1700

COMPUTER
MAINTENANCE

Volume I
SECOND EDITION

W CONTROL DATA INSTITUTE




1700 COMPUTER
MAINTENANCE TRAINING MANUAL, VOLUME I

CONTROL DATA CORPORATION

For Training Purposes Only

This book was compiled and
written by instructors of

Training Department
Control Data Institute
CONTROL DATA CORPORATION

Publications Number
601695008
August, 1970



REVISION RECORD

REVISION DESCRIPTION
(2-66) First edition.
(7-67) Manual revised.
A
(8-10-70) Manual revised. Affected pages are title page, revision record, 18, 23, 24, 25, 26, 27, 28, 29, 30
B 31, 1-1, 1-2, 1-4, 1-5, 1-10, 1-31, 2-2, 2-3, 2-7, 3-4, 3-13, A-1, A-2, and A-26.

Publication No.
601695008

© 1967

by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:

CONTROL DATA EDUCATION INSTITUTES
4530 West 77th Street
Minneapolis, Minnesota 55435

ATTN: Advanced Technology
Development Division
Hardware Development, PGT310




FOREWORD

This manual has been prepared to acquaint the reader with the CONTROL DATA
1700 Computer instructions. Information covers the operation of all 1700
machine language instructions and addressing modes. The Appendix contains
flow diagrams of most 1700 instructions and also includes various tables
to facilitate the reading or writing of 1700 machine language programs.

Work projects are interspersed throughout the manual and should be completed
before continuing to subsequent areas. Answers to the projects are given
at the end of the chapter containing the project.

In any technical writing effort, possibilities of errors are always present.
Although Control Data Institute makes a conscious effort to minimize errors in
its publications, errors are nevertheless inevitable. If you would like to

make the existence of errors known, or would like to make comments or suggestions
concerning the manual, you might find the Comments Sheet at the end of the man-
ual to be of help. Forward your comments to the Educational Development Section,
Control Data Institute, 3255 Hennepin Avenue South, Minneapolis, Minnesota

55408.

iii




GENERAL TABLE OF CONTENTS

1700 TRAINING MANUAL, VOLUME I
Chapter 1
Chapter II
Chapter III

Appendix

1700 TRAINING MANUAL, VOLUME II
Chapter 1
Chapter II
Chapter III

Chapter IV

1700 TRAINING MANUAL, VOLUME III
Chapter 1
Chapter 1I
Chapter III
Chapter IV

Chapter V

iv

Non-addressable Instructions
Addressable Instructions
Addressing Modes

Flow Diagrams & Tables

1700 Basic Logic & Timing
Registers & Controls
Adder/Shifter

Memory

Common Synchronizer
Teletypewriter Controller
Paper Tape Reader Controller
Paper Tape Punch Controller

Card Reader Controller



CONTENTS

CHAPTER I NON-ADDRESSABLE INSTRUCTIONS

Introduction . . . . . .
Register Reference Group
Skip Group « .+ « « . . .
Interregister. . . . . .
Shift Group. . . . . . .

Answers - Chapter I. . .

CHAPTER II ADDRESSABLE INSTRUCTIONS

Intreduction . . . . . .

Instructions . « « « . .

CHAPTER III ADDRESSING MODES
Introduction . . « . . .
Relative . « « « « « . .
Indirect . . . . . . .
Indexing « « . « .« « . .
Multiple Addressing. . .

Answers - Chapter III .

APPENDIX FLOW DIAGRAMS & TABLES







INTRODUCTION TO THE 1700 COMPUTER SYSTEM







INTRODUCTION TO THE 1700 COMPUTER SYSTEM

BASIC INDUSTRIAL CONTROL SYSTEM CONCEPTS

The world in which you live is an analog world. You continually receive analog
tepresentations of the physical phenomena from your environment. The other
animal and plant life of the environment also receive and respond to the same
analog representations. Man, however, in his development has found it necessary
to convert these analog representations into a form in which they can be more
easily recognized and measured.

Analog representations appear in many forms; for example, a temperature, the
flow of fluid, the flow of electricity, atmosphere or other gas pressures and
complex chemical compositions.

To become very basic in our early discussion of the analog world, let's look
at some well-known examples. The thermostat in your home is a good example of
man's conversion of analog representations into a recognizable and measurable
form. The thermostat on your wall is normally a bi-metal instrument; that is,
an instrument that has as its heart two pieces of metal bonded together. The
two metals expand at different rates so that as the temperature changes this
bonded unit will tend to warp.

T. T.
SWITCH SWITCH
| Metal #1 Y Metal #1 Y,
Metal #2 Metal #2
£ R
FIGURE 1

As you can see in the illustration, when the temperature is low the bonded

unit does not warp. The switch connection is closed. This low temperature
condition illustrates a method by which your furnace can be turned on. As the
temperature rises, the bonded unit warps. Metal #1 expands faster than metal
#2. As warping continues the switch connection is broken and for our illustra-
tion, the furnace is turned off.

Another example of analog conversion is the water meter in your home. When
you turn the water in your home on, a small turbin-like wheel revolves in the
stream of water entering your house. A small counter attached to the wheel




begins to revolve and the number of revolutions are recorded on a counter.
(Figure 2) This counter actually converts revolutions into the volume of
water which flows through the meter.

FIGURE 2

Similar examples can be repeated by many devices which you encounter daily.

The electrical meter on the side of your house is built around a small induction
motor. When you turn on a switch in the house, current begins to flow. This
current induces a current in the meter and causes the meter to revolve. 1In

a manner similar to our water meter, the revolutions of the electrical meter

are converted into the amount of electricity used.

As you can see, physical phenomena such as temperature, revolution, flow,
torque, and others are difficult for us to see and measure; therefore, a wide
range of instruments have been developed to convert these analog representations
into measurable form. These instruments appear in many forms; digital displays,
charts, scale markings and dials. In Figure 3 we have used our bi-metal
instrument with the addition of a needle indicator and graduated scale, and

have illustrated the digitizing of an analog value.

SWITCH

v

METAL #1

FIGURE 3

Using this simplified description of physical measurement, we can now proceed
to develop a sample Industrial Control System.




MATERIAL PRODUCT
““‘*’Q{i PROCESS ‘3“"’

SENSOR

INSTRUMENT

FIGURE 4

In Figure 4, we see only the measurement of a discrete property of a pro-

cess. There are three components in our basic system; the PROCESS itself, a
SENSOR, which measures the variable, and an INSTRUMENT to display this measure-
ment. For example, the heat in our process can be measured by a simple mercury-
filled thermometer. The mercury is our sensor. As the temperature in the
process increases, the mercury expands and rises in the column of the thermometer.
The instrument is the column in which the mercury rises and the display is the
scale marking on the thermometer column from which we can read values for temper-
ature.

We can expand our system by the introduction of a controller.

MATERIAL PRODUCT
& PROCESS Q —
¥ sensow
CONTROLLER
| S
FIGURE 5

The controller has the capability of storing and comparing predetermined values
with the value received from the sensor. To use the comparison results and
develop our controller, we must add a control response element to our system.
The capability of generating a response signal provides the means to use the
result of this unit comparison and thereby creates a controller.

For example, using our bi-metal as a sensor, we can preset the gap in the switch
contact. When the temperature in the process reaches a predetermined value




called the set point, our bi-metal switch opens and the HEAT ON control signal
sent to the process is discontinued (open switch) (Figure 6). As the process
cools, our bi-metal returns to the closed switch position and again heat is
added to the process.

Metal #1 GAP g’é?

Metal #2 SWITCH

TO PROCESS

FIGURE 6

A further expansion of our control system should be the addition of some method
of adjusting the set point value in the controller, rather than having the
value permanently built into the controller. 1In the simplest form this could
consist of a knob on the side of the controller,

MATERTIAL PRODUCT
Q PROCESS 6
CONTROL SENSOR

RESPONSE !
CONTROLLER
SET POINT

CONTROL
e ——————————————

'FIGURE 7

This knob would allow the changing of the set point. With this additional
capability in the controller, an operator can adjust process variables and
control the composition of the end product.

As the process becomes more complex, full process understanding and product
improvement result from thorough study of all aspects of the process. In order
to accomplish this process improvement effort, the process engineer needs
continuous measurement and recording of the process variables. To continuously
record process changes we can add components and build a data logging system.




MATERIAL PRODUCT
‘—"Q PROCESS ‘6‘—""
CONTROL r SENSOR
RESPONSE
CONTROLLER
T A/D
SET POINT CONVERTER

DATA

LOGGER

TYPEWRITER PAPER TAPE
RO
FIGURE 8

The heart of our data logging system is a small digital computer which con-
verts, edits and prints out process variables determined by the sensor. How-
ever, in order to enter sensor data into the digital computer, we must make
provision for the conversion of analog information into digital form. This
conversion is accomplished by an analog to digital device.

A further requirement of our system is a component which will produce a per-
manent record of the values we are measuring. A typewriter or paper tape
punch can well perform this function.

Now we have added (Figure 8) the necessary components which will permit our
sensor to continuously transmit values into the data logger. At predetermined
intervals controlled by the data logger, these values are recorded in permanent
form by the typewriter or output device.

In order to achieve better control of the numerous variables in a process,
we can further expand our system and accomplish the process control function
automatically.




MATERIAL . PRODUCT
— PROZESS 6—-—*
CONTROL T}
S
RESPONSE 4 SENSOR
CONTROLLER
1
[ SET —
DIGITAL TO | POINT ANALOG
ANALOG TO DIGITAL
| CONVERTER L_CONVERTER
ON-LINE
CONTROL
‘_an?anwn
I
TYPEWRITER OPERATOR
CONSOLE
m
FIGURE 9

Using the data logging system, the operator necessarily interprets values

as they are typed out, and manually adjusts controls to alter conditions in the
process. By the addition of another component to our system, we can automati-
cally alter control values.

In order to accomplish this function we require a digital to analog device;

for example, a device which will provide a signal to move a valve or close a
switch. 1In Figure 9 we show our closed loop system. By examination of the
diagram you can see that a condition in the process sensed, converted, logged
and is available to the control computer for decision making. The control
computer then makes a determination; for example: Is the temperature too high,
or too low? and transmits a signal to the controller which, in turn, generates
a control response to the process.

In this system our process can proceed automatically. All factors which affect
the process and product are monitored and adjusted as required.

As technologies improve, instrumentation techniques also improve. It is now

possible to economically sense process conditions on devices which provide
direct digital eutput signals.



MATE RI-_.AL PRODUCT
V PROCESS —
CONTROL h
RESPONSE SENSOR
\
DIRECT
DIGITAL
CONTROLLER
ON-LINE
CONTROL
COMPUTER
i 1
TYPEWRITER OPERATOR
CONSOLE
“ ——
FIGURE 10

In Figure 10 we have shown the introduction of direct digital sensors into
our process. As you observe by review of the diagram, we have eliminated the
requirement for A/D conversion. The control sequence using direct digital
sensors is functionally the same as described in our previous process.

In many cases, direct digital control is more expensive than the previous analog
methods; however, the repeatable accuracy, flexibility, and time sharing capabi-
lity gained from the direct digital method can provide the economic justifi-
cation required for its selection.

TYPICAL INDUSTRIAL COMPUTER SYSTEM APPLICATION

Although several segments of the metals industry have been among the leaders
in the use of on-line computers, the mineral or ore processing function has
not seen the application of on-line digital computers. Only in recent years
has considerable interest developed in use of on-line digital control systems.

In the iron ore industry, blast furnace operating improvements have spurred
developments in the preliminary ore processing. For example, blast furnace
operations are much more efficient with pelletized raw materials than with con-
ventional ores. Experiments in this area were spurred partially by the devel-
opments in the taconite industry in the upper midwest. Because of the demand
by these blast furnace operations for pelletized ore, a number of ore bene-
ficiation plants are being constructed in this country, in Canada, and overseas.

The processing operations in new plants approach the process complexity and
large capital investment requirements of continuous chemical processes. It
is not surprising, then, to see the mineral processing industry following the




MINE
GRINDING
CRUSHER MAKE UP
WATER
TAILINGS
SEPARATION
SIZE RECYCLE
WATER
CLASSIFICATION CONCENTRATE ORE
WATER
RECOVERY DRYER
STORAGE
BALLING
KILN
CONCENTRATE
PELLETS
STORAGE
SHIPPING

TYPICAL FLOW DIAGRAM

IRON ORE BENEFICIATION & PELLETIZING FACILITY

FIGURE 11




lead of the chemical and petrochemical processors in the utilization of on-line
digital computers to increase their process knowledge and to give better con-
trol of their processes.

Typical Ore Processing Plant

Figure 11 represents, in flow diagram form, a mineral processing facility
typical ot iron ore operations in a number ot operating and planned-ror

plants. The prime purpose of a plant of this type is to increase the iron
concentration of the ore to be shipped and to pelletize this ore before ship-
ping to give best blast furnace operation. After the ore is blasted and
removed from the ore body, the first operation in a beneficiation plant is to
crush the ore into a more uniform size and provide a storage stock pile with
classification of sizes and grades.

The next stage is a grinding operation to provide a fine powder. The separa-
tion of iron from rock may be done in many steps using the principles of (1)
magnetic separation in which the magnetic iron particles are separated from the
non-magnetic silica, (2) centrifugal forces may be used in which the separation
is achieved by the difference in density of the iron rich ore and the base
material, and (3) electrostatic potentials may be utilized to perform a separa-
tion based upon the different electrical characteristics of the desired ore

and the base.

Enriched ore is sent on to a drying stage and then to a pellet-making operation
in which the iron particles are mixed with clay materials and formed into
pellets. These pellets are then fired at very high temperatures in a fluidized
bed furnace or in a traveling grate furnace to sinter the pellets. The pellets
are now ready to be shipped to the blast furnace.

All along the line, a considerable amount of waste material is generated and
must be disposed of properly and according to modern land and water conserva-
tion principles. Extensive amounts of water are required by these plants, and
a considerable part of the plant is devoted to water recovery and waste removal.

A number of variables are of interest to operating personnel of these plants

and include many of the following: ore flows, water flows, material inventories,
chemical composition of various flows, power per ton of material processed, metal
recovery from the raw ore (process yield), production rates (comparing shifts

or daily, weekly, and monthly averages), operating hours on heavy equipment,
equipment availability and many temperatures, fuel flows, product flows, etc.
These variables represent the basic information inputs to an operational
information system utilizing a digital computer.

Typical Computer System Configuration

Figure 12 is a configuration of a typical Control Data Operational Information
System and shows some of the functional modules required in this equipment

and approximate numbers of signals commensurate with a mineral processing plant.
The system receives on/off or pulse inputs from alarm relays, belt scales which
weigh various solid material flows, and other transducers generating digital
on/off information. A typical system might include 500 to 1000 such inputs.




jLOW LEVEL
INPUTS
ANALOG e
INPUTS {
e
INPUTS
2%
~
DIGITAL
INPUTS
DIGITAL
OUTPUTS

<—1 RELAY DIGITAL

<«—{ RELAY DIGITAL
] OUTPUT MODULE

ANALOG.
INPUT

MULTIPLEX | ]

ANALOG
INPUT
MULTIPLEX

E

ANALOG

INPUT |

MULTIPLEX
MODULE

ANALOG.

INPUT L

MULTIPLEX
MODULE

DIGITAL
INPUT
MODULE

DIGITAL
INPUT
MOBULE

‘HIGH-SPEED

UTPUT MODULE

STALL ALARM

INTERFACE

A/D
CONVERTER

ANALOG
INPUT
INTERFACE

1705
INTERRUPT/DATA
CHANNEL

IDRUM INTERFACE
AND STORAGE

1750 1706
BUFFERED

DATA
CHANNEL

DIGITAL

INPUT
INTERFACE

HIGH-SPEED
OUTPUT
IN E

HIGH-SPEED

{INCREMENT - 4K

1704
BASIC COMPUTER
4K STORAGE

PAPER
TAPE
PUNEH

1

DIGITAL
DISPLAY
MODULE

‘OPERATORS
INPUT PANEL
AND INTERFACE

i

TYPICAL CONTROL DATA 1700

OPERATIONAL INFORMATION SYSTEM

FIGURE

12

10




Analog measurements of temperature, flow rates, and similar variables are
essential input information and are entered through analog input multiplexers.
Usually there are both high level and low level signals coming in to such a
system. Modern electronic instruments generate primarily high level signals
and represent the bulk of the inputs to such a system, however, thermocouples
and similar devices generate millivolt readings and are often brought directly
into the system. Again, these analog signals are multiplexed, amplified, and
converted to digital signals in an analog to digital converter. A typical
system might contain hundreds of analog inputs.

The digital input information and the digitized analog information is sent

into the computer through some form of computer input/output interface connec-
tion. The input/output interface is under control of the digital computer

and contains the circuitry required to decode the information from the computer
as to what signal it is requesting and to transmit data to or from the computer.
Digital computers utilized in these systems generally use a basic core memory
for high speed arithmetic and data manipulation. This memory is quite often
supplemented by a drum or disc memory offering greater bulk storage at lower
cost. This type storage contains information to be logged periodically,
averaged, etc. A number of logging typewriters are desired for such things as
shift logs, daily logs, alarm logs, and other operational information logs
required by operating personnel.

There is also a necessity for an operations console which allows operating
personnel to insert information and receive information from the computer on
an as-desired, point by point basis rather than by complete logging. Control
of the process through the computer either initiated by the operator or by a
computer program is accomplished by routing signals back to the process either
as discrete output signals such as relay closures which can raise or lower
motors, etc., or as analog information which comes from digital to analog
converters.
Often systems of this type represent only sub-loops in an overall management
control system for a large intricate plant, in which case it is necessary to
have teletype or telephone data communication links to other computers at this
location or remote sites.
Features

High speed alarm scan and log.

Shutdown sequence determination.

Pulse counting.

Logging operator actions.

Analog scan with high-low limit comparisons.

Real time clock.

Input variable averages (hourly, daily - - - yearly)

11




On-line connection to analytical laboratory.

Composition calculations weighted by flow rates.

Operator entry under program control.

Periodic and demand logs.

Typewriter or paper tape output.

Control system failure monitor.

Performance calculations written in FORTRAN.

Control outputs (raise-lower contacts or D/A converters).

Equipment availability calculated and operating times accumulated.

Trend recording.

Post-failure review (process history).

Operational performance calculations and management reports.

1700 CHARACTERISTICS

The Control Data 1700 computer is a small, stored-program, parallel mode
digital computer designed to meet modern demands for fast, low-cost computation
and control. Unique hardware features, coupled with a broad range of program-
ming packages, make the 1700 a powerful, versatile tool for industrial control,
data acquisition and communications uses.

The 1700 is characterized by:

1. -Advanced circuits which give the 1700 a storage cycle time and
instruction execution times well below those of many large computer
systems.

2. All-silicon components and ruggedized construction enabling the 1700
to operate under varying and difficult environments with no special
adjustments necessary.

3. Its ability to communicate not only with standard peripherals (tape
units, printers, card readers, and the like), but also with many
types of specialized industrial control and communications devices.
A direct access connection to storage facilitates high-speed data
transfers.

4. The ease with which the system may be expanded as the user's needs
dictate. The enormous computing power of the Control Data 3000 and

6000 series computers can be combined with the 1700 by means of a
special adapter connecting the main frames.

12




5. 1Its software providing the capability to handle a real-time and a
conventional program simultaneously.

1700 SPECIFICATIONS

Hardware

18-bit storage word (16 data bits, Program Protect bit, parity bit)
16-bit instruction word

4096-word basic storage, expandable to 32,768 words

1.1 microsecond storage cycle time

Program Protect System

Parity checking

2 indexable registers

Multi-level indirect addressing

16-level priority interrupt system, internal and external interrupts
Hardware-buffered and interrupt-buffered Input/Output

One's complement, signed arithmetic

Fixed-point Add, Subtract, Multiply, Divide

Control Data 6600-type silicon circuits

Components cooled by room air

Console switches and indicators

Standard non-buffered I/0 bit rate: 1.4 million bits per second

Software

The capabilities of the 1700 computer system are exploited to the fullest by
an advanced library of software routines. All software can be operated on-line
on a time-shared basis. Standard software catagories are as follows:

Real-Time Operating System

Modular Industrial Process Control Packages
Symbolic Assembler

Macro Assembler

Fortran Compiler

Time-sharing monitor

Arithmetic Package

Utility Routines

1700 APPLICATIONS
Industrial Process Control

The logical design and physical specifications of the 1700 computer are pointed
toward making it adaptable to the vast number of uses and environmental condi-
tions encountered in industry.

It is ideally suited to serve such diverse areas of industry as conventional
and nuclear power stations, steel mills and other metals, chemical productions,
and oil and gas pipe lines. Among the functions which a 1700 control system
is capable of performing are:

13




-==q---"r=----===--7
[ ! |
' ‘I [
0! o ) t
o, 9 o )
~ ~ ~ I
.-H' — '. — |
STORAGE BUS
4
1704
COMMON
SYNCHRONIZER LOW-SPEED
PACKAGE
CONTROLLERS
A \
4
1729 1723/ 24 1721722 1711/12/13
Card Reader Paper Tape Punch Paper Tape Reader Teletypewriter
FIGURE 13

1700 BASIC COMPUTER SYSTEM

14




DIRECT ACCESS
1. Data Cable
2. Address Cable

T T T T :
) ! !
o, o ' ™ !
o!' o o !
~Y~ , ~ 1
—~ —t ' — '
| ) T
STORAGE, BUS e
T e [
[}
nggN < 1704 ! 5 INTERRUPT
. 7" Lmes
T |
CONTROLLERS X 1705 X
"'I"I' 'I"I 'I'K'/i' -
#1 >
1/0 *
EQUIPMENTS
1711/
1729 1723 1721 1712 1706
#2 7
1706 -——/
#3 F > *
* Eight 1/0 Equipments
Maximum
FIGURE 14

1700 EXPANDED COMPUTER SYSTEM

15




1. Logging

2. Data Display

3. Alarm Monitoring

4. Direct Digital Control

5. Performance Calculations
6. Remote Supervisory Control
7. Event-Oriented Control

8. Report Preparation

Data Acquisition and Conversion

The extremely high speed of the 1700 Computer has special relevance for the
field of research and development. Through the use of analog-to-digital and
digital-to-analog conversion equipment, combined with the high-speed parallel-
processing capabilities of the computer, an opportunity for laboratory analysis
hitherto unfeasible with digital computers exists.

Areas in which the speed and versatility of the 1700 system may be applied
include medical research, wind-tunnel and aerospace research, auto-correlation,
radar and sonar studies, analysis of vibration and resonance in physical
structures, and atomic research.

Communications and Data Collection

The 1700 Computer, by virtue of its speed and input/output flexibility, meets
the requirements of message-switching and collection systems, where large
volumes of data must be transmitted over great distances in a minimum of time.

The 1700 may function as a self-contained communications center or as a high-
speed buffer, receiving data from remote terminal stations and routing it to
a large central computer for further processing.

MODEL DESCRIPTION

One of the outstanding features of the 1700 is the ease with which storage and
I/0 capabilities may be expanded. Following are brief descriptions of the
standard and optional units.

1704 A 1700-Class computer with the following features: arithmetic,
including single-precision Multiply and Divide; basic 4096-
word storage; non-buffered output to the Common Synchronizer;
8-bit teletype communication. It includes one internal and
one low-speed interrupt.

1705 Interrupt/Data Channel. This option increases the I/0 capability
of the 1704 Computer. The 1705 enables reading from and writing
into storage via the A and Q registers and the direct access
bus. It adds 15 external interrupt lines increasing the
capability by 14 Interrupt levels to a total of 16. It imple-
ments buffered and non-buffered I/0 transfers.

1706 Buffered Data Channel. This option enables buffered I/0

16




1708

1709

1703

1716

Common
Synchronizer

operations. It connects to the 1705 Interrupt/Data Channel and
to the direct access bus to storage. For non-buffered I1/0, only
the 1705 need be added to the basic computer; for buffered I/0,
both the 1705 and 1706 are necessary. A maximum of 3 1706's
may be connected to a computer.

A 4096-word storage increment which may be added to a 1704 Compu-
ter, giving a total storage capacity of 8,192 words.

An 8,192-word storage increment which may be added to a 1704
Computer to which a 1708 storage option has been added, giving
a total storage capacity of 16,384 words.

A 16,384-word storage increment which may be added to a 1704
Computer to which a 1708 and a 1709 storage increment has been
added, giving a total storage capacity of 32,768 words for a 1704
Computer.

Storage Size* Models Required
4k 1704
8k 1704, 1708
16k 1704, 1708, 1709
32k 1704, 1708, 1709, 1703

*Storage capacities of 12k and 24k are also
available as special options.

Coupling Data Channel. This option permits communication between
two 1700 Computers and also enables the two computers to have
access to the same peripheral devices via the 1705 Interrupt/Data
Channel. When the 1716 is used, only two 1706's may be connected
in a maximum system.

A Card/Paper Tape Data Channel for direct interface into the A
and Q registers of the 1704 without the need for a 1705 option.
The following devices may be connected to this synchronizer:
the 1721 Paper Tape Reader, the 1723 Paper Tape Punch, the 1729
Card Reader, and the 1711 (or 1712, 1713) Teletypewriter.

17




FUNCTION |
TRANSLATOR STORAGE
F EXTERNAL T l T EXTERNAL
STORAGE
STORAGE
8 BITS ACCESS ACCESS
z s <«
18 BITS 15 BITS
X Y
L g 16 BITS 16 BITS
INTERNAL INTER
LOW SPEED ‘
15 EXTERNAL LINES DECREMENTER
TS
5] Telio
INTERRUPT
MASK
>
4 BITS OR 16 BIT$
P
> 15 BITS
+1
vy v v v v
Q ADDEND AUGEND A
7 16 BITS GATES GATES 16 BITS
1/0 1/0
CONNECT CODE FUNCTION
CODES
o v STATU
S
LOGICAL LOGICAL
DIFFERENCE ADDER 4 probuCT DATA
SHIFT SHIFT
LEFT ~ |  SHIFTER ¢ RIGHT

FIGURE 16 Block Diagram

18



VERTICAL RELAY
RACK FRAME
{EXPANDED 1/0)

HORIZONTAL RELAY
> RACK FRAME
(EXPANDED 1/0)

> BASIC COMPUTER

FIGURE 15 1700 Computer System with I/0 Modules

1704 See Figure 16
Registers

A Register
The principal arithmetic register. It contains 16 bits, with the 16th bit

being the sign bit. The results of most arithmetic and logical operations are
placed in A. 1It also serves as a data register for I/0 transfers.

Q Register

A 16-bit auxiliary arithmetic register. It contains address information during
I/0 instructions and is also used as an index register.

P Register
The 15-bit program address register. It holds the address of each program step.
X Register

The 16-bit exchange register. It holds data going to or from storage and one
of the parameters in most arithmetic operations.

Y Register

A 16-bit register. Storage addresses are formed and held here for transfer

19




during a storage reference. It is also used as a counter during Multiply,
Divide, and Shift instructions.

F Register

The 8-bit function register. This register holds the instruction identifica-
tion and/or addressing mode during instruction execution.

Z Register

The 18-bit storage data register. It transfers data to or from the computer,
the external access, and storage. Each time a word is read from storage it is
transferred to Z and parity is checked. Word parity is generated when data is
in Z prior to being written into storage.

S Register

The 15-bit storage address register. This register holds the address of the
word being read from or written into storage. The upper 3 bits designate one
of eight 4K storage modules; the remaining bits specify an address within the
selected storage module.

Mask Register

This register is the enable for the interrupt levels. It is either 4 or 16

bits. To select an interrupt on a given level, the corresponding Mask bit must
be set.

20



PROGRAMMING AIDS

In the appendix are various tables which are intended to save time in reading
or writing 1700 programs. Tables I and II provide numerical and alphabetical
listings of 1700 instructions while Table III gives all possible methods of
forming the effective address and lists the location of the next instruction
for each addressing mode. Parentheses mean '"the contents of" whatever is in
the parentheses. For example: (Q) means the contents of the Q Register,
(P+1) means the contents of location P + 1 (since P + 1 does not indicate

a register) and (+ A ) means the contents of location + A (again, since

+ A does not indicate a register). A good example of the use of parentheses
is the formation of the effective address (E.A.) if A = 0 and the

addressing code is "F". 1In this instance, the E.A, is formed by (P+1-+

(P+1) + (Q) + (OOFF) which says, to form the effective address:

1. Read the contents of the location specified by the quantity
P+1 added to the contents of location P+1.

2. To the result in #1, above, add the contents of the Q Register.
3. To the result in #2, above, add the contents of location OOFF.

If two hexadecimal numbers are to be added, use Table IV and find one digit
along the left and the other digit along the top of the table. The hexadecimal
sum is the quantity contained in the area where the selected column and row
intersect. If the numbers being added contain several digits each, consider
one pair of digits at a time keeping track of the carries generated. Table
IV can also be used for subtraction by locating the subtrahend digit along
the top of the table then going down the column until the minuend digit

is found in the body of the table. The difference is the number of the row
(left-hand column) where the minuend is found. Whenever a digit is being
subtracted from one of smaller value, the minuend will be a 2-digit number
(due to the borrow).

TaBle V can be used to perform hexadecimal multiplication or division. Use
of the table is similar to Table IV. Be certain that additions (for
multiplication) and subtractions (for division) are also performed in
hexadecimal.

21




HEXADECIMAL NUMBER SYSTEMS

The 1700 uses the hexadecimal (base 16) numbering system to represent it's data
and instructions. A review of the decimal, binary, and hexadecimal systems alon
with useage of hexadecimal arithmetic will be useful at this time. As you pro-
ceed through the chapters on programming an increasing amount of hexadecimal
arithmetic will be encountered. Instructions are coded in hexadecimal, numbers
are displa&ed in binary but are converted to hexadecimal by the computer operato
for the sake of making comparisons with anticipated values after a program is ru
Storage addresses are coded in hexadecimal and are added to or subtracted from
in hexadecimal. A review of the number systems used in the 1700, their conversii
to other bases, and hexadecimal arithmetic will follow in the succeeding paragra]

A look at the three number systems which will be encountered will be the first
subject. It will be assumed that you have a knowledge of binary at this time.
Counting in the three systems goes something like this:

Decimal Binary Hexadecimal
0 0000 0000 0
1 0000 0001 1
2 0000 0010 2
3 0000 0011 3
4 0000 0100 4
5 0000 0101 5
6 0000 0110 6
7 0000 0111 7
8 0000 1000 8
9 0000 1001 9
10 0000 1010 A
11 0000 1011 B
12 0000 1100 C
13 0000 1101 D
14 0000 1110 E
15 0000 1111 F
16 0001 0000 10
17 0001 0001 11
18 0001 0010 12
19 0001 0011 13
20 0001 0100 14

22



Notice that after the hexadecimal 9 the letter A is used to represent 10, A
through F are used to represent the last six numerals of the hexadecimal system.
Also, hexadecimal 10 follows the number F in the numerical sequence. It might
be well to note at this time that the number 7FFF would be represented in the
1700 as a binary number *111 1111 1111 1111. The * position is the sign. If

a "Q'" occupies that position the number is positive, but if it is a "1", then,
the number is negative.

HEXADECIMAL TO DECIMAL CONVERSION

The methods of conversion from decimal to hexadecimal and hexadecimal to decimal
will be useful before starting into the instructions and programming. The con-
version from hexadecimal to decimal can be done either of two ways. The first
example will use the polynomial method of conversion. The number 7A46 will be
used as an example.

7A46
IL——————4-»160
165 each number has positional
16 value as shown.,
16

Once the positional values have been written down, expand them by raising the
base (16) to the amount indicated by the exponent. After this is done, multiply
the number times its positional value.

7846
160 = 1 x 6 = 6
165 = 16 x 4 = 64
165 = 256 x A = 2560
16> = 4096 x 7 = 28672

7A4616 = 31,30210 )
Remember that the A has to be converted to 10 before it can be multiplied times
the positional value of 256. 1If the most significant digit is larger than 7 the
number is negative. To convert it, it must be complemented and then be converted.

FF67,, = -00891¢

Complement the number by subtracting FF67 from FFFF and affix the minus sign to
the complemented number. The example, -0098, can now be converted to decimal.

-0098
160 = 1 x 8 = 8
16l = 16 x 9 =144
152
-009816 = -15210

23 Rev. B




Another method of converting from hexadecimal to decimal is with the aid of the
conversion chart in the appendix. Using the same number used in the first example,
a conversion will be made using the chart.

7000 = 28,672
A00 = 2,560

40 = 64

6 = 6

7A46 31,302

Start by looking up the most significant digit, 7000, in the fourth hexadecimal
column. Continue looking up the remaining digits in sequence in columns 3, 2,
and 1. Add up the conversions for each digit.

Convert the following hexadecimal numbers to their decimal equivalent.

Hex. Decimal

1. 53,FF6

2. 10,04E

3. 579,F65

4. 567,999

5. 48A,000

6. FACE

7. CAFE

8. DDE,904

9. FA,875

10. F6,45D,6FA

DECIMAL TO HEXADECIMAL CONVERSION:

Conversion from decimal to hexadecimal is also necessary. Again, there are two
methods; one by division, the other by the use of the conversion chart. 1In the
event that a conversion chart is not handy it may be well to illustrate the
division method.

24




16 /31302

7A46l6

The conversion is made by dividing 16 into the decimal number to be converted.
The remainder is the least significant digit of the hexadecimal number. The
dividend is then divided by 16 to produce the next digit., Continue doing this
until the conversion has been completed. This method may take more time, but it
doesn't require any tables or charts to make the conversion. However, if a con-
version chart is handy, it will save considerable time. The number 31,302 will
again be use for illustration.

28,272 e « « « . . . . 7000
2,560 . . . . . . . . JAOO

70
64 « v v v 4 o . . . 40

T <)

7A46

Using the conversion chart on page A-26 of the appendix, it is found the 28,672
is the closest decimal number to 31,302 without exceeding it. Subtract the
28,672 from 31,302 and write down the hexadecimal 7000 for future use. Next,
look up the decimal number that is equal to or less than the difference between
31,302 and 28,672 (2,630). It can be found in the third column of the decimal
numbers., Again, a subtraction is made between 2,630 and 2,560 resulting in a
difference of 70. The AOO, hexadecimal equivalent of 2,560, is added to the
hexadecimal 7000 to form an additional portion of the conversion. GContinue with
the conversion until it is completed. When making conversions, use whichever
method you wish, keeping in mind that the final result is the important thing.

25 Rev. B




Rev.

B

Convert the following decimal numbers to hexadecimal.

Decimal Hexadecimal
1. 24,088
2, 76,744
3. 524,288

4, 1,234,567

5. 7,633,994

6. 56,744,485

7. 1,357,998,765

8. 1,879,048,191

9. 1,000,000,000

10. 3,333,333,333

ADDITION

The next subject will be hexadecimal arithmetic. Finger counting is permissible,
but the chart for hexadecimal arithmetic on page A-24 will be more useful. As
an example, CQOS16 and 804516 will be added together.

8,045

C,405
14,44A
end-around-carry 1
4,44B

Use the chart on page A-24 as an aid. First find the number 5 on the left hand
margin. Move across from that point until you are under the 5 at the top of the
chart. Your finger should now be on the number A, The 4 and O for the next two
additions should be no problem. When finding the sum of 8 and 6 use the same
procedure that was used to find the sum of 5 and 5. Locate the 8 on the left
margin. Move to the right until your finger is on the number in the column

headed by the number C. As indicated by the chart the sum of C and 8 are 14. The
1 is carried around and added to the least significant digit. You cannot exceed
four hexadecimal numbers as the result of an addition. The adder will accomodate
only the four numbers. If a thought came to you that this was overflow you are
wrong. Overflow can occur only when two like signed numbers are added together
and the sum results in a change of sign. Remember that numbers larger than 7 would
indicate that they are negative. An illustration of overflow can be illustrated
by the following examples.

26



7FFF positive
0001 positive
8000 negative
8000 negative
8000 negative
0000

1
0001 positive

Solve the following hexadecimal addition problems.

1. 5C02 2.
0227

6. 0006 7.
FFFE

SUBTRACTION:

Subtraction is a reverse process of addition.

AF02
1245

0105
CCCC

3.

2377
15FF

CAFE
BCDE

illustrate the process of subtraction.

7AB6
3243
4873

4.,

8100
9011

FACE
4333

10.

ABCD
1234

FO7A
C5D3

Subtracting 32434 from 7AB61g can

Locate the number 3 on the left side of the addition chart.
until you come to the number 6. The number at the top of that column will be the
difference between 3 and 6. Next locate the number 4 in the left hand column.
Move to the right until you come to the B. The number at the top of that column
is the difference between 4 and B. Continue until the remainder of the problem
is completed.

Move to the right

Solve the following hexadecimal subtraction problems.

1. 3210 2. 1600 3. FO07A 4. 3789 5. FFFF
1022 OQFF 609F 308D 7ACE
6. CAFE 7. 4567 8. TFACE 9. 2D6E 10. 5BD6
ABCE 3F4D 9D6B 1A7F 3A21

27 Rev. B




Rev, B

MULTIPLY

Occasionally it may be necessary to check a multiply problem in the 1700. If
you can work out the problem on paper, you can check the product which the
computer is to come up with. A couple of points which must be kept in mind
when doing a multiply; overflow can never occur, and negative numbers are
complemented before the multiply operation takes place. A four digit hexadecimal
number is multiplied times a four digit number. The product will be an eight
digit hexadecimal number. Negative numbers are complemented before the multiply
operation because multiplication is the process of finding the product of
absolute values (absolute values are expressed in a computer only by positive
numbers). After the multiply operation is completed the product is complemented
if only one of the operands was negative.

The multiply chart on page A-25 will be needed to do multiplication. Use the

same procedure used when multiplying decimal numbers. Remember to add the carries
to the next partial product as you proceed. Suppose the number 45 is multiplied
times 36. Locate the 6 on the left hand column of the multiply chart.

Move across on that row until you are under the column headed by 5. 6 times 5

for a partial product will be 1E. DPut down the E and carry the 1. Multiplying

6 times 4 for the next partial product will give 18. Add the 1 carry to it for a
partial product of 19E. Multiply the next digits and add the partial products
together for a final product of ES8E.

45
36
19E
CF
EBE

You may find the Addition chart useful during the multiplying when large numbers
are to be added. '

Multiply the following hexadecimal problems:

1. 4335 2. 1002 3. 67F8 4. 1BCF 5. 3ACE
6389 001A 3FBD 2C61 2DAF
6. 7FFF 7. 289A 8. A332 9. 8347 10. F634
7FFF 3333 2222 9246 SFFF

28




DIVIDE:

Divide will possibly be the least used hexadecimal arithmetic. But then, if the
dividend of a divide problem were to be checked for accuracy it would be neces-
sary to know how to divide using hexadecimal numbers. Its method, when using
the chart, will follow a similar pattern that was used in subtraction. Suppose
6483 is to be divided by 7. Start by locating 7 on the left hand column in the
multiplication chart. Move right until you come to a number equal to or less than
64. The number nearest 64 will be 62. The E at the top of that column is the
partial quotient. Subtracting 62 from 64 leaves a remainder of 2. Bring down
the 8. Move across the 7 row until a number equal to or less than 28 is found.
23 is the nearest number giving a partial product of 5. Continue until the
problem is completed.

ESB
7 _J 6483
62
28
23
53
4D
6

Comp lement negative operands before a divide is started as was done in the multiply.
If only the divisor or the dividend is negative, complement the quotent at the
end of the divide operation. If both are negative, do not complement the quotent.

Complete the following divide problems:

1. 3 / 7BCD 2. 6 [ 1463 3. 1A / 4762

4. 8 / 7FFF 5. 7 [ 6453

All of the operations which have been gone over could have been converted to
binary from the hexadecimal and then completed. The final binary answer would
then have to be converted back to hexadecimal. Use the method which is most
comfortable for you.

29 Rev. B




Rev,

Answers To Practice Problems

Conversion from hex to decimal

Page 24

1. 344,054

2, 65,614

3. 5,742,437
4, 5,667,225
5. 4,759,552
6, -1329

7. =13,569

8. =2,234,107
9. =22,410
10. -163,195,141

Conversion from decimal to hex

Page 26

1. 5El8

2. 12BC8

3. 80000

4, 12D687
5. 747C4A
6. 361DA25
7. S50FLl6AAD
8. O6FFFFFFF
9. 3B9ACAQO
10. C6AEA155

Hex addition
Page 27

1.
2.
3.
4,

B

5E29
Cl147
3976

1112 an overflow condition exists

BEO1

0005 notice that FFFE is the same as a -1

ChD1
87DD
3E02
B64E

30



Answers to practice problems (cont'd.)

Hex subtraction

Page 27

1. 21EE
2. 1501
3. 8FDB
4, O06FC
5. 8531
6. 1F30
7. 061A
8. 5D63
9. 12EF
10. 21B5

Hex multiplication
Page 28

1. 1A21765D

2. 0001A034 the zeros are inserted to give a 8 digit product found in the 1700

3. 19E2CAl8

4. 04D21D6F

5. 0A7E68D2

6. 3FFF0001

7. O81EC4AE

8. F3A072C5

9. 357478F8

10. FC53E9CA the F634 would have to be complemented before the multiplication
and then the product would have to be complemented do not
complement the product

Hex Division
Page 29

1. 2944 remainder of 1

2. 0365 remainder of 5

3. O02BE remainder of 16
4, OFFF remainder of 7

5. O0E55 no remainder

31 Rev. B







CHAPTER 1

NON-ADDRESSABLE INSTRUCTIONS







NON-ADDRESSABLE INSTRUCTIONS

INTRODUCTION

Instructions in the 1700 Computer are divided into two major categories --
those which incorporate address modification and those which do not. All
addressable instructions have a hexadecimal format of [ F | M[-A—1] where
function code F is the most significant hexadecimal digit in the instruction,
addressing code M is the second most significant hexadecimal digit in the
instruction and the lower half of the instruction forms a modifier or delta

(A ) field.

An instruction is addressable if F # 0; that is, if its upper-most hexa-
decimal digit is not a zero. Since there are only 15;3 addressable instructions
in the 1700 instruction repertoire, a single hexadecimal digit (function code
F) will suffice to identify the instruction. The addressing code M of an
addressable instruction consists of the following bit designation
[ r[ind [ q [i | where "r" identifies the relative bit, "ind" the
indirect bit, "q'" the Q Index Register and "i'" the Memory Index Register.
The significance of these bits and the manner of addressing are explained
in another portion of this chapter. The delta field is also explained
during the discussion of addressing.

An instruction is non-addressable if F = 0. Since all non-addressable
instructions must have their upper-most hexadecimal digit equal to 0, this
means that additional bits are required to identify the particular instruction.
Some non-addressable instructions will require only two hexadecimal digits for
identification while others will require more. A general format for all
non-addressable instruction is | F [ F, | | where F = 0 and F; identifies
the instruction or the group to which an instruction belongs.

Non-addressable instructions may be placed into one of four groups. The
register reference group includes those instructions which require only

two hexadecimal digits for identification. Most instructions in the group
have the format [ 0 [F) [—/A—] where the significance of the delta (A\)
field depends on the instruction. To belong to this group of instructions
F; must not equal 1, 8 or F.

The skip group of instructions are identified by F] equaling 1 and have the
format | 0 [ 1 JFp [ S | where F2 identifies the particular skip
instruction and S represents a skip count. If the skip condition is
satisfied, program continuation will be at P+1+S; if not, continuation will
be at P+1.

The Inter-register group of instructions are identified by F; equaling 8.
The format and general operation of this instruction group is given in the
1700 Computer Reference Manual.

1-1 Rev. B




Rev.

B

Flow diagrams of most 1700 instructions are given on pages A-1 through A-14 in
the Appendix. The purpose for such diagrams is to present a simple, overall
operation of the instruction (or instruction group) being considered. Some
instructions (Multiply or Divide) and the Inter-register instruction group

do not lend themselves to simple flow diagrams. For this reason, flow diagrams
for these instructions have not been included.

A brief description of each instruction is given in the 1700 Computer Reference
Manual, pages 3-2 through 3-20. You should read the appropriate description,
then become familiar with the flow diagram as each instruction is being
learned. The following pages will provide examples and explanations of the
various 1700 instructions.

1-2




REGISTER REFERENCE GROUP

Selective Stop (SLS) - [o | o V//////

Instructions are read out of memory during the Read Next Instruction (RNI) mode.
This mode places the instruction into the 1704 X Register and then causes the upper
eight bits of the instruction (X) to transfer to the F Register. The contents

of the F Register are then translated to determine which instruction or in-
struction group is to be executed.

Whenever the F Register is all zeros (cleared), the computer executes the
Selective Stop (SLS) instruction. There are many ways in which the F Register
might become cleared. Each of these possibilities will be explored briefly.

If during RNI a SLS instruction is read from memory, the F Register will become
cleared and the computer will execute a SLS instruction. This would be the

normal SLS operation. A Master Clear (see page 6-1 of the Reference Manual) will
cause the F Register to become cleared. If the computer were first Master cleared
before execution of a program, the first operation would be a SLS. Under such a
condition the computer bypasses the stop circuitry and prevents stopping. If

this were not the case, the computer could never get started following a Master
Clear (M.C.) if the Selective Stop switch were on.

The F Register will become cleared if certain illegal operations are attempted.

When such operations are encountered, the computer reacts by forcing SLS operations.
This prevents execution of the illegal operation and will cause the computer to

stop if the Selective Stop switch is on.

Normally, the F Register becomes cleared due to a SLS instruction. For a SLS
instruction to stop the computer, the selective stop switch must be on. If the
switch is off, the instruction becomes a pass or do-nothing. By definition a
pass instruction is one which does only one thing: causes the contents of the
P register to be incremented.

For example, suppose the following routine is entered into the computer and
executed.

Initial Conditions: M.C., Selective Stop switch on, set P=0100 and press RUN.

0100=0050
0101=1234

Refer to the Selective Stop flow diagram during the following explanation
(Appendix, page 1).

Since the computer was master cleared, this clears the F Register so a SLS oper-
ation will be executed as soon as the RUN switch is pressed. Beginning at the
start of the Selective Stop flow diagram, the following sequence would occur
(remember, the first instruction to be executed'in the program is at location
0100, which is the present setting of the P Register):




Rev.

B

First Pass

1. 1Is Stop Switch ON? - yes

2. Was instruction preceded by M.C.? - yes

3. Contents of P transfers to the P and Y registers (that is, (P) and (Y)
both equal 0100)

4. The next instruction is read from the location specified by the contents
of Y. This places 0050 in the X Register, then 00 in the F Register.

5. 1Is the Stop Circuitry enabled? - no

6. Continue

Second Pass

1. 1Is Stop Switch ON -~ yes

2. Was instruction preceded by M.C.? - no, it was preceded by SLS.

3. Enable the Stop Circuitry

4, Increment P and send result to P and Y (this makes (P) and (Y) both
equal 0101).

5. The next instruction is read from the location specified by the contents
of Y. This places 1234 in the X Register.

6. Computer stops when instruction enters X.

Notice that the contents of the P register is the next consecutive location
following the SLS instruction when the computer stops. Also, the X Register
contains the contents of the memory location following the SLS instruction.

Enable Interrupt (EIN)— [0Q[&V///7///

The Enable Interrupt (EIN) instruction causes the 1700 Interrupt System to become
enabled. Until the interrupt system is enabled no interrupts can occur. Once
the interrupt system has been enabled, the computer will be interrupted when one
of the selected interrupt conditions occurs.

If the Protect Switch is ON, the EIN instruction can be executed only if it is
stored in a protected location (that is, a location having its protect bit a "1").
An attempt to execute an unprotected EIN instruction (with the Protect Switch ON)
is considered illegal. The computer will clear the F Register and execute a- SLS
instruction instead. With the Protect Switch OFF, all instructions are treated as
unprotected, thus the EIN instruction would be executed regardless of its protect
status.

The computer is so designed that one instruction will be executed after an EIN
instruction before the computer can be interrupted. This was included to help
simplify interrupt routines. For this course, the reader needs to know only that
the earliest an interrupt can occur is during RNI of the 2nd instruction following
the EIN instruction which enables the interrupt system.

For example, consider the following routine:

Initial Conditions: M.C., set P=0500, set Mask=0001, Selective Stop switch ON and
press RUN

1-4




0500 --- 0400

0501 --- 0400
0502 --- 0000
0503 --- 0000

Since the computer was Master Cleared, the computer will begin with the Selective
Stop operation. Upon completion of this pass the contents of (X) = 0400 and
(P)=0500. The upper 8 bits of X are transferred to F and translated as an EIN
instruction. Following is a sequence of the operations which follow--refer to
the Enable Interrupt flow diagram (Appendix, page 2).

Second pass

1. 1Is the Protect Switch ON? - no (no mention made under initial conditions).

2. Increment contents of P and send result to P and Y (making them equal
0501)

3. Enable the Interrupt System

4. Read next instruction at contents of Y (location 0501. This places the
2nd 0400 instruction in the X register

5. Start third pass

Third pass

1. Upper 8 bits of X transfer to F where the instruction is translated as
another EIN.

2. 1Is the protect switch ON - no

3. Increment (P) and send to P and Y

4. Since interrupt system is already enabled, the instruction is a pass.

5. Read next instruction at location specified by the contents of Y (which
is 0502). This places 0000 instruction in the X register

6. Start the fourth pass.

Fourth pass

1. Upper 8 bits of X transfer to F where the instruction is translated as
a SLS.

2. 1Is Selective Stop switch ON? - yes

3. Was instruction preceded by Master Clear? - no

4. Enable the Stop circuitry

5. Increment (P) and send to P and Y

6. Read next instruction at location specified by the contents of Y
(location 0503). This places 0000 in the X register.

7. 1Is stop circuitry enabled? - yes

8. Computer stops.

The start of the fourth pass would have been the first possibility for a computer
interrupt. With the Mask register equal to 0001, the only interrupt condition
selected is an internal interrupt (see chapter 4 of the Reference Manual). Notice
that the second EIN instruction was a do-nothing since the interrupt system was
already enabled.

1-5 Rev. B




The computer is unable to be interrupted if it is stopped. If an interrupt con-
dition occurs after computer operations stop (even though the interrupt system has
been enabled) the condition will be ignored. For example, consider the following
program:

Initial Conditions: M.C., set P=0250, set Mask=0001, selective stop switch ON,
Internal Interrupt, and press RUN.

0250 --- 0400
0251 --- 0000
0252 --- 0000

Due to master clear the first pass will merely cause 0250 to be placed into the

Y Register. RNI operations then occur from location 0250 and the instruction 0400
(EIN) is placed in X. During the second pass the EIN instruction is executed and
the contents of P incremented making P and Y equal 0251. RNI at 0251 occurs placing
the instruction 0000 in X.

During the third pass, the SLS instruction is executed and the contents of P
incremented making P and Y equal 0252. RNI operations place the instruction 0000
into X. Since the stop condition was satisfied the computer stops. The internal
interrupt condition present will not be recognized since the computer stops before
interrupts can be detected. (Interrupt, in this case, would have been detected

at the start of the fourth pass.)

One final point concerning the interrupt enable--it remains enabled until one of
three conditions occurs:

1. Master Clear
2. Inhibit Interrupt instruction is executed
3. An interrupt occurs.

Inhibit Interrupt (IIN) — [o | 5 V//////

The Inhibit Interrupt (IIN) instruction causes the 1700 Interrupt System to become
disabled. Once disabled, the interrupt system is unable to detect any interruptible
conditions.

The IIN instruction requires protection; that is, with the Protect Switch ON the
location of the IIN instruction must be protected. An attempt to execute an
unprotected IIN instruction (with the protect switch ON) is illegal. Under such
a condition, the computer will clear the F Register and execute a SLS instruction
instead. With the protect switch OFF, all instructions are treated as being
protected.

Consider the following routine:

Initial Conditions: M.C., set P=0710, Selective Stop switch ON, protect switch ON
and press RUN - Note, all underlined addresses are protected.

1-6



0714 --- 0400

1. Because of the M.C. condition the first pass will cause the contents of P
(0710) to transfer to Y and the instruction (0400) at that location be placed
into the X register.

2. The second pass will transfer 04 into the F Register where it is translated
as an EIN instruction. Since the protect switch is ON and the location (0710)
is protected (underline), the instruction is executed. The contents of P are
increased and sent to P and Y and the instruction (0400) at that location
(0711) is placed into the X register.

3. The third pass will transfer 04 into the F register where it is translated as
an EIN instruction. Since the Interrupt System is already being enabled, this
second EIN instruction is a pass. (NOTE: If location 0711 were not protected,
the instruction would be illegal and would cause a protect fault, clear the F
register, etc.) The contents of P are increased and sent to P and Y and the
instruction (0500) at location 0712 is placed into the X register.

4. The fourth pass will transfer 05 to the F register where it is translated as
an IIN instruction. Since the protect switch is ON and the location (0712)
is protected, the instruction is executed. (NOTE: At the start of this pass
interrupts could be detected.) During execution of the IIN instruction, the
Interrupt System is disabled and the contents of P are incremented and sent
to P and Y. The instruction (0000) at location 0713 is placed into the X
Register.,

5. The fifth pass will transfer 00 into the F Register where it is translated as a
SLS instruction. The contents of P are incremented and the next instruction is
read from memory and placed into the X register. Since the conditions for
stopping have been satisfied, computer operations stop,

1. What would be the status of the 1700 Interrupt System at the time each of the
following routines stop?

a. Initial Conditions: M.C., Selective Stop ON, protect switch ON, set P=
0735 and press RUN

0735 --- 0577
0736 --- 0400
0737 --- 0000
0738 --- 0000

0739 --- 0400

1-7




b. Initial Conditions: M.C., Selective Stop switch ON, set P=1000 and press
RUN

OFFF=0000
1000=0400
1001=0500
1002=0077
1003=0000

2. What will be the contents of the P Register when each of the following routines
stop?

a. Initial Conditions: M.C., Selective Stop switch ON, set P=0100 and press

RUN
0100 --- 0400
0101 --- 0400
0102 --- OOAB
0103 --- 0500
0104 --- 0000

b. Initial Conditions: M.C., Selective Stop switch ON, Protect Switch ON, set
P=0100 and press RUN

0100 --- 0500
0101 --- 0400
0102 --- 0000
0103 --- 0400
0104 --- 0000

Set Protect Bit (SPB) - Lol e V/////]

The Set Protect Bit (SPB) instruction is the only means available of making a
memory location protected. This instruction requires protection, that is, either
the protect switch is OFF or, with the protect switch ON, the storage location of
the SPB instruction is protected. An attempt to execute a non-protected SPB
instruction with the protect switch ON is illegal resulting in a protect fault,
the clearing of the F Register and the execution of a SLS in place of the SPB.

The location to be protected must be placed within the Q Register before execution
of the SPB instruction. When executed, the SPB instruction references the location
specified by the contents of Q and causes that location to become protected. NOTE:
The quantity within that location is unaffected by the SPB instruction.

Consider the following program:

Initial conditions: M.C., set P=0500, selective stop switch ON, set Q=0501 and

press RUN
0500 ~-- 0600
0501 --- 0400
0502 --- 0000
0503 --- 0000

1-8




1. Because of the M.C. condition, the first pass will be a SLS with the contents
of P (0500) going to Y. The next instruction is read at the location
specified by Y and placed into the X Register.

2. The second pass causes the upper 8 bits of X (06) to transfer to F where it is
translated as a SPB instruction. Since the protect switch is OFF, the
instruction is legal. Assuming no parity errors, location 0501 will become
protected. The contents of P are incremented and sent to P and Y. The next
instruction is read at location 0501 (Y) and placed into the X Register.

3. The third pass starts the execution of the EIN instruction, causes P to in-
crement and reads the following instruction into X.

4. The fourth pass executes the SLS instruction (location 0502), enables the stop
circuitry, increments P and reads the next instruction into X. The computer
stops with the interrupt system enabled and location 0501 protected.

Clear Protect Bit (CPB)— [ O] 7 V/////1

The Clear Protect Bit (CPB) instruction is the only means available of clearing
the protect bit of a memory location. The location to be cleared is specified by
the contents of the Q Register. To be executed, the CPB instruction requires
protection. An unprotected CPB instruction (that is, the protect switch ON and
the location of the CPB instruction being unprotected) is illegal and results in
a protect fault, the clearing of the F Register and the execution of a SLS in
place of the CPB.

Consider the following routine:

Initial Conditions: M.C., set P=0300, Selective Stop switch ON, Protect Switch ON,
set Q=0301 and press RUN. NOTE: Underlined locations are

protected.
0300 --- 0600
0301 --- 0700
0302 --- 0000

1. The first pass reads the instruction from location 0300 and places into X.

2. The Second pass executes the SPB instruction causing location 0301 to become
protected. The next instruction (0700) is read from memory and placed into X.

3. The third pass executes the CPB instruction causing location 0301 to become

unprotected. The next instruction (0000) is read from memory and placed into
X.

4. The fourth pass executes the SLS instruction causing the stop circuitry to be
enabled. The next instruction (contents of 0303) is read from memory and
placed into X and the computer stops.




NOTE: ‘The 0700 instruction would have been illegal had not the SPB instruction
protected location 030l. This would have caused the computer to stop at
the end of the third pass.

Increase A (INA) — [g[g[—A—]

The Increase A (INA) instruction provides a means of modifying Fh? co?tents of

the A Register without the need of storing the amount to be mod%f1ed_1n memory,

then using an ADD or SUB instruction. This, obviously, saves time since memory
does not have to be referenced to execute the instruction. Use of the instruction
is limited, however, to those applications where the change is no greater than + 7F.

A 09 code in the F Register identifies the INA instruction. The quantity A

(lower half of the instruction) is treated as a signed quantity (the upper bit of A
being the sign bit). The sign of this quantity is extended throughout X then added
to the contents of A, the result going to A.

For example, the instruction 0954 would cause 0054 to be added to the contents
of A while the instruction 09A7 would cause FFA7 to be added to the contents

of A. Since an arithmetic operation is involved, overflow status is recorded by
the computer. Overflow indicates that the result lies outside the range of the

computer. One of the skip instructions can be used by the programmer to determine
whether or not overflow occurred.

Consider the following routine:

Initial condition: M.C., set P=0179, set A=037A, Selective Stop switch ON and
press RUN.

0179 --- 0901
017A --- 0000

1. Because of the M.C., the first pass would read the instruction at location
