER ON ORDER and EXPECTED DELIVERY fields which
changes the screen to:

[X] NUMBER ON ORDER [1550]
EXPECTED DELIVERY [040580]

When the page is transmitted, the following data is returned to the MCS:
X1550040580

The raw message after the update is completed would appear as:
MKE2.WIDGETS7641201501550040580

The Paging Dialogue

A station enters paging mode whenever an output to that station involves a paged format. In

paging mode, the station operator enters into a dialogue with the MCS and may browse through
all pages of the message.

The dialogue between the station and the MCS in paging mode keys off the first character of
the data transmitted. The following are the characters the MCS looks for in paging mode and
the action called for by the MCS upon receipt of each character:

Character MCS Interpretation

+ Display the next page in sequence. When received on the last page, wrap
around to the first page.

- Display the previous page. When received on the first page and the last
page was already seen, wrap around to the last page. If the last page
has not yet been seen, this is invalid on the first page.

C Exit from paging mode. Clear the screen and all pages in memory. The
message CANCELLED is displayed at the terminal.

X Discontinue paging and transmit the entire message to the TP (illegal in
display paging).

R Refresh the screen with the most current page.

H Return the first page to the screen (analoguous to) the home key on the
keyboard).

D Return to the beginning of the current paging dialogue. For display

paging, this is similar to the H command. For update paging, this
causes the accumulated message to be discarded and the original paging
dialogue restarted from the first page. On a forms request, this is
similar to the C command.

? (Where ? is any other character). Exit paging mod. Valid only in display
paging when 1) the last page of the message has been sent or 2)
message size is greater than 1 and the first character is not a " +"” or
" —~", The input is treated as a new message by the MCS. In all other
cases an unrecognizable character (not one of the above) is treated as an
error; the station remains in paging mode.

In display paging, if the size of the input is larger than that of the dialogue character and the
first character is not " +” or ”-”, then the input is treated as a message key. Paging mode is
exited and the input is forwarded to the MCS.

FORMAT LIBRARIES

The GEMCOS Format Library interface provides a user the ability to write message formatting
code in ALGOL, COBOL, or COBOL74, in addition to the standard TCL formats. Message for-
matting using a high level language not only allows a user to enhance formatting capabilities on
his own as new problems arise, but also decreases the system resources required to format any
message. Along with the greater flexibility provided by this interface, the library writer picks up
new responsibilities; i.e., the writer must follow the format library conventions carefully. How-
ever, sample ALGOL and COBOL libraries are provided with the GEMCOS release, and should
ease the transition from TCL to library formatting.

A format library must exist in a code file titled "*GEMCOS/FORMATLIBRARY"” (note: there
is no usercode); it has one entry point, FORMATLIB, and four parameters, TERMMSG,
MCSMSG, PAGERTABLE, and MISCPARAM. MISCPARAM is further divided into eight six-
character fields, the first of which selects the function the library is to perform on this call. These
functions are:

1.

1096567

LIBRARY INITIALIZATION

During GEMCOS initialization, the library provides information to GEMCOS concerning
which formats are available in the library, and the attributes of each of these formats.

INPUT FORMATTING

Given a message from a terminal, format it for delivery to a TP.

. OUTPUT FORMATTING

Given a message from a TP, format it for transmission to a terminal.
PAGED FORMAT INITIALIZATION

Paged formatting implies a multiple screen dialogue in which GEMCOS displays a screen,
the user modifies portions of the screen and transmits a message pack to GEMCOS. Part
of this message is used to determine which page should be the next displayed. GEMCOS
is responsible for storing relevant data (which may be changed by the format library) over
the course of the dialogue and delivering this data to a TP upon completion of the dia-
logue.

The format library is given an array where it can build a table of dialogue related infor-
mation, such as the current page number, or a list of page indices, but the definition
of the data in this table and how that information is used is left to the library developer.
Paged format initialization is responsible for setting up this table for a subsequent paged
output call on the library.

. PAGED INPUT FORMATTING

Given the stored message, PAGERTABLE and a message from a terminal, update the
stored message and PAGERTABLE as necessary, and set PAGEFUNC to request appro-
priate action of GEMCOS. One possible result is to transmit a page to the terminal,
which required that PAGETABLE be set up for a call on paged output to format that
page.

PAGED OUTPUT FORMATTING

Given the stored message, and PAGERTABLE, prepare the appropriate screen to be sent
to the terminal.

. PAGED RECALL FORMATTING

After setting up PAGERTABLE by a call on paged initialization, paged recall is called
repeatedly until each page has been formatted. The library is responsible for informing
GEMCOS when all the pages of the message have been formatted.

6-7

Library Parameters

Four parameters are passed to the library: TERMMSG, MCSMSG, PAGERTABLE, and MISC-
PARAM. The following table shows the type of each parameter for the format library implemen-
tation languages:

ALGOL COBOL COBOL74
TERMMSG EBCDIC ARRAY 01 DISPLAY 01 DISPLAY
MCSMSG EBCDIC ARRAY 01 DISPLAY 01 DISPLAY

PAGERTABLE EBCDIC ARRAY 01 DISPLAY 01 DISPLAY
MISCPARAM HEX ARRAY 01 COMP-2 01 COMP

The ALGOL parameters all have a lower bound of 0, and no OCCURS are allowed at the 01
level for COBOL parameters.

TERMMSG contains a message delivered from or to be delivered to a terminal.
MCSMSG contains a message delivered from or to be delivered to the MCS.

PAGERTABLE, when dealing with a paged format, holds data for the library between initializa-
tion, input formatting and output formatting calls.

MISCPARAM contains eight six-character fields:

1. FUNCTION, digits 0-5, specifies which major function the library is to perform.

2. FORMAT CASE, digits 6-11, specifies which formatting code to use. This number is part
of the information passed to the MCS during initialization.

3. TERMMSG SIZE, digits 12-17, specifies how many characters TERMMSG contains.

MCSMSG SIZE, digits 18-23, specifies how many characters MCSMSG contains.

5. ERROR NUMBER, digits 24-29, returns an error number to GEMCOS. When this field
is greater than zero, the MCS will display an error message to the system monitor sta-
tions.

6. PRACTICE MODE, digits 30-35, when equal to 1 specifies that the station associated
with this call is in practice mode.

7. PAGE FUNCTION, digits 36-41, requests an action of GEMCOS as result to a paged
input or paged recall call.

8. STATION NUMBER, digits 42-47, the TCL number of the station that this message is
coming from on input, or going to on output.

>

Details concerning the meanings and uses of each parameter are given below for each type of
call. When the description of a library call does not mention a parameter, that parameter is not
valid for the call and should not be used.

Initialization

During initialization, GEMCOS calls the library to provide a list of format titles, case values and
character requirements. This list is passed as a one dimensional EBCDIC array with one eighteen-
character EBCDIC field and two six-character hex fields for each format. The first field contains
the format title, which must match a title declared in the TCL, left justified with trailing blanks.
The second and third fields contain the case value of the format and the number of characters
required if this is an output or paged format.

An ALGOL library with one format named LIBFORMAT with a case index of 1 and that re-
quired 40 characters in the message it is formatting might declare its format list as:

VALUE ARRAY FORMATLIST
("LIBFORMAT ”,4"000001000040"):

If a TP creates a message which contains fewer than the number of characters needed to be for-
matted correctly, the MCS appends blanks to the message before delivering it to the format li-
brary.

Input Parameters:

FUNCTION = 1

Output Parameters:
MCSMSG = The list of format titles, indices and character requirements
MCSMSG SIZE = The number of eight bit characters in MCSMSG

Input Formatting
GEMCOS delivers a message from a station which the library modifies for delivery to a TP.

Input Parameters:
FUNCTION = 2
TERMMSG = The message received from a terminal
TERMMSG SIZE = The number of characters in TERMMSG
FORMAT CASE = The case index of the format to be applied to TERMMSG
PRACTICE MODE = 1 for a station in practice mode

STATION NUMBER = The TCL number of the station from which this message came

1096567

6-10

TERMMSG SIZE = The number of characters in TERMMSG

FORMAT CASE = The case index of the format to be applied to TERMMSG
PRACTICE MQDE = 1 if this station is in practice mode

MCSMSG = The stored message for this dialogue

MCSMSG SIZE = The number of characters in MCSMSG

PAGERTABLE = The array which holds data pertaining to this dialogue

STATION NUMBER = The TCL number of the station involved in this paging dialogue

Output Parameters:

MCSMSG = The stored message, perhaps changed in pager input
PAGERTABLE = Updated data pertaining to this dialogue

ERROR NUMBER = 0 for no error
> 0 when an error occurs

PAGEFUNC = 1 to cancel the dialogue
2 to restart the dialogue with the original MCSMSG
3 to format the requested page for delivery to a terminal
4 to deliver the stored message to a TP
5 to deliver a library output format to a terminal (similar to a forms request, but
within PAGER)
Any other value in PAGEFUNC will cancel the dialogue.

FORMAT CASE = The case index of an output format to send to the terminal when
PAGEFUNC = 5

Output Parameters:
MCSMSG = The formatted message to be delivered to a TP
MCSMSG SIZE = The number of characters in MCSMSG

ERROR NUMBER = 0 for no error
> 0 when an error occurs

Output Formatting

GEMCOS delivers a message from a TP which the library modifies as necessary for delivery to
a terminal.

Input Parameters:
FUNCTION = 3
MCSMSG = The message as built by a TP
MCSMSG SIZE = The number of characters in MCSMSG
FORMAT CASE = The case index of the format to be applied to MSCMSG
PRACTICE MODE = 1 for a station in practice mode

STATION NUMBER = The TCL number of the station to which this message is going

Output Parameters:
TERMMSG = Formatted message to be delivered to a terminal
TERMMSG SIZE = The number of characters in TERMMSG

ERROR NUMBER = 0 for no error
> 0 when an error occurs

Paged Format Initialization

GEMCOS delivers a message which generally contains data for multiple interactions with a termi-
nal from a TP to the library. This message is stored over the course of these interactions, or
dialogue, and may be read or changed during any format call during this dialogue.

A second array is available for storing any applicable dialogue information. This array, PAGER-
TABLE, can be used for passing data among the three paged formatting procedures, and is re-
tained throughout a dialogue.

The initialization function is called first to allow the library to initialize PAGERTABLE in
preparation for sending out the first page of the dialogue by the PAGED OUTPUT function.
The initialization function may, but in most cases will not, modify MCSMSG.

1096567

6-11

6-12

Input Parameters:
FUNCTION = 4
MCSMSG = The entire message from a TP (stored message)
MCSMSG SIZE = The number of characters in MCSMSG
FORMAT CASE = The case index of the format to be applied to MSCMSG
PRACTICE MODE = 1 for a station in practice mode

STATION NUMBER = The TCL number of the station involved in this paging dialogue

Output Parameters:
MSCMSG = The stored message as modified by initialization
PAGERTABLE = Library defined data pertaining to this dialogue

ERROR NUMBER = 0 for no error
> 0 when an error occurs

Paged Input

Paged input’s functions are more complex than those of the other paging procedures. GEMCOS
delivers the message from a terminal, TERMMSG, and the stored message, MCSMSG, to the
library. The library must then determine from TERMMSG which path the dialogue should follow
next and inform GEMCOS via the PAGEFUNC field of MISCPARAM. The most likely result
of a paged input call is for a new screen to be delivered to a terminal. In this case, paged input
must determine which page is next, perhaps by looking for ”+”, ”-”, or other characters in
TERMMSG as regular paging would do, or by accepting page requests by page number. Which-
ever page is selected, paged input must communicate the page number to paged output via
PAGERTABLE.

Other possible results of the paged input call are cancellation of the dialogue, restarting the dia-
logue with the original stored message, transmitting the stored message to a TP or requesting
that a library output format be delivered to the terminal without interrupting the dialogue. The
five different results of a paged input call are determined by a number, one through five, placed
in PAGEFUNC.

If the dialogue is not to be cancelled or restarted, data may be extracted from TERMMSG and
used to update MCSMSG.

Input Parameters:
FUNCTION = 5

TERMMSG = The message received from a terminal

1096567

Paged Output

GEMCOS delivers MCSMSG and PAGERTABLE to paged output which must determine which
part of MCSMSG to format for delivery to the terminal and do so.

Input Parameters:
FUNCTION = 6
MCSMSG = The stored message for this dialogue
MCSMSG SIZE = The number of characters in MCSMSG
FORMAT CASE = The case index of the format to be applied to MCSMSG
PRACTICE MODE = 1 for a station in practice mode

STATION NUMBER = The TCL number of the station involved in this paging dialogue

Output Parameters:
TERMMSG = The message to be delivered to a terminal
TERMMSG SIZE = The number of characters in TERMMSG

ERROR NUMBER = 0 for no error
> 0 when an error occurs

Message Recall

Messages which do not use paged formats can be recalled and formatted by the FORMAT LI-
BRARY via regular output formatting calls. However, because the conventions of a paging dia-
logue are library defined, the library must provide special code if messages which use paged for-
mats are to be recalled and formatted.

For a message requiring a paged format, the MCS first calls page initialization, function = 4,
just as at the start of a dialogue. Next, the MCS calls on paged recall, function = 7, to format
the first page of what would be dialogue with a terminal. GEMCOS will continue calling on
paged recall and collecting the resulting formatted pages until a page is returned and PAGE-
FUNC = 6, denoting the last page. On each pass, paged recall must update TERMMSG,
PAGERTABLE, and MISCPARAM so that the next page will be formatted on the next call.
The details of deciding which page to format and how to determine when the last page has been
formatted are left to the library developer.

Input Parameters:
FUNCTION = 7
MCSMSG = The entire message from a TP

MCSMSG FORMAT = The number of characters in MCSMSG

6-13

6-14

FORMAT CASE = The case index of the format to be applied to MCSMSG
PRACTICE MODE = 1 for a station in practice mode
PAGERTABLE = Data pertaining to the recalled message formatting

STATION NUMBER = The TCL number of the station involved in this paging dialogue

Output Parameters:
TERMMSG = One page of the formatted message
TERMMSG SIZE = The number of characters in TERMMSG
PAGERTABLE = Data pertaining to this recall dialogue

ERROR NUMBER = 0 for no error
> 0 when an error occurs

PAGEFUNC = 6 when TERMMSG contains the last page of the recall dialogue

Format Library Updating

The only way to update a format in a library is to delink the library from GEMCOS and then
relink to a new library containing the revised format. At present, unfortunately, there is no way
to delink a library from GEMCOS short of bringing the MCS down. This will be remedied in
a future release.

Notes

Additional information concerning libraries may be found in the B 6000 Mark 3.1 P & D Notes,
form number 5011257.

DEMONSTRATION FILES

GEMCOS/FORMATLIB/TCL contains a complete description of the stations, TP, and formats
necessary to run the format library demonstration.

GEMCOS/FORMATLIB/PATCH contains all references to stations from GEMCOS/FORMAT-
LIB/TCL to simplify modifying the network for a particular site.

GEMCOS/SAMPLE/FORMATTP is the object code for the simple transaction processor used
in the format library demonstration.

GEMCOS/FORMATTP/SYMBOL is the ALGOL source code for the GEMCOS/SAMPLE/
FORMATTP.

1096567

GEMCOS/SAMPLE/ALGOLLIB and GEMCOS/SAMPLE/COBOLLIB are two versions of the
source for compilation of the format library itself. Both provide functionally similar formats to
the MCS and either can be compiled as GEMCOS/FORMATLIBRARY to run the demonstra-
tion.

These files also serve as examples of the structure necessary to write a format library and can
be easily modified to match a site’s requirements.

GEMCOS/FORMATLIBRARY is the object file compiled from one of the sample format librar-
ies and provides the formatting procedures to the MCS. GEMCOS/EDITOR, the standard editor,
is used in the demonstration.

Generally, only the station names in GEMCOS/FORMATLIB/PATCH need to be changed to
fit the demonstration TCL to a particular site. Compile this patch file and GEMCOS/FORMAT-
LIB/TCL together using the GEMCOS/UTILITY and run the MCS with the resulting DATA-
COM/QUEUE files.

After switching a control station to GEMCOS, enable all and then enter the forms request
DEMO. GEMCOS will return the first of the library formatted screens and the demonstration
is self-explanatory from that point.

Note that the TP, TCL, and format libraries included on the release tape for using format librar-
ies serve only as examples and are not supported by Burroughs.

6-15

1096567

SECTION 7
ACCESS CONTROL

Access control is optionally available on a station-by-station basis and is declared in the Transac-
tion Control Language (TCL).

The user can declare in the <system section> a list of valid. access keys. Each access key denotes
a different class of user of that system. The user associates each access key with a list of message
keys which that class of user is allowed to enter into the system.

Each station in the network may be declared with either SIGNON = TRUE or SIGNON =
FALSE. Stations specifying SIGNON = TRUE may declare a list of valid access keys which de-
fines the classes of users which may use that station. (If the list of valid access keys is omitted,
all classes of users may use the station.) Operators at a SIGNON = TRUE station must identify
themselves to the Message Control System (MCS) as belonging to one of the valid classes of users
declared for that station.

If SIGNON = FALSE is specified for a station, no special identifying procedure need be per-
formed by operators of the station.

INTERNAL MCS ACCESS CONTROL MECHANISM

The user may wish to have the MCS process all access control transactions. This is done by defin-
ing special LOGON and LOGOFF message keys in the GLOBAL section of the TCL. A terminal
operator may then identify himself or herself to the MCS by inputting a transaction with the
special LOGON message key whose data is one of the valid access keys defined for that station.
If the MCS determines that the access key is indeed valid for that station, it allows the log-on,
and the terminal operator may input any transaction valid for that class of user. If the operator
enters an invalid access key, the MCS responds by sending an error message to that effect so
that a second attempt can be made. If there are two successive failures at logging onto a station,
the station is disabled, and an error message is sent to all System Monitor stations. The station
must then be enabled at a System Network Control station before it can be used again.

USER-SUPPLIED ACCESS CONTROL MODULE

The user has the option of declaring his or her own Access Control module to handle log-on
and log-off transactions. It is declared the same as any other Transaction Processor (TP) in the
TCL, with the following additional syntax:

ACCESSCONTROLPROGRAM = TRUE.

All message keys defined for this program are assumed by the MCS to be log-on or log-off mes-
sage keys. The user-supplied Access Control module is identical to any other User program in
its interface to the MCS, and as long as it follows the interface conventions, it can do any type
of checking desired. Users might determine that this program should not be defined as PERMA-
NENT = TRUE in the TCL. In this way, access control would only be active when a log-on
or log-off message is received from a station. If the Access Control module determines that the
attempted log-on or log-off is invalid, it may inform the station. If the attempt is a valid one,
the program must inform the MCS with special log-on and log-off passes of control. The Access
Control module is not restricted to logging on or logging off the originating station; it may re-
quest that the MCS validate the log-on or log-off of any station in the system. In addition, the
Access Control module may request that all stations in a “system” be logged off.

The log-on pass of control consists of:

1. Value 14 in MSG-ACTION (WORD[1] of COMMON).

2. A valid access key in the text area of COMMON.

3. The length of the access key in MSG-LENGTHIN (WORD[7] of COMMON).

4. The station number of the station to be logged on in MSG-DEST (WORDI[4] of COM-
MON). (0 means log-on station that originated the message).

The log-off pass of control consists of:

1. Value 16 in MSG-ACTION (WORDI[1] of COMMON).
2. The station number of the station to be logged off in MSG-DEST (WORD[4] of COM-
MON). (0 means log-off station that originated the message).

The "system” log-off pass of control consists of value 21 placed in MSG-ACTION (WORD[1]
of COMMON). This logs off all stations in this system.

The MCS performs the same checks on an access key passed to it by an Access Control module
that would be performed under the internal MCS access control mechanism.

If the MCS determines that the log-on or log-off pass of control is valid, it returns a NORMAL
response to the Access Control module (MSG-ACTION (COMMON(J[1]) = 6, MSG-LENGTHIN
(COMMONI7]) = 0). If the log-on or log-off pass of control is invalid, the MCS returns a secur-
ity error to the Access Control module MSG-ACTION (COMMON(I1]) = 5, MSG-LENGTHIN
(COMMON(7]) = error code). It is up to the Access Control module to inform the terminal op-
erator of the result of the attempted log-on or log-off. The possible error codes are as follows.

143 — Undefined ACCESSKEY

144 — ACCESSKEY not allowed at station
145 — Too many users

146 — User already logged on

147 — Another user already logged on

148 — Station is assigned

If a non Access Control Program attempts to pass one of the special log-on or log-off requests
to the MCS, it will receive a special security error (MSG-ACTION (COMMONI[1]) = 5, MSG-
LENGTHIN (COMMONI7]) = 133).

1096567

Station Bits

The user-supplied Access Control module has the added capability of changing the station bits
of the station to which the user is trying to log on or log off. The Access Control module may
change the station bits in COMMON]I8] prior to passing control to the MCS for log-on or log-
off verification. If the log-on or log-off is valid, the MCS moves whatever is in the station bits
in COMMON into the station bits for the station that is attempting the log-on or log-off. This
means that users can set up their own conventions, utilizing constant station bits (declared in the
TCL) in conjunction with variable station bits (set at log-on and log-off time). If the Access Con-
trol module is a Process program, it should use WORDI[12] of the CONTROLWORDS array for
the same purpose. In the case of the "system” log-off pass of control, the contents of the station
bits word are used as a mask applied to the station bits of all stations in the system.

Individual ldentification

If INDIVIDUALID is specified TRUE for a station in the TCL, the MCS accepts a 2-word iden-
tifier from the Access Control module with each valid log-on request from that station. The iden-
tifier should be placed into MSG-USERID1 (COMMON][21}) and MSG-USERID2
(COMMON]22]) by the Access Control module before requesting log-on verification by the MCS.
If the log-on is valid, the contents of MSG-USERID1 (COMMON][21}]) and MSG-USERID2
(COMMON]22]) are saved by the MCS and returned to a TP each time the user inputs a transac-
tion at that station. The individual-ID is removed when the user logs off the station. If the Access
Control module is a Process program, it should use WORD[25] and WORDI26] of the CON-
TROLWORDS array for the same purpose.

SECTION 8
NETWORK MANAGEMENT AND CONTROL

Network management and control functions are handled by the Control module. This module
is invoked from the Process-everything module. It may be invoked once and remain in existence
for the entire time the Message Control System (MCS) is running, or it may be invoked each
time it is needed. This depends on whether it was specified in the TCL that CONTROLPER-
MANENT = TRUE.

The Control module has two parameters, both events. One of these events is used by Process-
everything to wake up Control; the other is used by Control to wake up Process-everything.
When Process-everything detects a message in the Control queue, it causes a Control event. Con-
trol then wakes up and retrieves the message (using the Global procedure GETMESSAGE). After
processing the message, Control responds, if appropriate (using the Global procedure SENDMES-
SAGE), causes the Process-everything MASTEREVENT, and either goes to End-of-Job or goes
to sleep, depending upon the value of CONTROLPERMANENT. The Control module, then, op-
erates exactly as if it were a Process program, and in fact, the MCS treats it as if it were.

In order to effect certain levels of control over the data communications processing environment,
each institution or application (hereafter referred to as "system”) has the capability to identify
certain stations as System Network Controllers or System Monitors. A System Network Control-
ler (SPO) is defined as a station that can issue System Control messages and System Definition
messages. A System Monitor is defined as a station that receives messages of a system nature.
A station can be defined as both System Network Controller and System Monitor, or it can be
individually assigned as either a System Network Controller or a System Monitor. At least one
System Network Controller and one System Monitor must be defined.

System Control messages make it possible for Network Control stations to affect and/or monitor
system operations. After the MCS is initialized, the only stations enabled for input and output
are Network Control stations. It is through these stations that System Control messages are sent
to initiate the system, or parts of the system. It is also possible to enter System Control messages
(? messages) at the computer’s supervisory console station using the SM (Send Message) com-
mand. The syntax for entering such a command is as follows:

<mix no>SM:? <text>

The <mix no> is the job number of the MCS. When this command is accepted by the MCS,
the first part of any response is displayed at the console. System Control messages may also be
issued by an Access Control Program using the Transaction Processor TP-to-TP routing
mechanism. The Format Generator is capable of issuing UPDATE FORMAT and STATUS FOR-
MAT commands. No other programs have this capability.

1096567

8-1

Some Control messages are for informational purposes only; that is, they request information
which is contained in the MCS tables. Other messages affect or change the contents of those ta-
bles.

The syntax of System Control messages is contained in the remainder of this section.

NOTE
Beginning with ”“System Defined Input Message,” the material contained
in this section is presented in the following order: 1) Message, 2) Syntax,
and 3) Semantics.

SYSTEM DEFINED INPUT MESSAGE

Syntax:

<system defined input message> ::=
< assign input message> /
<change input message> /
<close input message> /
<compute input message> /
<dollar-sign input message> /
<intercept input message> /
<mode input message> /
< quit input message> /
<refresh output message> /
<switch input message >

Semantics:

< System defined input message>s allow a station to affect its message handling, monitor other
stations, indicate operability of its station, control the data communication system, and perform
arithmetic calculations.

ASSIGN INPUT Message
Syntax:
<assign input message> ::=
ASSIGN <optional station specification> <comment> TO

<program name>

<optional station specification> ::=
<station specification> / <empty>

1096567

Semantics:

The <assign input message> is used to attach any station to a Transaction Processing program.
The user must be logged onto the station before the assignment is allowed. If the user does not
have access to any one of the message keys associated with the Transaction Processing program,
the assignment is not allowed, nor is it allowed on a multilog-on station. After the station is
successfully assigned, all input messages except <system defined input message>s and <system
control message>s are sent to the Transaction Processing program without the need of the nor-
mal message key. If such an input message is headed by a normal message key, however, the
appropriate module and function indices and item count are passed to the TP; and, if an editor
exists for the Transaction Processing program, input formatting is also performed if required.

If the assign message is valid, a copy of it is sent to the Transaction Processing program.

A station is "unassigned” by means of the <close input message>. If the <optional station
specification> is not <empty> then the station specified is assigned to the program rather than
the station entering the assign message.

The responses to an <assign input message> are:

1. If assign message valid:

STATION <station name> (<station number>) IS
ASSIGNED TO <program name>
IN <mode> MODE

2. If assign message invalid:

ASSIGN MESSAGE INVALID
PLEASE RE-ENTER

3. If station already assigned:
THIS STATION HAS NOT BEEN CLOSED

CHANGE INPUT Message

Syntax:

<change input message> ::=
CHANGE <comment> <to> <mode> <comment>

<mode> : = <data mode> / <practice mode>
<data mode> ::= DATA
< practice mode> ::= PRACTICE

8-4

Semantics:

The <change input message> is used to change the mode that a station is in. Normally a station
is in <data mode>, which means the input messages from this station are not of a practice or
test nature (indicated by < practice mode>). The station’s mode is passed to a Transaction Pro-
cessing program via the COMMONAREA for use as required.

The response to the <change input message> is:

1. If change message valid:

STATION <station name> (<station number>) IS
IN <mode> MODE

2. If change message invalid:
PLEASE REPEAT CHANGE MESSAGE

CLOSE INPUT Message
Syntax:

<close input message> ::=
CLOSE <optional station specification> <comment>

Semantics:

The <close input message> is used to unassign an assigned station. If the station is assigned
to a program, a copy of the close message is sent to the Transaction Processing program.

A user may not log off an assigned station until the station is closed.

If <optional station specification> is not <empty> then the station specified is closed rather
than the station entering the assign message.

The response to the <close input message> is:

STATION <station name> (<station number>) HAS BEEN CLOSED
STATION IS IN <mode> MODE

COMPUTE INPUT Message
Syntax:

<compute input message> ::=
COMPUTE <output format> <arithmetic expression>
<compute comment >

1096567

<output format> ::=
<decimal output> /
<binary output> / <octal output> /
< quaternary output> /
< hexadecimal output> /
<BCL output> /
< ASCII output> /
<EBCDIC output>

<decimal output> ::= DECIMAL / DEC / <empty>
<binary output> ::= BINARY / BIN

<octal output> ::= OCTAL / OCT

< quaternary output> ::= QUATERNARY / QUA

< hexadecimal output> ::= HEXADECIMAL / HEX
<BCL output> ::= BCL

< ASCII output> ::= ASCII / ASC
<EBCDIC output> ::= EBCDIC / EBC

< arithmetic expression> ::=
<term> / <adding operator> <term>/
< arithmetic expression> <adding operator> <term>

<term> ::= <factor> / <term> <multiplying operator>
< factor>

<factor> ::=
<primary> /
<factor> < exponentiation operator> < primary>

<primary> ::= <unsigned number> / <string> / <operand>
<adding operator> ::= + / —

<multiplying operator> ::= * / <slash> / DIV / MOD
<exponentiation operator> ::1= **

<operand> :: =

< function expression> /
(< arithmetic expression>) /
< arithmetic constant identifier >

8-6

< function expression> ::=
< function name> (<arithmetic expression>)

< function name> ::=
INTEGERT /
INTEGER /
ENTIER /
ABS /
NABS /
SIGN /
SIN /
COoS /
TAN /
COTAN /
ARCSIN /
ARCCOS /
ARCTAN /
SINH /
COSH /
TANH /
LOG /
LN /
EXP /
ERF /
GAMMA /
LNGAMMA /
SQRT

< arithmetic constant identifier> ::= PI / E '/ RANDOM
Pl ::= 3.1415926535897932384626
E ::= 2.7182818284590452353603

RANDOM :: =
[a member of a set, 0.0 LEQ member LEQ 1.0, whose
members have equal probability of occurring.]

<compute comment> ::= ; <comment>

<comment> =
[any sequence of <letter>s, <digit>s or <single
space>s with the exception of the word “to” in
certain syntax definitions] / <empty>

Semantics:

The <compute input message> allows arithmetic calculations to be performed at a station. Sta-
tion accessibility is controlled by the <master compute statement> in the <system section> or
the <compute statement> in the <station section>.

Function names are defined as follows (where <ae> indicates an arithmetic expression):

Name Definition
INTEGERT Integerize <ae> by truncation
INTEGER Entier (<ae> + 0.5)

ENTIER Largest integer not greater than <ae>

ABS Absolute value of <ae>

NABS Negative absolute value of <ae>

SIGN +1 If <ae> GRT 0, 0 if <ae> EQL 0, -1 if <ae> LSS 0
SIN Sine of <ae>, <ae> in radians

COS Cosine of <ae>, <ae> in radians

TAN Tangent of <ae>, <ae> in radians

COTAN Cotangent of <ae>, <ae> in radians

ARCSIN Principal value of arc sine of <ae>, -1 LSS <ae> LSS 1
ARCCOS Principal value of arc cosine of <ae>, -1 LSS

ARCTAN Principal value of arc tangent of <ae>, <ae> in radians
SINH Hyperbolic sine of <ae>, <ae> LEQ 68059.0

COSH Hyperbolic cosine of <ae>, <ae> LEQ 68059.0

TANH Hyperbolic tangent of <ae>

LOG Logarithm to base 10 of <ae>, <ae> GTR 0.0

LN Logarithm to base e of <ae>, <ae> GTR 0.0

EXP Base e raised to the <ae> power, <ae> LEQ 68059.0
ERF Standard error function of <ae>

GAMMA Gamma function of <ae>, 0.0 LSS <ae> LEQ 8461.0

LNGAMMA Natural logarithm of the gamma function at <ae>, 0.0 LSS <ae>
LEQ 8461.0.

SQRT Square root of <ae>, <ae> GEQ 0.0

The sequence in which operations are performed is determined by the precedence of the operators
involved. The order of precedence is:

1. FIRST: **

2. SECOND: * / MOD DIV
3. THIRD: + -

1096567

When operators have the same order of precedence, the sequence of operation is determined by
order of their appearance, from left to right. Parentheses can be used in normal mathematical
fashion to override the usual order of precedence. The operators are defined as follows:

1. <Adding operator>s are defined to be:

+ : REAL ADDITION

a.
b. : REAL SUBTRACTION

2. <Multiplying operator>s are defined to be:

a. * : REAL MULTIPLICATION
b. / : REAL DIVISION

c. DIV INTEGER DIVISION: Y DIV Z = SIGN(Y/Z)*ENTIER(ABS(Y/Z))
d. MOD REAL REMAINDER DIVIDE: Y MOD Z = Y-(Z*(SIGN(Y/Z)*ENTIER

(ABS(Y/2))))
3. <Exponentiation operator> is defined to be:
** REAL EXPONENTIATION, 10 ** 2 = 100
4. <Unsigned number> is defined to be:
a. largest number that is acceptable to the integer function: 30223145490365729367543 =
8 ** 26 — 1

b. smallest real number: 1.93854585713758583355640 E-29581 = 8%*.32755

c. largest real number: 1.94882838205028079124469 E 29603 = (1 — 8 ** .26) * 8 **
32780

5. The response to the <compute input message> is:
COMPUTE ANSWER IS <number>

The <number> can be an integer, a real number, or an engineering notation (e.g.
1.3998@ 05 = 1.3998 * 10 ** 5 / 1.3998@ - 00005 = 113998 * 10 ** -5),

Example 1:

COMPUTE 10 * 10
COMPUTE ANSWER IS 100

Example 2:

COMPUTE 180 / PI; DEGREES PER RADIAN
COMPUTE ANSWER IS 57.2957795130823208768

Example 3:

COMPUTE SQRT (4) ** 2 + 4
COMPUTE ANSWER IS 8

$ INPUT Message

Syntax:

<dollar sign input message> ::=
$. <service digit>.<optional comment> /
$. <service digit> <station specification>
<optional comment >

<service digit> =1/ 2
Semantics:

The <dollar sign input message> allows a station to change its operating status with the MCS.
It also allows one station to put another out of service and enables SPECIAL = TRUE stations
to put other stations back in service.

A <service digit> of 1 indicates the station wishes to go OUT-OF-SERVICE. At that time, the
station is marked as inoperative, and the message, including any comment, is routed to all
Monitor stations. Output for this station is subsequently queued, pending resumption of service,
or for a period of 15 minutes, whichever is sooner. Output to alternate stations is not attempted
during this type of OUT-OF-SERVICE status.

A <service digit> of 2 indicates the station wishes to resume its former IN-SERVICE status.
This action can only be performed by stations described with SPECIAL = TRUE in the <sta-
tion section> of the TCL. OUT-OF-SERVICE stations with SPECIAL = FALSE expressed or
implied can only resume their former IN-SERVICE status via a System Control message issued
from a Network Control station or expiration of the 15-minute time period.

Example:

$.1. I AM CHANGING FORMS.

$.2. PUT ME BACK IN SERVICE NOW.

$.1 S STATIONI. GOING OUT OF SERVICE
INTERCEPT INPUT Message

Syntax:

<intercept input message> ::=
INTERCEPT <cancel> STATION <station ident>
<intercept myuse> < comment>

<cancel> ::= — / MINUS / <empty>
<station ident> ::= <station name> / (<station number>)
<intercept myuse> ::= IN / OUT / 10 / <empty>

1096567

89

Semantics:

The <intercept input message> is used by an INTERCEPT = TRUE station. This message is
used to start or stop interception of another station’s input and/or output messages. The <inter-
cept myuse > part specifies which messages are to be intercepted. <Intercept myuse> of <emp-
ty> assumes interception of output messages.

A single station may intercept many stations but may be intercepted by only one station.

The responses to an <intercept input message> are:

1. If intercept message valid and <cancel> is <empty>:

INTERCEPT OF STATION <station name> (<station number>) STARTED 11/12/
73 1345

2. If intercept message valid and <cancel> is — or minus:

INTERCEPT OF STATION <station name> (<station number>) STOPPED 01/03/
74 1128

3. If intercept message invalid, and format is bad:
INTERCEPT MESSAGE INVALID
4. If intercept message invalid, and station has already been intercepted:

INTERCEPT MESSAGE INVALID STATION ALREADY BEING INTERCEPTED BY
STATION <station name> (<station number>)

MODE INPUT Message

Syntax:

<mode input message> ::= MODE <comment>

Semantics:

The <mode input message> is used to determine the mode my station is in.

The response to a <mode input message> is:

1. If station assigned:

STATION <station name > (< station number>) IS ASSIGNED TO <program name >
IN <mode> MODE

2. If station not assigned:

STATION <station name> (<station number>) IS IN <mode> MODE

QUIT INPUT Message

Syntax:
<quit input message> ::= QUIT <comment>
Semantics:

The <quit input message> is used to disconnect a dial-in station from the Data Communication
System. If the station is assigned to a Transaction Processing program, a copy of the quit mes-
sage is forwarded to that program.

REFRESH OUTPUT Message

Syntax:

<refresh output message> ::=
REFRESH <optional disk address> <optional destination >

<optional disk address> ::= <integer> / <empty>

<optional destination> ::=
TO <station specification> / <empty>

Semantics:

The <refresh output message> can be used to recall the last output audited for the terminal.
Note that this is not necessarily the last output actually received at the terminal. If an integer
follows the REFRESH command as data, it is assumed that this is the disk address of the base
record of an output message, and the specified message is recalled. This is the method by which
possible duplicate outputs may be recalled by the user after recovery. A recall TP need not be
declared in the TCL in order to use the REFRESH command.

If a destination follows the REFRESH command as data, this implies that the destination termi-
nal is to be refreshed. If an integer is used as a disk address in this case, it is assumed that this
is the disk address of the base record of an output message from the destination terminal, and
the specified message is recalled at the destination terminal.

REFRESH can only result in the requeuing of a message to its original destination station. If
a disk address causes retrieval of a message not originally destined to the station for which the
‘request was intended, the request is invalid and is not honored.

Example:

REFRESH 123
REFRESH

REFRESH TO S TTY2
REFRESH 97 TO S(3)

1096567

SWITCH INPUT Message

Syntax:

<switch input message> ::=
SWITCH < station specification> TO <system
specification> / SWITCH TO <system specification>

Semantics:

The <switch input message> allows the operator to switch a station to a new system. If no
station is specified, the operator’s station is switched. Only a Network Control Station may
specify that a station other than itself be switched. The system to which station currently belongs
is backed up in the Control file so that it remains across EOJs until a new generation.

Example:

ENTER: SWITCH TO SYSTEM (2)
RESPONSE: SYSTEM SWITCH COMPLETED

POSSIBLE ERRORS:

SWITCH CANNOT BE DONE: STATION ASSIGNED

SWITCH CANNOT BE DONE: STATION LOGGED ON

SWITCH CANNOT BE DONE: STATION BEING INTERCEPTED
SWITCH CANNOT BE DONE: STATION NOT DECLARED IN SYSTEM
SWITCH CANNOT BE DONE: SWITCHING STA INTERCEPTING
SWITCH CANNOT BE DONE: SWITCHING STA MUST BE SPO

SYSTEMCONTROLMESSAGES

Syntax:

<system control message> ::=
<QM> <control request list>

<QM> = ?

<control request list> ::=
<control request> /
<control request list> ; <control request>

<control request> ::=
<add request> /
<attach request>/
<change request> /
<clear request> /
< disable request> /
<dump request> /

<enable request> /
<interrogate request> /
<move request> /
<recover request> /
<release request> /
<run program request> /
<status request> /
<subtract request> /
<system request> /
<table request> /
<update request> /

< where request>/
<zip request>

Semantics:

System Control messages make it possible for Network Control stations to affect and/or monitor
system operation. After the MCS is initialized, the only stations enabled for input and output
are the Network Control stations. It is through these stations that System Control messages are
sent to initiate the total network, individual systems, or parts of individual systems.

As in the case of System End-of-Job, a <system request> affects the total system. The other
requests may affect groups of elements in the system or a particular element in the system. Re-
quests that affect groups of elements contain an <inclusive identification list>, whereas a re-
quest that affects a particular element contains a <specific identification list>.

NOTE
In order to help the reader understand the syntax of the individual <sys-
tem control message >, the definitions that comprise an <inclusive iden-
tification list> are defined below instead of as they occur in in the syn-
tax.

Inclusive ldentification List
Syntax:

<inclusive identification list> ::=
<inclusive identification> /
<inclusive identification list>,
<inclusive identification>

<inclusive identification> ::=
STATIONS / SS
PROGRAMS / PS
INPUTQUEUES / IS
COMMONS / CS
LINES / LS
TEST /
ENABLED /

1096567

8-13

8-14

SYSTEMSPOS /
SYSTEMMONITORS /
SPECIAL /

MCSS

Specific ldentification List
Syntax:

< specific identification list> ::=
< specific identification> /
< specific identification list>,
< specific identification >

<specific identification> ::=
<program specification> /
<system specification> /
<input queue specification> /
< station specification> /
<area specification> /
<common specification> /
<line specification> /
<cluster specification> /
<DCP specification> /
<message key specification> /
<message id specification>

<program specification> ::=
PROGRAM < program designator> / P <program designator>

< program designator> :: =
<program name> <stack designator> /
(<program number>) <stack designator>

<stack designator> ::=
— <stack number> / <empty>

<stack number> ::= <integer>

<system specification> ::=
SYSTEM <system designator>

<system designator> ::=
<system name> / (<system number>)

<input queue specification> ::=
INPUTQUEUE
<input queue designator> / I <input queue designator>

1096567

<input queue designator> ::=
<input queue name> / (<input queue number>)

< station specification> ::=
STATION <station designator> /
S <station designator>

<station designator> ::=
<station name> / (<station number>)

<area specification> ::=
AREA <area designator> / A <area designator>

<area designator> ::=
<area name> / (<area number>)

<common specification> ::=
COMMON (<integer>) / C (<integer>)

<line specification> ::=
LINE <line designator> / L <line designator>

<line designator> ::=
(<DCP address>) / <station name>

<DCP address> ::=
<DCP >:<cluster >: <adapter >

<cluster specification> ::=
CLUSTER (<cluster address>)

<cluster address> ::= <DCP>:<cluster>
<DCP specification> ::= DCP (<DCP>)
<DCP> ::= <integer>

<cluster> ::= <integer>

<adapter> ::= <integer>

<message key specification> ::=
MKE < message key>

<message id specification> ::=
MID <message identifier >

8-15

8-16

ADD Request

Syntax:

<add request> ::=
<ADD <station specification> TO
<line specification> <optional terminal name change>

<optional terminal name change> ::=
AS <string> / <empty>

Semantics:

The ADD command allows a station to be added to a line. The ADD of a station with an existing
line assignment will function as a MOVE network control command. The station must first be
disabled. The <optional terminal name change> allows the station to be associated with a new
terminal. This new terminal must be a valid NDL terminal name.

ATTACH Request

Syntax:

<attach request> ::=
ATTACH <attach specification list>

< attach specification list> ::=
<attach specification> /
<attach specification list>, <attach specification >

<attach specification> ::=
<station specification> / <line specification >
<DCP specification >

Semantics:

The ATTACH command is used to allow GEMCOS to gain control of stations which are not
currently attached. This can happen after a datacom reconfiguration or a DCP beginning or end
of job while GEMCOS is running. When the <attach specification> is a <line specification >
all stations belonging to GEMCOS on that line will be attached. When the <attach specification
is a <DCP specification>, any stations which were last attached to GEMCOS through that DCP
and are now not attached will be attached.

Example 1:

MESSAGE: ?ATTACH S(1), L TD2
RESPONSE: #1430 STATION (1) ATTACHED
#1430 STATION (2) ATTACHED

1096567

Example 2:

MESSAGE: ?ATTACH DCP (0)
RESPONSE: #1432 STATION (1) ATTACHED
#1432 STATION (2) ATTACHED

CHANGE Request

Syntax:

<change request> ::=
CHANGE <change specification list>

<change specification list> ::=
<change specification> /
<change specification list>, <change specification>

<change specification> ::=
<station change> /
<input queue change> /
<program change> /
<system change> /
<line change> /
<cluster change >

<station change> ::=
<station specification>
<station change object >

<station change object> ::=
<object> /
< alternate object> /
< address object> /
<line delete object> /
< backspace object> /
<end of message object> /
<control char object> /
<output object> /
<station host name object> /
<station your name object> /
<top object> /
<que object> /
< monitor object> /
< format monitor object> /
<my use object> /
<logical ack object> /
<select object>

8-18

<bot object> ::=
bot <to> NEXT /
BOT <to> BOTBOT /
BOT <to> TOP /
BOT <to> <integer>

<to> = TO / =

< alternate object> ::=
ALTERNATE <to> <station designator> /
ALTERNATE <to> - <station designator>

<address object> ::=
ADDRESS <to> <address> /
ADDRESS <to> (<address>, <address>)

<address> ::=
<EBCDIC string> / <hex string>
[maximum length of 3 bytes]

<line delete object> ::=
LINEDELETE <to> <1-byte string>

< backspace object> ::=
BACKSPACE <to> <I1-byte string>

<end of message object> ::=
ENDOFMESSAGE <to> <1-byte string>

<control char object> ::=
CONTROLCHAR <to> <I1-byte string>

<output object> ::=
OUTPUT <to> DIRECT /
OUTPUT <to> NORMAL /
OUTPUT <to> CLOSE

<top object> ::= TOP <to> <integer>
<queue object> ::= QUE <to> <integer>

<monitor object> ::=
MONITOR <to> <logical value>

< format monitor object> ::=
FMTMONITOR <to> <logical value>

<my use object> ::=
MYUSE <to> 1/
MYUSE <to> 2 /
MYUSE <to> 3

<logical ack object> ::=
LOGICALACK <to> <logical value>

<select object> ::=
SELECT START <to> <1-byte string>
STOP <to> < I-byte string>

<station host name object> ::=
STATIONHOSTNAME <to> <identifier>

<station your name object> ::=
STATIONYOURNAME <to> <identifier>

<input queue change> ::=
<input queue specification >
<input queue change object>

<input queue change object> ::=
<BOT object> / <time limit object> /
<queue depth object> / <queue object> /
<rerun object>

<time limit object> ::=
TIMELIMIT <to> <integer>

<queue depth object> ::=
QUEUEDEPTH <to> <integer>

<rerun object> ::=
RERUN <to> <logical value>

<program change> ::=
<program specification> <program change object>

<program change object> ::=
<multiple inputs object> /
<permanent object> /
<title object> /
<control bit object> /
<max copies object> /
<min copies object> /
<host name object> /
<subsystem name object> /
<subspaces value object> /
<declared priority value object>

1096567 8-19

<multiple inputs object> ::=
REN <to> <logical value>

< permanent object> ::=
PER <to> <logical value>

<title object> ::=

TITLE <to> <title specification>

<title specification> ::

<string > / <optional user code password >
< generalized identifier> <pack specification>

<control bit object> ::= BIT <to> <integer>

<max copies object> ::=
MAXCOPIES <to> <integer>

[number must be LEQ max copies value defined in TCL]

<min copies object> ::=
MINCOPIES <to> <integer>

<host name object> ::=
HOST TO <identifier >

. —

<subsystem name object> ::=
SUBSYSTEM TO <identifier >

< subspaces value object> ::=
SUBSPACES TO <integer>

<declared priority value object> ::=
DECLAREDPRIORITY TO <integer>

<system change> :

<system specification> <system change object>

<system change object>

<host name> / <subsystem name>

<line change> ::=

<line specification> <line change object>

8-20

1096567

<line change object> ::=
<to> (<dcp address>)
<type object> /
< C2 object> /
< BCBI object> /
<SCSA object> /
<CI object> /
<IR object> /
<MR object> /
<OR object> /
<MODEM object >

<type object> ::=
TYPE <to> <integer> / TYPE <to> <string>

<C2 object> ::=
C2 <to> <integer> / C2 <to> <string>

<BCBI object> ::=
BCBI <to> <integer> / BCBI <to> <string>

<SCSA object> 1=
SCSA <to> <integer> / SCSA <to> <string>

<CI object> ::=
CI <to> <integer> / CI <to> <string>

<IR object> 1=
IR <to> <integer> IR <to> <string>

<MR object> ::=
MR <to> <integer> / MR <to> <string>

<OR object> ::=
OR <to> <integer> / OR <to> <string>

<MODEM object> ::= MODEM <to> <string>

<cluster change> :: =
<cluster specification> <cluster change object

<cluster change object> ::=
<to> (<cluster address>)

8-21

Semantics:

STATION CHANGES. Station change requests allow changes to TCL, DCP, or run-time related
attributes for the station. Alternate, address, my-use, logical-ack, stationhostname, and sta-
tionyourname attributes are described in the TCL documentation (refer to section 3). Various
control characters for the station may be changed provided the NDL requests are written to han-
dle the changes. Also, run-time station queue attributes and station monitor activities may be
changed. Appendix D contains the format of the station monitor listing.

INPUTQUEUE CHANGES. The time limit and queue depth attributes as described in the TCL
documentation may be changed with an Input queue change request. Additionally, run-time Input
queue attributes such as the BOT pointer and Input queue rerun state may be changed.

PROGRAM CHANGES. All program changes relate to TCL attributes for the program. A de-
scription of these attributes can be found in the TCL documentation (refer to section 3).

LINE AND CLUSTER CHANGES. Line and cluster changes allow for changes to the network
configuration and changes to the DCP-related line attributes.

The Select Start and Stop refer to starting and stopping characters in the Data Line Monitor out-
put for a line analyzer station. The <output object> directs line analyzer output either to printer
backup (NORMAL) or to a line printer (DIRECT).

Example 1:

MESSAGE: ?CHANGE S TTY2 BOT TO
TOP
RESPONSE: # STATION TTY2 BOT
) CHANGED
FROM 86 TO 97

Example 2:

MESSAGE: ?CHANGE I(13) QUEUEDEPTH
TO 5

RESPONSE: # INPUTQUEUE (13)
QUEUEDEPTH CHANGED
FROM 3 TO 5

Example 3:
MESSAGE: ?CHANGE P(2) TITLE TO
"PROG1”
RESPONSE: # PROGRAM (2) TITLE
CHANGED
FROM TEST/PROG. TO
PROGI.

8-22

1096567

CLEAR Request

Syntax:

<clear request> :: =
CLEAR <clear identification list>

<clear identification list> ::=
<clear identification> /
<clear identification list>, <clear identification>

<clear identification> ::=
<station specification> /
<program specification> / <line specification>

Semantics:

CLEAR STATION. The station must be disabled prior to the clear request. If the station is wait-
ing for a TERMINATE LOGICALACK, an acknowledgement is sent to the terminal. A recall-
message request is sent, followed by a dummy output to the station to clear it.

If the station is in transaction mode at this time, it is taken out

CLEAR PROGRAM. The program must be disabled prior to the CLEAR request. If the pro-
gram is a User or Port program, it must have been assigned a Common row, and the program
must be busy. The program, is then DSed. If the program has a service and/or editor program
not currently associated with another active program, the service and editor program are also
DSed. When <stack designator> is <empty>, the single or master copy of the program is
cleared. Otherwise, the program copy whose stack number matches the <stack designator> is
cleared.

CLEAR LINE. A dial-in line that is connected and whose station is not busy is disconnected.

DISABLE Request

Syntax:

<disable request> ::=
DISABLE <disable action>

<disable action> ::=
<system option> UPDATES <service comment> /
STATISTICS /
<system option> ALL /
<system option> ALL
<inclusive identification list> /
< specific identification list> /
< specific identification list> SERVICE
< service comment >

823

8-24

<system option> :: =
<system specification> / <empty>

Semantics:

A <disable request > has essentially the opposite effect of an <enable request> except that Sys-
tem Network Controllers cannot be disabled. If a non-busy program is disabled, the MCS will
tell it to go to end of task; if a busy program is disabled, the MCS will wait until it is not busy
(i.e., until it finishes its current transaction), and then tell it to go to end of task. When <system
option> is <empty>, the request affects all systems. Otherwise, only the specified system is
affected. (For the use of the word SERVICE, refer to the discussion on System Service Messages
in section 8.)

Example 1:

MESSAGE: ?DISABLE ALL PROGRAMS
RESPONSE: # TTTT SYS1(1) PROGRAMS
ALL DISABLED

Example 2:

MESSAGE: ?DISABLE ALL TEST
RESPONSE: # TTTT SYS1(1) TEST ALL
DISABLED

Example 3:

MESSAGE: ?DISABLE I(2)
RESPONSE: # TTTT INPUTQUEUE (2)
DISABLED

Example 4:

MESSAGE: ?DISABLE LINE (0:0:1)
RESPONSE: # TTTT LINE (0:00:01)
DISABLED

Example 5:

MESSAGE: ?DISABLE UPDATES

RESPONSE: # TTTT ALL SYSTEMS
UPDATES ALL DISABLED
$.4. MGTESTSYS! SYSTEM
QUERYS AND ADMIN
ONLY UNTIL FURTHER
NOTICE MM/DD/YY TTTT

DUMP Request

Syntax:
<dump request> ::= DUMP DATACOM
Semantics:

DUMP DATACOM initiates an on-line Datacom (Data Communications) queue file dump
(CONTINUOUSPROCESSING must have been set TRUE in the TCL GLOBAL section). Rec-
ords in the Datacom queue files are dumped to an archive tape and then returned to the system
for reuse. For more information, refer to section 9.

Example:

MESSAGE: ?DUMP DATACOM
RESPONSE: DATACOM WILL BE DUMPED

ENABLE Request

Syntax:

<enable request> :: =
ENABLE <enable action>

<enable action> ::=
<system option> UPDATES <service comment> /
STATISTICS /
<system option> ALL /
<system option> ALL
<inclusive identification list> /
< specific identification list> /
< specific identification list> SERVICE
<service comment >

Semantics:

ENABLE UPDATES. A DISABLE UPDATES Network Control command causes all transac-
tions to be denied to programs specified as MODIFY = TRUE in their TCL declaration. EN-
ABLE UPDATES allows transactions to be resumed for these programs. (For the use of the word
SERVICE refer to the discussion on System Service Messages in this section.)

ENABLE STATISTICS. ENABLE STATISTICS allows the accumulation of run-time statistics
for the system.

1096567 8-25

8-26

ENABLE <system option> ALL. ENABLE ALL readies all lines in the network and enables
input for all stations whose system is not recovering. All input queues and programs whose sys-
tem is not recovering, and which were not previously disabled by a Network Control command,
are made operative. If previously disabled by a Network Control command, Input queues, sta-
tions, and programs can only be enabled by a specific enable request. When < system option>
is <empty>, the request affects all systems. Otherwise, only the specified system is affected.

ENABLE <system option> ALL <inclusive identification list>. When <system option> is
<empty >, the request affects all systems. Otherwise, only the specified system is affected.

STATIONS, TEST, and SPECIAL. If the system is not recovering, all stations are input enabled.
If TEST and SPECIAL are specified, those stations with TEST = TRUE or SPECIAL = TRUE
respectively are enabled.

INPUTQUEUES and PROGRAMS. If the system is not recovering and was not previously
disabled by a Network Control command, all Input queues and programs are made operative.

LINES. All lines are made ready.
COMMONS. All commons are made operative.

SYSTEMSPOS and SYSTEMMONITORS. All System Network Controllers and System Monitors
are input enabled.

ENABLE < specific identification list>. This readies any one of the items of the <specific iden-
tification list>. Following is a discussion of each member of this list.

1. STATION - The station is input-enabled.

2. INPUTQUEUE and PROGRAM - If previously disabled and still busy, a CLEAR re-

quest is required first for a program. Otherwise, if the system is not recovering, the Input

queue and the program are made operative. When <stack designator> in a program

specification is <empty>, the single or master copy of the program is affected. Other-

wise the program copy whose stack number is equal to the <stack designator> is af-

fected.

AREA - If the system is not recovering, all stations in the area are input-enabled.

4. LINE — The line is made ready. If the system is not recovering, all stations on the line
are input-enabled.

5. COMMON - The Common area is made operative.

6. DCP — All lines on the DCP are made ready. If the system is not recovering, all stations
on the lines are input-enabled.

7. CLUSTER — All lines on the cluster are made ready. If the system is not recovering,
all stations on the lines are input-enabled.

w

Example 1:

MESSAGE: ?ENABLE UPDATES

RESPONSE: # TTTT All SYSTEMS
UPDATES ALL ENABLED
$.5. MGTESTSYS1 SYSTEM
RESUME FULL
OPERATIONS MM/DD/YY
TTTT

Example 2:

MESSAGE: ?ENABLE ALL
RESPONSE: #TTTT SYS1 (1) ALL ENABLED

Example 3:

MESSAGE: ?ENABLE ALL PROGRAMS
RESPONSE: #TTTT SYSI (1) PROGRAMS
ALL ENABLED

Example 4:

MESSAGE: ?ENABLE 5(101)
RESPONSE: #TTTT STATION (101)
ENABLED

Example 5:

MESSAGE: ?ENABLE CLUSTER (0:1)
RESPONSE: #TTTT CLUSTER (0:01)
ENABLED

INTERROGATE Request

Syntax:

<interrogate request> .=
INTERROGATE <interrogate identification list> /
INTERROGATELOCAL <interrogate identification list>

<interrogate identification list> ::1=
<interrogate identification> /
<interrogate identification list>,
<interrogate identification>

1096567 8-27

<interrogate identification> ::=
< station specification> /
<line specification>

Semantics:

An interrogate station environment is sent to request NDL-related data communications informa-
tion. The following information is returned:

STATION NAME:

STATION IS ENABLED (EIP), STATION IS READY (RDY),

STATION IS ATTACHED (ATT),
RECONFIGURATION IN PROCESS (CIP),

STATION IS CAPABLE OF AUTOMATIC SEQ MODE (SEQ),
NDL SPECIFIED RETRY COUNT (RETRY =)

MCS NUMBER AND STATION LSN IF STATION
BELONGS TO ANOTHER MCS

DCP STATION INFO:
STATION PRIORITY (PRI =), STATION ACKNOWLEDGE (ACK),
STATION IS QUEUED (QUD), STATION IS ENABLED (EIP),
STATION IS READY (RDY), STATION TALLY (TALLY =),
STATION IS VALID (VALID),

LAST FLAG SET IN NDL (LAST FLAG =),
NDL STATION FLAGS (FLAGS =),

RECEIVE ADDRESS CHARS IF ANY (TSC =),
TRANSMIT ADDRESS CHARS IF ANY (CDC =),

STATION TOGGLES (TOGS =), RETRIES LEFT (RETRY LEFT =),
RETRIES (RETRY =), TALLY 0, TALLY 1, TALLY 2

TERMINAL INFO:
TERMINAL IS A SCREEN DEVICE (CRT)
MYUSE = (1 = IN, 2 = OUT, 3 = IN/OUT)
TERMINAL LINE WIDTH (WIDTH =)
TERMINAL BUFFER SIZE (BUFFER/MAXINPUT =)
TERMINAL PAGE SIZE (PAGE =)
TERMINAL MAX PAGE SIZE (MAX PAGE =)

LINE NUMBER:

LINE IS READY (RDY), RECONFIGURATION IN
PROGRESS (CIP),

DISCONNECT ABORTED (DIS), SWITCHED LINE
ERROR ENCOUNTERED

(SLE), PHONE RINGING (RNG), LINE STATUS
CURRENTLY CHANGING

(SUB), LINE IS CONNECTED (CON), AUTO-ANSWER
INFORCE (ANS),

LINE HAS AUTOMATIC CALLING UNIT: MAY BE

8-28

The INTERROGATELOCAL request generates a similar response to the INTERROGATE re-
quest; however, it uses the 104 DCWRITE to get the local DCP table information. This would
be useful if the local table information had changed but the main-memory tables had not been
updated.

INTERROGATELOCAL gives some of the same information as the response to the 2INTERRO-

DIALED OUT (ACU),
LINE IS A SWITCHED LINE (SWT),
CURRENT NUMBER OF STATIONS ON THIS LINE (STA/LINE =),
MAX STATIONS ALLOWED ON LINE (MAXSTATIONS =)

DCP LINE INFO:

LINE IS PRIMARY [FULL DUPLEX ONLY] (PRI),
LINE IS SECONDARY [FULL DUPLEX ONLY] (SEC),
LINE CONTROL INDEX (CNT INDEX =), LINE NOT READY
PENDING (NRP),
SWITCHED LINE ERROR (SLE), PHONE RINGING (RNG),
BUSY IN SWITCHED REQUEST (SWB), LINE IS CONNECTED (CON),
AUTOANSWER IN FORCE (ANS), LINE HAS ASSOCIATED ACU (ACU),
LINE IS A SWITCHED LINE (SWT), LINE HAS CONTROLLED
CARRIER (CCA),
LINE IS BUSY (BSY), LINE NOT TO BE USED,
SYNCHRONOUS LINE (SYNC)

LINE IS READY (RDY), LINE IS BUSY (BSY), LINE WRITE READY
(WRY)

LINE ACKNOWLEDGE READY (ACK), LINE IS CONNECTED (CON),

LINE IS QUEUED (QUD), CURRENT STATION NUMBER (STATION =),

MAX STATIONS ON LINE (MAXSTATIONS =)

LINE TOGGLE [1] (TGl =), LINE TOGGLE [0] (TGO =),

LINE TALLY [1], (TLY! =), LINE TALLY [0] (TLYO =),
INDEX FOR COLINE (COLIN# =),

ADAPTER TYPE (TYPE =) SYNC/ASYNC, BPS, CHAR, FRAME

INITIATE TRANSMIT DELAY, INITIATE RECEIVING DELAY,
TIMEOUT FOR THIS LINE

If line has automatic calling unit:

INDEX FOR ASSOCIATED ACU, INDEX FOR CONTINUE

GATE command, as well as the following additional information:

1096567

STATION INFO:

STATION FREQUENCY (FREQ)
REQUEST SET NUMBER (REQUEST SET)

LINE INFO:

INDEX REGISTER FROM CLUSTER (IR)
BC/BI REGISTER FROM CLUSTER (BCBI)

8-29

Example 1:

MESSAGE: ?INTERROGATE S TTY2
RESPONSE:

STATION TTY2:EIP,RDY,ATT,,SEQ,WIDTH = 72,RETRY = 1§

BELONGS TO MCS (1), LSN = 4

DCP STATION INFO:PRI = 0,,,EIP,RDY,TALLY = 0, VALID
LAST FLAG = 255,FLAGS = 00000000000000000000000
TOGS = 00000000 ,RETRY LEFT = 15, RETRY = 15
TLYO = 0,TLY1 = 0,TLY2 = 0

TERMINAL INFO: MYUSE = 3, WIDTH = 72, BUFFER/MAXINPUT = 80
PAGE = 0, MAXPAGE = 0

LINE(00:00:11):RDY,,,,,s,,,STA/LINE=1, MAXSTATIONS = 1

DCP LINE INFO:,,CNT INDX = 1,,,,5,55s5
RDY,,,,CON,,STATION = 0,MAXSTATIONS = 1
TGl = 0,TGO = 0,TLYl = 0,TLYO = 0,COLIN# = 0
TYPE =10100 ASYNC,110 BPS,8-BIT CHAR, 11-BIT FRAME
INIT TRANS DELAY = 0 ,INIT REC DELAY = 0
TIMEOUT = 2.936 SEC

Example 2:

MESSAGE: ?INTERROGATELOCAL S(3)
RESPONSE:

LOCAL DCP TABLES
STATION RGEMS6: EIP,RDY,,,
FREQ = O,REQUEST SET = 7,TALLY = 0,VALID
TOGS = 00100100,RETRY = S,INITIAL RETRY = §
TALLY[0] = 24,TALLEY[l] = 9,TALLY[2] = 1
LINE (00:00:01)HALF DUPLEX,LINE CONTROL INDEX = 0
©135253,ASYNC,IR = 277,BCBI = 32
LINESTATUS :,BSY,,,CON,QUD
TOG[l] = 1,TOG[0] = 0,STA INDEX = 2, MAX STATIONS = 17
TALLY[1] = 8,TALLY[0] = 7

MOVE Request
Syntax:
<move reque‘st> o=

MOVE <station specification> TO
<line specification> <optional terminal name change>

Semantics:

The <move request> moves an NDL station from one line to another. The station must first
be disabled. The <optional terminal name change> allows the station to be associated with a
new terminal. This new terminal must be a valid NDL terminal name.

8-30

1096567

RECOVER Request

Syntax:
<recover request> ::= RECOVER <system specification>
Semantics:

The <recover request> initiates recovery for the specified system. During recovery, the stations,
Input queues, and programs for the specified system are made inoperative, and enable requests
are denied.

Example:
MESSAGE: 7RECOVER SYSTEM (1)

RESPONSE: SYSTEM WILL BE
RECOVERED

CAUTION
Do not initiate recovery by Network Control command unless directed
to do so-by a system error message.

RELEASE Request
Syntax:

<release request> ::=
RELEASE <station designation> TO
<MCS specification >

<MCS specification> ::=
<identifier> / <identifier > ON <identifier >

Semantics:
The <release request> releases the specified station to the specified MCS.

Example:

? RELEASE STA1 TO SYSTEM/CANDE ON USERPACK

RUN PROGRAM Request

Syntax:

<run program request> =
RUN <no input program identification> /
RUN <external program identification >

8-31

8-32

<no input program identification> ::=
<program number> / (<program number>)

<external program identification> ::=
< generalized identifier >

Semantics:

The <run program request> is used to run a "no-input” program. Details are contained in the
PROGRAM section of section 3. The <program name> or <program number> must be de-
fined in the TCL. The no-input program is processed as a task under the MCS.

The <run program request> may also be used to run external Object jobs. (Interface specifica-
tions are presented in section 4.) The Object job is processed as an independent task with a file
called "HANDLER" label-equated to the originating station. If the internal name of the remote
file of the Object job is not called HANDLER, then the <run program request> should not
be used to initiate the Object job.

STATUS Request

Syntax:
<status request> ::= STATUS <status action>

<status action> ::=
UPDATES /
STATISTICS /
ALL <inclusive identification list> /
< specific identification list>

Semantics:

STATUS UPDATES and STATUS STATISTICS. Whether these actions are enabled or disabled
is indicated.

STATUS ALL <inclusive identification list>. The type of information returned depends on the
<inclusive identification list>. Following is a discussion of each member of this list.

1. STATIONS. For each station that is not operative, the following information is returned
delimited by commas:

STATION NAME AND NUMBER

DIALIN INDICATOR (DIN)

THIS STATION INTERCEPTING INDICATOR (IIF)

STATION INTERCEPTING THIS STATION (STATION NUMBER OF INTERCEPT-
ING STATION)

OUT OF SERVICE VIA EXCESSIVE NDL ERRORS (SUCH AS TIMEOUT OR
PARITY) OR $ SERVICE MESSAGE (0OS)

NAK ON SELECT INDICATOR (NOS)

1096567

DISABLED BY NETWORK CONTROL (MAN)

NOT OPERATIVE INDICATOR (NOP)

STATION IS IN TERMINATE LOGICAL ACK WAITING FOR PROGRAM TO ACK
(PAC)

STATION BUSY INDICATOR (BSY)

SUCCESSFUL ENABLE INPUT INDICATOR (EIP)

OUTPUT READY INDICATOR : BOT NOT = TOP (RDY)

OUTPUT QUEUED INDICATOR (QED)

WAITING FOR PRIMARY OUTPUT INDICATOR (WTG)

RECEIVED INPUT FROM STATION BUT NO ASSOCIATED OUTPUT YET:
TRANSACTION STATE (RCV)

STATION IS IN PAGING MODE (PGM)

STATION BOT-TOP

NUMBER OF OUTPUT MESSAGES QUEUED

BLOCKED OUTPUT IS CURRENTLY BEING TRANSMITTED

TO THIS STATION (PAG) CHAR POSITION OF

BLOCK BREAK (integer) NEXT RECORD TO

PROCESS (integer)

. INPUTQUEUES. For each Input queue that is not operative, the following information

is returned delimited by commas.

INPUTQUEUE NAME AND NUMBER

SPECIFIC DISABLE BY NETWORK CONTROL (MAN)

NOT OPERATIVE INDICATOR (NOP)

QUEUE INSERT ALLOWED; MEMORY LIMIT NOT EXCEEDED (QIN)

VALUE OF RERUN STATE (RERUN)

READY INDICATOR: BOT NOT = TOP (RDY)

WAITING FOR ANOTHER COPY OF THE PROGRAM TO BE INITIATED (WTG)
BUSY: TRANSACTION IS BEING PROCESSED OUT OF THIS QUEUE (BSY)
INPUTQUEUE BOT-TOP

NUMBER OF UNPROCESSED MESSAGES

. PROGRAMS. For each program that is not operative, the following information is re-

turned delimited by commas.

PROGRAM NAME AND NUMBER

DISABLED BY NETWORK CONTROL (MAN)

NOT OPERATIVE INDICATOR (NOP)

COMMON ASSIGNED INDICATOR (OPN)

BUSY: PROGRAM IS PROCESSING A TRANSACTION (BSY)

SOME STATION IS HOLDING UP OUTPUT WAITING FOR THIS PROGRAM TO
GENERATE A PRIMARY OUTPUT (HLD)

READY: RUNNING AND IN THE MIX (RDY)

NUMBER OF PROGRAMS CURRENTLY SERVICED BY THIS SERVICE OR
EDITOR PROGRAM (RUN =)

NUMBER OF COPIES OF THIS PROGRAM CURRENTLY ACTIVE

(ACT =)

STATUS

PROCESSOR TIME

1/0 TIME

ELAPSED TIME

8-33

8-34

4. LINES. For each line, the status of all stations on the line is returned, followed by the
following information delimited by commas.

DCP:CLUSTER:ADAPTER

NOT OPERATIVE INDICATOR (NOP)

READY: AT LEAST 1 STATION ON LINE IS RDY (RDY)
LINE SWITCH ERROR INDICATOR (SLE)

RINGING INDICATOR (RNG)

SWITCH BUSY INDICATOR (SWB)

CONNECTED INDICATOR (CON)

AUTO ANSWER INDICATOR (ANS)

DIALOUT INDICATOR (ACU) HIIALIN INDICATOR (SWT)
CURRENT STATION NUMBER USING THE LINE
NUMBER OF STATIONS ON THE LINE

WAITING TERMINATE NORMAL INDICATOR (ACK)

5. COMMONS. For each Common row, the following information is returned delimited by
commas. :

ROW NUMBER

NOT OPERATIVE INDICATOR (NOP)

READY: PROGRAM ASSIGNED TO COMMON

BUSY: PROCESSING A TRANSACTION OUT OF THIS COMMON (BSY)
INPUTQUEUE NAME AND NUMBER

PROGRAM NAME AND NUMBER

COMMONI[COM,0]

COMMONI[COM, 1]

6. TEST. As previously described, for each test station that is not operative, a station status
is returned.

7. SPECIAL. As previously described, for each special station that is not operative or which
has output queued, a station status is returned.

8. ENABLED. As previously described, for each enabled station that is not operative, a sta-
tion status is returned.

9. SYSTEMSPOS or SYSTEMMONITORS. As previously described, for each station that-
is a SYSTEMSPO, a station status is returned; or for each SYSTEMMONITOR, a station
status is returned.

10. MCSS. For each MCS the name, number, and running status is returned.

STATUS < specific identification list>. The information returned, as described in the semantics
for STATUS <inclusive list >, also applies for STATUS < specific identification list >. The stat-
us is returned regardless of whether the object of the status is operative. In addition, STATUS
DCP and STATUS CLUSTER may be requested and a status for all lines on the respective object
is returned. STATUS MKE and STATUS MID may be requested, and information about the
specified message key or output message id is returned. On a program status, when <stack desig-
nator> is <empty>, a status for the single or master copy of the program is returned. Other-
wise, a status for the program whose stack number is equal to the <stack designator> is re-
turned.

Example 1:

MESSAGE:

RESPONSE:

Example 2:

MESSAGE:

RESPONSE:

Example 3:

MESSAGE:

RESPONSE:

Example 4:

MESSAGE:

RESPONSE:

Example S:

MESSAGE:

RESPONSE:

Example 6:

MESSAGE:

RESPONSE:

1096567

?STATUS ALL STATIONS

TTY2(1),,,,,,,MAN,NOP,,,,RDY,,,Z-

58,4
TD14(2),,,,,,,MAN,NOP,,,,,,.3-3,0
TDI12(4),,,,,,, MAN,NOP,,,,,,.5-5,0
CONOI(5),,,,,,,MAN,NOP,,,,,,.6-
6,0
TD31(7),,,,,,,MAN,NOP,,,,,,,8-8,0
#TTTT ALL STATIONS
STATUS

?STATUS I(13)
ECHOTEST13(13),,,QIN,,RDY,,84-
86,1

?STATUS CLUSTER(0:0)

TTY3(3),55545s9»5,EIP,,,,68-68,0
0:00:12,,RDY,,,,,,,,(3),
TD13(6),,,,55,s»,,EIP,,,,7-7,0
0:00:10,,,,,,,,,,(6),

?STATUS P ECHOTESTI1
ECHOTESTI1(5),,,OPN,,,RDY
RUN = 1, ACT = I:SLEEPING

PROC =00:00:00 170 =00:00:00
ELAP =00:08:41

2STATUS C(19)
19,,,BSY, IQU:ECHO(13)
PRO:ECHOG(S) ,

Clo] = 1,C[1] =8

?STATUS MKE ECHOIT
MESSAGEKEY ECHOIT
PROGRAM TPI(l)
INPUTQUEUE IQUI(1)
MODULE 0

FUNCTION 0

8-35

8-36

Example 7:

MESSAGE: ?STATUS MID FMTI1
RESPONSE: MESSAGEID FMTI
FORMAT F8 DEVICE(1)

SUBTRACT Request

Syntax:

<subtract request> ::=
SUBTRACT <station specification>

Semantics:

The <subtract request> removes a station from a line. The station must first be disabled.
SYSTEM Request

Syntax:

<system request> ::= SYSTEM <system action>

<system action> ::=
<EOJ type> EOJ <service comment> /
VERSION / STATUS

<EOIJ type> ::= FAST / CLEANUP / <empty>
<service comment> ::= <string> / <empty>
Semantics:

The <system action> EOJ disables inputs on all stations in the on-line environment and sends
the MCS to End-of-Job. If the <EOJ type> is CLEANUP, the MCS terminates after all queued
input is processed and all associated output is delivered.

NOTE
A NOINPUT program could delay CLEANUP EOJ indefinitely.

If the <EOJ type> is <empty>, the MCS terminates when the current input for each program
is completed and all outputs in process are delivered (i.e., as each program becomes NOT BUSY,
it is deprived of a new input to process even if there is one queued for it). If <EOJ type>
is FAST, the action is the same as though it were <empty>, except that the MCS terminates
a program that timeouts. The <system action> VERSION sends the current system level to the
station. The <system action> STATUS sends run-time information to the station.

Example 1:

MESSAGE: ?SYSTEM STATUS
RESPONSE:

SYSTEM STATUS: RUNNING

5 STATIONS NOT OPERATIVE.

0 INPUTQUEUES NOT OPERATIVE.
0 STATIONS PROCESSING OUTPUT
1 PROGRAM PROCESSING INPUT
0 OBJECT PROGRAMS RUNNING.
0 STATIONS BEING MONITORED.
0 STATISTICS ENABLED.

0 SYSTEMS UPDATES DISABLED.

Example 2:

MESSAGE: ?SYSTEM VERSION
RESPONSE:

CONTROL VERSION 04.000.000 THURSDAY 09/20/79 1531 RELEASE
400 DCP/BLUEO DATACOM PROCESSOR CODE 09/23/79 0354

Example 3:

MESSAGE: ?SYSTEM EOJ
RESPONSE:

JOE €463 TASKS Bub4sBLT7N,8,Tis €69 U9/25/79 1255
PROCESS TIMZ 00:00:15 00 PZRCENT OF ELAPSED
10 TiMc URVELFILRD B | %y PERCENT OF ELAPSEC
cLAPSED TIME 00:30:55
CONTROL(O) TOTAL MSGS = 4 AVERAGEZ ELAP = 0.113 (0.10€) SEC.
AVERAGE MSGS/HOUR SINCE 1252 WAS 86
INPUT RECS = 41 , ACKS = 0 » MSG RZUSE = ©
UUTPUT RZCS = 53 » MSG ReUSE = 1056
SIZEBQUEUZ MSGCOUNT = 7 S1Z2EZ = 56 WORDS.
* SYSTeM cND OF J08 9/725/79 1255

1096567 8-37

TABLE Request

Syntax:
<table request> ::= TABLE <table action>

<table action> ::=
STATISTICS /
<table identification list>

<table identification list> ::=
<table identification> /
<table identification list> , <table identification>

<table identification> ::=
<station specification> /
<input queue specification> /
< program specification> /
<line specification> /
<MCS specification >

Semantics:

TABLE STATION. A table is returned containing the following information.

STATION NAME (STATION NUMBER) LSN DLS BOTBOT

IN MSGS, OUT MSGS, BACKWARD LINK IN STATION INPUT QUEUE
WIDTH, PAGES PER BUFFER

POLL FREQ STATION IS CRT (CRT),

STATION RECEIVES BLOCKED INPUT (BLK),

STATION ACK INITIATED BY PROGRAM (PROACK),

STATION IS MONITOR (MON),

STATION IS NETWORK CONTROL (SPO),

STATION CAN INTERCEPT (INT),

STATION RECEIVES BROADCAST (BDC),

STATION RECEIVES SERVICE MESSAGES (SER),

STATION DOES NOT RECEIVE TITLE (NOT),

STATION IS MASTER (MAS),

STATION USES ROUTING HEADER (ROU),

STATION IS SPECIAL (SPC),

STATION CAN OPERATE IN TEST (TST),

STATION DOES NOT ORIGINATE MSG

(COMP TO COMP) (ORG)

STATION DOES NOT QUEUE OUTPUT (NQU)
APPLICATION (REQUEST SET), LOGICAL ACK, MYUSE
SYNC/ASYNC, BPS, CHAR, FRAME
MODE

8-38

STATION SYSTEM NAME (STASYS)
ALTERNATE STATION
ALTERNATE TO STATION
STATION BITS

AREAS

TABLE PROGRAM. When <stack designator> is not <empty>, the table returned is for the
single or master copy of the program. Otherwise, the table is for the copy whose stack number
matches the stack number in the <stack designator>. The table contains the following informa-
tion:

PROGRAM NAME (PROGRAM NUMBER) TITLE
NUMBER OF STATIONS ASSIGNED TO IF ANY

NUMBER OF SUBSPACES DECLARED PRIORITY

NUMBER OF COPIES RUNNING (IF NOT SERVICE OR EDITOR)
STACK NUMBERS OF COPIES RUNNING

INPUTQUEUES

TYPE PERMANENT (PER), MULTIPLE (REN), NO INPUT (INP),
MODIFY (MOD) CONTROLBIT

SERVICE PROGRAM IF USED

EDITOR PROGRAM IF USED

INACTIVE TIMEOUT IF SPECIFIED

MAXCOPIES

TIMEOUT

TABLE INPUTQUEUE. A table is returned containing the following information:

INPUTQUEUE NAME (INPUTQUEUE NUMBER)

DYNAMIC VOLUME CONTROL QUEUE DEPTH (QUD)

DYNAMIC VOLUME CONTROL TIME LIMIT (RTL)

LIMIT OF MEMORY RESIDENT MESSAGES: MEMORYLIMIT (LMT)
RECOVERY SPECIFIED (RCV),

WAIT FOR AUDIT (ADT)

NUMBER OF MESSAGES PASSED THROUGH THE QUEUE (QNM)
MESSAGES/DAY

RECOVERY BOT (RCVBOT)

BOTBOT

STATISTICS IF STATISTICS ARE ENABLED

PROGRAM NAME (PROGRAM NUMBER)

TABLE STATISTICS. If statistics are enabled, a table of statistics is returned.

TABLE MCS. The MCS name and number are returned along with a run status (whether initi-
ated, running, DSed, or required).

1096567

8-39

Example 1:

MESSAGE: ?TABLE STATISTICS
RESPONSE:

JOB 8063 TASKS 8064,3072,8071,8069, 01/%59/76 0431
PROCESS TIME 00:00:04 00 PERCENT OF ELAPSED
10 TIME 00:00:07 00 PERCENT OF ELAPSED
ELAPSED TIME 90319315
CONTROLCO) TOTAL MSGS = 2 AVERAGE ELAP = 1.466 (0.816) SEC.
AVERAGE MSGS/HOUR SINCE 1301 WAS 271
INPUT RECS = 3 » ACKS = 1 » MSG REUSE = §
QUTPUT RECS = 3 » MSG REUSE = 2
SIZ2E8QUEVUE MSGCOUNT = & SIZE = 32 WORDS.

Example 2:

MESSAGE: ?TABLE P(5)
RESPONSE:

ECHOTESTI1(5) TITLE = MG/TEST/PROG/1
1 COPY RUNNING
STACK NUMBER IS : 8074.
INPUTQUEUES : ECHOTEST13(13)
USER PROGRAM PER,REN,, CONTROL BIT = 0
EDITOR : EDITORI1(1) CONTROL BIT = 1

Example 3:

MESSAGE: ?TABLE S TTY3
RESPONSE:

TTY3(3) LSN = 5 DLS = 0:0:12:0 BOTBOT = 4
IN MSG/DAY = 34,0T MSG/DAY = 35, STA IN LINK = 40
WIDTH = 72,PAGE/BUFFER = 65535
POLL FREQ = 255,,,MON,SPO,INT,,SER,NOT,,,,,,
APPLICATION = 1,LOGICALACK = 2,MYUSE = 3
AYSNC,110 BPS,8-BIT CHAR,11-BIT FRAME
STATION IN DATA MODE '

STATION SYSTEM NAME : MSTESTSYS1
ALTERNATE : CONOI(5)

ALTERNATE TO : TDI2(4)

AREAS: NONSCREENS(2) MIXEDTYPE(3)

Example 4:

MESSAGE: ?TABLE I(13)
RESPONSE:

ECHOTEST13(13) QUD=1 RTL=1 LMT =255
RCV,ADT QNM =0 MSGS/DAY =3 RCVBOT=15 BOTBOT=5
ECHOTESTI1(5)

UPDATE Request

Syntax:

<update request> ::=
UPDATE <update identification list>

<update identification list> ::=
<update identification> /
<update identification list> , <update identification>

<update identification> ::=
< program specification> /
<input queue specification> /
<station specification> /
<format specification> /
< function specification> /
<access key specification> /
<message key specification> /
<valid users specification> /
< device specification>

< format specification> ::=
FORMAT < format designator list>

<format designator list> ::=
< format designator> /
< format designator list>, <format designator>

< function specification> ::=
FUNCTION < function designator list>

< function designator list> ::=
< function designator> /
< function designator list>, <function designator>

<access key specification> ::=
<system specification> ACCESSKEY <access key> =
<access key MKE list >

<access key> ::= <identifier>

<access key MKE list> ::=
<access key MKE> /
<access key MKE list>, <access key MKE >

1096567 8-41

<access key MKE> ::=
<optional delete char> ALL /
<optional delete char> <message key>

<optional delete char> 1= — / <empty>
<message key> ::= <identifier>

<message key specification> ::=
<system specification> MKE <message key>
<message key attributes>

<message key attributes> ::=
DELETE / <message key attribute list>

<message key attribute list> ::=
<message key attribute> /
<message key attribute list>, <message key attribute>

<message key attribute> ::=
<input queue attribute> / <mod fun attribute>

<input queue attribute> ::=
I = <input queue designator> /

INPUTQUEUE :: =
<input queue designator>

<mod fun attribute> ::=
MODFUN = (<integer>,<integer>)

<valid users specification> ::=
<access key specification> /
VALIDUSERS <station name> =
<access key specifications list >

<access key specification list> ::=
<access key specification> /
<access key specification list>,
<access key specification >

<access key specification> ::=
<optional delete char> ALL
<optional delete char> <access key>

8-42

< device specification> ::=
<system specification> DEVICE (<device number>)
< format association>

<device number> ::=
<integer >

< format association> :: =
FORMATSIN: <format name> =
< formatsin MKE list> /
FORMATSOUT: <format name> =
< formatsout MID list> /
NONFORMATTED: <formatsin MKE list>

<format name> ::= <identifier> / DELETE

< formats in MKE list> ::=
<formats in MKE> /
< formats in MKE list> , <formats in MKE >

< formats in MKE> ::=
<message key> <optional item count>

<optional item count> ::= (<integer>) / <empty>

< formats out MID list> ::=
<message id> /
<formats out MID list> , <message id>

<message id> ::= <identifier>
Semantics:

UPDATE PROGRAM, INPUTQUEUE, OR STATION. The update request causes the memory
tables for the specified <update identification> to be backed up to the system control file.

UPDATE FORMAT. UPDATE FORMAT causes the formats listed to be replaced by the current
patch version of the formats for all stations. Prior to the request, patched formats can only be
"seen” by stations in practice mode. Thus, formats may be tested first on a station in practice
mode, and then made permanent for the rest of the system. A detailed discussion of UP-
DATEFMT is contained in the CONTROL section of the TCL syntax in section 3.

UPDATE FUNCTION. UPDATE FUNCTION causes the functions listed to be replaced by the
current patch version of the function. Prior to this request, patched functions can only be "seen”
by stations in practice mode. A detailed discussion of UPDATEFMT is contained in the <con-
trol section> of the TCL syntax in section 3.

1096567 843

UPDATE ACCESSKEY. UPDATE ACCESSKEY allows for adding or deleting access keys or
modifying their associated message key list. If the access key named cannot be found, it is as-
sumed to be new. Each message key in the <access key mke list> that does not appear with
an <optional delete char> is added to the list of message keys for the access key. Those with
an <optional delete char> are deleted from the access key. If -ALL is specified, the access key
is deleted. The number of access keys added must fall within the MAXNEWACCESSKEYS value
specified in the <global section> of the most recent TCL generation. Each access key added
decreases this value by one, and deleting an access key does not increase this value. Updates are
backed up to the system control file so that they are maintained across MCS EOJs.

UPDATE MESSAGE KEY. UPDATE MKE allows for adding or deleting message keys or
changing attributes for existing message keys. If the message key cannot be found, it is assumed
to be a new message key, and in this case, the Input queue attribute must appear first. For exist-
ing message keys, the Input queue may be changed along with MODFUN values. The number
of message keys added must fall within the MAXNEWMKES value specified in the GLOBAL
Section of the most recent TCL generation. Each message key added decreases this value by one,
and deleting a message key does not increase this value. Updates are backed up to the system
control file so that they are maintained across MCS EOQJs.

UPDATE VALIDUSERS. UPDATE VALIDUSERS allows the valid user list of a station to be
modified by adding or deleting access keys. Updates are backed up to the system control file
so that they are maintained across MCS EOJs.

UPDATE DEVICE. UPDATE DEVICE allows for a restatement of the message key to format
association for a given device. FORMATSIN names the message key associated with a format
for the given device;, FORMATSOUT names the message-IDs associated with a format for a
given device; and NONFORMATTED names message keys with no format on the given device.
If DELETE is used instead of a format name, the format is deleted for that device. Updates
are backed up to the system control file so that they are maintained across system EOIs.

Example 1:

MESSAGE: ?UPDATE P(5)
RESPONSE: # TTTT PROGRAM (5)
UPDATED

Example 2:

MESSAGE: ?UPDATE S TD3l
RESPONSE: # TTTT STATION TD3l
UPDATED

Example 3:
MESSAGE: ?UPDATE I(13)

RESPONSE: # TTTT INPUTQUEUE (13)
UPDATED

8-44

1096567

WHERE Request

Syntax:

<where request> ::=
WHERE <system option> < where option>

<where option> ::=
< station specification> /
<access key> /
<empty >

Semantics:

The <where request> returns which access keys are logged on at which "SIGNON = TRUE”

stations.

Example 1:
User not logged on:

MESSAGE: ? WHERE SYSTEM (1) USER1
RESPONSE: # USER1 NOT ON SYSTEM (1)

Example 2:
Userl logged on at STAl in SYSTEM (1)

MESSAGE: ?WHERE SYSTEM(1) USER(l)
RESPONSE: #STA1(22): USERI

ZIP Request
Syntax:
<zip request> ::= ZIP <string>

Semantics:

The <zip request> allows the operator at a System Network Control station to initiate input
to the work flow language compiler via the MCP. The contents of the <string> are placed in
an array row and ZIP-executed. The MCS performs no syntax checking on the contents of the

<string>.

8-45

8-46

SYSTEM ERROR MESSAGES

During the running of the Data Communications System, errors may occur which require
operator intervention. Some actions that produce errors are retried without operator intervention,
but some are so severe that operator intervention is the only solution. Messages indicating the
errors are sent to the Network Control stations for operator action. System error messages are
generated indicating errors in different sections of the Data Communications System. The sec-
tions are data communication errors, input message processing errors, output message processing
errors, and transaction processing program errors.

Data communication errors are those errors occurring prior to a message being received by the
MCS or after a message is returned. They normally indicate an error associated with a station,
line, or data communication interface.

Input message processing errors are those associated with the input disk file and occur when mes-
sages are read from disk.

Output message processing errors are those associated with the output disk file and occur when
messages are read from disk.

Transaction processing program errors are those associated with the programs processing the mes-
sages. These messages indicate abnormal statuses of the programs.

DATA COMMUNICATION ERROR Message

Syntax:

<data communication error message> ::=
*ERR <error number>: <station name > (<station number>)
:<time>:<status> <error indicator list> /
*ERR <switched line error number>:<station name>
(<station number>): <time>:<switched line status>
<switched status list>

<error number> :: =
<DCP code error number> /
<DCP hardware error number> /
<no enable input space error number>

V <DCP code error number> ::=1/2/ 3

<DCP hardware error number> ::= 4 /5/ 6
<no enable input space error number> ::= 7
<switched line error number> ::= 13 / 14

<time> ::= [time of error in military time]

1096567

<status> =

INPUT / INPUT POLL / OUTPUT / OUTPUT SELECT /

<empty >

<switched line status> ::=
< completion status> DIALOUT: /
< completion status> DISCONNECT: /
< completion status> ANSWER THE PHONE: /
INTERROGATE SWITCHED STATUS /
<empty >

< completion status> ::=
UNABLE TO INITIATE /
UNABLE TO COMPLETE /
<empty >

<error indicator list> ::=
<error indicator> /
<error indicator list> <error indicator >

<error indicator> ::=
<timeout error indicator> /
<stop bit error indicator> /
< character buffer overflow error indicator> /
<break error indicator> /
< disconnect error indicator> /
<vertical parity error indicator> /
< horizontal parity error indicator> /
<address error indicator> /
< transmission number error indicator> /
< format error indicator> /
<output naked error indicator> /
<end of buffer error indicator> /
<loss of carrier error indicator>

<timeout error indicator> ::= TIMEOUT

<stop bit error indicator> ::= STPB

< character buffer overflow error indicator> ::= CBFO
<break error indicator> ::= BREAK

<disconnect error indicator> ::= DISCONNECT

<vertical parity error indicator> ::= PARITY

847

<horizontal parity error indicator> ::= HPARITY
<address error indicator> ::= AERR
<transmission number error indicator> ::= TERR
<format error indicator> ::= FERR

<output naked error indicator> ::= ONAK

<end of buffer error indicator> ::= EOB

<loss of carrier error indicator> ::= LOC

<switched status list> ::=
<switched status> /
<switched status list> < switched status>

<switched status> ::=
<switched error status> /
<ringing status> /
<switched busy status> /
<connected state status> /
<auto answer flag status> /
<dial out status> /
<dial in status>

<switched error status> ::= SWITCHEDERROR / <empty>
<ringing status> ::= RINGING / <empty>

"<switched busy status> ::= SWITCHEDBUSY / <empty>
<connected state status> ::= CONNECTED / <empty>
<auto answer flag status> ::= AUTOANSWER / <empty>
<dial out status> ::= DIALOUT / <empty>

<dial in status> ::= DIALIN / <empty>

The <DCP code error numbers> and the <DCP hardware error numbers are obtained from
the result byte index and are documented in the DCALGOL manual, form number 5011430.

8-48

INPUT MESSAGE PROCESSING ERROR Message

Syntax:

<input message processing error> ::i=
ERR 91 <input queue name> (<input queue number>)
:<time>:<input processing error>

<input processing error> ::= <input disk file parity> /
<input disk file end of file>

<input disk file bad linkage> /
<input disk file not ready>

<input disk file parity> ::= BAD INPUT QUEUE

<input disk file end of file> ::= BAD INPUT QUEUE

<input disk file bad linkage> ::= BAD INPUT QUEUE

<input disk file not ready> ::= BAD INPUT QUEUE -NOT
OUTPUT MESSAGE PROCESSING ERROR Message
Syntax:

<output message processing error message> ::=
*ERR 90: <station name> (<station number>)
:<time>:<output processing error>

<output processing error> ::=
<output disk file parity> /
<output disk file end of file> /
<output disk file bad linkage> /
<output disk file not ready>

<output disk file parity> ::= BAD OUTPUT QUEUE
<output disk file end of file> ::= BAD OUTPUT QUEUE

<output disk file bad linkage> ::=
BAD OUTPUT QUEUE

<output disk file not ready> ::=
BAD OUTPUT QUEUE -NOT

1096567 8-49

PROCESSING PROGRAM ERROR Message

Syntax:

< processing program error message> 1=
<program identification part>
<message identification part>
<abort identification part>

<program identification part> ::=
*PROGRAM <task status>:<time>:<mix index>
< program title> <crif >
INPUTQUEUE: <input queue name>
(<program number>).<crlf>

<task status> ::=
SUSPENDED / TIMEOUT / SCHEDULED /
TERMINATED / NOT INITIALIZED

<mix index> ::= <integer>
<program title> ::= <generalized identifier >

< message identification part> ::=
MESSAGE ADDRESS: <input queue base record address>
, MESSAGE #: <system message number >
, STATION: <station name> (<station number>).
<crlif> / EMPTY

<system message number> ::= <integer>
<input queue base record address> ::= <integer>

< abort identification part> ::=
<termination error identification> /
<initialization error identification> / <empty>

<termination error identification> ::=
<termination error> @ <terminal reference list>

<terminal reference list> ::=
<terminal reference> /
<terminal reference list> , <terminal reference>

8-50

<terminal reference> :i1= <seg>:<pir>:<psr>

<seg> ::= [segment]
<pir> ::= [program instruction register]
<psr> ::= [program syllable register]

<termination error> ::=

DIVIDE BY ZERO /
EXPON OVERFLOW /
INV INDEX /

INTGR OVERFLOW /
INACTIVE QUEUE /
MEMORY PROTECT /
INV OPERATOR /
INSTR TIMEOUT /
MEMORY PARITY /
INV ADDRESS /
STACK OVERFLOW /
SEG ARRAY ERROR /
SEQUENCE ERROR /
INV PROG SYL / STACK UNDERFLOW

<initialization error identification> ::=

NO CODE FILE ON DISK /

NOT A PROGRAM FILE /

NON EXECUTABLE CODE FILE /
PARAMETER MISMATCH

<crlf> 1=

[a sequence of characters to position to the left

margin of a new line]

System Service Messages

During the running of the Data Communications System, it sometimes is necessary to inform the
stations what services are available to them. The information is passed to the stations by messages

called System Service messages.

System Service messages are generated by certain System Control messages and inform a specified
station and/or stations defined to receive them. Comments can be appended to standard service

messages by supplying a <service comment > .

1096567

8-51

8-52

When an enable control message is issued, possible system-in-service System Service messages are
generated. If the request is (ENABLE ALL <service comment>), all stations defined to receive
service messages and not previously enabled are then sent a system-in-service message with the
optional <service comment>. If the request is (ENABLE [station identification] SERVICE
<service comment>), the specified station is sent an in-service-message. If the request is (EN-
ABLE UPDATES <service comment>), all stations specified in TCL to receive service messages
are sent an updates-in-service message.

When a disable control message is issued, possible system out-of-service System Service messages
are generated. If the request is (DISABLE UPDATES <service comment>), then all stations
specified in TCL to receive service messages are sent an updates-out-of-service message.

When a System Control message is issued telling the MCS to go to End-of-Job, a system out-
of-service message is sent to all stations specified in TCL to receive service messages.

The general format for a service message is:

[STANDARD TITLE] (OPTIONAL BY STATION DEFINITION)
$.<#>.<service text>
< service comment > (OPTIONAL BY SYSTEM CONTROL MESSAGE)

Where:

<#> 1= SERVICE MESSAGE TYPE NUMBER
1 (OUT OF SERVICE)
2 (IN SERVICE)
3 (COMMENTS ONLY)
4 (UPDATES DISABLED)
5 (UPDATES ENABLED)

<service text> ::1=
TYPE = 1 <system name> SYSTEM OUT OF SERVICE
MM/DD/YY TTTT
<station name> STATION OUT OF SERVICE
MM/DD/YY TTTT

TYPE = 2 <system name> SYSTEM IN SERVICE
MM/DD/YY TTTT
STATION <station name> IN SERVICE
MM/DD/YY TTTT

TYPE

3 <empty>

TYPE = 4 <system name> SYSTEM QUERIES AND
‘ADMIN ONLY UNTIL FURTHER NOTICE
MM/DD/YY TTTT

TYPE = 5 <system name> SYSTEM RESUME FULL
OPERATIONS MM/DD/YY TTTT

SECTION 9
CONTINUOUS PROCESSING

The B 5000/B 6000/B 7000 Series GEMCOS MCS can be run in a continuous-processing environ-
ment. The main objective here is to allow on-line dumps of the Data Communication (Datacom)
queue files. In general, this means establishing a cut-off point in the station and Input queues
and dumping all records prior to the cut-off point to an archive tape. After a successful archive,
dumped records are made available for reuse in the queue files. The archive tape is labeled with
the date and time of the cut-off point. This is in fact a control point in the data base to which
the data base can be rebuilt. After a DMS II rebuild, GEMCOS archive tapes can be processed
to resubmit archived transactions. This section discusses the areas of the system that are affected
by running a continuous-processing MCS.

Option Selection

There are two TCL options related to continuous processing: CONTINUOUSPROCESSING and
QUEUEBLOCKSIZE.

CONTINUOUSPROCESSING is a Boolean option specified in the GLOBAL section of the TCL
source deck. When it is set to TRUE, the MCS operates in a continuous-processing mode.

QUEUEBLOCKSIZE specifies the number of records preallocated for each Input queue and each
station in the Datacom queue files. The default value is 50. This means that on the first
continuous processing TCL generation, 50 records are allocated for each Input queue in the DA-
TACOM/QUEUE/INPUT file, and 50 records are allocated for each station in the DATACOM/
QUEUE/OUTPUT file. All records for a given Input queue or station are written to the same
50-record block. When a block becomes full, a search of an available block mask is made, and
another 50-record block is allocated. When an on-line Datacom dump occurs, used records are
dumped to an archive tape and then returned in blocks of 50 records to the available block mask.
This allocation scheme cuts down the overhead of determining record availability at the individual
record level.

On-Line Datacom Dumps

On-line Datacom dumps are initiated by the DUMP DATACOM Network Control command.
The sequence of events is as follows:

1. ENTER: ?DUMP DATACOM
RESPONSE: DATACOM WILL BE DUMPED

The dump command is processed by the control stack. The only action is to set a Boolean
to be picked up by Processeverything, which actually initiates the dump phases. The Boo-
lean is written to a dump restart file and locked in the directory. The presence of this
file on halt/load indicates that a dump was in progress and will be re-initiated at BOJ.

2. Processeverything disables all Input queues to establish a clean cut-off point for the
dump.

MESSAGE: ALL SYSTEMS BEING DISABLED UNTIL ON-LINE DUMP STARTED

1096567

9-1

9-2

3. Processeverything sends all TPs to EOJ and runs the restart TP for each system to delete
the restart data set to insure that in the event of a data base abort there are no restart
pointers that point logically before the cut-off point. All records prior to the cut-off
points are dumped and may reside in blocks that are reused.

4. The current values of IQUBOTS and STABOTS are saved, and Input queues and pro-
grams are re-enabled.

5. An asynchronous dump stack is initiated. The Input queue and station cut-off points are
immediately written to the dump restart file. Prior to this point, the dump restart file
would point to phase 1. In the event of a restart, it would stop the network again and
save new cut-off points. Now, however, the cut-off points are on the dump restart file,
and in the event of restart, the dump process could immediately advance to this phase.

MESSAGE: ON-LINE DUMP INITIATED AND SYSTEM RE-ENABLED

6. The archival dump procedure is called from the dump stack. This is the same procedure

that would be initiated as a result of an off-line TCL regeneration, thus insuring that ar-
chive tapes, whether created off-line or on-line, are the same format. The only difference
between on-line and off-line dumps are the entries made in the DATACOM/LEDGER
file. Archive tapes are logged in the ledger based on these factors:

a. Generation date and time
b. Sequence control number
¢. Dump date and time

For off-line dumps, all of these factors change. For on-line dumps, generation date and
time and sequence control number remain the same, and only dump date and time
change.

At the end of the archive procedure, the operator is required to indicate whether the
tape should be logged in the ledger. If NO is entered, the entry in the DATACOM/
LEDGER file is eliminated and the whole dump is invalidated. The beginnings of the
queues (BOTBOTSs) are not advanced, and no records are returned for reuse. If YES
is entered, the tape is logged, BOTBOTSs are advanced to the last record dumped for
each queue, and dumped records are reused. For a queue in error, an incomplete queue
is reflected on the archive tape, and records logically past the error are not returned
to the system for reuse. BOTBOT is, however, advanced, thus leaving a chain of rec-
ords unavailable but no longer part of any queue chain. This condition will be dis-
covered in the file-check phase of on-line dumps. A REGENERATE would be required
to return this space to the system.

7. After the archive tape is created, blocks of dumped records are returned to the available
block mask. A printer file is written, reflecting file usage statistics as follows:

DATACOM QUEUE INPUT
FILE SIZE INUSE
BEFORE DUMP XXXXXXXXXX SEGMENTS XXXXXXXXXX SEGMENTS
AFTER DUMP XXXXXXXXXX SEGMENTS XXXXXXXXXX SEGMENTS
XXXXXXXXXX SEGMENTS
RETURNED
DATACOM QUEUE OUTPUT
FILE SIZE INUSE
BEFORE DUMP XXXXXXXXXX SEGMENTS XXXXXXXXXX SEGMENTS
AFTER DUMP XXXXXXXXXX SEGMENTS XXXXXXXXXX SEGMENTS
XXXXXXXXXX SEGMENTS
RETURNED

8. The last phase of each on-line dump is a file-check phase. A "snapshot” of the file usage
tables and queue bottoms and tops is taken. Then each chain is traced through to insure
that all blocks marked as unavailable are in fact in some chain. If blocks are found that
belong to no chain, a DISPLAY is made and the records are not returned to the system.

MESSAGE: ON-LINE DUMP COMPLETED SEE PRINTER FOR FILE USAGE STA-
TISTICS

In general, Datacom dumps should be taken shortly after data base dumps are completed. In

this way, a short rebuild is required from any given on-line data base dump to the next, where
GEMCOS archival recovery will begin.

SECTION 10
AUXILIARY PROGRAMS

This section describes auxiliary programs which may be used for message recall and administra-
tive message switching.

Message Recall

In the <global section> of the Transaction Control Language (TCL), the user is given the op-
tion of defining a Message Recall program to recall any message inserted into a queue on the
current day, by its message number or by time-of-day. Only one program need be declared for
all systems. The message key used within any system must be defined at the system level using
the <recall message key statement > syntax. Only one master copy of the program is dynamically
processed by the Message Control System (MCS) for all systems. The queue depth and time limit
parameters may be set to invoke dynamic volume control.

A standard Recall program, a Process program, is supplied with the GEMCOS system. The name
of the Object file is GEMCOS/RECALL.

The syntax of a recall message, as expected by the standard program, is as follows:

<recall message> ::=
[declared message key from TCL] <period>
<recall primitive> <period>

<recall primitive> ::=
<recall message list> /
TIME <slash> <time recall list> /
LAST <slash> <integer> < destination description>

<recall message list> ::=
<recall message part> /
<recall message list>, <recall message part>

<recall message part> ::=
<recall source> < message number range >
< destination description> < message type>

<recall source> ::=
(<station number>) <slash> /
<station mnemonic> <slash> /
(<input queue number>) <slash> / <empty>

1096567 10-1

<message number range> ::=
<message number> <dash> < message number>/
<message number >

<destination description> ::=
<slash> TO (<station number>) /
<slash> TO <station mnemonic> / <empty>

<message type> 1=
<slash> < message type identifier> / <empty>

<message type identifier> ::=
INPUT/IN/1/ 1/
OUTPUT / OUT / O/ 2/
INPUTOUTPUT 7/ 10 / 3 /
INPUTQUEUE / 1Q

<time recall list> ::=
<time recall message> /
<time recall list>, <time recall message>

<time recall message> ::=
<recall source> <time of day range> <date specification>
< destination description> <message type>

<time of day range> ::=
<time of day> <dash> <time of day> /
<time of day>

<date specification> ::= <slash> ON <date> / <empty>
<date> ::= <month> <slash> <day> <slash> <year>
<station number> ::= <integer>

<message number> ::= <integer>

<inputqueue number> ::= <integer>

<time of day> ::=
[4 digit time of day ranging from 0000 to 2400]

<month> ::= [integer ranging from 1 to 12]
<day> ::= [integer ranging from 1 to 31]
<year> ::= [2 digit integer specifying year]

10-2

If <recall source> is an Input queue number, a station number, or a station mnemonic, then
the message-number range is a range of system message numbers. If <recall source> is empty,
then the message-number range is a range of station message numbers for the input station.

If the <message type identifier > is INPUT, then only the specified input messages are recalled;
if OUTPUT, then only the specified output messages are recalled; if INPUTOUTPUT, then both
the input and the corresponding ouput are recalled. If INPUTQUEUE is specified, then the <re-
call source> is assumed to be an Input queue number, and input messages for that particular
queue are recalled.

The recall message by time-of-day allows the user to specify a series of time ranges to indicate
the messages to be recalled. The time required is the time as it appears in the title of the output
message.

A <message type identifier> of INPUTQUEUE may not be specified for a time-of-day recall.

If a date is specified on a time recall, then archival recall is assumed, and the network’s audit
ledger is scanned to determine on which archival dump tape the required messages reside. When
the tape is made available to the MCS, it is scannned, and messages satisfying the recall request
are extracted.

If the <recall primitive> LAST is specified, the last n output messages received at the terminal
are recalled, where n is the <integer> specified in the message.

All recall messages may include a <destination description> which causes the recall response
to be sent to the specified station. When specified, any recalled output message is formatted as
if it were going to its original destination, regardless of the destination of the recall message.

Examples:

IRC.1410. % Recall the output message
% associated with station
% message number 1410 for
% this station.

IRC.TTY2/1415. % Recall the output message
% associated with system message
% number 1415 for station TTY2.

IRC.10-12. % Recall output messages
% associated with station
% message numbers 10-12
% for this station.

IRC.TTY2/10-12. , % Recall output messages
% associated with system
% numbers 10-12 for
% station TTY2.

10-3

IRC.17-25/10. % Recall the input and
% associated output messages
% associated with station
% message numbers 17-25 for
% this station.

IRC.25/10 % Recall the input and
% associated output message
% associated with
% station message number 25 for
% this station.

IRC.TTY2/1751/10. % Recall the input and
% associated output messages
% associated with system message
% number 1751 for station TTY2.

IRC.(1000)/145/INPUT. % Recall the input message
0% associated with system message
% number 145 for station number 1000.

IRC.(3)/10/1Q. % Recall the input message
0% associated with system message
% number 10 for input queue
% number 3.

IRC.1452,1515. % Recall the output messages
% associated with station message
% numbers 1452 and 1515 for
0% this station.

IRC.TTY2/1323,(1212)/789. % Recall the output message
% associated with system message
% number 1323 for station TTY2
% and the output message associated
% with system message number
% 789 for station number 1212.

IRC.TIME/1204,1305-1400. % Recall the output messages
% stamped with time 1204 and
% between times 1305 through
% 1400 for this station.

IRC.TIME/TTY2/1100-1215, % Recall the output messages

(1000)/1100-1215/TO/TO TTY2. % stamped with time between
% 1100-1215 for station TTY2
% and the input and output
% messages stamped with time
% 1100-1215 for this station
0 and send the response to
% station TTY2.

IRC.1420/TO (1000). 0% Recall the output message
% associated with station
% message number 1420 for this
% station and send the response
% to station number 1000.

104

IRC.TIME/1210-1300/ON 05/06/76. %
%
%

IRC.LAST/S. %
%

IRC.LAST/2/TO TTY]1. %
%
%

Station-To-Station Administrative

In the <global section> of the TCL, the user is given the option of defining an administrative
message-switching program to route messages from one station to another station, to a list of
stations, or to an area. Only one program need be declared for all systems. The message key
used within any system must be defined at the system level using the <administrative message
key statement> syntax. Only one master copy of the program is dynamically processed by the
MCS for all systems. The queuedepth and timelimit parameters may be set to invoke dynamic

volume control.

A standard administrative message-switching program is supplied with the GEMCOS System. It

Recall the output messages stamped
with time between 1210-1300 on
May 6, 1976 for this station.

Recall the last 5 outputs
received at this station.

Recall the last 2 outputs
received at this station and send
them to station TTY1.

Messages

is a Process program. The name of the object file is “"GEMCOS/ADMIN".

The syntax of an administrative message, as expected by the standard program, is as follows:

< administrative message> ::=
[declared message key from TCL].
<originating station name> < blanks>
< destination list> .[TEXT TO BE SENT]

<destination list> ::=
<area name> / <destination station list>

< destination station list> ::=
<station name> /
< destination station list, <station name>

<blanks> ::= [any number of spaces].

Example:

ADMIN.TTY2 TTY3. HI THERE

ADMIN.TTY2 TTY3,TD42, TC55 . EOJ IN 5 MINUTES

The program receives the message and checks either for a valid destination area or for a list of
valid station names. A check is also made for stations which were marked down. These stations
are flagged, and their names are saved to be sent later with an acknowledgement message to the

source station,

1096567

10-5

10-6

Only one area may be specified as a destination, and it must be the only entry in the <destina-
tion list>.

A limit of 15 station names may be specified in the <destination station list>.

If any errors are detected while syntaxing the message, the scanning ceases, and an error message
is sent to the source station. The following is a list of detectable errors:

No destination name separator.

. Invalid destination name.

Area name must be the only entry in the destination list.
Area name not allowed in station list.

A maximum of 15 stations allowed in destination list.
No period found to delimit destination list.

No destination name found.

NNV A WN -

If no errors are detected, a copy of the message is sent out to each station in the destination
list. If a station in the list was marked down, an attempt is made by the MCS to route the mes-
sage to the station’s alternate. After routing the message, an acknowledgement message is sent
to the source station along with a list of the stations which were marked down. If an area was
specified, this name is sent with the acknowledgement.

SECTION 11
PROGRAM GENERATION AND
MAINTENANCE

This section describes the files contained on the release tape and the procedures necessary to com-
pile the MCS, the Transaction Control Language (TCL) processor, and the various other pro-
grams necessary to operate in a GEMCOS on-line environment. In addition, the steps are pro-
vided to generate the demonstration system which is included on the release tape.

Additional information about each current release may be obtained by loading and printing the
distribution letter which is contained on each release tape in the form of a printer backup file.
The following control cards should be used to load and print the distribution letter:

7COPY GEMCOS/MCSDOC FROM <tape name>
?7PB "GEMCOS/MCSDOC”

Contents of Release Tape

Listed in tables 11-1 thru 11-3 are the files contained on the tape of the TOTAL version of GEM-
COS. For the BASIC and ADVANCED versions, appropriate files are omitted from the tape
based on the features contained in the version.

Table 11-1. GEMCOS TOTAL Version

Files Required for Normal Usage

File Name Description
GEMCOS/MCS GEMCOS object code (DCALGOL).
GEMCOS/UTILITY TCL Processor object code. Also provides dump
and log generation utilities (DCALGOL).
GEMCOS/EDITOR Skeleton Editor program object code. Performs
standard input formatting. (DCALGOL).
GEMCOS/RECALL Standard application-level program which retrieves

audited messages for retransmission upon request.
Object code (DCALGOL).

GEMCOS/ADMIN Standard application-level program for station to
station(s) message switching object code
(DCALGOL).

GEMCOS/RESTART/SYMBOL Source code of standard application-level program
which retrieves certain DMS II restart information
for a DMS II environment. User patches in
specific data base, restart data set, and restart
item names. (COBOL).

GEMCOS/RESTART74/SYMBOL A Restart program written in COBOL74
GEMCOS/ARCHREC Archival Recovery initiator object code (ALGOL).

1096567

112

Table 11-2. GEMCOS TOTAL Version

File Name
GEMCOS/MCSDOC
GEMCOS/SAMPLE/TCL
GEMCOS/SAMPLE/TP

GEMCOS/SAMPLE/TP74

GEMCOS/SAMPLE/NDL

GEMCOS/SAMPLE/SERVICE

GEMCOS/FORMATLIB/TCL
GEMCOS/FORMATLIB/PATCH
GEMCOS/SAMPLE/FORMATTP
GEMCOS/FORMATTP/SYMBOL
GEMCOS/SAMPLE/ALGOLLIB
GEMCOS/SAMPLE/COBOLLIB
GEMCOS/FORMATLIBRARY

GEMCOS/FILEXFER

GEMCOS/FILEXFER/SYMBOL

Optional Files

Description
Product distribution letter (PB).
Example of TCL input (data).

Source code of sample Transaction Processor(s)
(COBOL and BDMSCOBOL).

Source code of sample Transaction Processor
(COBOL74).

Source code of sample NDL request sets which
follow the GEMCOS interface conventions (data).

Source code file of sample service program
(COBOL).

These files may be used to
demonstrate the use of a format
library. They are described in
Section 6, Formatting and Paging.

Sample Transaction Processor which uses
ROUTEHEADERS to transfer files from one
system to another. It is described in section 13,
Computer to Computer Communication.

Source code of GEMCOS/FILEXFER.

Table 11-3. GEMCOS TOTAL Version

File Name
GEMCOS/SYMBOL
GEMCOS/ARCHREC/SYMBOL
GEMCOS/EDITOR/SYMBOL
GEMCOS/ADMIN/SYMBOL

GEMCOS/RECALL/SYMBOL

Maintenance Files

Description
Common source code file of MCS and Utility.
Source code of Archival Recovery program.
Source code of standard Editor program.

Source code of standard Administrative Message
Switching program.

Source code of standard Message Recall Program.

Product Generation

The MCS is not “generative” in the usual sense of the word. Once a system code file is created,
it should not be necessary (unless a Ports interface is required) to recompile the program should
the data communications environment change. In certain instances, it may be necessary to run
the TCL compiler to regenerate the tables used by the MCS; however, certain on-line changes
to TCL are provided (refer to section 8).

If it should be necessary to compile the MCS or the TCL processor, the following user-defined
compiler options should be used.

Code Options Description

$SET UTILITY Emits TCL processor code

$SET MONITOR Emits on-line monitor code. To be used only if
compiling the MCS.

$SET PORTS Emits code for Port interface in MCS and TCL
processor.

$SET SUBSYSTEMS Emits code for Subsystems interface in MCS and TCL
processor.

$SET SUPPRESSINTERCOM Discard intercom messages.

$SET UIO Should be set when the MCS is to be used on a UIO

datacom system.

MCS List Options Description

$SET SEEHANDLER Complete listing of the MCS.
$SET SEEGETMESSAGE List procedure Get Message.
$SET SEESENDMESSAGE List procedure Send Message.
$SET SEEPROCESSEVERYTHING List procedure Processeverything.
$SET SEEBIGBROTHER List procedure Big Brother.
$SET SEEINPUT List procedure Input.
$SET SEEOUTPUT List procedure Output.
$SET SEEANALYZER List procedure Analyzer.

TCL Processor List Options Description

$SET SEEUTILITY Complete listing of Ultility.

In addition, all of the standard DCALGOL options may be used, as discussed in the following
paragraphs.

1096567 11-3

114

The following are the control cards necessary to compile the MCS with the monitor included and
get a complete stack listing with LINEINFO set:

?COMPILE GEMCOS/MCS DCALGOL LIBRARY
?ALGOL FILE TAPE (TITLE = GEMCOS/SYMBOL)
?DATA CARD

$SET MERGE LIST SINGLE STACK LINEINFO
$SET MONITOR SEEHANDLER

?7END

-The following are the control cards necessary to compile the TCL processor and get a complete

stack listing with LINEINFO set:

?COMPILE GEMCOS/UTILITY DCALGOL LIBRARY
?ALGOL FILE TAPE (TITLE = GEMCQS/SYMBOL)
?DATA CARD

$SET MERGE LIST SINGLE STACK LINEINFO
$SET UTILITY SEEUTILITY

?7END

NOTE
If a complete listing of the MCS or the TCL processor is required, the
list option must be used along with SEEHANDLER or SEEUTILITY.

GEMCOS supplies a fully documented source file of a sample Restart program to be used with
DMS II. This sample demonstrates the proper passes of control from the Restart program to the
MCS, as well as the logic flow within the program. This sample source file may be patched by
the user to replace the naming conventions of the restart data set used by GEMCOS with the
user’s data names. In addition, if the user is using more than one data base in the data communi-
cations environment, the additional data base invokes and retrievals must be patched into the
source.

The following are the control cards necessary to compile the Restart program:

?COMPILE GEMCOS/RESTART/PROG WITH BDMSCOBOL LIBRARY
?7COBOL FILE TAPE(TITLE = GEMCOS/RESTART/SYMBOL)
?7COBOL FILE NEWTAPE(TITLE = GEMCOS/RESTART/NEWSYMBOL)
?DATA CARD

$SET MERGE LIST SINGLE STACK NEW
(COBOL SOURCE CARD PATCH DECK)
?7END

Product Maintenance

From time to time, it may be necessary to issue interim patches to update the standard GEMCOS
release. These patches are issued in a form to be used as input to SYSTEM/PATCH which is
supplied on the system software tape.

The following control cards should be used to update GEMCOS/MCS:
?7JOB MCS/UPDATE;

BEGIN
?DATA MCS/PATCH
$#

(Insert here all the compiler $ option cards necessary to control the compile.)
(Insert here the DCALGOL source card patch deck.)

RUN SYSTEM/PATCHIT]; VALUE = 0

FILE PATCH (TITLE = MCS/MERGEDINPUT);

FILE TAPE (TITLE = GEMCOS/SYMBOL);

FILE CARD (TITLE = MCS/PATCH);

WAIT(T);

IF VALUE(T) = 1 THEN

BEGIN

COMPILE GEMCOS/MCS DCALGOL LIBRARY;
COMPILER FILE TAPE (TITLE = GEMCOS/SYMBOL);
COMPILER FILE CARD (TITLE = MCS/MERGEDINPUT);
END

2END JOB

The control cards to update GEMCOS Utility are the same as for updating GEMCOS/MCS ex-
cept that "COMPILE GEMCOS/UTILITY” replaces "COMPILE GEMCOS/MCS".

1096567

11-5

The following control cards should be used to update GEMCOS/EDITOR:

?7JOB MCS/UPDATE;
BEGIN

?DATA MCS/PATCH
$#

(Insert here all the compiler $ option cards necessary to control the compile.)
(Insert here the DCALGOL source card patch deck.)

97RUN SYSTEM/PATCHIT]; VALUE = 0;
FILE PATCH (TITLE = MCS/MERGEDINPUT);

FILE TAPE (TITLE = GEMCOS/EDITOR/SYMBOL);

FILE CARD (TITLE = MCS/PATCH);

WAIT(T);

IF VALUE(T) = 1 THEN

BEGIN

COMPILE GEMCOS/EDITOR DCALGOL LIBRARY;

COMPILER FILE TAPE (TITLE = GEMCOS/EDITOR/SYMBOL);
COMPILER FILE CARD (TITLE = MCS/MERGEDINPUT);

END

7END JOB

The control cards to update GEMCOS/ADMIN and GEMCOS/RECALL are the same as for
updating GEMCOS/EDITOR, with each occurrence of "EDITOR” replaced by "ADMIN” or
"RECALL," respectively.

The following control cards should be used to update GEMCOS/ARCHREC:

?7JOB MCS/UPDATE;
BEGIN

7DATA MCS/PATCH
$#

(Insert here all the compiler $ option cards cards necessary to control the compile.)
(Insert here the DCALGOL source card patch deck.)

IRUN SYSTEM/PATCH[T]; VALUE = 0;
FILE PATCH (TITLE) = MCS/MERGEDINPUT;

FILE TAPE (TITLE = GEMCOS/ARCHREC/SYMBOL);

FILE CARD (TITLE = MCS/PATCH);

WAIT(T);

IF VALUE(T) = 1 THEN

BEGIN

COMPILE GEMCOS/ARCHREC ALGOL LIBRARY;

COMPILER FILE TAPE (TITLE = GEMCOS/ARCHREC/SYMBOL);
COMPILER FILE CARD (TITLE = MCS/MERGEDINPUT);

END

7END JOB

11-6

Usage and Examples

Included on the GEMCOS release tape are two files which can be used to demonstrate the system
and test the correct installation of the product.

The first file is GEMCOS/SAMPLE/TCL, a data file which can be used as input to the TCL
processor to describe a specific data communications environment. The sample TCL may be used
as it is except for the station names which must be patched over with names which are valid
for the specific site. The following control cards should be used to generate the four files used
by the MCS to describe the data communications environment:

?RUN GEMCOS/UTILITY

?FILE TAPE (TITLE = GEMCOS/SAMPLE/TCL)

?FILE NEWTAPE (TITLE = GEMCOS/SAMPLE/NEWTCL)
7DATA CARD

$MERGE LIST SINGLE NEW

(Patch cards to insert local station names over the sample station names.)

?END

The sample data communications environment uses three Transaction Processors, whose source
is included as GEMCOS/SAMPLE/TP, plus a Restart program, whose source is included as
GEMCOS/RESTART/SYMBOL. The sample Transaction Processors (TPs) were designed to
thoroughly test all facets of the MCS’s operations. It is unlikely that a User program would have
to do many of the MCS functions exercised in the sample program.

To compile the non-DMS TP, the following control cards should be used:

7COMPILE GEMCOS/SAMPLE/PROG COBOL LIBRARY
?7COBOL FILE TAPE (TITLE = GEMCOS/SAMPLE/TP)
7DATA CARD

$SET MERGE LIST SINGLE STACK

?7END

To generate the access Control module, type the following command at a supervisory console:

COPY GEMCOS/SAMPLE/PROG AS GEMCOS/SAMPLE/ACCESS

To compile the Service program required by the sample data communications environment, the
following control cards should be used:

7COMPILE GEMCOS/SERVICE COBOL LIBRARY
?COBOL FILE TAPE (TITLE = GEMCOS/SAMPLE/SERVICE)
?DATA CARD
$SET MERGE LIST SINGLE STACK
?7END

1096567 11-7

11-8

If it is desired to use the TP which accesses a DMS II data base, the data base must be compiled
first. The data base definition which is assumed by the sample TP is given by the following card
images along with the control cards necessary to generate the data base files:

2COMPILE GEMCOSDB WITH DASDL LIBRARY
2COMPILER FILE NEWTAPE (TITLE = GEMCOS/SAMPLE/DASDL)
DATA CARD
$SET LIST SINGLE NEW SEQ 100 + 100
GEMCOS-DB DATA SET
(GEMCOS-VALUE NUMBER(3));
GEMCOS-DB-SET OF GEMCOS-DB
KEY IS GEMCOS-VALUE DUPLICATES;
CONTROL-DATA DATA SET
(LAST-VALUE REAL (S11);
LAST-VALUE-KEY NUMBER (8));
CONTROL-SET SET OF CONTROL-DATA
KEY IS LAST-VALUE-KEY;
RESTARTAREA RESTART DATA SET
GEMCOS-LITERAL ALPHA(6);
GEMCOS-INTERFACE GROUP

(GEMCOS-DATA REAL (S11);

GEMCOS-DBSN REAL (S11);

GEMCOS-SSN REAL (S11)) OCCURS 3 TIMES);
RESTARTSET SET OF RESTARTAREA
KEY IS GEMCOS-LITERAL DUPLICATES;
2END

After the data base is generated, and with the file "/DESCRIPTION/ GEMCOSDB"” present, the
Transaction Processor which accesses the data base may be compiled. The following control cards
should be used:

7COMPILE GEMCOS/SAMPLE/DMS/PROG WITH BDMSCOBOL LIBRARY
?COBOL FILE TAPE (TITLE = GEMCOS/SAMPLE/TP)
?7DATA CARD
$SET MERGE LIST SINGLE STACK DMS
$SET WAITFORAUDIT RECOVERY
?7END

NOTE
Users of the BASIC and ADVANCED versions should not use the
WAITFORAUDIT and RECOVERY options in the above compilation.
To do so results in a parameter mismatch between the program and the
MCS during program initialization.

If using the TOTAL version, the Restart program should be compiled using the following control
cards:

7COMPILE GEMCOS/RESTART/PROG WITH BDMSCOBOL LIBRARY
7COBOL FILE TAPE (TITLE = GEMCOS/RESTART/SYMBOL)
?7DATA CARD

$SET MERGE LIST SINGLE STACK
?7END

The network may now be initialized. The name of the MCS must be one which is declared in
the NDL. Assuming that "GEMCOS/MCS” is a valid MCS name in the NDL, and assuming
that the DCP has been initialized (type DCn at the supervisory console, where n is the number
of the DCP), the following control cards may be used:

?7RUN GEMCOS/MCS
?END

If files were label-equated in the TCL run, they must be similarly label-equated here also. The
sample uses the standard Editor supplied on the release tape, so this must be lodded before any
transactions are processed.

An initialization message should appear at a Monitor station. The MCS is then up and running.
The first thing, which must be done prior to the input of transactions is to enable the network.
This is done by typing the following Network Control command at a Network Control station:

?ENABLE ALL

The full list of Network Control commands is contained in Section 8.

Following is a list of transactions which may be used with the sample package:

Transaction
LOGON.A
LOGOFF.
ECHOOQO. < string >
ECHOIl. <integer > # <alpha > *

ECHO2. <integer > # < alpha > *
MONITOR.
SERVICE.

DMSO01.UPDATE
DMSO01.INQUIRY
DMSO01.TEMPORARY
DMSO01.CLOSE
DMS06.nnnnnn

DMSO07.

Result
To gain access from a SIGNON = TRUE station.
To sign off of a SIGNON = TRUE station.
Echoes the string.

Edits and echoes the data. The order of appearance of
the integer and alpha strings may vary.

Same as ECHOL1 except different editing.
Turns monitor function on in sample TP.

Causes all subsequent input to SAMPLE/TP to be sent
to to GEMCOS/SAMPLE/SERVICE.

Opens the data base in Update mode.
Opens the data base in Inquiry mode.
Open the data base in Temporary mode.
Closes the data base.

Creates a data base record with integer value nnnnnn
inserted as data.

Lists values of all records in the data base.

119

SECTION 12
MCS/NDL INTERFACE

In order to provide maximum possible efficiency, a certain amount of communication via TOGs
and TALLYs between the Message Control System (MCS) and the Data Communications Proces-
sor (DCP) is necessary. The MCS expects the DCP to abide by certain conventions in this inter-
face. We therefore provide the NDL programmer with the following information:

1. A detailed description of how TOGs and TALLYs are used by GEMCOS.
2. A sample request/control set for a TC 500 terminal.

In a test environment, the CANDE/RJE ORIENTED NDL request sets supplied on the system
software tape will suffice; however, because of the integral association between a transaction-ori-
ented MCS (GEMCOS) and the application-oriented parts of the NDL, the NDL conventions,
as specified here, must be followed. In particular, the NDL should specify ENABLEINPUT =
FALSE for all stations.

Tables 12-1 and 12-2 provide information regarding the use of TOGs and TALLYs. The example
beginning on page 12-4 contains a sample NDL line control and transmit request set, both of
which are oriented to the TC 500 terminal.

Table 12-1. MCS to DCP Conventions

Request
Set Area Definition
TOG(0): TRUE means station is master over system. (Station is
another computer which is in charge.)
TOG(1): TRUE means the station is a Network Control station (refer
to Section 3).
TOG(Q2): TRUE means send broadcast select. Used to save time when
all stations on a line are to receive a message.
TOG(3): TRUE means station does not queue output. An input must
occur after each output.
TOG(4): Not currently used.
TOG(5): Not currently used.
TOG(6): Not currently used.
TOG(7): TRUE means MCS has marked this message as one whose
result is to be ignored. The NDL program should not change
this field.

TALLY(0): Counter set by MCS to station’s line width.

1096567 12-1

12-2

Request
Set Area

TOG(0):
TOG(1):

TOG(2):
TOG(@3):

TOG(4):
TOG(S5):

TOG(6):

TOG(7):

Table 12-2. DCP to MCS Conventions

Definition
Not currently used.

Set to TRUE whenever poll or select is in progress. Sent to
MCS via WRUFLAG before doing TERMINATE ERROR.

TRUE means station had transmission error.

TRUE means input message had no STX. (Used only with
Model 37 Teletypes)

Not currently used.

TRUE means message ended with ETB. Used with BISYNC
line discipline.

TRUE in good results message means DCP did TERMINATE
BLOCK.

Same as TOG(7) in Table 12-1.

1096567

The following is an example of the NDL line control and request sets oriented to the TC 500
terminal, which conform to the GEMCOS conventions for TOG and TALLY usage.

REQUE ST GENERALPOLLREQUEST %
RXARARAKA R ARG L RL A AKX XL NN AL XA N RA LKA AL KXAA L XL AL A XA XL XX R K

Z POLL %
)4 { %
b4 COMPUTER 1 TERMINAL %
% i b4
b4 { %
)4 EAAPE | %
Z (POLL):=>0DD0ON =======tcemcmnmccnca=) 4
% 1 Ti2Lae | A
b4 | | %
% (RETRY POLL) (===tew=ce=m===(NJ VALID RESPONSE) %
% | %
% | £ b4
% RETRY POLL <====t~emeeee~=e((NJ TRAFFIC RESPONSE) Z
% NeXT POLLING | T b3
% CYcLE | x
Z 1 %
% i %
4 1 %
b4 i SAATS £8 b4
)4 jem=e=> (memewemjrcanen— === JDDRT (TEXT]1 TC <==: %
4 | 1 H12#X XC (I 4
% i 1 1 %
% I RECEIVE ERKOR i 1t 2
4 I RETRY MESSAGE | I X
4 i i 1 i 2
% i | i 1 %
% { 1 N | LI 4
% i fommee>) elmectpomcccececnes=>(RESIND MESSAGE) === X
Z | K | 1 b4
4 i 1 i %
4 Temmsemcmanncant %
% | %
b4 | %
% GO0D INPUT i %
b4 i { %
% | | x
% | A { b4
% Voemam)(w=lmwtemmmcme===>(C0MPUTER RECEIVED OK) %
)4 K I 4
4 (I | %
% | . %
4 (CUNTI'NUES====" | %
% WITH LINE) i 4

12-3

% NOTE %
Z z
% F pA
2 1le 0 IS LITTLE P CHARACTER ’
% L %
% %
4 T %
X 2. K IS OPTION 1 TO 3 DIGIT TRANSMISSION NUMBER. Z
% P z
4 %
4 A A 2
3. D00 %
% 1 2 ARE THE STATION'5s RECTIVE CHARACTERS ’
y4 %
Z 4o B IS A BLOCK CHECK CHARACTER FORMED BY AN EXCLUSI VE %
4 C OR OF ALL CHARACTERS AFTER THE (SOH) TU AND %
44 C INCLUDING THz (ZTX). z
% p
4 b4
2293523332222 3032222222222 22222222443 v R R Y R R R R A}t

X THIS REQUEST SHOULD HANDLE 89342, TCS5¢% & TD700
X & TD3uo
ERRORLO]I = % PULL RESPUNSEs, RECEIVE TEXT OF JUNK
TI'MZ0UT: 790 %
LOSSOFCARRIER: 200, X
STO0PBIT: 2920, %
PARITY: 2023, 2
BUFOVFL: 200, %
BREAK S Z200. %
3
ERRORL:] = X RECZIVE
TIMEOUT: 130, Z
LOSSOFCARRIZR: 184, %
oTuPBIT: (30, X
PARITY: 189, %
gUFOVFL: 13u» %
BRZAK: 180. %

IVvE EUT FROM ACK TO MSG
14

s % START OF IT ALL., SENU POLL
YA
INITIATE TRANSMIT. 2 GO TO TRANSMIT STATE,
TRANSMIT EOT (BREAK: 7981 1. X POLL FORMAT E A A
TRANSMIT ADDRESS (RECTZIVE) [BREAK: 7001. 2 0 D D
TRANSHIT POLENQ £BREAK: 7001. % T12
X

20: 4ARECEIVE MESSAGE, =Z0T OR JUNK

roaoT©
ocZm

%

FINISH TrANSMIT. % EXIT TRANSMIT STATE

INITIATE RECEIVE. % ENTER RECEIVE STATE

Y3

RECEIVE CHARACTZR (ERRQRLO11. X% WAIT FOR POLL
RESPONSE

124

402

5):

60:

70:

933

190:

1096567

b3
IF CHARACTtR EQL SOH THEWN % MESSAGE COMING IN
3EGIN %
%
LINECTOGE01) = TRUE. % STATION ACTIVITY ON LINE
TOG 11 = FALSEs Z POLL DONZ» IN RECEIVE TEXT
I STATE
INITIALIZE B8CC. % CLEAR BLOCK CHEC CHAR
Z ACCUMULATOR
RECZIVE ACURESS (RECEIVE) (ERRORCDI, ADDERR:29¢ 1.
fo
2 FOR SKIPPING THRANSMISSION NUMBER
RECEIVE CERRORC31, STX:551. %
GO TO 40. % UNTIL STX OK ERROR
% PREPARE FOR MESSAGE PIECE
GETSPACE €2001. % NEZD MESSAGE SPACE
INITLALIZE TEXT. % START STORING AT BEGINNING
Z OF BUFFER
ECEIVE LOaP
IvE

fE
£CE CHARACTER (ERRORCO1, END: 1001. %

(70 A 3 ol) 4

STURE CHARACTER [ENDOFBUFFER: 901. X
3 TO 60. X REICZIVE MIRE

END OF BUFFZH

R e LY 8

T0ul{b6) = THRUZ. % MULTIPLL RECIEDS

TALLYC, 1 = CHARACTER. % SAVE CHARACTER NOT STORED
TALLYTD11 = BCC. % SAVE BLOCK CHECK CHARACTER
TALLY[2) = RZITRY., % SAVE GFF THRU TcRMINATE

X

TERMLNATE BLOCKe 4 GIVE TO MCS

%

CHARACTER = TALLYC:l. 2% RESTORE CHARACTER NOT STIRED
BCC = TALLYC1l. % RESTGRE BLOCK CHECK CHARACTER
RETRY = TALLYC21. % RESTORE RETRY

PAUSE. £

GETSPACE [2%01. % NEZD ANUTHER MESSAGE SPACE
INITIALIZE TEXT. % START AT BEGINNING OF SPACE

GO TO 70. % ENTER RECEIVE LOOP AT STORE

%

4 cND OF MzZS5SAGE

3

RECEIVE BCC TZRROR{O01, BCCLREK: 2001. % RECEIVE

Z & CHECK

12-5

12-6

X
TERMINATE LOGICALACK. % GIVE TO MCS» WAIT FOR #CK
4
INITIATE TRANSMIT. X ENTER TRANSMIT STATE
TRANSMIT ACK [BRIAK:NULLI. X ACK MESSAGE
FINISH TRANSMITe % EXIT TRANSMIT STATE
INITIATE RECEIVE. % ENTER RECEIVE STATE
RECEIVE CHARACTER (ERRORI11. X WAIT FOR cOT
180: £ WE WILL NOT CHECK EOT», OR RESPOND TO ERROR
Z INDICATIONS

I3
TERMINATE NOHKMAL. 2
4
END ELSE % SOH FIRST CHAR
IF CHARACTER EQL EO0T THEN 2 NU MESSAGE COMING

BEGIN X%
INITI'ALIZE RETRY. 2
195: b4
TERMI'NATE NOINPUT. % NO INPUT FROM THIS STATION
4
END ELSE
BEGIN X JUNK RECEIVED, WAIT TILL LINE IDLE
2002 Z EAT ANYTHING LOOP

ReCEIVE CERRORLOY, END: 7001. X
GO TO 243« %
END. X
700: % RZCEIVING ERROR HANDLING
IF RETRIY GTR 1 THEN X% RETRY NOT EXHAUSTED
BEGIN X%
DELAY (100 MILLI). %
RETRY = RETRY = 1. %
IF 70GC1] THEN % ERRJR DURING POLL
BEGIN %
LINE (T0OGLO01) = TRUE. X% INDICATE LINE ACTIVITY
4 FOR RETRY
TERMINATE NOINPUT. X RETRY NEXT POLL TIME
ENDe X
Z ERROR DURING RECEIVE OF MESSAGE
IF T0GIb] THEN X MCS HAS PART OF MESSAGE
BEGIN X TELL HIM T3 JUNK IT
710: TOGLO1 = TRUE. % JUNK MSG INDICATOR
STORZ TOGLRI. X PUT IN MSG
TALLYC2] = RETRY. % SAVE RETRY THRU TERMINATE
)4
TERMINATE BLOCK. X GIVE TO MCS

750:
763 :

CONTRGL

1096567

2
RETKY = TALLY(21. 2 RESTORE RETRY
TOGLB] = FALSE. X RESET MULTIPLE RECORDS
END. 2
Z NAK MESSAGE
INITIATE TRANSMIT. X ENTER TRANSMIT STATE
TRANSMIT NAK {(BRTAK:NULLI. X%
Z AFTER SEVERAL NAK RETFYS» TRY REPOLLING RETRY
IF RETRY LEQ 3 THEZN X TRY REPOLLING
BEGIN %
Tageltl = TRUE. X
FPINISH TRANSMIT. X EXIT TRANSMIT STATE
GU TO 10. X
ENDe %
GU TO 20. X% DO FINISH TRANSMIT & WAIT FOR MESSAGE
END. X R_TRY GTR 1
4
Z NO HOPE FOR STATICON, TERMINATE ERROR TIME
4

WRUFLAG = TOGL1l. 2 FOKk HANDLER ERROR MSG
Z
TERMI'NATE ERROR. X STATION DOWN
p4
Z END OF REQUEST GENERALPOLLREQUEST
PaLL s %
)4

LINE C(TALLYLO1) = LINE (TALLYLOl) + 1. 2
LINE C(QUCUED) = TRUE. %

i
A
/4
IfF STATION GTR . THEN %
BEGIN %
%
4
%
PAUSZ. X%
z

STATIGN = STATICGN = 1. X
IF STATION (VALID) THEN X%
IF STATION (READY) THEN X
B3EGIN X
LINE C(QUEUED) = TRUE %
IF STATION (QUEUED) THEN %
INITIATE REQUEST. X
IF STATION (ENABLED) THEN %
BEGIN Z
IF LINE (TOGCLO1) THEN X INPUT OR
Z QUTPUT ACTIVITY

3EGIN X POLL REST OF STATIONS ON LINE

GO 70 20. %
END. X
IF STATICN (TALLY) GTR LINE (TALLYL1D)

12-7

THEN X
BEGIN 2
STATIONCTALLY) = LINECTALLYL11).
GO T0 .
END. 2
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>