ok o o e Tk ko o o o o e e e e R b b TR T

+ + +
+ Burroughs + "PRELIMINARY" +
+ Application + Technical +
+ Development + Information +
+ Aids + Paper +
+ + +

L a2 e ol o o o L S S B ol e s ol o S S

Date: November 24, 1983 Author: Fred Trout
TSC-West

Product: DMSII - ALL SYSTEMS

Subject: FOUNDATIONS OF A DATABASE MANAGEMENT SYSTEM

This paper is organized into two general topics. The first, DBMS
PREPARATIONS, is a discussion on why an organization should implement a
Data Base Management System and the attitudes required for a sucessful
beginning. The second topic, CHOOSING A BASIC DESIGN PHILOSOPHY, deals
with the design of data and structure relationships. It gives some of
the advantages and disavantages of several design models and suggests
criteria for a selection,

A small bibliography is included, not for reasons of proof or reference,

but as suggested cover-to-cover reading as a part of the DBMS learning
curve.

Printed in U.S. of America TIP # 1114238-020

BLANK PAGE FOR FORMATTING

TIP # 1114238-020

DBMS PREPARATIONS

——— a — ————————

Jumping on the Data Base Management Systems bandwagon
should be a considered leap. The attitudes and
commitments that motivate this decision should be
carefully prepared. Technological and product learning
curves need to be initiated. A new administration will
apply new problem-solving technigques and new software
products on the user interface. 1In fact, there is a long
list of preparations required simply to provide the
foundation that will eventually fulfill the promises
implied by a Data Base Management System.

WHOSE IDEA WAS THIS, ANYWAY ?

Whether to implement a Database Management System is a critical decision
facing most users in the 1980s. There are increasing pressures from the
industry prophets who foretell that a database environment will be a
requirement to do business in the next decade. There are pressures from
mainframe vendors as they progress through the advancing technologies
replacing older products with new features and new products.

Application software products are also using advanced environmental and
generative software to implement database concepts.

These motivations, however real, are often not enough to insure the
commitment of your user community. The attitude of the users that is
required for cooperative development is their perception of a compelling
need to improve the control and productivity of the company's data and
personnel resources. Without this internally generated need, there will
be an additional reqguirement to sell the database concepts and the
attendant changes to a status quo user community. There will be
changes, and users will view an unrequested change with the same
enthusiasm as a wage freeze. Without considerable promotion, the
database may be viewed as doing something to, rather than for, the
users.

Oversell is often mistakenly used to gain the user's cooperation.
Promises of unlimited inquiry, immediate response, and fantastic new
features result in disappointed users and complex, unwieldy systems. An
understanding that a proper foundation must be built over one or two
years and evolved toward those exotic features within the envelope of
the physical resources is more realistic. The systems concepts and
software technology is available to conceive these systems, but the
hardware is not yet capable of handling high volumes in that
environment.

TIP # 1114238-020

CAN WE CHEW WHAT WE HAVE BITTEN ?

The development of a database and the use of a Database Management
System is often included with a concept of an on- llne, real-time,
transaction-oriented system. Transaction processing is the more llkely
goal, i.e. that concept where a small unit of change affects a only
small portion of the database, and that change is immune from the kinds
of failures that plague current systems. Transaction processing systems:
will effect everything from user views and screen formats, datacomm
systems, message control systems, to the transaction processors and
database design., But more importantly, it will change the way you
perceive and solve data processing problems, and may have an effect upon
a user environment equal to the introduction of Data Communications, or
EDP itself.

Any data management system that is available today is expensive in the
consumption of hardware resources. It also requires a shift of human
resources from production and maintenance technologies toward design and
analysis technologies. End-users may be required to review their
‘requirements and usage of data. Operational procedures become more
rigorous and disciplined. A fully developed system is likely to
encompass all of the critical information flow and automated
decision-making for a whole company. The final effect of such a
powerful software system is likely to reach far beyond the current scope
of data processing departments. Although the DP department is likely to
assume technical leadership, a decision of this magnitude should become
a company commitment rather than a departmental alternative.

DIRECTION FORWARD - WHICH RIGHT FOOT ?

Recognizing that Data Management is still low on the technology curve is
an important input to the decision of how and how much of the company's
resources are to be committed. The industry has, and will continue to
be inundated by publications on the philosophies and technologies of
Data Management. The logical conclusion derived from this flood of
information is that the technology, hardware and software for DMS and
for data comm systems is in a state of rapid change. Therefore, a
systems design strategy that uses small, simple, flexible, and
expandable components is best suited to assimilate future technologies
as they evolve.

Another important function at this level of decision making is to define
short and long range goals. Short range goals must be consistent with
the company's resources and the capability of the selected software
tools. Long range goals are required to set the direction and provide
the resources for the necessary learning curves of these new
technologies and systems. Some of that learning curve may include the
management, for these decisions require considered and learned judgement
at the highest levels.

TIP # 1114238-020

Once a reasonable set of goals and time-frames have been established,
the theoretical systems development would follow this scenario: data
analysis and structuring, database design and modeling, systems design,
implementation, simulation, optimization, and production. This scenario
works very well for new applications, but for entrenched applications
one must consider the emotional inertia of users and programmers and the
management's concept of sunk cost.

If a project's starting point includes a considerable investment in
application programs, then there is a strong tendency to think in terms
of converting to a database. However, "converting to a database" may be
akin to turning lead into gold and require the services of an alchemist
rather than a DBA. Having a "considerable investment in application
programs" is another term for being stuck with a bunch of old programs
with old designs and data relationships. Certainly there is the
capability to "convert" to a Data Base Management System, but recognize
that here the major change is the the replacement of the filing system.
The old implementation request, via MCP, is to perform a specific I/0
with a narrow interface. The latter request, via DMSII, is much broader,
generalized interface with higher levels of capabilities and guarantees.
The resultant comparison of cost/performance between the two systems
have provided unwarranted disappointment of this unfortunately popular
technigue of "converting” to a database. These conversions tend to
incur most of the cost of a DBMS and little of the benefits.

There are other forms of conversion that seem innocuous at first glance.
They include applications using FORTE, FORTE2, DMSI, or even other
vendors DMS products. It could even include older implementations of
DMSII that are being converted from Burroughs Small or Large Systems.
Their major flaw is the probable lack of data analysis and structuring
and the outdated database designs used with older systems.

Just a few years ago the state of the art in database design and DMS
systems was the capability to physically implement multiple levels of
hierarchical and network relationships. This implementation greatly
reduced or eliminated most forms of redundant data which was important
in the days of limited and expensive disk storage. It involved the use
of embedded structures, i.e. a master record would own other records or
a list of records. The industry was quite proud of this technological
advance and embraced the concept enthusiastically.

The experience gained with those earlier databases showed embedded
structure relationships to be extremely inflexible and cumbersome for
the database operations relative to reorganization and recovery. 1In
today's systems, the response to change and failure is critical.
Embedded structures also have severe limitation in access and
maintainence functions.

Todays designs are almost exclusively flat (not embedded) with limited
data redundancy for the purpose of developing symbolic relationships
between data structures. Reorganization and recovery of flat structures
affect only the specified disjoint structures, which is likely to be a
smaller subset of the database. Embedded structures, if used at all,
would be limited to special cases of specific optimization usage. One
to one conversion of hierarchical and network structure designs will
retain these logical and operational anomalies. They should take the
path of punch cards and teletypes.

TIP # 1114238-020

"WHO IS IN CHARGE OF THIS CHARGE ?

——— —— e e - -

Due to its generative nature, much of the effectiveness of the DBMS lies
within the control of the individual site. It is the site's definition
of its data relationships and structures; the site's definition of
physical file attributes, DMSII options and features; the site's
application program's specific usage reguests, and the site's actual
volumes and populations that make each environment unique. It is the
design and definition of this environment and the physical resources
available that have the greatest effect on performance.

The Burroughs environmental software tool, DMSII, is used to develop a
user tool, a database. The database is a component of a processing
system. Using a building as an analogy, DMSII would be the building
material, the two-by-fours of your house. The design and function of
the building is up to the architect. The features and fixtures are
determined by the end-user. The characteristics of the building
material is developed by the vendor, and as the materials will affect to
some degree the functional design of a building, so will the features of
‘a DBMS affect the processing system design.

The definition, design, and usage of the DBMS and, most likely, the
higher levels of the other parts of the system should be coordinated and
controlled by a single administration. This control is established in
the function of the Data Base Administrator. It is the DBA who must
acquire expertise in the specific applications and usage of data, in
database design technologies, and in the DMSII features and
capabilities. The DBA must then develop specific knowledge of how these
interrelated criteria apply to the requirements and resources of the
organization.

ONCE AGAIN, WHY ARE WE DOING THIS ?

Once the control of data resources is accomplished, the users can expect
data that is common, current, secure, and reliable. From this position,
the increase in the productivity can be realized. The data can take on
additional responsibilities in algorithmic business decisions.
Information, heretofore unavailable, is easily derived and presented.
Programming responses to changing environments become flexible and
timely. The bottomline rewards of responsive programming and a
flexible, reliable database which contains coordinated, current
information have value; a value that has been determined to outweigh the
cost of current, or more likely, future alternatives. What is the cost
of missed opportunity? What value can be placed upon a new function not
implemented or lost chance to improve productivity because of the time,
or cost, or capability? The justification, to some, may be simply to
provide increased control and productivity of their programming and data
resources. To others, the DBMS becomes the lifeblood of the company's
competitive existence. _

TIP # 1114238-020

Once the decision to have a database management system is made, there is
a sequence of functions that should be performed before implementation.
They include developing a broad perspective and an informed attitude,
becoming trained in DMS technologies, analyzing the company's data
resources and usage, providing a comprehensive strategy, and finally,
developing and modeling the systems and database design. Only after

implementation are the simulation, analysis, and optimization functions
performed.

Performance of these functions allows the development of a Database
Management System which answers the challenge of the '80s and provides
the foundation for the technology of the '90s.

TIP $ 1114238-020

—— o w—- ———_— - —_——— o ——

DMSII is often described as a hierarchical data
management system. This is far from the whole truth.
DMSII provides the database designer with the tools
required to follow several design philosophies:
hierarchical, network, flat/relational, or any mixture
thereof. :

The following sections discuss each of the approaches to
database design. But first, the concept of basic data
storing and accessing should be understood, and that
requires some understanding of the DMSII structures.

DATA AND ACCESSING STRUCTURES

The basic database structure is the dataset. The physical form of a
DMSII dataset is a disk or pack file with all the typical file
attributes: blocksize, arealength, areas, familyname, etc. This DMSII
file contains records which are described as a collection of related
data items. 1In one popular abstraction, the dataset describes an
entity, the data items are attributes of that entity, and records are
instances or occurrences of that entity. In the CODASYL terminology,
the dataset would be a schema.

All datasets can be accessed serially (or ordinally) via read first/next
type of functions. Records can alsc added, deleted, locked, etc., via
the same concept of physical, ordinal, direct access to the dataset.
There are, in fact, many applications where the "old-fashoned"”, serial
access is logically sound and physically the most efficient method, even
in the most sophisticated implementations.

Keys

One of the major characteristics of a database system is increased power
to access data. Underlying this is the facility to identify data, and
since it is organized into records, to identify the record. Each
database record should be uniquely identifiable. Modern database
designs require that this unigueness be a function of the data items.
That is, the value of a data item or items in a record be unique for a

dataset. The item(s) thus identified is called the key in this design
philosophy.

The definition of the term, key, has an original meaning of record
identification, however, its usage has given it connotations more
concerned with record accessing. Over several generations of data
design, its meaning has been expanded, narrowed, specified, generalized,

CTIP 4 1114238-020

and even syntaxed to the point that it requires adjective or contextual
definition for each usage. This is mentioned as a warning not to form a
constricted definition of the term, key. It has, for instance, a
different connotation when it is used for record accessing. It can
identify a single record or a set of records. It can be used for
sequencing an access or the physical dataset itself. Part of the key
(or all of it) can be used as an argument for a record or data search.
There are primary and alternate keys, major and minor keys, simple,
complex, and concatenated keys, and a host of other combinations.
Rather than attempt to clarify them all, a "soft" definition will be
used: a key is specified data items that identify a record and have a
usage of record accessing.

Index structures

- —— - ————— v ———

Serial accessing may need to identify a record, but there is no concept
of keyed access. DMSII's capabilities of keyed access can be abstracted
into whether or not it requires an index structure. The general form of
index structures consist of entries containing a key and a record
location pointer, although some have only a pointer and perhaps not even
that. The major common characteristic is that physical data is reguired
to develop the access. DMSII uses a separate file to contain this
access data; this file is a index structure.

Index structures can be specified as a SET or a SUBSET in DMSII. SETs
will have a entry inserted or removed automatically for each record
creation or deletion in the referenced dataset. Entries in a SUBSET are
either maintained automatically depending upon a condition in the
dataset record (automatic subsets), or maintained by specific user
function reguests (manual subsets). Since a SET and a SUBSET are common
in other respects the term, set, is often used for both types of index
structures, and the term, spanning set is used to specify a SET. This
terminoclogy is less confusing at least.

Sets are organized, logically and physically, to provide some desired
characteristics of the access. Random or seguential accessing, or both,
or merely presence is one set of criteria. Physical resources consumed,
disk, 1/0, memory, redundancy is another; recovery, reconstruction, and
reorganization yet another. DMSII has many types of organizations for
index structures: INDEX SEQUENTIAL, INDEX RANDOM, ORDERED LIST,
UNORDERED LIST, and BIT VECTOR. Index sequential is the most versatile
and by far the most popular organization. The others are quite useful
for special case optimizations.

Datasets and ACCESSes

In DMSII, the most simple form of dataset is the STANDARD dataset. This
dataset puts new records at any convenient location, and the record will
stay there until it is deleted or reorganized. The deleted record
spaces are reused for subsequent record additions, therefore, STANDARD
datasets maintain efficient utilization of disk space. Only serial
accessing is allowed unless an indexed structure is used. The STANDARD
dataset 1s easily the most popular type of data structure.

TIP 4 1114238-020

DMSII has other types of datasets which can also be accessed via key
selection. These datasets will have an associated structure called,
unfortunately, an ACCESS. An ACCESS structure, although not a phy31cal
file, has many of the same attributes and syntax usage as index
structures, including describing the characteristics of the key.
Dataset structures which have an ACCESS structure required are DIRECT
and RANDOM;

A DIRECT dataset ACCESS 11m1ts the key to an 8-digit data item and uses
its value as the record location. Both random and sequential accessing
and all forms of file maintainence are very efficient. Disk space
utilization depends upon the density of the values of the key, which is
obviously quite restrictive., Transaction processing systems have
increased the need for a fast random accessing function with no
requirement for sequential access on that key. As disk space gets
cheaper and its I/0 time is not showing the same rate of technological
advance as other processing components, the tradeoff toward reducing the
number of 1/0s per request becomes paramount. Therefore, the RANDOM
dataset is gaining in popularity. A RANDOM dataset hashes the ACCESS
key to a block where the record is found (or chained into overflow)
giving an average I1/0 per request of slightly over one. One 1/0 versus
a typical three I/0s for other types of random access is an
extraordinary difference for a high volume, low response time, random
processing environment. RANDOM datasets typically reguire more disk
space than other alternatives.

Dataset structures keep the record location constant until the record is
deleted or reorganized. Therefore, the referencing index structure
pointers need no maintainence for the life of the record. This allows
DMSII to provide any number of any type of index structures to reference
these datasets. In fact, this is the typical implementation for
inverted and interfile relationships. For instance, a RANDOM dataset
ACCESS could provide quick specific access, while an INDEX SEQUENTIAL
set on another key provides a sequential inversion, and yet another
index provides record relationships via partial key access.

Of the several types of index structures and data structures there are
three which are especially useful for developing modern database and
systems design. RANDOM datasets are used for data with a high volume of
single record, random access on a fully specified unigue key. For other
types of dataset usage, the more generalized STANDARD dataset can be
specified., For sequenced access, interfile relationships, and other
partial key access, the most versatile index structure is INDEX
SEQUENTIAL. Other structure types provide excellent opportunities to
optimize accessing or storage for special-usage or specific data
characteristics. However, for basic database design and for and simple,
flexible, and efficient data and index structures only two or three
structure types are needed.

TIP # 1114238-020

DESIGN MODELS

The flat/relational approach

From a few years of experience with the first database systems, it is
now recognized that it is less important to accurately implement a
database model, and more important to provide a system that can react to
change and growth. Finding out that a data management system could
handle many small things better than even a few large things, reversed
the direc¢tion of database design. Smaller files of normalized data,
planned redundancy, symbolic rather than physical relationships, and
simple, flat, disjoint physical file structure were found to be more
effective.

Relational database is now the hot button that promotes this design
philosophy. That may be the reason that nearly all the DMS vendors are
now using the word, relational, when describing their current, and
sometimes not new, DMS product. The following discussion will attempt
to clarify the concepts of a relational database, a relational approach
to a database, and a flat database as simply as possible and germane to
DMSII.

Relational databases

There are several characteristics of the relational model that set it
apart from the other methods of modeling data. It offers simple, clear,
and understandable components and relationships. It is unfortunate that
this has been obscured by a vocabulary of unnecessarily confusing terms
surrounding relational software technology. Therefore, the first and
perhaps hardest hurdle is the difference in terminology. Relational
terms relate fairly well to DMSII and will therefore be obscure for
those familiar with DMSII terminology. The following table correlates
relational and DMSII terms.

RELATIONAL | DMSII
relation (table) | dataset
tuple (row) record
domain (column) data item in a record definition

or perhaps, range in VERIFY clause

attribute instance of a data item

degree number of data items in a record
cardinality current population

key (unique id) key (access definition)

Figure 5 - Relational Terminology vs DMSII Terminology

TIP % 1114238-020

10

The foundation of the relational data model is the RELATION or a
collection of data. The concept of a relation is a two-dimensional
table implemented as a fixed-format file. 1In the terminology of the
relational approach, each record in the file or row in the table is
referred to as a TUPLE, and each field in the record is known as an
ATTRIBUTE. Tuples are often referred to as n-TUPLES, indicating "n"
columns or attributes in the table. DOMAIN is similar to attribute, but
there is a significant difference; a domain is a pool or set of values,
an attribute is the use of a domain. Domain is often used to describe a
column of the two-dimensional table. The DEGREE of a relation is the
number of domains that make up the relation. The CARDINALITY of a
relation is the number of tuples that exist in the relation. The
cardinality of a file would be the number of records in that file. KEY¥s
in the relational concept have nothing to do with accessing, but are
defined as attributes that uniquely identify a tuple.

The following diagram presents the tabular view of a relation or
dataset. There are "m" tuples (tl-m, cardinality "m") made up "n"
attributes (al-n, degree "n")

Or, in DMSII terms, there are "m" records (population "m") made of "n"
data items in each record of the dataset RELATION,

RELATION:
' attributes
a(l) - a(2) a(3) . . . a(n)
t(l) +-=---- - e ot ——— +
t t(2) |=-====|mmmmmem e e e e
U t(3) |mmmmmfmmmmmmmemm e e e
p s |TTFT= | TTTTTETTTTT TSI TN
1 . = e e e
e P el Bl el Bl
s B el el el el B
t{m) +----- Fmmm e Am—————— trmmm +

Figure 6 - Tabular View of a Relation

Once the terminology is understood, the more concrete characteristics of
the relational database model are:

1) The data must be normalized to at least first normal form. 1In
other words, a flat (non-embedded) logical and physical
database is created.

2) A precise user view of the logical and physical database is
defined. Relationships between RELATIONS are only developed
symbolically via matching ATTRIBUTES. '

3) It allows relational algebra and relational calculus
operations.

4) It supports the use of a relational query language that forms
the query and response as a new relation.

TIP # 1114238-020

11

It must be noted that the theoretical relational database has no concept
of access except tuple searching (serial access). Any attribute(s) may
form the query (new) relation. Implementation then requires a low
population, high primary storage environment to provide reasonable
response. That is not the typical DMS environments found today, so some
further refinements to the concept are required to make viable DMS
products.

The relational approach

The relational approach then is a spectrum of implementations which
relax the very precise definitions of the theoretical relational model
and provide some pragmatic capabilities. The most obvious requirement
is the definition of specific accessing capability. The least useful
characteristics are dropped. They are the more exotic mathematical
operations developed for two-dimensional tables, and to a lesser degree,
the form of guery and response.

So vendors have, in varying degrees, implied relational approach
capability. All that is required is the ability to build a
two-dimensional table. The rest, the vocabulary, normalization,
symbolic relationships, and perhaps even guery are methodclogies and
abstractions outside of the DMS implementation, but typically included
within the relational approach.

To qualify as a relational approach, a DMS system should include most of
the relational attributes. Certainly a strong normalization to a
two-dimensional table concept is required. Some of the algebraic table
manipulations, query, and terminology would be included.

Rarely does any fully implemented model or methodology address the real
world complexity. Just as the relational model ignores the reality of

accessing, the normalization methodology ignores access usage resource

reguirements and language usage reguirements.

The real world of processor and 1/0 speed, memory limits, and COBOL
language usage coupled with high volume, high population environments
finds the relational approach wanting in a significant number of
specific cases.)

The essence of the relational approach is the flattening of the
structures and use of only symbolic relationships. The first tends to
make several smaller pieces of a larger piece, and the second eliminates
physical implementation of interfile relationships. Given just those
two criteria, a data management model will produce most of the
advantages of a relational model, and yet allow the flexibility to
implement more pragmatic features.

TIP 4 1114238-020

12

A flat database is another loosely defined concept that has the literal
meaning of simply no embedded structures. Perhaps a more useful
definition would be a relational approach as described above without
some of the restrictions implied by the methodologies and strict model
features. There are several data item features, such as grouping and
occurring, that are quite handy for COBOL manipulation but beyond the
scope of normalization. Flat databases use the essence of relational
concepts with considerations of the user environment which includes the
DMS product features, the application language, the application usage
‘and population, and the site hardware.

Normalization

———— —————————

It is sometimes hard to distinguish what form or feature belongs to the
relational model and what belongs to the normalization methodology. One
of the effects, if not the purpose, of normalization is to form
two-dimensional tables on which the relational model depends. This
structure provides some good news and some bad news, typically, good
news for function A but bad news for function B.

‘The criteria for normalizing data can be described in another loose
definition:

"in each row (tuple, record), each column (attribute,
data item) must depend upon the key, the whole key, and
nothing but the key".

Key, in this case, is used for identification of the record. Data
structures formed in this manner will be independent definitions of a
single entity. The process of normalizing will likely form more and
smaller entities with fewer maintainence anomalies as it progresses from
unnormalized to third or fourth normal form.

The independence of these structures makes the functions of
reorganization, recovery, and future conversions more reasonable. The
users view is also more precise and therefore, better understood.

The fact that there are more entities increases the number of
structures, not only for the dataset, but also for the probable index
structure(s). This will increase the fixed overhead, but it may be more
efficient overall due to more precise invocation and other usage. The
same ambiguity can be recognized for the I/0. Smaller records are more
efficient unless the application transactions require several entities
to acquire the necessary data. Smaller entities will recover and
reorganize quicker, and if they have errors, the failures will affect
less of the database.

In the final analysis, the effectiveness of the normalized structures
depends upon how well they fit the application usage. An even more
definitive analysis may be how well the application usage fits the
normalized structures. This leads to the conclusion that data analysis
and structure design is the foundation of a flexible, responsive, and
effective database system. Data usage, application programs, and system
features are then built upon that foundation.

TIP 4 1114238-020

13

OLDER DESIGN MODELS

The database world did not, or perhaps could not, immediately convert
all the existing systems this new design. At the present time there are
many production programs whose database design is of an older genera.
Two database design models emerged during the early years, hierarchical
and network. Both are direct implementations of models that describe
real data and entity relationships. Both use a relationship form that
DMSII calls embedded.

Embedded structures

The concept of embedded is one of ownership. 1In this case, logical
ownership directly and physically implemented by embedding one structure
in another. It is a way of describing a one to many relationship.

Every instance (record) of the owner structure may own instances of
another structure. The former records are called masters, owners,
parents, or ancestors. The latter are called slaves, members, children,
or descendants. If the embedded structure is a dataset, then each
master owns related records in the slave dataset. If an index structure
is is embedded, then each owner record owns entries in the index
structure which point to records in the referenced dataset. These
referenced records are often called members of the relationship,
however, their existence does not depend upon the relationship.

Embedde datasets are used in the hierarchical model, while the network
model u:es the embedded index, or in DMSII terms, an embedded manual
subset.

A disadvantage of this approach is that it uses physical record and
block pointers as the only reference of a relationship. The index can
be corrupted by any number of failures or .errors of hardware, software,
and even the user. This corruption could spell doom for a user who may
not be able to reconstruct the destroyed relationships and "orphan"
records. This problem is compounded when it involves highly populated
relationships. :

~The hierarchical model

A hierarchical database is one whose relationships are implemented via
tree-structured series of data sets. The root (master, parent,
ancestor) may be described as data records which include in their
description varying occurrences of other data records. In DASDL, the
descriptions of these embedded datasets are included at the same level
as a data item. A reasonable abstraction is an occurring group of data
items implemented in a separate dataset. Each of these branches (slave,
child, descendant) is considered to be embedded within the root dataset
record. Each branch may in turn have its own branches. There is no
restriction on the number of branches at any level or the number of
levels. Each entity of the hierarchy is maintained in a dataset. The
branch dataset is implemented as a series of incongruous blocks
belonging to master records in the master dataset. The only means of
accessing a record in an embedded dataset is through its master dataset

TIP ¢ 1114238-020

14

record.

Insert, delete, and update anomalies are abundant in this design. This
approach also introduces unnecessary complications for the user with
respect to programming and inquiry. There are true hierarchical
structures in the real world and for these cases, the hierarchical model
describes them nicely, but the direct, physical implementation of the
model is not the most effective structures for the computer environment.

"It is inherent to the hierarchical model that a record may not exist in
an embedded dataset unless a master record exists. This is a major
drawback in the hierarchical approach: accessing and maintaining the
slave records is extremely difficult because it must be done only
through the existence and access of a master record.

Although the hierarchical model solves some data redundancy problems, it
can also create them. If a common instance is found at lower levels of
a relationship that must be be duplicated for each occurrence, e.g.,
nuts and bolts in a parts description. Changing an attribute of a nut
would require accessing every master in order to find every nut usage
plus finding and making the necessary changes each of the nut records.

Many to many relationships, e.g., classes have many students :: students
have many classes, are not reasonable to describe in this model. As an
answer to these and other inherent problems, the network approach to
data modeling was the next advance in database design.

The network model

A network model database consists of disjoint data sets where index
structures are used to indicate the entity relationships. The owner
structure may be described as common format data records which include
in their description varying occurrences of reference pointers to data
records in other disjoint data sets. Only this index structure (its
relevant entries) are embedded in the owner dataset (record), the
referenced dataset records are independent of the owner. Any number of
owner records from the same or different data sets may make reference to
a member record. A member record may also be a owner record in another
or even the same relationship. 1If this sounds confusing, it is
confusing and points out that clarity is not one of the better
attributes of the network model.

By allowing all data sets to exist on the disjoint level, the problem of
accessing and maintaining subordinate records is solved; all data sets
may be accessed directly. The embedded relationship is still maintained
through the use of manual subsets, thus preserving the physically nature
of the implementation. Manual subsets do, however, reqguire the
application program to maintain that relationship, and therefore open
the door for user error. The many to many relationship was easily
solved by having each dataset defined with a list of related records in
the other dataset. However, relationships of this type typically have
attributes that belong to the relationship itself, and therefore,
require a dataset anyway. :

TIP 4 1114238-020

15

The network approach allows the modeling of multiple "n to m"
relationships as it allows any referenced record to have multiple
owners, But this adds complexity to the design, implementation, and
user understanding. Records may be accessed concurrently from many
different relationships which may (and at times, does) produce
unpredictable results. Even though many of the insertion, deletion, and
update anomalies that existed in the hierarchical model have been
eliminated, new problems have been introduced to the deletion process.

A similar problem exists with the network design as was found to exist
in the hierarchical approach, i.e., the occurrences of pointer
corruption, the lack of recovery from severe faults, and the physical
dependencies between large portions of the database.

Both the hierarchical and network model are very reasonable approaches
to forming the relationships between entities for many of the real world
situations. They can both be used to form a complex structure
relationship. Their implementations are sometimes performance effective
for a particular usage. But for the general case of basic database
design and for implementation of physical structures, they have been
found to be severely limited and inflexible. The model may be useful
for user views when more relational models are not appropriate. At the
opposite end of the development, embedded structure's performance
characteristics may fit a limited usage where the performance of the
strict physical organization provides_an expansion of a critical
bottleneck. -

The simple forms of the relational approach provide the database
environment with the most adaptable and reliable structures. However,
to be effective the usage of the data must be compatible with the
structures. Changing data usage is a harder sale in that it affects the
capabilities of the end-user. Even with user acceptance the rather low
thresholds of volume, population, and response time lessen the
feasibility of the relational approach.

Of the several approaches discussed so far, the flat design is the best
basic design philosophy. The flat design approach eliminates the
problems of uncorrectable physical pointers by using symbolic pointers
(keys). It also helps simplify many of the complexities that are
inherent to the use of embedded structures. A flat design has the
freedom to deviate from the rigors and discipline of extreme
methodologies found in the relational models.

Start with the best materials

Data analysis and structuring is the foundation of any information
system. These beginnings should develop simple, two-dimensional tables
that reflect the attributes of precisely indentified entities. The
relationships between entities are described by data items in the
referenced dataset. These enities are implemented by RANDOM datasets

TIP ¢ 1114238-020

16

where the access usage, disk, and I/0 response tradeoffs are
appropriate, otherwise, by STANDARD datasets. INDEX SEQUENTIAL spanning
sets and automatic subsets are used to form the interfile relationships.
These are also the structure types that best implement intrafile
relationships. : '

Scratch only where it itches

—— - ——— ————— ————— - — = ————

Now develop the usage requirements. If possible, limit the usage to
functions that effectively access the data. If the number of accesses
are excessive for an unnegotiable usage, then it is possible to
"unnormalize". This would mean collapsing structures or parts of
structures into reasonable form for the accessing criteria. The
possible anomalies created by this technique would need to be resolved.
In fact, the whole capability/cost situation may need re-evaluation. Be
careful not to over-optimize at this point. After real environment
modeling has been analyzed, some further structure manipulations may be
required, but do not give away future flexibility too easily.

Once the live environment is tested, there may be additional deviations
from the normalized, and even the flat, design. Real live work giving
not so live response times can lead to desperate measures (embedded
structures). Hopefully, they would be limited to resolve specific
~bottlenecks, and their negative aspects fully understood.

If it feels good, do it

—— - ——— - - ome e m

There are many other features, structures, and capabilities in a
fully-featured system like DMSII. Some, like GROUP items and OCCURS,
~are oriented to the host language. Others may trade DBA control and
DMSII general implementation for application program specific
implementation and speed. Still others allow for physically tuning the
file attributes for greater control or efficiency. The door ought to be
left open to take advantage of any of the special features that fit a
specific situation. Every site, application, usage, volume, population,
hardware, etc. provides a different opportunity. Anything that
restricts a solution to that problem must be carefully evaluated.

Use clay, not granite

Everything is changing. Users, vendors, hardware, software, design
technology, it will change before the next reorganization. Database
management systems are low on a steep technology curve. So, prudent
users will think of the future in both short term and long term
criteria. In the areas of design, and usage, and even optimization some
rather broad outlooks must be considered. It must be recognized that
today's concrete decision may be the subject of tomorrow's
reorganization., Design in small, discrete parts; choose currently
reasonable file attributes; optimize only where necessary; and
hopefully, keep pressure upon any requirement/resource that causes a
deviation from good design philosophy.

TIP # 1114238-020

2)

3)

4)

BIBLIOGRAPHY

Martin, James; Principles of Database Management;
Prentice-Hall, Inc.; 1976;

Date, C.J.; An Introduction to Database Systems, Second
Edition; Addison-Wesley Publishing Company, 1977

Martin, James; Computer Database Organization; Prentice-Hall,
Inc.; 1977; Chapters 13-16

Barnhardt, Robert S.; "Implementing Relational Data Bases";
DATAMATION, October 1980; pp. 161-172

TIP % 1114238-020

17

18

<this page left blank for formatting purposes>

TIP % 1114238-020

TABLE OF CONTENTS

DBMS PREPARATIONS
WHOSE IDEA WAS THIS, ANYWAY 2. . . .
CAN WE CHEW WHAT WE HAVE BITTEN ?. .
DIRECTION FORWARD - WHICH RIGHT FOOT
WHO IS IN CHARGE OF THIS CHARGE ?. .
ONCE- AGAIN, WHY ARE WE DOING THIS ?

CHOOSING A BASIC DESIGN PHILOSOPHY.
DATA AND ACCESSING STRUCTURES. .

DatasetS. « ¢ &« o« o o o o
KeYS: v v« o v o ¢ o o« o o &
Index structures.
Datasets and ACCESSes . . .
The flat/relational approach
Relational databases. . . .
The relational approach .
The flat database
Normalization

. . . .

e e &

¢« e o o & e o

.
.
.
.
.
.
.
.

e .
VMHHWOVWINOOO0 O B NN -

® © & e e ® 8 e e e o 8 e e o s o

OLDER DESIGN MODELS. . . .
Embedded structures . .

The hierarchical model.

The network model

A DATABASE DESIGN ALTERNATIVE.
Start with the best materials
Scratch only where it itches.

If it feels good, do it . . .

Use clay, not granite
BIBLIOGRAPHY., + v v v o o o o o o o

-
w

e & o o o o
e & ® @ @ 3 e e o e e & & e e e e o e s 2 o

.
.
.
.
.
.
.
.
)
.
.
.
.
.

e o e e e @ 8 e ® e ° 6 e ° o s e s o s * o e o

e ® e e ® e e 8 ® e @ 8 e ® ® e 6 s @ e e v o s e o+ o
® ® o e e a ® e e e e ® & e o+ o s e & o o & 2 o e o+
e ® @ e e e e ® e 8 e ® ¢ e e o s e & o s 2 e e o o o
a e o e e @ e e e o e e e e o o & e s & ° * o o 2 &
e e & & e e ® 6 e e e 6 e ® e o o o s o e o s o o o o
e @ e e 8 e e 8 e e ® @ e e e e ® ° o o e * e o o+ s

.

e ® 8 6 6 8 e & o e e e e o e & o o o s o o

e ® ® e e e e e e & s 8 o * 6 6 o o o e o e+ o
® ® ® e 8 e % e e e @ e e e o o s °© o o o o

e ® o e e ® e e e e 8 e o e e e ® o o o

= e
NN UTUT W W

e e & s & s e o e @

