
Printed in U.S. America

Burroughs

Computer

Management
System
(CMS)
81000

Program Dump
Analysis

USER'S GUIDE

This Manual Replaces All Previous Editions of Form 2018750

COPYRIGHT @ 1982, BURROUGHS MACHINES LIMITED, Hounslow, England

COPYRIGHT @ 1982, BURROUGHS CORPORATION, Detroit, Michigan, 48232

PRICED ITEM

August 1982 2018750

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
induding direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/ or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it it used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
TIO Europe Documentation, Burroughs Machines Limited, Cumbernauld,
Glasgow, Scotland G68 OLN.

LIST OF EFFECTIVE PAGES

Page Issue

iii Original
iv Blank
v Original
vi Blank
1-1 Original
1-2 Blank
2-1 thru 2-3 Original
2-4 Blank
3-1 thru 3-2 Original
4-1 thru 4-5 7 Original
4-58 Blank
A-1 thru A-2 Original

2018750
iii

Section

2

3

4

TABLE OF CONTENTS

Title

INTRODUCTION

OPERATING INSTRUCTIONS
EXAMPLES

PROGRAM DUMP ANALYZER OUTPUT .
HOW TO USE A PROGRAM DUMP
COMPILER OPTIONS . . .

SECTION DESCRIPTION . . .
PROGRAM PARAMETERS . .
RUNNING PARAMETERS
INTERFACE CONTROL BLOCK
COMMUNICATE PARAMETER AREA ..
PERFORM STACK/CONTROL S1'ACK .

Perform Stack (COBOL and RPG)
Control Stack (MPL)

PROGRAM SEGMENT TABLE .
DATA SEGMENT TABLE ...
INTERNAL FILE NAME BLOCK .
FILE INFORMATION

Information for an Opened File .
Information from FCB. . . .
File Attributes from FPB. . .
Control Information from FIB.
Buffers.
Extension for Indexed Files
Information for a Closed File

DAT A ST ACK ANALYSIS/CURRENT OPERAND (COP) TABLE
Data Stack Analysis (MPL)
Data Stack Structure
Heading Description.
Data Description
Current Operand (COP) Table (COBOL and RPG) .

DATA SEGMENTS.
CURRENT CODE SEGMENT.
LOCKED SLICE

Program Segment Table
Data Segment Table.
Task, Control Block Preset Area . .
Control Stack
Code Control Block Preset Area .
Internal File Name Block.

APPENDIX

A GLOSSARY OF TERMS .

2018750

Page

1-1

2-1
2-3

4-1
4-1
4-2
4-4
4-10
4-19
4-19
4-20
4-21
4-22
4-22
4-23
4-23
4-23
4-28
4-32
4-37
4-37
4-41
4-42
4-42
4-42
4-42
4-43
4 .. 44
4-46
4-55
4-55
4-56
4-57
4-57
4-57
4-57
4-57

v

SECTION 1
INTRODUCTION

THIS MANUAL IS RELATIVE TO THE B 1000 CMS SYSTEM SOFTWARE RELEASE LEVEL
3.04

Execution of a program may lead to a DS/DP condition. When a program is DP'ed (either by the
operator or by the COBOL interpreter if the "NO USE PROCEDURE" condition is encountered after
an error), a dump file is created on the same disk as the program file. The name of the dump file
is DMFILnn, where nn is the mjx number.

In addition, the DM command can be used to force the creation of a dump file for an executing pro­
gram (that is, a program which is not in the DS/DP state). The program will be suspended when the
DM command is given and a dump file will be created in the same manner as if a DP was issued.
The program will then require the GO command to be i_ssued by the operator before resuming process­
ing.

The program dump analyzer, named DP .ANALYZER, analyzes this dump file, in relation to the pro­
gram file itself, giving a listing which contains llnformation about the program parameters, the files,
the segments and so on.

A glossary of the terms used in this manual appears in Appendix 'A' at the end of this book.

2018750 1-1

SECTION 2
OPERATING INSTRUCTIONS

DP.ANALYZER.-[<pack-id>/ <file-id>---.--------.--....__,.

-)

Options

~--~SAVE-~--~

ARRAY

NO. FILE

NO.ICB ---t

NO.DST---t

NO.COP--

NO.STACK

NO.HEX

NO.DATA

< pack-id > wlhen not specified defaults to the system disk

<file-id > is the name of a dump file.

<options>

SELECTION

1. If no parameter is specified, all the dump file is analyzed. The dump file is then removed.

2. The options, entered in any order, have the following effect:

SAVE

ARRAY

NO.FILE

NO.ICB

NO.DST

2018750

This will cause DP .ANALYZER to retain the input
dump file rather than remove it after analysis (which is
the default).

This is applicable only to COBOL/RPG dump files. It
will cause all elements of all arrays to be printed. The
default is to print a maximum of twenty elements of
each array.

This will suppress printing of any file information.

This will suppress printing of any ICB information.

This will suppress the DST and PST analysis.

2-1

NO.COP

NO.STACK

NO.HEX

NO.DATA

This will suppress the COP table analysis (only for
COBOL and RPG programs).

This will suppress the Data Stack Analysis (only for
MPL II programs).

This will suppress the printing of the current code
segment and locked slice.

This will suppress the printing of data segments.

3. If SELECTION is specified, the PROGRAM and RUNNING PARAMETERS, the ICB, the
CPA, the CONTROL STACK/PERFORM STACK, tht:~ PST, the DST and the IFNB are
printed, except if otherwise specified in the initiating message.

2-2

The user has the option to request for the analysis of spedfic parts of the dump file, via accepts.

TEACH -------------1
SEGMENT---<dst.index>---1

FIBL<internal>
filename

- < fib.nb > ----11

ALL-----< options > -

BYE---------------------~·~

END----

HELP TEACH The list of all the parameters which may be entered via
accepts is displayed.

SEGMENT

FIB

ALL

BYE
END

The data segment whose index number is specified by
"dst.:index" is printed.

The FIB of the file specified either by its ''internal
filename" or its "fib.nb" is pr:inted.
"fib.nb" is the index number of the data segment
which contains the FIB.

The sections of the dump file selected by the "options"
are printed. The dump file is then removed (if not
otherwise specified), and DP .ANALYZER goes to EOJ.

DP .ANALYZER goes to EOJ. The dump file is not
removed.

EXAMPLES

l. DP .ANALYZER DMFIL03 SA VE
DP .ANALYZER will expect to find a dump file called DMFIL03 on the system disk, will print
a formatted dump listing and will retain the dump file.

2. DP.ANALYZER USER/DMFIL02 NO.ICB NO.HEX
DP .ANALYZER will expect to find a dump file called DMFIL02 on a disk labelled USER, will
print a formatted listing omitting the Interface Control Block, current code segment and locked
slice sections and will remove the file USER/DMFIL02 at the end of the job.

3. DP.ANALYZER DMFIL04 ARRAY SAVE
DP .ANALYZER will expect to find a dump file called DMFIL04 on the system disk, will print
a formatted listing including all the elements of all arrays and will retain DMFIL04 at the end of
the job.

4. DP.ANALYZER DMFIL04 NO.ICB NO.DST SELECTION
DP .ANALYZER will expect to find a dump file called DMFIL04 on the system disk, will print
a formatted listing containing the program and running parameters, the CPA, the CONTROL
STACK/ PERFORM STACK and the IFNB. Parameters may then be entered via accepts.

2018750

NOTE

Dumps submitted with a Field Communication Form (FCF) must be full
dumps, that is, ARRAY must be specified and no other option may be
specified.

Sometimes, due to the BIL interpreter, the contents of the end of an MPLII
program's working stack is unpredictable. In this case, the printing will be
limited to the analyzable portion.

2-3

SECTION 3
PROGRAM DUMP ANALYZER OUTPUT

The program dump analyzer output is described section by section, in the order it occurs in the
DP .ANALYZER listing. In each section, differences and similarities for each of the three languages,
MPL, COBOL and RPG are given.
l'he sections as they occur in a DP .ANALYZER listing are as follows:

TITLE

PROGRAM PARAMETERS

RUNNING PARAMETERS

INTERFACE CONTROL BLOCK (ICB)

COMMUNICATE PARAMETER AREA (CPA)

PERFORM STACK/CONTROL STACK

PROGRAM SEGMENT TABLE

DATA SEGMENT TABLE (DST)

INTERNAL FILE NAME BLOCK

FILE INFORMATION

DATA STACK ANALYSIS/CURRENT OPERAND (COP) TABLE

DATA SEGMENTS

CURRENT CODE SEGMENT

LOCKED SLICE

The sections PROGRAM PARAMETERS till DATA STACK ANALYSIS/CURRENT OPERAND
(COP) TABLE give labelled information taken from the Internal Control Block, and/or the Locked
Slice, and/ or the Data Segments.

The sections DATA SEGMENTS till LOCKED SLICE contain the display of the corresponding mem­
ory area; these displays may be useful when some control information has been destroyed.

Note that the sections Interface Control Block, Code Segment and Locked Slice analysis require a good
knowledge of the operating system; a good practice would be to specify, when calling the DP .AN­
ALYZER program, the parameters NO.ICB NO.HEX.

HOW TO USE A PROGRAM DUMP

If a dump is requested because of I/O problems, the section to look at is the COMMUNICATE PA­
RAMETER AREA. When the reason for the 1/0 problem has been determined, its location may be
delimited using THE NEXT INSTRUCTION in the RUNNING PARAMETERS section.

2018750
3-1

More information, if required, can be found in the sections FILE INFORMATION, DATA STACK
ANALYSIS/CURRENT OPERAND (COP) TABLE and DATA SEGMENTS.

For other types of analysis, after locating the NEXT INSTRUCTION, the DAT A STACK
ANALYSIS/CURRENT OPERAND (COP) TABLE section may give useful information on the state
of the variables.

COMPILER OPTIONS

To facilitate reading the DP .ANALYZER ouput, compiler OJPtions have to be specified; that is:

- in MPL : S XMAP
- in COBOL : SLINE-CODE, SLINE-MAP, SCOP-TABLE or SOPTCODE
- in RPG : column 15 of the H card specification must be set to 1.

SMAP or SPARMAP or SXMAP1 SNAMES.

The implications of those options are stated in the appropriate section.

3-2

SECTION 4
SECTION DESCRIPTION

Along with the title "C.M.S. DUMP-ANALYZER", the compile date and release level of DP .AN­
ALYZER are given. Note that this information applies to DP .ANALYZER and not to the system re­
lease information.

PROGRAM PARAMETERS

2018750

PROGRAM NAME This is the name of the user's program being
analyzed in the DP.ANALYZER listing.

COMPILER NAME This is the name of the compiler employed
by the user's program.

COMPILER SYSTEM This gives the processor name and MCP
version of the system on which the user's
program was compiled.

COMPILATION DATE This is the date on which the user's program
was last compiled.

INTERPRETER PACK.ID This is the name of the pack on which the
interpreter employed by the user's program is
located.

INTERPRETER NAME This is the name of the interpreter employed
by the user's program. The released names of
the interpreters are as follows:

PRIORITY CLASS

MPL = BILINTERP
COBOL = COBOLINT
RPG == COBOLINT

This is the priority assigned by the compiler
to the user's program. In general, priorities
are assigned as follows:

A = normal user tasks
B = utilities
C = data comm tasks

Depending on the Program Parameter Block
flags, one or all of the following messages
may be printed after Priority Class:

MAY OPEN SYSMEM
SUPPRESS BOJ-EOJ MESSAGES
MCS PROGRAM FILE
NDL PROGRAM FILE
PROGRAM USES DATA COMM
COMMUNICATES

This information is read from the field
ICB.PRIORITY .CLASS which is fully
described in the section entitled INTERFACE
CONTROL BLOCK.

4-1

INITIATING MSG
SEGMENT

S-PROGR START
ADDRESS

INTERPRETER PRESET
AREA (COBOL and RPG
only)

If there is a segment for the initiating
message declared in the user's program, this
will give the initiating message segment
number.

This is the SEGMENT number and
DISPLACEMENT of the code segment
containing the first executable instruction. It
is also called the "S-CODE entry address".

This reflects the values of the eight edit
characters. The following table indicates the
edit table default values.

position 0 "+"
1 " "
2 " "
3 "*"
4 " "
5 " " '
6 " s "
7 "O"

RUNNING PARAMETERS

4-2

MIX NUMBER This is the mix number the us.er program had at the
time it was DP'ed or DM'ed.

BOJ AT:

DUMP AT:

PROGRAM
STATUS

REASON FOR
DU1\1P

NEXT
INSTRUCTION

This is the time and the date at which the user job
began executing. The time is in the format HH:MM:SS.

This is the time and the date at which the user job
was DP'ed. The time is in tht:! format HH:MM:SS.

If the program was DM'ed, the time and date of the
dump will not be available. In this case, an appropriate
message will be given.

A message is printed which reflects the status of the
user program at the time of the DP or DM action.
There are three basic states a user task may be in
during its lifetime: executing, delayed (that is, executing
but waiting for some condition which may be satisfied
at any moment; for example, "WAITING FOR I/0")
or suspended (that is, no longer executing, waiting for
some condition which will not be satisfied without
operator intervention; for example, "WAITING FOR
DIRECTORY SPACE").

In the case of an error conditilon, the message given
here will give the event numbt:!r and description of the
error. If the program was DP:'ed while executing, the
message "OPERATOR ACTION" will be given. If the
program was DM'ed while executing, the message "DM
FUNCTION" will be given.

This gives the location that th1e execution was
proceeding to at the time of tlhe abnormal termination.

2018750

MPL related

SEGMENT
(PSN)

SEGM. DISPL

PROCEDURE
(SPN)

PROC.DISPL

REGION 1
REGION 2

LEXICAL
LEVEL

In the case of an error causing a DS/DP condition,
this would be the location at which the error
occurred; but if the program was DP'ed and no error
caused the DS/DP condition, it gives the location of
the next S-OP to be handled by the interpreter.
In the case of DM with specified breakpoints, it
corresponds to the location of the breakpoint. Or, if
the program was DM'ed without specifying breakpoints,
it gives the location of the next S-OP to be handled by
the interpreter.

This is the code segment number where the next
instruction is to be found.

This is the displacement, in bytes, in the specified code
segment where the next instruction is to be found.

This is the number of the procedure in which the next
instruction is located.

This gives the location, in bytes, relative to the start of
the procedure, of the next instruction.

They reflect the most frequently used lexical levels
found in the procedure which was active at the time of
the abnormal terminate. This information is useful only
when the code segment has to be decoded.

This gives the current lexical level at which the next
instruction resides.

COBOL/RPG related

SEGMENT This is the code segment number where the next
instruction is to be found.

DISPLACEMENT This is the displacement, in bytes, in the specified code
segment where the next instruction is to be found.

LINE-COUNT

CARRY (MPL
only)

This is the line number of the next instruction.
For COBOL, the S LINE-CODE option must be
specified in order to obtain line count information.
In RPG, column 15 of the H card specification must
be set to 1, indicating DEBUG, in order to obtain the
same information.
If this option has been specified at compile time, a
code will have been added to cause the interpreter to
update the LINE-NUMBER register.
If the option has not been specified, the words "NOT
AVAILABLE'' will appear.

This reflects the value of the CARRY register (16-bit
field) employed by the MPL compiler in arithmetic
operations.

4-3

VSN (MPL
only)

OVERFLOW
FLAG

The administration of the Virtual Segments (see
SEGMAP instruction in MPL) is controlled through an
8-bit field found in the Interface Control Block. This
field holds the segment number corresponding to the
first page of the first virtual sc~gment.
If no virtual segments have be1en declared, the value of
the VSN field is not significant.

(COBOL/ RPG only)

This reflects the value of the OVERFLOW flag
employed by the COBOL and RPG interpreters in
arithmetic operations. In COBOL, the "ON SIZE
ERROR" clause controls the use of this flag. In RPG,
the flag is not accessible.

INTERFACE CONTROL BL.OCK

The Interface Control Block resides in the user program's partition. It is a run time data structure
containing all the parameters needed by the MCP to execute the program. As previously stated, an
in depth knowledge of the MCP i:s required to analyze this :section.

For each ICB field listed, its name, as it appears on the DP .ANALYZER listing, and its description
are given. Note that for each compound field its data type description has been stated as a memoran­
dum; a complete description of the members of the structure: is given in the manual "B 1000 CMS
MEMORY DUMP ANALYSIS USER'S GUIDE. Form no.2018909".

4-4

!CB.TRACE.AREA It contains internal debugging fields.

ICB.COMM.ROUTING This is the group name for fields used by
COMMUNICATE.SWITCH to transfer
control and make entries to the return
stack.

Data type description:
01 ICB.COMM.ROUTING

02 !CB.CALLING
03 !CB.CALLING.MOD.NB
03 ICB.CALLING.DISPL

02 !CB.SAVE.MY.PLACE
02 !CB.CALLED

03 !CB.CALLED.MOD.NB
03 ICB.CALLED.DISPL

ICB.STACK.PTR This gives the bit displacement to the next
free entry in the return stack; that is, the
end of the last entry.

!CB.STACK.ENTRIES This :is the group name for the fields
which make up an entry of the return
stack ..

Data type description: array of nine
entries
01 !CB.STACK.ENTRY

CHAR(?)
BIT(24)
BIT(8)
BIT(l6)
BIT(8)
BIT(24)
BIT(8)
BIT(16)

BIT(24)

2018750

02 !CB.STACK.MOD.NB
02 ICB.STACK.DISPL

BIT(8)
BIT(l6)

!CB.PRIORITY.CLASS This field is defined as follows:
bit 0 - when set, load only if mix is

suitable (nothing in the mix, not
even SYS-SUPERUTL).

bit 1 - when set, the program may open
files with file type @20@ -@48@,
maintain and create non-data files
and use the "wild" file type.

bit 2 - when set, the BOJ/EOJ messages
display headings are suppressed. This
includes the suppression of the zip
header on a zip with display (DS-ED
messages are not suppressed).

bits 3,4

bit 5

bit 6

bit 7

bits 8,9

bit 10

reserved for expansion.

- when set, it indicates the priority A.

- when set, it indicates the priority B.

- when set, it indicates the priority C.

= 00 : Non data comm program file
01 Reserved for expansion
10 : NDL Program file
11 : M CS ·Program file

- when set, the program may
maintain/ create all files other than
those with file types @20@ -@48@
and may use the "wild" file type.

bits 11-14 -· reserved for expansion

bit 15 - when set, the program contains data
comm communicates.

I CB.FETCH. VALUE It contains the fetch value returned to an interpreter
when processing of an 1/0 request from that
interpreter has been completed. See
COMMUNICATE PARAMETER AREA section
for the fetch value list.

!CB.ACTUAL.CPA This is the communicate parameter area for
communication between an interpreter and
the MCP.

4-5

Data type description:
01 ICB.ACTUAL.CPA

02 !CB.VERB
02 !CB.OBJECT
02 !CB.ADVERB

See the COMMUNICATE PARAMETER
AREA section for a complete description
of those fields.

!CB.INTERNAL.CPA This is the communicate parameter area
used by the MCP.

Data type description:
01 ICB.INTERNAL.CPA

02 !CB.INTERNAL.VERB
02 !CB.INTERNAL.CPA.ENTRY

03 !CB.INTERNAL.ADVERB

ICB.REPL Y. WORD This area is used to indicate success or
failure of an internal communicate; that
is, between MCP modules.

I CB.PHY .COUNTER It indicates PHYSICAL.IO activity unless
it is set to zero. PHYSICAL.IO
increments this field by one when invoked
and decrements upon exiting.

!CB.PHY.SAVE.PCB This field contains the pointer to the top
of the PCB queue of PCBs needing
processing.

ICB. VM.PLAGS This contains a group of flags
characterizing the rollin and rollout of a
partition.

Data type description:
01 ICB.VM.PLAGS

02 ICB.ROLLIN.ROLLOUT
02 ICB.ROLLOUT.DISALLOW

03 !CB.PERM.RO.DISALLOW
03 ICB.SCL.RO .DISALLOW
03 ICB.DCCH. RO.DISALLOW

BIT(8)
BIT(8)
BIT(104)

BIT(216)
BIT(8)
BIT(208)
BIT(8)

03 !CB.RO.AND.COMP.DISALLOW
02 !CB.PLAY.ALONE.PART

!CB.COMMON.DUMP.AREA This area is used by the COBOL
Interpreter to save state when giving up
control.

4-6

BIT(8)
BIT(2)
BIT(4)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)

ICB.FIJLE.NB.ASSIGNMENT Each bit of this field corresponds to a
file. This field is used to assign file
numbers at OPEN time. The position of
the first reset bit determines the file
number of the file being opened, if any.
The bit is reset at CLOSE time unless the
file was half-closed. The first bit (bit 0)
corresponds to the program file, the
second bit (bit 1) to the virtual file, the
third bit to file number three and so on.

ICB.FIB.REQSTED.
ATTENTION This is a 72-bit field set by

PHYSICAL.IO to indicate that further
processing by LOGICAL.IO must be done
before processing of the external
communicate will be complete. Each bit
corresponds to a file with the same
relationship as the file number. That is,
the first bit (bit 0) will correspond to the
program file, the second bit (bit 1) to the
virtual file, the third bit to file number
three and so on.

!CB.FILE.LIST Each possible file for a program is
:represented by one byte. This byte
contains the index of the data segment
containing the corresponding FIB. Files are
in position according to their file number
:in !CB.FILE.NB.ASSIGNMENT.

!CB.NON.COMMON.DUMP. This area is used by the MPL Interpreter
AREA to save state when giving up control.

ICB.EOJ.DUMP.AREA

ICB.DATACOM

2018750

This field contains various EOJ parameters
like the EOJ date (in julian format), the
EOJ time (HHMMSS), etc.

Data type description:
01 ICB.EOJ.DUMP.AREA

02 ICB.EOJ.DATE
02 ICB.EOJ .TIME
02 FILLER
02 ICB.EOJ.PROGRAM.STATUS
02 ICB.EOJ .SAVE.ACTUAL.CPA
02 ICB.EOJ.VARIANT

This area is used for the processing of data
comm communicates.

BIT(108)
BIT(20)
BIT(24)
BIT(4)
BIT(24)
BIT(32)
BIT(4)

4-7

4-8

Data type description:
01 ICB.DATACOM

02 ICB.NEXT.ACTION
02 ICB.ERROR.OPTION
02 ICB.MCS.GONE
02 ICB.PROGRAM:.DSDP
02 FILLER
02 ICB.DATACOM.NAME

ICB.LOCKED.SLICE.SIZE This is the size of the LOCKED SLICE.

ICB.CURRENT.VM.POINTER It contains the bit offset, relative to the
start of a partition, of the available
reserved space in that partition.

ICB.VM.MIN.SIZE It indicates the size, in bytes, of the
partition size required to roll-in a
partition. This includes the ICB, Locked
Slice and necessary data and code
segments. It is calculated at roll-out time.

ICB. VM.ACTUAL.SIZE It contains the size of the partition in
bytes. This is always an even number.

ICB.VM.MY.RESERV It indicates the portion of the available
space already reserved (ln bytes).

ICB. VM.LENGTH It contains the length, in bytes, of the
available memory in the partition. This is
always an even number.

ICB.VM.CUR.SEG.OFFSET It is used by VM, when loading code or
data segments into memory, to store the
PST or DST index of this code or data
segment.

ICB.VM.SAVE.AREA This area is used by VM to store the
relative record number in the virtual file
of the first FIB rolled-out to disk. This
avoids loosing space in 1the virtual file
when opening and closing the same file
frequently.

ICB.VM.PHYSIO.SA VED.
ADDR

ICB.MIX.VM.USE

This area is used by VM to store the absolute
bit address in the case of a roll-out or a DP.

It is used by VM for roll-in/roll-out
decisions.

Data type description:
01 ICB.MIX.VM.USE

02 ICB.MIX.IN.OUT
02 ICB.MIX.IN.OUT.TIME

CHAR(16)
BIT(4)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
CHAR(12)

BIT(24)
BIT(4)
BIT(20)

ICB.INTERP.INDEX It contains the Memory Assignment Table index of
the interpreter employed by the program
represented by this ICB.

ICB.ENTRY.SEGM It indicates the index of the code segment
containing the first executable S-OP.

I CB.ENTRY .OFFSET It contains a byte offset into the code
segment indicated by the field
I CB.ENTRY .SEGM. This points to the
first executable S-OP.

ICB.PST.PTR This is the pointer to the Program
Segment Table in bits, relative to the ,.start
of the ICB.

ICB.PST.LGTH It contains the length of the Program
Segment Table in bytes.

ICB.DST.PTR It contains a pointer to the Data Segment
Table in bits, relative to the start of the
ICB.

I CB.DST .LOTH It contains the Data Segment Table length
in bytes.

ICB. TCB.PA.PTR It contains a pointer to the Task Control
Block Preset Area in bits, relative to the
start of the ICB.

ICB.TCB.PA.LGTH It contains the Task Control Block Preset
Area length in bytes.

ICB.CNTL.STACK.PTR It contains a pointer to the interpreter
perform stack. The Task Scheduler returns
to a point in the interpreter based on the
last entry :in this stack.

ICB.CNTL.STACK.LGTH It contains the length of the interpreter
perform stack.

2018750

ICB.CCB.PA.PTR It contains the bit address, relative to the
ICB of the Code Control Block Preset
Area.

ICB.CCB.PA.LGTH It contains the length of the Code Control
Block Preset Area in bytes.

ICB.IFNB.PTR It contains the bit address relative to the
start of the ICB of the Internal File Name
Block.

ICB.IFNB.LGTH It contains the length of the Internal File
Name Block in bytes.

!CB.DUAL.DC.FLAGS It is used in a dual processor
environment.

Data type description:
01 !CB.DUAL.DC.FLAGS

02 !CB.TEMP.NOT.FOR.SLAVE BIT(l)

4-9

02 ICB.RUN.ON.MASTER
02 ICB.IN.USE.ON.SLAVE
02 ICB.DC.RELATED.TASK

ICB.MIX.WAIT.COUNTER It is used to indicat·e the number of
seconds a program has still to be delayed,
according to a WAIT communicate issued.

ICB.SCL.SA VE.AREA This area is used by SCL to save
necessary fields when giving up control;
that is, when handling AD and SF
intrinsics.

ICB.PROG.FIB

ICB. VIRT.FIB

It contains the Program file FIB.

Data type description:
01 ICB.PROG.FIB

02 FILLER
02 ICB.PROG .PACK.ID
02 ICB.PROG .FILE.ID

03 FILLER
03 !CB.OWNER.HASH.VALUE

02 FILLER
It contains the FIB of the Virtual file.

Data type description:
01 ICB.VIRT.FIB

02 FILLER
02 ICB.VIRT.PACK.ID
02 ICB.VIRT.FILE.ID

03 FILLER
03 !CB.EXECUTING.HASH.VALUE

02 FILLER

ICB.PRIORITY .EXTENSION Reserved for expansion

ICB. USER.TYPE

!CB.SHARED. USER.NB

!CB.SLAVE.INTERNAL.
CPA

Reserved for expansion

Reserved for expansion

This field contains the !CB.INTERNAL.CPA
which is destroyed when control is given to
PHYSICAL.IO upon detection of an
ICB.PHY.SAVE.FCB ..

COMMUNICATE PARAMETER AREA

BIT(l)I
BIT(l)
BIT(l)

BIT(2976)
BIT(l 360)
BIT(56)
BIT(l 12)
BIT(l04)
BIT(8)
BIT(488)

BIT(2976)
BIT(1360)
BIT(56)
BIT(ll2)
BIT(l 04)
BIT(8)
BIT(488)

This is the last external communicate sent by the interpreter to LOGICAL.IO on behalf of the user's
program.

The information analyzed here is taken from the fields !CB.ACTUAL.CPA and !CB.FETCH. VALUE
in the Interface Control Block. This fetch value reflects the success or failure of the communicate
analyzed here.

4-10

VERB This gives the hexadecimal value and analysis of the last
verb executed; a list of those verbs is given below, class
by class.

CLASS VERB VALUE VERB SEMANTIC

CLASS A - file type I/ 0
Where appropriate class A
verbs are made conditional
by adding 1 to the
assigned value; for
example, 89 is a
conditional delete.

80 test status
82 read (not console)
84 write (not console)
86 rewrite
88 delete
SA stream control
8C start
8E overwrite
90 read-write
92 read (console)
94 write (console)
96 get
98 put
9C free block
A2 read (shared)
A4 write (shared)
A6 rewrite (shared)
A8 delete (shared)
AA overwrite (shared)

CLASS B - file 01 open
assignment

02 close
CLASS C - field oriented 11 zip

12 display
13 zip and display
14 pause
15 zip and pause
16 display and pause
17 zip, display and pause
lA conditional display
lB zip and conditional

display
IC display without

logging
lD system display
20 accept
21 super accept

CLASS D - data 30 MCS control
communication

31 MCS interrogate
32 MCS redefinition
33 user data comm
34 MCS DCP oriented
35 implementation

2018750 dependent
4-11

CLASS E - miscellaneous

OBJECT

CLASS

CLASSES A AND B

CLASS C

CLASS D

4-12

40
41
42
43
44
49
4A
50
51
52
53
54

date-time
terminate
wait
system status
complex wait
append text
SPO size
log on
log off
run (unconditional)
run (conditional)
read messages queue

The object definition is dependent on the verb
specified, its values are detailed class by class.

VERB

30-34

OBJECT MEANING
The hexadecimal number given here
is the number of the Data Segment
which contains the File
Information Block for the
file to which the
communicate applies.
When the number has
been converted to decimal,
on1e can search for the
data segment in the
"DATA SEGMENTS"
section of the
DP .ANALYZER to
determine which file is
involved in the
communicate.

The hexadecimal number is
the number of the Data
Segment containing the
text area.
The verb of a CLASS D
communicate is used to
spt::cify a general type of
function; the second byte
of the ICB.ACTUAL.CPA,
decoded as the OBJECT,
defines the actual function.
See the manual DAT A
COMMUNICATIONS
SUBSYSTEM form no.1090909
for a complete description of
those values.

CLASS E

ADVERB

2018750

35 02 - DC job goes to EOJ
03 - MCS job goes to EOJ
05 - MCS job goes to BOJ

40 This is the index, in
hexadecimal, into the DST
of the related program.

41 If bit 0 is set, two bytes
are passed back to the
initiating task. If bit 1 is
set, the VM file is locked.

42,44 The 0 BJECT field does
not exist.

43,4A The hexadecimal number is
the number of the Data
Segment containing the
response area.

49 The hexadecimal number is the number
of the Data Segment containing the text
area.

52, 53 The hexadecimal number is the number
of the Data Segment for the data area
containing the text.

54 The hexadecimal number is the number
of the Data Segment for the data area
receiving the text.

The adverb definition is dependent on the verb
specified. Its values are listed below, byte by byte for
each class.

Note that for OPEN and CLOSE communicates, the
adverb field has no meaning, as in this case all
attributes are stored in the file's FPB; see the fields
ADVERB FOR OPEN and ADVERB FOR CLOSE, in
the section entitled FILE ATTRIBUTES FROM FPB.

4-13

4-14

CLASS

CLASS A

CLASS C

VERB

80<VERB< =SF

90< =VERB<= 99

9A

AO<VERB< =AF

lO<VERB< IF

ADVERB MEANING

If the file organization is
sequential and ((the
acicessmode is random and
the VERB > 81) or (the
access mode is sequential
and the VERB = START
)) then:

BYTES 0, 1, 2 represent
the relative record number
of the required record.

If the file organization is
indexed and the VERB
START or the file
organization is indexed, the
accessmode is random and
the VERB = READ, then
only byte 0 is significant;
th'e relevant bit positions
ar,e:

bits 0-5 are always set.

bi1ts 6-7
11 for READ equal, ST ART equal
10 for READ next, START

greater than or equal
01 for READ next,

START greater than
00 for READ next, START

next

byte 0 - this is the DST
index of the work area
segment.

bytes 1, 2 - this is the
offset of the work area
within the named segment.

bytes 3, 4 - this is the
length of the work area.

bytes 0-2 - they give the binary sector
address

These verbs map onto the corresponding
verbs in the range 80-SF.

bytes 0, 1 - this is the
off set into the segment of
the text area.

bytes 2,3 - this is the
l<:mgth of the text area in bytes.

CLASS VERB

20

21

CLASS D

CLASS E 40

2018750

ADVERB MEANING

bytes 0, 1 - this is the offset
into the segment of the
text area.

bytes 2, 3 - this is the
maximum length of the
text area in bytes.

bytes 0, 1 - this is the
off set into the code of the
text area.

bytes 2, 3 - this is the
maximum length of the
text area in bytes.

byte 4 - if bit 0 is set,
two bytes are passed back
to the initiating task.

bytes 7, 8 - they contain
the message passed back to
the initiating task .
This field describes the
entity on which the data
communication
communicate has to
operate. See the manual
DATA
COMMUNICATIONS
SUBSYSTEM form no. 1090909
for a complete description of
the values.

bytes 0, 1 - this is the
off set in the segment of
the date or time value.

byte 2 - only bits 0 and
1 are significant. The
possible values are:
00 - the date is stored in
BCD in the format
YYMMDD
01 - the date is stored in
BCD in the format
YYDDDO
10 - the time is stored in
BCD in the format
HHMMSS
11 - the time is stored as
a binary number of tenths
of a second.

4-15

(continued)
CLASS

4-16

VERB

41

42

43

44

49

4A

52,53,54

ADVERB MEANING

bytes 0, 1 - they contain
the message for the
initiating task, if bit 0 of
the OBJECT is set.

bytes 0, 1 - they contain
the binary number of
seconds.

bytes 0, 1 - they contain
the off set into the segment
for the response area.

bytes 2, 3 - they contain
the maximum length of the
response area in bytes.

bytes 0, 1 - they give the binary
number of seconds.

byte 2 -- bit 0 is set if the NOLOCK
option has been specified.

bytes 3-9 - each byte contains 2 event
class indicator values, the
first 0 terminates the list.
The event class indicators
are listed in priority order.

byte 10 - it contains the DST index
of the response area.

bytes 11, 12-they contain the bit offset
into the segment of the
response area.

bytes 13, 14-they contain the
maximum length of the
response area in bytes.

bytes 0, 1 - they contain the bit offset
into the segment of the
text area.

bytes 2,3 - they contain the length of
the text area in bytes.

bytes 0, I - they contain the bit off set
into the segment for the
response area.

bytes 0, l - they contain the bit offset
into the segment for the
data area.

bytes 2,3 - they contain the length of
the data area in bytes.

FETCH VALUE The hexadecimal value is the fetch value returned to the
interpreter by LOGICAL.IO. This field is three bytes
long; all the values are displayed in hexadecimal.

BYTE 0 BYTE 1 BYTE 2 MEANING

80 fatal error, for example, invalid
communicate;
if bytes 1 and 2 are equal to Fxxx, see
section 5-2 System Dependent Fetch
Values in the B 1000 CMS 3.03 Release
letter; ~

if not, bytes 1 and 2 contain an event
number (see section 7 in the CMS
Systems Software Operation Guide form
no. 2007258-004).

40 a resource is temporarily unavailable
(conditional failure).
bytes 1 and 2 contain the event number
corresponding to the message that is
printed on the SPO. If no message
corresponds to the conditions, bytes 1
and 2 contain 0 with the exception of
the BLOCK-LOCKED condition, when
they contain @9020@.

20 and the 10 the end of file condition
previous is encountered on input
communicate was for sequential access
a
file access

20 00 an invalid key has been processed

10 a sequence error on output to an
indexed file is detected

20 a duplicate key exists on an indexed
file

30 no such record exists (attempt to read
beyond the end of file)

40 there is a boundary violation (attempt
to write beyond the allocated area)

30 00 a permanent hardware error is detected
on this file

10 a read error on the data file is detected

20 a write error on the data file is
detected

30 a read error on the key file is detected

40 a write error on the key file is detected

40 a block count error is detected on close

90 10 the communicate is defined but not
implemented

2018750
4-17

(continued)
BYTE 0

20 and the
previous
communicate was
a ZIP

HYTE 1

00

80

20 and the 90
previous
communicate was
a complex wait

4-18

BYTE 2

20

10

20

30

40

50

60

70

80

90

AO

BO
co

DO
Dl

FO
Fl

F2

F3

F4

30

40

50

MEANING

a block-lock condition is encountered

the program file is not found

the interpreter file is not found or
tlhere is a release level mismatch

tlhere is no memory available

tlhere is no user disk or the directory is
full

the mix is full

tlhere is a usercount error

there is duplicate pack

the load request is invalid

an MCS is already present

a disk error is detected

a code file error is detected

the data communication load request is
invalid

the zipped program has been DS'ed

the zipped program has been DP'ed

a suitable mix is required

dual alphabet/reverse escapement is not
supported

there is insufficient real store

the disk is locked

a faulty file equate is detected

an invalid non-load request is detected

unknown or non-implemented event in
event list

SCLQ wait requested by a task not
controlling remote system operation

SUBQ wait requested on no queu1es
attached or all queues have become
detached during the wait.

(continued)
BYTE 0 BYTE 1 BYTE 2 MEANING

10 00 00 the queue is empty on a conditional

01

00 00 00

PERFORM STACK/CONTROL STACK

PERFORM STACK (COBOL and RPG)

receive or a no space condition is
encountered on a conditional send.

a limit exceeded condition is
encountered on a conditional send

no error is detected

Each "PERFORM" in COBOL and subroutine call in RPG causes an entry in the Perform Stack.
Each "EXIT" in COBOL and subroutine end in RPG causes an entry to be removed. Therefore, the
Perform Stack reflects the level of nesting in a program.

The 'PERFORM STACK' area of an RPG or COBOL DP .ANALYZER listing reflects the level of
nesting at the time of the abnormal terminate. All active PERFORMs or subroutines will have entries
on the stack.

The last entry listed reflects the top of the stack; that is, the most recently activated paragraph or sub­
routine ..

2018750

NOTE
Due to the nature of RPG and the "program cycle" concept, a lot of code
is generated by the compiler which the user does not know about. It is, there­
fore, common to lhave entries on the Perform Stack though no subroutines
are employed in the user's source.

KEY This is used by the interpreter to correlate PERFORM
entrance and exit statements for COBOL programs. In
RPG this field is always 0.

SEGMENT

DISPL

This gives the code segment number of the code
segment containing the calling PERFORM or subroutine.

This gives the displacement into the code segment given
in "SEGMENT" at which the calling PERFORM or
subroutine is found.

SEGMENT /DISPL can be related to the corresponding
line number in the source by using S options to obtain
a map.

In RPG, the S options "SMAP", " SPARMAP" or
'' S XMAP'' will cause the ''LINE MAP'', needed to
correlate SEGMENT /DISPL to line number, to be
generated.
In COBOL, the "'SLINE-MAP" option will generate the
needed map.

4-19

LINE COUNT This gives the contents of the line
count register at the time of the call­
ing PERFORM or subroutine. To
obtain this information, certain
options must be specified at compile
time:

- for COBOL, the "$LINE-CODE"
option must have been specified;

- for RPG, column 15 of the H card
specification must have been set
to 1.

With this information, the instruction
containing the calling PERFORM or
subroutine is identified ..

CONTROL STACK (MPL)

When a procedure call is encountered, information about the currently active procedure is stored as
an entry on the Control Stack. This information allows control to return to this procedure when the
called procedure is exited. An exit from a procedure, therefore, causes an entry to be removed from
the Control Stack.

The 'CONTROL ST ACK' area of an MPL DP .ANALYZER listing displays the state of the Control
Stack at the time of the abnormal. terminate, and therefore reflects the level of nesting at this time.
There will be an entry in the Control Stack for every active procedure with the exception of the proce­
dure being executed at the time of the abnormal terminate. Corresponding information about the cur­
rently executing procedure is found in the 'RUNNING PARAMETERS' area of the DP.ANALYZER
listing. The last entry listed in the Control Stack reflects the top of the stack; that is, the last calling
procedure.

Any executable instruction can be addressed using a code segment number and off set into that segment.
The off set of the start of each procedure within a code segment, relative to that code segment, is also
stored in that code segment, and associated with a procedure number. A reference to a code segment
number (PSN) and a procedure number (SPN) within that code segment will, therefore, uniquely ad­
dress a procedure.

Correlation between the procedure number /return address and the line number in the source may be
found at the end of the compiler listing if the $ XMAP option has been specified.

4-20

LEXICAL LEVEL

SEGMENT
(PSN)

This is the lexical level of the procedure whose state is
saved by this entry. This corresponds to the lexical level
given in the first column on the left-hand side of a
source listing generated at compile time.

This is the code segment number in which the
procedure is located.

PROCEDURE
(SPN)

RETURN
ADDRESS

REG1/REG2

This is the procedure number within the code segment
of the procedure

This is a byte off set from the start of the code segment
representing the address of the next executable
instruction to which control will return when the
procedure is reinstated.

This reflects the most frequently used lexical level of the
procedure. This information is useful only when the
code segment has to be decoded.

PROGRAM SEGMENT TABLE

Tlhe 'PROGRAM SEGMENT TABLE' section of a DP.ANALYZER listing displays information about
a user program's code segments.

All the information listed in this section is read from the structure "PROGRAM SEGMENT TABLE"
allocated in the Locked Slice. A complete description of the layout of this structure is stated in the
chapter entitled LOCKED SLICE; each member of the structure has been labelled.

For each field listed, its name shown on the DP .ANALYZER listing, its name shown in the PRO­
GRAM SEGMENT TABLE structure and its description, are stated.

2018750

SEGMENT
NUMBER

SEGM TYPE

IN VIRTUAL

TO BE
LOADED

IN USE

IN CORE

LOCK IN
MEMORY

READ/WRITE

It represents the index number of the segment.

SEG.DESCR.TYPE

It contains the value 00.

IN.VIRTUAL.FILE
H indicates, when set, that the segment has already
been copied to the virtual file and therefore has a disk
address assigned (relative record number).

TO.BE.LOADED
J[t indicates, when set, that the corresponding segment
has to be loaded by VM.

IN.USE
It indicates, when set, that the segment is in use and
may not be rolled-out or must be rolled-in if not
present before giving the control back to the interpreter.

IN.CORE
H indicates, when set, that the segment is present in memory.

LOCK.IN .MAIN .STORE
It indicates, when set, that the segment is locked in
memory.

READ.WRITE.SEO
It indicates, when set, that the segment is of the
READ/WRITE type; that is, the user may read and
write in it.

4-21

DISK ADDRESS

SEGM LENGTH

MEMORY
ADDRESS

DESCR FN

ROLL-IN
COUNTER

SEG.DESCR.DSK.ADD
This gives the relative sector number of the segment in
the Program file or in the Virtual file.

SEG.DESCR.LGTH
This gives the length of the segment in bytes.

SEG.DESCR.MEM.ADD

This gives the memory address~, in bits, of the segment
relative to the ICB start address.

SEG.DESCR.FN
This gives the file number in the ICB.FILE.LIST, used
at half close time to keep a link with the file.

SEG.DESCR.ROLL.IN.COUNTER

H indicates the number of times the segment has been
rolled in.

DATA SEGMENT TABLE

The 'DAT A SEGMENT TABLE' area of a DP .ANALYZER listing displays information about a user
program's data segments. The format of this table is exactly the same as for the Program Segment
Table except for the following fields:

SEGMTYPE

SEGM LENGTH

SEG.DESCR.TYPE
It indicates the segment type. The possible values
are 01 for an FIB and 00 for anything else.

SEG.DESCR.LGTH
If the segment contains an FIB and the file is not
opened, it indicates the number of the FPB segment.
Otherwise, it gives the length, in bytes, of the
segment.

INTERNAL FILE NAME BLOCK

The INTERNAL FILE NAME BLOCK section contains a table of elements, one per file declaration
in the program.

4-22

FIB.NB

PPB.NB

INTERNAL
FILE NAME

It gives the index number of the data segment which
contains the associated FIB.

It gives the index number of the data segment which
contains the associated FPB.

It gives the internal file name.

FILE INFORMATION

Information listed in this section is read from a DAT A SEGMENT containing
- the File Information Block (FIB), if the file is opened.
- the File Parameter Block (FPB) in all other cases.

The correspondence between the Data Segment and the described FIB or FPB is stated explicitly in
the Data Segment section. It may also be found using the Internal File Name Block allocated in the
Locked Slice; moreover, the latter structure IFNB may be used as an index to the Data Segment Table
to determine the state of the file: opened or closed. ·

This chapter is divided into two main sections:
- one describes the parameters displayed for an opened file; the File Control Block (FCB), file's
buffers, control information for its buffers, extended information for indexed files, data file FIB
for an indexed file are listed.
- one describes the parameters displayed for a closed file, the FPB is listed.

In this section, for each field displayed, the following is stated:
- its name, as shown on the DP .ANALYZER listing.
- its name, as shown in the FIB or FPB structure description detailed in the DAT A SEGMENT
section.
- its description.

Note that for each compound field, its data type description has been given as a memorandum; a com­
plete description of the members of those structures is given in the manual "B 1000 CMS MEMORY
DUMP ANALYSIS USER'S GUIDE, form no. 2018909.

INFORMATION FOR AN OPENED FILE

INFORMATION FROM FCB

In the 'FILE INFORMATION' area of a DP .ANALYZER listing, the first three rows of information
refer to the File Control Block (FCB) of the file.

2018750

CODE
POINTER

BUFFER
ADDRESS

FCB.CODE.PTR
It contains the absolute bit address to
which a return is effected after completion
of the current 1/0. If bits 0-3 are zero, it
:indicates a return to the PHYSICAL 1/0
resident code, otherwise the value in bits
0-3 is the PHYSICAL 1/0 overlay
:identification.

FCB.CUR.BUF.ADDR
This field contains the absolute bit address
of the buff er area for the last or current
1/0 operation.

4-23

BUFFER FCB.CUR.BUF.LENGTH
LENGTH This is the length in bytes of the

buffer for the cunent or last I/O
operation.

OP CODE PCB.OP.CODE
This is the actual opcode sent to the I/O
control for the current or last 1/0
opt:~ration.
See the appropriate technical manual
referring to the device.

DCB ADDRESS PCB.DCB.ADDRESS
This field contains the absolute bit address
of the Device Control Block (DCB) to
which this FCB is currently attached.

FILE STATUS PCB.FILE.STATUS
This field contains a set of one bit flags
used by PHYSICAL.IO to control 1/0
activity.

Data type description:
01 PCB.FILE.STATUS

02 FCB.USE.SYSMEM BIT(l)
02 FCB.CUR.USE.SYSMEM BIT(l)
02 FCB. USE.AV AIL.TABLE BIT(l)
02 PCB.CUR.USE.AVAIL.TABLE BIT(l)
02 PCB.NEW.OLD BIT(l)
02 PCB.OPENING BIT(l)
02 PCB.CLOSE BIT(l)
02 FCB.USE.FPB.VN BIT(l)

03 PCB.TRANSLATE.COMPLETE BIT(l)
02 PCB.SEARCH BIT(l)
02 FCB.ERRB BIT(l)
02 PCB.QUEUED BIT(l)
02 PCB.SUSPENDING.TASK BIT(l)
02 PCB.ACTIVE BIT(l)
02 PCB.IN.USE BIT(l)
02 PCB.DISPLAY BIT(l)
02 PCB.READING.LABEL BIT(l)
02 PCB.HALF.CLOSED BIT(l)
02 FILLER BIT(7)

DEV.KIND PCB.DEVICE.KIND
This value indicates the type and
capabilities of the device to which this
FCB is connected.

RETRY COUNT PCB.RETRY.COUNT
It contains the number of retries
attempted so far for the currient 110. It is
reset to zero when an 1/0 is successful.

CHANNEL NR PCB.CHANNEL
This is the physical channel number to
which the file associated with this FCB is
attached.

4-24

FILE NR

FIB ADDRESS

MIX NUMBER

QUEUE LINK

RESULT
DESCR.

FCB.FILE.NR
This is the internal file number assigned
to the file associated with this FCB. The
file number is assigned by LOGICAL.IO
when the file is opened and will be in the
range @03@ - @48@ .
A value of @FF@ indicates that
PHYSICAL.IO is currently using the FCB
for a SEARCH or for loading one of its
overlays.

PCB.FIB.ADDRESS
This is the absolute bit address of the FIB
of the file associated with this FCB.

PCB.MIX
It contains the mix number of the
program owning the file associated with
this FCB.

FCB.Q.LINK
This is the absolute bit address of the
next FCB in either the initiate queue or
the completion queue.

PCB.RD
It contains the result descriptor returned
from an unsuccessful I/O operation or the
last result descriptor with an 1/0
exception from an I/O operation that
succeeded after one or more retries.

PCB.SA VE.SCRATCHPADS PCB.SA VE.SCRATCHP ADS
It contains the length, begin address and
end address of an area to be allocated or
de-allocated from the Available Table. It
is used by PHYSICAL.IO to update the
disk file header.

PCB.RETURN.LIST PCB.RETURN.LIST

2018750

This is the list of return addresses queued
by PHYSICAL.IO while processing an 1/0
communicate.

PCB.RETURN PCB.RETURN

MY.USE
OTHER.USE

This contains the pointer to the
PCB.RETURN.LIST.

FCB.MYUSE FCB.OTHERUSE

Those fields are valid only for a disk
FCB.
The first field contains the value of
MYUSE with which the file was opened
(input, output, input-output).

4-25

4-26

MEMORIZE
DCB

DISK ADDRESS

CUR.AREA
ADDRESS

DFH.ADDRESS

DIR.ENTRY
ADDRESS

AREA NR

The second field contains the value of
OTHERUSE with which the file associated
with this FCB was opened.

Data type description:
01 FIELD.DESCRIPTION

02 FCB.MYUSE
03 TO.USE.AS.OUTPUT
03 TO.USE.AS.INPUT

02 FCB.OTHERUSE
02 FILLER

The possible FCB.OTHERUSE values are:

- 110 or 100 meaning free access
- 010 or 000 meaning lock access
- 001 meaning shared access.

PCB.MEMORIZE.DCB

This field is valid only for a disk FCB.
The address of a DCB is stoned here by
PHYSICAL.IO when needed.

PCB.DISK.ADDRESS
This field is valid only for a disk FCB.
It contains the absolute disk address of
the sector on which the current or last
I/ 0 operation took place.

PCB.CUR.AREA.AD

This field is valid only for a disk FCB.
It contains the absolute sector address of
the current area of the disk file.

FCB.DFH.ADDRESS
This field is valid for a disk FCB.
It contains the absolute sector address on
disk of the disk file header for the file
which is associated with this FCB.

FCB.DIRENTRY .ADDRESS
This is valid only for a disk FCB.
It contains the absolute disk address of
the File Name List sector which contains
the entry for the file associated with this
FCB.

FCB.AREA.NR and PCB.AREA.COUNT
This is the number of the area
FCB.AREA.NR (@0@ - @F@) in which
the last or current I/O operation
(READ or WRITE) occurred.

PCB.AREA.COUNT represents the number
of areas required to allocate the whole
file.

BIT(2)
BIT(l)
BIT(l)
BIT(3)
BIT(3)

2018750

DIR.INDEX

SECTOR
NUMBER

RE TR.ITEM

SEARCH ST.

SEARCH.OP.

SEARCH SKIP

Data type description:
01 AREA NR

02 FCB.AREA.NR
02 PCB.AREA.COUNT

FCB.DIRENTRY .. IX
This field is valid only for a disk FCB.
It contains the index within the File Name
List sector of the entry for the file
associated with this FCB. The range is
@O@ - @A@ (there are 11 entries in each of
the File Name List).

FCB.SECTOR.NR

This field is valid only for a disk FCB. It
contains the absolute disk address of the
sector currently under examination during
a SEARCH. If the SEARCH has
terminated, this will be the absolute disk
address of either the sector containing the
search argument, if the search was
successful, or the first sector after the
search area, if the search was
unsuccessful.

PCB.RETRIEVED.ITEM
It contains the absolute disk address giving
the location of an item on which a
successful SEARCH has been performed.

PCB.SEARCH.STATUS
This field is valid only for a disk FCB.
The format of this field is:

bits 0-3 are not used
bit 4: if set, the device is a disk pack
bit 5: if set, the search has terminated
bit 6: if set, the search was successful
bit 7: if set, the indexed search has
terminated.

FCB.SEARCH.OP.CODE
This field is valid only for a disk FCB.
It contains the opcode for a SEARCH.
Possible values are:

@O 1@ for a disk directory
search
@03@ for an indexed search
(key file)

PCB.SEARCH.SKIP
The first digit gives, in hexadecimal format,
the number of entdes to skip in the
directory for a SEARCH SKIP.

BIT(4)
BIT(4)

4-27

ARGUM.ADDRESS

SPACE.TO
ALLOC.

CURRENT.AREA
RANGE

The maximum value is @B@.
The second digit is used to save 1the value of the
first digit in the case of a retry.

PCB.ARGUMENT.ADDRESS
This is the absolute bit address of a string
which is the argument for a SEARCH
operation.

PCB.SPACE.TO.ALLOCATE

This field is valid only for a disk FCB.
It contains the length in sectors needed
for allocation of the next area of a disk
file.

PCB.CUR.AREA.RANGE

This field is valid only for a disk FCB.
It consists of two 24 bit fields which
contain the block numbers of the first and
last blocks within the current area. It is
used to determine whether a READ or
WRITE points outside the current area.

FILE ATTRIBUTES FROM FPB

4-28

IMPLEMENTATION FIB.FPB.IMPL.LEVEL.NB
LEVEL NUMBER It contains the implementation level

number set by the compiler.

MUL TIFILE-ID FIB.PPB.PACK.ID

FILE-ID

FILE-ID -
HASH.VALUE

REEL NUMBER

FILE TYPE

It contains the name of the device
containing the file, if applicable.

FIB.PPB.FILE.ID
It contains the file name.

FIB .FILE.NB
It contains the hash code of the user code
site .. The value is @20@.

FIB.PPB.REEL.NB
It contains the current reel or cassette
number. It is non-significant when the
device is not a tape.

FIB.PPB.FILE. TYPE
The different file type values are:
00 Normal Data File
01-0E Source Language File

2018750

HIGHEST
RECORD
NUMBER

DEVICE KIND

WORK AREA
SEGMENT
NUMBER

OFFSET OF A
WORK AREA
WITHIN
SEGMENT

RECORD SIZE
(BYTES)

BUFFER SIZE
(BYTES)

MAXIMUM
FILE SIZE
(RECORDS)

OF Source Library File
10-12 Ordinary Program (S-code)
13 Protected System Program for

example, SYS-SUPERUTL
1 C-IF Interpreter
20 SYSMEM File
21 SYSLANGUAGE File
22 MCP-related File for example,

SYSCONFIG
30 DUMP File
31 LOG File
80 Indexed Data File
81 Indexed Key File
AO Printer Backup File

FIB.FPB.HIGHEST.RECD.NB

It contains the relative record number of
the highest record within the file, that is,
closest to End-Of-File.

FIB.PPB.DEVICE.KIND
This is the hexadecimal value and analysis
of the device containing the file.

FIB.FPB.WA.SEGM.NB

It contains the Data segment table index
of the segment containing the work area
for this file.

FIB.PPB.WA.OFFSET

It contains the offset into the work area
data segment where the work area is
found.

FIB.PPB.REC.SIZE

It contains the record size in bytes.

FIB.FPB.BUF .SIZE

It contains the size of a buff er (block) in
bytes.

FIB.PPB.MAX.FILE.SIZE

It contains the maximum number of
records the file can contain .

4-29

4-30

NUMBER OF
BUFFERS

FIB.FPB.NB.BUF

It contains the number of buffers
requested for the file. However, for some
file types this field value is fixed. If the
file its

FLAGS

- SHARED, this field is set to 1;

- RANDOM, if one buffer is specified,
this field is set to 1; otherwise it is set to
2;

- a backup file, this field is set to 2.

FIB.PPB.FLAGS
This is the group name for various flags
associated with the file attributes.

Data type description:
01 FIB.PPB.FLAGS

02 FIB.PPB.SPEC.FORM
03 FIB.FPB.DUP.ALLOWED

02 FIB.FPB.UPT.FILE
02 FIB.PPB.NO.LABEL
02 FIB.FPB.COND.FILE
02 FIB.FPB.PROG.FILE
02 FILLER

ADVERB FOR FIB.FPB.ADV.CLOSE
CLOSE It contains the adverb describi111g the

CLOSE attributes. The bits are defined as
follows:

bit 1 - when set this bit indicates:
- in the case of HALF-CLOSE, no
rewind has to be performed
- otherwise, a CHANGE REEL has to
be performed leaving the file opened.

bits 2,3,4 - 000 for HALF-CLOSE
011 for CLOSE with LOCK
101 for CLOSE with PURGE
111 for CLOSE with REMOVE
001 for CLOSE with RELEASE

All other combinations will be treated as
HALF-CLOSE.

bit 5 - when set, a CRUNCH is
requested.

bit 6 - when set, a MERGE of the overflow
region into the index region is
requested.

ADVERB FOR
OPEN

FIB.PPB.ADV.OPEN
It contains the adverb describing the

BIT(8)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(3)

OPEN attributes. The bits are defined as follows:

2018750

CYCLE
NUMBER

GENERATION
NUMBER

CREATION
DATE
(YYDDD)

LAST ACCESS
DATE YYDDD

SPARE BYTES
IN LAST
STREAM

bit 0 - reserved for expansion .

bit 1 - when set, open with EXTEND
has to be performed.

bits 2, 3, '4 -
110 or 100 = free access
010 or 000 = lock access
001 = shared access.
bit 5 when set, the backup is named.
bit 6 - when set, the usage is OUTPUT.
bit 7 - when set, the usage is INPUT.
bits 8, 9 - 01 =do not backup

10 =must backup
bits 10, 11 - reserved for expansion.

bits 12, 13 -
00 illegal
01 RANDOM
10 SEQUENTIAL
11 STREAM

bits 14, 15 - reserved for expansion.

Bits 2, 3 and 4 are collectively ref erred to
as OTHERUSE.
Bits 5, 8 and 9 are relevant only to
printer files.
Bits 6 and 7 are collectively referred to as
MYUSE.
Bits 12 and 13 are collectively referred to
as ACCESSMODE. ACCESSMODE
RANDOM is only applicable to disk and
ICMD files.

FIB.PPB.CYCLE
Reserved for expansion .

FIB.PPB.GEN.NB

It contains the generation number of the
file.

FIB.FPB.CREAT .DATE

It contains the file creation date in the
format YYDDD.

FIB.PPB.LAST .ACCESS.DATE
It contains the last access date in the
form YYDDD.

FIB.PPB.SPARE.CHAR

It contains the number of spare bytes in
the last record of a STREAM file.

4-31

SAVE FACTOR FIB.FPB.SAVE.FACT
It indicates the number of days from the
creation date for which the fifo is valid.
The file is closed PURGE when it
becomes no longer valid. The default is
999. The file is never closed PURGE if
the save factor is 999.

CONTROL INFORMATION FROM FIB

FIB.AREA.ADDR.AND.
LGTH FIB .. AREA.ADDR.LGTH

This 64 byte field is reserved for the 16 areas
that might be used by the file. For each area
allocated:

the 2 first bytes contain the address, in
allocation units, of the area

the next 2 bytes contain the length of the
area in allocation units.

FIB.COMMUNICATION. FIB.COMM.AREA
AREA It is used to communicate with

PHYSICAL.IO. It contains an internal
communicate describing the desired action.

Data type description:
01 FIB.COMM.AREA

02 FIB.COMM.VERB
02 FIB.COMM.BLK.NB

03 FIB.SEARCH.ADD
02 FIB.COMM.MEM.BLK.ADD

03 FIB.OPEN.CLOSE.BUF.AD
04 FIB.BUF.AD

05 FIB.KEY .MEM.ADD
02 FIB.FILE.NB
02 FIB.REPLY.WORD
02 FIB.CUR.BLK.LGTH

03 FIB.SEARCH.LOTH

FIB.FILE.STATUS FIB.FILE.STATUS

FIB.VARIO US.FLAGS

The first bit is set if the file has been half
closed and must be half opened.

FIB.VN
These bits are defined as follows:

BIT(8)
BIT(24)
BIT(24)

BIT(24)
BIT(8)
BIT(24)
BIT(24)
BIT(24)

bit 0 - it controls the OPEN/CLOSE messages. It
prevents the messages from being displayed
multiple times.

bits 1,2- they are used by PHYSIO

4-32

bit 3 - it indicates that the file-id in the
FIB should be used for display and
not the file-id in the FPB

bit 4 it indicates that the buffer pointed to
by PH.OUT.BUF.INDEX has been flushed

bit 5 it indicates the opening of a backup
file is in process

bit 6 it indicates that a backup file should
be opened when an open of a printer
file has failed

bit 7 - it indicates that this FIB is for
a backup file

FIB.NB.SECT.PER.BLK FIB.NB.SECT.PER.BLK
It is set by PHYSICAL.IO and used by
LOGICAL.IO to compute area range.

FIB.BUF.N.FILE.STATUS FIB.BUF.N.FILE.STATUS

2018750

This is the group name of fields
containing information concerning the
management of the file buffers and the
current status of the file. Displacements,
in digits, relative to the start of the
structure (0-relative) have been stated
allowing an easier access to one field.

Data type description:
01 FIB.BUF.N.FILE.STATUS

02 FIB.FPB.INDEX
02 FIB.FILE.ST AT

03 FIB.FILE.OPENING
04 FIB.NEW.FILE

03 FIB.FKLE.OPEN
03 FIB.CLOSING.FILE
03 FIB.SHORT.BLK

02 FIB.LAST.COMM
02 FIB.STOP.FOR.READ
02 FIB.INH.READ.AGAIN
02 FIB.ERROR
02 FIB.LAST.BLK.DET
02 FIB.LOG.EOF
02 FIB.ACT
02 FIB.EOF
02 FIB.BWD.REQ

03 FIB.OPEN.EXTEND.ALLOWED

02 FIB.ERROR.REPLY.WORD
03 FIB.AD.DCB

02 FIB.SAVE.RETURN.ADDR
02 FIB.REC.PER.BLK
02 FIB.TOT.REC.COUNTER

BIT(8)
BIT(4)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(4) DIS 3
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)

BIT(24)
BIT(24)
BIT(24)
BIT(16)
BIT(20)

4-33

4-34

02 FlB.NB.REC.IN.LAST.BLK
02 FIB.LAST.BLK.NB
02 FIB.PH.BLK.NB

03 RET.ADDR.IN.I.S
02 FIB.OUT.PH.BLK.NB

03 CURRENT.LOG.BUFFER
02 FIB.BUF.INDEXES

03 OUT.PH.BUF.INDEX
03 LOG.BUF.INDEX
03 PH.BUF.INDEX

02 FIB.LOG.REC.NB
03 FIB.DATA.FILE.PTR

02 FIB.LOG.BLK.NB
02 FIB.HIGHEST.KEY
OZ FIB.BUF.STAT.AREA (17)

03 BUF.STAT
03 FIB.PRINT.CNTL

04 FIB.SAVE.BUF.INDEX

The following fields aid in determining
the last communicate and the current
processed record, if existing.

FIB.LAST.COMM It indicates the last communicate
processed for the file. Possible values and
their meaning are given below.

@l@ - open
@2@ - read
@3@ - write
@4@ - delete
@5@ - rewrite
@6@ - overwrite
@7@ - start
@9@ - test status
@A@ - read next
@B@ - unsuccessful read next
@F@ - unsuccessful start

This field is initialized to zero.

FIB.LOG.EOF It indicates, when set, that the logical
end-of-file has been detected. It is set
after the last record of the file has been
read.

LOG.BUF.INDEX It indicates the relative buffer number (0-
relative) used for the current communicate
to LOGICAL.IO. It is initialized to zero.

FIB.LOG.REC.NB J[t contains the relative record number (1-
relative) of the record involved in the

BIT(16)
BIT(24)
BIT(24)
BIT(24)
BIT(24)
BIT(24)
BIT(24)
BIT(8)
BIT(8) DIS 51
BIT(8)
BIT(24) DIS 55
BIT(24)
BIT(24) DIS 61
BIT(24)
BIT(24)
BIT(8)
BIT(16)
BIT(8)

current communicate. This field is not
significant for the data file of an I/S file.
H is initialized to zero.

FIB.LOG.BLK.NB It contains the relative block number (0-
relative) of the block contained in the
buffer pointed to by LOG.BUF.INDEX.
This field is not significant for the key file of
an I/S file. It is initialized to @FFFF@. The
relationship between the block number and
the record number is :
FIB.LOG.BLK.NB = (FIB.LOG.REC.NB
- 1)/(BUFFER SIZE/RECORD SIZE)

FIB.TO.CONSIDER FIB.TO.CONSIDER

FIB.COR.PTR

This is the group name for fields
pertaining to an indexed file FIB.

Data type description:
01 FIB.TO.CONSIDER

02 WORK.WITH.EXTENDED.FIB
02 FIB.COMM.FOR.LOG.IO
02 FIB.COMM.FOR.LOG.IO.TERM
02 FIB.LS.FILE
02 EXTENDED.FIB.ADD

03 FIB.PCW

FIB.CALLING
This area is used when transferring
control back to LOGICAL.IO to identify
the calling module and displacement into
that module desired by LOGICAL.IO.

Data type description:
01 FIB.CALLING

02 FIB.CALLING.MOD.NB
02 FIB.CALLING.DISPL

FIB.SUPERLOGIO.FLAGS

BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(24)
BIT(l6)

BIT(24)
BIT(8)
BIT(l6)

FIB.SUPERLOGIO/
INDEXED ST A TUS This first bit is set when the LOGIO module works

in SUPERLOGIO mode.

FIB.AREA.RANGE

FIB.BACKUP.INFO

2018750

FIB.AREA.RANGE
It is set up by PHYSICAL.IO at area
allocation time. It indicates the first and
last sector allocated.

Data type description:
01 FIB AREA.RANGE

02 FIB.AREA.MIN
02 FIB.AREA.MAX

FIB.BACKUP.INFO
This field is used as a save area for various

BIT(48)
BIT(24)
BIT(24)

backup information needed when a DIRECT TO
BACKUP has been asked for, or if a backup file has
been renamed.

4-35

4-36

FIB.TO.CONSIDER

Data type description:
01 FIB.BACKUP.INFO

02 PPB.PACK.ID.SAVE
02 FIB.PPB.FILE.ID.SAVED
02 PPB.FILE.ID.SAVED
02 FIB.PPB.FILE.TYPE.SAVED
02 FIB.PPB.DEVICE.KING.SAVED
02 FIB.BACKlJP.NUMBER
02 FIB.NAME.SWAPPED
02 FIB.DIRECT.TO.BACKUP
02 FIB.DISK.FOR.BACKUP.CHECK
02 FILLER

FIB.TO.CONSIDER
This is the group name for fields pertaining to
an indexed file FIB.

Data type description:
01 FIB.TO.CONSIDER

02 WORK.WITH.EXTENDED.FIB
02 FIB.COMM.FOR.LOG.IO
02 FIB.COMM.FOR.LOG.IO.TERM
02 FIB.l.S.FILE
02 EXTENDED.FIB.ADD

03 FIB.VIRT.FILE.AREA.LGTH
03 FIB.PCW

FIB.STREAM.INFO STREAM.INFO
This is the group name for fields
pertaining to STREAM 1/0 operations.
Some fields of this area are also re­
mapped to handle SHARED files as
STREAM files cannot be opened
SHARED.

Data type description:
01 STREAM.INFO

02 FIB.STR.PTR
03 PART.OF.FIB
03 FIB.TOSF.DST.E'.'JTRY.PTR

04 FIB.TOSF.FILE.PTR
04 FIB.TOSF.MIX.PTR

02 FIB.STR.BUF.REM
03 REL.DI SP .OF .FIRST .FIB

02 FIB.STR.NB.BYTES.E\J".LAST.BLK

FIB.ADDR.OF.BUFFERS FIB.ADDR.OF.BUFFERS
It contains the bit address of the first buff er
relative to the FIB.

BIT(56)
BIT(96)
BIT(96)
BIT(8)
BIT(8)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)

BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(24)
BIT(16)
BIT(16)

BIT(16)
BIT(2)

BIT(5)
BIT(3)

BIT(l6)
BIT(l6)
BIT(l6)

COMMON.BUF.STAT

REAL.BLOCK.SIZE.ON.
DISK

NB.OF.BLOCK.PER.
BUFFER

LOGICAL.BUFFER.SIZE

LOGICAL BLOCK INFO

BUFFERS

COMMON.BUF.STAT
This field is displayed only if LOGIO works in
SUPERLOGIO mode. It remaps the first three
entries of BUF.STAT.AREA defined in
FIB.BUF.N.FILE.STATUS.

REAL.BLOCK.SIZE. ON.DISK

This field is displayed only if LOGIO works in
SUPERLOGIO mode. It contains the block size on
disk in bytes.

NB.OF .BLOCK.PER.BUFFER
This field is displayed only if LOGIO works in
SUPERLOGIO mode. It contains the number of
blocks per buffer.

LOGICAL.BUFFER.SIZE
This field is displayed only if LOGIO works in
SUPERLOGIO mode. It contains the buffer size. It
is equal to:

REAL.BLOCK.SIZE.ON.DISK.* NB.OF.BLOCK.PER.BUFFER

LOGICAL.BLOCK.INFO
These fields are displayed only if LOGIO works on
SUPERSUPERLOGIO mode. LOGICAL BLOCK 2 and
LOGICAL BLOCK 3 contain the top and tail block
numbers of the blocks contained in buffers 1 and 2. A
block number is expressed on 24 bits.

The contents of the file's buffers and their status are displayed next.

EXTENSION FOR INDEXED FILES
If the file is a Key file, the Key File Parameter Block (KFPB) and the Data file FIB will be displayed.
The KFPB contains information associating the Data file ta the Key file.

KFPB.IMPL.LEVEL FIB.KFPB.IMPL.LEVEL

2018750

It contains the implementation level of the
Data file associated with this Key file. It
corresponds to FIB.FPB.IMPL.LEVEL.NB.

KFPB.PACK.ID FIB.KFPB.PACK.ID
It contains the name of the device
containing the Data file, if applicable.

KFPB.FILE.ID FIB.KFPB.FILE.ID
It contains the name of the Data file
associated with this Key file.

4-37

4-38

COT.SECT.RANGE COT.SECT.RANGE
It contains the number of sectors of the
Overlay Region that can be represented by
one entry in the COT .AREA.

CRT.SECT.RANGE CRT.SECT.RANGE

KFPB.FLAGS

It contains the number of secitors of the
Rough Table that can be represented by·
one entry in the CRT.AREA.

FIB.KFPB.FLAGS
This is the group name for some Key file related
flags.

Data type description:
01 FIB.KFPB.FLAGS

02 B80.R.T
02 B700.R.T
02 B1700.R.T
02 B 900.R.T
02 B 1000.R.T.
02 DATA.FILE.DUAL
02 OLD.DUPL.ALLOWED
02 DUPL.ALLOWED

KFPB.RT.ADD FIB.KFPB.RT.ADD
It contains the address in relative records
of the Rough Table region in the Key file
(I-relative).

KFPB.RT.LGTH FIB.KFPB.RT.LGTH
It contains the length of the Rough Table
in records (180 bytes).

KFPB.OV.ADD FIB.KFPB.OV.ADD
It contains the address in relative records
of the beginning of the Overflow region in
the Key file (I-relative).

KFPB.OV.LGTH FIB.KFPB.OV.LGTH
It contains the length of the Overflow
region in records (180 bytes).

KFPB.IX.ADD FIB .. KFPB.IX.ADD
It contains the address in relative records
of the beginning of the Index region in
the Key file (I-relative).

KFPB.IX.LGTH FIB.KFPB.IX.LGTH
It contains the length of the Index region
in records (180 bytes).

KFPB.KEY.LGTH FIB.KFPB.KEY.LGTH
It contains the actual key length in bytes.

KFPB.KEY.OFFSET FIB.KFPB.KEY.OFFSET

CHAR(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)

It contains the key offset into the record in bytes.

KFPB.ZERO FIB.KFPB.ZERO
It contains the value zero.

FIB.LAST.INPUT.COMM FIB.LAST.INPUT.COMM
It contains the previous input communication
for indexed files. START is considered as an
input communicate.

FIB.IX.PARAM FIB.IX.PARAM
This is the group name for the parameters
associated with the buff er relating to the
Index region of the Key file.

Data type description:
01 FIB.IX.PARAM

02 TOP.SECT.NB.IN.DISK BIT(24)
02 TAIL.SECT.NB.IN.DISK BIT(24)
02 IX.REC.SECT.ADD BIT(24)
02 IX.REC.IN.BLK.PTR BIT(8)
02 IX.FLAGS

03 IX.MEM.VALID BIT(l)
03 IX.KEY.FOUND BIT(l)
03 IX.EOF.REACHED BIT(l)
03 FILLER BIT(l)

FIB.OV.PARAM FIB.OV.PARAM
This is the group name for the parameters
associated with the buff er relating to the
Overflow region of the Key file.

Data type description:
01 FIB.OV.PARAM

02 TOP.SECT.NB.IN.DISK.OV BIT(24)
02 TAIL.SECT.NB.IN.DISK.OV BIT(24)
02 av.REC.SECT.ADD BIT(24)
02 OV.REC.SECT.ADD BIT(16)
02 OV.REC.IN.BLK.PTR BIT(8)
02 OV.FLAGS

03 OV.MEM.VALID BIT(l)
03 OV.KEY.FOUND BIT(l)

03 OV.EOF.REACHED BIT(l)
03 OV.DEL.FOUND BIT(l)

FIB.RGH.PARAM FIB.RGH.PARAM
This is the group name for the parameters
associated with the Rough table of the
Key file of an indexed pair of files.

Data type description:
01 FIB.RGH.PARAM

02 TOP .SECT .NB.IN.DISK.RT BIT(24)
02 TAIL.SECT .NB.IN.DISK.RT BIT(24)
02 RGH.REC.SECT.ADD BIT(24)

2018750
4-39

4-40

02 RGH.REC.SECT.ADD
02 RGH.REC.IN.BLK.PTR
02 RGH.FLAGS

03 RGH.MEM.VALID
03 RGH.KEY.FOUND
03 RGH.EOF.REACHED
03 FILLER

FIB.SRCH.PARAM FIB.SRCH.PARAM

LS.INFO

KEY.RETAINED

READ.POINTERS

This is the group name for the fields used
when LOGICAL.IO requests a SEARCH
by PHYSICAL.IO.

Data type description:
01 FIB.SRCH.PARAM

02 FIB.KEY.LGTH
02 FIB.REC.LGTH
02 FIB.KEY.REC.PER.SECT
02 FIB.REC.POSITION
02 FIB.SEARCH.REPLY. WORD
02 FIB.SEARCH.KEY

LS.INFO
This is the group name for fields
pertaining to indexed files.

Data type description:
01 LS.INFO

02 LS.HIGHEST.KEY
02 COMM.RET.ADD
02 LS.ACC.MODE
02 I.S.WRITE.PERFORMED
02 LS.NULL.KEY .FILE
02 FIB.KFPB.ALREADY.UP'DATED
02 FILLER

KEY.RETAINED
It contains the last key which has been read.

READ.POINTERS

These are the fields which contain the
location of the last key which has been read
on disk.
Data type description:
01 READ.POINTERS

02 INDEX.POINTER
03 INDEX.READ.SECTOR
03 INDEX.READ.KEY.NB

02 OVERFLOW.POINTER
03 OVERFLOW.READ.SECTOR
03 OVERFLOW.READ.KEY.NB

02 READ.FLAGS
03 READ.OVERFLOW.BEFORE.

NEXT

BIT(l6)
BIT(8)

BIT(l)
BIT(l)
BIT(l)
BIT(l)

BIT(8)
BIT(l6)
BIT(8)
BIT(l6)
BIT(24)
CHAR(32)

CHAR(29)
BIT(24)
BIT(2)
BIT(l)
BIT(l)
BIT(l)
BIT(3)

BIT(24)
BIT(8)

BIT(24)
BIT(8)

BIT(l)

SA VE.PUSH.PTR

SA VE.PUSH.KEY

03 INDEX.READ.FLAGS
04 INDEX.KEY.FOUND
04 INDEX.EOF.REACHED

03 OVERFLOW.READ.FLAGS
04 OVERFLOW.KEY.NOT.

FOUND
04 OVERFLOW.EOF.REACHED

03 SKIP.OV.BEFORE.NEXT
03 SKIP .IX.BEFORE.NEXT

SA VE.PUSH.PTR
It contains the disk address (sector number plus
offset) of the key to be pushed in the key file. /'

Data type description:
01 SAVE.PUSH.PTR

02 SAVE.PUSH.SECTOR
02 SA VE.PUSH.KEY.NB

SA VKPUSH.KEY
It contains the value of the key to be pushed in
the key file.

BIT(l)
BIT(l)

BIT(l)
BIT(l)
BIT(l)
BIT(l)

BIT(24)
BIT(8)

ll\IFORMATION FOR A CLOSED FILE

~or a closed file, only the FPB contents are printed, as there is no FCB and no FIB. Refer to FILE
I\ TTRIBUTES FROM PPB of Information For An Opened File for a complete description of the fields.
fhe names of the members of the FIB structure have to be modified as follows: each prefix of those
iames, namely FIB.PPB, has to be replaced by FPB; for example, the name FIB.PPB.PACK.ID be­
:omes PPB.PACK.ID; the resulting name is the label of a member of the structure FPB.

For indexed files, additional fields are analyzed.

2018750

DATA FILE
PACK-ID

DATA FILE ID

ROUGH TABLE
SIZE IN CORE

LENGTH OF
KEY IN BYTES

OFFSET OF
KEY

FPB.DATA.FILE.P .ID
It contains the name of the device containing the data
file.

PPB.DATA.FILE.ID
It contains the name of the data file associated with
this key file.

FPB.RGH.TABLE.SIZE
It contains the length of the rough table in records (= 180
bytes).

FPB.KEY.LGTH
It contains the key length in bytes.

PPB.KEY.OFFSET
It contains the key offset into the record in bytes.

4-41

Following this data, one of the following messages will appear:

' FILE HAS NOT BEEN OPENED"

"FILE HAS BEEN CLOSED'~

"FILE IS IN PROCESS OF OPEN"

"FILE HAS BEEN HALF CLOSED"

This message describes the file's status at the time of the abnormal terminate.

DATA STACK ANALYSIS/CURRENT OPERAND (COP) TABLE

DAT A ST ACK ANALYSIS (MPL)

DATA STACK STRUCTURE

The 'DAT A ST ACK ANALYSIS' section of an MPL DP .ANALYZER listing provides information
about a user program's active data. The value of all fields active at the time of the abnormal terminate
is given along with descriptive information for each of thesie fields.

The data is presented according to its entry in the CONTROL STACK. All global data is presented
first. Data local to the procedure next represented on the CONTROL STACK is presented next (if there
is an entry) and so on.

The last group of data listed in lexical level order is that whkh is local to the procedure active at the
time of the abnormal terminate. There is no CONTROL ST ACK entry for this currently active proce­
dure.

The last active procedures group of data may be followed by a group of data related to a Working
Stack. During the execution of a statement, one or more dc~scriptors are temporarily loaded onto a
Working Stack. If the contents of this Working Stack are accessible, the descriptors loaded on it will
be printed. If it can be determined that the Working Stack is empty, the following message is printed:

'~(EMPTY WORKING STACK)~'

HEADING DESCRIPTION

The groups of data are separated by a box of asterisks containing information identifying the proce­
dure, and, when pertinent, one of the following messages:

(GLOBAL indicating that the subsequent data is global to the
DECLARATIONS) program.

(PRESENTLY indicating that the subsequent data is local to a
OUT OF procedure on the Control Stack but not to the currently
SCOPE) active procedure.

(ACTIVE indicating that the subsequent data is local to the
PROCEDURE) procedure being executed at the time of the abnormal

terminate.

If there is no data declared in a procedure which is active or on the Control Stack, the message:

"NO DECLARATION IN THIS PROCEDURE"
is given.

Various messages not described in this section are self-explanatory, and are printed in the case of errors
detected by DP .ANALYZER, for example:

4-42

"**ERROR -UNEXPECTED END OF DATA SEGMENT 0 WHILE LOOKING FOR A DESCRIP­
TOR**
** DATA STACK ANALYSIS ABORTED **"

The number of parameters passed to a procedure may validly be less than the number of parameters
expected by the procedure. The interpreter builds invalid descriptors in place of the missing parameters.
In the case of missing parameters, the number of invalid descriptors built by the interpreter will be
printed. The message given is:

"NUMBER OF INVALID DESCRIPTORS: <integer>"

The following fields appear in the box of asterisks:
LL This is the procedure lexical level corresponding to the

first column on the left-hand side of a compiled source
listing.

PSN

SPN

STACK BASE

This is the code segment number (Program Segment
Number) of the segment containing the procedure
concerned.

This is the Segment Procedure Number. That is, the
number representing the position of the procedure
within the code segment, relative to its other
procedures.

This is the byte offset into the Data Segment where the
descriptors for the procedure represented are found. The
descriptors for a procedure are always contiguous. The
off set is given in hexadecimal and then in decimal.

DATA DESCRIPT~ON
INDEX NR H allows the identification of the data item. The

compiler associates each declared data item to an index
number (it appears on the compiler source listing in the
third column from the left); this number is relative to
the procedure, that is, the first declared data item of
every procedure has an index number of zero.

DESCRIPTOR

2018750

A 4-byte descriptor exists for each data item and is
used to locate and describe the data associated with
that item. The descriptor contains information as to the
type of the data and where it is located, that is, either
in a data segment at an off set or, in the case of a
self-relative data item, in the descriptor itself.

Each descriptor is checked to see if it refers to valid
data. When the descriptor is found to point outside the
segment boundary, the following warning is printed:

"** ERROR - DESCRIPTOR POINTS OUTSIDE
SEGMENT **"
If a descriptor is found to be invalid, an appropriate
message is printed.

4-43

DATA
ADDRESS -
SEGM/DISPL

BIT OFFSET

DATA TYPE/
LGTH

The Data Stack is often destroyed by invalid use of
indices.

These two columns give the data segment and off set
into that segment in bytes at which the data is located.
This information is taken from the data descriptor.

If the item is self-relative, that is, if the data is located
in the descriptor itself! the words "SELF RELATIVE"
will appear.

If the data item describes a field of type BIT, this
column gives the bit position in the byte given by
"DAT A ADDRESS - SEGM/DISPL" at which the
bit string begins .

This gives the type and length of the data represented
by this entry.

'TYPE' is one of the following:
BIT a bit string of maximum length 8 bits.

FIXED a 16-bit numeric field

CHAR a character string up to 255 bytes in length.

MSG. REF a four byte description of a data
communication message.

'LGTH' represents the length iln bits for type BIT
fields, in bytes for type CHAR and is not given for
type FIXED as this length is always 16 bits.

NOTE
The field containing the length of a bit string is four bits long, therefore a
length of up to 15 bits can be represented. BILINTERP will sometimes use
bit strings of greater than eight bits in length. The MPL language, however
only provides for a maximum of eight bits.

VALUE The contents of the data are displayed. This represents
the value of the data at the time of the abnormal
terminate. The data is displayed in hexadecimal. For
fields of type CHAR, the value is displayed in
alphanumeric (ASCII) format as well. Invalid ASCII
representations appear as the period character.

CURRENT OPERAND (COP) TABLE (COBOL and RPG)

The COP table consists of a set of entries, each being a descriptor containing the attributes of a data
item. AJI data declared in a user's program is presented in this section of a DP .ANALYZER listing.

4-44

COP INDEX It allows the identification of the data item; it is
assigned by the COBSVERTER pass of the RPG and
COBOL compilers.

CO BO L related To find the value of a data ik~m COP INDEX
1. Find the declaration in the source listing to obtain
the ,;'old" COP index found at the right of the
declaration in brackets.

2018750

2. Use this index to find the "new" COBSVERTER
index in the COP-TABLE transformation map generated
with either the "·$COP-TABLE" or "SOPTCODE"
options.

3. Use the "new" index found in (2) to identify the
desired item in the DP .ANALYZER listing by searching
the column headed "COP INDEX".

NOTE
Some COP-TABLE entries are removed by COBSVERTER and replaced by
in-line code, therefore, they will not be seen in the COP-TABLE. One easy
way to ensure a field's appearance is to use the desired field more than once
in the program.

RPG related To find the value of a data item COP INDEX

ADDRESS -
SEG/DISP.

DATA TYPE

1. Find the field name in the "FIELDS" table,
generated by the "SNAMES" option, to obtain the
"old" COP index found in the column entitled "COP
NUMBER'' of this table.

2. Use this "old" index to find the "new"
COBSVERTER index found in the COP-TABLE
transformation map generated with the " S XMAP"
option. This new index is found in the column entitled
"C.O.P.".

3. Use the "new,, index found in (2) to identify the
desired item in the DP .ANALYZER listing by searching
the column headed ''COP INDEX''.

These two columns give the data segment and off set
into that segment in digits (that is, 4-bit units) at which
the data is located. With this information the data can
be located in the appropriate data segment.

This gives the type of the data represented by this
entry. The possible types are as follows:

4U - 4-bit packed, unsigned alphanumeric
8U - 8-bit unpacked, unsigned alphanumeric
4LS - 4-bit packed, sign on left, numeric
4TS - 4-bit packed, trailing sign (on right), numeric
8SLS - 8-bit unpacked, separate sign on left, numeric
SOLS - 8-bit unpacked, overpunched sign on left,
numeric
8STS - 8-bit unpacked, separate trailing sign (on
right), numeric
SOTS - 8-bit unpacked, overpunched trailing sign (on
right), numeric

UNIT LENGTH This gives the length of the data represented by this
entry. When the type of the field is "4U", "4LS" or
"4TS" (that is, packed) the length is given in digits
(that is, 4-bit units). Otherwise the length is given in
bytes.

4-45

In the case of an array declaration, the array element
length is given. Up to 20 elements of the array will be
displayed consecutively. Additional elements of the array
will be displayed only in the case of multi-dimensional
arrays. Enough elements will be! displayed to allow the
location of any other element in the corresponding data
segment to be determined.
For example, in the case of a 3-dimensional array,
elements (1, 1, 1) through (1, 1,20) will be displayed. The
elements (1,2, 1) and (2, 1, 1) will also appear. These can
assist in determining the location of the other elements
of the array. In this case, then~fore, 22 elements of the
array will be displayed.
For array elements the words "ELEM (n)" will appear
where "n" is replaced by the index of the element
listed.

NOTE
If the word "ARRAY" is given in the initiating message passed to DP .AN­
ALYZER, all elements of all arrays will be printed.

VALUE The contents of the data are displayed. This represents
the value of the data at the time of the abnormal
terminate. The data is displayed in hexadecimal for all
unpacked fields, followed by the ASCII representation.
fa the case of packed fields, the value of the data is
displayed in digits with the sign if appropriate.

When a descriptor refers to a signed numeric value, the
message:
"UNEXPECTED SIGN"
is printed if the sign is not valid.

In the case of an array declaration, information about
the array is given here as its value will be listed element
by element. The array information includes the size of
the array (that is, number of clements), and whether it
is a subscripted or indexed array. In the case of a
subscripted array, the word "SUBSCRIPTED" will
appear. In the case of an array ref erred to with
indexes, the number of indexes declared is given here.
The element contents are then displayed; only the first
180 bytes are printed. If only a portion of the array is
printed, the remaining portion can be seen in the
appropriate data segment.

DATA SEGMENTS

The contents of the user program's data segments are listed in numerical order, using hexadecimal and
ASCII representations. Each segment's contents are separated by a line identifying the segment and
giving its size in bytes.

To the left of a data segment's contents are numbers identifying the displacement of the first digit
or byte in the corresponding line. In the case of RPG and COBOL, these numbers identify digit (4-

4-46

bit unit) displacements. In the case of MPL, these numbers represent byte displacements. In all cases,
the numbers are 0-relative.

When lines of text are repetitive, the message 'SAME AS LINE ABOVE' appears in the data segment.
The position number to the left helps to determine how many lines are suppressed.

If a pair of digits does not represent a valid ASCII character, a period appears in the display represen­
tation of that byte position.

Some messages identifying the contents of a data segment are given, where appropriate. These messages
are as follows:

''INITIATING MESSAGE''
"FPB FOR FILE: <file-id>"
"FIB FOR FILE: <file-id>"

If the option "NO.INIT" is used in an MPL segment declaration and that segment was never accessed
by the interpreter, the message:

"NO VALUE ATTRIBUTED TO SEGMENT"

is printed.

The structures of the FPB and the FIB are given below; the description of significant fields may be
found in the section FILE INFORMATION. Displacements, in bytes, relative to the start of the struc­
ture have been stated allowing an easier access in the adequate data segment.

01 FPB

2018750

02 FPB.IMPL.LEVEL.NB
02 PPB.PACK.ID
02 PPB.FILE.ID
02 BLANK
02 PPB.REEL.NB
02 PPB.FILE.TYPE
02 PPB.HIGHEST.RECD.NB
02 PPB.DEVICE.KIND
02 FPB.WA.SEGM.NB
02 PPB.WA.OFFSET
02 PPB.REC.SIZE
02 FPB.BUF.SIZE
02 PPB.MAX.FILE.SIZE
02 FPB.NB.BUF
02 PPB.FLAGS

03 PPB.SPEC.FORM
04 FPB.DUP.ALLOWED

03 PPB.OPT.FILE
03 PPB.NO.LABEL
03 FPB.COND.FILE
03 FPB.PROG.FILE
03 PPB.FILLER.A

02 PPB.ADV.CLOSE

BIT(8)
BIT(56)
BIT(96)
BIT(8)
BIT(24)
BIT(8)
BIT(24)
BIT(8)
BIT(8)
BIT(16)
BIT(l6)
BIT(l6)
BIT(24)
BIT(8)
BIT(8)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(3)
BIT(8)

DISPL 0
DISPL 1
DISPL 8

DISPL 21
DISPL 24
DISPL 25
DISPL 28
DISPL 29
DISPL 30
DISPL 32
DISPL 34
DISPL 36
DISPL 39
DISPL 40

DISPL 41

4-47

03 FILLER BIT(l)
03 FPB.NO.REWIND BIT(l)

04 FPB.CHANGE.REEL BIT(1)
03 FPB.CLOSE.MODE BIT(3)
03 FPB.CLOSE.CRUNCH BIT(l)
03 FPB.IX.OV.MRG BIT(l)
03 FILLER BIT(l)

02 FPB.ADV.OPEN BIT(16) DIS PL 42
03 FPB.FILLER. B BIT(l)
03 FPB.EXTEND BIT(l)
03 FPB.OTHERUSE BIT(3)
03 FPB.FILLER.C BIT(l)
03 FPB.MYUSE BIT(2)
03 FPB.BACKUP.CNTL BIT(2)
03 FPB.FILLER. D BIT(2)
03 PPB.ACCESS.MODE BIT(2)
03 PPB.FILLER. E BIT(2)

02 PPB.CYCLE BIT(16) DISPL 44
02 PPB.GEN.NB BIT(16) DISPL 46
02 FPB.CREAT.DATE BIT(40) DISPL 48
02 PPB.LAST.ACCESS.DATE BIT(40) DISPL 53
02 PPB.SPARE.CHAR BIT(16) DISPL 58
02 PPB.SAVE.FACT BIT(24) DISPL 60
02 FPB.DATA.FILE.P.ID BIT(56) DISPL 63
02 FPB.DATA.FILE.ID BIT(96) DISPL 70
02 PPB.BLANK BIT(8) DISPL 82
02 PPB.SPARE BIT(8) DISPL 83
02 FPB.RGH.TABLE.SIZE BIT(l6) DISPL 84
02 FPB.ZEROl BIT(8) DISPL 86
02 FPB.KEY.LGTH BIT(8) DISPL 87
02 PPB.KEY.OFFSET BIT(16) DISPL 88
02 FPB.ZER02 BIT(32) DISPL 90

01 FIB
02 FIB.FCB BIT(728)

03 FCB.CODE.PTR BIT(24) DISPL 0
03 FCB.CUR.BUF.ADDR BIT(24) DISPL 3
03 FCB.CUR.BUF.LENGTH BIT(24) DISPL 6
03 PCB.OP.CODE BIT(24) DISPL 9
03 PCB.DCB.ADDRESS BIT(24) DISPL 12
03 FCB.FILE.ST ATUS BIT(24) DISPL 15

04 FCB.USE.SYSMEM BIT(l)
04 FCB.CUR.USE.SYSMEM BIT(l)
04 PCB.USE.AVAIL.TABLE BIT(l)
04 PCB.CUR.USE.AVAIL.TABLE BIT(l)
04 PCB.NEW.OLD BIT(l)
04 PCB.OPENING BIT(l)
04 PCB.CLOSE BIT(l)
04 FCB.USE.FPB.VN BIT(l)

4-48

05 FCB.TRANSLATE.COMPLETE BIT(l)
04 PCB.SEARCH BIT(l)
04 PCB.ERRB BIT(l)
04 PCB.QUEUED BIT(l)
04 FCB.SUSPENDING.TASK BIT(l)
04 FCB.ACTIVE BIT(l)
04 FCB.IN.USE BIT(l)
04 FCB.DISPLA Y BIT(l)
04 FCB.READING.LABEL BIT(l)
04 FCB.HALF.CLOSED BIT(l)
04 FILLER BIT(7)

03 FCB.DEVICE.KIND BIT(8) DISPL 18
03 FCB.RETRY.COUNT BIT(4) DISPL 19
03 FCB.CHANNEL BIT(4)
03 FCB.FILE.NR BIT(8) DISPL 20
03 FCB.FIB.ADDRESS BIT(24) DISPL 21
03 FCB.MIX BIT(8) DISPL 24
03 FCB.Q.LINK BIT(24) DISPL 25
03 FCB.COMM

04 FCB.RD BIT(24) DISPL 28
04 FCB.SAVE.SCRATCHPADS BIT(64) DISPL 31

05 SHORT.FCB.LENGTH BIT(64)
04 FCB.RETURN .LIST BIT(96) DISPL 39
04 FCB.RETURN BIT(8) DISPL 51
04 FCB.MYUSE BIT(2) DISPL 52
04 FCB.OTHERUSE BIT(3)
04 FILLER BIT(3)
04 FCB.MEMORIZE.DCB BIT(24) DISPL 53
04 FCB.DISK.ADDRESS BIT(24) DISPL 56
04 FCB.CUR.AREA.AD BIT(24) DISPL 59
04 FCB.DFH .. ADDRESS BIT(24) DISPL 62
04 FCB.DIRENTRY.ADDRESS BIT(24) DISPL 65
04 FCB.AREA.NR BIT(4) DISPL 68
04 FCB.AREA.COUNT BIT(4)
04 FCB.DIRENTRY.IX BIT(8) DISPL 69
04 FCB.SECTION.NR BIT(24) DISPL 70
04 FCB.RETRIEVED.ITEM BIT(24) DISPL 71

05 FCB.DUAL.FILE BIT(24)
04 FCB.SEARCH.STATUS BIT(8) DISPL 76
04 FCB.SEARCH.OP.CODE BIT(8) DISPL 77
04 FCB.SEARCH.SKIP BIT(8) DISPL 78
04 FCB.ARGUMENT.ADDRESS BIT(24) DISPL 79
04 FCB.SP ACE.TO.ALLOCATE BIT(24) DISPL 82
04 FCB.CUR.AREA.RANGE BIT(48) DISPL 85

02 FIB.AREA.ADDR.LGTH. (16) BIT(32) DISPL 91
02 FIB.COMM.AREA

03 FIB.COMM.VERB BIT(8) DISPL 155
03 FIB.COMM.BLK.NB BIT(24) DISPL 156

04 Fm.SEARCH.ADD BIT(24)

2018750
4-49

03 FIB.COMM.MEM.BLK.ADD
04 FIB.OPEN.CLOSE.BUF.AD

05 FIB.BUF.AD
06 FIB.KEY .MEM.ADD BIT(24) DIS PL 159

03 FIB.FILE.NB BIT(8) DISPL 162
03 FIB.REPLY.WORD BIT(24) DISPL 163
03 FIB.CUR.BLK.LGTH BIT(24) DISPL 166

04 FIB.SEARCH.LGTH BIT(24)
02 WORKING.COPY.OF.FPB

03 FIB.FPB.IMPL.LEVEL.NB CHAR(l) DISPL 169
03 FIB.FPB.PACK.ID CHAR(7) DISPL 170
03 FIB.FPB.FILE.ID CHAR(12) DISPL 177
03 FIB.FPB.PSEUDO.PACK.TAG BIT(8) DISPL 189
03 FIB.FPB.FILE.ID.HASH BIT(8) DISPL 190
03 FIB.FPB.FILE.NB BIT(8) DISPL 191
03 FIB.FPB.REEL.NB CHAR(3) DISPL 192
03 FIB.FPB.FILE.TYPE BIT(8) DISPL 195
03 FIB.FPB.HIGHEST.RECD.NB BIT(24) DISPL 196
03 FIB.FPB.DEVICE.KIND BIT(8) DISPL 199
03 FIB.FPB.WA.SEGM.NB BIT(8) DISPL 200
03 FIB.FPB.WA.OFFSET BIT(l 6) DISPL 201
03 FIB.FPB.REC.SIZE BIT(16) DISPL 203
03 FIB.FPB.BUF .SIZE BIT(16) DISPL 205
03 FIB.FPB.MAX.FILE.SIZE BIT(24) DISPL 207
03 FIB.FPB.NB.BUF BIT(8) DISPL 210
03 FIB.FPB.FLAGS BIT(8) DISPL 211

04 FIB.FPB.SPEC.FORM BIT(l)
05 FIB.FPB.DUP.ALLOWED BIT(l)

04 FIB.FPB.UPT.FILE BIT(l)
04 FIB.FPB.NO.LABEL BIT(l)
04 FIB.FPB.COND.FILE BIT(l)
04 FILLER BIT(3)

03 FIB.FPB.ADV.CLOSE BIT(8) DISPL 212
04 FILLER BIT(l)
04 FIB.FPB.NO.REWIND BIT(l)

05 FIB.FPB.CHANGE.REEL BIT(l)
04 FIB.FPB.CLOSE.MODE BIT(3)
04 FIB.PPB.CLOSE.CRUNCH BIT(l)
04 FIB.FPB.IX.OV.MRG BIT(l)

03 FIB.PPB.ADV.OPEN BIT(16) DISPL 213
04 FIB.FPB.FILLER.B BIT(l)
04 FIB.PPB.EXTEND BIT(l)
04 FIB.FPB.OTHERUSE BIT(3)
04 FIB. PPB.CREA TENAMED BIT(l)
04 FIB.FPB.MYUSE BIT(2)
04 FIB.FPB.BACKUP.CNTL BIT(2)
04 FIB.FPB.INTEG.LEVEL BIT(2)
04 FIB.FPB.ACCESS.MODE BIT(2)
04 FIB.FPB.FILLER.E BIT(2)

4-50

03 FIB.PPB.CYCLE CHAR(2) DISPL 215
03 FIB.PPB.GEN.NB BIT(16) DISPL 217
03 FIB.FPB.CREAT.DATE CHAR(5) DISPL 219
03 FIB .PPB.LAST .ACCESS.DA TE CHAR(5) DISPL 224
03 FIB.PPB.SPARE.CHAR BIT(16) DISPL 229
03 FIB.PPB.SAVE.FACT CHAR(3) DISPL 231

02 FIB.FPB.USERCODE BIT(136) DISPL 234
02 FIB.PPB.SECURITY.FLAGS BIT(8) DISPL 251

03 FIB.FPB.SECURITYTYPE BIT(2)
03 FIB.FPB.SECURITYUSE BIT(2)
03 FILLER BIT(4)

02 FIB.FPB.GUARD.MFID BIT(56) DISPL 252
02 FIB.FPB.GUARD.FID BIT(96) DISPL 259

03 FIB.FPB.VM.LGTH.FORWARD BIT(24)
02 FIB.FILE.STATUS DISPL 271

03 FIB.FILE.HALF.CLOSE BIT(l)
03 FIB.GUARD.FILE.OPENED BIT(l)
03 FIB.HOST BIT(l)
03 FIB.EXEC BIT(l)
03 FIB.OWN BIT(l)
03 FIB.PROG BIT(l)
03 FILLER BIT(lO)

02 FIB.VN BIT(8) DISPL 271
03 FIB.ALREADY .DISPLAYED BIT(l)
03 FIB .FLAGS. USED .BY .PHYSICAL BIT(2)
03 FIB.USED.TO.DISPLAY BIT(l)
03 FIB.FILE.TESTED BIT(l)
03 FIB.OPENING.BACKUP BIT(l)
03 FIB.PRINTER.CHECK BIT(l)
03 FIB.FOR.BACKUP.FILE BIT(l)

02 FIB.NB.SECT.PER.BLK BIT(24) DISPL 274
02 FIB.BUF.N.FILE.STATUS

03 FIB.PPB.INDEX BIT(8) DISPL 277
03 FIB.FILE.STAT BIT(4) DISPL 278

04 FIB.FILE.OPENING BIT(l)
05 FIB.NEW.FILE BIT(l)

04 FIB.FILE.OPEN BIT(l)
04 FIB.CLOSING.FILE BIT(l)
04 FIB.SHORT .BLK BIT(l)

03 FIB.LAST.COMM BIT(4)
03 FIB.STOP.FOR.READ BIT(l) DISPL 279
03 FIB.INH.READ.AGAIN BIT(l)
03 FIB.ERROR. BIT(l)
03 FIB.LAST.BLK.DET BIT(l)
03 FIB.LOG.EOF BIT(l)
03 FIB.ACT BIT(l)
03 FIB.EOF BIT(l)
03 FIB.BWD.REQ BIT(l)

04 FIB.OPEN.EXTEND.ALLOWED BIT(l)

2018750
4-51

03 FIB.ERROR.REPLY.WORD BIT(24) DISPL 280
04 FIB.AD.DCB BIT(24)

03 FIB.SA VE.RETURN.ADDR BIT(24) DISPL 283
03 FIB.REC.PER.BLK BIT(16) DISPL 286
03 FIB.NB.REC.IN.LAST.BLK BIT(16)
03 FIB.LAST.BLK.NB BIT(24)
03 FIB.PH.ELK.NB BIT(24)
03 FIB.OUT.PH.BLK.NB BIT(24)
03 FIB.BUF .INDEXES BIT(24)

04 OUT.PH.BUF.INDEX BIT(8)
04 LOG.BUF.INDEX BIT(8)
04 PH.BUF.INDEX BIT(8)

03 FIB.LOG.REC.NB BIT(24)
04 FIB.DAT A.FILE.PTR BIT(24)

03 FIB.LOG.BLK.NB BIT(24)
03 FIB.HIGHEST.KEY BIT(24)
03 FIB.BUF.STAT.AREA. (17) BIT(24) DISPL 311

04 BUF.STAT BIT(8)
04 FIB.PRINT.CNTL BIT(16)

03 SUPERLOGIO.BUFFER.ST ATUS.REMAPS FIB.BUF. STAT .AREA
04 COMMON.BUF.STAT BIT(72)
04 REAL.BLOCK.SIZE.ON.DISK BIT(16)
04 NB.OF.BLOCK.PER.BUFFER BIT(8)
04 LOGICAL.BUFFER.SIZE BIT(16)
04 LOGICAL.BLOCK.INFO (3)

05 TOP.BLOCK.NB BIT(24)
05 TAIL.BLOCK.NB BIT(24)

02 FIB. CALLING BIT(24) DISPL 362
03 FIB.CALLING.MOD.NB BIT(8)
03 FIB. CALLING .D ISPL BIT(16)

02 FIB.COMM.FOR.SUPERLOGIO BIT(l) DISPL 365
02 FIB.SUPERLOGIO.FLAGS BIT

03 FIB.INTERPRETER.REST AR TED BIT(l)
04 FIB.RESTART.COMM BIT(l)
04 FIB.AREA.RANGE. UPDATED BIT(l)

03 FIB.END.OF .AREA.REACHED BIT(l)
03 FIB.REWRITE.OPERATION BIT(l)

02 FIB.SEARCH.IX BIT(l)
02 FIB.CLOSE.MERGE.FAILURE BIT(l)
02 FILLER BIT(l)
02 FIB.AREA.RANGE BIT(48) DISPL 366

03 FIB.AREA.MIN BIT(24)
03 FIB.AREA.MAX BIT(24)

02 FIB.BACKUP .INFO
03 FPB.P ACK.ID.SA VE BIT(56) DISPL 372
03 FIB.FPB.FILE.ID.SAVED BIT(96) DISPL 379
03 PPB.FILE.TO.SAVED BIT(96) DISPL 391
03 FIB.PPB.FILE.TYPE.SAVED BIT(8) DISPL 403
03 FIB.PPB.DEVICE.KIND.SAVED BIT(8) DISPL 404
03 FIB.BACKUP.NUMBER BIT(8) DISPL 405

4-52

03 FIB.NAME.SWAPPED BIT(l)
03 FIB.DIRECT .TO.BACKUP BIT(l)
03 FIB.DISK.FOR.BACKUP.CHECK BIT(l)
03 FILLER BIT(l)

02 FIB.TO.CONSIDER
03 WORK.WITH.EXTENDED.FIB BIT(l)
03 FIB.COMM.FOR.LOG.IO BIT(l)
03 FIB.COMM.FOR.LOG.IO.TERM BIT(l)
03 FIB.LS.FILE BIT(l)
03 EXTENDED.FIB.ADD BIT(24) DISPL 407

04 FIB. VIRT .FILE.AREA.LGTH BIT(16)
05 FIB.PCW BIT(16)

02 STREAM.INFO
03 ~IB.STR.PTR BIT(16) DISPL 410

04 PART.OF.FIB BIT(2)
04 FIB.TOSF.DST.ENTRY.PTR

05 FIB. TOSF .FILE.PTR BIT(5)
05 FIB.TOSF.MIX.PTR BIT(3)

03 FIB.STR.BUF .REM BIT(16) DISPL 412
04 REL.DISP.OF.FIRST.FIB BIT(16)

03 FIB.STR.NB.BYTES.IN.LAST.BLK BIT(16) DISPL 414
02 FIB.ADDR.OF .BUFFERS BIT(24) DISPL 416
02 BUFFER.SPACE

03 IX.BUFFER CHAR(l800) DISPL 419
04 IX.AREA CHAR(180)

03 OV.BUFFER CHAR(1800)
04 OV.AREA CHAR(l80)

03 RGH.BUFFER CHAR(1800) DISPL 4019
04 RGH.AREA CHAR(180)

03 CRT.AREA CHAR(180)
02 KFPB.AREA

03 FIB.KFPB.IMPL.LEVEL CHAR(l) DISPL 5999
03 FILLER CHAR(2)
03 FIB.KFPB.P ACK.ID CHAR(7) DISPL 6002
03 FIB.KFPB.FILE.ID CHAR(12) DISPL 6009
03 FIB.KFPB.BLANK CHAR(l)
03 FIB.KFPB.LINK.TO.DATA.FILE CHAR(5) DISPL 6022

04 COT.SECT.RANGE BIT(8)
04 CRT.SECT.RANGE BIT(8)

03 FIB.KFPB.FLAGS CHAR(l) DISPL 6027
04 B 80 R.T. BIT(l)
04 B 700 R.T. BIT(l)
04 B 1700 R.T. BIT(l)
04 B 900 R.T. BIT(l)
04 B 1000 R.T. BIT(l)
04 DATA.FILE.DUAL BIT(l)
04 OLD.DUPL.ALLOWD BIT(l)
04 DUPL.ALLOWED BIT(l)

03 FIB.KFPB.RT.ADD BIT(24) DISPL 6028
2018750

4-53

03 FIB.KFPB.RT.LGTH BIT(l 6)
03 FILLER CHAR(l)
03 FIB.KFPB.OV.ADD BIT(24)
03 FIB.KFPB.OV.LGTH BIT(24)
03 FIB.KFPB.IX.ADD BIT(24)
03 FIB.KFPB.IX.LGTH BIT(24)
03 FILLER BIT(8)
03 FIB .KFPB.KEY. LGTH BIT(l6) DISPL 6047
03 FIB.KFPB.KEY.OFFSET BIT(16)
03 FIB.KFPB.ZERO BIT(32)

02 FIB.LAST.INPUT.COMM BIT(4) DISPL 6055
02 FIB.IX.PARAM

03 TOP~SECT.NB.IN.DISK.IX BIT(24)
03 TAIL.SECT.NB.IN.DISK.IX BIT(24)
03 IX.REC.SECT.ADD BIT(24)
03 IX.REC.IN .BLK.PTR BIT(8)
03 IX.FLAGS

04 IX.MEM.VALID BIT(l)
04 IX.KEY.FOUND BIT(l)
04 IX.EOF .REACHED BIT(l)
04 FILLER BIT(l)

02 FIB.OV.P ARAM
03 TOP.SECT.NB.IN.DISK.OV BIT(24) DISPL 6066
03 T AIL.SECT.NB.IN.DISK.OV BIT(24)
03 OV.REC.SECT.ADD BIT(24)
03 OV.REC.IN.BLK.PTR BIT(8)
03 OV.FLAGS

04 OV.MEM.VALID BIT(l)
04 OV.KEY.FOUND BIT(l)
04 OV.EOF.REACHED BIT(l)
04 av.DEL.FOUND BIT(l)

02 FIB.RGH.P ARAM
03 TOP.SECT.NB.IN.DISK.RT BIT(24)
03 TAIL.SECT.NB.IN.DISK. RT BIT(24)
03 RGH.REC.SECT.ADD BIT(24)
03 RGH.REC.IN.BLK.PTR BIT(8)
03 RGH.FLAGS

04 RGH.MEM.VALID BIT(l)
04 RGH.KEY.FOUND BIT(l)
04 RGH.EOF .REACHED BIT(l)
04 FILLER BIT(l)

02 FIB.SRCH.P ARAM
03 FIB.KEY.LGTH BIT(8) DISPL 6087
03 FIB.REC.LGTH BIT(16)
03 FIB.KEY.REC.PER.SECT BIT(8)
03 FIB.REC.POSITION BIT(16)
03 FIB.SEARCH.REPLY.WORD BIT(24)
03 FIB.SEARCH.KEY CHAR(32)

02 LS.INFO

4-54

03 I.S.HIGHEST.KEY CHAR(29) DISPL 6128
03 COMM.RET.ADD BIT(24)
03 I.S.ACC.MODE BIT(2)
03 I.S.WRITE.PERFORMED BIT(l)
03 LS.NULL.KEY .FILE BIT(l)
03 FILLER BIT(8)

02 READ.POINTERS
03 KEY.RETAINED CHAR(29) DISPL 6161
03 INDEX.POINTER

04 INDEX.READ.SECTOR BIT(24) DISPL 6190
04 INDEX.READ.KEY.NB BIT(8)

03 OVERFLOW.POINTER
04 OVERFLOW.READ.SECTOR BIT(24)
04 OVERFLOW.READ.KEY.NB BIT(8)

03 READ.FLAGS BIT{8) DISPL 6198
04 READ.OVERFLOW .BEFORE.NEXT BIT(l)
04 INDEX.READ.FLAGS

OS INDEX.KEY.FOUND BIT(l)
OS INDEX.EOF .REACHED BIT(l)

04 OVERFLOW.READ.FLAGS
OS OVERFLOW.KEY.NOT.FOUND BIT(l)
OS OVERFLOW.EOF.REACHED BIT(l)

04 SKIP.OV.BEFORE.NEXT BIT(l)
04 SKIP.IX.BEFORE.NEXT BIT(l)

02 SA VE.PUSH.PTR
03 SAVE.PUSH.SECTOR BIT(24) DISPL 6199
03 SAVE.PUSH.KEY.NB BIT(8)

02 SA VE.PUSH.KEY CHAR(29) DISPL 6203
02 SND.PART.OF.FIB BIT(l)

CURRENT CODE SEGMENT

The contents of the code segment active at the time of the abnormal terminate are listed here. The
last instruction executed is located in this code segment. The contents are displayed in hexadecimal.

To the left of the text are numbers indicating the byte position or displacement of the first pair of
dilgits in the corresponding line.

The code segment number and size in bytes are also listed.

Repetitive lines are suppressed and the message 'SAME AS LINE ABOVE' is given. The displacement
to the left helps to determine the number of lines suppressed.

LOCKED SLICE

The contents of a program's LOCKED SLICE are displayed here. The Locked Slice of a program is
located in the program's Interface Control Block (ICB) residing in the user program's partition.

The contents are displayed in hexadecimal .

201.8750
4-55

To the left of the text are numbers indicating the bit position or displacement of the left-most bit of
the first digit in the corresponding line, relative to the ICB base.

The LOCKED SLICE contains the following structures:

- the Program Segment Table
- the Data Segment Table
- the Task Control Block Preset Area
- the Control Stack
- the Code Control Block Preset Area
- the Internal File Name Block

Those structures are located in- the LOCKED SLICE using pointers stored in the ICB.

PROGRAM SEGMENT TABLE

This table contains information about a user program's code segments. It is used by the DP .AN··
AL YZER program to display the PROGRAM SEGMENT TABLE section.

Address : ICB.PST.PTR

Length : I CB.PST .LGTH

Data type : array

01 PST.ENTRY

4-56

02 SEG.DESCR.TYPE
02 SEG.DESCR.FLAGS

03 ALREADY.HANDLED
03 SEG.HAS.BEEN.UPDATED
03 IN.VIRTUAL. FILE
03 TO.BE.LOADED
03 IN.USE
03 IN.CORE
03 LOCK.IN.MAIN.STORE
03 READ.WRITE.SEG

02 SEG.DESCR.DSK.ADD
02 SEG.DESCR.LGTH
02 SEG.DESCR.MEM.ADD
02 SEG.DESCR.FN
02 SEG.DESCR.ROLL.IN.COUNTER

BIT(8)

BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(16)
BIT(l6)
BIT(24)
BIT(8)
BIT(16)

DATA SEGMENT TABLE
This table contains information about a user program's data segments. It is used by the DP .AN­
ALYZER program to display the DAT A SEGMENT TABLE section.

Address : I CB .DST .PTR

Length : !CB.DST.LOTH

Data type : identical to PST data type

TASK CONTROL BLOCK PRESET AREA

It contains the value of the eight edit characters used in COBOL and RPG programs. It is used to
print the Interpreter Preset Area in the PROGRAM PARAMETERS sectiml.

Address : ICB.TCB.PA.PTR

Length : ICB.TCB.PA.LGTH

CONTROL ST ACK

It contains
- the CONTROL ST ACK for MPL programs
- the PERFORM STACK for COBOL and RPG programs.

It is used to print the PERFORM ST ACK/CONTROL ST ACK section.

Address: ICB.CNTL.STACK.PTR

Length: ICB.CNTL.STACK.LGTH

CODE CONTROL BLOCK PRESET AREA
It contains the Message Reference Table for MPL programs, the COP table for COBOL and RPG
programs.

Address : ICB.CCB.P A.PTR

Length : ICB.CCB.PA.LGTH

INTERNAL FILE NAME BLOCK
It indicates the correspondence between the name by which the program refers to the file and the in­
dices to the data segments containing the FIB and FPB.

Address : ICB.IFNB.PTR

Length : ICB.IFNB.LGTH

Data type : array
01 IFNB.ENTRY

2018750

02 DST.INDEX.FOR.FIB
02 DST.INDEX.FOR.PPB
02 FILE.NAME

BIT(8)
BIT(8)
CHAR(28)

4-57

BCD

APPENDIX A

GLOSSARY OF TERMS

Binary Coded Decimal - A decimal digit (0-9) is implemented in binary in a 4-bit field.

COP

Current OPerand table-contains the attributes and address of the data item pertaining to COBOL/
RPG programs.

CPA

Communicate Parameter Area -- is a block of contiguous bytes containing a message sent from an
S-Program to the MCP requesting a function.

DST

Data Segment Table- contains information about a user program's data segments.

FCB
File Control Block - a structure, built at run time, associated with each file contained in a program.
It is part of the FIB structure.

FIB

File Information Block - a structure, built at run time, associated with each file contained in a
program.

FPB
File Parameter Block - a structure, built at compile time, associated with each file contained in a
program.

ICB

Interface Control Block - a run time structure containing all the parameters needed by the MCP to
execute the program.

IFNB

Internal File Name Block-indicates the correspondence between the name by which the program refers
to the file and the numbers of the data segments containing the related FIB and FPB.

2018750 A-1

PPB
Program Parameter Block - the first record of the program file for which it gives general iinfor­
mation.

PSN
Program Segment Number- a code segment number.

PST
Program Segment Table - contains information about a user program's code segments.

SPN
Segment Procedure Number -- represents the position of an MPL procedure within a code segment.

A-2

Documentation Evalluation Form

Title: B 1000 CMS Program Dump Analysis User's Guide 2018750
Form No: ~~-----~--~

August 1982
Date: ____ --------

Burroughs Machines Ltd is interested in rece1vmg your
comments and suggestions regarding this manual. Comments
will be utilized in ensuing revisions to improve this manual.

Please check type of Suggestion:

D Addition

Comments:

From:

Name

Title

Company

Address

D Deletion D Revision D Error

Phone Number ---------------- Date----------

Remove form and mail to:

Documentation Dept., TIO - Europe
Burroughs Machines, Ltd.

I Tollpark Place, Wardpark East
Cumbernauld

Glasgow, G68 OLN
Scotland

	001
	002
	003
	005
	1-01
	2-01
	2-02
	2-03
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	A-01
	A-02
	replyA

