OWNER'S MANUAL

Model $2422 B$
 Floppy Disk Controller

MODEL 2422
 MULTIMODE FLOPPY DISK CONTROLLER REFERENCE MANUAL

$$
890 \emptyset 0-02422
$$

Rev B

Copyright 1981
California Computer Systems $25 \emptyset$ Caribbean Drive Sunnyvale, CA 94086

Copyright 1980 by California Computer Systems
All rights reserved. No part of this publication may be reproduced in any form or by any means without express permission of California Computer Systems.

The information contained in this manual is believed to be correct at the time of publication. However, CCS assumes no liability resulting from the use of this manual.

Z-8ø is a registered trademark of Zilog, Inc. $C P / M$ is a registered trademark of Digital Research, Inc.

Publication History:
Revision A printed in August $198 \emptyset$ Revision B printed in May 1981

TABLE OF CONTENTS

1. \varnothing INTRODUCTION
1.l General Description 1-1
l. 2 The 2422 and System Compatibility 1-2
1.3 Drive Compatibility 1-4
1.4 Diskette Compatibility 1-5
1.5 Specifications 1-7
2.Ø USER OPTIONS
2.1 Auto Boot Option 2-1
2.2 PerSci Drive Options 2-2
2.3 Options for System/Software Compatibility 2-5
3.Ø INSTALLATION AND OPERATION
3.1 System Configuration 3-1
3.2 Drive Configuration 3-2
3.3 Installation 3-7
3.4 Operation 3-8
4.め THE 2422 ROM-RESIDENT FIRMWARE
4.1 Cold-start Entry 4-1
4.2 Page \emptyset RAM Used by Firmware 4-2
4.3 The Firmware Disk Routines 4-2
4.4 The Monitor's I/O Routines 4-4
4.5 The Bootstrap Loader 4-8
4.6 The Monitor 4-9
5.ø THEORY OF OPERATION
5.1 The 2422 Registers 5-1
5.2 The System Interface 5-2
5.3 The Disk Drive Interface 5-6

APPENDICES

A.Ø PROGRAMMING INFORMATION
A. 1 The 2422 Accessible Registers A-1
A. 2 Diskette Format A-2
B.Ø THE 1793 DATA SHEET
C. \emptyset FIRMWARE LISTING
D. \emptyset TECHNICAL INFORMATION
D. 1 System Bus Interface D-1
D. 2 Drive Bus Interface D-3
D. 3 User Replaceable Parts D-5
D. 4 Assembly Drawing D-7
D. 5 Schematic D-9
TABLES AND FIGURES
Table l-1 Plug-compatible Drives 1-1
Table 1-2 Firmware-compatible Diskette Formats 1-2
Table 4-1 Low RAM Locations Used by Firmware 4-2
Table 4-2 Disk Parameters 4-4
Table 4-3 Physical-to-Logical Device Assignments 4-3
Table 4-4 The Basic I/O Routines 4-6
Table 4-5 Disk Parameters after Boot 4-9
Table 4-6 Assign Command Codes 4-13
Table 4-7 Sectors per Track 4-18
Table 5-1 U16b Outputs 5-7
Table A-1 2422 Register Addressing A-1
Table A-2 Control Register 1 A-2
Table A-3 Status Register 1 A-3
Table A-4 Control Register 2 A-4
Table A-5 Status Register 2 A-5
Table A-6 Bank Select Register A-5
Table A-7 Single-density Diskette Format A-7
Table A-8 Double-density Diskette Format A-8
Table D-l System Bus Signals D-1
Table D-2 Drive Bus Signals D-3
Figure 2-1 Jumper Locations 2-2
Figure 2-2 Jumper Configuration for PerSci Drives 2-3
Figure 3-l Double-sided Diskettes 3-9
Figure A-1 IBM 3740 Format A-6
Figure D-l System Bus Pinouts D-2
Figure $D-2$ Drive Bus Pinouts D-4

CHAPTER 1

INTRODUCTION

1.1 A GENERAL DESCRIPTION ON THE 2422

CCS's 2422 Floppy Disk Controller supports single- and double-density data formats, single- and double-sided 5.25" and $8^{\prime \prime}$ drives, and provides 2 K ROM containing software debugging routines and a bootstrap loader for loading CP/M (Digital Research's single-user operating system) from diskette. The 2422 is designed especially for use in CCS's system 2210, but provides a number of user options for compatibility with other systems and software.

The 2422 incorportates the following features:

* Ability to control up to four drives in any combination of single-sided or double-sided 5.25" and 8" drives.
* Compatibility with the IBM 3740 and System 34 standards for single- and double-density diskette formats.
* ROM-resident monitor program and bootstrap loader.
* Auto Boot option allowing $C P / M$ to be booted in on reset.
* Compatibility with either Shugart or Persci drive buses
* Compatibilty with IEEE proposed S-løø bus
* A compatible version of $C P / M$ that supports single- and double-density diskette formats in 128, 256, 512, and 1024 bytes per sector.

l.l.l ROM-resident Firmware Overview

The ROM-resident firmware consists of the bootstrap loader and CCS's monitor, the MOSS 2.2 Disk Monitor. The bootstrap loader is designed to read into memory the system loader on the first sector of the system diskette and transfer control to it. The system loader in turn reads in the operating system and disables the monitor ROM, freeing its 2 K of memory space. The MOSS 2.2 Disk Monitor provides routines for basic console control and software debugging and is designed to work with CCS's $281 \emptyset \mathrm{Z}-8 \emptyset \mathrm{CPU}$. Both the bootstrap loader and the monitor are described more thoroughly in Chapter 4, "The ROM-resident Firmware."

1.1.2 CCS's Implementation of CP/M

The 2422 is shipped with a compatible version of CP/M. CP/M is organized so that the device-dependent I/O drivers and disk routines are located in the portion of the operating system known as the BIOS (Basic I/O System). The version of CP/M on the diskette shipped with the 2422 contains a modified BIOS, called CCBIOS, which is designed to work with the System 2210. The basic principles and operation of $C P / M$ are described in Digital Research's manual "An Introduction to CP/M Features and Facilities," while CCS's modifications and additions to $C P / M$ are described in CCS's manual "CCS's Controller-Unique Software." Both are in your CP/M binder.

1.2 THE 2422 AND SYSTEM COMPATIBILITY

1.2.1 General

The 2422 is compatible with systems conforming to the IEEE proposed standards for the $\mathrm{S}-1 \emptyset \emptyset$ bus.

Note that the 2422 does not contain a serial I/O port. In CCS's System 2210, the serial port for the console is located on the CPU. If you do not own a $281 \emptyset \mathrm{Z}-8 \emptyset \mathrm{CPU}$, the console port must be provided by another board in your system.

1.2.2 Firmware Requirements

The basic system requirements for firmware compatibility are listed below. Since the monitor firmware is designed to work with CCS's $281 \emptyset$ CPU, systems with a $281 \varnothing$ CPU configured as described in Section 3.1 meet requirements 2, 3, and 4 below.

1. Both the Monitor and bootstrap loader require that roughly 256 bytes of low RAM ($\emptyset \emptyset \emptyset \emptyset h-\emptyset \emptyset F F h) ~ b e ~ a v a i l a b l e ~ o n ~ s y s t e m ~$ reset In addition, memory sharing the ROM's address space (FØØøh-F7FFh) should be capable of being disabled or overlaid when the ROM is being accessed. See Section 3.1 for information on configuring your system memory.
2. The ROM-resident firmware requires a $Z-8 \varnothing$ CPU, since the firmware uses the $Z-8 \varnothing$ instruction set. The $Z-8 \varnothing$'s instruction set contains $8 \varnothing$ more instructions than the $8 \emptyset 8 \emptyset$'s. Most of the $Z-8 \emptyset$ special instructions are condensations of several $8 \emptyset 8 \emptyset$ instructions into one instruction; owners of an $8 \varnothing 8 \emptyset$ CPU could thus expand the Z-8Ø instructions into their $808 \emptyset$ equivalents should they wish to use the ROM firmware. However, some monitor routines will have to be pared down or eliminated, since an $8 \varnothing 8 \emptyset$ version of the firmware will require more space. Modifying the firmware involves programming a user-supplied 2716-type ROM with the revised software and replacing the original ROM with the newly-programmed ROM.
3. In order for the ROM firmware to be accessed automatically on power-on or reset, you must have a power-on jump circuit somewhere in your system set to force the CPU to address $F \emptyset \emptyset \emptyset h$ on system reset.
4. The console I / O routines in the Monitor firmware are designed to drive the $281 \varnothing$ CPU's serial port. If you do not have a $281 \varnothing$ CPU and wish to use the Monitor, you will have to modify the console driver routines. Section 4.4 .3 contains instructions on how to do so. The bootstrap loader does not use the console I/O routines; thus if you use the 2422 in the AUTO BOOT mode (Section 2.1) in which only the bootstrap loader is accessed, the ROM firmware does not need to be modified.

1.2.3 Operating System Requirements

Your system must meet the following requirements to be compatible with CCS's controller-unique version of $C P / M$.

1. $C P / M$ requires $2 \emptyset K$ of continuous RAM, starting at $\emptyset \emptyset \emptyset \emptyset H$. CCS's distribution version is configured for $2 \emptyset \mathrm{~K}$ systems, but can be reconfigured for systems with larger memory: see MOVCPM in the Controller-Unique Software manual.
2. The system loader, CCBOOT, contains $Z-8 \emptyset$ unique instructions and thus requires a $Z-8 \emptyset$ CPU. Owners of an $8 \emptyset 8 \emptyset \mathrm{CPU}$ must translate the $\mathrm{Z}-8 \emptyset$ instructions into $8 \emptyset 8 \emptyset$ instructions. CCBOOT also requires a 4 MHz system clock to read double-density system diskettes. CCS's customized BIOS, CCBIOS, is both $8 \emptyset 8 \emptyset$ and $Z-8 \emptyset$ compatible.
3. Like the firmware console driver routines, the console driver routines in CCBIOS drive the $281 \emptyset$ CPU's serial port. If you are using a different CPU, you must alter the console I / O routines as described in Application Note l of the CCS Controller-Unique Software manual.

1.3 DRIVE COMPATIBILITY

1.3.1 General

The 2422 is designed to control soft-sectored floppy disk drives and to be plug-compatible with Shugart-type or Persci drives. As shipped, the 2422 is configured for Shugart-type drives. The following table lists some of the drives which are compatible with Shugart drives:

```
==============================================================
| 8" 5.25" |
===============================================================
| Shugart SA8ø\emptyset or 850
Shugart SA4\emptyset\emptyset or SA45\emptyset
| Memorex 55\emptyset or 552 MPI 5l or 52
| Qume DataTrak 8 MPI 9l or 92
Seimans FDD 1ø\emptyset-8 or 2\emptyset\emptyset-8 Tandon TM lø\emptyset
| Remex 200\emptyset or 40\emptyset\emptyset
==============================================================
```

 Table l-1 Plug-compatible Drives
 Owners of Persci drives will have to make the cut-and-jumps described in Sections 2.2.1 through 2.2.6 before the 2422 is plug-compatible with their drives.

All drives contain user options, some of which support daisy-chaining two more drives together. See section 3.2 on configuring drives.

1.3.2 Firmware/Operating system Requirements

The bootstrap loader/monitor firmware should work with most of the drives listed above, since the basic disk parameters for any read or write operation (track number, single or double-sided drive, etc.) must be specified by the user before each operation. A few drive models, however, may need a faster step rate than specified in the firmware, thus requiring a modification of the firmware (firmware step rates are $3 \emptyset \mathrm{~ms}$ for 5.25" drives and løms for 8" drives). Refer to Section 4.4.3 for instructions on altering the step rates.

The basic disk parameters in CCS's BIOS are fixed, limiting the type of drives that can be used with the operating system. The basic disk routines in CCS's BIOS are designed for Shugart-type single- or double-sided 8" drives with 77 tracks per side and Shugart-type single-sided 5.25" drives with 35 tracks per diskette. The number of tracks per side for the $8^{\prime \prime}$ drives is currently an industry standard; however, the number of tracks on 5.25" drives may vary. Should you own a drive with a different number of tracks, or wish to implement double-sided 5.25" drives, see the Application Notes in the Controller-Unique Software manual.

In addition, the CCS firmware/software also requires that certain drive options be enabled/disabled. Section 3.2 contains general instructions on drive configuration, as well as specific examples.
]. 4 DISKETTE COMPATIBILITY

1.4.1 General

The disk controller chip used by the 2422 , Western Digital's FDl793, reads and writes diskettes which: l) conform to the IBM $374 \emptyset$ format for single-density diskettes or to the IBM System 34 format for double-density diskettes; and
2) contain $128,256,512$, or $1 \emptyset 24$ bytes per sector. Although the IBM standards were designed for $8^{\prime \prime}$ diskettes only, the 1793 will read 5.25" diskettes whose formats are adapted from the standards. Some minor variations from these standards are allowed; if you will be writing your own software for the 2422, review the format specifications in the 1793 data sheet in Appendix B. Please note that the 1793 cannot read diskettes formatted by the 1771 disk controller chip, although the 1771 can read diskettes formatted by the 1793.

1.4.2 Firmware/Operating System Requirements

The following table shows the diskette formats supported by the ROM-resident firmware:

Table 1-2 Firmware-compatible Diskette Formats

CCS's version of $C P / M$ additionally supports single-density diskettes formatted in 1024 -byte sectors and double-density diskettes formatted in l28-byte sectors. (Refer to Table 2-1 in the manual "CCS's Controller-Unique Software.") The first track (Track øø) of any diskette MUST be formatted in l28-byte, single-density sectors. CCS's utility program CCSINIT automatically formats the first track of any diskette in l28-byte single-density sectors. Note that CCSINIT supports only those formats shown in Table $1-2$ above; it does not support the additional formats supported by the operating system.

1.5 SPECIFICATIONS

DRIVE INTERFACE CHARACTERISTICS

Type Drives:	Single- or double-sided 5.25" drives Single- or double-sided 8" drives
Number of Drives:	Four maximum of any type or combination
Drive Bus:	8"--Shugart SA850-type Reconfigurable for Persci 277/299 5.25"--Shugart SA45ø type
Compatible Disks:	Single-density, IBM 3740 format Double-density, IBM System 34 format 128, 256, 512, 1024 bytes per sector
SYSTEM INTERFACE CHARACTERISTICS	
System Bus	S-løø, compatible with proposed standards IEEE Task 696.l
Firmware	MOSS 2.2 Disk Monitor/Bootstrap Loader
PHYSICAL SPECIFICATIONS	
Disk Controller	Western Digital's FD1793
Memory	2316-type 2 K ROM Replaceable with a user-programmed 2716
Power Requirements	+8 volts @ .8øø amps +16 volts @ . $05 \emptyset \mathrm{amps}$
Dissipation	less than 8 watts
Environmental	\emptyset to $7 \emptyset$ degrees Celsius \emptyset to $9 \emptyset \%$ noncondensing

CHAPTER 2

USER OPTIONS

The 2422 is shipped from the factory configured for use in a System $221 \varnothing$ with Shugart-type drives. Those users whose system fits this description need only be concerned with the AUTO BOOT option; once they have configured this option, they may turn to Chapter 3. Owners of a System $221 \emptyset$ with PerSci drives will want to read Sections 2.2 .1 through 2.2.6 as well.

Sections 2.3.1 through 2.3.7 describe user options designed for compatibility with other systems and software. Figure 2-l on the following page shows the location of each jumper option and the configuration of the option as shipped from the factory.

2.1 AUTO BOOT OPTION

If you are using the ROM-resident firmware, this jumper allows you to choose whether CP/M will be loaded or the monitor entered on power-on and reset. The 2422 is shipped with a shorting plug on pins l and 2. In this configuration, CP/M is booted in directly on power-on or reset; that is, the monitor is not entered first. The BIOS portion of CP/M handles the 2810 serial port's initialization, setting the baud rate to 9.6 Kbaud. Those users who do not own a 2810 CPU will find the Auto Boot mode advantageous: since only the bootstrap loader portion of the ROM will be accessed, the user is freed from the chore of modifying the firmware's console driver routines. However, the BIOS console drivers still must be modified, as described in Application Note l of the Controller-Unique Software Manual.

If the shorting plug is removed, the monitor will be entered on power-on and reset. $C P / M$ can then be loaded in under monitor control by use of the Boot command. Entering the monitor on reset allows the user to take advantage of the monitor's console port initialization routines which initialize the $281 \varnothing$ serial port's baud rate to the baud rate set by the console device. The console device's baud rate can be set to any baud rate between 2 and 56 K baud. The shorting plug can be stored on the board by placing one end on either pin 1 or pin 2 and letting the other end swing free.

2.2 PERSCI DRIVE OPTIONS

Figure 2-2 below illustrates the necessary cut-and-jumps necessary for 2422 to be reconfigured for Persci drives. Sections 2.2.1 through 2.2.6 describe the options. See Appendix D for the pinouts of the $8^{\prime \prime}$ drive bus when reconfigured for PerSci drives.

Figure 2-2
Jumper Configuration
for PerSci Drives

2.2.1 Fast Seek

The FAST SEEK option is provided for users with voice coil drives. It allows the user to choose between softwareor hardware-enabling of the fast seek mode. Soldering a wire connecting pads 1 and 2 allows you to enable the fast seek mode by writing a \varnothing to bit 4 of Control Register 2. Soldering a wire connecting pads 2 and 3 permanently enables the fast seek mode. If you are planning to use the ROM-resident firmware or the CCS version of $C P / M$, the fast seek mode will be enabled only if you set the jumper pads 2 and 3 , since the CCS software does not enable the fast seek mode.

2.2.2 Drive Select 3

PerSci drives use pin 18, the Shugart drives' HEAD LOAD line, for DS3 (Drive Select 3). To enable DS3, cut the trace between A1 and A2 and solder a wire between pads A2 and A3.

2.2.3 Drive Select 4

Shugart drives have DS4 (Drive Select 4) on pin 32 of the bus; PerSci drives have it on pin 4. To enable DS4 on pin 4, cut the wire between pads $B 2$ and $B 3$ and solder a wire between pads B1 and B2.
2.2.4 Side Select

The Shugart double-sided drive uses pin 2 of the bus for TG43 (Track greater than 43); the PerSci double-sided drives use it for SIDE SELECT. To enable the SIDE SELECT line for a Persci double-side drive, cut the trace between pads $C l$ and $C 2$ and solder a wire between traces $C 2$ and C3. This modification allows the CCS software to support double-sided PerSci drives.

2.2.5 Remote Eject

The Shugart 8" double-sided drive bus uses pin 14 for the output SIDE SELECT, while PerSci drives use it for REMOTE EJECT. To enable REMOTE EJECT for a Persci drive, cut the trace between pads D2 and D3 and solder a wire between Dl and D2. Once this feature has been installed, writing a 1 to port $\emptyset 4 H$ will eject the diskette in the selected drive. CCS software does not support the Persci remote eject feature.
2.2.6 Seek Complete

Pin $1 \varnothing$ of the drive bus is used for the status signal TWO-SIDED by the Shugart double-sided drive and for the status signal SEEK COMPLETE by PerSci drives. To enable SEEK COMPLETE, cut the trace between pads E1 and E2 and solder a wire between pads $E 2$ and $E 3$.

2.3 OPTIONS FOR SYSTEM/SOFTWARE COMPATIBILITY

2.3.1 Bank Byte Option

Like CCS's RAM cards, the 2422 Disk Controller can be hardware assigned to one of eight banks, or levels, of 64 K , allowing up to eight disk controllers can be used in one system. To assign the 2422 to a bank, solder a horizontal jumper between the BANK BYTE pins which correspond to the bank level to which you want this board assigned. For example, jumpering pads Dø assigns this board to bank \varnothing. Once you have assigned this board to a bank, you can in turn select that bank and enable the board by outputting to port 40 a data byte with a logic l in the bit position corresponding to the bank level. For example, the following $Z-8 \emptyset$ code fragment would activate bank 3 and deactivate all other banks:

LD A, øøøøøløøøB
 ;load accumulator with bank control byte OUT $4 \emptyset \mathrm{H}, \mathrm{A}$;output bank control byte to port 40 H

Al though the primary purpose of multiple banks is to support multi-users, CCS's single-user system 2210 uses the Bank Select system to simultaneously disable the monitor ROM and enable high RAM (see Section 3.1). To support this function, the BANK BYTE pads should be left open entirely.

2.3.2 Bank Enable Option

The Bank Enable option allows you three methods of using the bank-select system to enable the board. As shipped, the 2422 is hard-wired so that the board comes up enabled on reset or power-on before any bank-selection occurs. Otherwise, the bank-select system functions normally; if a bank the 2422 does not reside in is selected, the 2422 will be disabled. If you cut the trace between pads 2 and 3 of the BANK EN jumper and solder a wire between pads 1 and 2 , the 2422 will be disabled after reset or power-on until its bank is selected. If you solder the wire between pads 3 and 4 instead, the 2422 is removed from the bank-select system entirely and is permanently enabled regardless of which bank is selected. Whenever the board is selected, the Bank LED lights.

2.3.3 ROM Enable Option

The ROM Enable option allows you to choose between two methods of enabling/disabling the bootstrap loader and monitor firmware. If you leave pads 1 and 2 of the ROM ENABLE jumper shorted, the bootstrap loader and monitor are enabled when your system is turned on or reset and disabled when any data byte is output to port 40 h . (Because port 40 h is the Bank select Port as well, you must make sure that the 2422 is either permanently bank-enabled or bank-enabled on reset.) This method of disabling the ROM is used by CCS's CP/M loader, CCBOOT. When it is loaded into memory by the bootstrap loader, CCBOOT outputs a Ø1H to port 4ØH. This will simultaneously disable the ROM while enabling any RAM assigned to bank Ø.

If you cut the trace between pads 1 and 2 and solder a wire between pads 2 and 3 , the ROM can then be enabled/disabled entirely through software control. Writing a \emptyset to bit 1 of Control Register 2 enables it; a 1 disables it.

2.3.4 Partial ROM Option

This option allows the portion of the ROM containing the basic I / O and primitive disk routines used by the monitor to be available after $C P / M$ is loaded in. This portion of the ROM, located at F6ØØh-F7FFh, contains essentially the same basic I/O routines as CCS's customized BIOS, CCBIOS, on the distribution diskette. If you are planning to tailor the CCBIOS to your system, you may wish to have your customized BIOS call some of the routines located in the ROM. This will give you the greater reliability of ROM memory and save some disk space. To allow the basic I / O portion of the ROM to remain in memory after $C P / M$ is loaded in, solder a wire between pads 1 and 2 of the $P R$ EN jumper.

You must leave the basic I/O portion of the ROM disabled if you will be running $C P / M$ in a system with 61 K of memory or greater.

2.3.5 ROM Wait state option

The on-board ROM has the relatively slow memory access time of $45 \emptyset$ nsecs. A CPU running at 4 MHz will not provide the access time needed by the ROM. The 1793 registers, when they are memory mapped, also have slow memory access times. If pads 1 and 2 of the WAIT jumper are left open (factory-configuration), the ROM Wait circuitry is enabled, inserting one wait state per memory cycle in which either the ROM or the 1793 is selected. If a wire is soldered between pads 1 and 2 , the ROM Wait circuitry is disabled.

2.3.6 Memory Map Option

CCS makes available to its 2422 users a control ROM which allows the registers on the 2422 to be memory mapped when the ROM is inserted into the socket for U2l. The registers then occupy memory addresses FFF8H-FFFDH. See Appendix A for a more detailed description of the 2422 register addressing. If you plan to use the memory map option, you can enable memory mapping by installing a wire between pads l and 2 of the M MAP jumper. The CCS firmware/software does not make use of memory mapping.

2.3.7 Interrupt options

The interrupt jumpers allow you to tie DRQ and/or INTRQ to either the Interrupt line (INT), the Nonmaskable Interrupt line (NMI), or any of the 8 Vectored Interrupt lines (VIØ-VI7). INTRQ, when active, indicates that a command has been completed and that the 1793 is awaiting a new command. DRQ, when active, indicates that the data buffer either has a byte to be read or requires a new byte to transmit, depending on the nature of the disk operation in progress. Either or both of these lines can be used to generate interrupts and thus request servicing from the processor. To generate VI2 by the active INTRQ, for example, run a bus wire from the INTRQ pad to the VI2 pad and solder it in. CCS firmware/software does not make use of the Interrupt lines.

CHAPTER 3

INSTALLATION AND OPERATION

3.1 SYSTEM CONFIGURATION

In order for the ROM-resident firmware to work as described in Chapter 4 or for $C P / M$ to be loaded properly, you must set up your system as follows:

1. Set your system's power-on jump circuit to force the CPU to jump to location Føøøh when you turn your system on or reset it. If you own a $281 \varnothing \mathrm{Z}-8 \varnothing \mathrm{CPU}$, you must set the JMP EN jumper to ON and set the JUMP ADDRESS SEL jumpers JAØ-JAll to \varnothing and JAl2-JAl5 to 1.
2. Ensure that any RAM sharing the ROM's memory space cannot be accessed while the firmware is being accessed. You may use the 2422's PHANTOM output to do so if your RAM responds to the signal. Or, if your RAM uses the same bank select system as the 2422, you can configure your RAM such that the memory block sharing the ROM's memory space is bank-disabled on power-on or reset. By assigning the block to bank \varnothing, you can ensure it will be enabled at the same time the system loader, CCBOOT, disables the ROM by outputting $\emptyset 1 \mathrm{H}$ to port $4 \varnothing \mathrm{H}$. On the 2065 this method of enabling/disabling the RAM can be accomplished by setting the BLOCK SEL jumper for Block 4 to BE, the BANK PORT ADDRESS jumpers A7-A to Øløøøøøø, and selecting Dø of the BANK BYTE SEL jumpers.

Note that if you wish to keep the basic I/O portion of the ROM enabled after CP/M is loaded, you have to use the PHANTOM output to disable the RAM sharing its memory space.
3. Ensure that at least 256 bytes of low RAM are enabled on reset; since $C P / M$ requires at least $2 \emptyset K$ of continuous RAM, it would be wise to enable all RAM except that which directly conflicts the ROM. On the 2065 this would involve setting the BLOCK SEL jumpers for Blocks l, 2, and 3 to ME (the bank-independent position).

If you own a $281 \varnothing$ Z-8ø CPU, you must also do the following:
l. Set the SERIAL ADDRESS SELECT jumpers to 20 H and the SER EN jumper to ON.
2. Disable the CPU's monitor ROM (ROM EN=OFF) when you are running $C P / M$ in a $6 \emptyset K$ or greater system.

3.2 DRIVE CONFIGURATION

All drives come with customer-configurable options, usually realized in the form of Berg jumpers or programmable shunts on the PC board. If you are planning to use only one mini drive, it can usually remain as configured by the factory. If you are using an 8" drive or more than one of the same size drive, you'll need to reconfigure your drives. The following two sections give general rules regarding the configuration of $8^{\prime \prime}$ and mini drives and give explicit configuration instructions for a few models of each size drive. Some of the models have gone through several revisions since they were first introduced; as result the setup instructions will not always be the same for two drives of the same model. If you have questions, contact your drive manufacturer.

3.2.1 8" Drive Configuration

The following general rules apply to all 8" drives:

1. The 2422 firmware/software requires that a drive be able to perform seeks without its head loaded. To enable a drive to do so, you must make its stepper circuitry dependent on DRIVE SELECT and independent of HEAD LOAD. In some cases DRIVE SELECT is terminated with HEAD LOAD; since this option separates DRIVE SELECT from the HEAD LOAD termination, DRIVE SELECT will need to be separately terminated.
2. Some drives can be configured for either hard-sectored and soft-sectored diskettes. Select soft-sectored.
3. Two-sided drives should be optioned out so that the disk side is selected by the SIDE SELECT signal. This is the standard drive configuration. In addition, the 2422 software requires the TWO-SIDED status signal be enabled.

If you are daisy-chaining two or more drives:
4. You must make sure that the common active lines are terminated in the last drive on the cable only. This may involve shorting traces, or removing jumper plugs or resistor packs: see your drive manual.
5. You must also enable the appropriate Drive select line to each drive, usually accomplished by moving a jumper plug. These are four Drive Select lines available, allowing each of four drives to be independently selected. Many drives also allow the option of chaining up to eight drives together; the 2422 does not support this option.
6. To avoid electrical noise and improve disk access speed, we recommend you make the Head Load signal independent of the Drive Select signal, if your drive gives you the option. This will cause all the drives to load at the same time and stay loaded for the duration of a read/write operation. Since all heads load, you also want to make the Activity LED on the drive's front panel independent of HEAD LOAD and dependent on DRIVE SELECT only.

Most drives offer additional options to the ones mentioned above. These should be left in the factory configuration.

3.2.2 Examples of $8^{\prime \prime}$ Drive Configuration

Below are specific instructions on configuring selected drives so that they conform to rules 1 through 6 above.

SHUGART SA8ØØ
L. Plug traces DS and C. Remove plug from B and HL. Terminate DRIVE SELECT by plugging T2.
2. Close 8øØ; open 8Ø1.
3. Not Applicable: the SA8ØØ is a one-sided drive.

For daisy-chaining more two or more drives:
4. Plug Tl, T3, T4, T5, T6 in the last drive on the bus interface only. Leave these pins open on all other drives on the bus.
5. Plug one of the following Drive Select pins: DS1, DS2, DS3, or DS4. Pads DDS, Dl, D2, and D4 should be left unnconnected.
6. Close A, X, and Z. Open Y.

SHUGART SA85ø/851, REMEX RFD2øøø/2øø1, REMEX RFD4øøø/4øø1, MEMOREX 550/552, QUME DATATRAK 8

1. Cut traces B and $H L$ on the drive's programmable shunt. Leave the traces Z, A, X, I, and R on the shunt shorted. Plug DS and C.
2. Plug the following traces in the following drives: 850 (Shugart); $4 \emptyset \emptyset \emptyset$ (Remex $4 \emptyset \emptyset \emptyset$); 2øøø (Remex 2øøø); SSE (Memorex). Leave open; 851 (Shugart); $4 \emptyset \emptyset 1$ (Remex $4 \emptyset \emptyset \emptyset$); $2 \emptyset \emptyset 1$ (Remex $2 \emptyset \emptyset 1$); HSE and HSI (Memorex). Cut S on the Shugart and Remex programmable shunts. The Qume drive does not have a hard sector option.
3. In the double-sided drives, short 2 S and S 2 to enable the signals TWO-SIDED and SIDE SELECT. Leave open Sl, S3, 1B, 2B, 3B, and 4B (or alternatively, Bl-B4).

For more than one drive:
4. Remove the terminating resistor pack in all drives except the drive that is electrically last on the cable. (At location 3 H in our Shugart, 7 A in our Remex, and 2 F in our Memorex.) The Qume has two resistor packs that need to be removed: 1 TM and 2 TM .
5. Jumper only one of the following: DS1, DS2, DS3, or DS4 (located by Jl). Leave DD in the Shugart and Memorex plugged. On drives that allow up to eight drives in a daisy chain, pins DDS, Dl, D2, and D4 should be left unconnected.
6. Open Y.

SIEMENS FDD $1 \emptyset \emptyset-8$ and $2 \emptyset \emptyset-8$

1. Remove the vertical jumper between G pads and place a horizontal jumper between the H pads.
2. Leave SS shorted and HS open. (Both jumpers are located by 2C.)
3. For the 2øø-8, make sure that a jumper exists between the horizontal 7 pads and that the vertical 8 pads are open. The Side Sel pads $3-\emptyset$ should remain open.

For daisy-chaining two or more drives:
4. Remove terminating resistor on all drives but the last on the bus interface.
5. Plug one of the following RAD SEL (Radial Select) pins: \varnothing, 1, 2, 3. These pins correspond to the DS1, DS2, DS3, DS4 on other drives. Leave the Binary Select pins $\emptyset-7$ open.
6. Remove the wire jumper between the vestical L pads and install a wire on the horizontal J pads. For the activity LED to light on Drive Select, leave U and S of the ACT LED pins plugged and R and H open.

3.2.3 Configuring 5.25" Drives

5.25" drives tend to be more standardized and simpler to configure than the $8^{\prime \prime}$ drives. If you plan to use only one 5.25 " drive, you can plug it in as is. If plan to use more than one, configure them as follows:
. . Make sure the common lines are terminated in the last drive only. In most, if not all 5.25" drives, this involves removing the terminating resistor pack from its socket in all but the last drive.
2. If given a choice between loading the head on DRIVE SELECT or MOTOR ON, choose DRIVE SELECT. Most drives come configured for DRIVE SELECT; however, since in some cases choosing between the two option involves moving a programmable shunt up or down one position, ensure the right option is selected before you make any cuts on the shunt. Shugart's double-sided drive gives the option of having the drive motor activated by MOTOR ON alone or either MOTOR ON or DRIVE SELECT. Other double-sided drives may do the same. Select MOTOR ON alone.
3. Select the multiplexing option. In most 5.25" drives this involves cutting a trace marked mUX on a shunt. Select
one of the Drive select lines by leaving the chosen Drive Select line shorted and opening the others. Some 5.25" drives may have only three Drive select lines (usually labeled DS1, DS2, and DS3); others have four (DS1-DS4 or DSØ-DS3) .
3.2.4 Examples of 5.25" Drive Configuration

Below are some specific instructions on configuring selected 5.25" drives so that they conform to rules 1 through 3 above.

SHUGART SA4ØØ

1. Remove the terminating resistor pack from all drives but the one electrically last on the cable. Some older drives do not have a socketed resistor pack; on these drives you cut the terminating traces on a shunt in each drive except the last on the cable.)
2. Leave HS (or HL) on the shunt shorted; make sure HM is open. (Some older models do not give the user the option of loading the head on MOTOR ON, and thus do not have these jumper options.)
3. Cut MX on the shunt. (On some older drives, the MX option is not located on the shunt, but is simply a trace to be cut on the board.) Leave one of the DSl, DS2, DS3 traces on the shunt shorted; cut the others.

MPI 51/52 AND TANDON TM $1 \emptyset \emptyset$

1. Remove the terminating resistor packs on all drives but the last on the bus interface.
2. On the MPI and Tandon drives all configuring is done on a programmable shunt. Leave $H S$ (Head load on Select) shorted; open HM (Head load on Motor On).
3. Cut MUX (or MX) and three of the Drive select lines (DSl-DS4 or DSø-DS3). Only the Drive Select line that you want to select the drive should remain shorted.

SA450

1. Remove resistor pack 3 D from all drives but the last on the interface.
2. Move the programmable shunt over one position in its socket so that $M M$ is shorted. This causes the motor to the drive to be turned on only when the signal MOTOR ON goes low.
3. Cut $M X$ on the programmable shunt; leave only one of the Drive Select lines (DS1, DS2, DS3, DS4) shorted.

3.3 INSTALLATION

The cable assemblies needed to connect the 2422 with your drives are not not supplied with the 2422. For the 5.25" drives and the $8^{\prime \prime}$ drives you need 34 and 50 conducter flat-ribbon cables, respectively. The connectors you need are as follows:

Mating Connectors for the 2422:
5.25" drives (Jl) = Ansley \#609-3430 or equivalent

8" drives (J2) = Ansley \#6ø9-5ø3ø or equivalent
Back Panel Connectors:
5.25" drives = Ansley \#609-3416 or equivalent $8^{\prime \prime}$ drives = Ansley \#6ø9-5ø16 or equivalent

Mating Connectors for Back Panel:
5.25" drives = Ansley \#609-3430 or equivalent $8^{\prime \prime}$ drives = Ansley \#6ø9-5ø3ø or equivalent

Mating Connectors to the Drive P. C. Board:
$5.25 "$ drives = Ansley \#609-5ø15M or equivalent
$8 "$ drives $=$ Ansley \#6ø9-3415M or equivalent

If you assemble your own cables, be sure that the pin 1 strip of the cable (usually marked by an outside colored stripe) matches pin 1 of all the connectors. When installing the cables, be certain to match pin l's on the connectors.

3.4 OPERATION

3.4.1 Bringing Up the System

The following operation instructions apply only if you are using the 2422 in its standard configuration with a 2810 $\mathrm{Z}-8 \emptyset \mathrm{CPU}$, the Monitor ROM firmware, and the distribution version of $C P / M$.

After properly configuring and installing the 2422, power on the system. If you have the AUTO BOOT jumper set to ON and your terminal set for $960 \varnothing \mathrm{Kbaud}$, the CP / M sign-on message should appear on your screen, followed by the CP/M prompt. You may then use the operating system as described in the CP/M manual, "An Introduction to CP/M Features and Facilities."

If you have the Auto Boot jumper set to OFF, hit the return key three times. The system should respond with the MOSS 2.2 Monitor sign-on message

MOSS VERS 2.2
followed by the monitor prompt, a dash.
You may then use the monitor commands as described in Chapter 4 or you may boot in CP/M by typing in a "B" next to the monitor prompt.

3.4.2 Tips on Diskette Use

1. Do not touch or clean the recording surface of the diskette. Return the diskette to its protective jacket when it is not in use.
2. Do not expose diskettes to magnetic fields, heat, or direct sunlight. Write on the jacket cover with felt-tipped pen only. Pencil or ball-point pen can ruin the diskette.
3. Power on your system BEFORE inserting a diskette; power it down AFTER removing all diskettes. You risk damaging a diskette if you turn system power on and off while the diskette is in a drive.
4. Keep backup diskettes of ALL important data. Use backup diskettes cautiously; if the original diskette appears to be bad, don't assume the problem will disappear when you use the backup diskette. If the hardware is malfunctioning, you may lose your backup diskette as well. Test your system with diagnostic software or a scratch diskette before you use the backup diskette.
5. Many diskettes have a write-protect notch. To write-protect an 8" diskette (i.e., to allow the diskette to be read but not written to), leave the notch uncovered. To allow writing to the diskette, fold the tab provided with the diskette over the notch so that it completely the notch. For 5.25" diskettes, the instructions are exactly the opposite.
6. Some double-sided diskettes have two holes in their jackets near the center hole and opposite the write-protect notch. The drive senses whether the diskette is being used as a one-sided diskette or a double-sided diskette by which hole is covered. Use a write-protect tab to cover the outside hole when using the diskette as a single-sided diskette; cover the inside hole when using it as a doubled-sided diskette. See Figure 3-1 below.

Single-sided
Double-sided

Figure 3-1 Two-holed Double-sided Diskettes
Note: Some models of the Shugart 850 may require both holes of a double-sided diskette to be uncovered when it is used as a double-sided diskette.

CHAPTER 4

THE 2422 ROM RESIDENT FIRMWARE

Abstract

This chapter contains a description of the bootstrap loader and the MOSS 2.2 Disk Monitor. It serves two purposes: 1) to give the background information needed by a user who wishes to modify the firmware; 2) to describe how to use the monitor. Those users who will not be modifying the firmware may wish to skip the first several sections and begin with Section 4.6.

4.1 COLD-START ENTRY

The cold-start entry point is FØØØh. If you set a power-on jump circuit to this address, the CPU will jump to the cold-start entry point when your system is turned on or reset. The cold-start initialization routine loads the low RAM locations called to by the $Z-8 \emptyset$ restart commands with jump vectors to the restart error message. It then finds the highest active RAM address and locates the monitor stack and work space below it. Next it checks the state of the Auto Boot bit (determined by the configuration of the AUTO BOOT option) in Status Register 1; if the Auto boot bit is \varnothing the initialization routine passes control to the bootstrap loader, which then loads in $C P / M$ as described in Section 4.4 below. The monitor work space is overwritten as $C P / M$ is loaded in. If the Auto Boot bit is l, the initialization routine continues, waiting for a series of carriage returns from the console device. It uses the carriage returns to synchronize the baud rate of the 2810 CPU's serial port to the baud rate of the console device. When it has done so, it turns control over to the monitor executive.

4.2 PAGE Ø RAM USED BY FIRMWARE

The following locations in page \emptyset memory are used by the disk controller firmware. Except where noted, these locations should be reserved exclusively for the firmware's use.

ADDRESS	CONTENTS
$\emptyset \emptyset \emptyset \emptyset \mathrm{h}-\emptyset \emptyset \emptyset 2 \mathrm{~h}$	These locations contain the warm start vector for the monitor. When $C P / M$ is loaded, they are overwritten by $C P / M^{\prime} s$ warm start vector.
$\emptyset \emptyset \emptyset 3 \mathrm{~h}$	This location contains the Intel Standard IOBYTE loaded during cold start initialization and used by the monitor's basic I / O routines (see Section 4.4.2).
$\emptyset \emptyset \emptyset 8 \mathrm{~h}-\emptyset \emptyset \emptyset \mathrm{A}$	Called by the $\mathrm{z}-8 \emptyset$ restart commands, these
$\emptyset \emptyset 1 \emptyset h-\emptyset \emptyset 12 h$	locations are loaded with jump vectors to the
Øø18h-øø1Ah	restart error routine (Section 4.6.4) during
Øø2øh-øø22h	cold-start initialization. They can be over-
$\emptyset \emptyset 28 \mathrm{~h}-\emptyset \emptyset 2 \mathrm{Ah}$	written by valid restart routines. Locations
øø3øh-øø32h	$\emptyset \emptyset \emptyset 8 \mathrm{~h}$ - øøøAh are also used for breakpoint
Øø $38 \mathrm{~h}-\emptyset 03 \mathrm{Ah}$	processing by the monitor GO command.
øø4øh-øø53h	Containing disk parameters used by the monitor and bootstrap loader disk routines, these locations are described in more detail in Section 4.3.3.
$\emptyset \emptyset 8 \emptyset \mathrm{~h}-\emptyset 17 \mathrm{Fh}$	These locations form a temporary buffer for the Loader program, CCBOOT, read in from disk.

4.3 THE FIRMWARE DISK ROUTINES

The primitive disk routines used by the monitor and the bootstrap loader are designed to read or write disks which conform to the IBM $374 \emptyset$ and System 34 standards for soft-sectored diskette format. Although strictly speaking these standards apply to $8^{\prime \prime}$ diskettes only, they can be adapted for 5.25" diskettes. Since the primitive disk routines are designed for diskettes conforming to the IBM format standards, it might be helpful if we discuss diskette format in general and the IBM standards in particular.

4.3.1 Diskette Format

Track numbering on a diskette begins at its circumference with Track $\varnothing \emptyset$ and proceeds toward the center; thus the innermost track on an 8" diskette with the standard 77 tracks is Track 76. Each track on side \emptyset of a double-sided diskette has an associated track on side 1 ; these track-pairs are often called cylinders. Unlike track numbering, sector numbering starts with 1 , the number given to the first sector immediately following the index pulse. The number of sectors on a track is dependent on disk size, data density, and number of bytes per sector.

The IBM 3740 standard for single-density diskettes allows sector sizes of 128 , 256, and 512 bytes; the System 34 standard for double-density diskettes allow sectors sizes of 256, 512, and 1024 bytes. (The 1793 can format single-density diskettes in lø24-byte sectors and double-density diskettes in 128-byte sectors as well, but those additional sector sizes have no practical advantage.) Before each sector is an unique address or ID field identifying the track number, diskette side, sector number, and sector size. In addition, the ID fields and data fields must be separated by gaps and sync fields of a minimum length per sector. Figure $A-1$ of Appendix A illustrates the IBM 3740 format standard for single-density 8" diskettes. The 1793 adds an additional constraint in diskette format: it expects gaps to consist of minimum number of $F F h$ bytes, followed by several bytes of $\emptyset \emptyset \mathrm{h}$. Diskettes formatted by a 1771 disk controller chip do not meet the 1793's requirements. Thus the 1793 cannot read such diskettes. (The 1771 can, however, read disks formatted by the 1793.)

4.3.2 Description of the Disk Routines

The firmware contains two routines for sector reads and writes: DREAD and DWRITE. The bootstrap loader calls DREAD for reading the first two sectors of Track $\emptyset \emptyset$; the monitor Read and Write commands use both routines. DREAD and DWRITE both transfer one sector at a time and automatically determine disk size, sector size, and density format if the disk has not been accessed before. They conform to the CP/M calling conventions and return $a \emptyset$ in the A register if the disk operation was successful and a non-zero if it was not successful after ten tries. Both routines reside in the upper $1 / 2 \mathrm{~K}$ of ROM which can remain enabled after CP/M is loaded in (PR EN option--Section 2.3.4). Thus they can be called to from a user's BIOS. The entry point for DREAD is F6EAh; for DWRITE, F6EBh.

4.3.3 Disk Parameters for Disk Operations

DREAD and DWRITE use locations $\varnothing \varnothing 4 \emptyset \mathrm{~h}-\varnothing \varnothing 53 \mathrm{~h}$ to store the disk parameters they need. Below are the definitions and addresses of some of the more important disk parameters:

Address	Name	Description
Øø4Øh	DISKNO	Stores the number of the currentlyselected drive: $\varnothing, 1,2$, or 3 .
Øø41 h	TRACK	Stores the number of the current track.
Øø42h	SECTOR	Stores the number of the current sector.
øø43h	SIDE	Stores the byte written to Control Register 2 to select disk side. ($\emptyset \varnothing$ h $=$ side \varnothing; $9 \emptyset \mathrm{~h}=$ side 1)
$\varnothing \varnothing 45 h$	TWOSID	Stores \varnothing if the disk in the currentlyselected drive is one-sided; lif it is two-sided.
øø4Ah	CUNIT	Stores the byte last written to Control Register l, giving information on the currently-selected drive unit.
øø4Ch	HSTBUF	Stores the starting address in memory for disk transfers to and from memory.
$\begin{aligned} & \varnothing \varnothing 4 \mathrm{Eh}- \\ & \emptyset \emptyset 53 \mathrm{~h} \end{aligned}$	IDSV	Stores the ID field information from the diskette in the current drive.

4.4 THE MONITOR'S I/O ROUTINES

The monitor's basic I/O routines are essentially the same as those used by CCBIOS, CCS's customized BIOS. They are designed for a system using CCS's $2810 \mathrm{Z}-8 \emptyset \mathrm{CPU}$, configured as described in Section 3.1. As with the primitive disk routines, they reside in the last $1 / 2 \mathrm{~K}$ of the ROM, allowing them to be available after $C P / M$ is loaded, should you choose the PR EN (Partion ROM Enable) option. Section 4.4.3 below contains information on tailoring this portion of the ROM if you are using a system with a different CPU or wish to provide driver routines for other peripherals, such as a printer.

4.4.1 The IOBYTE

The basic I/O routines in this portion of the ROM implement the IOBYTE function, as developed in the Intel MDS system and as used by CP/M. The IOBYTE function divides peripherals into four categories according to type: Console, typically a teletype or a CRT; Reader, a paper tape reading device; Punch, a paper tape punching device; and List, a hard-copy printing device. At any given time, one of four physical devices can be assigned to each of the logical device categories. Table 4-3 below lists the allowable physical devices in each logical device category.

1 Logical	Physical Device
Console	Teletype
	CRT
	Batch Mode (input from logical reader;
	output to logical list)
	User Console \#l
Reader	Teletype
	Paper Tape Reader
	User Reader \#l
	User Reader \#2
Punch	Teletype
	High speed paper tape punch
	User punch \#1
	User punch \#2
List	Teletype
	High speed line printer (CRT in CP/M)
	User list \#l (High speed line printer
	in CP/M)
	User list \#2 (User list \#1 in CP/M)

Table 4-3 Physical-to-Logical Device Assignments
The current physical-to-logical device assignments are stored in the IOBYTE at location $\emptyset \emptyset \emptyset 3 h$. The IOBYTE can be altered through the MOSS monitor Assign Command or the CP/M STAT command. When an I/O routine involving a logical category is called, the routine loads the IOBYTE, using it to determine the currently assigned physical device, and then jumps to the driver routine called by the physical device assignment. In each logical category, the firmware provides provides driver routines only for the Teletype assignment,
which is the default assignment. These routines are designed to drive the serial port on the $281 \emptyset$ CPU. Please note that the physical assignment names do not have to accurately describe the actual peripheral used; the actual physical device driven by the teletype assignment routines could easily be a CRT. The driver routines associated with the remaining physical device assignments are set equal to the I/O error routine. Thus if an unsupported physical device is assigned to a logical device, the I / O error message will be displayed and control returned to the monitor whenever an I / O operation involving the logical device is attempted.

4.4.2 The Basic I/O Routines

The user may call the following basic $1 / O$ routines from his own programs while in the monitor or from his own customized BIOS if the PR EN option is enabled.

Name	dress	Description
CI	F646	Console Input
* CONI	F68F	Console Input, strips ASCII parity bit
* CO	F60Ø	Console Output
* CSTS	F623	Console Status Input
*LO	F610	List Output
*LSTAT	F669	List Status Input
*RI	F656	Paper Tape Reader Input
*PO	F67C	Papar Tape Punch Output
PRTWA	F698	Prints ASCII string on console. The string must be terminated by bit 7 set in the last character.
PRTWD	F695	Same as above, only does carriage return, line feed first.
CRLF	F6A9	Generates carriage return, line feed sequence to start new line on console

Table 4-4 The Basic I/O Routines
The starred routines are $C P / M$ compatible routines, basically the the same as the following routines used in CCBIOS: CONIN, CONOUT, CONST, LIST, LISTST, READER, and PUNCH. They perform the basic IOBYTE handling as described above. Again, actual driver routines exist only for the teletype assignment for each logical category. These driver routines conform to the $C P / M$ calling conventions, passing the data in the C register for any output and in the A register for any input. PRTWA, PRTWD, and CRLF are not routines used by a CP/M BIOS; however,
they are useful routines which are available as long as the Basic I/O portion of the ROM is accessible. CI is an alternative console input routine which does not strip the parity bit.

4.4.3 Customizing the Basic I/O Routines

As mentioned before, only the teletype physical device assignment is supported by the firmware. The teletype drivers are designed to drive the console port on the $2810 \mathrm{Z}-8 \varnothing$ CPU. Should you wish modify the console drivers to work with another console port, you will thus have to modify the teletype driver routines (TTST, TTYIN, TTOST, and TTYOUT) routines in the source code. Since the teletype device is the default console device, you need also to change the console initialization code.

To add a peripheral device, you generally need only to replace the equate to IOER in the physical device drivers with valid driver code. The equates for additional peripheral devices are on page $C-24$ of the firmware listing in Appendix C. Should you wish to add a printer, for example, that is selected by the high speed line printer assignment, you would change the equates

LPRT:	EQU	IOER
LPRST: UNASSIGNED LINE PRINTER		
EQU	IOER	;UNASSIGNED LINE PRINTER STATUS

t.o driver code while preserving the routines' names. Only if you wish your printer to be selected by the default teletype assignment is it necessary to alter the basic I/O routines themselves. In that case, the basic I/O routines LO and LSTAT should be modified so that the jumps to TTYOUT and TTOST which are made when the teletype device is selected are replaced with jumps to user-named and user-written printer output and status routines. Note that in the case of the punch and Reader devices, there are no basic I/O status routines. The necessary status routines must be called by the input or output drivers.

The firmware may also be modified for different drive step rates. Currently, the step rates are 3 øms for 5.25" drives and løms for 8" drives. To change the step rates, modify the following fragment of code (page C-27 the firmware listing) as indicated:

SETI: RAL

LXI	D, STPRAT	; SET THE INITIAL STEP RATE
MVI	A, 3	; TO SLOWEST POSSIBLE
-		(replace 3 with
-		\emptyset for 6 ms step rate
-		1 for 12 ms step rate
-		2 for $20 \mathrm{~ms} \mathrm{step} \mathrm{rate)}$
MOV	M, A	
MVI	A, 2	; SET MAXI STEP RATE
-		(replace 2 with
-		\emptyset for 3 ms step rate
-		1 for 6 ms step rate
		3 for 15 ms step rate)

The method of modifying the firmware so far described involves programming a user-supplied 2716 EPROM with the modified code and replacing the CCS ROM with it. It is also possible, however, to modify the firmware using memory overlay techniques. Since the 2422 generates, but does not receive, the PHANTOM signal, its ROM has to be moved to the CPU board. There the selected portions of the firmware can be overlaid by a peripheral board generating the PHANTOM signal. For example, instead of replacing the equates LPRT and LPRST with drive code, the jump instructions to LPRT and LPRST routines in the basic I/O routines LO and LSTAT can be overlaid with jump instructions to printer driver routines in the peripheral board's ROM.

4.5 THE BOOTSTRAP LOADER

The bootstrap loader, when entered at F55Eh, reads in at locations $8 \emptyset \mathrm{~h}$ through l7Fh the contents of the first two sectors of track $\varnothing \emptyset$, side \emptyset of the disk in drive A and then transfers control to location $8 \emptyset h$. These sectors should contain a loader program, such as CCBOOT on the distribution system diskette, that loads the system tracks (tracks øø and $\emptyset 1$ in an 8" diskette; tracks $\varnothing \varnothing$, $\varnothing 1$, and $\varnothing 2$ in a 5.25" diskette) into memory and transfers control to CP/M. In addition, Track $\emptyset \emptyset$ of the disk must be formatted in 128 -byte single-density sectors. If the bootstrap loader encounters an error, it jumps to the Disk Error routine in the monitor portion of the ROM. If are booting CP/M in from the monitor so that the $281 \emptyset$ CPU's serial port is initialized (AUTO BOOT shorting plug removed), you will receive the Disk Error message as described in Section 4.5 .5 and control will be returned to the monitor. If you are booting in $C P / M$ directly
on system power-on or reset (AUTO BOOT shorting plug in place), your system will "hang." When it is finished reading in the Loader program, the bootstrap loader leaves some disk parameters in memory:

Table 4-5 Disk Parameters after Boot
After it is loaded, the CCBOOT outputs hex Øl to port $4 \varnothing \mathrm{~h}$. If pins 2 and 3 of the ROM ENABLE jumper have been shorted, this simultaneously disables the bootstrap and monitor firmware and enables any RAM assigned to bank \varnothing and with a bank select port of $4 \emptyset \mathrm{~h}$.

4.6 THE MONITOR

CCS's MOSS 2.2 Disk Monitor is designed to allow you to control a system using a $281 \varnothing$ z-8ø CPU from the console keyboard. It allows you to display a block of memory in hex and ASCII, to move, change, and verify memory, and to transfer control to a program in memory with breakpoints set. You can also input or output a data byte to or from any I/O port and command the monitor to read and write floppy disks.

For the MOSS 2.2 Monitor to work exactly as described below, your 2422 Disk Controller board and $281 \varnothing$ Z-8ø CPU must be configured as described in Chapters 2 and 3.

4.6.1 The Monitor's Memory Space

In addition to the memory the RoM occupies (Føøøh-F8øøh) and the page \varnothing addresses specified in Section 4.2 , the monitor requires some high RAM locations for the system stack and temporary storage area. The monitor scans the available memory until it finds the highest active RAM address and then counts down 56 bytes to store the breakpoints, registers, and register restoring routine. It locates the system stack below that: you should reserve at least 88 bytes of high RAM memory for the monitor's use.

4.6.2 Bringing up the Monitor

To enter the monitor, turn your system on or reset it. If the AUTO BOOT shorting plug has been removed, this results automatically in a cold-start entry into the monitor. Set your terminal to the baud rate at which you wish to operate. You have a choice of any baud rate between 2 and 56 K baud. Hit the carriage return key until the monitor responds with

MOSS VERS 2.2

The maximum number of carriage returns needed before the monitor responds is three. This series of carriage returns allows the baud rate of the $281 \varnothing$'s serial port to be initialized to your console baud rate. When the monitor prompt appears, you may start entering commands.

4.6.3 Monitor Command Format

The MOSS Monitor commands must conform to a specific format. The general form is
-Ce1 e2 e3
where - is the prompt, C is the command character and el-e3 are the address and data entries, if any. The essential parts of a command are as follows:

THE COMMAND CHARACTER: The monitor is controlled by one-character commands entered from the keyboard in response to the monitor prompt, a dash (-). No space is allowed between the prompt and the command character.

ADDRESS AND DATA ENTRIES: The general form for an address is a four digit hex number; for a data byte, a two digit hex number. Leading zeros need not be entered; the monitor will supply them. No space is allowed between the command character and the first address or data entry. Subsequent entries must be separated by a delimiter. The monitor looks at only the last four address characters or last two data characters before a delimiter. So if you make a mistake while typing an entry, keep typing until the last two or four characters are correct, depending on whether it is an address or data entry.

DELIMITERS: The MOSS Monitor recognizes three delimiters: a carriage return [CR], a space, or a comma. A carriage return indicates to the monitor that the current command is complete and should be executed. Either a space or a comma can mark the end of an address or data entry. In our command examples we will generally use a space as a delimiter, unless a comma makes the command form clearer. Please note, however, that you can use the space and the comma interchangeably. In certain commands a space or a comma can also be interchanged with a carriage return. These are commands for which the Monitor expects a fixed number of entries (and hence delimiters) following the command character.

SAMPLE COMMAND
The following commands to display the block of memory ØFFBh to løØAh are all equivalent. Although the spacing is not free-form, some variety in the command form is allowed. Note that the display command requires two and only two address parameters, so that the last delimiter can be a comma or a space as well as a carriage return.

```
-DØFFB 1ØØA[CR]
-DFFB,1ØØA,
-DFFB,IØØA[CR]
-DFFB 1\emptyset\emptysetA[space]
-DØEFØ\emptysetFFB,l\emptyset\emptysetA[space]
```


4.6.4 Error Messages

The MOSS monitor detects four types of error conditions and responds with a different error message for each. They are as follows:

COMMAND ERROR: Should you make an invalid entry, the command will be aborted, a warm boot of the system will occur, and the error message
????
will be printed, followed by the monitor prompt.

I/O ASSIGNMENT ERROR: As described in Section 4.6.5.1, the Assign command allows you to assign a physical device to a logical peripheral category. When an I/O routine involving the logical category is called, the CPU will jump to the driver routine indicated by the physical assignment. If there is no driver routine, it will jump instead to the I/O Assignment Error routine. This routine sets the IOBYTE to its default value, outputs the error message

> I/O ERR
and does a warm boot of the system.

RESTART ERROR: During cold-start initialization, jump-vectors to a restart error message are loaded in the memory locations called by the $\mathrm{Z}-8 \emptyset$ restart instructions. This prevents a jump to a restart address without code. A restart error causes the display of the message

RST ERR
and a warm boot of the system.

DISK ERROR: The monitor, when executing the Read, Write, or Boot commands, will output the following error message and status information if it is unable to execute the command:

DSK ERR U XX T XX S XX C XX E XX

The first three hex bytes identify which physical record the monitor was unable to read or write. U gives the unit or drive number ($\varnothing-3$), T the track number, and S the sector number of the record where the error occured. C and E give the operation status at the time of the error. They reflect the contents of two of the 1793's internal registers: C shows the last command loaded in the Command register; E gives the contents of the Status register. See the 1793 data sheet for a description of these registers' contents.

4.6.5 The Monitor Commands

4.6.5.1 Assign (A)

The Assign command supports the IOBYTE function described in Section 4.4.1. It allows you to change the physical-to-logical device assignments and thus choose the peripherals you wish to work with while in the monitor. To assign a physical device to a logical device category, enter

$$
-A x
$$

where x equals either C, R, P, or L, the logical device codes. If you enter a character other than these four, the computer will return with ???? and another prompt. If you enter a valid logical device code, the computer will return immediately with the prompt. Enter the physical device code following the prompt. Should you enter a delimiter only or a nonvalid device code, the device assignment will default to the previous assignment. Table 4-6 below summarizes the physical and logical device codes. Refer to Table 4-3 for the allowable physical device assignments for each logical device.

LOGICAL DEVICE	PHYSICAL DEVICE
Console=C	Teletype=T
Reader $=$ R	CRT=C
Punch=P	Batch Mode=B
List=L	Paper Tape.Reader=P
	Paper Tape Punch=P
	High Speed Line Printer=L
	User Device \#l=1
	User Device \#2=2

EXAMPLE:

Entering

$$
-A R-P
$$

assigns a high speed paper tape reader to the Reader logical device category.

Since the firmware contains driver routines only for the teletype assignment, you should receive the I / O error message if you attempt I / O operations with any other physical device without having altered the firmware first.

4.6.5.2 Boot (B)

The Boot command allows you to load in CP/M from disk under console control. Entering
-B
causes the bootstrap loader to load $C P / M$ in from the disk in drive A and control to be transferred from the monitor to CP/M. When CP/M is loaded, the CP/M sign on message will appear, followed by the $C P / M$ prompt. Should the bootstrap loader be unable to read in the first two sectors on Track ØØ, it will respond with the Disk Error message.

4.6.5.3 Display (D)

This command allows you to display the contents of a specified block of memory. The general form for the command is

$$
\text { -Ds } \mathrm{f}
$$

where s and f are the start and finish addresses, respectively, of the memory block.

The resulting display divides the memory into 16 bytes per line. Each line begins with the starting address of the 16 byte block, followed by the hex contents and their ASCII equivalents. The contents of addresses with the same last hex digit are aligned in vertical columns. Periods represent data for which there are no ASCII equivalents. As the display fills the screen, it automatically scrolls up. To freeze the display, type a control-S. To start it again, hit any key on
the keyboard. Should you wish to escape from the display mode, hitting any key on the keyboard will abort the routine and return control to the monitor.

Example:
-DF453, F4C8
F453
F460 0000
F470 4552 D 24
$\begin{array}{lllll}\text { F480 } & \text { AD } & 20 & 53 & \text { AD } \\ \text { F490 } & 4 D & 4 \mathrm{~F} & 53 & 53\end{array}$
F4A0 0F D3 2411400062 6A DB 26 A3 28 FB DB 26

F4C0 7D B4 C2 BD F4 E1 3E 83 D3

4.6.5.4 Fill (F)

The fill command allows you to fill a block of memory with a specified constant. The general command form is
-Fs f c
where s and f are the start and finish addresses of the memory block and c is the constant in hexidecimal.

Example:
Entering
-FløAA 1øBB 1
fills the memory block løAAh to $1 \emptyset B B h$ with the constant 1.

4.6.5.5 Goto (G)

The G command allows you to transfer control from the monitor to another program. It allows you to specify the entry address and to set up to two breakpoints for returning control to the monitor. When the monitor encounters a breakpoint, it saves the contents of the $Z-8 \emptyset$ registers in the system's temporary storage and outputs to the console device an asterisk followed by the address after the break. It then returns the prompt. You can use the Examine Register command (X) at this time to examine or change the saved registers.

The general form for the G command is
-Gs bl b2
where s is the start or entry address, and bl and b2 are the addresses of the breakpoints. There are many allowed variations on this command, however, which makes it a powerful and convenient command. You have the option of establishing Ø, 1, or 2 breakpoints: simply enter a carriage return [cr] when you have established the number of breakpoints you wish. If you enter the maximum, two, a delimiter (a comma or space) is all that is necessary to begin command execution.

You may also begin execution of the program at the PC address saved in the register storage area. Thus you can return control to the address where the program stopped when it encountered a breakpoint, or to the address you have loaded in the saved PC register through the Examine Register command. Note that since all breakpoints are cleared when any breakpoint is encountered, you must specify any desired breakpoints in the command if you use it this way. The form of the command for transferring program control to the address in the PC register is

$$
\begin{array}{cc}
-G[c r] & \text { (no breakpoints) } \\
\text { or } \\
-G, b 1, b 2 & \text { (breakpoints set) }
\end{array}
$$

There are two more points regarding breakpoints that ought to be mentioned. Because breakpoints are generated by the monitor inserting a RST 8 instruction (CF) into the program at the breakpoint location, breakpoints can be set only in programs residing in RAM. Further, a breakpoint must be inserted at an op code location. If it is inserted in an operand or data field, it will not be executed.

4.6.5.6 Hex Number Addition (H)

This command provides an easy way to add or subtract hex addresses. Entering
-Hal a2
where al and a2 are the hex addresses results in the output
s d
where $s=a l+a 2$ and $d=a l+a 2$. Note that if the sum is greater than FFFF, the carried one is lost. If a 2 is greater than al, a2 will be subtracted from al + løøøøh.

4.6.5.7 Input (I)

This general purpose input command allows you to read a data byte from any input port. To do so, enter

$$
-I p
$$

where p is the port address in hex. The monitor will respond by printing the data byte in binary.
4.6.5.8 Move (M)

The M command moves a block of data to a specified address. The general form for the command is
-Ms f d
where s and f are the start and finish addresses of the memory block and d is the destination address.

When using this command, be careful not to locate the destination address within the source block. Since the block is moved byte by byte, starting with the byte with the lowest address, the data being transferred will write over the portion of the source block lying after the destination address.

4.6.5.9 Output (0)

This general purpose output command allows you to output a data byte to any output port. Enter
-op d
where p is the port address and d is the data in hex.
Please note that if the ROM EN option is left in its factory configuration (pins 1 and 2 shorted), you will disable the monitor ROM if you output to port $4 \emptyset$. The results of doing so are unpredictable.

4.6.5.10 Parameters (P)

The P command allows you to specify three parameters concerning the diskette selected for disk operations: the number of the unit it is in (u); the number of sectors it has per track; (s); and whether it is a one-sided or two-sided diskette (d). These parameters must be set before you attempt a disk read or write; however, they do not need to be reset until the parameters are no longer valid. The form of the command is:

$$
-\mathrm{Pu} \mathrm{~s} \mathrm{~d}
$$

The value of u should be a number \emptyset through 3 , where \emptyset selects drive A, l selects drive B, etc. If you try to assign a number greater than 3, the monitor will return with ???? and the prompt. The parameter s should specify the number of sectors per track in hex. Its value is dependent on diskette size and format. The following table shows the typical values for s for a diskettes of a given size and format:

\| Bytes	8" Disks		5.25" Disks	
\| Per	Single	Double	Single	Double
\| Sector	Density	Density	Density	Density
1128	lah (26d)	none	12h (18d)	none
1 256	Fh (15d)	1 Ah (26d)	Ah (1Ød)	12h (18d)
512	8h (8d)	Fh (15d)	5h (5d)	Ah (1Ød)
1024	none	8h (8d)	none	5h (5d)

Table 4-7 Sectors per Track
Note the firmware does not support lø24-byte sectors in single-density and 128-bytes in double-density. The last parameter, d, is \emptyset for a one-sided diskette; l for a two-sided diskette.

4.6.5.11 Parameters 2 (Q)

The Q command allows you to set the starting track, side, and sector number for disk reads or writes. If you plan to be transferring contiguous data to or from the disk, these parameters need to be set prior to the first disk access only. Enter
where t is the beginning track number in hex, d is the disk
side, and s is the beginning sector number in hex. They must be reset for noncontiguous memory or sectors. In practice, t will probably be a number between \emptyset and 4 Ch (76d), inclusive, although the monitor will accept any value up to FFh. The parameter dis either a \emptyset or 1, depending on which side of the disk you wish the read or write to be performed on. The value of s will will always be a number between l and 1 hh, inclusive. Should you assign a track number or sector number greater than the number of tracks or sectors on the disk, you will get the Disk Error message when you use the Read or Write commands.

4.6.5.12 Read (R)

The R command allows you to transfer data from a disk into a specified area of memory. The R command sets the memory parameters; the disk parameters must have already been set by the P and Q commands. Enter

$$
\text { -Rs } \mathrm{f}
$$

where s is the start address in memory and f is the finish address. The R command does only complete sector transfers. Thus if the finish address is reached before a sector is completely transferred into memory, the data will overflow the specified memory area. If the diskette is single-sided and the last sector in a track is reached before the read into memory is complete, the drive head steps in to the next track and the sector pointer is reset to l. The number of sectors per track set by the P command determines whether or not the end of the track is reached. In the case of track overflow on side \emptyset of a double-sided diskette, the read continues on the same track on side l. A track overflow on side l causes the head to step in and read the next track on side \emptyset.
please remember that reading double-density diskettes requires a 4 MHz processor clock.

4.6.5.13 Substitute (S)

The S command allows you to examine the contents of a specific memory location and alter them if you desire. Begin the S command by entering
-Ss,
where s is the first address in the portion of memory location
you wish to examine. The computer will immediately respond with the data contents followed by a prompt:
-Ss,d-

If you wish to leave the data unaltered, simply enter a delimiter. If the delimiter is a space or a comma, the computer will respond with the contents of the next consecutive memory location and another prompt. If it is a carriage return, the command is terminated and control is returned to the monitor. Should you wish to alter the data, enter the desired data followed by a delimiter: a carriage return if you want to terminate the command or a space or a comma if you wish to review the next memory location. You also have the option of reviewing the previous memory location by hitting the line feed key. You can continue examining and altering memory byte by byte in this way as long as you wish. To make it easier for you to keep track of where you are, on every 8 -byte boundary (that is, an address ending with either \emptyset or 8 , the monitor will do a line feed and print the address along with the data.

4.6.5.14 Test (T)

The T command provides a quick way to test RAM memory for hard data bit failures without destroying the contents of the RAM. To test a block of memory for bit failures, enter
-Ts f
where s and f are the start and finish addresses of the block, respectively. The monitor will respond by printing the address of any byte in error, followed by an 8-bit representation of the byte in which a l indicates an erroneous bit. For example, should bit 4 of location $A 3 F 8 h$ be in error, the monitor outputs the following display

A3F8 øøøø1øøø
If you wish to freeze the display type a Control-S. To start it again, hit any key. Hitting any key while the command is executing returns you to the monitor.

4.6.5.15 Verify (V)

You can use the V command to compare two blocks of memory and verify that they are the same. Type

$$
\text { -Vs } \mathrm{f} v
$$

where s and f the start and finish addresses of the source block and v is the starting address of the block to be verified. Should the two blocks match, the monitor will return with the prompt. Should the contents of two bytes sharing the same relative address differ, the monitor will display the source address and byte, followed by a dash and the corresponding byte in the block being verified. During the execution of the command, the display can be frozen or control returned to the monitor as described in previous section.

4.6.5.16 Write (W)

The W command allows you to transfer a specified block of memory to a disk. The W command sets the memory parameters; the disk parameters must have been already set by the P and Q commands. (Mind your P's and Q's before doing Reads and Writes) Enter

$$
\text { -Ws } \mathrm{f}
$$

where s is the start address of the memory block and f is the finish address. The Write routine checks to see if the finish address in memory has been reached only after it has completed a sector write. If the finish address is reached before a sector write is completed, the routine will continue to pull data from memory until the sector is filled. During disk writes, track overflow is handled as described in the Read command. please note that writing to double-density diskettes requires a 4 MHz processor clock.

4.6.5.17 Examine (X)

Used in conjunction with the G command's breakpoint facilities, the x command is a powerful diagnostic tool. Entering

$$
-x[c r, \text { space or comma] }
$$

causes the $Z-8 \emptyset$ registers currently stored in the system stack area to be displayed for examination. These registers are the
main and alternate accumulator and general purpose registers, the Interrupt register (I), the Program Counter register (P), the Stack Pointer register (S), the two Index Registers (X and Y) and the Refresh register (R). In addition, the contents of the memory locations addressed by the main and alternate H and L registers are also displayed (M and M^{\prime}). The registers are displayed in the following four-row format

$$
\begin{aligned}
& A-x x \text { B-xx C-XX D-XX E-XX F-XX H-XX L-XX } \\
& M-x x \text { P-xxxx S-xxxx } I-x x
\end{aligned}
$$

$$
\begin{aligned}
& M^{\prime}-x X \quad X-X X X X \quad Y-X X X X \quad R-X X
\end{aligned}
$$

where $x x$ equals a two digit hex byte and $x x x x$ equals a four digit hex address.

To examine or alter the contents of one register, enter

$$
\begin{aligned}
& \text {-Xr[cr, space or comma] } \\
& \text { or } \mathrm{Xr} \text { (cr, space or comma] }
\end{aligned}
$$

where r is a main register and r^{\prime} is an alternate register. (Note that if you wish to examine the X, Y, or R registers, you must preface the register character with the prime mark.) The monitor will return with the hex contents of the register and a prompt:
-xr,d-

As in the substitute memory command, you have the option of altering the memory (entering the desired contents followed by a delimiter) or leaving the contents unchanged (entering a delimiter). A carriage return terminates the command; a space or a comma causes the contents of the next register to be displayed. Note that altering the contents of the H and L registers changes the contents of the registers themselves; if you wish to alter the contents of the memory location they point to, alter the M register.

4.6.5.18 Initialize Baud Rate (Y)

To change the baud rate of your system without a system reset, use the Y command. Enter
-Y (no delimiter)
and then set the baud rate of your terminal to any baud rate between 2 and 56 K baud. Hit the carriage return key two or three times. The monitor prompt should appear.
4.6.5.19 Zleep (Z)

You can use the Z command to prevent unauthorized use of your system. Entering

> -Z (no delimiter)
locks up the system so it will not respond to anything other than the ASCII bell character (control G). Entering two consecutive bell characters will unlock the system, returning control to the monitor without altering anything.

CHAPTER 5

THEORY OF OPERATION

This chapter is organized into three parts: The 2422 program accessible registers, the system bus interface, and the disk drive interface. We do not discuss the operation of the 1793; such a discussion is beyond the scope of this manual. Instead we concentrate on our unique circuitry external to the 1793. We have, however, included its data sheet in Appendix C for those of you who need information on its operation. If you consult it, please keep in mind that the data sheet covers the entire $179 \emptyset$ family; certain portions may not be applicable to the 1793.

In this chapter, active-low signals are indicated with an asterisk following the signal name.

5.1 THE 2422 REGISTERS

The 1793 contains five addressable registers: the Command register (write only), the status register (read only), the Track register, the Sector register, and the Data register. On the 2422, these registers are addressed as four I/O ports, $30-33 \mathrm{~h}$, the Command and Status registers sharing the same address. Programming information on these registers can be found in the 1793 data sheet in Appendix C. In addition, the 2422 contains four registers external to the 1793: Status registers 1 and 2 (read only) and Control registers 1 and 2 (write only). These registers are addressed as two I / O ports, 34 h and $\varnothing 4 \mathrm{~h}$, the status registers being selected during Read cycles and the control registers during Write cycles. The status registers consist of two 8-bit buffers, U25 and U26. When enabled by being addressed during a Read cycle, these chips gate selected signals from the drive
busses, the system bus, and the control registers onto the data bus to be read by the CPU. Control registers 1 and 2, when addressed during a write cycle, latch the command bits on the data bus and output high or low signals to the disk drive busses, the CPU and drive interface circuitry, and the 1793. They are cleared by pRESET* or EXT CLR*. Control Register 1 consists of a 7-bit latch, Ul3, which latches data bits Dø-D6, and an independent flip-flop, U34b, which latches D7, the Auto Wait bit. The flip-flop is cleared by the INTRQ signal from the 1793, as well as by pRESET* and EXT CLR*. Control Register 2 consists of a 4-bit latch, Ul2. For the bit definitions of the external control/status registers, see Appendix A.

5.2 THE SYSTEM INTERFACE

5.2.1 The Bank Select Circuitry

The 2422 registers and the on-board ROM cannot be selected unless the internal signal BANK SELECT* is active low. This signal is the Q^{*} output of the flip-flop U3lb; the complementary Q output is used to light the Bank LED. The conditions under which BANK SELECT* is active low depend on the setting of the BANK EN jumper. If the BANK EN jumper has been set to OFF, disabling the bank select circuitry, the Preset input to flip-flop U3lb is jumpered to ground, forcing BANK SELECT* permanently low, thus circumventing the Bank Select circuitry. If the jumper is set to position $O N$, the Clear input to the flip-flop is jumpered to the pRESET* and EXT CLR* signals from the system bus. If either goes low, as they both would during power-on or system reset, the flip-flop is cleared, and BANK SELECT* is forced inactive high. After both pRESET* and EXT CLR* release the Clear input, the BANK SELECT* line can be set low if the flip-flop is clocked while its D input is high. The flip-flop is clocked when pWR^{*} goes high at the end of an I/o write cycle to port 40h. The state of the D input is determined by the Bank Select Byte being written to port $4 \emptyset \mathrm{~h}$ at this time. Only if the Bank Select Byte has a l in the bit position that is jumpered on BANK BYTE jumpers will the D input be high, resulting in the active BANK SELECT*. Finally, if the BANK EN jumper has been set to RST, the flip-flop's Preset input has been jumpered to PRESET* and EXT CLR*. During power-on or reset, then, BANK SELECT* is forced active low. In this case, BANK SELECT* will go inactive high only if the flip-flop is clocked when its D
input is low; in other words, if the user selects another bank for operation.

5.2.2 Selecting the 2422 Registers

The decoding of the port addresses is accomplished primarily by U22, an address-decoding ROM. When it is enabled by either the active sOUT or sINP, it decodes the register address on the low-byte address lines into one of four outputs. One output goes low for address 40 h and is used for clocking the bank select flip-flop, as described in the previous section. Another output goes low for addresses in the $3 \varnothing-33 \mathrm{~h}$ range. It is ORed with BANK SELECT*; when both signals are low, the resulting low enables the 1793. Selection of the individual registers within the 1793 is performed by address lines AØ and Al.

The two remaining outputs of $U 22$ are used to select the external registers. One goes low for either address $\varnothing 4$ h or 34h. When it is ORed with the active BANK SELECT*, the resulting output enables a a 2- to 4-line decoder, 444 a . The Einal output of U22, which goes low for address $34 h$, is input to this decoder, along with the WR line (high whenever MWRITE or pWR* is active). U44a decodes these two inputs into the four enable lines to the external registers. Whenever any of 2422's registers are enabled, the Board select LED lights.

5.2.3 Memory-Mapped I/O

As mentioned before, the 2422 has optional memory-mapped I/O capabilities. U21, when installed, maps the all 2422 registers, expect for the Bank select register, to the last six bytes but one of a 64 K bank; that is, locations FFF8-FFFD. When U2l is enabled by an output of address-decoding ROM U23 going low in response to an $F F$ on the high-order address line, U21 decodes a low-byte address in the F8-FD range into three outputs which correspond to the $3 \varnothing-33, \varnothing 4 / 34$, and 34 outputs of U22 and are tied to them. Thus if U21 receives an address in the range of $F 8-F B$, for example, it pulls U22's 3Ø-33 output low, resulting in the 1793 being selected as described above. Table A-l in Apperdix A shows the registers' memory locations and the corresponding port addresses.

5.2.4 Selecting the ROM

The ROM Select circuitry is designed to distinguish the Basic I/O portion of the ROM so that it can be enabled independently of the monitor/bootstrap portion of the ROM. To do so, U23, an address decoding ROM, decodes a high-byte address byte in the range of $\mathrm{F} \varnothing$ - F7 into two outputs when it is enabled by sINP, sOUT, and sINTA being inactive while BANK SELECT* is active. One goes low for an address any address in the ROM's range; the other goes low only for a high byte address in the range of F6-F7. The first output is qualified by the signal ROM ENABLE*; only if ROM ENABLE* is active any address in the FøøØh to F777h range enable the ROM. The latter output can enable the ROM only if the PR EN option is installed. If the option is installed, an address in the range $F 6 \emptyset \emptyset h$ to $F 7 F F h$ will enable the ROM regardless of the state of ROM ENABLE*.

The state ROM ENABLE* is controlled either by the Q output of flip-flop U3la or by bit 7 of Control Register 2, depending on the configuration of the ROM ENABLE jumper. Should pins 1 and 2 of the ROM ENABLE jumper be shorted, the Q output of flip-flop Usla becomes ROM ENABLE*. This flip-flop is cleared by PRESET* or EXT CLR*, forcing the ROM ENABLE* line low during system power-on or reset and enabling the ROM. The flip-flop can then be clocked by an I/O write to port 40 h . Since the D input to the flip-flop is tied high, ROM ENABLE* goes high when the flip-flop is clocked. Because the bank the board resides in is also selected by an output to port $4 \emptyset \mathrm{~h}$, the BANK SELECT* line must be either set permanently low or set low on reset $1 f$ this method of enabling/disabling the ROM is to work. If pins 2 and 3 of the ROM ENABLE jumper are shorted, ROM ENABLE* is jumpered bit 7 output of Control Register 2. Thus the state of ROM ENABLE* is entirely software controlled: writing a \varnothing to bit 7 of Control Register 2 pulls ROM ENABLE* low; a 1 pulls it high.

Whenever the ROM is selected, the BOOT and SEL LEDs light. The bus signal PHANTOM* also goes active, disabling any memory sharing the ROM's memory space that can respond to the PHANTOM* signal.

5.2.5 The Data Bus

During Write cycles, the 2422's internal bi-directional data bus is driven by U38, an 8-bit buffer. This chip is enabled whenever MWRITE or pWR* are active when the 2422's
registers are selected. Once enabled, this chip gates the data bits on the Data Out bus (output from the CPU) onto the 2422's internal data bus. When the chip is disabled, its outputs are in a high impedance state. The Data In bus is driven by U39, another 8-bit buffer. When enabled by PDBIN being active whenever the 2422's ROM or registers are selected, this chip gates the data bits on the 2422's internal data bus onto the Data In bus. When disabled, its outputs are also in a high impedance state.

5.2.6 ROM Wait Circuitry

The purpose of the ROM Wait circuitry is to increase the memory access time allowed to the ROM and to the 1793's registers when they are memory mapped. One wait state per memory cycle in which either the ROM or the registers are addressed is sufficient for this purpose. If the pins 1 and 2 of the WAIT jumper are left open, pREADY is forced low whenever the ROM or 1793 is selected when pSYNC is high. pSYNC is used to ensure that that pREADY is pulled low in every cycle in which the ROM or disk controller chip is selected and that it remains low only long enough to generate one Wait state.

5.2.7 Auto Wait

The Auto Wait circuitry is designed to force the CPU into a.s many Wait states as needed when the disk controller is not ready for transfer of data. It is enabled whenever a 1 is written to bit 7 of Control Register l. Addressing Control Register 1 clocks the Auto Wait flip-flop, U42b. The D input of the flip-flop is tied to data line DO7. When DO7 goes high, U42b's Q output goes high. The Q output is ANDed with the inverted DRQ. Whenever DRQ goes low, indicating the 1793 i.s not ready for data transfer, the resulting high from the AND gate pulls the Clear input to flip-flop U42a high, enabling the flip-flop. The flip-flop is clocked by the output of U44b, which is used as a a $2-$ to l-line decoder. U44b, enabled whenever the 1793 is active, decodes address bits $A \varnothing$ and Al. Its output goes low when $A \varnothing$ and $A l$ are high, indicating the data register is being selected. This low is inverted and clocks the flip-flop U42a. Since the flip-flop's D input is tied high, Q* will go low. This low pulls pREADY low, placing the CPU in a Wait state. Whenever DRQ goes active, flip-flop U42a is cleared, releasing pREADY.
5.3 DISK DRIVE INTERFACE

5.3.1 The Clock Signal

The 1793 Disk Controller chip needs a 2 MHz signal at its CLK input when it is operating with 8 " drives and a 1 MHz CLK input when operating with 5.25" drives. All timing on the 2422 board is controlled by a 16 MHz crystal. IC Ul5, a binary counter, divides the 16 Mhz signal by $2,4,8$ and 16 . The 1 and 2 MHz signals from the divide-by-l6 and -8 outputs are input to Ul6a, a 4-to-l-line multiplexer, the output of which is tied to the CLK input of the l793. The Select input controlling the output of this multiplexer is the MAXI*/MINI signal from Control Register l. When the signal is low, selecting the 8 " drive, the output of Ul6a is the 2 MHz clock. When the signal is high, selecting a 5.25" drive, the output of Ul6a is the 1 MHz clock.

5.3.2 The Read Clock Generator

The 1793 can separate the data bits from the mingled clock and data bit stream from the disk drive. To do so, however, it needs a Read Clock signal, RCLK, which provides the data and clock "windows" required to separate the data bits from the clock bits. RCLK must be phased so it frames a data or a clock pulse during one phase of its cycle. To do so, RCLK's nominal cycle should equal the Read Data cycle time: 2 usecs for an 8" double density disk, 4 usecs for an 8" single density disk or a 5.25" double density disk, and 8 usecs for a 5.25" single density disk.

To acheive a RCLK of the correct frequency, the $8 \mathrm{MHz}, 4$ MHz , and 2 MHz signals from the binary counter Ul5 are multiplexed by Ul6b, a 4-to-l-line multiplexer. MINI and DDEN* from Control Register l control the select lines of the multiplexer. Thus the multiplexer outputs the following clock rates for the following states of MINI and DDEN*:

MINI	DDEN*	SIGNAL RATE
--	\emptyset	8 MHz
\emptyset	1	4 MHz
\emptyset	\emptyset	4 MHz
1	1	2 MHz

Table 5-2 Ul6b Outputs
The above rates are l6x the desired RCLK frequency for each combination of drive size and format density. The output of the multiplexer is used to clock an 8 -bit parallel-out serial shift register, Ul7. The eight outputs of this shift register go high successively as the shift register is clocked; the time it takes for the eight output to go high, then, is equal to the length of one phase of RCLK.

The shift register is used in combination with a couple of flip-flops and NAND gates to detect approximately when pulses in the read data stream occur. The two flip-flops are triggered by the pulses in the Read data stream and are set by the count-3 and count-6 outputs from the shift register. This enables the circuitry to detect whether a pulse occurs before count 3, between and including counts 3 and 5, or after count 5. If the pulse occurs before count 3, the circuitry is set to clock the Read Clock flip-flop, Ul8b, on count 7. The Q output of this flip-flop is the RCLK signal to the 1793. If the pulse occurs on or between counts 3 and 5, the Read Clock flip-flop is clocked on count 8. Another flip-flop, clocked and cleared by the same signals used by the shift-register and set by the count 8 output of the shift register, allows the circuitry to clock the Read Clock flip-flop on count 9 , if the pulse occurs after count 5. The delay between the pulse being received and the Read Clock flip-flop being clocked ensures that the pulse will fall well within the window provided by RCLK. As the Read Clock flip-flop is clocked, the shift register is cleared. It then counts to eight to create an opposite phase of the desired length and on the eighth count clocks the Read Clock flip-flop. Since the Q^{*} output of the Read Clock flip-flop is its D input, the state of RCLK will then change again. This process continues, creating an RCLK signal of the needed rate and phasing. Since the Read Data pulses should occur within 16 -count intervals (or some multiple of 16), pulses which occur before count 3 or after count 6 will tend to move toward the middle counts, since they clock the Read Clock flip-flop on counts 7 and 9, not 8. The result is an RCLK signal synchrononized to the Read Data pulses so that each pulse occurs in the middle of the same phase of RCLK.

5.3.3 Read Data Pulse Width

The 1793 recommends that the Read Data pulses be approximately 250 nsecs in width so that they fall entirely within the window provided by RCLK. The 2422 employs a monostable multivibrator, U3a, to ensure that the pulses are approximately $25 \emptyset$ nsecs in length. U3a, clocked by the rising edge of each pulse in the inverted READ DATA stream, generates a negative-going pulse of $25 \emptyset$ nsecs each time it is clocked. The output of this chip forms the Read Data input, RAW READ*, to the 1793.

5.3.4 Write Precompensation

On a double-density formatted diskette, certain bit patterns may cause a bit to shift from its nominal write position and appear at the read data separator early or late enough not to fall within its window when the diskette is being read. Write precompensation rectifies this problem during disk writes by shifting such a bit from its nominal position in the opposite direction to its known read shift. The 1793 is smart enough to recognize the bit patterns that cause a bit to shift and puts out the signals EARLY and LATE to indicate that the bit being output should be write precompensated either early or late. Since write precompensation is usually necessary only for data written on tracks on the inner half of the disk, the 1793 also puts out the signal TG43 to indicate that the head is positioned over a track greater than 43. The 2422, when operating in the double density mode, uses these signals to write bits needing precompensation 160 nsecs early or late.

The 160 nsec interval is provided by a monostable multivibrator, U3Øa. The positive-going data and clock pulses from the 1793 are inverted, and the trailing edge of a pulse triggers the monostable multivibrator. It then puts out a series of positive-going pulses of $16 \varnothing$ nsecs until it is retriggered by a new Write Data pulse.

The direction of the shift is provided by a shift register, Ul9. The active low clock or data pulse from the 1793 which triggers the multivibrator also pulls low the load input to the shift register, loading in the values on its parallel inputs. The shift register is then clocked by the 160 nsec pulses from the multivibrator. When the shift register is clocked, it outputs the value on its G input and shifts the values on its inputs down one. The inputs of
primary interest are the EARLY*, LATE*, and NO PRECOMP* signals. The EARLY* and LATE* signals are the EARLY and LATE signals from the 1793 qualified by both TG43 and DDEN. Only if TG43 and DDEN are both active can either the EARLY* or LATE* signals be active. NO PRECOMP* is active whenever both EARLY* and LATE* are inactive. These signals, EARLY*, NO PRECOMP*, and LATE*, are the G, F, and E inputs to the register, respectively. As the register is clocked successively, they are each output in turn. A low output from the shift register clocks a second monostable vibrator, the output of which is the Write Data stream. The $2 \emptyset \emptyset$ nsec low-going pulse which results from the vibrator being clocked i.s the clock or data pulse to be written to the disk. Thus if EARLY* is low, the shift register output goes low, clocking $\mathrm{U} 3 \varnothing \mathrm{~b}$, the first time the register is clocked--in other words, just after it has been loaded. If NO PRECOMP* is low, the output of the register does not go low until the register is clocked a second time, or 160 nsecs later. If LATE* is low, the shift register must be clocked three times after it has been loaded before its output goes low. Thus bits that are to be written early or late are shifted l6Ø nsecs in either direction from the NO PRECOMP, or nominal, position.

5.3.5 Head Load Timing

After the 1793 has given a Head Load Command, it pulls the HLD output high and waits to start read or write operations until it receives an high signal on its Head Load riming input, indicating that the head is engaged and operable. The 2422 ensures that HLT goes active after a sufficient delay from HLD. The rising edge of HLD clocks U3b, a monostable multivibrator, which outputs a negative-going pulse of about $5 \emptyset$ msecs, the HLT signal. When this signal becomes high again, the 1793 assumes that the head is engaged.


```
    APPENDIX A: PROGRAMMING INFORMATION
```


A. 1 THE 2422 ACCESSIBLE REGISTERS

The 2422 Floppy Disk Controller contains nine accessible registers for controlling disk operations. They are addressed as six I/O ports or, if the memory map decoding ROM has been installed, six memory locations. Five of these registers are internal to the FD1791: the Status register (read-only), the Command register (write-only), the Track register, the Sector register, and the Data register. Four registers are external: Control registers 1 and 2 (write-only) and Status Registers 1 and 2 (read-only). In addition, the 2422 contains a write-only register for bank selection. The registers are addressed as follows:

The FD1793 Data Sheet included with this manual gives bit descriptions for each of the 1793's internal registers. Descriptions of the external registers follow.

A.1.1 CONTROL REGISTER 1

Control Register 1 sets the basic conditions for drive operations. bits are reset when the 2422 is reset.

Table A-2 Control Register 1

| BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT $2 \mid$ BIT $1 \mid$ BIT $0 \mid$

AUTO	DDEN	MOTOR	MINI	DS4	DS3	DS2	DS1		
WAIT		ON							

Bit Definitions:

Bit 7 When set to 1 , bit 7 enables the Auto Wait circuitry. Once enabled, the Auto Wait circuitry places the CPU in a wait state whenever it attempts a data transfer with the 2422 when the DRQ (Data Request) line is low. The CPU will remain in a wait state until DRQ goes high. When reset, the Auto Wait bit disables the Auto Wait circuitry. Besides being reset when the 2422 is reset, the Auto Wait bit is reset when INTRQ goes active, indicating that the 1793 has finished executing a command.

Bit 6 When set to 1 , bit 6 conditions the 2422 for reading and writing double-density formatted diskettes. When reset, bit 6 conditions the 2422 for single-density operation.

Bit 5 Bit 5 controls the state of the MOTOR ON* signal. Set to 1, it turns on the spindle motors of all drives receiving the MOTOR ON* signal. When reset, it turns the motors off.

Bit 4 Set to 0, bit 4 conditions the 2422 for operation with mini drives. Reset to 1, it conditions the 2422 for operation with 8" drives.

Bits 3-0 These bits control the state of the Drive Select lines to the individual drives. Set to 1 , a Drive Select bit activates the Drive Select line to the corresponding drive, selecting the drive for disk operations. Only one drive should be selected at a time.

A.1.2 STATUS REGISTER 1

Table A-3 Status Register 1

Bit Definitions:

Bit 7 Bit 7 reflects the state of the DRQ (Data Request) signal from the 1793. During disk writes, a 1 in bit 7 indicates that the 1793's data register is empty and can accept a new byte to be written to disk. During disk reads, it indicates the 1793's data register holds a data byte to be read by the CPU. A 0 in bit 7 indicates the data register is not ready for data transfer with the CPU.

Bit 6 Bit 6 is used by the CCS firmware during cold-start initialization to determine whether $C P / M$ or the monitor is to be entered. If the shorting plug is placed on the AUTO BOOT pins 1 and 2 , bit 6 is set to 0 , causing the cold-start initialization routine to turn control over to the bootstrap - loader. If the AUTO BOOT pins are open, bit 6 is set to 1, causing the cold-start initialization routine to turn control over to the monitor executive.

Bit 5 Bit 5 reflects the state of the HLD* signal from the 1793. A 1 in bit 5 indicates that the Read/Write Head of the currently-selected drive is loaded.

Bit 4-1 When a Drive Select bit is set to 1, its corresponding drive has been selected for disk operations.

Bit 0 Bit 0 reflects the state of the INTRQ signal from the 1793. This signal goes high when the 1793 has finished executing the current command in the command register and is awaiting a new command.

A.1.3 CONTROL REGISTER 2

This secondary control register sets less frequently used conditions for drive operations. All bits are reset on power-on, reset, or external clear.

Table A-4 Control Register 2

Bit Definitions:

Bit 7 If pins 2 and 3 of the ROM EN jumper have been shorted, this bit enables/disables the monitor/bootstrap loader firmware. Set to 1, it enables the firmware; reset to 0 , it disables the firmware.

Bit 6 This bit controls the state of the SIDE SELECT signal to the currently-selected two-sided drive. Set to 0, bit 6 selects side 1 of a two-sided diskette for a read or write. Reset to 1 , bit 6 selects side 0 of a two-sided diskette.

Bit 4 If pins 1 and 2 of the FAST SEEK jumper are shorted, bit 4 enables/disables the fast seek mode for voice-coil drives. Set to 1 , it enables the fast seek mode; reset to 0, it disables the fast seek mode.

Bit 2 If pins 1 and 2 of jumper D have been shorted, bit 2 controls the state of the PerSci REMOTE EJECT signal. Set to 1, bit 2 causes the diskette in the currently-selected PerSci drive to be ejected.

A.1.4 STATUS REGISTER 2

Table A-5 Status Register 2

Bit Definitions:

Bit 7 Bit 7 reflects the state of the $D R Q$ signal from the 1793 . During disk writes, a 1 in bit 7 indicates that the 1793's data register requires a new byte. During disk reads, a 1 in bit 7 indicates that the 1793's data register holds a data byte to be read by the CPU. A 0 in bit 7 indicates that the 1793's register is not ready for data transfer.

Bit 6 Bit 6 reflects the state of the signal TWO-SIDED* from the currently-selected, double-sided $8^{\prime \prime}$ drive. A 0 in bit 6 indicates a two-sided diskette is in the drive.

Bit $5 \quad$ A 1 in bit 5 indicates that the 2422 has been conditioned to read or write double-density formatted diskettes. A 0 indicates the 2422 has been conditioned for single-density diskettes.

Bit 4 Bit 4 reflects the state of the INDEX* signal from the currently-selected drive. It is set to 0 for a minimum of 10 usecs. when the drive detects the index hole on the diskette.

Bit 3 Bit 3 reflects the state of Bit 6 in Control Register 2, thus indicating which side of a double-sided diskette is selected. A 1 indicates side 0 ; a 0 indicates side 1.

Bit 2 Bit 2 reflects the state of the WPRT* signal from the currently-selected drive. (On some drives write protect detection circuitry is an optional feature.) A 0 in bit 2 indicates a write-protected diskette is in the currently selected drive.

Bit 1 A 1 in bit 1 indicates that the 2422 is conditioned for operation with a 5.25" drive. A 0 indicates that the 2422 is conditioned for an $8^{\prime \prime}$ drive.

Bit 0 Track 00. This bit indicates whether the currently selected drive is a $5.25^{\prime \prime}$ or $8^{\prime \prime}$ drive. When the head is positioned over Track 00, bit 0 is low for a $5.25^{\prime \prime}$ drive and high for an 8" drive.

A.1.5 Bank Select Register

Table A-6 Bank Select Register
 | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT $0 \mid$
 | BANK 7 i BANK 6 i BANK 5 i BANK 4 i BANK 3 i BANK $2 \mid$ BANK 1 | BANK 0 i | SELECT | SELECT | SELECT \mid SELECT \mid SELECT \mid SELECT | SELECT \mid SELECT |

The bank the 2422 is assigned to is selected when its bit is set to 1 and is deselected when its bit is reset to 0 . The remaining seven bits are Don't Care bits. On reset, all eight bits are set to 0 . Note that if pins 1 and 2 of the ROM ENABLE jumper are shorted, any byte output to the Bank Select Port disables the bootstrap loader and monitor firmware.

A. 2 DISKETTE FORMAT

Figure A-1 below is an illustration of the IBM 3740 format for an 8" single-density diskette. The format differs slightly for a doubledensity diskette; see Table A-8 below and the 1793 data sheet for differences. There is no IBM standard for $5.25^{\prime \prime}$ diskettes; the 2422 software is designed to read and write 5.25" diskettes of a format adapted from the IBM standards for $8^{\prime \prime}$ diskettes. For the actual 5.25" and $8^{\prime \prime}$ single- and double-density formats used by the utility program CCSINIT in initializing diskettes, see Tables $A-7$ and $A-8$ below.

1) Pre-index gap. The 1793 expects all FF's.
(2) 6 bytes of 00 in FM. 12 byies of 00 in MFM.
(3) Post-index gap. The 1793 expects all FF's.
4. ID FIELD

AM1 (Address Mark 1) $=$ Hex FE. Identifies ID field.
Track No. = A value usually between hex 00 and 4 C , inclusive.
(0 and 76 decimal.)
Side No. $=$ Hex 00 for one-sided diskettes and side 0 of two-sided diskettes.
Hex 01 for side 1 of two-sided diskettes.
Sector No. $=$ Sector number in hex.
Sector Size $=$ Hex 00 for 128 bytes per sector.
Hex 01 for 256 bytes per sector.
Hex 02 for 512 bytes per sector.
Hex 03 for 1024 bytes per sector.
5. Cyclic Redundancy Check bytes. CRC bytes are generated during disk writes. Used during disk reads to verify data is read correctly. CRC includes all data in ID and data fields starting with address mark.
© Post-10 gap. The 1793 expects all FF^{\prime} s.
4 DATA FIELD
AM2 $=$ hex $F B$. Identifies data field.
User data $=128,256,512$, or 1024 bytes.
8 Post-data gap. The 1793 expects all FF's.

Figure A-1 IBM 3740 Format

A.2.1 FORMATTING A SINGLE-DENSITY DISKETTE

Table A-7 below shows IBM-compatible formats for single-density 5.25" and $8^{\prime \prime}$ diskettes. These formats are both used by the CCSINIT utility program; the $8^{\prime \prime}$ diskette format conforms to the format specified by the 1793 data sheet.

	NUMBER	
	OF BYTES	
	5.25"	8"
	16	40
	-	6
	-	1
	-	26
	6	6
	1	1
	1	1
	1	1
Write	1	1
bracketed	1	1
once for		
every		
sector		
	1*	1*
	11	11
	6	6
	1	1
	128×2^{n}	128×2^{n}
	1*	1*
	-11	27
	m	m

HEX VALUE OF BYTE WRITTEN

FF (Gap 4)
00 (Sync Field)
FC (Index Mark--8" only)
FF (Gap 1--8" only)
00 (Sync Field--8" only)
FE (ID Address Mark)
Track Number
Side Number (00 or 01)
Sector Number
Sector Size Indicator
$00=128$ bytes
$01=256$ bytes
$02=512$ bytes
$03=1024$ bytes
F7 (CRC request)
FF (Gap 2)
00 (Sync Field)
FB (Data Address Mark)
Data ($n=s e c t o r$ size indicator;
data fill=E5)
F7 (CRC request)
FF (Gap 3)
FF (m=variable number of bytes;
continue writing until
1793 interrupts out. out.)
*While the CRC request is only one byte, two CRC bytes are actually written to disk.

Table A-7 Single-density Diskette Format

A.2.2 FORMATTING A DOUBLE-DENSITY DISKETTE

Table A-8 below shows IBM-compatible formats for double-density 5.25" and $8^{\prime \prime}$ diskettes. Both of these formats are used by the utility program CCSINIT; the $8^{\prime \prime}$ diskette format conforms to the format specified by the 1793 data sheet.

	NUMBER		HEX VALUE OF
	OF BYTES		
	$5.25^{\prime \prime}$	$8^{\prime \prime}$	BYTE WRITTEN

*While the CRC request is only one byte, two CRC bytes are actually written to disk.
** Although the IBM-format specifies 40 h as the fill character, CP/M requires E5h.

Table A-8 Double-density Diskette Format

FD 179X-02 Floppy Disk Formatter/Controller Family

FEATURES

- two vFo control signals
- SOFT SECTOR FORMAT COMPATIBILITY
- automatic track seek with VERIFICATION
- accommodates single and double DENSITY FORMATS
IBM 3740 Single Density (FM)
IBM System 34 Double Density (MFM)
- READ mode

Single/Multiple Sector Read with Automatic Search or Entire Track Read
Selectable 128 Byte or Variable length Sector

- WRITE MODE

Single/Multiple Sector Write with Automatic Sector Search
Entire Track Write for Disketle Formatting

- SYSTEM COMPATIBILITY

Double Buffering of Data 8 Bit Bi-Directional Bus for Data, Control and Status
DMA or Programmed Data Transfers
All Inputs and Outputs are TTL Compatible
On-Chip Track and Sector Flegisters/Comprehensive Status Information

- programmable controls

Selectable Track to Track Stepping Time Side Select Compare

- WRITE PRECOMPENSATION
- WINDOW EXTENSION
- INCORPORATES ENCODING/DECODING

AND ADDRESS MARK CIRCUITRY

- FD1792/4 IS SINGLE DENSITY ONLY
- FD1795/7 HAS A SIDE SELECT OUTPUT

179X-02 FAMILY CHARACTERISTICS

FEATURES	1791	1793	1795	1797
Single Density (FM)	X	X	X	X
Double Density (MFM)	X	X	X	X
True Data Bus		X		X
Inverted Data Bus	X		X	
Write Precomp	X	X	X	X
Side Selection Output			X	X

APPLICATIONS

FLOPPY DISK DRIVE INTERFACE
SINGLE OR MULTIPLE DRIVE CONTROLLER/ FORMATTER
NEW MINI-FLOPPY CONTROLLER

FD179X SYSTEM BLOCK DTAGRAM

GENERAL DESCRIPTION

The FD179X are MOS LSI devices which perform the functions of a Floppy Disk Formatter/Controller in a single chip implementation. The FD179X, which can be considered the end result of both the FD1771 and FD1781 designs, is IBM 3740 compatible in single density mode (FM) and System 34 compatible in Double Density Mode (MFM). The FD179X contains all the features of its predecessor the FD1771, plus the added features necessary to read/write and format a double density diskette. These include address mark detection, FM and MFM encode and decode logic, window extension; and write precompensation. In order to maintain compatibility, the FD1771, FD1781, and FD179X designs were made as close as possible with the computer interface, instruction set, and $/ / O$ registers being identical. Also, head load

PIN OUTS

control is identical. In each case, the actual pin assignments vary by only a few pins from any one to another.
The processor interface consists of an 8-bit bidirectional bus for data, status, and control word transfers. The FD179X is set up to operate on a multiplexed bus with other bus-oriented devices.
The FD179X is fabricated in N-channel Silicon Gate MOS technology and is TTL compatible on all inputs and outputs. The 1793 is identical to the 1791 except the DAL lines are TRUE for systems that utilize true data busses.
The 1795/7 has a side select output for controlling double sided drives, and the 1792 and 1794 are "Single Density Only" versions of the 1791 and 1793. On these devices, DDEN must be left open.

PIN NUMBER	PIN NAME	SYMBOL	FUNCTION
1	NO CONNECTION	NC	Pin 1 is internally connected to a back bias generator and must be left open by the user.
19	MASTER RESET	$\overline{M R}$	A logic low on this input resets the device and loads HEX 03 into the command register. The Not Ready (Status Bit 7) is reset during $\overline{M R}$ ACTIVE. When $\overline{M R}$ is brought to a logic high a RESTORE Command is executed, regardless of the state of the Ready signal from the drive. Also, HEX 01 is loaded into sector register.
20	POWER SUPPLIES	Vss	Ground
21		Vcc	$+5 \mathrm{~V} \pm 5 \%$
40		Vod	$+12 V \pm 5 \%$
COMPUTER INTERFACE:			
2	WRITE ENABLE	$\overline{W E}$	A logic low on this input gates data on the DAL into the selected register when $\overline{\mathrm{CS}}$ is low.
3	CHIP SELECT	$\overline{\text { CS }}$	A logic low on this input selects the chip and enables computer communication with the device.
4	$\overline{\text { READ ENABLE }}$	$\overline{R E}$	A logic low on this input controls the placement of data from a selected register on the DAL when $\overline{\mathrm{CS}}$ is low.
5,6	REGISTER SELECT LINES	AO, A1	These inputs select the register to receive/ transfer data on the DAL lines under $\overline{\mathrm{RE}}$ and $\overline{\mathrm{WE}}$ control:
			0 0 Status Reg Command Reg 0 1 Track Reg Track Reg 1 0 Sector Reg Sector Reg 1 1 Data Reg Data Reg
7-14	$\overline{\text { DATA ACCESS LINES }}$	$\overline{\text { DALO- }} \overline{\text { DAL }}$	Eight bit inverted Bidirectional bus used for transfer of data, control, and status. This bus is receiver enabled by $\overline{W E}$ or transmitter enabled by $\overline{\mathrm{RE}}$.
24	CLOCK	CLK	This input requires a free-running square wave clock for internal timing reference, 2 MHz for $8^{\prime \prime}$ drives, 1 MHz for mini-drives.

PIN NUMBER	PIN NAME	SYMBOL	FUNCTION
38	DATA REQUEST	DRQ	This open drain output indicates that the DR contains assembled data in Read operations, or the DR is empty in Write operations. This signal is reset when serviced by the computer through reading or loading the DR in Read or Write operations, respectively. Use 10 K pull-up resistor to +5 .
FLOPPY D	INTERRUPT REQUEST K INTERFACE:	INTRQ	This open drain output is set at the completion of any command and is reset when the STATUS register is read or the command register is written to. Use 10 K pull-up resistor to +5 .
15	STEP	STEP	The step output contains a pulse for each step.
16	DIRECTION	DIRC	Direction Output is active high when stepping in, active low when stepping out.
17	EARLY	EARLY	Indicates that the WRITE DATA pulse occurring while Early is active (high) should be shifted early for write precompensation.
18	LATE	LATE	Indicates that the write data puise occurring while Late is active (high) should be shifted late for write precompensation.
22	TEST	TEST	This input is used for testing purposes only and should be tied to +5 V or left open by the user unless interfacing to voice coil actuated motors.
23	HEAD LOAD TIMING	HLT	When a logic high is found on the HLT input the head is assumed to be engaged.
25	READ GATE (1791/3)	RG	A high level on this output indicates to the data separator circuitry that a field of zeros (or ones) has been encountered, and is used for synchronization.
25	$\begin{aligned} & \text { SIDE SELECT OUTPUT } \\ & (1795,1797) \end{aligned}$	SSO	The logic level of the Side Select Output is directly controlled by the 'S' flag in Type II or III commands. When $S=1, S S O$ is set to a logic 1 . When $S=0$, SSO is set to a logic 0 . The Side Select Output is only updated at the beginning of a Type II or III command. It is forced to a logic 0 upon a MASTER RESET condition.
26	READ CLOCK	RCLK	A nominal square-wave clock signal derived from the data stream must be provided to this input. Phasing (i.e. RCLK transitions) relative to RAW READ is important but polarity (RCLK high or low) is not.
27	AAW READ	$\overline{\text { RAW READ }}$	The data input signal directly from the drive. This input shall be a negative pulse for each recorded flux transition.
28	HEAD LOAD	HLD	The HLD output controls the loading of the Read-Write head against the media.
29	TRACK GREATER THAN 43	TG43	This output informs the drive that the Read/Write head is positioned between tracks 44-76. This output is valid only during Read and Write Commands.
30	WRITE GATE	WG	This output is made valid before writing is to be performed on the diskette.

PIN NUMBER	PIN NAME	SYMBOL	FUNCTION
31	WRITE DATA	WD	A 250 ns (MFM) or 500 ns (FM) pulse per flux transition. WD contains the unique Address marks as well as data and clock in both FM and MFM formats.
32	READY	READY	This input indicates disk readiness and is sampled for a logic high before Read or Write commands are performed. If Ready is low the Read or Write operation is not performed and an interrupt is generated. Type I operations are performed regardless of the state of Ready. The Ready input appears in inverted format as Status Register bit 7.
33	$\begin{aligned} & \overline{\text { WRITE FAULT }} \\ & \text { VFO ENABLE } \end{aligned}$	$\overline{\text { WF }} / \overline{\text { VFOE }}$	This is a bi-directional signal used to signify writing faults at the drive, and to enable the external PLO data separator. When WG $=1$, 'Pin 33 functions as a WF input. If $W F=0$, any write command will immediately be terminated. When $W G=0$, Pin 33 functions as a VFOE output. VFOE will go tow during a read operation after the head has loaded and settled (HLT = 1). On the 1795/7, it will remain low until the last bit of the second CRC byte in the ID field. VFOE will then go high until 8 bytes (MFM) or 4 bytes (FM) before the Address Mark. It will then go active until the last bit of the second CRC byte of the Data Field. On the 1791/3. VFOE will remain low until the end of the Data Field.
34	TRACK 00	$\overline{\text { TROO }}$	This input informs the FD179X that the Read/Write head is positioned over Track 00.
35	INDEX PULSE	$\overline{\mathrm{P}}$	This input informs the FD179X when the index hole is encountered on the diskette.
36	WRITE PROTECT	WPRT	This input is sampled whenever a Write Command is received. A logic low terminates the command and sets the Write Protect Status bit.
37	$\overline{\text { DOUBLE DENSITY }}$	$\overline{\text { DDEN }}$	This pin selects either single or double density operation. When $\overline{D D E N}=0$, double density is selected. When $\overline{D D E N}=1$, single density is selected. This line must be left open on the 1792/4

ORGANIZATION

The Floppy Disk Formatter block diagram is illustrated on page 5. The primary sections include the parallel processor interface and the Floppy Disk interface.
Data Shift Register-This 8 -bit register assembles serial data from the Read Data input (RAW READ) during Read operations and transfers serial data to the Write Data output during Write operations.
Data Register-This 8-bit register is used as a holding register during Disk Read and Write operations. In Disk Read operations the assembled data byte is transferred in parallef to the Data Register from the Data Shift Register. In Disk Write operations information is transferred in paraliet from the Data Register to the Data Shift Register.

When executing the Seek command the Data Fegister holds the address of the desired Track position. This register is loaded from the DAL and gated onto the DAL under processor control.

Track Register-This 8-bit register holds the track number of the current Read/Write head position. It is incremented by one every time the head is stepped in (towards track 76) and decremented by one when the head is stepped out (towards track 00). The contents of the register are compared with the recorded track number in the ID field during disk Read, Write, and Verify operations. The Track Register can be loaded from or transferred to the DAL. This Register should not be loaded when the device is busy.

Sector Register (SR)-This 8-bit register holds the address of the desired sector position. The contents of the register are compared with the recorded sector number in the ID field during disk Read or Write op erations. The Sector Register contents can be loaded from or transferred to the DAL. This register should not pe loaded when the device is busy
Command Register (CR)-This 8 -bit register holds the command presently being executed. This register should not be loaded when the device is bisy unless the new command is a force interrupt. The command register can be loaded from the DAL, but not read onto the DAL.
Status Register (STR)-This 8-bit register holds device Status information. The meaning of the Status bits is a function of the type of command previously executed. This register can be read onto the DAL, but not loaded from the DAL
CRC Logic-This logic is used to check or to generate the 16 -bit Cyclic Redundancy Check (CRC). The polynomial is: $G(x)=x^{16}+x^{12}+x^{5}+1$.

The CRC includes all information starting with the address mark and up to the CRC characters. The CRC register is preset to ones prior to data being shifted through the circuit.

Arithmetic/Logic Unit (ALU)-The ALU is a serial comparator, incrementer, and decrementer and is used for register modification and comparisons with the disk recorded ID field.

Timing and Control-All computer and Floppy Disk Interface controls are generated through this logic. The internal device timing is generated from an external crystal clock.
The FD1791/3 has two different modes of operation according to the state of DDEN. When DDEN $=0$ double density (MFM) is assumed. When DDEN $=1$, single density (FM) is assumed.

AM Detector-The address mark detector detects ID, data and index address marks during read and write operations.

PROCESSOR INTERFACE

The interface to the processor is accomplished through the eight Data Access Lines (DAL) and associated control signals. The DAL are used to transfer Data, Status, and Control words out of, or into the FD179X. The DAL are three state buffers that are enabled as output drivers when Chip Select (CS) and
Read Enable ($\overline{\mathrm{RE}}$) are active (low logic state) or act as input receivers when $\overline{\mathrm{CS}}$ and Write Enable (WE) are active.
When transfer of data with the Floppy Disk Controller is required by the host processor, the device address is decoded and CS is made low. The address bits A1 and AO, combined with the signals RE during a Read operation or WE during a Write operation are interpreted as selecting the following registers:

A1-A0		READ $(\overline{R E})$	WRITE $(\overline{\text { WE }})$
0	0	Status Register	Command Register
0	1	Track Register	Track Register
1	0	Sector Register	Sector Register
1	1	Data Register	Data Register

During Direct Memory Access (DMA) types of data transfers between the Data Register of the FD179X and the processor, the Data Request (DRQ) output is used in Data Transfer control. This signal also appears as status bit 1 during Read and Write operations.
On Disk Read operations the Data Request is activated (set high) when an assembled serial input byte is transferred in parallel to the Data Register. This bit is cleared when the Data Register is read by the processor. If the Data Register is read after one or more characters are lost, by having new data transferred into the register prior to processor readout, the Lost Data bit is set in the Status Register. The Read operation continues until the end of sector is reached.
On Disk Write operations the data Request is activated when the Data Register transfers its contents to the Data Shift Register, and requires a new data byte. It is reset when the Data Register is loaded with new data by the processor. If new data is not loaded at the time the next serial byte is required by the Floppy Disk, a byte of zeroes is written on the diskette and the Lost Data bit is set in the Status Register.
At the completion of every command an INTRQ is generated. INTRQ is reset by either reading the status register or by loading the command register with a new command. In addition, INTRQ is generated if a Force Interrupt command condition is met.

FLOPPY DISK INTERFACE

The 179X has two modes of operation according to the state of DDEN (Pin 37). When DDEN $=1$, single density is selected. In either case, the CLK input (Pin 24) is at 2 MHz . However, when interfacing with the mini-floppy, the CLK input is set at 1 MHz for both single density and double density. When the clock is at 2 MHz , the stepping rates of $3,6,10$, and 15 ms are obtainable. When CLK equals 1 MHz these times are doubled.

HEAD POSITIONING

Five commands cause positioning of the Read-Write head (see Command Section). The period of each positioning step is specified by the r field in bits 1 and 0 of the command word. After the last directional step an additional 15 milliseconds of head settling time takes place if the Verify flag is set in Type I commands. Note that this time doubles to 30 ms for a 1 MHz clock. If TEST $=0$, there is zero settling time. There is also a 15 ms head settling time if the E flag is set in any Type II or III command.

The rates (shown in Table 1) can be applied to a Step-Direction Motor through the device interface.

Step-A $2 \mu s$ (MFM) or $4 \mu s$ (FM) pulse is provided as an output to the drive. For every step pulse issued, the drive moves one track location in a direction determined by the direction output.

Direction (DIRC)-The Direction signal is active high when stepping in and low when stepping out. The Direction signal is valid $12 \mu \mathrm{~s}$ before the first stepping pulse is generated.

When a Seek, Step or Restore command is executed an optional verification of Read-Write head position can be performed by setting bit $2(\mathrm{~V}=1)$ in the command word to a logic 1 . The verification operation begins at the end of the 15 millisecond settling time after the head is loaded against the media. The track number from the first encountered ID Field is compared against the contents of the Track Register. If the track numbers compare and the ID Field Cyclic Redundancy Check (CRC) is correct, the verify operation is complete and an INTRQ is generated with no errors. The FD179X must find an ID field with correct track number and correct CRC within 5 revolutions of the media; otherwise the seek error is set and an INTRQ is generated.

Table 1. STEPPING RATES

CLK	2 MHz	2 MHz	1 MHz	1 MHz	2 MHz	1 MHz	
$\overline{\text { DDEN }}$	0	1	0	1	x	x	
R1 RO	$\overline{\text { TEST }}=1$	$\overline{\text { TEST }}=0$	$\overline{\text { TEST }}=0$				
0	0	3 ms	3 ms	6 ms	6 ms	$184 \mu \mathrm{~s}$	$363 \mu \mathrm{~s}$
0	1	6 ms	6 ms	12 ms	12 ms	$190 \mu \mathrm{~s}$	$380 \mu \mathrm{~s}$
1	0	10 ms	10 ms	20 ms	20 ms	$198 \mu \mathrm{~s}$	$39 B \mu \mathrm{~s}$
1	1	15 ms	15 ms	30 ms	30 ms	$208 \mu \mathrm{~s}$	$416 \mu \mathrm{~s}$

The Head Load (HLD) output controls the movement of the read/write head against the media. HLD is activated at the beginning of a Type I command if the h flag is set $(h=1)$, at the end of the Type I command if the verify flag ($V=1$), or upon receipt of any Type II or III command. Once HLD is active it remains active until either a Type I command is received with ($\mathrm{h}=0$ and $\mathrm{V}=0$); or if the FD179X is in an idle state (non-busy) and 15 index pulses have occurred.

Head Load Timing (HLT) is an input to the FD179X which is used for the head engage time. When HLT $=1$. the FD179X assumes the head is completely engaged. The head engage time is typically 30 to 100 ms depending on drive. The low to high transition on HLD is typically used to fire a one shot. The output of the one shot is then used for HLT and supplied as an input to the FD179X

HEAD LOAD TIMING

When both HLD and HLT are true, the FD179X will then read from or write to the media. The "and" of HLD and HLT appears as a status bit in Type 1 status.
In summary for the Type I commands: if $h=0$ and $V=0$. HLD is reset. If $h=1$ and $V=0$. HLD is set at the begirining of the command and HLT is not sampled nor is there an internal 15 ms delay. If $h=0$ and $V=1$, HLD is set near the end of the command, an internal 15 ms occurs, and the FD179X waits for HLT to be true. If $h=1$ and $V=1$. HLD is set at the beginning oi the command. Near the end of the command, after all the steps have been issued. an internal 15 ms delay occurs and the FD179x then waits for HLT to occur.

For Type II and III commands with E flag off. HLD is made active and HLT is sampled until true. With E flag on. HLD is made active, an internal 15 ms delay occurs and then HLT is sampled until true.

DISK READ OPERATIONS

Sector lengths of 128, 256. 512 or 1024 are obtainable in either FM or MFM formats. For FM, DDEN should be placed to logical "1." For MFM formats. $\overline{D D E N}$ should be placed to a logical "0." Sector lengths are determined at format time by a special byte in the "ID" field. If this Sector length byte in the ID field is zero, then the sector length is 128 bytes. If 01 then 256 bytes. If 02 . then 512 bytes. If 03, then the sector length is 1024 bytes. The number of sectors per track as far as the FD179X is concerned can be from 1 to 255 sectors. The number of iracks as far as the FD179X is concerned is from 0 to 255 tracks. For IBM 3740 compatibility. sector lengths are 128 bytes with 26 sectors per track. For System 34 compatibility (MFM), sector lengths are 256 bytes/sector with 26 sectors/track: or lengths of 1024 bytes/sector with 8 sectors/track. (See Sector Length Table.)

For read operations, the FD179X requires $\overline{R A W}$ $\overline{R E A D}$ Data (Pin 27) signal which is a 250 ns pulse per flux transition and a Read clock (RCLK) signal to indicate flux transition spacings. The RCLK (Pin 26) signal is provided by some drives but if not it may be
derived externally by Phase lock loops, one shots, or counter techniques. In addition, a Read Gate Signal is provided as an output (Pin 25) which can be used to inform phase lock loops when to acquire synchronization. When reading from the media in FM. RG is made true when 2 bytes of zeroes are detected. The FD179X must find an address mark within the next 10 bytes; otherwise RG is reset and the search for 2 bytes of zeroes begins all over again. If an address mark is found within 10 bytes, RG remains true as long as the FD179X is deriving any useful information from the data stream. Similarly for MFM, RG is made active when 4 bytes of " 00 " or "FF" are detected. Th. FD179X must find an address mark within the next 16 bytes, otherwise RG is reset and search resumes
During read operations ($W G=0$), the VFOE (Pin 33) is provided for phase lock loop synchronization. $\overline{\mathrm{VFOE}}$ will go active when:
a) Both HLT and HLD are True
b) Settling Time. if programmed, has expired
c) The 179 X is inspecting data off the disk

If $\overline{W F} / \overline{\mathrm{VFOE}}$ is not used, leave open or tie to a 10 K resistor to +5 .

DISK WRITE OPERATION

When writing is to take place on the diskette the Write Gate (WG) output is activated, allowing current to flow into the Read/Write head. As a precaution to erroneous writing the first data byte must be loaded into the Data Register in response to a Data Request from the FD179X before the Write Gate signal can be activated.
Writing is inhibited when the Write Protect input is a logic low, in which case any Write command is immediately terminated, an interrupt is generated and the Write Protect status bit is set. The Write Fault input, when activated, signifies a writing fault condition detected in disk drive electronics such as failure to detect write current flow when the Write Gate is activated. On detection of this fault the FD179X terminates the current command, and sets the Write Fault bit (bit 5) in the Status Word. The Write Fault input should be made inactive when the Write Gate output becomes inactive.
For write operations, the FD179X provides Write Gate (Pin 30) and Write Data (Pin 31) outputs. Write data consists of a series of 500 ns pulses in FM ($\overline{\mathrm{DDEN}}=1$) and 250 ns pulses in MFM ($\overline{\mathrm{DDEN}}=0$). Write Data provides the unique address marks in both formats.
Also during write, two additional signals are provided for write precompensation. These are EARLY (Pin 17) and LATE (Pin 18). EARLY is active true when the WD pulse appearing on (Pin 30) is to be written early. LATE is active true when the WD pulse is to be written LATE. If both EARLY and LATE are low when the WD pulse is present, the WD pulse is to be written at nominal. Since write precompensation values vary from disk manufacturer to disk manufacturer, the actual value is determined by several one shots or delay lines which are located external to the FD179X. The write precompensation signals EARLY and LATE are valid for the duration of WD in both FM and MFM formats.

Whenever a Read or Write command (Type II or III) is received the FD179X samples the Ready input. If this input is logic low the command is not executed and an interrupt is generated. All Type I commands are performed regardless of the state of the Ready input. Also, whenever a Type II or III command is received, the TG43 signal output is updated.

COMMAND DESCRIPTION

The FD179X will accept eleven commands. Command words should only be loaded in the Command Register when the Busy status bit is off (Status bit 0). The one exception is the Force Interrrupt command. Whenever a command is being executed, the Busy status bit is set. When a command is completed, an interrupt is generated and the Busy status bit is reset. The Status Register indicates whether the completed command encountered an error or was fault free. For ease of discussion, commands are divided into four types. Commands and types are summarized in Table 2.

Table 2. COMMAND SUMMARY

		BITS								
	COMMAND	7	6	5		4	3	2	1	
1	Restore	0	0	0			h	V	r_{1}	
1	Seek	0	0	0			h	V	r_{1}	r_{10}
1	Step	0	0	1			h	V	r_{1}	r_{0}
1	Step In	0	1	0			h	V	r_{1}	r_{0}
1	Step Out	0	1	1				V	r_{1}	r_{0}
II	Read Sector	1	0	0			F_{2}	E	F_{1}	0
II	Write Sector	1	0	1				E F	F_{1}	a_{0}
III	Read Address	1	1	0				E	0	0
III	Read Track	1	1	1				E	0	0
III	Write Track	1	1	1			0	E	0	0
IV	Force Interrrupt	1	1	0			3	I_{2}	1	

Note: Bits shown in TRUE form.

Table 3. FLAG SUMMARY

TYPE I COMMANDS
$h=$ Head Load Flag (Bit 3) $h=1$, Load head at beginning $h=0$, Unload head at beginning
$V=$ Verify flag (Bit 2) $V=1$, Verify on destination track $V=0$, No verify
$r_{1} r_{0}=$ Stepping motor rate (Bits 1-0) Refer to Table 1 for rate summary $u=$ Update flag (Bit 4) $u=1$. Update Track register $u=0$. No update

Table 4. FLAG SUMMARY

TYPE II \& III COMMANDS				
$\begin{gathered} \begin{array}{c} m=M \\ m \end{array}= \\ m= \\ a_{0}=D a \\ \hline a_{1}= \\ a_{1}= \\ E= \end{gathered}$ (F_{2}) $\begin{aligned} & S=S i \\ & S=0, \\ & S=1, \end{aligned}$ (F_{1}) $\begin{aligned} & C=S \\ & \hline C=0 \\ & C=1, \end{aligned}$ (F_{1}) $S=S$ $\begin{aligned} & S=0 \\ & S=1 \end{aligned}$ $\left(F_{2}\right) b=S$	Rec gle Itiple ddress (Da (Del s De 15 no 15 lect pare pare ompa ble s le si elect 795 te te Leng 975		4) 0) ark) 3 only 1791/3 mpar mpare	
		$\begin{array}{r} 1 \\ 01 \end{array}$	th Fie 10	11
$\begin{aligned} & b=0 \\ & b=1 \end{aligned}$	256 128	512 256	1024 512	128 1024

Table 5. FLAG SUMMARY

TYPE IV COMMAND
$\frac{1 i=1 n t e r r u p t ~ C o n d i t i o n ~ f l a g s ~(B i t s ~ 3-0) ~}{10}=1$, Not-Ready to Ready Transition
$11=1$, Ready to Not-Ready Transition
$12=1$, Index Pulse
$13=1$, Immediate Interrupt
$I_{3}-10=0$, Terminate with no Interrupt

TYPE I COMMANDS

The Type I Commands include the Restore, Seek, Step, Step-In, and Step-Out commands. Each of the Type I Commands contains a rate field (rori), which determines the stepping motor rate as defined in Table 1.

The Type I Commands contain a head load flag (h) which determines it the head is to be loaded at the beginning of the command. If $h=1$, the head is loaded at the beginning of the command (HLD output is made active). If $h=0$, HLD is deactivated. Once the head is loaded, the head will remain engaged until the FD179X receives a command that specifically disengages the head. If the FD179X is idle (busy $=0$) for 15 revolutions of the disk, the head will be automatically disengaged (HLD made inactive).

The Type I Commands also contain a verification (V) flag which determines if a verification operation is to take place on the destination track. If $V=1$, a verification is performed, if $\mathrm{V}=0$, no verification is performed.

During verification, the head is loaded and after an internal 15 ms delay. the HLT input is sampled. When HL.T is active (logic true), the first encountered ID field is read off the disk. The track address of the

TYPE I COMMAND FLOW

ID field is then compared to the Track Register; if there is a match and a valid ID CRC, the verification is complete, an interrupt is generated and the Busy status bit is reset. If there is not a match but there is valid ID CRC, an interrupt is generated, and Seek Error Status bit (Status bit 4) is set and the Busy status bit is reset. If there is a match but not a valid CRC, the CRC error status bit is set (Status bit 3), and the next encountered ID field is read from the disk for the verification operation. If an ID field with a valid CRC cannot be found after four revolutions of the disk, the FD179X terminates the operation and sends an interrupt, (INTRQ).

The Step, Step-In, and Step-Out commands contain an Update flag (U). When $U=1$, the track register is updated by one for each step. When $\mathrm{U}=0$, the track register is not updated.
On the 1795/7 devices, the SSO output is not affected during Type 1 commands, and an internal side compare does not take place when the (V) Verify Flag is on.

TYPE I COMMAND FLOW

RESTORE (SEEK TRACK 0)

Upon receipt of this command the Track 00 ($\overline{\mathrm{TROO}}$) input is sampled. If TROO is active low indicating the Read-Write head is positioned over track 0 . the Track Register is loaded with zeroes and an interrupt is generated. II TROO is not active low. stepping pulses (pins 15 to 16) at a rate specified by the riro field are issued until the TROO input is activated. At this time the Track Register is loaded with zeroes and an interrupt is generated. If the TROO input does not go active low atter 255 stepping pulses, the FD179X terminates operation, interrupts, and sets the Seek error status bit. A verification operation takes place if the V flag is set. The h bit allows the head to be loaded at the start of command. Note that the Restore command is executed when $\overline{M R}$ goes from an active to an inactive state.

SEEK
This command assumes that the Track Register contains the track number of the current position of the Read-Write head and the Data Register contains the desired track number. The FD179X will update the Track register and issue stepping pulses in the appropriate direction until the contents of the Track register are equal to the contents of the Data Fiegister (the desired track location). A verification operation takes place if the V flag is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

STEP

Upon receipt of this command, the FD179X issues one stepping pulse to the disk drive. The stepping motor direction is the same as in the previous step command. After a delay determined by theriro field, a verification takes place if the V flag is on. If the u flag is on, the Track Register is updated. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

STEP-IN

Upon receipt of this command, the FD179X issues one stepping pulse in the direction towards track 76. If the u flag is on, the Track Register is incremented by one. After a delay determined by the ririo field, a verification takes place if the V flag is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

STEP-OUT

Upon receipt of this command, the FD179X issues one stepping pulse in the direction towards track 0 . If the uflag is on, the Track Register is decremented by one. After a delay determined by the riro field, a verification takes place if the V flag is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

TYPE II COMMANDS

The Type II Commands are the Read Sector and Write Sector commands. Prior to loading the Type II Command into the Command Register, the computer must load the Sector Register with the desired sector number. Upon receipt of the Type II command, the busy status Bit is set. If the E flag = 1 (this is the normal case) HLD is made active and HLT is sampled after a 15 msec delay. If the E flag is 0 , the head is loaded and HLT sampled with no 15 msec delay. The ID field and Data Field format are shown on page 13.

When an ID field is located on the disk, the FD179X compares the Track Number on the ID field with the Track Register. If there is not a match, the next en-
countered ID field is read and a comparison is again made. If there was a match, the Sector Number of the ID field is compared with the Sector Register. If there is not a Sector match, the next encountered ID field is read off the disk and comparisons again made. If the ID field CRC is correct, the data field is then located and will be either written into, or read from depending upon the command. The FD179X must find an ID field with a Track number, Sector number, side number, and CRC within four revolutions of the disk; otherwise, the Record not found status bit is set (Status bit 3) and the command is terminated with an interrupt.

TYPE II COMMAND

Sector Length Table	
Sector Field (hex)	Number of Bytes in Sector (decimal)
00	128
01	256
02	512
03	1024

Each of the Type II Commands contains an (m) flag which determines if multiple records (sectors) are to be read or written, depending upon the command. If $\mathrm{m}=0$, a single sector is read or written and an interrupt is generated at the completion of the command. If $m=1$, multiple records are read or written with the sector register internally updated so that an address verification can occur on the next record. The FD179X will continue to read or write multiple records and update the sector register until the sector regis-

TYPE II COMMAND
ter exceeds the number of sectors on the track or until the Force Interrupt command is loaded into the Command Register, which terminates the command and generates an interrupt.
If the Sector Register exceeds the number of sectors on the track, the Record-Not-Found status bit will be set.
The Type II commands also contain side select compare flags. When $\mathrm{C}=0$, no side comparison is made. When C $=1$, the LSB of the side number is read off the ID Field of the disk and compared with the contents of the (S) fiag. If the S flag compares with the side number recorded in the ID field, the 179X continues with the ID search. If a comparison is not made within 5 index pulses, the interrupt line is made active and the Record-Not-Found status bit is set.
The 1795/7 READ SECTOR and WRITE SECTOR commands include a 'b' flag. The 'b' flag, in conjunction with the sector length byte of the ID Field, allows different byte lengths to be implemented in each sector. For IBM compatability, the 'b' flag should be set to a one. The

TYPE II COMMAND
's' flag allows direct control over the SSO Line (Pin 25) and is set or reset at the beginning of the command, dependent upon the value of this flag.

READ SECTOR

Upon receipt of the Read Sector command, the head is loaded, the Busy status bit set, and when an ID field is encountered that has the correct track number, correct sector number, correct side number, and correct CRC, the data fieid is presented to the computer. The Data Address Mark of the data field must be found within 30 bytes in single density and 43 bytes in double density of the last ID field CRC byte; if not, the Record Not Found status bit is set and the operation is terminated.
When the first character or byte of the data field has been shifted through the DSR, it is transferred to the DR, and DRQ is generated. When the next byte is accumulated in the DSR, it is transferred to the DR and another DRQ is generated. If the Computer has not read the previous contents of the DR before a new character is transferred that character is lost and

TYPE II COMMAND
the Lost Data Status bit is set. This sequence continues until the complete data field has been inputted to the computer. If there is a CRC error at the end of the data field, the CRC error status bit is set, and the command is terminated (even if it is a multiple record command).

At the end of the Read operation, the type of Data Address Mark encountered in the data field is recorded in the Status Register (Bit 5) as shown below:

STATUS BIT 5	
1	Deleted Data Mark 0

WRITE SECTOR

Upon receipt of the Write Sector command the head is loaded (HLD active) and the Busy status bit is set. When an ID field is encountered that has the correct track number, correct sector number. correct side number. and correct CRC, a DRQ is generated The FD179X counts off 11 bytes in single density and 22 bytes in double density from the CRC field and the Write Gate (WG) output is made active if the DRQ is serviced (i.e.. the DR has been loaded by the computer). II DRO has not been serviced. the command is terminated and the Lost Data status bit is set. If the DRQ has been serviced. the WG is made active and six bytes of zeros in single density and 12 bytes in double density are then written on the disk. At this time the Data Address Mark is then written on the disk as determined by the a: field of the command as shown below:

```
a
1
O
```

```
Data Address Mark (Bit 0)
```

Data Address Mark (Bit 0)
Deleted Data Mark
Deleted Data Mark
Data Mark

```

The FD179X then writes the data field and generates DRQs to the computer. It the DRQ is not serviced in lime for continuous writing the Lost Data Status Bit is set and a byte of zeros is written on the disk. The command is not terminated. After the last data byte has been written on the disk. the two-byte CRC is computed internally and written on the disk followed by one byte of logic ones in FM or in MFM. The WG output is then deactivated.

\section*{TYPE III COMMANDS}

\section*{READ ADDRESS}

Upon receipt of the Read Address command, the head is loaded and the Busy Status Bit is set. The
next encountered ID field is then read in from the disk, and the six data bytes of the ID field are assembled and transferred to the DR, and a DRQ is generated for each byte. The six bytes of the ID field are shown below:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
TRACK \\
ADDR
\end{tabular} & \begin{tabular}{c} 
SIDE \\
NUMBER
\end{tabular} & \begin{tabular}{c} 
SECTOR \\
ADDRESS
\end{tabular} & \begin{tabular}{c} 
SECTOR \\
LENGTH
\end{tabular} & \begin{tabular}{c} 
CRC \\
1
\end{tabular} & \begin{tabular}{c} 
CRC \\
2
\end{tabular} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}

Although the CRC characters are transferred to the computer, the FD179X checks for validity and the CRC error status bit is set if there is a CRC error. The Track Address of the ID field is written into the sector register. At the end of the operation an interrupt is generated and the Busy Status is reset.

\section*{READ TRACK}

Upon receipt of the Read Track command, the head is loaded and the Busy Status bit is set. Reading starts with the leading edge of the first encountered It.dex pulse and continues until the next index pulse. As each byte is assembled it is transferred to the Data Register and the Data Request is generated for each byte. No CRC checking is performed. Gaps are included in the input data stream. The accumulation of bytes is synchronized to each Address Mark encountered Upon completion of the command, the interrupt is activated. RG is not activated during the Read Track Command. An internal side compare is not performed during a Read Track.

\section*{WRITE TRACK}

Upon receipt of the Write Track command, the head is loaded and the Busy Status bit is set. Writing starts with the leading edge of the first encountered index pulse and continues until the next index pulse, at which time the interrupt is activated. The Data Request is activated immediately upon receiving the command, but writing will not start until after the first byte has been loaded into the Data Register. If the DR has not been loaded by the time the index pulse is encountered the operation is terminated making the device Not Busy, the Lost Data Status Bit is set, and the Interrupt is activated. If a byte is not present in the DR when needed, a byte of zeros is substituted. Address Marks and CRC characters are written on the disk by detecting certain data byte patterns in the outgoing data stream as shown in the table below. The CRC'generator is initialized when any data byte from F8 to FE is about to be transferred from the DR to the DSR in FM or by receipt of F5 in MFM.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline GAP & ID & TRACK & SIDE & SECTOR & SECTOR & CRC & CRC & GAP & DATA & & CRC & CRC \\
III & AM & NUMBER & NUMEER \\
NUMBER & LENGTH & 1 & 2 & II & AM & DATA FIELD & 1 & 2 \\
\hline \multicolumn{9}{c|}{ ID FIELD } \\
\hline
\end{tabular}

In MFM only, IDAM and DATA AM are preceded by three bytes of A1 with clock transition between bits 4 and 5 missing.


TYPE III COMMAND WRITE TRACK
CONTROL BYTES FOR INITIALIZATION
\begin{tabular}{|c|c|c|}
\hline DATA PATTERN IN DR (HEX) & \begin{tabular}{l}
FD179X INTERPRETATION \\
IN FM (DDEN \(=1\) )
\end{tabular} & \begin{tabular}{l}
FD1791/3 INTERPRETATION \\
IN MFM (DDEN = 0)
\end{tabular} \\
\hline \[
\begin{aligned}
& 00 \text { thru F4 } \\
& \text { F5 } \\
& \text { F6 } \\
& \text { F7 } \\
& \text { F8 thru FB } \\
& \text { FC } \\
& \text { FD } \\
& \text { FE } \\
& \text { FF }
\end{aligned}
\] & \begin{tabular}{l}
Write 00 thru F4 with CLK = FF \\
Not Allowed \\
Not Allowed \\
Generate 2 CRC bytes \\
Write F8 thru FB, Clk = C7, Preset CRC \\
Write FC with Clk = D7 \\
Write FD with CIK = FF \\
Write FE, CIk = C7, Preset CRC \\
Write FF with Clk \(=\) FF
\end{tabular} & \begin{tabular}{l}
Write 00 thru F4, in MFM \\
Write A1* in MFM, Preset CRC \\
Write C2** in MFM \\
Generate 2 CRC bytes \\
Write F8 thru FB, in MFM \\
Write FC in MFM \\
Write FD in MFM \\
Write FE in MFM \\
Write FF in MFM
\end{tabular} \\
\hline
\end{tabular}
*Missing clock transition between bits 4 and 5
**Missing clock transition between bits 3 \& 4



\section*{TYPE IV COMMAND}

\section*{FORCE INTERRUPT}

This command can be loaded into the command register at any time. If there is a current command under execution (Busy Status Bit set), the command will be terminated and an interrupt will be generated when the condition specified in the lo through \(I_{3}\) field is detected. The interrupt conditions are shown below
\(I_{0}=\) Not-Ready-To-Ready Transition
\(I_{1}=\) Ready-To-Not-Ready Transition
\(I_{2}=\) Every Index Pulse
\(I_{3}=\) Immediate Interrupt (requires reset, see Note)
NOTE: If \(I_{0}-I_{3}=0\), there is no interrupt generated but the current command is terminated and busy is reset. This is the only command that will enable the immediate interrupt to clear on a subsequent Load Command Register or Read Status Register.

\section*{STATUS DESCRIPTION}

Upon receipt of any command, except the Force Interrupt command, the Busy Status bit is set and the rest of the status bits are updated or cleared for the new command. If the Force Interrupt Command is received when there is a current command under execution, the Busy status bit is reset, and the rest of the status bits are unchanged. If the Force Interrupt command is received when there is not a current command under execution, the Busy Status bit is reset and the rest of the status bits are updated or cleared. In this case. Status reflects the Type I commands.

The format of the Status Register is shown below:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ (BITS) } \\
\hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline S 7 & S 6 & S 5 & S 4 & S 3 & S 2 & S 1 & S 0 \\
\hline
\end{tabular}

Status varies according to the type of command executed as shown in Table 6.

\section*{FORMATTING THE DISK}
(Refer to section on Type III commands for flow diagrams.)
Formatting the disk is a relatively simple task when operating programmed I/O or when operating under Formatting the disk is accomplished by positioning the R/W head over the desired track number and issuing the Write Track command. Upon receipt of the Write Track command, the FD179X raises the Data Request signal. At this point in time, the user loads the data register with desired data to be written on the disk. For every byte of information to be written on the disk, a data request is generated. This sequence continues from one index mark to the next index mark. Normally, whatever data pattern appears in the data register is written on the disk with a normal clock pattern. However, if the FD179X detects a data pattern of F5 thru FE in the data register, this is interpreted as data address marks with missing clocks or CRC generation. For instance, in FM an FE pattern will be interpreted as an ID address mark (DATA-FE, CLK-C7) and the CRC will be initialized. An F7 pattern will generate two CRC characters in FM or MFM. As a consequence, the patterns F5 thru FE must not appear in the gaps, data fields, or ID fields. Also, CRC's must be generated by an F7 pattern.
Disks may be formatted in IBM 3740 or System 34 formats with sector lengths of \(128,256,512\), or 1024 bytes.

\section*{IBM 3740 FORMAT-128 BYTES/SECTOR}

Shown below is the IBM single-density format with 128 bytes/sector. In order to format a diskette, the user must issue the Write Track command, and load the data register with the following values. For every byte to be written, there is one data request.
\begin{tabular}{|c|c|}
\hline NUMBER OF BYTES & HEX VALUE OF BYTE WRITTEN \\
\hline 40 & FF (or 00) \({ }^{1}\) \\
\hline 6 & 00 \\
\hline 1 & FC (Index Mark) \\
\hline 26 & FF (or 00) \\
\hline 6 & 00 \\
\hline 1 & FE (ID Address Mark) \\
\hline 1 & Track Number \\
\hline 1 & Side Number (00 or 01) \\
\hline 1 & Sector Number (1 thru 1A) \\
\hline 1 & 00 \\
\hline 1 & F7 (2 CRC's written) \\
\hline 11 & FF (or 00) \\
\hline 6 & 00 \\
\hline 1 & FB (Data ,ddress Mark) \\
\hline 128 & Data (IBM uses E5) \\
\hline 1 & F7 (2 CRC's written) \\
\hline 27 & FF (or D0) \\
\hline 247** & FF (or 00) \\
\hline
\end{tabular}
*Write bracketed field 26 times
**Continue writing until FD179X interrupts out. Approx. 247 bytes.
1-Optional 'O0' on 1795/7 only.


IBM TRACK FORMAT

\section*{IBM SYSTEM 34 FORMAT256 BYTES/SECTOR}

Shown below is the IBM dual-density format with 256 bytes/sector. In order to format a diskette the user must issue the Write Track command and load the data register with the following values. For every byte to be written, there is one data request.
\(\left.\begin{array}{|cl|}\hline & \\ \text { NUMBER } & \\ \text { OF BYTES } & \\ \hline 60 & \text { HEX VALUE OF } \\ \text { BYTE WRITTEN }\end{array}\right]\)

\section*{1. NON-IBM FORMATS}

Variations in the IBM format are possible to a limited extent if the following requirements are met: sector size must be a choice of 128,256, 512, or 1024 bytes; gap size must be according to the following table. Note that the Index Mark is not required by the 179X. The minimum gap sizes shown are that which is required by the 179X, with PLL lock-up time, motor speed variation, etc., adding additional bytes،
\begin{tabular}{|c|c|c|}
\hline & FM & MFM \\
\hline Gap I & 16 bytes FF & 32 bytes 4E \\
Gap II & 11 bytes FF & 22 bytes 4E \\
* & 6 bytes 00 & \begin{tabular}{r}
12 bytes 00 \\
3 bytes A1
\end{tabular} \\
Gap III & 10 bytes FF & \begin{tabular}{r}
24 bytes \(4 E\) \\
3 bytes A1
\end{tabular} \\
** & 4 bytes 00 & 8 bytes 00 \\
& 16 bytes FF IV & 16 bytes \(4 E\)
\end{tabular}
*Byte counts must be exact.
**Byte counts are minimum, except exactly 3 bytes of A1 must be written.

\section*{ELECTRICAL CHARACTERISTICS}

\section*{maximum ratings}
\begin{tabular}{lll} 
Vod With Respect to Vss (Ground) \(=15\) to -0.3 V & Operating Temperature & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
Max. Voltage to Any Input With \(=15\) to -0.3 V & Storage Temperature & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Respect to Vss & & \\
\(V_{D D}=1 D\) ma Nominal \(\quad V_{C C}=35\) ma Nominal & \\
OPERATING CHARACTERISTICS (DC) \\
TA \(=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, V_{D D}=+12 \mathrm{~V} \pm .6 \mathrm{~V}, \mathrm{~V}_{\text {ss }}=\mathrm{OV}, V_{c c}=+5 \mathrm{~V} \pm .25 \mathrm{~V}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & CHARACTERISTIC & MIN. & MAX. & UNITS & CONDITIONS \\
\hline 1 L & Input Leakage & & 10 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OD }}\) \\
\hline la & Output Leakage & & 10 & \(\mu \mathrm{A}\) & \(V_{\text {OUT }}=V_{\text {DD }}\) \\
\hline \(\mathrm{V}_{\text {IH }}\) & Input High Voltage & 2.6 & & V & \\
\hline \(\mathrm{V}_{\text {IL }}\) & Input Low Voltage & & 0.8 & V & \\
\hline V OH & Output High Voltage & 2.8 & & V & \(t_{0}=-100 \mu \mathrm{~A}\) \\
\hline Vod & Output Low Voltage & & 0.45 & V & \(10=1.6 \mathrm{~mA}\) \\
\hline Po & Power Dissipation & & 0.5 & W & \\
\hline
\end{tabular}

\section*{TIMING CHARACTERISTICS}
\(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{Do}}=+12 \mathrm{~V}=.6 \mathrm{~V} . \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~V}_{c \mathrm{c}}=+5 \mathrm{~V} \pm .25 \mathrm{~V}\)

READ ENABLE TIMING
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & CHARACTERISTIC & MIN. & TYP. & MAX. & UNITS & CONDITIONS \\
\hline TSET & Setup ADDR \& CS to \(\overline{\text { PE }}\) & 50 & & & nsec & \\
\hline THLD & Hold ADDR \& CS from \(\overline{\text { RE }}\) & 10 & & & nsec & \\
\hline TRE & \(\overline{\text { RE Pulse Width }}\) & 400 & & & nsec & \(\mathrm{Cl}_{\mathrm{L}}=50 \mathrm{pt}\) \\
\hline TDRR & DRQ Reset from \(\overline{\text { RE }}\) & & 400 & 500 & nsec & \\
\hline TIRR & INTRQ Reset from \(\overline{\mathrm{AE}}\) & & 500 & 3000 & nsec & See Note 5 \\
\hline TDACC & Data Access from \(\overline{\overline{A E}}\) & & & 350 & nsec & \(\mathrm{Ca}_{\mathrm{c}}=50 \mathrm{pt}\) \\
\hline TDOH & Data Hold From \(\overline{\mathrm{AE}}\) & 50 & & 150 & nsec & \(\mathrm{CL}=50 \mathrm{pf}\) \\
\hline
\end{tabular}


READ ENABLE TIMING

\section*{WRITE ENABLE TIMING}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & CHARACTERISTIC & MIN. & TYP. & MAX. & UNITS & CONDITIONS \\
\hline TSET & Setup ADDR \& CS to \(\overline{\text { WE }}\) & 50 & & & nsec & \\
\hline THLD & Hold ADDR \& CS from WE & 10 & & & nsec & \\
\hline TWE & WE Pulse Width & 350 & & & nsec & \\
\hline TDRR & DRQ Reset from \(\overline{W E}\) & & 400 & 500 & nsec & \\
\hline TIRA & INTRQ Reset from WE & & 500 & 3000 & nsec & See Note 5 \\
\hline TDS & Data Setup to WE & 250 & & & nsec & \\
\hline TDH & Data Hold from WE & 70 & & & nsec & \\
\hline
\end{tabular}

INPUT DATA TIMING:
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ CHARACTERISTIC } & MIN. & TYP. & MAX. & UNITS & CONDITIONS \\
\hline Tpw & \(\overline{\text { Maw Read Pulse Width }}\) & 100 & 200 & & nsec & See Note 1 \\
tbc & Raw Read Cycle Time & & 1500 & & nsec & 1800 ns @ \(70^{\circ} \mathrm{C}\) \\
Tc & RCLK Cycle Time & & 1500 & & nsec & 1800 ns @ \(70^{\circ} \mathrm{C}\) \\
Tx. \(^{\text {Tx }}\) & RCLK hold to Raw Read & 40 & & & nsec & See Note 1 \\
& Raw Read hold to RCLK & 40 & & & nsec & \\
\hline
\end{tabular}


WRITE ENABLE TIMING

WRITE DATA TIMING: (ALL TIMES DOUBLE WHEN CLK \(=1 \mathrm{MHz}\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & CHARACTERISTICS & MIN. & TYP. & MAX. & UNITS & CONDITIONS \\
\hline Twp & Write Data Pulse Width & 450 & 500 & 550 & nsec & FM \\
\hline & & 150 & 200 & 250 & nsec & MFM \\
\hline Twg & Write Gate to Write Data & & 2 & & \(\mu \mathrm{sec}\) & FM \\
\hline & & & 1 & & \(\mu \mathrm{sec}\) & MFM \\
\hline Tbc & Write data cycle Time & & 2,3, or 4 & & \(\mu \mathrm{sec}\) & \(\pm\) CLK Error \\
\hline Ts & Early (Late) to Write Data & 125 & & & nsec & MFM \\
\hline Th & Early (Late) From Write Data & 125 & & & nsec & MFM \\
\hline Twf & Write Gate off from WD & & 2 & & \(\mu \mathrm{sec}\) & FM \\
\hline & & & 1 & & \(\mu \mathrm{sec}\) & MFM \\
\hline Twal & WD Valid to Clk & 100 & & & nsec & \(C L K=1 \mathrm{MHZ}\) \\
\hline & & 50 & & & nsec & CLK \(=2 \mathrm{MHZ}\) \\
\hline Twd2 & WD Valid after CLK & \[
\begin{aligned}
& 100 \\
& 30
\end{aligned}
\] & & & nsec nsec & \[
C L K=1 \mathrm{MHZ}
\] \\
\hline
\end{tabular}


WRITE DATA TIMING
miscellaneous timing:
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ CHARACTERISTIC } & MIN. & TYP. & MAX. & UNITS & CONDITIONS \\
\hline TCD & Clock Duty (low) & 230 & 250 & 20000 & nsec & \\
TCD & Clock Duty (high) & 200 & 250 & 20000 & nsec & \\
TSTP & Step Pulse Output & \(20 r 4\) & & & \(\mu \mathrm{sec}\) & See Note 5 \\
TDIR & Dir Setup to Step & & 12 & & \(\mu \mathrm{sec}\) & \(\pm\) CLK ERROR \\
TMR & Master Reset Pulse Width & 50 & & & \(\mu \mathrm{sec}\) & \\
TIP & Index Pulse WIdth & 10 & & & \(\mu \mathrm{sec}\) & See Note 5 \\
TWF & Write Fault Pulse Width & 10 & & & \(\mu \mathrm{sec}\) & \\
& & & & & & \\
\hline
\end{tabular}


MISCELLANEOUS TIMING

\section*{NOTES:}
1. Pulse width on RAW READ ( P in 27) is normally 100-300 ns However. pulse may be any width if pulse is entirely within window If pulse occurs' in both windows. then pulse width must be less than 300 ns for MFM at CLK \(=2 \mathrm{MHz}\) and 600 ns for FM at 2 MHz . Times double for 1 MHz
2. A PPL Data Separator is recommended for \(8^{\prime \prime}\) MFM.
3. tbe should be \(2 \mu \mathrm{~s}\), nominal in MFM and \(4 \mu \mathrm{~s}\) nomina in FM. Times double when CLK \(=1 \mathrm{MHz}\).
4. RCLK may be high or low during RAW READ (Polarity is unimportant).
5. Times double when clock \(=1 \mathrm{MHz}\).

Table 6. STATUS REGISTER SUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline BIT & ALL TYPE I COMMANDS & READ ADDRESS & \[
\begin{aligned}
& \text { READ } \\
& \text { SECTOR }
\end{aligned}
\] & \begin{tabular}{l}
READ \\
TRACK
\end{tabular} & WRITE SECTOR & WRITE TRACK \\
\hline S7 & NOT READY & NOT FEADY & NOT READY & NOT READY & NOT READY & NOT READY \\
\hline S6 & WRITE PROTECT & 0 & 0 & 0 & WRITE PROTECT & WRITE PROTECT \\
\hline S5 & HEAD LOADED & 0 & RECORD TYPE & 0 & WRITE FAULT & WRITE FAULT \\
\hline S4 & SEEK ERROR & RNF: & RNF & 0 & RNF & 0 \\
\hline S3 & CRC ERROR & CRC ERROR & CRC ERROR & 0 & CRC ERROR & 0 \\
\hline S2 & TRACK 0 & LOST DATA \\
\hline S1 & INDEX & DRQ & DRQ & DRQ & DRQ & DRQ \\
\hline S0 & BUSY & BUSY & BUSY & BUSY & BUSY & BUSY \\
\hline
\end{tabular}

STATUS FOR TYPE I COMMANDS
\begin{tabular}{|l|l|}
\hline BIT NAME & MEANING \\
\hline S7 NOT READY & \begin{tabular}{l} 
This bit when set indicates the drive is not ready. When reset it indicates that the drive \\
is ready This bit is an inverted copy of the Ready input and logically 'ored' with MR.
\end{tabular} \\
\hline S6 PROTECTED & \begin{tabular}{l} 
When set. indicates Write Protect is activated. This bit is an inverted copy of WRPT \\
input.
\end{tabular} \\
\hline S5 HEAD LOADED & \begin{tabular}{l} 
When set. it indicates the head is loaded and engaged. This bit is a logical "and" of \\
HLD and HLT signals.
\end{tabular} \\
\hline S4 SEEK ERROR & When set. the desired track was not verified. This bit is reset to 0 when updated. \\
\hline S3 CRC ERROR & CRC encountered in ID field. \\
\hline S2 TRACK 00 & \begin{tabular}{l} 
When set. indicates Read/Write head is positioned to Track 0. This bit is an inverted \\
copy of the TROO input.
\end{tabular} \\
\hline S1 INDEX & \begin{tabular}{l} 
When set. indicates index mark detected from drive. This bit is an inverted copy of the \\
IP input.
\end{tabular} \\
\hline SO BUSY & When set command is in progress. When reset no command is in progress. \\
\hline
\end{tabular}

STATUS FOR TYPE II AND III COMMANDS
\begin{tabular}{|l|l|}
\hline BIT NAME & MEANING \\
\hline S7 NOT READY & \begin{tabular}{l} 
This bit when set indicates the drive is not ready. When reset, it indicates that the drive \\
is ready. This bit is an inverted copy of the Ready input and ored' with MR. The Type II \\
and III Commands will not execute unless the drive is ready.
\end{tabular} \\
\hline S6 WRITE PROTECT & \begin{tabular}{l} 
On Read Record: Not Used. On Read Track: Not Used. On any Write: It indicates a \\
Write Protect. This bit is reset when updated.
\end{tabular} \\
\hline \begin{tabular}{l} 
S5 RECORD TYPE \\
WRITE FAULT
\end{tabular} & \begin{tabular}{l} 
On Read Record: It indicates the record-type code from data field address mark. \\
1 = Deleted Data Mark. \(0=\) Data Mark. On any Write: It indicates a Write Fault. This bit \\
is reset when updated.
\end{tabular} \\
\hline \begin{tabular}{l} 
S4 RECORD NOT \\
FOUND (RNF)
\end{tabular} & \begin{tabular}{l} 
When set. it indicates that the desired track, sector, or side were not found. This bit is \\
reset when updated.
\end{tabular} \\
\hline S3 CRC ERROR & \begin{tabular}{l} 
If S4 is set. an error is tound in one or more ID fields; otherwise it indicates error in \\
data field. This bit is reset when updated.
\end{tabular} \\
\hline S2 LOST DATA & \begin{tabular}{l} 
When set, it indicates the computer did not respond to DRQ in one byte time. This bit is \\
reset to zero when updated.
\end{tabular} \\
\hline S1 DATA REQUEST & \begin{tabular}{l} 
This bit is a copy of the DRQ output. When set, it indicates the DR is full on a Read \\
Operation or the DR is empty on a Write operation. This bit is reset to zero when up- \\
dated.
\end{tabular} \\
\hline S0 BUSY & When set. command is under execution. When reset, no command is under execution. \\
\hline
\end{tabular}


FD179XA-02 CERAMIC PACKAGE
FD179XB-02 PLASTIC PACKAGE

This is preliminary specification with tentative device parameters and may be subject to change after final product characterization is completed.

Information fumished by Wetern Digital Corporation ts believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use; nor any infringements of patents or other rights of third parties which may resuit from its use. No llcense is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Westem Digital Corporation reserves the right to change said circuitry at anytime without notice.












FIRMWARE LISTING
\begin{tabular}{|c|c|c|c|c|}
\hline CP/M MACRO AS & 2.0 & \#012 & DISK MOS & 2.2 MONITOR \\
\hline F2DD 12 & & Stax & D & ;PUT IT DOWN \\
\hline F2DE E3 & & XTHL & & ;RECOVER THE TABLE POINTER \\
\hline F2DF 7 E & & MOV & A, M & ;GET THE ATTRIBUTES \\
\hline F2E0 E3 & & XTHL & & ;SET THE STACK STRAIGHT \\
\hline F2E1 07 & & \[
\begin{aligned}
& \text { RLC } \\
& \text { JRNC }
\end{aligned}
\] & XE & \begin{tabular}{l}
;SEE IF 8 BIT REGISTER \\
;JUMP IF SO
\end{tabular} \\
\hline F2E2+3003 & & INX & D & -REGISTER PAIR DO OTHER 8 BITS \\
\hline F2E5 7C & & MOV & A, H & ,REGISTER PAIr, DO OTher \\
\hline F2E6 12 & & STAX & D & \\
\hline F2E7 E1 & XE: & POP & H & ;RESTORE THE TABLE POINTER \\
\hline F2E8 79 & XF: & MOV & \({ }_{C}^{A}{ }^{\text {C }}\) & ;SEE IF IT WAS A CR \\
\hline F2EB C8 & & RZ & & ;DONE IF SO \\
\hline F2EC 213 DF 3 & XMNE: & LXI & H, ACTBL & ;GET ADDRESS OF REGISTER LOOK-UP TA \\
\hline F2EF CDCOF3 & XMNE 1 : & \({ }^{\text {CALC }}\) & PCHK & \begin{tabular}{l}
;FIND OUT WHAT ACTION IS WANTED \\
-SHOW ALL IF CARRIAGE RETURN
\end{tabular} \\
\hline F2F2+380B & & & & \\
\hline & & JRZ & XMNE 1 & ;IGNORE BLANKS OR COMMAS \\
\hline F2F6 FE27 & & CPI JRNZ & ', ',
XA & \begin{tabular}{l}
; SEE IF PRIMES WANTED \\
;NO, MUST BE SINGLE REGISTER
\end{tabular} \\
\hline \[
\begin{aligned}
& \mathrm{F} 2 \mathrm{~F} 8+2 \mathrm{COBE} \\
& \mathrm{~F} 2 \mathrm{FA} \\
& 2155 \mathrm{~F} 3
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{LXI} \\
& \mathrm{JR}
\end{aligned}
\] & \[
\begin{aligned}
& \text { H. PRMTB TB } \\
& \text { XM }
\end{aligned}
\] & ;YES, SET TABLE ADDRESS AND FIND OUT WHICH ONE \\
\hline F2FD+18F0 & & & & \\
\hline F2FF 7E & XG: & MOV & A, M & \\
\hline F300 \({ }^{\text {F }} 301\) & & MOV & \({ }_{\text {A }}\), A & ;SEE IF AT END OF TABLE \\
\hline F302 C8 & & RZ & & ;DONE IF SO \\
\hline F303 FCA9F6 & & CM & CRLF & ;START A NEW LINE IF BIT 7 IS SET \\
\hline F300 CDF7F5 & & CALL & \({ }_{\text {DASH }}\) & ;PROMPT FOR A NEW VALUE \\
\hline F30C CD15F3 & & CALL & PRTVAL & ;GO PRINT THE VALUE \\
\hline F312 \({ }^{\text {F30 }}\) CDFEF5 & & CALL & BLK &  \\
\hline F312 23 & & \({ }_{\text {JR }}^{\text {IN }}\) & \(\stackrel{\mathrm{H}}{\mathrm{X}} \mathrm{G}\) & \begin{tabular}{l}
;POINT TO NEXT ENTRY \\
;DO THE NEXT VALUE
\end{tabular} \\
\hline F313+18EA & & & & \\
\hline F315 23 & PrTVAL & INX & H & ;POINT TO NEXT ENTRY \\
\hline F316 7E & & MOV & A.M & ;GET OFFSET AND ATTRIBUTES BYTE \\
\hline F319 C602 & & ADI & \[
{ }_{2}^{3 F H}
\] & ; ALLOW FOR RETURN ADDRESS \\
\hline F31B EB & & XCHG & & ;SWAP POINTERS \\
\hline F31C 6F & & MVV & \(\stackrel{\mathrm{L}}{\mathrm{H},{ }^{\text {A }}}\) & ;BUILD THE ADDRESS OF THE REG CONTE \\
\hline F31F 39 & & DAD & SP & \\
\hline F320 EB & & XCHG & & ;RE-SWAP THE POINTERS \\
\hline F321 7E & & MOV & A, M & ;NOW FIND OUT ATTRIBUTES \\
\hline F324 07001 & & MVI & B, 1 & ; SET UP FOR SINGLE REG VALUE \\
\hline & & JRNC & PV1 & ; JUMP IF SINGLE REGISTER VALUE WANT \\
\hline \[
\begin{aligned}
& F 325+300 \mathrm{E} \\
& \mathrm{~F} 32704
\end{aligned}
\] & & INR & B & ;SET UP FOR REGISTER PAIR \\
\hline F328 07 & & RLC & & \\
\hline F329+300A & & & PV1 & \\
\hline \[
\begin{aligned}
& \text { F32B E5 } \\
& \text { F32C } 1 \mathrm{~A}
\end{aligned}
\] & & PUSH & \(\stackrel{H}{\text { D }}\) & ;SPECIAL CASE FOR MEMORY REGISTER ;BUILD ADDRESS IN (H,L) \\
\hline F32D 67 & & MOV & H, A & \\
\hline F32E 1B & & DCX & D & \\
\hline F32F 1A & & \(\stackrel{\text { LDAX }}{\text { MOV }}\) & \(\stackrel{\text { L }}{\text { L }}\), A & \\
\hline
\end{tabular}





```

CP/M MACRO ASSEM 2.0 \#018 DISK MOSS 2.2 MONITOR
lllll

```

```

 F4AF 23
 F4B1 A3
 F4B2 C2ADF4
 F4B5 E5
 F4B6
 F4B7 5C
 F4B9 19
 F4BA E5
 F4BB
 F4BD DB20
 F4BF 2B
 F4C0 7D
 F4C2 C2BDF4
 F4C5 E1
 F4C6 3E83
 F4C8 D323
 F4CA 7C
 F4CB D321
 F4CD 7D
 F4CE D320
 F4D0 3E03
 F4D2 D323
 F4D4 AF
 F4D7 D325
 F4D9 CDCEF6
 F4DC E67F
 F4DE
 F4EO E1
 FHEO E C
 F4E2 5D
 F4E4 CDEEF }
 F4E7 CDEEF4
 F4EA 19
 F4EC+18D8
N LEE B7
F4F6 3E01
F4F7
F4F7 AF
;
F4EE
F4E
F4F
F
;

READ:	MVI	A, 1	;SET THE READ/WRITE FLAG
	ORG	$\$-1$;SAVE A BYTE HERE
WRITE:	XRA	A	;RESET THE READ/WRITE FLAG

```






\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{CP/M MACRO AS} & \multirow[t]{3}{*}{; \({ }^{2.0}\)} & \multicolumn{3}{|l|}{非025 DISK MOSS 2.2 MONITOR} \\
\hline & & \multicolumn{3}{|l|}{ROUTINE, THE A REGISTER WILL CONTAIN A ZERO IF THE OPERATION WAS SUCCESSFUL, OR NON-ZERO IF NOT SUCCESSFUL. THE FLAG REGISTER WILL NOT NECESSARILY CORRESPOND WITH THE A REGISTER CONTENT.} \\
\hline & & \multicolumn{3}{|l|}{these routines are cp/m Compatable, and may be used AS PART OF THE BIOS.} \\
\hline F6E7 224C00 & DREADH: SHLD HSTBUF •SAVE THE DMA ADDRESS & \multicolumn{2}{|l|}{SHLD HSTBUF} & \multirow[t]{2}{*}{;SAVE THE DMA ADDRESS} \\
\hline F6EA 3E01 & DREAD: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MVI } \\
& \text { ORG }
\end{aligned}
\]} & A, 1 & \\
\hline F6EB & & & \$-1 & : SSAVE A BYTE HERE \\
\hline F6EB AF & DWRITE: & \[
\begin{aligned}
& \text { ORG } \\
& \text { XRA }
\end{aligned}
\] & A & \multirow[t]{2}{*}{\begin{tabular}{l}
;SET WRITE FLAG \\
;NUMBER OF RETRIES
\end{tabular}} \\
\hline F6EF 060 A & & STA & RWFLG & \\
\hline F6F1 C5 & AGN: & & & \\
\hline F6F2 CD3BF7 & & \begin{tabular}{l}
PUSH \\
CALL
\end{tabular} & \multicolumn{2}{|l|}{SEEK} \\
\hline F6F5 CCFDF6 & \multirow[t]{3}{*}{READ3:} & & \multicolumn{2}{|l|}{\({ }_{B}^{\text {RDWR }}\)} \\
\hline \multirow[t]{2}{*}{F6F9 C8} & & \multirow[t]{2}{*}{POP DJNZ} & & \\
\hline & & & \multicolumn{2}{|l|}{AGN} \\
\hline \[
\begin{aligned}
& \mathrm{F} 6 \mathrm{FA}+10 \mathrm{~F} 5 \\
& \mathrm{~F} 5 \mathrm{C}
\end{aligned}
\] & & \multicolumn{3}{|l|}{RET} \\
\hline F6FD 5F & \multirow[t]{4}{*}{\(\dot{\text { R }}\) DWR:} & \multirow[t]{4}{*}{\begin{tabular}{l}
MOV \\
LDA \\
ORA \\
MOV \\
JRZ
\end{tabular}} & & \multirow[t]{2}{*}{;SAVE COMMAND} \\
\hline F6FE 3A4B00 & & & RWFLG & \\
\hline F701 B7
F702 7B & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
;REGET THE COMMAND \\
;WRITE IF ZERO
\end{tabular}} \\
\hline & & & WRDAT & \\
\hline \multicolumn{5}{|l|}{F703+2810 WRZ WRDA} \\
\hline \[
\begin{aligned}
& F 705 \\
& \text { F708 D330 }
\end{aligned}
\] & RDAT: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { STA } \\
& \text { OUT }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CMND } \\
& \text { DCMMD }
\end{aligned}
\]} & \multirow[t]{2}{*}{;DISK COMMAND PORT} \\
\hline & READ1: & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{F} 70 \mathrm{~A}+\mathrm{EDB2} \\
& \mathrm{~F} 70 \mathrm{C}+15
\end{aligned}
\]}} & DCR & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\stackrel{\mathrm{D}}{\mathrm{READ} 1}
\]}} \\
\hline & & JRNZ & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { F70D+2OFB } \\
& \text { F70F CDEEF7 } \\
& \text { F712 E69C } \\
& \text { F714 C9 }
\end{aligned}
\]}} & CALL & EOJ & \multirow[b]{2}{*}{; ISOLATE READ ERROR BITS} \\
\hline & & \[
\begin{aligned}
& \text { ANI } \\
& \text { RET }
\end{aligned}
\] & 9 CH & \\
\hline F715 F620 & \multirow[t]{2}{*}{W'RDAT:} & \multirow[t]{2}{*}{ORI} & \multirow[t]{2}{*}{20H} & ;ADD WRITE COMMAND \\
\hline F717 324800 & & & & \multirow[t]{2}{*}{;DISK COMMAND PORT ;DO THE OUTPUT} \\
\hline & \multirow[t]{3}{*}{WRT 1:} & \[
\begin{aligned}
& \text { OUT } \\
& \text { OUTIR }
\end{aligned}
\] & DCMMD & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { F71C+EDB3 } \\
& \text { F71E } 15
\end{aligned}
\]} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DCR } \\
& \text { JRNZ }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
{ }_{\text {WRT }}
\]} & \multirow[t]{2}{*}{;IN CASE > 256 BYTES} \\
\hline & & & & \\
\hline \multicolumn{2}{|l|}{F71F+20FB} & \multirow[t]{2}{*}{JR} & \multirow[t]{2}{*}{EOJ} & \\
\hline F721+180B & & & & \\
\hline F723 0608 & ĖOJB: & \multirow[t]{2}{*}{MVI
LDA} & \multirow[t]{2}{*}{\(\stackrel{\text { B }}{\text { S }}\) ¢ 8 PRAT} & \multirow[t]{3}{*}{\begin{tabular}{l}
;BASIS OF RESTORE COMMAND \\
;GET THE STEP RATE BITS \\
;ADD ON THE COMMAND
\end{tabular}} \\
\hline F725 3A4600 & EOJA : & & & \\
\hline F728 B0 & & ORA & & \\
\hline F729 F 7234800 & & STA & CMND
DCMMD & \multirow[t]{3}{*}{;DO THE COMMAND ;DISK FLAG PORT} \\
\hline F72E DB34 & EOJ: & IN & DFLAG & \\
\hline F730 1F & & RAR & \multirow[t]{2}{*}{EOJ} & \\
\hline F731+30FB & & & & \\
\hline F733 DB30
\[
\text { F735 } 324700
\] & E0J1: & \({ }_{\text {STA }}\) & DSTAT status & ;GET THE DISK STATUS \\
\hline F738 E6FC & & ANI & \({ }_{0} \mathrm{FCH}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CP/M MACRO AS & 2.0 & \#026 & \multicolumn{2}{|l|}{DISK MOSS 2.2 MONITOR} \\
\hline F73A C9 & & \multicolumn{3}{|l|}{RET} \\
\hline F73B CD8EF7 & \multirow[t]{3}{*}{SEEK:} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CALL } \\
& \text { CNZ }
\end{aligned}
\]} & & \multirow[t]{3}{*}{;INSURE HEADER HAS BEEN READ ;RESTORE THE DRIVE IF ERROR - DONE IF NO DRIVE} \\
\hline F73E C423F7 & & & EOJB & \\
\hline F741 F8 & & RM & & \\
\hline F742 3A4200 & SEEK 1 : & LDA & SECTOR & ;SET THE SECTOR \\
\hline F745 D332 & & OUT & DSCTR & ;DISK SECTOR PORT \\
\hline F747 DB31 & & IN & DTRCK & ;DISK TRACK PORT \\
\hline F749 4F & & MOV & C, A & ;SAVE IT \\
\hline F74A 3A4100 & & LDA & TRACK & ;GET DESIRED TRACK \\
\hline F74D B9 & & CMP & \[
\begin{aligned}
& \text { C } \\
& \text { RDWRT }
\end{aligned}
\] & \\
\hline F74E+280C & & JR2 & & ;JUMP IF No SEEK NEEDED \\
\hline F750 D333 & & OUT & DDATA & ;SET THE SEEK TRACK \\
\hline F752 061 C & & MVI & B, 1CH & ;BUILD THE SEEK COMMAND \\
\hline F754 CD25F7 & & CALL & EOJA & ;DO THE SEEK \\
\hline F757 E698 & & ANI & 98 H & ;SEEK ERROR \\
\hline F75A DB31 & & IN & DTRCK & ;CHECK FOR TRACK 00 \\
\hline F75C B7 & RDWRT: & ORA & & \\
\hline F75D 214000 & & \({ }_{\text {LXI }}\) & \({ }_{\text {H }}\) & ;BUILD SECTOR BYTE COUNT \\
\hline F760+2803 & & & & \\
\hline F765 3A5100 & RDWRT0: & LDA & \({ }_{H}^{\text {IDSV }}+3\) & ;GET SECTOR SIZE \\
\hline F766 3D & RDWRTO: & DCR & & ;LOOP CONTROL \\
\hline F767 F265F7 & & JP & RDWRT0 & \\
\hline F76A E5 & & PUSH & H & \\
\hline F76B 0E80 & & MVI & C, 80 H & ;AUTO-WAIT BIT \\
\hline F76D CDC3F7 & & CALL & SETUP & \\
\hline F770 DB34 & & IN & DFLAG & ;DISK FLAG PORT \\
\hline F772 E620 & & ANI & 2 H & ;SEE IF HEAD IS LOADED \\
\hline F774 3E04 & & MVI & A \({ }^{4}\) & \\
\hline F776+2801 & & & RDWRT1 & ; JUMP IF NOT \\
\hline F778 AF & & XRA & & ;ELSE, RESET THE HEAD LOAD FLAG \\
\hline F779 C688 & RDWRT 1: & ADI & 88 H & ;BUILD A READ SECTOR COMMAND \\
\hline F77B 2A4C00 & & LHLD & HSTBUF & ;GET THE DMA ADDRESS \\
\hline F77F 43 & & \({ }_{\text {MOP }}\) & \({ }_{\text {B }}^{\text {, }}\) E & ; SET UPFOR Z-80 I/o \\
\hline F780 15 & & DCR & D & ;SEE IF 128 BYTE SECTOR \\
\hline F781 14 & & INR & & \\
\hline & & JRNZ & RDWRT2 & ; JUMP IF NOT \\
\hline \({ }_{\text {F }} 78482{ }_{14}\) & & INR & & \\
\hline F785 OE33 & RDWRT2: & MVI & C, DDATA & \\
\hline F787
F788
C9 & & CMP & & ;CLEAR THE FLAGS \\
\hline F789 0658 & İDRD5: & MVI & & ;BUILD A STEP-IN COMMAND \\
\hline F78B CD25F7 & & CALL & EOJA & ,BUILD A SIEP-IN COM \\
\hline F78E 2A4900 & IDRD: & LHLD & LUNIT & \\
\hline F791 7C & & MOV & A, H & ;GET THE CUNIT VALUE \\
\hline F793 C8 & & R2 & & ; SEETUN IF SAE SO LUNIT \\
\hline F794 OE80 & IDRD1: & MVI & C. 80 H & ;SET THE AUTO-WAIT BIT \\
\hline F796 CDC3F7 & & CALL & SETUP & \\
\hline \[
\begin{aligned}
& \text { F799 CD35F7 } \\
& \text { F79C F8 }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { CALL } \\
& \text { RM }
\end{aligned}
\] & EOJ1 & ; INSURE A DRIVE IS THERE \\
\hline F79D E5 & & PUSH & H & ;SAVE POINTER \\
\hline F79E 214E00 & & LXI & H,IDSV & ;SET UP TO READ ADDRESS \\
\hline F7A 1013306 & & LXI & B, 600 H & DATA \\
\hline F7A6 \(3 \mathrm{CC4}\) & & MVI & \(\stackrel{\text { d, }}{ }{ }^{1}{ }_{0}\) C 4 H & ;READ ADDRESS COMmAND \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CP/M MACRO AS & 2.0 & 非027 & DISK MO & S 2.2 MONITOK \\
\hline F7A8 CD05F7 F7AB E1 & & \({ }_{\text {POP }}^{\text {CAL }}\) & RDAT & RESTORE POINTE \\
\hline & & JRZ & IDRD2 & ; RESTORE POINTER \\
\hline \[
\begin{aligned}
& \text { F7AC+2808 } \\
& \text { F7AE } \\
& 3 \text { E }
\end{aligned}
\] & & MVI & A, 40H & ;SEE IF DDEN IS SET \\
\hline F7B0 BE & & CMP & M, & \\
\hline F7B1 D8 & & RC & & ;TAKE THE ERROR IF SO \\
\hline \begin{tabular}{l} 
F7B2 \\
F7B3 \\
\hline 7
\end{tabular} & & ORA & & ; ELSE, TRY DDEN \\
\hline F7B4+18D8 & & JR & RD & \\
\hline F7B6 DB32 & IDRD2: & IN & DSCTR & ;GET THE TRACK NUMBER \\
\hline F7B8 \({ }_{\text {F }}\) & & OUT & DTRCK & ;SET THE TRACK REGISTER \\
\hline & & ORA & IDRD5 & \begin{tabular}{l}
;INSURE NOT ON TRACK \\
; JUMP IF NOT OKAY
\end{tabular} \\
\hline \[
\begin{aligned}
& \mathrm{F} 7 \mathrm{BB}+28 \mathrm{CC} \\
& \mathrm{~F} 7 \mathrm{BD}+2 \mathrm{~F}
\end{aligned}
\] & & MOV & & ; REGET SELBITS \\
\hline F7BE 324900 & & STA & LUNIT & ;UPDATE LAST USED UNIT \\
\hline F7C1 AF & & XRA & A & ;RESET ERROR FLAGS \\
\hline F7C2 C9 & & RET & & \\
\hline & ; SET UP & DRIVE & NUMBER & \\
\hline \[
\text { F7C } 214 \mathrm{~A} 00
\] & SETUP: & \[
\begin{aligned}
& \text { LXI } \\
& \text { MOV }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H}, \mathrm{CUN} \text { IT } \\
& A . M
\end{aligned}
\] & ;SEE IF DRIVE HAS BEEN ACTIVE ;GET THE SELBITS \\
\hline F7C7 B7 & & ORA & & ; SEE IF SET UP YET \\
\hline F'7C8+2025 & & JRNZ & SUO & ; YES, SKIP INIT CODE \\
\hline F7CA 3A4000 & SETIT: & LDA & DISKNO & ;GET THE DESIRED DRIVE \\
\hline F7CD 47 & & MOV & B, A & ;SAVE IN WORK REGISTER \\
\hline F7CE 04 & & INR & B & ;PREPARE TO CONVERT TO SELBITS \\
\hline F7CF AF & & XRA & A & ;ZERO TO A \\
\hline F'7D0
F7D1 & & STC & & ; DRIVE SELECT BIT \\
\hline F7D1 17 & SET1: & \[
\begin{aligned}
& \text { RAL } \\
& \text { DJNZ }
\end{aligned}
\] & SET1 & \begin{tabular}{l}
;SHIFT BIT INTO POSITION \\
; LOOP TIL BIT IS IN POSITION
\end{tabular} \\
\hline  & & ORI & & ;ADD ON MOTOR ON B \\
\hline F7D6 77 & & MOV & M A & ;SAVE IT \\
\hline F7D7 D334 & & OUT & DCNTL & ;SELECT THE DRIVE \\
\hline F7DC 3 303 & & MVI & \({ }_{\text {A }} \mathrm{D}, 3 \mathrm{~S}\) & ; i' \({ }^{\text {S }}\) SLOWEST POSSIBLE \\
\hline F7DE 12 & & STAX & & \\
\hline F7DF CD23F7 & & CALL & EOJB & ; RESTORE THE DRIVE \\
\hline F7E2 F8 & & RM & 4 & ; DONE IF DR THE MIVE NTR R R READ BIT \\
\hline F7E5 1F & & RAR & & ; ISOLATE IT \\
\hline & & JRNC & SU0 & ; JUMP IF MINI DRIVE \\
\hline F7E8 \({ }^{\text {F }}\) 3E 10 & & MVI & A, 10H & ; ELSE, ADD ON MAXI BIT \\
\hline F7EA B6 & & ORA & & ; \\
\hline F7EB 77 & & MOV & M, A & \\
\hline F7EC \({ }_{\text {F }}\) 3E02 & & MVI \({ }_{\text {STAX }}\) & A, 2 & ; SET MAXI STEP RATE \\
\hline F7EF DB31 & SU0: & IN & DTRCK & ; ELSE, SEE IF TRACK ZERO \\
\hline F7F1 \({ }_{\text {F7 }}\) F7 & & ORA
MOV & A \({ }_{\text {A }}\) M & ;REGET THE SELBITS \\
\hline & & JRNZ & Su1 & \\
\hline F7F5 5 EBF & & ANI & & ;INSURE DDEN IS RESET \\
\hline F7F7 B1 & SU1: & ORA & & ;ADD ON AUTOWAIT BIT \\
\hline F7F8 D334 & & OUT & DCNTL & ;OUTPUT THE SELBITS \\
\hline F7FA 3A4300 & & LDA & SIDE & ;SET THE SIDE SELECT \\
\hline F7FD D304 & & OUT & 4 & \\
\hline F7FF C9 & & RET & & \\
\hline
\end{tabular}

```

 APPENDIX D: TECHNICAL INFORMATION
    ```

D. 1 SYSTEM BUS INTERFACE

Table D-1 System Bus Signals


Figure D－1 System Bus Pinouts


\section*{D. 2 DRIVE BUS INTERFACE}

Not all the signals available on the 2422's drive interface are implemented on every drive. The left hand column in Table \(D-2\) notes whether or not the signal is available on all drive types, \(8^{\prime \prime}\) drives only, or PerSci drives only.

Table D-2 Drive Bus Signals
\begin{tabular}{|c|c|c|}
\hline USED & SIGNAL & SIGNAL \\
\hline BY & NAME & DESCRIPTION \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline All & DS1-DS4 & Drive Select lines 1 through 4. \\
\hline All & MOTOR ON* & Turns the motor on to all drives accepting the signal. Not used by some \(8^{\prime \prime}\) drives. \\
\hline All & STEP* & Each negative pulse steps the Read/Write Head forward or backward one track. \\
\hline All & DIRC & Determines the direction the R/W head steps. The head steps to the diskette center if DIRC high; to the perimeter if DIRC low. \\
\hline All & WRITE GATE* & When active, write operations are enabled. \\
\hline All & WRITE DATA* & The combined clock and data pulses written to the diskette. \\
\hline All & SIDE SELECT & \multirow[t]{2}{*}{Indicates which side of a two-sided diskette is selected. High = side 0; Low = side 1.} \\
\hline & & \\
\hline 8' & TRACK > 43* & \multirow[t]{2}{*}{When low, causes the write current to be reduced by \(20 \%\). Not used by all 8" drives.} \\
\hline & & \\
\hline & Outputs & \\
\hline & & \\
\hline All & INDEX* & Pulses low when an index hole is detected. \\
\hline All & TRK 00* & Indicates the Read/Write Head is positioned over TRK 00. \\
\hline All & WRPT* & Goes low when a write-protected diskette is detected. \\
\hline All & READ DATA* & The intermingled clock and data pulses from the drive. Each recorded flux transistion results in a negative pulse. \\
\hline 8' & HLD* & Loads the Read/Write Head. \\
\hline 8' & READY* & Indicates the drive is ready for operation (drive door closed and drive up to speed). \\
\hline 8" & TWO-SIDED* & Indicates a two-sided diskette is in the currently selected drive. \\
\hline PerScil & SEEK COMPLETE* & When high, indicates seek is in progress. When low, indicates seek is finished. \\
\hline PerScil & REMOTE EJECT* & Causes the diskette in the currently \\
\hline & & selected drive to be ejected. \\
\hline
\end{tabular}

- These signals appear on the \(8^{\prime \prime}\) drive bus in both configurations.

\section*{D. 3 USER REPLACEABLE PARTS}

Please use CCS part numbers when ordering spares or replacements.

QTY REF NO.

Capacitors
\begin{tabular}{rl}
2 & \(\mathrm{C} 1, \mathrm{C} 13\) \\
14 & \(\mathrm{C} 2-4,8-11,14-18\) \\
& 21,22 \\
4 & \(\mathrm{C} 5,6,19,20\) \\
1 & C 7 \\
1 & C 12
\end{tabular}

56pF 500V 10\% Mica
. 1uF 50V 20\% Monolythic
4.7uF 35V 20\% Tantalum .47uF 50V \(20 \%\) Monolythic 10 pF 500 V 10\% Mica

7805, +5V Regulator
78L12, +12V Regulator 74LS 123
\(74 L S 74\)
74LS38
74 LS 14
74LS00
FD1793-02
7407
7406
74LS175
74LS273
74LS197
74LS 153
74LS 164
74 LS 165
5623 ROM, I/O memory map
5623 ROM, programmed I/O decode
5623 ROM, programmed ROM decode
2316 ROM, MOSS 2.2 Disk Monitor 74LS244
\(74 \mathrm{LSO4} \quad 30000-00004\)
74LS 10
74 LS 132
74LS32
74LS08
74LS139
CCS PART NO.*

42215-55605
42034-21046
42804-54756
42034-24746
42215-51005

32000-07805
32000-17812
30000-00132
30000-00074
30000-00038
30000-000 14
30000-00000
31900-01793
30200-07407
30200-00006
30000-00175
30000-00273
30000-00197
30000-00 153
30000-00164
30000-00165
94000-00001
94000-00002
93601-00001
30000-00244

30000-000 10
30000-00132
30000-00032
30000-00008
30000-00139

Resistors
\begin{tabular}{|c|c|c|c|}
\hline QTY & REF NO. & DESCRIPTION & CCS PART NO.* \\
\hline 1 & R5 & 1K, 1/4W, 5\% & 40002-01025 \\
\hline 1 & R6 & 150 ohm, 1/4W, 5\% & 40002-01515 \\
\hline 1 & R7 & 220K, 1/4W, 5\% & 40002-02245 \\
\hline 1 & R8 & 11K, 1/4W, 5\% & 40002-01135 \\
\hline 1 & R9 & 4.7K, 1/4W, 5\% & 40002-04725 \\
\hline 2 & R10,11 & 2.7K, 1/4W, 5\% & 40002-02725 \\
\hline 1 & 21 & 150 ohm x 7 20\% SIP Network & 40930-71516 \\
\hline 3 & Z2,3,4 & 2.7K x 7 20\% SIP Network & 40930-72726 \\
\hline
\end{tabular}

Sockets
\begin{tabular}{cc}
9 & XU3,12,16,19, \\
\(21-2,30,44\) \\
24 & XU4-7,9-11,14 \\
& \(15,17,18,20\), \\
& \(27-29,31-35,38\) \\
& \(41-43\) \\
1 & XU8 \\
7 & XU13,25,26 \\
& \(36,37,39,40\) \\
1 & xU24
\end{tabular}

16-Pin IC Sockets 58102-00160
14-Pin IC Sockets 58102-00140

40-Pin IC Socket 58102-00400
20-Pin IC Sockets 58102-00200
24-Pin IC Socket 58102-00240
Miscellaneous
\begin{tabular}{llll}
3 & CR1-3 & LEDs, Rectangular Red & \(37400-00001\) \\
1 & J1 & Connector, Right Angle 2 x 17-Pin & \(56005-02017\) \\
1 & J2 & Connector, Right Angle 2 x 25-Pin & \(56005-02025\) \\
1 & W1 & Header Strip, 1 x 2-Pin & \(56004-01002\) \\
1 & Y1 & 16 MHz Crystal DIP & \(48321-60003\) \\
1 & - & Heatsink, T0-220, .5" & \(60022-00001\) \\
1 & - & Berg jumper plug & \(56200-00001\) \\
1 & - & Screw, 6-32 x 3/8" & \(71006-32061\) \\
1 & - & Nut, Hex Kep 6-32 & \(73006-32001\) \\
2 & - & PCB Extractor, Non-locking & \(60010-00001\) \\
2 & - & Roll Pin Extractor Mounting & \(60010-00000\)
\end{tabular}

D. 4 ASSEMBLY DRAWING
D. 5 SCHEMATIC

```

