CDC ${ }^{\circledR}$ HOST COMMUNICATIONS PROCESSOR

2550-2
2552-1
2550-100

GENERAL DESCRIPTION
OPERATION
INSTALLATION
THEORY OF OPERATION
DIAGRAMS
DDLTS AND PROCEDURES
MAINTENANCE
PARTS DATA

Volume 2 of 2

Preliminary Edition

This manual reflects the equipment configurations listed below.
EXPLANATION: Locate the equipment type and series number, as shown on the equipment FCO log, in the list below. Immediately to the right of the series number is an ECO or FCO number. If that number and all of the numbers underneath it match all of the numbers on the equipment FCO log, then this manual accurately reflects the equipment.

EQUIPMENT TYPE	SERIES	WITH FCO'S	COMMENTS
DW108-A DW108-B AA109-A DU106-A GDl22-B GDI22-E XA148-A AT241-B FAl 04-A BE602-A	$\begin{aligned} & 01 \\ & 01 \\ & 01 \\ & 01 \\ & 01 \\ & 01 \\ & 01 \\ & 01 \\ & 01 \& 02 \\ & 01 \end{aligned}$		

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE	REV
Cover	-
Title Page	-
$\begin{gathered} \text { ii thru } \\ \text { xvi } \end{gathered}$	01
1-1	01
$\begin{gathered} 1 A-1 \text { thru } \\ 1 A-5 \end{gathered}$	01
1B-1, 1B-2	01
$\begin{gathered} \text { 1c-1 thru } \\ \text { 1C- } 3 \end{gathered}$	01
2-1	01
$\begin{gathered} 2 A-1 \text { thru } \\ 2 A-7 \end{gathered}$	01
2B-1, 2B-2	01
$\begin{gathered} 2 \mathrm{C}-1 \text { thru } \\ 2 \mathrm{C}-3 \end{gathered}$	01
$\begin{gathered} \text { 2D-1 thru } \\ 2 \mathrm{D}-16 \end{gathered}$	01
3-1	01
$\begin{gathered} 3 A-1 \text { thru } \\ 3 A-19 \end{gathered}$	01
$\begin{gathered} 3 \mathrm{~B}-1 \text { thru } \\ 3 \mathrm{~B}-33 \end{gathered}$	01
4-1	01
$\begin{gathered} 4 \mathrm{~A}-1 \text { thru } \\ 4 \mathrm{~A}-20 \end{gathered}$	01
4B-1, 4B-2	01.
$\begin{gathered} 4 \mathrm{C}-1 \text { thru } \\ 4 \mathrm{C}-5 \end{gathered}$	01
5-1	01
$\begin{gathered} 5 A-1 \text { thru } \\ 5 A-10 \end{gathered}$	01
$5 \mathrm{~B}-1$	01
5C-1	01

PAGE	REV	PAGE	REV
$\begin{gathered} 5 \mathrm{D}-1 \text { thru } \\ 5 \mathrm{D}-6 \end{gathered}$	01		
$\begin{aligned} & \text { 6-1 thru } \\ & 6-142 \end{aligned}$	01		
6A-i	01		
$\begin{gathered} \text { 6A-1 thru } \\ 6 A-49 \end{gathered}$	01		
6B-i	01		
$\begin{gathered} \text { 6B-1 thru } \\ 6 \mathrm{~B}-5 \end{gathered}$	01		
$\begin{gathered} 6 \mathrm{C}-1 \text { thru } \\ 6 \mathrm{C}-13 \end{gathered}$	01		
7-1	01		
$\begin{gathered} 7 A-1 \text { thru } \\ 7 A-4 \end{gathered}$	01		
7B-1	01		
7C-1	01		
8-1	01		
8A-1, 8A-2	01		
, 8B-1.	01		
8C-1	01		
Comment Sheet	-		
Address	-		
Back Cover	-		

This manual comprises volume 2 of the hardware maintenance manual for the CONTROL DATA ${ }^{\circledR}$ 2550-2, 2552-1 and 2550-100 Host Communications Processors (HCPs).

This manual contains extensive installation and checkout procedures for the HCP. A complete set of diagnostic decision logic tables (DDLTs) and test procedures are provided for troubleshooting. Additional information is provided on the repair of all equipments, backpanels and cable assemblies contained in the HCP. This manual is of primary interest to the first contact CDC Customer Engineer (CE).

Volume 1 is the 2550-2 (MOS) Host Communications Processor Hardware Maintenance Manual, Publication No. 74701000. The manual contains an expanded system description and theory of operation with associated logic drawings. Also, the manual contains programming information useful to the diagnostic and hardware support engineers.

The related publications listed below are available through the literature distribution services, Minneapolis, Minnesota.

Publication

2550-2 (MOS) Host Communications Processor - Hardware Reference Manual

2550 Series Host Communications Processor - Site Preparation Manual

2560-1/-2/-3 Synchronous Communications Line Adapters - Hardware Reference and Maintenance Manual

1714 Computer System - Reference Manual
Basic Microprogrammable Processor Hardware Maintenance Manual

Publication Number
74375500

74641200

74700700

60364900
39451400

CW212-A I/O TTY Controller - Hardware	96728900
Maintenance Manual	
DE402-A/l700 Transform with Micromemory - Hardware Maintenance Manual	96728700
AAl09-A/B 1700 Enhanced Processor with	96768600
MOS Memory and Interface - Hardware	
Maintenance Manual	
FAl04-A Tape Cassette Controller -	96711900
Hardware Maintenance Manual	
667l/6676 Emulation Coupler - Hardware Reference/Maintenance Manual (DYl59-A)	60470400

Section Title Page
1.01AGENERAL DESCRIPTION1-1
Microprogrammable Processor, Cabinet, and Maintenance Panel 1A-1
Microprogrammable Processor (2550-2, 2550-100 1A-1
Microprogrammable Processor (2552-1) 1A-2
Equipment Cabinet Configurations 1A-3
2550-2, 2550-100 Configurations. 1A-3
2552-1 Configuration 1A-3
1B Maintenance Panel and Controller. 1B-1
Cassette Tape Transport and Controller. 1C-1
2.0 OPERATION 2-1
2A Processor, Cabinet and Maintenance Panel. 2A-1
Maintenance Panel 2A-3
Maintenance Panel and Controller. 2B-1
Cassette Tape Transport and Controller $2 \mathrm{C}-1$
Operating Procedures. 2D-1
Master Clear. 2D-1
Tape Cassette Autoload. 2D-1
Card Reader Autoload. 2D-1
Host Computer Autoload. 2D-1
Start Processor 2D-1
Stop Processor. 2D-2
FCR Operating Procedures 2D-2
Display FCR Contents 2D-2
Clear Bit in FCR 2D-2
Set Bit in FCR. 2D-3
Change $F C R$ in Hex Digit Mode. 2D-3
Change FCR in Bit Mode. 2D-3
Toggle Upper Indicator $2 \mathrm{D}-3$
Display Register Defined in Display 0 2D-3
Display Register Defined in Display l 2D-4
Load Register Defined in Display 0. 2D-4

CONTENTS (contd)

Section	Title		Page
$\begin{gathered} 6 \mathrm{~A} \\ (\text { contd) } \end{gathered}$	All	-9 Volt Power Supply Check	6A-25
	Al2	-9 Volt Power Supply Replacement	6A-27
	A13	Checking P.D. Box Components	$6 \mathrm{~A}-31$
	Al4	Replacing AC Line Filter	6A-33
	Al5	Checking/Replacing P.D. Box Circuit Breaker.	6A-35
	Al6	Replacing Elapsed Time Meter	6A-36
	Al7	Logic Board Replacement	$6 \mathrm{~A}-37$
	A18	MOS Array Board Replacement.	6A-39
	Al9	Memory Interface Board Replacement	$6 \mathrm{~A}-40$
	A20	MOS Memory Run Parameters.	$6 \mathrm{~A}-42$
	A21	Clearing Memory Parity Errors.	$6 \mathrm{~A}-46$
	A22	Micromemory Run Parameters	$6 \mathrm{~A}-48$
6B	Maintenance Panel, Controller, Interface Cable (Index)		6B-i
	Bl	Maintenance Panel Replacement.	$6 \mathrm{~B}-1$
	B2	Maintenance Panel Controller Replacement.	$6 \mathrm{~B}-2$
	B3	Interface Cable Replacement.	6B-4
6C	Cassette Transport. (Index)		$6 \mathrm{C}-\mathrm{i}$
	Cl	Loading a Cassette Cartridge	$6 \mathrm{C}-1$
	C2	Unloading a Cassette Cartridge	6c-3
	C3	Tape Transport Lubrication	6C-5
	C4	Tape Transport Cleaning.	6C-7
	C5	Removing a Tape Wrap .	6C-9
	C6	Cassette Tape Controller Replacement	$6 \mathrm{C}-10$
	C7	Replacing Cassette Tape Transport.	$6 \mathrm{C}-11$
	C8	Cassette Power Supply Voltages .	$6 \mathrm{C}-13$
7.0	MAINTE	NANCE	7-1
7 A	Proces	sor and Cabinet	7A-1
	Mainte	nance Tools	7A-1
	Diagno	stics	7A-1

CONTENTS (contd)

Section Title Page
7A Test Equipment. 7A-2
(contd) Function Control Register (FCR) 7A-2
7B Maintenance Panel 7B-1
7C Cassette Tape Transport 7C-1
Maintenance Tools 7C-1
Test Equipment 7C-1
8.0 PARTS DATA. 8-1
8A Cabinet, Processors, Power Distribution 8A-1
8B Maintenance Panel and Controller. 8B-1
8C Cassette Tape Transport and Controller. 8C-1

FIGURES

Number	Page
1A-1	2550/2552 NPU Cabinet 1 A-4
1A-2	2550 HCP Rear View 1 A-5
1B-1	Maintenance Panel Physical Characteristics . . . 1B-2
1C-1	Cassette Tape Transport Physical Characteristics. lC-2
1C-2	Cassette Tape Transport Power Connections 1C-3
2A-1	Cabinet and Processor Switches and Indicators . . 2A-1
2A-2	Maintenance Panel - Controls and Switches 2A-2
2B-1	Maintenance Panel Switches and Indicators 2B-l
$2 \mathrm{C}-1$	Cassette Tape Transport Interlock and Function Switches 2C-2
$3 \mathrm{~B}-1$	HCP Shipping Block and Packing Diagram 3B-5
$3 \mathrm{~B}-2$	Power Supply Locations 3B-6
3B-3	HCP Cabinet Assembly, Front View 3B-8
$3 \mathrm{~B}-4$	HCP Cabinet Assembly, Side View 3B-9
3B-5	Processor Backpanel Power Connections 3B-10
$3 \mathrm{~B}-6$	Loop Multiplexer Backpanel Power Connections . . 3B-1l
$3 \mathrm{~B}-7$	Processor Backpanel 3B-13
$3 \mathrm{~B}-8$	Location of Loop Multiplexer and Typical CLA . . 3B-15
$3 \mathrm{~B}-9$	Communications Processor Card Locations 3B-16
$3 \mathrm{~B}-10$	Communications Coupler, Host Interface Circuit Card, Controls and Indicators 3B-18
3B-11	Tape Cassette Controller Switches 3B-19
$3 \mathrm{~B}-12$	I/O TTY Interface Circuit Card Switch 3B-20
3B-13	Micromemory Circuit Card Switch 3B-21
3B-14	Synchronizer Card Assembly Drawing, DYl59-A • . . 3B-22
3B-15	Cards and Ribbon Cables Installed in MOS Machines 3B-24
3B-16	Peripheral Cable Location 3B-27
$4 \mathrm{~A}-1$	PC Board Placement Diagram for AAl09 4A-5
4A-2	Processor Functional Block Diagram 4A-6
4A-3	Memory Interface Priority Switches 4A-10

FIGURES (Contd)

Number	Page
4A-4	Synchronizer Card Assembly Drawing 4A-13
4A-5	Dual-in-Line Package (DIP) Switches, Rocker Type 4A-14
4A-6	Dual-in-Line Package (DIP) Switches, Slider Type 4A-15
4A-7	2550 Interface Card Assembly Drawing 4A-16
4A-8	I/O TTY Controller Board Switches 4A-17
4A-9	Transform Board Jumper 4A-18
4A-10	512 Instruction Micromemory Select Switches . . . 4A-19
$4 \mathrm{~A}-11$	2048 Instruction Micromemory Select Switches . . 4A-20
4B-1	Maintenance Panel Replaceable Assemblies 4B-1
4C-1	Logic Block Diagram 4C-2
4C-2	Tape Cassette Controller Board Switches 4C-4
4C-3	Cassette Control Switches 4C-5
5A-1	2552 HCP, Front View, Site Cabling Diagram . . . 5A-1
5A-2	2552 Backplane Cables 5A-2
5A-3	2550-2 Processor Backpanel 5A-3
5A-4	2552 Bay 0 - Processor Backpanel 5A-4
5A-5	2552 Bay l - Processor Backpanel 5A-5
5A-6	HCP AC Power Distribution 5A-6
5A-7	Typical Electrical Distribution Box Schematic . . 5A-7
5A-8	HPC, Side View 5A-8
5A-9	2552 Interrupt Cable Schematic 5A-9
5A-10	Interrupt Cable Connections 5A-10
5B-1	Maintenance Panel Interface Cable 5B-l
$5 \mathrm{C}-1$	Cassette Tape Transport Interface Cable 5C-1
5D-1	Typical LM Card Cage Assembly 5D-1
5D-2	Location of LM and Typical CLA 5D-2
5D-3	LM Circuit Card Controls and Indicators 5D-3
5D-4	ACLA Circuit Card 5D-4
5D-5	Typical ACLA Cables 5D-5

Number		Page
5D-6	MLIA Output Loop Interface Circuit Card and Indicators	5D-6
6-1	Organizational Structure of Section 6	6-1
6-2	System Troubleshooting Flowchart	6-6
6-3	Flowchart for System Verification Test Sequence	6-7
6-4	DDLT Example	6-9
6-5	Flowchart for Mux Subsystem Test Sequence Using UTOPIA/MSMP	6-76
6A-2	Filter Assemblies	6A-3
6A-3	HCP, Rear View	$6 \mathrm{~A}-5$
6A-4	Processor Cooling Fans	6A-8
6A-5	Cooling Fan Assemblies	6A-10
6A-6	Scott Power Supply for MP +5 VDC Test Points and Adjustments	A-1
6A-7	Scott Power Supply for MP +5 Volt Housing	6A-14
6A-8	Scott Power Support for MP $\pm 15 / \pm 12$ VDC Test Points and Adjustments	6A-20
6A-9	Scott Power Supply for MP $\pm 15 / \pm 12$ VDC Housing	6A-24
$6 \mathrm{~A}-10$	Scott Power Supply for MP $-9,-5,-12,+12$ Regulator Test Points and Adjustments . .	6A-26
$6 \mathrm{~A}-11$	Scott Power Supply for MP -9 VDC Housing	A-28
6A-12	Power Distribution Box	6A-34
$6 \mathrm{~A}-13$	Communications Processor Card Cage Assembly	$6 \mathrm{~A}-38$
$6 \mathrm{~A}-14$	Cards and Ribbon Cables Installed in MOS Machines	6A-41
$6 \mathrm{~A}-15$	Scott/Sorrensen Power Supplies for Mux +5 VDC, ± 12 VDC	6A-47
$6 \mathrm{~B}-1$	Maintenance Panel Mounting	$6 \mathrm{~B}-1$
$6 \mathrm{~B}-2$	Panel Interface Controller	6B-3
6B-3	Interface Cable Connections	6B-5
$6 \mathrm{C}-1$	Cassette Tape Cartridge	6C-2
6C-2	Cassette Tape Transport	6C-4
6C-3	CTT Lubrication Points	6C-6
6C-4	C'IT Cleaning Points	6C-8
6C-6	Cassette Tape Mounting Configuration . .	$6 \mathrm{C}-12$

Number	Title	Page
2A-1	Control Codes.	2A-6
$2 \mathrm{~B}-1$	Switch and Indicator Functions.	2B-2
$2 \mathrm{C}-1$	Cassette Tape Transport Control and Indicator Functions	2C-3
2C-2	Maintenance Panel Cassette Tape Transport Indicators.	2C-3
3A-1	Configuration Example	3A-9
$3 \mathrm{~A}-2$	Full Printout for Configuration Example	$3 A-13$
3A-3	Reconfiguration Example .	$3 \mathrm{~A}-15$
$3 \mathrm{~B}-1$	Example of PPU Equipment Switch to Internal Assigned Equipments Table	3B-17a
4A-1	2550 System Replaceable Assemblies.	4A-1
4A-2	2552 System Replaceable Assemblies. .	4A-2
4A-3	Replaceable Assemblies Functional Description	4A-7
4A-4	Switch Settings, CC Host Interface Circuit Card	4A-9
$4 \mathrm{~B}-1$	Maintenance Panel Replaceable Subassemblies Functional Description.	4B-2
$4 \mathrm{C}-1$	Cassette Tape Transport Subsystem Replaceable Assemblies.	$4 \mathrm{C}-1$
6-1	2550/2552 ODS 2.0 Diagnostic Program List	6-3
6-2	Preventive Maintenance Plan	6-5
6-3	Loadcheck DDLT.	6-11
6-4	Customer Input DDLT	6-18
6-5	Command DDLT.	6-19
6-6	MOS Memory DDLT	6-20
6-7	Memory Protect DDLT	6-38
6-8	Micromemory DDLT. . .	6-41
6-9	Microinstruction DDLT	6-44
6-10	MOS Memory Paging DDLT. •	6-47
6-11	Dual CPU DDLT	6-54
6-12	Core Memory DDLT.	6-62
6-13	Cassette Echo DDLT.	6-67
6-100	Loader Fault DDLT	6-70
6-101	Verification Sequence DDLT.	6-74

SECTION 1

GENERAL DESCRIPTION

SECTION 1

GENERAL DESCRIPTION

This section contains a brief description of the HCP equipments. The contents of this section are arranged as follows:

1A - Microprogrammable Processor, Cabinet and Maintenance Panel
1B - Maintenance Panel and Controller
lC - Cassette Tape and Controller

MICROPROGRAMMABLE PROCESSOR, CABINET, AND MAINTENANCE PANEL

MICROPROGRAMMABLE PROCESSOR

The AAl09 microprogrammable base processor is a multilevel processing unit that utilizes l6-bit macroinstruction words. It emulates the basic 1700 instruction repertoire plus an enhanced instruction set with an instruction execution time relative to a main memory cycle time of 600 nanoseconds. When used in a single or dual processor configuration, it is the processor in bay 1. See figure lA-1.

The processor has the following features:

- I/O-TTY interface for teletypewriter (current mode operation) or conversational display terminal, (RS232C operation)
- Internal TTL level bus system that is functionally compatible with CDC $1700 \mathrm{~A} / \mathrm{Q}$ or A / Q DMA and NCR MOS I/O peripheral requirements.
- Auto data transfer (ADT) operation mode
- Real-time clock interrupt facility
- Sixteen levels of micro/macro interrupt facilities to accommodate most system configurations
- Priority-oriented direct memory access (DMA) bus system.

Additional expansion capabilities provide for:

- Interface to l3lk words of MOS memory or 98 K words of MOS memory and 98 K word ECC MOS array modules
- Accommodates either the 16 K word MOS memory module or the 32 K MOS memory module, which is expandable up to 131 K words of internal MOS memory per processor or 96 K words.
- Accommodates the breakpoint panel
- Accommodates RAM/ROM micromemory up to 4 K
- The back panel of each input/output board position in the processor accepts a push-on cable connector for attaching the controller within the logic chassis to an associated peripheral device.

Input/Output facilities provided by the prewired back panel are as follows:

- $1700 \mathrm{~A} / \mathrm{Q}$ or MOS TTL-level peripheral devices (five slots).
- 1700 A/Q-DMA TTL level peripheral devices (four slots).
- Unassigned input/output board positions that provide standard input power only (two slots).

MICROPROGRAMMABLE PROCESSOR (2552-1)

The AAl09 microprogrammable multiplexer processor has the same features and options as the AAl09 base processor, except that it is the bay 0 processor in a dual-processor (2552) configuration. The AAl09 multiplexer processor shares the power distribution system and operators TTY with the AAl09 basic processor. See figure lA-1.

The dual-processor configuration provides the following additional capability:

- The external ports of two MOS memory systems directly interconnected provide up to 262 K words of common storage accessible by both processor ports and both DMA ports
- The second processor AAl09 is installed in the cabinet adjacent to the first processor with interconnecting cables being no longer than four feet.

2550-2, 2550-100 CONFIGURATIONS

The AAl09 processor normally is mounted in a standard 2 bay equipment cabinet. The cabinet is a vertical rack type. Included as part of the equipment cabinet are power supplies of $+5 \mathrm{VDC}, \pm 12 \mathrm{VDC}$ and -9VDC, and a power distribution box. See figure lA-l.

The power supplies are installed as illustrated in figure lA-2. The +5VDC power supply supplies power to the logic boards located in the processor. The +12VDC, -5VDC and -9VDC provides power to the memory modules and the $\pm 12 \mathrm{VDC}$ supplies power to the I/O-TTY circuits.

The power distribution box in installed in the equipment cabinet as shown in figure lA-2. It provides AC power ON/OFF control and primary line filtering for the processor and installed peripherals.

2552-1 CONFIGURATION

Consists of one Bay which is the same as the 2550-2 above but the second Bay is similar to the first, housing an AAl09 processor. The second Bay shares the AC power distribution box located in the first Bay. The equipment is mounted as illustrated in figure 1A-1.

FRONT VIEW

Figure lA-1. 2550/2552 HCP Cabinet

1

The maintenance panel provides interface to the micro/macro processor. It allows the operator to load and display all registers and memory within the processor via the maintenance panel controller. It provides a operator interface to the function control register and permits setting and clearing all microprocessor control bits of the function control register. It also includes a l6-bit light-emitting diode display and limited keyboard interface. The maintenance panel communicates with the processor via the maintenance panel controller, which is a printed-circuit board located within the logic chassis of the processor. This controller provides a programmable micro/macro breakpoint capability that is useful in debugging software and trouble-shooting hardware.

Figure lB-l illustrates the physical characteristics of the maintenance panel, which is located behind the left front door of the HCP.

to ototoltl
Figure 1B-1. Maintenance Panel Physical Characteristics

CASSETTE TAPE TRANSPORT AND CONTROLLER

The cassette tape transport and the cassette tape controller are used as a program load device or a data recording device. The cassette transport (figure lC-l) is a small, compact read/write device using a cassette tape cartridge for data storage. The controller for the cassette tape transport is located in its predetermined slot in the logic chassis of the processor and provides an interface between the processor and cassette for access and control of either one or two transports. The transport is equipped with an interlock switch on the lid that disables all functions when the lid is open. The cassette tape can be inserted with either side up. The cartridge has a keyway that is sensed by the transport to determine which side is up. The transport is capable of five modes of operation: forward read, forward write, reverse, rewind, and idle. The only actions required of the operator are to load and unload tape and to provide scheduled maintenance.

The transport operates using +5VDC, +12VDC and -12VDC supplied from the processor power supplies via MPl7 Backplane. The controller gets its operating power from the processor. (See figure $1 \mathrm{C}-2$).

Figure $1 \mathrm{C}-1$. Cassette Tape Transport
Physical Characteristics

Fiqure lC-2. Cassette Transport Power Connections

SECTION 2

OPERATION

SECTION

2

OPERATION

This section contains information on the HCP controls and indicators and operating instructions which include start-up and shut-down procedures. The contents of this section are arranged as follows:
2A - Processor, Cabinet and Maintenance Panel
2B - Maintenance Panel and Controller
2C - Cassette Tape and Controllers
2D - Operating Procedures

PROCESSOR, CABINET, AND MAINTENANCE PANEL

Operators controls are limited to those associated with the maintenance panel and power distribution system. These switches and indicators are illustrated in Figure 2A-1.

Operator control of the processor within a system configuration is via the teletypewriter (TTY) and maintenance panel. These operator control units provide basic control functions including deadstart, master clear, stop, manual interrupt, and run. Figure $2 A-2$ shows the location and identity of the controls and indicators normally used.

Some maintenance actions described in the diagnostic decision logic tables (DOLTs) in section 6 must be performed in panel mode. This mode enables the display of various computer registers on the TTY and the performance of necessary maintenance operations. Panel mode is entered by pressing the ESC key on the conversational display terminal. Once in panel mode, entries, are made on the conversational display terminal as described in the DOLTs in section 6. Each entry is terminated by pressing the colon (:) or G key on the keyboard.

Figure 2A-1. Cabinet and Processor Switches and Indicators

Figure 2A-2. Maintenance Panel - Controls and Indicators

MAINTENANCE PANEL

In the following descriptions, the individual item numbers correspond to the callouts in figure lB-l. The following controls and indicators are located on the maintenance panel:

1. CASSETTE READY Indicator. This light-emitting diode (LED) indicator illuminates to indicate that the tape cassette transport is ready. This condition exists with a cassette installed, door closed, transport not rewinding, and no CRC error. A cassette must be READY to initiate dead-start.
2. CASSETTE REWIND Switch. This momentary-contact pushbutton switch is used to actuate the rewind mode of operation in the tape cassette transport.
3. UPPER Indicator. This LED indicator operates in conjunction with the data display indicators as described in Item 4 below. Primary use is the display of the FCR.
4. Data Display Indicators. These 16 LED indicators are used to display the contents of a selected register in the MP. Since some of these registers contain 32 bits, the UPPER indicator is used to determine whether the display is presenting the upper or lower 16 bits in a register. When the UPPER indicator is lit, bits 0 through 15 are being displayed; when UPPER is not lit, bits 16 through 31 are displayed.
5. Data Entry Switches. These 16 momentary-contact pushbutton switches are used to enter data in hexadecimal (l6-bit) form. These are labeled "0" through "9", "ภ" through "F".
6. Control Character Switches. These eight momentary-contact pushbutton switches are used to enter control characters: H, I, $\mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$, and the colon (:). Function of these control characters is as follows:

- H When used alone (followed by a colon terminator), causes program execution to halt. The halt affects macro program execution or micro program execution, depending on the setting of bit 12 of the FCR.

When used preceding a two-digit number (followed by a colon terminator), causes the corresponding bit of the FCR to be reset.

- I When used alone (followed by a colon terminator), causes program execution to be initiated. Affects micro or macro execution, depending upon setting of FCR bit 12.

When used preceding a two-digit number (followed by a colon terminator), causes the corresponding bit of the FCR to be set.

- J When used alone (followed by a colon terminator), causes the UPPER indicator to change state, permitting upper and lower portions of the $F C R$, for example, to be displayed.

When used preceding a two-digit number (followed by a colon terminator), causes four bits of the FCR referenced by the first digit (0 through 5) to be replaced by the value of the second digit.

- K When used alone (followed by a colon terminator), causes the contents of the register specified by the "Display 1" portion of the FCR to be displayed.

When used preceding a 4- or 8-hex digit number (followed by a colon terminator), causes the contents of the register by the FCR "Display 1 " character to be replaced by the specified digits.

When main memory is displayed or entered, the register selected is Display 1 is the main memory address. The Display 1 selection must be the P register. This register is incremented by 1 after the display.

When micromemory is displayed or entered, the K register is the least significant 8 bits of the address, and the N register provides for the remaining bits. The K register is incremented by l after the display.

- L The L function is operationally the same as the K function except that it is associated with Display 0 .
- M Not presently used.
- N Not presently used.
- : Used to terminate all entries. (Note that when using the console in lieu of the maintenance panel, three terminating characters can be used - colon, G, or @. The @ character also causes control to switch from panel mode to I/O mode.

7. FAILURE PROC. +5 Indicator. This LED indicator is used to indicate logic power is not available for the processor and alarm panel system. This indicator must be OFF for the alarm panel failure indicator to provide valid results.
8. FAILURE ALARM PNL Indicator. This LED indicator is used to indicate that one (or more) of the power supplies has failed, and/or an over-temperature condition exists. The specific failure(s) can be determined by looking at the individual indi. cators on the alarm panel mounted in the rear of the HCP cabinet.
9. SONIC ALARM TEST Switch. This momentary-contact pushbutton switch is used to provide a standard "Press to Test" function for the sonic alarm.
10. SONIC ALARM ENABLE/DISABLE Switch. This two-position toggle switch is used to enable and disable the sonic alarm circuit. Visual alarms, however, will be presented regardless of the setting of this switch.
11. REMOTE/LOCAL Switch. This two-position rocker switch is used to select either the maintenance panel or the communications console as the point of control for the HCP. When the switch is set to the LOCAL position, the maintenance panel is enabled; when the switch is set to the REMOTE position, the communications console is enabled.
12. CONTROL CODE Indicator. These three LED indicators present the last character entered via the control character switches. The display may be interpreted by using table $2 A-1$. In this table a one denotes a lighted LED. Once entered, a control code remains set until replaced by another control code, or mastercleared.

TABLE 2A-1. CONTROL CODES

Display	Character
000	H (master-cleared state)
001	I
010	J
011	K
100	L
101	M (not used)
110	N (not used)
111	Error

NOTE

The error code can be used as one indicator that a program failed to load correctly.
13. MASTER CLEAR Switch. This momentary-contact rocker switch is used to clear memory in the $C P$ and the peripheral controller.
14. DEAD START ACTIVE Indicator. This LED indicator is used to indicate that the HCP is ready to receive data from a card reader or the tape cassette transport, and that the deadstart sequence is in process.
15. DEAD START INITIATE Switch. This momentary-contact pushbutton switch is used to actuate the reading of a data by a card reader or the tape cassette transport. Selection of the device to be used is determined by the READY state of the peripherals; only one dead-start peripheral can be READY when using this switch.

SECTION 2B

MAINTENANCE PANEL AND CONTROLLER

The maintenance panel and controller allows the operator to display all registers, interface to the function control register (FCR) (which allows the setting and clearing of control bits), and permits setting of breakpoint for software and hardware analysis. The maintenance panel is enabled by placing the LOCAL/REMOTE switch on the panel to the LOCAL position. Table 2B-1 briefly describes the function of the switches and indicators identified in Figure 2B-l. In a dual processor system, each processor has a maintenance panel and controller.

Figure 2B-1. Maintenance Panel Switches and Indicators

Table 2B-1. Switch and Indicator Functions

Switch and Indicator Type		
MASTER CLEAR	Momentary contact switch	Pressing this switch provides a master clear to the processor, memory, and all peripheral controllers within the processor.
REMOTE/LOCAL	single-pole single-throw switch	In local moder this switch enables use of the breakpoint panel. In remote, the normal conversational display terminal entry mode is used.
Data display	Indicator	This Jb-bit panel provides a display of register data as functions are performed.
UPPER	Indicator	When lit, this lightemitting diode indicates the upper 2 b bits of any 32-bit register selected are being displayed. If not lity the lower 36 bits are displayed.
CONTROL CODE	Indicator	This 3-bit light-emitting diode display indicates the last control character entered.
Data entry	Pushbutton switches	These 36 momentary contact switches are used to enter hexadecimai data.
Control characters	Pushbutton switches	These momentary contact switches are used for entering control characters

The cassette tape transport, when included in the system, provides a convenient and efficient method of loading diagnostics or software. Internal switches on the controller are described in section 4C. Figure 2C-l illustrates the location of the interlock and function switches associated with the transport and table 2C-1 describes the function of each.

External operator switches and indicators on the operators panel (Figure 2A-2) are described in Table 2C-2.

Figure $2 \mathrm{C}-1$. Cassette Tape Transport Interlock
and Function Switches

Table 2 $[-1]$. Cassette Tape Transport Control and Indicator Functions

Control or Indicator	Type	Function
Lid Interlock	Switch	Senses whether the lid on the transport is open or closed. When opent it provides an interlock causing the transport to go not ready.
Side A/B	Switch	Senses whether the cassette is loaded with side A or side B positioned under the read/write head.
Write Enable	Switch	Senses the presence or absence of the write enable plug \{at the cassette\} for whichever track is positioned under the read/write head.

Table 2C-2. Maintenance Panel Cássette Tape Transport Indicators

Indicator
Function
READY When illuminated, indicates that the transport is ready to respond to controllerinitiated operations.

OPERATING PROCEDURES

MASTER CLEAR

The HCP can be master-cleared by any of the following actions:

1. If a TrY is used as the input device, first depress the ESCAPE key. Then depress the question mark (?) key on the communications console. On TTY units not having an ESCAPE key, this function can be generated by depressing SHIFT, CONTROL, and K simultaneously.
2. Depress the MASTER CLEAR switch on the maintenance panel.
3. Keceipt of an external master clear signal from the host computer.
4. A power-on master clear.

TAPE CASSETTE AUTOLOAD

1. Master clear the HCP using any of the methocis described earlier in this section.
2. Insert tape cassette in transport. Ensure that the lid on the tape transport is closed securely; this enables transport operation by depressing the lid switch. Tape moves to Beginning. of Tape (BOT).
3. Type ESCAPE on the communications console.
4. Press the DEADSTART switch on the maintenance panel. Tape will load and processor will start.

NOTE

When loading any sort of program, it is always good practive to observe the value displayed in the three Control Code LED indicators.

Any time all three indicators are lit simultaneously an error is indicated. Frequently the final value of the Control Code indicators will be the Error Condition (all on) if an error was sensed anywhere in the load operation. This applies regardless of the type of autoload device used.

CARD READER AUTOLOAD

If system is equipped with 2571-1 Peripheral Controller and a card reader, the following procedure may be used:

1. Master clear the HCP using any of the methods described earlier in this section.
2. Place the card deck in the card reader. Make card reader READY.
3. Type ESCAPE on the communications console.
4. Press the DEADSTART switch on the maintenance panel. Cards will

- feed in and processor will start.

host computer autoload

The host computer autoload is a software function which provides a DOWNLINE LOAD Command to the HCF. In order for this command to be received the ON LINE/OFF LINE switch located on the communications coupler, host interface circuit card, must be set to the ON LINE position. Refer to 2550 Load Initialize information in this section.

START PROCESSOR

The HCP can be started from the console by entering the following command:
 end of message symbol control function

If bit $0 C_{16}(1210)$ of the $F C R$ is " $0 "$, both micro and macroprograms will begin running. If bit $\mathrm{OC}_{16}\left(12_{10}\right)$ of the FCR is "1", only microprograms begin running.

STOP PROCESSOR

The HCP can be stopped from the console by entering the following command:

H:

L end of message symbol

If FCR bit $0 C_{16}\left(12_{10}\right)$ is " 0 ", then a macro stcp will occur.

If FCR bit $0 \mathrm{C}_{16}\left(12_{10}\right)$ is "l", then a micro stop will occur.

It is often good practice to halt the processor when inserting patches to programs being executed. Failure to observe this caution frequently results in patches not entering as expected.

FCR OPERATING PROCEDURES

The following procedures are provided for monitoring the FCR contents by command and printout on the control console. Refer to FCR bit definitions and digit functions.

NOTE

On the maintenance panel only 16 bits are displayed at a time. Use of control code J77: will cause the bits 0 through 15 to display (table 2-1) and the UPPER indicator will be lit. Use of control code J: will cause bits 16 through 31 to be displayed.

$$
\begin{aligned}
& \text { Bits } 0 \text { through } 17 \text { can be set } \\
& \text { under operator control. Bits } \\
& 24 \text { through } 31 \text { are status bits } \\
& \text { only and cannot be set under } \\
& \text { operator control. Display } \\
& \text { and } 0 \text { are used to display and } \\
& \text { set various registers and mem- } \\
& \text { ory by use of control codes } \\
& \mathrm{K} \text { and } \mathrm{L} \text {. }
\end{aligned}
$$

DISPLAY FCR CONTENTS

To display the contents of the FCR at any time, enter:

NOTE

Whenever a printout occurs, the initial symbol will be the last Control Function entered. When the same Control Function is required, it need not be reentered. The stored value is changed by Master Clear (to 000) or Error (to lll).

CLEAR BIT IN FCR

To clear a single bit position in the FCR, enter:
end of message symbol
$\begin{aligned} & \text { bit number in hexadecimal } \\ & \text { notation (hex) to be } \\ & \text { cleared }\end{aligned}$
The updated function
the console.

SET BIT in FCR

To set a single bit position in the FCR, enter:

I14
 end of message symbol bit number in hex to be set control function

The updated FCR will be displayed at the console.

CHANGE FCR IN HEX DIGIT MODES

To change the contents of an FCR hex digit ($0-5$), enter:

$\underbrace{J 14: ~}$| end of message symbol |
| :--- |
| specifies hex digit number |
| control function |

The above entry specifies an FCR change is to be made in the digit mode, and updates FCR hex digit No. 1 to a value $=4$ hex (0100). To determine the meaning of the value, the user must refer to table 3-2, where digit $1=$ display 1 , and a count code of $4=$ "A" register. The response to the console will be the updated FCR value (which is always displayed in 8 hex digits).

CHANGE FCR IN BIT MODE

The operator cannot change the contents of FCR digits 6 and 7, as they are readouts of machine status. The remaining hex digits $0-5$ can all be changed with the same command from the console, as follows:
a. ESCAPE key (or SHIFT/CTRL/K) (Panel Mode)
b. ? (Master Clear)
c. ESCAPE key (Panel Mode)
d. To change hex digits $0-5$ together proceed entering digits per this example:

NOTE
Default is the prior value of
the FCR that is not to be
changed (in this case zeros).
e. The response to the console is the updated FCR.

TOGGLE UPPER INDICATOR

To toggle the UPPER indicator on the maintenance panel (alternately display the upper and lower 16 bits of the FCR), enter the following:

DISPLAY REGISTER DEFINED IN DISPLAY 0

The operator can display the contents of any of the registers defined in Display 0 by using the following \mid procedure.

Example: Assume the operator wants to display the contents of the K register at the console.

1. The element to be displayed must first be defined in the FCR. The console input is:

J02:
 L_ end of message symbol specifies K register specifies display 0
 control function

The above input specifies FCR change is in the hex digit mode and defines the K register in display 0 . The response to the console will be the updated FCR.
2. The operator then types a command from the console to Display 0:
Lend of message symbol

The response to the console will be the present value of the K register.

DISPLAY REGISTER DEFINED IN DISPLAY 1

The operator can display the contents of any of the registers defined in Display 1 by using the following procedure.

Example: Assume the operator wants to display the contents of the P register at the console.

1. The element to be displayed must first be defined in the FCR. The console input is:
$\underbrace{\text { Jll: }} \begin{aligned} & \text { specifies } P \text { register } \\ & \text { control function }\end{aligned}$
The above input specifies FCR change is in the hex digit mode and defines the P register in Display 1. The response to the console will be the updated FCR.
2. The operator then types a comnand from the console to Display 1:

K:

The response to the console will be the present value of the P register.

LOAD REGISTER DEFINED IN DISPLAY 0

The operator can load a value into any register defined in Display 0 by using the following procedure.

Example: Assume the operator wants to load $14 \mathrm{FE}_{16}$ into the N register.

1. The element to be loaded must first be defined.
$\left\lvert\, \begin{aligned} & \text { Jol: } \\ & \text { end of message symbol } \\ & \text { display } 0 \\ & \text { control function }\end{aligned}\right.$
2. The update value is then entered.

3. Verify that the new value has been transferred into the desired register.

LOAD REGISTER DEFINED IN DISPLAY 1

The operator can load a value into any register defined in Display 1
by using the following procedure.
Example: Assume the operator wants to load $14 \mathrm{FE}_{16}$ into the breakpoint (BP) register.

1. The element to be loaded must first be defined.

end of message symbol specifies BP register specifies Display 1 control function
2. The update value is then entered. Kl4FE:

L
end of message symbol
update value in hex control function
3. Verify that the new value has been transferred into the desired register.
 end of message symbol control function

PROCEDURE EXAMPLES

The following subsections contain typical procedural sequences which are used in operating the HCP.

Display Main Memory Location

The contents of a specific location within main memory can be interrogated and displayed by entering the following:

1. ESCAPE (Panel Mode)
2. ? (Master Clear)
3. ESCAPE (Panel Mode)
4. Load f'Ck to detine P register and main memory

K71000800:

Verify FCR update.
5. Load P with desired memory location

Kxxxx: (\quad xxx \rightarrow P)
6. Display memory location

L:
7. Response to console is memory contents "pointed to" by the p register; the P register is incremented.
8. Consecutive memory locations can be displayed each time the following is entered at the console:

- :

```
response
            :
response, etc.
```


Write Into Main Memory

Specific locations within main memory can be loaded by entering the following:

1. ESCAPE
2. ?
3. ESCAPE
4. K71000800:, set up FCR
5. Kxxxx: , ($\mathrm{xxxx} \rightarrow \mathrm{P}$)
6. Lyyyy:, (yyyy \rightarrow loc xxxx)

The P register has automatically
been incremented following the :
from the console.
7. The next memory location (xxxx +1) may now be loaded with a new value by Lyyyy:, etc., without having to update P.

Display P Register in Repeat Mode
The p register can be displayed in the repeat mode by entering the following:

1. ESCAPE (Panel Mode)
2. ? (Master Clear)
3. ESCAPE (Panel Mode)
4. K71000400: (Select P register, repeat mode)
5. K: (Display P contents)

Response is P register contents, repeatedly. This command is usually
used with local (maintenance panel)
operations rather than console mode when a TTY is used as the console device.

To display the P register locally (as to determine, for example, if the program is running), enter the following:

1. LOCAL/REMOTE switch to local

2: Jll: (selects P register)
3. J54: (sets repeat mode, resets console echo)

Response is P register contents, repeatedly. To exit this mode, enter:

J58: (sets console echo, resets repeat mode)

Operation in Step Mode

The processor can be placed in the step mode, and programs can be executed in single steps (individual instructions) by entering the following:

1. ESCAPE (Panel Mode)
2. ? (Master Clear)
3. ESCAPE (Panel Mode)
4. K71100800: (10ad FCR)
5. Kl000: (i000 \rightarrow Pregister)
6. K: (display P contents)
7. Repeat step 6 to execute individual instructions sequentially through the program.

Load and Execute Macroprogram

A program can be loaded into main memory and executed by entering the following:

1. ESCAPE (Panel Mode)
2. ? (Master Clear)
3. ESCAPE (Panel Mode)
4. K71000800: (load FCR; select P register, memory; console echo)
5. Kl000: (OBOO \rightarrow LOC 1000)
6. LOBOO: $\quad(O B O O \rightarrow$ LOC 1000)
7. LOBOO: (OBOO $~(L O C$ 1001)

8: LOBOO: $\quad(O B O O \rightarrow$ LOC 1002)
9: LOBOO: (OBOO \rightarrow LOC 1003)
10. L18FB: (18FB \rightarrow LOC 1004)
11. K1000: (1000 \rightarrow P)
12. I:, execute program starting at location 1000

LOAD INITIALIZE

The HCP is loaded and initialized by the host computer system. To prepare for a downline load, the ōperator must:

1. Verify that ports (CLA addresses) to the communications network connections are correct.
2. On the loop multiplexer circuit card, set the power (PWR) switch to ON.
3. On the CLA circuit card, set the CLA ON/OFF switch to ON.

Only those cards that are configured are affected.
4. Verify the local console is in the normal ON condition.
5. Verify the ON LINE/OFF LINE switch on the communications coupler host interface circuit card is set to the ON LINF position.

Upon successful completion of the downline load operation by the host, a message containing the CCP version, host identification number, and HCP identification number is output at the local console. The following is an example of that message format:

CCP	1.0
HOST ID:	00
NPU ID:	01

The host then configures the 2550 terminals and normal system operation begins.

If the downline load is unsuccessful, the host initiates and receives a dump of the HCP memory, micromemory, and file registers. The initiation of another downline load attempt is under control of the host.

HOST FAILURE

If the HCP should lose communication with the host because of host failure, the console and interactive terminals are sent a host down message and input from the terminals is stopped. When communication with the host is restored, if the loss was of short duration caused by a temporary inability of the host to obtain control of the HCP channel, a host up message signals restoration of communication and system operation resumes unaffected by the temporary loss. Following longer or more serious losses of communication, however, the host may reload the HCP processor and cause the system to operate as after the initial load operation.

SUSPENSION OF OPERATION

If it becomes necessary to stop operations of the HCP for any reason, momentarily press the MASTER CLEAR switch on the maintenance panel.

CONTROL STATEMENTS ENTRY

Operator control statements (commands) are entered through the local console keyboard. These statements specify either supervisory or diagnostic functions that can be selectively activated or deactivated.

The NPU console can be in either the read or write mode, selected by the (G) (control G) character key on the console keyboard. Pressing the (G) key causes a manual interrupt that, in turn, causes the console to alternate between the read and write modes with the mode changing each time the key is pressed. To input operator control statements, the console must be in the read mode, and to output responses, the console must be in the write mode. All operator control statements begin with a slash (/) character and terminate with an EOT (control D) character. Each parameter within the control statement is separated by either a comma or a blank character. Any number of control statements can be entered before the write mode is activated to receive responses. When the write mode is activated, the following response is output at the console:

*WM

If an input error is made during entry of control statements, the console response is an echo of the input message followed by:
*ERR

CONSOLE COMMANDS

Supervisory Function /SUP

This console command causes the console to engage the supervisory
function. While the supervisory function is active, the following supervisory inputs are accepted:

XY (D)
where X is message type interpreted as follows:

```
    0 = Upline error and statistics
        messages
    I = Other upline service messages
    2 = Downline service messages
    3 = Diagnostic response CE
        messages
Y specifies routing for messages
indicated by X, as follows:
                    NOTE
    **Indicates service messages
    to the console may cause
    system overload due to
    excessive print time.
    0 = Discard all mesages
**1 = Print all messages on
        NPU console
    2 = Senc all messages to host
        or service module
**3 = Send all messages to host
        or service module and
        also print on local
        console.
(D) indicates the control (D) key on
the console keyboard.
Each message type can be individually designated by \(X\) and independently routed by \(Y\), without regard to routing of other message types. The system default is the supervisory mode with all upline service messages sent to the host and all downline service messages sent to the service module.
```


Diagnostic Function /DIA

This console command causes the console to engage the diagnostic
function. While the diagnostic furction is active, the group of commands described in the following paragraphs are available. In those command formats, the terms used are interpreted as follows:

DN . = Destination node address. Two hexadecimal characters specifying the ID for the NPU

SN $\quad=$ Source node address. Two hexadecimal characters specifying the ID for the host

PORT $=$ Port number. Two hexadecimal characters specifying the port associated with the line to be affected by the command

SUBPORT $=$ Subport number. Two hexadecimal characters specifying the subport associated with the line to be affected by the command

CLA TYPE $=00$ if $2560-1$ CLA
01 if 2561-1 CLA
02 if 2560-2 or 2560-3 CLA

NOTE
Although all input parameters for each command are shown as two hexadecimal characters, it can be omitted if the leftmost character is zero.

Place Line Out of Service

This command causes all activity on a specified line to terminate and must be entered prior to initiating any diagnostic test command. Servicing of other lines is not affected. The format of this command is as follows:

DN SN $0040 \quad 0300 \quad 00$ PORT SUBPORT

A line taken out of service can be reactivated by the "place line in service" command.

Place Line in Service

This command allows a line to be returned to operational service by an "enable line" service message currently outstanding or subsequently issued by the host. System servicing of other lines is not affected by this command. The "place line in service" command has the following format:

DN	SN	00	40	03	01	00	PORT	SUBPORT

Start CLA Internal Loopback Test

This command initiates the CLA internal loopback test which consists of a CLA command test and a data verification test. The CLA command test verifies operation of the CLA as it relates to command functions. System servicing of other lines is not affected by this command. The command format is shown in figure 2D-1(A).

Any errors detected during the CLA test result in printout of a response service message with an appropriate error code at the local NPU console and termination of the test. To restart the test, re-enter the "start CLA internal loopback test" command at the local console.

Start Modem Loopback Test

If modem loopback is available, this command isolates problems occurring further out in the communications system. The test consists of a data verification test with limited analysis of modem control signals. System servicing of other lines is not affected by this command. The command format is shown in figure $2 \mathrm{D}-1(\mathrm{~B})$.

Start External Loopback Test

This command provides for loopback of data external to the CLA. The test consists of a command and data verification test with the primary
purpose or verirying operation of the line drivers and receivers. The loopback jumper plug (2560-1 External Test Connector for synchronous CLA or 256l-1 External Test Connector for asynchronous CLA) must be connected to the CLA to be tested before this command is entered at the console. System servicing of other lines is not affected by this command. The command format is shown in figure $2 \mathrm{D}-1(\mathrm{C})$.

Terminate Test

This command, entered while a test is in progress, causes the test to terminate at the end of the normal test cycle currently being executed. System servicing of other lines is not affected by this command. The command format is shown in figure $2 \mathrm{D}-1$ (D).

Diagnostic Test

The diagnostic test responses are output to the local console in the standard format as shown in figure 2D-1 (E).
where: RCEC = Response code or error code

Response codes and error codes are interpreted in tables $2 \mathrm{D}-1$ and 2D-2, respectively.

Question If Supervisory /OIS

This command causes the current console function (supervisory or diagnostic) to be printed at the console in the following format:

$$
\mathrm{Q}=\mathrm{xxx}
$$

where:

XXX is SUP or DIA

The purpose of $/$ QIS is to allow the operator to determine if the console is in the supervisory or the diagnostic mode.

TABLE 2D-1. RESPONSE CODES

Response Code (hex)	Meaning	Remarks
AO	Line is out of service	Normal response to place line out of service command
A1	Command rejected	System temporarily low on buffers
A2	Line in service	Normal response to place line in service command
A3	Diagnostics in process	Response to place line in service command if diagnostics still in process
A4	Diagnostics started	Normal response to diagnostic function command
A5	Invalid line number or bad command	Invalid line number issued in command or command code (byte 5) is not valid
A6	Invalid CLA type	Invalid CLA type issued in command
A7	Invalid test mode	Invalid diagnostic test mode (byte 6) issued with command
A8	Line not out of service	Response to place line in service command if line specified was not out of service when command issued
A9	Test already in process	Response to a diagnostic loopback test command if the test specified is alreaत̧y in process
AA DD	Test completed, no errors	Normal response to a terminate test command
CE DE.	Diagnostic not in progress	Response to terminate test command if not preceded by diagnostic command

TABLE 2D-2. ERROR CODES

Error Code (hex)	Meaning
$A B$	Unsolicited input detected
AC	Unsolicited output data demand detected
AD	Input loop error
AE	Output loop error
AF.	Parity error
B0	Framing error
Bl	Data transfer overrun
B2	Next character not available
B3	No CLA status after CLA status was requested
B4	Unsolicited CLA status
B5	CLA status not cleared after input supervision on (ISON) was sent
B6	No status after request to send (RTS) or input status request (ISR) was sent
B7	No clear to send (CTS) after RTS
B8	No status after data terminal ready (DTR)
B9	No data, set ready (DSR) after DTR
BA	No signal quality detect (SQD) after DTR
BB	No ring (RI) after DTR
BC	No status after secondary request to send (SRTS)
BD	No secondary received line signal detector (SRLSD) after SRTS
BE.	No CLA status after local mode (LM)
BF	No data carrier detect (DCD) after LM
C0	Unsolicited status after originate mode (OM)
Cl	No status or improper operation of ring indicator (RI) after terminal busy (TB)
C2	No status after new sync (NSYN)
C3	Improper operation of $D C D, R I, ~ q u a l i t y ~ m o n i t o r ~$ (QM) after NSYN
C4	No RI after RTS
C5	Input data timeout during data verification test
C6-CD	Data compare errors
CF	Unsolicited status after LM

(A)

DN	SN	00	40	03	02	00	PORT	SUBPORT	CLA TYPE

(B)

DN	SN	00	40	03	02	01	PORT	SUBPORT	CLA TYPE

(C)

DN	SN	00	40	03	02	02	PORT	SUBPORT	CLA TYPE

(D)

DN	SN	00	40	03	03	00	PORT	SUBPORT

(E)

DN	SN	00	40	00	04	00	RCEC	PORT	SUBPORT

Figure 2D-1. Test Command Formats

Activate Function /ACT XXX

This command activates either the supervisory or diagnostic function, as specified by XXX . XXX can equal either SUP or DIA. To activate the function does not select it as the current console function, but only prepares the function so that it may be selected, if desired.

Deactivate Function /DEA XXX

This command deactivates either the supervisory or diagnostic function, as specified by XXX . XXX can equal either SUP or DIA. To deactivate a function means that it cannot be selected as a console function.

Requeue /REQ

This command causes requeuing of a console output message that has been interrupted by a manual interrupt. The message will be output the next time the console enters the write mode.

Cancel /CAN

This command sancels a console output message that has been interrupted by a manual interrupt.

USE OF MANUAL INTERRUPT

The manual interrupt is caused by pressing the (G) (control G) key on the console keyboard. This act causes the console to alternate between the read and write mode, with the mode changing each time the key is pressed.

If a manual interrupt occurs while output is in progress, the following applies:

1. A manual interrupt followed by /REQ causes the current cutput to be requeued.
2. A manual interrupt followed by /CAN causes the current output message to be canceled and discarded.
3. A manual interrupt followed by any input other than the foregoing causes the interrupted output message to continue printing after return to the write mode (from the point at which it was interrupted).

EDITING CONSOLE INPUT:

The following console editing standards apply to all console input:

1. Carriage returns (CR) and line feeds (LF) are ignored in that they are used as local characters only.
2. Control shift N is replaced by CR.
3. Control shift M is replaced by LF.
4. Control C discards input. The response to a discarded input is the input message discarded followed by *ERR.
5. Data can be overwritten by using the backspace (+), with n buckspaces causing n characters to be removed. Corrections can then be entered in place of the removed characters.

SYSTEM HALTS

When the HCP software detects an inconsistency for which no recovery is planned, the system immediately halts execution and prints a system halt message at the console. The format for such messages is as follows:
*halt XXXX XXXX
Halt Code (4 hexa-
decimal characters)
Location that initiated
halt (4 hexadecimal
characters)

Each unrecoverable error has an associated halt code. These are
described in table 2D-3. When a system halt occurs, the host normally dumps the HCP memory, micromemory, and file registers for use in analyzing the reason for the halt. For a discussion of operator actions in the event of a system halt, refer to the Software Diagnostic Handbook. See preface.

EMERGENCY OFF PROCEDURE

1. Set the main AC power circuit breakers at the rear of Bay 0 and Bay 1 to the OFF position.
2. Turn off all peripherals.

CHECK AND ADJUSTMENTS

Operational checks are limited to observing the LED indicators on the circuit cards and the maintenance panel to ensure the presence of all required signals as described in Controls and Indicators.

SHUTDOWN PROCEDURE

NOTE

The HCP is normally poweredup, except for motor-driven peripherals which are turned on only as needed. However, the following procedure is to be used should the operator desire to completely shut down the HCP).

1. Turn off all peripherals and auxiliary power units.
2. Set the PWR switches on all LM circuit cards to the OFF position.
3. Set the circuit breakers on the power supplies for the LM and the optional CLE unit to the OFF position.
4. Set the main AC power circuit breakers at the rear of Bay 0 and Bay 1 to the OFF position.

TABLE 2D-3. HALT CODES

Halt Code	Description	Remarks
0000	Not a valid halt code	
0001	Power Failure	Location 100 (hexadecimal) indicates location of instruction that would normally be executed after the power failiure.
0002	Memory parity error detected	Location 100 (hexadecimal) indicates location of instruction that would normally be executed after the instruction in which the memory parity error was detected.
0003	Program protect bit error detected by 2550	Location 100 (hexadecimal) indicates location of instruction that would normally be executed after the program protect fault.

Problem in downline load. Repeat load and, if failure occurs again, contact CE.

Problem in downline load. Repeat load and, if failure occurs again, contact CE.

TABLE 2D-3. HALT CODES (Contd)

Halt code	Description	Remarks
0012	Duplicated CLA address detected	Check CLA addresses for duplicates. If correct, contact CE.
0013	Attempt to redefine an existing destination node (DN) directory entry	
0014	```Attempt to redefine an exist- ing connection number (CN) directory entry```	
0015	Attempt to remove a non-existent DN directory entry	
0016	Attempt to remove a non-existent source node (SN) directory entry	.
0017	Attempt to remove a non-existent CN directory entry	
0018	Real time clock lost count	.
0019	Illegal point of interface (POI) key	
001A	Attempted to add zero connection number (CN) to directories	-
001 C	Monitor did not run for specified (B2TIME/2) seconds.	
001 D	Service module called with worklist empty	
001E	Seirice mudule work code out of range	
001 F	Multiplex loop interface adapter (MLIA) failure	-
0020	Pointer to read next loop cell from circular input buffer (CIB) exceeded present line frame pointer	. .
0021		
0023		
0024	Reserved for firmware use	
0026	,	.
0027		

TABLE 2D-3. HALT CODES (Contd)

Halt Code	Description	Remarks
0028	Coupler alarm condition	Coupler detected memory parity error or program protect bit error during data transfer.
0029	No queue control block	
002A	Bad line number from TIP	
002B	Unknown TASKNR selected	Detected by Mode 4 TIP
002C	Unknown block/CMD received	Detected by Mode 4 TIP
002D	Improper multiplex subsystem operation	Detected by Mode 4 TIP
002E	Improper Mode 4 TIP operation	Non-acceptable tasks
002F	Control for disabled Mode 4 line	TIP attempting to run on disabled line
0030	Reserved for Mode 4 TIP	Not a valid halt
0031	Error in upline block handler (PNHDRBLD)	
0032	Not used	
0033	Illegal line status detected by CLA status handler (PTCLAS)	
0034	Illegal call to put n segments in queue (PBTNSEG) or get n segments from queue (PTGTNSEG) where queue pointer type from TCB indimates data list queue	. -
0035	Attempt to queue output to NPU console in system without console	. .
0036	Directory change attempted with DN too large	-

SECTION 3

INSTALLATION AND CHECKOUT

SECTION 3

INSTALLATION AND CHECKOUT

This section contains procedures on installation and checkout as follows:

> 3A - 2550-100 Controlware Installation
> $3 B-H C P$ Installation and System Test

INTRODUCTION

The 2550-100 Emulator 6671/6676, also referred to as the 2550-1Cn controlware, is a controlware program for the HCP that emulates multiple 6671 and/or 6676 Data Set Controllers (DSCs) for CYBER 6000, CYBER 7X, or CYBER 17X host computers. As many as four DSCS can be emulated. In this document, these DSCs are referred to as equipment numbers 1 through 4.

The 2550-100 controlware is supplied by Control Data as a binary load file on a tape cassette cartridge. The initial tape cassette delivered will contain the master controlware program at the most current field change order (FCO) revision level. The tables within the controlware defining equipment and line configurations will be empty lnonconfigured). This document provides the procedures for loading the initial tape cassette cartridge, configuring the equipment and lines, and writing a new tape cassette cartridge containing the customer's desired equipment and line complement.

The configurator initializes or - modifies four tables within the 2550100 cortrolware. Two of the tables, EQUIP and LIXE, are reference tables containing equipment and line specifications relating to the system being emulated. The other two tables, XREF and EQT, are pointer tables facilitating a fast, crossreference system between the equipment and the lines.

The EQUIP table provides the following information:

1. Type of equipment cmulated
2. Number of lines assigned to the equipment
3. Coupler assigned to the equipment
4. Coupler address definitions

The LINE table provides the following information:

1. Line characteristics (sync/async, switched/dedicated, parity)

2. Equipment cross-reference addresses

The XREF table is a pointer table ordered by the CLA address and contains pointers to the EQT table winich identifies the equipment/linc using a particular CLA.

The EQT table is ordered by equipment/ line number and contains the address of the CLA used for the particuiar equipment/line.

To configure these talles, the configuration accepts a set of parameters entered by the operator through the communications console. In interpreting the parameters supplied by the operator, the configurator functions basically as a character scanner (accepting only the first alphanumeric character, or the first few numeric characters, of each parameter). The accepted parameter is validated for format and consistency, and entered into the avoropriate tables. Parameters, otiner than those appropriate for each step in the configuration process, generate error messages to the operator via the communications console.

Once the configuration parameters have been loaded into main memory via the communications console, the configuration may be captured by writing the tables from memory to tape casscttes: further, once the configuration is written onto cassettes, it may be loaded from the cassettes into main memory.

LOAD, CONFIGURE, WRITE AND INITIALIZE PROCEDURES

This section describes procedures to load the 2550-100 controlware, configure the system, write the configuration onto cassette tape, and to initialize the system. These procedures are used to initially configure the tables or to change the table parameters.

Once the configuration tables are written to the cassette tape, an abbreviated load procedure is used (see load, initialize procedures in this section).

LOADING

Load the 2550-100 controlware
as follows:

1. Insert the 2550-100 system cassette into the tape transport and close the transport lid. The transport should immediately rewind the cassette if the tape is not fully rewound.

NOTE

If a system cassette is already in the transport, it may be necessary to open and close the transport lid (cycling the transport lid switch) to initiate rewind.
2. Observe that the CASSETTE READY indicator illuminates.
3. Set the REMOTE/LOCAL switch on the maintenance panel to the REMOTE position.
4. Press the MASTER CLEAR switch on the maintenance panel.
5. Press the ESCAPE key on the communications console.
6. Press the DEADSTART switch on the maintenance panel.
7. Observe that the system has been successfully loaded (the message: "2550-100 SYSTEM 01 COPYRIGHT CONTROL DATA CORPORATION 1975" will be displayed on the communications console).

NOTE

If the system does not load successfully, display the contents of the A Register at the communications console. If this register contains a "D", then an error has occurred in loading which causes the bootstrap loader to halt the load by executing a closed loop. In this case, repeat the above sequence of steps, or load another copy of the controlware using the above sequence. If the system still does not load properly, initiate diagnostic procedures in accordance with the Hardware Maintenance Manual (see preface) or notify responsible maintenance personnel.

CONFIGURING

Configuring the 2550-100 controlware is as follows:

1. Only the underlined characters in an operator input to the console are interpreted by the configurator. For example, if the operator response is: Partial, only the letter P is interpreted as a response. The remaining
letters are ignored and the configurator scans for a terminating character. Upper or lower case characters may be used when configuring.
2. The symbol: < is used to denote the carriage return key on the communications console.
3. The operator may abort his response to any query by pressing Rubout, Line Feed, and <. After this, the operator may re-enter the complete response to the last query.

To activate the configurator, the operator first examines the last communications console display. If the last communications console display consists of a "J" typed at the beginning of a new line, then

Operator Types: *E<
This activates the configurator, and interactive communications via the communications console with the operator is initiated starting with Step 1 as described below.

If "J" does not appear in the last communications console display, the operator initiates the system's manual interrupt processor by:

Operator Types:
CTRL BELL (two communications console keys)

System Writes: MI
Operator Types: *F<
The last operator input activates the configurator, and interactive communications via the communications console with the operator is initiated starting with Step 1 as described below.

STEP 1: ACTIVATION OF CONFIGURATOR

System Writes:
CONFIGURE, RECONFIGURE, OR GO (C, R, G)

Operator Types: Configure<
If the system has never been configured, and the operator responded with Reconfigure or Go, then:

System Writes:
MUST CONFIGURE (CONFIGURE OPTION TAKEN)
and the system proceeds to Step 2, as if the operator has responded with Configure.

STEP 2: SPECIFYING EQUIPMENT TYPE

System Writes:
EQUIPMENT X TYPE ($\mathrm{N}, 1, \mathrm{~A}$)
where X is the logical equipment number. The allowed operator responses are:

Operator Types: None or

where:
$\underline{1}=6671$ is to be emulated by equipment X
$\underline{A}=6676$ is to be emulated by equipment X

None $=$ logical equipment X will not emulate

If None is the response chosen, the configurator will repeat Step 2 for the next logical equipment. If all equipment has been processed, the configurator will proceed to Step 5.

After the operator has chosen the equipment option to be emulated:

System Writes: COUPLER NUMBER (1,2)
where the operator is expected to assign logical equipment x to one of the two couplers by:

Operator Types: $\frac{1}{\underline{2}}$ or

STEP 3: LINE ASSIGNMENT (QUANTITY)

System Writes: NUMBER OF LINES=
Operator Types: dd
where dd are the two digits supplied by the operator which represent (in base-l0 notation) the number of lines to be assigned to the equipment chosen in Step 2.

NOTE
In choosing the number of lines assigned to the equipment chosen, the operator should be aware that:
a. If the equipment emulated is a 6671, the number of lines assigned may not exceed 16.
b. If the equipment emulated is a 6676, the number of lines assigned may not exceed 64.
c. Regardless of the configuration options chosen in Step 2, the maximum number of lines assigned for all four logical equipment units may not exceed 128 .

To avoid re-entering the configuration process unnecessarily, the operator should configure the system to the maximum number of lines he expected to handle, even though all
lines will not be active initially.

STEP 4: LINE SPECIFICATION (TYPE)

System Writes: LINE $x x$
where $x x$ is the line number (starting at 01 and going up to the maximum number of lines specified by the operator in Step 3). The operator may respond with:

Operator Types:

99<

where:

hh	$=$ communications line adapter (CLA) address (in hexadecimal notation) assigned to this line. (Maximum of two alphanumeric characters used.)
Switch	a switched line type
Ded	$=\mathrm{a}$ dedicated line type
As	$=$ an asynchronous line type
Syn	$=\mathrm{a}$ synchronous line type
C	$=$ character length transmitted on this line; C may equal 6 , 7 or 8 bits. When operating with ASCII or EBCDIC terminals, C will always equal 8 .
I	= ignore vertical parity (e.g., no vertical parity is generated or checked). Vertical parity, where required, is normally appended by the host processor. The operator may type Odd (odd parity) or Even (even parity) if it is desired to have the emulator generate or check parity.
s	$=$ nunber of stop bits used on an asynchronous line; s may equal 1 or 2.
bbbb	$=$ baud rate at which line will transmit; available band rates are:

110 baud 134.5 baud (non-CDC standard) 150 baud 300 baud 600 baud 1200 baud

FDX = full-duplex line (asynchronous only)

HDX = half-duplex line (asynchronous only)

99 = indicates that the line is reserved (Line parameters may be defined at a later time using the MODIFY feature.)

NOTE

In choosing the options for each line, the operator should be aware that:
a. Synchronous lines are available only to logical equipment units emulating a 6671.
b. If emulating a 6676 (as chosen in Step 2), only asynchronous lines are available.
c. If parity is observed, then the actual character length that is transmitted is $C+$ 1 , where the parity bit is supplied by the CLA.
d. The stop-bit specification, duplexity specification and baud rate assignment are relevant only on asynchronous line assignments.
e. The number of stop bits is contingent upon the baud rate. The configurator does not check for consistency.
f. Current SCOPE and NOS operating system restrictions limit the number of line assignments per equipment depending on line speeds. Do not exceed the line and line-speed capabilities of the operating system that the emulator is interfacing.
g. For each equipment the lines have to be assigned in a decreasing baud rate order; fastest lines are assigned first, and slowest lines last.

Step 4 is repeated for every line specified in Step 3. After all lines have been assigned for a given equipment, the configurator will proceed. to the assignment of the next logical equipment by repeating Step 2.

After all four logical equipment units have been configured, the configurator proceeds to Step 5.

STEP 5: PRINTOUT OF CONFIGURATION

System Writes: PRINTOUT (N,P,F)
The allowed operator responses are:

Operator Types: None<

which indicates that no printout is desired, and the configurator proceeds to Step 6.
or,
Operator Types: Full<
which indicates that a full printout of the system configuration is required, and the configurator responds with a header:

System Writes:

EQ TYPE CP LINE CLA TYPE USE LEN PAR STOP BAUD DUPLEX

and information regarding all equipment and lines in the system is listed under the header. After the printout, the configurator proceeds to Step 6 .
or,
Operator Types: Partial<
which indicates that the operator only desires a printout for specific equipment/line combinations.

System Writes: EQUIPMENT=, LINE=
Operator Types: $\quad \mathrm{d}, \mathrm{xx}<$
where:

$$
\begin{aligned}
\mathrm{d}= & \text { equipment number }(1 \leq d \leq 4) \\
\mathbf{x x}= & \text { line number }(1 \leq x x \leq \text { maximum } \\
& \text { specified in } S t e p ~ \\
& \text { ment } d)
\end{aligned}
$$

The configurator first prints a header as for the full printout response, and then lists the information for the equipment/line combination specified. This sequence is repeated until the operator responds to the equipment/line query by:
which indicates that the operator has obtained information for all equipment/line combinations desired and the configurator then proceeds to Step 6.

STEP 6: MODIFICATION OF INDIVIDUAL LINE

System Writes: MODIFY (N, Y)
The allowed operator responses are:
Operator Types: No<
which indicates that no individual
line is to be modified and the configurator proceeds to Step 7.

Or,
Operator Types: Yes<
which indicates that the operator desires to change the configuration for one or more lines and the configurator responds with:

System Writes: EQUIPMENT=, LINE=
Operator Types: $\underline{\alpha}, \underline{x}<$
where:
d $=$ equipment number ($1 \leq d \leq 4$)
$\mathrm{xx}=$ line number ($1 \leq \mathrm{xx} \leq$ maximum specified in Step 3 for equipment d)

The configurator responds with a carriage return which indicates that input from the operator is required (formatted as in Step 4). This sequence is repeated for various equipment/line combinations until the operator responds to the equipment/line query with:

Operator Types: $\underline{0}$ (zero)<
which indicates that all equipment/ line combinations desired have been modified and the configurator reverts to Step 5.

STEP 7: TERMINATION

System Writes: GO (N,Y)
If the operator elects to write the configured tables onto cassette tape:

Operator Types: No<
The configurator exits to the operating system dispatcher after displaying:

System Writes:
END OF CONFIGURATION - EXIT TO DISPATCHER

If the operator elects to start running the configured system:

Operator Types: Yes<
System Writes:
END OF SYSTEM CONFIGURATION INITIALIZE AND GO

END 2550-100 SYSTEM INITIALIZATION
At this point, the system is up and ready.

WRITING

1. Remove the system cassette from the transport.
2. Insert the 2550-100 UTILITY cassette in the transport and close the transport lid. The transport should immediately rewind the cassette if the tape is not fully rewound.

NOTE
If necessary, cycle the transport lid switch (open and close the lid) to initiate rewind.
3. Observe that the CASSETTE READY indicator illuminates.
4. Press the MASTER CLEAR switch on the maintenance panel.
5. Press the ESCAPE key on the communications cosole.
6. Press the DEADSTART switch on the maintenance panel.
7. UTILITY will then "come up". Note: A bell will ring to indicate "ready". When operating with UTIIITY, all characters input from the console must be in upper case.
8. Remove the UTILITY cassette from the transport.
9. Insert a blank cassette in the transport, and close the lid. The transport should immediately rewind the cassette, if the tape is not fully rewound.

NOTE
If necessary, cycle the transport lid switch to initiate rewind.
10. Observe that the CASSETTE READY indicator illuminates.
11. Operator Types:

GSB, $0,0,7000,7120,2800 /$
12. System Writes:
(three 4-digit numbers in hexadecimal notation)

Example: xxxx yyyy zzzz
13. Ignore the $x x x x$ number.
14. Operator Types:

WTC, 0,YYYY,zzzz/
15. System Responds:
(BELL)
16. Operator Types:

WTC, 0,0,6000/
where:
6000 is the length of the system minus 1 .
17. System Responds:
(BELL)
18. Operator Types:

EFC,0,1/
19. System Responds:
(BELL)
The cassette will now contain the configured system parameters.

To write system parameters onto additional cassettes, repeat steps 2 through 19 of this procedure.

INITIALIZING

1. Operator Types:

CTRL BELL (two communications console keys)

System Writes: MI
2. Operator Types:

由Fs
System Writes:
CONFIGURE, RECONFIGURE, OR GO (C, R, G)
3. Operator Types: GO<

System Writes:
END OF SYSTEM CONFIGURATION INITIALIZE AND GO END 2550-100 SYSTEM INITIALIZATION

At this point, the system is up and ready for emulating the data set controllers.

CONFIGURATION EXAMPLE

The example system to be configured consists of:

Equipment 1 - a 6671 with eight lines connected to the host on Coupler 1.

Equipment 2 - a 6676 with eight lines connected to the host on Coupler 1

Equipment 3 - a 6676 with three lines connected to the host on Coupler 2.

Equipment 4 - Not used.

The configuration-operator communications are listed in tables 3A-1 and 3A-2. Each operator response appears on the teletype line subsequent to the system query, with the carriage return and line feed supplied by the system. (Notation used: $\mathrm{SW}=$ System Writes, OT = Operator Types, < = Carriage Return Key.)

TABLE 3A-1. CONFIGURATION EXAMPLE

Origin	Communications	Comments
OT :	CTRL/BELL (two keys)	If the last communications console display is not "J", then the manual interrupt will have to be activated.
SW:	MI	Manual interrupt activated.
OT:	*F<	Activates the configurator.
SW:	CONFIGURE, RECONFIGURE OR GO (C,R,G)	
OT:	C<	Configure option chosen.
SW:	EQUIPMENT 1 TYPE $(N, 1, A)$	
OT :	$1<$	Equipment 1 selected for the 6671.
SW:	COUPLER NUMBER $(1,2)$	
OT :	$1<$	Equipment 1 assigned to Coupler 1.
SW:	NUMBER OF LINES=	
OT:	$8<$	Eight lines assigned to Equipment 1.
SW:	LINE 01	
OT:	0,DED, SYNC, 8 , I<	Line 01 is assigned a synchronous CLA with address 0 on a dedicated line, using 8bit data; ignore parity.
SW:	LINE 02	
OT :	$1, S W I T C H, S, 8, I<$	Line 02 is assigned a synchronous CLA with address 1 on a switched line, using 8-bit data; ignore parity.
SW:	LINE 03	
OT :	99<	Line 03 is skipped and will be unassigned.
SW:	LINE 04	
OT:	6, S, A, 8, I, 2, 12, H<	Line 04 is like 05 except that the line is 1200 baud, half-duplex.
SW:	LINE 05	
OT:	$5, S, A, 8, I, 2,15, F<$	Line 05 is assigned an asynchronous CLA with address 5 on a switched, full-duplex line, using 8-bit data and two stop bits at 150 baud.
SW:	LINE 06	

TABLE 3A-1. CONFIGURATION EXAMPLE (CONTD)

Origin	Communications	Comments
OT:	4, S, A, 7, I, 1, 134, F<	Line 06 is assigned an asynchronous CLA with address 4 , on a switched, full-duplex line, using 7-bit data, and one stop bit at 134.5 baud. Parity is ignored.
SW:	LINE 07	
OT:	2,D,ASYNC, 8, I, 2,110,F<	Line 07 is assigned an asynchronous CLA with address 2 , on a dedicated, fullduplex line, using 8-bit data and two stop bits at 110 baud.
SW:	LINE 08	
OT:	3,D,ASYNC, 8, I, 2, 110, F <	Line 08 is like 07.
SW:	EQUIPMENT 2 TYPE ($\mathrm{N}, 1, \mathrm{~A}$)	
OT :	A<	Equipment 2 is selected for the 6676.
SW:	COUPLER NUMBER (1,2)	
OT :	$1<$	Equipment 2 is assigned to Coupler 1.
SW:	NUMBER OF LINES=	
OT :	$8<$	Eight lines are assigned to Equipment 2.
SW:	LINE 01	
OT:	IF, S, A, 8, I, $2,300, F<$	Line 01 is assigned an asynchronous CLA with address lF, on a switched, fullduplex line, with 8-bit data and two stop bits at 300 baud.
SW:	LINE 02	
OT :	99<	Leaves line 02 unassigned.
SW:	LINE 03	
OT :	4, D, A, 7, I, I, 134, F<	Line 03 is assigned CLA address 4 which has already been assigned.
SW:	CLA IN USE EQUIPMENT 1 LINE 06 REASSIGN (N,Y)	The configurator asks whether the CLA should be reassigned to the new line.
OT:	$\mathrm{N}<$	The operator acknowledges the error and does not wish to reassign, so he types the assignment over which assigns to line 03 an asynchronous CLA with address lE, on a dedicated line,
OT:	IE, D, A, 7, I, 1, 134, F<	stop bit at 134.5 baud.

TABLE 3A-1. CONFIGURATION EXAMPLE (CONTD)

Origin	Communications	Comments
SW:	LINE 04	
OT:	1C,SW, ASY, 8, I, 2, 110,F<	Line 04 is assigned an asynchronous CLA with address lC, on a switched, fullduplex line, with 8 -bit data and two stop bits at 110 baud.
SW:	LINE 05	
OT :	ID, S, A, 8, I, $2,110, F<$	Line 05 is like 04.
SW:	LINE 06	
OT:	99<	Leaves line 06 unassigned.
SW:	LINE 07	
OT :	$20, S, A, 8, I, 2,110, F<$	Line 07 is assigned an asynchronous CLA with address 20 , on a switched, fullduplex line, using 8-bit data and two stop bits at 110 baud.
SW:	LINE 08	\cdots...
OT:	$21, S, A, 8, I, 2,110, F<$	Line 08 is assigned an asynchronous CLA with address 21 , on a switched, fullduplex line, using 8-bit data and two stop bits at 110 baud.
SW:	EQUIPMENT 3 TYPE ($\mathrm{N}, 1, \mathrm{~A}$)	
OT:	A<	Equipment 3 is selected for the 6676.
SW:	COUPLER NUMBER (1,2)	
OT :	$2<$	Equipment 3 is assigned to Coupler 2.
SW:	NUMBER OF LINES=	
OT :	$3<$	Three lines are assigned to Equipment 3.
SW:	LINE Ol	
OT:	$2 \mathrm{~F}, \mathrm{~S}, \mathrm{~A}, 8, \mathrm{I}, 2,300, \mathrm{~F}<$	Line 01 is assigned an asynchronous CLA with address 2 F , on a switched, fullduplex line with 8 -bit data and two stop. .bits at 300 baud.
SW:	LINE 02	
OT:	2E, S, A, $7, I, 1,134, F<$	Line 02 is assigned an asynchronous CLP with address 2 E , on a switched, fullduplex line with 7-bit data and one stop bit at 134.5 baud.

TABLE 3A-1. CONFIGURATION EXAMPLE (CONTD)

Origin	Communications	Comments
SW:	LINE 03	
OT :	2D, D, A, 8, I, 2, 110,F<	Line 03 is assigned an asynchronous CLA with address 2D, on a dedicated, fullduplex line with 8 -bit data and two stop bits at 110 baud.
SW:	EQUIPMENT 4 TYPE ($\mathrm{N}, \mathrm{l}, \mathrm{A}$)	
OT:	$\mathrm{N}<$	Equipment 4 is designated to remain unassigned.
SW:	PRINTOUT ($\mathrm{N}, \mathrm{P}, \mathrm{F}$)	
OT :	F<	Full printout is desired.
SW:		Tabulated data shown in table 3-2.
SW:	MODIFY (N, Y)	
OT :	$\mathrm{Y}<$	Operator chooses to modify.
SW:	EQUIPMENT $=$, LINE=	
OT: OT :	$\left.\begin{array}{l} 1,3< \\ 07, \mathrm{DED}, \mathrm{SYN}, 8, I \mathrm{GN}< \end{array}\right\}$	Equipment l, line 3 is to be modified to become a•synchronous, dedicated line with CLA address 7 , with 8 -bit data and no parity.
SW:	EQUIPMENT $=$, LINE=	
OT :	$0<$	Termination of the modification process.
SW:	PRINTOUT ($\mathrm{N}, \mathrm{P}, \mathrm{F}$)	
OT :	PARTIAL<	Partial printout chosen.
SW:	EQ TYPE CP LINE CLA TYPE USE LEN PAR STOP BAUD DUPLEX	
SW:	EQUIPMENT=, LINE=	
OT :	1,3<	Operator wants to see Equipment 1 Line 3 printout only.
SW:	$\begin{array}{lllll} 1 \\ \text { IGN } & 1 & 03 & 07 & \text { DED SYNC } 8 \end{array}$	
SW:	EQUIPMENT $=$, LINE $=$	
OT :	$0<$	Termination of partial printout.
SW:	MODIFY (N, Y)	

TABLE 3A-1. CONFIGURATION EXAMPLE (CONTD)

Origin	Communications	Comments
OT:	$\mathrm{N}<$	
SW:	GO (N, Y)	No further modification.
OT:	$\mathrm{N}<$	
SW:	End of Configuration Exit to Dispatcher	The 2550-100 controlware is not to be started immediately.

table 3-2. FULL PRINTOUT FOR CONFIGURATION EXAMPLE

EQ	TYPE	CP	LINE	CLA	TYPE	USE	LEN	PAR	STOP	BAUD	DUPLEX
1	1	1	01	00	DED	SYNC	8	IGN			
1	1	1	02	01	SWICH	SYNC	8	IGN			
1	1	1	03	UND							
1	1	1	04	06	SWICH	ASYN	8	IGN	2	1200	HALF
1	1	1	05	05	SWICH	ASYN	8	IGN	2	150	FULL
1	1	1	06	04	SWICH	ASYN	7	IGN	1	134.5	FULL
1	1	1	07	02	DED	ASYN	8	IGN	2	110	FULL
1	1	1	08	03	DED	ASYN	8	IGN	2	110	FULL
2	A	1	01	$1 F$	SWICH	ASYN	8	IGN	2	300	FULL
2	A	1	02	UND							
2	A	1	03	$1 E$	DED	ASYN	7	IGN	1	134.5	FULL
2	A	1	04	$1 C$	SWICH	ASYN	8	IGN	2	110	FULL
2	A	1	05	$1 D$	SWICH	ASYN	8	IGN	2	110	FULL
2	A	1	06	UND							
2	A	1	07	20	SWICH	ASYN	8	IGN	2	110	FULL
2	A	1	08	21	SWICH	ASYN	8	IGN	2	110	FULL
3	A	2	01	$2 F$	SWICH	ASYN	8	IGN	2	300	FULL
3	A	2	02	$2 E$	SWICH	ASYN	7	IGN	1	134.5	FULL
3	A	2	03	$2 D$	DED	ASYN	8	IGN	2	110	FULL

RECONFIGURATION

Reconfiguration allows for changing line parameters. In choosing whether to configure or reconfigure the system, the operator should be aware that the equipment types emulated in the system and the number of lines assigned to an equipment can only be changed by choosing the configure option. If the configure option is chosen, then the entire system has to be configured.

RECONFIGURATION EXAMPLE

The following procedure illustrates reconfiguration entry via the communications console. The configured system of the Configuration Example is used as a baseline for this example. The following reconfiguration data will be added:

1. Equipment 1, line 3, will be undefined.
2. Equipment 3, line 3, will be changed to a switched line.

The Configurator-Operator communications are listed in table 3A-3. Each operator response appears on the same communications console line as the system query with no carriage return or line feed in between. (Notation used: $S W=$ System Writes, OT = Operator Types, < = Carriage Return Key.)

ERROR MESSAGES

A. ERROR IN FIELD X

Cause:

1. a missing field
2. an incorrect alphabetic option character used
3. in a decimal option field, a decimal value out-of-range or a nondecimal character used
4. in a hexadecimal option field, a hexadecimal value out-of-range
or a nonhexadecimal character used
5. a required option is missing when the field never appeared
6. the input line may be over 40 characters in length preventing some fields from being seen

Corrective Action:
After the error message is printed, the entire input line is retyped with the erroneous field corrected.

Typical Errors:

1. a CLA address not in the range of 0 to 7 F
2. an equipment number not in the range of 1 to 4
3.. a line number not in the range of 1 to 16 (or maximum specified) for a 6671, or 1 to 64 (or maximum specified) for 6676
4.- the number of lines specified is greater than the number that the particular equipment can accommodate
3. the total number of parameters for a CLA is insufficient (the synchronous CLA has five options, and the asynchronous CLA has eight options)

B. CLA IN USE EQUIPMENT X LINE YY

Cause:

Specified CLA has already been assigned previously to the noted equipment and line combination.

Corrective Action:

The configurator prints REASSIGN (N, Y). If the operator responds with NO< then he may retype the input ${ }^{-}$line correcting the CLA address. If the operator responds with YES< then the latest CLA assigñent will be implemented and the previous assignment nulled.

TABLE 3A-3. RECONFIGURATION EXAMPLE

Origin	Communications	Comments
OT:	CTRL/BELL (two keys)	If the last communications console display is not "J" then the manual interrupt will have to be activated.
SW:	MI	Manual interrupt activated.
OT:	*F<	Configurator activated.
SW:	CONFIGURE, RECONFIGURE OR GO (C, R, G)	
OT:	R<	Reconfiguration is chosen.
SW:	PRINTOUT (N, Y)	
OT:	N<	No printout is desired.
SW:	MODIFY (N, Y)	
OT:	$\mathrm{Y}<$	Modification is desired.
SW:	EQUIPMENT $=$, LINE=	
OT:	1,3<	Equipment l, line 3 to be modified.
от:	99<	This line is to be cancelled.
SW:	EQUIPMENT $=$, LINE $=$	
OT:	3,3<	Equipment 3, line 3 to be modified.
OT:	2D, S, A, 8, I, 2, 110, F<	This line is changed from a dedicated to a switched line.
SW:	PRINTOUT (N, Y)	
OT:	N<	No printout is desired, yet.
sw:	MODIFY (N, Y)	
OT:	N<	No further modification.

C. MUST CONFIGURE (CONFIGURE OPTION TAKEN)

Cause:
The RECONFIGURE or GO response was given to the CONFIGURE, RECONFIGURE, OR GO (C,R,G) message when the system was not configured.

Corrective Action:

By default, the configurator proceeds as if the operator responded with CONFIGURE. No further action other than going through the configuration procedure is required of the operator.

D. ERROR IN READ - RETYPE

Cause:
The operator response or parameter was not successfully transmitted by the communications console.

Corrective Action:
Retype the entire input line.

E. CLA IN USE EQUIPMENT X LINE YY REASSIGN (Y,N)

Cause:
The CLA referenced has already been assigned.

Corrective Action:
If the operator intended that the current assignment be accepted, he will respond with $\mathrm{Y}<$; the old assignment is to be nulled (disregarded). A $\mathrm{N}<~ r e s p o n s e ~ i n d i c a t e s ~ t h a t ~ t h e ~$ operator acknowledges an error in the CLA address assignment and the old assignment is not changed.

F. CLA XX ${ }_{16}$ - DATA SET NOT READY .

Cause:

The data set ready signal was OFF on a dedicated line for the specified CLA during initialization.

Corrective Action:
The operator should check hardware connections and try again by initiating the ${ }^{*} F$ manual interrupt. At this point the configurator is activated and the operator responds to to the Step 1 query with $G O$.

G. COUPLER Y CANNOT BE INITIALIZED ABORT, RETRY, OR CONTINUE (A,R,C)

Cause:
(Y equals 1 or 2 as specified in the configuration procedure). This message indicates that the specified coupler could not be accessed successfully by the initializer.

Corrective Action:
The operator should check the hardware prior to responding. A response of $A<$ indicates that the initialization process is to be aborted. A response of $R<$ indicates that the initialization process is to be retried for the indicated coupler. A response of C < (to be used only on systems configured for two couplers) directs the controlware to service the equipment defined for the operational coupler, and to ignore the equipment defined for coupler Y.

NOTE

If a C response is used, the controlware must be reloaded to re-activate the servicing of the associated coupler Y.

H. DUPLICATE CLA XX DETECTED

Cause:
This message (XX is the CLA address in hexadecimal notation) indicates that, in the process of initialization, two or more CLAs were found to have the same address assigned.

Corrective Action:
The operator must correct the duplication and initialize the CLA.

I. PE

Cause:
A memory parity error was detected. Corrective Action:

Call the local customer engineer.
J. IP

Cause:

An invalid parameter was detected by the manual interrupt processor.

Corrective Action:
Select only the allowable manual interrupt function ($\left.{ }^{*} C,{ }^{*} D,{ }^{*} F,{ }^{*} G, * I\right)$.

K. MUX ERROR

Cause:
The controlware has detected a multiplex loop interface adapter malfunction. (This error causes the system to hang).

Corrective Action:
The operator should report the error to the site CE. Then the controlware should be reloaded and initialized.

LOAD, INITIALIZE PROCEDURES

This section describes procedures to load and initialize the controlware with a cassette tape which contains the desired configuration tables. To initially configure the tables or to change table parameters, refer to Section $3 A$.

LOADING

1. Insert the configured system cassette into the transport and close the transport lid. The transport should immediately rewind the cassette if the tape is not fully rewound.

NOTE

If a configured system cassette is already in the transport, it may be necessary to open and close the transport lid (cycling the transport lid switch) to initiate rewind.
2. Observe that the CASSETTE READY indicator illuminates.
3. Set the REMOTE/LOCAL switch on the maintenance panel to the REMOTE position.
4. Press the MASTER CLEAR switch on the maintenance panel.
5. Press the ESCAPE key on the communications console.
6. Press the DEADSTART switch on the maintenance panel.
7. Observe that the system has been successfully loaded (the message: "2550-100 SYSTEM 01 COPYRIGHT CONTROL DATA CORPORATION 1975" will be displayed on the communications console).

NOTE
If system does not load successfully, display contents of A Register at communications console. If A contains a "D" then an error occurred in loading which caused bootstrap loader to halt the load by executing a closed log. In this case, repeat above sequence of steps or load another copy of controlware using above sequence. If system still does not come up, initiate diagnostic procedures in accordance with Hardware Maintenance Manual (see Preface) or notify responsible maintenance personnel.

INITIALIZING

1. Operator Types:

CTRL BELL (twa communications console keys)

System Writes: MI
2. Operator Types: *F<

System Writes:
CONFIGURE, RECONFIGURE, OR GO (C, R, G)
3. Operator Types: $\underline{G O}$

System Writes:
END OF SYSTEM CONFIGURATION INITIALIZE AND GO

END 2550-100 SYSTEM INITIALIZATION
At this point the system is up and ready for emulating the data-set controllers.

ERROR MESSAGES

Refer to error messages earlier in this section.

INSTALLATION OF FCOs

The purpose of this section is to describe the procedure for temporary application of controlware changes by installing field change orders (FCOs). Application of FCOs provides a method to patch the controlware until a corrected version can be shipped to the customer site on cassette tape.

FCOs must be installed immediately after the "2550-100 SYSTEM 01 COPYRIGHT CONTROL DATA CORPORATION 1975" message is displayed on the communications console after loading. Upper or lower case characters may be used. < denotes the Carriage Return key.

CAUTION

The *I and *D manual interrupts described below must not be activated after the controlware is initialized.

PROCEDURE

1. Load system or configured cassette
2. System Writes:

2550-100 SYSTEM 01
COPYRIGHT CONTROL DATA CORPORATION 1975
3. Operator Types: Control "G"

System Writes: MI
4. Operator Types:
*I,start, hhhh $_{1}$, hhhh $_{2}$, hhhh $_{3}{ }^{\prime}$ $\mathrm{hhhh}_{4}, \mathrm{hhhh}_{5}{ }^{<}$
where: start is the hexadecimal core address
$\mathrm{hhhh}_{\mathrm{i}}$ is the hexadecimal value to be entered (hhhh ${ }_{1}$ through hhh 5 are contiguous memory addresses)

System Writes: J
The above action changes the contents of the specified address to the new value ($\mathrm{hhhh}_{\mathrm{i}}$).
5. Óperator Types:
*D, start,end<
where: start is the starting - hexadecimal core address
end is the ending hexadecimal core address

This action displays the new contents of the specified address.
6. Proceed to configure the system. (See Section 2, Configuring.)

NOTE

To correct a partially entered entry, Operator Types: RUBOUT, LINE FEED, $<$, and repeats the entire entry.

HCP INSTALLATION AND TEST

SCOPE AND OBJECTIVE

This document is designed to provide the installing Customer Engineer with a plan which delineates the procedural steps for pre-delivery, installation and system test of the HCP.

The objective of this plan is to assure a well-planned, orderly and methodical installation and system test leading to a timely NEI (Notice of Equipment Installation).

REFERENCE DOCUMENTS

Should the requirements of this installation plan and the Contract conflict, the Contract shall govern. Where the requirements of this installation plan and the latest issue of reference documents other than the Contract conflict, the installation plan shall govern.

SUPPORT MATERIALS AND TOOLS
The following materials and tools are required to be available on site before starting installation:
a. ODS Diagnostic Program Cassette(s) (P/N 12323181, 82)
b. UTOPIA/MSMP (P / N l2323182)
c. Digital Voltmeter ($\mathrm{P} / \mathrm{N} 18697566$ or equivalent)
d. Tektronix 453 Oscilloscope (or equivalent) (P / N l8697506)
e. CCPl.0 Operating Program Cassette (or equivalent) (P / N 12323183, 84)

GENERAL INSTALLATION

The installation will be divided into five operational parts which are listed as follows:
a. Pre-Installation Site Check
b. Delivery, Unpacking, and Placement
c. System Assembly and Physical Verification
d. Power Up and Verification
e. System Hardware Test and Verification

PRE-INSTALLATION SITE CHECK

Prior to arrival of system at the computer site, visit the facility and verify the completion of the site preparation by performing the following checks:

SITE INSPECTION CHECKLIST

Completed

a. Retrace equipment moving path from offloading point to room location, to assure a clear path without obstructions.
b. Chock power distribution and outlets for proper location, type, and quantity. [Use Site Planning (A\&ES) MUS and Site Layout]
c. Measure each power outlet for proper voltage and pin phasing.

d. Check grounding system.
[See Site Preparation Manual (CDC 74641200)]

e. Arrange for temporary space for unpacking and disposal of crates and boxes.

Upon scheduled delivery of the system, CDC Customer Engineering should be present to monitor the unpacking and placement of the hardware (reference C.E.D Field Procedures Guide, Section $8: 020: 04$). As a minimum, the following steps are a guide to achieving a smooth delivery:

DELIVERY CHECKLIST

a. Mect the carrier (van) at the unloading point (entrance to building).
b. Check for external damage to packing material as the equipment is unloaded.
c. Monitor removal of outer packing material and check for visible damage to equipment. (NOTE: This step \square may follow Step d).
d. Monitor movement of equipment to site position and verify placement is correct and over the floor
 opening. (Reference Site Layout Drawing*).
e. Check equipment against Bill of Lading/ Inventory.
f. Verify carrier removes all used packing material.
g. Complete all CDC/Carrier paperwork and retain as required. (Reference CED Field Procedures, Section $8: 20: 04$, Page 2).
h. Release carrier personnel.
i. Unpack all small parts boxes/cartons and place contents in a safe location for later installation. NOTE: Small boxes or cartons may be shipped inside the $\mathrm{R} / \overline{\mathrm{H}}$ cabinet of the 2550 Mainframe (sce Step j).
j. If the system includes 2556-3, -4 Loop Multiplexer Expansion, skip this step (go to Step k). Otherwise, open the front andrear doors of the R / H bay (from the front) and remove all loose cartons/boxes that are stored within. (Follow any instructions that are visible). Unpack and place contents with those of Step i.

* Available from District Site Planning (AE\&S).
k. Open the doors on the 2550 and remove the shipping blocks and packing material, as follows: (see Figure 3B-1 for location).

From Rear (R.H. Bay)

1. Remove the vertical wood block from the L.H. side.
2. Remove the 2 supporting brackets on the R.H. side under the power supplies (each has 2 screws).
3. Remove the protective tape on the power supply retaining locks (see Figure $3 B-2$ for location) and release the locks.
4. Swing open both power supplies.
5. Remove the wood block located across the top of the upper power supply.
6. Cut the tie-wraps on the coiled cables at the bottom of the cabinet and remove the bag covers from the connectors.

From Front (L.H. Bay)

1. Remove nylon tape from communications processor cover, air filters and loop multiplexer (2).
2. Cut tie-wrap on M.T. Cable located on the lower $\overline{\text { L.H. unistrut brace, and remove bag over connector. }}$

General

1. Remove packing material from the inside of all doors.
2. Level the 2550 Mainframe by adjusting the corner leveling pads. (Access is from under cabinet).

Figure 3B-2. Power Supply Locations

SYSTEM ASSEMBLY AND PHYSICAL VERIFICATION
This section deals with the physical assembly set-up and cable verification of the HCP. At this time, cable connections both internal and external to peripheral equipments will be either connected or verified. Also, all switch settings will be verified. (See Figures 3B-3 and 3B-4 for cabinet hardware location).

Internal Cable Verification

Install and/or verify internal cabling as follows:

Completed

a. Locate the ground strap (rear of cabinet, L.H. Bay), release, drop through floor opening, and attach to system ground plane.
b. Verify all main facility power circuit breakers are OFF.
c. Locate the 2550 power cable (rear of cabinet, R.H. Bay), release, drop through floor opening, and plug into power
 connector. Do not turn on power at this time. Drop all other cables through floor opening.
d. Release the power supply retaining locks and swing out the processor, and loop mux power supplies located in the rear
 of Bay 0. (See Figure 3B-2). (This may have been accomplished earlier).
e. Insure and/or verify that all the power wiring connections on the two power supplies are tight. (Connections located
 on L / H side of P / S).
f. Insure and/or verify that all the power wiring connections on the processor backpanel (located behind the processor
 P/S) are tight. See Figure 3B-5 for connection locations.
g. Insure and/or verify that all the power wiring connections on the loop multiplexer backpanel (located behind the loop mux P / S) are tight. See Figure $3 B-6$ for connection locations.

$\frac{\text { FIGURE 3B-3. HCP CABINET ASSEMBLY }}{\text { FRONT VIEW }}$

> PROCESSOR BACK PANEL
> VIEWED FROM REAR OF CABINET

FIGURE 3B-5. PROCESSOR BACK PANEL POWER CONNECTIONS

LOOP MULTIPLEXER BACK PANEL
VIEWED FROM REAR OF CABINET

FIGURE 3B-6. LOOP MULTIPLEXER BACK PANEL POWER CONNECTIONS

Completed

h. Verify the proper installation (check for loose connections) and placement of processor backplane cables as follows:
(see Figure 3B-7 for location).

1. Row B, Power Jumper
2. Row B, Host Input and Output
3. Row B, Down Line (Pass-On) Input and Output (CYBER 170 Coupler only)
4. Row E and F, Loop Mux Connections
5. Row H, Tape Cassette and Maintenance Panel Connections
6. Row J, Maintenance Panel Connections
7. Row K, Console I/O Connections (TTY Cable in place)
8. Row W, Maintenance Panel Connections
9. Row Y, Memory Jumper
10. Row L, Maintenance. Panel Connections

If the system includes the 2550-100 emulator package verify the following:

1. Jumpers P_{1}, P_{2} and P_{3} installed in Rows $A A, C$ and G. If not installed, install at this time.

NOTE: A JUMPER PLUG SHOULD BE INSTALLED IN ROWS Y, Z, AC ONLY IF A MEMORY CARD IS INSTALLED IN THAT ROW. THE TOP OF THE JUMPER SHOULD BE ALIGNED ACCORDING TO THE CHART ON FIGURE 3B-7.

Install and/or verify the internal circuit cards as follows:
Completed
a. Locate the Loop Multiplexer Card Cage and verify the following. (See Figure 3B-3, Lower Front L.H. Cabinet).

1. Verify the loop multiplexer card is installed in the far right slot and seated properly. (See Figure 3B-8).
2. Verify that cable $P / N 74659500$ is installed in $J-1$ of the Loop Mux Card and cable P/N 74659300 is installed in $\mathrm{J}-2$ and that the ir respective retaining screws are tight.
3. Verify the proper number of CLA cards are installed in the Loop Mux Cage. (See Figure 3B-8.) (Check customer order).
4. Verify that the synchronous CLA cards are installed in the left-most slots with the asynchronous CLA's to their, right. Verify/Set that the left-most CLA card address' are dialed to $\underline{01} \& \underline{02}$ and those to its right are dialed in increasing numbers contiguously (addresses are in Hex.)
b. Pull the following circuit cards located in the communications processor card cage, verify part numbers and re-install (re-seat) the cards: (see Figure $3 \mathrm{~B}-9$ for card location.)
*1. Slot C - Coupler - IDC P/N 74873590
5. S Slot D - Coupler - DMA P/N 74656801
6. Slot E - MLIA-1
7. Slot F-MLIA-2
8. Slot G - MLIA-3
9. ${ }^{-}$Slot L-Status Mode Int.
10. Slot M - ALU Unit
11. Slot N - Controller 2 .
12. Slot P - Controller 1
13. Slot R-1700 Transform
14. Slot S-Cyclic Encoder

NOTE: * If a 2550-100 Emulator is included in the system order, the Slot C card should be replaced with P/N 74850001, and Slot D card should be removed.

FIGURE 3B-8. $\angle O C A T I O N$ OF LOOP MULTIPLEXER AND
TYPICAL COMMUNICATIONS LINE ADAPTER (CLA)

EXPANSION COMM. COUPLER (HOST I/F)*	
EXPANSION COMM. COUPLER (IDC I/F) *	4
EXPANSION COMM. COUPLER (DMA I/F) *	0
PRIMAPY COMM. COUPLER (HOSTI/F)	0
PRIMARY COMM. COUPLER(IDC I/F)	4
PRINARY COMM. COUPLER (DMA I/F)	E
MLIA-I (INPUT LOOPI/F)	5
MLIA-2 (OUTPUTLOOPI/F)	0
MLTA-3 (PROCESSOR I/F)	k
TAPE CASSETTE CONTROLLER	W
2571-1 PERIPHERAL CONTROLLER *	v
I/O TTY INTERFACE	R
STATUS MODE INTERRUPT	L
ARITHMETIC AND $\angle O G I C$ UNIT	v
CONTROL 2	
CONTROL 1	4
1700 TRANSFORM (W/EMULATOR ROM)	0
CYCLIC ENCODER	0
MICROMEMORY (2K)	<
PANEL INTERFACE	\widehat{N}
MOS MEMORY INTERFACE - DATA	L
MOS MEMORY INTERFACE-ADDRESS/CONTROL	$\stackrel{V}{*}$
MOS MEMORY	k
MOS MEMORY MODULE *	$\stackrel{ }{k}$
MOS MEMORY (OPTIONAL) *	0
MOS MEMOPY (OPTIONAL) *	*

[^0]12. Slot U - Panel Int.
13. Slot V - Memory-Data
14. Slot Y - MOS Memory
c. Pull the coupler host I / F circuit card (processor slot B) (see note below*) verify the P / N is 74655300*, set rocker switches as applicable (see table 4A-4) for host interface. Set the ON/OFF line switch to \square the OFF position (see figure 3B-10). Reinstall card in slot B.
d. Pull the tape cassette controller circuit card (processor slot H), set the SW01 rocker switches 2 and 4 to OFF and 1 to ON (see figure 3B-11). Set the SWO 2 rocker switches 1 and 2 to ON and 3
 and 4 to $O F F$ (see figure $3 B-11$). Reinstall card in slot H (see figure 4C-3).
e. Pull the I/O TTY interface circuit card (processor slot K), set the rocker switches, figure 3B-l2, in accordance with baud rate table shown on figure 4A-8.
 Reinstall card in slot T.
f. Pull the micromemory circuit card (processor slot T), set the rocker switches, figure 3B-13, in accordance with table shown in figure 4A-ll. Reinstall card in
 slot T.

The following steps to be accomplished only if the system includes a 2550-100:
g. Set PPU rocker switches for appropriate equipment numbers. See example table 3B-l.

NOTE: a. Do not adjust any other components on this board, except upon failure to run.
b. Check with PSD analyst for actual equipment assignments, which should be used when mated to the CYBER 70/170.

NOTE: *If a 2550-100 Emulator is included in the system order, the slot B card should be replaced with P/N 74872873 or 74845001 set-up per Steps g, h and i.

FIGURE 3B-10. COMMUNICATIONS COUPLER, HOST INTERFACE CIRCUIT CARD CONTROLS AND INDICATORS

TABLE 3B-1. EXAMPLE OF PPU EQUIPMENT SWITCH TO INTERNAL ASSIGNED EQUIPMENTS TABLE

PPU Equipment Address Switch Number	Internal Equipment Address Assigned to the Switch
S1	Internal Equipment 0
S2	Internal Equipment 1
S3	Internal Equipment 2
S4	Internal Equipment 3

NOTE

Four PPU equipment switches determine which PPU equipment numbers are assigned to the coupler. The switches are positioned on coupler assigned equipment numbers. The maximum equipment numbers that can be assigned to one coupler is four (ranging from 0-7). Once the assigned equipments are known, only one equipment switch may be positioned on any one equipment number at a time. This restriction allows the hardware to properly generate the required internal equipment number. Precautions related to the equipment switches are described in the installtion portion of this document.

The equipment switches are shown in figure 3B-12. If only two equipment numbers are assigned to the coupler and SI, S2 are to be used to detect them, then S3 and S4 must be placed into a OFF (floating) position. Which decoder output Sl , and S 2 are to be positioned on is determined as the system is being configured. Each of the switches may be positioned on any of the eight decoder outputs (except for the restrictions described above).

Table 3B-1 is an example of PPU equipment switch settings: Assume PPU equipment numbers assigned the coupler are 5 and 7. Where 7 must become internal equipment 0 , and 5 internal equipment 2. The following table is used to determine which switch is used to select the assigned equipment. Table 3B-l indicates that $S l$ must be positioned to 7 , S3 to position 5, and S2/S4 in their OFF (floating) position.

FIGURE 3B-11. TAPE CASSETTE CONTROLLER SWITCHES

$$
\frac{\text { FIGURE 3B-12. ITO TY INTERFACE }}{\text { CIRCUIT CARD SWITCH }}
$$

* FOLLOW ON IOFF AS MARKED ON SWITCH, ALL ELSE ON CARD ETCH

FIGURE 3B-13. MICROMEMORY CIRCUIT CARD SWITCH

Figure 3B-12. Synchronizer Card Assembly Drawing -DY159-A (Board 1)
h. Install ribbon cables between board 1 (Slot B) and Board 2 (Slot C). (See Figure 3B-15).
i. Return to Step d.

Console Installation

There are at present, two types of consoles that may be used with the 2550 system; one is a CRT and the other a Teletype. The following are procedures for both types:
a. Check the customer order for I/O console device. If it is a 7XX CRT proceed to the next step. If a 1711-4, 1712 or 1713 is specified proceed to step g.
b. Remove the console TTY connector from Row K of the communications processor backpanel (see Figure 3B-7).
c. Cut the tie-wraps holding a similar plug tied and bagged to the horizontal cable support and install in the same
\square location as the connector removed in Step b (I/O CRT).
d. Pull the other end of the I/O CRT cable (RS232 25 Pin connector) under the floor to the CRT location andconnect it to the back of the CRT (receptacle marked "Data Set").
e. Set the switches on the rear connector panel as follows:

1. Half/Full Duplex - Full
2. Parity - Even
3. Speed - 110 Baud
f. Tie down the un-used TTY connector plug to the horizontal cable support. Proceed to step i.

g. Pull the lugged end of the I/O TTY cable under the floor to the Teletype console unit and thread it up the R / H side to the \square terminal strip at the R.H. rear, under the top cover.

FIGURE 3B-15. CARDS AND RIBBON CABLES INSTALLED IN MOS MACHINE

Completed

h. Connect the cable to the TTY terminal strip as shown below for the particular unit provided.

M33 (1711)

- Yellow wire-3
- Brown wire-4
- Single white wire-7
- Jumper wire between-3-6
- Triple white wire - Ground
- Small black wire - Ground
- Red wire - Not Used
- Orange wire - Not Used
- Large black wire - Not Used

M35 (1712 or 1713)

- Yellow wire-8
- Brown wire - 5
- Single white wire - 7
- Jumper wire between-6-8
- Triple white wire - Ground
- Small black wire - Ground
- Red wire - Not Used
- Orange wire - Not Used
- Large black wire - Not Used
i. Connect the console power cord to the outlet under the floor. Do not turn on the power.

Cassette Mag Tape Installation

a. Mount the cassette MT Transport to the L.H. front door of the HCP using the 4 quick release screws retained
 in the bracket (see Figure 3B-3).
b. Locate the M.T. cable hanging loose near the L.H. front side lower bracket and connect to the mating connector on the
 cassette transport.

Peripheral Equipment Installation

This section to be used only if a card reader (2572-1, -2) or a line printer (2570-1, -2) are part of the order. The following are instructions for connecting to the $2550-\mathrm{X}$:

NOTE: Follow unpacking and set-up instructions furnished with the card reader and/or printer.
a. Unpack and Set-Up peripherals in their proper locations. (Use manual supplied with peripheral).
b. Install/Verify the peripheral controller circuit card P/N 88909503 (K26) in the HCP communications
 processor Slot J.
c. Verify that the feed switch (lower front of peripheral card) is OFF (toward front of card).
d. Install/Verify the signal cables to the peripherals (as required) on the communications processor backpanel as follows and tie-wrap to the horizontal cable support rails: (see Figure 3B-16).

1. Connect the card reader cable $\mathrm{P} / \mathrm{N} 88894500$ to Row J Pins 78-102.
2. Connect the printer cable $\mathrm{P} / \mathrm{N} 88894601$ to Row J Pins 52-76.

NOTE: The above cables come with and are part of the FH301A peripheral controller.
e. Install the printer cable under the floor to the printer location and connect to receptacle AJ109 located under
 the top rear cover, RH rear area.
f. Drop the printer power cable through the floor and plug into the outlet under the floor. Do not turn on the power.

g. Install the card reader cable under the floor to the card reader location and connect to the mating receptacle at the rear of the card reader.
h. Repeat Step f for the card reader power cable.
i. Open the card reader back (2 quick release screws).

Loosen the 2 screws on the R.H. side of the small board and swing open. Set the rocker switches on the small board as follows:

1. BP OFF
2. RP OFF
3. All others ON

Set the rocker switches on the large board, all OFF.
j. Secure the small board and close and secure the back cover.

CYBER 70/170 Cable Installation

In order to connect the HCP to the CYBER 70/6000 or CYBER 170 the following cabling must be accomplished.

Completed
a. Trace the 5 ft . cable connected from the upper half of the processor backpanel, Row B pins 5-19 (see Figure 3B-7) to its connector and tag the connector end "Host Input".

c. Install, under the floor, the two CYBER interconnect cables from the CYBER 70/6000/170 to the HCP.

NOTE: For CYBER 70/6000 installations, the cables are 70 ft . P/N 52675001 and for CYBER 170 they are 65 ft. P/N 19191600.
d. Connect the CYBER 70/6000/170 end of the cable to the channel input and the HCP end to the connector marked "Host Input". (Reference Step a).
e. Connect the CYBER 70/6000/170 end of the other cable to the channel output and the HCP end to the connector marked 'Host Output". (Reference Step b).
f. For CYBER 170 installations, there will be two 5 ft . cables remaining. The cables are for downline pass-on (connected to upper half of backpanel) and downline pass-
 back (connected to lower half of backpanel).

HCP Terminal/Modem Cabling
In order to connect the HCP to the communications network terminals the following must be accomplished:
a. Unpack the CLA/Modem cables if not already done previously.

b. Install the CLA/Modem cables under the floor between the HCP and the modem area with the female plug on the HCP end. Leave the HCP end of the cable
 loose but at the front L.H. Bay, near the CLA cards.
c. Match the cables with their respective modems and $\overline{\text { CLA's }}$ per Figure 3B-17.

CLA	MODEM (DATA SETS)	CABLE	
		PRODUCT ID	EQUIP ID
2560-1 RS232 (Sync) 2560-1 RS232 (Sync) 2560-1 RS232 (Sync) 2560-1 RS232 (Sync) 2560-2 Coaxial (Sync) 2560-2 Coaxial (Sync) 2560-3 Diff. (Sync)	AT\&T 201 AT\&T 203A AT\&T 208A AT\&T 208B AT\&T 301 AT\&T 303	$\begin{aligned} & 10401-1 \\ & 10401-3 \\ & 10401-2 \\ & 10401-1 \\ & 10402-1 \\ & 10402-1 \\ & 10403-1 \end{aligned}$	XA130A XA131A XA129A XA130A XA136A XA136A XA137A
2561-1 RS232 Async.	AT\&T 103A AT\&T 113 AT\&T 202 Direct to Terminal AT\&T 103F AT\&T 202R CDC 362	$\begin{aligned} & 10400-1 \\ & 10400-1 \\ & 10400-1 \\ & 10400-2 \\ & 10400-3 \\ & 10400-3 \\ & 10400-3 \end{aligned}$	XA133A XA133A XA133A XA135A XA134A XA134A XA134A
2560-1 RS232 (Sync)	Direct to Terminal	10401-4	XA132A

NOTE: IF OTHER THAN THE LISTED DATA SETS ARE USED, VERIFY THAT THE INTERFACE IS THE EXACT EQUIVALENT. COMPATIBLE, IN SOME CASES, DOES NOT ALWAYS MEAN DIRECTLY INTERCHANGEABLE.

Figure 3B-17. CLA/Cable Matrix
d. Label each end of the cable with CLA number and modem type and number.
e. Connect the CLA cables to their respective modem's and tighten down the retaining screws. (Note: the higher speed modems are to be connected to the left-most CLA's decreasing speeds to the right.)
f. Turn OFF (Disable) all CLA's (2 switches on each CLA card, front).

g. Connect the CLA cables to their respective CLA's and tighten down the retaining screws.
h. Dress and tie the CLA cables in a neat manner to the cabinet support framing. Use the cable ducts if line expansion 2556-2, $-3,-4$ is included (see Figure 3B-3).

POWER UP

This section deals with the actual powering up of the HCP. This is probably the only time the total system will be completely powered off. This section does not include power up procedures for the CYBER Host Computer.

General

Insure and verify that the following equipment power switches/breakers are OFF:
a. The HCP main cabinet power breaker (located at the rear base of both Bays).
b. Both 5 volt output breakers on the two rear HCP power supplies (located on the L.H. side terminal board at the top).
c. The HCP loop mux switch located on the loop mux card installed at the front lower card cage (see Figure 3B-8) .
d. Repeat Step c for all loop mux expansion (if present).
e. The card reader (if present) power breaker (S-1) located on the rear connector panel.
f. The line printer (if present) power breaker, located on the L.H. Side near the rear behind the small door.

g. The console unit TTY/CRT power switch.

The following steps will insure that the equipment is turned on in an orderly manner with the least chance of damage:

Completed

a. Turn ON the main facility power breakers serving the HCP equipments. \square
b. Check the equipment area for smoke or burning.
c. Turn ON the console and each peripheral equipment one at a time..
d. Check each equipment for burning or smoke.
e. Turn ON the HCP main breaker located at the rear base of the R.H. Bay. (from rear) Note: Verify visually that each/. every blower starts up and runs, cycle breaker if necessary.
f. Swing out both upper and lower power supplies and turn ON the 5 volt output breaker on each. \square
g. Turn ON the loop mux power switch located on the front of the card.

\square
h. If the other Bay has no equipments mounted, do not turn ON the Bay power breaker (bottom rear of cabinet). If there is hardware mounted turn ON the breaker and repeat Step g \square for each of the loop mux extensions.

THIS NOW COMPLETES THE POWER ON SEQUENCE. PROCEED TO POWER CHECK.

Power/Voltage Check

All voltages have been preset to the ir nominal value during factory QAI checkout. The following steps allow verification of these nominal voltages. If the given voltage differs more than $\pm 0.1 \%$, adjust that particular power supply to allow the voltage to fall within the $\pm 0.1 \%$ limit. (Use a digital voltmeter 0.1% accuracy or better).

NOTE: Refer to the power supply hardware maintenance manual (GD122B) for power supply adjusting points.
a. Measure and verify the +5 V at the processor backpanel upper R.H. terminal marked $+5 \mathrm{~V}-\mathrm{B}$ (see Figure $3 \mathrm{~B}-5$). Adjust, if required, at upper power supply module adjustment screw.
b. Measure and verify the -12 V at the processor backpanel R.H. center terminal marked -12 V (see Figure 3B-5). Adjust, if required, at center power supply module adjustment screw R 73 .
c. Measure and verify the +12 V at the processor backpanel R.H. center terminal marked +12 V (see Figure 3B-5). Adjust, if required, at center power supply module adjustment screw R66.
d. Measure and verify the +12 V at the processor backpanel R.H. lower terminal marked +12 V BBU (see Figure 3B-5). Adjust, if required, at lower power supply module adjust- \square ment screw " +12 V ".
e. Measure and verify the -9 V at the processor backpanel
R.H. lower terminal marked -9V BBU (see Figure 3B-5). Adjust, if required, at lower power supply module
 adjustment screw " -9 V ".
f. Measure and verify the -5 V at the processor backpanel bottom terminal marked -5 V BBU (see Figure 3B-5). Adjust, if requiren, at lower power supply module adjustment screw "-5V".
g. Measure and verify the +5 V at the loop mux backpanel top +5 V buss bar (see Figure $3 \mathrm{~B}-6$). Adjust, if required, at upper power supply module adjustment screw.

h. Measure and verify the -12 V at the loop mux backpanel R.H. terminal marked -12 V (see Figure 3B-6) . Adjust, if required, at lower power supply module adjustment
 screw "volt".
i. Measure and verify the +12 V at the loop mux backpanel R.H. terminal marked +12 V (see Figure 3B-6). Adjust, if required, at center power supply module adjustment screw "volt".

```
THE HCP IS NOW CONSIDERED OPERATIONAL FOR TEST
AND VERIFICATION. PROCEED TO NEXT SECTION.
```


SYSTEM HARDWARE TEST AND VERIFICATION

Now that the HCP is physically installed, this section, when completed, verifies the proper operation. It is not required that the host computer be either operational or connected to the NPU for this verification, as these tests verify the HCP and cannot be dependent on the proper operation of the host. Proper operation of the complete system (i.e., HCP, Host, Network) is the task of the PSD (software/hardware) system test leading to the system acceptance (NEA). The limits of this procedure bring the HCP up to hardware installation complete (NEI) only.

The following cassette tapes must be on hand to support this section.

a.	ODS 2.0	PN	12323181	
b.	UTOPIA/MSMP	PN	12323182	
c.	CCP	1.0	$48 K$	PN
d.	12323183			
d.	CCP 1.0	32 K	PN	12323184

Proceed to section 6 of this manual and perform DDiTs.
If any of the tests in this section do not pass, the C.E. is directed to go to the specific hardware reference manual and specific additional diagnostic tests as called out in the diagnostic reference manuals provided. The specific equipment should be repaired or replaced and the test and verification restarted and run to its completion.

SECTION 4

THEORY OF OPERATION

THEORY OF OPERATION

This section describes the functions of the replaceable assemblies for each equipment of the $2550 / 2552$ system. Where applicable switch and jumper settings are described with figure notations as to system normal operating settings.

This section is divided into subsections that deal with each equipment in the $2550 / 2552$ system. The contents are arranged as follows:

4A - Processor and Cabinet
4B - Maintenance Panel and Controller
4C - Cassette Tape Transport and Controller

REPLACEABLE ASSEMBLIES

The processor is housed in a cabinet that includes power supplies and power distribution circuits. The replaceable assemblies that make up a 2550-2 system are listed in Table 4A-l, and the replaceable assemblies that make up a 2552 System are listed in Table 4A-2. The assembly part numbers are listed in Section $8 A$.

> Table 4A-1. 2550-2 System Replaceable Assemblies

Equipment
Replaceable Assemblies

Processor

Processor options

Cabinet

Arithmetic/logic unit (ALU) (printed circuit board)
Status mode interrupt \{SMI\} \{printed circuit board\}
Control L_{I} \{printed-circuit board\}
Control 2 \{printed-circuit board\}
Transform \{printed-circuit board\}
I/O-TTY controller \{printed circuit board\}
Memory interface address \{printed circuit board\}
Memory interface data \{printed circuit board\}
Cooling fans
Coupler, MLIA, Loop Mux and CLA's
512-instruction micro memory \{printed circuit board\}
2048-instruction micro memory \{printed circuit board\}
ECC MOS array \{printed circuit board\}
L6K MOS memory \{printed circuit board\}
32K MOS memory \{printed-circuit board\}
Power distribution system:
Elapsed time indicator
Line filters
Circuit breakers
Power supply
+5VDC module
± 2 VDC module
+2 VVDC7 - YVDCi and -5VDC regulator

Table 4A-2. 2552 System Replaceable Assemblies

Equipment

Processor No. 3 (AA109)
Base Processor

Processor No. 2 \{AAJ09\}
Mux Processor

Replaceable Assemblies
Arithmetic/logic unit \{alU\} \{printed-circuit board\} Status mode interrupt \{SMI\} \{printed-circuit board\} Control l \{printed-circuit board
Control 2 \{printed-circuit board\}
Transform \{printed-circuit board\}
I/O-TTY controller \{printed-circuit board\}
Memory interface address \{printed-circuit board\}
Memory interface data \{printed-circuit board\}
Cassette tape controller \{printed-circuit board\}
Cooling fans
Coupler Boards
Arithmetic/logic unit \{ALU\} \{printed-circuit board\} Statius mode interrupt \{SMI\} \{printed-circuit board\} Contirol $]$ \{printed-circuit board\}
Control 2 \{printed-circuit board\}
Transform \{printed-circuit board\}
I/O-TTY controller \{printed-circuit board\}
Memory interface address \{printed-circuit board\}
Memory interface data \{printed-circuit board\}
Cassette tape controller \{printed-circuit board\} Cooling fans

MLIA (Loop Multiplexer Interface Adapter)
Loop Mux
CLAs

Table पA-2. 2552 System Replaceable Assemblies \{Continued\}

- Equipment

Processor Options \{both processors\}

Replaceable Assemblies
512-instruction micro memory \{printed-cirćuit board\} 2048-instruction micro memory \{printed-circuit board\} ECC MOS array \{printed-circuit board\} lbK MOS memory \{printed-circuit board\} 32K MOS memory \{printed-circuit board\}

Elapsed time indicator Line filters
Circuit breakers
Power supply
4 SVDC module th2VDC module
F1,2VDC7 - TVDC7 -5VDC regulator

PRINTED CIRCUIT BOARD LOCATIONS

Printed-circuit board locations within the processor chassis are illustrated in figure $4 \mathrm{~A}-1$. All printed circuit boards are 11 x 14 inches in size and each board occupies one printed-circuit board position (slot) within the processor chassis. The functional interrelationship of these basic assemblies is outlined in the block diagram in figure 4A-2.

FUNCTIONAL DESCRIPTIONS

Table 4A-3 gives a brief functional description of these replaceable assemblies.

MEMORY INTERFACE BOARD
The memory interface address board contains printed-circuit-type switches for selection of direct memory access (DMS) priority. Figure 4A-3 shows the location and normal settings of these switches for an HCP.

PPU EQUIPMENT SWITCH PREPARATION

SYNCHRONIZER CARD

The synchronizer card (figure 4A-4) must have the PPU equipment switches set prior to circuit card installation. PPU equipment switches $S 1$ thru S4 are dual-inline-package (DIP) switches.
Each switch housing contains eight individual SPST switches. For Sychronizer Card 74850000, refer to figure 4A-5. For Synchronizer Card 74850001, refer to figure 4A-6. Switch labels (0-7) on the board clad adjacent to the switch correspond to the PPU Equipment Addresses ($0-7$). Table $3 \mathrm{~B}-1$ is an example of how equipment switches should be positioned for a particular PPU equipment number, once the PPU equipment addresses are assigned to the coupler.

Table 4A-3. Replaceable Assembly Functional Description Replaceable Assembly Description

Processor:

Arithmetic/logic unit

Status mode interrupt

Control 2

Contral 2

Transform
\{with read-only gemoryf

I/O-TTY controller

Memory interface addressi memory interface data

Cooling fans

Provides arithmetic and logical capabilities, and data transfer organization of the processor

Provides interrupt control for the processor

Provides main timing and register control functions of the processor

Provides all basic microprocessing control within the processor

Selects bits from various sources in the organization of the processor and transfers them to the micro-memory address register to start sequence of micro instructions that emulate \{using read-only memoryf a lif0D macro instruction

Provides data and address signal drive circuits to peripheral controllers within the processor chassis.

Two boards \{address and data\} that determine the main memory bank selected, insert and monitor parity and protect bits, and perform DMA data transfers.

Six muffin-type fans mounted on the bottom of the processor logic board chassis to provide cooling for the logic boards within the processor

Table 4A-3. Replaceable Assembly Functional Description \{Continued\}

Replaceable Assembly
Description

Processor options:

512 instruction micro memory; finalization kit

Functions as micro-instruction storage unit for the processor. Provides read/ write storage for 51,2 32-bit microcontrol instructions. Developed for systems that require the processor to be reprogrammed or reorganized for a variety of applications

2048 instruction micro memoryi finalization kit

ECC MOS array; finalization kit

26K MOS memory;
finalization kit

32K MOS memoryi
finalization kit

Power supply:
$+5 V D C$ power supply
+32VDC power supply
Voltage regulator

Power distribution system

Line filters
Circuit breakers
Elapsed Time Indicator

Similar to the 512 instruction micro memory except that it provides a 2048 32-bit micro-coritrol instruction - storage capability for the processor

Provides error correction for 384 K words of read/write MOS memory. Corrects single-bit errors and detects multiple-ioit errors.

Consists of l, 1 K l\&-bit words of MOS memory and serves as the macro memory in the processor

Same as' JbK MOS memory except that it provides $32 K$ la-bit words of macro memory

These three power supplies provide $D C$ voltages of $+5 V_{2}+12 V_{7}$ and $-9 V$ to the various circuits in the processor logic and memory. A power fail signal is sent to the control 1 board from the $5 V$ supply if its voltage drops below $+4.75 V$.

Provides distribution of $A C$ power to the proce:- or power supplies. Includes RFI lin! iilters to limit line transients and emissions, circuit breaker $=$ and elapsed time indicator

Place all individual switches of Sl thru S 4 in the OFF position. If $S l$ is used to select PPU equipment zero, then the switch opposite Sl clad label 0 should be placed in the $O N$ position. All other switches of Sl (clad labels l-7) must remain in the OFF position (open). Follow the same procedure for equipment switches s2-S4.

The four PPU Equipment Address Switches have three types of restrictive settings (refer to figures 4A-5, 4A-6 for switch terminology):

1. No more than one equipment switch housing (S1 thru S4) may select a given PPU Equipment Address at any one time (a coupler logic encode problem will result if this is incorrectly set).
2. No one equipment switch housing may have more than one switch in the $O N$ position.
3. In an application that requires the coupler to be fewer than four equipment, the unused equipment switch housings must have all switches placed in the OFF position. An error here could affect the channel and/or coupler operations.
4. Switch S 5 must not be altered during installation procedures. S5 is set during initial manufacturing tests, and must not be altered here. Description of S 5 is in the timing adjustments procedure in the Maintenance section of this manual. The switches of S 5 normally set to the ON position are:

- For the 74850000 card, switches A and E
- For the 74850001 card, switches B and F

HOST INTERFACE CIRCUIT CARD

MP Equipment Select Switch Preparation
The 2550 interface card must have the MP select switch set to the proper 2550 equipment address assigned to the coupler. Figure 4A-7
is a simplified drawing of the 2550 Interface Card. Switch Sl is a SPDT toggle switch. When the switch is UP the address selected is three, when it is DOWN the address selected is two (refer to table 4A-4).

This circuit card contains the following controls and indicators:

1. CLOCK ADJUSTMENT POTENTIOMETER. This potentiometer can be used to adjust the phase of the clock signal provided by the host computer. This is adjusted during HCP installation and normally needs no readjustment. It should be adjusted only by qualified maintenance personnel.
2. ONL CLK PRESENT Indicator. When lit, this LED indicates that the on-line clock signal from the host computer is available. The LED continues to indicate the availability of the on-line clock, even if the ON LINE/OFF LINE switch is set to the OFF LINE position. When lit, this LED also indicates the presence of +5 V electrical power. The indicator will not be lighted if either the on-line clock is not available, or if electrical power is not present. It is a valuable indication of cable integrity back to the host.
3. ON LINE/OFF LINE Switch. This two-position toggle switch is used to connect the 2550-2 to the enabled host data channel. When the switch is set to the ON LINE(up) position, the 2550-2 is connected to the host channel. When the switch is set to the OFF LINE (down) position, the communications links with the host data channel are disabled. Normally the switch is in the ON LINE position except when off-line diagnostics are being run.
4. SWITCH Assembly. This is an eight-element switch assembly; each element is a two-position rocker switch. Elements 1, 2 3 are used to select an equipment code (address) for the
communications coupler; elements 4, 5, 6 and 7 are not used; and element 8 is used for parity. Table 3-5 presents the functions for these switches. This switch assembly is set at the time the HCP is installed, and is not reset under normal conditions.

I/O-TTY CONTROLLER

This board provides an interface between the processor and a comment device (teletypewriter or conversational display terminal). Communications rates (speeds) vary with the type of device used and the application. Therefore, whe rate select (baud rate) on the I/O-TTY controller must be set to a rate compatible with the comment device. The normally selected rate is 9600 baud. Figure 4A-8 shows the location and normal operating position of these switches.

Cassette controller board provides equipment selection and function switches, see figures $4 \mathrm{C}-2$ and $4 \mathrm{C}-3$.

TABLE 4A-4. SWITCH SETTINGS - COMMUNICATIONS COUPLER HOST INTERFACE CIRCUIT CARD

I-	2	3	$\begin{aligned} & \text { EQUP. } \\ & \text { CODE } \end{aligned}$	4	5	6	7	8	Parity
On	On	On	0	N	N	N	N	On	Channel Pari亡y Disabled
Off	On	On	1	\bigcirc	\bigcirc	0	\bigcirc		(6000, CYBER 70)
On	Off	On	2						
Off	Off	On	3	U	U	U	U		
On	On	Off	4	S	S	S	e		
Off	On	Off	5	d	d	d	d	Off	Channel Parity Enabled
On	Off	Off	6						
Of:	Off	Off	7						

The standard equipment code assignment is seven (111).

Figure 4A-1. P.C. Board Placement Diagram for AA109

Figure 4A-2. Processor Functional Block Diagram

PRIORITY CHANNEL ENABLE		
FUNCTION	LOCATION	NORMAL POSITION
DMA-1	S1	
DMA-2	$S 2$	OFF*
DMA-3	53	OFF*
DMA-4	$S 4$	OFF**

- NORMAL OPERATING POSITION (NO PRIORITY SELECTED)

Figure 4A-3. Memory Interface Priority Switches

Figure 4A-4. Synchronizer Card Assembly Drawing DY159-A (Board 1)

Figure 4A-5. Dual-in-Line Package (DIP) Switches - SPST Rocker Arm Type

Figure 4A-6. Dual-in-Line Package (DIP) Switches SPST Slider Switch Type

$\begin{array}{ll}\text { Figure 4A-7. } & 2550 \text { Interface Card Assembly Drawing - } \\ \text { DY159-A (Board 2) }\end{array}$

HO-TTY CONTROLLER BOARD (COMPONENT SIDE)

Rate	Deadstart		Program	
	Switch Position 1	Switch Position 2	Switch Position 3	Switch Position 4
$\begin{aligned} & 110 \\ & 300 \\ & -1200 \\ & 9600 t \end{aligned}$	ON ON OFF OFF †	ON OFF ON OFF \dagger	ON \dagger ON OFF OFF	ON \dagger OFF ON OFF
tNormal Operating Position				

Figure 4A-8. I/O-TTY Controller Board Switches

TRANSFORM BOARD

The transform board provides for enable/disable of programmed read-only memory via a jumper located at board position $F-13$. When this jumper is installed, read-only micro memory on the board is enabled for pages 0 and 1 . When the jumper is absent, read/write micro memory on a board located in another position of the processor may be enabled for pages 0 and 1 . Figure 4A-9 illustrates the location and function of the micro-memory select jumper for the $255 x$ processor configuration.

NOTE: Jumper is normally installed for the 2551 and 2552 systems.

Figure 4A-9. Transform Board Jumper

512 INSTRUCTION MICROMEMORY BOARD

The switches shown in figure $4 A-10$ provide for micromemory page selection. When the 512 micro-memory board and a transform board with read-only memory or programmed read-only memory are included together in a system, page $\bar{\square}$ is normally reserved for the transform read-only memory. The micro-memory page select switches must therefore be set above page \square. If a transform without ROM is used, the page select switches on the micro-memory board may be set to utilize page 0 .
riruth Table

select Page	SU 3 \{ 11$\}$			
	So	51	52	53
0	OFF	OFF	OF:	OFF
2	OFF	OFF	OFF	ON
2	OFF	OFF	Oiv	OFF
3	OFF	OFF	OIV	OM
3	OFF	Oiv	OFF	CFF
5	OFF	Oiv	OFF゙	Oiv
b	OFF	$0!17$	Oir	OFF'
3	OFF	Oid	0 O	OIV
8	Oir	OFF	OFF	OFF
9	On	OFF	OFF	Oiv
10	Oiv	OFF	Oir	OFF
11	018	OFF	018	Oir
12	Oir	Ond	OFF	OFF
13	018	0.1	OFF	Oiv
${ }^{\circ} \mathrm{O}$	Oiv	On	Oir	OFF
85	Oir	Oir	018	Oir

Switch Pack

Switch shown in the on position

Figure 4A-10. 512 Instruction Micro Memory Page Select Switches

The switches shown in figure $4 A-11$ provide for micromemory page selection. When 2048 micro-memory board and a transform board with read-only memory or programmed read-only memory are Included in the system, pages 0 and 1 are normally reserved for the transform read-only memory. The micro-memory page select switches must therefore be set to pages 4787 or 12 . If a transform without ROM is used the page select switches on the micro-memory board may be set to pages.0 and 1.

Switch Fl

Figure 4A-11. 2043 Instruction Micro Memory Page Select Switches

MAINTENANCE PANEL AND CONTROLLER

The maintenance panel system consists of a maintenance panel, a ribbon cable, and a controller, which are the only replaceable assemblies. They are illustrated in Figure $4 B-1$, and their functions are described in Table $4 B-1$. In dual-CPU systems, each CPU will have a maintenance panel and controller, see Section $8 B$ for subassembly part numbers.

Figure 4B-1. Maintenance Panel Replaceable Assemblies

Table 48-1. Maintenance Panel Replaceable Subassemblies Functional Description

Replaceable Subassembly

Maintenance Panel

Maintenance Panel Controller

Interface cable
This l. 5-foot ribbon cable connects the panel and controller and provides a path for data and control signal interchange.

Table 4 C-l lists the replaceable assemblies of the cassette tape transport subsystem. Subassembly part numbers are listed in Section $8-A$.

TABLE 4 [-I. CASSETTE TAPE TRANSPORT SUBSYSTEM REPLACEABLE ASSEMBLIES

Replaceable Assembly	Assembly Type
Cassette Tape Controller	Printed circuit-board
Cassette Tape Transport	Unit.
Interface Cable	Unit

Figure 4C-l is a functional block diagram of the cassette tape transport system.

The following describes briefly the function of the replaceable assemblies.
2. Cassette tape controller - This board housed in a predetermined slot of the computer chassis serves as an interface between the processor and the cassette tape transport. All function and status requests are initiated by the computer. The controller interfaces with either one or two cassette tape transports.
2. Cassette tape transport - Used as an input device for loading diagnostics or software. It contains no operatorcontrolled switches. An auto-rewind feature may be used when desired by selecting switches on the controller board ssee Switch Settings\}.

Figure 4C-l. Logic Block Diagram

SWITCH SETTINGS, NORMAL OPERATION

Table 4A-1 illustrates the location of the controller in the processor chassis.

Figure 4C-2 and 4C-3 illustrates the location and normal operating positions of the equipment and function code switches on the controller.

Figure 4C-2. Tape Cassette Controller Switches

SWITCH 1 - EQUIRMENT CODE


```
ON = LOGIC 0
OFF=LOGIC }
```


SWITCH 2 - CONTROL FUNCTIONS

ON	AUTO-REWIND ENABLED (UNIT O)	AUTO-REWIND ENABLED (UNIT 1)	PROTECTED MODE	UNIT 1 FOR DEADSTART
OFF	AUTO-REWIND INHIBITED (UNIT 0)	AUTO-REWIND INHIBITED (UNIT 1)	UNPROTECTED MODE	NORMAL UNIT 0

Figure 4C-3. Cassette Control Switches

SECTION 5

DIAGRAMS

SECTION 5

DIAGRAMS

This section contains cabling diagrams, power distribution schematics and assembly drawings for the HCP. The drawings are arranged as follows:

5A-1 thru 5A-10	2552 Cabinet Drawings
$5 B-1$	Maintenance Panel Interface Cable
$5 \mathrm{C}-1$	Cassette Tape Interface Cable
$5 \mathrm{D}-1$ thru 5D-6	Multiplex Loop Subsystem Circuit Card Drawings

Figure 5A-1. 2552 HCP, Front View, Site Cabling Diagram

Figure 5A-2. 2552 Backplane Cables

Figure 5A-3. 2550-2 Processor Backpanel

Figure 5A-6. HCP AC Power Distribution

Figure 5A-7. Typical Electrical Distribution Box Schematic

Figure 5A-8. HCP, Side View

Figure 5A-10. Interrupt Cable Connections

Figure 5B-1. Maintenance Panel rnterface Cable

Figure 5C-1. Cassette Tape Transport Interfacc Cabie

Figure 5D-1. Typical LM CArd Cage Assembly

Figure 5D-2. Location of Loop Multiplexer and Typical Communications Line Adapter

Figure 5D-3. Loop Multiplexer Circuit Card Controls and Indicators

Figure 5D-4. ACLA Circuit Card

ACLA CABLES

Product No.	Assy No.	Application	Connector to Modem	Connector to XCLA
10400-1.	746577xx	Compatible with AT\&T 103/113 data sets	25-contact plug (male)	```25-contact socket (female)```
20400-2	746579 xx	Can connect to terminal directly	25-contact socket (female) with threaded retaining spacers	```25-contact socket (female)```
10400-3	746583xx	Compatible with AT\&T 103F, 202R data sets or CDC telegraphic level converter, or equivalent modem	$\begin{aligned} & 25 \text {-contact } \\ & \text { plug (male) } \end{aligned}$	```25-contact socket (female)```

Figure 5D-5. Typical ACLA Cables

Figure 5D-6. MLIA, Output Loop Interface Circuit Card - Indicators

SECTION 6

DDLTS AND PROCEDURES

INTRODUCTION

This section contains the ODS 2.0 DDLTs and procedures. Figure 6-1 is a graphic representation of the organizational structure of this section. The DDIT program list is provided in Table 6-1. In addition to the DDLTs and appendixes are the following:

6A - Processor, Cabinet and Operator's Panel Procedure
6B - Maintenance Panel Replacement Procedure
6C - Cassette Transport Test Procedure.

Table 6-2 provides the preventive maintenance plan for the NPU equipment.

Figure 6-1. Organizational Structure of Section 6.

ON-SITE SERVICE APPROACH

1. Before going to the customer's site, the customer should be sure he has the necessary documentation and should be aware of what spare parts may be required at the site.
2. Upon arriving at the customer's site, the customer engineer should talk to the customer contact in an attempt to obtain as much information as possible about the nature of the system failure. The customer engineer should find out if the customer can identify specifically what is wrong with the system.
3. Regardless of what the malfunction is described to be, the customer engineer should always check that all cables are securely connected and check that all printed circuit boards are properly seated in the microprocessors.
4. If the malfunction is in a peripheral unit, the customer engineer should first run the DDLT tests in Tables 6-3 and 6-4 and then proceed to test the known bad device (see Table 6-5). This is illustrated by Figure 6-2. If a fault exists, but the customer cannot identify what is wrong, then a complete system verification test should be run. This is accomplished by running all DDLTs in sequence as illustrated in Figure 6-3.
5. If a device does not exist on a system, ignore that DDLT table and go to the next table.
6. After taking corrective action, the customer engineer should rerun the DDLT starting at Sheet 1 of that table to ensure that the fault has been corrected.
7. After testing is complete, the customer engineer should perform any required preventive maintenance as described in Table 6-2. Be sure to leave all switches used during testing set to the proper position for customer use of the system.
8. Finally, before leaving the customer site the customer engineer should talk to the customer contact and, more importantly, never leave the site without first receiving assurance that he as satisfied the customer.

TABLE 6-1. 2550 ODS 2.0 DIAGNOSTIC PROGRAM LIST

		DDLT
Mnemonic	Title	TABLE
LDCHK	Load Check	$6-3$
MPINS	Command Test	$6-5$
MPMOS	MOS Memory Test	$6-6$
MOSMA	MOS Memory Test	$6-6$
MPRTC	Protect Test	$6-7$
MIMEM	Micromemory Test	$6-8$
MIINS	Microinstruction Test	$6-9$
Page 1	MOS Memory Paging Test	$6-10$
DUCPU	Dual CPU Test	$6-11$
MPMEM	Core Memory Test	$6-12$
CASEC	Cassette Echo Test	$6-13$

UTOPIA/MSMP

CEL042	Cyclic Encoder	$6-14$
MST041	Multiplex Subsystem Diagnostic	$6-15$
CPL040	6000 Coupler Diagnostic	$6-16$
CPL040	Expanded Coupler Diagnostic	$6-17$
CUP043	3000L Coupler Diagnostic	$6-18$
TTY08	CRT/TTY Console Diagnostic	$6-19$
UTOPIA	Utility Routines	Appendixes

Appendix

A \quad Tape Cassette Format
B Tape Cassette Copy Routine
C Parameter Changes and Patches to MSMP17 Diagnostics

D
Debug Aids - Trace Interpretation
System Initialization

PREVENTIVE MAINTENANCE

Preventive maintenance is a scheduled maintenance routine performed to keep the equipment operating at its optimal level. The maintenance index (Table 6-2) describes the time interval of preventive maintenance activity for specific equipments. DIAGNOSTIC DECISION LOGIC TABLES (DDLT's)

The DDLTs identify and isolate equipment malfunctions in the replaceable subassemblies.

The DDLT analyzes a situation down to specific conditions and then directs the customer engineer to those actions that will correct the situation, with the most likely action listed first. Basically, the table is arranged in five sections: assumptions, conditions, conditions, responses, actions and sequence of actions (see DDLT example Figure 6-4).

ASSUMPTIONS
The upper section of the DDLT contains the prerequisites pertaining to the specific tests to be performed. The DDLT is valid only if all assumptions are true.

CONDITIONS
The center-left section of DDLT contains the conditions or tests to be made which are in the form of questions that can be answered yes or no.

RESPONSES

The center-right section of the DDLT contains the response to the question asked in the conditions section. Note that each condition, or question, can be answered with a yes (Y) or a no (N). The example chosen for Figure 6-4 has 10 unique situations, numbered from 1 to 10, left to right. The shaded area in the example shows the conditions that define situation 9. That is, the POWER ON indicator does not illuminate; all other indicators do not illuminate when READ CHECK indicator/switch is pressed; no single indicator illuminates; and no motors start.

TABLE 6-2. PREVENTIVE MAINTENANCE PLAR

The "Level" columns are designated, for scheduling purposes as:
Level 2 - Ecfore power-up after sustained shutdown
Level 2 © 150 llours or weckly
Level 3 - 700 hours or monthly
Level 4 - 2100 hours or quarterly
Level 5 - 6000 hours or annually

Equipment I. D.	Level					Action	Rcference Procedure	Time Required
	1	2	3	4	5			
1700 Enhanced Processor	X	X				Visual Inspection Clean fan filter Check fans	$\begin{aligned} & 6 \Lambda-3 \\ & 6 A-14 \\ & 6 \Lambda-10 \end{aligned}$	$\begin{aligned} & 15 \mathrm{Min} . \\ & 10 \mathrm{Min} . \\ & 15 \mathrm{Min} . \end{aligned}$
Panel		X				Visual inspection and removal of accumulated dust from pancl surfaces	None	$2 \text { Min. }$
Tape Cassette Transport		x			88	Clean Transport Lubricate Transport	$\begin{aligned} & 6 C-4 \\ & 6 C-3 \end{aligned}$	80 Min . 15 MIn.

Figure 6-2. System Troubleshooting Flow Chart

Figure 6-3. Flow Chart for System Verification Test Sequence

The first condition should be examined for a yes or no response. The applicable response directs the operator to the next condition in the column, etc., until all conditions in the column have been analyzed. In Figure 6-4, column 1 identifies an everything-isnormal situation for the tests made. Therefore, the Actions section in the lower left of the table directs the customer engineer: "Go to Sheet 2 of this table." The customer engineer then goes to Sheet 2 of the table and does not waste time with further examination of Sheet 1 .

ACTIONS

The lower left quadrant lists actions to correct a situation.

SEQUENCE OF ACTIONS
The lower right section lists the sequence of the actions required to correct a situation, with each succeeding action being performed only if a previous action failed to correct the condition under test. The sequential numbering of actions reflects the probability of the corresponding action correcting the problem, with the most likely listed first. A "l" indicates that no sequence of actions is necessary but the action listed must be performed. Both actions and conditions may refer to specific procedures to follow (for example, when checking and adjusting power-supply voltages). The customer engineer must exit the table to perform the procedure and then return to the same point in the table to answer any questions that are related to the procedure. He also continues from this point in the table if the fault still persists. The same is true if an exit to another table or sheet of the same table does not find the fault and the action that called for the exit is not the last action in the sequence. The customer engineer must return to his original DDLT exit point and continue testing from there.

The DDLT's presume all operator inputs are entered correctly. Any incorrect entry may result in the DDLT directing incorrect action. Hence, if any doubt exists about the accuracy of the operator entry, always repeat the sequence of DDLT steps that led up to an action before taking further actions.
(EXAMPLE)

TABLE 6-X. CARD READER DDLT

wote: arnows and cmcled sumbers indicate sequential flow of analysis procedune.

Figure 6-4. Example of a Diagnostic Decision Logic Table (DDLT)

TYPEOUT
GHOST IN INTERRUPT LINES xxxx (level 1 test)

DESCRIPTION
Unexpected interrupt was received. xxxx = a bit mask indicating what line was interrupted.

PRECAUTIONS

The following are precautions the customer engineer should keep in mind while performing diagnostic testing:

- After any power to the computer is turned on or off, the computer should be master cleared.
- Power to the peripherals should be turned off before the power to the computer is turned off.
- Printed circuit boards may be removed from or installed in the processor with the power on.
- Do not press any key on the conversational display terminal while diagnostic card decks are being loaded.

Whenever the ESC key on the conversational display terminal is pressed, the computer is placed into panel mode. This prevents further messages from being displayed on the conversational display terminal. To a user it appears that the system is hung up. If the ESC key is accidently pressed, the condition can be rectified by pressing the @ character on the keybaord.

The DDLT's presume all operator inputs are entered correctly. Any incorrect entry may result in the DDLT directing incorrect action. Hence, if any doubt exists about the accuracy of the operator entry, always repeat the sequence of DDLT steps that led up to an action before taking further actions.

ASSUMPTIONS:
System. power is turned on at each device.
Set TTY select switch to .CPU being tested.
If this is a dual-CPU system, tests on second processor must be performed after completing tests on first processor.
Press MASTER.CLEAR on maintenance panel of CPU.being tested.
The following is entered at the keyboard:
ESC key is pressed.
J58G is typed in. \{boeṣ not print\}

CONDITIONS:	1	2	3	4	5	6	7	8	9	10	11112
```Does the TTY display: .J000008x0 or 5000008x8 S<xxxxxx\,  f<x<xx\timesx\times2 .. J%%<x<xx×4 f<x<<x<x8x &\xx<xxxxx.or Jx^xxxxxx```   where any of the above $x$ 's may equal any number.	$\bar{y}$	$\begin{aligned} & N \\ & Y \end{aligned}$	$\begin{aligned} & N \\ & Y \end{aligned}$	$\begin{aligned} & N \\ & Y \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{Y} \end{aligned}$	N $Y$	$N$				
ACTIONS   Go to sheet 2 of this table.											
Replace control l \{slot P\}.		?	9	9	2	4	3				
Replace control 2 \{slot N\}: .		0	0	0	7	3	4				
Replace ALU \{slot. M\}:		1	?	$?$	5	6	2				
Replace transform \{slot R\} -		4	j	2	6	5	5				
Replace miemory inderf.ace \{slot V\}		5	2	2	9	1.0	9		:		
Replace memory interface \{siot. 4$\}$		5	3	3	10	1.11	20				
Replace I/0 \{slot: K\}. .			4	4	2	8.	$b$		$\vdots$		
Replace memory \{slot $\mathrm{X} \mathrm{\}}$		9	5	6	8		11				
Replace SMI \{s, ot Lf .		3	B	B	4	7	7				
Call next leyel of support			12	12	11	I2	12				
Verify the power spppliestproc. AT, AT?							$\frac{12}{2}$				
Ensure shift lock on keyboard is released: Restart this page.						1.					
Replace panel interface \{slot $U\}$. 7470101001		2	6	5	3	2	8				$\left.\cdot\right\|_{6-11}$

TABLE 6-3. LOADCHECK DDLT \{CONTINUED\}

## Assumptions:

The conditions below are read before going to the next assumption. MASTER CLEAR on maintenance panel of CPU being tested is presised. Level I cassette tape is inserted into the respective unit if this is a dual-CPU system.
Tape is observed for rewind and forward-to-load-point motion when lid of drive is closed.

All system switch settings are correct . Section 4A.

## CONDIIIONS:

Did the tape move in both directions?
Did the tape move in only one direction?
After approximately five seconds, did
the cassette READY indicator on the
KPU maintenance panel illuminate?

Actions:
Go to sheet 3 of this table:
Use another tape if available and/or. restart this page.
Check cassette power supply voltages. \{Procedure b $\{-$ ô\}
Replace the cassette drive. : $\{$ Procedure b $\mathrm{C}-7\}$
Replace the cassette controller \{slot H\}

Check power distribution box \{Procedure A-1.3\}.
Verify processor power supplies \{Procedures A7, A9, Alı\}
Ensure that the cossette tape is in the correct drive.

Check cables to READY light on CPU maintenance panel\}.
Call next level of support.


## Assumptions:

DEADSTART INITIATE button on CPU maintenance panel is pressed. CPU maintenance panel indicator lights are observed.

MEMORY PROTECT switch enabled (up).



## ASSUMPTIONS:

1. The following is entered on the keyboard:

ESC Key is pressed. JllG is typed in.


## ACTIONS:

1. Go to sheet 5 of this table.
2. Replace transform, slot R.
3. Replace memory interface, slot $V$.
4. Replace memory interface, slot $W$.
5. Replace memory, slot $X$.

6: Replace ALU, slot M.
7. Replace SMI, slot L.
8. Replace control l, slot P.
9. Replace control 2, slot N.
10. Replace I/O-TTY, slot K.
11. Go to procedure 21.
12. Replace micro-memory, slot T.
13. Go to table 6-101.


## ASSUMPTIONS:

Entry is made from Sheet 4 of this table.
KG is typed in at the keyboard.
Observe the CDI display for one of the following conditions.


## ASSUMPTIONS:

Entry is made from Sheet 5 of this table.


## TABLE b-4. TAPE RELOAD AND CUSTOMER INPUT

## ASCUMPTIONS:

Loadcheck \{LDCHK\} has completed successfully.
Last TTY output message was: ..
223456

## CONDITIONS:

Has MPINS been run on this service. call?

Is this a reload following: a maintenance action?
Is this a jeload for final verification?
Can the customer identify a problem area: :'

## ACTIONS:

$60^{\circ}$ to next table \{Command Test\}. Execute MPINS.
Go to DDLT that specified last maintenance action.
Go to DDLT of suspected, probiem area.
Go to Table b-b and continue through. DDLT's per Figure b-3.

## ASSUIAPTIONS:

If this test is not to be run, go to next table.
The test name for this DDLT is MPINS.
MPINS may be started executing by
\{a\} typing MPINS carriage return if the TTY has just typed out a test name \{xxxxx?\} listed above MPINS in Table b-ly or
\{b\} by typing $G O$ carriage returns if MPINS? has just been typed out. Messages output on the.TTY must be followed to complete this table.


## ASSUMPTIONS:

If this test is not to be runn go to next table.
The test name for this DDLT is MPMOS.
MPMOS may be started executing by
\{o\} typing MPMOS Carriage Return if the TTY has just typed out a test name \{xxxxx?\} listed above MPMOS in Table b-ly or
\{b\}. by typing $G O$ Carriage Return if. MPMOS? has just been typed out.
Messages output on the TTY must be followed to complete this table.
Loadcheck and the Command test ran successfully.
Memory protect switches are in the ENABLED \{up\} position.


ASSUMPTIONS:
Observe TTY display for the following conditions.


ASSUIAPTIONS:
Entry is made from sheet 2 of this table.

## CONDIIIONS:

After several minutes delay does the TTY display:

MPMOS SECTION
MPMOS SECTION 0003
MPMOS SECTION 0004
MPMOS SECTION 0005
MPMOS SECTION COOG
MPMOS COMPLETED OODI PASSES
SET MULTI-LEVEL INDIRECT SUITCH ON ESC J42 a GO CR\} MPMOS SUSPENDED SELF

ACTIONS:
3: At the TTY keyboard:
Press ESC key
Type in 142 a 60
$\frac{\because \quad . \quad \text { PrBss CARRIAGE RETURN }}{2 \cdot} \quad 60^{\circ}$ to sheet 4 of this table.
3. Go to sheet 5 of this table.

TABLE 6-6. MOS MAIN MEMORY DDLT (Contd)


TABLE 6-6. MOS MAIN MEMORY DDLT \{CONTINUED\}

ASSUMPTIONS :
Entry is made from Sheet 4 of this table.


## ACTIONS \{CONTINUED\}:

## ASSUMPTIONS:

Entry is made from sheet 5 of this table.

## CONDITIONS:

Does the CDT display:

1. $\operatorname{xxx} 0$
2. $x \times x 6$ or $x \times x 7$
3. $: \times \times 1$
4. $\quad \mathrm{x} \times \times 2$
5. $\quad 2 \times x 3$
-6. xxx 4
6. Are there any 32 K boards in the local CPU?
-8. $\cdots-$ Is there only one 32 K board in the local CPU?
7. Are there only two 32 K boards in the local CPU?

## ACTIONS:

1. Replace MOS array board in one of the following local slots: $\qquad$ X $X \quad X$
```
 Sheet 7 of 14
```


## ASSUMPTIONS:

Entry is made from sheet 5 of this table.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CONDITIONS: \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12 \& 13 \\
\hline \begin{tabular}{l}
Does the CDT display: \\
1. xxx 8 \\
2. xxxE or xxxF \\
3. \(\quad \mathrm{xxx9} 9\) \\
4. \(\quad\) axxA \\
5. xxxB \\
6. ExxC \\
7. Are there any 32 K boards in the remote CPU? \\
8. Is there only one 32 K board in the remote CPU? \\
9. Are there only two 32 K boards in the remote CPU?
\end{tabular} \& \& \[
\begin{aligned}
\& \mathbf{N} \\
\& \mathbf{Y}
\end{aligned}
\] \& \begin{tabular}{l}
N \\
\(\mathbf{Y}\) \\
\(\mathbf{Y}\)
\end{tabular} \& \& N
\(\mathbf{Y}\)

$\mathbf{Y}$ \& N \& | N |
| :--- |
| Y |
| Y |
| Y | \& \[

\mathbf{N}
\] \& N \& N

Y

Y \& N \& | N |
| :--- |
| Y | \& N <br>

\hline | ACTIONS: |
| :--- |
| 1. Replace MOS array board in one of the following remote slots: $\mathbf{x}$ | \& 1 \& 10 \& 1 \& 11 \& 11 \& 11 \& 11 \& 11 \& 11 \& 11 \& 11 \& 11 \& 11 <br>

\hline Y \& 11 \& 11 \& 11 \& 1 \& 1 \& 12 \& 12 \& 1 \& 12 \& 12 \& 12 \& 12 \& 12 <br>
\hline 2 \& 12 \& 12 \& 12 \& 12 \& 12 \& 1 \& 1 \& 12 \& 13 \& 13 \& 1 \& 13 \& 1 <br>
\hline AC \& 13 \& 1 \& 13 \& 13 \& 13 \& 13 \& 13 \& 13 \& 1 \& 1 \& 13 \& 1 \& 13 <br>
\hline 2. Replace ECC array board, remote slot AC. \& 2 \& \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 <br>
\hline 3. Replace memory interface board, remote slot V. \& 3 \& 2 \& 3 \& 3 \& 3 \& 3 \& 3 \& 3 \& 3 \& 3 \& 3 \& 3 \& 3 <br>
\hline 4. Replace memory interfece board, remote slot W. \& 4 \& 3 \& 4 \& 4 \& 4 \& 4 \& 4 \& 4 \& 4 \& 4 \& 4 \& 4 \& 4 <br>
\hline 5. Replace memory interface board, local slot V. \& 5 \& 4 \& 5 \& 5 \& 5 \& 5 \& 5 \& 5 \& 5 \& 5 \& 5 \& 5 \& 5 <br>
\hline 6. Replasa memorv interface board, local slot W. \& 6 \& 5 \& 6. \& 6 \& 6 \& 6 \& 6 \& 6 \& 6 \& 6 \& 6 \& 6 \& 6 <br>
\hline
\end{tabular}

Continued on next page

TABLE 6-6. MOS MAN MEMORY DDLT (Contd)

	Sheet 7 of 14 (Contd)												
ACTIONS (Continued):	1	2	3	4	5	6	7	8	9	10	11	12	13
. 7. Replace cable at local slot V, pin 228.	7	6	7	7	7	7	7	7	7	7	7	7	7
8. Replace cable at local slot V, pin 240.	8	7	8	8	8	8	8	8	8	8	8	8	8
9. Replace cable at local slot W, pin 53.	9	8	9	9	9	9	9	9	9	9	9	9	9
10. Replace cable at local slot W, pin 77.	10	9	10	10	10	10	10	10	10	10	10	10	10
11. Call next level of support.	14	13	14	14	14	14	14	14	14	14	14	14	14

ASSUMPTIONS:
If this test is not to be runi go to next table.
The test name for this DDLT is MOSMA.
MOSMA may be started executing by
\{a\} typing MOSMA carriage return if the TTY has just typed out a test name $\{x \times x \times x ?\}$ listed above MOSMA in Table boly or
\{b\} by typing GO Carriage Return if. MOSMA? has just beèn typed out.
Messages output on the TTY must be followed to complete this table.
Entry to this sheet is from sheet 4 of this table.
Memory protect switches are in the ENABLED. \{up\} position.

## CONDITIONS:

Does the TTY display:
MOSMA EXECUTING.
MOS SUSPENDED.BOT
Is this CPU 2 of a dual-CPU.system?
ACTIONS:
Go to Table b-100.
At the TTY keyboard:
Type $A, 0.04,2550-265 \mathrm{~K}$
Type $A_{7} 4.04$ Dual CPU 65 K each
Press CĀㅠㄷAGE RETURN
Type $D_{7} 0 F F E F T 2$
Press CARRIAGE RETURN
Type $37,78, \underline{8} 0$
Press CARिRIGE-RETURN
Fill in the above spaces with run pariameters as directed in procedure $A-20$.
At the TT:Y keyboard: :
Type A?
Press CĀRRIAGE RETURN
Type $D_{7}{ }^{7}$
Press CA $\bar{R} R I \bar{A} G \bar{E} \cdot \bar{R} E T U R \bar{H}$
Type 3,

- Press cā̃r̄āe? Return

Fill in the above spaces with run parameters as directed in procedure. A-20.
At the TTY keyboard:

- Type 60

Press Carriage return
Go to sheet 9 of this table.

TABLE 6-6. MOS MAIN MEMORY DDLT \{CONTINUED\}




ASSUMPTIONS:
Entry is made from Sheet 10 of this table.


## ASSUMPTIONS:

Entry is made from Sheet 10 of this table.


TABLE 6-6. MOS MAIN MEMORY DDLT \{CONTINUED\}

ACTIONS \{Continued\}:


## ASSUMPTIONS:

Entry is made from sheet 12 of this table.

CONDITIONS: $\quad \begin{aligned} & \text { a }\end{aligned}$													
Does the CDT display:   1. xxx 0   2. $\quad x \times x 6$ or xxx 7   3. xxCl 1   4. $\mathrm{xxx2}$   5. $\quad 20 x 3$   6. . $x \times x 4$   7. Are there any 32 K boards in the local CPU?   8. Is there only one 32 K board in the local CPU?   9. Are there only two 32 K boards in the local CPU?			Y   Y		Y	$\mathrm{N}$			N	$\mathrm{N}$	$\mathrm{N}$	$\mathrm{N}$ $\mathbf{Y}$	N
ACTIONS:   1. Replace MOS array board in local slot:   X	1	4	1	5	5	5	5	5	5	5	5	5	5
$\mathbf{Y}$	5	5	5	1	1	6	6	1	6	6	6	6	6
$\mathbf{Z}$	6	6	6	6	6	1	1	6	7	7	1	7	1
AC	7	1	7	7	7	7	7	7	1	1	7	1.	7
2. Replace ECC array board if present, local slot AC.	2		2	2	2	2	2	2	2	2	2	2	2
3. Replace memory interface board, local slot V.	3	2	3	3	3	3	3	3	3	3	3	3	3
4. Replace memory interface board, local slot W.	4	3	4	4	4	4	4	4	4	4	4	4	4
5. Call next level of support.	8	7	8	8	8	8	8	8	8	8	8	8	8.

TABLE 6-6. MOS MAIN ME:HORY DDLT (Contd)
$\square$

## ASSUMPTIONS:

Entry is made from sheet 12 of this table.

## CONDITIONS:

Does the CDT display:

1. $\mathrm{xxx8}$
2. xxxE or xxxF
3. $\mathrm{xxx9}$
. 4. xxxA
4. xxxB
5. $\quad \mathbf{x x C}$
6. Are there any 32 K boards in the remote CPU?
7. Is there only one 32 K board in the remote CPU?
8. Are there only two 32 K boards in the remote CPU?

## ACTIONS:

1. Replace MOS array board in remote slot:

X	1	10	1	11	11	11	11	11	11	11	11	11	11
Y	11	11	11	1	1	12	12	1	12	12	12	12	12
2	12	12	12	12	12	1	1	12	13	13	1	13	1
AC	13	1	13	13	13	13	13	13	1	1	13	1	13
2. - Replace ECC array board, remote slot AC.	2		2	2	2	2	2	2	2	2	2	2	2
3. Replace memory interiace board, remote slot V.	3	2	3	3	3	3	3	3	3	3	3	3	3
6. Replace memory interface board, remote slot $W$.	4	3	4	4	4	4	4	4	4	4	4	4	4
5. Replace memcri; ir. : rface board, local slot V.	5	4	5	5	5	5	5	5	5	5	5	5	5

Continued on next page

TABLE 6-6. mOS main memory ddlt (Contd)


TABLE 6-7. MEMORY PROTECT AND INTERRUPT SYSTEM TEST

## ASSUMPTIONS:

1. If this test is not to be run, go to next table.
2. After $x x x x x$ ? is displayed, the following is entered at the keyboard (if $x x x x x$ is not displayed, go to table 6-100):

MPRTC is typed in.
CARRIAGE RETURN is pressed.
NOTE: $\quad$ xxxxx $=$ test name
3. See the table below for operator actions as directed by diagnostic.-Then observe the CDT display for the following conditions after approximately two minutes. Following program input requests,. observe conditions.

Display message directive

1. Clear protect and stop
2. Set protect and clear stop
3. Set protect and stop
4. Verify CPU is halted at xxxx
5. Set protect and clear stop
6. Clear protect and set stop

## Operator response

1. Press ESC key
2. Type in J20@GO
3. Press Carriage return
4. Press ESC key
5. Type in J28@GO
6. Press Carriage return
7. Press ESC key
8. Type in J2A@GO
9. Press Carriage return
10. Press ESC key
11. Type in JllGKG
12. Observe the value Knnnn, where nnnn portion equals the xxxx value in message. If not equal, go to next page and assume code 0651. If equal, type in l@ at the keyboard.
13. Press ESC key
14. Type in J28@GO
15. Press Carriage return
16. Press ESC key
17. Type in J22@GO
18. Press Carriage return

TABLE 6-7. MEMORY PROTECT AND INTERRUPT SYSTEM TEST (Contd)


TABLE 6-7. MEMORY PROTECT AND INTERRUPT SYSTEM TEST (Contd)

## ASSUMPTIONS:

1. A failure has been detected. The following analyzes and isolates the detected failure.
2. Observe CDT display for any of the following conditions.


## ASSUMPTIONS:

There is a micromemory board in slot $T$.
If this test is not to be run, go to next table.
After XXXXX? is displayed, the following is entered at the keyboard:
MIMEM is typed in
CARRIAGE RETURN is pressed
NOTE: If XXXXX? is not displayed, go to Table 6-100.
Observe the CDT for the following conditions.

CONDITIONS:

1. Does the CDT display:

MIMEM EXECUTING
MIMEM SUSPENDED BOT?
2. Is RUN indicator illuminated? Bit 24 of the FCR
ACTIONS:

1) Fill in the spaces below with the run parameters as directed in procedure A22.
At the CDT keyboard:
Type D, 7
Press CA $\frac{1}{R R I A G E ~ R E T U R N}$
Type 11, 7
Press CARRIAGE RETURN Type GO
Press CARRIAGE RETURN
2) Go to sheet 2 of this table
3) Go to Table 6-101
4) $\overrightarrow{\text { Go to Table } 6-100 .}$

.SSUAPTIONS: .
Entry is made from Shect 1 of this table.
:ONDITIONS:
Within approximately 3 minutes does the CLI display:

MINEM Section OCOZ:
. MINEM Section 0002
MIMEN Section COCO
MIMEM Section C0C4.
vinem Completed 0001 Passes MIMEM Terniinated 0000 Errors

ACTIONS:

1. Go to next table.
2. Go to Sheet. 3 of this table.

## ASSUMPTIONS:

Entry is made from Sheet 2 of this table.


ASSUMPTIONS:

1. If this test is not to be run, go to the next table.
2. At least one optional micromemory board is installed in the processor
3. After Xxxx? is displayed, the following is entered at the keyboard:

MIINS is typed in
CARRIAGE RETURN is pressed
NOTE: If XXXX? is not displayed, go to Table 6-100.
4. Observe the CDT for the following conditions


## ASSUMPTIONS:

Entry is made from Sheet 1 of this table.


## ASSUMPTIONS:

Entry is made from Sheet 5 of this table.


```
TABLE 6-10. MOS MEMORY PAGING FILE TEST DDLT
```


## ASSUMPTIONS:

1. If this test is not to be run, go to table 6-11.
2. The MOS main memory test (table 6-6) runs successfully in both CPUs.
3. After $x x x x x$ ? is displayed, the following is entered at the keyboard (if $x x x x x$ ? is not displayed, go to table 6-100): PAGE1 is typed in.
CARRIAGE RETURN is pressed.
NOTE: $x x x x x=$ test name
4. Observe the CDT display for the following conditions.


TABLE 6-10. MOS MEMORY PAGING FILE TEST DDLT (Contd)

| ASSUMPTIONS: |
| :--- | :--- | :--- | :--- | :--- |
| Entry is made from sheet 1 of this table. |

TABLE 6-10. MOS MEMORY PAGING FILE TEST DDLT (Contd)

	Shect 3 of 7		
ASSUMPTIONS:   Entry is made from sheet 2 of this table.			
CONDITIONS:   1. After several seconds delay, does the CDT display:   PAGE1 SECTION 0001   PAGE1 SECTION 0002   PAGE1 SECTION 0003   PAGEI SECTION 0004   PAGE1 SECTION 0005   SET MULTI-LEVEL INDIRECT SWITCH ON (ESC J42 @ GO CR)   PAGEI SUSPENDED SELF	ソ	1	$\frac{2}{N}$
ACTIONS:   1. At the CDT keyboard:   Press ESC   Type J42@ GO   Press CARRIAGE RETURN	is	1	
2. Go to sheet 4 of this table. --		2	
3. Go to sheet 7 of this table.			X

TABLE 6-10. MOS MEMORY PAGING FILE TEST DDLT (Contd)


TABLE 6-10. MOS MEMORY PAGING FLLE TEST DDLT (Contd)

| ASSUMPTIONS: |
| :--- | :--- | :--- | :--- | :--- |
| Entry is made from sheet 4 of this table. |

TABLE 6-10. MOS MEMORY PAGING FILE TEST DDLiT (Contd)


TABLE 6-10. MOS MEMORY PAGING FILE TEST DDLT (Contd)

## ASSUMPTIONS:

Entry is made from sheet $2,3,4,5$, or 6 of this table. An error has occurred.

CONDITIONS:   Does the CDT display:	1	2	3
1. 0301 or 0302	$\mathbf{Y} \mathbf{N}$		
2. $0303,0304,0306,0351,0352$, or 0353		Y	N

## ACTIONS:

1.	Return to sheet 1, action 2, of this table. Parameter A is incorrect.	1		
2.	Repeat the loadcheck test (table 6-3) and this test. Run parameters are incorrect.	2	1	1
3.	Replace memory interface, local slot V.			2
4.	Replace memory interface, local slot W.			3
5.	Replace transform, local slot R.			4
6.	Replace control 2, local slot N .			5
7.	Replace control 1, local slot $P$.			6
8.	Replace I/O-TTY, local slot K.			7
9.	Replace panel interface, local slot U.			8
10.	Replace SMI, local slot L.			9
11.	Replace ALU, local slot M.			10
12.	Call next level of support.	4	3	12
	Verify address and data cables that connect CPU 1 and CPU 2 are correct if a dual CPU System.	3	2	11

TABLE 6-11. DUAL CPU DDLT

## ASSUMPTIONS:

1. If this test is not to be run, go to next table.
2. MOS main memory test, memory protect test, and micro memory test run successfully in both CPUs.
3. Cassette drive for CPU 2 is empty.
4. CPU 1 is selected at the operators panel.


## ASSUMPTIONS:

1. CPU 1 is selected at operators panel and MASTER CLEAR button is pressed.
2. 

Level I tape is inserted into cassette drive for CPU 1.
Cassette tape has rewound and READY indicator is on.
3. DEADSTART button is pressed.
4. After xxxxx ? is displayed, the following is entered at the CDT keyboard (if xxxxx ? is not displayed, go to table 6-100):

DUCPU is typed in.
CARRIAGE RETURN is pressed.
NOTE: $\mathrm{xxxxx}=$ test name
5. Observe the CDT display for the following conditions.


ASSUMPTIONS:
Entry is made from sheet 2 of this table.



TABLE 6-11. DUAL CPU DDLT (Contd)


TABLE 6-11. DUAL CPU DDLT (Contd)

## ASSUMPTIONS:

Entry is made from sheet 3 or 4 of this table. An error has occurred.


## ASSUMPTIONS:

Entry is made from sheet 6 of this table. An error has occurred.


TABLE 6-11. DUAL CPU DDLT (Contd)


## ASSUMPTIONS:

1. If this test is not to be run, go to next table.
2. The name for this DDLT is MPMEM.
3. MPMEM may be started executing by:
(a) Typing MPMEM carriage return is TTY has
just typed out a test name (xxxxx) listed
above MPMEM in table $6-1$.
(b) Type go carriage return is MPMEM has just been typed out.

CONDITIONS:	1	2	3	4	5	6	7	8	9	10	11	12
1. Is MPMEM EXECUTING displayed?	Y	N	N									
2. Is RUN indicator illuminated? Is Bit 24 light FCR on Table 7A-2?		N	Y									
3. Is MPMEM SECTION 0002 displayed?	Y			N	N	N						
4. Are action codes displayed?				Y	N	N						
5. Is indicator illuminated? Is Bit 24 light FCR on Table 7A-2?					N	Y						
6. Is MPMEM SECTION 0003 displayed?	Y						N	N	N			
7. Are action codes displayed?							Y	N	N			
8. Is indicator illuminated? is Bit 24 light FCR on Table 7A-2?								N	Y			
ACTIONS:   1. Go to next page (sheet 2 of this table).	X	.										
2. Go to table 6-100.		X			X			X				
3. Go to sheet 3 of this table.				x			x					
4. Go to table 6-101.			X			x			X			

TABLE 6-12. MPMEM/CORE MEMORY DDLT (Contd)


TABLE 6-12. MPMEM/CORE MEMORY DDLT (Contd)

## Sheet 3 of 5

## ASSUMPTIONS:

1. A fallure has been detected. The following analyzes and lsolates the detected fallure.
2. Observe CDT display for any of the following conditions:
3. A parameter entry is needed.

CONDITIONS:	1	2	3	4	5	6	7	8	9	10	11	12
1. 05E8 or 05E9	Y	Y	N	N	N	N	N	N				
2. Are there memory boards in micro processor slots $\mathrm{X}, \mathrm{Y}$, or 2 ?	N	Y										
3. 0540 or $05 A 0$ or 0570	-		Y	N	N	N	N	N				
4. 0541 or 05 A 1 or 0571	.			Y	N	N	N	N				
5. 0542 or 05A2 or 0572					Y	N	N	N				
6. 0543 or 05 A 3 or 0573						Y	N	N				
7. 0578							Y	N				
8. Is this an expanded memory? ACTIONS:	N		N	N	N	${ }^{\mathrm{N}}$	N	N	Y			
1. Replace memory interface (slot V).	2		2	2	2		2					
2. Replace memory (slot W). (Power down micro processor.)	1		1									
3. Replace memory (slot X).				1								
4. Replace memory (slot Y).	$\because$				1							
5. Replace memory (slot $Z$ ).						1						
6. Replace ALU (slot M).	3		3	3	3	3	3					
7. Go to table 6-101.	4		4	4	4	4	4	X				
8. Go to sheet 4 of this table.		X										
9. Enter at the keyboard: GO Cr).							1					
io. Go to sheet 5 of this table									1		.	

TABLE 6-12. MPMEM/CORE MEMORY DDLT (Contd)

## ASSUMPTIONS:

1. A parameter entry is required

CONDITIONS:	1	2	3	4	5	6	7	8	9	10	11	12
1. Is there a memory board in micro processor slot Y ?	N	Y	Y									
2. Is there a memory board in micro processor slot Z ?		N	$Y$									
ACTIONS:   1. At the keyboard, enter the following:   B, 3FFF   (cr)   E, 2   (cr)   GO (cr) $(16 K)$					-							
2. At the keyboard, enter the following:   B, 5FFF   (cr)   E, 3   (cr) GO   (cr) $(24 k)$		1										
3. At the keyboard, enter the following:   $\mathrm{B}, 7 \mathrm{FFF}$ (Cr $\mathrm{E}, 4$ (Cr GO (cr (32K)			1					$\cdots$				
4. Return to sheet 1 of this table where the action code. 05E8 or 05E9 first displayed.	2	2	2									

ASSUMPTION:

1. This is an expanded core memory
2. Entry made from sheet 3 of this table
3. Boards are located in the expanded memory side


TABLE 6-13. CASEC: CASSETTE ECHO TEST DDLT
Sheet 1 of 3

## ASSUMPTIONS:

1. If this test is not to be run, go to the next table.
2. If there are two cassette transports (Unit 0 and Unit l) in the system, tests are performed first on Unit 0 .
3. After XXXXX? is displayed, the following is entered at the keyboard (if $\operatorname{xxxxx}$ is not displayed, go to Table 6-100):

CASEC is typed in
CARRIAGE RETURN is pressed
NOTE: XXXXX = test name
4. Observe the CDT display for one of the following conditions.

CONDITIONS :

1. Does the CDT display:

CASEC EXECUTING
READY SELECTED UNIT WITH WRITE ENABLED
SCRATCH CASSETTE (UNLESS ONLY SECTION 2 CHOSEN)
CASEC SUSPENDED SELF
2. Is the run inidictor ilfuminated Bit 24 of the FCR.

## ACTIONS

1. Install a write enabled scratch cassette in each unit per procedure Cl. (If scratch cassette cannot be installed because takeup and supply reels keep turning with the lid on the transport lifted, replace the cassette transport, procedure C7. Permit tape to rewind until READY indicator on operator panel illuminates.
2. Type GO Press CARRIAGE RETURN
3. Go to sheet 2 of this table
4. Repeat Loadcheck and restart test. Probably an operator error has occurred.
5. Go to table 6-100.

1	2	3	4	5	6	7	8	9	10	11
Y	N									

TABLE 6-13. CASEC: CASSETTE ECHO TEST (Contd)
Sheet 2 of 3
ASSUMPTIONS:

1. Entry is made from sheet 1 of this table
CONDITIONS:
2. Does the CDT Display:
CASEC SECTION 1
CASEC SECTION 2
CASEC SECTION 3
CASEC SECTION 4
CASEC SECTION 5
CASEC SECTION 6
CASEC COMPLETED 0001 PASSES
CASEC SUSPENDED ENDP
3. Is there another cassette transport in the system which has not yet been tested?
4. Does the customer suspect a cassette problem?
5. Is an action Code displayed?

ACTIONS:

1. Press MASTER CLEAR

Press RUN
2. Type A, 1

Press CARRIAGE RETURN
3. Type GO

Press CARRIAGE RETURN
4. Unit 1 has now been selected, Restart this page.
5. Remove scratch cassette(s)
6. Repeat Loadcheck
7. Go to next table
8. Go to sheet 3 of this table
9. Repeat Loadcheck and restart test. Probably an operator error has occurred.
10. Call next level of support
11. End level I test

1	2	3	4	5	6	7	8	9	10	11

sheet 3 of 3

ASSUMPIIIONS :
Entry is made from sheet 2 of this table.


## ASSUMPTIONS:

2. The following is typed in at the keyboard:

## ESC <br> JJJG KG

2. Observe TTY display for any of the following conditions. Where an $x$ appears in the action coder the $x$ may be $\mathrm{ln}_{2} 3$ 5 or $?$.

| CONDITIONS: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10\|11|12 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Does the CDT display: |  |  |  |  |  |  |  |  |  |  |  |
| 2. KXEFE OR KXEFA or KXEFC | $Y$ |  |  |  |  |  |  |  |  |  |  |
| 2. KXEF2 2 or KXEF4 or KXFDE or $K \times F D A$ |  | Y | $N$ |  |  |  |  |  |  |  |  |
| 3. KXXFOC or KXEFFD or KXFQB or KXFDO or |  |  | $Y$ | $N$ |  |  |  |  |  |  |  |
| 3. KXFO2 or KXFD4 or KxFOb |  |  |  |  |  |  |  |  |  |  |  |
| 4. KXEFG | - |  |  | Y | $N$ |  |  |  |  |  |  |
| 5. KXEFB |  |  |  |  | $Y$ | $N$ |  |  |  |  |  |
| b. KXEFA |  |  |  |  |  | $Y$ | $N$ |  |  |  |  |
| 7. YEEE |  |  |  |  |  |  | $Y$ | $N$ |  |  |  |
| B. YEEC |  |  |  |  |  |  |  | $Y$ | $N$ |  |  |
| ACTIONS: |  |  | . |  |  |  |  |  |  |  |  |
| 1. Go to sheat 2 of this table. |  |  |  |  |  |  |  |  | x |  |  |
| 2. Use another cassette \{same program\}, <br> . . if available. Go to Table b-3. | 1 | . |  |  |  |  |  |  |  |  |  |
| 3. Inspect cassette for obvious problems. | 2 |  |  |  |  |  |  |  |  |  |  |
| 4. Type in I a TTY keyboard. | 3 |  | - |  |  |  |  |  |  |  |  |
| 5. Replace I/O-TTY \{slot K\}. | 4 | i | 1 | 2 | 1 |  |  |  |  |  |  |
| b. Replace cassette controller \{slot H\}. | 5 | 2 | 2 | 3 | 2 |  |  |  |  |  |  |
| .7. Replace transform \{slot R\}. |  | 3 | 3 |  |  |  |  |  |  |  |  |
| A. Replace ALU $\{$ slot M\}. |  | 4 | 4 |  |  |  |  |  |  |  |  |
| Replace memory \{slot X\}. | $b$ | 5 | 5 |  |  |  |  |  |  |  |  |
| 10. Replace memory $\{$ slot $Y\}$. | $?$ | b | $\overline{6}$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 6-70 |  |  |  |  |  |  |  |  | 0 | 1010 |  |
| 1 . . - . |  |  |  |  |  |  |  |  |  | $11$ |  |

TABLE $:-100$. LOADER FAULT DDLT \{CONTINUED\}


ACTIONS \{Continued\}:
Replace memory interface $\{$ slot V\}.
Replace memory interface \{slot $\mathbf{W}\}$.
Replace SMI \{slot L.\}.
Go to Table b-13 -
Call the next level of support
Load cassette and make ready.
This is a normal completion by the loader if the load device was not

- loaded and ready for input. If at
this point it is desirable to level a diagnostic, load the load device, make ready, and press RUN.

The end-of-library has been found and identified by two successive file marks. found..
There as not an end-of-file found at the end of program. Use another cassette.

ASSUMPTIONS:
. The following is typed in at the keyboard:
J146
KG
Observe CDT display for any of the following conditions.



## ASSUMPTIONS:

All system faults have been corrected.



DDLT's for CE L042, MST041, CPL040, CUP043, and TTYA08

## Description:

The following DDLT's are to be used with the special CSD Utopia Formatted MSMP17 Diagnostics Tape Cassette. The DDLT's are intended for use by an operator or customer engineer who has little or no experience with MSivPl7 diagnostics. Loading and operating instructions are included in the DDLT's, along with fault isolation.

The Utopia formatted MSMP17 Diagnostics Tape Cassette consists of seven bootstrap loading type files. The files are: 1) CE L042 Cyclic Encoder Diagnostic, 2) MST041 Multiplexer Subsystem Diagnostic, 3) CPL040 6000 Coupler Diagnostic, 4) CPL040 6000 Expansion Coupler Diagnostic, 5) CUP 043 3000L Coupler Diagnostic, 6) TTYA 08 CRT/TTY Console Diagnostic, and 7) Utopia.


Figure 6-5. UTOPIA/MSMP Test Sequence

1. The 255X System power is turned on.
2. The Micro Memory page selection switches (located at position F-1 on the Micro Memory card in slot T) are set for pages 4-7 (switch \#1 on; switches \#0, \#2, and \#3 off). Fig. 4A-7
3. The Maintenance Panel Local/Remote switch is set to remote.
4. The Maintenance Panel Protect System switch is off (down).
5. The operator is familiar with ODS DDIT format.
6. The tape cassette transport must be connected.
7. The tape cassette being used is the special UTOPIA formatted MEMP17 cassette.
8. Switches on Cassette Controller Board are correct (Slot H). (Switches at SW1 have switch \#1 on and switches \#2, \#3, and \#4 off; while switches at SW'2 have switches \#1 and \#2 on, and switches \#3 and \#4 off). Section 4C
```
TABLE 6-14 (Contd)
```

Sheet 2 of 3


TABLE 6-14 (Contd)


Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 1 of 23

1. Mainframe power turned on. See Section 5D for Multi-
2. Loop Mux assembly's power supply turned on.
3. All CLA's being tested have their enable switches turned on.
4. All CLA's not being tested have their enable switches turned off.
5. All Loop Multiplexers have their power switches turned on. \#
6. All Loop Multiplexer cables to the Loop Mux Assemblies being tested are connected.
7. Any CLA.s that are to have their RS-232 Modem Drivers tested have their proper external test connector installed.

$2560-1$	use
$2561-1$	use
74715000	connector
$2563-1$	use
74870830	connector

8. All couplers ON/OFF Line switches are set to off-line. (The switch is located on the Cyber-Interface card; located at slot A on core memory machines, and slot $B$ on MOS memory machines, On MOS machines with an expansion coupler, also look at slot AB.
9. The Maintenance Panel Local/Remote switch is set to remote.
10. The tape cassette transport is connected.
11. MLIA cards are plugged in (slots D, E, and F in core memory machines; slots $\mathrm{E}, \mathrm{F}$, and G in MOS memory machines).
12. The Maintenance Panel Protect System switch is off (down).
13. There must not be any duplicated CLA address numbers.
14. After each corrective action, the program must be reloaded before retesting.
15. Only try to correct the first error condition encountered, other errors may be caused as a result of the first error.
16. The tape cin.ene being used is the special UTOPIA formatted MSMP17 cassette.
1\%. Swircits in Cassette Controller card are correct (Slot H).
(Switches at $\mathrm{S} \because 1$ have switch \#1 on and switches \#2, \#3, and \#4 off; while switches at SW2 have switches \#1 and \#2 on, and switches \#3 and \#4 off). Section 4C
\# All Secondary Loop Multiplexer cards must be unplugged from the card cage.

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 2 of 23
CONDITIONS cassette to finish rewinding.
Did Cassette Rewind and the Cassette Ready light turn on?
2. Press Master Clear, then press Initiate.

Did the Dead Start Active light turn on and off, and did the cassette start moving?
3. Wait 25 seconds for cassette to stop moving.

Did the cassette stop?
4. Did the console start to display the following: "CYCLIC ENCODER TEST 42"
5. Press Master Clear, then Press Initiate.

Did the Dead Start Active light turn on and off, and did the cassette start moving?

## ACTIONS

1. Go to sheet 3 of this table.
2. Go run ODS Load Check and Cassette Tests.
3. Call next level of Support.
4. Replace Cassette Controller card (Slot H)
5. Check power supply voltages procedure A7, A9, All

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 3 of 23

	1	2	3	4	5	6	7
1. Wait 45 seconds for the cassette to stop moving. Did the cassette stop?	Y	Y	Y	Y	Y	Y	N
2. Did the console display the following lines: "MSTO41 MULTIPLEXER SUBSYSTEM $.1 E S T 41031776$ IA $=0 A 00$, FC = 01"?	Y	Y	Y	Y	Y	N	-
3. Did the console display an additional message within five seconds?	Y	Y	Y	Y	N	-	-
4. Were the next two lines displayed on the console the following: "CLA PRODUCT   ADDRESS NO."?	Y	Y	Y	N	-	-	-
5. Were the next group of lines displayed on the console a list of the enabled CLA's addresses and Product Numbers?	Y	Y	N	-	-	-	-
6. Were the CLA's addresses and Product Numbers all as shown on the individual CLA handles with all CLA's with external test connectors printing "External Connector"; and were there no other information listed, no disabled CLA's listed, and no enabled CLA's missing from the list?	Y	N	-	-	-	-	-
ACTIONS   1. Go to sheet 4 of this table   2. Go run ODS Load Check, Memory, and Cassette Tests.   3. Call next level support.   4. Go to sheet 22 of this table   5. Go to sheet 5 of this table   6. Go to sheet. 12 of this table.   7. Check power supply voltages procedures A7, 증 All. $6-82$	X - - - - - -	- - - - X -	- - - - X - -	$\begin{gathered} - \\ - \\ - \\ - \\ x \\ - \\ - \\ - \end{gathered}$		1 3 - - - 2	- 1 3 - - - 2

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Diagnostic)
Sheet 4 of 23

CONDITIONS	1	2	3	4	5	6
	Y	Y	N			
1. Wait approximatoly 10 seconds for each Sync CLA and approximately 30 secon $\leqslant$ ior each Async CLA under test, or until another printout occurs (while testing is going on, the CLA under test will be flashing it's send and receive data indicators).   Did another printout occur?						
2. Did the next console printout after the list of CLA addresses and Product Numbers start with "4134"?	Y	N	-			
ACTIONS   1. This shows a successful completion of the MST041 test. The test can be run again by entering carriage return on the console, or the test parameters may be changed and the test run again (see the MSMP Diagnostic Reference Manual 96700000 for directions).   2. Go to sheet 5 of this table.   3. Replace MIJA card \#1 (slot D in core memory machines, slot E in MOS machines).   4. Replace MLIA card \#2 (slot E in core memory machines, slot F in MOS machines).   5. Replace MLIA card \#3 (slot F in core memory machines, slot G in MOS machines).   6. Run ODS Load Check and Mainframe diagnostics.   7. Call next level of support.   8. Check power supply voltages procedure A7, A9, All	X      -	- X - - - - - - -				

Were the first four characters of the console printout 0028 or 0038?

Were the first four characters of the console printout 4168?

Was the first part of the console printout "EXCESSIVE ODD INTERRUPTS"?

Was the first part of the console printout "EXCESSIVE L F INTERRUPTS"?

Was the first part of the console printout "UNEXPECTED INTERRUPT"?

## ACTIONS

1. This shows a monitor error, see the MSMP Diagnostic Reference Manual (96700000) for the significance of the entire message. Run the ODS Load Check test and any other appropriate test.
2. This shows the Multiplexer Subsÿsitem Test has detected a hardware error. Go to sheet 18 for more details on the error.
3. Go to sheet 15 of this table
4. Go to sheet' 16 of this table
5. Go to sheet 17 of this table
6. Go to sheet 6 of this table
7. Call next level of Support
8. Check power supplies vnlさagñ =ñoedures Al, A9, All

Sheet 5 of 23

CONDITION
Were the first four characters of the console printout   0028 or $0038 ?$
Were the first four characters of the console printout   $4168 ?$

Table 6-15
DDLT For Multiplex Subsystem (Off-Iine Test)
Excessive MLIA Error Interrupts Sheet 6 of 23

CONDITIONS	1	2	3	4	5	6
1. Was the first part of the console printout "EXCESSIVE MLIA ERROR INTERRUPTS DETECTED - -"?	Y	Y	N			
2. Was the next two numbers of the console printout " 00 ", or " 01 ", or "02"?	Y	N	-			
ACTIONS   1. Check the power indicator on the MLIA cards (slots D, E, and F in core memory machines, and slots $\mathrm{E}, \mathrm{F}$, and G in MOS memory machines) lower edges.   2. Replace MLIA card \#1 (slot D in core memory machines, slot E in MOS machines).   3. Replace MLIA card \#2 (slot E in core memory machines, slot F in MOS machines).   4. Replace MLIA card \#3 (slot F in core memory machines, slot G in MOS machines).   5. Run ODS Load Check and Mainframe diagnostics.   6. Call next level of Support.   7. Go to sheet 7 of this table.   8. Check power supply voltages procedures A7, A9, All   9. Go to sheet 23 of this table.	1 2 3 3 4 5 5 7 - 6	- - - - - - - - - - -	- - X			

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 7 of 23

1. Are all the Primary Loop Multiplexer Clock and Data indicators lit (input and output loops)?
2. Does one of the Primary Loop Multiplexers have all it's indicators off?

## ACTIONS

1. The last two characters of the first line of the Excessive MLIA Error message are the address of the CLA being tested. Replace that CLA.
2. Replace the Loop Multiplexer of the Loop Mux Cage that the CLA resides in. (If the CLA Address $=00$, replace each of the Loop multiplexers one at a time).
3. Replace MLIA card \#1 (slot D in core memory machines, slot E in MOS machines).
4. Replace MLIA card \#2 (slot E in core machines, slot F in MOS machines).
5. Replace MLIA card \#3 (slot $F$ in core machines, slot $G$ in MOS machines).
6. Check +5 , +12 , and -12 voltages at Loop Multiplexer Cage procedures A7, A9, All
7. Run ODS Load Check and Mainframe diagnostics.
8. Call next leval of Support

צ. Check that the Loop Mux power switch is on for the Primary Loop Multiplexer that has no indicators lit.
10. Replace the Loop Multiplexer card.
11. Go to sheet 8 of this table

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 8 of 23


## DDLT For Multiplex Subsystem (Off-Line Test)



Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 10 of 23

1. Find the Loop Multiplexer whose bottom cable goes directly to the MLIA.

Is only one of the Input Loop indicators off?
2. Follow the top cable on the Loop Multiplexer to the next Loop Multiplexer.
Is only one of the Input Loop indicators off?
3. Repeat the above step until you find a Loop Multiplexer with only one of the Input Loop indicators off or you get back to the MLIA. Did you find a Loop Multiplexer with only one of the Input Loop indicators off?

## ACTIONS

1. Replace the top cable on the Loop Multiplexer
2. Replace the Loop Multiplexer.
3. Follow the top cable on the Loop Multiplexer to the next Loop Multiplexer and replace it, or if the cable goes to the MLIA, replace MLIA card \#1 (slot D in core memory machines and slot $E$ in MOS memory machines).
4. Go to sheet 11 of this table
5. Call next level of Support.
6. Check power supply voltages procedures A7, A9, All

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 11 of 23

1. Find the Loop Multiplexer whose top cable goes directly to the MLIA.
Is only one of the Output Loop indicators lit?
2. Follow the bottom cable on the Loop Multiplexer to the next Loop Multiplexer.
Is only one of the Output Loop indicators lit?
3. Repeat the above step until you find a Loop Multiplexer with only one of the Input Loop indicators lit or you get back to the MLIA. Did you find a Loop Multiplexer.

## ACTIONS

1. Replace the bottom cable on the Loop Multiplexer.
2. Replace the Loop Multiplexer.
3. Follow the bottom cable on the Loop Multiplexer to the next Loop Multiplexer and replace it, or if the cable goes to the MLIA, replace MLIA card \#2 (slot E in core memory machines and slot $F$ in MOS memory machines).
4. You have misinterpreted one of the directions, go back to sheet 7 and try again.
5. Call next level of Support.
6. Check power supply voltages procedures A7, A9, All

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 12 of 23

1. Was there an "UNEXPECTED INTERRUPT" message(s) among the CLA Addresses and Product Numbers printed out?
2. Look at the fifth group of numbers in the "UNEXPECTED INTERRUPT" message. The group of numbers is the CLA address.

Is this CLA listed among the CLA address and Product Numbers printed out?
3. Are there two CLA's set to this address?

## ACTIONS

1. Change one of the duplicated CLA Addresses to an unused address.
2. Replace the CLA whose address was in the "UNEXPECTED INTERRUPT" message.
3. If there is an enabled CLA whose address was not among the CLA Addresses and Product Numbers printed out, replace that CLA.
4. If there is a disabled CLA whose address was in the "UNEXPECT--ED INTERRUPT" message, replace that CLA.
5. Replace the Primary Loop Multiplexer card of the Loop Mux Cage containing the CLA of the address in question.
6. Go to sheet 13 of this table
7. Call next level of Support.
8. Check power supply voltage procedures A7, A9, All.

1	2	3	4	5	6


CONDITIONS	1	2	3	4	5	6
1. Was there an "UNEXPECTED INTERRUPT" message(s) among the CLA Addresses and Product Numbers printed out?	Y	Y	Y	N		
2. Look at the fifth group of numbers in the "UNEXPECTED INTERRUPT" message. The group of numbers is the CLA address.   Is this CLA listed among the CLA address and Product Numbers printed out?	Y	Y	N	-		
3. Are there two CLA's set to this address?	Y	N	-	-		
ACTIONS   1. Change one of the duplicated CLA Addresses to an unused address.   2. Replace the CLA whose address was in the "UNEXPECTED INTERRUPT" message.   3. If there is an enabled CLA whose address was not among the CLA Addresses and Product Numbers printed out, replace that CLA.   4. If there is a disabled CLA whose address was in the "UNEXPECT--ED INTERRUPT" message, replace that CLA.   5. Replace the Primary Loop Multiplexer card of the Loop Mux Cage containing the CLA of the address in question.   6. Go to sheet 13 of this table   7. Call next level of Support.   8. Check power supply voltage procedures A7, A9, All.	X	x	1   2   3   5   4	- - - X - -		

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 13 of 23

CONDITIONS
1. Were there any CIAAs with external test connectors that did not



## ACTIONS

1. Check to see that the proper external test connector was used on the CLA as follows:

Product No.	Connector Part Number
$2560-1$	74715000
$2561-1$	74715600
$2563-1$	74870830

2. Check the + and -12 volt supply voltages on the Loop Multiplexer card cage. Procedure A9
3. "Replace the CLA that had the right external test connector but did not print it out.
4. Go to sheet 14 of this table
5. Call next level of Support.
6. Check power supply voltaos proceduır.s A7, A8, All

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 14 of 23


Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
(Excessive Odd Interrupts)
Sheet 15 of 23


Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
(Excessive L F Interrupts)
Sheet 16 of 23


Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
(Unexpected Interrupts)
Sheet 17 of 23


Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 18 of 23

Is the first part of the message -- $4168 \mathrm{xxxx} \times \mathrm{zzz}$ where $\mathrm{zzz}=001 ?$

Is the first part of the message -- 4168 xxxx xzzz where $\mathrm{zzz}=002$ ?
Is the first part of the message -- 4168 xxxx xzzz where $\mathrm{zzz}=003$ ?
Is the first half of the message -- 4168xxxx xzzz xxxx xxxx yyyy
where $\mathrm{zzz}=403$ or 703 or 803 ?

## ACTIONS

1. Replace MLIA card \#1 (slot D in core memory machines and slot E in MOS memory machines).
2. Replace MLIA card \#2 (slot $E$ in core memory machines and slot $F$ in MOS memory machines).
3. Replace MLIA card \#3 (slot F in core memory machines and slot G in MOS memory machines).
4. yyyy is equal to the address of the CLA being tested. Replace this CrA.
5. Replace the Loop Multiplexer of the Loop Multiplexer card cage that the CLA resides in.
6. Go to sheet 19 of this table
7. Call next level of Support
8. Check power supply voltages procedures A7, A9, All

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 19 of 23

CONDITIONS						
	1	2	3	4	5	\% 6
Is the first part of the message --4168 $\mathrm{xxxx}^{\text {xzzz }}$ where $\mathrm{zzz}=104$ ?	Y	N	N	N	N	
Is the first half of the message -- 4168 xxxx xzzz xxxx xxxx yyyy where $\mathrm{zzZ}=404$, or 704 , or 804 ?	-	Y	N	N	N	
Is the first half of the message --4168 xxxx xzzz xxxx xxxx yyyy where $\mathrm{zzz}=305$, or 505 , or 605 , or 905 , or $\overline{\mathrm{B05}}$ ?	-	-	Y	N	N	
Is the first half of the message -- $4168 \mathrm{xxxx} \times \mathrm{xzz} \mathrm{xxxx}$ yyyy where $\mathbf{z Z z}=306$, or 606 , or B06?	-	-	-	Y	N	
ACTIONS   1. Replace MIIA card \#1 (slot D in core memory machines and slot $E$ in MOS mernory machines).   2. Replace MLIA card \#2 (slot E in core memory machines and slot $F$ in MOS memory machines).   3. Replace MLIA card \#3 (slot $F$ in core memory machines and slot G in MOS memory machines).   4. $\frac{\text { yyyy }}{\text { CLAA. }}$ is equal to the address of the CLA under test. Replace this   5. Replace the Loop Multiplexer of the Loop Multiplexer card cage that the CLA resides in.   6. Go to sheet 20 of this table   7: Call next level of Support   8. Check power supply voltages procedures A7, A9, All.	1 2 3 - - - - - 5 4	- 4 3	1 2 - 4 3	- - - 1 2 - 3 3 1010		

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 20 of 23

CONDITIONS	1	2	3	4	5	6
Is the first part of the message -- $4168 \mathrm{xxxx} \times z z z$ where $\mathrm{zzz}=107$ or 207?	Y	N	N	N	N	N
Is the first half of the message -- 4168 xxxx xzzz xxxx xxxx yyyy $\ldots$.... where $\mathrm{zzz}=407$, or 507 , or 707 , or $8 \overline{07}$, or 907 ?	-	Y	N	N	N	N
Is the first half of the message -- 4168 xxxx xzzz xxxx xxxx yyyy where $z z z=508$, or 908 ?	-	-	Y	N	N	N
Is the first part of the message --4168 $\mathrm{xxxx}^{\text {xzzz }}$ where $\mathrm{zzz}=109 ?$	-	-	-	Y	N	N
Is the first half of the message -- 4168 xxxx xzzz xxxx xxxx yyyy where $\mathrm{zzz}=309$, or 409 , or 509 , or $6 \overline{09}$, or 709 , or 809 , or 909 ?	-	-	-	-	Y	N
ACTIONS   1. Replace MLIA card \#1 (slot D in core memory machines and slot $E$ in MOS memory machines).   2. Replace MLIA card \#2 (slot E in core memory machines and slot $F$ in MOS memory machines).   3. Replace MLIA card \#3 (slot $F$ in core memory machines and slot $\mathbf{G}$ in MOS memory machines).   4. yyyy is equal to the address of the CLA under test. Replace this   5. Replace the Loop Multiplexer of the Loop Multiplexer card cage that the CLA resides in   6. Go to sheet 21 of this table   7. Call next level of Support.   8. Check power supply voltages procedures A7, A9, All	2 3 - - - - 5 4	- - - 1 2 - - 4 3	1 2 - 4 3	1      2   3   -   -   -   -   -   5   4	1 - 2 - 4 3	- - - - - - X - -

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test)
Sheet 21 of 23


Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test) Sheet 22 of 23

CONDITIONS	1	2	3	4	5	6
1. Does the 2550 have core memory?	Y	N				
						$\cdots$
. . . . . . . . . . . . . . . . . .						
. ${ }^{\text {a }}$. . .						
ACTIONS   1. Replace MLIA card \#1 (slot D).   2. Replace MLIA card \#2 (slot E).   3. Replace MIIA card \#3 (slot F).   4. Call for next level of Support   5. Run ODS off-line mainframe diagnostics.   6. Check power supply voltages procedures A7, A9, All	1 2 3 5	- - - 3 1 2				

Table 6-15
DDLT For Multiplex Subsystem (Off-Line Test) Sheet 23 of 23


Table 6-16
DDLT For CPL040 6000 Coupler Diagnostic
Sheet 1 of 6

ASSUMPTIONS
$\ldots$
1. All the 255X power supplies are turned on.

2. All three of the 6000 Coupler cards are plugged in (in MOS memory machines, slots $B, C$, and $D$; and in core memory machines, slots $A, B$, and $C$ ).
3. The Maintenance Panel Local/Remote switch is set to Remote.
4. The Maintenance Panel Protect System switch is off (down).
5. The tape cassette transport is connected.
6. The operator is familiar with ODS DDLT format.
7. The Coupler Cyber card On-Line/Off-Iine switch is off (down).

The card is located at slot B in MOS memory machines, and slot $A$ in core memory machines.
-8. Only try to correct the first error condition encountered, other errors may be caused as a result of the first error.
9. The tape cassette being used is the special UTOPIA formatted MSMP17 cassette.
10. Switches on Cassette Controller card are correct (slot H). (Switches at SW1 have switch \#1 on and switches \#2, \#3, and \#4 off; while switches at SN2 have switches \#1 and \#2 on, and switches \#3 and \#4 off).

Table 6-16
DDLT For CPL040 6000 Coupler Diagnostics
Sheet 2 of 6


DDLT For CPLO40 6000 Coupler Diagnostic
Sheet 3 of 6

1. Wait approximately 45 seconds for cassette to stop moving. Did the cassette stop?
2. Did the console start to display the following: "MST041 MULTIPLEXER SUBSYSTEM TEST $41031776 \mathrm{IA}=0 \mathrm{~A} 00, \mathrm{FC}=0$ ?
3. Press Master Clear, then press Initiate.

Did the Deat Start Active indicator turn on and off and did the cassette start moving?
4. Wait approximately 45 seconds for the cassette to stop moving. Did the cassette stop?
5. Did the console display the following: "DK106A COUPLER TEST $40052675 \mathrm{IA}=0 \mathrm{~A} 00, \mathrm{FC}=01$ "?
. ACTIONS

1. Go to sheet 4 of this table
2. Run ODS Load Check and Mainframe diagnostics.
3. Call next level of Support
4. Check power supply voltages procedures A7, A9, All

Table 6-16
DDLT for CPL040 6000 Coupler Diagnostics

1. The Coupler test is now running. The diagnostic takes approximately 15 minutes to complete running. Wait 15 minutes or until a printout occurs. Did a printout occur?
2. Did the above console display begin with " 4034 "?

## ACTIONS

1. This indicates a successful end of test.
2. Go to sheet 5 of this table
3. Replace the Coupler DMIA card (slot D on MOS memory machines, and slot $C$ on core memory machines).
4. Replace the Coupler IO card (slot C for MOS and slot C for MOS and slot $B$ for core).
5. Run ODS Load Check and Mainframe diagnostics.
6. Call next level of Support.
7. Check power supply voltages procedures A7, A9, All

Table 6-16
DDLT for CPL040 6000 Coupler Diagnostics
Sheet 5 of 6


Table 6-16
DDLT For CPL040 6000 Coupler Diagnostic
Sheet 6 of 6

1. Look at the first three words of the print out (" 40 x 8 xxxx xxyy ", where the $x$ 's are to be ignored). The last two digits of the third word (yy) are the error code. Is the error code equal to "01" or " 02 " or " 04 " or " 09 " or "10" or " 12 " thru " 15 " or " 23 " or " 24 " or " 30 " thru " 33 " or " 35 " thru " 40 " or " 42 " thru " 44 " or "57" or "60" thru "63"?
2. Is the error code equal to " 03 " or " 16 " or " 18 " thru " 22 "?

## ACTIONS

1. Replace the coupler DMA card (slot D on MOS memory machines and slot C on core memory machines).
2. Replace the coupler IO card (slot C on MOS memory machines and slot $B$ on core memory machines).
3. Run ODS Load Check and Mainframe Diagnostics.
4. Check power supply voltages proċedures A7, A9, All
5. Call next level of Support.

Table 6-17
DDLT for CPL040 6000 Expansion (secondary) Coupler Diagnostic
Sheet 1 of 7

1. All the 255 X power supplies are turned on.
2. The Coupler DMA card is plugged into slot A and the coupler IO card is plugged into slot AA..
3. The Maintenance Panel Local/Remote Switch is set to Remote.
4. The Maintenance Panel Protect Eystem switch is off (down).
5. The tape cassette transport is connected.
6. The operator is familiar with ODS DDLT format.
7. The Coupler Cyber card is unplugged (slot AB ).
8. Only try to correct the first error condition encountered, other errors may be caused as a result of the first error.
9. The tape cassette being used is the special UTOPIA formatted MSMP17 cassette.
10. Switches on Cassette Controller card are correct (slot H). (Switches at SW1 have switch \#1 on and switches \#2, \#3, and \#4 off; while switches at SW2 have switches \#1 and \#2 on, and switches \#3 and \#4 off).

Table 6-17
DDLT for CPL040 6000 Expansion (secondary) Coupler Diagnostic


Table 6-17
DDLT for CPL040 6000 Expansion (secondary) Coupler Diagnostic


Table 6-17
DDLT for CPL040 6000 Expansion (secondary) Coupler Diagnostic

1. Press Master Clear, then press Initiate. Did the Dead Start Active indicator turn on and off and did the cassette start moving?
2. Wait approximately 45 seconds for the cassette to stop moving. Did the cassette stop?
3. Did the console display the following: "DK106A EXPANED TEST 40052675 $\mathrm{IA}=0 \mathrm{~A} 00, \mathrm{FC}=01^{\prime \prime}$ ?

ACTIONS

1. Go to sheet 5 of this table
2. Run ODS Load Check and Mainframe diagnostics.
3. Call next level of Support.
4. Check power supply voltages procedures A7, A9, All

Table 6-17
DDLT for CPL040 6000 Expansion (secondary) Coupler Diagnostic

	Sheet 5 of 7					
CONDITIONS	1	2	3	4	5	6
1. The Coupler test is now running. The diagnostic takes a pproximately 15 minutes to complete running. Wait 15 minutes or until a printout occurs. Did a printout occur?	Y	N	-	-	-	-
2. Did the above console display begin with "4034"?	Y	-	N	-	-	-
: . . . . .						
ACTIONS   1. This indicates a successful end of test.   2. Go to sheet 6 of this table   3. Replace the Coupler DMA card (slot A on MOS memory machines).   4. Replace the Coupler IO card (slot AA for MOS).   5. Run ODS Load Check and Mainframe diagnostics   6. Call next level of Support   7. Check power supply voltages procedures A7, A9, All	X	- 1 1 2 3 5	X - - -	- $\sim_{-}^{-}$	-	- - - -

Table 6-17
DDLT for CPL040 6000 Expansion (secondary) Coupler Diagnostic

1. Did the console display start with "0028 or 0038 "?
2. Did the console display start with " $40 \times 8$ "?
(where $x=5,6$, or 7 )

## ACTIONS

1. A monitor error has occurred, see the MSMP Diagnostic Reference Manual (96700000) for the significance of the entire message. Run the ODS Load Check and Mainframe diagnostics.
2. Call next level of Support
3. Go to sheet 7. (a coupler error has been detected.
4. Replace the coupler DMA card (slot A on MȮS memory machines).
5. Replace the Coupler IO card (slot AA for MOS machines).
6. Run ODS Load Check and Mainframe Diagnostics.
7. Check power supply voltages procedures A7, A9, All


Table 6-17
DDLT for CPL040 6000 Expansion (secondary) Coupler Diagnostic
Sheet 7 of 7

1. Look at the first three words of the print out (" 40 x 8 xxxx xxyy " where the x's are to be ignored). The last two digits of the third word ( $\mathrm{y} y$ ) are the error code. Is the error code equal to " 01 " or "02" or "04" or " 09 " or "10" or "12" thru " 15 " or " 23 " or " 24 " or "30" thru "33" or "35" thru "40" or "42" thru "44" or "57" or "60" thru "63"?

Is the error code equal to " 03 " or " 16 " or " 18 " thru " 22 "?

## ACTIONS

1. Replace the Coupler DMA card (slot A on MOS memory machines).
2. Replace the Coupler IO card (slot AA on MOS memory machines).
3. Run ODS Load Checi and Mainframe Diagnostics.
4. Call next level of Support
5. Check power supply voltages procedures A7, A9, A11

Table 6-18
DDLT for CUP043 3000L Coupler Diagnostic
Sheet 1 of 8

1. All the 255 x power supplies are turned on.
2. The Coupler DMA card is plugged into slot D, and the Coupler IO card is plugged into slot C, and the Coupler 3000L Channel Interface card is plugged into slot $E$.
3. The Maintenance Panel Local/Remote §witch is set to Remote.
4. The Maintenance Panel Protect System switch is off (duwn).
5. The tape cassette transport is connected.
6. The operator is familiar with ODS DDLT format.
7. The Coupler Cyber card On-Line/Off-Line switch is off (down). The card is locatcd at slot B.
8. Only try to correct the first cirror condition encountered, other errors may be caused as a result of the first error.
9. The tape cassette being used is the special UTOPIA formatted MSMP17 cassctte.
10. Switches on Cassette Controller card are correct (slot H).
(Switches at STV1 have switch \#1 on and switches \#2, \#3, and \#4 off; while switches at SW2 have switches \#1 and \#2 on, and switches \#3 and \#4 off).

Table 6-18
DDLT for CUP043 3000LCoupler Diagnostic


Table 6-18
DDLT for CUP043 3000 Coupler Diagnostic
Sheet 3 of 8

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CONDITIONS \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \\
\hline \& \& \& \& \& \& \\
\hline 1. Wait approximately 45 seconds for cassette to stop moving. Did the cassette stop? \& Y \& N \& - \& - \& - \& - \\
\hline 2. Did the console start to display the following: "MST041 MULTIPLEXER SUESYSTEM TEST 41 03i776 \(I A=0 A 00, F C=01\) ? \& Y \& - \& N \& - \& - \& - \\
\hline 3. Press Master Clear, then press Initiate. Did the Dead Start Active indicator turn on and off and did the cassette start moving? \& Y \& - \& - \& N \& - \& - \\
\hline 4. Wait approximately 45 seconds for the cassette to stop moving. Did the cassette stop? \& Y \& - \& - \& - \& N \& - \\
\hline \begin{tabular}{l}
5. Did the console start to display the following: \\
"DK106A COUPLER TEST 40052675
\[
\mathrm{IA}=0 \mathrm{~A} 00, \mathrm{FC}=01^{\prime \prime} ?
\]
\end{tabular} \& Y \& - \& - \& - \& - \& N \\
\hline \[
\%
\] \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
ACTIONS \\
1. Go to sheet 4 of this table \\
2. Run ODS Load Check and Mainframe diagnostics \\
3. Čall next level of Support \\
4.. Check power supply voltages procedures A7, A9, All
\end{tabular} \& X \& \begin{tabular}{|r}
- \\
1 \\
3 \\
2 \\
\\
\\
7 \\
7
\end{tabular} \& \begin{tabular}{l}
1 \\
3 \\
2
\end{tabular} \& -
1
3
2

10 \& | 1 |
| :--- |
| 3 |
| 2 | \& -

1
3
2 <br>
\hline
\end{tabular}

Table 6-18
DDLT for CUP043 3000 Coupler Diagnostic

Sheet 4 of 8

CONDITIONS	1	2	3	4	5	6
1. Press Master Clear, then press Initiate.   Did the Dead Start Active indicator turn on and off and did the cassette start moving?	Y	N	-	-	-	-
2. Wait approximately 45 seconds for the cassette to stop moving. Did the cassette stop?	Y	-	N	-	-	-
3. Did the console start to display the following: "DK10GA EXPANED TEST 40052675 $I A=0 A 00, F C=01 "$ ?	Y	-	-	N	-	-
ACTIONS   1. Go to sheet 5 of this table   2. Run ODS Load Check and Mainframe diagnostics   3. Call next level of Support.   4. Check power supply voltages procedures A7, A9, All	X - - -	1 3 2	- 1 3 2	-   1   3   2        	-	- - - - -

Table 6-18

## DDLT for CUPOA3 3n00 Coupler Diagnostic

Sheet 5 of 8
CONDITIONS

1. Press Master Clear, then press Initiate.

Did the Dead Start Active indicator turn on and off and did the cassette start moving?
2. Wait approximately 4.5 seconds for the cassette to stop moving. Did the cassette stop?
3. Did the console display the following:
"3000L COUPLER TEST 43
$\mathrm{IA}=0 \mathrm{~A} 00, \mathrm{FC}=01^{\prime \prime}$ ?

## ACTIONS

1. Go to sheet 6 of this table
2. Run ODS Load Check and Mainframe diagnostics.
3. Call next level of Support.
4. Check power supply voltages procedures A7, A9, All

Table 6-18
DDLT for CUP043 3000 Coupler Diagnostic
Sheet 6 of 8


Table 6-18
DDLT for CuP043 3000 Coupler Diagnostic

	Sheet 7 of 8					
CONDITIONS	1	2	3	4	5	6
1. Did the console display start with "0028 or 0038"?	Y	N	N	-	-	-
2. Did the console display start with " $40 \times 8$ "? (where $x=5,6$, or 7 )	-	Y	N	-	-	-
ACTIONS   1. A monitor error has occurred, see the MSMP Diagnostic Reference Manual (96700000) for the significance of the entire message. Run the ODS Load Check and Mainframe diagnostics.   2. Call next level of Support   3. Go to sheet 8 of this table (A coupler error has been detected).   4. Replace the Coupler DMA card (slot D on MOS memory machines).   5. Replace the Coupler IO card (slot C for MOS machines).   6. Replace the 3000 L Channel Interface card (slot B)   7. Run ODS Load Check and Mainframe diagnostics.   8.: Check power supply voltages procedure A7, A9, All.	1 3 - - - - - - 2	$\left(\begin{array}{l}- \\ - \\ X \\ - \\ - \\ - \\ - \\ - \\ -\end{array}\right.$	4 - 1 2 3 4 5	- - - - - -	- - - - - - - -	- - - - - - - -

Table 6-18
DDLT for CUP043 3000 Coupler Diagnostic
Sheet 8 of 8

1. Look at the first three words of the print out (" $40 \mathrm{x} 8 \mathrm{xxxx} x \mathrm{xyy}$ ", where the X 's are to be ignored). The last two digits of the third word (by) are the error code. Is the error code equal to " 01 " or " 02 " or " 04 " or " 09 " or " 10 " or " 12 " thru " 15 " or " 23 " or " 24 " or " 30 " thru " 33 " or " 35 " thru " 40 " or " 42 " thru " 44 " or " 57 " or "60" thru "63"?

Is the error code equal to " 03 " or " 16 " or " 18 " thru " 22 "?

## ACTIONS

1. Replace the Coupler DMA card (slot D on MOS memory machines).
2. Replace the Coupler IO card (slot C on MOS memory machines).
3. Run ODS Load Check and Mainframe diagnostics
4. Replace the 3000 L Channel Interface card (slot B)
5. Call next level of Support.
6. Check power supply voltages procedure A7, A9, All

Table 6-19
DDLT For CRT/TTY Console (Off-Line Diagnostic)
Sheet 1 of 11

1. All the 255 X power supplies are turned on.
2. All Coupler(s) ON/OFF Line Switches are set to Off-Line. (The switch is located on the Cyber Interface card; located in slot A on core memory machines, and slot B on MOS memory machines. On MOS machines with an expansion coupler, also look at slot $A B$ )
3. The Maintenance Panel Local/Remote switch is set to Remote.
4. The tape cassette transport is connected.
5. The Maintenance Panel Protect System is off (down).
6. The CRT/TTY Console's power cord is plugged in.
7. The CRT/TTY Console's power is turned on and is switched to the On-Line position.
8. The I/O TTY card (slot K) is plugged in and the baud rate is set to the same baud rate as the console. The baud rate switches are located at L-10 position of the I/O TTY card. The 300 baud position is with switch $\# 3$ on and switches \#1, \#2 and \#4 off. The 110 baud position is with switches \#3 and \#4 on and switches \#1 and \#2 off. The 1200 baud position is with switch \#4 on and switches \#1, \#2 and \#3 off. The 9600 baud position is with switches \#1, \#2, \#3 and \#4 off.
9. The Console cable is connected to the bottom half of the top backplane connector on slot K .
10. The operator is familiar with ODS DDLT format.
11. The tane cassette being used is the special UTOPIA formatted MSMP17 cassette.
12. Switches on Cassette Controller card are correct (slot H). (Switches at SWl have switch \#l on and switches \#2, \#3, and \#4 off; while switches at SW2 have switches \#1 and \#2 on, and switches \#3 and \#4 off).

Table 6-19
DDLT For CRT/TTY Console (Off-Line Diagnostic)
Sheet 2 of 11

1. Place Cassette in Cassette drive and wait for cassette to finish rewinding.
Did the Cassette rewind and the Cassette Ready light turn on?
2. Press Master Clear, then press Initiate.

Did the Dead Start Active light turn on and off?
3. Wait approximately 25 seconds for the cassette to stop moving. Did the cassette stop?
4. Did the console start to display the following: "CYCLIC ENCODER TEST 42
$I A=0 A 00^{\prime \prime}$ ?
5. Press Master Clear, then press Initiate.

Did the Dead Start Active light turn on and off and did the cassette start moving?

## ACTIONS

1. Go to sheet 3 of this table
2. Run ODS Load Check and Mainframe diagnostics
3. Call next level of Support
4. Replace Cassette Controller Card (slot H).
5. Check power supply voltages procedure A7, A9, All

Table 6-19
DDLT For CRT/TTY Console (Off-Line Diagnostic)
Sheet 3 of 11


Table 6-19
DDLT For CRT/TTY Console (Off-Line Diagnostic)
Sheet 4 of 11

1. Press Master Clear, then press Initiate.

Did the Dead Start Active indicator turn on and off and did the cassette start moving?
2. Wait approximately 45 seconds for the cassette to stop moving. Did the cassette stop?
3. Did the console start to display the following: "DKl06A COUPLER TEST 40052675 $I A=0 A 00, F C=01^{\prime \prime}$ ?

## ACTIONS

1. Go to sheet 5 of this table
2. Run ODS Load Check and Mainframe diagnostics.
3. Call next level of Support
4. Check power supply voltages procedures. A7, A9, All

Table 6-19
DDLT For CRT/TTY Console (Off-Line Diagnostic)
Sheet 5 of 11

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CONDITIONS \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \\
\hline \& \& \& \& \& \& \\
\hline 1. Press Master Clear, then press Initiate Did the Dead Start Active indicator turn on and off and did the cassette start moving? \& Y \& N \& - \& - \& - \& - \\
\hline 2. Wait approximately 45 seconds for the cassette to stop moving. Did the cassette stop? \& Y \& - \& N \& - \& - \& - \\
\hline 3. Did the console start to display the following: "3000L COUPLER TEST 43
\[
\mathrm{IA}=0 \mathrm{~A} 00, \mathrm{FC}=01^{\prime \prime} ?
\] \& Y \& - \& - \& N \& - \& - \\
\hline - . \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
ACTIONS \\
1. Go to sheet 6 of this table \\
2. Run ODS Load Check and Mainframe diagnostics \\
3. Call next level of Support \\
4. Check power supply voltages procedures. A7, A9; All
\end{tabular} \& X
-
-
- \&  \& -
1
3
2 \& -
1
3
2

1

10 \& | - |
:---:
-

\hline
\end{tabular}

Table 6-19
DDLT For CRT/TTY Console (Off-Line Diagnostic)
Sheet 6 of 11

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CONDITIONS \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \\
\hline \& \& \& \& \& \& \\
\hline 1. Press Master Clear, then press Initiate. Did the Dead Start Active indicator turn on and off and did the cassette start moving? \& Y \& N \& - \& - \& - \& - \\
\hline 2. Wait approximately 15 seconds for the cassette to stop moving. Did the cassette stop? \& Y \& - \& N \& - \& - \& - \\
\hline 3. Did the console display the following: "TTYA08 CRT/TTY INTERFACE TEST 103174 \(\mathrm{IA}=0 \mathrm{~A} 00, \mathrm{FC}=01^{\prime \prime}\) ? \& Y \& - \& - \& N \& - \& - \\
\hline 4. Was the message displayed correctly? \& Y \& - \& - \& - \& N \& - \\
\hline \(\pm \%\) \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
ACTIONS \\
1. Go to sheet 7 of this table \\
2. Run ODS Load Check and Mainframe diagnostics \\
3. Call next level of Tech Support \\
4. Go to sheet 11 of this table
\end{tabular} \& X
-
-
- \& - \& \({ }_{-}^{-}\) \& -
1
2
-

129 \& -
-
-

- \& -
- 
- 
- <br>
\hline
\end{tabular}

Table 6-19 DDLT For CRT/TTY Console (Off-Line Diagnostic)


Table 6-19 DDLT For CRT/TTY Console (Off-Line Diagnostic)


```
 Table 6-19
DDLT For CRT/TTY Console (Off-Line Diagnostic)
```

Sheet 9 of 11



Table 6-19
DDLT For CRT/TTY Console (Off-Line Diagnostic)

1. Place Console Terminal in the local mode (off-line). Enter random characters on the console.
Did the characters display on the console at the time they were entercd?
2. Were the characters the same as the characters entered at the console?

Sheet 11 of $11^{\circ}$

CONDITIONS	1	2	3	4	5	0
1. Place Console Terminal in the local mode (off-line). Enter random characters on the console. Did the characters display on the console at the time they were entercd?	Y	N	-	-	-	-
2. Were the characters the same as the characters entered at the console?	Y	-	N	-	-	-
ACTIONS   1. Place the console terminal back to the on-line mode and replace the IO/TTY card.in slot K.   2. Replace the console cable (going to slot K)   3. Run ODS Load Check and Mainframe diagnostics   4. Replace the console terminal   5. Call next level of Support   6. Check power supply voltages procedure. A7, A9; All	1 1 2 3 4 4 6 1 5	-   -   1   -   -		- - - - - - 0	1	- - - - -

## APPENDIX A

## TAPE CASSETTE FORMAT

The UTOPIA formatted MSMP17 Diagnostics Tape Cassette consists of seven bootstrap loading type files. The files are: (1) CEL042 Cyclic Encoder Diagnostic; (2) MST041 Multiplexer Subsystem Diagnostic; (3) CPL040 6000 Coupler Diagnostic; (4) CPL040 6000 Expansion Coupler Diagnostic; (5) CPU043 3000L Coupler Diagnostic; (6) TTYA08 CRT/TTY Console Diagnostic; and (7) UTOPIA.

Each of the first six files contain three records. The first record is a dead start bootstrap record which is made using the UTOPIA Cassette Bootstrap Generator. The Bootstrap record loads into memory starting at location $\$ 7000$, loads the next record into memory starting at location $\$ 0000$, and starts execution of the program at location $\$ 0 A 00$. The second record contains the desired diagnostic program with the MPMP17 monitor built into it. The third record contains an end of file mark.

The seventh file contains a bootstrap record that loads into memory starting at location $\$ 6 F 00$, a record containing UTOPIA that starts loading and execution into at location $\$ 7000$, and a record with an end of file mark.

## APPENDIX B

## TAPE CASSETTE COPY ROUTINE

NOTE: This copy tape cassette requires 65 K of memory

1. Load in the UTOPIA on the seventh file of the UTOPIA formatted MSMP17 tape cassette.
2. Execute the following UTOPIA command:

MBC, 7000, 7150 , D000/ (Move UTOPIA to high core D000)
The console will output carriage return, line feed, bell when the UTOPIA command is completed.
3. Enter the following at the console:
ESP H:
(Halt the 2550)
The console should respond with the following:
H71200841
4. Enter the following at the console:

KD000:
(Set P-Register to D000)
The console should respond with the following:
KD000
5. Enter the following at the console:

## I @

(Set console to I/O Mode and start the 2550)

The console should respond with carriage return, line feed, bell. You are now in UTOPIA which is executing at \$D000 in memory.
 close the lid and wait for the cassette to finish rewinding. Be sure the write enable tabs have been removed.
7. Enter the following UTOPIA command:

ARC, 0, 1/
(Advance cassette 1 record)
NOTE: The console will respond with carriage return, line feed, bell at the completion of cach UTOPIA command. Wait for completion before entering the next command. Some commands may take one or two minutes to complete.
8. Enter the following commands:

RTC, 0, 0, 1FB0/	(read in CEL042 Test)
ARC, 0,2/	(Advance 2 records)
RTC, 0, 2000, 5D08?	(Read in MST041 Test)
ARC, 0,2/	(Advance 2 records)
RTC, 0, 6000, 9716/.	(Read in 6000 Coupler test)
GSB, 0,0A00, 7000, 7120,0800/	(Generate a Bootstrap Load location)

NOTE: The GSB command will respond with the following before the completion of the command:

D933 D9B2 DAA2
9. Remove the master tape cassette and place the new tape cassette (the cassette you wish to write the information on) in the cassette drive, close the lid, and wait for the cassette to finish rewinding. Be sure the cassette has the write enable tabs set.
10. Enter the following UTOPIA commands:

WTC, 0, D9B2, DAA2/	(Write Bootstrap)
WTC, 0, 0, 1FB0/	(Write CEL042 Test)
EFC, 0, 1/	(Write File Mark)
WTC, 0, D9B2, DAA2/	(Write Bootstrap)
WTC, 0, 2000,5D08/	(Write MST041 Test)
EFC, 0, 1/	(Write File Mark)
WTC, 0, D9B2, DAA2/	(Write Bootstrar;
WTC, 0,6000, 9716/	(Write 6000 Coupler Test)
EFC, 0,1/	(Write File Mark)

11. Remove the now tape cassette and place the Master Tape Cassette in the cassette drive, close the lid and wait for the cassette to finssh rewinding.
12. Enter the following UTOPIA commanas:

AFC, $0,3 /$	(Advance 3 files)
ARC, $0,1 /$	(Advance 1 record)
RTC $, 0,0,3716 /$	(read in 6000 Expansion Coupler Test)
ARC, $0,2 /$	(Advance 2 records)
RTC, $0,4000,73 \mathrm{C} 9 /$	(Read in 3000 L Coupler Test)
ARC, $0,2 /$	(Advance 2 records)
RTC, $0,8000,90 \mathrm{BF} /$	(Read in CRT/TTY Test)

13. Remove the Master Tape Cassette and place the new tape cassette in the cassette drive, close the lid and wait for the cassette to finish rewinding.
14. Enter the following UTOPIA commands:

AFC, 0,3/
WTC, 0, D9B2, DAA2/
WTC, 0, 0, 3716/
EFC, $0,1 /$
WTC, 0, D9B2, DAA2/
WTC, $0,4000,73 \mathrm{C} 9 /$
EFC, 0, 1/
WTC, 0, D9B2, DAA2/
WTC, $0,8000,90 \mathrm{BF} /$
EFC, 0, l/
(Advance 3 Files)
(Write Bootstrap)
. Write 6000 Expansion Coupler Test)
(Write File Mark)
(Write Bootstrap)
(Write 3000L Coupler Test)
(Write File Mark)
(Write Bootstrap)
(Wrire CRT/TTY Test)
(Write File Mark)

GSB, 7000, 7000,6F00, 7120, 0800/
NOTE: The GSB command will respond with the following before the completion of the command:

D933 D9B2 DAA2
15. Enter the following commands:

WTC, 0, D9B3, DAA2/	(Write Bootstrap)
WTC, 0, D00, DF50/	(Write UTOPIA)
EFC, 0,1/	(Write File Mark)

16. Remove the new cassette from the cassette drive and remove the write tabs.

## APPENDIX C <br> PARAMETER CHANGES AND PATCHES TO MSMP17 DIAGNOSTICS

1. After each diagnostic was built in memory with the MSMP17 monitor, the Master Stop/Jump word (location B2) was changed to 0240 and the Local Stop/Jump word (location AA) was changed to 024 C .
2. The Cyclic Encoder diagnostic (CEL042) had no further changes.
3. The Multiplexer Subsystem diagnostic (MST041) had no further changes.
4. The 6000 Coupler Diagnostic (CPL040) has the following patch for clearing the program protect bits:

Memory Address	Contents
OA00	1808
0A08	1400
	3707
3707	0 C 00
	0700
	0814
	9000
.	3706
	0103
	0D01
	1400
	3708
	1400
	0 All

5. The 6000 Expansion Coupler Diagnostic (CPL040) has the Equipment Address of the Coupler parameter (stop 3A) changed to address $\mathrm{C}_{16}$. The following patches for clearing the program protect bits and for changing the header print out have also been made:

Memory Location	Contents	Memory Location	Contents
0A00	1808	-	0103
0A08	1400		OD01
	3707		1400
3707	$0 \mathrm{C00}$		3708
	0700		1400
.	- 0814		0 Al1
	9000	1EF7	2045
	3706		5850
.			414 E
			4544

6. The 3000L Coupler Diagnostic (CUP043) has the following patch for clearing the program protect bits:

Memory Location Contents
0A00 1808
0A08 1400
33B9
33B9 0C00
0700
0814
9000
33B8
0103
0D01
1400
33BA
1400
7. The CRT/TTY Console Diagnostic (TTYA08) has had its section parameter changed to a 0041 (select sections 0 and 6). The following patches were made so the test header will be displayed without needing a stop to enter parameters and so a TTY would have time to do a carriage return before printing the next character.

Memory Location	
OA00	1808
OA08	1400
OEEB	1088

8. The UTOPIA program was copied from the DEBUG section of the MST04I diagnostic.

## PROCEDURES

Perform the following procedures 6A, 6B and 6C.

## SECTION bA

PROCESSOR, CABINET AND -OPERATORS PANEL

## INDEX

PROCEDURE

1. Visual Inspection. . . . . . . . . . . . . . . .
2. Cleaning Fan Filter.
3. Power on ..... -••••••••
4. Power off.
5. Checking Cooling Fans
Replacing Cooling Fan.
6.     + SVDC Power Supply Check
7. Replacing + 5VDC Power Supply.
8. $\pm 12$ VDC Power Supply Check.
9. Replacing $\pm$ l2VDC Power Supply
10.     - TVDC Power Supply Check
11. Replacing - 9VDC Power Supply.
12. Power Distribution Box, Component Checking
13. Replacing Line Filter
14. Checking/Replacing P.D. Box Circuit Breakers
1b. Replacing Elapsed Time Meter
b7. Logic Board Replacement
15. MOS Memory Board Replacement
16. Memory Interface Board Replacement
17. Clearing Parity Error
18. Micromemory Run Parameters

## VISUAL INSPECTION

## Step

3. Open the cabinet front doors. Remove the processor plenum cover ffront panel\} by releasing the two captive fasteners.
4. Check that the logic board identifications \{labeled at front of PC Board edge\} agree with the PC Board placement, Figure 4A-1.
5. Check that all logic boards in the processor chassis are properly seated in their connectors b'j applying a firm thumb pressure at the upper and lower corners of each logic board.
6. Check that all peripheral interconnect cables are correctly and fully connected to the processor backplane pins at their respective controller locations.
7. Check that power supply fuses and circuit breakers are $O N$ and not blown.
b. Check power supply fans by momentarily turning on power \{Reference Procedures A-3 and A-4\}.
8. Check that the processor cooling fans are operational per Procedure A-5.

PROCEDURE A-2

## CLEANING FAN FILTER

## Step

1. Open the front door.
2. Refer to Figure bA-2 for location and remove filter from the chassis. Use a vacuum cleaner to clean front and back surfaces of the filter.
3. Check that filter has been properly cleaned by holding filter up to a light. No obvious dark areas should be seen. If it cannot be adequately cleaned - replace filter.
4. Restore filter in its housing.


Figure bAm2. Filter Assemblies

## PROCEDURE A-3

POUER TURN-ON

## Step

To turn the power $O N\{F i g u r e$ bA-3\} perform the following:

1. Check that the $A C$ power cord from the processor cabinet power distribution box is connected to the site power outlet.
2. Open the rear door of Bay 0 .
3. If the micro processor is being turned an for the first time, refer to procedures $A-77 A-9$ and $A-l l$ to verify that the voltages are within tolerance.
4. Set the main power circuit breakers to the $O N$ position. All cooling fans will begin to operate if power is present. If there is no indication of power to the fans, refer to Procedures $A-\boldsymbol{T}_{7} A-$ 月 $_{7}$ and $A-1\rfloor$ to check the power supplies.


PROCEDURE A-4
POUER TURN-OFF

## Step

To turn the power $O F F$, perform the following:

1. Press MASTER CLEAR on the processor\{s\} maintenance panel\{s\}.
2. Open the rear door\{s\}.
3. Set the main power circuit breakers to the OFF position.

## Procedure A-5

COOLING FANS CHECK
Step
To check the cooling fans $\{F i g u r e ~ b A-4\}$ perform the following:
3. Open rear doors.
2. Remove the air filtery $\{$ see Figure bA-2\}.
3. Insert an inspection mirror into the air intake opening. Do not touch the running fan blades.
4. Direct the light from a flashlight into the mirror while angularly directing the mirror toward one of the six cooling fans.
5. Verify that the fan blades are in motion.
B. Repeat steps 4 and 5 for all six cooling fans.
7. Repiace the air filter.
B. Check that air is being exhausted from both the power supplies. If it is not, replace the power supplies \{Procedures $A-8$ and $A-1 D\}$.
9. Restore right side panel to its original position.

FRONT VIEW PROCESSOR


Figure bA-4. Processor Cooling Fane

# PROCEDURE A-b <br> COOLING FAN REPLACEMENT 

## Step

 following:

1. Turn the power OFF \{Procedure $A-4\}$.
2. Open front door\{s\}.
3. Remove the filters.
4. Using either a 1/4-inch open-end wrench $\boldsymbol{7}^{\text {a }}$ J/4-inch spin-tight wrench, or a Phillips head screwdriverı remove the two screws holding the cooling fan to be replaced.
5. Remove the power crnnect plug to the cooling fan.
B. Remove the screws and the fan grill from the old fan.
6. Before inserting the new fan into the chassis, orient the new fan so that the air flow notation arrows on the fan are pointing upward.
7. Insert the new fan and connect to it the power plug.
8. Install the fan grill and the screws on the fan and fasten the assembly to the chassis.
9. Turn the power $O N$ \{Procedure $A-3\} 7$ and verify proper oper.at:on \{Procedure A-5\}.
10. $-i n s t a l l }$ filter and grill.


Figure bA-5. Cooling Fan Ass'y

PROCEDURE A-7
+5.VDC POWER SUPPLY CHECK

## Step

To check the +5 VDC Power Supply (see Figure 6A-6 and 6A-15) perform the following:
i. OPen the rear door\{s\}.
2. Swing out the power supply from the cabinet $\{$ see Figure $b A-b\}$.
3. Visually verify that the +5 VDC Power Supply circuit breaker is $O N_{3}\{C B 1\}$.
4. Set a multimeter to a dc voltage range capable of clearly displaying 5 VDC:
5. Check that the cabinet blowers are running by detecting air flow through the Processor Logic Chassis. If they are not running, check the power connection to the site outlet.

B: Connect the negative lead of the multimeter to the $5 V$ RTN terminal and the positive lead to the 5 V out terminal. The meter should read $5 \mathrm{~V} \pm \mathbf{+} 25$ VDC.

If the voltage is not correct \{low\}, adjust the VOLT ADJ potentiometer fa clockwise turn increases the volrage\} until the correct level is attained. If the power supply cannot be adjusted, replace the $+5 V$ power s'jpply \{Procedure A-8\}.
7. If system has a Dual CPU, repeat test on second Power Supply.
8. Secure power supplies and close door\{s\}.


Figure 6A-6. Scott Power Supply for MP +5vdc Test Points and Adjustments
.....- Table bA-l: PSI and PS2. Interconnecting Wires

FROM	TO
PSI \{5V. Power Supply\} $\begin{aligned} & \mathrm{TBI}-1 \\ & \mathrm{TBI}-2 \\ & \mathrm{TBI}-3 \end{aligned}$ $\begin{aligned} & T B 2-3 \\ & T B 2-4 \\ & T B 2-5 \\ & T B 2-6 \end{aligned}$	$\begin{gathered} \text { PS2 }\{15 V \text { Power Supply\} } \\ \hline \text { TB1 }-1 \\ \text { TB1 }-2 \\ \text { TB1 }-3 \\ \text { TB3 }-1 \\ \text { TB3 }-2 \\ \text { TB3 }-3 \\ \therefore \text { TB3 }-4 \end{gathered}$
PS1 \{5V Power Supply\} $\begin{aligned} & \text { TB2 - } 11 \\ & \text { TB2 - } 13 \end{aligned}$	$\frac{\text { PS] }\{5 V \text { Power Supply\} }}{\text { TB2 }-1,2} \begin{gathered} \text { TB2 }-114 \end{gathered}$



Figure 6A-7. Scott Power Supply for MP +5vdc Housing

## PROCEDURE A-S

+5VDC POUER SUPPLY REPLACEMENT

## Step

To replace the $+5 V$ Power Supply, perform the following:

1. Turn the Power OFF \{Procedure $A-4\}$ and disconnect Power Cord from Primary.Source.
2. Swing out the Supply.
3. Perform the following: fFigure bA-?\}. Set a multimeter to a range capable of displaying l2OVAC. Connect the negative lead of the multimeter through the cover plate of TBl on the $+5 V$ Power Supply to Terminal 3. Connect the positive lead of the multimeter through the cover plate of TBl to Terminal J .

NOTE: The multimeter should read zero voltage. If the multimeter does not read Zero Voltage, recheck the input $A C$ Power Cord and disconnect from the site Power Source.

Attach stick-on labels to the lugged wires connected to the 5V OUT and 5V RTN terminals. Identify fon the labels\} the terminating location of each wire.
5. Remove the lugged wires from the $5 V$ OUT and $5 V$ RTN terminals using either a $7 / 1 b-i n c h$ open-end or spin-tight trench.
8. Remove each wire of TBliz labeling it with its previotterminal location as it is removed.
7. Remove each wire of $T B 2$, labeling it with its previous location as it is removed.

## Step

8. Remove the ten backplate mounting screws at the rear of the Power Supply Housing. Remove the plate.
9. Remove the two screws in front of the Power Supply Housing \{power terminating end\}. Note ground braid connection.
10. Remove the Power Supply from its housing by pulling the Power Supply out from the rear of the housing.
11. Install the new Power Supply into the housing in the same orientation as the one that was removed.
12. Reconnect the néw Power Supply in reverse order, starting with Step 8 and ending with Step 5 above. Do not perform Step 4 .
13. Turn the Power $O N$ \{Procedure $A-3\}$ and connect the negative lead of the multimeter, set to a range of displaying laVDC7 to the $5 V$ RTN terminal. Connect the positive lead to the multimeter to the $5 V$ OUT terminal. Check that the circuit breaker switch \{CBl\} on the Power Supply is in the $O N$ position. The meter should read no greater than 5.5VDC. If the meter reads greater than S.5VDC, adjust the VOLT ADJ potentiometer on the Power Supply counterclockwise until a level of 5.5VDC or less is attained.
14. Turn t:- Power OFF and connect the lugged wires \{step 4\} to the $5 V$ OUT and $5 V$ RTN terminals of the Power Supply. Ensur = that the screws are tightened on the terminal.

## PROCEDURE A-B

## Step

15. Turn the Power $O N$ and again measure the voltage between the SVDC and 5V RET terminals. Adjust the VOLT ADJ potentiometer on the Power Supply until a level of $54 \pm \square .25 V D C$ is attained. If the power supply cannot be adjusted7 it may be necessary to get technical assistance.
16. Check the Power Fail Signal level. To do this; connect the negative probe of the multimeter to terminal TB2-4 and the positive probe to TB2-3. The meter should read a voltage greater than +2.5VDC but less than +5.5VDC. If the voltage is not correct, check that the interconnection of the wires between this power supply and the $\pm 15 V / \pm \ldots 2 V$ power supply agree with Table bA-l. If correct then turn the Power OFF and remove the wires terminating at $\mathrm{TB2-4}$ and $\mathrm{TB2-3}$ of the +5 V power suppiy. Turn the Power $O N$ and again measure the voltage at these terminalss.as described agove. If the voltage is correct, replace the $+5 V /+15 V$ power supply. If the voltage is not correct, replace the $+5 V$ power supply.
17. Disconnect the multimeter leads? replace cover? secure supply lock screw.
18. Continue DDLT testing sequence.

## PROCEDURE A－9

## $\pm 15 \mathrm{~V} / \pm 12 \mathrm{~V}$ POWER SUPPLY CHECK

step
To check the $\pm 15 \mathrm{~V} / \pm 12 \mathrm{~V}$ Power Supply（see Figure $6 \mathrm{~A}-8$ and 6A－15）．Perform the following：

1．Open rear doors．Unlatch and swing out the Power Supply．

2．Check that the cabinet blowers are running by detecting air flow through the Logic Chassis．If they are not running， check the power connection to the site outlet．

3．Set a multimeter to a DC voltage range capable of clearly displaying l5VDC．

4．Connect the multimeter leads to the TB2 terminals as descrîbed in Table 6A－2．Adjust the potentiometer as indicated for Scott power supplies．

If the voltage cannot be adjusted，power down the system， as described in Procedure A－2，and check the fuse（Figure 6A－8）．

If the power supply cannot be adjusted，replace the $\pm 15 \mathrm{~V} / \pm 12 \mathrm{~V}$ power supply（Procedure $\mathrm{A}-10$ ）．

5．If the $\pm 12$ volt problem is in the Mux cage，check the sorrensen power supply voltages at the Mux backpanel．$\pm 12$ volts is carried on the blue，red and black wires．

6．If system has a Du：ニーシュu，repeat tests on the second Power Supply．

7．Close doors．

8．Resume DDLT Test Sequence．

TABLE bA-2. TEST VOLTAGE READINGS

$\begin{aligned} & \text { NEGATIVE } \\ & \text { LEAD } \end{aligned}$	POSITIVE   LEAD	READING SHOULD BE NO GREATER THAN	IF READING IS GREATER7 ADJUST POTENTIOMETER COUNTERCLOCKUISE TO
TB2-N	TB2-?	$25 V \pm 0.7 V$	+1.5V
TB2-b	TB2-5	$12 V \pm 0.6 V$	+12V
Tこ2-3	TB2-4	$32 V \pm 0.6 V$	$-12 \mathrm{~V}$
T82-1	TB2-2	$35 V \pm 0.7 V$	-3.5V
	\%		



Figure 6A-8. Scott Power Supply for MP $\pm / \pm 12$ vdc Test Points and Adjustments

## $\pm 15 \mathrm{~V} / \pm 12 \mathrm{~V}$ POWER SUPPLY REPLACEMENT

## Step

To replace the $\pm 15 \mathrm{~V} / \pm 12 \mathrm{~V}$ Power Supply perform the following:

1. Turn Power OFF \{Procedure A-4\} and disconnect power cord from primary source.
2. Swing out supply.
3. Perform the following fFigure $b A-9\}$ : Set a multimeter to a range capable of displaying l2OVAC. Connect the negative lead of the multimeter through the cover plate of TBl on the $\pm 15 \mathrm{~V} / \pm 12 \mathrm{~V}$ power supply terminal 3 .

Connect the positive lead of the multimeter through the cover plate of TBl to terminal I .

NOTE: The multimeter should read zero voltage. If the multimeter does not read zero voltage, recheck the input $A C$ power cord and disconnect from the site power outlet and repeat step 4. Replace the ON/OFF switch if necessary.

Attach the stick-on labels to the lugged wires connecting to the terminals of TB2 and TB3.
5. Remove each wire from TB2 and identify on its label its previous terminal location on TB2. Remove each wire of TB3 and identify on its label its previous terminal 10ciii:on.
B. Remove the nine backplate mounting screws at the rear of the power supply housing and remove the plate.

## PROCEDURE A-II

## Step

7. Remove the three screws in front of the power supply housing.
8. Remove the power Supply from its housing by pulling it out from the rear of the housing.
9. Install the new power supply into the housing in the same orientation as the one that was removed.
10. Connect the new Power Supply in reverse order starting with Step 9 and ending with Step b above. Do not reconnect the TB2 wires \{Step 4\}.
11. Turn the Power : 0 \{Procedure $A-3\}$. Connect the negative and positive leads of a multimeteri set it to a range capable of displaying l5VDC to the terminal locations described in Table bA-3.
12. Turn OFF, the power and connect the lugged wires \{Step b\} to terminal block TB2.
i3. Turn the power on and again measure the voltage at terminal block TB2 \{Table bA-4\}.
.34. Check the power fail signal level. To do this set the multimeter to a range capable of displaying 5VDC. Connect the negative probe of the meter to TB3-2 and the positive probe to TB3-1. The meter should read a voltage greater than $+2.5 V D C$ but less than + . 5 沙C. If the voltage is not correct, perform $S 亡=!$ li of rioocedure $A-B$.
13. Disconnect the multimeter leads? secure Power Supply lock screw.
14. Continue DDLT test sequence.

TABLE bA-3. TEST VOLTAGE READINGS
\{NOT LOADED\}

NEGATIVE . LEAD	$\begin{gathered} \text { POSITIVE } \\ \text { LEAD } \end{gathered}$	READING SHOULD BE NO GREATER THAN	IF READING IS GREATER, ADJUST POTENTIOMETER COUNTERCLOCKWISE TO
. TB2-8	TB2-7	26.5V	+1,5V
TB2-6	TB2-5	$133.2 V$	+12V
TB2-3	TB2-4	13.2 V	-12V
TB2-1	TB2-2	16.50	$-15 \mathrm{~V}$

TABLE GA-4. TEST VOLTAGE READINGS \{LOADED\}

NEGATIVE LEAD	$\begin{aligned} & \text { POSITIVE } \\ & \text { LEAD } \end{aligned}$	READING SHOULD BE NO GREATER THAN	IF READING IS   NOT CORRECT,   ADJUST POTENTIOMETEE COUNTERCLOCKUISE TO
TB2-8	T82-7	15V $\pm 0.7 V$	+3.5V
TB2-b	TB2-5	$32 V \pm 0.6 V$	$+1.20$
TB2-3	TB2-4	$12 \mathrm{~V} \pm 0.6 \mathrm{~V}$	-1,2V
TB2-1	TB2-2	$15 \mathrm{~V} \pm 0.7 \mathrm{~V}$	-1,5V

If the voltage cannot be adjusted, it may te necessary to get technical assistance.


Figure 6A-9. Scott Power Supply for MP $\pm 15 / \pm 12$ Housing

## PROCEDURE A-ll

-GVDC POUER SUPPLY CHECK

## Step

To check the GVDC Power Supply, Figure bA-l[J perform the following:

1. Open rear doorf.s\}. Swing out the supply.
2. Check that the Power Supply blowers are running. If they are not running, check the power connection to the site outlet.
3. Set a multimeter to a $D C$ voltage range capable of displaying 9 VDC.
4. Connect the meter laads to - qVD $C$ test points TBl-7\{+\} and B\{-\}. Adjust potentiometer for - GVDC + 0.5 F .
5. '. If the Power Supply cannot be adjusted, power OFF the system and replace the Power Supply per Procedure A-12.
B. If the system has a dual- $\mathrm{CPH}_{\text {, }}$ repeat tests on the second Power Supply.
6. Secure Power Supply lock screws.
7. Resume DDLT Test Sequence.


Figure 6A-10. Scott Power Supply for MP -9, -5, -12, +12 Regulator Test Points and Adjustments

PROCEDURE A-12
REPLACING GVDC POUER SUPPLY

Step

1. Turn power $0 F F$ and disconnect power cord from primary source.
2. Swing out Supply.
3. Refer to Figure $b A-l l$ and perform the following:

Set a multimeter to a range capable of displaying l2aVAC. Connect the negative lead of the meter to TBl-3 and the positive Lead to $\mathrm{TBl}-1$ on the 5 V Power Supply.

NOTE: Multimeter should read zero. If meter reading is not zero volts recheck and disconnect the input AC Power from the site source. Check and replace power ON/OFF switch if necessary are repeat Step 4.
4. Attach stick-on labels to the lugged wires connected to the terminals of $\mathrm{TB}-1$ of the $-9 V$ Power Supply.
5. Identify each wire \{with the labels\} as to it's location on the terminal block. \{Figure bA-ll\}.
B. Remove identified wires from TB-I.
7. Remove the nine mounting screws holding the retaining plate at the rear of the power supply housing. $\{$ figure bA-lı\}.


Figure 6A-11. Scott Power Supply for MP -9 V Housing

## PROCEDURE A-12

Step
8. Remove the two screws at the left front of the Power Supply Housing.
9.9 Remove the Power Supply from the housing by pulling out from the rear of the housing.
20. Install the new power supply into the housing in the same orientation as the one that was removed.
11. Reconnect the wires identified in Step $b$ as input wires, $T B l_{1}, T B I, 2, T B 1,5$ and TBl-b to the new power supply.
12. With the multimeter set to read $15 V D C_{7}$ turn processor power $O N$ and make the following voltage tests: \{See Table bA-5\}.
33. Reconnect remaining output wires to TBl-37 TBl,-47 TB1ㄱ77 TBl-8 and TBl-9.
i4. : Make voltage tests and re-adjustments as in Step l3.
35. Disconnect meter leads and secure equipment. Secure supply lock screw.
36. Continue DDLT Test Sequence.

TABLE bA-5. VOLTAGE ADJUSTMENT TABLE

\{If +15 or -15 VDC cannot be adjusted, Perform Procedures $A-7$ and $A-9\}$.

## PROCEDURE A-13

CHECKING P.D. BOX COMPONENTS

## Step

Checking components of the P.D. Box requires the use of a VOM and the following procedure: fRef. Figure bA-323.
3. Open rear door of Bay 0 .
2. Turn OFF the main breakers.
3. Remove the left side cover $\{H$ Hour meter side\} from the P.D. Box. Extend the wires to the transformer and meter and prop up the cover.
4. Turn $O N$ the main breakers.
5. With the VOM set to read 300VAC, check the voltage on the output terminals of the line filters. Voltage will indicate approximately llaVAC $\pm 10 \%$ when fully loaded.

With the VOM set to read 3ODVAC, check the input voltage on terminals 1 and 2 of any filter that has the incorrect output. Voltage should be l2OVAC $\pm 10 \%$.

If the filter output is incorrect but the input voltage is $0 . \mathrm{K.q}^{2}$ replace the filter. \{Procedure $\left.\mathrm{A}-14\right\}$.
8. If the input voltage to a filter is incorrect, turn OFF the main breakers and remove the right side \{circuit breaker side\} P.D. Box cover.

## PROCEDURE A-13

## Step

9. Carefully prop up the cover so that the circuit breaker terminals are accessible.
10. Verify connections and voltages on TBI \{See Figure bA-12\}.
11. Turn $O N$ the main breakers and with the VOM set to 300VAC verify that the voltage across each breaker is $\square$ \{zero\}.
12. If the voltage across a breaker is $1200 \mathrm{CAC} \pm 10 \% 7$ the breaker is faulty. Replace the breaker. fProcedure A-1,5\}.
13. Verify that the transformer output \{green wires\} is approximately $y_{i}: 24 \mathrm{VAC}$.
14. With the VOM set to $\quad$ bUVDC7 verify that a $D C$ voltage greater than 5 volts is present at the Hour Meter. \{Terminal $\}\{+\}$ positive.\}
15. If the voltage is incorrect, turn OFF the main breakers. Slip the wires off the Hour Meter and check the diode and capacitor with an Ohmmeter.
L. . If the voltage at the meter is $0 . K .1$ but the meter does not advance, replace the meter \{Procedure $A-I, G\}$.
16. Re-install the P.D. Box cover\{s\}.
17. Continue with Testing Sequence.

# PROCEDURE A-14 <br> REPLACING AC LINE FILTER 

## Step

2. Turn OFF the main breakers and disconnect the power cord from the primary source.
3. Remove the left side $\{$ Hour Meter side\} cover from the P.D. Box.
4. Refer to Figure $6 A-12$ and locate the line filter.
5. Identify and remove wires from the line filter.
6. Take out four mounting screws and remove the line filiter from the P.D. Box.
b. Install new line filter with the same orientation as before, replace mounting screws and wires.
7. Re-install P.D. Box Cover.
8. Reconnect power cord to primary power source and continue Testing Sequence.


Figure 6A-12. P.D. Box Assembly

## CHECKING/REPLACING P.D. BOX CIRCUIT BREAKER

Step
To check and/or replace the circuit breaker in the $P$ P.B. Box, proceed as follows:

1. Turn off all power to the processor and disconnect the power coard from the primary source.

2: Refer to Figure bA-l2 and locate the circuit breaker.
3. Identify and remove the wires from the circuit breaker.
4. With an Ohmmeter check for continuity across the circuit breaker terminals. If no continuity is present, operate the breaker lever, if there is no continuity when closed $\{0 \mathrm{~N}\}$, replace the breaker.
5. Remove the circuit breaker by removing the six mounting screws on the outside of the P.D. Box cover and pulling it out.
b. Install the new circuit breaker with the same orientation as before, replace mounting screws.
7.. Re-install P.D. Box Cover.
8. Re-connect power cord to primary source and continue Testing Sequence.

## PROCEDURE A-lb <br> REPLACING ELAPSED TIME METER

## Step

1. Turn OFF the main breakers and disconnect the power cord. from the primary source.

2 - Remove the left side $\{H$ Hour Meter side\} cover from the P.D. Box.

3 - Refer to Figure $b A-1 Z^{\prime}$ and locate the elapsed time meter.

4 - Identify and remove wires from the meter. +
5 - Take out three mounting screws and remove the meter from the P.D. Box cover.

6- Install new time meter with the same orientation as before, replace mounting screws and wires.

7-Re-install P.D. Box Cover.

8 - Reconnect power cord to primary power source and continue Testing Sequence.

## LOGIC BOARD REPLACEMENT

## Step

: To replace the logic boardsi perform the following:
3. Turn the power OFF \{Procedure A-4\}.
2. Open front door of $255 x$ cabinet.
3. Remove the plenum cover \{front Panel\} by rotating the two captive fasteners one quarter turn counterclockwise.
4. Locate the logic board for removal (Figure 6A-13).
5. Using the card extractor tool $\{C D C$ part number 889129003 attached to the plenum cover, slide the logic board out of the chassis and place it on a flat surface.
6. Before installing the new logic board, verify that all jumpers and switches correspond to the normal operating positions as defined in section 4 and Figure 6A-14.
7. Position the board in the front of the logic chassis with the component side facing left.

Slide the board carefully into the cassis. Seat the board into the connector by applying firm thumb pressure at the upper and lower corners of the board.
"9. Turn the power $O N$ \{Procedure $A-3\}$, and execute the DDLTs starting with Table $b-3$ to verify proper operation.
30. Replace the plenum cover and close door.

EXPANSION COMM. COUPLER (HOST I/F)	$\stackrel{\infty}{8}$
EXPANSION COMM. COUPLER (IDC I/F)	\$
EXPANSION COMM. COUPLER (DMA I/F)	<
1 PRIMARY COMM. COUPLER (HOST I/F)	$\infty$
PRIMARY COMM. COUPLER (IDC I/F)	0
PRIMARY COMM. COUPLER (DMA I/F)	$\bigcirc$
MLIA-1 (INPUT LOOP I/F)	$\boldsymbol{\omega}$
MLIA-2 (OUTPUT LOOP I/F)	4
MLIA-3 (PROCESSOR I/F)	0
TAPE CASSETTE CONTROLLER	工
2571-1 PERIPHERAL CONTROLLER	7
I/O TTY INTERFACE	$\underline{ }$
STATUS MODE INTERRUPT	-
ARITHMETIC AND LOGIC UNIT	$\Sigma$
CONTROL 2	2
CONTROL 1	0
1700 TRANSFORM (W/EMULATOR ROM)	$\propto$
- CYCLIC ENCODER	$\infty$
MICROMEMORY (2K)	$\vdash$
PANEL INTERFACE	$\checkmark$
MOS MEMORY INTERFACE - DATA	$>$
MOS MEMORY INTERFACE - ADDRESS/CONTROL	3
MOS MEMORY (32K)	$\times$
EXPANSION MOS MEMORY MODULE (16K OR 32K)	$\rangle$
	N
	O

Figure 6A-13. Communications Processor Card Cage Assembly

PROCEDURE A-IB
MOS ARRAY BOARD REPLACEMENT

## Step

3. Turn OFF Processor power.
4. Open front door of $255 x$ cabinet.
5. Remove the front panel to the processor by rotating two captive fasteners counterclockwise.
6. Refer to Figure $6 A-13$ and locate memory board to be removed.
7. Using the extractor tool attached to the inside of the processor front panely slide the memory board out.
b. Position the new board in the vacated position with the component side of board facing left.
8. Apply firm pressure at the upper and lower corners of the board and seat it into the backplane connector. Refer to Procedure A-19 item 5 through $7_{7}$ and verify DMA priority switches on Memory Interface Board.
9. Replace cover and turn on power.

# PROCEDURE A-17 <br> MEMORY INTERFACE BOARD REPLACEMENT 

## Step

3. With power OFF open front door of $255 \times$ cabinet.
4. Remove the front panel to the processor by rotating two captive fasteners counterclockwise.
5. Refer to Figure $6 A-13$ and locate memory interface boards \{data and address\}.
6. Using the extractor tool attached to the front panel slide the desired board or/boards out.
7. Before installing new boards DMA priority switches must be set. \{Refer to Figure 4A-3 for normal settings)
b. Position new boardy or boards with new switch settings in their designated positions with the component side facing left.
8. Apply firm pressure at the upper and. lower corners of the boards and set them into their respective backplane connectors.
9. Replace front panel. Restore power to processor.


Figure 6A-14. Cards and Ribbon Cables Installed in MOS Machine

## MOS MAIN MEMORY RUN PARAMETERS

## NOTES

1. Read the entire procedure before entering parameters in tables 6-8 and 6-10.
2. In a dual processor system, CPU 1 is the base processor and CPU 2 is the Mux processor. The local processor is the one in which the diagnostic resides and can be either CPU 1 or CPU 2.
3. Examine the FCO tags on both sides of the front covers of processor 1 and processor 2 to determine the MOS memory configuration (slots X-AC). Fill in the Equip Number columns of the table below:

TABLE 6A-6. SYSTEM MOS MEMORY CONFIGURATION

Slot	Processor 1		Processor 2	
	Equip   Number	16 K Blocks   per Board	Equip   Number	16 K Blocks   per Board
Y				
Z				
AC				
Total Number   of 16 K   Blocks per   Processor				

2. Fill in the 10 k -3locks per Board column of the above table using the following information:

Equip Number	Board Type	16 K Blocks per Board
AT241	32 K Array	2
AT275	16 K Array	1
DT223	ECC Array	0

Calculate the 16 K Blocks per Processor for each processor by adding up the 16 K Blocks per Board in each processor.
3. Use the total number of 16 K blocks for each CPU (derived from system MOS Memory Configuration Table) and select the correct V, W, X, Y, Z parameters from the MOS Memory Run Parameter Table.

TABLE 6A-7. MOS MEMORY RUN PARAMETER TABLE

1GK BLOCKS/LOCAL CPU


TABLE 6A-8. SYSTEM MEMORY CONFIGURATION TABLE

Pin l of Address Connector Mates with Bookplane Pin No.	MOS Array Board Size			
	slot X	slot Y	Slot $Z$	Slot AC
7	32K	32K	32K	32/1.6K
8	32K	32K	J6K	$36 K$
7	32K	J6K	26K	bbk
30	$=36 K$	36 K	36K	26K

## Example:

If CPU 1 is the local processor and has 16 K blocks totaling 6 , follow the horizontal numbers at the top of the table to 6 and if CPU 2 has 16 K blocks totaling 2, follow the vertical numbers at the left of the table to 2 . At the point where they intersect on the table read the parameters:

$$
\begin{aligned}
\mathbf{V} & =206 \\
\mathbf{W} & =2 \\
\mathbf{X} & =0 \\
\mathbf{Y} & =7 \mathrm{FFF} \\
\mathbf{Z} & =7 \mathrm{FFF}
\end{aligned}
$$

From the ECC Run Parameter Table, determine values for parameters $T$ and $U$. TABLE 6A-9. ECC RUN PARAMETER TABLE

Local CPU Slot AC	Parameter T	Parameter U
With ECC Array	3	789 A
Without ECC Array	2	$78 \mathrm{A0}$

4. Utilizing the parameters derived from the MOS Memory and ECC Run Parameter Tables, enter required test parameters as called for in the DDLTs:


# PROCEDURE A-21 <br> CLEARING MEMORY PARITY ERROR 

## Step

> To clear a memory parity error, perform the following:
3. Master clear the system by pressing the MASTER CLEAR switch on the maintenance panel.
2. Press the ESCAPE key on the teletypewriter \{TTY\}.
3. Enter K7lb02800: on the TTY.
4. Enter KOODO: on the TTY.
$\therefore$
5. Enter LbADS: ODOL: lafD: on the TTY.
t. Master clear \{step l\}.
?. Escape \{step 2\}.
8. Enter K7lb02800 on the TTY.
9. Enter KDOOD: on the TTY.
30. Enter I: on the TTY. \{This starts the program.\}
.31. After approximately 3 seconds, master clear \{step l\}.
12. Restart with Table b-3.


Figure 6A-15. Scott/Sorensen Power Supplies for MUX +5 volt DC, $\pm 12$ volt DC

## A22 RUN PARAMETERS FOR MICRO MEMORY TEST

NOTES:

1. Read the entire procedure before entering parameters into the computer as required by the DDLT's.
2. Some systems have only a single processor (CPU l) and some have dual processors (CPU 1 and CPU 2). In a dual processor system micro memory tests will be performed on both CPU 1 and CPU 2. The local processor is the one in which the diagnostic resides and can be either CPU 1 or CPU 2. When entering the test parameters into the computer as required by the DDLT's, be sure that the parameter is from the table for the CPU being tested.
1) Remove the front panel from the cabinet of the CPU being tested.
2) Examine the FCO tags for slot $T$ on the front cover of the processor to determine what micro memory features are installed. The following conditions may be observed:
A. Slots $T$ and $S$ may both be empty. If Slots $T$ and $S$ are empty, this CPU does not contain micromemory, and the MIMEN and MIINS tests cannot be run. Proceed to the next table.

CPU 1 TEST PARAMETERS TABLE

Slot $T$   Equipment No.	Description	Parameter	
	Check		
BA209	512 Instr. Micro-Memory	4	4
BA210	2048 Instr. Micro-Memory	7.	7

CPU 2 TEST PARAMETERS TABLE

Slot $T$   Equipment No.	Eescription	Parameter		
BA209	512 Instr. Micro-Memory	4	4	
BA210	2048 Instr. Micro-Memory	7	7	

3) Using the parameters $D$ and 11 derived in the appropriate section above, enter these test parameters as called for in the DDLT's:

D, ___ (Parameter D from appropriate table above)
11, (Parameter 11 from appropriate table above)

# MAINTENANCE PANEL, CONTROLLER, INTERFACE CABLE 

## INDEX

## Procedure

1. Maintenance Panel Replacement
2. Maintenance Panel Controller Replacement
3. Interface Cable Installation

## PROCEDURE B-I

## -- MAINTENANCE PANEL REPLACEMENT

## Step

i. Turn OFF power to the processor and open the front door.
2. Remove the interface cable from the maintenance panel at connect Jl .
3. Remove the mounting screws at the bottom of the panel. Figure bB-I.
4. Replace the mäntenance panel with the new one by reversing the above steps.


Figure bB-l. Maintenance Panel Mounting

## PROCEDURE B-2 <br> maintenance panel controller replacement

## Step

3. Open the front door of the cabinet.
2.- Remove the coverplate at the front of the processor
4. Use the extracter tool attached to the cover plate and remove the controller. fRefer to Figure 4A-1 for location of controllert.
5. Verify that the equipment code, and function code switches are set to their normal operating positions on the new cantroller. fRefer to figure bB-2 and Section 4 C for location and setting.
6. Position the new controller in front of the processor chassis such that the components are facing left.
7. Insert the controller in its assigned position in the card cage and seat by applying firm pressure at the top and bottom of the controller. The controller is properly installed only when fully seated.
?. Replace the extractor tool, coverplate and close the access panel.


Figure 6B-2. Panel Interface Controller

1. Open the front door of the cabinet.
2. Remove the cover plate at the front of the processor chassis by releasing the two captive retaining latches.
3. Use the extractor tool attached to the cover plate and pull the controller out far enough to gain access to the interface cable connector. \{Refer to Figure 4A-1 for location of Controller).
4. Remove the interface cable from the controller
5., Remove the interface cable from the maintenance -panel at connector dl. \{Figure bB-3\}
b. Replace the interface cable by reversing the above procedure.


Figure 6B-3. Interface Cable Connections

## CASSETTE TRANSPORT

## INDEX

## Procedure

1. Loading Cassette Cartridge
2. Unloading Cassette Cartridge
3. Tape Transport Lubrication
4. Tape Transport Cleaning
5. 
6. 
7. 
8. 

Power Supply Voltages Check

## PROCEDURES C-1 <br> LOADING CASSETTE CARTRIDGE

## Step

1. Raise the lid of the tape transport.
2. If a cartridge is already loaded in the transporty remove it using instructions in Procedure c-2.
3. Observe the cartridge to be loaded. For recording the write enable tabs \{Figure $\subset-1$,$\} must be installed.$ For reading tape only, these tabs should be removed.
4. Refer to Figure. C-l and insert the back edge of the cassette cartridge into the transport and press the front edge dawn until it snaps in place fthe exposed side of the cartridge $\{A$ or 8$\}$ will be active side of the tape therefore the cartridge must be installed with the desired side up\}.
5. Close the lid to engage the interlock winich enables operation of the transport.


Figure C-1. Cassette Tape Cartridge

## PROCEDURE C-2

## UNLOADING CASSETTE CARTRIDGE

## Step

1. Raise the lid of the tape transport.
2. Press the eject button to release the cassette cartridge. $\{F i g u r e ~ b\{-2\}$.
3. Remove cassette cartridge from the transport and place in it's designated storage area using care not to drop, contaminate the tape or expose it to a magnetic field. fIt is usually a good practice to rewind the tape before it is removed from the transport\}.
4. Close lid on tape transport.

## PROCEDURE C-2



Figure 6C-2.
Cassette Tape Transport

## PROCEDURE C-3

TAPE TRANSPORT LUBRICATION \{Ref. Figure b\{-3\}

## Step

1. Apply one drop of NCR 803M or an equivalent type lubricant to each of the points listed below. \{A syringe or a lubristyle pen oiler should be used for this purpose\}.
a. Capstan thrust bearings under each flywheel.
b. Each end of each head guide shaft. After applying lubricant move slide base assembly back and forth several times.
C. Each joint of the two pinch roller solenoid connecting rods.
d. Each bushing near the pinch roller on the connecting rod. Actuate the pinch roller solenoid several times after applying lubricant.
e. Brake arm pivot points. Actuate brakes several times after applying lubricant.
f. On the end of the eject button post at the point of contact between the end of the post and the eject arm assembly.


Figure 6C-3. CTT Lubrication Points

# PROCEDURE C-4 <br> TAPE TRANSPORT CLEANING <br> \{Figure b $\{-4\}$ 

## Step

1. The following steps should be followed when cleaning the transport.
a. Apply isopropyl alcohol to a cotton swab.
b. While rotating the pinch roller rub the cotton swab up and down on the pinch roller. As the swabs become dirty with oxides discard them and use a fresh one until the swabs remain clean after rubbing the pinch roller.
c. Clean the two capstans using the same procedure described for the pinch rollers.
d. Cilean the head, tape guides and guide pins using the same procedure as before.
e. With a dry swab wipe the head, tape guides and all areas cleaned to remove any remaining alcohol.

NOTE: Remove any lint that might have remained in the transport from a cotton swab.


Figure 6C-4. CTI Cleaning points

## PROCEDURE C-5

REMOVING A TAPE URAP.

## Step

1. If the tape becomes wrapped around the pinch roller, the following procedure is recommended to free it.
a. Turn off power.
b. Press eject button
c. Carefully remove cassette
d. Using fingers, puil the tape from the pinch rollery taking care not to damage the transport mechanism.
e. If tape has not been brokenz it can be rewound by using a pen or other non-magnetic instrument. In most cases the data is salvageable up to the point where the damage occurred. Discard tape after reading data from the salvageable area.
f. Install a known good \{blank if possible\} cassette.
g. If the second cassette tape also wraps? replace tape transport and return for repair.

Step

1. Open front door of cabinet.
2. Remove cassette tape from transport if present.
3. Remove the cover panel from the processor chassis, by releasing the two captive fasteners at the botton of the panel.
4. Use the extractor tool attached to the inside of the panel and remove the controller from the processor chassis. Refer to Figure 4A-1 for location.
5. Verify that the equipment code and function code switches are set to their normal operating positions on the new controller. Refer to Figure $4 C-2$ and $4 C-3$ for switch locations.
6. Position the new controller in its assigned position within the processor chassis with the component side facing left.
7. Seat the controller into its backplane connector by applying firm pressure at the top and bottom of the controller.
8. Replace the extractor, cover panel, and close door.

# PROCEDURE C-7 <br> REPLACING CASSETTE TAPE TRANSPORT 

(Figure 6C-6)

Step
To replace the cassette tape transport proceed as follows:
3. Open front door of cabinet
2. Remove cassette tape from transport
3. Turn off power
4. Disconnect cable from transport.
5. Remove transport carrier from door by turning the four 1/4 turn fasteners counter-clockwise.
b. Place carrier on a work surfiace.
7. Remove the two screws from the front and two screws from the rear of carrier.
8. . Lift out tape transport.
9. Install new transport in the carrier.
10. Replace carrier on the cabinet door.
11. Re-connect cable to transport.
12. Continue Test Sequence.


Figure 6C-6. $\begin{aligned} & \text { Cassette Transport Mounting } \\ & \text { Configuration }\end{aligned}$

## PROCEDURE C-8

## CASSETTE POWER SUPPLY VOLTAGES

1. Cassette power is obtained from the microprocessor backplane. Figure lC-2.
2. The voltages to be checked are +5 volts and $\pm 12$ volts. These voltages can be checked by procedure 6A7 and 6A9.

MAINTENANCE

## SECTION 7

MAINTENANCE

The maintenance information in this section describes the tools (diagnostics) required by the $C E$ to perform normal maintenance. The contents are as follows:

7A - Processor and Cabinet
7B - Maintenance Panel
7C - Cassette Tape Transport

PROCESSOR AND CABINET

MAINTENANCE TOOLS

DIAGNOSTICS
On site maintenance personnel require the following diagnostic programs on cassette tape: Refer to Table 7A-1.

TABLE 7A-1
2550 ODS 2.0 Cassette P/N 12323181A

ODCHK3	Transfer paths check
MPINS	Macroinstruction test
MPMOS	Macromemory test (MOS)
MOSMA	Macromemory test (MOS)
MPRTC	Protect test
MIMEM	Micromemory
MINNS	Microinstruction
PAGE 1	Paging test
DUCPU	Dual CPU test
MPMEM	Core Memory test
CASEC	Cassette Echo test

UTOPIA/MSMP Cassette P/N 12323182
Bootstrap (deadstart)
CELO42 Cyclic Encoder test
EOF
Bootstrap (deadstart)
MSTO41 MUX subsystem test
EOF
Bootstrap (deadstart)
CPL040 CYBER coupler test
EOF
Bootstrap (deadstart)
CPL040 Expanded Coupler Test
EOF
Bootstrap (deadstart)
CPUO43 3000L Coupler test
EOF
Bootstrap (deadstart)
TTY008 Teletype test
EOF
Bootstrap (deadstart)
UTOPIA Utility Routines
EOF

TEST EQUIPMENT
If maintenance support is required, the following additional test equipment is required for testing:

Oscilloscope -- Dual trace, DC to 10 MHz minimum, calibrated trigger sweep (Tektronic Model 546).

The following test equipment is required in addition to a normal complement of hand tools.

Multimeter -- DC, 0-50V, accuracy 3 percent minimum, 20 K ohm/V; AC, $0-250 \mathrm{~V}$, accuracy 3 percent minimum.

Card Extender -- CDC part number 96742400 .

Tables 7A-2 and 7A-3 provide function control register and display codes as reference for support level maintenance. For additional information, see the 1709 Enhanced Processor with Core MemoryHardware Reference Manual. Refer to the ODS Reference Manual for further information.

FUNCTION CONTROL REGISTER
See Table 7A-3.

TABLE PA-2. FUNCTION CONTROL REGISTER \{FCR\}

Bit		Digit	Bit Definition
$\begin{array}{r} \text { \{LSB\} } 31 \\ 30 \\ 29 \\ 28 \end{array}$	$\begin{aligned} & \mathrm{lF} \\ & l E \\ & \mathrm{lD} \\ & \mathrm{LC} \end{aligned}$	7	```Overflow Not Protected Instruction Protect Fault Parity Error```
27 26 25 24	$\begin{aligned} & 1 B \\ & 1 \mathrm{~A} \\ & 19 \\ & 18 \end{aligned}$	$b$	Interrupt System Active   Auto-Restart Enabled   Micro Running   Macro Running
23 22 21 20	$\begin{aligned} & 17 \\ & 16 \\ & 1,5 \\ & 14 \end{aligned}$	5	Not used   Not used   Enable Auto Display   Enable Console Echo
19 78 18 16	$\begin{aligned} & 13 \\ & 12 \\ & 111 \\ & 10 \end{aligned}$	4	Enable Micro Memory Urite   Multilevel Indirect Addressing Mode   Not used   Suppress Console Transmit
$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \end{aligned}$	DF.   DE   OD   OC	3	(i8   Breakpoint off   Storage Operand BP   BP Interrupt \{BP Stop if Clear\}   Micro $\mathrm{BP}_{7}$ Step, Go, Stop \{Macro if Clear\}
$\begin{aligned} \cdot & 11 \\ \cdots & 10 \\ \cdots & 09 \\ & 08\end{aligned}$	DB   DA   09   08	2	Step   Selective Stop Selective Skip Protect Switch
07 $\because$ 06 05	$\left.\begin{array}{l} 07 \\ 06 \\ 05 \\ 04 \end{array}\right\}$	1	DISPLAY 1
	$\left.\begin{array}{l}03 \\ 02 \\ 01 \\ 00\end{array}\right\}$	0	DISPLAY 0

TABLE 7A－3．DISPLAY CODE DEFINITIONS

	Code	Display 1	Display 0
0	0000	FCR	D2 \｛Addressed by N\}
1	0001	$\mathrm{P}^{*}$	N \｛MSBs ${ }^{* *}$
2	ロロ10	I	$\boldsymbol{K}$ \｛LSBS $\}^{* *}$ ．．
3	0013	．－．	X
4	O1 0		0
5	0101	MIR	F
$b$	ロ 」 〕	BP／P－MA \｛Display Only\}	$\text { Fl }\left\{\begin{array}{l} \text { Addressed by K } \\ \text { Enabled by SMllal } \end{array}\right.$
7	01131	P－MA \｛Display Only\}	MEM
8	1000	SMI	，
9	1001	MI	$\overline{\mathrm{RTJ}}$
A	1010	SM2	
B	3011	M2	
$C$	1100	$\because$	MM
D	1 1 0 1	$A^{*}$	
E	」 」 10	$\mathbf{x}^{*}$ ．	
F	$\begin{array}{llllll}1 \\ 1 & 1 & 1 & 1\end{array}$	Q＊	

Used to address macromemory． Automatically incremented after each memory reference．
＊＊The combined contents of these two registers are used to address micromemory．The K register is automatically incremented after each memory reference．The N register does not automatically increment．

## MAINTENANCE PANEL

Maintenance of the maintenance panel does not require any special tools or diagnostics.

Tools and aids necessary to execute the DDLT's are identified in the procedures and tables associated with the maintnenance panel.

## CASSETTE TAPE TRANSPORT

MAINTENANCE TOOLS

DIAGNOSTICS

Maintenance requires the use of the following ODS diagnostics:

1. LODCHK
2. Echo (cassette controller)
3. ODS Monitor
4. Cassette

Part numbers for the above diagnostics are found in Table 7A-1.

TEST EQUIPMENT
No test equipment other than the normal complement of tools will be required by site maintenance personnel.

SECTION 8

PARTS DATA

SECTION 8

PARTS DATA

SECTION 8<br>PARTS DATA

This section contains Spare Parts Lists, equipment numbers and part numbers for replaceable subassemblies and components of the 2550/2552 systems.

This section is divided into subsections that deal with each equipment in the $2550 / 2552$ systems. The codes used to identify each subsection are as follows:

8A - Cabinet, processors, power distribution
8B - Maintenance Panel and Controller
8C - Cassette transport and controller

## SECTION 8A

CABINET, PROCESSORS, POWER DISTRIBUTION

Sub-Assembly	Equipment Number	Spare Part	Part Number
2550 Processor	AAl09	--	96751900
		PWA, I/O-TTY	88919700
		PWA, SMI	88909100
		PWA, ALU	88909200
		PWA, Control 2	88909300
		PWA, Control 1	88919600
		PWA, Transform	88910100
		PWA, Memory Interface Data	96740800
		PWA, Memory Interface	
		Address Cooling Fans	$96740500$
2550 Cabinet			
		Filter, AC Line	97644778
		Circuit Breaker	74459200
		Power Supply, +5VDC	88782623
		Power Supply, $\pm 12 \mathrm{VDC}$	88780604
		Regulator, $\pm 12,-9,-5 V D C$	$88917300$
		Filter, Fan	
		Fuse, Slo Blo, 6.25 amps	
2552			
Communications			
Processor	AA109	Same as for 2550 Processor	
2552			
Mux Processor	AA109		88916400
		PWA, I/O-TTY	88919700
		PWA, SMI	88909100
		PWA, ALU	88909200
		PWA, Control 2	88909400
		PWA, Control 1	88919600
		PWA, Transform	88910100
		PWA, Memory Interface Data	96740800
		PWA, Memory Interface	
		Address	96740500
		Cooling Fans	88912000
2552		--	--
Cabinet		Uses same spare parts as	
		2550 Cabinet plus	

```
SECTION 8A (continued)
```

Sub-Assembly	Equipment   Number	Spare Part	Part Number
$2550 / 2552$	GDl225	--	88906900
Power		Power Supply, +5VDC	88782623
Supplies		Power Supply, +15VDC   Power Supply, MOS   Regulator	88782624
			88917300

OPTIONS:

l6K MOS Memory	AT275B	PWA	96745800
32 K MOS Memory	AT241B	PWA	96745700
512 Instruction			
Micromemory   2048 Instruction   Micromemory	BA209A	BA210B	PWA

## SECTION 8B <br> MAINTENANCE PANEL AND CONTROLLER

Sub-Assembly	Equipmen Number	Spare Part	Part Number
Panel	DT 120	--	96744572
		Cable, Interface	88879721
		Switch	88889100/01
		Indicator	88887100
Controller	FC 402	PWA	96744570

## SECTION 8C

## CASSETTE TAPE TRANSPORT AND CONTROLLER

Subassembly	Equipment   Number	Spare Part	Part Number
Tape Transport	BE602	- -   Cassette Tape	88889800   Controller
	FAl04A	PWA - -   Cable Interface	8892298

MANUAL TITLE 2550-2, 2552-1, 2550-100 Host Communications Processor
Preliminary Hardware Maintenance Manual
PUBLICATION NO. 74701010 REVISION 01

FROM:
NAME: $\qquad$
BUSINESS
ADDRESS:

## COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may be made below. Please include page number references and fill in publication revision level as shown by the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged to use the TAR.

(


[^0]:    CARD LOCATION

