e

Burroughs @ \

Computer
Management

Systems (CMS)

SYSTEM SOFTWARE
OPERATION GUIDE

THIS MANUAL REPLACES FORM 2007258 DATED SEPTEMBER 1977

COPYRIGHT © 1979, BURROUGHS MACHINES LIMITED, Hounslow, England

COPYRIGHT © 1979, BURROUGHS CORPORATION, Detroit, Michigan 48232
PRICED ITEM j
Printed in U.S. America August 1979 Form 2007258

Burroughs @ \

Computer
Management

'Systems (CMS)

SYSTEM SOFTWARE
OPERATION GUIDE

THIS MANUAL REPLACES FORM 2007258 DATED SEPTEMBER 1977

COPYRIGHT © 1979, BURROUGHS MACHINES LIMITED, Hounslow, England
COPYRIGHT @ 1979, BURROUGHS CORPORATION, Detroit, Michigan 48232 J

K PRICED ITEM

Printed in U.S. Ameérica August 1979

Form 2007258

Burroughs believes that the software described in this manual is accurate and reliable, and much care
has been taken in its preparation. However, no responsibility, financial or otherwise, can be accepted
for any consequences arising out of the use of this material, including loss of profit, indirect, special,
or consequential damages. There are no warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software will be in full compliance with
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may be issued from time to time
to advise of changes and/or additions. ’

Correspondence regarding this document should be addressed directly to:
The Manager, Systems Software Support,
Technical Information Organization,
Burroughs Machines Ltd.,
Cumbernauld G68 0BN,
Glasgow, Scotland.

2007258

LIST OF EFFECTIVE PAGES

Page

Title

ii thru iii

iv

v thru ix

X

1-1 thru 1-4
2—1 thru2-12
3—1 thru 3-25
3-26

4—1 thru 4-99
4-100

5—1 thru 5-18
6—1 thru 618
7—1 thru 7-23
7-24

8—1 thru 8—60
9—1 thru 9—41
9-42

10—1 thru 10-9
10-10

A—1 thru A-31
A-32

B—1 thruB-18
C—1 thru C-5
C-6

D-1

D-2

Issue
Original
Original
Blank
Original
Blank
Original
Original
Original
Blank
Original
Blank
Original
Original
Original
Blank
Original
Original
Blank
Original
Blank
Original
Blank
Original
Original
Blank
Original
Blank

Section

2007258

INTRODUCTION

The CMS Concept

Software Release Levels
Software Patches

Software Support

To the Reader

BASIC CMS OPERATION
Introduction
Peripherals
System and User Disks
Disk Format
Disk Initialization
Disk Files
Disk File Names
Disk File Group Names
Disk Directory
Indexed Files
Dual Pack Files
Magnetic Tape File Names
Printer Files
Other Peripherals
Programs
Executing Programs
Intrinsics
Mix Numbers
Output Messages
Format Diagrams
Railroad Diagrams

CMS—COMMON INTRINSICS
Introduction
AD (Assign Peripheral Device)

AX (Accept a message for a program)

CL (Clear Peripheral)

DC (Data Communications operator
input)

DP (Discontinue and Dump)

DS (Discontinue Program)

DT (Systems Date and Time)

FD (Form Define)

GO (Restart a Stopped Program)

MX (Display Current Mix)

TABLE OF CONTENTS

Page

e e
|
w W w w-

R R R R L

NNNMNNNNNNT)NNNNNNNNNN
HB\O\OOO\]\]\I\I\IMMA-waNl\)Mt—-o—-
—

Section

OL (Request for Status Information
of Peripherals)

PG (Purge Tape)

PO (Power Off a disk)

PR (Assign Program Priority)

RY (Ready a Peripheral)

SF (Substitute Disk File)

ST (Temporarily Suspend a Running
Program)

SV (Save Peripheral)

CMS—COMMON UTILITIES

Introduction

SYS-SUPERUTL

Logging

Common Utility Output Messages

ADD (Add Files From Library Tape
to Disk)

AMEND(Disk File Amending)

CH (Change File Name(s)

CHECKADUMP (Compare Library
Tape with Disk)

CHECK.DISK (Check all Sectors of a

Disk
COMPARE (Compare Files)
Additional Capabilities
COPY (File Copy)
Copying Keyfiles
Additional Capabilities
CP (Compute)
CREATE (Create Disk File)
DA (Disk Analysis)
Disk Mode
File Mode
General Notes
Abbreviations
DD (Disk Dump)
Store Function :
Restore Function
DUMP(Dump Files to Library Tape
from Disk)
FL (Display File Attributes on Self-
Scan)

4-3

4-4
4-6

4-10

4-12
4-13
4-14
4-18
4-18
4-19
4-28
4-30
4-35
4-35
4-37
4-37
4-37
4-39
4-39
4-39

4-41

4-43

Section

TABLE OF CONTENTS (Continued)

FS (File Squash)

ICMD (Industry Compatible Mini
Disk Access):

IR (Initiate Log Recall)

KA (Analyze Disk Space Assignment)

KX (Disk Allocation Information)

LB (Look Back in Log)

LD (Tape Library Utility)

LF (Look Forward in Log)

LIST (File List)
Additional Capabilities

LOAD (Load Library Tape Files to
Disk)

LR (List Directory)

MODIFY (Program Code File
Modification)
Interactive Mode
File Attributes

PD (Print Disk Directory)

PL (Print Log Files)

RM (Remove Files from Disk)

SQ (Squash Disk)
General Guidelines

TAPELR (List Library Tape
Directory)

TAPEPD (Print Name of a Library

. Tape)

TL (Transfer Log Files)

UNLOAD (Unload Files from Disk
to Library Tape)

UPDATE (Disk File Update)

XD (Delete Bad Disk Sectors)

THE SORT/MERGE

Introduction

General Features

Invoking the SORT

The SORT Language
The File Statement
The Key Statement
The User-Option Statement

Functional Description
Regular Record Sort
Inplace Record Sort
Keyfile Creation
Tagfile Creation
Merge
Details of Sort Keys
Deleted Records

Page
4-45

4-47
4-50
4-51
4-54
4-55
4-56
4-57
4-58
4-58

4-63
4—-65

4-68
4-69
4-69
4-73
4-75
4-79
4-81
4-86

4-87

4-89
4-90

493
4-95
4-98

U

o
S

|

(I’IUIUIU\(I]U’IM(IIILI’I(I\U’ILIIU]U](I\
— = \O \O \O 00 00 00 thh B W W N k= =

Section

Output Messages

COMPILATION FACILITIES

Introduction

To Initiate a Single Compilation

Use of Macro Calls

Compiler Dollar Options

To Interrogate the Status of
Compilations

To Restart an Aborted Compilation

To Clear an Aborted Compilation

Zip Failures

Reserved Words

Error Messages

Restarting Executing CO Versions

NUMBERED SYSTEM SOFTWARE
OUTPUT MESSAGES
Introduction
Events # 1-9

Software Information
Events # 10-19

Software Suspensions
Events # 20-40

Invalid Request on Class A or B
. Communicate to MCP
Events # 41-49

Fatal Device Errors
Events # 50-69

Load Failures
Events # 70-99

System Errors
Events # 100-169

Program Errors
Events # 170-199

Sort Exception Events

B 80 DEPENDENT SYSTEM

SOFTWARE

Introduction

Power On

CMS Bootstrap Mode

Stand Alone Utilities
Loading Stand-Alone Utilities
A Note on Forcing System

Initialization \

Stand-Alone Utilities
Loading Stand-Alone Utilities
Functions Available

6—10
6—11
6—12
6—13
6—14
6—15
6—18

Section

2007258

TABLE OF CONTENTS (Continued)

Common S.A.U. Output Messages
Disk I/O Errors During S.A.U.
A Note on Dual Pack Files
CLEAN (Clean BSM Drive Read/
Write Heads)
COPY (Copy Files disk to disk)
Dual Pack Files
FE (Initialize MTR Disk)
IN (Initialize a Disk)
LD (Load Disk)
LS (List File Sizes)
OL (Print Status of Drives)
PO (Power Off)
RF (Reformat Disk)
RL (Relabel a Disk)
RM (Remove Disk Files)
Dual Pack Files
WS (Warm Start)
Loading the MCP
Basic Operation under MCP Control
D-Lights
MCP States
Mix Numbers
Automatic Volume Recognition
(AVR)
Console Keyboard Under MCP
Control
Interrupting the MCP
Memory Dump to Cassette
Memory Dump to Disk
System Load Errors
Diagnosis of Disk Errors at
System Load Time

Errors Under MCP Control

B 80 Dependent Utilities

Configurer (Configure B 80 Software
System)

DUMPANALYSE (Analyze B 80
Program Dump Files)

GEN.DUMPFL (Create Empty B 80
Memory Dump File)

GT (General Trace)

PATCHMAKER (Patch B 80 Machine-

Code Object Program Files)
PMBS80 (Analyze B 80 Memory
Dumps)

8—46

8—48
8—-49

8-52

8-54

Starting the Utility
Using the Utility
Power Off

B 800 DEPENDENT ROUTINES
General
Create
Set-up Procedure
Operating Instructions
Bootstrap Error Handling
Error Messages and Recovery
Disk Generator
General Description
Operating Instructions
Initialization Routine (INIT)
System Disk Generation Routine
(DSKGEN)
Question-Answer Routine
Prompting Mode Operating
Instructions
Prompting Error Messages
No-Prompting Mode Operating
Instructions
No-Prompting Error Messages
Copy
Bootstrap Warmstart
Release Letter
General Description
Operating Instructions
Patch
General Description
Operating Instructions
Error Messages and Recovery
Fatal Error Messages
Hardware Fatal Errors
Software Fatal Errors
Warmstart
Warmstart Operating Procedures
Restart Procedure
Restart Operating Instructions
Clearstart Procedure
System Dump Analyzer (SYSDUMP)
Operating Instructions
SYSDUMP Error Messages

Explanation of Formatted Dumps '

Patch History

Page

854
8-55
860

|

Il

|

DD W W N e e e -

|

vii

Section

TABLE OF CONTENTS (Continued)

Hardware Registers
Operating System Registers
Virtual Memory Links
Peripheral Assignments and
Descriptors
Task Detail Table
Print TCB
Print Slices
DC Extended Regs
Line Tables
Station Tables
Terminal Tables
Subnet Queue Table
Available Buffer Pool
Reserve Buffer Pool
DC State Space
MPLII Dump Analyzer (MPL2DUMP)
Operating Instructions
Error Messages
Explanation of Formatted Dumps
Heading
S-Registers
Declare (DECL) Registers
Display
Miscellaneous (MISC)
Miscellaneous (MISC) (continued)
Task Control Blocks (TCB)
Message (MSG) Reference Area
Data Segment Table
Control Stack
Data Segments
File Analysis
Control Stack
Registers
Descriptor Information
COBOL Dump Analyzer
(COBOLDUMP)
Operating Instructions
Error Messages
Explanation of Formatted Dumps
Heading
Program Parameter Block (PPB) of
Code File
Task Control Block (TCB) Preset
Area

Page

9-24
9-24
9-2§

9-25
9-26
9-27
9-28
9-29
9-29
9-29
9-29
9-29
9-29
9-29
9-29
9-30
9-30
9-30
9-30
9-30
9-31
9-31
9-32
9-32
9-32
9-32
9-33
9-33
9-33
9-34
9-35
9-35
9-36
9-36

9-36
9-36
9-36
9-37
9-37

9-37

9-38

Section

Data Segment Table

Control Stack

Data Segments

Current Operating (COP) Table

10 B 1800 Dependent Routines
Stand-Alone Utilities
B 1860 System
B 1830 System

Coldstart
Operation
Error Messages

Clearstart
Function
Operation
Error Messages

Page

9-39
9-39
9—-40
9-41

10-1
10-1
10-1
10-1
10-2
10-2
10-2
10-3
10-3
10-3
10—4

Disk Initializers (Cart.Init/Pack.Init)l0—4

General Information
Error Limits
Operating Instructions
Cartridge
Pack
Both
System Operation
Handling of SPO
Dump Analyzers
- Program Dump Analyzers
System Dump Analyzers
1. Cassette MEM.DUMP
2. MEM.ANALYZER

APPENDIX

A COMPLETE RAILROAD
DIAGRAMS

10-4
10-4
10-5
10-5
10-5
10-5
10—-6
10-6
10-7
10-7
10-8
10—8
10—-9

A—-1

B EXAMPLES OF PRINTED UTILITY

OUTPUT

C GLOSSARY OF TECHNICAL

TERMS

B-1

C-1

D RELATED DOCUMENTATION D-1

Table

42
43
44

5-2

2007258

CMS Portability

Physical Disk Structure

Disk Directory Structure

Indexed Files

Dual-Pack Files

Sample SPO List

Railroad Diagram Sample 1

Railroad Diagram Sample 2

Railroad Diagram Sample 3

Railroad Chart for Compare Utility

Railroad Chart for Copy Utility
(Sheet 1 of 2)

Railroad Chart for Copy Utility
(Sheet 2 of 2)

LIST OF ILLUSTRATIONS

Figure

L

PPETTTTTT
[I\)Lwh—-mhwl\)b‘

r
w

LIST OF TABLES

Page

Peripherals Required by CMS-Common

Utilities

4-2

File Attributes Accessible by Modify 4—71
PPB Attributes Accessible by Modify 4-72

Mnemonics for Device Attributes for

Modify

Sign Convention for Signed 8-Bit
Alphanumeric Fields

Sign Convention for Signed 4-Bit
Numeric Fields

4-72

Table

5-3

6—1
62
6-3
9-1
9-2

Railroad Chart for List Utility

Regular Record Sort

Keyfile Creation

Tagfile Creation

File Merge

Multiple Key Sort

Operation of CO Utility

B 80 Coldstart and Warmstart

Sample CREATE Printout

Sample DSKGEN, Prompting
Mode

Sample DSKGEN, Prompting
Mode

Sign Convention for Separate Sign

Character with 8-Bit Alphanumeric

Fields
Zip Failure Messages
CO Reserved Words
Error Messages from CO
Directory Format Table
Valid Device Mnemonics
Warmstart Error Messages

Page

4-59
5-14
5-14
5—15
5-16
5-17
62
8-2
9-2

9-9

Page

5-18
6-13
6—14
6-15
9-5

9-17
9-22

SECTION 1
INTRODUCTION

THE CMS CONCEPT

CMS (Computer Management System) software is a powerful set of software items designed to operate on
a number of different hardware products.

To the user of an individual hardware product running CMS software, there is a well-defined operator inter-
face and set of programming languages. The importance of CMS is that the same user may use a different hard-
ware product running CMS software, and with the same languages. This portability eliminates major operator
retraining between different CMS products. It also allows freedom of interchange of programs between hardware
products, limited only by availability of hardware features. For example, a program may be developed and com-
piled on one system, and run on another. Also, because the compilers are also programs, there is portability
of compilers between hardware systems as well. Data files are similarly transferable from one system to another.
This portability is achieved by building on the ‘“soft machine” concept. Refer to figure 1-1.

SOURCE
PROGRAM
%
COMPILER
\\
OBJECT
CODE
PROGRAM
(S-CODE)
< N
INTERPRETER < > INTERPRETER
A B
HARDWARE HARDWARE
A B
SOFT MACHINE A SOFT MACHINE B

Figure 1-1. CMS Portability

2007258 1-1

The programmer writes a program in a high-level language. The CMS programming languages are:
COBOL :
RPG (including RPGII)
MPL (CMS Message Processing Language)
NDL. (Network Definition Language).

This program is writen in ‘source code’. This is then input to one of the CMS compilers which converts it
to “object code” or “S-code”. This is the executable program. The “S-code” is similar in design to the ‘“machine
code” of earlier generations of computer.

In earlier generations of computer this ‘‘S-code” would be executed by hard-wired instructions. With the ad-
vent of fast micro-processor computers, however, it is possible to build a set of micro-instructions which inter-
prets each “S-code” and executes it. The set of micro-instructions is therefore called an “interpreter”. The com-
bination of interpreter and micro-processor hardware is sometimes termed a “soft machine”.

Now as the “S-code” is independent of any particular hardware, it is possible (and has been achieved in CMS)
to build several soft machines which will execute a “object program’ in a similar manner. Hence the CMS ob-
ject programs are portable across the different CMS machines.

These machines include:
B 80
B 800
B 1800

There are three different CMS interpreters on each system. On the B 80 these are:
BILINTERP
COBOLINT
NDL.INTERP

On the B 800 the interpreters are part of the MCP (see later).

The BILINTERP is used to execute programs written in MPL and in BIL (an implementation language used
for compiler-writing which is so similar to MPL that they share the same S-code format). The COBOLINT is
used to execute programs written in COBOL and RPG (these two languages share the same S-code format).
The NDL.INTERP is used to interpret data communication controller programs written in NDL.

Certain common features needed in all programs (such as the handling of peripheral devices) have been col-
lected together into a Master Control Program (MCP). The MCP is a micro-code program and is therefore spe-
cifically written for each hardware product. Thus there is a B 80 MCP, and B 800 MCP and a B 1800 MCP.
The MCP also controls the operator interface (which is standard across the CMS range) and maintains overall
control of the system, providing complete resource management including multi-programming, I/O device han-
dling and memory management.

CMS software also provides a number of utility programs. As these are written in MPL, they also are portable
across the CMS range, limited only by hardware feature availability.

To cover the complete features of each CMS product line, certain aspects of the software are written for a
specific product. These additional features include important operational characteristics, and are described in
sections 8, 9 and 10. Sections 2 through 7 of this manual cover items which are applicable to any CMS product.

1-2

SOFTWARE RELEASE LEVELS

Each item on a CMS software release is identified by a three-part number, as follows:

X, XX, XX

I l—— patch number
level number

mark number

The mark and level numbers constitute the release number. For example, the COBOL compiler 3.01.08 is
the COBOL compiler included in the 3.01 release of system software, with patch number 08.

Software items from different releases should not be used together. For example, an interpreter from release
3.01 should not be used with an MCP from release 3.00.

This book describes system software relative to the 3.01 release.

Software Patches

Within a particular release, patches to individual items may be issued. For example, an MCP identified by
3.01.12 contains certain improvements over an MCP identified by 3.01.11. A patch always increases the patch
number. It is always advisable to use the highest patch versions within any one release. All system software
items within a given release (mark and level numbers) may be used together, regardless of the patch number,
unless explicitly stated otherwise at the time of release of the item.

Certain items may be patched by the user. The details are machine-dependent and are described in the rele-
vent section (8, 9 or 10).

SOFTWARE SUPPORT

Throughout this book, suggestions are made for corrective action where possible, following a particular output
message or symptom of failure. Sometimes the phrase “request technical assistance” has been used. This should
be interpreted as a recommendation to contact your immediately higher support level if you are not sure of
what to do or do not feel justified in attempting further action without competent advice.

All problems with the system should be recorded. This is for two purposes: to report the problem; and to
avoid similar problems in the future. The report should contain the date and time and list the systems. As a
minimum it is recommended that the SPO hard-copy printout or SPO log is kept for future reference.

TO THE READER

This book is written as reference material. It is a guide to be consulted during operation of any CMS machine.

This book explains how to start and to stop the system software. As this is normally hardware-dependent,
the relevent section (8, 9 or 10) should be consulted.

Once the system software has started (that is, the system is under MCP control), the operator may interface
with the MCP via the SPO (Supervisory Printout) device in order to execute programs. The type of device may
vary with the hardware product, but input and output messages are standardized.

Section 2 of this book explains some general terms which should be understood in order to make full use
of the CMS features. It explains how to cause programs to be executed. This section also explains how to read
the diagrams used throughout the book to describe the format of input messages and other details.

Details of input messages are given, in alphabetical order, in sections 3 and 4. The items in section 4 are
utility programs which are executed in the same manner as other programs. The items in section 3 are embedded
features in the MCP. Refer to section 2 for a fuller explanation.

2007258 1-3

Sections 5 and 6 describe the sort/merge feature and the compilation feature respectively, and will be of spe-
cial interest to programmers. Section S includes a functional description of the sort/merge feature.

Section 7 lists the messages which may be output to the SPO by the system software during execution of
the system. As each message is identified on the SPO by a number, reference to this book can be made by
this number.

For other items such as hardware and system software failures, refer to the particular hardware section (8,
9 or 10) for details.

SECTION 2
BASIC CMS OPERATION

INTRODUCTION

All CMS operation has two basic principles: it is disk-based; and operator communication is with the MCP
by a SPO device. Other peripherals may be present, depending on the configuration. This section introduces
some basic principles which should be understood by all CMS operators. The material in this section is common
to all CMS products. Other details that are machine-dependent are given in the relevant section.

PERIPHERALS

Each peripheral is referenced by a three-character abbreviation, where the first two characters give the type
of peripheral and the third character refers to the particular peripheral by the letter A, B, and so on. For exam-
ple, LP is the abbreviation for a line printer, so the first line printer is referred to as LPA, and the second

is LPB.
The peripheral types are listed below:
AC - console with any output device
AM - any multi-function card unit

AP - any (serial or line) printer
AR - any card reader

AT - any magnetic tape
CP - any card punch
CT - cassette tape
DC - data communications controller
DF - fixed disk
DI - industry-compatible mini-disk (ICMD)
DK - disk cartridge (any type of speed)
DM - Burroughs super mini disk (BSMD)
DP - disk pack
LP - line printer
MT - magnetic tape (reel)
M8 — 80-column multi-function card unit
M9 - 96-column multi-function card unit
PC - console with serial printer
P8 - 80-column card punch
P9 — 96-column card punch
R8 - 80-column card reader
R9 - 96-column card reader
SC - console with self-scan device
@ SP - serial printer (on console)

SS - self-scan device

If the configuration contains more than one device of the same type, the designation (A, B, and so on) de-
pends on the location of the peripheral controller in the hardware. If there is only one dual-drive cartridge con-
troller, the upper drive is DKA and the lower drive is DKB. If there is only one dual-drive Burroughs super-
mini-disk controller (for example, on a small B 80 with in-built mini disk), the upper drive is DMA and the
lower drive is DMB.

The three-character references are used in all operator communication with the MCP (refer to section 3).

SYSTEM AND USER DISKS

The MCP resides on a disk unit. At warmstart time (when the system is started up and the MCP begins to
function) the MCP notes the disk containing the executing MCP code. This is called the ‘“‘system disk”.

During operation there is only one system disk. Other disks may contain a copy of the MCP code, but only
the disk from which the MCP is running is the system disk.

All other disks on the system during machine operation are called “user disks”.

There is one restriction on the portability of system disks between different CMS products. A system disk
may not be taken to a different CMS product and used there as a system disk. It may, however, be used on
the second system as a user disk. It may also be used on the first system as a user disk. User disks may always
be interchanged between different systems.

DISK FORMAT

A disk consists of one or more platters, one or both surfaces of which may be used to record data. The re-
cording area of disks is divided into the following physical items:

Track:

An area of one surface of a disk which is at the same distance from the center of the disk. The entire track

can be accessed without moving the position of the read/write head.

Sector:

The basic unit of disk address, size 180 bytes on all Burroughs disks, and 128 bytes on ICMD. A physical

read or write uses a complete sector. There are several additional bytes in each sector, used only by the hard-

ware and not accessible to user programs. The sector is also called a “segment”.

Cylinder:

If there is more than one surface, each track at the same distance from the center makes a cylinder. The
entire cylinder may be accessed without altering the position of the read/write heads.

Figure 2-1 illustrates these terms.

Disk Initialization

Each disk must be initialized before use on a CMS machine. Initialization creates correct sector addresses
throughout the disk recording surface, then writes certain data in the low-address part of the disk. The first
sector is numbered sector zero, and the first track is numbered track zero. A disk with a bad track zero can-

not be initialized. The method of initializing the disk is machine-dependent refer to the appropriate section.

Sector zero contains the disk label. This includes the name of the disk, or “disk-id”. Every disk has a disk-
name. This disk-name can be from one to seven characters, using the set A to Z, 0 to 9, and the dot (**.”)
and hyphen (“=").

2-2

TOP VIEW :

ONE TRACK, MADE OF
SEVERAL SECTORS

ANOTHER TRAGK, MADE OF THE
SAME NUMBER OF SECTORS

SIDE VIEW :

\L ONE CYLINDER

READ/
WRITE
HEADS

\’
< | <<«

Figure 2-1. Physical Disk Structure
Disk Files

Information is stored on a disk in a “disk file”’. There may be many files on one disk. Each file is referenced
by a “file name”. A file name can be from one to twelve characters, using the set A to Z, 0 to 9, and the
dot and hyphen. Each disk contains a directory of the files on that disk. This directory is accessed by utilities
such as KA and PD (see section 4).

Information can be of different types: normal data, accessed by programs; special data, accessed by the MCP;
and programs themselves. The MCP is itself a program, and so are other “‘system files” such as the interpreters.
System files have special restrictions in that a control is placed on their removal (see RM section 4).

Disk File Names

On any system, every disk file (whether data or a program) is accessed by a two part reference, as follows:
disk-name/file-name

For example, the disk file M101A/REP200 is a file with a file-name REP200 to be found on the disk with
a disk-name MI101A.

It is not necessary to give the name of the system disk when referring to files residing on the system disk.
Alternatively, a disk-name of 0000000 by convention refers to the system disk. For example, the disk file
REP200 or 0000000/REP200 is a file with a file-name REP200 to be found on the system disk.

two files of the same file-name on the same disk. However, it is quite permissible for two different disks to
contain a file with the same file-name. For example, the files M100A/REP200 and M101A/REP200 refer to two
different disk files (although one may be a copy or update of the other).

e It is not allowed to have two disks of the same disk-name in use at the same time. It is not allowed to have

2007258

Disk File Group Names

In many utilities (see section 4) it is convenient to refer to groups of files, depending on common starting
characters of their file-names.

All files on a disk may be referenced by the equals symbol (““="). For example, the reference M101A/=
refers to all files on the disk with disk-name M101A.

All files beginning with, say, the characters REP may be referenced by REP=. For example, the reference
MI101A/REP= refers to all files on disk M101A with file-names of REP200, REPA, REP678P, and so on.

In general, a group-name consists of an equals symbol (“="") optionally preceded by up to ten symbols which
are the first part of the file-names of each of the files in the group.

Example:

Consider a disk M101A containing files with file-names:
PR200,REP100,REP200,REP250,RQ510,CRCOPY

Then the following group-names refer to the files indicated:

M101A/=

PR200, REP100, REP200, REP250, RQ510, CRCOPY
M101A/REP=

REP100, REP200, REP250
M101A/R=

REP100, REP200, REP250, RQ510

Disk Directory

The disk directory is a table on every CMS-initialized disk which enables the MCP to locate any disk file by name. Full
details of the directory layout are given in the CMS MCP manual.

The directory is a fixed size determined at disk initialization time, based on the maximum number of files
to be placed on the disk. An attempt to create more files than there are entries in the directory will give
an appropriate MCP run-time error message,

The directory consists of three parts:
the name-list
the disk file headers for each file
the available table

The relationship between these parts are given in figure 2-2. The name-list is a list, by file-name, of each
file existing on that disk. A search through this name-list will reveal if a file is present or not: if present, the
name-list entry points to the disk file header for the file. This is a table giving the location of each part of
actual data in the file (the file may be divided into up to sixteen separate physical areas on the disk). In the
figure only one area is indicated. The available table is a list of the disk areas not in use by a file. When a

new disk file is created, an available space is found from this table and an entry made in the name-list, then:

the space is used to write the file information. When a disk file is removed its entry is deleted from the name-
list and the areas specified in the disk file header are entered in the available table.

If there is insufficient space on a disk to allocate new disk file areas, a “NO USER DISK” message is given
by the MCP. The operator may remove a file (see RM) to make more space available. The KA utility (see
section 4) and KX function provide information on the available space on a disk.

2-4

TRACK 0 DISK LABEL
V V V
DIRECTORY | AVAILABLE] DISK FILE
TABLE NAME-LIST HEADERS
Ll 1 L1
DISK SPACE <
FOR FILES

Figure 2-2. Disk Directory Structure

As a simplification, it may be stated that when a disk is initialized the directory is rebuilt with no entries,
indicating that the entire disk space is available apart from the directory itself. In fact, any bad areas on the
disk are marked in the directory so that they cannot be allocated to files (see also the XD utility); also, there

is a special entry called “SYSMEM” which enables certain programs such as PD and RM (which access the
directory) to operate successfully.

Indexed Files

Indexed files are in fact a pair of files, the“‘key file” and the ‘“data file”. They may reside on the same or
separate disks. Each file in the pair has a separate entry in the disk directory of the disk on which it resides.
A special table at the beginning of the key file (the*‘key file parameter block™) gives, among other information,

the disk-name and file-name of the associated data file. See figure 2-3 for a diagram of the relationships between
the two files.

The purpose of indexed files is to simplify access to data in the data file by using a set of keys (such as ac-
count number) in each record of the data file. These keys are placed in the key file. A key file may be created
by the SORT utility and intrinsic (see section 5, where examples are given).

Special consideration must be given to copying indexed files, due to the link between the key file and data
file. This is especially true when copying from one disk to another. Details are given in each relevent section
(see COPY utility, section 4; also the machine-dependent copy facilities).

Dual Pack Files

As mentioned before, a disk file may be divided into up to sixteen separate areas. If these areas are located
on two separate disks the file is known as a“dual pack file”. Such files may be created by the AD intrinsic
in response to a“NO USER DISK” message (see section 3).

There is an entry in the directories of both disks for a dual pack file, together with the disk-name of the
other disk. Each disk directory has a copy of the disk file header for this file, but the table of locations for
each file area also indicates if the area is located on“this” disk or the‘“‘other” disk. This is shown diagrammatical-
ly for a file with four areas in figure 2-4. In most applications it is necessary for both disks of a dual-pack file
to be on-line at the same time.

2007258

DIRECTORY ENTRY
FOR KEY FILE

Y

DISK LABEL OF DISK
WITH DATA FILE

L

DIRECTORY ENTRY
FOR DATA FILE

Y

~
-~

DATA FILE
DISK-NAME

DATAFILE
FILE-NAME

KEY FILE DATA FILE
Figure 2-3. Indexed Files
N
DISK LABEL OF DISK DISK LABEL OF DISK
A < B
N
DIRECTORY ENTRY < DIRECTORY ENTRY
FOR DUAL-PACK FILE > FOR DUAL-PACK FILE
V
AREA 1
L > AREA 4
> AREA 2
AREA3 €——
DISK A DISK B

Figure 2-4. Dual-Pack Files

MAGNETIC TAPE FILE NAMES

Note: this includes tape cassette.

A tape may be used to store data either on one file (a “single-file tape”) or as a “multifile tape”. Each file
is separated by a tape mark. Additionally, each file normally has a beginning and an ending label. A multifile
tape has also a special beginning (‘“volume”) label.

On loading a tape, the MCP reads the first label to determine the tape name. Tape file names are in two
parts:

multifile-name/file-name

For a single-file tape, the multifile-name will be “0000000”. The format of the multifile-name is the same
as for the disk-name of a disk file.

The COPY utility (section 4) produces a single-file tape when copying to tape. The LD utility (section 4)
always produces multifile tapes called “library tapes”. Library tapes are referenced by the multifile-name: there
is a standard convention for labelling all the files on a library tape. For full details of tape formats, refer to
the CMS MCP manual.

Tapes (multi-file or single-file) may be unlabelled. Such tapes must always be accessed via the AD intrinsic
(section 3) because there is no label that the MCP can recognize when the tape is loaded. Tapes containing
labels that are non-standard are also treated as multifile unlabelled tapes.

PRINTER FILES

There are two types of printer: a wide line printer and a console printer, depending on available hardware.
The console printer is also known as a “serial printer”. These hardware devices are also referred to as “files”
and are given file-names of up to seven characters. When the file is opened and closed, an identifying print
line is given to indicate the name of the file. This file-name is also used in MCP messages. Refer to the CMS
MCP manual for full details.

It is possible to designate a file type of “any printer”. Such a file will be written to a wide line printer if
this peripheral is available. If not available, this file will be written to the console printer if available. If there
is no console printer either, the MCP will display a “NO FILE” or “DEVICE REQUIRED” message.

OTHER PERIPHERALS

All peripherals are treated as files for input, output or a combination of input/output, depending on the hard-
ware type. The use of any periphral device is governed by the file-name of up to seven characters, which will
appear in any related MCP messages. Refer to the OL intrinsic (section 3) for other details.

PROGRAMS

An executable program is information stored on disk as a disk file. It is referenced in the same way as any
data file: that is, through the disk-name and file-name (or just the file-name if the program resides on the system
disk). The rules for the program name are the same as for any disk file name.

A “‘utility” is a program provided for general use by all CMS operators, for house-keeping and other general
purposes. For example, the LD utility enables operators to load and dump disk files from disk to magnetic tape
for backup purposes.

Executing Programs

In order to execute a program, part or all of the information in the disk file must be brought into memory
and placed under control of the MCP. This is called “program load‘, and takes a certain interval of time.

2007258 2-7

Programs may be loaded and executed by merely providing the name of program file to the MCP. If so de-
sired, the keyword “EX” may be place before the program name. For example, suppose one wishes to execute
a program that resides on a disk PR200A in a file called DCS. Either the input

EX PR200A/DCS

or just
PR200A/DCS

will cause the program to be loaded and executed.

Depending on the system, a BOJ (beginning-of-job) message may be displayed by the MCP after the program
has been loaded, and a EOJ (end-of-job) message may be displayed by the MCP at the end of the program.
The display of these messages may be turned on or off for individual programs by the MODIFY utility (see
section 4).

Failures may occur when attempting to load a program. For example, the requested program may not be on
disk. A list of load failure messages is given in section 7.

Many programs enable the operator to enter further information after the program name. This is known as
an ““initiating message” and the contents are entirely dependent on the program. Nearly all the utilities in section
4 allow further information, the format of which is given in the description of each utility program. For example,
the input

COPY REP202 TO RPTAPE

consists of the command to load and execute the program called “COPY” (found on the system disk in this
example), followed by the information “REP202 TO RPTAPE” which is passed to the program. There are two
types of error which can be made: either there is a load failure (because, for example, the COPY program
is not on the system disk), when the MCP would issue an appropriate message; or the following information
is an incorrect format for the program, when the program itself would issue a message. In the former case,
the MCP message is described in section 7. In the latter case, the output message is described under each utility.

Note that if the utility resides on, say, the disk PR2, the input message would be
PR2/COPY REP202 TO RPTAPE

or
EX PR2/COPY REP202 TO RPTAPE

In section 4 this additional information is omitted in the interest of clarity. It is, however, common for utilities
to reside on a disk other than the system disk, in which case the disk-name must be provided.

It is also possible for programs to be automatically executed by another program. In this case, the first pro-
gram is said to “zip” the second program. No operator input is used in this case, but the BOJ message may
be displayed for the zipped program.

INTRINSICS

There is an important type of operator input that does not involve a command to execute programs or
utilities. These messages are calls on “intrinsics” which are part of the MCP. Those intrinsics which are common
to all CMS machines are described in section 3. Other intrinsics are given in the relevent machine-dependent
section.

Because an intrinsic is part of the MCP, there is no separate program corresponding to the name of the intrin-
sic. Therefore the keyword “EX” is not allowed in a call on an intrinsic, neither can a user disk-name be
specified. There is no program load time because the MCP is already executing. For example, the input

RY DMA

is a request to the MCP to ready (RY) the disk peripheral designated by DMA. This input message to the
MCP must not be preceded by the keyword “EX”.

2-8

MIX NUMBERS

As a program is loaded, the MCP assigns it a number from its table of executing tasks. This is the “mix-
number” and is used in any messages output by MCP relating to this task. The mix-number is also used in
all messages input by the operator for this task. Some input messages also require the corresponding program
name as well as the mix-number. The MX intrinsic (see section 3) may be used to determine the current mix
of tasks.

The allocation of mix-numbers is dependent on the CMS product. Refer to the corresponding section for more
details.

OUTPUT MESSAGES

As mentioned earlier, messages may be output on the SPO either by the MCP and other system software
or by the program. It is important to distinguish between the two types of output messages in order to look
up the message in the appropriate place.

Messages output by the MCP are of two kinds: short responses to intrinsics, and longer descriptions of any
event to be brought to the attention of the operator. The short descriptions are self-explanatory: for example,
the input message

OL LPA

(an intrinsic to inquire of the status of line printer LPA) may result in the response
LPA READY

Similarly, the short message
LPA NOT READY

will be displayed if LPA is stopped by the operator or through any fault. The longer descriptions are always
referenced by an “event number” enclosed in brackets. The format of these messages is given in section 7, and
operators should be generally able to recognize that such a message has been output by the MCP.

For example, the message
10/LIST <17> WAITING UNLAB LISTPRT AP NO FILE

indicates an MCP message with event number 17, and reference should be made to section 7 for information
on possible causes and suggested actions to take.

Messages with event numbers may also be output by other parts of the system software such as interpreters
and the sort-intrinsic, although the overall format is similar. After recognizing the event number, reference
should be made to section 7 (or section 5 for sort-related messages).

Messages output by all other programs are known as “displays” and may be preceded by the keyword
“DISP”. Note, however, that utility programs may display messages without this preceding keyword.

All messages output by the utility programs described in this manual are listed under the respective utility.
For example, messages displayed by COPY utility are listed under the COPY utility. Messages may additionally
be displayed by the MCP for events related to the execution of the COPY utility (for example, if the COPY
utility needs space on a particular disk, a “NO USER DISK” message will be output) but these MCP messages
will always be distinguished by the event number.

Messages displayed by other programs are not discussed in this manual. Reference must be made to the ap-
propriate manual or operating instructions for that program. ‘

Figure 2-5 illustrates a sample SPO list giving a mixture of messages described in this section. Note in this
example that the utility programs LIST and LR do not give rise to BOJ and EOJ or DISP messages. The user
program PROGA shows all three messages. These messages may be turned on for utilities by using the
MODIFY utility (section 4).

2007258 2-9

input commanc to run LIST ==>
MCP output message event 10->
input commang¢ to run PROGA =>
MCP message for PROGA BOJ ==>
input commanc to run LR ====>
next Line is PROGA ¢isplay =>
lactugl display infcrmation =>
input reguest OL intrinsic =>
MCP response to OL message =>
input request MX intrinsic =->
MCP respcnse to MX message =>

->

->

->
MCP message for PROCA EOJ ==>

LIST COLLETTE

01/LIST <1C> WAITING CCLLETTE DK NO FILH

PROGA

02/PROGA BOJ PR IS A
LR =

02/PROGA DISF:

PROGRAM A VERSION 2.C1.05
OL LFA
LPA LRPRINT IN USE BY (3/LR
MX

C1/LIST SUSPENDED WAITING CN NC FILE
e+ -CONDITION
02/PROGA A EXECUTING
03/LR B EXECUTING
02/PROGA ECJ

input request ST intrinsic => ST 32
MCP respcrnse to ST nessage =-> 03/LR STCPFED

Figure 2-5. Sample SPO List

FORMAT DIAGRAMS

Most of the descriptions of input messages in this book are given as simple format diagrams with correspond-
ing descriptive text and examples. An example will illustrate how to read such format diagrams.

Example:

EX disk-name / \l/ TST200 \l/ number |
TST201

In this format, items in lower-case (‘“disk-name” and ‘“number” in this example) are to be replaced by actual
values (such as “PR2” and ‘27). Other items are included in the input message as they are found. Spaces
are required whenever necessary to avoid ambiguity. In the example, it is not strictly necessary to separate the
disk-name and the slash (/) with a space because the slash cannot be part of the disk-name according to the
rules for disk-names. Extra spaces may however, be added for legibility. If an arrow in the left-to-right direction
is encountered, the items under the arrow may be omitted. Curly brackets are' used to denote alternatives. The
alternatives are placed in a list underneath each other. (Each alternative item may be more complex than the
example quoted: it may contain optional parts and further alternatives). If an arrow in the right-to-left direction
is encountered, one may return to the point underneath the arrow and continue building up a valid input mes-
sage In the example quoted, after adding a valid number (say ‘27’) one may return to add a second number
(say ““527). In fact, the format diagram does not specify how many times one may continue to do this, but
details are given in the text.

Here are several valid input messages which can be generated from the example. (Note that a disk-name can
consist of up to seven characters, see earlier):

EX TST200 57

EX TST201 259

EX PR2/TST200 36

EX PR2/TST200 2 52 574 361
EX M101A/TST201 1 2

2-10

Here are several invalid input messages according to the example:
EX PR2/TST200
EX PR2 TST200 36
EX TST202 36
TST201 259
EX PR2/MI101A/TST201 1 2

Here is a slightly more complicated example, which makes the number or list of numbers optional:

Example:

EX disk-name / TST200
TST201

| v

number

The input messages
EX PR2/TST200
EX PR2/TST200 56
EX PR2/TST200 27 56

are now all valid.

These simple format diagrams are easy to understand in conjunction with descriptive text and examples, but
cannot be used if the format becomes too complex. In the latter case a rigorous notation known as “railroad
diagrams” is employed (see below). In some case in the text of this book, the format has been deliberately
simplified for the sake of clarity, with further details given in the text. More complex features have been de-
scribed by railroad diagrams (see, for example, the COPY and LIST utilities in section 4). Appendix B gives
complete railroad diagrams as a handy reference for those who need the exact definition of any input message.

RAILROAD DIAGRAMS

The equivalent railroad diagram to the first format diagram is given in figure 2-6.

< disk-name > — /
l—]/ I_ TST200 —m | :
EX l ‘ < number > >

TST201 —

Figure 2-6. Railroad Diagram Sample 1

To form valid input, follow the railroad “track” from left to right or in the direction of the arrows. A junction
in the track indicates that alternative paths may be followed. Items enclosed in angled brackets “<” and “>7)
must be replaced with actual values, as before. Each item not enclosed in angled brackets is included as it is
found. Spaces are added where necessary, as in format diagrams.

The equivalent railroad diagram to the second format diagram is given in figure 2-7.

< disk-name > — / < number >
[_ - TST200
EX

— TsT201 —

\ 4

Figure 2-7. Railroad Diagram Sample 2

There are two other features available in railroad diagrams to make possible the exact specification of any A
input message. These are illustrated in figure 2-8. Firstly, the maximum number of times around a loop may ‘
be controlled by including the number :

<disk-name> — <A>— < number > 2
I ,|, — TST200 = \I, T ‘I,
N
&

L TST201 —

Figure 2-8. Railroad Diagram Sample 3

in the track of the loop. In the example, it is possible to omit the <number>, or to include either one or
two values of <number>. Secondly, if angled brackets are to be included as part of the message, these must
be underlined. In the example, there is an optional part of the message which consists of the three characters
“<A>”. The following messages would then be valid:

EX PR2/TST200

EX PR2/TST200 27

EX PR2/TST201 27 56
EX PR2/TST201 <A>
EX PR2/TST200 <A> 56

but the following would be invalid:
EX PR2/TST200 27 56 243
EX PR2/TST201 A
EX PR2/TST201 A 73 ’

Note also that if a number under a loop is preceded by an asterisk (“ *), then that loop must be included in the syntax
at least the number of times specified. For example, if the loop included the characters * *1”, then the loop must be included
at least once.

2-12

SECTION 3
CMS-COMMON INTRINSICS

INTRODUCTION

This section describes, in alphabetical order, those input commands which are embedded in (“intrinsic to”)
the MCP, and which are common to all CMS products.

As discussed in section 2, it is not valid to precede these messages with “EX”, because the intrinsics are not
separate programs to be loaded and executed. The intrinsics cannot be executed from a user disk, because by
nature they are part of the MCP which is on the system disk.

The response to these intrinsics may vary slightly between different CMS products, due to different hardware
being used. These variations have been noted in the text where applicable.

AD (Assign Peripheral Device)

This intrinsic allows the operator to assign a particular peripheral to a program that has called for an “unla-
belled input file”, or that requests a particular output device.

It may also be used to allow file overflow onto a second disk if no disk space is available

Format:

v

AD mix-number / program-name : peripheral

Example 1:

Copy utility requires another disk:

COPY INIST TO INDISK3/INIST
10/COPY <12 > WAITING FILE10 NO
... USER DISK

AD 10 DMB

(The first message is output by the MCP and the operator responds with the' AD message by assigning DMB
as the disk to which the remainder of file INIST will be copied. This creates file INIST as a ‘“‘dual-pack file‘).

Example 2:

Program “COBOL7”, mix number 03, requires a line printer type device:

03 COBOL7 <17 > WAITING LP NO FILE
AD 03 LPA

(The first message is output by the MCP, and the operator responds with the AD message by assigning LPA
to mix number 03).

Example 3:

The LIST utility requires an unlabelled tape:
LIST TAPE1 MTP NO.LABEL
01/LIST <14> WAITING UNLAB SPURIUS/TAPE1 AT
| ...DEVICE REQUIRED
AD 01 CTB
|
|

Output messages:

MESSAGE ‘ POSSIBLE CAUSES SUGGESTED ACTION

rix rumber/progranm Specified crogran Check with MX

AD INVALID was not suspended for rame of susbDended
Wwaiting for a cevice progrem.
assignrenrt.

3-2

AX (Accept a message for a program)

This intrinsic allows the operator to communicate with a program in the mix. The program must already be
suspended waiting for an “accept” (ACPT).

The MCP will prompt the operator for input by printing “mix number/program-name ACPT” on the SPO.

The maximum length of the “text” or operator input is 50 characters. Operating intructions for individual
programs will provide the operator with valid “text” responses.

Format:

AX mix-number / program-name l text

Example:

The program BMO01 displays a message asking for a file name to be entered. The operator responds with
the appropriate text, in this case ARSCHG, by the AX message.

<~ BMO001
01/BM001 BOJ
ENTER BM202 FILE NAME
01/BM001 ACPT

<« AX 01 ARSCHG

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN

mix-number / Specified prograrn Check with MX for

program=pame AX was not waiting for proper mix=nunter

INVALID an "accept”™ and frogram=ngre
or combinéticn.

mix nurber and
specified progranr
nare do not matct.

e 7
ﬁi j o (- Wz 6‘@ m e ZM

2007258 3-3

CL (Clear Peripheral)

This intrinsic allows the operator to clear the peripheral from the program and bring the program to End
of Job (EQJ). It breaks the “links” between the program and the peripheral.

For example, if the line printer “hangs” during the printing of a report and an attempt is made to DS the
program, it will not be possible to discontinue the program unless the line pnnter is made ready or CL is used
to break the “link” between the program and the line printer.

Format:
printer peripheral
CcL tape peripheral
* self-scan peripheral }
ICMD peripheral
- -
Examples:
CL LPA
CL SSA
Output messages:
MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN
CL peripheral Prograw is not wgitirg Cteck input.
INVALID on "hung™ periphersle.

DC (Data Communications operator input)

This intrinsic enables the operator to enter messages from the SPO to the Message Control System (MCS)
if data communications activity is in process.The message text, after being stripped of the “DC” characters and
the following blank character, is transferred to the MCS input message queue and marked as “operator input”.

The interpretation of the message text is defined by the particular MCS.

Format:

DC | text

Example:

To enter the text “MAKE STATION 2 READY":
DC MAKE STATION 2 READY

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN

noné MCS irput successful nore

DC INVALID | no MCS in the mix check input; execute
the MCS

DC NOSPACE There 1is ro availasble wait a short time then

message space in
memory for this
message

re~irpLt messeges if
tnsuccessful several
times» requlst

techrical assistance.

DP (Discontinue and Dump)

This intrinsic is similar to the “DS” intrinsic. The difference is that the disk work space (Virtual Memory
on Disk, Virtual Disk) is not freed up and returned to an available status.

The disk work space is, instead, updated from memory with all the most current information about the pro-
gram. The disk backup is then made into a file (locked) and given a name, “DMFILnn” (‘nn” is the mix number
for user programs, utilities, and MCP intrinsics).

The peripherals and memory in use by the specified program are made available to other programs.

DP is used when a technical analysis of a particular program is required following a failure during its
operation.

Format: ‘DP mix-number/program-name

Example:
DP 01/GL060

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN \

mix number/program= DP success ful rone.
name DP'ed ’

input INVALIC mix nurber does rot Crheck input (reinput
correspond to if necessary).
procgram name or

Check with MX for
proper mix numter and
fFrogranm name comtinat -

icno
input INVALILC - prcgram=name is Check with MX anc
NEEDS PROGRAM=-ID miss ing re=irpute.

3-6

e DS (Discontinue Program)

This intrinsic causes the orderly termination of the specified program. All peripherals in use by the program
are made available to other programs.

Format:
DS mix-number / program-name

Example:

To terminate the program ARO040 which has mix number 2:

DS 02/AR040
Output messages:
MESSASGE PCSSIBLE CAUSES SUGGESTED ACTICN
mix/grog 0S'ed DS successful none
input INVALID mix number does rot check with MX»
correspond to proagaras reinput
name’? or progrém is
an MCS.
input INVALIC=-NEEDS program name not check with MX>»
6 PROGRAM 1D specified reinput

Note: if the program is waiting on a ‘“hung” peripheral device, try the CL intrinsic.

2007258 37

DT (Systems Date and Time)

This intrinsic allows the operator to inquire about or change the system date and time maintained by the .
MCP.

Format:

v

DT mm/dd/yy ' hhmm

Examples:

To inquire about the system date (and time if the system contains a real time clock)
DT

To change the system date:
DT 01/01/78

To change the system date and time:
DT 03/23/78 1234

(March 23, 1978 is the new date. 12:34 is the time).

3-8

Output messages: |

MESSAGE

PCSSIBLE CAUSES

SUGGESTED ACTION

*DD MON YY YYDDD
HHMM DQOA"

Wwhere

DD = day of month
MON = % letter
abbrevietior of
month.

YY = yvear

YYDDOC = Julian date
HHMM = time (hours
and minutes)

DOW = day of week.

Normal response
to "DT“.

rone

<INVALID DATE>

An error was made
in one of the follow"
ing fields:

MM

VRN

Yy
For exarmple = &
MM entry of "0" or
greater than 12
is invalid.
The entire dste is
rejected, tut a
valic¢ time entry
in the same mess~-
age will bte sccept-
ed.

Feinput date
portion of
meSsSace

<INVALID TIME>

A time greater thar
2359 was enterede.

The tine is rejectede.
A valic date entry in
the same messace witl
be accepted.

Reingut time
portion cf
FESSECE.

<NO CLOCK>

Time entry was
macer» but systenm
has no real=time
cleck.

Valic date ertry
will be accepted
in sare message.

rone

MM/DD/YY HEIMM

Normzl resconse
to 9T inquiry
(R30C)

rone

FD (Form Define)

This intrinsic allows the operator to define a logical page for a serial printer (SPA) or set top of page for
the SPA.

Unless the operator indicates otherwise, the current position is taken as the top of the page.

If the three parameters (HEIGHT, WIDTH, and OFFSET) are specified, then they are used to define a
logical page on the SPA. HEIGHT specifies the number of lines on a logical page; WIDTH the maximum num-
ber of characters in one line; and OFFSET the number of characters that the printing area is to be offset from
the left. An OFFSET of zero specifies the left-most physical position.

WIDTH and OFFSET added together must not be greater than the number of physical print positions on
the serial printer. For example, if the physical printer has 255 columns the maximum printing area is given by
a WIDTH of 255 and OFFSET of zero. The logical page will remain the same as defined by FD or next warm-
start.

Format:

\%

FD SPA [height, width, offset

Example:

FD SPA 66, 120, 5 .

defines a logical page on SPA where height is 66 lines and the printing area is 120 characters wide offset
5 columns from the left (that is, from columns 6 through 125, numbering the left-most column as column 1)

Output messages:

MESSAGF POSSIBLE CAUSES SUGGESTELC ACTION
FD SPA nuUmters FD specifications Cteck input ard re-
INVALID for height» wicth» enter.

and/or offset are
not acceptable.
Attempt to print
beyond SPA capabil-
itiese.

GO (Restart a Stopped Program)

This intrinsic allows the operator to restart a program which has been stopped with the “ST” command.

Format:

GO mix-number

Examples:

v

/ program-name

To restart program whose mix-number is 3:

GO 3

To restart program PR020:
GO 3/PR020

Output messages:

~ e r w@zaééﬁ%ﬁ 7o VSE [P0 6 e mAwne

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTICN

mix=rumber/prog-name
NOT STOPPED

Specified progranm
Was not waiting
for a "CO0" commarde.

Check with MX for
sLspencec progran
waitirc for "GGC»
reincute.

mix=number/prog=~name
INVALID

Optional program
name wWa3as usec anc it
did not match the
mix numrber srecified.

Check with MX for
correct mix numrber
énc metching procram
reme. Reinput.

2007258

3+-M

MX (Display Current Mix)

This intrinsic allows the operator to inquire about the status of any program(s) currently processing.

Format:

v

MX mix-number l / program-name

Examples:

To inquire about all programs currently processing:
MX

To inquire about a particular program:
MX 03/PR020
or MX 03

Output messages:

MESSAGE

PRCBABLE CAUSES

SUGGESTED ACTICN

INVALID MIX

Specified prograrn
is not currently
running.

Cteck input (re-input

if necessary).

NULL MIX

No programs are Nornee.
currently proc”~
essing.

INVALID FROGRAM ID Optional program Re=irprt
narte wWas usec anc

it did not métch

the mix nurher

specified.

For each program specified, the following information is provided:

MIX NUMBER
a number assigned by MCP to this program as it was loaded into memory.

PROGRAM NAME

PROGRAM PRIORITY - “A”, “B” or “C”

A = lowest priority (that is, application program)
B = medium priority (that is, system utility)
C = highest priority (that is, data communications)

3-12

STATUS OF PROGRAM
EXECUTING - program processing normally -
e SUSPENDED WAITED ON - program processing was temporarily halted. For reasons, see chart below.

SHORT WAITED ON - program is waiting on a resource (that is, Virtual Memory or I/O buffer) which
the system can guarantee will be made available in a relatively short time.
SWAPPED OUT WAITED ON - portions of this previously suspended program were temporarily removed

from real memory and returned to disk. Memory space was required for other programs in the mix. (Reasons
for “swap outs” are same as for program suspension).

Possible messages are summarized by the chart below:

mix / program opricrity EXECUTINCG

number name SHORT WAITED ON —
SUSPENDED

WAITED ON —
SWAPPED aUT
WAITED ON —

n/c

Vu

SCL TASK

CPERATCFE INFUT

— ACCEPT

21F

I/C OR EVENT

NC DISK FILE (NG FILE)

DUPLICATE FILE

SYSMEV FILE

NO USER NDISK

DIRECTORY SPACE

CEVICE (NO FILE)

GC COMMAND

EVENT TIMER

FTTTTTTTTTTI

|

Output message examples:

MESSAGE POSSIBLE CAUSES SUGGESTEL ACTICN
C4/PFNB) A EXECUTINCG Program processing None
normally
04/PRO6C A SUSPENDED Prcgram is waiting or Mone : program will
WAITED ON 0/C a file open or closee. te resumed when file
tas teen ofenec or
closed.
04/PF050 A SUSPENDEC Program is waiting More 3 do not try to
WAITED ON VM on Virtual Memory. execLte too méany prog-
rams at this time.

2007258 313

POSSIBLE CAUSES

SUGGESTED ACTION

04/PFRO60 A SUSPENDEC
WAITED ON SCL TASK

Progras is waitirg

for a "command™ from
the MCP to be completea
(such 3s response to an

None : program will
te resumec when SCL
task has completed.

i "0L" irput).
10/LR B SUSPENDED Program is waitirg for Provice program with
WAITED ON CPERATCR sore input from cperst= gpprcpriate irpute.
INPUT or. (EX: A program Frogram will continrye

previously suspendec
by ST requires a GO
commenc to contirue).

processing.

08/GL0OB0O A SWAPPED
OUT WAITED CAN ACCEFTY

Progranm has disolayec
an "ACPT"™ message on
SP0 and is waiting for
appropriate response.

Refer to this program's
opersting instructions
for suggested responses
to ACPT., Then enter AX,
rix nurber and select-
ed resronse.

05/AP020 A SUSPENDED
WAITED ON ZIP

Prcocgram requestec
assistance of anoth~
program in order to
corplete this jot.
MCP will automsatic-
ally load into memory
the necessary prog=-
ram(s).

NCree.

04/PRO6ND A SHORT
WAITED OMN I/C

Usually incicative
of normal process=
ings involving I/0
activity tc cisk or
peripheral .

Ncre.

05/PF020 A SUSFENDESC

Prcgram needs (ard

Check SPC for messzge

WAITED ON DUPLICATE
FILE

b—— —.

WAITED ON NO DISK has not founc) a indicating name of file
FILE particular file in this program is seeking.d
order to Continue Then supply missing
prccessinge. file (COFPY frow
teckup mecium or
create it). If in
coubt refer to
prograr irstruct-
ioNS .
C2/PRO20 A SUSPENDEC Program is attempt-~ Normelly» remove

ing to place a2 file
of a certain name

on disk. Howevers
another file ty the
same name currently
resides on cdisk. A
disk may not .contain
2 files with the
Ssame namee.

the existing file
from cisk with RM.
1f in coubtr» refer
to procram instruct=-
ions .

3-14

.|MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

10/COPY B SUSPENDEC
WAITED ON DIRECTORY
SPACE

When the disk was
initializec the disk
directory was constr-
ucted to contain a
fixed number of file
names. The directory
has now reachec its
capacity.

Kemove with RM any
tnnecessary files and
gcrograr will continue;
or DS the suspencec
crogran. Repnlsce

cisk with ano ther

disk having sufficient
cirectory spaces anc
re~erecute the orocrasn.

10/COPY B SUSPENDED
WAITED ON NO USER
DISK

There is no more
available space on
disk? or space avail-
able is insufficient
to holo the file the
system is attempting
to write; or disk is
"checkertoarcec™.

bith KA» analyze amourt
cf available srace
remaining. If cisk is
filled remove with FRM
ény unnecessary files;
cr if cisk is fillec
and ¢ dual=pack file

is desired» assign a
cifferent Ccisk to this
grogram (see AD intrin-
sic)s; cr if disk 1s
cteckerboardecs» use

SC utility to consol-
idate disk spaces then
re“execute progranm

that epcountered
suspension.

10/LIST B SUSPENDETL
WAITED ON SYSMEM

F ILE

SYSMEM file cannot
be located-

Request technical
gssistenrce.

C4/PFRO06) A SUSPENDESD

WAITED ON NO FILE

E20

Baoo

Device that a grograrn
needs in order to
continue processing
is either unzavail~
able or not reascy’

or

FY reqrLired devices or
¢ssicn program to atl-
ternzive device (see
AL intrinsic)e.

Program needs (anrc
has not found) a
particular file in
order to continue
processing.

Crheck SPC for messzce
indicating name of file
grograr is seeking.
Supply missing file
(CCPY trom backup med~-
ium cr crezte)d.

04/PROBGDO A SULSPENDEC
WAITED CN CEVICE
B800

Device that a progran
needs in order to
continue processing
is either uncveil-
able or not rezcdy.

kY reqrired devices;
cr assigr grocrar

to alternate cevice
(see AC intrinsic).

02/LF B SUSPENDED
WAITED ON GC COMMNC

Program wWwas suspend-
ed by ST commands.

Tyrce "GO"™ plus mix
number of suspended
Crogrese.

2007258

3-15

OL (Request for Status Information of Peripherals)

This intrinsic allows the operator to request the status of peripherals on the system.

Format:

Examples:

peripheral

To display status of all systém peripherals:

OL

To display status of a particular peripheral:

OL DKB
OL LPA

Output messages:

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

peripheral NOT
READY

Peripheral is rot

on the system;
Peripheral may heve
been "saveqd":;
peripheral may not
be correctly lcacec.

Cteck input (reinput
if necessary)

Reedy periphersl

if necessary.

OL peripheral
NOT CN SYSTEWM

peripheral is rot
configured on machine

rone

OL gperipheral
INVALID

A ron=existant device
has teen specified
(tkat 1ss CL CCC)

Cteck input
(reirput if
recessaryle.

Other outi)ut messages produced by OL depend upon type of peripheral. Refer to the following examples

for details.

Examples of disk device output:

The general format of the output message is:

: SYS DISK \l’ number of
disk-peripheral disk-name / NOT READY files FILES OPEN
currently

Examples:
DKA AR1/0 FILES OPEN

PO'D

in use

DKB AR2/SYS DISK 2 FILES OPEN
DMA PRA/NOT READY 0 FILES OPEN
DKA AR1/PO’D 0 FILES OPEN

3-16

Examples of magnetic tape device output:

The general format of the output message is:

NOT READY
multi-file name

magnetic tape device file name }
UNLABELLED

PURGED

or

muiti-file name I
magnetic tape device file name {: NOT READY } IN USE.,..
UNLABELLED SAVED

oo« BY mix-number / program-name

Examples:
CTA NOT READY
CTA ARTAPE
CTA ARTAPE/IN USE BY 10/TAPELR
CTA ARTAPE/NOT READY IN USE BY 10/TAPELR

a Examples of output from any other device:

The general format of the output message is:

peripheral NOT READY

of -
multi-file name l w
peripheral file name NOT READY IN USE,..
UNLABELLED __ SAVED
« « « BY mix-number / program- name
Examples:

LPA NOT READY

LPA NOT READY IN USE BY 04/PR020
SSA SAVED

SPA SAVED IN USE BY 06/PR060

2007258 3-17

PG (Purge Tape)

This intrinsic allows the operator to purge (erase) magnetic tape and cassette tape files, thus labelling them
as available for output.

Format:

PG tape or cassette peripheral

Examples:

To purge a cassette tape on drive CTA :

PG CTA
To purge a magnetic tape on drive MTC :
PG MTC
Output messages:
MESSAGE POSSIBLE CAUSES SUCGGESTED ACTION
periphersal PG successful. Ncre.
* PURGED =
PG INVALID peripheral not Fe=irpLut messzge
specified Iin messace.
PG peripheral Tape could not be Make certain red tabs
INVALID purgeds, as it is cn tcp of cassette are
"write inhibited"» turned inward; make
or peripheral is certein "write perrmit
not on the systerm. ring™ is insertec ir

tape. Fetry FC.

Note: if an attempt is made to purge a tape which is in use, then the response to the OL message for that
peripheral is displayed.

PO (Power Off a disk)

This intrinsic allows the operator to “logically” power off a disk (instruct the MCP that the disk is no longer
required). At any time when the MCP is idle it is valid to logically power off the system disk with the PO

. command. This will cause the MCP to terminate. All systems disk files will be closed and SYS-SUPERUTL
will go to End of Job (EQOJ).

No disk should be removed from the disk drive, no disk units should be powered down, nor should the main
cabinet be switched off, until disks have been logically powered off with PO. Failure to observe this practice
might cause disk problems at a later date.

Format:

PO disk peripheral

Examples:

PO DKA (disk cartridge)
PO DMB (mini disk)
PO DFA (fixed disk)

Output messages:

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

disk peripheral 0K
or

disk peripheral

POWERED OFF

Disk was lcgicaelly
powered cocffe.

It is row permissitle
to ptysically rower off
énc remove the disk
from tfte disk crive.

disk peripheral

REMOVED WITHOUT PO

Disk was physically
off btefore being
logically power-

ec off.

Check cisk for possible
corrupted data before
re-~usee.

NOT CN SYSTEN.

P0 disk peripheral specified cisk Feincut.
INVALID peripheral is

non=existarte.

(ex: PO DKW)
P30 disk peripheral Specifieo disk is Feinput.

not currently on
tLine.

CANNOT POWER OFF
SYSTEM. MIX NOT
EMPTY.

or

PO disk peripheral
INVALID

Atterpt has been made
to PC the system disk
while a3 prograrm is
processinge

Allow rrogram to
co tc Ena of Job
(EQ0J)» then reinput.

2007258

3-19

If an attempt to Power Off a disk is made while files on that disk are in use, the OL message for the disk
is printed. No further program will be allowed to open files on the disk and when all files in use have been
closed, the disk will be logically powered off. If the disk is in use, it will not be powered off immediately after
giving the PO command though it will print “disk peripheral PO’ED X FILES OPEN?”, for all disks.

If a disk is removed without being logically powered off, any program using files on that disk will eventually
terminate with an error condition indicating hardware failure.

A PO’d user disk may be made ready again by the RY command or by physically powering the unit off and
on.

3-20

PR (Assign Program Priority)

‘ This intrinsic allows the operator to alter the priority of a program by moving it to the highest priority position
in the class specified. _

Priority “A” is low or normal priority, used for regular work. Within this class, programs which perform more
physical I/O operations are given precedence.

Priority “B” is medium priority, used for utilities or programs which may be expected to do emergency work.
The priority within this class is reverse historical: that is, a program of this priority placed in the mix will take
precedence over previous programs of the same priority.

Priority “C” is high priority, used for data communications programs that are transaction-driven. These are
normally dormant, awaiting a transaction, but when required to process a transaction they take high priority
to minimize response times. Within this class, programs which do more physical 1/O are given precedence.

A
PR mix-number / program-name { B }
C

To change the priority of mix-number 3 (program REP506) to B:

e PR 03/REP506 B

Output messages:

Format:

Example:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTICON
mix=-rumber/grogram= Input accepted None
name PR IS
priority
mix=-number/program- Mix=nurber and Check with MX for
name PR INVALID program=name do prope€r inputs &nd

not match re~enter

or
priority vatue
incorrect

2007258 3-21

RY (Ready a Peripheral)

This intrinsic is used to “ready” a peripheral so the MCP can use it as a resource. When warmstarting, the
system will automatically ready all peripherals on the system that are powered on. RY may also be used to
Ready a previousy PO’d user disk.

Format:
RY peripheral
Examples:
To ready a self-scan:
RY SSA
To ready a line printer:
RY LPA
Output messages:
MESSAGE PDSSIBLE CAUSES SUGGESTED ACTION
RY peripheral Attempt was mace to Ckeck input (reinput
INVALID Reedy a nor~existant if necessary)
peripheral (thst is-»
RY LLP);
Attempt was made tc
ready a device alreacy
"ready".
RY peripheral NOT Attempt was mace to Check input (reirpLt
ON SYSTEN ready a peripheral if necessary)e.
on~line to the
computere.

3222

SF (Substitute Disk File)

This intrinsic allows the operator to direct a program to a particular disk file if it is waiting on a “NO FILE”,
“NO PACK”, “DUPLICATE FILE”, or “BAD FILE NAME” condition.

This command causes temporary modification of the program’s file parameter block. The modification remains
in effect for the current execution only, or until it is remodified by the program during the current execution.

The command can only be used when the program is suspended waiting on one of the above conditions. It
is not possible to anticipate the program’s requirements and modify the file parameter block in advance.

Format:
SF mix-number [/ program-name \L g::t:::z ; file-name
file-name
Examples:

Program AP10 (mix number 01) requests a disk file called APD2T on disk APD. To direct the program to
use file APD2S on the same disk:

01/AP10 <10> WAITING APD/APD2T DK NO FILE
SF 01/AP10 APD2S

(the first line is the MCP output message; the second is the input SF message in response to the “NO FILE”
condition).

To direct the same program to use file APD2T on disk APD1:
SF 01/AP10 APD1/

or
SF 01 APD1/

To direct the same program to use file APTEMP on disk ARTD:
SF 01 ARTD/APTEMP

Output message:

MESSAGE POSSIBLE CAUSF SUGGESTED ACTIGN<
rix=rumber / Prcgramr is not Check with MX and
brogram=name waiting on 3 "no re=enter.

SF INVALID file™ or other

condition» or

mi x=number and
prcgracnanme

do not corresponcCe

2007258 S 3023

ST (Temporarily Suspend a Running Program)

This intrinsic places a temporary halt on a program that is running. The program still appears in the mix. ‘
The data needed to restart the program exactly where it stopped is transferred from memory and stored on
disk. The memory that was being used by the “stopped” program is now made available to the MCP for other
use. The GO command must be used to restart the program.

Format:

R

ST mix-number / program-name

Examples:

To stop the program whose mix-number is 3:
ST 3

To stop the program PR020:
ST 3/PR020

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN

mix“number/progran ST success ful none
name STOPPED

rix=number/progranm Program has already Check with MX for status
name INVALIC been stopped cf program; (reinput if
or necesséryde.
prograr is not ir
the mixe.

3-24

SV (Save Peripheral)

This intrinsic allows the operator to “logically” power off any input/output device (except disks, see PO intrin-
sic) in order to prevent their use by any program.

“Tape peripherals” include magnetic tape (MT) and cassette tape (CT).

“Printer peripherals” include line printer (LP) and serial printer (SP).

Format:
o v—
tape peripheral
printer peripheral L
sv < self-scan peripheral
card-reader peripheral
card-punch peripheral
e L
Examples
SV LPA
SV SSA

It is possible to “save” a device that is being used by a program. This will allow the program presently as-
signed to this device to continue using it, but will prevent any subsequent programs from using the device. For
example:

SV LPA
LPA SAVED IN USE BY 06/PR060

A “saved” device may be made “ready’” again with the RY command or by physically powering the unit off
and on.

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
perigheral 0K SV success ful None.
SV heripheral Attempt was made to Feinput (if necessary
INVALID save a cisk perip- Lsing correct perip=
heral teral.
or

device has alreacy
been saved.

SV peripheral Specified peripheral Check input’ reinput
NOT GN SYSTENM is not ¢cn=lire tc if necessarye.
the computere.

peripheral PCWER- SV successful. None.
£E0 OFF

2007258 3-25

SECTION 4
CMS-COMMON UTILITIES

INTRODUCTION

This section describes all standard CMS utilities that form part of a CMS system software release. The applica-
bility of any utility depends on the type of hardware available. For example, utilities requiring console files can-

not be executed on machines without a console: as an example, CREATE, AMEND and UPDATE cannot be
run on a B 1800.

Table 4-1 gives a list of all required peripherals for each utility. In this table, required peripherals are denoted
by the letter “R”, and optional peripherals by the letter “O”. One asterisk (“*”) indicates that out of all the
options, at least one is required. In particular, those utilities requiring a line printer may use a console printer

by default if the line printer is not present on the system. Two asterisks (“s#”") indicate that out of all the op-
tions, at least two are required.

All the utilities that use initiating message information provide a “star-file” facility. This permits the informa-
tion to be provided in a disk file instead of from operator SPO input. The entire message, after the name of
the utility, may be replaced by an asterisk followed by the disk file name. The format is

WV

disk-name / file-name

*

the input could be
RM * M101A/RMFILE

where RMFILE is a disk file on disk M101A containing one record with the contents
REP200, REP562, RQ=, RCOPY

For all utilities except the compile utility (CO, see section 5), star-files may contain a maximum of five
records, and the record-size must be 80 characters. The information should be padded to the right of each record
with spaces. No nested star-files are allowed: that is, the information in a star-file may not contain a call on

another star-file. If the specified file cannot be found, a “file-name NOT FOUND” message is displayed by
the utility.

SYS-SUPERUTL

This system utility provides the following functions:
CH - change the name of a file or group of files
KX - interrogate disk space
PD - interrogate disk directory
RM - remove a file or group of files
IR - initiate recall of SPO log messages
LB - look back in SPO log

LF - look forward in SPO log

It will execute automatically if the program file is on the systems disk when one of these functions are re-
quired. This program is also automatically executed at warmstart time and co-ordinates logging functions at that
time.

2007258 41

The utility has some features which can cause the operator confusion. The utility will not appear in the re-
sponse to the MX command unless it is actually performing one of its functions, when it will appear as 12/

PD or 12/CH etc., according to the function which it is currently performing. If an attempt is made to execute
one %f the SYS-SUPERUTL functons when it is already busy then a response of <MIX FULL> will be re-
turned.
Table 4-1. Peripherals Required By CMS-Common Ultilities
cass*-
ser- ette
ial line or |carc
con- prin=|self-|prin-|még. |rea= |card |paper

Utility sole |cisk |ter scanr |ter tape |der punch [tape |ICMD
ADD R R

AMEND * R R 0 n
CH R

CHECKADUMP R R

CHECK.DISK]
co * R 0 0 0 0
COMPARE * 4 0 0 8 0 g)
cary * % 0 0 0 G 0
ce
CREATE * R R N 0

DA R R R

0D R

puMP R R

FL R R R

Fs R

ICMD * R 8] 0 R
Iir F

KA * R J C
KX R
LB R

LD f R
LF R

LIST * % 0 0 G 0 0 0
LOAD R R
LR * R 0 0

MODIFY * 0 R 3] 0

PD R
PL * R 0 g

RM R

SQ R

TAPELR * g 0 R

TAPEPD R
TL R

UNLOAD R R

UPDATE * R R 0 0

XD R

4-2

LOGGING

When the system is warmstarted the SYS-SUPERUTL utility will be initiated and SYS-LOG files will be cre-
ated. The information about the number and size of log-files is stored in a file called “SYSCONFIG” (see CON-
FIGURER). Then the MCP will initiate a function of SYS-SUPERUTL, which will start up the ‘TL” utility,
and the transfer of log-files to a “SYS-LOG-HOLD” file will begin. When all the log-files are transferred and
TL goes-to End of Job, SYS-SUPERUTL will remove the old SYS-LOG files and create new SYS-LOG files.

During a session all the console input/output messages that normally appear on the SPO are stored in SYS-
LOG files SYS-LOG-01 through SYS-LOG-nn, where “nn” is 03 to 16 (see CONFIGURER). When one log-
file is full the messages will be directed to the next log-file. When all the log-files are full the logging will be
directed to the first file again. This will overwrite the information held in the SYS-LOG-01 file unless the utility
“TL” is begun beforehand, which will transfer all the transferablelog-files and keep them in the ‘“TRANS-
FERRED” state (see TL).

The system will automatically transfer all log-files only at warmstart time.

COMMON UTILITY OUTPUT MESSAGES:

MESSAGE POSSIBLE CAUSES SUGGESTED AZTION

INVALID CHARACTER Disk rame or file nane Check input ard

IN IDENTIFIER contains character(s) re=irput if nec-
not permitted Ly the €ssary.

system. Valic charac-
ters ares A~Z» (=G>
° (dot)’ - (Gash)o

ILLEGAL PARAMETER Typing error. Check input. After

LIST words "ILLEGAL
PARAMETERS LIST"
system will display
portion of input
message that contains

________ ,) - €Error. o

file=name NOT FOUND Specified file nane Check input and re=enter
ar is not on cisk. if necessary; check

file"name NOT ON for ccrrect cisks

LINE supply specified file

(COPY file from tack=
Up mMecium or create

_______________________ file).

NO SPECIFICATIONS Input message is Check input and

GIVEN incorplete. re“eptere.

DISK disk=name Specified cisk is Check input arg

NOT GPENED NOT ON not on=line to re~enter if necessary?

LINE corputer, Check for correct disk;
or Feady cisk;

DISK disk=name
NOT AVAILABLE

or
DISK disk=name
FOR XD NQOT

AVAILABLE

ADD (Add Files From Library Tape to Disk)

This function, a part of the utility LD, allows the operator to copy files from a library tape to a disk. .

Format:

TO disk-name w

file-name or | l
group-name | < BOTH>-

If the <BOTH> option is used immediately after a request to add a keyfile, the data file will also be copied,
provided it does not precede the keyfile on the library tape. The keyfile will then refer to the disk which now

ADD FROM library-tape-name

holds the data file (rather than the disk from which the data file was dumped to the library tape).

A file is copied only if no other files on the specified disk have the same name.

Examples:

To copy all files from ARTAPE to the system disk:
ADD FROM ARTAPE=

To copy a file called PRFILE from PRTAPE to a disk called PRBU:

ADD FROM PRTAPE TO PRBU PRFILE

To copy files called GL300 and GL200 from GLTAPE to the system disk:
LD ADD FROM GLTAPE GL300 GL200 ‘

To copy a keyfile called PR240K and its data file from a tape called PRTAPE to a system disk=
ADD FROM PRTAPE PR240K <BOTH>

Since “ADD” is a part of the utility LD, “LD” is actually what will appear in a mix message. To discontinue
the ADD function, “DS mix-number/LD” must be used.

Output messages:

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTIGCN

file*name LOADED

ADC successful

hoﬂeo

Library=tape~name
NOT A RECOGNIZED
DUMP TAPE

Specified tape does
not have a valid CMS
Labtels, or has not
been created by the
LD utility C(for
example® tape is a
CDOPY tape).

Frovide correct tare
énd retrys; or 0SS LC
ttility.

NO FILES IN THE
FAMILY group~name
ON TAPE Llibrary~-
tape-name FOR

ADD

Specified group was
not found cn Llibrary
tape-

Check input and re-
input if necessary;
Check’ for correct
Library=tape.

44

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

NO FILE file“name
ON TAPE Library=tape=-
name FOR ADC

Specified file was not
found on Library
tane.

Check input and re~input
if necessary’? check

for correct Library
tape.

file"name LOAD/

End of File reached

Try tape on different

DUMP DISCREPANCY before expectec. Disk crive in case the
Fite Header may be crive is at fault.
corrupted. Possitly
due to mis~reacing
of tape.

NO FILES 70 LOAD No files were found Check input anc¢ re-
on this tape to cony input i1f necessary;

to diske

Check for correct tape.

file=name NOT LOADED
= ALREADY ON DISK.
ALTHOUGH WITH
DIFFERENT ATTRISB~-
UTES.

File not copied as a
file with the same

name already exists

on diske If the 2

files differ in record,
blocks and file sizess
the "DIFFERENT ATTRIR-
UTES" message prints.

Normglly remove with
k¥ the duplicate file
and re-~attempt the
ADG.

file=name DATA FILE
NOT FOUND ON TAPE
FOR LOAD.

Nata file for given
keyfile does not
follow on tare. Data
file cannot be copied.
Keyfile is copiec.

None .

Note: Refer to “Common Utility Output Messages” for additional aid.

2007258

45

AMEND (Disk File Amending)

This utility is used to modify records within an existing data on source file. The “CREATE” and “UPDATE” ‘
utilities use many similar features.

Format:

AMEND disk-name / file-name ':’ number I

Input may be either alphanumeric (A) or hexadecimal (N). (See “CREATE” for details).The defaull is “Ar’.
The “number” option may be used to set “tab” positions for character input (see “CREATE” for details).

The utility operates in two modes: “Record Modify” (PK2) and “Record Select” (PK3).

PK1 PK2 PK3 PK4 PKS PK6
write
Last & | mcaify | select - --- EQJ
get
next

PK1 is used to select the next sequential record in the file to be printed. The use of PK1 terminates “Record
Modify” and “Record Select” modes, therefore a re-selection of mode must be made before continuing.

If PK3 (Record Select mode) is used, the required record is identified by logical record number using this
format:

l RECORD number

The “number” may take any value from 1 to the number of records in the file.

PK2 is used to make corrections to existing records. This PK operates as PK2 in CREATE utility (see CRE-
ATE for details).

Example:

To amend a source file called MYFILE, record size 40 bytes, tab set at 5, 10, 15, 20:
AMEND MYFILE 5 10 15 20

First select a record by pressing PK3, and then enter “20” for logical record 20 in MYFILE. Utility selects
and prints the contents of record 20.

20 ABCDEFGHIJKLMNOPQRST

To replace characters, press PK2 and type the replacement
D : ZZZZ : OCKl1

resulting in “20 ABCDZZZZIJKLMNOPQRST”

4-6

Or if insertion of characters is desired, type the characters to be inserted into the record:
Z : XXXXXX : OCK2

resulting in ‘“20 ABCDZXXXXXXZZZOPQRST”

NOTE: the insertion from character six to eleven will result in the shifting of characters “ZZZIJKLMN” from
byte position 12 to the boundary of the next tab position, which is 15. Therefore only 3 characters “ZZZ” are
shifted from 12 to 14 and “IJKLMN?” are lost. The text from the next tab position 15 onwards is not affected.

Output messages:

Refer to the section on the “CREATE” utility for output messages.

2007258 47

CH/(Change File Name)
(a function of SYS-SUPERUTL)
This utility allows the operator to change the name of a file or group of files on disk. The <DATA> option

allows the data file of an indexed pair to be changed, and it will also cause the keyfile to refer to the new
data file name (the keyfile name does not change).

Format:
) \]/ file-name or l l file-na
CH disk-name / group-name <DATA> TO group-rr?aemfe’r
Examples:

To change the name of a single file:
CH BPS320D/DCSTSK36K TO DCSTSK
CH DCSTSK TO INDISK3TSK

To change a group of files:
CH BPS320A/AR= TO BP=
CH PRB= TO PR=

To change several different files or groups of files:
CH DCSTSK TO INDISK3TSK, BPS320A/AR= TO BP=

To change the name of the data file of an indexed pair:
CH AR200K <DATA> TO AR200BU

Note: if a change of group file name is specified with the <DATA> option then the data file should appear
in the directory after the keyfile. If this is not the case then the name of the data file is changed first, and
when the attempt to change the key file name is made, a “data file-name NOT FOUND” message will be dis-
played. This will not occur when changing the name of a single indexed file.

Output messages:

MESSAGE POSSIPLE CAUSES SUGGESTED ACTION

"file name”™ CHANGED TO File name succeSs- None.

"file name™ fully changed.

"file name™ NOT Specified file Check input or (re-

CHANGED =~ NOT FOUNMC name is not on input if necessary) s

disk. Check for correct

ciske.

NOD FILES FOULND FOR Specified group Check input (re=-input

CFANGING IN THE name is not on if necessary)

FAMILY. "group=name"” diske Check for correct
ciske.

4-8

MESSAGE

"file name™ NOT
CHANGED IN USE

Fite's name cannot

be changed because

it is currently

being used by systerm.

pait until file is
ro loncer in use>»
then re=inpute.

"name™ FILE IDENT-
IFIEF YOO LONG

Attempt has been mace
to change a file name
to more than 12

characters in lerctt.

Re=irpute.

"file name™ NOT
CHANGED = ILLEGAL
REQUEST

Atterpt has been made
to change the name of
a file to "SYSMEM™

(a3 name reserved for
system use) or atl
SDaCcesS.

Re=irptt.

"file nare™ NOT
CHANGED = "file narme™
ALREADY ON DISK

Attempt has been made
to duplicate the name
of a file atready on

diske

Re=irpLte.

KEYFILE "file name™
NOW POINTS TO DATA
FILE "file name"”.

Successful completior
of data file name
change.

None.

2007258

CHECKADUMP (Compare Library Tape with Disk)

This utility allows the operator to compare information in files on a library tape with corresponding files on
disk. It is used to verify that a library tape is correct after files have been DUMPed or [UNLOADed, or that
disk files are correct after files have been ADDed or LOADed. Specified tape is processed sequentially, file -
by file, and the disk is searched for corresponding files. The utility will notify the operator on up to four errors

in a given file. If there are more than four errors, it will ignore the rest of that file, and proceed to the next
file on tape.

Format:

CHECKADUMP library-tape-name WITH disk-name

Examples:

To compare files on the tape called PRTAPE with the corresponding files on the system disk:
CHECKADUMP PRTAPE

To compare files on the tape called ARTAPE with the corresponding files on a disk called ARDISK2:
CHECKADUMP ARTAPE WITH ARDISK2

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
Library-tape-name First record of tape None. Utility ends.
NOT A RECOGNIZED not recognized by

DUMP TAPE CHECKADUMP. Tare

may not have beern
created by LD

utility.
lLibrary=tape-name More or fewer entries None. (See CMS MCP
INVALIC DIRECTORY in directory on tape Feference Mangal
ON TAPE than specified ir the for &dcitional in-
first record of tapes. formation on taoe
formatse.
COMPARISON ERROR Feader in tody of tace Ffecreate dump tape.
ON library=-tarpe=- is not identical to
name ON DISK FILE respective heacder in
HEADERS. disk directory. The
error count for the
file is increased by 1.
COMPARISON ERROR Corresponding cisk fecreate dump tape.
CN file=name FILE NOT file cannot be founc
FOUND FOR CHECK. for file or tare.

4-10

MESSAGE POSSIBLE CALSES SUGGESTED ACTION
COMPARISON ERROR ON Corresponding adisk Recreate dump tape.
file=name FILE NOT file cannot be read
AVAILABLE FOR for this fite on
CHECK tapes
COMPARISON ERROR ON Discrepancy between Recreate dump tape.
file=name (AROUND disk file and tape ’
RECORD number) file. Record nunmter
in vacinity of error
in file is printed,
if possible. One is
added to error count
for this file.
COMPARISON ERROR ON Difference in length Recreate dump tace.
file“name AROUND of tape and disk filese
END OF FILE One is added to error
count for that file.
COMPARISON ERROR Difference in sizes Recreate dump tapee.
ON filte-name DIFFER- of disk and tape
ING FILE SIZES files.
COMPARISON ERROR ON Difference in file Recreate dump tape.
file"name CIFFERING types of files being
FILE TYPES compareds.
COMPARISON ERROR ON Difference in recorc Recreate dump tape.
file-name DIFFERING sizes of tte files
RECORD SIZES being comparede.
COMPARISON ERROR ON Difference in block Recreate dump tapes
file=name CIFFERING sizes of files being
BLOCK SIZES comparede.
NO DISCREPANCIES CHECKADUMP suyccess*" None.
BETWEEN OCUMP TAPE ful.
library=tape~"name
AND DISK disk=name.
DISCREPANCIES FOUNC Discrepancy discover=® Fecreate cdump tapee.

BETWEEN DUMP TAPE
library=tape~name
AND DISK disk=name.

ed between disk file
and tape file.

NOTE: Refer to “Common Utility Output Messages” for additional messages.

CHECK.DISK (Check all Sectors of a Disk)

‘This utility reads every sector on a specified dfsk, and reports on any parity errors encountered.

Format:

\%

CHECK.DISK disk-name

If no disk is specified, the system disk will be checked.
Example:

To read and report any parity errors from sectors of a disk ARBK:
CHECK.DISK ARBK

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
ERROR NOTIFIED ON Normal output messzge. ANcne.

READING SECTCR n Utility continues.

CHECKX.DISK ON Normal E0J messaces. Mone.

disk=name COMPLETED
~ERRORS NOTIFIED

or
CHECK.DISK ON
disk=name CQOMPLET=-
ED=NO ERRCR

Note: refer to “Common Utility Output Messages” for additional messages.

COMPARE (Compare Files)

e This utility compares corresponding records in two files, or in pairs of files within two groups. A realignment

feature is also available as an aid to detecting missing records.

Format:

il/ file-name or
COMPARE disk-name / group-name WITH
\J/ file-name or |]/
disk-name / group-name R

Examples:

To compare file PQ60R on the system disk with file PQ60RS on disk PRB3:
COMPARE PQ60R WITH PRB3/PQ60RS

To compare the groups of files beginning with AR and the files A27Q on disk ARBK1 and ARBK2:
COMPARE ARBK1/AR= WITH ARBK2/AR=,

ARBK1/A27Q WITH ARBK2/A27Q

To compare the file IV20F on the system disk with the file of the same name on disk 132, with realignment:
COMPARE IV20F WITH I32/IV20F R

If corresponding records are different, the following is printed on a line printer file (or console printer if the
e line printer is not available).

DIFFERENCE DETECTED AT BYTE @nnnn@

where n is the number of the byte in the record, starting from 0. The two records are then printed, using
more than one line if necessary,with the following format:

byte-offset
32-byte groups in hexadecimal
32-byte groups in ASCII

(A null character (00) in hex is represented by “..”, and a non-printable character in ASCII represented by
a blank).

Comparison of groups of files works as in the following example:
Assume DISK1 contains the files A, B, C, D, AB, AC, ABC, BC.

Assume DISK2 contains the files A, B, C, D, AB, AC, ABC, BC, BD, EF.

Then
COMPARE DISK1/= WITH DISK2/= compares all files on DISK1 with the corresponding files on
DISK2.

But
COMPARE DISK2/= WITH DISK1/= compares files on DISK2 with the corresponding files on
DISK1, and will fail to find DISK1/BD and DISK1/EF.

Similarly,

a COMPARE DISK1/A= WITH DISK2/A= compares files A, AB, AC and ABC on DISK1 with the

corresponding files A, AB, AC and ABC on DISK1 with the corresponding files on DISK?2.

2007258 ' 4-13

Also,
COMPARE DISK1/A= WITH DISK2/AB= compares the following pair of files:
DISK1/A with DISK2/AB,
DISK1/AB with DISK2/ABB, V(not found)
DISK1/AC with DISK2/ABC,
DISK1/ABC with DISK2/ABBC (not found)

The realignment option works in the following manner:

If three consecutive records fail to compare then an attempt is made to compare the third record of the second
file with the next two records of the first file.

If all these five comparisons fail then an attempt is made to compare the fifth record of the first file with
the fourth, fifth, sixth and seventh records from the second file.

If this comparison fails, then the comparison is terminated with an appropriate message (see later).

If a correct comparison occurs at any stage, then the compared records are used as synchronization for restart-
ing normal comparisons.

For example, consider FILE1 containing 10 records A, B, C, D, E, F, G, H, I and J, and FILE2 containing
twelve records K, L, M, N, O, P, Q, R, S, T, U, and V.

The utility compares record A with record K, then B with L, then C with M. If all these comparisons fail,
then if realignment is specified record M is compared with records D and E. If this also fails, record E is com-
pared with records N, O, P and Q. If none of these compare, the comparison is terminated.

Note that if there is a missing record in one file, and realignment is NOT specified, a comparison error will
arise on every succeeding record until end-of-job.

Additional Capabilities

Further features in this utility are summarized in the railroad chart given in Figure 4-1, which gives the com-
plete input specifications.

Non-disk devices:

Files on devices other than disk may be compared by following the file name by one of the following key-
words:

CRD - any 80-column or 96-column card device

PTR - any paper tape input device

MTP - any magnetic tape or cassette device

DSK - any disk device (the default; this keyword is for
documentation only)

4-14

V

— COMPARE < comp-spec >

/

* < disk-id >/ < file-id >

< comp-spec > is defined as :
< mfid-spec-1>—WITH — < mfid-spec-2 >

| Vs

<gid-spec-1>— WITH — < gid-spec-2 >

< mfid-spec> is defined as :

o

— CRD —

— MTP —

— PRT —
— 1 <nmfid>— /——AL < file-id> DSK ——L <nr> <nb>l&$

_gid-spec> is defined as :

b < disk-id>—/— —i < group-id > —m——< nr <nb>

e Figure 4—1. Railroad Chart for Compare Utility

4-15

2007258

Examples:

. To compare records on a cassette file ARDUMP/FILE020 with a file AR578QQ on the disk WDSK:
COMPARE ARDUMP/FILE020 MTP WITH WDSK/ARS578QQ

(note that the two-part name is valid for multi-file tapes or cassettes, refer to section 2 for naming conven-
tions).

To compare two card files DAT1 and DAT?2:
COMPARE DAT1 CRD WITH DAT2 CRD

Record and block sizes:

The record size (and the number of records per block) may be specified after the file name and device key-
word if applicable. '

Examples:
To compare a system disk file CU265 with a magnetic tape file TPF, treating data blocks on the tape as 80-

byte records blocked 9 records to a block:
COMPARE CU265 DSK WITH TPF MTP 80 9

To compare a system disk file SCRO1 containing 90-byte records with a system disk file SCR02 containing
180-byte records, but reblocking the second file as 90-byte records:

COMPARE SCR01 WITH SCR02 90 2

Note that if the records to be compared are of different lengths, and reblocking is not specified, then only
the number of characters in the shorter record are compared.

Limitations:

The maximum record size is 1024 bytes. If a file exceeds this record size, it may be compared by reblocking.
For example, a file with record size of 1200 can be compared by reblocking as 600 bytes blocked 2, or as 300
bytes blocked 4. The higher the blocking factor, the slower will be the comparison. (If the record size is a prime
number P, it can be reblocked as 1-byte records blocked P).

The use of a star-file terminates the list of pairs of files to be compared. For example,
COMPARE A= WITH DK2/A=, X= WITH DK2/X=,
STFILE, B= WITH DK2/B=

will compare A=, X= and all files mentioned in the file STFILE, but will ignore the comparisons of B=.

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTINON

CANNOT OPEN FILE Usually, file is not Ncne if group compare

filenane present or in use€ hy is dones or check inpite.
another progranm Also check MX.

END OF FILE filename End of one file is None.

BEFORE filename - detected before the

n ERRORS end of the other file

4-16

POSSIBLE CAUSES

SUGGESTED ACTION

filename WITH
filename COMPARED =
n ERRORS

Normal ending message
if both files are
Same Size.

hNone.

ILLEGAL SYNTAX
FOR ITEM dnput

Initial input mis-
typed.

Check input ang
reenter.

CANNCT REALICN

filename WITH
filename=n ERRORS

Ending messace if
realignment has teen
specifiecd but has
failed.

None.

INCOMPATIRLE
FILESPECS input

A file is specified
to be compared with
a grouct of filess» or
vice versa.

Fe=input correct
mess g€,

ITEM T0O0O LONG input

Input wessage greater
than 256 characters.

Divice input irto
separate partss anc
re-erter.

DIFFERENCE DETECTED
AT BYTE annnna

See example earlier

See exemple eartlier

CANNQOT READ RECQRD
n OF filename

Parity error on
disk file.

Use tackup copy of
file ccncernecs, if
possible.

COPY (File Copy)

This utility allows the operator to copy files from one medium to another.

Format:

<KEY >

or
<BOTH>

\l/ file-name or
CcorPY disk-name / group-name
TO

file-name or
disk-name / group-name

If as a result of the copying a file a duplicate filename would be created, the original file on the destination
disk is removed automatically.

If the file being copied is a keyfile and the <KEY> option is used, the keyfile is copied and the new keyfile
refers to the original data file.

If the file being copied is a keyfile and the <BOTH> option is used, the keyfile and the corresponding data
file are copied. The data file is given the keyfile name with the letters, “QQ” appended. The new keyfile is
made to refer to the new data file name.

If the file being copied is a keyfile and neither <KEY> nor <BOTH> options are used, only the correspond-
ing data file is copied. The records of the new data file are created in keyfile order.

Examples:

To copy a file called AR200 from the system disk to a disk called ARBU:
COPY AR200 TO ARBU/AR200

To copy files called AR200 and AR300 from the system disk to a disk called ARBU:
COPY AR200 TO ARBU/AR200 AR300 TO ARBU/AR300.

To copy a file called APTASK from the system disk to APBU, changing its name to APTASKB:
COPY APTASK TO APBU/APTASKB.

To copy all files beginning with letters “PR” from disk PR2 TO disk called PRBU:
COPY PR2/PR= TO PRBU/PR=

Copying Keyfiles
Assume there is a keyfile called PR200K which refers to a data file called PR200.

The statement

COPY PR200 <KEY> TO PRB/PR200K will create a new keyfile PR200K on disk called PRB which
references the original data file, PR200, on the system disk.

The statement

COPY PR200K <BOTH> TO PRB/PR200K will create a new keyfile and data file on disk called
PRB. The name of the new data file will be PRB/PR200KQQ and the keyfile (PRB/PR200K) will refer
to this new data file.

The statement

COPY PR200K TO PRB/PR200K will create a new datafile PR200K on the disk PRB. No new keyfile
will be created but the records in the new data file will be created in key order according to the keyfile.

4-18

Additional Capabilities

Further features in this utility are summarized in the railroad chart given in Figure 4-2, which gives the com-
plete input specifications.

* < file-name >

’

< group-copy >

—COPY —
e Isfile> TO <d-file> w—
< group-copy > is defined as :
—— < KEY> =
L < BOTH>—o
—_— < group-name-1> _ _ V— TO —— <group-name-2> —>»
<s-file> is defined as :
— CRD T
/M MTP
- PTP —
— <BOTH> —
M
- __< KEYE — — <r-spec>
—<file-name>N/ _L
RECORD <nr>
BLOCK <nb>
TAPE.MARKS ———————— <nt>
NO.LABEL

Figure 4-2. Railroad Chart for Copy Utitity (Sheet 1 of 2)

2007258 4-19

< d-file> isdefined as :

<r-spec>is defined as :

< file-name > M

Y RECORD <

/1 BLOCK nb

L 1\ FiLEsIzE —_—nf>

L 1\ SINGLEAREA
"1\ crRunch

L T\ EXTENDING

V

M\ l— ;i:_] >
L

i < number>

\4

4-20

< record-key >

<r-count>

— <record-key>

Figure 4-2. Railroad Chart for Copy Utility (Sheet 2 of 2)

Non-disk devices

Files may be copied to and from media other than disks. Abbreviation for the valid devices are as follows:
MTP - magnetic tape or cassette
CRD - punched card
PTP - paper tape

Examples:

To copy a cardfile called PRFILE to a disk called PRBU:
COPY PRFILE CRD TO PRBU/PRFILE

To copy a disk file called PR300 to a single-file magnetic tape:
COPY PR300 TO PRTAPE MTP

NOTE
This tape is in “COPY” tape format, not “LOAD/DUMP” format. To access this
tape file again it will have to be placed on appropriate device by “COPY” utility,
not > LOAD/DUMP”.

To copy a cardfile called PRFILE to paper tape:
COPY PRFILE CRD TO PTFILE PTP

Note: Paper tapes are always “unlabelled”, and when accessing it, MCP will issue appropriate message requir-
ing an “AD” intrinsic response from operator. See “AD” intrinsic.

Unlabelled tapes
Input tapes having no CMS labels (‘“unlabelled” tapes) may be accessed by the COPY utility.

The NO.LABEL option allows the copying of unlabelled files. Upon recognizing an unlabelled file, the MCP
will print a “DEVICE REQUIRED” message. The operator must then respond with an appropriate “AD” in-
put message (see “AD”) to identify the unlabelled file.

The end of file recognition for unlabelled files is determined by tapemark count. The TAPE.MARKS option
allows the operator to specify the total number of tapemarks which will indicate end of file to the utility when
copying an unlabelled file. The default value is 2. Each tape mark which is encountered will contribute to this
total. Therefore, a standard labelled CMS file will be copied up to, but excluding, the trailing label if NO.L-
ABEL is specified by itself.(The standard CMS labelled tape format is “label, tape mark, data, tape mark, la-
bel”, see CMS MCP manual). The operator must be aware of the format of any file which is to be copied
when using the NO.LABEL option.

If the RECORD size is not 180 bytes, refer to the section on Record/Block modifications.
Example:

To create a disk file called EMPL from first file of a magnetic tape with non-standard label (the format being:
LABEL, TAPEMARK, DATA, TAPEMARK):

COPY TP MTP NO.LABEL TAPEMARKS 2 TO EMPL

Note: MCP will issue a message asking for unlabelled tape TP. Operator must respond with “AD" input.
Additionally, the first record of file EMPL will contain a copy of the non-standard label.

Record and block sizes

Record and/or Block sizes may be modified for all file types, input and output.

2007258 4-21

The number of bytes in the record or block is specified using the corresponding “numbers”. The record and
block sizes of input disk files are always taken from the file itself (Disk File Header). Record and block sizes
of non-disk input files are determined as follows:

Record Size:
If RECORD is specified, “number” becomes the new record size.

If RECORD is not specified record size defaults (see below).
Block size:

If BLOCK is specified, ‘“‘number” becomes the new block size.
If no BLOCK specified, but RECORD IS specified, record size becomes new BLOCK size.

If neither BLOCK nor RECORD is specified, Block Size defaults (see below).
Default Values:

Output disk = same as input disk.

Input labelled tape/cassette = from tape label

Input unlabelled tape/cassette = 180 bytes

Cards = 80 or 96 bytes, depending on device.
Example

To copy an 80-column card file labelled PROGSRC to a disk file called PROGSRC on a user disk “USR”,
and make the record size and block size of the disk file 80 bytes and 720 bytes respectively:

COPY PROGSRC CRD TO USR/PROGSRC RECORD 80 BLOCK 720.

To copy a disk file PRBU/PR300 to magnetic tape with large blocks suitable for tape media:
COPY PRBU/PR300 TO PRTAPE MTP RECORD 180 BLOCK 1800

File size
The “FILESIZE attribute” of a disk file may be specified for the output disk file. Note that only assigned

areas are copied. This feature does not increase disk space at the time of copying, but allows programs *z add
further records if required. At that time extra disk space may be needed.

Example:

To copy FILE1 and increase its “FILESIZE” to 1500, replacing the original by the copy:
COPY FILEl TO FILE1 FILESIZE 1500

Single area

The “SINGLEAREA attribute” may be specified for the output disk file. This ensures that the new file will
occupy a single disk area.

Example

COPY FFLE2 TO FILE2 SINGLEAREA

Crunching files

The “CRUNCH attribute” may be specified for the output file. This causes any unused disk space at the
end of the file to be returned to the system.

Example:

COPY PRB/PR200 TO PRB78/PR200 CRUNCH

WARNING
A file cannot be “uncrunched” once it is crunched. This means it cannot be extend-
ed. It can only be used for inquiry. This option is therefore useful for storing history
files.
Extending disk files

Records can be added to the end of an existing disk file with the option “EXTENDING” . The existing file
must have identical attributes to the file being copied.

Example:

A data file called DFTUES was created with Tuesday’s data. To add this data to the end of a file called
DFMON (containing Monday’s data):

COPY DFTUES TO DFMON EXTENDING
(Note the size of DFMON must be large enough to contain all required records.)
Selected file copy
Selected record numbers from the input file may be copied.
Example:

To copy 500 records starting at record #1200 from file FILE1 to file FILE2:
COPY FILE1 1200 500 TO FILE2

Note:

pairs of numbers may be specified within each pair;the first number specifies a relative record number and
the second specifies number of records to be copied. If an extra number is specified, the last number specifies
copying from that record to the end of the file.
Example:

To copy records 100 to 149, 300 to 499, and 1000 to end of file:
COPY FILE1 100 50 300 200 1000 TO FILE2

Selected index file copy

For indéxed files, copying of records can be selected based on content of the key. There are 2 options: the
number of records can be specified, or an ending key value.

Examples:

PQR is a keyfile containing personnel records. To copy 15 records from the corresponding data file starting
from the record with personnel #01786 to a data file, PSNL:

COPY PQR 01786 15 TO PSNL

2007258 23

Using same keyfile, to copy all data records from personnel #01786 to 18000 to data file, PSNL:
COPY PQR 01786 = 18000 TO PSNL ‘

Note:

The second option is specified by the hyphen in the COPY statement. Note that at least on space is required
before and after all key values (personnel # in this case).

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACT ION
numbers number IN Error found in pair Check input arc
file name NOT COPIED of numbers for sel- re~erter.

ected record cogpy
option. One record
number in the pair
incicates a section
of the file adcress
than a previously
specified sectione.
This pair is dignored

file"name EXHAUSTED End=of~-file was en= None
countered while the
section of the file
indicated was bteing

copiede.
fitename T8 filename Particular attritute Check input ard
BAD ATTRIBUTES specifications is re=enter.

meaningless cor ir-
consistent. The in-
consistencies will
be in relationship
between output devicer
record sizer» and
block size; or att-
empt was made to add
records to a file
whose attributes
differ from those of
input fite.

4-24

MESSAGE

POSSIBLE CAUSES.

SUGGESTED ACTION

FILE IDENTIFIER
file=-name TO0O0 LONG

Copy of a group of
files was requested,
At Least one file=-
name that was to be
generated ty the
copy would have teen
more than 12 charac-
ters Llongs maximum
tength of file-names
is 12 characterse.

Check
re-erter.

input and

filename T2 filename
CGPY DISCREPANCY

fnd=of-file reached
before expected.
Disk File Header may
be corrupt-.

filename TO filename
COPIED

COPY successfule.

None.

filename NOT COPIEL
ILLEGAL REQUEST

Copy of a group of
files was reguested.
An individual file-
name of "SYSMEM"™ g4¢
"(spaces)™
been producec. "SYS-
MEM™ (a file-nanme
reserved for system
use only) and
"(spaces)” are not

acceptable file~"names.

Wwes to have

Chreck input
re“ertere.

arc

filename NOT ACCEPT~-
ABLE RECORD SIZE

OF m IS GREATER THAN
THE MAXIMUM SPECIF~-
IED FOR THIS RUN =
RESUBMIT

Copy has encountered
a file with 3 record
size areater thar
expected. This can
happen if ‘a magnetic
tape file with a
record size greater
than 1024 charscters
is subritted to the
utility without the
record size heing
properly specified
in the initial

input.

Check input
re-erter.

anc

filename EXFAUSTED
DURING RANGE record=
key number

Fnd=of=-file encounter=

ed while section of
file indiceated by

"record~key"™ "pumber”

is being copiede.

None

2007258

425

MESSAGE

POSSIBLE CAUSES

_ SUGGESTED ACTION

filename EXHAUSTED
DURING RANGE
"record-key”™
"record=key"”

No records were
found ir the rarnce
"record-key"
"record-key".

Check input and
re~erter.

NO RECORDS FOR
COPYING FROM
filename

Specified file
contains no recorc¢s
for cooyinge.

Check for correct
filerarne.

INPUT RECORD number

PERMANENT E£RROR ON
INPUT FILE

QUTPLT RECORD number

Error encounterec~-
utility cannot
continue.

Do selective copies of
the parts of the file
tefore and after the tad
record» as part recovery

INPUT RECORD numter

PERMANENT ERROR
ON QUTPUT FILE

OUTPUT RECORD number

Error ercounterec-
utility cannot
continue.

INPUT RECORD
number DJUTPUT

Error ercounterec-
utility cannot

Femove the disk area in
error with XD utility
gnd rerur the COPY

with |

"Fe-irput the CCPY

suitetle FILESIZE

FOR EXTENDING

not fourd.,

RECORD number cortinue. opticn.
QUTPUT FILE T0O
SMALL
filename T2 file- COPY unsuccess ful irr-
name COPY FAILURE ecoverable error wzas
encountered.
NO RECORDS IN THE <BOTH> option was
KEYFILE used. Utility was rot
able to access to 3
data file through
some failure in the
keyfile.
file="name NOT FOUMDT Specified file wes Check input and

re-erter if necessary;
Check for correct
meciums

filename REMOVED

CNPY successfula. If
any cuplicate files
are encountered ty
COPY they are aut-
omatically removed.

None.

SELECTION CRITERIA
IGNORED

filename 1D filename

Confirms that select-
ion criteria were
specified when copy~
ing a pair of files»
anc have been ciscarg~
ed.

4-36

MESSAGE , POSSIBLE CAUSES | SUGGESTED ACTION
BAD ATTRISBUTES Inconsistent attrib- Check input and
SPECIFIED utes were specified re-erter.

for input file.

filename T0 filename
EXTENDING FLAGC
IGNORED

EXTENPING option was
ignored by utlity
when pair cf files
was Copied,

2007258

4-27

CP (Compute)

This utility allows simple computations to be made, with the answer displayed in decimal and hexadecimal. ‘
Input may be either decimal or hexadecimal. Hex values must be enclosed in @ symbols.

The utility may be initiated with a single computation to perform, in which case it will do the calculation
and terminate. If no calculation is initially provided, the utility issues an ACCEPT to enable the computation
to be entered. In this case the utility will do the calculation and then issue further ACCEPTS until a null input
to the ACCEPT is given.

Format:

= 1

r number

CP number 4

=~ x| +

— -/

The numbers accepted are any decimal or hex values in the range
0 999999999999999[@38D7EA4C67FFF @]

or the negative equivalent.

Parentheses are not allowed. The calculation is performed on a strictly left-to-right basis. The operators +,
—,+, /, and M are for addition, subtraction, multiplication, division and modulus division (the result is the re-

mainder) respectively.

Examples:

To compute the hexadecimal value of the decimal number 12345:
CP 12345

To compute the value of a complex expression:
CP 555 #3 + 2-100 #2/5

(Note: the result of the above is 626, because the calculation is done strictly left-to-right).

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN
CP 3 NUMBER T0O At Least one number Re=ingut.

LARGE is out of range.

CP : MISSING Two consecutive Re=input
OPERAND operators (+, etc)

have been enterec
Wwith no nurmrber
between-

4-28

POSSIBLE CAUSES

SUGGESTED ACTION

CP : HEX. NO. WITH

MISSING "aT

Itlegal symbols
or missirg 2
symbol at front
or back of a
hex value.

Re=input.

CP : INvALID
OPERATOR

Illegal symbols
or an operator
(+, etc) has been
omitted.

Re=irptte.

CP : OVERFLOW

An intermediate
value in the com*

putatior is greater

than the méximunm
value.

Re=irput.

CP 2 DIVISICN EBY
ZERD

Self explaratory.

Re=irpute.

2007258

429

CREATE (Create Disk File)

This utility allows the operator to create or extend data or source disk files. The “AMEND” and “UPDATE”
utilities use many similar features.

Format:

W[A
CREATE disk- file- RECORD number [
ATE isk-name / W ile-name s BLOCK Har \l, I
A 3 FILESIZE number >
N CRUNCH
or
- -

CREATE EXTENDING disk-name / file-name [ﬁ number

When creating a new disk file, certain attributes may be specified.

If the S option is selected, a source file will be created using alphanumeric input. If the A option is used
a data file will be created using alphanumeric input. The N option creates a data file with hexadecimal (numeric)
input. If none of these is selected, S is assumed. Alphanumeric input is accepted as typed, but numeric
(hexadecimal) input requires two characters (0-9, A-F) for each byte of the record.

The RECORD option allows the operator to specify the number of characters per record of the new file.
If no record size is specified, a record size of 80 bytes is assumed for source files, and 180 bytes for data files.

The BLOCK option allows the number of characters per block of a new file to be defined. The defaults are
as follows: ‘

If RECORD size was specified but no BLOCK, BLOCK size will equal RECORD size.

If neither RECORD nor BLOCK is specified, RECORD size will be 80 bytes for source files and 180 bytes
for data files; BLOCK size will be 160 bytes for source files, 180 bytes for data files.

The FILESIZE option allows the maximum number of records likely to be written to the new file. This is
useful in allocating only as much disk space as required by the file. Once the FILESIZE has been specified
for a file, that file can never be extended beyond that number of records. However, the COPY utility may
be used for increasing the FILESIZE of an existing file. The default is 2,048 records.

The CRUNCH option allows the operator to specify that the new file should occupy the minimum area of
disk, but never be extended.

The numbers specified for the “numbers” option may be used to set “tab” positions within the record (similar
to setting “tabs” on a typewriter). If tabs are set, the operator may input data, press OCK1, and the utility
will reposition the print mechanism to the next tab position within the record, and await data input. During
this repositioning CREATE will fill all character positions left unspecified in the record with a “filler” (ASCII
space for source input, ASCII zero for alphanumeric input, and binary zero for numeric zero). The record length
plus one will be used as a termination tab position, whether or not other tab positions are specified.

4-30

CREATE can be used for record sizes up to 500 bytes, but since the utility cannot be given input greater
than the width of the console, tab positions are mandatory on files of larger record sizes. For example, a file
of 180 byte records requiring alphanumeric input will require at least one tab position (for instance at position
100). A file of 180 byte records requiring hexadecimal input will require a minimum of three tab positions (for
instance at positions 50, 100 and 150). The maximum tab size is 115 in alphanumeric input and 54 in
hexadecimal input. That is, the difference between two consecutive tab positions should be less than or equal
to 115 in alphanumeric input and less than or equal to 54 in hexadecimal input.

The EXTENDING option is used to add records to an existing file. The attributes, such as RECORD and
BLOCK sizes, are taken from the old file. The file type is also taken from the existing file. The operator may
specify “A” alphanumeric input or “N” for hexadecimal input. If neither “A” nor “N” is specified, “A” is
assumed.

Examples:
65To create a source file called “ICFILE”, record size 100 bytes with 5 records per block, tab position set at
. CREATE ICFILE RECORD 100 BLOCK 500 65.
f'lTo create a source file called “ICFILE” with Record Size 80, block 3, and a maximum of 20 records in the
ile: -
CREATE ICFILE RECORD 80 BLOCK 240 FILESIZE 20.

To extend a source file called “ICFILE” (note: the utility will automatically prompt the operator for the next
sequential record number to be created):

CREATE EXTENDING ICFILE

To create a data file called “CFILE” for hexadecimal input with tab positions set at 50, 100 and 150. (Note:
Default record size is 180, block 1):

CREATE CFILE N 50 100 150

The utility operates in two modes: “RECORD INPUT” (entered through PK1) and “RECORD MODIFY”
(entered through PK2).

PK1 PK2 PK3 PK 4 PKS PKs

input modify —_— —_— _— ECJ

The “Record Input Mode” (PK1) is used to enter new records through the keyboard. Characters are input
followed by OCKI1 for each tab position.

The “Record Modify Mode” (PK2) is used to make corrections to the last record input. The point in the
record at which alterations are to be made is selected by typing an identify group of characters immediately
preceding the byte(s) of the record to be altered. The portion of the record to be replaced or inserted follows
the identifying characters, delimited by a colon (:). If alterations are to be made at the beginning of the record,
no identifying characters are necessary.

If OCK1 is used to terminate input, the characters to be altered will replace the corresponding number of
characters in the record.

For example, for a record containing “ABCDEF”, the amendment C:XY:OCK1 will result in “ABCXYF”.

2007258 4-31

If OCK2 is used to terminate input, the characters delimited by colons (:) will be inserted at the indicated
point. The insertion can cause characters in the record to be moved to the right. The shifting of characters ap-
plies only to those characters from the starting byte to the next higher relevant tab position; characters beyond
this tab position will not be affected.

For example, a record specified with tab positions at 4 and 8, contains “ABCDEFGHIJ”. The amendment
C:WXY: OCK2 will result in “ABCWXYDHIJ”.

Initially the utility will be in the “Record Input Mode”, and on completion of an entry in any mode, it will
allow the operator to select the mode not in use, or terminate the utility (with PK6). Unless otherwise instruct-
ed, it will continue in the existing mode.

If the FILESIZE is specified and records are entered beyond the given filesize, then the error message is
displayed after (filesize + 2) records have been entered. The last two records will not be written, due to the
blocking of the output file by CREATE. For example, if the request

CREATE ICFILE FILESIZE 15
is followed by more than 15 records entered, then the message ‘OUTPUT FILE TOO SMALL” will be given
after the seventeenth record is entered; and the utility will go to EOJ without writing records 16 and 17 to
the output file.

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION

Check for correct
files check irput
and re“enter if
recessarye.

FILETYPE IS NOT A file other than

SOURCE OR DATA a "source"™ file or
a "data"™ file was
specifiecd.

Check input anrg
re~erter;

Specified record ard
block sizes are in-
compatible.

ILLEGAL PARAMETER
LIST = ATTRIBUTE
SPECIFICATION
INVALID

ILLEGAL PARAMETER
LIST - TABS ERRDR

Creck input and
re“entere.

Tab positicns beyord
end of record were
specified; or input
fields larger theén
capabilities of
console.

Check input and
re-enter.

NOT HEXACECIVAL
CHARACTER INPUT -
RESUBMIT

Character other than
0=9 ad A=F was irput.

0DD NUMBER OF Warning message ing= None. Utitity accépts

HEXADECIMAL CHAR-
ACTERS INPLT

icating that an ocdd
number of hexadecim=
al characters wa;
input. Wher incut

mode is "hexadecimal">»
utility expects even
number cf input char-
acters.

the inputs but adds a
2Zero onto the eng
(right) of the input»
to ever it out.

4-32

lINPUT ERROR -

RESUBMIT RECORD
MODIFICATION

Input error during
"Record Modify Mode".

Check input and
re-enter record
modificatione.

BYTE WITHIN

RECORD SPECIFIED
NOT FOUND

The identifying
string of charact-
ers for record
modification could
not be found in the
record specified.

Check input anc
re“enter the
record modification.

UNWANTED KEY

PRESSED = PLEASE
RE=-INPUT.

Invalid 0CK yas
pressed.

ke=enter input and
termirzte the entry
nith the correct OCK.

INPUT IMMEDIATELY
BEFDRE PKg HAS
BEEN LOST

Cheracters were input
immeciately before

PK6 was nressed to
terminate the utility.
These characters will
not be wWwritten to

the specified file.

Restert the utility
usinc mocdify rode to
correct this record if
cesirece.

QUTPUT FILE TCO
SMALL

Attempt was made to
adcd records to
specified file
beyond its maximum
filesize. File is
closed with Llocke.

List the file to
check which records
have been entered:
then use CREATE
EXTENDING to add

the cesired recordse.
Alternatively use
UPDATE with the
FILESIZE option.

PERMANENT £RROR ON
QUTPUT FILE

Utility is not atle
to write any-.more
records to the new
disk file because

of errors on the
disk. File is closed
with locke.

List the file to check
whick records have
teen entered: then
CCFY to a different
file &and continue
using CREATE
EXTENDING.

RECORD SELECTION
ERROR

Attempt was made to
select a non-exist-
ant record.

Check input and
re-enter if
recessary.

ILLEGAL RECORD
NUMBER SPECIFIED

Attenpt was made to
select record greater
than the number of
records in files» or
zero.

Crteck input ard
reenter if
recesszry.

2007258

4-33

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

RECORD REQUESTED
IS BEYONC E.C.F.

Attempt was made to
select recerd teyond
end of file.

Usually indicates
tpdate is complete?
utility terminates
normélly» no action
reed be takena

E.0.F. REACHED
DURING DELETIONS

Attempt was race to
delete a record
beyond end of file.

Lsually indicates
file update is
complete? utility
termingtes normatly»
no action need be
takere.

Note: Refer to “Common Utility Output messages” for additional messages.

4-34

DA (Disk Analysis)

This utility allows the operator to read any portion of a CMS-format disk. It is an interactive program, with
the operator entering a range of commands via the console.

The utility is commonly used to print the contents of the disk directory. In general, if the PD utility operates
correctly for a specific disk, then DA should also run successfully. Specifically, the disk cartridge label, the name
list entry and disk file header for SYSMEM must be intact. (Refer to the CMS MCP manual for details of
the disk format and directory structures).

Format:

\%

DA disk-name / file-name

The utility operates in two modes “disk mode” and “file mode”. If no file name is specified the utility oper-
ates in ‘“disk mode”.

Disk Mode

In this mode the operator can enter via the keyboard a number of commands. These commands can be abbre-

viated according to the table provided at the end of this section. The format and meaning of each command
in disk mode is given below.

END

Terminates the utility.
DCL

Reads and formats the contents of the disk cartridge label.
DFH

Reads and formats the contents of selected disk file headers. This command is followed by other details, given
here:
r -
TEMPORARY
ALL

OF file-name }
DFH 4 number
@ number
NEXT

_)

The “TEMPORARY” option displays the headers of all temporary files.
The “ALL” option displays the headers of all files, and their contents if in use.

The “OF” option displays the header of the specified file: all headers will be checked and duplicates will
be displayed if found.

The “sector-number” option displays any sector in disk file header format, where the number is a decimal
sector address. If preceded by an @ symbol, the sector-number is in hexadecimal. This feature can be used after
displaying other parts of the directory, which include sector addresses for disk file headers in hexadecimal.

The “NEXT” option displays the header of the next file in the directory.

2007258 4-38

AVAIL.TABLE

Reads and formats the contents of selected parts of the disk available space table. This command is followed
by other details, given here:
— o
ALL
AVAILABLE
AVAIL.TABLE -ﬁ BAD >
INVALID

number
@ number

- =

The “ALL” option displays the entire available table.

The “AVAILABLE” option displays entries for available area only.
The “BAD” option displays entries for bad sectors only.

The “INVALID” option displays all entries in the available table which are invalid, in that the “length” entry
does not equal the difference between “‘start address” and ‘“end address”.

The “sector-number” option displays any sector in available-table format, where the number is a decimal sec-
tor address is in hexadecimal.

NAME.LIST

Reads and formats the directory name list, including the sector addresses of associated disk file headers. This
command may be followed by other details, given here:

— - 1
NAMES

TEMPORARY

NAME.LIST ﬁ OF file-name >~
number
@ number

- -

If no further details are given, then the entire name list is displayed.

The “NAMES” option displays entries for old (existing) files only.
The “TEMPORARY” option displays entries for temporary files only.

The “OF” option displays the entry for the specified file : all entries will be checked and duplicates will be
displayed if found.

The ‘‘sector-number” option displays any sector in name-list format, where the number is a decimal sector
address. If preceded by an @ symbol, the sector-number is in hexadecimal.

READ

Reads and displays the contents of any specified sector in hexadecimal and ASCII format. This command
may be followed by other details, given here:

NEXT
READ ONLY) number

@ number

4-36

The “ONLY” option inhibits the display of the information.

The “NEXT” option will read the next sector. Note that after some operations which involve a search, the
“next” sector may be indeterminate. After a READ of sector n, a READ NEXT will read sector n+1. A
READ command with no further details is taken as a READ NEXT.

The “number” option reads the sector whose address is the number. If preceded by an @ symbol, the sector-
number is in hexadecimal. ’

DISPLAY
Displays the current sector address and contents of the program’s sector-buffer. The first DISPLAY command

must be preceded by a READ command. A READ ONLY followed by a DISPLAY is equivalent to a normal
READ.

File Mode
In file mode, the utility can be used to read selected records. Only the following commands are valid:
READ
DISPLAY
END

The READ command has the same format as in disk mode, except that the “number” refers to the logical
record number in the file, and a READ NEXT will read the next logical record in the file. The amount of
information displayed is equal to- the file’s record length.

General Notes

In disk mode the sector number starts from zero; that is, “READ 0” will read the first disk sector.
In file mode the record number starts from one; that is, “READ 1” will read the first logical record.

Any 1/O error causes the “fetch value” to be displayed, with the current sector address if in disk mode, or
current record number if in file mode.

Abbreviations

For ease of use, input commands and other keywords may be abbreviated, as in the following table:

READ R
ONLY C
NEXT N
OISPLAY C
END E
cCL cc
DFH DF
ALL AL
oF CF
TEMPORARY T
AVAIL.TABLE A
AVAILABLE A
BAD B
INVALID I
NAME.LIST N
NAMES NA

2007258 437

Output messages:

- -

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

INVALID PARAVETER

No valid disk name
of file name has
been specified ir
the initiating
mesSSage.

Re=enter

I1/0 ERROR 3annnna
DISK MOD TERMINATED

The required disk is
not on=liner or the
specified file has
not been found. This
message is followed
by the Fetch Value
giving reason for
terminationr,

Check input or
RY the required
Cisk.

SUCCESSFUL READ
MUST OCCUR FIRST

A DISPLAY command
has been entered

before a success=
ful read-

Enter g READ command,
then g DISPLAY ,itl
work. '

INVALID COPTION input

An unrecogized
command has been
enterede.

Check input and
re~enter.

NOT VALID IN FILE
MODE

A command other than
READ or DISPLAY hgas
been used in file
mocdee

Check input.

NONE FOUND

No information has
been found in answer
to a commard.

None.

I1/0 ERRCReeew®
ADDRESS nnnn/
annnna

Attempt to read sector
has faileds» adcress
in decimal and hex.
Utility will cortinue.

None. The «ce. gives
type of failure (ERROFR
CN READ» BEYOND END OF
FILE, cr INVALID SECTOR)

170 ERRAR. ...
RECORD nnnn/
annnna

Attempt to read record
has faileds zddress
in decimal and hex.
Utility will continuee.

None. The «... gives
type of failure (see

438

DD (Disk Dump)

This utility allows the operator to back-up (“STORE”) one or more files from a disk to one or more disks
(cartridge or BSMD) whose capacity is less than the originating media, and later “RESTORE” these files to
their original state.

Store Function:

Format:

file-name or

;l/ file-name or
DD STORE disk-name / group-name TO disk-name / group-name

The STORE function allows the operator to store a file or group of files between two disk media, where
the size of the file may be greater than the physical size of the disk to which the file is being copied (destination
disk). The files to be stored are specified by ““file-name” or “‘group-name” and are taken from the system disk
unless ‘““disk-name” is specified. Additional files or groups of files may be specified, separated by a comma.

When the original destination disk is filled, the utility will request the name of the next disk to be used. The
disk name is accepted from the operator who should then power off the drive using the “PO” intrinsic, insert
the new disk into the drive, and use the “RY” intrinsic to allow the utility to continue. When all the files have
been copied, the original destination disk must be re-inserted before DD will go to End of Job.

STORE re-computes block sizes for optimization and to allow a file to be copied to multiple disks. As a re-
sult, these files will not be usable as in their original form. The files must be RESTORED.

Examples:

To store a file called PR200 from the disk PRI to the disk PRBU:
DD STORE PRI/PR200 TO PRBU/PR200

To store a group of files beginning with the letters “PR” from the disk PR2 to the disk PRBU:
DD STORE PR2/PR= TO PRBU/PR=

To store a file called PRCLEF from the system disk to the disk PRBU:
DD STORE PRCLEF TO PRBU/PRCLEF

The information needed to restore these files is kept in a file called “DDSTRESTORE” which is created

when DD begins processing. Because of this, DD may not be run twice to the same destination disk or the
information required to restore the first set of files will be lost. -

Restore Function

Format:

: file-name or
DD RESTORE disk-name / group-name TO

q/ file-name or

disk-name / group-name

This option allows the operator to restore a file or group of files between 2 disks where the disk from which
the files are being copied (source disk) was generated by “file-name” or “‘group-name”. Files are copied to the
system disk unless “disk-name” is specified. Additional files or groups of files may be specified. separated by
a comma.

2007258 39

When all files have been restored, the utility will inform the operator what disk must be inserted next to
continue the transfer. Power off the disk drive using the “PO” utility, insert a new disk, and use the “RY”

intrinsic to continue the utility. -

Examples:

To restore a file called PR200 from the disk PRBU to the disk PRI:

DD RESTORE PRBU/PR200 TO PR1/PR200

To restore a group of files beginning with the letters “PR” from the disk PRBU to the disk PR2:
DD RESTORE PRBU/PR= TO PR2/PR=

Output messages:

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTICN

group~=name = NO
FAMILY MEMBERS
FOUND

Specified group
is not on disk.

Check input and
re-erter if necessary;
Check for correct
diske.

FILE NAME TO0O
LONG

Specified file
name is longer
thén 12 characterse.

Re=input correctly.

fite"name NOT
STORED - ILLEGAL
REQUEST

Attempt was made to
store a system file
(that is» MCP,

interpreterss etc).

None 2]

ENTER NEW PACK ID
FOR CONTINUATION
OF TRANSFER

Program requests
next disk for
STORE continuation
ACPT disolay.

Enter AX mix number
cf procram and new
cisk name to which
STCRE will continue
tc Cccpye.

INSERT PACK disk~-
name FOR CONTIN-
UATION 0OF TRANSFER
INSERT NEWPACK
disk*name FOF
CONTINUATION 0OF
RESTORE

Continuation disks
are required.

Reeponc to ACPT mess
age with AX mix number
disk”name. Power

off (PQ) disk
currently filled»
insert new disks type
“"RY" tg contirue
processing.

NOT FIRST PACK OF
A STORED SERIES

Source disk specifiec
in RESTORE is not
first disk of a stor~-
ed series of diskse

Fower ocff (P0) in-
apprcpriate disk»
insert proper c¢iske.

file“name STORED
T0 file-name
file"name RESTORED
T0 file-name

STORE or RESTORE
success ful

hone.

NOTE: Refer to “Common Utility Output Messages” for additional aid.

440

DUMP (Dump Files to Library Tape from Disk)

This function, a part of the LD allows the operator to copy files from disk to library-tape.

Format:

l LD I DUMP TO library-tape-name FROM disk-name
file-name or
group-name <BOTH>

If the <BOTH> option is used following a request to dump a keyfile, the associated data file will also be
dumped following the keyfile on tape, provided the data file is on disk.

Examples:

To dump a group of files beginning with the letters “AR” from the system disk to ARTAPE:
DUMP TO ARTAPE AR=

To dump a file called ARTASK and a group of files beginning with the letters “DCS” from a disk called
ARDISK1 to a tape called ARTAPE:

LD DUMP TO ARTAPE FROM ARDISK1 ARTASK DCS=

To dump a keyfile called AR200K and its data file from a system disk to ARTAPE:
DUMP TO ARTAPE AR200K <BOTH>

Since “DUMP” is a part of the utility “LD”, “LD” is actually what will appear in a mix message. To discon-
tinue the DUMP function, ‘DS” mix number/LD must be used.

Output messages:

[NESSAGE POSSIBLE CAUSES SUGGESTED ACTICN
NO FILES IN Specified group nanme Check input ang
THE FAMILY not found on disk. re-~enter 1f necessary;
group~=name ON Check for correct
DISX disk=name Cisk.
- IFOR DuwMmP
INO FILE fite=name Specified file was Check input and
ON DISK disk=name not found on diske. re-enter if necessary’
FOR DUMP Check for correct
ciske
file-name NOT File to be copied is None: utlity will
DUMPED = IN QUTPUT in use and cannot be not gusp this file
USE- DUMP ABANDDN- copied. If "DUMP but will continue
ED TAPE BEING ABANDONED™ message is with next file to
PURGED . givens tape 1s purged te durged.
and utility goes to
E0J.

2007258 4-41

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
file~name NOT File to be copiec was None
DUMPED - HAS BEEN removed between start
REMOVED. of DUMP and time wher
DUMP ABANDONED = file was to be copiec
TAPE BEING PURGED. to tape. Tape is purged

and utility goes to End

of Jobh.
file-name NOT Contents of file to None
DUMPED = HAS BEEN be copied were alter~-
ALTERED = OUMP ed between the start
ABANDONED = TAPE of the dump and the
BEING PURGED. time the file was to

be copied to tape.

Tape is purged and

utility goes to Eng

of Job.
file~"name LOAD/ End of Fite reached None.

DUMP DISCREPANCY

before expectec. Disk
File Header may con-=-
tain errorse.

NO FILES TG

No files were founc

Check input and re-

pDUMP on this disk to copy enter if necessary?’
to tapee. Check for correct
tépe.
file=name DUMP success ful None.
DUMPED
DUPLICATE fite-name More than cne recuest None.

ALREADY BEING
DUMPED

was made to DUMP this
file.

file=name NOT
DUMPED - DATA FILE
NOT ON LINE

<BOTH> option wWas
specifieds but data
file was not found
on diske.

1f specified cata

file dump is
requireds, supply
DUMP with backup
copy of fite if
exists.

it

Note: Refer to “Common Utility Output Messages for additional messages.

4-32

FL (Display File Attributes on Self-Scan)

e This utility allows the operator to display detailed information about particular files or groups of files on disk
upon the self-scan screen. The information given is similar to the LR utility.

Format:

file-name or
FL disk-name / grougFname

The utility uses the following PKs when more than one file is specified:

PK1 PK2 PK3 PK4 PKS PKE
page to
next —_— —_ —_— _— £E0J
screen

Examples:

To display information about all entries on the system disk:

O .

To display information about a file called PR200 found on disk called PR2:
FL PR2/PR200

To display information about a group of files beginning with the letters “PR” found. on the system disk:
FL PR=

Output format:

The utility will fill eight lines on the self-scan screen with information about one file.
line 1: FILE NAME (DDDDDDD/FFFFFFFFFFFF)
line 2: FILE TYPE (TTTTTTTT)
line 3: SIZE:ACTUAL (XXXXXXX) MAX (XXXXXXX)
lines 4,5: headings
line 6: DATE CREATED (YYDDD),LAST ACCESS DATE (YYDDD),
RECORD SIZE (XXXXX), RECS/BLOCK (XXXXX)
line 7: AREA MAP (sesssssssess)
line 8: OVERFLOW ON DISK (DDDDDDD)

Note that the OVERFLOW ON DISK will not be displayed if the file has no overflow areas allocated.
G The first line contains disk name specified by DDDDDDD on which the file specified by FFFFFFFFFFFFF

resides.

2007258 4-43

In the second line the FILE TYPE entr)} will contain one of the following:

SYSTEM (system file)

CODE COMPILED YYMMDD (object code file and compilation

date)
DATA (normal data file)
SRCELANG (source language file)

The third line displays the actual file size and maximum file size specified for the file.

The fourth, fifth, and sixth lines display the date of creation and the date the file was last accessed in
YYDDD (Julian) date format. The record size displays the number of characters per record and RECS/BLOCK

displays the number of records per block.

In the seventh line sixteen characters are displayed to show the allocation of the sixteen areas into which

a file may be broken. Each character may be one of the following:
‘ » unallocated
B allocated on this disk
O allocated on the overflow disk

Output messages:

MESSAGE POSSIBLE CAUSES

SUGGESTED ACTION

FILE NAME =
disk~"name/file-name
NOT FOUND IN DISK
DIRECTORY

Specified file ncot
found on this disk.

Crteck input and
re~irput if neceSSaryi
Check for correct
ciske.

disk“name/file"name
NO FILES FOUND IN
DIRECTQRY FOR
FAMILY

Specified grour was
not found on this
diske.

Check input and
re~input if necessaryj
Check for correct
CiSko

Note: Refer to “Common Utility Output Messages” for additional aid.

4-4

FS (File Squash)

This utility allows the operator to remove all deleted records from a data file. Records are normally “deleted”
(that is, hexadecimal @FF@ are written over the records) through an appropriate application program. The FS
utility will remove these previously deleted records, allowing additional records to be added to the file.

v

The “file-name” identifies either a data file or a keyfile. If a keyfile has been specified, the name of the
data file is obtained from the information held in the keyfile.

Format:

FS r disk-name / file-name INTO disk-name / file-name

If a keyfile is specified, then the utility will reconstruct this keyfile so that it relates to the modified data
file.

While the utility is processing, no other program may access the data file (or the keyfile if one is specified).

If only one file-name is specified and no other options are used, the file squash will be carried out in place,
and no new data file will be created. If a keyfile was specified, then a new keyfile with the same ‘file-name”
will be recreated by the SORT.

If 2 file-names are specified, the data file will be squashed into a new file, and the keyfile (if specified) will
be recreated by the SORT. If the first file-name specifies a keyfile, then the new keyfile will have the name
indicated by second file-name, and the new data file will have the name of the new keyfile name, with the
letters “QQ” attached to the end of the name.

Examples:

To squash the file, PR200:
v FS PR200
To squash the file, PR200 and create a new file, PR200B:
FS PR200 INTO PR200B

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION

file=name SGUASHED FS success ful - None s
FROM n RECORDS TO griginal and result-
m RECORDS ing fliesizes of the

data file indicated.
"n" and "m" are
decimal numbers up
to 7 digits each.

KEYFILE file~name "file=name™ indicated None .
RECONSTRUCTED by operator input

jdentified by keyfile

anc FS has success~™

fully squashed the

data file and recor-

structed the keyfile.

POSSIBLE CAUSES SUGGESTED ACTION

MESSAGE
KEYFILE SORT SORT utility was not None.
FAILURE able to properly con-

struct a keyfile.

Note: Refer to “Command Utility Output Messages™ for additional aid.

ICMD (Industry Compatible Mini Disk Access):

This utility allows the operator to access industry-compatible mini disks (ICMD).

Format:
LR disk-name
ICMD PG disk-name
or
ICMD COPY disk-name/file-name ICMD TO disk-name/file-name FILESIZE number
or

ICMD COPY disk-name/file-name TO disk-name/file-name ICMD

The first function of the utility (LR) allows the operator to print the disk directory of the ICMD. The utility
will print a line of information for each file on disk.

The second form of the utility (PG) allows the operator to purge (erase) all files from an ICMD. The utility
will replace all files by a single zero-length file called “DATA” to which is assigned all the disk space available
to the user. :

The third form of the utility allows the operator to copy an ICMD file to a CMS file. The CMS file will
have the largest block not exceeding 180. If the FILESIZE of the CMS file was not specified, it will be calcu-
lated from the header of the ICMD file. Note that when copying a Multi-Volume File (file which resides on
more than one disk) the FILESIZE option will almost certainly be required.

The fourth form allows the operator to copy a CMS file to an ICMD file. The maximum record size of the
CMS file must be 128 bytes (the ICMD sector size).

Examples:

To print the disk directory of an ICMD disk called PR2:
ICMD LR PR2

To purge all the files from the ICMD called PR2:
ICMD PG PR2

To copy a file called PR200 from the CMS disk called PRI to an ICMD disk called PRBU:
ICMD COPY PRI/PR200 TO PRBU/PR200 ICMD

To copy a file called PRFILE from the ICMD called PRBU to the CMS disk called PRI:
ICMD COPY PRBU/PRFILE ICMD TO PRI/PR200

Output messages:

MESSAGE PNSSIRBLE CAUSES SUGGESTED ACTION
ENTER VGL=ID FOR Program is about to Enter zppropriate
"file=name"™ n display an ACPT re- cisk"name.

questing the next
disk=name containr-
ing the Myuylti-Volume
File "file"ngme™.
"n™ is the seguence
number to te used»
or btank if none.

2007258 4-47

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

VOLUME n OF "file~
name®™ OUT OF SEQUENCE

Sequence number "np"
of "file-name™ was
not expected at this
pointe

(Ex: program was
expecting cisk with
sequence number of

2 and operator su=-
pplied disk with
Sequence number 4).

Remove inappropriate
disk from disk drive
(PO cannot be used
with ICMD). Replace
with cisk having
correct sequential
number for this file.

DUPLICATE FILE
"file=name"

File cannot be copiec
to ICMD as 3 file

of the same nanme
already exists, Disk
cannot contain 2
files with the same
name.

Cory this file while
ctangirg its name. For
examples if file=nape
FYFILE is already on
the IC¥D, enter ICMD
COPY DISK/MYFILE To
ICDISK/YOURFILE ICMC.

NO FREE LABEL ON
"disk=name"™

File cannot be copied
to ICMD as its disk
directory is full.

Feplece ICMD yith
another ICMD having
cirectory space.
Re-attempt ICMC utilitys

NO SPACE FOUNMND
ON "disk=name™

File cannot be copiec
to ICMD as no unused
space coulc be founce

FG ICMC and re-attempt
Copys or select another
cisk or which to copy.

Note: If any of the above messages (including ‘‘disk-name” NOT FOUND and “file-name” NOT FOUND)
is output in response to the initiating message, the utility will go to End of Job. If in response to an ACPT,
the utility will repeat the message: ENTER VOL-ID FOR “file-name” “n”.

Select another ICMC
tor this function.

ICMD has an error an
Track 0 and cannot
-be used by this yt~-
ility. Utility goes

to £0J,

BAD INDEX TRACK
ON disk-name SECTOR
number

LUse MCP CoPY ttility
to change record/
tlock sizes.

(EX: CCPY CMSFILE TO
CMSFILE RECAORD 128>
BLCOCK 128)

Then use ICMD COFY

to comclete transfer.

RECORD SIZE 0OF The file canrot te

file"name EXCEEDS copied to the ICMD

128 as its record size
is more than 128>
the maximum for an
ICMD. Utility goes
to ECJ.

448

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

NEXT SEQUENCE NUMBER
OF file~name EXCEECS
99

No more disks may
be usedr» as the
maximum for a&an ICMD
is 99. Utility goes
to F£O0J.

Use MCP CNPY wutility
to break file (see
CGPY utility). Then
Lse ICMD COPY to
complete transfer.

INPUT ERROR ON
file=name RECORD
number

Irrecoverable error
was found on read-
ing record "nurher”
from the ICMD. Utit-
ity goes to EOJ.

File cannot be coptied
from the ICMDjs use
backun ICMD i€ avail-
éble.

oUTPUT ERROR ON
file-name RECORD
number

Irrecoverable error
was found on writing
record "number"™ to
the ICMD.

Disk cannot be usede.
Use another ICMD.

successful.

file=name T3 ICMpD CCPY function Nore.
file=name CNPIED success ful »
disk=name PURGED ICMD PG function None.

Note: Refer to Common Utility Output Messages fdr additional aid.

2007258

4-49

IR (Initiate Log Recall)

(a function of SYS-SUPERUTL)

This function will initiate recall and go back in SYS-LOG files after skipping the number of entries specified
by the operator (that is, 5 digit “offset”) and display the required message.

Format:

IR offset

Examples:

To initiate recall after 12 entries and display the message on the console:

IR 12

To initiate recall of the message just given:

IR 1

Output messages

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

CANNOT LOCATE DESIRED
LOG ENTRY

The log files have
been transferred
using TL utitity

Nonee.

Offset is greater
than number of entries
in log file

Cecrease the value of
offset and re~enter.

480

KA (Analyze Disk Space Assignment)

This utility provides the operator with a map of all space used on disk by specific files, or available for other
use. The printout is in ascending disk address order in terms of areas and their assignment.

KA is capable of analyzing space assigned to one or more files, one or more groups of files, or the available
areas.

Special reporting is given if the group identifies all files on the disk (that is, disk-name/=). In addition to
an analysis of the areas allocated to each file, this report will show the space assigned to the disk directory,
temporary, available, bad, and missing areas. The temporary areas are those which are allocated either to tem-
porary files or to the virtual memory.

If files are created, extended, or deleted by the system during the processing of KA the map will not be
accurate. It is therefore necessary that KA be run only when no other programs are in the mix.

The analyzed output will be to a line or console printer, and will print the areas in ascending disk address
order associating with each area its first sector address, its length in sectors, and its status. The status will be
either allocated, available, temporary, bad, or missing. If the area is allocated, the file name of the file to which
the area is assigned will also be listed. If a particular file or family is not on-line, then this is indicated on the
printout.

If the option DSKAVL is selected, then an analysis of the available areas on the disk specified by “disk-
name” (or system disk if no “disk-name” was specified) will be printed.

Format:
\l/ file-name or
KA disk-name / group-name
or
KA | disk-name/ DSKAVL
Examples:

To analyze disk space assignments of all files on system disk:
KA =

To analyze disk space assignments of all files on the disk called PR2:
KA PR2/=

To analyze disk space assignments for a group of files beginning with the letters, “PR” on the system disk,
and a file called PR200 on a disk called PR2:

KA PR= PR2/PR200

To analyze available areas on the disk called PRBU:
KA PRBU/ DSKAVL

2007258 4-51

Output format:

Six columns of information are output. The column headin

and the significance of these values are as follows:

HEADING

AREA ADDRESS
AREA LENGTH

STATUS

FILE NAME

VALUE

8 digits
6 hex. digits

8 digits
6 hex. diqits

9 characters

12 characters

gs, the format of the values these columns contain,

SIGNIFICANCE

Sector address of start
cf ares

Number of sectors in
this area

See Note 1

See Note 2

Note 1: The status will be one of AVAILABLE, TEMPORARY, BAD, or * MISSING*, depending on
whether the area is available, allocated to a file, denoted as temporary, unusable, or lost.

Note 2: If the area is ASSIGNED, then this field will contain th

Otherwise it will be blank.

e identifier of the file residing in the area.

The status *MISSING* occurs if an area is not referenced from anywhere within the file directory or available
table. This may be because the area is in fact lost, or because existing files have been opened, have had further

areas allocated to them and are still open during the processing of KA.

If fixed disk is being used, three areas are reserved for MTR purposes with the status marked as “BAD”.
The area lengths are 256, 128, and 128 sectors respectively.

Output messages:

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

*AREA APPARENTLY
ASSIGNED TWICE®

Area is cortainec
partly or complete-
ly in an area prev-
iously tlisted.

Kotify fieldy eng=
ineering. DO NOT USE
DISK. It may be possible
to reccver any file not
involveds» usirg CCPY.

*AREA ASSIGNED
BEYOND MAXIMUM
ADDRESS~

Area is assigned
beyond the address~
able space.

Notify field eng-
ineering. D3 NOT
USE CISK.

INOTE: QUTPUT FILES
ON DISK WERE OPEN

DURING THIS EXEC-

UTION OF KA

Files were opren on
disk while XA yas
processing. Dther
programns may have
been in the mix
when KA wWas proc-
essinge.

KA prirntout may not
te comrcletely acc-
urate. Begin KA when
no other programs
ére in the mix.

input NOT FOUND IN
DIRECTORY ON THIS
DISK

Specified file is
not on disk.

Check input and re-
input if necessary;
Check for correct
ciske

4-52

‘H’ | MESSAGE POSSIBLE CAUSES SUGGESTED ACTION

input NO FILES IN Group of files Check input and re-

DIRECTORY FOR specified is not input if necessary;

THIS FAMILY on diske Check for correct
Ciske.

TABLE SIZE EXCEEDED Number of Llines of None.

output requireg is
greater than KA
permits. Maximum
permitted is about
20 pages of outpvrt.

KA ends.
NO OUTPYUT GENERATEC Disk directory cont~ Check for correct
BY KA ains no file nemes cisks

to printe. Check input ana

re~input if necessary.

Note: Refer to “Common Utility Output Messages” for additional aid.

2007258 4-53

KX (Disk Allocation Information)

(a function of SYS-SUPERUTL)
This function will allow the operator to display the name of the first file found on the disk specified by “disk-

name” (or on the system disk if no “disk-name” is specified) whose total number of sectors allocated is' equal
to or greater than “number” (assumed zero if not specified).

VY

number

Format:

KX disk-name

After each display, which will include the information of the current numbers of temporary and available sec-
tors, the KX function of SYS-SUPERUTL remains available, waiting for one of the following input responses:

A call on any other function of SYS-SUPERUTL: this will terminate KX.
KX or KX NEXT To display the next file name, if any, otherwise KX will go to END.
KX RM or KX REMOVE To remove the file whose name has just been displayed.
KX END To terminate KX.

Examples:

To display the name of the first file on the system disk whose size is equal to or greater than 250 sectors:

KX 250
To display the name of the next file whose size is equal to or greater than 250 sectors:
KX NEXT
To remove the file just displayed:
KX RM
To terminate KX:
KX END
Output messages:
MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN
END KX KX success ful None.
filename - number Normal KA display None.
SECTCRS: AV. numbers showing current
TEMP (or TEMPORARY) number of sectors»
number available anc
temporary on
disk.
input IS AN UNACCEPT~- Typing errcr. Check input and
ABLE RESPONSE FOR KX o re“ertere.

See SYS-SUPERUTL messages also.

4-54

LB (Look Back in Log)

(a function of SYS-SUPERUTL)

This function will Look Back to continue recall in the direction of earlier messages with a screenful of mes-
sages. If the serial printer (SPA) is used as the console, then the function will display a number of messages
calculated by the length of messages and width of console.

Format:
LB

Example:

To look back and display the messages:

LB

LB can be initiated only after IR, LB, and LF.

Output messages

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTICN

IR REQUIRED BEFORE
L8 CAN 3E OHONE

IR function was not
initiated before LB.

Initiate IR then
re~irpuvt LB.

CANNOT RECALL LB
BEYOND THIS FOINT

LB has reached the
beginning of this
tog file

None

2007258

4-55

LD (Tape Library Utility)

This utility allows the operator to maintain library tapes. It is divided into the following four separate ‘‘sub- .
programs’ (functions):

ADD (tape-to-disk file copy)

LOAD (tape-to-disk file copy; duplicates are removed from disk)

DUMP (disk-to-tape file copy)

UNLOAD (disk-to-tape file copy; files are deleted from disk
after being copied to tape)

On the B 80 these four functions can be invoked directly: the MCP will recognize that they are part of the
LD program and load LD from the system disk, passing LD the appropriate information. For example, the input

DUMP TO ARTAPE AR= causes the same action as
LD DUMP TO ARTAPE AR=

If LD does not reside on the system disk, the user-disk name and ‘LD” must be specified.

Should the operator request a “mix message” (see MIX intrinsic) while any of the 4 functions are running,
“LD” (not the name of the specific function) will appear in the mix.

Similarly, to discontinue any of the four functions, a message of: “DS mix number/LD” will be required.

Detailed descriptions of ADD LOAD, DUMP, and UNLOAD and associated output messages are provided
under the name of the function.

4-56

LF (Look Forward in Log)

% (a function of SYS-SUPERUTL)
This function will look forward to continue recall in the direction of later messages with a screenful of mes-

sages. If the serial printer (SPA) is used as the console, then the function will display a number of messages
calculated by the length of the messages and the width of the console.

Format:
LF

Example:

To look forward from last recall and display messages:
LF

LF can be initiated only after IR, LB, and LF.

Output messages

MESSAGE POSSIRLE CAUSES SUGGESTED ACTIQON
IR REQUIRED BEFORE IR was not initiategd Iritiate IR and thenr
LF CAN BE DONE before LF re~enter LF
e CANNOT RECALL LF LF has displayed the None
BEYOND THIS POINT mest recent entry in
the log file

2007258 4-57

A = popapsercac
)L) = Hex \ DeCimar

LIST (File List) ‘

This utility allows the operator to list in whole or in part files on any CMS device. Output will be either
to the line printer or to the console printer.

Format:
\L v starting ‘number of J/
A record records
LIST file-name N <KEY> number to list

If the “A” option is chosen the file will be listed in alpha characters. The “N’’ option will list the file entirely
in hexadecimal. If neither the “A” nor “N” options are selected, the file will be listed in both alpha and
hexadecimal.

If the file to be listed is a keyfile, the utility will list the associated data file in the order of the keyfile unless
the <KEY> option is specified. When the <KEY> option is used, the utility will list the keyfile itself.

The operator may also list selected parts of a file by specifying the relative record number at which printing
should begin and the number of records to be printed from that point.

o)
Examples: Frog wawe Dige 1OfFreE b
To list the records of a file called PROGSRC as alpha:

LIST PROGSRC A

To print the first record only of a file called PR200 in hexadecimal:
LIST PR200 N 1 1

To list records 100 through 149 of PROGSRC as alpha:
LIST PROGSRC A 100 50

To List Keyfiles:
Assume there is a keyfile called PR200K which refers to a data file called PR200.

The statement
LIST PR200K N <KEY> will list all records of the keyfile PR200K in hexadecimal.

The statement
LIST PR200K N will list all records of the data file, PR200 in keyfile order in hexadecimal.

Additional Capabilities

Further features of this utility are summarized in the railroad chart given in Figure 4-3, which gives the com-
plete input specifications.

Non-disk files

Files on media other than disk may be listed. Abbreviations for valid devices are as follows:
MTP - magnetic tape or cassette
CRD - punched cards
PTP - paper tape

4-58

* < file-name > I EEEE———

.

— LIST — -—>

l—' <r-spec> —\L
< f-spec> ¥

< f-spec> is defined as :

— A —
71\
L N —
— MTP
— PTP
/\ CRD
< file-name > — W
1 RECORD <rs> =——
1 BLOCK = <ps> —
1 TAPE.MARKS — <nt> —
1 NO.LABEL
T\

KEY >

<r-spec> is defined as :

L <integer > 1

\

<r-count>

< record-key>

L. — <record-key>

Figure 4-3. Railroad Chart for List Utility

2007258

4-59

Examples:

To list a cardfile called PRFILE in alpha:
LIST PRFILE CRD A

To list the first 10 records of a CMS labelled magnetic tape called PRTAPE:
LIST PRTAPE MTP 1 10

(Note: this assumes record size of 180 bytes). The tape or cassette to be listed should be a tape created by the COPY
utility. Library tapes and non-CMS tapes should be treated as unlabelled (see below).

Unlabelled tapes

Input tapes having no CMS labels (“unlabelled” tapes) may be accessed by the LIST utility.

The NO.LABEL option allows the listing of unlabelled files. Upon recognizing an unlabelled file, the MCP
will print a “DEVICE REQUIRED” message. The operator must then respond with an appropriate “AD” in-
put message (see “AD”) to identify the unlabelled file.

The end of file recognition for unlabelled files is determined by tapemark count. The TAPE.MARKS option
allows the operator to specify the total number of tapemarks which will indicate end of file to the utility when
listing an unlabelled file. The default value is 2. Each tape mark which is encountered will contribute to this
total. Therefore, a standard labelled CMS file will be listed up to, but excluding, the trailing label if NO.LABEL
and 2 tapemarks are specified. (A labelled CMS file consists of “Label, Tape mark, data, tape mark, label‘).
The operator must be aware of the format of any file which is to be listed when using the NO.LABEL option.

If the RECORD size is not 180 bytes, refer to the section on Record/Block modifications.

Example:

To list the first file of a magnetic tape with non-standard label (the format being: label, tapemark, data, tape-
mark):

LIST TP MTP NO.LABEL TAPE.MMARKS 2

Note: MCP will issue a message asking for unlabelled tape TP. Operator must respond with “AD” input.
Additionally, the first line of the listing contains a list of the non-standard label.

Record and block sizes
The listing is record-oriented. The following record sizes are assumed:
Disk = (Disk File Header) from file itself
Labelled tape/cassette = from tape label
Unlabelled tape = 180 bytes
Cards = 80 or 96 bytes depending on device.
If different values are required Record and Block sizes may be specified.

Example:

To list an unlabelled tape containing 10-byte records with 10 records per block:
LIST TP MTP NO.LABEL TAPEMARKS 2
RECORD 100 BLOCK 1000

For magnetic tape or cassette files the record size must be specified if it is greater than 1024 characters, other-
wise the utility will not be able to read this file and therefore no list will be produced. If the record size is
specified and no block size is specified then the block size will be set to the same as the record size. For unla-
belled files the default record and block sizes are 180 each.

Note: Care should be taken. to ensure that the record and block sizes specified are compatible with the
physical block size on the tape. The block size specified must be an integer multiple of the record size. The
utility will attempt to identify inconsistencies when using labelled CMS files. Any inconsistency not isolated by
the LIST will cause MCP to discontinue (DS/DP) the utility.

Selected file list
More than one selected portion of the input file may be listed. Pairs of numbers may be specified within

each pair the first number specifies a relative record number and the second specifies number of records to
be listed. If an extra number is specified the last number specifies listing from that record to the end of file.

Example:

To list records 100 to 149, 300 to 499, and 1000 to end of file.
LIST FILE1 100 50 300 200 1000

Selected indexed file list

For indexed files, listing of records can be selected based on content of the key. There are 2 options: the
number of records can be specified or an ending key value.

Examples:

POR is a keyfile containing personnel records. To list 15 records from the corresponding data file starting
from the record with personnel number 01786:

LIST PQR 01786 15

Using same keyfile to list all data records from personnel number 01786 to 18000:
LIST PQR 01786 - 18000

Note: the second option is specified by the hyphen in the LIST statement. Note that at least one space is
required before and after all key values (personnel numbers in this case).

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
number number IN Error found in pair Check input ang
filename NOT LISTED of numbers for sel- re~enter.

ected record list
option. One record
number in the pair
indicates 2@ section
of the file at a
lower

file address than a
previously specified
section. This pair
is ignored by LIST,

2007258 4-61

MESSAGE POSSIBLE CAUSES : SUGGESTED ACTION

filename EXHAUSTED End-of-file was Check input and
DURING number encountered while the re-erter if necessary.
number sectior of the file

: indicated was being

copied.
filename EXHAUSTED End=of~file encount~ Check input and
DURING RANGE ered while section of re-erter if necessary.
record~key record- file indicated is
key being listed’ or ro
or records were found

filename EXHAUSTED in range of the 2
DURING RANGE record keys.
record key number
NO RECORDS FOR Specified file cont~- Check for correct
LISTING FROM ains no records to file=nzme.
filenanme tiste.
filename NOT ACCEPT=- LIST has encounter- Check input arg
ABLE = RECORC SIZE ed a file witin a re=“entere.
OF number IS GREATER record size great=-
THAN THE MAXYIMUM er than expectede.
SPECIFIED FOR THIS This can happen if
RUN = RESUBNMIT a magnetic tape file

with a record size
greater than 1024
characters is
submitted to the
utility without the
record size teing
properly specified

in the initial input.

file-name DATA FILE Utility carnrot locate Check for correct
NOT FOUND data file pertsinping rediym;

to the keyfile

specificationse.

Note: Refer to “Common Utility Output Messages” for additional aid.

LOAD (Load Library Tape Files to Disk)

This function, a part of the LD utility, allows the operator to copy files from a library tape to disk. As files
are copied to disk, any duplicate files will be automatically removed from disk by the function.

Format:

l LD LOAD FROM library-tape-name TO disk-name
file-name or
group-name <BOTH>

If the <BOTH> option is used immediately after a request to copy a keyfile, the associated data file will
also be copied, provided that the data file does not precede the keyfile on the library tape. The keyfile will

be altered to refer to the disk which now holds the data file (rather than the disk from which the data file
was dumped).

Examples:

To copy all files from a tape called PRTAPE to a system disk:
LOAD FROM PRTAPE =

To copy the file called AR300 from a tape called ARTAPE to a disk called ARBU:
LOAD FROM ARTAPE TO PRBU AR300

To copy files called DCSTSK, and PRTASK from a tape called PRTAPE
LD LOAD FROM PRTAPE DCSTSK PRTASK
To copy from a tape called PRTAPE the keyfile called PR200K and its associated data file to the system
disk:
LOAD FROM PRTAPE PR200K <BOTH>

Since “LOAD” is a part of the utility “LD”, “LD” is actually what will appear in a mix message. To discon-
tinue the LOAD function, “DS mix number/LD”.)

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
file=name LOADED LOAD success ful None.
file-nare REMOVED LOAD successful: Necne.

original file on
disk was removed.

Library=tape~name Tape does not have Frovide utility with

NOT A RECOGNIZED a recognizable correct tapes
DUMP TAPE _ header. DS the LD utitity

2007258 4-63

IMESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

NO FILES IN THE
FAMILY group-=name
ON TAPE library-
tape~name FOR LOAD

Specified group
was not found on
disk.

Check input arnd
re~erter if necessary;
Check for correct
tape.

NO FILE file=name
ON TAPE tibrary=-
tape~name FOR LQOAD

Specified file was
not found on tape.

Check input ang
re~enter if necessary;
Check for correct
tace.

file-name LOAD/DUMP
DISCREPANCY

Enc cf File enceunt~
ered before expected.
Disk File Header

may contair errors.

Nonre.

NO FILES TO LOAD

No files were found
on this tape to
COpPYe.

Check input ang
re~enter if necessary;
Check for correct
tapee.

file“name DATA FILE
NOT FOUND ON TAPE
FOR LOAD

Data file for this
keyfile does not
follow on tape. It
cannot be copied.
Keyfile was copied.

Check 1f data file
époeérs before key file
cn taoe (use TAPEPD);

if sc» Lload full tape to
cisk.

Note: Refer to “Common Utility Output Messages” for additional messages.

LR (List Directory)

This utility allows the operator to print detailed information about particular files or groups of files on disk.

If a file has areas on an associated overflow disk, then the disk name of the overflow disk is printed beside
each relevant area address and size. Note that the addresses for the areas on an overflow disk are not necessarily
correct.

If a particular file or group is not found on a specified disk, this is indicated on the listing.

If “<ASCENDING>" or “<A>" is selected, the utility will print the information requested in ascending
order of file-names.

If “number” is specified after the LR of an entire disk (that is, LR ARDISK?2/ =), then LR will only print
information about those files whose total number of sectors allocated is greater than “number; this will be fol-
lowed by a listing, with totals, of all available and temporary areas on the disk.

An output line concerning a keyfile will normally be followed by a second line showing the name of the data
file to which this keyfile points and the key offset and length.

The heading lines printed at the top of each page will provide a good deal of information about the disk
itself.

Format:

\1/ file-name or <A> or \l/ | q/
LR disk-name / group-name < ASCENDING > number
Examples:

To print the entire directory of the system disk:
LR =

To print the entire directory of ARDISK2 in ascending order:
LR ARDISK2/= <A>

To print information about the file called “AR200” and a group of files beginning with the letter “C” only:
LR C=, AR200

To print information only about files on the system disk which have been allocated greater than 1000 sectors:
LR = 1000

Output format:

Fourteen columns of information will be output to the printer for each disk for which information is re-
quested. The column headings, the format of the values these columns contain, and the significance of these
values are as follows:

2007258 4-65

HEADING VALUE SIGNIF ICANCE

FILE NAME 12 Characters File néme .

ACTUAL SIZE 7 digits Number of records
currently contained
in file

MAXIMUM SIZE 7 digits Maximum number of
records which file may
contéin

RECORD SIZE 5 digits Number of bytes per
record

RECOFRDS PER BLOCK 5 ¢igits Mumber of records in
each block

CREATED 5 c¢igits File creation date
CJulian YYDDD)

ACCESSED 5 cigits Last access date
(Julian YYDDD)

FILE TYPE 8 characters See Note

NO. AREAS 2 cigits Number of areas
currently alloc-
ated

AREA ADDRESSES B digits See Note 2

6 hexe. characters
AREA SIZES 8 digits See Note 2?2
6 hex. characters
OVERFLOW DISK 7 characters Name of over flow disk

Blank if not an
over flow areg

Note 1: The FILE TYPE will be one of the following:
DATA - normal data file
SRCELANG - source language file
SRCELIBR - source library file
CODE - object code file, followed by compilation date
(YYDDD)
KEY - key file
SYSTEM - system file (for example, MCP,interpreters)

Note 2: For each file the area addresses and sizes of allocated areas will be printed in these columns. For
areas on an overflow disk the overflow disk name will follow the size.

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACT ION
TABLE SIZE The number of file~- None.
EXCEEDED names to be sorted

by LR in an ASCEND-

ING or A request has
exceeded the maximum
permitted (254).

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION

input = NOT fOUND File specified is Check the correct

IN DIRECTORY OF not on the disk gisk and re~enter

THIS DISK if necessary

input = NO FILES IN Group of files Check input and
DIRECTORY FCF specified is not on re~enter if necessary.
THIS FAMILY disk Check for correct diske.

Note: Refer to “Common Utility Output Messages” for additional aid.

2007258 467

MODIFY (Program Code File Modification)

This utility allows the changing of a number of file attributes within the file parameter block (FPB) and pro-
gram attributes within the program parameter block (PPB) of a code file. It should not be used unless the mean-
ing of each attribute is thoroughly understood. Refer to the CMS MCP manual for more information on FPB
and PPB formats.

The utility operates in an interactive manner using a console file if no further information is provided when
initating the utility, thus: '

MODIFY

For details of the interactive mode, see later. Specifications can be entered when starting the utility. The name
of the code file to be modified is preceded by the optional keyword “CODE.FILE”. Following the code file
name is either the keyword “FILE” to enable file attributes to be modified, or the keyword “PPB” to enable
program attributes to be changed. The file whose attributes are to be changed is specified by the internal file
name (i-f-n) as given by the program source code listing. The i-f-n is determined by the programmer. Additional
keywords are “PRINT.FPB” and “PRINT.PPB” to print the complete FPB and PPB respectively. The complete
specifications to the utility are terminated by the keyword “END”.

Format:

V| v

disk-name / program-name

MODIFY CODE.FILE

+

~ -

FILE i-f-n file-attribute value
4 PRINT.FPB
PPB ppb-attribute value
_ PRINT.PPB

The commas are optional, but may be used to improve readability. See later for the list of attributes and
allowable values.

END

Examples:
To modify the value of FID (file-id) and change the device kind of a file whose internal name is INFILE
in a program code file COPY on disk SYS2:
MODIFY CODE.FILE SYS2/CCPY, FILE INFILE FID CARDS DEVICE CR, END

To change the value of CONTROL.STACK to 50 in code file AR768 on disk AR1, and print the resultant
PPB:

MODIFY AR1/AR768 CONTROL.STACK 50 PRINT.PPB END

Interactive Mode

If no initiating

specifications are given, PKs 1 to 6 are lit for various functions.

PK1 PK2 PK3 PK&4 PKS PKE6
help modify | modify | specify| print
pPB FPB code FPB or ECJ
file PPB

Pressing PK1 gives a display of the meanings of the 6 PKs, as shown above, followed by the request
CODE.FILE?

Enter the code file name, followed by OCK1. The utility requests
SELECT FUNCTION

and lights appropriate PKs. While any relevent PK is lit, the corresponding function can be started.

If PK2 (modify PPB) or PK3 (FPB) is depressed, the utility requests
PPB ATTRIBUTE or
FPB ATTRIBUTE

Enter the name of the attribute, as given in the table later. The utility displays the current value, then re-
quests

NEW VALUE.

e Enter the new value required. The utility then returns to the select-function loop.
File Attributes

Table 4-2 gives the keywords for each file attribute that can be changed by the MODIFY utility, together
with allowable values for each attribute. Table 4-3 gives the keywords of each PPB attribute that can be
changed, and allowable values for each.

Note that each modification is performed in turn, so that the keywords ‘PRINT.FPB and PRINT.PPB will
reflect the FPB and PPB after any modifications specified previously in the message to MODIFY, but before
any modifications are made that are specified after the print request.

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
ATTRIBUTE VALUE Value is either Check current values
MISSING missng or incorrect; ty PRINT.FPB or

PRINT.PPB; then use
utility for the attr-
ibute in error.

other modifications
carried oute

KEYWORD IN ERROR Self-explaratory;
other modifications

carried outs

AS abovee.

ATTRIBUTE=VAL The attribute being As above.
INCONSISTENT assigned cannot take
the value being
@ given; other mod-
ifications carried

out,

2007258 ' 4469

MESSAGE

POSSIBLE CAUSES

SIJIHEIESTEIDAC'I’IO“~

INCORRECT ATTRIBUTE

A value is being
assigned to a valuer»
rather than to an

attribute; other mod-

ifications carried
out,

As above.

DEVICE = MYUSE
INCONSISTENT

Incompatible values
of these file attri-
butes. This is a
warning that the
proaram may give an
error when executec.

Use MOCIFY to correct
either or both of
these fields.

FILE-SIZE ToQO
LARGE

Value for FILE.SIZE
is incorrect. This
is a warning.

Check with PRINT.FPB
if necessary and correct
the sttribute.

TC7 MANY RUFFERS

Value for NO.BUFFERS

is incorrect. This is

a warninge.

As abgye.

REC. NOT INTEGRAL
OF BUF.

The buffer size is not

an exact multiple of

the recorc sizes This

is a warninge.

Use MOCIFY to correct
ocne or both of these
cttribites before
running programe.

CODE FILE NANME IN
ERROR

Self-explanatory’
all rodifications
are ignoreds

Fe=inpute.

FILE NAME NOT FOUND

The internal file

name is not in coce
file’ atl modific-
ations are ignored.

fs above.

CURRENCY SYMROL
EXPECTED

Self explanatory

Re=irpLt.

-NUMERIC ATTRIRUTE =
VAL REQD

Non=numeric char=
acters were input
where a numeric
value is needed.

Check with tables
4.2 zrc 4.3 and
re~irpiLt.

FILE NOT SPECIFIED Missing keyword Ke=input .
"FILE™
PPB NOT SPECIFIED Missing keyword Re=input.

NOT AN INDEXED
FILE

xed fil

Attemped to use an
incexed=file attri-
bute on a8 non=ind=-

Check initial
input to MODIFY

MESSAGE

NOT A COBOL PROGRAM
FILE

Wrong PPB attribute Re-irput.
used (see table)

NOT AN MPL FROGRAM
FILE

Wrong PPB attribute Fe=irput.
used (see table)

Table 4-2. File Attributes Accessible by Modify

file attribute

allowable values

name
MFID 1-7 alphanumeric characters
FID 1-12 alphanumeric characters
REEL 3 decimal cigits in range 00C=999
DEVICE one of the mnemonics given in Table 4-=4
RECQORD 1-5 decimal digits in rarge C-65535
BUFFER 1-5 decimal digits in rarge C=65535
FILESIZE 1-7 decimal digits ir range C=1048560
NO.BUFFERS 1-2 decimal digits in rarge 1-16
CYCLE 2 decimal digits in range 00-99
FORMS ON» OFF
SET.UPDATE ON» OFF
NO.LABEL ON», OFF
CONDITIONAL ON», OFF
SINGLEAREA ON», OFF
GEN.CHECK ON» OFF
NO.REWIND ON» OFF
CLOSEMODE LOCK» PURGE» REMCVE» RELEASE, HALF.CLOSE
CRUNCH ON», OFF
MERGE ON» OFF
O THERUSE FREE» LOCK.ACCESS, LOCKED
MYUSE INPUT, QUTPUT, 1IQ
EXTEND ONs» OFF
ACCESSMODE SEQUENTIAL» STREAMs, RANDQOM
GEN.NO 15 decimal digits in rarge €=65535

LAST.ACCESS

SAVE
FILE.DEFAULT

NON.STANDARD

5 decimat digits in Julian dete formats
YYDDOD

1-3 decimal digits in rarge C=999

TYPEL thru TYPE2S (see MFL Reference
Manual)

ON» OFF

D.MFID 1=-7 alphanumeric characters (indexed
files only)
D.FID 1-12 atphanumeric characters (indexed
files onty)
ROUGH.TABLE 1-5 decimal digits in range C=65535
(indexed files ornly)
KEYJLENGTH 1-2 decimal digits in range 1-28
(indexed files only)
KEY.OFFSET 1=5 cecimal digits in rarge C=65535
(indexed files only)
2007258 4-71

Table 4-3. PPB Attributes Accessible by Modify

PPB attribute allowable vatues
name

INTERP.PACK 1-7 alpghanumeric characters

INTERP.NAME 112 alphanuwmeric characters

CLASS A B» C

E0J.SUPPRESS ON» JFF

DATA.STACK 1-5 decimal digits in rance 0-65535
(MPL/BIL programs only)

CONTROL.STACK 1-5 cecimal digits in range 0-=65535

CURRENCY.SYMBCL one character (CCBCOL/RFG programs
only)

Table 4—4. Mnemonics for Device Attribute for Modify

fnemonics meaning

PR any printer

Kp keyboard printer

KD keyboard display

K8 keyboard any output

sp serial printer

Le Line printer

CR any card reader

ce any card punch

CRP any card reader/cunch

CR80 80=column card reacer

cPso 80=column card punch

CRP3O 80=column card reacer/punch

CRI96 96=colurn card reader

CP9s6 96=codumn card purch

CRPI9B 96=column card reader/purch

PTR paper tape reader

PTP paper tape punch

MT magnetic tape reel or cassette
MT9 - magnetic tape reel

Cs magnetic tape cassette

MT9IN magnetic tape reel without write permit
CSIN magnetic taoce cassette without Wwrite permit
DC any disk .

4-72

PD (Print Disk Directory)

(a function of SYS-SUPERUTL)

This utility allows the operator to verify the presence on disk of a particular file or a group of files.

Format:

[\1/ file-name or
PD

disk-name / group-name

Examples:

To find out if a particular file is on disk:
PD PR210
PD PR2/PR020

To find out if a group of files is on disk:
PD PR2/PRO=
PD PR3=

To find out if several different files or groups are on disk:
PD PR3= | PR2=
PD GL2GLO= , GL2/GL30= , GL250

To inquire about all files on disk:
PD=
PD PR2/=

Output messages:

name CONTAINS:

on disk

MESSAGE POSSIBLE CAUSES SUGGESTED ACTIOCN
ON LINE program-= file found or gisk None.
name if single file req-
uested.
group~name ON disk- Group of files found None.

NOT CON L INE
program~name

File not found or
disk

Crteck input (re=input

if necessary)s
Check for correct
ciske

NO FILES FOUND IN
THE FAMILY "group~
name™

Group not found on
diske

Check input (re-input

if necessary)»
Check for correct
cisk.

2007258

4=73

MESSAGE POSSIBLE CAUSES

cannot complete until
appropriate disk is
supplied.

SUGGESTED ACTION
END PD Successful End of None.
JO b -
"file"name™ REQUIRES Remainder of specif~- Supply appropriate
OVERFLOW DISK "disk ied file resides on c¢iske.
name™ another disk., PD

Note: See “Common Utility Output Messages” for additional aid.

4-74

PL (Print Log Files):

This utility allows the operator to list the contents of log-files present during any one particular session.

Format:

[~ SYSTEM or S)

ERROR or E

FROM date I time ;I/
PL file-name ﬁ TO date | time .\l|/ >

ENTRY number
MIX number
INPUT
OUTPUT

- -
The option “SYSTEM” (or “S”) is specified to list only system messages from the log-file.

The option “ERROR” (or “E”) is specified to list only error messages.

The option “FROM MM/DD/YY HH/MM/SS” is used to list the logged message from the specified date and

time. If time is not specified, then 00/00/00 is assumed. MM = month, DD = day, YY = year, HH = hour,
MM = minute, SS =second.

The option “TO MM/DD/YY HH/MM/SS” is used to list the messages up to that date and time. If time
is not specified, then 00/00/00 is assumed.

If the option “ENTRY” is used, the utility will print starting from the record number specified by the
operator.

The “MIX number” option is used to print all messages related to specified mix (number(s)).
The “INPUT” and “OUTPUT” option allows the operator to print either input or output messages.

Certain ‘“‘defaults” are as follows:
SYSTEM and ERROR messages;
INPUT and OUTPUT messages;
FROM 00/00/00 00:00:00;

TO last date and time in log;
ENTRY 1.

All entries are displayed irrespective of their mix numbers. Any of these defaults can be reset at run time.
If no real-time clock was available when the file was created, then no check will be made on the “time” portion
of the operator input, and “N/A” will be printed under the “TIME” heading on the report.

Entries with multiple records will only have the record number and record contents displayed; all other col-

umns will be blank since the contents of these records will all be of the same type, and created at the same
time.

Only entries which conform with either the defaults, or operator input specifications will be displayed, all oth-
ers will be ignored.

The range of values for ENTRY and MIX numbers are 1-65535 and 1-254 respectively. Checks at run-time
are made on the values entered and messages issued if they are in error.

2007258 4-75

Examples:

To print the contents of the log-file
PL SYS-LOG-HOLD

To print the error messages logged in the log-file called SYS-LOG-01:

called SYS-LOG-HOLD:

PL SYS-LOG-01 ERROR

To print entries in SYS-LOG-HOLD file from record 100, related to mix number 12 from January 1, 1979

until latest date:

PL SYS-LOG-HOLD ENTRY 100 MIX 12 FROM 01/01/79

Output messages:

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

NO FILE NAME IN
PARAM.FILE
file"name

*<file"name> option
was used. The utility
failed to find a
file-name within the
first 5, 80-byte
records of the fites
"file=name™.

Check contents of
"Starfile™ (use
LIST) and recreate
if necessary; re-
input.

NO FILE NAME FOUND
IN PARAMETERS

One of the options
is specified first.

Re~enters, with file=nzme

first,

ILLEGAL OPTION
texte.

The option specified
w3ds not recognised.

Check input ard
re~entere.

ILLEGAL VALUE
number.

"number™ after either
ENTRY or MIX is not
within the allowable
range of numbers.

Check input and
re~erter.

ILLEGAL NUMBER 0F
RECORDS IN FILE
filename

*<filename> option was
used. "filename™ file
has more than 5» 8(C~-
byte recordse.

Check contents of
"Starfile™ (use
LIST) and recreate
if necessary.

ILLEGAL PARAMETER
text

Input after a3 special
entry is inCorrects
or inappropriates
that is» "ENTRY
number™. If "numbter"
was not recognizable»
this would produce
the error).

Check input
re=entere.

and

NO TIME SPECIFICATICN
AFTER time option

Input after either
*"TO" or "FROM" jg
incorrect or inapp-
ropriatee.

Check input anrg

re“entere.

478

s

POSSIBLE CAUSES

SUGGESTED ACTION

NG text NUMBER
GIVEN

A nuwmber after a
special entry (that
is» after MIX) was
expected but not
found).

Check input and
re“entere.

option OPTION
ALREADY SET

One part of the
operator input
message contradicts
the other (that is»
" INPUT™ and "OUTPUT"
specified simultén~
eous ly).

Check input and
re~ertere.

ILLECGAL TIME
SPECIFICATION

time specification

"time specification"®
format incorrect
(that is» "time"™

was typed btefore
"date™ if both are
usede.

Check input anrag
re~entere.

UNABLE TGO OPEN
FILE

PL unable to use a
required file. (EX:
in use by some other
program).

Verify (with PD)

that file is on disk;
if file is on correct
¢cisk» wait until progra
using file goes to

ECJ anc then retry

PL.

NO ENTRIES FROM
ENTRY NUMBER
number

"ENTRY"” option wWas
used and nothing
egquivalent to spec-
ified "number™ was
found in file.

Note: This option will
start the processing
at the first value it
finds which 1s the
sare as that given.

If the "match™ fails>»
this message displayed.

Check input arnd
re~enter.

filename IS NODOT
A LOG FILE

Specified file is not
of "log-=file™ format-

Cteck input ard reventer
if necessary-.

ILLEGAL FILE
NAME filename

"filename™ does not
conform to standard
CMS format (that is»
disk name might te
toc long).

Check input anrd
re-enter if necessay.

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

NO ENTRIES FOUND
WITHIN PARAMETERS

During processings
End of File is
reached and no en-
tries have been gr-
inted.

Check input and
re“enter if necessary.

PARITY ERRQOR IN
READ OF FILE
filename

(Record number at
which error occurr-
ed prints immecdiate-
ly after message).
Program encountered
error on trying to
read specified file.
WARNING:

Prograr normally att-
empts to continue
processing. However,
if ENTRY option b3as
been used and error
occurs while proc-
essing this comménd»
the results might rot
be those renuested.

4-78

RM (Remove Files from Disk)

(a function of SYS-SUPERUTL)

This utility allows the removal of individual files and groups of files from disk. The disk areas associated with
those files are returned to the available table.

If the utility detects that a keyfile is to be removed and the <BOTH> option has been specified, then it
will remove both the keyfile and the associated data file if both are on disk. If <BOTH> is not specified then
only the keyfile will be removed.

Format:
\l/ file-name or
RM disk-name / group-name <BOTH>
Examples: o
To remove a single file: r/_/‘ . 4! 3;14‘;
RM AR300) &5

e
RM PR1/PR300 9 i '

To remove a group of files:
RM AR=
RM INDISK2/IN3=

To remove several different groups and/or individual files:
RM 1C230, IN076, INDISK1/IN2=

To remove a keyfile and associated data file:
RM PR200K <BOTH>

A tequest for the removal of a system file will cause the utility to output the following:
file-name IS A SYSTEM FILE
AX “mix number”/RM ACPT

Then, to remove a system file:
AX mix-number/RM file-name OK (mix-number is the mix number of RM).

If the operator types any other sequence the system file will not be removed.

Example:

RM NDL=

NDL.INTERP IS A SYSTEM FILE
12/RM ACPT

AX 12/RM NDL.INTERP OK

2007258 4-79

Output messages:

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTICN

"filename™ REMOVED

File was removed.

None.

OVED NOT FOUND

"filename™ NOT REM-

Specified file
wWas not rerovede.

Check input (re=input
if necessary);

Check for correct
Cisko

"filename™ NOTY
REMOVED - IN USE

Specified file was
not removed because
it is currently
being used by the
systeme

hait untit file is no
longer in uses then
re=inpute.

"filename™ NOT
REMOVED = SYSTEM
FILE

Specified file was
not removed because
it is a "system file"
(for examples MCP,

an interpreters> etc).

If file is to be
rerovec, tyne

"AX mix=number/RM
fite=neme OK".

If file is not to bhe
removeds tyne AX
Tix/RM ND

INDEXED PAIR
"file name™ "file~
name®™ REMOVED

Keyfile and associat-
ed data file were
removed.

None .

INDEXED PAIR
“"filename™
"filename™ NOT
REMOVED

Keyfile and associat~
ecd data file Wwere not
removed. This message
is followed by the
reason.

Check input (re=input
if necessary)

or
Check for correct
cisk.

INDEXED PAIR
"filename™
"filename™ NOT
REMOVED = IN
USE

Specified keyfile ang
data file were not
removed because at
least one is current-
ly being used by the
systenme.

Wait until files are
ro lcncer in yse» then
re-irput.

SQ (Squash Disk)

When a disk unit is used extensively with a high degree of file activity involving creation and removal of files
then it is possible for the available space on the disk to become so fragmented that it is increasingly difficult
to find enough space in one single area to satisfy requests for disk space. This results in a degradation of system
throughput with an increasing incidence of “NO USER DISK” failures and extra time needed to search through
available areas. This situation is known as ‘“checkerboarding” of the disk. In the extreme case each area of
disk in use is separated by an available area, as shown in the diagram below:

data area # 1

available

dataarea # 2

available

dataarea # 3

available

The SQ utility is designed to eliminate checkerboarding of disk, either for the whole disk or part of the disk.
This process is called “squashing” disk and is accomplished by moving each data area in turn to the first avail-
able area at a lower address. If an entire disk is squashed then all available areas are merged into one area
at high-address end of the disk, as in the next diagram:

data area # 1

data area # 2

dataarea # 3

available

The options available within the SQ utility are:

Squash of a complete disk.

All data areas are moved to successively lower addresses until only one available area is left (as in diagram
above).

Partial squash

Only data areas within a default section of the disk are moved to lower addresses within the section.

Fast squash

The aim of a fast squash is to create an available area of disk of a requested size. Only those data areas
are moved which will allow an available area of a sufficient size to be created.

Economic squash

In this case, data areas are only moved if the gain in terms of available space justifies the time spent in move-
ment of the data area. As an example, consider the following case:

2007258 4-81

data area # 1

available # 1

data area # 2

available # 2

where data area #1 is 100 units, data area #2 is 200 units and both available areas are 1 unit each. If available
areas are merged the available area gained would be 2 units. However, to acquire these 2 units, the 200 units
of data area # 2 would have to be moved. Therefore an “economic squash” would not move data area #2.
In general terms, an economic squash will ignore small available areas that are interspersed in large data
areas. However, in some cases an economic squash will have the same effects as a full squash.

With all options of SQ a further option is available to print a map of the entire disk in disk-address order
both before and after squashing action.

Input is as follows:

Format:
— -
VERIFY
ALL
FAST number
SQ disk-name = >
BEGIN END
FROM start-address TO end-address e
L J

LIST]

note: the number is in the range 1 to 65535; the start-address and end-address are 6-digit hexadecimal disk
addresses, for example, 000AB3, 01A375.

Examples:

To perform an economic squash of disk PR2:
SQ PR2

To check the integrity of disk PR2:
SQ PR2 VERIFY

To perform a full squash of disk PR2 and list the disk map:
SQ PR2 ALL LIST

To move data areas to provide one available area of 1000 sectors on disk PR2:
SQ PR2 FAST 1000

To perform a partial squash on sectors 0 through 512 of disk PR2:
SQ PR2 FROM BEGIN TO 000200

4-82

To perform a partial squash on sectors 512 through 4096 of disk PR2:
e AQ PR2 FROM 000200 to 001000

To perform a partial squash on sectors 4096 to the last addressable sector of disk PR2:
SQ PR2 FROM 001000 TO END

Before performing any function which involves physically moving data areas, the integrity of the disk is
checked. Integrity checking involves analyzing disk assignment to verify that the entire area of the disk is de-
scribed in the file directories and available table, checking the directories themselves and attempting to resolve

anomalies (for example, missing areas or overlapping areas). Only after the integrity is verified are areas of
disk physically moved.

Certain areas of disk will not be moved in any circumstance. These are areas of disk currently marked as
in use, and any system log files. In addition, SQ can only be run in a suitable mix, as defined by the MCP
to safeguard the integrity of the disk. No user program can be run with SQ. During execution of SQ the MCP
will reject any attempt to execute any utility or user program.

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
LARGEST AVAILABLE Given on success ful None.
AREA IS numter completion of SQ.

SECTORS. TOTAL
AVAILABLE IS number
SECTQRS IN number
AREA(s), *%x+SQ

e COMPLETED *

NON-FILE DIRECTORY Display during ver= Fun S6€ with VERIFY
FULL = "PARTIAL" ification phase if L IST optiorse. Examire
SQUASH REQUIRED there are no free tte cisk map to discover
entries when att~- & section of the disk
empting to add er- that can be squashed
tries to the avail- to create free entries
able table if miss~- in the avaitable table
ing areas are detec~ Example:
ted. The pattern
V File Area
Availabte

File Area

Avzilable
if squashed will create
cne free entry in the
syailatle tabte. In
ceneral the # of free
entries to be created
equals the # of missing
éreas that are not con-
tigucus with any avail-
eble area.

INITIATING MESSAGE

SQ INVALID - NO Self-explanatory Fe=irput.
&

2007258

4-83

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

PACK~=ID

SQ INVALID = INVALID

Pack=id specified
is longer than 7
characters .

Re=input.

SQ INVALID -~
INVALID SYNTAX

Self=explanatory

Re=-input.

MUST NOT BE GREATER
THAN 65535

SQ INVALID = INTEGER

The maximum # of
sectors requested
for the FAST option
is 65535.

Re=input.

ADDRESS

SC INVALID = INVALID

No address or an
invalid address (for
example, 004G15) was
specified for the
FROM or TO address
with partial squash.

Re=irpit.

*x*x BAD SECTOR AND
file"name CQVERLAP =~
NO WAY TO SEFPARATE
THEM. SAVE ANOD/OR
PURGE AND AT LEAST
RETURN S¢ VERIFY

Area marked in
available table sas
"bad” overtaps with
area allocated to
fileo.

$€ cénnot resolve this.
Intecrity of file is
suspect. Remove the file
after copying it to
gnother disk for exam-
ination if necessary

and rur SQ VERIFY,

x file=name AND
file"name OVERLAP -
THERE IS ND WAY TQ
SEPARATE THEM,

SAVE ONE OR BQTH»
PURGE AND AT LEAST
RERUN SQ VERIFY

Area allocated to file
overlaps with area
allocated to another
filee.

The two areas cannot
be seperated. Copy
each file individually
to arother Jisk for
later examination if
requireds remove them
toths rerun S¢ VERIFY

SQ ABJORTED =
REQUESTED AREA
ALREADY EXISTS

Request was made with
FAST option for an
available area which
already exists.

**%x SQ ABAORTED =
INVALID DISK ALLOC.
UNIT = 0

Nisk label is probably
corruptede. ‘

Disk must be assumec
useless and should be
re~initializec.

*x+« DIRECTNRY FID
NEG HEADER FlIn fCR
FILE file~name.
CORRECT USING CH
AND FRESTART SQ

Name of file in file
directory name list
does not match disk
file header. The
file-name displayed
is that in the name
list.

Enter "CH <FILE=ID>

10 <FILE-ID> to correct
the énomoly (this
renrites the disk file
header).

4-84

SQ INVALID -
SPECIFIED DISK NOT
AVATILABLE

Self-explanatory.

Make disk present and
rerun S8 check inpute.

x SQ ABORTED
NOTHING TO SQUASH
IN THAT AREA

A partial squash was
requested and S@
found nothing to do
in that section.

None.

SQ ABORTED = NO WAY
T0 GET REQUIRED
AREA

Area size specified
in the FAST option
cannot be obtained
either because it

is Larger than the
total available
space or because
certain areas cannot
be moved to release
available space.
For example:

Area # 1 100 urits

Availabte # 1 100¢C

units

Area # 2 100 units
Available # 1 cannot
be used if areas # 1
ana # 2 are in-use or
system log files
because areas # 1 and
2 cannot then be
moveds.

Attenpt to remove
unwanted user files:
re=irput SQ.

**% MEMORY TNCONS-
ISTENCY CR SOME

OTHER IRRECOVERABLE
PROBLEMS = RERUN S¢

Internal work-tables
in memory (used by S€)
are corrupted.

Rerur SQ VERIFY. If
crobler persists»
request technical
zs5sistancee.

*xx ADDRESS FMISMATCH
= SAVE AND REINITIATE
THE DISK

Some addresses in cisk
directory are probably
corrupted.

Try to dump or copy
files from the diske.
Cisk mist be reinit-
ializec before re-use.

*x%x IRRECOVERABLE
ERROR ON DISK = SAVE
AND/OR REINITIALIZE

Disk is corrupt.

Try to dump or copy
files from the diske.
Bisk must bte reinit-
ialized before re-use.

*xx TOO MANY FILES
OPEN AND/OR BAD AREAS
= NO WAY TO SQUASH

THE DISK

Self-explanatory.

Save required files from
disks then reinitialize
the ciske.

2007258

4-85

| MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

*#** DISK INTEGRITY
SUSPECT = USAGE MAP
OF THE DISK WILL BE
PRINTED (IF LIST IS
NOT SET)

SQ has detected anc
resolved an overlap
situation; but disk
remains suspecte

Scrutinise disk map>»
request technical
assistancee.

*xx ARFAS STILL
MISSING = RERUN

SQ VERIFY

A FAST squash has
detected that areas
of disk are not
accounted for.,

SQ VERIFY will return
missing areas to the
egvailatle table.

*x% LAST SQ@Q

EXECUTION WAS ABNOR=-
MALLY TERMINATED WHEN
MOVING FILE - file-
name.INTEGRITY OF FILE
SUSPECT. EXECUTION
CONTINUES

System crash occurr=-
ed while file areas
was being moved.

Remove suspect file.

x SQ ABORTED = I,0
ERROR AT DISK ADDRESS
INNNNNN3I

Hard error on disk
persists after 10
retries.

If acdress is outsice
directory areas remove
offerding area with

0 utility.

*«% /0 ERROR ON
file=name FILE
SKIPPED = EXECUTION
CONTINUES.

Hard disk error
encounterec. File
is not moved.

None.

#«+« WRITE ERROR IN
NEW LOCATION WHEN
MOVING FILE AREA.
DISK ADDRESS =
dNNNNNN3. THIS

AREA SKIPPED =
EXECUTION CONTINUING

Hard error encount-
ered when moving file
area to avaitable
areaﬁ

Available area is Left
as availale and shoulg
te XC=ed after squash
EUJ.

NOTE

Error messages marked with “###” indicate that a hardware or system software er-
ror has occurred or that the disk itself is suspect. If these persist, request technical

assistance.

General Guidelines

If the information contained on a disk is im

squash it.

portant always ensure that backup exists before attempting to

Always run “SQ VERIFY” before running an actual squash. This will give an indication of the state of the

disk.

Do not allow disks to become too fragmented before squashing them. A full squash can be a lengthy process
and can be avoided by running “SQ VERIFY” on a regular basis and running partial squash when the disk

starts checker-boarding.

“SQ VERIFY” is a means of checking the integrity of any disk and if run on a regular basis may help pin-
point sooner rather than later any degradation in hardware performance or system software bugs. For disks that
are in constant use “SQ VERIFY” should be run immediately after the first clear start of the day. This can
help prevent catastrophic losses of information.

4-86

TAPELR (List Library Tape Directory)

This utility allows the operator to print detailed information about the library tape files. Output will appear
either on the line printer or the console printer. '

Tapes about which information is required are identified by “library-tape-name”. More than one tape name
may be requested during a single run of TAPELR.

Format:

TAPELR library-tape-name

Examples:

To print detailed information about the files on a tape called PRTAPE:
TAPELR PRTAPE

To print detailed information about the files on tapes called PRTAPE and ICTAPE:
TAPELR PRTAPE ICTAPE

Output format:

Eight columns of information will appear for each library tape indicated. The column headings, the format
of the “values” these columns contain, and the significance of these ‘“values” is as follows:

HEADING VALUE SIGNIFICANCE
FILE NAME 12 character File name
ACTUAL SIZE 7 dicits Nurber of recorcs in this file
MAXIMUM SIZE 7 digits Maximum # of records this file
may contsdin.
RECORD SIZE 5 digits # of characters in each record
RECS/BLOCK 5 digits # of records in each block
CREATED 5 digits Date file was createc (Julian
YYDDD)
ACCESSED 5 digits Date file was last accessed
by a program (Julian YYDDD)
FILE TYPE 8 chsracters See Note below

Note: FILE TYPE will be one of the following:
DATA - normal data file
CODE - object program file
KEY - key file
SYSTEM - system file (for example, MCP,interpreters)
SRCELANG - source language file
SRCELIBR - source library file

2007258 4-87

Output messages:

MESSAGE

POSSIBLE CAUSES

SUGGESTED

ACTION

Library=-tape=-name
NOT A RECOGNIZED
DUMP TAPE

This tape was not
createc by either
DUMP or UNLOAD
functions of LD
utility. It is
ignored by the
TAPELR utilitye.

None.

Note: Refer to “Common Utility Output Messages” for additional messages.

488

TAPEPD (Print Name of a Library Tape)

This utility allows the operator to print the names of files found on a library-tape. More than one tape name
may be requested during a single run of TAPEPD.

Format:

TAPEPD library-tape-name

Examples:

To print the names of files found on a tape called PRTAPE:
TAPEPD PRTAPE

To print the names of the files found on tapes called PRTAPE, ICTAPE, and GLTAPE:
TAPEPD PRTAPE ICTAPE GLTAPE

Output format:

For each tape requested, the following information is displayed:
MT library-tape-name DUMPED ON day of week DD month YY contains:

This message precedes the names of files found on each tape. The list itself contains 3 files per line.

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
library=tape~-name This tape was not None.

NOT A RECOGNIZED created by either

DUMP TAPE the DUMP or UNLOAD

function of LO
utility. It is
ignored by the

TAPEPD utility.

Note: Refer to “Common Utility Output Messages” for additional messages.

2007258 4-89

TL (Transfer Log Files)

If logging is enabled following any warmstart, a number of “log-files” are in use. The purpose of these files
is to maintain a record of all input/output messages that appear on the SPO within this given period of time.

In order to produce easy access to all the files, they are consolidated into one large file. This is done through
the use of the TL utility.

Format:

R’

TL disk-name / file-name I RECOVER

“File-name” is the name the user wishes the consolidated file to be called.

In order to permit a correct consolidation, there may be NO other programs running at the time when TL
is initiated.

The utility will determine the number of files to be consolidated and also the size of the consolidated file.
It will then transfer each ‘“‘ready-to-transfer” , closing the consolidated file after each log-file has been trans-
ferred, until it reaches the file which was in an “active ¢’ state at time of execution of TL.

If the “RECOVER?” option has been specified, then the utility will enter the “active” log file when it reaches
it and it is not in use, and transfer all entries up to the latest. If the ‘‘active” file is in use then the utility

displays “ILLEGAL USE OF RECOVER PARAMETER, ACTIVE FILE NOT CONSOLIDATED”, and will
consolidate only the “ready-to-transfer” files.

If the “RECOVER” option has not been specified, consolidation will end when the “active” file is reached.

All log-files transferred will be left in a “transferred” state.

Examples:

To transfer all “ready-to-transfer” SYS-LOG files to LOGHOLD:
TL LOGHOLD

To transfer all “ready-to-transfer” SYS-LOG files to LOGHOLD on the disk called ARDISK1:
TL ARDISK1/LOGHOLD

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTIDON
ILLEGAL FILENAME Specified file- Check input and
file"name nare contains too re=input.

many characters.
UNABLE TC OFEN Utility cannot Check with KA on
TRANSFER FILE "create™ a con- svailatle space: use
file“name solidated file KM i¢ recessary and

with the name re=-input. Check drive

requested (for fedia.

exémpler no disk

spaces no cdisk

media)e.

4-90

POSSIBLE CAUSES

NO PARAMS. IN
PARAM.FILE
file*name

*<file"name> option
Wwas used and TL could
not find anything in
the first 5» 80-tyte
records of the file»
"file=name". The
utility will expect
"file"name"™ to bte
within this file area.
If founds this "file~
name™ will be used as
the nare of the cons~-
olidated file.

Check on contents of
"starfile™ (use LIST)
and recreate if nec-
essary: re=inpute.

NO SYS=LOG=FILES
FOUND

Utility» on attempting

to determine the number
anc sizes of log=files

to be transferreds wés

unable to find ary log~
file of the form "SYS-

LOG=NN" ("NN has values
between 01 and 16).

hone

UNABLE TO OPEN
FILE file=name

*<file=name> option
was used and TL coulg
not fino anything in
the first 5, 80-bvyte
records of the file»
"file=name™. The utitl-
ity will expect "file-
name”™ to be within
this file area. If
found» this "file-name"”
will be used as the
name of the consol*
idated file.

Check on contents of
"starfile™ Cuse LIST)
and recreate if necess~
arys if re-input.

[ILLEGAL NUMBER 0OF
RECORDS IN FILE
file=name

t<file=name> option

was used and more than
S+ B80-byte records in
the filer "file=nave™.

Check on contents of
"starfile” (use

LIST) &nd recreate if
necessary; re=input.

FILE FOUND

NO READY-TO-TRANSFER No log=files in either None

FILES FOUND an "active™ or "ready-
to-trans fer™ state
were found. No consol=-
idation will occure.

NO ACTIVE LOG No file in the "act~- None

ive™ state was found.

2007258

4-91

O0F FILE file~name

or
PARITY ERROR ON WRITE
T0 FILE file=-nare

errors found for
specified files. The
record number 3t
which error occurr-
ed will be displavyed.
If utility continues
processings then the
message "CONTINUING
PROCESS™ will display.
Dtherwise TL will go
to £nd of Job ang
teave partially con-
solidated files ce-
pending on where
error occurred.

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
TRANSFER COMPLETED TL success ful End of None.

Jobe.
PARITY ERROR IN READ Rezd or write parity None

—

NO FILE NAME FOUND
IN PARAMETERS

The "RECOVER"™ option
was used and a file
name wWas not given.

Correct the input
and re“enter.

4-92

'UNLOAD (Unload Files from Disk to Library Tape)

This function, a part of the utility LD, allows the operator to copy files from disk to a library tape. The
files will be deleted from the disk after they have been copied to the tape.

Format:

v

LD UNLOAD TO library-tape-name FROM disk-name

file-name or | l
group-name <BOTH>

If the <BOTH> option is used immediately after a request to dump a keyfile, the associated data file will
also be dumped, provided it resides on disk.

Examples:

To dump all files from disk beginning with the letters, “PR” to a tape called PRTAPE; and then remove
them from disk:

UNLOAD TO PRTAPE PR=

To dump the keyfile called AR200K and its data file from a disk called APBU to a tape called ARTAPE,
removing them from disk after dumping:
UNLOAD TO APTAPE FROM APBU AP200K <BOTH>
To dump from the system disk files called AP020, AP030, and APTASK to a tape called APTAPE; removing
them from disk after dumping: i
LD UNLOAD TO ARTAPE AP020 AP030 APTASK

Since “UNLOAD?” is a part of the utility LD, “LD” is actually what will appear in a mix message. To discon-
tinue the UNLOAD function, DS mix-number/LD must be used. '

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
NO FILES IN THE Specified group Check input; re=input.
FAMILY group-name was not found on if necessary.
ON DISK disk"name this diske. Check for correct
FOR UNLOAD ciske.
NO FILE file~name Specified file was Check input and re-input
ON DISK disk=-name not found on this if necessary.
FOR UNLOAD diske Check for correct
ciske
file"name NOT Specified file Hait until the file
DUMPED = IN QUTPUT cannot be dumped is not in use and then
USE DUMP ABANDONED as it is in use. re-erter the UNLGAD
- TAPE BEING If "ABANDONED™ message messége for all files.
PURGED is given, tape 15
purged and UNLOAD
goes to EO0J.

2007258 4-93

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

file=name NOT DUMPED
= HAS BEEN REMOVED.

DUMP -ABANDONED =

TAPE BEING PURGED

Specified file was
removed between

the start of UNLCAD
anc the time when
it was to be dumpea
to tape. File cannot
be dumped. Tape is
purged an UNLDAD
goes to ENJ.

NOonee.

file=name NOT DUMPED
= HAS BEEN ALTERED>

DUMP ABANDOND =

TAPE BEING PURGED.

Contents of specifiec
file were changed
between the start

of UNLOAD and the
time when it was

to be dumped to

tape. File cannot

be dumped.

Check input and
re-enter if necessary.

file"name LOAD/ODUMF
DISCREPANCY

End of file has Lteen
reached before
expected. Implies
erroneous Disk File
Header.

file“name NOT DUMPED
= DATA FILE NOT ON
L INE

<BOTH> option was
specified» but déta
file was not found
on diske

If specified data file
cump is requireds, supply
ttility with backup

copy of file if exists.

DUPLICATE file=name
ALREADY BEING DUMPED

More thar one recuest
was made to UNLOAD
sare file.

None.

file=name REMOVED

UNLNAD success ful;
original file on disk
Wwas remnved.

None.

file"name DUMPED

UNLOAD successful.

Note: Refer to “Common Utility Output Messages” for additional messages.

UPDATE (Disk File Update)

This utility allows the operator to construct new disk files from existing files. “CREATE” and “AMEND”

use many similar features.
file-name number]

\%

Format:

>

UPDATE disk-name /

FILESIZE number

TO new-file-name CRUNCH

The existing file must be a source or data file. Attributes such as Record Size will be taken from this file
and used for the “new” file.

Input may be specified as “A” (alphanumeric) or “N” (hexadecimal). (see CREATE utility for details).

The “number” option may be used to set “‘tab” positions for character input. (see CREATE utility for de-
tails).

The maximum number of records likely to be written to the new file may be specified using the FILESIZE
option. If no total number of records is specified, the number will be taken from the old file.

The CRUNCH option allows the operator to specify that the new file should occupy the minimum area of
disk, but never be extended.

The utility operates in three modes: “Record Modify” (PK2), ‘Record Select” (PK3) or “Record Insert”
(PK4).

PK1 PK2 PK 3 PK& PKS PK6
write
tast & | modify | select | insert | delete ECJ
get
next

PK1 is used to write the last record processed to the new file and then select and print the next logical record
from the old file. The printout will show the record number in the old file of the selected record, together with
the next record number to be written to the new file.

PKS5 is used to delete the last record printed by selecting and printing the next logical record from the old
file without writing the last record to the new file. The printout will show the record numbers in the old file
of the selected record, together with the next record number to be written to the new file.

If PK3 is used, the required record is identified by logical record numbers using this format

RECORD number

4-95

2007258

The “number” cannot be less than the last record obtained from the old file, or greater than the number
of records in the file. During the process of locating the required record, all records from and including the
last record processed, up to the one immediately prior to the selected record, will be copied from the existing
file to the new file. When found the selected record will be printed, with its record number in th old file fol-
lowed by the record number that the next record written to the new file will take. “Record Modify” (PK2)
or “Record Insert” (PK4) may then be selected. Note that a record inserted by Record Insert mode will be
positioned after the selected record in the new file. Selecting Record “0” allows records to be inserted before
Record 1 of the old file.

PKZ is used to make alterations to existing records. This PK operates as PK2 in the CREATE utility (see
CREATE for details).

PK4 allows the operator to insert additional records in the new file after the last selected record of the old
file. Input may be made in accordance with the specified tab stops. The utility prints the record number in the
old file of the last record taken from the old file, and the record number in the new file, of the next record
to be output, prior to accepting keyboard input. When all insertions have been made at a particular point in
the file, an available PK may be pressed to select the next mode or terminate the utility. NOTE: to insert a
record at the beginning of the new file, Record “0” should be selected in Record Select Mode, prior to Selecting
Record Insert Mode.

Examples:

To update a source file called “APFILE” of record size 40 bytes into a file called “APFILE2”.
UPDATE APFILE 5 10 15 20 TO APFILE2

The utility will illuminate PK1 and PK6. By pressing PK1, next sequental record will be selected and printed.

As the utility is already in the Record Select Mode, by typing a record number, the specified record number
and its contents are printed.

4 4 ABCDEFGHIJKLMNOPQRST

Note that the first “4” is the sequence number in the old “APFLE” and the second “4” is the sequence num-
ber in the “APFILE2” file.

At this point the following PKs are available for selection:
PK1 - select next sequential record and print
PK2 - modify the selected record
PK4 - insert new record after selected record (that is, “4”")
PK5 - delete the last selected record by selecting next record
PK6 - terminate the utility

To replace characters within a selected record, press PK2 and type the replacement
D:Z777: OCK1

resulting in
4 4 ABCDZZZZIJKLMNOPQRST

To insert characters within a selected record, type
Z:XXXXXX: OCK2

resulting in
4 4 ABCDZXXXXXXZ7ZZOPQRST

4-96

To insert a record after record 7 of the existing file, press PK3 (Record Select Mode) and type a record num-

e ber.
7 OCK1

Note: At this point the record selection number given cannot be less than the last selected record, for exam-
ple, records from 1 through 3 cannot be selected).

Press PK4 (Record Insert Mode) and utility will print last selected record number on left and next record
number after that and allows operator to key in record to be inserted.

7 8 AAAAAA

The record inserted will have a sequence number of “8” in the file “APFILE” and will contain “AAAAAA”.

Output messages:

Refer to the section on the “CREATE” utility for output messages.

2007258 4-97

XD (Delete Bad Disk Sectors) ‘

This utility allows the disk directory to be marked such that selected portions of the disk will not be used.
The utility will normally be used after recurrent errors of the message

DK...ERROR

where the dots indicate further information. Refer to section 7, MCP output messages, for the following num-
bered messages:

2 PARITY ERROR

3 TIMEOUT ERROR

4 ADDRESS ERROR

45 PARITY ERROR (fatal to program)
46 TIMEOUT ERROR (fatal to program)
47 ADDRESS ERROR (fatal to program)

The further information will indicate the disk address at which the failure occurred
The utility is initiated as follows:

Format:
XD disk-name address length

The disk-name is the disk-id of the disk from which sectors are to be deleted. The area to be deleted is given
in hexadecimal by the starting address and length. ‘

Example:

To delete sixty-four sectors starting from hex 395F from disk PR2B:
XD PR2B 395F 40

NOTE
The specified sectors must not be in use as part of a file. The area must be made
available by first removing any file if necessary.

Warnings:

Once sectors are deleted via XD from a disk, they can be restored to use only by a disk initialization. Do
not therefore XD a larger area than required.

As XD alters the disk directory, do not run any other programs with it.

Do not execute XD from the same disk as the one from which sectors are to be deleted: for example, it
is recommended that XD is always executed from the system disk and always deletes sectors from a user disk.

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
dlengthld SECTORS Successful terriration None.

FROM Jaddress3a of XDe.

DELETED

DISK disk-name Specified disk is not Cbeck input: make disk
FOR XD NOT AVAILABLE available. ready.

498

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

ONLY Jlengtha
SECTORS CAN BE
DETECTED

Only the given length
can be XD=ed because
the amount specified
is greater than the
available space at
that point.

Use the KA utility yo
determine if any files
can be removed to
increase the available
space surrounding

the bad area.

AVAILABLE TABLE FULL
- ENTRY 3address?
dlengthad LOST

No entries left in
available space
table for XD to
complete properly.

The cisk may still be
useds but a KA will
indicate some sectors
which cannot be access=
ed; these may only be
retrieved by initial~-
izinc the diske.

SECTORS FOR XxD
NOT IN AVAILABLE
TABLE

Requested sectors
are allocated to a
filer missingr

or previously
XD=ed-.

Refer to a KA List-
ing to determine
which files» if any»
can te RM=ed to
make the sectors
ayailable.

Note: Refer to “Common Utility Output Messages” for additional messages.

2007258

4-99

SECTION 5
THE SORT/MERGE

INTRODUCTION

This section describes the capabilities of the SORT facility. There are two modules: the sort itself, known
as the “sort intrinsic” (file-name SORTINTRINS), and an interface to this intrinsic which allows the user to
specify particular sorts and merges. The latter module is sometimes called “the sort”, but is more properly called
the “sort language processor” (file name SORT). The sort intrinsic is implementation-dependent, as it uses spe-
cific hardware features where possible (although output messages are standardized), while the sort language pro-
cessor is a CMS common item.

This section first describes the user interface to the sort, and then covers the various facilities in some detail.

The interface to the sort from COBOL programs is described in the COBOL language reference manual.

GENERAL FEATURES

The following capabilities are provided :

The records within a file may be sorted on a series of specified keys, each key ascending or descending, using
a regular sort or an in-place sort.

A tagfile (sultable for use as an ADDROUT file in RPG or for limited access in COBOL) may be created
from a file using a series of keys, each ascending or descending.

A key file (suitable for full indexed access) may be created using a specified unsigned key (ascending only),
with an optional check for duplicate keys.

A number of files may be merged using a series of keys, each ascending or descending.

2007258 5-1

INVOKING THE SORT

The sort is executed by entering the name SORT preceded by disk-name if not on the system disk, and fol-
lowed by the sort language specifications or an asterisk plus “star-file” name. The “star-file” contains the sort-
language statements, and may reside on card, cassette, or disk. The star-file name may be omitted: in which
case the sort statements must be on a system disk file named SORTSPEC.

Examples:

To invoke the sort using a star-file named SRTLANG on the system disk:
SORT SRTLANG

To execute the sort from disk PB4 using a star-file SORTSPEC on the same disk:
PB4/SORT PB4/SORTSPEC

Note that the star-file must have a record size of not more than 90 bytes. If the sort specification is given
in the initiating message it cannot be longer than 255 characters. If the sort statement is zipped from a use
program it cannot be longer than 716 characters. If it is not possible to specify a complex sort or merge within
these limitations, a star-file should be used.

For a one-part star-file name of 7 characters or less, the file will be searched for first on cards, then on cas-
sette, then on the system disk. For a two-part name the file will be searched for on a user disk. For a one-
part name of more than 7 characters, the file will be searched for on the system disk.

If the required file is not found, the sort displays
FILE filename UNAVAILABLE
FIX AND REPLY “OK” ELSE <NULL>

and waits on an ACCEPT.

There are two alternative responses:
make the file present and enter OK to the ACCEPT, to resume execution, or
enter a null response (terminator only) to the ACCEPT, to cause EOJ.

If the specification statements are provided in the initating message, control characters such as carriage return
and line feed are treated as space characters.

A star-file on cassette must be created by the COPY utility, not the LD utility.
A star-file on disk must be of type data or source, and should not be in use by other programs.

Input statements may be printed on the printer, unless inhibited by a user option (see later), or if provided
in the initiating message.

5-2

the FILE statement
the KEY statement

The File Statement

Format:

FILE
FILES

THE SORT LANGUAGE

the USER-OPTION statement

The specification for a sort consists of three statements:

There must be one file statement, one key statement, and, optionally, one or more user-option statements,
in any particular sort invocation. All keywords are reserved: that is, they can only be used in the place specified
below and cannot be used for other purposes such as filename.

This consists of two parts; the first describes the input file(s) and the second describes the output file. Multiple
input files are used only for the merge, which is specified as a user-option (see later). A sort must have only
one input file; a merge may have up to 16 input files.

ouT I mfid / fid

DISK

CARD
TAPE
CASSETTE
DISK

(4 1

-

l PURGE

\/

records >)
PURGE record-size per-block
—

KEYFILE Y
TAGFILE _
CARD \1, \ll
TAPE records L
CASSETTE record-size per-block -
DISK
PRINTER

The parentheses “(” and ““)” may be replaced by the characters “<” and “>" respectively.

Rules for the file statement are as follows:

The medium for the specified input file(s) and output file is indicated by the keyword DISK. CARD. etc.

2007258

When the medium is DISK, the absence of a disk-name (mfid) indicates the system disk. CARD refers to 80-
column card only. TAPE refers to magnetic tape only. CASSETTE refers to magnetic tape cassette only. DISK
refers to any kind of disk-device. The input file for a tagfile or keyfile creation must be on disk.

The PURGE option indicates that the input file(s) are to be purged after use.

The record size and records-per-block values are numeric values. When the input medium is DISK, the record
size and records-per-block may be omitted. For a merge specification, input disk file descriptions with record
size specifications may be interspersed with descriptions without such specifications.

If the records-per-block is omitted and record size is given, a blocking factor of 1 is assumed.
In all cases (except an index sort), input and output files must have the same record sizes.

The values of record size and records-per-block may be omitted for output files. For a sort, the values as-
sumed are those of the input file. For a merge, the values assumed are those of the first specified input file.

For a keyfile creation sort, the output specification enclosed in parentheses must be the single word KEY-
FILE. The output will be on disk and record and block sizes are not user definable.

For a tagfile creation sort, the output specification enclosed in parentheses must be the single word TAG-
FILE. The output will be disk and record and block sizes are not user definable.

The Key Statement

This statement defines the record key(s) that are used for the sort or merge.

A number of keys may be specified, each key description being enclosed in parentheses. The first key will
be the major key and additional keys will be minor keys of decreasing significance.

o)
\L ALPHA
ASCENDING UA
A NUMERIC
KEY (location length DESCENDING < UN
D SA
SN
SSA

Format:

s o)

The “location” is a numeric value specifying the position of the key relative to the start of the record, in
4-bit units. The first 4-bit unit has a location of 1. The key location is given by the position of the left-hand
4-bit unit in the key (which, depending on the key format), may be a character or a sign. The key should start
on a byte boundary unless a record sort with a numeric key is performed.

The “length” is a numeric value specifying the key length, in 4-bit units. This must include the sign, for signed
keys.

The keywords ASCENDING and DESCENDING determine the order of collation. These keywords may be
abbreviated to A and D respectively. If omitted, the default is ASCENDING.

The format of the key is specified by one of the following keywords:
ALPHA or UA - unsigned 8-bit alphanumeric
NUMERIC or UN - unsigned 4-bit numeric
SA - signed 8-bit alphanumeric
SN - signed 4-bit numeric
SSA - 8-bit alphanumeric with separate sign

The default is ALPHA.

For a signed key, the position of the sign is specified by one of the following keywords
R - right-hand (least significant) end of key
L - left-hand (most significant) end of key

The default in L.
For a description of key types and sign zone interpretation, see later under “KEYS”.

The User-Option Statement

These statements have three functions:

to specify which function is required

to tailor a sort or merge to the particular machine configuration (memory, printer availability, etc).
to add comments

The user-option statements are optional; if more than one are used they may appear in any order relative
to each other or to the file and key statements.

Format:

-)
INDEX
INPLACE
MERGE
SYNTAX
NOPRINT
NODISPLAY
ﬁ NODUPLICATES
DUPLICATES
COMMENT comments
FILESIZE number-of-records
MEMORY memory-size
WORKDISK -disk-name
L —

The type of sort is given by one of the keywords INDEX, INPLACE, or MERGE. If one of these does
not appear, a regular full record sort is assumed. The keyword INDEX specifies the creation of a keyfile or
tagfile, depending on the output file details (see FILE statement). The keyword INPLACE specifies a full record
sort using a minimal amount of disk work space. The keyword MERGE specifies a merge of several input files.

Note that if the INPLACE option is specified on a system that has not implemented the inplace sort. then
a regular full record sort will be performed.

The keywor(i SYNTAX specifies that a check on the correctness of the sort statements is to be made without
the sort actually being performed.

2007258 5-5

The keyword NOPRINT stops the listing of the sort statements on the printer. If used, this keyword should
be the first entry. If the statements are input via the SPO they are not printed and so this keyword is not re-
quired in this case. The NOPRINT option also affects the printing of error and warning messages (see later).

The keyword NODISPLAY controls the display of messages on the SPO during the sort. This option can
be used both in initiating messages and from file-oriented statements. It suppresses startup and termination mes-
sages. It does not affect the display of error and warning messages. Error and warning free sorts and merges
will show no SPO activity if this option is used.

The keyword NODUPLICATES specifies that duplicate keys are not allowed in a keyfile creation. The key-
word DUPLICATES specifies that duplicate keys are allowed in a keyfile creation. Both options are valid only
when creating a keyfile. If neither is specified, the default is NODUPLICATES.

The keyword COMMENT introduces comment text. The end of the comment text is either the end of the
input or the end of a record if the input comes from a starfile. Comments may appear between user-option
statements and between file descriptions and key descriptions.

The keyword FILESIZE provides the foltowing capabilities:

specification of sort disk work space where the input file is not on disk (this use is not required if the input
is from disk).

specification of maximum size of the output file if on disk.

allowance for future expansion of the output disk file where the sort/merge will not by default create a large
enough file.

This keyword should be followed by a number giving the specified maximum number of records. For non-
disk output files, the value is used for optimization purposes. If not used, default values are assumed where
necessary. This option is not applicable to the inplace sort or to keyfile or tagfile creations.

The keyword MEMORY specifies the amount of non-overlayable work area to be used by the sort. This op-
tion is not applicable to the merge or to the inplace sort. If this is not enough for a successful sort, then this
option is overridden. The memory size is in bytes; for example, MEMORY 1024.

The keyword WORKDISK enables the regular sort to utilize disk space in an efficient manner. It is not appli-
cable to the merge or inplace sort. When the work-disk is specified, the sort locates up to half the work space
on that disk, with the rest on the system disk. If this option is not used, but the input or output file is resident
on a user disk, the work space is shared between that disk and the system disk. In all other cases the work
space is located entirely on the system disk. The named disk may be any type of disk applicable to the system
in use.

Examples

To sort the system disk file INP.FILE using the key starting at character 5 of length 3 characters, creating
a system disk file OUT.FILE:

SORT FILE IN INP.FILE (DISK) OUT OUT.FILE (DISK)
KEY (9 6)

To create a keyfile OUTKEY.FILE on disk PR2 from a data file INP.FILE1 on disk PR2, using a 5-byte
key starting at the first byte:

SORT FILE IN PR2/INP.FILE1 (DISK)
OUT PR2/OUTKEY.FILE (KEYFILE)
KEY (1 10)
INDEX

COMMENT DUPLICATES NOT ALLOWED

To merge the three system disk files FILE1, FILE2 and FILE3 into_an output file MERGE.OUT:

SORT
e FILE IN FILE1 (DISK) FILE2 (DISK) FILE3 (DISK)
OUT MERGE.OUT (DISK)
KEY (5 10)
MERGE

2007258 | 5-7

FUNCTIONAL DESCRIPTION

The five functions of the sort are described here:
Regular record sort.
Inplace record sort.
Keyfile creation.
Tagfile creation.
File merge.

Regular Record Sort

All the records contained within the specified input file are ordered using one or more keys. Deleted records
(see later) are not included in the output file. See later for details of the keys. Refer to figure 5-1 for an example
of a regular record sort, where the key is starting in byte 3 and is 5 characters long, and the sort is in ascending
order. The X’s refer to any other characters.

The input file must be wholly contained on one hardware type, although it may be a multi-reel or dual-disk
file. No other programs may write to this file during the execution of the sort.

The sort uses non-overlayable memory during execution. The amount is calculated according to the input file
and key sizes. The amount may be specified as a user option, in which case the specitied amount is used unless
it is less than enough for a successful sort. In the latter case the specified value will be overridden.

The sort uses disk work space, of up to 2.2 times the size of the specified input file. For the location of
the work disk space, refer to the WORKDISK user option (see earlier). This work space is returned to the
system at end-of-job.

Inplace Record Sort

This is the same as the regular record sort, except that the records are sorted within the input file. No new
output file is created. The time taken is substantially greater than a regular sort, for the same input specifica-
tions. If deleted records are present in the file before the sort, they are removed: hence the number of records
in the file may decrease after it has been ordered.

The inplace sort uses non-overlayable memory during execution. The size of this area cannot be specified at
initiation.

The input file must be on disk. No other programs may access this file during execution of the inplace sort.
The output file must be the same as the file specified for input.

If a particular system does not implement an in-place sort, a regular sort will be performed instead.

The inplace sort uses disk work space, of 0.2 to 0.3 times the size of the input file. When the input file is
resident on a user disk, up to one-half of the work space is located on that disk, otherwise all work space is
located on the system disk. This work space is returned to the system at end-of-job.

5-8

Keyfile Creation

% A new file (the “keyfile”) will be created containing one record for each record of the input file (the ‘“data
file”). The keyfile is sorted in order of the specified keys, and each keyfile record contains the key and a pointer
to the corresponding record in the data file. Any deleted records in the data file are not referenced in the key-
file. Note that the records in the data file are not re-ordered and deleted records in the data file are not re-
moved. Refer to figure 5-2 for an example of a keyfile creation, where the key is starting in byte 3 and is 5
characters long, and the sort is in ascending order. The X’s refer to any other character.

Duplicate keys are not allowed unless specified (see the user-option statements DUPLICATES and NODUP-
LICATES). If they occur, then the record number is displayed on the SPO for each such occurrence, and the
sort will continue but the output keyfile will be purged at end-of-job.

The keyfile creation uses disk work space, of up to 2.2 times the size of temporary file created by the sort
in this case. This file is large enough to contain one record with the key value and record number for each
record in the input file. For the location of the work disk space, refer to the WORKDISK user option (see
earlier). This work space is returned to the system at end-of-job.

Certain key values are not allowed during a keyfile creation. The key must not consist of all binary zeroes,
or must not contain any byte whose value is hex FF. If such a key is encountered, the record number is dis-
played on the SPO, and the sort will continue but the output keyfile will not refer this record in the data file.

Tagfile Creation

A tagfile creation is similar to a keyfile creation, except that the output file contains only the record pointers,

and not any key values. The tagfile records, however, are ordered in key value order, as specified by the sort.

Any deleted records are not referenced in the tagfile. Refer to figure 5-3 for an example of a tagfile creation,
corresponding to the keyfile creation in figure 5-2.

A tagfile is a null keyfile. It is suitable for use as an ADDROUT file in RPG, and for limited indexed access
in COBOL (the tagfile is read sequentially).

Disk space requirements are the same as for keyfile creation.

Merge

The merge merges up to 16 input files, using one or more specified keys, producing one output file. Deleted
records in the input files are not included in the output file. If there are duplicate keys values, the order in
which they are placed in the output file is given by the order in which the input files are specified.

Each input file must be wholly contained on one hardware type, although it may be a multi-reel or dual-
disk file. No other programs may write to these files during the execution of the merge.

Each input file must have the same record size and the same position and length for each key. Each file
must be already correctly ordered on the specified keys. If this is not the case, the merge will terminate prema-
turely after displaying a message on the SPO.

Refer to figure 5-4 for an example of a merge of two files, with a key starting at byte 3 which is 5 characters
long. The X’s and Y’s refer to any character.

The merge uses non-overlayable memory during execution. The size of this area cannot be specified at initia-
tion: it will be approximately equal to the sum of the block sizes of the input files and the output file.

The merge does not use any disk work space.

2007258 5-9

Details Of Sort Keys

A “key” is the field within each record that is used for sorting or merging. If several distinct field within
a record are specified, then each field is a separate key. The relative order of importance of the keys is deter-
mined by the order in which they are specified. Figure 5-5 illustrates this with a two-key sort, using the KEY
statement.

KEY (5 6 ALPHA) (15 2 DESCENDING ALPHA)

The X's indicate any character. In this example the three-byte field is the major key, sorted in ascending
order: the one-byte key is a minor key sorted in descending order within the order of the major key.

For a keyfile creation, only one key may be used. This key must be a maximum of 28 bytes long, must be
a whole number of bytes in length, and must start on a byte boundary.

For all sorts except keyfile and tagfile creation, there can be up to 10 keys. The sum of the length of all
keys (including signs) must be a maximum of 29 bytes.

The available key types are discussed here, under the keyword specified in the KEY statement (see earlier):

ALPHA (or UA)

Unsigned 8-bit alphanumeric field, conaining ordinary ASCII characters. Note that this may consist of the
8-bit ASCII digits “0” to “9” but still be termed alphanumeric. This key type is the default.

NUMERIC (or UN)
Unsigned 4-bit numeric field, where each 4-bit unit is a binary coded decimal digit, 0000 to 1001 (0 to 9).

SA

Signed 8-bit alphanumeric field. Each byte is an ordinary ASCII character (including the digits 0-9), except
that either the first or the last character indicates the sign. Whether the sign is the first or last character is
specified by the keyword L (left) or R (right). The default is L (first character; leading sign). The convention
for coding the sign character is given in Table 5-1. These characters are termed “overpunched signs” by anal-
ogy with historical punched card systems.

SN

Signed 4-bit numeric field. Each 4-bit unit is a binary-coded decimal digit, 0000 to 1001 (0 to 9), except that
either the first or the last 4-bit unit indicates the sign. Whether the sign is the first or last 4-bit unit is specified
by the keyword L (left) or R (right). The default is L (first 4-bit unit); leading sign . The convention for
coding the sign is given in Table 5-2.

SSA

8-bit alphanumeric field with separate sign. Each byte is an ordinary ASCII character (including the digits
0 to 9), with the sign given by an ASCII character in either the first or last character. Whether the sign is
given by the first or last character is specified by the keyword L (left) or R (right). The default is L (first
character); leading sign . The convention for coding the sign character is given in Table 5-3.

The position of a sign within a signed key (left or right) must be the same throughout all occurrences of the
key. Signed keys are ordered so that negative values come before zero and positive values

8-bit keys may start on 4-bit unit boundaries, unless the separate sign typé (SSA) is used, or the key is to
be used in keyfile or tagfile creation. ‘

Deleted Records
A deleted record is denoted by every byte in the record (including the key) containing the value hex FF.

The action taken by the various sort options is discussed earlier. Deleted records may be physically removed
by the FS utility.

5-10

Output Messages

Output messages cover warnings and errors. Messages are generated by both the sort intrinsic and the sort
language processor. The intrinsic messages are numbered by event numbers in the same way as MCP output
messages (see section). The sort language processor messages are numbered in a similar way.

Messages can be divided by number as follows:
0-99

Sort language processor messages, displayed on the printer. Such messages appearing in the list below that
are followed by a series of dots (...) should be read with the phrase NEAR COL XXX (with XXX replaced
by an appropriate column number) in place of the dots.

0-34
Warnings, where corrective action is attempted.
35-39
Warnings, where no corrective action is attempted.
40-59
Errors in syntax (that is, the format of the sort statements is incorrect).
60-99

Errors in semantics (that is, an inconsistency has been detected in the statements, such as a key position
greater than the record size).

170-200

Sort intrinsic messages, displayed on the SPO.
Certain messages may be suppressed by the NOPRINT and NODISPLAY keywords in the sort statements.

The NOPRINT option suppresses listing of the sort statements on the printer by the sort language processor.
If this option is set, a maximum of five errors and four warning messages are directed to the SPO, with only
the error or warning number being given (no explanatory text). The NOPRRNT option has no affect on sort-
intrinsic-generated messages.

The NODISPLAY option suppresses display on the SPO of start-up and termination messages by the sort
intrinsic. Messages in the list below that are marked with an asterisk (s) are those that are suppressed when
this option is set. Note that it is not possible to suppress individual messages; every applicable message is sup-
pressed if the option is set. The NODISPLAY option has no affect on sort language processor messages.

Number Message

EXPECTED SLASH NOT FOUND», ™/™ INSERTVED +..

EXTRA "FILE IN"...

MERGE INTRINSIC IGNORES <WIRK=DISK OPTION>
OVERLENGTH PART OF <LABEL NAME> IGNOFRELC ...

INPLACE INTRINSIC IGNORES <WORK=DISK OPTION>
EXPECTED BRACKET NOT FOUND» "<™ INSERTED ...
<DUPLICATE OPTIGON> VALID IN INDE X=KEYFILE SORT ONLY
EXPECTED BRACKET NOT FOUND» m>7 INSERTED ...
ILLEGAL TO DELETE INPUT FILE, <PURGE OPT> IGNORED
QUTPUT BUFFER SIZE TCO BIG» <BLCCK FACTOR> REDUCED ..
<USER OPTION> ALREADY INVOKEDs LATEST USE ...

DO OP NOUVNE NN - O

[y

2007258 5<11

Number

Message

22

42

MERGE <SORT TYPE QOPTION> NOT SPECIFIED

OVERLENGTH PART OF <DISK NAME> ICNORED «..
MISSING "FILE IN" ...

INDEX <SORT TYPE OPTION> NOT SPECIFIED

EXTRA =KEY" ...

<FILE SIZE OPT> VALID FOR MERGE/REGULAR SORT CONLY
MISSSNG "KEY" ...

INPLACE INTRINSIC IGNORES <MEMORY OPTIGN>

<M=FILE/DP ID> IGNORED ON NON=MACNETIC MEDIA FILE ...

NUMBER TOO BIGs» MAXIMUM VALLUE ALLOWABLE ASSUMED e..
not used

<STGN POSITION> GIVEN FOR UNSIGNED KEY ca.

FIRST UNIT NUMBERED ¢ RATHER THAN 1 oo

<FILE SIZE OPY> IGNORED SINCE 0QOUT OF RANGE ...
MERGE INTRINSIC IGNORES <MEMORY CPTICN>

<BLOCK FACTOR> OF O NOT ALLOKED, 1 ASSUMED - ..

IN= ANC OUT-FILE RECORD SI7ZES MADE ECGUAL

<BLOCK FACTOR> TOO LARGE, MAXIMUWM ASSUMED e. .
INFLACE SORT MUST HAVE IDENTICAL IN- AND OUT=FILES
IDENTICAL IN/OQUT = FILES WILL PRODUCE CUPLICATE FILE
NOT NECESSARY T0O PURGE CARD FILE cee

ALPHANUMERIC KEY DOES NOT START ON BYTE BOUNDARY ...
<KEY STATEMENT> ALREADY FPROCESSEC, NCW ...

<DIGIT STRING> EXPECTED ew.

<CHARACTER STRRNG> EXPECTFC ...

<SEPARATOR STRING> EXPECTED ew.

<RCRD=BLCK PAIR> MUSTBE GIVEN FCR NON=DISK IN-FILE ..
NO <FILE STATEMENT> SPECIFIED

ILLECAL WORD ...

<LETTER STRING> EXPECTED ...

MISSING <LABLE NAME> ...

UNSUPPCRTED <IN/OUT MEDIA> ...

UNSUPPORTED <SORT TYPE OPTION> ...

PART OF <FILE STATEMENT> MISSING, NOW es e

NO <KEY STATEMENT> SPECIFIED

<FILE STATEMENT> ALREAQCY PROCESSED, NOW ...

FINAL STATEMENT INCOMPLETE ee.

TOO MANY KEY SPECIFICATICNS ...

T00 MANY FILE SPECIFICATIONS o..

INPUT FILES RECORD SIZES NOT IDENTICAL ...

<RECGRD SIZE> OUT OF RANGE ...

EXTRA DIGITS IN QOVERLENGTH STRINC IGNORED ...

KEY LENGTH OQUT OF RANGE eee

MIN LENGTH OF SN KEY IS TwWN 4=R8IT UNITS s e

BUFFER SIZE T00 LARGE ...

DUPLICATE <IN=FILE PARAMS>, LATEST INSTANCE ...
BUFFER SIZE 700 BIG FOR <IN/QUT MEDIA> ..

ONLY ONE IN-FILE LEGAL FROM MULTIPLE TAPE ...
MERGE INSTRINSIC NEEDS AT LEAST 2 INFUT FILES
INDEX PARAM MYUST 8E "OUT oo o<KEYFILE/TAGFILE> ™

KEY CVER=RUNS RECORD BOUNDARY

ILLEGAL TO OVERWRITE INPUT FILE WITH TAG/KEY FILE

Number Message .
e 75 ALPHANUMERIC KEY LENGTH NOT EVEN NUMBER OF 4=BITS ...
76 <MECIA> MUST BE DISK FOR IN=-PLACE SORT
77 IN- AND OUT=FILE RECORD SIZES MUST BE IDENTICAL
78 INDEX=KEYFILE KEY LENGTH NOT EVEN NUFMBER OF &-BITS
79 ONLY ONE KEY LEGAL IN INDEX-KEYFILE SORT
80 INDEX-KEYFILE SORT KEY TCO LCNG
81 INDEX=KEYFILE SCORT KEY MUST BE ™... A UA/UN>T
82 ONLY INDEX SORT CAN SPECIFY "KEYFILE/TAGFILE"™
83 INCEX=-KEYFILE SCRT KEY MUST START ON BYTE BOUNDARY
84 MIN LENGTH OF SSA KEY IS FOUR 4=BIT UNITS ...
85 SSA KEY MUST START ON BYTE BOUNDARY ...
86 CURFENT SUM OF KEY LENGTHS OQUT OF RAANGE ...
170 DUPLICATE RECORD <record numter>
171 ILLEGAL INDEX KEY IN RECCRC <record number>
172 RECORDS LOST /7 GAINED BY SORT-MERGE
173 <pnumber> DUPLICATE RECORES
174 <number> RECORDS CONTAINING INVALID INDEX KEYS
175+ <number> DELETED RECORDS
176% <pnumber> RECORDNS MERGED
177> <number> FILES MERGED
178 SORT-MERGE QUTPUT FILE NCOT CREATED
179 SORT-MERGE ABNQORMAL EOJ
180 SORT-MERGE SOFTWARE ERROF
181=* <number> RECORDS REFERENCED BY KEYFILE/TAGFILE
182 NO INITIATING MESSAGE
18 3x <pnumber> RECORDS SORTED
e 184 FILE ERROR <<number>> NEAR RECORD <record number> ON
' <file name>
135 UNCRCERED MERGE INPUT FILE <file name> NEAR
RECNFRD <record number>
186 Yoo MANY RECORDS FOR SORT-MERGE
187 DUPLICATE RECORCS=KEYFILE NOT BUILT
188 INITIATING MESSAGE INVALID
189+ SORT~MERGE VER xeyoz INITIATED FROM <mix number>/
<program name>
193 INPUT RECORD SIZES UNEGUAL = BAD FILE <filename>
194 IN/OUT RECORD SIZES BAD = QUTPUT SIZE CHANGED
195 RAD RECORD/BLOCK SIZE FCR QUTPUT DEVICE
196 KEY OVER=RUNS RECORD END
197 CANNOT SPLIT INDEX FILE
198 <number> PARITY BLOCKS
Message 184 represents differing file errors depending upon the value of <number>. Defined meanings are

as follows:
1 - EOF on output file 7 - output file error
2 — parity on input file 8 — parity on sort workfile
3 — EOF on sort workfile 9 — parity on input file (block ignored)

4 — parity on output file

5 — sort workfile error

6 - input file error

record
number
---I---------I L E X N N W - 4D WP WS e WS W e ‘---qr-----q
X X|1 05 2 0}]X X X 1 FX X101 0 9 3[X X x
----I----’----I - an e s> e = ----II---------AI-.--'
X X|1 0 0 35X X x 2 X X002 16 7]X x X
X X|010 € 3(x X Xx 3 X X|1 003 5 X’X X
o s o e = ---‘----—ID------ ----q - E S as e W L.l K N X N WY
X X|6 9 7 1 2({X X x 4 X X|1 0 ¢ 3 6|X X X
X X6 9 8 & 3[{X X X S X X1 052 o]x x x
----II---------ID-—---- l e e L XS q-----
X X[1 0 0 3 6{X X X 6 X X132 4 0 C|X X X
X X|[3 2 4 0 0|X X X 7 X X}|6 97 1 2|x x X
----"---------1'-----1 ----1 WM Yo me -
X X|0 2 1 & 71X X X 8 X X|6 9 84 3(X X w
o e w» e n . e wr - J------d "Toeodeosaeacs cTodeoeoeces
data file data file
input output

Figure 5-1. Regular Record Sort

record
number
r----r-——-—-—--- - e - o r---- ----------
X X{1 05 2 0% X X 1 ¢ 3 |C100 3
e m o Ppmammmem o - - - e an s en - miadiadad 40 3L NI I LR
X X|1 00 25| X X 2 08102147
bbb I R P reensjloecoanecssee
X XJ0 1.0 0 3|X X X 3 C21l1 0035
s epeoeccossedevceane Pees clecccecaaas
X X|6 9 7 1 2|X X x 4 06 (100366
reowpoe v eccecneeodeoonne o e sl caccencn o aw =
X X6 9 8 &4 3|X X X 5 01 {10520
R Sttt f e N (R R R E T T ¥ -
X X|1 00 3 6[|X X X 6 07 |32400
----- Poemocoaweoacomowgomae o il R R R
X X{3 24 0 0[X X X 7 04 |8 97 1 2
o - o www- - - e - - rPeece s leannne e ow o
X X|02 14 7|X X X 8 05 |6 9 84 3
----Ji-----——---i-—---d Eem e sl o mccnew o
data file keyfile
input cutput

Figure 5-2. Keyfile Creation

5-14

record
number
----TrC--_-----}-_---q D---q
X ¥{t 052 0O(X X X 1 ¢ 3
X xlo 1 0 0 3|{X X X 3 ¢C 8
l---lp------.--- - e an e @ o e @ = & o

X X|6 9 7 1 2|X X X & ¢ 2

'%’ X X|6 9 8 4 3|X X X S c 1

X x{1 00 3 6|X XX 5 ¢ 7
----1’--‘----'-ll------ o = = - -y
X X{3 2 4 0 0|X X ¥ 7 0 4
X X{0 2 1 & 7LX X X 8 c 5

data file tagfile
input output

Figure 5-3. Tagfile Creation

---qr----------r-----q
X X010 0 3|X X ¥
b'---{--------oc - s - -
X XJ0 2 1 4 7(%X X X
pecectecscncancecnde e oo ’
X X{1 00 3 S5S|X X X
X X1 00 3 6|X X X
pPeecatensccoccesadeen oo o e ey an s E G en s W R e emen -
X Xf1 05 2 ofx X X X X101 0 0 3|X X X
X X[{3 2 4 0 0|X X X X X[0 2 14 7{X X X
aiateaiiadh dhabedl AR R AR XL IR mthadbadiadt JE_JK I I KRR W p oo ww of
X X|6 9 7 1 2% X X Y Y|Oo 8 7 2 6|Y Y Y
etk el Ll --—--ﬁ peesdoeoracane e ed o= - w e o
X X{6 9 8 4 3|X X X X X110 ¢ 3 5({X X X
X X111 0 03 6|X X X
peccsm e s cncat e an e o
Y Y[1 0 0 3 &|Y Y Y
X X1 05 2 0|X X X
FY Y{2 C C 0 1{Y Y Y
T esmecerecen ru----1 o o= - - o -----—---v--——--‘
Y Y087 26fY Y Y X X132 4 0 C|X X X
Y Y1 00 3 8fYy Y Y Y Y|4 2 1 6 8|7 Y Y
Y Y2000 1|YVYY Y Y[4 91 37|V Y Y
mtbadiat R KNI NP RPN N ahaadiadl 0 R I IR N R R S ———
Y Y|4 21 6 8|Y Y VY X X{6 9 71 2|x x X
it daduaddC A I T TR pPoecectoeonveseccacs L R T
YYJ49137.]YYY XXJS98’#3XXX
4 W B e G s W w - Toeedonscsasvansodeme o o
input fites output file

Figure 5-4. File Merge

5-16

---v--- -a ----v-T-‘-T r--.vq - - o ey ---1 LX LW T]

‘=' X X{3 6 4% X|5]X X X X110 2 X X{7|X X
X X|1 0 2|X X[&|X X X X{1 ¢ 2|X X[a[X X
ccateccccteantedeand b eccdecccatecedadanad
X X|9 7 3[X X|3|X X X X{1 0 2|X X|Oo[X X
X X]0 2 00X X[7]X X X X ; ; 41X X}81Xx X

S e g mm oa o mm g ww - o e ogd oo -eed -l un dpen mw
X XT

X X|1 2 2% X|0|X X I 6 4(X X|5]|X X

---'-----"---'-ﬁ'-'- pomocagqomes oo L X K N X R T R

X X|3 6 4|X XIB|X X X XI5 2 71X X|9]|X X
x x|5 2 7]x x]olx x X x|6 3 0|x xfo|x x|
X x ;'2'5";';'5'}';' (% x[s 7 3|x x]3]x x]
ocooandeoesasesedaanndnde o= o s eonecodaeacasadanecdodone -
da?a file gata file
1nput output

Figure 5-5. Multiple K_ey Sort

Table 5-1. Sign Convention For Signed 8-Bit Alphanumeric Fields

Key Value Hex Code ASCII Character
o m ” -
-C 70 ~
+0 30 0
+0 78 a
-1 4A J
-2 4B K
-2 4C L
=4 40D M
-5 LE N
-6 4 F 3]
-7 5¢C g
-8 51 Q
-9 52 R
+1 31 1
+2 32 2
+3 32 3
+4 34 4
+5 35 5
+6 36 6
+7 37 7
+5 28 a3
+S 39 9
Note: any other hex code in the sign character is interpreted as
positives with the key value given by the binary value of the
e right=hand 4 hits of the character.

2007258 5-17

Table 5-2. Sign Convention For Signed 4-Bit Numeric Fields

Key value Binary Code (BCD character)

negative 0101 (5)
positive 0011 C3)

Note: any value other than 0101 (5) is
interpreted as positivee.

Table 5-3. Sign Convention for Separate Sign Character with 8-bit Alphanumeric Ficlds

Key value ASCII character (hex vaglue)

negative nen (20)
positive rem (23)

Note: any character other than "=" is interpreted
as positive.

5-18

SECTION 6
COMPILATION FACILITIES

INTRODUCTION

Compilation of programs written in CMS COBOL, RPG and MPL can be performed with the CO (compile)
utility. CO is a normal utility program residing on disk. It is used to co-ordinate the various parts of the CMS
COBOL, RPG and MPL compilers. Each compiler consists of several object code files (called “passes”’) and
produces a number of workfiles to pass information between each pass. The CO utility allows initial input to
be made to the compiler by specifying such things as input and output file names.

Additionally, CO allows multiple executions of each compiler by storing compiler workfile information in a
master file called CO.MASTER on the system disk. The compiler passes have access to the information in this
disk file. Information in this file also allows the CO utility to perform restarts if the system halts during a compi-
latin. This restart facility eliminates the need to rerun a compilation from pass one if one or more passes have
already completed successfully.

CO uses some standard names for input and output files, which can be changed by the inital CO message.
The basic CO operation is given in Figure 6-1.

Initial input to CO is either from the initiating SPO message or through macro (star) files or through a disk
file called ‘CO.STARTUP” on the system disk. CO generates the CO.MASTER file used to co-ordinate the
compiler passes. There is an option to produce a CO listing. Information provided to CO enables the user to
describe the following:

input patch file

input source file

output source file

output object program
output compilation listing
compiler workfiles

2007258 ' 6-1

INITIATING MESSAGE
, JL CO.MASTER
STAR FILES
(DISK) co (DISK)
UTILITY
CO.STARTUP
(DISK)
co
LISTING
(PRINTER) COMPILER [
__f_— PASSES
| m COMPILER
WORKFILES
(DISK)
PATCHFILE
(DISK)
SOURCEIN
(DISK)
COMPILATION
LISTING
(PRINTER)
SOURCEOUT
(DISK) __f—_—
OBJECT
PROGRAM
(DISK)

Figure 6-1. Operation Of CO Utility

CO provides the ability to set “dollar options” for the compilation.

CO operates in two basic ways *’
to initiate and control a single compilation.
to interrogate compilation status, and restart or clear an aborted compilation.

6-2

TO INITIATE A SINGLE COMPILATION

Format:
co | disk-name / \]/ object-program name | disk-name / compiler-name
I compiler-option PRINT l file-statement I MESSAGE text

This initial input can be entered on the SPO when executing CO. CO can also be started with no additional
information from the SPO: in this case the information is either on a card file or on a disk file called “CO.STA-
RTUP” on the system disk. Selected parts of the input can be provided as star files see later in this section.
All disk files used for inputting information to CO can be 80 byte card-image records created by CMS CANDE
or CREATE, with all information in the first 8 records and the first 72 characters of each record.

Semi-colons may separate any clauses after the compiler-option, for readability.

The object-program-name is optional. If not specified, it will be created on the system disk with a name as
follows:

“COBOBJECT” - for COBOL compilations
“RPGOBJECT” - for RPG compilations
“MPLOBJECT” - for MPL compilations

The name of the disk for the generated object program may also be specified. If not specified, the system
disk is assumed.

The compiler-name may be one of the following:
COBOL - the COBOL compiler
RPG - the RPG compiler
MPL - the MPL compiler
RPGXREF - the separate RPG cross-reference program
OPTLIST - the separate COBOL/RPG optimizer

If the optional disk-name is given before the compiler-name, then the compiler may be executed from a user
disk so long as all passes are on the specified disk. If no disk name is given then the compiler must be on
the system.

The compiler-option may be one of the following:
SYNTAX (abbreviation SY)
LIBRARY (abbreviation LI)
GO (alternative SAVE)

With a “compile for syntax*, no object program is generated. For COBOL and RPG, COBSVERTER is
not executed; for MPL, the compilation stops at the end of pass 3.

2007258 ‘ 63

With a *‘compile to library, an executable object program is created if there are no syntax errors, and saved
on disk with the object-name as specified in the CO statement. A compile to library is the default compiler-
option.

A “compile and go” is the same as a compile to library, with the additional feature that the object program
is executed. The CO utility goes to EOJ after zipping the object program.

If the PRINT option is specified, an edited listing of the startup message is output, along with a list of settings
for all the file parameters which are modifiable through CO. A list of default dollar card settings for the compil-
ation is output along with any dollar options entered via the CO message. This object listing "also contains a
log of all error messages displayed.

The file statements allow names and other attributes to be set for the compiler input and output files. The
general form of these statements are given here, but not all attributes may be set for all files these will be dis-
cussed in turn.

Format:
— -
_ NAME disk-name / file-name
\1/ I MFID disk-name
PATCHFILE FID file-name
Fl SOURCEIN DEVICE hardware-type
FILE < SOURCEOQUT »- < RECORD number r
WORKFILE BLOCK number
PRINTOUT RECORDS.BLOCK number
L FILESIZE number
— FILE.SIZE number
— >

The meaning of the file attributes are as follows:

NAME
This specifies the CMS file name plus disk name and may be of the form MFID/FID.

MFID

This specifies the disk name of the given file. The default is the system disk. The MFID must be a maximum
of 7 characters.

FID

This specifies the file name of the given file. The default is the system disk. The FID must be a maximum
of 12 characters.

(Note: FID and MFID may be used together, or NAME may be used instead of the MFID/FID combination).

DEVICE

This specifies the type of peripheral of the input or output file. The default for the PRINTOUT file is line
printer. The default for all other files is any disk. The device is specified by a 2-character mnemonic as fol-
lows:

card readers:

any card reader AR
6 any multi=function unit AM
8C~-column reader R8
€C-cotumn reader/punch M8
96=column reader R9
96=column reader/punch M9
card punches:
any card punch cpP
any multi=-function unit AM
8C=columnr punch Fa
80-column reader/punch M3
96=column punch P9
S6=column reader/punch M9
tapes and cassettes (NRZ or PEf)
any tape AT
write=disabled reel MT
write~disabled cassette cT

(altenatvies: CS» CASSETTE)
Note: if a write~disablec cevice is specified
for an output file, CO will sutstitute a
write~enabled device in the specifications and
issue warningee.
printers:

any printer AP
sefial printer (console) SP
Line printer LP
e disks:
any disk» default catridge oK
(alternatives: DC» DISK)
Burroughs Super Mini oM
Fixed disk DF
pack P

FILESIZE

This attribute specifies the maximum number of records in the output file. If used with PATCHFILE, the
number specifies the total number of source lines to be compiled, including dollar cards and “COPY state-
ments” in the case of COBOL compilation. The number may be followed by the letter K to denote thousands.
For example, the statement

FI SOURCEOUT FILESIZE 4 K
specifies a filesize of 4000 records. A space must separate the “K” from the number.
An alternative spelling of the keyword is “FILE.SIZE”. ‘
The files are as follows:

PATCHFILE

This is the primary source input file, and contains dollar records and source records which may optionally
be merged with a secondary input file to produce an output source file. Attributes which may be set, and
their default values are:

NAME PATCHFILE
CMFID system disk €0000000)
FID PATCHFILE
DEVICE DK
e FILESIZE . n

s

2007258) 6-5

SOURCEIN

This is the optional secondary input file. Attributes which may be set, and their default values, are:

NAME SOURCEIN

MFID system disk (0000000)
FID SOURCEIN

DEVICE DK

SOURCEOUT

This is the optional source output file produced by merging PATCHFILE and SOURCEIN. Attributes which
may be set, and their default values, are:

NAME SOURCEQUT

MFID system disk (0000000)
FID SOURCECUT

DEVICE bK

FILESIZE 4 K

RECORD 80

RECORDS.BLOCK 9

BLOCK 720 for aisks

240 for cassettes
2000 for magnetic tares

WORKFILE

This refers to the intermediate workfiles produced by the compiler during the compilation. The only attribute
that can be specified, and its default, is:

MFIN system disk (00000CC)

PRINTOUT

This refers to the listings produced by the various compiler passes during the compilation. The only attribute
that can be specified, and its default, is:

DEVICE LP

The MESSAGE statement

The reserved word MESSAGE indicates the start of the list of dollar options for that compile. The text con-
sists of a list of one or more dollar cards, taken from the list given below, separated by spaces.

For example, for an MPL compilation the following would be valid:
MESSAGE $LIST $XMAP $SEGMENT FR20
Use of this feature is not valid for COBOL compilations.

Examples:

To compile the COBOL source program AR678S, and create the object program AR678, both on the system
disk:

CO AR678 COBOL LI FI PATCHFILE FID AR678S

To merge the RPG patch file RQ20P with the source file RQ20S, and create a new source RQ20SN and
object RQ20NEW, all on disk RDEV:

CO RDEV RQ20NEW RPG LI; FI PATCHFILE NAME RDEV/RQ20P;
FI SOURCEIN NAME RDEV/RQ20S; FI SOURCEOUT NAME
RDEV/RQ20SN; MESSAGE $MERGE

To compile the MPL source program MTEST.S from the disk USR1 to produce object MTEST on disk
USRI, with CO listing, and compiler listing on the console: :

CO USR1 MTEST MPL LI; FI PATCHFILE NAME USR1/MTEST.S;
PRINT; FI PRINTOUT DEVICE SPA; MESSAGE $LIST

To compile source PATCHFILE with COBOL and create object COBOBJECT on the system disk:
CO COBOL

To patch COBOL source CS500 (found on tape) with cardfile CRDPATCH and produce an object program
CNEW on disk F1, putting compiler workfiles on disk FSCRATCH:

CO FI/CNEW COBOL LI;

FI PATCHFILE FID CRDPATCH DEVICE AR;
FI SOURCEIN FID CS500 DEVICE AT;

FI WORKFILE MFID FSCRATCH;

2007258 67

USE OF MACRO CALLS

All or part of the initiating message to CO may be provided as data in disk files. This is indicated by an
asterisk (star) in the message.

Following the asterisk must be a valid file name, including the disk-name if not on the system disk. When
the initiating message is scanned, the contents of a star-file are included in the scan. At the end of the star-
file contents, scanning continues with the primary message. The complete initiating message, or individual
clauses, may be included in the star-files. The message format for CO has been repeated below with an asterisk
where a star-file may be used:

Format:

CO + I disk-name / object-program name * | disk-name / compiler-name

*I compiler-option ;l/ ¥ | PRINT I * file-statement ¥ MESSAGE text
Example:

Consider four star-files, with names and contents as follows:

name contents
FILE1L AA RPG ¢C
FILE?Z : PATCHFILE NAME BB
FILEZ CEVICE AR
FILES SOURCEDUT FID CC

Then the following two initiating messages to CO are valid:
CO +FILEl1 PRINT +FILE2 DEVICE AR
CO *FILEl1 PRINT +FILE2 *FILE4

but the following two messages are invalid, because the contents of FILE3 is wrong, as it starts in the middle
of a file-statement:

CO +FILE1 PRINT »sFILE2 =*FILE3
CO »*FILE1 PRINT PATCHFILE NAME BB *FILE3

6-8

COMPILER DOLLAR OPTIONS

e In the following list, (D) indicates the options which are set by default. This notation is also used in the output
listing from CO, to distinguish default settings from deliberate dollar card settings.

For COBOL, no dollar options may be set or reset by CO. For a fuller description of the available RPG
and MPL options, consult the relevent compiler manual. .

RPG

$ LIST D) $ NLIST
$ SEG § NSEQ

$ XMAP $ NXMAP
$ SUPR $ NSUPR
$ LOGIC $ NLOGIC
$ MERGE ¢ NMERGE
$ SEVERE (D) * NSEVERE
$ MAP ¥ NMAP

$ NAMES $ NNAMES
$ NEW $ NNEW

Any RPG dollar options specified in the startup message for CO will override any occurrences of that option
appearing in either the PATCHFILE or SOURCEIN input files.

MPL
£ LIST ¢ CODE
, $ NOLIST $ NEWTAPE

$ LISTE $ FORMAT
$ LISTP $ SEGMENT file-name
$ SEGUENCE t SEGSIZE integer
f XMAP
$ NCWARNING

Any MPL dollar options specified through CO are used only as initial settings, and may be overridden by
dollar cards appearing in either of the source input files.

TO INTERROGATE THE STATUS OF COMPILATIONS

CO may be used to determine the status of any compilations. This is done by interrogating the CO.MASTER
file. The message is:

CO MX

This function may be used at any time, provided that the mix is not already full. It yields information in
the following form:

o MIX=-NUMBER r
COMPILER NAME compiler=name
CURRENT COMPILER PASS file=nzme
WORKFILE CHFARACTER nav

[19"% 2]

(where “a” is a character used by CO in the meaning of workfiles so that different compilations can precede
_with separate workfiles). In addition to the above information, if a compilation is either awaiting Restart or
Clear (see later), or has been Restarted but has not yet gone to end-of-job, the following will be displayed:

(THIS CO IS IN RESTART MODE)

Note that the “CO MX” function will give information about all current compilations marked in the
CO.MASTER file, even if they were prematurely stopped by a system failure. This is different from the MCP
“MX” intrinsic, which will only give the jobs currently in the multiprogramming mix.

6-10

TO RESTART AN ABORTED COMPILATION

This function may be used to restart a compilation which has been terminated prematurely due to a system
failure such as a clear start or ZIP failure. The message is:

Format:

v

CO RESTART mix-number I line-number

If only one compilation was being done, then the simple message
CO RESTART

is sufficient. The compilation is resumed at the beginning of the pass in which the failure occurred. If more
than one compilation was being done, the mix-number must be supplied, which is the mix-number of the

particular CO that was running at the time of failure. This number is determined either from the SPO log, or
the CO MX facility.

If the failure occurred during the printing phase of a COBOL compilation (pass COBOL?7), then this pass
can be restarted at a specified line-number. The line number must be in the range 000000 to 065535. For exam-
ple, the message

CO RESTART 2 010000

will cause the CO with mix-number 2 to be restarted, which will cause COBOL7 to start printing at line
010000.

Once a RESTART has been initiated, no new compilations can be started until the restarted compilation has
gone to normal EOJ. If that is not possible, for instance because a file is not present, then the restarted job
should be CLEARed (see later) to allow other compilations to be initiated.

Other CO versions executing are undisturbed by a RESTART operation.

When a restarted job terminates, whether naturally or as a result of a CLEAR (see later), the message
“RESTART COMPLETED”

is displayed on the SPO. If a new CO, having the same mix-number as the one that failed, is started up
before the failed CO can be restarted or cleared, then the block of information in CO.MASTER for the failed
CO is lost and that compilation cannot be restarted. In this case the followwng message is displayed:

“CO MIX-NUMBER n CANNOT NOW BE RESTARTED

COMPILATION BLOCK RE-USED”.

TO CLEAR AN ABORTED COMPILATION

If a clear start or other failure has occurred, and it is decided not to Restart compilations, then on or all
of the compilations may be cleared. References to one or all of the compilations are deleted from the

CO.MASTER file, and workfiles belonging to the compilation are removed unless the compiler requested that
they be saved. The message is:

mix-number
CO CLEAR ALL

Providing a mix-number clears only the compilation whose controlling CO had the specified mix-number. The

keyword ALL clears all compilations known to CO. If only one compilation was being done, then the simple
message

Format:

CO CLEAR
is sufficient.
Other CO versions executing are undisturbed by a CLEAR operation.
Any CO can be CLEARed at any time whether or not a restart is in operation or pending.
Example of aborted compilation:

Assume that a system failure occurred while doing a COBOL compilation. The controlling CO had a mix-

number of 6 and the compiler was in the OPTLIST pass. Assume also that, since the failure, an RPG
compilation had been initiated.

The message
CO MX

may result in the following information:

CO ¥IX NUMBER 4
COMPILER NAME RPG
CURRENT COMPILER PASS RPGPHASE1
WORKFILE CHARACTER |

CO MIX NUMBER €
COMPILER NAME ccBoL
CURRENT COMPILER PASS OPTLIST
WORKFFLE CHARACTER C

(THIS CC IS IN RESTART MCDE)

Then to restart the COBOL compilation, enter
CO RESTART 6
to cause the compilation to start at the beginning of OPTLIST. If the COBOL compilation is not required
to be restarted, then enter
CO CLEAR 6

Note that in both cases the RPG compilation is unaffected.

ZIP FAILURES

e If a zip failure occurs, or a particular compiler pass is DS’ed or DP’ed, CO displays one of the messages
in table 6-1 indicating the reason for the failure, then takes one of the following two actions:

If no Restart is in operation or pending.
One of the following messages is displayed:
‘CO SHOULD BE RESTARTED OR CLEARED*.
‘CO MIX-NUMBER n MUST BE RESTARTED OR CLEARED*.

The CO utility is forced into “Restart mode” which prevents any new COs or any other RESTARTS
being performed until the CO in question has been either restarted and completed, or cleared.

If a Restart is in operation or pending.
One of the following messages is displayed:
“CO SHOULD B<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>