88951000

@ CONTROL DATA
CORPORATION

CDC®HARDWARE FLOATING-POINT UNIT
BT221-A

HARDWARE MAINTENANCE MANUAL

REVISION RECORD

REVISION DESCRIPTION
01 Preliminary released.
(11/77) ‘
02 Manual revised to conform to corporate format standards. Released by ECO DS18852.
(3/78)

Publication No.
88951000

REVISION LETTERS I, 0, @ AND X ARE NOT USED

© 1977, 1978
by Control Data Corporation

Printed in the United States of America

ii

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall

La Jolla, California 92037

or use Comment Sheet in the back of
this manual.

MANUAL TO EQUIPMENT LEVEL CORRELATION SHEET

This manual reflects the equipment configurations listed below.

EXPLANATION: Locate the equipment type and series number, as shown on the equipment FCO log, in
the list below. Immediately to the right of the series number is an FCO number. If that number and all

of the numbers underneath it match all of the numbers on the equipment FCO log, then this manual
accurately reflects the equipment.

EQUIPMENT TYPE SERIES WITH FCOs COMMENTS

BT221-A 01

88951000 02 iii/iv

P

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot

near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE

Cover
Title Page
ii
iii/iv
v/vi
vii/viii
1-1 thru
1-3
2~1 thru
2-33
3-1 thru
3-5
4~-1 thru
4-54
5-1 thru
5-55
6~1 thru
6-32
A-1
B-1 thru
B-11
C-1 thru
C-5
D-1 thru
D~16
E-1 thru
E-30
Comment
Sheet
Cover

REV

02

02

02

02

02
02

02

02

02

02

02

PAGE

AGE

REV | I PAGE

REV

PAGE

REV

RE\d FP

88951000 02

v/vi

P

 PREFACE

This manual describes the functional mechanical and operational characteristics

of the CDC® BT221-A Hardware Floating-Point Unit (HFPU) used with the CYBER
18-17 (SYSTEM 17) Computer System.

It is assumed that the reader is familiar with CYBER 18-17 hardware and software.
For additional information, the following manuals may be obtained from Literature

Distribution Services:

Title Publication No.

1781-1 Hardware Floating-Point Unit

Reference Manual 88951100
1784 Computer Reference Manual 89633400
1784 Computer Input/Output Specifications 89673100
CYBER 18-17 Installation Manual 88996000

88951000 02 vii/viii

CONTENTS

1 GENERAL DESCRIPTION 1-1
1.1 Physical Description 1-2
1.1.1 Components 1-2
1.1.2 Slot Assignments 1-2
1.2 Funetional Description 1-3
2 OPERATION AND PROGRAMMING 2-1
2.1 Equipment Definition 2-1
2.2 Characteristics 2-13
2.2.1 Command Deseription 2-19
2.2.1.1 Operand Addressing 2-21
2.2.1.2 Operand/FPAC Format 2-25
2.2.1.3 Rounding 2-26
2.2.1.4 Fix Float Number Conversions 2-27
2.2.1.5 HFPU Initialition Sequences 2-27
2.2.1.6 HFPU Stop/Restart Sequence 2-28
2.2.1.7 Function/Status Register Definitions 2-29
2.2.1.8 Hardware Execution Times 2-30
3 INSTALLATION 3-1
3.1 Logie Card Installation 3-1
3.1.1 Inspection 3-1
3.1.2 Installation of Jumpers 3-1
3.1.2.1 DSA Board 33-2
3.1.2.2 A/Q Board 3-3
3.1.2.3 SPALU Board 3-4
3.1.3 Board Installation 3-4
3.2 Mother-Board Installation and Removal 3-5
3.2.1 Preparation 3-5
3.2.1.1 The Backplane 3-5
3.2.1.2 The Mother Boards 3-5
3.2.2 Installation 3-5
3.2.3 Removal 3-5
4 THEORY OF OPERATION 4-1
4.1 - Hardware Organization 4-1
4.1.1 Device Structure 4-1
4.1.2 The Micro-Processor Concept 4-1
4.1.3 The Programmable Elements 4-9
4.1.4 The Miero-Instruction Set 4-14
4,2 Description of Algorithms 4-34
4.2.1 Introduction to Floweharts and Listings 4-34
4.2.2 The Algorithms , 4-34

ix 88951000 02

£ B0 DO PO DO BO DO
L] . * o . . L]
NN N M
- N3 R TN

HOQWR

B D DN DN NN
e o o o o o o o o o

MR- T I N R ORI TN

WWN NN
. o L] . . L]
DN = QO DN

.::-:bw
DN =W

OP-Code Fetch/Cold Start
The SPEC Group

Single Micro-Instruction Group
Floating Point Group

Index Register Group

The A/Q STOP Command
Restart

APPENDIXES

Glossary

Miero-Code Listings and Flow Charts

ROM Truth Tables and A/Q Decoding ROMS
Floating-Point A Code and Flow Charts
Master Control Micro-code and Flow Charts

FIGURES

HFPU Q-Register Function Format

FSR Bit Assignment

Addressing Examples

Execution Time Examples °

HFPU Data Paths

Floating Point Miero-Processor Block Diagram
Master Micro-Processor Block Diagram
Arithmetic Shifting

Master Micro-Processor Instruction Format
Floating-Point Micro-Processor Instruction Format
Flow Chart Conventions

TABLES

HFPU Board Summary

Function/Status Register Bit Assignment

Command-Code Definition

Execution Times (worst case operands)(44s Tac) (600ns cycle)

DSA Scanner Position Select Jumpers

A/Q Equipment Address, Protect Mode, and Single-Precision
Device Jumpers

Hexadecimal Code for Equipment Select

Master Micro-Processor Instruction Format

Floating Point Miero-Processor Instruction Format

88951000 02

4-34
4-34
4-37
4-38
4-50
4-51
4-53

A-1
B-1
C-1
D-1
E-1

2-3
2-4
2-22
2-33
4-2
4-6
4-7
4-12
4-15
4-16
4-35

4-17
4-25

GENERAL DESCRIPTION | ' - 1

This manual describes the functional, mechanical, and oper-
ational characteristics of the System 17 Hardware Floating
Point Unit, herein after referred as the HFPU. This device
is designed to provide improvement in the execution time of
. programs running under MSOS FORTRAN IV, It provides a
fully compatible replacement for the software Floating-
Point Interpreter packages, FLOT (single-precision) and
DFLOT (double-precision). The HFPU interprets and exe-
-cutes the same calling sequences as those used by the
software. Thus the software package can be replaced by a
small driver for the HFPU with no change in user written
programs.

All Floating Point arithmetic in MSOS FORTRAN is done
through an interpretive package of subroutines, This
package, FLOT or DFLOT, was designed to minimize the
amount of memory required for user written programs. In
order to do this, a calling sequence structure was esta-
blished. The calling sequence consists of a command word
which may contain up to 4 function commands followed by
address words which point to the locations in memory. of
the operands required for the function. This technique,
since it is basically an expansion of the instruction set
of the System 17, lends itself very nicely to the construc-
tion of a svecial purpose processor which executes the
floating-point calling sequence. .

.The HFPU is such a device. It consists of a fast,
floating-point arithmetic processor coupled to an efficient
command interpreter that is interfaced to the A/Q and DSA
channels of the System 17 CPU. The HFPU responds to a group
of A/Q commands which are used for initialization and diag-
nostic purposes. Once initialized, the HFPU utlizes the
DSA channel to fetch the calling sequence from memory and
to retrieve and store operands as required. Upon completion
of the execution of the calling sequence, the HFPU returns
, & pointer to the System 17 CPU via the A/Q channel which
indicates the next location in memory following the calling
sequence. This is done so that System 17 program can con-
tinue execution at the next executable instruction follow1ng
the calling sequence. '

The FLOT calling sequence command set has been expanded
for the HFPU to include program-control type commands (Jump
and conditional Branch). This opens up the possibility of
system software optimization by having the HFPU run in par-
- allel with the System 17 CPU.

As with the reentrant and non-reentrant versions of FLOT
and DFLOT, the HFPU has been provided with a reetrancy capability
in the form of STOP and RESTART commands. By using these
commands, the HFPU can be interrupted and then relntlallzed
without any loss of information.

88951000 02 ' : ’ ' 1-1

88951000

1.1 Physical Désériptibn r

1.1.1 Components. The unit consists of seven logic cards
and three backplane interconnect assemblies. Each interconnect
assembly consists of two printed circuit cards (mother-boards)
which are coupled via a short cable. Table 1.1 summarizes these
cards by name and PWA part number. All power is described from the
+5 V supply of the expansion chassis. o : ' :
1.1.2 Slot Assignments. The logic cards may be installed
in two different positions in the expansion chassis. The
cards must be in slots in the order detailed in Table 1.1 .
The major constraint is that the DSA card must be installed
in one of the Prewired DSA slots (slot 22 or 14).

The Mother Boards are pushed onto the backplane on the
side opposite from the slots occupied by the logic cards.

TABLE 1.1. HFPU BOARDEUMMARY v

Name PWA No, |[Standard | Alternate | Function
| ' |Slot No. | Slot No. :
ADDR 188953800 23 - 13 Address Preparation
DSA 88953700 22 14 DSA Interface &
: Master Control
A/Q 88953400 21 13 A/Q Interface &

, Master Control
DPALU(SP) |88953100 18 10 Master Control
DPALU(DP) |88954100 .18 10 Double Precision

‘ : v _ Extension & Master
Control :
SPALU 88952800 17 9 Single Precision -
A Mantissa Arithmetic
FPHMP 88952500 16 8 Floating Perint '
Micro-Processor
EXP&TIM 88952200 15 7 Exponent & Floating-
: Point Timing
NAME Mother Board Location
. PWA No. :
Pl 88954400 ‘ P1 Mother Board
P2 TOP 88954500 ' P2 pins 1 to 15 Mother Board
P2 BTM 88954600 : P2 pins 16 to 31 Mother Board
02

1.2 FUNCTIONAL DESCRIPTION

Functionally, the HFPU is provided with a look-ahead
feature which allows it to fetch the operand required for
a succeeding operation while a preceding floating-point operation
is in progress. Thus, although the worse case double-precision
FDIV time is approximately 16 micro-seconds, the effective time
may be 13 micro-seconds or even lower depending on number of
overlapped operations. This feature implies, for instance, that
a typical FORTRAN program utilizing single-subscripted variables
with execute floating-point operations in nearly the same time
as a program utilizing unsubscripted variables,

88951000 02

OPERATION AND PROGRAMMING 2
2.1 Equipment Definition.

The System 17 HFPU is an addressable I/O type of equip-
ment connected to the A/Q and DSA I/0O channels of the CPU.

It is activated and monitored via the A/Q I/O channel. and per-
forms floating-point calculations with data parameters obtained
via the DSA I/O channel.

The HFPU uses an operating format that is identical
to the FLOT subroutine format and executes all of the.

FLOT call-operations plus the additional call-operations
which are defined in paragraph 2.2,

Two modes of floating-point arithmetic capability
are available to the HFPU user. These modes are:

a) Single-Precision Arithmetic (32-bit operand)

b) Double-Precision Arithmetic (48-bit operand)

In addition to the two floating-point operation modes, the
HFPU has four types of operand-addressing modes. Thgse modes
are: .

a) Absolute (16-bit)

b) Relative (16 bits with bit 15 - sign)

¢) Indexed (1l6-bit)

d) Indexed un-multiplied (16-bit)

These operand addressing modes allow the user to access all
permissible memory locations within a 65K-word memory.

After the HFPU is activated by the appropriate A/Q channel
command, it obtains all Command-Code instructions and data
operands directly from the System 17 memory via DSA access.

It executes these Command-Code instructions and returns the
results of the operations to memory as directed. When the
HFPU is in Block or Hog Mode, it utilizes the "priority'" sig-
nal line to enhance the DSA speed for its access to memory.

The HFPU also incorporates an A/Q and DSA protect fear
ture. The A/Q portion of the protect feature consists of a
Jumper plug on the A/Q Interface board. Presence of a jumper
plug is defined as "Protected }ode." Absence of a jumper
plug is defined as "Unprotected Mode."

When the HFPU is set to "Protect Mode", it will set FSR
bit 4, accept only protected A/Q Write commands and will cause
an "External Reject" to the CPU for any unprotected A/Q Write
Commands it receives. When the HFPU is set to "Unprotected
Mode", it will acc¢ept all legal A/Q I/0 commands. Unpro-
tected STOP Commands and unprotected RE-START Commands are
defined as illegal.

The DSA protect mode feature is activated by setting
bit-4 in the HFPU Function Status Register (FSR). This bit is
set by four methods which are:

(1) A protected A/Q Write Command to Q—Statlon 0

' (A to FSR) with A-Register Bit-4 set.

(2) A protected A/Q Write Command to Q-Station 3 or 4

(Cold Start SP or DP).

188951000 02 2-1

(3) A protected A/Q Write Command to Q-Station A (STOP).
(4) Presence of the A/Q Protect jumper.
- NOTE: 'The above three A/Q Vrite Commands must be pro-
' tected to set FSR bit 4 regardless of the A/Q
Protect jumper position. '

When the DSA Protect’Mode is active, it will allow the HFPU
to Write data words or store Register contents into protected .
memory locations without incurring program protect errors.

FSR bit 4 stored in memory during the STOP Command will reflect
the DSA protect state of the HFPU prior to execution of the
STOP Command. '

When the DSA Protect Yode is active (FSR bit 4 set) all
unprotected A/Q Vrite Commands will be rejected.

The HFPU contains six functional registers that are acces-
sible through the A/Q I/0 channel. These registers are ad-
dressed by using the Q-register bits as defined in figure 2.1.
The six registers and their use are defined as follows:

a) TSR = Function/Status Register

This is the main control register for the HFPU and will
accept A/Q I/O commands at any time. If active, the HFPU ac-
cepts an A/Q VWrite Command to the FSR only if A-bit 00 (PCLR)
is set. Any other A-bits will be ignored. The functions of
the FSR bits are summarized in figure 2.2. ’

"b) CCR = Command Code Register

This register is normally loaded via the DSA channel and
contains the command code instruction word. It can be read
on the A/Q channel (see 2.2.1.6 for format) at any time but
can only be loaded by an A/Q channel write when the unit is

not active,

c) IR = Index Register

This register contains a 16-bit digital number that is
used during orerand address formation for floating-point cal-
culations. It is normally loaded via the DSA channel by an

"INDX command. It can be read at any time on an A/Q Read Com-

mand but can only be loaded by an A/Q Write command when the
unit is not active. The value loaded or written via the A/Q
Read and Write commands is always the raw, un-multlplled 16-
bit number.

d) PCR = Program Counter Register

This register contains a 15-bit digital number used as
the base address during operand address formation. It is nor-
mally loaded via the A/Q channel by a Cold Start Command and
incremented during floating-point operations. It is also loaded
via the A/Q channel by an A-Reg to PCR Command or via the DSA

_ channel on a Restart Command.

2-2

88951000 01

15 14 13 12 1110987654 32 1 0 Q-REGISTER BITS
(0.0 0 0 0[xXxXXxx'00 0]
;—V‘Jw

NI

0000 —) |(A-REG) =) FSR+ (FSR) —) A-REG
0001—) |(A-REG)—3CCR* .|(CCR)—) A-REG

0010—) |[(A-REG)—)IR # (IR) — A-REG
0011—) [(A-REG)—p PCR * (PCR)—) A-REG *
L) (Cold Start Ad- (Address Status)
dress) (Single (If not Active)

. fPrecision)

0100 —) |(A-REG)—) PCR * (PCR)—> A-REG *

Transfer Function
On A/Q WRITE

Transfer Function

On A/Q READ

(Cold Start Ad-
dress) (Double

(Address Status)

(If not Active)

Precision)
0101 -—ﬁ (A-REG)—) SSAR * (PCR)—) A-REC
(Restart Address) [(Address Status)
0110 —) [(A-REG)—FPAC * (FPAC)—)A-REG *
(FPAC BITS 00 - 15)|(FPAC BITS 00 = 15)
0111 —) |[(A-REG)—3FPAC * |(FPAC)-}A-REG *
_ (FPAC BITS 16 - 31)|(FPAC BITS 16 - 31)
1600 —) |(A-REG)—yFPAC * |(FPAC)-3A-REG #
(FPAC BITS 32 - 47){(FPAC BITS 32 - 47)
1001 —) [(A-REG)—) SSAR (SSAR)-) A-REG
(Stop Order, HFFU |(SSAR Status)
will stop and use
. contents of A-
register as first
address for saving
registers)
. HFPU Equlpment Code (0 é——§ Fie
7 A/Q CHANNEL
y W-Field must be set to zero before
/ HFPU will respond on A/Q CHANMEL.

#The HFPU returns an "EXTERNAL REJECT" to the CPU if an attempt is made to
address these registers while the HFPU is in an active state (in process of
calculation or bit 15 FSR set).

+The HFPU returns an "EXTERNAL REJECT" while it is in an ‘active state if A-vegister

Bit @ is not set.,

If A-Reg Bit @ is set the HFPU returns a "REPLY".

The HPPU will return an External Reject to the CPU on any other A/Q Read or Write

Command if the HFPU cannot regpond within 4 microseconds.

This condition can occur

if the Read or Write Command is issued at the time the HFPU is raising its DSA Need
signal for a series of address/operand retrievals in Priority mode and the DSA is
already active (HFPU must for scanner)}.

88951000 02

Figure 2.1 HFPU Q-Registér Function Format

1

13 12 11 10 21

5 14 9876543 0 A-REGISTER
A[O][D[U] O JR,IDJF [P[P] S [P
c|viv|n| P [E[NB|E|,|R|T| C|C

T|F|F|{ F| B |L|iDP|N| [O|F] A |L

vivclolnl c |vlshiip] |T|iT] u|®r

L—-PROGRAM MASTER CLEAR -

SCANNER ACCESS MODE

DSA PROTECT FAULT

DSA PROTECT MODE

NOT USED (ALWAYS ZERO)

FLOATING POINT EXECUTION
ENDED

DOUBLE PRECISION MODE

INDEX MULTIPLY DISABLE

RELATIVE ADDRESSING ‘ODE

OPERAND BYTE COUNT

—EXPONENT UNDERFLOW

DIVIDE FAULT

EXPONENT OVERFLOW

ACTIVE

' NOTE 1: Refer to table2.1 for detailed explanation of bit

assignments.

NOTE 2: Console Master Clear referred to in table 2.1 clears
all HFPU timing, resets the HFPU to an idle state, and clears
all registers with the exception of the PCR and the FPAC.
Console Master Clear enters the HFPU via a p1n on the A/Q
Channel bus.

Figure 2.2, FSR Bit Assignment

88951000 02

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT

BIT
POSITION

BIT
MNEMONIC

BIT DEFINITION

15

14

88951000 02

ACTV

OVFL

Bit is set by A/Q Channel Write Command
to FSR with A-bit 15 set (HFPU must be
inactive) or by HFPU when it is in an
active state. When this bit is set, it
will cause the HFPU to reject all A/Q
channel Write Commands except A Reg to
FSR and Protected Stop (A Reg to SSAR).
Bit is cleared or reset by:

a) Inactive HFPU status.

b) Program Master Clear.
c) Console Master Clear.-

Inactive status does not necessarily indi-
cate that the HFPU has completed the FLOT
subroutine as the STOP Command sill clear
FSR bit 15 after storing all appropriate
Registers. FSR bit 15 stored at SSAR during
the STOP Command will reflect the condltlon
of the HFPU prior to the STOP Command.

WARNING: Setting this bit via an A/Q Write
Command to FSR will place the HFPU in a state
such that it will return an External Reject
to all A/Q commands except a Program Master
Clear (A/Q Write to FSR with A-bit 00 set).

EXPONENT OVERFLOW. Bit 1s set by:

a) HFPU arithmetic operation in which

the exponent of result was too large to

be represented by the eight binary bits.
When this bit is set as a result of an
arithmetic operation, the HFPU will force-

~set the FPAC to the largest floating-point

number expressible with the correct F.P.
sign.

b) A to FSR Command (HFPU inactive) from
CPU and A-bit 14 = 1 . This action sets
only this bit and does not affect the con-
tents of the FPAC.

Bit is reset by:

a) A to FSR Command (HFPU inactive) from
CPU and A-bit 14 = 0 .

'b) Program Master Clear.

¢) Console Master Clear.

2-5

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Cbntd)

88951000 02

BIT BIT
POSITION MNEMONIC BIT DEFINITION
13 DVFL DIVIDE FAULT. Bit is set by:

, a) HFPU when an attempt is made fo
divide by a zero or by an un-normalized
operand. When bit is set as a result
of an arithmetic operation, the HFPU
will force-set the FPAC to the largest
floating-point number e\pre851ble w1th
the sign of the Dividend.

b) A to FSR Command (HFPU inactive)
from CPU and A-bit 13 = 1 . This action
sets only this bit and does not affect
the contents of the FPAC.
Bit is reset by:'
a) A to FSR (HFPU inactive) Command
from CPU and A-bit 13 = 0 .
b) Program Master Clear.
c) Console Master Clear.

12 UNFL EXPONENT UNDERFLOW. Bit is set by:

a) HFPU arithmetic operation in which

. the exponent of the result was too small

to be represented by the.eight binary blts.
When this bit is set as a result of an
arithmetic operation, the HFPU w111 force-
set the FPAC to zero.

\

b) A to FSR Command (HFPU inactive)

.from CPU and A-bit 12 = 1 . This ac-

tion sets only the bit and does not affect
the contents of the FPAC.

Bit is reset by:

a) A to FSR (HFPU inactive) Command
from CPU and A-bit 12 = 0 .,

b) Program Master Clear.

c) Console Master Clear.

2-6

TABLE 2.1.

FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT
POSITION

BIT
MNEMONIC

'BIT DEFINITION

11 and 10

2-7

OPBC

RELM

'OPERAND BYTE COUNT. Indicates which of

of the four bytes in the CCR is about
to be executed, It has the following
bit format:

Bit Bit
'11 10

Operand byte one.
Operand byte two.
Operand byte three.
Operand byte four.

0
0
-1
1

~OKO

These bits can be set to any initial
state by an A to FSR (HFPU inactive)
Command from the CPU and A-bits 11 and

- 10.

Bits are reset by:

a) A to FSR (HFPU inactive) Command from
CPU and‘A-bits 11l and 10 set to zero.

b) Cold Start Command.

c) Program Master Clear.

d) Console Master Clear.

NOTE: A/Q Write Command to Q-Station 1
(A Reg to CCR) does not affect the state
of FSR bits 11 and 10.

RELATIVE ADDRESSING MODE.

Bit is set or reset by:

a) The HFPU execution of a CHMD instruc-
tion. Refer. to paragraph 2.2.1 for
detalled explanation.

b) A to FSR (HFPU inactive) Command from
CPU and the state of A-bit 09

Bit Cleared By:-
a) Cold Start Command.
b) Program Master Clear.

c¢) Console Master Clear.

-

- 88951000

Cw e

02

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT BIT
POSITION | MNEMONIC | BIT DEFINITION

8 INDS INDEX MULTIPLY DISABLE.

This bit is used to inhibit the logic
that multiplies the Index Register Con-
tents by 2 or 3 during effective address
formation.

Bit is set by:

a) A to FSR (HFPU inactive) Command
from CPU and A-bit 08 set to 1 .

Bit is reset by:

a) A to FSR (HFPU inactive) Command from
CPU and A-bit 08 set to O

b) Program Master Clear.

¢c) Console Master Clea-~.

NOTE: A/Q Write Command to Q Station 2
(A-Reg to IR) does not affect the state of
FSR bit 08.

7 ‘DBPM DOUBLE PRECISION MODE

Bit is set by an A to FSR Command (HFPU in-
active) and A-bit 07 set or by a Cold Start
Command in Double Precision (Q station 4).
When bit is set, all floating-point calcu-
lations are performed in double-precision
mode (48 bits).

When bit is reset, all floating-point cal-
culations are performed in single-precision
mode (32 bits).

Bit is resét by:

a) Program Master Clear. .

b) Console Master Clear.

¢) Cold Start Command in Single Precision
(Q station 3).

6 FEND FLOATING POINT EXECUTION ENDED. Bit is set
: by: .

a) The HFPU execution of a FEND instruction.

b) An A to FSR (HFPU inactive) Command
from the’CPU and A-bit 06 set toa 1 .

88951000 02 ' 2-8

TABLE 2.1, FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT BIT

POSITION MNEMONIC BIT DEFINITION
Bit is resetvby:
a) An A to FSR (HFPU inactive) Command
from the CPU and A-bit 06 set toa O .
b) Cold Start Command.
c) Program Master Clear.
d) Console Master Clear.

5 UNUSED Bit is always reset,

4 PROT 'PROTECT MODE
When bit is set it places the HFPU in a
protected device mode. This mode allows
the HFPU to write into protected memory
locations via the DSA channel,
Bit is set by a protected A-Reg to FSR
Command from the CPU and A-bit 04 set
to 1 , by a protected A/Q Cold Start
command, by a protected A/Q Stop Command,
or by the presence of the A/Q protect
jumper.
Bit is reset by:
a) An unprotected A Reg to FSR Command.
b) An unprotected A/Q Cold Start Command.
¢) Program Master Clear.
d) Console Master Clear.

_ FSR Bit 4 stored at SSAR during the STOP

Command will reflect the DSA protect mode
of the HFPU prior to the STOP Command.

3 PTFT PROTECT FAULT
When bit is set, it indicates that the
HFPU was not in protect mode and made a
write data access to a protected memory
location. Bit is also set or reset by an
A to FSR (HFPU inactive) Command from the
CPU and the state of A-bit 03. Bit is
also reset by:
a) Cold Start Command.
b). Program Master Clear.
c) Console Master Clear.

88951000

— -

02

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT
POSITION

BIT

| MYEMONIC

| BIT DEFINITION

"2.and 1

18951000 02

SCAM

 SCANNER ACCESS MODE

State of these bits selects or indicates
one of three modes of HFPU DSA Channel

accesses.
Bit Bit
2 1
0 0

1 0

These modes are:

Access Mode

BLOCK. The HFPU will stop the
scanner for up to five successive
memory cycles during a Command
code word fetch. The HFPU will
not release the scanner before
determining if the first command
yte of that word requires mem-
ory. If the first command re-
quires memory the HFPU will hold
the scanner and access momnry

to fetch the address-pointer word
and one, two, or three operands.
If the first command byte does
not require memory or is a Branch
Accumulator command and the FPAC
is active the HFPU will release
the scanner. 1In either case,

the second, third, and fourth
command bytes that require memory
must wait for the scanner to re-
turn to the HFPU. These bytes
can hold the scanner for up to
four memory cycles.

Block mode will activate (first
access) or maintain (second
through fifth access) the DSA
PRIORITY signal for all memory
accesses subject to restrictions
found elsewhere in this specifi-
cation. A

HOG., Once the HFPU is started
the scanner will be held until
the HFPU executes a FEND instruc-
tion. DSA PRIORITY signal will
be active from start to finish.

WORD, Scanner will be released
after every DSA data word access.
DSA PRIORITY signal will not be
active,

2-10

TASLE 2.1, FUNCTION/! ST_ATUS REGISTER BIT ASSIGNMENT (Contd)

BIT BIT - :

POSITION [MNEMONIC BIT DEFINITION
These bits are set by:

- - a)v An A to FSR (HFPU inactive) Command

from the CPU with A-bit 02 set to a 1
and/or A-bit 01 set toa 1.
These bits are reset by:
a) An A to FSR (HFPU inactive) Command
"from the CPU with A-bit 02 set to a "0
and/or A-bit 01 set toa O .
b) Progr:m Master Clear.
c) Console Master Clear.

o PCLR PROGRAM MASTER CLEAR

When HFPU receives A-bit 00 set and an

A to FSR Command, it will clear all timing,
reset the unit to an idle state and clear .
211 registers with the exception of the
PCR and the FPAC. The HFPU will ignore
any other A Qits that are set. Bit is

not used on an A/Q Read Command. The

PCLR function is identical in all respects
to a Console Master Clear.

2-11 88951000 02

The HFPU will Externally Reject any attempt to Read/
Write the PCR while the HFPU is active and QR-Station 3
or 4 is used. The HFPU will permit the PCR to be read at
any time with an A/Q Read Command to Q-Station 5. :

e) FPAC = Floating Point Accunmulator

'This register is the main arithmetic register in the
HFPU. It is 32-bits wide for single precision and 48-bits
wide for double precision. (See paragraph 2.,2,1.1, FPAC
format). The FPAC can be accessed via A/Q channel Writes
or Reads to Q-Station 6, 7, 8 or via the DSA by any of sev-
eral command codes. The HFPU will externally reject any
attempt to Write/Read the FPAC via the A/Q channel if the
HFPU is active.

f) SSAR = Stop Save Address Register

This register contains a 16-bit digital number used as
an absolute address for the starting location in memory of
where to save the HFPU registers when a Stor order is issued.
It is addressable only by the A/Q channel. The HFPU will
accept an SSAR write Command at any time if the SSAR Command
is protected. The HFPU will return an external reject to
the CPU if the SSAR write Command is not protected regardless
of the A/Q protect jumper setting.)

In addition to the accessible registers, the HFPU con-
tains several internal registers, the most important of which
is the Look-Ahead Buffer (LABF) which, combined with some
parallelism in the logic, is used to speed sequential oper-
ations. The LABF consists of three 16-bit registers which
are used to hold the. operand for the next floating-noint
‘calculation. This extra register allows operands to be
fetched from memory while a preceeding floating-point opera-
tion on the FPAC is still in process. Additionally, the logic
parallelism alluded to above allows certain HFPU operations
to execute to completion while an FPAC operation is in process.

The effects of this look-ahead feature are discussed fur-
ther in section 2.2.1.8.

88951000 02 | | | 2-12

2,2 Charactéristics

The HFPU recognizes 16 unique command-codes in its CCR.
Command-code 0 is recongnized as a special two-byte command--
code; that is, the next byte is the command to be executed.
This increases the number of available command-codes to 31,

of which 25 are used in the HFPU. These command codes are
listed in table 2.2, After the HFPU is activated, it responds
'to a FLOT calling sequence.

A basic FLOT calling sequence consists of an 1nstruct10n
word consisting of four commands, followed by the operand
addresses (Address Pointers). The left most 4-bit byte is
the first operation; the operand addresses, if they are re-
quired, follow in the same order as the operation bytes, one
word per byte. As many bytes may exist as desired, but the
terminating byte must be a 4, the operation FEND.

Example: ‘ 15 1211 817 413 0 ¢—CPU Bits
CPU P OoP1 op2 orP3 Op4
WORD P+1 AT
LOCATIONS P+2 A2
P+3 Ad
P+4 0P5 - OoP6 4(Fend) |} - - -
P+5 AD
P+6 A6

The OP's are the operation codes; the A's are their
operand addresses. Not all operations require memory access;
in the example, OP3 does not have a corresponding A3.

88951000 02 | o | 2-13

TABLE 2.2. COMMAND-CODE DEFINITION

CODE | 4-BIT . '
MNEMONIC| .= CODE DESCRIPTION

 FLOF 1 FLOAT TO FIXED

The contents of the FPAC are converted

to fixed point and the results stored at
the effective operand address. FPAC Bits
16-31 will contain the fixed-point number.
If positive overflow occurs, FPAC 16-31
will contain 7FFF. 1If negative overflow
occurs, FPAC 16-31 will contain 8000.

The raw, unmultiplied Index value will
be used in effective address formation
for FLOF. . :

FIXF 2 FIXED TO FLOAT

The contents of the effective operand

address are converted to floating point

and the result placed in the FPAC. The

raw, unmultiplied, index wvalue will be

used in effective address formation for
FIXF.

STRI 3 STORE INDEX

Stores the contents of the Index Register
at the effective operand address. Does not
alter the contents of the Index Register.
Indexed address information is inhibited
during the execution of this instruction.

FEND 4 END of calling sequence.

: This operation terminates the calling se-
‘lquence and causes the HFPU to return to an
idle state. Execution of this code sets
bit 6 and clears bit 15 in the FSR. No o-
perand address is needed for this code.

CHMD 5 CHANGE MODE

All operand addresses following this oper-
ation code in the calling sequence are made
relative if the preceding addresses were
absolute and absolute if preceding ad-
dresses were relative. Does not affect

the Index Register value. Sets bit 9 of
the FSR when relative mode address is in
effect. No operand address in needed for
this code.

9-14 88951000 02

TABLE 2.2, COMMAND-CODE DEFINITION (Contd)

CODE
MNEMONIC

Code

4-BIT -

DEFINITION

NIDX

FCOM

FSUB

FMPY

FDIV

FLDD

ADDI

FLST

FADD

88951000 02

6

16

16

16

16

16

NO INDEX :

Clears the Index Register which disables
the indexing of operand addresses. No
operand address is needed for this code.

FLOATING COMPLEMENT

Complements the contents of the FPAC.
NO operand address is needed for this
code.

FLOATING SUBTRACT

The contents found at the effective oper-
and address is subtracted from the con-
tents of the FPAC and the results are
then placed in the FPAC.

FLOATING MULTIPLY

The contents found at *Le effective
operand address is multiplied by the
contents of the FPAC and the results are
placed in the FPAC.

IFLOATING DIVIDE

The contents of the FPAC is divided by
the contents found at the effective oper-
and address and the results are placed

in the FDPAC. i

FLOATING LOAD

‘IThe contents found at the effective

operand address are loaded into the TFPAC.
This must be a normalized floating-point
number.

ADD TO INDEX

‘1Adds the contents of the effective

operand address to the contents of the
Index Register and places the result in
the Index Register. Indexed address
formation is inhibited during the exe-
cution of the instruction.

FLOATING STORE

The contents of the FPAC are stored

at the effective operand address. The
contents of the FPAC are not altered
by this operation.

FLOATING ADD

The contents found at the effective
operand addresses are added to the
contents of the FPAC and the results

are placed in the FPAC.
2-15

TABLE 2.2. COMMAND-CODE DEFINITION (Contd)

CODE
MNEMONIC

4-BIT
CODE

DEFINITION

. INDX:

SPEC

" *CACS

F

16

The contents found at the effective oper-
and address are loaded into the Index Re-

gister. The operand addresses of all sub=-

sequent FLOF, FLDD, FLST, FADD, FSUB, FMPY,
FDIV and FIXF operations will be affected
in the following manner:

a) If FSR bit 8 is clear, the contents
of the Index Register will be multiplied
by 2 when the unit is in single precision
mode and the effective operand address is
being formed. The contents of the Index
register will not be changed.

b) If FSR bit 8 is clear, the contents
of the Index Register will be multiplied
by 3 when the unit is in double precision
mode and the effective operand address is
being formed. The contents of the Index
Register will not be changed.

c) If FSR bit 8 is set, the raw IndekX Re-
gister contents will be added to the base

‘faddress when the effectlve address is

being formed.

d) For the functions FLOF and FIXF, the

raw Index value will always be used.

SPECIAL COIUAND CODE

This code causes the HFPU to recognize the
next byte as a code within the following
Branch (jump) command-code subset. If the
next byte is a "'0", a FEND will be executed.

CONTINUE ANOTHER CALLING SEQUENCE
Starts a new floating-point instruction se-
quence by loading the effective operand

Jaddress into the PCR and then loading the

contents of the effective operand address
into the Command-Code Register (CCR). The
new code execution will start at OP byte
one. Indexed address formation is inhibited
during the execution of this instruction.

2-16

*These command-codes are executed only if the precedlng byte is
a SPEC code.

88951000

02

TABLE 2.2, COMMAND-CODE DEFINITION (Contd)

" CODE 4-BIT - |
MNEMONIC | CODE | DEFINITION

. ®*BRAM 12 ..] BRANCH ACCUMULATOR MINUS

) If the condition is satisfied (FPAC
Negative), the HFPU continues execu-
tion by loading the effective operand
address into the PCR and then loading
the contents of the effective operand
address into the CCR. The new code
execution will start at OP byte one.
Indexed address formation is inhibited
during the execution of this instruc-
tion. If the condition is not satis-
fied, the Program Count Register will
o be incremented by (+1) before the next
. . ' command code is executed.

*BRAZ 3 BRANCH ACCUMULATOR ZERO
- ' If the condition is statisfied (FPAC

. Zero), the HFPU continues execution
by loading the effective operand ad-
dress into the PCR and then loading
the contents of the effective operand
address into the CCR. The new code
execution will start at OP byte one.
Indexed address formation is inhibited
during the execution of this instruc-
tion, If the condition is not satis-
fied, the PCR will be incremented by
(+1) before the next command is exe-
cuted.

BRAN 4 BRANCH ACCUMULATOR NON-ZERO
) If the condition is satisfied (FPAC non-

zero), the HFPU continues execution by
loading the effective operand address
into the PCR and then loading the con-
tents of the effective operand address
into the CCR. The new code execution
‘ will start at OP byte one. Indexed
- address formation is inhibited during
. the execution of this instruction. If

. : the condition is not satisfied, the
.) o PCR will be incremented by (+1) before

. . the next command is executed.

- *BRAP 5 ’ BRANCH ACCUMULATOR POSITIVE

' If the condition is satisfied (FPAC POSI-
TIVE including POSITIVE ZERO), the HFPU
continues execution by loading the effec-
tive operand address into the PCR and
.then loading the contents of the effec-
tive operand address into the CCR. The
new code exccution will start at OP byte
one, Indexed address formation is in-
hibited during the execution of this in-
struction. If the condition is not satis-
ficd, the PCR will be incremented by (+1)
before the next command is executed.

*These command-codes are executed only if the preceding byte is a SPEC. NOTE: Codes
A-F, when preceded by a SPEC code, will be exccuted as FEND,

88951000 02 _ , 2-17

.

e

TABLE 2.2. COMMAND-CODE DEFINITION (Contd)

v

CODE 4-BIT

MNEMON IC | conE DESCRIPTION
*BRIM s BRANCH INDEX REGISTER MINUS

If the condition is satisfied (IR NEGA-
TIVE), the HFPU continues execution by
. : loading the effective operand address
- into the PCR and then loading the con-
tents of the effective operand address
into the CCR. The new code execution
will start at OP byte one. Indexed ad-
dress formation is inhibited during the
execution of this instruction. If the
condition is not satisfied, the PCR will
be incremented by (+1) before the next
command is executed.

*BRIZ 7 BRANCH INDEX REGISTER ZERO
If the condition is satisfied (IR ZERO),
the HFPU continues execution by loading
the effective operand address into the
PCR and then loading the contents of the
effective operand address irto the CCR.
The new code execution will start at OP
byte one. Indexed address formation is
.inhibited during the execution of this
instruction. If the condition is not
satisfied, the PCR will be incremented oo
by (+1) before the next command is exe- '
cuted. ' 9
*BRIN 8 .BRANCH INDEX REGISTER NON-ZERO '
. If the condition is satisfied (IR NON-
ZERO) the HFPU continues execution by
loading the effective operand address
into the PCR and.then loading the con-
tents of the effective operand address
into the CCR. The new code execution
will start at OP byte one. Indexed ad-
dress formation is inhibited during the
execution of this instriction. If the
condition is not satisfied, the PCR will
be incremented by (+1) before the next
command is executed.

BRIP 9 ‘§ BRANCH INDEX REGISTER POSITIVE

If the condition is satisfied (IR POSI-
TIVE), the HFPU continues execution by
loading the effective operand address

into the PCR and then loading the contents
of the effective operand address into

! . the CCR. The new code execution will
start at OP byte one. Indexed address
formation is inhibited during the execu- °
tion of this instruction. If the condi-

tion is not satisfied, the PCR will be
incremented by (+1) before the next com-
mand is executed.

*These command-codes are executed only if the preceding byte is a SPEC, NOTE: Codes
A-F, when preceded by a SPEC code, will be executed as FEND,

2-18 . : N 88951000 02

2.2.1 Command Description

Code 4-bit Brief Description Indexed

Mnemonic Code Addressing
SPEC 0 "Special" (2-byte) command Code N/A
FLOF -1 FLOAT to FIXED conversion X1
FIXF 2 FIXED to Floating Conversion . X1
STRI 3 STORE Index value - NO
FEND 4 END of calling sequence ' : N/A
CHMD 5 Change Relative Address Mode - N/A
NIDX 6 No Index | N/A
FCOM 7 Floating Complement N/A
FSUB 8 Floating Subtract . X1,2,3
FMPY 9 Floating Multiply ' X1,2,3
FDIV A Floating Divide X1,2,3
- FLDD B Floating Load X1,2,3
ADDI C Add to Index : NO
FLST D Floating Store x1,2,3
FADD E Floating Add ' X1,2,3
INDX F Load Index value NO
*FEND # End of Calling Sequence T N/A
*CACS 1 Continue Another Calling Sequence _ANO
*BRAM 2 Branch if Accumulator Minus . ' NO
*BRAZ 3 Branch if Accumulator Zero . NO
*BRAN 4 Branch if Accumulator Non-zero NO
*BRAP 5 Branch if Accumulator Positive. NO
*BRIM 6 Branch if Index Minus NO
*BRIZ 7 Branch if Index Zero . NO
*BRIN 8 Branch if Index Non-zero ~ NO
*BRIP 9 Brénch if Index Positive NO
*FEND A-F End of Calling Sequences N/A

*These command codes are executed only if the preceding byte is
a SPEC code.

~

The Operation codes listed above which do not require an

address have N/A in the indexed addressing column. All
other operation codes require the presence of an address word.

88951000 02 2-19

For the special command code operations, the effective address
itself is the argument for the function (the effective address
is loaded into the PCR). For all other functions, including
INDX, ADDI and STRI, the effective address points to a
memory_ location (or locations) which contains or will
contain the argument.
The address for all functions can be either absolute
or relative as determined by the state of the Relative ‘lode
bit (bit 9) in the FSR. 1If bit 9 is clear, addresses are
absolute. If bit 9 is set, addresses are Relative to the
location in which the address-pointer word resides (to the
PCR). 1If relative, the PCR will be added to the Address
‘Pointer word in the process of forming the effective address.
For the functions which specify "X1" or '"X1,2,3" in the
indexed addressing column, the index value will also be added
to the address-pointer word in forming the effective address.
The index value may be multiplied by 1,2 or 3 before the
addition depending on the state of the double-precision bit in
the FSR (bit 7) for the functions with "X1,2,3". For the func-
tions with "X1" in the indexed addressing column, the index times
one is always used.

2-20
88951000 01

2.2.1.1 Operand Addressing. All operand addresses used
within the HFPU will conform to one of the following methods:

a) Absolute (16-bits)

b) Relative (16-bits with Bit 15 = Sign)

c) Indexed (16-bits)
Value in Index register will be multiplied by 2 for
single-precision operations and by 3 for double pre-
cision operation if FSR bit 8 is clear.

d) Relative Indexed. (2 x Index or 3 x Index;
-1 x Index if FSR bit 8 is set)

Figure 2.3 depicts the address methods.

All address arithmetic is 16-bit, ones-complement arithmetic.
It is identical with the 16-bit arlthmetlc of the System 17
CPU.

OPERATION NOTES:

If FSR bit 9 is set, relative-addressing mode is in effect.

If FSR bit 9 is clear, absolute addressing is in effect. Absolute
addressing means that the pointer word is in an absolute address;
conversely, relative-addressing means that the pointer word is a
16-bit signed displacement from the current PCR.

If FSR bit 8 is clear, the contents of the index register will
be multiplied by 2 or by 3 and added to the argument address
(pointer word) to obtain the final address. If FSR bit 8 is
set, the contents of the index register will be added to the
argument address to obtain the final address.

88951000 02 ' 2-21

Abbreviations

1. ABSOLUTE
LOCATION

010016

QlOl16

020016

020116

020216

2. RELATIVE

010016

010116

030116

030216‘

030216
‘3. INDEXED

010016

0101}6

040016

040116

2-22

-

EA
(PCR)
(IR)
PA
(IR)

0

CONTENTS

B44416

020016

16

XXXX16

16

(IR) =

B44416

020016

XXXX
XXXX, o

XXXX16

where (IR) =

Figure 2. 3.

844416

020016

16
XXXX16

100, S

Effective address :
Program Counter Register contents
Index Register Contents

Pointer Address

- Command-Code (FLDD

FEND., . . .)

Pointer Address (ABS)
Effective Address = PA

= 20016

Operand

Operand

‘Operand (D.P. Only)

Command-Code (FLDD,
FEND. . . .)

Pointer Address (Rel)
EA = PA + (PCR) =
200 + 101 = 30116
Operand

Operand

Operand (D.P. Only)

.P. mode and FSR Bit 8 clear

Command-Code (FLDD,
FEND)

Pointer Address
EA = PA +2%(IR) =
200 + 200 = 400

16
Operand

Operand

Addressing Examples (Sheet 1 of 3)

88951000 01

7. Indexed where (IR) = 100 and Command Code is FLOF or FIXF
FSR bit 8 set or clear.

100 . = 1444 = 'Command Code (FLOF,
16 _ 16 FEND e o)
10116 ’ = 20016 = Pointer address

EA = PA + (IR) =
200 + 100 = 300

300.,. - XXXX

16 FLOF Result will be

stored here.

16

8. Indexed where (IR) = 100, and FSR bit 8 is set (compare with
#3 and #4 above))

(FIDD, FEND . . .)

10016 = 344416 =
101 = 0200 = Pointer address
16 16 EA = PA + (IR) =
200 + 100 = 30016
"30016 =_ XXXX16 = Operand
XXXX16 = Operand

9. Relative Indexed where (IR) = 100 and FSR bit 8 is set
(compare with #5 and #6 above) :

100 ' = B444 = (FLDD, FEND . . .)

16 16
10116 = 020016 = Pointer Address
- EA = PA + (PCR) + (IR)
' : = 200+101+100 = 401
16
4OZ'L16 | =_ XXXXIG- = Operand
40216 f .XXXXIG = Operand
40316 : = -XXXX16 = Operand

10. Special Command Code, Relative mode

100, o 0100, = (SPEC, CACS . . .)
10116 ’ .020016 = Pointer Address
| : EA = PA + (PCR) = 200 +
: 101 = 301
301 = " XXXX = Next command Code word.

16 : ‘ 16 Beginning of next

calling scquence.
Figure 2.3. Addressing Examples (Sheet 2 of 3)

88951000 02 2-23

12. _Index command (ABS)

10016 = F40016 = (INDX, FEND'. « o)
101 o= 0200 = Pointer Address

16 | 16 EA = DA
.20016_ = XXXX, 6 = Operand to be loaded

into the IR

13. Index command (REL)

_10016 . = F40016 = (INDX, FEND . . .)
10116 = FFFD = Pointer Address
. EA = PA + (PCR;
: ' = FFFD + 101 = OOFF
. 16
QOFF16 = XXXXl6 = Operand to be loaded
. . : ' into the 1IR.

NOTE: This last example demonstrates the effect of the memory
wrap-around in a "backwards'" relative pointer address.
It is simply a case of an end-around carry resulting
from the use of one's complement arithmetic.

Figure 2.3. Addressing Examples (Sheet 3 of 3)

2-24 ' 88951000 02

2.2.1.2 Operand/FPAc Format. Floating-point numbers used in
the arithmetic operations have the following format. '

' : Normalization Point
- 15 14 7l6 0¢CPU Bits

High Segment S EB EXP Mantissa High

(Final Op. '

_ ‘ADR) _ 0 1 8 9 . 15¢FPAC Bits

15 0&CPU Bits

Low Segment i Mantissa Low

(Final OP

ADR+1) 16 . : 31 FPAC Bits
15 0&CPU Bits

Extended Low | Mantissa Extended Low ‘ GUARD |

Segment -

32 47 48 S51¢FPAC

(Final Op Bits

ADR+2) .
Where:

S = Sign bit of the entire floating-point number. When the
Sign bit = 0 , the floating-point number is positive.
When the Sign bit = 1 , the floating-point number is
negative.

EB = Exponent Sign Bit which is biased by an exclusive OR
with 8016‘- 4

Seven binary bits which represent the magnitude of
the exponent. (-127 <EXP <127).

EXP

Mantissa = Normalized magnitude of the floating-point number
which is a fractional coefficient. - A normalized positive
coefficient has the form (.IXXX...X&'V) where S = 0 .

A normalized negative coefficient h 8%the form
(.OXXXX...XLOW) where S = "1",

NOTES: 1) A single-precision number has the expressable number
range: _ _

_2127(1_2 23)'i X 52127 (1-2 23)

2) A double-precision number has the expressable number

range: _ _
2127 (1.5739) x (2127(15-39)

88951000 02 | 2-25

' 2-26

3) When the floating-point number is negatlve the
entire FPAC including the Exponent is in ONE'S
complement form,

- 4) A floating-point zero is represented as all bits
set to 0 . It is the only legal unnormalized
, number, :

5) The floating-point number should always be nor-
malized for any floating-point arlthmetlc opera-
tion including FLST and FLDD.

The use of unnormalized numbers as inputs to any
floating-point operation except (FIXF) will gen-
erally result in incorrect answers. Teh result of
FADD, FSUB, FMPY, FDIV and FIXF will always be a
normallzed number or zero.

6) The extended low segment of the operand is used for
double-precision mode.

7) If the exponent of the result of a FADD, FSUB, FMPY
or FDIV is larger than 127, exponent overflow has
occurred and the answer is set to the largest value
having the same sign as the actual result (7FFF,FFFF,
FFFF or 8000, 0000, 0000 in D.P.; 7FFF, FFFF or
8000, 0000 in S.P.). If the exponent of the result
is less than -127, exponent underflow has cccurred
and the result is set to floating-point zero. -~

8) If the divisor for an FDIV is unnormalized or equal
to zero, a divide fault has occurred and the result
is set to the largest value hav1ng the same sign as
the dividend.

2.2.1.3 Rounding. Internally, the FPAC has four extra bits

as shown in the diagram of the preceding section. These extra
bits on the least significant end (FPAC bits 48 to 51) are
referred to as a guard digit and are used to increase the accuracy
of the calculations by providing an arithmetic residue which is
used to round the final result.

The rounding algorithm used is of the non-convergent,
away-from-zero type. That is, if the number is positive and the
residue is greater than or equal to one-half the value of the
least significant bit (1lsb), then one 1lsb is added to the result.
If the number is negative and the residue is less than one-half
the 1lsb, then one 1lsb is subtracted from the result (one's comple-
ment arithmetic assumed).

After rounding, the bits of the guard digit are set equal
to the sign bit i.e., equal to zero ‘in one's complement arithmetic.

Note that in single precision, bits 32 to 51 of the FPAC
act as the guard digit. : :

88951000 02

2.2.1.4 Fix Float Number Conversions. The integer (fixed)
number-ermat is: .

1514 0 A-Reg Bits

Bl Magnitude 4]

’t—sSign of integer number

Where: S=0 positive number

S=1

negative number with the magnitude in ONE's
complement form.

The Float-to-Fixed operation is performed by executing
command code 1 which converts the floating-point number in the
FPAC register to an integer and transfers the integer to the
effective operand address. FPAC 31-16 will also contain the
result. .
The Fixed-to-Float operation is performed by executing
command-code 2 which loads an integer number into the HFPU, begins
a cocnversion process, and upon completion, places the floating-
point number into the FPAC. This number may be retrieved in
one of two ways.

1) A status of the HFPU FPAC register by succe351ve A/Q Read
Comnands to Q-stations 7,8 and 9.

2) Executing a FLST instruction to a specified memory location.

2.2.1.5 HFPU Initialition Sequences. There are three methods
used to initialize the HFPU. These methods are:
1) Cold Start - Single precision (S.P.) :

2) Cold Start - Double precision (D.P.)
3) Protected Re-Start - Single or Double precision.

A Cold Start (S.P.) Command is used when first entering
the FLOT subroutine, and a Cold Start (D.P.) Command is used
when first entering the DFLOT subroutine, Each type of Cold
Start uses a unique Q-Station Address. . A Re-Start Command is
‘used when re-entering either the FLOT or DFLOT subroutine after
the HFPU has been interrupted by a stop order command for service
of a higher priority routine. Refer to figure 2-1 as an aid for
the following description of events:

A Cold Start Sequence is initiated by the following
sequence of events:

a) The FSR is loaded from the CPU A-register by an A/Q Write
Command to Q-station O if a special set-up such as a change
in scanner access mode is desired. The format used for the
FSR is depicted in figure 2.2 and the FSR bit definition is
listed in table 2.1, . If no special set-up is required,

the starting point for a Cold Start.

88951000 02 : . 2-27

b) The PCR is loaded from the CPU A-register by an A/Q
V¥rite Command to Q-Station 3 or 4, If the A/Q Write Command
is to Q-Station 3, the unit will start in single-precision
mode and will clear bit 7 in the FSR, If the A/Q Write
Commnand is to Q-Station 4, the unit will start in double-~
precision mode and will set bit 7 in the ¥SR. Either Cold
Start Command will clear the Index Register and clear FSR
bits 3, 6, 9, 10, and 11. The address transferred to the

PCR is the address of the first command-code instruction
word, When the HFPU accepts the starting address word, it goes
into an active state (Bit 15 of the FSR is set) and loads the
CCR via the DSA channel. The unit will remain in an active
state until it either executes a FEND instruction, receives
the Stop order command described in §.2.1.6, or receives an
A/Q Write Command to Q-Station O with A-Bit 00 = 1 (PCLR).

. 2,2,1.6 HFPU Stop/Restart Sequence. A Protected Stop order
may be issued at any time while the HFPU is in an active or
inactive state. The HFPU will reject an unprotected Stop
Command regardless of the setting of the HFPU A/Q Protect Bit
-Jumper plug. A Stop Order is accomplished by the following
sequence of events. '

a) An A/Q VWrite Command to Q-Station 9 where the CPU A-regi-
ster is transferred to the SSAR as the Stop and Save address.

b) As soon as the HFPU completes its present arithmetic
operation, it will use the contents of the SSAR as the ABSOLUTE
address in CPU memory of where to start storing the contents

of the following registers.
SSAR = (FSR)

SSAR+1

i

(CCR)*
SSAR+2 = (IR) : .
SSAR+3 = (PCR)

SSAR+4 = (FPAC, BITS00 - 15)
SSAR+5 = (FPAC, BITS16 - 31)
SSAR+6 = (FPAC, BlTS32 - 47)

~ %*The CCR format will reflect the current status of the Command
Code Word, that is, bits 15 - 12 will contain the next command
code to be executed. Example:

1) CCR read from CPU [OP1 | OP2 | 03 | OP4 |

2) 'CCR stored on STOP command |OP2 | OP3 | OP4 | opr1]

¢) When the HFPU has completed the storing of the last register,
it will go inactive and clear bit 15 of the FSR.

NOTE: A Stop Order issued while ‘the HrPU is inactive will cause
the lIFPU to go active (Bit 15 of FSR set) for the time rcquich
to store the six registers. The HFPU will rgturn to the inactive

2-28 . 88951000 02

state (Bit 15 of FSR'clear) upon completion. The stored FSR

will reflect the state of the HFPU when the stop order was
issued (Bit 15 clear), .

After a Stop Order is issued, the HFPU may be restart-
.ed from the point of interruption by a protected RE-start
command. The HFPU will reject an unprotected Re-start
command regardless of the setting of the HFPU A/Q Protect
Bit jumper plug. A Re-start command is an A/Q Write com-
mand to Q-station 5 where the contents of the CPU A-register
is transferred to the SSAR and the following events take place:

a) The HFPU goes to an active state and bit 15 of the FSR
is set,. ’

b) The HFPU uses the SSAR contents as an absolute starting
address of where to start the retrieval of the registers

saved on the receipt of the Stop order in the following manner.

SSAR Restore FSR

SSAR+1 Restore CCR
SSAR+2 Restore IR
SSAR+3 Restore PCR
SSAR+4 Restore FPAC (Bits 00-15)
SSAR+5 Restore FPAC (bits 16-31)
SSAR+6 Restore FPAC (Bits 32-47)

c) When the HFPU registers are restored, the unit will pick-

up where it left off and continue to execute command-codes
if the active bit in the restored FSR (Bit 13) is set, 1If.

this bit is not set, the HFPU will go to a not active or idle

state,.

2.2.1.7 Function/Status Register Definitions

The function/status register definitions are shown in figure 2.2 and detailed in table 2.1.

88951000 02

2-29

2.2.1.8. Hardware Execution Times. Table 2.3 lists the worst
case execution times for the functions performed by the

HFPU. This table also displays the improvement in execution
times that can be expected in "typical" usage due to the pre-
sence of the hardware look-ahead feature. This feature allows
parallelism to take place within the HFPU. This parallelism
can occur because of the ability of the HFPU to perform non-
FPAC operations (Fetch of Command-Code words, Index Register
operations, Fetch of operands to Look-Ahead-Buffer etc.) while
an operation involving the FPAC is in process (FADD, FSUB,
FMPY, FDIV, FLDD, FIXF, or FCOM).

Three columns in table 2.3 illustrate the effects of
this overlap. The column labeled "Overlappable Component"
shows the portion of the FPAC functions that can operate in
parallel with other non-FPAC functions. The next column, labeled
"Irreducible Component'’, shows the portion of the execution
time that cannot execute in parallel with any other functions.
For the FPAC functions, this is the time required to transfer
the Look-Ahead-Buffer contents into the Floating Point Arith-
metic unit and to start the FPAC portion of the function. For
the functions which require the contents of the FPAC (FIXF, FLST,

- BRAM BRAZ, BRAN, BRAF, FEND), this is typically the total execu-
tion time for that function, since it must wait for the FPAC
portion of the preceding function to complete before it can
begin. The Irreducible portion of the FLST function consists
only of the time required to store the FPAC since it can
overlap the. fetch of the address with the preceding FPAC
function. The next column, labeled "Overlapping Component",
shows the portion of any function that can operate in
parallel with the FPAC protion of the preceding function. For
the non-FPAC functions (Command-Code Fetch, SPEC, STRI, CH'D,
NIDX, ADDI, INDX, CACS, BRIM, BRIZ, BRIN, and BRIP) this is
the total execution time for that function. For the FPAC func-
tions this is the time required to fetch the argument address
and to transfer the argument from memory to the Look-Ahead-Buffer.

The next three columns of the table show the amount
of DSA channel activity that will occur during any given func-
tion. The latency columns show the amount of added time that
will be incurred due to delays in obtaining DSA channel access.

v -In most cases these latencies are incurred during the
overlapping component of the function and thus will not add
appreciably to the overall execution time of a given calling
sequence.

. The final two columns show the typical effective execu-
tion time that can be achieved if full advantage is taken of
the overlap. These times are generally the sum of the overlappable
component plus the irreducible component. The two exceptions
are FLDD and FIXF where the apparent time is shown equal to the
total time. These two functions ignore the previous contents of
the FPAC and thus it is unlikely that they would be overlapped
with a preceding FPAC function.

Figure 2.4 shows several example execution time compu-
tations. The execution time for a given function equals the irre-
ducible component plus the overlappable component plus that por-
tion of the overlapping component that is not overlapped.

2-30 ~ ' 88951000 02

%0 00015688

- 1€-¢

TABLE 2.3. EXECUTION TIMES (worst case operands) (440ns Tac) (600ns‘cycle)

JApparent Time with|

FUNCTION Total 900ns Overlappable | Irreducible | Overlapping DSA Latencies
Time. Add Component Component Component CYCLES |Word Block “typical" overlap
(Hog Mode) Mode Mode (600ns) (900ns)
Command- 1.25usec .30usec Ousec Ousec 1.25usec 1 1 1 Ousec 0
Code fetch -
SPEC .20 0 0 -0 .20 0 0 0 0 .0
FLOF 4.84 .30 0 4.84 0 2 1 1 4.84 5.14
FIXF 6.77 .60 4.47 .20 2,11 2 2 1* 6.77 7.37
STRI 2.11 .60 0 -0 2.11 2 2 1+ 0 0
FEN .20 0 0 .20 (1] 0 0 0 .20 .29
CIrip . .20 0 0 © 0 .20 0 0 0 0 0
NIDX .20 0 o 0 .20 ‘ 0 0 0 0 n
FCO .71 0 .51 .20 0 0 0 0 .71 .71
FSUB(SP) 8.76 .90 5.46 .59 2.7 3 3 1+ 6.05 6.05
. | FSUB(DP) 11.12 1.20 7.22 .59 3.31 4 4 1* 7.81 ©7.81
FUPY(SP) 11.62 .90 8.32 .59 2.71 - 3 3 1* 8.91 8.91
1 ELPY(DP) 15.74 1.20 11.84 .59 3.31 4 4 1* 12.43 12.43
FDIV(SP) 12.06 .90 8.76 .59 2.71 3 3 1¢ 9.35 9.35
FDIV(DP) 16.18 1.20 12.28 .59 3.31 4 4 1* 12.87 12.87
FLDD(SP)~ 4.03 .90 .73 .59 2.7 3 3 1 4.03 4.93
FLDD(DP) 4.63 1.20 .73 .59 3.31 4 4 1+ 4.63 5.83
ALDI 2.11 .60 0 0 2.11 2 2 1* 0 0
FLST(SP) 2.71 .90 (1] 1.65 1.06 3 3 1* 1.65 2.25
FLST(DP) 3.31 1.20 0 2.25 1.06 4 4 2% 2.25 3.15
FADD(SP) 8.76 .90 6.46 .59 2.71 3 3 2¢ 6.05 6.05
FADD(DP) - 11.12 1.20 7.22 .59 3.31 4 4 1* 7.81 7.81
1DX 2.11 .60 0 0 2.11 2 2 1+* 0 (]
CACS 1.06 .30 o . 0 1.06 1 1 1 0 n
BRAM 1.45 .30 0 1.45 0 1 1 1 1.45 1.45
BRAZ 1.45 .30 0 1.45 0 1 1 1 1.45 1.45
BRAN 1.45 .30 0 1.45 (1] 1 1 1 1.45 1.45
BRAP 1.45 .30 0 1.45 0 1 1 1 1.45 1.45
RRIM 1.45 .30 0 0 - 11.45 1 1 1+ o - 0o .
BRIZ 1.45 .30 0 0 1.45 1 1l 1# 0 9
BRIN 1.45 .30) 0 1.45 1 1 1+ 0 b
BRIP 1.45 .30 "0 0 1.45 1 1 1* 0 0
BRAx(false) .39 0 0 .39 0 .0 0o 0 .39 .39
BRIx(false) .39 0 0 0 .39 o 0 0 0 2
STOP . 5.24 2.10 0 5.24 0 7 7 1 5.24 7.34
RESTART 6.35 2.10 0 6.35 0 7 7 1 6.35 8.45

*one fewer latency required if first command in a newly fetched Command-Code word.

Latency

Latency figures include typicsl scanner delay (300ns) plus observed*rac degrudation

= .74 to 1.32usec (600ns)

(no Refresh)’

= .85 to 1.G8usec (900ns) (no Refresh)

duo to DSA TTL expander (220ns).

Single Precision assumed (600ns) BLOCK mode

a) fORTRAN expression =B+C*D

Calling Sequence

BY9ED (FLDD, FMPY, FADD, FLST)
D Address of D
<C> Address of C
 Address of B
<A> Address of A
4000 (FEND, - - - =)
Function Time Latencies Comments
Fetch Command Code 1.25 1 Total time no overlap
FLDD 4.63 0 "I Total time no overlap
FMPY 10.89 1 Tot~1l less the over-
' lappable of FLDD
FADD 6.05 0* Total less the over-
" lapping of FADD
FLST 2.25 1 Irreducible Component
Fetch C.C. 1.25 1 No overlap
FEND : .20 0 No overlap
26 .52usec 1 latencies
*L,atency overlaps preceding function

b) ~FORTRAN Expression A(I) = B(J)+C(K)*D(L)

Calling Sequence

FBF9 (INDX, FLDD, INDX, FMPY)
<L> address of L
" <D> address of array D
_ <K> ‘address of K
<C> address of array C
FE¥D (INDX, FADD, INDX, FLST)
<J> address of J
’ address of array B
<A>. address of array A

4000 (FEND)

Figure 2.4. Execution Time Examples (Sheet 1 of 2)

2-32

88951000 02

[Function Time Latencies Comments
Fetch CC 1.25 1 No overlap
INDX 2.11 o No overlap
FLDD 4.63 1 No overlap .
INDX 1,38 1 Total-overlappable of
FLDD
FMPY 11.62 1 FLDD overlappable used up
Fetch CC 0 0% overlapped, 2.57 used’
' 5.75 left
INDX 0o o overlapped, 2.11 used
‘ 3.64 left
FADD 6.44 ox* partially overlapped 4.03
N used* -0.39 1eft
FMPY overlappable used up
.39 added to FADD
INDX 0 o* overlapped 3.43 used™t
, 2.03 left
FLST 2.60 ct partially overlapped 2.38
. usedt -.35 left
FADD overlappable used up
Fetch CC 1.25 1 .35 added to FLST
FEND .20 0
31.48 usec 5 latencies

*latency oveflapped

plus the latency (1.32usec).

+ used time includes the overlapping component of the function
It is the amount of the preced-
ing functions overlappable component used up by the current

function. o

88951000 02

Figure 2.4. Execution Time Examples (Sheet 2 of 2)

2-33.

INSTALLATION | 3
e

3.1 LOGIC CARD INSTALLATION

3.1.1 Inspection. Examine the cards closely for evidence
of damage in shipping, broken or missing components, gouges
in board coating, etc. Record all discrepancies.

3.1.2 Installation of Jumpers. A rectangular coordinate
system is used for locating components on the logic cards.
Facing the card from the component side with the backplane
connector at the bottom, the integrated circuits appear to be
laid out in four horizontal rows with 16 chips in each row.
These rows are labeled A, B, C and D going from top to bottom.
The columns of integrated circuits are labeled from 1 to 16
going from left to right. Labels on the rows and columns
appear at the left and top edges of the board, respectively.
Thus the chip at the upper left-hand corner is labeled Al

and the chip at the lower right-hand corner is labeled D16.

88951000 02 3-1

Passive components are given unique locating labels with
respect to this grid. Components which lie to the left
and/or above an integrated circuit grid position are given
a designator that consists of that grid position, a letter
(R = resistor, C = capacitor, S = strap or Jumper)‘and,a'
consecutive numbér (if there is more than one component of
the same type within a given grid position). The consecu-
.tive numbers are assigned in the order: top, left to right;
side, left to right. For the purposes of labeling passive
components near the bottom edge of the board, the E row
'0of chips is assumed to exist.

Example.
o o ¢
HNO;)
C3 C4V{,U'Jm C5
0 v v
O O 0O O)
S © o O o
D5C-1 - %
=
D3 1* q D4 q: I:E'
e 9] o
< 0 n
A A a (=]
E4R E5C

All components are identified relative to this grid in the

schematics and parts lists so that direct references to the
physical boards can be made without the need to refer to a

topology or illustrated parts list.

3.1.2.1 DSA.Board. There are five jumper (strap) locations
on the DSA board. A single jumper in one of these locations
is used to determine the position of HFPU in the DSA scanner
chain. The jumper locations and their functions are given in
table 3.1 : :

TABLE 3.1, DSA Scanner Position Select Jumpers

Jumper Location
Scanner Position on DSA Board
Middle - . Cl1s-2 -
First . , C12s-2
Last Cl1is-1
Only : ., Cl2s8-1
Out Cl1s-3

For correct operation of the DSA scanner, one jumper should be
installed in one of the locations specified above in order to
select the desired DSA Scanner position for the HFPU.

3-2’ ' ' - 88951000 02

3.1.2.,2 A/Q Board. Jumpers are provided on the A/Q
board to select the HFPU equipment address and to place

. the HFPU in the Protected Mode . An Additional jumper

has been provided for use with HFPU units which do not

have the double-precision option. This jumper forces the
HFPU to respond to all commands as if they were single-
precision commands. Table 3.2 summarizes the jumpers on the A/Q Board.

TABLE 3.2. A/Q EQUIPMENT ADDRESS, PROTECT MODE, AND
SINGLE-PRECISION DEVICE JUMPERS

Function
Mnemonic Location |Function Description
Ql0 El14S-1 MSB of equipment address
select. Install jumper
for a "1" in the Address.
Q9 ' E14S-2 Next MSB of equipment
address. .
Q8 E14S-3 Next MSB of equipment
address.
Q7 E13S LSB of equipment address.
PTCT B12S Protected Mode jumber.
- Install for Protected Mode -
Remove for Unprotected
‘ Mode .
SPDEV B13S Single-Precision Device.
Install if single precision;
i.e., if double-precision
option is not present.

88951000 02 | o 3-3

TABLE 3.3. HEXADECIMAL CODE FOR EQUIPMENT SELECT

Jumper Location [E14S-1 | E14S-2 | E14S-3 | E13S
Hexadecimal 0 0 0 0 0
Code™ (Q10-Q 1 0 0 0] 1 Note:
2 0 0 1 0. a 1 1in the
3 0 0 1 .1 binary code
4 0o 1l 0 0O 1indicates the
5 0 1 -0 1 Dpresence of a
6 o 1l 1l 0 Jjumper.
7 (o} 1l 1l 1
8 1l 0 0 o
9 1l 0 0 1l
A 1 0o 1 0]
B 1l o} 1 1
C 1l 1 0o o
D 1 1 0 1l
E 1 1l 1 0
F 1l 1 1 1
3.1.2.3 SPALU Board. One jumper is provided on this board
to accommodate the double-precision option. Its function is

to insure the correct propogation of carry through the man-
tissa arithmetic logic when the double-precision option is not
selected. A second jumper is provided fcr end-around shifting
when the double-precision option is not installed,

Jumper Location Function

D9S, El4S . _ These jumpers must be
‘ installed if the double-
precision option is not
present. If the double-
precision option is
installed, remove these
Jumpers. \

3.1.3 Board Installation. The boards should be inserted in
the standard or alternate slots as indicated in table 1.1.
The power in the CPU and the expansion chassis should be off.

Examine the expansion chassis backplane for possible
bent pins and straighten them. -Insert and remove each card
in sequence checking the backplane for bent pins afterwards.

- Carefully straighten any resulting bent pins and
insert all the cards.

88951000 02

3.2 Mother-Board Installation and Removal.
3.2.1 Preparation.

3.2,1.1 The Backplane, Visually inspect the area of the
.backplane opposite to the slots used for the HFPU logic
cards for bent pins., A pin misalignment of approximately
the width of the backplane pin itself (25 mils) can be
tolerated by the vertical receptacles on the mother board..

3.2.1.2 The Mother Boards. Viewing each mother board from
the side and top edge, sight down the rows of receptacles
looking for ones that may have been bent out of alignment.
A receptacle misalignment of approximately one-half the
width of the opening at the top of the receptacle (25 mils)
can be tolerated. The receptacles can be straightened u51ng
a needle-nosed pliers.

The examination and straightening (as required)
should be carried out for all rows as viewed from both
the side and the top edge of each mother-board card.

3.2.2 Installation. Begin with the boards that cover the
high numbered pins on the P2 (bottom) row of connectors.
Orient each board with the lc¢ttering up and the receptacles
pointing towards the backplane (away from you). Carefully a-
lign two corner receptacles with the backplane pins on
the slot chosen for one of the outside logic cards (ADDR, slot
23, or EXP & TIM, slot 15 in the standard configuration).
Start the receptacles onto the backplane pins alcng the
chosen column to a depth of about 1/32 inch. Gently push
‘against and oscillate the board until it drops down onto
all of the pins.

Once the board haSInMEdwnhauthepmshtwﬂl
be parallel to the backplane and the pins will have entered
approximately 1/16 inch into the receptacles), it needs to be
pushed down .onto the pins to make electrical contact. The
fibre-glass epoxy board will flex slightly so that it is not
necessary to overcome the insertion force of all the recep-
tacles at once. Holding the board in place with one hand,
force one corner down about 1/32". Work around the board
forcing each corner down a little further until the pins can
Just be seen through the holes in the bottom of the recep-
tacles. Proper mating can be checked at this point by exam-
ining each receptacle to see the backplane pin within it.

After installing the bottom boards proceed to the
next pair of boards (P2 low numbered plns) and then to the
Pl Boards. .

3.2&3‘ Removal. Attach the removal tool to the vertical edges
of the mother board to be removed, Alternately 1ift the right
side and then the left side of the board and slowly "walk'" the
mother-board off of the backplane pins. The Pl boards may re-
quire some manual assistance in order to get the top and bottom
rows of pins started moving. CAUTION: Use one hand on the tool
and the other hand to restrict movement, so that the last step-
does not result in an abrupt, large movement, since this will
sometimes cause bent plus if one end (or side) releases before
the other, -

88951000 02 - 35

THEORY OF OPERATION 4
4.1 HARDVARE ORGANIZATION. -

4.1.1 Device Structure. The Hardware Floating-Point Unit
is structured into two semi-independent sections. The first,
the interface and Master Control, handles the communication
with the System 17 CPU and the interpretation of the wvarious
op-codes and interface commands. Additionally, it issues
commands to the second section within the HFPU, the Hardware
Floating-Point section. This Floating-Point section performs
all of the arithmetic operations on the FPAC. The Master
Control section is contained primarily on three boards, the
ADDR, CSA, and A/Q boards. A small portion of the master -
control section is contained on the DPALU board. The second
section of the unit, the hardware floating-point device is
contained on four boards, the DPALU, SPALU, FPHMP, and EXP
and TIMING. Each of these two independent sections, the
Master Control and Floating Point, is controlled by its own
independent Micro-Processor. The structure of the micro-
processcrs is described more fully in section 4.1.2,

Figure 4.1 shows in more detail the internal structure
of the elements that make up the HFPU and the data paths that
interconnect them. The "backbone" of the device is a single,
16-bit, bidirectional bus (DATA O to 15). This bus is inter-
faced via a transceiver on the DSA and A/Q boards to the re-
spective I/0 busses of the System 17 CPU. All data transfers
within the HFPU take place in 16-bit words on this bus. The
structure of each of the boards that makes up the HFPU is
described more fully in section 4.1.3.

4,1,2 The Micro-Processor concept. As was mentioned above
the HFPU contains two micro-processors. The first of these
the Master Micro-Processor, is shown as three blocks labeled
Master Control A, Master Control B, and Micro-Processor
Address, on the DSA, A/Q, and DPALU boards in figure 6.1.

The second micro-processor, the Floating-Point Micro-Processor,
is shown as the block labeled FPH-CONTROL on the FPHMP board
in figure 6.1. The function of these micro-processors is to
control the sequence in which data transfers take place within
the HFPU. The heart of a micro-processor is its control store,
in this case READ ONLY MEMORY (ROM). The outputs of the

ROM are applied via instruction register to the data path
controllers within the device and also to the clocks that are
used to enter data into the device registers. For each step
of an algorithm the bits in the ROM are programmed to gener-
ate the desired data transfer that is required by the algor-
ithm. Sequence control is achieved by utilizing a group

of bits in the ROM to specify the next ROM address that is to
be accessed. This allows the micro-processor to execute es-
sentially random sequences of micro instructions, which allows
it to perform the sequences required by the algorithms. It
also gives the micro-processor a great deal of flexibility

in that the changing of an algorithm will require only the
change in a few locations in the READ ONLY MEMORY. Additional
_power is given to the micro-processor sequencing by providing

:
8951000 02 4-1

4

1'% oamS1g

syied ®led NdAH

60 000TS688

[SSAR, LABF

4X16 lfem

ADDRESS | DSA A/Q
Preparation z l
DATA 9 to 15 ! .l
<) : i
¥ ¥ ¥) A
TAR PCR IR]
Counter | |Counter! |Counter l Y <«
/
N lv
N 7 v
& ' : l FSR
IR*1,2,3 T [Fse_] 't BITS 0,
IRALU BITS 1, | 4,7,10
. TRANSCEIVER | DITS 1. irransceiver |7:7:20:
—t 1 [51 YZ———__J l 8,9
TDMUX PIMUX
‘ | MASTER |[SYSTEM
: : CONTROL " Bl| TIMING
R A MASTER
- CONTROL A
[CATE JIALU (A+B,A) § g
!
AN pe o >
B
) l ; %
/N
| &Roe |
N
a
RS \(

ssEyaayv

¢0 000T<688

*1°% oandig

syped v NdAH (penuijuoo)

g-¥

DPALU

SPALU
!
DATA @ to 15 N . i
t Yy
A \I DATA § to 12 EE;% { % .EfxE
- — l 1 T L ! h <
(_BDREG ' BREG | FPAC i MDREG BREG FPAC
ngegister SHFT REG SHFT REG ' Register SHFT REG ‘SHFT REG
| |
h% I l { l
‘ 2:1 Rounding { 2:1 MAX
MBMUX Constants (MBMUX Constants
= L
_ —e | L
CCR B A B A
A, MALU MALU
| |
L

Micro-Processor
Address

Bits 35 to 51 of the Mantissa

Bits ¢ and 9 to 34 of the Mantissa

TPHMP I EXP and TIMING

DATA § to 15 S DATA 7 to 14

syed B1ed NdJH (penunuoo) [y oansii

¢0 000TS688

| Thata 150 |
l ’ &oé} r'“"“"“
. N
: , C MDREG constants FPAC '
I ‘ ' Register Register
FPH . FSR [FPH
CONTROL . {[TIMING A ‘ ’
BITS 5,12,13,14l I .
B A
' EALU -
| ammmiol_.L
| i @ |
| 0
l Bits 1 to 8 of the
" Exponent
l MAGNITUDE SHIFT
Comparator COUNTER

. : | . :
it with the ability to modify next instruction address
based on external conditions. This allows the micro-
processor to execute algorithms containing conditional
steps. , : o

. Figures 4.2 and 4.3 are block diagrams of the two micro-
processors in the HFPU. Refer to section 4.1.4 for detailec
description of the micro-instruction formats for each of the
micro-processors. _ . ,

The Floating-Point Micro-Processor, shown on figure
4,2, utilizes a Read Only Memory consisting of 32 words of
forty bits. The outputs of the Read Only Memory are applied
to the inputs of the instruction register. Data is entered
into the instruction register on the trailing edge of a clock
signal INSCLK. For the Floating-Point Micro-Processor this
clock signal has a period of 220 nanoseconds, thus this micro-
processor is capable of executing one micro-instruction every
220 nanoseconds. The instruction register helps to speed the
operation of the !icro-processor by holding the current micro-

~instruction while the next instruction is being fetched from
the Read Only Memory. The Floating-Point Micro-Processor is
started in a two step process by the master processor. Wi.en
the Floating-Point !Micro-Processor is stopped, the Next In-
struction Address out of its instruction register is disabled.
The Master Micro-Processor then can force the address of the
first micro-instruction onto the Next Instruction Address Bus.
This allows the first micro-instruction to come out of the
Read Only Memory. The Master then forces an INSCLK which loads
this instruction into the instruction register and starts the
timing of the Floating-Point Micro-Processor running to gen
erate its own clock signals to advance it from instruction to
instruction. As was mentioned above the outputs of the micro-
processor (outputs of the instructure register) fall into two
classes. The first class consists of essentially unbuffered
outputs which are used to control the gating in the data paths.
In the Floating-Point Micro-Processor the main function of
these signals is to control the data multiplexers and the
function performed by the ALU. The second important class

of instruction register outputs consists of clock signals
to the various registers within the floating-point arithmetic
section. As the diagram shows, these clocks are conditioned
by INSCLK so that they occur in coincidence with the entry
of new micro-instructions into the instruction register. The
phasing of these clocks is arranged so that the entry of the
data occurs on the same edge as entry of the new instruction
into the instruction register. "Thus in effect, each INSCLK

, enters a new micro-instruction to the instruction register and
and completes the execution (by entering data to destination
registers) of the preceding micro-instruction.

The Floating-Point Micro-Processor has one additional
class of instruction register outputs which are used to control
he operation of its hard-wired algorithms., Certain of the
operations performed by the Floating-Point Micro-Processor are
too fast to be controlled directly by the micro-processor with
its cycle time of 220 nanoseconds. These operations, mantissa

~multiply, divide, shift and normalize, are controlled by the
floating-point hardware timing which resides on the EXP and

88951000 02

4-5

Y

STARTING ADDRESS
from Master
Micro-Processor
39 _ 0
9 READ ONLY MEMCRY Y
) L, ,
31 32X40 4 AppR <
~— /\
.JUMP . ADDER
DECODE
\INSCLK CK INSTRUCTION
7 1 REGISTER
NEXT
INSTRUCTION
ADDRESS
4 VA
Clocks to ‘Data Path Commands to
Expand Controls to Fast Eardwired
Mantissa ALU Logic Algorithms’
Registers .
Figure 4.2. Floating Point Micro-processor Block Diagram
4-6

\ ‘ 88951000 02

v

MIRCK:

Initialization Address-
from A/Q Interface
SPEC’
Flip/Flop
39 0 N J
Read Only Memory < M ENB
64 X 40 » SAR < CCR
6 Addr
A |L32xs |
N
V4 <)
Jump 1.SB ~
Decode
Y
FPMP
Start Address
CK Instruction Register A .
)\ v
To Floating-
- A Point Micro-Processor
9 . .
2 w}] 2 Next
= s : .- Instruc-
K 5 Q tion
(<] Qe + (&)
E j-_; = g o Address
= ad 3] 7
<8 v S B Execute
2] o o I Next
a N Vv 0 B -
:E. 7] v
-
g <
<
<
~
:
Figure 4,3, Master Micro-processor Block Diagram

88951000 02

TIMING board.. When the micro-processor detects a command

to one of the hard-wired algorthms, it stops its INSCLK

and allows the hardware timing to ‘execute the algorithm to
completion. When the hardware timing is finished it restarts
the micro-processor INSCLK so that micro-program etecutlon

may preceed.

‘ F1na11y the instruction register contains a HALT

bit which is used to stop micro-processor action when the end
of the algorithm is reached. When the Floating Point Micro-
processor stops its timing, it informs the Master Micro-
Processor that it is avallable to perform a new floating-point
function and disables its Next Instruction Address so that the
Master Micro-Processor can start it executing another algorithm.

Figure 4.3 is a block diagram of the Master Micro~

Processor. This micro- processor is similar in structure to
the Floating-Point Micro-Processor. Its ROM consists of

64 words of 40 bits each. Its instruction register clock is
called MIRCLK and has a period of approximately 200 nanoseconds.
The outputs of the Master Micro-Processor instruction register
can also be broken into basically two classes of signals’;, those
which control data paths, and those which clock data into
destination registers. The Master Micro-Processor instruction
register provides control and clock signals to the DSA inter-
face, the Look Ahead Buffer and Address Preparation ALU, the
FSR and CCR and to the Floating-Point input register and output
gating. The Next Instruction Address logic of this micro-
processor is some what more complicated than that of the
Floating-Point Micro-Processor. The next instruction address
can come from one of three sources. There is an external
starting ocddress source which comes from the A/Q interface and
allows the System 17 CPU to start the Master Micro-Processor
executing on one of four functions (COLD START, STOP, RESTART
and A/Q LOAD FPAC). Secondly there is the normal internal
source of next instruction addresses which comes from the ROM.
Thirdly, there is a source of next instruction addresses

which allows the Master Micro-Processor to interpret the Op-
Codes contained in the CURRENT COMMAND REGISTER (CCR). The
output of the CCR is applied to the address input-of a small
ROM. This ROM is referred to as the STARTING ADDRESS ROM (SAR).
. When the micro-program is ready to begin execution of a Command-
Code in the CCR, it turns on the Execute.Next bit in its in--
.Struction register. This bit disables the next instruction
address output of the instruction register and enables the out-
put of the SAR onto the Next Instruction Address Bus. This
causes the Master Micro-Processor to begin execution of the
micro-instruction sequence corresponding to the new Command-Code.
When the SAR is enabled, five bits of the Next Instruction
Address Bus are recorded in the FPMP Starting Address Buffer
so that they may be used by the Master Micro-Processor to start
the Floating Point Micro-Processor running. Thus the starting
addresses for both micro-processors for each Command-Code are
interlocked, and the micro-programmer must write the micro-
code carefully to insure that the two micro-processors will

be correctly started. The Master Micro-Processor uses the

4-8 , | 88951000

02

Floating Point Micro-Processor starting address to start the
-Floating Point Micro-Processor running at the appropriate

point in Master Micro-Proccessors sequence. As with the
Floating Point Micro-Processor, there are several circumstances
in which the Master Micro-Processor will stop its MIRCLK in order
to wait for completion of some external event. When a DSA
memory cycle is requested by the DSA interface control outputs
of the Master Micro-Processor instruction register, the Master
Micro-Processor timing will stop and wait for the receipt of
the DSA RESUME signal. RESUME forces MIRCLK which restarts

the micro-processor timing. The Master !Micro-Processor will
also stop its timing when it is ready to start a new Floating-
Point Processor operation and the Floating-Point Micro-Pro-
cessor is still in the process of executing a preceding command.
As with the Floating-Point Micro-Processor the Master Micro-
Processor also has a HALT bit. This bit is used to stop
Master Micro-Processor execution upon decode of FEND Command-
Code and also upon completion of a STOP A/Q command execution.

4.1.3 The programmable elements. Fundamental to the under-
standing of the operation of a micro-processor is a detailed
knowledge of the elements that it controls. This section gives
an overview of these elements within the HFPU on a board-by-
board basis in order to give the background necessary for the under-
standing of the detailed description of the micro-instruction
set which is follows in section 4.1.4.

a. Address Preparation. This board contains the basic
arithmetic for all of the address operations performed by the
HFPU. It contains the externally accessable registers, the
PCR and the IR. 1In addition, it also contains a TEMNPORARV
ADDRESS REGISTER (TAR) which is used for holding the address
of memory arguments. The Master Micro-Processor has the ability
to load and increment TAR and PCR and to load and clear the IR.
The ARITHMETIC LOGIC. UNIT (ALU) labeled IR*1,2,3 in figure 4.1
is used to perform multiplication of the index times 1, 2 or 3.
The output of the IR is applied directly to the A input of the
IRALU and is rotated left one position (multiplied by 2) before
being applied to the B input to the IRALU. To multiply the IR
by 1, the Master Micro-Processor sets this ALU to gate the A
input through to its output. To multiply the IR by 2 the
Master Micro-Processor sets this ALU to select the B input to
its output. To multiply the IR by 3, the Master Micro-Processor
sets this ALU to add the A and B inputs together and apply the
result to its outputs. The outputs of the PCR and IRALU are
applied to a 2:1 multiplexer called the PIMUX. This multiplexer
performs two functions. It is used to select the register to be
read, whether PCR or IR, in an A/Q READ operation. Secondly,
it selects the register that is to be added to argument address
through the main ALU of the address arithmetic section. A
second 2:1 multiplexer, the TDMUX, is.used to select the source
of the input to the A side of the main ALU. To load an absolute
address into one of the three registers of the address logic,:

. the TDMUX is set to select the DATA 29 to 15 innut and the main
ALU is set to gate its A input to its output. To load a reclative
address into TAR, the TDMUX is set to select the DATA 0 to 15

~input, the PIMUX is set to select its PCR input and to apply

. that to the B input of the main ALU, and the main ALU is sect

to add its A and B inputs together apply that to its output.
88951000 02 . . 4-9

To utilize an absolute or relative address that has been
loaded into TAR, the TDMUX is set to select its TAR input,
the PIMUX is set to select its IRALU input, the main ALU
is set to add its A and B inputs and apply that to its
outputs, and the output of the main ALU is driven to the

-DSA address bus via the ADDR GATE. If the address re-

quired is not to be indexed, the main ALU will be set to

select its A input. To advance the address through se-

quential locations, the TAR counter is 1ncremented by the
Master “1cro’Processor

The Address Preparation Board also contalns the STOP
and SAVE ADDRESS REGISTER (SSAR) and the LOOK AHEAD BUFFER
(LABF). These registers are contained in a single 4-word
by 16-bit memory. he SSAR occupies location O in this memory
and the portions of the LABF corresponding to FPAC bits O to

15, 16 to 31, and 32 to 47 reside in words 1,2 and 3 respectively.'

The Master Micro-Processor has the ability to read, and write
the locations within this memory.

b. DSA BOARD. The elements under the control of the
Master Micro-Processor on the DSA board are bits 1,2, 3, 6, 8,
and 9 of the FSR and the DSA interface. The micro-processor
can load the FSR from DATA C to 15 and read the FSR onto the
DATA 0 to 15. Addtionally, it has the ability to set FSR bit
6, the FEND bit. The micro-processor controls the DSA interface
by requesting memory cycles as required and controlling the
direction of transfer, whether read or write. Additionally,
it has the ability to request consecutive memory cycles and to
control the release of the DSA scanner in BLOCK MODE. The DSA
interface itself controls the operation of the DSA transceiver |
which passes data between the DSA data bus and the HFPU internal
DATA 0 to 15 lines. ;

c. A/Q BOARD. On this board the only element under the
direct contrel of the Master Micro-Processor is the FSR (bits O
4, 7, 10, 11 and 15). The micro-processor has the ability to
set bits 4,7 and 15 (DBPM, PROTECT, ACTIVE) and to clear bit
15, the ACTIVE BIT. Additionally, the micro-processor controls
the incrementing and clearing of bits 10 and 11, the Operand
Byte Count (OPBC).

The A transceiver is under the control of the A/Q inter-

‘face which also resides on this board. The A/Q interface

essentially controls the Master Micro-Processor by supplying it
with starting micro-program addresses when A/Q commands which
require Master Micro-Processor action are received.

d. DPALU BOARD. The major function of this board is
to provide the double precision extension to the mantissa arith-
metic for floating-point operations. It does contain the CUR-
RENT COMMAND REGISTER which is under the control of Master Micro-
Processor. The Master Micro-Processor has the ability to load
this register from DATA O to 15, to shift it left by 4 places
as each command code is executed and to read the -contents-
back onto DATA O to 15 for transm1581on back to the System 17
memory in a STOP command.

Note that the structure of the mantissa arlthmetlc sec-
tion contained on the DPALU board and the SPALU board are es-
sentially identical.

4-10 ‘ ' 88951000

02

. The input to the mantissa arithmetic section is called
the MULTIPLICAND/DIVISOR REGISTER (MDREG). This register
can be loaded in three sections, corrcsponding to FPAC
bits 0 to 15, 16 to 31, and 32 to 47, by the master micro-
processor. The Floating Point Micro-Processor controls the-
2:1 multiplexer (MDMUX) to select either the MDREG or the
BREG to the B input .to the MANTISSA ARITHMETIC LOGIC UNIT
(MALU). The FPAC is applied directly to the A input of the
MALU. The Floating-Point Micro-Processor has the ability to
direct the MALU to perform 8 different functions, A (ARITHME-
TIC), A-1, A(logical), A complement, A+B, A-B, B, and B com-
plement. The bulk of these functions are self-explanatory
with two exceptions. The A (logical) function simply passes
the A input of the MALU to its outputs. The A(ARITHMETIC)
function checks the A input to the MALU for negative Q
before passing it to the outputs. If the input is negative
P it will be converted into positive §. The FPAC and the
BREG are universal shift registers. The Floating-Point Micro-
Processor has the ability to load these registers, shift them
left, or shift them right. To perform an FLDD function for
example, the Master Micro-Processor would load the argument
fetched from memory into the MDREG. The Floating Point Micro-
Processor would then set the MDMUX to select the MDREG to the
B input of the MALU, it would set the MALU to the "B" mode and
would load the output of the MALU into the FPAC. To eliminate
negative @, the Floating-Point Micro-Processor then sets the
MALU to the A (arithmetic) mode and again loads the outputs of
the MALU into the FPAC. When the Floating-Point Micro-Processor:
is stopped, the MALU is left in the A (arithmetic) mode: Thus
the output of the FPAC is being applied to the GATE which is
used by the Master Micro-Processor to read the FPAC, onto the
DATA O to 15 lines. :

e. SPALU BOARD. This board consists almost entirely
of mantissa arithmetic logic that is essentially identical in
structure to that described above with respect to the DPALU
board. The SPALU board contains bits 0 and bits 9 to 34 of the
mantissa. Thus it contains the entire single-precision mantissa
pPlus 4 bits of the double-precision extension. When used in
single precision, these 4 bits behave as a guard digit. The
DPALU board contains the low 12 bits of the double-precision
.eXtension of the mantissa plus 4 extra bits of guard digit.
Figure 4.4 shows schematically the arrangement of these bits
within the mantissa logic. Note that in single precision bits
32 to 51 are loaded with sign bits thus effectively filling
them with true O's (l's complement arithmetic). In double
precision only bits 48 to 51 of the mantissa are set equal to
the sign. Figure 4.4 also illustrates shift conventions that
apply within the mantissa arithmetic section. Note that with
one exceptions all right shifting of both of the FPAC and the
BREG is arithmetic i.e., the sign bit is shifted from bit O to
9 and also into bit O on a right shift. The one exception is
that during the mantissa multiply portion of FMPY, the output
of the special sign holding latch (SFAN) is shifted into Bit 9
of the FPAC, The FPAC is also shifted left arithmetically. It
is rotated left with the sign bit going into the least significant
bit. In'an HFPU that is not equipped with the double-precision
option, the sign bit of the FPAC is routed by a jumper into
bit position 35 instead of bit position 51. The FPAC is shifted
right during the exponent alignment portion of FADD and FSUB

88951000 02 4-11

FPAC Mantissa

-

09

31

3235 36 _47 47 51
:) - |+DP
: — 4SSSS |¢sp
S SSSS |-¢- |SSSS SSSS SsSsS3
Mul- '
atigly%:l > ST
prUx v On SPALU Board F On DPALU Board
m .
> : 3
SFA?
FPAC Exponent
-2-1 1 8
S{ Si8
On EXP & Timing Board
BREG MANTISSA
09 31 32 35 36 47 48 51
: SSSS DI
S ¢ — s
sSsss SSSS SSSS SSSS| SSSSi<%
On SPALU Board On DPALU Board
. ' SFAN
.
N N
' Serial Quotient Bit
Figure 4.4, Arithmetic Shifting h
4-12 88951000 02

and during the mantissa multiply portion of FMPY. It is shiftcd
left during normalization and during the mantissa divide portion
of FDIV, The FPAC holds the product in multiply and the divi-
dend in divide. The BREG is shifted right during the exponent
alignment portions of FADD and FSUB and during the mantissa
multiply portion of FMPY where it holds the multiplier. It is
shifted left only during the mantissa division portion of FDTV
where it is used to assemble the quotient of the result. 1In
double precision, the quotient bits are shifted into the BREG

at bit position 51. 1In single precision they are input at

bit position 35 and the output of a special sign holding

latch called SFAN is input at bit 51 to insure that a true 51ng1e-
precision result is generated.

One additional controllable feature of the SPALU is
the block in figure 4.1 1labeled MAX constants. The Floating
Point Micro-Processor has the ability to drive several numer-
ical constants to the B input of the MALU. These constants
are used in the rounding algorithm and also to force the
mantissa of the result in the case of exponent overflow and
FLOF overflow.

f. FPHMP BOARD. This contains the Floating Point
Micro-Processor which is labeled FPH CONTROL i. figure 4.1.

The only programmable element on this board is the FSR (bits
S5, 12, 13 and 14). The Floating Point Micro-Processor has

the ability set bits 12, 13 and 14 (UNFL, DVFL, OVFL) if one
of these conditions occurred in the course of a floating-point
alculation. The Master Micro-Processor has the ability to
read and load the FSR from the DATA 0 to 15 lines.

g. EXP and TIMING. This board contains the basic
timing for the Floating Point icro-Processor and its hard-
wired functions. The programmable elements on this board
constitute the exponent arithmetic of the HFPU. As in the
mantissa ALU sections the MDREG is the input register to the
exponent ALU. This register is loaded by the Master Micro-
Processor. The Exclusive OR (EOR) gates on the input to the
MDREG are used to remove the effects of the mantissa sign on
the exponent of the floating-point number. If DATA bit 15
is true, high, then DATA bits 7 to 14 will be inverted before
being load into MDREG. If DATA 15 is false, low, then DATA
bits 7 to 14 will be applied uninverted to the inputs of MDREG,
The output of the MDREG is under the control of the Floating
Point Micro-Processor so that either the contents of the
MDREG may be applied to the B input of the EALU or if the regis-
ter is disabled, a 0 can be applied to the B input of the EALU,.
The FPAC exponent register is applied directly to the A input
of the EALU. The EALU can perform a total of 4 functions, A
(arithmetic), A-B,A+B,B. The output of the EALU is applied to
a second EOR gate which is used to perform two functions. When
the Floating Point Micro-Processor is stopped and the master
Micro-Processor wishes to read the contents of the FPAC exponent,
the sign of the mantissa is applied to this EOR function so
that the exponent can be complemented accordingly. For internal

. exponent operations which require the magnitude of the dif-
ference between two exponents, the Floating Point Micro-Pro-
cessor can use the sign bit out of the EALU to control this EOR
function, thus applying the magnitude of the EALU output to the
input of the Shift Counter. The Shift Counter is used during

88951000 02 : v _ 4-13

the exponent alignment portions of FADD and FSUB, The Mag-
nitude Comparator is used in the same function and also in
FLOF to inhibit shifting when the number of positions to be
shifted as represented by the contents of the Shift Counter
is larger than the length of the mantissa registers. The box
labeled constants in figure 4.1 is used to supply a source
of the maximum positive and maximum negative exponent for
overflow and underflow and also to supply several exponent
values required during FLOF and FIXF.

4,1.4 The Micro-Instruction Set. This section describes

in detail the functions performed by the two micro-processors
in the HFPU. The instruction format for the Master Micro-
"Processor appears in Figure 4.5 and the format for the
Floating Point Micro-Processor appears in Figure 4.6. These
figures display in a schematic form the functions performed
by each bit of the READ ONLY MEMORIES of the two micro-pro-
cessors. Tables 4.1 and 4.2 define in greater detail the mnemonics used in

figui'es 4.5 and 4.6, respectively.

4-14 o 88951000 02

20 00016688

ST-¥

Figure 4.5.

Master Micro Processor Instruction Format

39° 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24
S SCNR'| ADDR | 1/P [ADDR | T/D LOAD ARCLK |PCRCLK [SA [INDX | BUFFER
DSA CLR | BENB AElB PCR, TAR, IR
- V ! — \—_\/\—/
— @=PCR p=DATA v .
000 = nul 1=IR 1=TAR 00 = nul, 000 = nul
000 = READ 01 = PCRL 001 = W FPAC1
010 = READ;REL (Disable ADDR BENB if not 10 = TARL 010 = W FPAC2
) } REL at Resume) 1 = IRCLK 011 = W FPAC3
011 = WRITE &-(::::;;(rorce ADDR AENB=1 and 100 = R SSAR
100 = RD, SHLT,CC : T/D=p at Resume) 101 = R FPAC1
101 = RD,SHLT, 110 = R FPAC2
110 = RD, SHLT,REL 111 = R FPAC3
111 = WR,SHLT,CC
123 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
BUFFER [GROUP 1 FSR GROUP FPH FPII GROUP |- CTRL FPH | SPINH EXEC
‘ : GROUP WAIT
- A N ——e TSN ——— i T — v ~—.
000N= IT> " 000 = nul " 000 = nul~ 00 = nul .inhibit _ 00 = nul
001 = ADATA 001 = SET A (FSR 15) 001 = CLK1l, 01 = FSTART SCNHLT 01 = EXECNXT
010 = FSRRD 010 = SET P (FSR 4) - 2,3 10 = SPEC cc IF SP
011 = CCRRD 011 = SET A&P 010 = CLK2 11 = TRUE ' CLK3 10 = HALT
100 = CHMD (comp FSR9) 100 = SET DBPM (FSR7) 0l1 = CLK3 inhibit of : 11 = EXECNXT
101 = IRCLR 101 = CLR A 100 = DOUT1 PCRCLKSCNRCLR
110 = FSRCLK 110 = SET F (FSR6),SET 101 = DOUT2 and EXEC
: DBPM 110 = DOUT3 '
111 = CCRCLK(CLR 111 = SET F,CLR A 111 = nul
OPCNT)
7 6 5 4_3 2 1 0
Pump Condition | Address of Next Instruction]
- SAR7 SAR6 SARp _ Condition
v 0 0 0 T BRAM
00 = nul 0 1 0 | BRAZ
01 = INACTV 1 0 0 | DRAP
10 = SP N 1 1 0 | BRAN
11 .= CONDENB > 0) 1 | BRIM
0 1 1 | BRIZ
' 1 0 1 | BRIP
1 1 1 | BRIN

9T-%

60 000TS688

g llDEL?“A'I .

JUMP Displacement

Address of Next Instruction
”ADDR'I

L

1
i

13

Figure 4.6, Floating-Point Micro Processor Instruction Format

39 |, 38 37 36 - 35 34 33 32 31 30 29 28 27 26 25 24
Mantissa ALU MANT.TALU FSUB EXPONENT IBCLK [ACLK1[ACLK2 ACLK3,4| Mantissa [EACLX |HALT
. Invert Invert | ALD | Mode Cont].
“000 = A,Arithmetic = nul 00 = A,Arithmetic 00 = nul
-001 = A-1- 01 = MACgH 01 = A-B - 01 = RIGHT
010 = A,Logical 10 = MD@H 10 = A+B 10 = LEFT
=011 = A 11 = MB@H 11 =B 11 = LOAD
100 = A+B .
=101 = A-B
“110 = B-
-111 = B
-~ 23 22 21 20 19 18 17 16 15 .14 13 , 12 11 10, 9 8
Mantissa B Side | Expohent | EBENB | Load |Pick |-|{Inhibits | Jump'Condition Hardware '
B Side Shift|Enable
- ! Count L . i . 1
S——— — N —— A~ ———— S)
000 = ZERO 00 = ZERO Switch 00 = nul 000 = nul - 000 = nul
001 = M/DENB 01l =1 Clocks . 01 = DP In- 001 = ETB 001 = MPY
010 = BLNB 10 = F from hibit 010 = UNF/OUF 010 = DIV
011 = FXMAX 11 = 17 A to B ACLK3 011 = MA=B 011 = SHIFT.
100 = FLMAX) NRM'D NRM'D=1 if pick 10 = PICK SET . 100 = ZOUND 100 = NORM
101 = ROUND———) _/ SP |SB32 | SB33_ F/F set Inhibit 101 = EGT 101 = nul
110 = FIX DP [SB48 | SB49 . EACLK 110 = nul 110 = nul
111 = FLZERO 11.= NRMD Irn- 111 = nul 111 = nul
. hibit ’
, ACLK1-3 &
EACLK
7 6 S 4 3 2 . 1 0

TABLE 4.1.

MASTER MICRO-PROCESSOR INSTRUCTION FORMAT

BIT
POSITIONS

VALUE

MNEMONIC

DESCRIPTION

| 39,38,37

88951000 02

001

010

011

DSA

READ

READ, REL

WRITE

These bits, if not equal to 0, are
used to command the DSA interface
to perform DSA memory acceSs cycles.
Seven different types of cycles can
be performed.

Commands DSA Interface to perform
a single read-from-memory cycle.

Commands. the DSA Interface to perform
a read-from-memory cycle and controls
the address preparation board to per-
form the addition of PCR to the in-
coming address before it is loaded
into TAR. To function correctly bits

1 35,34 (described below) must be a

0 and a 1 respectively, thus se-
lecting the PIMUX to the PCR and en-
abling its output to the B side of
the main ALU on the address prepara-
tion board. This micro-instruction
code actually functions by disabling
bit 35 (ADDR BEND) while the DSA RE-
SUME signal.is true if the RELATIVE
MODE bit mode in the FSR is not set.
Thus, if Relative Mode is not set,
the DSA data will pass through the
address ALU into TAR. If the RELA-
TIVE Mode bit is set, the DSA data
will be added to the contents of
the PCR before being loaded into TAR.

This code directs the DSA Interface

to perform a single memory write
cycle to System 17 memory.

4-17

4-18

TABLE 4.1. MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT

POSITIONS

VALUE

MNEMONIC

"DESCRIPTION

39.38,37
(Contd)

36

35

34

33

32

100

101

110

111

'RD, SHLT, CC

READ, SHLT

RD, SHLT,
REL

WR,SHLT
cC

SCNRCLR

ADDR BENB

11/P

ADDR AENB

T/D

IPCR to be selected.

This code directs the DSA Interface to
perform consecutive memory read cvcles.
In this mode the DSA Interface will
generate a second DSA REQUEST sic..al
upon the receipt of the DSA RESUME
signal, thus causing the interface

to steal consecutive memory cvcles.
The CC mnemonic indicates the request
for consecutive cycles., The ‘HOST
mnemonic indicates that the scanner
will remain halted for the duration of
of the consecutive cycles.

This code requests a DSA read from mem-
ory cycle and directs the DSA .inter-
face to keep the scanner halted
following the cycle.

This code requests a DSA read from
memory cycle and allows the relative
addressing calculations to take place
as was described above for code 010
(READ,REL). The scanner remains
halted following the memory cycle.

This code recuests consscutive DSA
Write memory cycles. The scanner
remains halted during the memory
cycles.

A 1 in this bit position directs
DSA Interface to release the scanner.

A 1 in this bit position enables
the PIMUX output to the B input of
the main ALU. Note that this bit
can be disabled during DSA Resume
if the code in bits 37, 38, and 39
is 010 (READ, REL) or 110 (RD, SHLT,
REL).

This bit drives the select control on
the PIMUX. A O in this bit causes the
A 1 in this bit
causes the IR to be selected.

A 1 in this bit position causes the
output of the TDMUX to be applied to
the A input of the main ALU on the
address preparation board.

This drives the select control on the
TDMUX. A O in this bit selects the

DATA O to 15 input and a 1 in this bit

selects the TAR input,. 88951000 02

TABLE 4.1, MASTER MICRO—PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE DESCRIPTIOV
POSITIOVS)
131,30 . LOAD The two bits in this field are used

_ to. select 1 of the thrée address re-
- _ gisters on the address board for

: loading., If one of the registers is
selected, then bit 33 (ADDR AENB)
will be forced to a 1 and bit 32 .
(T/D) will be forced to a O during
the DSA Resume signal. This. combi-
nation has the effect of enabling
DATA 0 'to 15 into the A side of the
main ALU thus allowing the informa-
tion on the DATA bus to pass through
the ALU to the selected destlnatlon

register.
0l PCRL This code enables the PCR load con-
trol. ’
01 TARL Tar Load enable.
11 IRCLK Load the IR. Causes a clock signal
: to the IR.
29 - TARCLK A 1 in this bit causes a clock sig-

nal to be sent to TAR during MIRCLX,.
If bits 31 and 30 are not equal to
10 then this clock will cause TAR
to be incremented. If bits 31 and
30 are equal to 10 then this clock
will cause TAR to be loaded from
the output of the main ALU on the
address board.

28 PCRCLK A 1 in this bit position causes a

' ’ clock to be sent to the PCR. 1If
bits 31 and 30 are not equal to Ol
then PCR will be incremented. If
bits 31 and 30 are equal to 01 then
the PCR will be loaded from the out-
'put of the main ALU.

27 SA Select A . A1l in this bit causes
the main ALU on the address board

to select its A input for presenta-
tion to its output. A O in this bit
directs the main ALU to add its A
and B inputs together for presenta-
tion to its output. This bit allows
data on the A side of the ALU to pass
through to the inputs to the regis-
ters or to the DSA Address bus with-
out regard to the data that may be
present on the 3 input to the ALU.

88951000 02 -~ . | 4-19

TABLE 4.1.

MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT
POSITION

VALUE

‘.INE\IO NIC

DESCRIPTION

26

25,24,23

22,21,20

001

010
011

100
101
110

111

001

010

INDX

BUFFER

WFPAC1

WFPAC2
WFPAC3

RSSAR
RFPAC1

RFPAC2

JRFPAC3

GROUP 1
ADATA

FSRRD

A 1 in this bit enables the mu1t1p11-
cation of the IR by 2 in single pre-
cision or by 3 in double precision.
This is performed by setting the IRALU
to gate its B input to its outnut in
single precision and by setting it to
add its A and B inputs together in
double precision. If the INDX bit is
equal to O then the IRALU is set to
select the A input, thus passing the
IR through without multiplication.

Codes on these three bits are used to
read and write the locations within the
4-word by 16-bit memory (the Look Ahead
Buffer and the SSAR) on the address
board.

Write ihe contents of DATA O to 15
into word number 1 of the memory, the
portion of the LABF that corresponds
to FPAC bits 0 to 15.

Write into word 2 of the memory, the
portion of the LABF that correspocnd
to FPAC bits 16 to 31.

Write into memory word 3, the portion
of the LABF that correspond to FPAC
bits 32 to 47.

Read word 0 of the memory, the SSAR,
onto DATA O to 15.

Read word 1 of memory, LABT bits 0
to 15.

Read word 2 of the memory, LABF bits
15 to 31.

Read word 3 of the memory, LABF bits
32 to 47.

\

Enables the output of the PIMUX on the
address board onto DATA 9 to 15. This
code is used for storing IR and PCR
during a STOP operation.

FSR READ ., Read the contents of
FSR onto DATA 0 to 15.

! 88951000 02

-~

TABLE 4.1. MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

DESCRIPTION

4-21

BIT VALUE | MNEMONIC
POSITIONS ' ‘
22,21, 20 {011 CCRRD Read the contents of the CCR onto
(Contd) : DATA O to 15.

100 CIMD This code is used in the execution

- ' of the CHMD command code. It com-

plements FSR bit 9, the Relative
p ‘| Mode bit. :

101 IRCLR This code is used in the execution
of the NIDX command code, It clears
the IR.

110 FSRCLK Load the FSR from DATA O to 15.-

111 CCRCLK Load the CCR from DATA O to 15 and
clear the operand byte count, OPBC,
bits 10 and 11 of the FSR.

19,18,17 FSR GROUP | These codes are used to set and
clear selected bits in the FSR,

001 SET A Set the Active bit, FSR bit 15.

010 SET P Set FSR bit 4, the Protect Mode
bit.

011 SET A&P Set the Active and the I'rotect bits

' in the FSR.
100 SET DBPM Set.the double-precision mode bit
S in the FSR, bit 7.
101 CLR A Clear the active bit in the FSR.
110 SET F,SET |Set the FIEND bit and the DBPM bit
DBP:i in the FSR.
111 SET F,CLR |Set the FEND bit and clear Active
. A bit in the FSR.
16,15,14 FPH GROUP | The codes in this group are used
to load the input register to the
Floating Point Hardware portion eof
the HFPU and to read the output of
the FPAC.
011 ClIX 1,2,3 | Load the contents of DATA O to 15

into all three sections of the
floating point input register, the
MDREG, simultaneously. This code is
used to load the high word out of the
Look Ahead Buffer into the high and
middlc word of the MDREG and to load
the sign of this word, the sign of

the floating-point number, into the
low word of the MDREG (sign-extension)
if in single-precision mode.

88951000 02

TABLE 4,1, MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE | MNENONIC | DESCRIPTION
POSITION | '

16,15,14|011 CLK 3 Load the low word of the MDREG.

(Contd) L

1100 DOUT1 .| Read the contents of the high word of
- the FPAC (bits 0 to 15) onto DATA

: 1 0 to 15.

101 | DOUT2 Read the middle word of the FPAC.
110 | DOUT3 Read the low word of the FPAC.:
111 NUL Undefined.

13,12 CTRL The codes in this field are used for
~special micro-processor control func-
tions,

01 FSTART This code is used to start the Floating
' Point Micro-Processor running. The
starting address for the Floating Point
Micro-Processor was saved in the FPMP
Start Address Register on the DPALU
board at the time when the Master Micro-
Processor began execution of the

current Command-Code.

10 SPEC This bit is used in the execution of the
SPEC Command-Code. It sets the SPEC
Flip/Flop that appears in figure 4.3.
The output of this flip/flop drives
the most significant bit of the input
address to the SAR. This causes the
starting address for the next Command-
Code to come from locations 16 to 31
within the SAR. The SPEC Flip/Flop is
cleared automatically by the execution
of the next Command-Code.

11 TRUE If the jump condition was specified by
bits 6 and 7 is true, the action of

the following micro-proccesor outpnut bits
will be inhibited; bit 36, SCNRCLR; bit
28, PCRCLK; bits 9 and 8, EXEC. This
bit is used in the execution of the
“branch Command-Codes to allow the incre-
ment of PCR, the release of the scanner
and the execution of the next Command-
Code if the branch condition is false.
It is false used to allow the micro-
processor to jump to the code that
executes a CACS if the jump condition

is true.

4-22 88951000 02

|BIT
POSITIONS

VALUE 'MNEMONIC

DESCRIPTION

11

10

9,8

4-23

01

FPH WAIT

SPINH

EXEC

EXEC NXT
IF SP

be used in either single or double

HFPU is in Single Precision mode.

ROM (SAR).

ing Address Register to form a start-

If this bit i1s set the Master Micro-
Processor will stop the execution
of micro-instructions to wait for
the Floating Point Micro-Processor
to complete its execution. This
bit is used whenever the Master
Micro-Processor needs to start the
Floating Point Micro-Processor run-
ning or when it needs .the result

of a Floating Point Micro-Processor
operation. ’

If this bit is set and the FHPU

is in single-precision mode then
code 011 in bits 16,15 and 14 (CLK3),
and the scanner halt and consecu-
tive cycle portions of bits 39,38
and 37, will be inhibited. This
bit allows the same micro instruc-
tion, the one that fetches the se-
cond word of the argument or the
one that locads the third word of
the argument into the MDREG, to

precision.

The codes in this field are used
for executing the next Ccmmand-Code
and for stopping micro-processor
action.

Execute Next Command-Code if the

The Execute Next function of the
Master Micro-Processor needs some
discussion. When the Execute Next
function comes true, the Master
Micro-Processor inhibits the next
instruction address output of its
instruction register and enables
the output of the Starting Address
The SAR is a ROM that
contains 32 words of 8-bits each.
The least significant four bits

of the input address to this ROl
are the actual Command-Code that

is to be executed. The most sig-
nificant bit of the input address
comes from the SPEC Flip/Flop.

The SAR translates the Current Com-
mand-Code into a starting ROM ad-
dress for the Master Micro-Processor.
The three least-significant bits
cut of the SAR are concatenated
with the two most-significant bits
out of the SAR and loaded into the
Floating Point Micro-Processor Start-

88951000 02

BIT
POSITION

VALUE

LUNEMONIC

DESCRIPTION

9,8
(Contd)

7,6

01

10

01

10

11

88951000 02

EXEC NXT
IF SP

HALT

EXEC INEXT

JUMP CON-
DITION

INACTV

Sp

COND ENB

ing address for the Floating
Point Micro-Processor which can

Ibe used at . a later time by the

Master Micro-Processor.)

This technique allows the starting
address for the next micro-instruction
sequence be applied to the ROY while
the last instruction of the. currcat
sequence is completing execution. Thus
no micro-processor overhead is incurred
in the process of changing from one
micro-instruction sequence to the next.

Master micro-processor halt. Upon
completion of the execution of the
current micro-instruction, the master
micro-processor clock is stopped.
This code is used to stop the micro-
processor after the detection of a
FEND Command-Code and at the comple-
tion of the STOP sequence.

Unconditional Execute Next function.
See EXEC NXT IF SP above.

The codes in this group specify the
type of condition that is to be tested
for a micro-processor skip. If the
condition is found to be true, the
least-significant bi%t of the next in-
struction address will be forced to 1,
thus causing a skip if the next in-
struction address is even. If the jump
condition is false the next instruction
address will not be modified.

In the execution of a RESTART A/OQ Command
this jump condition is used to test the
state of the T'SR that was fetched from
memory. It is used to cause the micro-
processor to execute the next sequential
micro-instruction which is a HALT in-
struction instead of proceeding to
execute the next Command-Code sequence,

This command code causes a skip if the
HFPU is in single-precision mode.

This jump condition is used in the
execution of the BRANCH Command-Codes.
The actual condition to be tested is
determined by bits 7,6 and 0 of the
micrc-processor starting address of
the current Comnand-Code sequence as
saved in the FPMP Starting Address
Repgister. The table on figure 4.5
illustrates the relationship between
these bits and the condition being
tested. g

4-24

TABLE 4.1. MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE
POSITIONS

MNEMONIC

DESCRIPTION

5,4,3,2,

ADDR

These last six bits of the Master
Micro-Processor instruction contain
the address -f the next instruction
to be executed. As was described
above this address can be modified
in two ways. If the jump condition
is true, then the least-signi-
ficant bit of this address, bit O,
will be forced true. If the execute
next Command Code field is true, this
address will be ignored and will be

replaced by the output of the Starting
Address RO\ :

TABLE 4.2, FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT

BIT JVALUE
POSITIOXN

MNEMONIC

DESCRIPTION

39,38,37
oo
001
010
D11

100

101

110

111

88951000 02

SO

Mantissa
ALU

A,Arith-
metic

A,Logical

A+B

-output in logical mode.

The