
60483500

CONTROL DATA
(^ \ 5 l X £ J C O R P O R A T I O N

DMS-170

CYBER DATABASE
CONTROL SYSTEM
VERSION 2
FORTRAN
APPLICATION PROGRAMMING
USER'S GUIDE

CDC® OPERATING SYSTEMS:
NOS 2
NOS/BE 1

REVISION RECORD

Revision

A (03/06/81)

B (10/08/82)

Description

Original reLease at PSR Level 528.

Updated to reflect FORTRAN Data Base Facility (FDBF) 1.3, CYBER Database Control System
(CDCS) 2.3, and use under NOS 2 (but not NOS 1); released at PSR Level 564. The guide
has been retit Led. Major changes include adding documentation of data base transactions,
and creating the data base for sample programs with FORTRAN.

^■^̂ v

REVISION LETTERS I, 0, Q, AND X ARE NOT USED

©COPYRIGHT CONTROL DATA CORPORATION 1981, 1982
AIL Rights Reserved
Printed in the United States of America

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 KOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the back of this manual

60483500 B

(^ L I S T O F E F F E C T I V E P A G E S

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

Front Cover
Inside Front Cover
Title Page
i i
i i i / i v
V
vi
v i i
v i i i
ix
1-1 thru 1-3
1-4 thru 1-7
2-1 thru 2-3
2-4 thru 2-6
3-1 thru 3-4
3-5 thru 3-14
3-15 thru 3-19
4-1 thru 4-6
5-1
5-2
5-3
5-4
5-5
5-6
5-7 thru 5-22
5-23 thru 5-28
6-1 thru 6-3
A-1 thru A-4
B-1 thru B-3
C-1
C-2 thru C-10
C-11 thru C-15
Index-1 thru -3
Comment Sheet
Mai Ler
Back Cover

6 0 4 8 3 5 0 0 B i i i / i v

PREFACE

The DMS-170 data management system clearly defines
t w o r o l e s : t h e r o l e o f a d a t a a d m i n i s t r a t o r w h o
develops, controls, and maintains the physical data
base; and the role of an application programmer who
accesses and manipulates the data within that data
base . A l t hough the two ro les d i f f e r cons ide rab l y,
each role requires a knowledge of the tasks being
p e r f o r m e d b y t h e o t h e r. T h e d a t a a d m i n i s t r a t o r,
fo r example , cannot deve lop a da ta base w i thou t
fi rs t unde rs tand ing wha t t ype o f app l i ca t i ons w i l l
be requ i red . The app l i ca t i on p rog rammer, on t he
other hand, cannot successfully access data without
firs t unders tanding how the data is descr ibed and
what specific controls have been established.

Th is gu ide descr ibes the ro le o f the FORTRAN 5
application programmer who is accessing data within
a DMS-170 cont ro l led data base env i ronment . The
presence of a data admin is t rator is assumed, and
t h e f u n c t i o n s a s s o c i a t e d w i t h t h a t p o s i t i o n a r e
d e s c r i b e d a s t h e y d i r e c t l y a f f e c t t h e a p p l i c a t i o n
programmer.

Yo u s h o u l d n o t e t h a t a p p e n d i x C , e n t i t l e d T h e
S a m p l e A p p l i c a t i o n , i s p a r t i c u l a r l y i m p o r t a n t .
T h i s a p p e n d i x s e t s u p a w o r k i n g e n v i r o n m e n t
c o m p l e t e w i t h s t o r e d d a t a f o r u s e w i t h s a m p l e
p rog rams . Th i s env i ronmen t can be dup l i ca ted to
provide a better understanding of DMS-170 and the
t o o l s t h a t a r e u s e d t o c r e a t e a t o t a l d a t a
management system.

As descr ibed in th is publ icat ion, DMS-170 operates
under control of the fol lowing operating systems:

NOS 1 for the CONTROL DATA CYBER 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000
Series Computer Systems.

• NOS/BE 1 for the CDC CYBER 170 Series; CYBER
70 Models 71, 72, 73, and 74; and 6000 Series
Computer Systems.

The NOS Manual Abstracts and the NOS/BE Manual
A b s t r a c t s a r e i n s t a n t - s i z e d m a n u a l s c o n t a i n i n g
b r i e f d e s c r i p t i o n s o f t h e c o n t e n t s a n d i n t e n d e d
audience of all NOS and NOS product set manuals,
a n d N O S / B E a n d N O S / B E p r o d u c t s e t m a n u a l s ,
respect ive ly. The abst racts manuals can be usefu l
i n d e t e r m i n i n g w h i c h m a n u a l s a r e o f g r e a t e s t
interest to you. The Sof tware Publ icat ions Release
H i s t o r y s e r v e s a s a g u i d e i n d e t e r m i n i n g w h i c h
r e v i s i o n l e v e l o f s o f t w a r e d o c u m e n t a t i o n
corresponds to the Programming Systems Report (PSR)
leve l o f i ns ta l l ed s i t e so f twa re .

As a FORTRAN 5 application programmer, you can find
a d d i t i o n a l p e r t i n e n t i n f o r m a t i o n i n t h e l i s t e d
C o n t r o l D a t a C o r p o r a t i o n p u b l i c a t i o n s . T h e s e
pub l i ca t i ons a re l i s ted a lphabe t i ca l l y i n g roup ings
that indicate relat ive importance to you as readers
o f th is gu ide .

The following manuals are of primary interest:

Pub l i ca t ion
P u b l i c a t i o n
Number

FORTRAN Data Base Facility
Version 1 Reference Manual

FORTRAN Version 5 Reference Manual

60482200

60481300

The following manuals are of secondary interest:

Pub l i ca t i on
Pub l i ca t i on
Number

CYBER Database Control System
Version 2 Reference Manual

NOS Version 1 Manual Abstracts

NOS Version 1 Reference Manual,
Volume 1 of 2

NOS/BE Version 1 Manual Abstracts

NOS/BE Version 1 Reference Manual

Software Publications Release
H i s t o r y

60481800

84000420

60435400

84000470

60493800

60481000

60483500 A

C D C m a n u a l s c a n b e o r d e r e d f r o m C o n t r o l D a t a C o r p o r a t i o n , f
Li terature and Distr ibut ion Services, 308 North Dale Street,
St. Paul, Minnesota 55103.

This manual describes a subset of the features
and parameters documented in the FORTRAN Data
Base Facil ity Version 1 Reference Manual.
Control Data cannot be responsible for the
p r o p e r f u n c t i o n i n g o f a n y f e a t u r e s o r
parameters not documented in the FORTRAN Data
Base Facility Version 1 Reference Manual.

60483500 A

CONTENTS

j f n

N O T A T I O N S i x

1. FORTRAN PROGRAMMING WITHIN DMS-170 1-1

S y s t e m C o m p o n e n t s 1 - 1
D a t a D e s c r i p t i o n L a n g u a g e 1 - 1

T h e S c h e m a 1 - 1
T h e S u b - S c h e m a 1 - 1

F O R T R A N D a t a M a n i p u l a t i o n L a n g u a g e 1 - 2
C Y B E R D a t a b a s e C o n t r o l S y s t e m 1 - 2

M a s t e r D i r e c t o r y 1 - 2
C D C S B a t c h T e s t F a c i l i t y 1 - 2
D a t a B a s e P r o c e d u r e s 1 - 3

C Y B E R R e c o r d M a n a g e r 1 - 3
F i l e O r g a n i z a t i o n 1 - 3
M u l t i p l e - I n d e x P r o c e s s i n g 1 - 3

S p e c i a l F e a t u r e s 1 - 4
C o n c u r r e n c y 1 - 4
F i l e P r i v a c y 1 - 4
R e l a t i o n s 1 - 4
C o n s t r a i n t s 1 - 4
R e c o v e r y 1 - 4

Summary of DMS-170 Components and Features 1-4

2 . A C C E S S I N G T H E D A T A B A S E 2 - 1

I n t e r p r e t i n g t h e F O R T R A N S u b - S c h e m a 2 - 1
F O R T R A N D a t a M a n i p u l a t i o n L a n g u a g e 2 - 1

D M L L a n g u a g e C o m p o n e n t s 2 - 1
S y n t a x R e q u i r e m e n t s 2 - 1
S t a t e m e n t P o s i t i o n i n g 2 - 1

3 . P R O C E S S I N G T H E D A T A 3 - 1

U s i n g D M L t o A c c e s s t h e D a t a B a s e 3 - 1
I d e n t i f y i n g t h e S u b - S c h e m a 3 - 1
E s t a b l i s h i n g t h e I n t e r f a c e W i t h C D C S 3 - 2
S a t i s f y i n g P r i v a c y R e q u i r e m e n t s 3 - 3
O p e n i n g a R e a l m 3 - 3
L o c k i n g / U n l o c k i n g a R e a l m 3 - 3
C l o s i n g a R e a l m 3 - 4
Te r m i n a t i n g t h e I n t e r f a c e W i t h C D C S 3 - 4

U s i n g D M L t o M a n i p u l a t e D a t a 3 - 5
W r i t i n g a R e c o r d 3 - 5
R e a d i n g a R e c o r d 3 - 6

S e q u e n t i a l R e a d 3 - 6
R a n d o m R e a d 3 - 6

P o s i t i o n i n g a R e a l m 3 - 6
R e w r i t i n g a R e c o r d 3 - 7
D e l e t i n g a R e c o r d 3 - 8

U s i n g D M L t o P r o c e s s R e l a t i o n s 3 - 8
S t r u c t u r e o f a R e l a t i o n 3 - 9
U s i n g t h e S u b - S c h e m a 3 - 1 0
O p e n i n g a R e l a t i o n 3 - 1 0
C l o s i n g a R e l a t i o n 3 - 1 0
R e a d i n g a R e l a t i o n 3 - 1 2

S e q u e n t i a l R e l a t i o n R e a d 3 - 1 2
R a n d o m R e l a t i o n R e a d 3 - 1 3
C o n t r o l B r e a k 3 - 1 3
N u l l O c c u r r e n c e 3 - 1 3

P o s i t i o n i n g a R e l a t i o n 3 - 1 4
U p d a t i n g R e a l m s J o i n e d i n a R e l a t i o n 3 - 1 5

4. ERROR PROCESSING AND STATUS
HANDLING TECHNIQUES

Using ERR and END Processing Options
Establishing a Data Base Status Block

Error Checking
Status Checking

Defining Recovery Points
Avoid ing Constra in t Vio la t ions
Ant ic ipat ing Deadlock Si tuat ions

5. DEVELOPING FORTRAN PROGRAMS

Developing an Application Program
Compiling and Executing the Source Program
Sample Programs

6. USING THE CDCS BATCH TEST FACILITY

Requirements
Obtaining Load Maps
Executing the CDCS Batch Test Facility

APPENDIXES

A Standard Character Sets
B G l o s s a r y
C The Sample Appl icat ion

INDEX

FIGURES

1-1 Schema and Sub-Schema Generation
1-2 CYBER Record Manager Interface
2-1 A Basic FORTRAN Sub-Schema
2-2 A Relational FORTRAN Sub-Schema
2-3 DML Statement Posi t ioning
3-1 Sub-Schema AVERAGE
3-2 Ident i fy ing the Sub-Schema
3-3 Establ ishing the Interface With CDCS
3-4 Sat is fy ing Pr ivacy Requ i rements
3-5 Opening a Realm
3-6 Locking/Unlocking a Realm
3-7 Clos ing a Realm
3-8 Terminating the Interface With CDCS
3-9 Wr i t i ng a Record
3-10 Reading Sequent ia l ly
3-11 Reading Randomly
3-12 Posit ioning a Realm
3-13 Rewriting a Record
3-14 Deleting a Record
3-15 Tree Structure and Ranks of a

Three-Realm Relation
3-16 Sub-Schema COMPARE
3-17 Tree Structure of Record Occurrences
3-18 Reading a Relat ion Sequential ly
3-19 Reading a Relation Randomly
3-20 Null Record Occurrence Examples
3-21 Pos i t ion ing a Re la t ion

4-1

4-1
4-2
4-2
4-2
4-4
4-4
4-6

5-1

5-1
5-1
5-3

6-1

6-1
6-1
6-1

1-2
1-3
2-2
2-3
2-5
3-2
3-2
3-3
3-3
3-4
3-4
3-5
3-5
3-5
3-6
3-6
3-7
3-8
3 - 9

3-9
3-11
3-13
3-13
3-13
3-14
3-15

60483500 A

4-1 Establishing a Data Base Status Block
4-2 Defining Recovery Points
4-3 Single-File Constraint Example
4-4 Two-File Constraint Example
4-5 Deadlock Processing
5-1 FORTRAN DML Preprocessing
5-2 DML Control Statement
5-3 Executing DML and Compiling the

Source Program
5-4 Compiling and Executing the

Source Program
5-5 Program RATING
5-6 Program INDAVGE
5-7 Program RELATE
5-8 Program CHARGES

4-2 5-9
4-4 6-1
4-5 6-2
4-5
4-7
5-1
5-2 TAI

5-3 1-1

5-3 2-1
5-4 4-1
5-7 4-2
5-11 4-3
5-15 6-1

P r o g r a m A D M I T 5 - 1 8
CDCSBTF Control Statement Format 6-1
Sample FORTRAN Execution of CDCS

B a t c h T e s t F a c i l i t y 6 - 2

Summary of DMS-170 Components and
F e a t u r e s 1 - 5

D M L S t a t e m e n t s 2 - 4
Error and Status Processing Mechanisms 4-1
S t a t u s B l o c k C o n t e n t 4 - 3
L o c k i n g O p e r a t i o n s 4 - 7
L o a d M a p S w i t c h S e t t i n g s 6 - 1

/ ^ | k

yzmg^s.

v i i i 60483500 A

J ^ \

NOTATIONS

The specifications for FORTRAN DML statements and
for particular control statements are described in
reference formats. The notat ions used in the
reference formats are described as follows:

Z U Brackets enclose optional portions
of a reference format. You can
optionally omit or include all of
the format within the brackets.

UPPERCASE Uppercase words are reserved words
and must appear exactly as shown.
You can use reserved words only as
specified in the reference formats.

Lowercase Lowercase words are generic terms
that represent user-supplied words
or symbols.

. . . E l l i p s e s i m m e d i a t e l y f o l l o w a p a i r
of brackets to indicate that you
can optionally repeat the enclosed
material.

Punctuation symbols shown within the formats are
r e q u i r e d u n l e s s e n c l o s e d i n b r a c k e t s a n d
specifically noted as optional. One or more spaces
separate the e lements in a reference format .
Numbers shown are decimal unless otherwise
specified.

60483500 A

FORTRAN PROGRAMMING WITHIN DMS-170

DMS-170 is a Control Data software package for data
management. The system was designed on the premise
that a data base should be centrally controlled and
the data within that data base should be completely
independent of application programs. In line with
this phi losophy, the role of data administrator
emerged. This individual was to lead the design,
programming, implementation, maintenance, and
recovery efforts associated with the DMS-170 data
management system.

The data administrator is responsib le for the
structural organization and layout of an entire
data base. This individual assigns names to and
describes the characterist ics of al l data i tems
within the data base. This total descript ion is
called a schema. The schema is generated by the
data administrator and stored as a permanent file.

As a FORTRAN programmer, you probably would never
need or even want to access an entire data base.
You would, however, need to access selected
portions of a data base organized in a number of
ways to meet the requirements of your various
application programs. The grouping of data base
items into separate data base port ions is the
respons ib i l i t y o f the da ta admin is t ra to r. The
descriptions of these grouped items are called
sub-schemas. Sub-schemas are generated by the data
admin is t ra tor and s tored in a permanent fi le
l ib ra ry.

Internal control is handled by the CYBER Database
Control System (CDCS). CDCS interprets aLL data
base requests from application programs, ensures
the validity of such requests, and passes them
along to the input/output processor. The controls
exercised by CDCS guarantee that one user cannot
alter the contents of the data base and adversely
affect another user's program.

The controls designated by the data administrator,
incorporated into the schema and sub-schema, and
carried out by CDCS relieve application programmers
of many tedious tasks such as data description,
data conversion, and validity checking.

SYSTEM COMPONENTS
The components of DMS-170 that are discussed in
this guide include the Language that describes the
data (Data Description Language); the Language that
provides data base access to a FORTRAN application
program (FORTRAN Data Manipulation Language); the
module that controls data base activity (CYBER
Database Control System); and the processor that
handles all input and output operations (CYBER
Record Manager). The components of DMS-170 that
are not discussed in this guide include a special,
nonprocedural Language (Query Update) that provides
data base access to programming and nonprogramming
users and the COBOL Language extensions that
provide data base access to COBOL application
programs.

DATA DESCRIPTION LANGUAGE
The Data Description Language (DDL) is a compiler
language that the data admin is t rator uses to
describe data. DDL can generate four types of
descriptions: the schema definition that describes
an entire data base; the FORTRAN sub-schema
definition that describes selected portions of a
schema-defined data base for use by a FORTRAN
app l i ca t ion p rogram; the COBOL sub-schema
definition that describes selected portions of a
schema-defined data base for use by a COBOL
appl icat ion program; and the QUERY UPDATE
s u b - s c h e m a d e fi n i t i o n t h a t e i t h e r d e s c r i b e s
selected portions of a schema-defined data base or
describes an independently controlled data base for
use by the interactive query software product Query
Update. The data descriptions for the schema and
each sub-schema are declared in DDL source
statements for input to the DDL compiler.

A block diagram il lustrating schema/sub-schema
generation is shown in figure 1-1.

The Schema

The schema is a detailed description of all the
data in a data base. The schema description is
generated from DDL statements that name the schema,
organize the schema into files (called areas in the
schema), describe each record type together with
the characteristics of the data in the record, and
desc r i be re l a t i onsh ips (ca l l ed re l a t i ons) and
dependency conditions (called constraints) among
areas. The schema also includes an access control
capability that provides privacy at the area level.

The data administrator wri tes the DDL source
statements and uses them as input to the DDL
compiler for compilation into an object schema or
schema directory. After storing the directory as a
permanent file, the data administrator provides you
with pertinent information so you can tailor your
FORTRAN program to meet processing requirements.
If, for example, you need to access an area that
has been defined as having controlled access in the
s c h e m a , i t i s t h e r e s p o n s i b i l i t y o f t h e d a t a
administrator to supply you with the appropriate
privacy key.

The Sub-Schema

The sub-schema is a de ta i led descr ip t ion o f
selected portions of the data in a data base. The
FORTRAN sub-schema description is generated from
DDL statements that ident i fy the schema and
sub-schema, specify files (called realms in the
sub-schema) and the content and structure of
records, indicate changes in data format required
by the application program, identify relations to
be used, and spec i fy record qua l i fica t ion fo r
relation processing.

60483500 A 1-1

Schema
Source

£Sub-Schema
Source

DDL
Compiler

Schema
Directory

Listings

Sub-Schema
Directories

Sub-Schema
Library

Figure 1-1. Schema and Sub-Schema Generation

->>s%

The data administrator wri tes the DDL source
statements and uses them as input to the DDL
compiler for compilation into an object sub-schema
o r s u b - s c h e m a d i r e c t o r y. A f t e r s t o r i n g t h e
directory in the sub-schema Library, the data
adninistrator provides you with a Listing of the
sub-schema so you can obtain the names and
descriptions of the data to be referenced in your
FORTRAN program. The data administrator also
provides you with the name of the sub-schema
library, which you must attach with an operating
s y s t e m AT TA C H c o n t r o l s t a t e m e n t f o r D M L
preprocessing of the Data Manipulation Language
statements in your FORTRAN program just before
compilation.

FORTRAN DATA MANIPULATION LANGUAGE

The FORTRAN Data Manipulation Language (DML) is the
language that provides a FORTRAN application
program with access to the DMS-170 controlled data
base . The language cons is ts o f a se r ies o f
statements that provide for opening and closing of
data base files; reading, writing, updating, and
deleting records from those files; and relation
processing. The DML statements you include in your
FORTRAN source program code are translated by the
DML preprocessor into statements acceptable to the
FORTRAN compiler.

CYBER DATABASE CONTROL SYSTEM

The central controlling component of DMS-170 is
CYBER Database Control System (CDCS), which
monitors and interprets all data base requests from
application programs. CDCS preprocesses each

application program request, performs any necessary
data conversion, handles structural differences
between the schema and the sub-schema by an
operation called mapping, and prepares the request
for input/output processing.

Master Directory

The mas te r d i r ec to r y i s a fi l e t ha t con ta i ns
information relating to all data bases, schemas,
and sub-schemas known to CDCS. The directory is
gene ra ted by one o f t he da ta base u t i l i t i e s
provided through CDCS. The data administrator
creates the master directory and stores it as a
permanent file. Your application program cannot
reference a sub-schema unless information about
that sub-schema exists in the master directory. It
is the responsibility of the data administrator to
ensure the sub-schema is va l id . The master
directory file is attached through the job stream
of CDCS and is automatically available for your job.

CDCS Batch Test Facility

The CDCS Batch Test Facility is an absolute program
that you can use during program development and
testing. The facility enables you to run CDCS as a
normal batch job, which means you can attach a new
version of the master directory file each time you
run a job.

The program, which resides on the system library,
is called into execution by the CDCSBTF control
s ta tement . When us ing th i s fac i l i t y, you a re
responsible for attaching the master directory file
and any necessary Log files each time you run a job.

1-2 60483500 A

Data Base Procedures

Data base procedures are special-purpose subpro
grams that CDCS caLLs when specific situations
occur during CDCS processing. The data admin
istrator writes the data base procedures and stores
them in a permanent file library. The name of the
procedure, the point at which it is to be called,
and the conditions governing its execution are
specified in the schema definit ion. Loading of
data base procedures is handled automatically
for you.

CYBER RECORD MANAGER

CYBER Record Manager (CRM) is the processor that
performs all input/output operations for FORTRAN as
well as the other CYBER host Languages operating
within DMS-170. The Advanced Access Methods (AAM)
file manager handles all operations concerning the
physical storage and access of data by application
programs. All data base files supported by CDCS
are conventional CRM files.

A I L n e c e s s a r y i n f o r m a t i o n r e g a r d i n g t h e
characteristics of a data base file is supplied to
CRM a t schema comp i l a t i on t ime . The da ta
administrator specifies appropriate parameters on
FILE control statements that are included in the
DDL source deck when the schema is created. In
DMS-170, all communication with CRM is handled
automatically for you.

A block diagram illustrating the CRM interface with
CDCS and the data base is shown in figure 1-2.

File Organization

Fi le organizat ion informat ion is stored in the
schema directory. The three file organizat ions

allowed for data base files that are to be accessed
through CDCS are: indexed sequent ia l , d i rect
access, and actual key.

Records in indexed sequential files are stored in
ascending order by key. An application program can
access the records either randomly by key or
sequentially.

Records in direct access files are stored randomly
in fixed-length blocks. The number of the block to
receive a record is determined by a calculation
per fo rmed by the sys tem on the reco rd . An
application program can access the records either
randomly by key or sequentially.

Records in ac tua l key fi les have key va lues
assigned by the system. The key value is a number
that identifies the block and the position within
the bLock in which the record is s tored. An
application program can access the records either
randomly by actual key or sequentially.

The primary key is specified in the schema. A
Listing of the sub-schema provides you with this
information.

Multiple-Index Processing

Mu l t ip le - index p rocess ing i s pe r fo rmed when
alternate keys are defined for a fiLe. An index is
created for each alternate key in a data file when
the fi le is c reated. The indexes are updated
automatically whenever the data file is updated.
An application program can retrieve the records by
the primary key or by an alternate key.

Each alternate key is specified in the schema. A
listing of the sub-schema provides you with this
information.

FORTRAN/DML
Source Program

DML
Preprocessor

FORTRAN
Compiler

FORTRAN
Object
Program

CDCS

Data Base Files

CRM

Schema
Di rectory

Figure 1-2. CYBER Record Manager Interface

60483500 A 1-3

SPECIAL FEATURES

Eight special features with which you need to be
familiar are: concurrency, immediate return, file
privacy, relat ions, constraints, data base ver
sions, recovery, and data base transactions. When
these mechanisms are present in the CDCS operating
environment, some action on the part of your appli
cation program might be required.

CONCURRENCY

The concurrency feature allows two or more applica
tion programs to access the same data base file at
the same time for retrieval or update purposes.
During concurrent update operations, CDCS provides
a locking mechanism by which files and records can
be locked and unlocked at appropriate times.

CDCS always Locks the current record whenever the
file is opened for input/output. Your application
program, however, can issue explicit Lock and
unlock requests for CDCS to lock the entire file.
By issuing a lock request, your program prevents
other jobs from updating the file that it is using
until it issues an unlock request. The file being
locked and unlocked must be a file identified in
the sub-schema.

A deadlock situation can occur when a program
attempts to access files or records that have been
locked by CDCS for other programs. When this situ
ation occurs, CDCS arbitrarily releases the locked
resources held by one of the contending programs.
To ensure proper recovery handling in this type of
situation, you should include appropriate code in
your FORTRAN program.

a relation. An application program can access the
data from related files with a single read request.
Relations are specified in the schema. Any rela
tion that is available to an application program is
specified in the sub-schema.

Your application program can access a relation by
specifying a single read request with the name of
the relation that is to be read. CDCS processes
the request and returns a record occurrence from
each file in the relation to your program's working
storage area for the file.

The data administrator can place limitations on
relat ions by including restr ict ions in the sub
schema. Restrictions are in the form of qualifi
cation criteria that must be satisfied before a
record occurrence is made available to your program.

A Listing of the sub-schema provides you with the
name of the relation and indicates what specific
restrictions apply.

CONSTRAINTS

The constraint feature allows controls to be imposed
on update operations involving logically associated
fi les . Const ra in ts pro tec t the in tegr i ty o f the
data base by allowing update operations to be
performed only when specific conditions are satis
fied. Constraints are specified in the schema and
are enforced by CDCS.

The data administrator provides you with information
concerning constraints. You can avoid constraint
violations by becoming familiar with the rules that
apply when modifying files on which constraints
have been imposed.

IMMEDIATE RETURN
The immediate return feature of CDCS provides
FORTRAN application programs with the ability to
receive an immediate response from CDCS when either
CDCS cannot get the resources it needs, or a fatal
error occurs. When this feature is used, CDCS
returns control to the application program.

The immediate return feature cannot be enabled
before CDCS is invoked. See the CDCS 2 Application
Programming reference manual for more information.

FILE PRIVACY
The file privacy feature provides file access con
trol. When file privacy has been specified in the
schema, your program must supply privacy keys to
gain access to the file.

The data administrator provides you with this
information so you can ensure your FORTRAN program
meets the privacy requirements when CDCS checks for
appropriate privacy keys.

RELATIONS
The relational data base feature allows files to be
linked together into a logical relationship called

DATABASE VERSIONS

The data base version feature of CDCS allows an
application program to use the same schema and
subschema to access more than one group of permanent
files corresponding to the areas in the schema;
each of these groups is defined as a data base
version. Data base versions are defined by the
data administrator in the master directory. By
specifying use of different versions, an applica
tion program can perform operations on different
groups of files, each group forming a data base
ve rs ion . Fo r de ta i l ed i n fo rma t i on abou t t h i s
feature, see the CDCS 2 Application Programming
reference manual.

RECOVERY
The recovery feature provides for reconstruction of
a damaged or inconsistent data base and provides
for the removing of updates made with erroneous
logic. The data base can be recovered when physi
cal storage or system failure occurs and all or
part of the data base is lost or otherwise unread
able. The data base can be restored to a previous
checkpoint or beginning of job when an application
program failure or logic error occurs.

1-4 60483500 B

i ^ \

Recovery operations are made possible through a
Logging facility, which is the recording of user
i n t e r a c t i o n s w i t h a d a t a b a s e fi l e . L o g g i n g
requirements are defined by the data administrator
for a schema and serviced by CDCS. CDCS records
the logging information on an independent file that
ultimately serves as input for data base recover
and restore operations. Log files, i f specified,
are attached through the job stream of CDCS and are
automatically available to record the interactions
of your program with the data base.

DATA BASE TRANSACTION

The data base transaction feature of CDCS provides
the FORTRAN application program with the ability to
group a series of data base updates into a logical
unit, called a data base transaction.

The application program specifies the beginning of
the transaction, performs the update operations,
and specifies the end of the transaction, which can
be either a commit or a drop. When the application
program specifies a commit operation, all updates
made within the transaction become permanent. When
the application program specifies a drop operation,

all updates within the transaction are reversed;
therefore, the data base remains in the state it
was in before the beginning of the transaction.

I f the app l i ca t ion p rogram fa i l s to commi t a
transaction because of system or program failure,
automat ic recovery is per formed; that is , the
transaction is dropped and the data base is re
stored to its state before the beginning of the
transaction.

Transaction processing also provides an application
program with the ability to determine the point at
which to restart processing after a system failure.
The application program can use this feature to
determine the last transaction that was committed
before the system failure occurred. The program
can then determine the point at which processing
should be restarted.

SUMMARY OF DMS-170
COMPONENTS AND FEATURES
A summary of DMS-170 components and features appears
in table 1-1. This table provides a quick refer
ence for appropriate information.

TABLE 1-1. SUMMARY OF DMS-170 COMPONENTS AND FEATURES

Component/
Feature Defini t ion Information

Appears In Programmer Action

Alternate key A key other than the primary key by
which a file can be accessed; de
fined by the data administrator.

Sub-schema listing On a random read, set the key
to a value indicating the
desired record occurrence.

CDCS Batch Test
Fac i l i ty

A non-concurrent version of CDCS
for use during program development.

N/A Attach the master directory
when executing the applica
tion program.

Concurrency Simultaneous access to the same
data by two or more application
programs.

N/A Include appropriate code in
the application program to
handle a deadlock situation;
deadlock can occur when two
programs are contending for
access to a locked file or
record.

Constraints Controls imposed on records in
associated files or on items in a
single file to protect the integ
rity of the data base during update
operations; defined by the data
administrator.

Schema Obtain information from the
data administrator. Follow
the rules for modifying
files on which constraints
have been imposed.

CYBER Database
Control System
(CDCS)

The central controlling module of
DMS-170.

N/A None.

CYBER Record
Manager (CRM)

The input/output processor for
DMS-170 operations.

N/A None.

Data base
procedures

Special-purpose routines that per
form predefined operations; written
by the data administrator.

Schema None.

60483500 B 1-5

TABLE 1-1. SUMMARY OF DMS-170 COMPONENTS AND FEATURES (Contd)

Component/
Feature Definit ion Information

Appears In Programmer Action

Data base
transaction

A series of update operations
identified by a user-assigned
transaction identifier. A trans
action is bracketed by a begin
transaction operation and either a
commit or drop operation.

N/A Include appropriate code in
the application program to
bracket the series of update
operations and to assign
transaction identifiers.
Transaction log files must
have been defined by the data
administrator in the master
directory.

Data base status
block

An array defined within an applica
tion program to which CDCS returns
information concerning the status
of operations on data base files
and relations.

N/A Include appropriate code in
the application program.

Data base
version

A set of permanent files that is
associated with the areas described
by the schema; defined by the data
administrator.

Master directory To use a data base version
other than MASTER (which is
otherwise assumed), specify
the version name in the
application program.

Data
Description
Language (DDL)

The language that is used to struc
ture a schema and sub-schema; used
by the data administrator.

N/A None.

Fi le
organization

The predetermined arrangement of
stored data; indexed sequential,
direct access, or actual key;
defined by the data administrator.

Schema None.

File privacy A situation in which an application
program can only gain access to a
file by supplying a privacy key;
defined by the data administrator.

Schema Obtain information from the
data administrator. Include
a PRIVACY.statement in the
application program.

FORTRAN Data
Manipulation
Language (DML)

The language that provides a
FORTRAN application program with
access to the DMS-170 controlled
data base.

N/A Include appropriate DML
statements in the FORTRAN
source program code.

Immediate return A feature of CDCS that provides
FORTRAN application programs with
the ability to receive immediate
response from CDCS when either
CDCS cannot get the resources it
needs, or a fatal error occurs.

N/A Include appropriate code in
the application program.

Log files Disk files on which user inter
actions with data base files are
recorded for recovery purposes.

Master directory None.

Fac i l i t y.

Master
directory

A file containing information re
lating to all data bases, schemas,
and sub-schemas known to CDCS;
created by the data administrator.

N/A Attach the master directory
only when executing the pro
gram through the CDCS Batch
Test Faci l i ty.

Multiple-index
processor

A processor that allows CRM files
to be accessed by alternate keys.

N/A None.

1-6 60483500 B

TABLE 1-1. SUMMARY OF DMS-170 COMPONENTS AND FEATURES (Contd)

Component/
Feature Defini t ion Information

Appears In Programmer Action

Primary key A key that must be defined for
a file when the file is first
created; defined by the data
administrator.

Sub-schema listing On a random read, set the key
to a value indicating the
desired record occurrence.

Recovery:
Automatic A means by which a data base can

be automatically recovered in case
of a system or program failure.

N/A Data base transactions pro
vide for automatic recovery;
use them for sensitive up
dates.

Recovery:
Manual A means by which a damaged or

destroyed data base can be re
constructed or restored; defined
by the data administrator.

N/A None.

Relations Logical structures formed by the
joining of files; permit retrieval
of data from more than one file at
the same time; defined by the data
administrator.

Sub-schema listing To read a relation, specify
a single read request with
the name of the relation.
During update, follow the
rules for updating files
joined in a relation.

Restrictions Criteria that must be satisfied in
a relation before a record occur
rence can be made available to the
application program; defined by the
data administrator.

Sub-schema listing None.

Schema A detailed description of all the
data in a data base; created by the
data administrator through DDL.

Schema listing None.

Sub-schema A detailed description of selected
portions of the data in a data
base; created by the data adminis
trator through DDL.

Sub-schema listing Attach the sub-schema
library in which the sub
schema resides for DML
preprocessing of the
application program.

60483500 B 1-7

ACCESSING THE DATA BASE

Every DMS-170 data base file that is to be accessed
through FORTRAN must be described in a directorycalled a FORTRAN sub-schema. The data admin
istrator, working with application programmers, is
responsible for creating the sub-schemas. Every
FORTRAN program that accesses a DMS-170 data base
file must use the FORTRAN Data Manipulation
Language (DML). The application programmer is
responsible for coding appropriate DML statements
and including them in the FORTRAN source program.

This section details the two principal data base
access tools: the sub-schema that describes the
data, and the language that provides access to that
data.

the data base. You must code the DML statements
along with FORTRAN statements in the FORTRAN source
program. The DML statements identify the sub
schema, establish an interface with CDCS, and
provide access to realms defined by the sub
schema. DML statements can appear both in the main
program and in subprograms.
The DML statements are translated into statements
acceptable to the FORTRAN compiler. The DML
preprocessor performs the translation and writes
the translated statements to a file along with the
FORTRAN statements in the source program. This new
file is then the input file to the FORTRAN compiler.

/fP^V

INTERPRETING THE FORTRAN
SUB-SCHEMA
The data administrator tai lors sub-schemas to meet
s p e c i fi c a p p l i c a t i o n s . A s s u m e , f o r e x a m p l e , y o u
have an app l i ca t i on t ha t r equ i res access t o on l y
t w o fi e l d s i n a d a t a b a s e fi l e : s t u d e n t I D s a n d
t u i t i o n c h a r g e s . T h e d a t a a d m i n i s t r a t o r m i g h t
p r o v i d e y o u w i t h a s u b - s c h e m a t h a t r e s e m b l e s
sub-schema SAMPLE1 shown in figure 2-1.

With the exception of the sub-schema l ibrary name
and any required pr ivacy keys, the l ist ing provides
y o u w i t h c o m p l e t e i n f o r m a t i o n . T h e h a n d w r i t t e n
notat ion in th is example ind icates the sub-schema
l i b ra ry name i s DDLL IB . I f you were p lann ing to
compi le an app l ica t ion program us ing sub-schema
SAMPLE1, you would need to attach DDLLIB. Since no
p r i v a c y k e y i s r e q u i r e d , t h e s c h e m a o b v i o u s l y
imposes no access control on realm ACCOUNT.

Not ice the th ree a l iases ass igned. S ince symbol ic
names in FORTRAN cannot exceed seven characters and
c a n n o t i n c l u d e a h y p h e n , t h e d a t a a d m i n i s t r a t o r
changes the names for your application.

Assume, for example, you have an appl icat ion that
r e q u i r e s a c c e s s t o t w o d a t a b a s e fi l e s . A s s u m e ,
also, that you need a relat ionship between the two
fi les so that you can search one fi le and re t r ieve
c o r r e s p o n d i n g r e c o r d s f r o m t h e o t h e r. T h e d a t a
administrator might provide you wi th a sub-schema
that resembles sub-schema SAMPLE2 in figure 2-2.

The handwri t ten notat ion in th is example indicates
the sub-schema library name is DDLLIB. If you were
p lann ing to comp i le an app l i ca t ion p rogram us ing
sub-schema SAMPLE2, you wou ld need to a t tach
D D L L I B . T h e s c h e m a a p p a r e n t l y i m p o s e s a c c e s s
control on realm FILE2. The privacy key XX99 must
be inc luded in a DML PRIVACY statement to ga in
access to that realm.

DML LANGUAGE COMPONENTS

The DML language components include DML statement
keywords, recognized symbols and punctuation, and
user-supplied names of variables and constants.
These components are grouped together in to
statements for input to the DML preprocessor,
which translates each statement appropriately into
a FORTRAN specification or CALL statement.

The first word of a statement is always a DML
keyword that identifies the task to be performed.
Most keywords are fo l lowed by user-suppl ied
elements and sometimes are followed by additional
keywords.
A list of available DML statements is shown in
table 2-1 for reference purposes. The statements
are listed in alphabetic order by the leading word
(keyword), which identifies the purpose of the
complete statement. The comments column provides
spec ific ru les for the s ta tement and inc ludes
applicable default options.

SYNTAX REQUIREMENTS
The syntax requirements and coding conventions for
DML statements are exactly the same as for FORTRAN
statements. The following restrictions apply:

• A DML statement cannot be the object of a
logical IF.

• A DML statement must not reference f i les that
are referenced elsewhere in the program by a
conventional FORTRAN input/output statement or
by a FORTRAN PROGRAM statement.

Any executable DML statement can have a statement
label. The DML preprocessor copies the label into
the translated FORTRAN statement.

FORTRAN DATA MANIPULATION
LANGUAGE
The FORTRAN Data Manipulation Language (DML) is the
means through which your FORTRAN program accesses

STATEMENT POSITIONING
Some DML statements require special positioning
within the FORTRAN source program. These require
ments are illustrated in figure 2-3.

60483500 A 2-1

• >» •
S O Q

-BS• 1 3
• o p . - o«&> So t oo
s - T 2 o

« 0 £

* « o
Z o o

O C D
E O Z
< o I —O J 2

J o

■«-»H «n
^ I
* v, o

OJ w»OJ 6
t - S o
<o c ♦»

2 c wc o >
$-°> h

j c o
r - O

$-

o
o

« u

feg
■̂■o
in "w
v t

0)

S- +J
X (* • ' "
S -JC
o o % .
O I c u
< U H O l
t - i - t 0)

4-»

O J -
C OJ

o
c

Vt O

o o
to

v t

cu C « r -

S CO o
J C o
r - « C

* ^ c
«o

C V)' i - t o V t
10

g t i a i
Z— ••— »i—

u u
O M l / l
5 oj cu

I — " O " O

=>
o
oo<
tocu
5-

«♦-

cu

o

f t

i « o »
CO

CU
in jD

C U o c? • > - (O
± > 4 J C J* ^ I B

5- CU
Q| OJ O)ui o. <o
3 O e n

o o > « J
O J C B

^ ' o . O J

O J * * '«=^ ._

a . I
e o °-

t i l s

•f- CO <o
X U

i - C J
+-> JCto C -Uo <u

0 " 0 O
O - r - + »

- - V t

^°£

» t•O <y

<o
. " OVt <]>- °2 cc c o

• o 3
O CO

e
OJ CO
■M s-
i—i «J

3 I U J
O r - a
O O O
U U | -
<C <t tO
I I I I I I
I - t » I -
Z U 1 Z3 oe tu
O r - O
O O =)
CJ CJ r-
< < C O

E 0 6 ^
- J O E
< CJ UJ
UJ UJ r-
K (E H

< « C <

UJ<coc UJ< r -
X Z

M U J
ae a.o a-u. <

O O O O o o o

i - t n
v>o a.z oo<

o o o o o o o o o oo o o o o o o o o i - -o o o o o o o o o -

/(!3%.

2-2 60483500 A

CU
J C

" O • >c o
to —*

?u- oc

« . O U . J

•O CM «JJ(A uj U-I CO
E a - i 5 -
« ! j U . " oO J h h 5•-^ £8

• = 0)

£^2! a.

U Ioc

" O$-o

o3

H-lo u .
0)

■o I S

en t»

CA 2
t o c

CO CO

t - 1 -

**- ocu• o.

J-o .

u . t o .
u 3

. . I 4 - *
xj«-• •"-4)1-1
in _ *-
«/) C CO
OJ «0 4J

C O J =
J Q - O 0

01 •
c H O
t o - r 4 ^<j b *
P. oi «n
U J - O t O

*~I "°- j m c o
h t n
U . - i -

T)2 "S - ~ e n

s-rr* en

V-o

t — Q U I
s c i - < o
Ul CM<C
Q U J O C
i-» _JCO

Co ••>
V) E . .

o j * > S
o - i - + j .
O , i -

>> cui— JO

cu

cO

>
O
t -
O .

o£ ■" '^
CM, tO^ S

" ° c o t n
f c - o C O° cu.~*m i

o

" O
0)

+J»

• r - 1 °

01
O J_
U I CO
oc
CM
_ l
u. **

M-
■o$-o 0)u o>
OJ to
J - J-

OJ>c tOo
+ J

•o
UJ

« - t . p c c ^ - J nco
en

JP^N

OJ r- CU U U I
- . 5

tn J= OJ t- t n _ j
jy •— i i - t■gu.
t o +>o.

I J l - C t n c r?t n OJCM
E Q . U I J C

3t OJ C A _ I t u - o q j + j 0 " 0 c u
OJ 4-> CO •—c J C c J C f - X C + J
3 5 * - J - U - 1— to I- 3: 1 - « T -

e ^ - o
tu in „4-> i- en tn

O J £ £ J =co u u CJ

u i a
ec inI I
l - t -z z

I- UJ UJz a aUJ 3 3
O h l -3 CO V>
t - I I I Ico o aII uj •-<»- ae *-UJ 1- UJ

E K a
_l O E< U U I
UJ Ul I-
K K H

hi ae 3
o c 3 i -
oe o co3 I I I I
O O OII UJ l-l
cm ae t\j
UJ CM UJ

E K n_l O E
< U U 1UJ Ul h-
ae ae i-4

CO COo o
f-l UJ

r - i M w * i n ^) N t D O O t - N m - * i n * o r >
O O O O O O O O O r - r - * - t - t - r - « - t -
O O O O O O O O O O O O O O O « « - »o o o o o o o o g o o o o o oo o o o o o o o o o o o o o o

i o o
O Q

i o o
< M I M

T- CM
CM CMo oI O

I O8 SS St o

oeo

I t t t I

ro m o oo
CM » - r - ^CM . - -
O O O O O O— O Q O O O

o o o o o
>- >- >-U l U l U l

>- xt >• xt xtU l U l
Xt UJ Xt UJ UJ

I - I - 1 ->- « t >-< « t
O C X 0 £ Z Z<t ae < ae oe
E ui E UJ ui
M l - M l - I -
a e j a e _ j _ j
a . < c o . < < t

* * < * m *
T - C M C M * * t M C M ** ? ° S ** * o o ** * o o *

UJ E
_ i oa.e too oo oinu. o

60483500 A 2-3

TABLE 2-1. DML STATEMENTS

Statement Description Comments

ASSIGNID

BEGINTRAN

CLOSE

CLOSE relation

COMMITTRAN

DELETE

DROPTRAN

FINDTRAN

INVOKE

LOCK

NEWVERSION

OPEN

OPEN relation

PRIVACY

Obtains a restart identifier assigned
by CDCS.

Begins processing of a data base
transaction.

Ends processing of a realm.

Ends processing of the realms joined
in a relation.

Completes processing of a data base
transaction.

Removes a record from a realm.

Cancels processing of a data base
transaction.

Obtains information for a program
restart operation after system
fa i lure.

Establishes the interface between
the executing program and CDCS.

Establishes an exclusive or protected
lock on realms. Exclusive prohibits
read and update operations on the
realm. Protected prohibits only
update operations (allows read
operations).

Changes the data base version being
used by an application program.

Initiates processing of a realm.

Initiates processing of the realms
joined in a relation.

Establishes the right of a program
to access a realm.

The program must execute the ASSIGNID statement
before processing data base transactions in order
to determine the status of a data base transaction
in a restart operation after a system failure
occurs. The FINDTRAN statement is used in the
restart operation.

Updates are considered temporary until the data
base transaction is committed.

Realms can be opened and closed any number of
times by a program.

Relations can be opened and closed any number of
times by a program.

This statement causes all updates within the data
base transaction to be considered permanent.

The record being deleted is the record most
recently read from the realm. The value of the
primary key cannot change after the last read.

All realms are restored to the states that existed
just before the data base transaction began.

The program must have obtained a restart identifier
by executing the ASSIGNID statement in order to use
the FINDTRAN statement.

The statement must be executed before any other
DML statements except SUBSCHEMA.

The realm must be a realm described in the sub
schema.

All sub-schema realms must be closed before
executing the NEWVERSION statement. See the
CDCS 2 Application Programming reference manual
for details.

If the processing mode is not specified, the realm
is opened for input/output.

If the processing mode is not specified, the rela
tion is opened for input/output. A processing
mode of open for output only is not valid.

If the processing mode is not specified, the realm
can be accessed for input/output. The mode must
be the same as the mode indicated in the OPEN
statement.

2-4 60483500 B

j j f f P ^ .
TABLE 2-1. DML STATEMENTS (Contd)

Statement Description Comment s

READ Transfers data from a realm record
to the variables defined in the sub
schema record description.

If a key is not specified, the read is sequential.
If a key is specified, the value of the referenced
key must be set by the program before the read is
executed.

READ relation Transfers data from the relation
records to the corresponding vari
ables defined in the sub-schema
record descriptions.

If a key is not specified, the read is sequential.
If a key is specified, the key must be in the root
realm; the value of the referenced key must be set
by the program before the read is executed.

REWRITE Replaces the last record read with a
new record, using the current values
of the variables defined in the sub
schema record description.

The value of the primary key must not have changed
since the last read.

START Logically positions a realm for
a subsequent sequential read
operation.

The processing mode must be either input or
input/output. If a key is specified, it must be a
primary or alternate key defined for the realm.
If a key is not specified, positioning is by
primary key.

START relation Logically positions the root realm
(the first realm named in the sub
schema) of a relation for a subse
quent relation read operation.

The processing mode must be either input or
input/output. If a key is specified, it must be
a primary or alternate key that is defined in
the root realm. If a key is not specified,
positioning is by primary key of the root realm.

SUBSCHEMA Identifies the sub-schema to be used
by the program.

A FORTRAN program can reference only one sub
schema.

TERMINATE Terminates the interface between the
FORTRAN program and CDCS.

When a TERMINATE statement is issued, an INVOKE
statement must be executed before any other DML
statements are issued.

UNLOCK Releases a lock on a specified realm
and releases all record locks.

The realm must be a realm described in the sub
schema.

WRITE Writes a record, using the current
values of the variables defined in
the sub-schema record description.

Schema record data items that are not defined in
the sub-schema are given null values by CDCS.

60483500 B 2-5

j Specification statements _i

SUBSCHEMA Must appear here

j ,
■ DATA or NAMELIST statements i

Statement funct ion defini t ions■ a i d i e m e r u l u i i k t i u i i u e i i n 11 i o n :

i — — — — — — — — — — ^ — — — i
FORTRAN executable statements

INVOKE* -< Must precede other DML statements (except SUBSCHEMA statement)

ASSIGNID*/FINDTRAN*

PRIVACY* ^

open*-<-
LOCK* ^_

BEGINTRAN -*-
READ/WRITE/REWRITE/DELETE/START

C0MMITTRAN\DR0PTRAN f ~*

UNLOCK*
CLOSET
TERMINATE -*

Must precede OPEN statement

Must precede LOCK statement
Must precede UNLOCK statement

Begins processing of a data base transaction

Ends processing of a data base transaction

Must be last DML statement

. FORTRAN executable statements .

'Cannot appear within a data base transaction.

Figure 2-3. DML Statement Positioning

2-6 60483500 B

PROCESSING THE DATA

/0s*.

Processing data base files within the DMS-170
environment involves several steps. These steps
are:

1. Obtain a current listing of the sub-schema from
the data administrator so you can have the
names and descriptions of the data your program
will be referencing.

2. Obtain the name of the appropriate sub-schema
library from the data administrator. You will
need to attach this library for preprocessing
your program.

3. Ask the data administrator if any realms in the
sub-schema are defined in the schema as having
controlled access. When access is controlled,
you must know the privacy key.

4. Ask the data administrator if any constraints
exist in the schema. When constraints exist,
CDCS enforces them by not allowing updates that
violate constraints.

5 . Code the FORTRAN program and inc lude
appropriate Data Manipulation Language (DML)
statements for opening, closing, and processing
sub-schema realms.

6. Preprocess and compile the FORTRAN program.
Include, in the job stream before the FTN5
control statement, an ATTACH control statement
naming the sub-schema library and a DML control
statement to execute the DML preprocessor.

7. When compilation is successful, execute the
FORTRAN program. Include an LDSET control
statement to load the DMS-170 library.

DML statements are available to perform a variety
of operations on data base items described in a
FORTRAN sub-schema. This section describes these
statements and presents them in the following
sequence:

Data Base Access
SUBSCHEMA
INVOKE
PRIVACY
OPEN
LOCK/UNLOCK
CLOSE
TERMINATE

Data Base Manipulation
WRITE
READ
START
REWRITE
DELETE

Relation Access
6PEN
CLOSE
READ
START

For purposes of illustration, a new sub-schema
named AVERAGE is shown in figure 3-1. This
sub-schema is referenced in subsequent examples.
The examples show portions of program MODEL which
illustrate statements necessary for particular data
base operations.

The sub-schema provides the following information:

• The realm (file) to be accessed is named CFILE.

• The record is named CRECORD.

• A character item named IDENT is the primary key.

• A character item named STUDENT is an alternate
key.

• A character item named COURSE is an alternate
key.

• A real item named GRADE is an alternate key.

The handwritten notation on the listing indicates
the sub-schema is stored on a library named SSLIB.
The notation also indicates CFILE has controlled
access and requires a privacy key of XX99.

USING DML TO ACCESS
THE DATA BASE
To access a data base, a FORTRAN program must
identify the sub-schema that the program uses,
establish an interface with CDCS, satisfy privacy
requirements, and perform the usual functions of
opening and closing files. The fol lowing para
graphs describe these functions and the DML state
ments that you include in your program to provide
these functions.

IDENTIFYING THE SUB-SCHEMA
To identify the sub-schema, you must include a
SUBSCHEMA statement in your program. This must be
the first DML statement to appear in your program.
The format is:

SUBSCHEMA(sub-schema-name)

The SUBSCHEMA statement is required. You must
position the statement in the program as follows:

• After the specification statements

• Before the first DATA or NAMELIST statement

• Before any statement function

• Before any executable statement

At the point where the DML preprocessor encounters
the SUBSCHEMA statement, the DML preprocessor
copies into the source program the text declaration
and DATA statements resulting from the sub-schema

60483500 B 3-1 I

AVERAGE * SOURCE LISTING * (80351) DDLF 1.2+538.

00001 SUBSCHEMA AVERAGE,SCHEMA=UNIVERSITY
00002
00003 ALIAS(REALM) CFILE=CURRICULUM
00004 ALIAS(RECORD) CRECORD=CURR-REC
00005 ALIAS(ITEM) STUDENT=STUDENT-ID.CURR-REC
00006 ALIAS(ITEM) COURSE=COURSE-ID.CURR-REC
00007
00008 REALM CFILE
00009
00010 RECORD CRECORD
00011

** WITHIN CFILE
00012 CHARACTER*14 IDENT

** ORDINAL
00013 CHARACTERS1 STUDENT

** ORDINAL
00014 CHARACTER*6 COURSE

** ORDINAL
00015 REAL GRADE

** ORDINAL
00016 END
00017
** * * * END OF SUB-SCHEMA SOURCE INPUT

PRIMARY KEY 00012 IDENT FOR AREA CFILE
ALTERNATE KEY 00013 STUDENT FOR AREA CFILE
ALTERNATE KEY 00014 COURSE FOR AREA CFILE
ALTERNATE KEY 00015 GRADE FOR AREA CFILE

** * * * RECORD MAPPING IS NEEDED FOR REALM - CFILE

Klbxanu -rtwma, SSLlo-

Figure 3-1. Sub-Schema AVERAGE

c o m p i l a t i o n . I n t h i s w a y , D M L p r o v i d e s y o u r
program wi th the ab i l i t y to re fe rence a l l records ,
data i tems, and relat ions that are described in the
sub-schema.

In a program using the sample sub-schema AVERAGE,
the SUBSCHEMA statement appears as shown in figure
3 -2 .

PROGRAM MODEL

CHARACTER ...
DIMENSION ...

SUBSCHEMA(AVERAGE)
DATA ...
DO ...

END

Figure 3-2. Identifying the Sub-Schema

ESTABLISHING THE INTERFACE
WITH CDCS
To establish the interface with CDCS, you must
include an INVOKE statement in your program. This
must be the second DML statement to appear in your
program. The format is:

INVOKE

The INVOKE statement is required. The statement
must appear in the program before any other DML
statement except SUBSCHEMA.

When the INVOKE statement is executed, CDCS
automatically attaches for use by the program all
realms described in the sub-schema identified by
the program.

In a program using the sample sub-schema AVERAGE,
the INVOKE statement appears as shown in figure 3-3.

SATISFYING PRIVACY REQUIREMENTS
If a realm is defined in the schema as having con
trolled access, your program must provide a privacy
key to access the realm. To provide the privacy
key, you must include the PRIVACY statement in your
program. The format is:

| 3 -2 60483500 B

PROGRAM MODEL

CHARACTER ...
DIMENSION ...

SUBSCHEMA(AVERAGE)
DATA ...
DO ...

INVOKE

END

Figure 3-3. Establishing the Interface With CDCS

PRIVACY(realm-name, CMODE=mode,D
PRIVACY=privacy key)

where

mode = I (access al lowed for input)

10 (access allowed for both input
and output, called input/output;
default)

0 (access allowed for output)

pr ivacy key = character constant, var iable
name, unsubscripted array name

A privacy key can be from 1 through 30 characters
in length. I f you use a character constant to
specify a privacy key, enclose the character string

I in apostrophes. If you use a variable name to
specify a privacy key, define the variable as type
CHARACTER*30. Ensure that the privacy key is
left-justified and blank filled in the field of the
variable. If you use an array name to specify the
privacy key, define the array as a 3-word array.
Ensure that the privacy key is left-justified and
blank filled in the field of the array.

The PRIVACY statement is required when access is
contro l led. A separate PRIVACY statement is
required for each realm defined with controlled
access. The PRIVACY statement must be executed
before the statement that opens the realm.

The handwritten notation on the sample sub-schema
listing (figure 3-1) indicates access to the realm
is controlled and a privacy key called XX99 is
required. In a program using the sample sub-schema
AVERAGE, the required PRIVACY statement appears as
shown in figure 3-4.

OPENING A REALM
Before your program can access any data records in
a n e x i s t i n g r e a l m , t h e p r o g r a m m u s t o p e n t h e
rea lm . To open t he rea lm , you mus t i nc l ude t he
OPEN statement in your program. The format is:

OPEN (realm-name CM0DE=mode1 C,ERR=s1)

PROGRAM MODEL

SUBSCHEMA(AVERAGE)

INVOKE
PRIVACY(CFILE,M0DE=I0,PRIVACY=,XX99')

END

Figure 3-4. Satisfying Privacy Requirements
where

mode = I (open for input only)

10 (open for both input and output,
called input/output; default)

0 (open for output only; valid only for
creating a new file)

s = labe l o f an execu tab le s ta tement to
which control transfers on open error

For a realm with controlled access, the mode of
access indicated in the PRIVACY statement must
provide for the access mode indicated in the OPEN
statement. For example, if you open a realm for
input (M0DE=I) you can specify M0DE=I0 in the
PRIVACY statement.

If a separate privacy key is required for input
(M0DE=I) and another privacy key is required for
output (M0DE=0), two PRIVACY statements are required
to open a realm for input/output (M0DE=I0).

In a program using the sample sub-schema AVERAGE
(figure 3-1), the OPEN statement appears as shown
in figure 3-5. The MODE option is not included,
indicating a default to input/output.

PROGRAM MODEL

SUBSCHEMA(AVERAGE)

INVOKE
PRIVACY(CFILE,M0DE=I0,PRIVACY='XX99')

0PEN(CFILE,ERR=100)

100 PRINT *, 'ERROR ON OPEN*

END

Figure 3-5. Opening a Realm

60483500 B 3-3

Both the PRIVACY and OPEN statements indicate the
same mode, input/output. If an error occurs on
open, program execution continues at statement 100.

LOCKING/UNLOCKING A REALM
Whenever your program issues a read request on a
realm that is open for input/output, CDCS automat
ically locks the record that was read (the current
record) against update by another user. Through
DML, however, your progam can prevent other jobs
from performing update operations anywhere within a
realm by issuing a request that CDCS lock the
entire realm. To issue the lock request, you must
include the LOCK statement in your program. The
format is:

LOCK (realm-name C,TYPE=lock-type C,ERR=s33)

where

lock-type = character constant or variable

s = labe l o f an execu tab le s ta tement to
which cont ro l t ransfers on lock
error

Two types of Locking are permitted: exclusive or
protected. Exclusive locking prohibits concurrent
access to the realm for read or update operations;
protected locking allows concurrent access to the
realm for read operations but prohibits concurrent
update operations.

Lock-type can be specified as either a character
constant or a variable. The lock-type option must
specify either the value EXCLUSIVE or the value
PROTECTED. The Lock-type is 9 characters long. If
you use a character constant to specify the lock-
type, enclose the character string in apostrophes.
If you use a variable to specify the lock-type,
define the variable as type CHARACTER*9.

The LOCK statement should be executed before any
read request with intent to update the record.

CDCS releases the realm lock held for your program
when the program issues an unlock request. To
issue the unlock request, you must include an
UNLOCK statement in your program. The format is:

UNLOCK(realm-name C,ERR=s:)

w h e r e 4

s = label of an executable statement to which
control transfers on unlock error

You should judiciously use a realm lock. A realm
lock l imi ts o ther users ' access to the rea lm
(file). Addit ional ly, a realm lock overr ides the
CDCS record locking mechanism, which provides a
checking capabi l i ty on rewr i t ing and delet ing
records (for additional information, see the para
graphs Rewriting a Record and Deleting a Record).
In a program using the sample sub-schema AVERAGE
(figure 3-1), the LOCK and UNLOCK statements appear
as shown in figure 3-6. If an error occurs during
the lock or unlock process, program execution
continues at statement 200 or 300, respectively.

PROGRAM MODEL

SUBSCHEMA(AVERAGE)

INVOKE
PRIVACY(CFILE,M0DE=I0,PRIVACY=,XX99')

0PEN(CFILE,ERR=100)

LOCK(CFILE,ERR=200)

UNLOCK(CFILE,ERR=300)

200 PRINT *, 'ERROR ON LOCK*

300 PRINT *, 'ERROR ON UNLOCK'

END

Figure 3-6. Locking/Unlocking a Realm

CLOSING A REALM
When your program has completed processing on a
realm, the program must close the realm. To close
the realm, you must include the CLOSE statement in
your program. The format is:

CLOSE(realm-name C,ERR=s3)

where

s = label of an executable statement to which
control transfers on close error

Once a program closes a realm, the program can
perform no further processing on the realm until it
reopens the realm.

In a program using the sample sub-schema AVERAGE
(figure 3-1), the CLOSE statement appears as shown
in figure 3-7. If an error occurs on close, pro
gram execution continues at statement 400.

TERMINATING THE INTERFACE
WITH CDCS
To terminate the interface with CDCS, you must
include a TERMINATE statement in your program. The
format is:

TERMINATE

Once the TERMINATE statement is executed, no fur
ther data base processing can take place without
execution of another INVOKE statement.

3-4 60483500 B

In a program using the sample sub-schema AVERAGE
(figure 3-1), the TERMINATE statement appears as
s h o w n i n fi g u r e 3 - 8 . T h i s s t a t e m e n t m u s t b e
executed before the FORTRAN END or STOP statement.

PROGRAM MODEL

SUBSCHEMA(AVERAGE)

INVOKE
PRIVACY(CFILE,MODE=IO,PRIVACY=•XX99')

0PEN(CFILE,ERR=100)

L0CK(CFILE,ERR=200)

UNL0CK(CFILE,ERR=300)

CL0SE(CFILE,ERR=400)

400 PRINT *, 'ERROR ON CLOSE'

END

Figure 3-7. Closing a Realm

PROGRAM MODEL

SUBSCHEMA(AVERAGE)

INVOKE
PRIVACY(CFILE,M0DE=I0,PRIVACY='XX99')

0PEN(CFILE,ERR=100)

CLOSE(CFILE,ERR=400)

100 PRINT *, 'ERROR ON OPEN'

400 PRINT *, 'ERROR ON CLOSE'

TERMINATE

END

Figure 3-8. Terminating the Interface With CDCS

60483500 A

USING DML TO MANIPULATE DATA

D M L s t a t e m e n t s a r e a v a i l a b l e t o c r e a t e , r e a d ,
p o s i t i o n , a n d m o d i f y d a t a b a s e r e c o r d s . T h e
fo l lowing paragraphs descr ibe these func t ions and
the DML statements that you must include in your
program to provide these functions.

WRITING A RECORD
To w r i t e a c o m p l e t e r e c o r d , y o u m u s t i n c l u d e a
WRITE statement in your program. The format is:

WRITE(realm-name C,ERR=sD)

where

s = label of an executable statement to which
cont ro l t ransfers on wr i te er ror

Before the WRITE statement is executed, the program
must set the pr imary key and al l al ternate keys to
appropr ia te va lues. A sub-schema does not a lways
r e fl e c t a l l d a t a i t e m s t h a t a p p e a r i n t h e s c h e m a
record ; the re fo re , be fo re a l l ow ing the new record
to be wr i t t en to the da ta base , CDCS g i ves nu l l
v a l u e s t o t h o s e s c h e m a d a t a i t e m s t h a t a r e n o t
defined in the sub-schema.

In a program using the sample sub-schema AVERAGE
(figure 3-1), the WRITE statement appears as shown
i n fi g u r e 3 - 9 . T h e p r o g r a m s e t s t h e p r i m a r y k e y
IDENT and alternate keys STUDENT, COURSE, and GRADE
to appropriate values before the WRITE statement is
e x e c u t e d . I f a n e r r o r o c c u r s o n w r i t e , p r o g r a m
execution continues at statement 500.

PROGRAM MODEL
SUBSCHEMA(AVERAGE)
INVOKE
PRIVACY(CFILE,M0DE=I0,PRIVACY='XX99')
0PEN(CFILE,M0DE=I0,ERR=100)
ID ENT='122-13-6704-09'
STUDENT='122-13-6704'
C0URSE='PSY136'
GRADE=3.7
WRITE(CFILE,ERR=500)

500 PRINT *, 'ERROR ON WRITE'

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-9. Writ ing a Record

This example shows a program writing a record to an
ex is t ing fi le , CFILE. Be fo re the p rogram wr i tes to
t h i s fi l e , t h e P R I V A C Y a n d O P E N s t a t e m e n t s
e s t a b l i s h a c c e s s f o r i n p u t / o u t p u t (M 0 D E = I 0) . I f
the program were creat ing this fi le, the OPEN and
PRIVACY statements would have to establish access
for output only (M0DE-0).

3-5

READING A RECORD
To read a record, you must include a READ statement
in your program. The format is:

READ(realm-name C,KEY symbol item-name}
C,ERR=sD C,END=sl)

where

symbol = = .EQ. .GT. .GE.

item-name = primary or alternate key

s = labe l o f an execu tab le s ta tement to
which contro l t ransfers on read
error (ERR)

label of an executable statement to
w h i c h c o n t r o l t r a n s f e r s o n
end-of-file (END)

When you omit the KEY option, the read operation is
sequential. When you include the KEY option, the
read operation is random.

The END option is valid only for a sequential read
operation.

PROGRAM MODEL
SUBSCHEMA(AVERAGE)
INVOKE
PRIVACY(CFILE,MODE=IO,PRIVACY=•XX99•)
0PEN(CFILE,ERR=100)
READ(CFILE,ERR=600,END=900)

600 PRINT *, 'ERROR ON READ'

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-10. Reading Sequentially
In a program using the sample sub-schema AVERAGE
(figure 3-1), a random read appears as shown in
figure 3-11. The program sets the alternate key
GRADE to the value 4.0. This read returns from
CFILE the first record occurrence in which the
alternate key GRADE has the value 4.0. If an error
occurs on read, program execution continues at
statement 600.

Sequential Read
A sequential read accesses the record occurrence
located at the current record position. Successive
read operat ions return record occurrences by
position. Indexed sequential files are sequenced
in ascending primary key order, actual key files
are sequenced by block and record slot within the
block, and direct access files are sequenced by
position in home blocks.

Typical FORTRAN 5 statements issued outside of a
data base environment terminate with a fatal error
if EOF is sensed and a test for EOF status is not
included in the FORTRAN READ statement. If EOF
status is not tested in DML, program execution
continues with the next statement. Consequently,
it is necessary to test for EOF on a DML sequential
read operation. You can handle this test in one of
two ways:

• Include the END option on the READ statement.
When EOF is sensed, program execution continues
at the statement specified in the option.

• Test for an EOF value of 100g in the data
base status block. This option is described in
section 4.

In a program using the sample sub-schema AVERAGE
(figure 3-1), a sequential read appears as shown in
figure 3-10. If an error occurs on read, program
execution continues at statement 600. The READ
statement includes the END option to test for EOF.
When EOF is reached, program execution continues at
statement 900.

Random Read

A random read accesses a record occurrence by the
value of a referenced primary or alternate key.
The program must set the value of the referenced
key before the READ statement is executed.

PROGRAM MODEL
SUBSCHEMA(AVERAGE)
INVOKE
PRIVACY(CFILE,M0DE=I0,PRIVACY='XX99')
0PEN(CFILE,ERR=100)
GRADE=4.0
READ(CFILE,KEY.EQ.GRADE,ERR=600)

600 PRINT *, 'ERROR ON READ'

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-11. Reading Randomly

POSITIONING A REALM
To position a realm for subsequent sequential read
operations, you must include a START statement in
your program. The format is:

START(realm-name C,KEY symbol item-nameD
C,ERR=s])

where

symbol = .EQ. .GT. .GE.

3-6

item-name = primary or alternate key

s = l abe l o f an execu tab le s ta temen t to
which control t ransfers on start
error

Before the START statement is executed, the program
m u s t h a v e o p e n e d t h e r e a l m f o r i n p u t o r
input/output.

60483500 A

^"*S\

W h e n y o u o m i t t h e K E Y o p t i o n , t h e r e a l m i s
p o s i t i o n e d b y p r i m a r y k e y v a l u e ; t h e r e a l m i s
posit ioned to the record occurrence with a pr imary
key value equal to the current value of the primary
key i t em. When you inc lude the KEY op t ion , the
rea lm is pos i t ioned to the fi rs t record occur rence
with a matching key value.

In a program using the sample sub-schema AVERAGE
(figu re 3 -1) , bo th f o rms o f t he START s ta temen t
appear as shown in figure 3-12. I f an error occurs
o n s t a r t , p r o g r a m e x e c u t i o n c o n t i n u e s a t
statement 700.

PROGRAM MODEL
SUBSCHEMA(AVERAGE)
INVOKE
PRIVACY(CFILE,M0DE=I0,PRIVACY=»XX99')
0PEN(CFILE,ERR=100)
IDENT='122-13-6704-01'
START(CFILE,ERR=700)
READ(CFILE,ERR=600,END=900)

700 PRINT *, 'ERROR ON START'

COURSE='PSY100'
START(CFILE,KEY.GE.C0URSE,ERR=700)
READ(CFILE,ERR=600,END=900)

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-12. Posit ioning a Realm

The fi rs t START s ta tement omi ts the KEY op t ion ,
wh ich means CFILE wi l l be pos i t ioned by pr imary
key. The program sets the pr imary key (IDENT) to
the value 122-13-6704-01 before the START statement
i s e x e c u t e d ; t h e r e a l m w i l l b e p o s i t i o n e d t o t h e
reco rd occu r rence w i th the ma tch ing p r imary key
value.

T h e s e c o n d S TA RT s t a t e m e n t i n c l u d e s t h e K E Y
option. The program sets the alternate key COURSE
to the va lue PSY100. The fi rs t record occur rence
in CFILE with an alternate key COURSE greater than
or equal to PSY100 will be the one to which CFILE
is pos i t ioned.

REWRITING A RECORD

To rewri te a record, you must include a REWRITE
statement in your program. The format is:

REWRITE(realm-name C,ERR=s3)

where

s = label of an executable statement to which
cont ro l t ransfers on rewr i te er ror

When a record i s rewr i t ten , the cur ren t va lues o f
t h o s e v a r i a b l e s d e fi n e d i n t h e s u b - s c h e m a a r e
rewr i t t en to t he spec i fied da ta base reco rd . Da ta
items defined in the schema but not defined in the
sub-schema remain unchanged.

B e f o r e y o u r p r o g r a m c a n r e w r i t e a r e c o r d , y o u r
program must have locked the record ei ther with a
r e c o r d l o c k o r w i t h a r e a l m l o c k . Ty p i c a l l y, t h e
record lock is used.

F o r a r e w r i t e u s i n g a r e c o r d l o c k , t h e p r o g r a m
establishes the record locking mechanism by opening
the rea lm fo r i npu t /ou tpu t . To rewr i te the reco rd ,
the program must include the following steps:

1 . R e a d t h e r e c o r d t o t h e p r o g r a m ' s w o r k i n g
storage area by executing a DML READ statement.

2. Set the value of each data i tem being changed
to the appropriate new value.

3 . R e w r i t e t h e r e c o r d b y e x e c u t i n g a R E W R I T E
statement.

When the realm is opened for input/output and the
read is executed, CDCS expects an update operation
and consequen t l y l o cks t he r eco rd . CDCS a l l ows
rewri t ing of only the locked record.

T h e p r o g r a m m u s t n o t c h a n g e t h e v a l u e o f t h e
primary key between the read and the rewrite of the
r e c o r d . T h e f o l l o w i n g e x a m p l e i l l u s t r a t e s a
processing sequence to avoid:

IDENT='100-22-5860-04'
READ(CFILE,KEY=IDENT)
IDENT='200-44-7863-01'
REWRITE(CFILE)

Assuming a rewrite using a record lock, CDCS does
n o t a l l o w t h e r e w r i t e i n t h i s e x a m p l e t o b e
p e r f o r m e d b e c a u s e t h e r e c o r d i s n o t l o c k e d ;
record 100-22-5860-04 is locked, but the rewri te is
attempted on record 200-44-7863-01. CDCS issues an
error d iagnost ic on the rewr i te.

I f an update requ i res that the va lue o f a pr imary
key be changed, the program must first delete the
r e c o r d w i t h t h e o l d p r i m a r y k e y v a l u e a n d t h e n
write the record with the new primary key value.

F o r a r e w r i t e u s i n g a r e a l m l o c k , t h e p r o g r a m
establ ishes the rea lm lock by execut ing the LOCK
sta tement . Then to rewr i te a record , the p rogram
needs only to set the value of the pr imary key to
the value of the record being rewritten and execute
the REWRITE statement. The recommended rewrit ing
p r o c e d u r e , h o w e v e r , i n c l u d e s m o r e s t e p s t h a n
these. The recommended procedure is the same as
f o r a r e w r i t e u s i n g a r e c o r d l o c k : r e a d t h e
record, change the appropriate values, then rewri te
the record. By reading the record, the program can
test for an error on the read and, thereby, protect
t h e i n t e g r i t y o f t h e d a t a b a s e . W i t h t h e r e a l m
l o c k , i t i s y o u r r e s p o n s i b i l i t y t o e n s u r e t h a t t h e
program does not change the value of the pr imary
key between the read and the rewrite of the record.

/ 0^K

60483500 A 3-7

Yo u s h o u l d j u d i c i o u s l y u s e a r e a l m l o c k w h e n
rewri t ing records because the realm lock overr ides
t h e r e c o r d l o c k a n d t h e c h e c k i n g c a p a b i l i t y
avai lable through the record lock.

In a program using the sample sub-schema AVERAGE
(figure 3 -1) , t he REWRITE s ta temen t appears as
shown i n figu re 3 -13 . The p rog ram pe r f o rms t he
rewrite by using a record lock. The program reads
t h e r e c o r d o c c u r r e n c e w i t h a p r i m a r y k e y v a l u e
of 100-22-5860-04, changes the value of data i tem
G R A D E t o t h e v a l u e 3 . 8 , a n d t h e n r e w r i t e s t h e
r e c o r d . I n t h e r e w r i t t e n r e c o r d , a l l o t h e r v a l u e s
in the record occurrence remain unchanged. I f an
e r r o r o c c u r s o n r e w r i t e , p r o g r a m e x e c u t i o n
continues at statement 800.

PROGRAM MODEL
SUBSCHEMA(AVERAGE)
INVOKE
PRIVACY(CFILE,M0DE=IO,PRIVACY=
0PEN(CFILE,ERR=100)
IDENT='100-22-5860-04'
READ(CFILE,KEY=IDENT,ERR=600)
GRADE=3.8
REWRITE(CFILE,ERR=800)

600 PRINT *, 'ERROR ON READ'

800 PRINT *, 'ERROR ON REWRITE'

'XX99')

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-13. Rewrit ing a Record

DELETING A RECORD

To de le te a reco rd , you mus t i nc l ude a DELETE
statement in your program. The format is:

DELETE(realm-name C,ERR=s3)

where

s = label of an executable statement to which
contro l t ransfers on delete error

B e f o r e y o u r p r o g r a m c a n d e l e t e a r e c o r d , y o u r
program must have locked the record either with a
r e c o r d l o c k o r w i t h a r e a l m l o c k . Ty p i c a l l y, t h e
record lock is used.

F o r a d e l e t e u s i n g a r e c o r d l o c k , t h e p r o g r a m
establishes the record locking mechanism by opening
the rea lm fo r i npu t /ou tpu t . To de le te the reco rd ,
the program must include the following steps:

1 . R e a d t h e r e c o r d b y e x e c u t i n g a D M L R E A D
statement.

2 . D e l e t e t h e r e c o r d b y e x e c u t i n g a D E L E T E
statement.

When a rea lm is opened fo r inpu t /ou tpu t and the
read is executed, CDCS expects an update operation
and consequen t l y l ocks t he reco rd . CDCS a l l ows
deletion of only the locked record.

T h e p r o g r a m m u s t n o t c h a n g e t h e v a l u e o f t h e
primary key between the read and the delete of the
r e c o r d . T h e f o l l o w i n g e x a m p l e i l l u s t r a t e s a
processing sequence to avoid:

IDENT='100-22-5860-04'
READ(CFILE,KEY=IDENT)
IDENT='400-23-1248-07*
DELETE(CFILE)

Assuming a delete using a record lock, CDCS does
n o t a l l o w t h e d e l e t e i n t h i s e x a m p l e t o b e
p e r f o r m e d b e c a u s e t h e r e c o r d i s n o t l o c k e d ;
record 100-22-5860-04 is locked, but the delete is
attempted on record 400-23-1248-07. CDCS issues an
error diagnostic on the delete.

F o r a d e l e t e u s i n g a r e a l m l o c k , t h e p r o g r a m
e s t a b l i s h e s t h e r e a l m l o c k i n g m e c h a n i s m b y
execu t i ng t he LOCK s ta temen t . Then to de le te a
record, the program needs only to set the value of
the p r imary key to the va lue o f the record be ing
de le ted and execu te t he DELETE s ta temen t . The
r e c o m m e n d e d p r o c e d u r e f o r d e l e t i n g a r e c o r d ,
h o w e v e r , i n c l u d e s m o r e s t e p s t h a n t h e s e . T h e
recommended procedure is the same as for a delete
u s i n g a r e c o r d l o c k : r e a d t h e r e c o r d a n d t h e n
d e l e t e t h e r e c o r d . B y r e a d i n g t h e r e c o r d , t h e
p r o g r a m c a n t e s t f o r a n e r r o r o n t h e r e a d a n d ,
t h e r e b y, p r o t e c t t h e i n t e g r i t y o f t h e d a t a b a s e .
W i t h t h e r e a l m l o c k , i t i s y o u r r e s p o n s i b i l i t y t o
ensure that the program does not change the value
of the primary key between the read and the delete
of the record.

Yo u s h o u l d j u d i c i o u s l y u s e a r e a l m l o c k w h e n
dele t ing records because the rea lm lock over r ides
t h e r e c o r d l o c k a n d t h e c h e c k i n g c a p a b i l i t y
available through the record lock.

In a program using the sample sub-schema AVERAGE
(figure 3-1), the DELETE statement appears as shown
in figure 3-14. The program performs the delete by
using a record lock. The program reads from CFILE
the record occurrence wi th a pr imary key (IDENT)
e q u a l t o 1 0 0 - 2 2 - 5 8 6 0 - 0 4 a n d t h e n d e l e t e s t h a t
r e c o r d . I f a n e r r o r o c c u r s o n d e l e t e , p r o g r a m
execution continues at statement 850.

USING DML TO PROCESS
RELATIONS
Relat ion process ing great ly s impl ifies programming
when seve ra l r e l a ted rea lms a re requ i red by t he
application program. Realms that have common data
items can be joined in a relat ion. When a relat ion
is inc luded in a sub-schema, the re la t ion can be
accessed and read through DML. This means that a
s i n g l e r e l a t i o n r e a d r e q u e s t b y a n a p p l i c a t i o n
p r o g r a m r e t u r n s a r e l a t i o n o c c u r r e n c e , w h i c h
consists of one qual i fy ing record from each of the
realms comprising the relation.

3-8 60483500 A

PROGRAM MODEL
SUBSCHEMA(AVERAGE)
INVOKE
PRIVACY(CFILE,M0DE=I0,PRIVACY='XX99')
OPEN(CFILE,ERR=100)
IDENT='100-22-5860-04'
READ(CFILE,KEY=IDENT,ERR=600)
DELETE(CFILE,ERR=850)

600 PRINT *, 'ERROR ON READ'

850 PRINT *, 'ERROR ON DELETE'

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-14. Deleting a Record

D M L s t a t e m e n t s a r e a v a i l a b l e t o p r o v i d e f o r
p r o c e s s i n g r e l a t i o n s . T h e f u n c t i o n s i n v o l v e d i n
r e l a t i o n p r o c e s s i n g a r e o p e n i n g a n d c l o s i n g t h e
r e a l m s o f t h e r e l a t i o n , p o s i t i o n i n g a r e l a t i o n
t h r o u g h a s t a r t o p e r a t i o n , a n d r e a d i n g t h e
r e l a t i o n . P a r a g r a p h s t h a t f o l l o w d e s c r i b e t h e s e
func t ions and the DML s ta temen ts tha t you mus t
inc lude in your p rogram to p rov ide the func t ions .
F i r s t , h o w e v e r , i t i s n e c e s s a r y t o e x a m i n e t h e
s t r u c t u r e o f a r e l a t i o n a n d t h e m a n n e r i n w h i c h
C D C S r e t u r n s r e c o r d s t o t h e p r o g r a m ' s w o r k i n g
storage area.

STRUCTURE OF A RELATION

A relation can be described as a hierarchical tree
s t ruc tu re . The roo t o f the t ree i s the rea lm
through which the relation is entered; this is the
fi r s t r e a l m l i s t e d f o r a r e l a t i o n i n t h e
sub-schema. A data item in the realm at the root
of the structure joins the realm to a common data

/ | ^ S

i t e m i n t h e n e x t r e a l m l i s t e d f o r t h e r e l a t i o n .
When the relation is entered, the value of the data
i tem in the root realm record leads to a record in
t h e s e c o n d r e a l m . M o r e t h a n o n e r e c o r d i n t h e
second realm can contain the same value; thus one
r e c o r d i n t h e r o o t r e a l m c a n l e a d t o s e v e r a l
records in the second realm.

The second realm in the relation can be joined to a
t h i r d r e a l m t h r o u g h a c o m m o n d a t a i t e m . O n c e
aga in , a r eco rd i n t he second rea lm can l ead t o
severa l records in the th i rd rea lm. Th is branch ing
o u t f r o m t h e r o o t o f t h e t r e e c o n t i n u e s t h r o u g h
each realm in the relation.

The tree structure of the three-realm relat ion REL3
o f t h e u n i v e r s i t y d a t a b a s e i s i l l u s t r a t e d i n
fi g u r e 3 - 1 5 . T h e t r e e s t r u c t u r e i s n o r m a l l y
pictured upside down, with the root at the top and
branches going down. The first realm, PFILE, which
is the roo t o f the s t ruc tu re , cons is ts o f a master
r e c o r d f o r e a c h p r o f e s s o r . T h e s e c o n d r e a l m ,
C R S F I L E , c o n s i s t s o f a m a s t e r r e c o r d f o r e a c h
c o u r s e . T h e t h i r d r e a l m , C F I L E , c o n s i s t s o f
cur r i cu lum records . The common da ta i tem jo in ing
t h e fi r s t a n d s e c o n d r e a l m s i s t h e p r o f e s s o r
i d e n t i fi c a t i o n ; t h e c o m m o n d a t a i t e m j o i n i n g t h e
s e c o n d a n d t h i r d r e a l m s i s t h e c o u r s e
i d e n t i fi c a t i o n .

Realms in a relation are numbered consecutively as
r a n k s . T h e fi r s t r e a l m e n t e r e d (c a l l e d t h e r o o t
r e a l m) i s a l w a y s a s s i g n e d r a n k 1 . T h e r a n k i s
incremented by 1 for each successive realm in the
r e l a t i o n . T h e v a l u e o f t h e r a n k o f a r e a l m
con t ras t s w i t h t he p lacemen t o f t he rea lm i n t he
t ree s t ruc ture . The lower the rank , the h igher the
rea lm is shown in the t ree s t ruc ture ; i .e . , rank 1
(the lowest rank) is shown a t the top o f the t ree
s t r u c t u r e . F i g u r e 3 - 1 5 a l s o s h o w s r a n k s i n t h e
relat ion REL3.

When a re lat ion is read, a record occurrence f rom
e a c h r e a l m i n t h e r e l a t i o n i s r e t u r n e d t o t h e
program. A relat ionship exits between record occur
r e n c e s i n a r e l a t i o n : a p a r e n t / c h i l d r e l a t i o n s h i p .
A record occurrence that has another record occur
rence a t t he nex t numer i ca l l y h i ghe r r ank i n t he
r e l a t i o n i s r e f e r r e d t o a s t h e p a r e n t r e c o r d

Tree Structure

Root Realm

Realm Name

PFILE

Rank

Rank 1

CRSFILE Rank 2

CFILE Rank 3

Figure 3-15. Tree Structure and Ranks of a Three-Realm Relati on

60483500 A 3-9

occur rence. A record occur rence tha t has another
r e c o r d o c c u r r e n c e a t t h e n e x t n u m e r i c a l l y l o w e r
r a n k i n t h e r e l a t i o n i s r e f e r r e d t o a s t h e c h i l d
reco rd occu r rence . I n a pa ren t / ch i l d r e l a t i onsh ip
i n r e l a t i o n R E L 3 , a r e c o r d o c c u r r e n c e i n P F I L E
would represent the parent with corresponding record
occurrences of CRSFILE represent ing the chi ldren.
Addit ionally, a record occurrence in CRSFILE would
r e p r e s e n t t h e p a r e n t w i t h c o r r e s p o n d i n g r e c o r d
occurrences in CFILE representing the children.

USING THE SUB-SCHEMA
T h e s t r u c t u r e o f a r e l a t i o n i s d e fi n e d w h e n t h e
schema is c reated. A re la t ion tha t i s ava i lab le to
a n a p p l i c a t i o n p r o g r a m i s i n c l u d e d i n t h e
sub-schema. The sub-schema l i s t i ng p rov ides the
names of the realms in the relation. A new sample
sub-schema named COMPARE, which makes available a
three-realm relat ion, is shown in figure 3-16.

T h e s u b - s c h e m a l i s t i n g p r o v i d e s t h e f o l l o w i n g
in format ion:

• A r e l a t i o n i s a v a i l a b l e t o D M L b e c a u s e t h e
R E L A T I O N s t a t e m e n t i s i n c l u d e d i n t h e
sub-schema.

Three schema areas are joined by relation named
REL3. The areas are named PROFESSOR, COURSE,
and CURRICULUM in the schema; they are renamed
as rea lms PFILE, CRSFILE, and CFILE in the
s u b - s c h e m a . T h e o r d e r i n w h i c h t h e a r e a s
(r e a l m s) a p p e a r i n t h e R e l a t i o n S t a t i s t i c s
p o r t i o n o f t h e l i s t i n g i n d i c a t e s t h e r a n k s o f
t h e r e a l m s : t h e fi r s t r e a l m l i s t e d h a s t h e
rank 1; the second, rank 2; and so forth.

PFILE has a primary key named PROFID; CRSFILE
has an al ternate key named PROF. Looking at
t h e l i s t i n g o f a l i a s e s , y o u c a n s e e t h e s e
fields both appear as PROF-ID in the schema.
O b v i o u s l y t h e s e fi e l d s r e p r e s e n t u n i q u e
professor identification and are common to both
realms. You can assume that these i tems jo in
the rea lms . The data admin is t ra tor, however,
should provide the common data i tems i f they
a r e n o t o b v i o u s a n d i f p r o g r a m m i n g c o n
siderations require that you know them.

CRSFILE has a primary key named CRSID; CFILE
has an alternate key named COURSE. Looking at
t h e l i s t i n g o f a l i a s e s , y o u c a n s e e t h e s e
fields both appear as COURSE-ID in the schema.
Obviously these fields represent unique course
information and are common to both realms. You
can assume that these i tems jo in the rea lms.
The data administrator, however, should provide
t h e j o i n i n g d a t a i t e m s u n d e r t h e c o n d i t i o n s
indicated prev ious ly.

A restriction is placed on CRECORD. A relation
o c c u r r e n c e w i l l n o t b e r e t u r n e d u n l e s s d a t a
item CODE contains the character C. Before a
r e l a t i o n o c c u r r e n c e i s r e t u r n e d t o t h e p r o
gram's working storage area, CDCS checks for
r e s t r i c t i o n s a n d e n f o r c e s a n y r e s t r i c t i o n s .
C D C S a l l o w s o n l y q u a l i f y i n g r e c o r d s t o b e
returned.

OPENING A RELATION
Before your program can access any data records in
a n e x i s t i n g r e l a t i o n , t h e p r o g r a m m u s t o p e n t h e
a p p r o p r i a t e r e a l m s . To o p e n a l l t h e r e a l m s i n a
relation, you can include a relation OPEN statement
in your program. The format is:

OPEN(relation-name C,MODE=mode] C,ERR=s!l)

where

mode = I (open for input only)

1 0 (o p e n f o r b o t h i n p u t a n d o u t p u t ,
ca l l ed i npu t /ou tpu t ; de fau l t)

s = l a b e l o f a n e x e c u t a b l e s t a t e m e n t t o
which control transfers on open error

Your p rogram shou ld normal ly open a re la t ion fo r
i n p u t (M 0 D E = I) . T h e p r o g r a m s h o u l d o p e n t h e
r e l a t i o n f o r i n p u t / o u t p u t (M 0 D E = I 0) u n d e r t w o
circumstances:

• P r o c e s s i n g r e q u i r e m e n t s i n d i c a t e t h a t t h e
p r o g r a m s h o u l d l o c k t h e r e c o r d s t o p r e v e n t
update during the relation read.

The program updates ind iv idua l rea lms in
re la t ion fo l low ing the re la t ion read .

the

If your program is opening a relat ion in which one
or more rea lms have cont ro l led access , you must
include in the program a PRIVACY statement for each
realm that has controlled access.

The fol lowing statement opens for input the realms
joined in relat ion REL3, which is shown in sample
s u b - s c h e m a C O M PA R E (fi g u r e 3 - 1 6) . I f a n e r r o r
o c c u r s o n o p e n , p r o g r a m e x e c u t i o n c o n t i n u e s a t
statement 50:

0PEN(REL3,M0DE=I,ERR=50)

I f you have inc luded an OPEN s ta tement in your
program for each realm in the relation, you do not
need to include a relation OPEN statement.

CLOSING A RELATION
W h e n y o u r p r o g r a m h a s c o m p l e t e d r e l a t i o n
processing, the program must close the appropriate
realms. To c lose a l l the rea lms of a re la t ion, you
ca n i n c l u d e a r e l a t i o n C L OSE s ta te me n t i n yo u r
program. The format is:

CLOSE(relation-name C,ERR=sD)

where

s = label of an executable statement to which
contro l t ransfers on c lose error

The fol lowing statement closes the realms joined in
relation REL3, which is shown in sample sub-schema
C O M PA R E (fi g u r e 3 - 1 6) . I f a n e r r o r o c c u r s o n
close, program execution continues at statement 60:

CL0SE(REL3,ERR=60)

If you include a CLOSE statement in your program
for each realm in the relation, you do not need to
include a relation CLOSE statement.

3-10 60483500 A

COMPARE

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025

00026
1
00027

2
00028
00029

* * O R D I N A L 3
00030

** WITHIN CRSFILE
00031

* * ORDINAL 1
00032

** WITHIN PFILE

* * ORDINAL 1

** ORDINAL

ORDINAL

** ORDINAL

** WITHIN CFILE

** ORDINAL

** ORDINAL

** ORDINAL

ORDINAL

** ORDINAL

PRIMARY KEY

00033
00034

5
00035

E
00036

I
00037

2
00038

5
00039

i
00040
00041

5
00042
00026

ALTERNATE KEY 00028
PRIMARY KEY 00031
ALTERNATE KEY 00033
PRIMARY KEY 00036
ALTERNATE KEY 00037
ALTERNATE KEY 00040

* * * * *
* * * * *
* * * * *
00043
00044

* SOURCE LISTING * (80351) DDLF 1.2+538,

SUBSCHEMA COMPARE,SCHEMA=UNIVERSITY

ALIAS(REALM) PFILE=PROFESSOR
ALIAS(RECORD) PRECORD=PROF-REC
ALIAS(ITEM) PROFID=PROF-ID.PROF-REC
ALIAS(ITEM) PNAME=PROF-NAME

ALIAS(REALM) CRSFILE=COURSE
ALIAS(RECORD) CRSREC=COURSE-REC
ALIAS(ITEM) CRSID=COURSE-ID.COURSE-REC
ALIAS(ITEM) CRSNAME=COURSE-NAME
ALIAS(ITEM) PROF=PROF-ID.COURSE-REC
ALIAS(ITEM) FIELD=ACADEMIC-FIELD

CFILE=CURRICULUM
CRECORD=CURR-REC
COURSE=COURSE-ID.CURR-REC
CODE=COMPLETE-CODE
DATE=COMPLETE-DATE

ALIAS(REALM)
ALIAS(RECORD)
ALIAS(ITEM)
ALIAS(ITEM)
ALIAS(ITEM)

REALM PFILE
REALM CRSFILE
REALM CFILE

RECORD PRECORD

CHARACTER*8 PROFID

CHARACTER*30 PNAME

CHARACTER*20 FIELD

RECORD CRSREC

CHARACTERS CRSID

CHARACTER*20 CRSNAME

CHARACTER*8 PROF

RECORD CRECORD

CHARACTERS 4 IDENT

CHARACTERS COURSE

CHARACTERS CODE

CHARACTER*8 DATE

REAL GRADE

RELATION REL3
PROFID FOR AREA PFILE
FIELD FOR AREA PFILE
CRSID FOR AREA CRSFILE
PROF FOR AREA CRSFILE
IDENT FOR AREA CFILE
COURSE FOR AREA CFILE
GRADE FOR AREA CFILE
RECORD MAPPING IS NOT NEEDED FOR REALM - PFILE
RECORD MAPPING IS NEEDED FOR REALM - CRSFILE
RECORD MAPPING IS NEEDED FOR REALM - CFILE

RESTRICT CRECORD (CODE .EQ. 'O
END

Figure 3-16. Sub-Schema COMPARE (Sheet 1 of 2)

60483500 A 3-11

00045
* * * * * END OF SUB-SCHEMA SOURCE INPUT

RELATION 001
RELATION

REL3 JOINS
STATISTICS
AREA - PFILE
AREA - CRSFILE
AREA - CFILE

-CtvOfcwy Tuxmtv SSLIB
nJxm&Jtof tXX99'nntdU^ CFJLE.

Figure 3-16. Sub-Schema COMPARE (Sheet 2 of 2)

READING A RELATION
To read a relation, you must include a relation
READ statement in your program. The format is:

READ (re I at ion-name C,KEY symbol item-name!]
r.,ERR=s] r,END=s3)

where

symbol = = .EQ. .GT. .GE.

item-name = primary or alternate key

s = l abe l o f an execu tab le s ta temen t to
which contro l t ransfers on read
error (ERR)

Label of an executable statement to
w h i c h c o n t r o l t r a n s f e r s o n
end-of-file (END)

When you omit the KEY option, the read operation is
sequential. When you include the KEY option, the
read operation is random.

The END option is valid only for a sequential read
operation.

occurrences to the working storage area in the
following order: A1B1C1, A1B1C2, A1B1C3, A1B2C4,
and so forth. When record occurrences in CRSFILE
and CFILE are exhausted, a subsequent sequential
read returns the next record (A2, not shown) in
PFILE and associated records in CRSFILE and CFILE
as the operation repeats.

Typical FORTRAN 5 statements issued outside of a
data base environment terminate with a fatal error
if EOF is sensed and a test for EOF status is not
included in the FORTRAN READ statement. If EOF
status is not tested in a DML READ statement and
EOF is sensed, program execution continues with the
next statement. Consequently, it is necessary to
test for EOF on a DML sequential read operation.
This can be handled in one of two ways:

• Include the END option on the READ statement.
When an EOF is sensed, program execution
continues at the statement specified in the
option.

• Include a test for an EOF value of 100g in
the data base status block. This option is
described in section 4.

Sequential Relation Read
A sequential relation read accesses the relation
o c c u r r e n c e l o c a t e d a t t h e c u r r e n t r e l a t i o n
p o s i t i o n . S u c c e s s i v e r e a d o p e r a t i o n s r e t u r n
relation occurrences by position of the root realm,
which is the first realm listed for the relation in
the Relation Statistics portion of the sub-schema
listing. Indexed sequential files are sequenced in
ascending primary key order, actual key files are
sequenced by block and record slot within the
block, and direct access files are sequenced by
position in home blocks.

A re lat ion occurrence is composed of record
occurrences. A tree structure of record occur
rences for relation REL3 is shown in figure 3-17.
Assuming that A1 is the first record in PFILE, the
first and subsequent sequential reads return record

In a program using sample sub-schema COMPARE
(figure 3-16), a sequential read appears as shown
i n fi g u r e 3 - 1 8 . I f a n e r r o r o c c u r s o n r e a d ,
program execution continues at statement 600. The
END option is included on the READ statement to
test for EOF. When EOF is reached, program
execution continues at statement 900.

The sequential read returns the first record in
PFILE and the first corresponding record occur
rences in CRSFILE and in CFILE. Successive reads
return qualifying record occurrences as indicated
in the preceding discussion of the tree structure
of record occurrences. If EOF is sensed on PFILE,
the relation read transfers control to the state
ment specified by the END option.

Notice the PRIVACY statement. Since CFILE is
joined in the relation and has controlled access,
the privacy key for that realm is required.

3-12 60483500 A

PRECORD Record Occurrence
PFILE Realm

CRSREC Record Occurrence
CRSFILE Realm

CRECORD Record Occurrence
CFILE Realm

Rank 1

Rank 2

Rank 3
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Figure 3-17. Tree Structure of Record Occurrences

0 ^

PROGRAM RELMOD
SUBSCHEMA(COMPARE)
INVOKE
PRIVACY(CFILE,M0DE=I,PRIVACY='XX99')
0PEN(REL3,M0DE=I,ERR=100)
READ(REL3,ERR=600,END=900)

900 CLOSE(REL3)
TERMINATE
END

Figure 3-18. Reading a Relation Sequentially

Random Relation Read

A random re la t i on read accesses a re la t i on
occurrence by the value of a referenced primary or
alternate key. The referenced key must be in the
root rea lm. For a program us ing the sample
sub-schema COMPARE, the key named in the READ
statement must be associated with PFILE (the root
realm) rather than CRSFILE or CFILE. The program
must set the value of the referenced key before the
READ statement is executed.

I n a p r o g r a m u s i n g s u b - s c h e m a C O M PA R E
(figure 3-16), a random read appears as shown in
figure 3-19. The program sets the primary key
PROFID of PFILE to RSS00860. The random read
returns the record occurrence in PFILE that has
P R O F I D e q u a l t o R S S 0 0 8 6 0 a n d t h e fi r s t
corresponding record occurrences in CRSFILE and
CFILE.

Control Break
A control break occurs when a new record occurrence
is read for a parent realm in a relation. Control
break status, however, is returned for the realm of
the child. Therefore, if a realm in a relation has
c o n t r o l b r e a k s t a t u s a f t e r e x e c u t i o n o f a
sequential read, the record occurrence read for
this realm is a child record occurrence for a new
parent record occurrence.

PROGRAM RELMOD
SUBSCHEMA(COMPARE)
INVOKE
PRIVACY(CFILE,M0DE=I,PRIVACY='XX99')
0PEN(REL3,MODE=I,ERR=100)
PR0FID='RSS00860'
READ(REL3,KEY=PR0FID,ERR=600)

900 CLOSE(REL3)
TERMINATE
END

Figure 3-19. Reading a Relation Randomly
In the example shown in the tree structure of
record occurrences (figure 3-17), control break
occurs when A1 is first read (when A1B1C1 is
returned). In this situation, control break status
is returned for CRSFILE (rank 2) and for CFILE
(rank 3). A control break occurs when B2 is first
read (when A1B2C4 is returned), when B3 is first
read (when A1B3C6 is returned), and so forth. In
these situations, control break status is returned
for CFILE, which is rank 3 of the relation.

The presence of a control break and the rank of the
realm that is the lowest ranked realm with control
break status can be determined by checking the data
base status block. Status checking is described in
section 4.

Null Occurrence

A null occurrence denotes that either no record
occurrence qualifies for a read or that a record
occurrence does not exist at a given level in a
relat ion.

A r e a d r e l a t i o n o p e r a t i o n p r o d u c e s a
occurrence when one of the following is true: nu l l

60483500 A

• A parent record occurrence qual i f ies for the
read, but no child record occurrence qualifies.

• A parent record occurrence qual i f ies for the
read, but no child record occurrence exists.

3-13

If a null record occurrence is returned for each
realm in a relation except the root realm, another
READ statement must be executed to obtain the next
set of record occurrences.

A null occurrence consists of a display code right
bracket (3) in each character position of the
record in the working storage area. The presence
of a null occurrence and the lowest rank on which
it occurred can be detected by checking the data
base status block. Status checking is described in
section 4.

Some examples of null record occurrences returned
are shown in figure 3-20. In the first example,
the lowest rank with a null record occurrence is
rank 2. In the second and third examples, the
lowest rank with a null record occurrence is rank 3.

Before the START statement is executed, the realm
must have been opened for input or input/output.

When you omit the KEY option, the relation is
positioned by primary key value of the root realm;
t h e r o o t r e a l m i s p o s i t i o n e d t o t h e r e c o r d
occurrence with a primary key value equal to the
current value of the primary key item. When you
i n c l u d e t h e K E Y o p t i o n , t h e r o o t r e a l m i s
positioned to the first record occurrence with a
matching key value.
In a program using the sample sub-schema COMPARE
(figure 3-16), both forms of the START statement
appear as shown in figure 3-21. If an error occurs
o n s t a r t , p r o g r a m e x e c u t i o n c o n t i n u e s a t
statement 700.

POSITIONING A RELATION
To position a relation for subsequent sequential
read operations, you must include a START statement
in your program. The format is:

START(reIation-name C,KEY symbol item-name3
C,ERR=s3)

where

symbol = .EQ. .GT. .GE.

item-name = primary or alternate key defined in
the root realm

s = labe l o f an execu tab le s ta tement to
which control t ransfers on start
error

The first START statement omits the KEY option,
w h i c h m e a n s t h e r e l a t i o n o c u r r e n c e w i l l b e
posit ioned by the root realm primary key. The
primary key (PROFID) of the root realm is set to
the value MLN00840 before the START statement is
executed; the relation is positioned to the root
realm record occurrence with the matching primary
key.

The second START statement includes the KEY
option. Alternate key FIELD is set to the value
PSYCHOLOGY. The first record occurrence in PFILE
with an alternate key equal to PSYCHOLOGY is the
one to which root realm PFILE is positioned. The
subsequent sequential reads reference the alternate
key FIELD. These reads return record occurrences
in the root realm in alphabetical order (collating
sequence order) according to the value of the
alternate key FIELD.

Record Occurrences in a Relation

Rank 1

Rank 2

Rank 3
C 1 C 2 C 3

A1 qualifies, B1 and B2 do not qualify.

Program's Working Storage Area

A1 and B2 qualify.

Program's Working Storage Area

A1 33. . .3 3 3 . . . 3

A1 B2 3 3 . . . 3

A1 and B1 qualify, C1, C2, and C3 do not qualify.

Program's Working Storage Area A1 B1 33. . .3

Figure 3-20. Null Record Occurrence Examples

3-14 60483500 A

j r f Z $ ^ \

y < ^ * \

PROGRAM RELMOD
SUBSCHEMA(COMPARE)
INVOKE
PRIVACY(CFILE,M0DE=I,PRIVACY='XX99')
OPEN(REL3,M0DE=I,ERR=1OO)
PR0FID='MLN00840'
START(REL3,ERR=700)
READ(REL3,ERR=600,END=900)

FIELD='PSYCHOLOGY'
START(REL3,KEY.EQ.FIELD,ERR=700)
READ(REL3,ERR=650,END=750)

900 CLOSE(REL3)
TERMINATE
END

Figure 3-21. Positioning a Relation

UPDATING REALMS JOINED IN A
RELATION
Realms joined in a relation can be updated, but
care should be exercised. Related files are joined
in the schema by a common data item to form a
parent/child relationship. The schema contains a
JOIN clause in which a data item in one realm is
equated with an identical data item in another
realm. This common data item is called a join item.

CDCS normally does not monitor update operations
tha t wou ld a l t e r t he unde r l y i ng re l a t i onsh ip
between related files. The exception is when con
straints have been incorporated in the schema by
the data administrator, as described in section 4.

Assuming constraints are not present, the following
precautions should be noted:

• Modif ication of join i tem values can change
parent/child relationships.

• Deletion of parent record occurrences can make
all child record occurrences of the deleted
parent record occurrence inaccessible when a
relation is read.

Important rules to remember for relation update are:

• Always delete a child occurrence before delet
ing the parent record occurrence.

« Always wr i te the parent record occurrence
before writing a child record occurrence.

• Be awa re o f f i l e pos i t i on i ng ; i npu t / ou tpu t
operations could alter positions on the files
joined in the relation while within a sequen
tial read relation loop.

USING DML TO PROCESS
DATA BASE TRANSACTIONS
Data base transactions can be used when you have
many interrelated updates to perform on one or more
data base files. These updates all need to be
processed and made permanent to ensure the data is
correct before other users access the updated
records. A data base transaction is a convenient
way for processing coordinated updates.

A group of updates for which the application pro
gram specifies the beginning and the completion is
referred to as a data base transaction. At first,
all updates within a data base transaction are
considered temporary. These updates are considered
permanent when the application program specifies
the completion of the data base transaction (called
committing a data base transaction). Figure 3-22
shows the sequence of operations in a data base
transaction.

If an application program does not commit a data
base transaction, but instead drops the data base
transaction or terminates execution, each record
that was updated within the data base transaction
is restored to the state it was in just before the
beginning of the data base transaction, and CDCS
issues an informative diagnostic. There are several
situations in which data base transactions are not
committed. For example, program logic can deter
mine that the data base transaction should not be
committed and can cancel (drop) the data base
transaction. System failure or program failure can
occur during the application program's processing
of the data base transaction. In each of these
situations, updates made within the uncommitted
data base transactions are reversed.

The application program can perform data base
transact ions only i f t ransact ion recovery fi les
have been defined for the schema in the master
directory. When a FORTRAN application program
begins a data base transaction, CDCS processes
subsequent update operations by that program in
transaction mode. When processing in transaction
mode, CDCS uses the exclusive record locking mech
anism that prevents other users from accessing
records updated within an uncommitted data base
transaction.

PROCESSING OPERATIONS
FORTRAN DML statements provide for the operations
involved in data base transactions. Three of these
operat ions, which are di rect ly involved in the
program code dealing with updates, are described in
the following paragraphs.

• Begin a data base transaction

Designates the beginning of a data base
transaction and communicates a transaction
identifier to CDCS. This causes CDCS to
begin processing in transaction mode for
the application program.

60483500 B 3-15 •

PROG A

BEGINTRAN

READ CFILE
REWRITE CFILE

READ SFILE
REWRITE SFILE

READ PFILE
REWRITE PFILE

CDCS

CFILE

SFILE

PFILE

COMMITTRAN

Figure 3-22. Data Base Transaction Flow

Commit a data base transaction

Designates the end of a data base trans
act ion and ind icates that the updates
within the data base transaction are to be
committed. This causes all the updates
made within the data base transaction to be
considered permanent.

Drop a data base transaction

Designates the end of a data base trans
act ion and ind icates that the updates
already made within the data base trans
action are to be cancelled. This causes
each record updated within the data base
transaction to be restored to the state it
was in just before the beginning of the
data base transaction.

Beginning a Data Base Transaction
To begin a data base transaction, you must use a
BEGINTRAN statement. The format is:

BEGINTRAN (tran-id C,ERR=s3)

where

tran-id = character constant or variable

s = labe l o f an executab le s ta tement to
which control transfers on begin error

A tran-id can be from 1 through 10 characters in
length. If you use a character constant to specify
a tran-id, enclose the character string in apostro
phes. If you use a variable name to specify a
tran-id, define the variable as type CHARACTER*10.
Ensure that the tran-id is left-justified and blank
filled in the field of the variable.

Records that are subsequently updated remain
exclusively locked until the data base transaction
is either completed or dropped. Updates are con
sidered temporary until the data base transaction
is successfully completed. If your program attempts
to begin a data base transaction when the data ad
ministrator has not defined a transaction recovery
file for the schema, a fatal error occurs.

Committing a Data Base Transaction
To commit a data base transaction, you must use a
COMMITTRAN statement. The format is:

COMMITTRAN C(,ERR=s)3

where

s = label of an executable statement to which
control transfers on commit error

Execution of this statement causes all updates of
the present data base transaction to become perma
nent; all record locks are released so that the
records become available for access by other appli
cation programs (unless a realm lock applies).

3-16 60483500 B
v * ^ ^

/̂ <-̂ \

In a program using sample sub-schema COMPARE (figure
3-16), the BEGINTRAN and COMMITTRAN statements
appear as shown in figure 3-23. The program uses
the BEGINTRAN statement to begin the data base
transaction. The program sets the primary key
PROFID of PFILE to WLSN0855. PFILE is read randomly
and the occurrence of this record is deleted. A
new record is then written to PFILE. The CRSFILE
is read randomly for any occurrence of the deleted
PROF value. Each record with PR0F=WLSN0855 is
updated and rewritten with the PROF value of the
new record. After all updates have been performed,
the COMMITTRAN statement is executed and all up
dates become permanent.

PROGRAM RELMOD
CHARACTER TRANID *10
SUBSCHEMA(COMPARE)
DATA TRANID/'1234567890'/
INVOKE
PRIVACY (PFILE,M0DE=I0,PRIVACY='XX99')
OPEN(PFILE,M0DE=I0,ERR=600)
0PEN(CRSFILE,M0DE=I0,ERR=600)
BEGINTRAN (TRANID,ERR=900)
PROFID='WLSN0855'
READ(PFILE,KEY=PR0FID,ERR=600)
DELETE(PFILE)
PROFID='MRHT1234'
PNAME='HAUS, M.T.'
FIELD='CHEMISTRY'
WRITE(PFILE,ERR=600)
DO 400, 11=1,10
PR0F='WLSN0855'
READ(CRSFILE,KEY=PROF,END=500,ERR=600)
PR0F='MRHT1234'

400 REWRITE(CRSFILE,ERR=600)
500 COMMITTRAN(ERR=600)

900 CLOSE(PFILE)
CLOSE(CRSFILE)
TERMINATE
END

Figure 3-23. Committing a Data Base Transaction

Dropping a Data Base Transaction
To cancel the current data base transaction, you
must use a DROPTRAN statement. The format is:

transaction to their original states that existed
just before the data base transaction was initiated
and also causes CDCS to release all record locks.

In a program using sample sub-schema COMPARE (figure
3-16), the BEGINTRAN and DROPTRAN statements appear
as shown in figure 3-24. The program uses the
BEGINTRAN statement to begin the data base transac
tion. If an error occurs in the program, execution
continues at line 600 and the DROPTRAN statement is
executed, causing the current data base transaction
to be cancelled.

PROGRAM RELMOD
CHARACTER TRANID *10
SUBSCHEMA(COMPARE)
DATA TRANID/'1234567890'/
INVOKE
PRIVACY (PFILE,M0DE=I0,PRIVACY='XX99')
0PEN(PFILE,M0DE=I0,ERR=600)
OPEN(CRSFILE,M0DE=I0,ERR=600)
BEGINTRAN (TRANID,ERR=900)

READ(PFILE,KEY=PR0FID,ERR=600)

WRITE(PFILE,ERR=600)

600 PRINT*, 'TRANSACTION ERROR'
DROPTRAN

900 CLOSE(PFILE)
CLOSE(CRSFILE)
TERMINATE
END

Figure 3-24. Dropping a Data Base Transaction

PROCESSING CONSIDERATIONS
The following rules and considerations apply to
data base transactions:

o Only one data base transaction can be in prog
ress at a time within a particular application
program. That is, there can be no nesting of
data base transactions.

DROPTRAN C(,ERR=s)3

where

s = label of an executable statement to which
control transfers on cancel error

The data administrator defines the maximum
number of concurrent data base transactions
allowed for all users of the schema. If this
number is exceeded, CDCS issues a nonfatal
diagnostic. The application program can try
the data base transaction request later.

Execution of the DROPTRAN statement causes CDCS to
restore the records updated within the data base

• File locks are not recommended for use with
data base transactions.

60483500 B 3-17 •

USING DML FOR PROGRAM
RESTART

FORTRAN DML statements provide for the operations
invo lved in res tar t ing programs. The res tar t
component of data base transactions allows an
application program to determine the point at which
to begin a data base transaction following a system
fai lure. An application program can determine
whether or not a data base transaction was committed
before the system failed. With this information
available, the program can determine the point at
which to resume a data base transaction.

The application program "can perform a restart oper
ation only if the data administrator has defined
both a transaction recovery file and a restart
identifier file in the schema.

PROCESSING OPERATIONS
The following paragraghs describe the operations
used for program restart if a system failure occurs:

• Obtain a restart identif ier

Communicates with CDCS to obtain a restart
ident ifier fo r the app l ica t ion program.
The application program must save the
restart identifier for subsequent use in a
r e s t a r t o p e r a t i o n . I f p r o g r a m r e s t a r t
capability is desired, this operation must
be performed before the first data base
transaction is begun.

Inquire about the status of the last data base
transaction

Communicates to CDCS a restart identifier
and obtains from CDCS the transaction
identifier for the last completed data base
transaction associated with that restart
identifier. CDCS then assigns the restart
identifier obtained to the program. This
operation provides for restarting an appli
cation program. Application program logic
then uses the t ransact ion ident ifier to
determine with which data base transaction
to resume processing. The appl icat ion
program should contain the logic necessary
to be restartable.

Assigning a Restart Identifier
To o b t a i n t h e r e s t a r t i d e n t i fi e r a s s i g n e d t o t h i s
program by CDCS, you must use the ASSIGNID state
ment. The format is:

ASSIGNID (restart-id C,ERR=s3)

where

restart-id = variable

s = l a b e l o f a n e x e c u t a b l e s t a t e m e n t
to wh i ch con t ro l t r ans fe rs on
assign error

A restart-id can be from 1 through 10 characters in
length. A variable name must be used to specify a
restart-id and must be defined as type CHARACTERS0.

The restart identifier obtained by the ASSIGNID
statement can then be used by the FINDTRAN state
ment; the program can then determine the status of
a data base transaction when a system failure
occurs. The restart identifier should not be saved
on a data base file because it could be lost if
failure occurs. The application program should
contain the logic necessary to save the identifier
outside of the program.

ASSIGNID should be specified before any updates are
attempted within a data base transaction. ASSIGNID
must not be specified within a data base trans
action.

Performing a Restart Operation
To obtain information for a program restart opera
tion after system failure, you must use the FINDTRAN
statement. This statement is normally issued in
the restart unit of the program. The format is:

FINDTRAN (restart-id, tran-id C,ERR=s3)

where

restart-id = character constant or variable

t r a n - i d = v a r i a b l e

s = l a b e l o f a n e x e c u t a b l e s t a t e m e n t
to which control transfers on find
error

Restart-id identifies the 1- through 10-character
restart identifier that was assigned to the program
by the ASSIGNID statement before the system failure.
If you use a character constant to specify restart-
id, enclose the character string in apostrophes.
If you use a variable name to specify restart-id,
define the variable as type CHARACTER*10.

Tran-id receives the transaction identifier of the
last completed data base transaction; this identi
fier is returned only if the application program
had begun a CDCS data base transaction prior to a
system failure. The transaction identifier is not
returned if no data base transaction has been
committed for the specified restart identifier. A
variable name must be used to specify tran-id and
must be defined as type CHARACTER*10.

Tran- id receives the characters ********** (10
asterisks) if the restart identifier is unknown to
CDCS. The restart identifier is unknown to CDCS if
the wrong value is specified for restart-id or if
the program terminated normally. If the program
terminated normally, a new restart identifier must
be obtained.

Tran-id receives a value of 10 blanks if the re
start identifier is known to CDCS but no data base
transaction had been completed prior to the system
failure. The FINDTRAN statement executes normally,
and a new restart identifier does not need to be
ob ta i ned . The r es ta r t i den t i fie r spec i fied as
restart-id is reassigned to the program.

• 3-18 60483500 B

I f a t ransact ion ident ifier is re turned, a new
restart identifier does not need to be obtained.
The restart identifier specified as restart- id is
reassigned to the program.

In a program using sample sub-schema COMPARE (figure
3-16), the ASSIGNID and FINDTRAN statements appear
as shown in figure 3-25. This program is run
interactively, and the user must enter one of the
t h r e e o p t i o n s g i v e n . I f t h e i n i t i a l o p t i o n i s
chosen, the ASSIGNID statement obtains the restart

identifier assigned by CDCS. Include in the job
stream the control statements needed to create a
fi l e t o s a v e t h e r e s t a r t i d e n t i fi e r i n c a s e a
system fai lure occurs. I f the restart opt ion is
chosen, the FINDTRAN statement is executed, and the
program can determine the status of the data base
transaction when the system failure occurred. The
fi le con ta in ing the res ta r t i den t i fie r mus t be
attached in the job stream when the restart option
is chosen. If the end option is chosen, program
execution is terminated.

/0^.

PROGRAM RELMOD
CHARACTER RESTID *10
CHARACTER TRANID *10
CHARACTER OPTION *7
SUBSCHEMA (COMPARE)
INVOKE
0PEN(2,FILE='RESTART')

10 PRINT*, 'ENTER: INITIAL, RESTART, OR END'
READ*, OPTION
IF (OPTION .EQ. 'INITIAL') THEN

ASSIGNID (RESTID,ERR=50)
WRITE(2,'(A10)«) RESTID
CLOSE(2)
GO TO 25

ELSE IF (OPTION .EQ. 'END') THEN
GO TO 60

ELSE IF (OPTION .EQ. 'RESTART') THEN
READ(2,'(A10)') RESTID
FINDTRAN (RESTID,TRANID,ERR=50)
IF (TRANID .EQ. '**********•) THEN

PRINT*, ' RESTART UNSUCCESSFUL OR UNNECESSARY'
60 TO 60

ELSE

60 TERMINATE
END

Figure 3-25. Restarting a Data Base Transaction

60483500 B 3-19 •

0*%

\

ERROR PROCESSING AND STATUS
HANDLING TECHNIQUES

DMS-170 offers a variety of error and status proc
essing mechanisms. Each serves a specific purpose
in the operating environment. These mechanisms are
summarized in table 4-1 and detailed in the follow
ing paragraphs.

USING ERR AND END
PROCESSING OPTIONS
A transfer of control to special processing for
error or end-of-file (EOF) conditions can be speci
fied in your program. This is accomplished by
including the ERR and END options in the appropri
ate DML statements.

The ERR option can appear in most statements, as
shown in the formats in section 3. The END option
can appear in the sequential READ statement.

The formats for the ERR and END options are:

ERR=statement-label

END=statement-label

When the ERR or END option is executed, control
transfers to the statement identified by statement-
label. The identified statement must be executable.

Assume an input/output error occurred during execu
tion of the following statement:

0PEN(FILEX,ERR=50)
Execution of the OPEN statement is terminated,
status is set to the appropriate error code as
described later in this section, and program execu
tion continues at statement 50.

TABLE 4-1. ERROR AND STATUS PROCESSING MECHANISMS

Mechanism Definit ion Programmer Action

Error Syntax option that passes control to program Include ERR option in appropriate DML
processing logic on an error condition. Control is not statements.
opt i on passed when a CDCS relation condition indi

cating a null record occurrence or control
break occurs.

End-of-fi le Syntax option that passes control to program Include END option in appropriate DML
processing logic on an EOF condition. statements.
option
Status block An array to which CDCS returns data base Include the following operations in the pro

status information. gram: establishing the data base status
block, calling subroutine DMLDBST once, and
testing the status block contents at appro
priate points.

Constraint A method of avoiding situations in which Be aware of constraints, and follow the
handling constraints could be violated. rules for modifying the files on which

constraints have been imposed.

Deadlock A method of recovering from a situation in If the program must have simultaneous locks
processing which programs are contending for locked on several resources, include a test for

resources. deadlock status and provide program logic
to reestablish any released locks.

Restart A method of allowing an application program Include the ASSIGNID statement and the
processing to determine the point at which to begin FINDTRAN statement in the application pro

processing following a system or program gram to determine the status of a data base
fa i lure. transaction after a system or program

failure occurs.

Dropping a The capability to cancel a data base trans Include the DROPTRAN statement in the appli
data base action. cation program.
trans
action

/# ^ *
60483500 B 4-1

Assume an EOF was sensed during execution of the
following statement:

READ(FILEX,END=75)

Execution of the READ statement is terminated and
execution continues at statement 75.

Several examples of this type of error and end-of-
file processing appear throughout section 3.

ESTABLISHING A DATA
BASE STATUS BLOCK
An array called a data base status block can be
established in your program to receive data base
status in format ion. When the s tatus b lock is
included in your program, CDCS updates the block
after every operation on a realm or a relation.

The minimum length of the data base status block is
one word; the maximum length is 11 words. You can
include some or all of the words for testing pur
poses. The content of the status block is shown in
table 4-2.

The following rules apply to the status block:

• Only one status block can exist at a time in
the program.

The status block must be declared as type
INTEGER.

• The length of the block must be sufficient to
completely include each desired port ion of
status information.

•/*^^s

TABLE 4-2. STATUS BLOCK CONTENT

Word

2t

Content

The CDCS or CRM octal error code for the
last data base operation on a realm or a
relat ion.

A sub-schema item ordinal for CDCS errors
occurring at the item level.

A CRM octal code indicating file position
of the realm when the last data base oper
ation was performed. The code is returned
for open, close, read, and start opera
tions. For a relation operation, the code
indicates the file position of the root
realm.

Comments

Only error codes are returned. Status codes indi
cating null occurrences or control breaks are not
returned in this word. A zero value indicates no
error occurred. Use 0 format for printing.

Item-level errors are associated with data valida
tion and data base procedures established by the
data administrator in the schema, and with CDCS
record mapping. A zero value indicates no error
occurred. Use I format for printing.

The severity of an error that occurred
during the last data base operation.

The name of the function being performed
when an error or relation condition oc
curred; the name is left-justified and
blank fil led.

Code values are:

018 Beginning-of-information.

10s End-of-keylist. The last primary key valueassociated with a given alternate key was
returned during a read operation using an
alternate key value.

2O3 End-of-record. A record was returned duringa read operation.

100g End-of-information. A sequential read
operation was attempted after the previous
operation returned the last record in the
realm.

Use 0 format for printing.

A zero value indicates no error occurred or a non
fatal error occurred. A value of one indicates a
fatal error occurred. Use 0 or I format for print
ing.
If no error has occurred, this word contains no
valid information. Use A10 format for printing.

/ ^ ^ | V

4-2 60483500 B

TABLE 4-2. STATUS BLOCK CONTENT (Contd)

Word Content Comments

6tt The rank of the realm on which a CDCS or
CRM error occurred during a relation oper
ation. (The ranks of realms joined in a
relation are numbered consecutively, with
the root realm having rank 1.)

A zero value indicates no error occurred. Use
I format for printing.

7tt The lowest rank on which a control break
occurred during a relation operation. All realms in the relation with a rank greater than

the rank stored in this word also have control
breaks or null status. (Null status overrides
control break status.) A zero value indicates no
control break occurred. Use I format for printing.

8tt The lowest rank for which there was a
null record occurrence during a relation
operation.

All realms in the relation with a rank greater than
the rank stored in this word also have null occur
rences. A zero value indicates no null occurrence.
Use I format for printing.

9,10,11 The name of the realm on which an error
occurred; the name is left-justified and
blank fil led.

A blank value indicates no error occurred; a blank
value also can indicate the error occurred on an
operation not associated with input/output or
occurred on an input/output operation not explic
itly requested by the application program. Use A30
format for printing.

•Words 2, 3, and 4 are treated as a single unit by CDCS; length must be provided for all three words if
information for any portion of the unit is to be returned.

t tWords 6, 7, and 8 must all be defined to obtain any one word of relation status information.

/flS^r^K

The following declaration would provide a complete
status block:

INTEGER STATUS(11)

The following declaration would provide a 5-word
status block reflecting all information except that
pertaining to relation processing:

INTEGER STAT(5)

The location and length of the status block are
conveyed to CDCS through a call to the DMLDBST
routine. The routine can be called at any point in
the program after the INVOKE statement. The format
of the call is:

CALL DMLDBST(block-name,length)

where

block-name = name of the status block

length = length in words of the status block
The following rules apply to the DMLDBST routine:

• The routine needs to be called one time only.

• The call to DMLDBST should appear before the
first DML statement after INVOKE. Positioning
of the DMLDBST call is important because the
call initializes the status block to zeros and
blanks.

• If DMLDBST is called more than once in a pro
gram, the status block defined in the last call
is the one that is updated by CDCS.

In a program using the sample sub-schema COMPARE
shown in section 3, a data base status block decla
ration appears as shown in figure 4-1. The formats
for printing the contents of the data base status
block are also shown in the figure.

600

700

900

PROGRAM DBSEXMP
INTEGER STATBLK(H)
SUBSCHEMA(COMPARE)
INVOKE
CALL DMLDBST(STATBLK,11)
PRIVACY(CFILE,M0DE=I,PRIVACY=•XX99,)
OPEN(REL3,MODE=I,ERR=100)
PFOFID='MLN00840'
READ(REL3,ERR=600,END=900)

PRINT *, 'ERROR ON READ'
PRINT 700, STATBLK
FORMAT (1X, 'STATUS BLOCK' /

1X,04,2X,I5,2X,03,2X,01,2X,
A10,2X,I5,2X,I5,2X,I5,2X,A30)

CLOSE(REL3)
TERMINATE
END

Figure 4-1. Establishing a Data Base
Status Block

60483500 B 4-3

ERROR CHECKING

Error checking should be performed after every
operation on a realm or relation. Two methods are
available:

• Test the error code in word 1 of the data base
s t a t u s b l o c k a f t e r e v e r y o p e r a t i o n . F o r
example:

OPEN(CFILE)
IF(STATBLKd) .NE. 0)...

• Include the ERR option on the DML statement as
appropriate and handle status block printing in
one spec ific sec t ion o f the program. For
example:

0PEN(CFILE,ERR=50)

50 PRINT 60,STATBLK

STATUS CHECKING

Status checking should be performed as appropriate
during relation processing to determine control
breaks and null occurrences. Testing is performed
on words 7 and 8, respectively, of the data base
status block. (For more information about control
break and null occurrence, see section 3.)

Word 7 indicates the lowest rank on which a control
break occurred. A nonzero value in this word
indicates a control break. To test for a control
break, you can include a test on word 7 in your
program. For example:

READ(CFILE)
IF(STATBLK(7) .NE. 0)...

Word 8 indicates the lowest rank for which there
was a null occurrence. A nonzero value in this
word indicates a null occurrence. Since the right
bracket character (3) is stored in a null record,
you would probably want your program to bypass
printing or move spaces to the print line. To test
for a null occurrence, you can include a test on
word 8 in your program. For example:

READ(CFILE)
IF(STATBLK(8) .NE. 0)...

AVOIDING CONSTRAINT
VIOLATIONS
The data administrator incorporates constraints in
the schema for the purpose of protecting interde
pendent data. Constraints can be defined for two
logical ly associated i tems within a s ingle fi le
(s i ng le - fi l e cons t ra i n t) and f o r two l og i ca l l y
associated items within two files (two-file con
st ra in t) .

Consider an employment file in which each record
occurrence contains an employee number and a man
ager number, where the manager number conforms to
the structure of the employee number. Figure 4-2
illustrates this concept. Assume, for example, the
data administrator designed the schema with the
following single-file constraint:

KNGR-NO DEPENDS ON EMP-NO

In this example, MNGR-NO (the dependent item) is
dependent upon EMP-NO (the dominant item). This
means that no occurrence of the dependent record
can exist in the data base unless an occurrence of
the dominant record also exists with the same value
of the associated data item. Also, no dominant
record can be deleted if a dependent record exists
with the same value of the associated data item.

The dominant item in a single-file constraint is
always a primary key or an alternate key with no
duplicates; the dependent item is a primary key or
an alternate key, and the alternate key can have
duplicates. You would violate the constraint pre
sented in the example if you attempted to do any of
the following:

• Store an employee EMPLOYMENT record if an
EMPLOYMENT record for the referenced manager
does not exist. (An organization could not
recognize a manager who was not first an em
ployee.)

• Change the value of the dominant item (EMP-NO)
if a corresponding dependent item (MNGR-NO)
exists. (An organization could not change an
employee number as long as references to the
old number existed.)

• Delete a manager EMPLOYMENT record if an em
ployee EMPLOYMENT record with the corresponding
manager number exists. (An organization could
not remove a manager while an employee was
still reporting to that individual.)

/ * ^ 5 \

Manager EMPLOYMENT Record
EMP-NO

(Pr imary Key)
MNGR-NO

(A l t e r n a t e K e y) ADDRESS SALARY

Employee EMPLOYMENT Record
EMP-NO

(Pr imary Key)
MNGR-NO

(Alternate Key) ADDRESS SALARY

F i g u r e 4 - 2 . S i n g l e - F i l e C o n s t r a i n t E x a m p l e

4-4 60483500 B

In a single-file constraint, at least one record
exists that has no dominant record. This situation
occurs in the single-file constraint example for
the employee who has no manager. The record for
this employee must have the same value for both
EMP-NO and MNGR-NO.

If you are creating a file on which a single-file
constraint has been imposed, take the following
steps in the order given:

1. Create the file with record occurrences of the
items that have no dominant record.

2. Close the file.

3. Reopen the file for input/output and add the
record occurrences of the dependent items.
(Ensure that a dominant record occurrence
exists before adding any corresponding depen
dent item.)

Add a CURR-REC occurrence if a corresponding
COURSE-REC occurrence does not exist. (A stu
dent could not be enrolled in a course that was
not being offered by the university.)

If you are modifying the common item of a file on
which a two-file constraint has been imposed and
the common item is a primary key, take the follow
ing steps in the order given:

1. Write the dominant record with the new value in
the common item.

2. Read a dependent record, and change the value
of the common item to the new value of the dom
inant record. Rewrite the dependent record.
(Perform this step for each dependent record of
the dominant record.)

3. Delete the dominant record with the old value.

For a situation involving a two-file constraint,
consider a course fi le and a curr icu lum fi le.
Assume that the data administrator designed the
schema with the following two-file constraint:

COURSE-ID OF CURR-REC DEPENDS ON
COURSE-ID OF COURSE-REC

The records of the two files and the data items
associated in the constraint are shown in figure
4-3. CURR-REC (the dependent record) is dependent
upon COURSE-REC (the dominant record) if there is a
correspondence between them. A correspondence
exists if the dependent record and the dominant
record each contain the same value for the common
item, which is COURSE-ID in this example.

You would violate the constraint presented in the
two-file constraint example if you attempted to do
any of the following:
• Delete a COURSE-REC occurrence if a correspond

ing CURR-REC occurrence exists. (The university
could not drop a course from its curriculum
while a student was still enrolled.)

• Change the COURSE-ID value of a COURSE-REC
occurrence if a corresponding CURR-REC occur
rence exists. (The university could not change
the identification code of a course as long as
a student's record still uses that code.)

If you are modifying the common item of a file on
which a two-file constraint has been imposed and
the common item is an alternate key, take the fol
lowing steps in the order given:

1. Write each dependent record containing the old |
value of the item to a temporary file.

2. Delete each dependent record containing the old |
value of the item from the data base.

3. Read the dominant record, and change the value
of the data item to the new value. Rewrite the
dominant record.

4. Read a dependent record from the temporary
file, and change the value of the common item
to the new value of the dominant record. Write
the dependent record to the data base. (Per
form this step for each dependent record of the
dominant record.)

Since constraints are established in the schema and
not indicated in any way in the sub-schema, it is
the responsibi l i ty of the data administrator to
supply you with this information. By being aware
of constraints, you can anticipate violations and
prevent them from occurring in your application
program.

COURSE-REC
(Course File)

COURSE-ID
(Primary Key)

COURSE-NAME SCHOOL • • • PROF-ID

^ ^ ^
CURR-REC
(Curr iculum Fi le)

IDENT
(P r i m a r y K e y)

STUDENT-ID COURSE-ID
(Alternate Key) . . . UNITS

Figure 4-3. Two-File Constraint Example

60483500 B 4-5

When a constraint is violated, CDCS aborts the
par t icu lar operat ion, re turns a nonfa ta l 601g
error code, and continues processing. The error
message identifies the record on which the attempted
violat ion occurred. Whenever you are wri t ing,
deleting, or rewriting a record, the appropriate
data base status block entry should be tested.

Two general rules to remember for constraint proc
essing are:

• Always delete a dependent record occurrence
before deleting the dominant record occurrence.

• Always write the dominant record occurrence
before writing a dependent record occurrence.

Whenever two or more application programs contend
for locked resources, which are files or records, a
deadlock situation can occur. Contention occurs
when two programs, each having at least one resource
locked, attempt to lock a resource that is locked
by the other program. Neither program can continue
processing, because neither program can obtain the
necessary locks. CDCS automatically releases the
locked resources of one program. The other program
then can obtain the locks it requires and can
continue processing.

When CDCS has detected a deadlock situation and has
released the locked resources of an application
program, CDCS issues the deadlock error status code
6638 to that program. If the application programestablished the data base status block, the program
can check the first word for the deadlock code.

ANTICIPATING DEADLOCK
SITUATIONS
CDCS allows concurrent access to a data base. This
means that two or more application programs can
access the same file (realm) at the same time. The
following can take place:

• Two or more application programs can open the
same fi le for input and perform simultaneous
read operations.

• One application program can open a file for
input/output and perform update operations,
while other programs can open the same file for
input and perform simultaneous read operations.

• Two or more application programs can open the
same file for input/output, but only one pro
gram can gain immediate access to a particular
record to perform update operations.

The integrity of the data base is maintained through
CDCS locking mechanisms: the record locking mecha
nism and the file locking mechanism. CDCS holds a

| lock (either protected or exclusive) for an appli
cation program and prevents update of the locked
file or record by any other program.

Exclusive locking prohibits read and update opera
tions on the realm. Protected locking prohibits
only update operations (allows read operations).
See the CDCS 2 Application Programming reference
manual for detailed information about locking.

If your program must have locks on several re
sources, your program should always test for dead
lock status before attempting to update a file. If
deadlock occurs, your program should reestablish
the locks that it held before continuing further
processing.

An example illustrating deadlock processing appears
in figure 4-4. Files joined in relation REL3 are |
opened for input/output. The program presumably is
reading a record prior to update and CDCS has
locked all records in the relation occurrence. The
example includes a test of word 1 in the status
block to enter a loop in case of deadlock. In the
loop, the program attempts to reestablish the locks
and checks for deadlock.

30

PROGRAM DEADLCK
INTEGER STATBLK(H)
SUBSCHEMA(COMPARE)
INVOKE
CALL DMLDBST(STATBLK,11)
PRIVACY(CFILE,PRIVACY='XX99')
0PEN(REL3,ERR=100)
PR0FID='JMS00160'
READ(REL3,KEY=PR0FID)
IF(STATBLKd) .EQ. 0"663") GO TO 30

900 CLOSE(REL3)
TERMINATE
END

Figure 4-4. Deadlock Processing

4-6 60483500 B

TABLE 4-3. LOCKING OPERATIONS

Operation

An application program opens a realm for input/output
and includes a DML LOCK statement. (This should be
avoided whenever possible.

An application program opens a realm for input/output
without including a DML LOCK statement.

An application program opens a realm for output with
out including a DML LOCK statement.

An application program opens a relation for
i npu t / ou tpu t .

Whenever two or more application programs contend
for locked resources, which are fi les or records, a
d e a d l o c k s i t u a t i o n c a n o c c u r. C o n t e n t i o n o c c u r s
w h e n t w o p r o g r a m s , e a c h h a v i n g a t l e a s t o n e
resource locked, attempt to lock a resource that is
locked by the other program. Nei ther program can
cont inue process ing, because ne i ther program can
o b t a i n t h e n e c e s s a r y l o c k s . C D C S a u t o m a t i c a l l y
releases the locked resources of one program. The
other program then can obtain the locks it requires
and can continue processing.

When CDCS has detected a deadlock situation and has
r e l e a s e d t h e l o c k e d r e s o u r c e s o f a n a p p l i c a t i o n
program, CDCS issues the deadlock error status code
663g to t ha t p rog ram. I f t he app l i ca t i on p rog ram
established the data base status block, the program
can check the first word for the deadlock code.

I f y o u r p r o g r a m m u s t h a v e l o c k s o n s e v e r a l
r e s o u r c e s , y o u r p r o g r a m s h o u l d a l w a y s t e s t f o r
d e a d l o c k s t a t u s b e f o r e a t t e m p t i n g t o u p d a t e a
fi l e . I f d e a d l o c k o c c u r s , y o u r p r o g r a m s h o u l d
r e e s t a b l i s h t h e l o c k s t h a t i t h e l d b e f o r e
cont inuing fur ther processing.

An example i l lustrating deadlock processing appears
i n fi g u r e 4 - 5 . F i l e s j o i n e d i n r e l a t i o n R E L 3 a r e

E f f e c t

CDCS locks the entire realm against update by other
users. An unlock or close operation by that pro
gram releases the lock.

CDCS locks the record on the read operation. A
rewri te, delete, or another read operat ion by that
program releases the lock.

CDCS locks the entire realm. A close operation by
that program releases the lock.

CDCS locks all records in a given relation occur
rence. A rewri te or delete operat ion by the pro
gram releases the lock on the record updated. The
next relation read operation by that program re
leases the record locks on the files for which a
new record has been read.

30

PROGRAM DEADLCK
INTEGER STATBLK(H)
SUBSCHEMA(COMPARE)
INVOKE
CALL DMLDBST(STATBLK,11)
PRIVACY(CFILE,PRIVACY=,XX99')
0PEN(REL3,ERR=100)
PR0FID='JMS00160'
READ(REL3,KEY=PR0FID)
IF(STATBLKd) .EQ. 0"663") GO TO 30

900 CLOSE(REL3)
TERMINATE
END

Figure 4-5. Deadlock Processing

opened for input/output. The program presumably is
r e a d i n g a r e c o r d p r i o r t o u p d a t e a n d C D C S h a s
locked a l l records in the re la t ion occur rence. The
e x a m p l e i n c l u d e s a t e s t o f w o r d 1 i n t h e s t a t u s
b lock to enter a loop in case of deadlock. In the
loop, the program attempts to reestabl ish the locks
and checks for deadlock.

60483500 A 4-7

DEVELOPING FORTRAN PROGRAMS

FORTRAN application programming in the DMS-170
environment rel ieves you of several responsi
bilities. For example:

• You do not have to describe data within your
program; the data administrator incorporates
data descriptions in the schema and sub-schema.
Data descriptions in a sub-schema are included
in your program.

• You do not have to write conversion routines;
CDCS handles all conversion for you.

• You do not have to wr i te a l l rout ines that
perform validity checking; the data administra
tor generates data base procedures, which are
s p e c i fi e d i n t h e s c h e m a a n d c a l l e d a t
appropriate times.

• You do not have to write separate logging and
recove ry u t i l i t i e s ; t he da ta adm in i s t r a to r
provides for data base restoration by specify
ing logging operations in the master directory.

• You do not have to be concerned with the details
of input/output; CDCS handles them.

DEVELOPING AN APPLICATION
PROGRAM
To
do

I-

develop a DMS-170 application program, you must
the following:

Obtain a listing of the sub-schema from the
data administrator.

Obtain the name of the sub-schema library from
the data administrator.

Obtain the appropriate privacy keys from the
data administator.

Be aware of any constraints that have been
incorporated in the schema.

Include appropriate DML statements in your
FORTRAN program.

Obtain information on whether data base trans
actions can or should be used.

COMPILING AND EXECUTING
THE SOURCE PROGRAM
To compile and execute a DMS-170 FORTRAN applica
tion program, you must do the following:

1. Attach the sub-schema library for DML preproc
essing of the source program.

2. Include a DML control statement for DML pre
processing of the source program.

3. Include an FTN5 control statement that speci
fies the DML output file as the input file for
the FORTRAN 5 compiler.

4. Include an LDSET control statement for loading
the system library for execution of the source
program.

5. Include the name of the file containing the
relocatable binary program (LGO is the default
name) to execute the program.

6. Be sure that CDCS is active or use CDCSBTF
under the direction of the data administrator.

DML statements are preprocessed before source
program compilation. The DML preprocessor tran
slates the DML statements into appropriate FORTRAN
statements. When translation is complete, the DML
preprocessor writes the FORTRAN source program to
an output file with the default name DMLOUT. This
output file, complete with translated DML state
ments, becomes the input file to the FORTRAN com
piler. A block diagram illustrating FORTRAN/DML
preprocessing is shown in figure 5-1.
The DML control statement calls the DML preproc
essor. A list of DML control statement parameters
is shown in figure 5-2.

The statements required to execute the DML preproc
essor and to compile the source program are shown
in figure 5-3.

The statements required to execute the DML preproc
essor and to compile and execute the source program
are shown in figure 5-4. An LDSET control state
ment naming the system library, DMSLIB, must be
included for program execution.

DML
Preprocessor
(t rans la tes

DML statements
to FORTRAN)

DMLOUT
(d e f a u l t

o u t p u t fi l e)

FORTRAN
Compiler

/FORTRAN Source
Program

(includes DML
statements)

Figure 5-1. FORTRAN DML Preprocessing

60483500 B 5-1

DML(p1,p2,p3,p4,p5,p6,p7)

p1 SB=l fn Name of fi le conta in ing sub-schema
l i b r a r y .

SB Same as SB=SBLFN.

S B = 0 N o t a l l o w e d .

omitted Same as SB=SBLFN.

p2 LV=F5 Spec i fies FORTRAN 5 .

L V S a m e a s L V = F 5 .

omi t ted Dependent on insta l la t ion.

p3 I= l fn Name o f fi le con ta in ing FORTRAN
source program with added DML
statements to be preprocessed by DML.

I Same as I=COMPILE.

omitted Same as I=INPUT.

1 = 0 N o t a l l o w e d .

p 4 0 = l f n N a m e o f fi l e t o w h i c h t r a n s l a t e d
version of FORTRAN source program is
to be written. DML statements
appearing in FORTRAN program are
translated into FORTRAN statements
be fo re be ing wr i t ten to th i s fi le .

0 S a m e a s 0 = D M L 0 U T.

omitted Same as 0=DML0UT.

0 = 0 N o o u t p u t i s p r o d u c e d .

p 5 E = l f n N a m e o f fi l e t o w h i c h e r r o r
diagnost ics are to be wri t ten.

E S a m e a s E = E R R S .

omitted Same as E=0UTPUT.

p6 ET=op Error termination code. Four levels
of errors are defined; if an error of
the specified level or higher takes
place, the job is aborted to an
EXIT(S) control statement (NOS/BE) or
EXIT control statement (NOS). The
abort does not take place until DML
is finished. The possible values for
op, in increasing order of severity,
are as follows:

ET

T Trivial. The syntax of the usage
is correct, but it is questionable.

W Warning. The syntax is incorrect,
but the processor has been able to
recover by making an assumption
about what was intended.

F Fatal. An error prevents DML from
processing the statement in which
it occurs. Unresolvable semantic
errors also fall into this
category. Processing continues
with the next statement.

C Catastrophic. Compilation cannot
continue; however, DML advances to
the end of the current program
unit and attempts to process the
next program unit.

Same as ET=F.

omitted Same as ET=0.

ET=0 The job step is not to be aborted
even if errors occur (except for
control statement errors).

T and W errors do not invalidate the output
file produced by DML (the file specified by
the 0 option). The translated code on the
file can still be compiled (barring any errors
not related to DML), but the results might not
be what the user intended. F and C errors,
however, produce an output file that cannot be
successfully compiled by FORTRAN.

p 7 D S D i r e c t i v e s u p p r e s s i o n . L i s t i n g
control directives are not generated;
all FORTRAN statements generated by
DML preprocessing appear in the
FORTRAN source listing.

omitted Listing control directives are
generated; FORTRAN statements
generated by DML preprocessing of the
SUBSCHEMA and INVOKE statements do
not appear in the FORTRAN source
l i s t i ng .

FORTRAN CALL statements generated as a result
of executable DML statements always appear on
the FORTRAN source listing regardless of DS
specification.

Figure 5-2. DML Control Statement

5-2 60483500 A

0^\

/^B*9\

■NOS only
Job statement
USER statement \
CHARGE statement/"^
ATTACH (sub-schema-library)
DML(SB=sub-schema-Iibrary,LV=F5)
FTN5(I=DML0UT)
End-of- record
FORTRAN source program containing DML statements
End-of-info rmation

Figure 5-3. Executing DML and Compiling
the Source Program

Job statement
USER statement
CHARGE statement NOS only

ATTACH(sub-schema-library)
DML(SB=sub-schema-Iibrary,LV=F5)
FTN5(I=DML0UT)
LDSET(LIB=DMSLIB)
LGO.
End-of-record
FORTRAN source program containing DML statements
End-of- informat ion

Figure 5-4. Compiling and Executing
the Source Program

SAMPLE PROGRAMS
Sample programs appear in the remainder of this
section. Each program uses the data base environ
ment that is established and illustrated in appen
dix C. You should read this appendix to become
familiar with the schema, sub-schemas, and stored
data before examining the FORTRAN programs.

When the DML preprocessor translates DML statements
into FORTRAN statements, the FORTRAN statements can
be printed out or suppressed, depending on the
setting of the DS parameter on the DML control
statement. When the DS parameter is included, all
FORTRAN statements generated by the DML preprocessor

appear in the FORTRAN source listing. When the DS
parameter is omitted, l isting control statements
are generated and inserted immediately after the
SUBSCHEMA and INVOKE statements; therefore, the
FORTRAN statements generated by DML preprocessing
of these statements do not appear in the FORTRAN
source listing.

Listing control directives appear in the sample
program source listings in the following form:

C$
C$

LIST(ALL=0)
LIST(ALL)

These directives are generated automatically by the
DML preprocessor. They appear because the DS
parameter in each DML control statement was omitted.
Notice, however, that CALL statements generated as
a result of executable DML statements appear re
gardless of the DS parameter setting.

Each sample program is illustrated by including the
control statements, the source program statements,
the compilation listing, and the output of program
execution. The programs are:

Program RATING Figure 5-5

Figure 5-6

Figure 5-7

Figure 5-8

Figure 5-9

Figure 5-10

Program INDAVGE

Program RELATE

Program CHARGES

Program ADMIT

Program TRANPRG

Program TRANPRG, shown in figure 5-10, is an inter
act ive job. The fi le descr ip t ion and input fi le
for this program appear as shown in figure 5-11.

The figures show the sample programs (listed above)
being executed when CDCS is active at system con
trol point. CDCS Batch Test Facility (CDCSBTF) can
also be used. When using CDCSBTF, replace the
LDSET and the LGO control statements with the fol
lowing control statements:

LIBRARY,DMSLIB.
CDCSBTF(LGO/MDPFN=MSTRDIR,UN=xx)

60483500 B 5-3

OJ
C E a M - « * D

C C « C I C B f f i 3 E C _tu tu e *» f t t - t o a oi= e tu ro _i _i _i i i o- a> +» ■•-• co co e co <u
4 J t g (I I (A (A O H t _
(0 + J « I I I I J I
4 J (O U I Z f f l H w « « -
C O O U W « h O

O C O C < ^ t f \ U J • I
^ U K H J Z W O T J
O W X H S i - O O C
-3 3 <J «£ £> tk -J -J UJ

- J
< _ l

Ul i - i a c •
(- S u .X

1- Z O H
Ul UJ U l 3

c o 3 X O
U I 0 h Z
1 - U l O C O< C O Z 1 -
_ l o o z
3 < N H
c j

CO Ul 1- 0.- 1
< E 1 - Z
o o e u i u i a
C t u . < t u <z OC OC 1-< U l < < U l

0. CL 1- C9
CO CO <
UJ a c < a o c
a < Z O U l
< t O C U l H >
a c C O <
t o O U I J

c c x o u i
V - CL 1- 0C Xz 1 - 1 -
U l U J Z
a X » o C O
3 1- CO CJ Ul
I - U l h -
00 O C O <• < e c _ i
_ l J K U I 3
-1 O C O u . o< O C O _ l

X 1 - z <
CA o z < o

C9 CO Ul Of
Z < a 1 - z
M Ul U I D U l
1- OC X 1 - H X< 1- CO Z 1-
OC U l< o c _ j E a c
E O f O - I U l << C9 U . < h K
OC < C 9
C9 at: UJ u . 1 - O
O 0 . to © CO oc
OC « c a .
CL CO o c a a

l - l U J < < U l
X > U l U J X
1 - «c os ac i -

O O C J O C J C J C J C J

t >
o
X ~ o

<-N X O CM
IV-

r - I I I I o
N > - o t -

x : o•% - i < t U l o Ul
t — ^ C O > ~ SCO
* - U l 1 - l - l ow O < o c m i n r * ac^ < l - C l t l I I O CO
-1 OC c o s a c O C •
m u i ^ u i a c o c o
H > 1 - - J U l U l •< < C O M S S O - i
l - ^ co u. ui U l U l
CO < a o _ i - 1 •

E J ^ M M U l
a c u i E > - U - o u . a 1 -
U l X Ul O O < J I I u < II
c o o x t « t « _ i ^ a c _ l
Ul CO _ J > z < A C O
1- CO J H U I - < ^
z = > < o c a . O U I U . II
M CO t_> a. o H C C H

o

1-

X <
C M Vs x
CM CM

X X- ro cm
X t O v
c j s i no x •-•_i cm Vo N Xm cm
W H \3 v i nI- x •-*

m
ui *~*> r-_ l < •< - «*

CM
_ N X
I- CO ^ CM< - O V I — u - < » s
I - N K O — I O N M i l
C O X X t - < h x x - j

\ r - r - < I — \ r r H U I
O O ^ O O i n ^ U . I -
(M ' O C O I — • > - C J < " O

I - I I I - ~ Z l -
O I - < O J t < U J M o
I - Z E I - < Z E C O E u

• H O C I - l - l 0 C O O C O O i
O O C O O O O C O _ J U J Z 1 -
(9 Q . U . C O I — C L U . U h U l I

o

o m
r*. CO

■o
c
U l

5-4 60483500 A

_ l«- U l E •
X 1 - o u.m H -

U l U l U lz co
i - U l 1- z14. 1-

3
UJ
CO

CO
1 -o o

3 < f > l - l
CJ QC ac
_ l CO U l 1 - a. 3C ^̂< E h - Z
CJ oc Ul U l
C t u . < ul
5 oc

U l
QC t-
« t < UJ T -

IX.
■ItCL a. 1- CO Ul CMCO co C O O X <cU l oc < T - CM Vc t z o Ul QC^> \ x< QC U l h - U I O CM CMoc CO > K > i n l - l SCO

ac
U l _ lx o U l

<**
X r -

s i n
X H Ir ~ CL I- ae o ^ o ^ . C M v

Z I— 1 - *-■>• CM s x ■>,U l UJ s » s-t r - O - i n c m *-%<s* • o co r - O *̂ M M X t O N «—3 1— CO (J t u o « - T - - V »- c j s i n COt— U l 1— o r o I I r - II O O O X I H •Ht n Ct CO o « * > - o O i O 1 - _ l C M \< oc _ J U . r - x: C J O Z Q C O N X U lO _ j - J OC Ul *~. com < o r - U l x © U l in cm CO[1 _ j CO IL CJ r - <»» <a m CD > V ^ n O X«- CO CO IH N1— CO _ l «— U l \ m 1 - • H O O O o o 3 K i n ocCL 1— z CO a c v m o m o <-» QC xt 1 - X I H U J ^O CO CJ z < CJ x: O O 1 - CL «- I I u . i t O O CD - 1 < C M V z > « - IX.CO o> CO Ul QC _ j ac a x c o X X oc ca oc u. ■ CO 1 - N X _ l < • CO
<o o 1 - CO U l N^ U l t - QC Ct oc ca o 1 - CO «* CM • ^ < - « 4 -M U l U l U l 1 - 1 - _ J ^ Ul x* U l a • - O N 1 — U . ^ Nf«» 1— QC 1 - 1 - •̂N <"\ 00 • H > o X Z •** <3 _ l 1 - v V O - J O x s u i CO* £ 1— co z 1 - I - CO u. oc t > Ul 0- U l Ct Ul 00 X X r - « C 1 - X X - J _ J^ OC U l 00 <c II II \̂ C J C L _l o _ l Q C • 1- »- «- < 1— V«— *— l-l « J Ul UJ<o ac - 1 E - J - 1 _ l _ l - J _ i >■* _l M _J l - l - J U l o o o o i n v ^ u . _ J 1— _Jr«- OC - J U l oc Ul _J - I - J - J > - E U . E O u- e ca h - CM <0 00 1 — l > o < E< CO U . < 1— OC t - U l X < u l < t « t O C t s u a II CJ Ct <c II I - I I » - v v C t Z O ioc CO CO CJ *̂ s ^ ^̂ s ^ /̂ _j *-* QC - 1 O » - J l - t f t uCO oc Ul U . 1 - _ l U l CO 1- 1 - O 1 - 1 - _ i - 1 > J O Z - 1 «c a J C O h - Z H < Z E C O _ l E _ Jo CL CD O CO QC 1 - 00 CO 00 > CO co - I X - J M _ l < o u i j o l - « _ l ~ 1- QC h H K O _ J oc _i <aoc CL CO 3 M l - l 1-4 l - l < o oc < C L < I I

O C J z
O u i < u. II O oc O Q C O _ l <c U J < zCO CL CO ac a a CO - J - 1 _ l _ l C J ^ CJ CL CJ O 1- oc CJ l-l 1 - CO CL u. CO 1 — C L U . o « J h u mz M UJ «x «c U l U l ^ ̂ » x—IH Ul U l

1 - 1 - OC QC 1 - 1 -
oc c# «» CA 0» o o O i n *C J O CJ c j o CJ CJ CJ CJ CJ ■It CJ CM tn <o eo

» - t \ i M » * i n * o r ^ « c > o ^ t N i u ^ > o r ^ * - i A i ^ > * i n ^ r ^ t » c * o » - t N J r o > *« - » - T - i n i n i n v O " 0 ' 0 ^ < > « ^ ^ ' O i ^ i ^ r ^ f ^ ^ t ^ f ^ K r ^ r ^ c o t x) t » t » o o o o c o t x) o o t x) c ^ t >

j0h-^
60483500 A 5-5

xt
r-\ CJ«c o
I I - I

O CO
- I I
x / I

I CO
I COCl ui

< O f
E C t

ac OC OC QC QC T-
U l U l U l U l U l « -
CD CD CD CO CD #
U I U I U I U I U I _ I O S _ J
l - i - l - h - t - 4 4 4z z z z z u i x u i
H H H H H a O K

O O O O O 4 t -o o o o o tr- gO O Q O O OOo o o o o o o
CO CO CD CO CO O CO
a c t c t a c t a c t

COCOCQODCOCOCOCO
T - - 4 - t n » * o o T - * -
t - x - > 0 C M

CM

O 4 r - O O Z
O Z < O Q U I I U J
O U h O O O O <
O C C O C O C O l — < 3 | —
O Q C O C O C O C O O C I — ©c t c t c t a c t t s t n t -

I- I- I- CO3 3 3 Z
O O O MOC QC QC QC
CO CO CO I-
3 3 3 ZCO CO CO M

OC QC OC QC •«* QC oe
> O U I t - U I U I U I « - U J U J
• f c C D - K C D C D l D - l t C D C D
Q C U I O C U I U I U I O C U I U I
4 1 - 4 1 - 1 - 1 - 4 1 - 1 -x z x z z z x z z

CO
I H U J
O C E
4 4> z
I I

t- o «- o o o *-o o o o o o oO O O O Q O O
O O O O O O OCO CO CO CO CO CO CO
Ct Ct Ct Ct Ct Ct Ct

GOCOCOCQCOCOCOCOCO
C M m o O O o o o m

r - i - N O
CM CM

* - » - E I -
U I O O J W O
C O O O < - I I H J -
O C O O U l U l 3 Z
3 U. M OS OC QC UJ
O CO CO CO CO CO Ct
c j c t c t c t C t a t - t

« j Ul
1 I H CL
1 QC OS

UJ UJ o c
CL 0 . u .>- U l
H

1
1

t o

CO CO CO CO
1 z > CO
1 CL QC Ct U l »0 CM «0

U l CL ac u. OS
E _ J _ l -1 CJ c a
4 E E E o
Z C t

UJz
•H
1-
3

Ct

U lz
M
1 -
3

Ct _l

Ul Ulz z
•H IH
1 - 1 -
3 3

1,
UJ
CD3

o m o
l> IX, 00

»o
r - 55 25024

CONDS
CO O O II I I I I U l
CO OS QC OC oc CO

3 CO
3 3 3 - Ul

Kl CO O
K- IX. IX.

00
CM

CO CO
i x . O O

CJ CO CO CO CO Ct N < o a i o
1
1

1
1
1

CM I t - oo ■<o o
1
1

1
CO

1 U l
CO N f M O O I H
CO r -
QC /»> QS H- t o
4
1
1

4
IIo

U l
CL
O OS

U l
_ J

_ l OS CO
1 ^̂ CL i l 4 CO

<-x 1 II o c 1 -< i O 4 co a>
I I 1 CO _ l E C

O 1 - 1 U l O U l Ul
- 1 U l U l CO CO _ J O CO
~ C L
1 > -

CO
4

CO
CO

ea co coo <o o CO
CO
U l 1 - C t U J t o

1 t - - 1 Ul «4- m r- 1- oc I H Ul UJ E L .
00 1 OS »— z a CO J l fl H O)
UJ 1 I - Ct IH Ct CJ - 1 4 1 -
OC 1 Ct O 4 Ul oc l _
3 1 1- UJ CL 1 - CO O Ul CL
Ct 1 CO c o A > CO oo 4 1 - - I
UJ 1 -1 CD z z U l - J O O Q

c m m ^
>- I H OC J V) H

CJ Ul (J C t Ul IH 1 - Ul OC UJ I H 1 - CO CL
O E _ l _ l - J - J CD 1- E t - E E E !_
OC 4 E E E 1- Z 4 l - oc O O O U .
C L Z
1 1
1

Ct Ct Ct oo - J UJ
1
1

OC t n
I
l

a. co co o ■L»

5-6 60483500 B

Control Statements for Interactive Job

ATTACH(FTNRUN)
ATTACH(SSLIB)
DML(SB=SSLIB,LV=F5,I=FTNRUN)
FTN5(I=DML0UT)
ATTACH(INTRAN)
FILE (INTRAN,RT=Z,BT=C)
LDSET(LIB=DMSLIB)
LGO.
End-of-record

Source Program

PROGRAM TRANPRG

THIS PROGRAM DEMONSTRATES THE USE OF TRANSACTIONS AND
PROGRAM RESTART. FIRST THE PROGRAM DETERMINES IF THE
RUN IS AN INITIAL RUN OR A RESTART OPERATION BY
REQUESTING INPUT FROM A TERMINAL.

THEN THE PROGRAM READS TRANSACTIONS FROM FILE INTRAN
(SHOWN IN FIGURE 5-11), BEGINS TRANSACTION
PROCESSING, AND UPDATES TWO REALMS: SFILE AND CFILE.
DURING RESTART PROCESSING, THE PROGRAM POSITIONS FILE
INTRAN BY READING AND DISGARDING RECORDS THAT WERE
SUCCESSFULLY PROCESSED BEFORE THE FAILURE.

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
SUBSCHEMA

10

INTEGER STATBLK01)
CHARACTER RESTID *10

TRANID *10
INID *10
INSTID *11
INMJR *20
OPTION *7
(RELATION)

DATA TRANID/•0000000000'/
INVOKE
CALL DMLDBST(STATBLK,11)
OPEN(5,FILE=«INTRAN•,STATUS='OLD•,ACCESS='SEQUENTIAL')
OPEN(2,FILE='RESTART')
PRINT*, ' ENTER: INITIAL, RESTART, OR END'
READ*, OPTION
IF (OPTION .EQ. 'INITIAL') THEN

ASSIGNID (RESTID,ERR=50)
WRITE(2,'(A10)') RESTID
CLOSE(2)
GO TO 25
IF (OPTION .EQ. 'RESTART') THEN
READ(2,'(A10)') RESTID
FINDTRAN (RESTID,TRANID,ERR=50)
IF (TRANID .EQ. •**********') THEN

PRINT*, ' RESTART UNSUCCESSFUL OR UNNECESSARY'
GO TO 60

ELSE

ELSE
15
20

END

READ (5,*,ERR=60,END=60) INID,INSTID,INMJR,NUM
DO 20 II=1,NUM
READ (5,*,ERR=60,END=60) IDENT,COURS,GRADE,

CODE,DATE,UNITS
IF (INID .EQ. TRANID) THEN

GO TO 25
ELSE

GO TO 15
END IF

IF

0̂ **
Figure 5-10. Program TRANPRG (Sheet 1 of 5)

60483500 B 5-23 •

ELSE IF (OPTION .EQ. 'END') THEN
GO TO 60

ELSE
GO TO 10

END IF
C
C BEGIN DATA BASE PROCESSING
C

25 PRIVACY (CFILE,PRIVACY='XX99')
OPEN (SFILE,M0DE=I0,ERR=50)
OPEN (CFILE,M0DE=I0,ERR=50)

C
C MAIN LOOP BEGINS. THIS READS AND PROCESSES FILE INTRAN.
C

DO 35 JJ=1,9999
READ (5,*,ERR=45,END=55) TRANID, INSTID,INMJR,NUM
BEGINTRAN (TRANID,ERR=45)
STID=INSTID
READ (SFILE,KEY=STID,ERR=45)
INMJR=MAJOR
REWRITE (SFILE,ERR=45)
CSTID=STID
DO 30, 11=1,NUM
READ (5,*,ERR=45,END=45) IDENT,COURS,GRADE,

1 C O D E , D A T E , U N I T S
30 WRITE (CFILE,ERR=45)
35 COMMITTRAN (ERR=45)

C
C MAIN LOOP ENDS.
C

45 PRINT*, ' TRANSACTION ERROR, TRANID = ', TRANID
50 PRINT 98, STATBLK(1),STATBLK(2),STATBLK(3)

DROPTRAN
55 PRINT*, 'DATA BASE PROCESSING COMPLETED'

CLOSE (SFILE)
CLOSE (CFILE)

60 TERMINATE
CLOSE (5,STATUS='DELETE')

90 FORMAT (A10,A11,A20,I1)
92 FORMAT (A14,A6,F3.1,A1,A8,I1)
98 FORMAT (1X,'STATUS BLOCK'/1X,04,2X,I5,2X,A10)

END
End-of-Record

Compilation Listing

PROGRAM TRANPRG 74/74 OPT=0

1 PROGRAM TRANPRG
2 C
3 C THIS PROGRAM DEMONSTRATES THE USE OF TRANSACTIONS AND
4 C PROGRAM RESTART. FIRST THE PROGRAM DETERMINES IF THE
5 C RUN IS AN INITIAL RUN OR A RESTART OPERATION BY
6 C REQUESTING INPUT FROM A TERMINAL.
7 C
8 C THEN THE PROGRAM READS TRANSACTIONS FROM FILE INTRAN
9 C (SHOWN IN THE PRECEDING FIGURE), BEGINS TRANSACTION

10 C PROCESSING, AND UPDATES TWO REALMS: SFILE AND CFILE.
11 C
12 C DURING RESTART PROCESSING, THE PROGRAM POSITIONS FILE
13 C INTRAN BY READING AND DISGARDING RECORDS THAT WERE
14 C SUCCESSFULLY PROCESSED BEFORE THE FAILURE.
15 C

Figure 5-10. Program TRANPRG (Sheet 2 of 5)

* 5 - 2 4 6 0 4 8 3 5 0 0 B

16 INTEGER STATBLK(H)
17 CHARACTER RESTID *10
18 CHARACTER TRANID *10
19 CHARACTER INID *10
20 CHARACTER INSTID *11
21 CHARACTER INMJR *20
22 CHARACTER OPTION *7
2 3 * * SUBSCHEMA (RELATION)
24 C$ LIST(ALL=0)

112 C$ L IST(ALL)
113 DATA TR AN ID / ' 0000000000 ' /
11 4 * * INVOKE
115 C$ LIST(ALL=0)
125 C$ L IST(ALL)
126 CALL D M L I N V (0 0 0 2 , D B F 0 0 0 1 , 1 0 H R E L A T I O N , 1 0 H ,
127 +10H ,0"76710464332261536703")
128 CALL DMLDBST(STATBLK,11)
129 0PEN(5,FILE=' INTRAN',STATUS='0LD' ,ACCESS='SEQUENTIAL')
130 OPEN(2,FILE=»RESTART')
1 3 1 1 0 PRINT*, ' ENTER: INITIAL, RESTART, OR END'
132 READ*, OPTION
133 IF (OPTION .EQ. ' IN IT IAL ') THEN
1 3 4 * * ASSIGNID (RESTID,ERR=50)
135 CALL D M L G T I D (R E S T I D , * 5 0)
136 W R I T E (2 , ' (A 1 0) ') R E S T I D
137 CLOSE(2)
138 GO TO 25
139 ELSE IF (OPTION .EQ. 'RESTART') THEN
140 READ(2 , ' (A10) ') RESTID
1 4 1 * * FINDTRAN (RESTID,TRANID,ERR=50)
142 CALL DMLFIND(RESTID ,TRANID , *50)
143 I F (T R A N I D . E Q . ' * * * * * * * * * * «) T H E N
144 PRINT*, ' RESTART UNSUCCESSFUL OR UNNECESSARY'
145 GO TO 60
146 ELSE
1 4 7 1 5 READ (5,*,ERR=60,END=60) INID,INSTID,INMJR,NUM
148 DO 20 II=1,NUM
1 4 9 2 0 READ (5,*,ERR=60,END=60) IDENT,COURS,GRADE,
150 CODE,DATE,UNITS
151 IF (INID .EQ. TRANID) THEN
152 GO TO 25
153 ELSE
154 GO TO 15
155 END IF
156 END IF
157 ELSE IF (OPTION .EQ. 'END') THEN
158 60 TO 60
159 ELSE
160 GO TO 10
161 END IF
162 C
163 C BEGIN DATA BASE PROCESSING
164 C
1 6 5 * * PRIVACY (CFILE,PRIVACY='XX99')
1 6 6 2 5 CALL DMLPRV(1,1 ,0 ,0002,
167 +0"60 V X X 9 9 " , " " , " ")
1 6 8 * * OPEN (SFILE,M0DE=IO,ERR=50)
169 CALL DMLOPN(DBF0001,0001,2HI0,*50)
1 7 0 * * OPEN (CFILE,MODE=IO,ERR=50)
171 C
172 C MAIN LOOP BEGINS. THIS READS AND PROCESSES FILE INTRAN.
173 C
174 CALL DMLOPN(DBF0002,0002,2HI0,*50)
175 DO 35 JJ=1,9999
176 READ (5,*,ERR=45,END=55) TRANID, INSTID,INMJR,NUM
1 7 7 * * BEGINTRAN (TRANID,ERR=45)
178 CALL D M L B E G (T R A N I D , * 4 5)
179 ST ID==INSTID
1 8 0 * * READ (SFILE,KEY=STID,ERR=45)
181 CALL DMLRDK(DBF0001,0001,00001,0001,1,0011,0,0000,00,
182 +STID , * 4 5)

Figure 5-10. Program TRANPRG (Sheet 3 of 5)

60483500 B 5-25 •

183
184 **
185
186
187
188
189
190 **
191 30
192 **
193
194
195
196 35
197 45
198 50
199 **
200
201 55
202 **
203
204 **
205
206 **
207 60
208
209 90
210 92
211 98
212

INMJR=MAJ0R
REWRITE (SFILE,ERR=45)
CALL DMLREW(DBF0001,0,0001,00001 ,*45)
CSTID=STID
DO 30, I I=1,NUM
READ (5,*,ERR=45,END=45) IDENT,COURS,GRADE,

X C O D E , D A T E , U N I T S
WRITE (CFILE,ERR=45)
CALL DMLWRT(DBF0002,0 ,0002,00001,*45)
COMMITTRAN (ERR=45)

MAIN LOOP ENDS.

CALL DMLCMT(*45)
PRINT*, ' TRANSACTION ERROR, TRANID = ', TRANID
PRINT 98, STATBLK(1),STATBLK(2),STATBLK(3)
DROPTRAN
CALL DMLDRP
PRINT*, 'DATA BASE PROCESSING COMPLETED'
CLOSE (SFILE)
CALL DMLCLS(DBF0001,0001)
CLOSE (CFILE)
CALL DMLCLS(DBF0002,0002)
TERMINATE
CALL DMLEND
CLOSE (5,STATUS='DELETE')
FORMAT (A10,A11,A20,I1)
FORMAT (A14,A6,F3.1 ,A1,A8, I1)
FORMAT (1X, 'STATUS BLOCK'/1X,04,2X,I5,2X,A10)
END

■"*^\

-VARIABLE MAP—(LO=A)
-NAME ADDRESS—BLOCK PROPERTIES- -TYPE—

CODE OB /D0002AB/
COURS 2B /DB0002/
CSTID 1B /DB0002/
DATE OB /D0002AB/
DBA0001 706B
DBF0001 16B /DBOOOO/
DBF0002 67B /DBOOOO/
DBI0001 OB /DB0001/ EQV
DB10002 OB /DB0002/ EQV
DBN0001 134B /DBOOOO/
DBREALM OB /DBOOOO/
DBRELST 10B /DBOOOO/
DBRUID 7B /DBOOOO/
DBR0001 12B /DBOOOO/
DBR0002 63B /DBOOOO/
DBSCNAM 4B /DBOOOO/
DBSTAT 3B /DBOOOO/
DBS0001 15B /DBOOOO/
DBS0002 66B /DBOOOO/
DBT0001 61B /DBOOOO/
DBT0002 132B /DBOOOO/
GRADE OB /D0002AA/
IDENT OB /DB0002/ EQV
I I 712B
INID 700B
INMJR 703B
INSTID 701B
JJ 714B
MAJOR 1B /DB0001/
NUM 711B
OPTION 70 5B
RESTID 676B
STATELK 663B
STID OB /DB0001/ EQV
TRANID 677B
UNITS OB /D 0002AC/

CHAR*1
CHAR*6
CHAR*11
CHAR*8
INTEGER
INTEGER
INTEGER
CHAR*1
CHAR*1
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
CHAR*14
INTEGER
CHAR*10
CHAR*20
CHAR*11
INTEGER
CHAR*20
INTEGER
CHAR*7
CHAR*10
INTEGER
CHAR*11
CHAR*10
INTEGER

-SIZE

3
35
35

11

Figure 5-10. Program TRANPRG (Sheet 4 o f 5)

• 5 - 2 6 60483500 B

•PROCEDURES—(LO=A)
NAME -TYPE —ARGS CLASS

DMLBEG SUBROUTINE
DMLCLS SUBROUTINE
DMLCMT SUBROUTINE
DMLDBST SUBROUTINE
DMLDRP SUBROUTINE
DMLEND SUBROUTINE
DMLFIND SUBROUTINE
DMLGTID SUBROUTINE
DMLINV SUBROUTINE
DMLOPN SUBROUTINE
DMLPRV SUBROUTINE
DMLRDK 11 SUBROUTINE
DMLREW SUBROUTINE
DMLWRT SUBROUTINE
LOCF GENERIC INTRINSIC

-STATEMENT LABELS—(LO=A)
-LABEL-ADDRESS PROPERTIES DEF

10 46B 131
15 112B 147
20 INACTIVE DO-TERM 149
25 146B 166
30 INACTIVE DO-TERM 191
35 INACTIVE DO-TERM 196
45 255B 197
50 257B 198
55 263B 201
60 271B 207
90 345B FORMAT 209
92 350B FORMAT 210
98 354B FORMAT 211

-ENTRY POINTS—(LO=A)
-NAME ADDRESS—ARGS

TRANPRG 5B

-I /O UNITS—(LO=A)
-NAME PROPERTIES-

TAPE 2
TAPE5

AUX/FMT/SEQ
AUX/FMT/SEQ

—STATIST ICS—

PROGRAM-UNIT LENGTH
CM LABELLED COMMON LENGTH
CM STORAGE USED
COMPILE TIME

7 1 7 B = 4 6 3
1 5 2 B = 1 0 6

63600B = 26496
0.185 SECONDS

Ou tpu t and I n t e rac t i ve Response F rom P rog ram Execu t i on

ENTER: INITIAL, RESTART, OR END
? ' i n i t i a l '
DATA BASE PROCESSING COMPLETED

Figure 5-10. Program TRANPRG (Sheet 5 of 5)

60483500 B 5-27 •

File Description With Corresponding Read Statements

A group of data items occuring NUM times

TRANID
(CHAR 10)

INSTID
(CHAR 11)

INMJR
(CHAR 20)

NUM
(INT 1)

IDENT
(CHAR 14)

COURS
(CHAR 6)

GRADE
(REAL 3)

CODE
(CHAR 1)

DATE
(CHAR 8)

UNITS
(INT 1)

READ (5,*,ERR=45,END=55)
TRANID,INSTID,INMJR,NUM

READ (5,*,ERR=45,END=45)
IDENT,COURS,GRADE,CODE,DATE,UNITS

Data

•A000000001'
•100-22-5860
'100-22-5860
'100-22-5860
'A000000002'
•122-13-6704
•122-13-6705-
•A000000003'
•687-14-2100
•687-14-2100

•100-22-5860'
■05' 'PSY136'
-06' 'BUS001'
-07' 'PSY003'
•122-13-6704'
■03' 'BUS017'
-04' 'PSY003'
■687-14-2100'
■05' 'PSY002'
-06' 'BUS017'

•PSYCHOLOGY' 3
4.0 'C '9/30/80
3.0 'C1 '9/30/80
3.5 'C '9/30/80

•BUSINESS1 2
4.0 'C '9/30/80
3.0 'C "9/30/80

'BIOLOG' 2
4.0 'C '9/30/80
3.5 'C '9/30/80

Figure 5-11. Input File INTRAN and File Description for Program TRANPRG

• 5-28 60483500 B

y ^ ^ V

Ul CO QC I- IH

J I U I H h
o t - z t o

C O O Z
a u i s o n
z > C O I -
4 4 U l Z C O

CO CO UJ Ul
C O Z X h -
U l O 4 1 -
C t 4 X
4 U l O X •
Q C Q C U l C t
c o a c o u i

1— IH 4 CO •
1 — C O O C Z b .
Z QC h- Ul Ul O
U l IH z > CO U l
a u . u i <
3 c t t n a c
h - U J 3 U l I H O
c o x I - x u .

h- CO 1- U.
- J O C O *-\
_ | U l C O U J * £ t - «— •'N
4 • X 1 - O " t - K l T- U l

CO 1- Z _J Ul x * * -It COUl C O U l I H I H X X I _ J C t 4
CO Ct to Z OS 1- o - 1 4 •H OS> 4 4 U l C L Z CO Z a u i
4 u i o c x 3 x : 1 - IH _ j >O O C U l 3 C t - 1 4 u - O 4Z > Z U l C O l -
I H E 4 4 - 1 1 - CO QC OC 4

4 1 1 - 1 4 U l U l E
E o c - I c t t n u . i - QC 1- 1- Ul4 C O 4 I H U l C O U l O O X IIOC O 3 1 - U l CO 4 4 O —1CO QC Ct \~ 4 X u. UJ OC QC CO
o O . H Z J t - O 1 - 4 4 0 0o c > U l 3 Z X X 3 I HCL CO IH Ct O Ct Ct

IH Ct 3 -1 4 OC
X Z h - 4 U J O
1- IH CO O QC 3

I H O O CO U .

CM
o

< ~ . o

II Ulx > - r _
x \ o o I - u j o— i 4 o
C D > ~ ^ • . - » 4 ^ •
I — W O O © O Q C O O
4 o c i n i n u j • c o m u i
I - C L I I I I ■ t - + | | .
C O X Q C O S - I Q C -
y u i o c o c ^ i - . < a ^ wI - - J U l U l K l Z U I I - U l r o U J
W H X K V U l t O O X * - * > -
C Q U . U l 1 1 1 ^ C t * t — U l V £ _
« 0 _ J J J 0 3 (I — I — I I I
J ^ H H C D i h l l l r . I H O D J

. . E > - u - u . H O C O A + 4 u . l - 4U J O O o O 4 I I t l 4 Z I - 0 4 Z ~
5 $. S ^ ^ 1 - J O K I I O U L W I - H U . U .
p j > z a « c h o z i - h o u i l i u h h
> J h u j < v o i - o w a < z * - > t n c t
Z 4 0 C C L U I U . H O - I U . Z U I l l - _ J Z
• H O O - O O S M Z I - O l H U I Q C M U l U J

X O
-J X CO

£ " x ~o r - -
I - T - O

X 4 Z

x x 3
C M X

X X
CM CM
I H Xx i n
X M

- ^ C M X
X X

- K l C M
x t a xo x ino x H

1 CM

O - I
4

• I -
c r o

Z 4x * I -
u . O

3 0 0 X X
O l m C M
Z C O I H x
• h 3 x i n

« H X H
O X - > - _ l 4 C M X
• H X H C O I - X X
C t O - • 0 , I - C O >■* C MX O E 4 - 0 X o .: u i u i h - x x o u i

3 • - C O X X t - _ 1
O X t - t - 4 M U l- > - I O X O x * U - I -

< M 4 * - * ^ O O 4
I- 4 IH O I- I- 4Z E U- I- Z Z E
H K w I H H H Q C
O C o u . o o c o c ©
CL U. IH CD CL CL U.

U l I H O
o o a c u
o o s a a >

o o o o o o o o O O O
< « i n < 0

m
U . f ~ sp I I oC > I H■•-» to _J ^ _i

■M C E ^ v x i - c o - o
C C U 0 I C 0 C 0 3 E C
V E p h h o o o
E 4) (0 - I _ J _ l I I u
a i u + j e o t o E f fl 4 1
f n i i n t o n a h « _
C 0 - M ~ | | | | _ | i
f > I I U I Z D H u h -
t » C D O C O x » | — o

o c o c 4 x / m u j • i
. Q U J 4 I - - J Z C O O - 0o CO I - C t t o c- l D O < (fl U . J J U l

60483500 A 5-7

CO t - 4 O OS
U l co oe i- • H
1 - oc CD
4 I H O C O 1 -
- 1 U . OC Ul f ^
3 C L 3 U l
o U l
- 1 U l M 1 -
4 1- X 1-
O co 1- Zo COz
C t U l X O I H \̂z > t n 1- ^̂4 4

CO
Ul z
CO Ul

00
U l Ul CM «-N O

CO
U I C t

z X4 1- 1- C O o
4 r -

«*
CMc t QS <0 " x

4
OS
t o

U l
OS

o x
U l

Ct CO
C t
U l

U l o
> K l
4 « *

o y-m* o
o zm ui■k T 1 -

t -
1—
CO

M 4
OS

COz U -
X T -o o I H

X
xcoo 1 -

COz QC 1 - U l U l r - r - CM X s - n
U lo I H

U .
z >
U l 4

CO U l X K l
T - O / x r \ b X O C t3

1 - U l
C t
3 U l

CO
M

OSo O T -
O K l

1—
v— " l

r - O
O r - U l

r -
Oo

I H
C t0 0

1 -
1 — X
C O t -

u . O s f x > - O O = _ J
K l- J

Urno CO /̂ u . r -
O D i n

x:
- i

o o
4 O " x

O O
X

1- U l
C t—1

4
U l C O U l X I «— T - *-* ca m OD /̂ /̂ .̂• X 1 — T— K) T - U l X K I 1 - I H o o o o a OS o o

U l
CO

CO
C t

CO
U lt o

1— Z
I H

Z O S

—1
M
1 -

U l
Xo X t

- J
-1
4 I H

CO
4
QC

r - S 4
O O i -
O X C O

OS
Q .

X

tn o m o ui
I I U - I I o •

K f fl t C U .
T -

CO+ m oII o
I V u _

U l U l o z
CO ■*«»
O - 1

4
• 1 -

Q) O
U l 1 -

• I I
- J

Z 4
x ^ l -
U . O
M I -

>
4
C tz
M

U l
QC

QC
U l

U l C L
X
3 C t

X t
- 1

CD
1 -
4 U .

C t
- 1o

U l>4 *■■% 1 -
oo

U l

I H

t -

>
oc <a
U l x ^

X Z

ac ax ^
U l C t K l

1-z
U l

U l
CO

1-o
QC
U l

ffia K >
x ^

CO
U l>- U l

e 3 U l
- 1

1—
CO OC QC II II, I H

0 0
o

U .
O

oc
0. U l 0 .-1 o U J C t x t

- 1 O S - 1 O 3
1-(1 U l_| C t

oc X £
_ l II

E4
QC
CO
ooc
C L

«fc I H U l UJ 3£. - 1 - 1 Z - 1 - 1 - J - 1 - j • H - J H J O 1 - U l t— _ l I H _ l 00 _ J I—o c — I
C D 4
O 3
Q C O

C t t n
I H U l

1 -
1 - 4

U .

U J
X

1—
CO

u .

QC
U l
CO
U l

1—o
4
QC

t - U l
O X
4 O
QC CO

- J - J
4 4

1 - r -

- J - J
I I U l 4 4

J S C w w
4 O r - r -

C t

-1 -1 VACY L DM N(CF
C t

- 1 D(CF L DM STATI

O C O
II II

- J C t
4 I H

C t
4oc
t o

+ 4
Z 1-II O
Z 1 —

u.
I H

U .
O

_ i

I -
4
1-
0 0 u_ U l

CO

U l
HH

U .
u . I—I Z — 1 •— 4 C O 00 CO > C O C O -1 X -1 I H -J "O U l -1 < j « l- ca C t 4 — 1 CO> U l 3 X 3 • H • H I H Z M I H 4 O OC 0 . U l 4 U . II o - J I i . U l u . _ l

U l
CO
I H

• Ha O O
3 -1

ca
OS

I H CO —1 —1 U . ▶H - 1 _J O r -+ 0 . C C O H 1 - o I H U l OC CJ I H U l
X z 1- 4 U l
1- C O o O S 3

•It C A M vt vt -Ko o O o o o o o o -it ■It ■It T— CM

^ ^ ^ ^ ^ m m m <) ' 0 < o ^ ^ « » o ^ ^ | x . i ^ i v | x , i > . i > . i x . i > . t x) o o c o « c o c » c o c c c o S

5-8 60483500 A

u i o s - j q s u i q s u j o c - I1 - 4 4 4 1 - 4 1 - 4 4Z X U I X Z X Z X U I
H H o a c o H H O H H o a c

O
X K IX 4

C M X
X X

CM CM
* - * X

x m
O X HH

-«. CM X
r - U l X X

• O - 1 • K l C M
« * H HH x t o x r ~u . u. o x i n

X O © X H H
-J X CO H - -1 CM X
4 K I C O X X
1 - X < x a. m cm
O r - - CO HH X
1 - r - O l - t 3 x mX 4 Z I - X H Ha x - >- 4 C M X u .
M X 1 - CO 1 - X X OD
C t o • CL H- CO «* CM C t
- J X G C - O x%̂
O : u i U l l - x x O U l CO c to • 0 0 X X * - - 1 -1x r *- «- 4 HH U l U J
m ^ _ j X O >.* 11. -1 1- - 1
C M 4 T - <0
. r - z 1- 1 3
1- 4 HH t - 1- U J t ^
z E i i - 1 - CO -1 _ lnn ae ~ t - t HH QC -1 OC J O
S O U . o as OS - J U l 4 Z
0. U. HH CO CL a. u . 1 - o u i

m o O O O
CM Kl •* i n - o ■It

» » 4 ^ « .
O 4 r -O r - OO O OO O O
CO O CO
c t a a

CQCQCQGQOQCQGOCQCQ
O ^ O O I x - m t - T - O
» 0 r - « - t 1 - O C M

J - X t t -O - I ZO - I U I I - O f fi U J - l0 4 A Z H H I — o 4t- Z 4 UJ A 4 3 H-
i i i h k o j i - i - o
O U . C O t H Z O C O C O i -

0 C O S a C Q C Q S O S Q S Q S
■O U I r - U I U I U I U I U I U I U I
* C D * C D t D t D C D C D C D C Da s u i a c u i u i u i u i u i u j u j
4 I - 4 H I - I - I - H - I - I -

x:
/ x O
4 O

GO I
4 I
hh Ul

t - 0 * - 0 0 0 0 0 0 0o o o o o o o o o oo o o o o o o o o oo o o o o o o o o o
f fi O O O D C Q G D O D C D C Q C Q C O
c t c t c t c t c t c t c t a a c t

COGDCOCQGQCQCDGDCOCO
c M m o o o i x . T - « 3 P K i « d F

U I O O - I C 0 0 0 4 H O
C 0 0 0 4 — I H H 0 Z 4 0
O S O O U I U I 3 0 0 I — O
3 U - H H O C O S a C O C C O C O C O
O f fi C D C O C Q O O C O C O O O C Oo a a c t c t c t c t c t c t c t

1 U l U l U l1 z Z O
1 H H t - t t - t t - t1 1 - t - 1 - t n1 3o o t - t
O Q C QC QC ac
4 O D oa t -- 1 3
L) C O CO CO t - t

x* CL
I > -
I I -

Ul(J Ul
O EQC 4
O- ZI I
I

O |x. t» CM
O O O O

1 z1 C L OC C t
U J © a. oc

m co ca ca
O N N « t
CM CM m CM

1 U l U l U l U l1 z z z z
1 H H HH HH IH1 1 - \ - t ~ t -1 3 3 3 3n o O O O
O O S OS OS OS4 m 00 CO CO- 1 3 3 3 3

o c o
1
1
1

CO CO CO

1
1
1

C O C M CM O "O

4 U l
II CLO O OS
-J OS
x* CL

1 1
u .

1 1
CO 1
- 1 1
U l 1
CO CO 00
4 C O o m •* «*
- 1 U l i n i n * -

c o c o a >
- I f fl Z Z
O Ct Ul HH

ct a a ct

O O m o
*- CM CM IO

60483500 A 5-9

3 *COCA AS COCANIACM

?£8
S o

« - O

I -1*x tn< to X z

4? t - ocoxZ E Ax * I Ul O Ul
I C O -I O (Oi <o

t o U l 1 - t O U l
I - O S HH UJ Ul Ez ca CO Z J CO w■H a 3 - 1 4 1 -O 4 IH 1 Ul OSas co out0- I Ul »-I to CO 4 4 I - - I

05 -J CO HH>- I HH
QC UJ I - C O C L
fc *: «a O E E Ea s o o oZ 4 I -Ul z
! '

HH coII
CL CO COO

8 8
C O l >m t o
C M « *
C M S f
I I

O O
O C M

«■»O
IX.■O

COl >m CM

Kl■*O
SO

IX
Kl

CMOCM r -
CM

Kl K>
Kl

<om «* 00
CMr—

CM
CMr - CM

i>-o |X-3 CM
Klmm

CO
rx.

IX,8

tt l

i
e

<0i

5-10 60483500 A

/#SS\

/fpS**v

■M I I 0 0
C > * *■H< C U - J / - » - 1■H» e x> xi— co TJ

c 91 C U C O C O 3 E l _
01 + J H H H H © C t
f = CU C O - 1 - 1 - 1 I I CJ
CD -H» • M C O C O E C O CU

• H » to CO CO CO Ct HH l _
CO •P x * I I l l - l

* J to U I X O H w <♦-
CA

OS
O O W W I -
H ! 4 v i n U Ia U l 4 t - _ l Z C O ■Do CO X 1 - E H O CO-» o 4 a u . _ J - 1 UJ

E O S
CO
U l C t x t
C t
4 4 O Ul
ac OS oct o U l OD

CO CO
CO t ^ - J
1 - U l ^̂z a X QC rx.

X K lt - t 4 1 - 1 -
ac U l X 4CL OS 1 - C M X

X X<=» t - CM CMz CO ec OS CO * - i X4 oc o x n x mt - t I L X HHz u_ U l " X I X . x - f M Xo OS 1— x x l - l X XHH U l CO * " • o - K l C M
1— - 1 U l x% l - l ■* <-» 1- X t © X
4 1 - —1 1 - T — I I u . o o x m
—1 II ac l - l x f x . O O X H HUJ x > - OS U l X I I t o —J CM XQC x t UJ Ct tO Ct f fi x x

O OS >- X X x x - 1 l - l 4 X Z x > m cm>- <o O oa r - oa as t- ui o CO HH X
00 r - t u r - X - t - HH HH C O « - x • 3 x mK l X X U l HH OS O "O 1- X 4 O U l x t 1— X HH
CO 1 - Ul vc X i t - 1 - a. m rx. co o x m z - 1 4 C M XU l ** OO 3 - 1 U l oo II K l II H X I I • 00 I - x x

I— «J- Ul oa - 1 U l OS >• 1- O OS x> 1— tn -4- (si4 U l 1 — -1 1 - 4 U l t - -i as xi- U l C t U l co xos rx - O x-1 ac o —1 CO OS co t - t Ul -4- x t t - t O O U l x x 1 - X X O x - *U l CM t - *̂ 00 u . t - >-" x x v oo X X r - r -as T — u . 00 as T — oo UJ X * - » - _ l «- «- 4 —1 U l4 >- U l - J k x -1 CM - J II x t O xx _| as m o v x U J 1—E QC Ct CD —1 as 1 - U l >- UJ U l >- UJ C M U J t - t - -o ac x>4 CO HH U l U l C t OS ac Ul H O S 4 1 - x x t_OS l-< CO 4 X t * - t II V X xt t - 4 * - " t - © t - 4 U l HHCO QC 1— Ul t - U l as CO - 1 • > Z C t C t Ul CO z E e» co i- E l A Eo CL 1 - 4 0 0 > - J t - t U l 1 ^ 4 > K S HH OS 4 xx t-i O S o O S o CUOS U l O UJ Z X 3 Z 4 O S C L H U l 4 u . ae o ui u. o oc © - 1 U l z t_C l CO
HH

C t
3

- 1 3
- j a

HH CO t-* 0 . O CO OS CO H H a. u. ac hh co 0 . U . C J 1 - U l
X 1 - O U l
1 - oo u. co

m o m o o o T3co o CJ CJ CJ T - «- CM CM m " O i x . U l

60483500 A 5-11

as caO 414. UlE QC
COUl C t Ct Xt
C t Z 44 4 O UlOS OS o asCO Ul 00CO COCO l - t _JH ui oZ a X OSHH 1- 1-OS UlOl oc • oca 1- C tz oo oc oc4 oc o o

* - t o u.Zo u_ Ul
OS 1-

t - t Ul 00

Ul Z 4
o os >->- <« o OD

ffi |x. U.
K l C t

t n I t - U l
A x t C O 3
4 x t U l ©
I I I I H Jo e o - I

CM 4 ©
E r - U L4 > .as a oo -i
C O H H 4
o C t * - tae I- ui I-
a . z a zuj © ui
co a _ i oH 3 J O
X I - o Ul

r - * Z
r- >- oxx Ul HH
ae ae h-I UJ 4
00 > -I
I - 4 Ul
4 CO OC xx
I - x x o
CO OC 4 II /n

U l E J J
05 h - U l - J - I
U l O X 4 4
(O 4 O x x n x
Ul OS CO I- l-
I- 4 00 CO CO
Z X 3 M H H
H U U J J

Z K l
O O
*"• r>-I - O
4 K l
- J m
u i r -
o c o x x
X CM
O C M O
« - K > O

X K I X
« - x t x x X
0 « 0 r -
O x t T - t lO O x>-
U . r 2 UCO IX. -I 4Ct >o CO >

xrx I- HH
cm = 4 aso o i - a .
o x o o x
O x x U l

O =
o «

U l 4 4
Xt xx xxO I - I -
> CO CO

> oas oa. x- j x
E =

- j - i 5
- I X - I H H4 O 4 acO r- O CL

- J O
- I O
4 =
o O+

o -x> oo
O ZnO
m 00 ix.
asS?ae as xt
ui z xt

x a . i
t - o o
-I -J CM
U l E t -os a -
Z - J t a

S°xm r -
M oas o

oc ou i x
x « -ca o

• H OI - o
CO z
II CO
> - O x x
U l w A
a e x x h h

X - l J -
r- OC O CO
J J i n I I
U J E * > -Q S A X U I
X X , - v x .
C t _) O U l
4 - J O >
U J 4 0 4
O C o C O+

n ca
r - i 4
n os
r-i to

ae o
ui CM>
4 H -
OO Zxx i - f
U. OS

• t - O
x t x x X I -
U . O » -

X | x . O O
X I I O t D
K l C t OX Z Xxx
r- Ul *- O
r - x O •4 O O Ul

x m O Z
X I I z •
O OC OD xx

X OS Ct IX.
O I l l w w
X X _ l x x
r - v - O C - Ix x - I - I f fi

U l E h
I - OC C t 4
4 N X t -
E O - I C O
0 5 4 - J x x
O U l 4 U .
U. OS O HH

- Iffi
CO
3ae i-

_ J 4
00 I -
I- CO
4 -
I - x
CO X

O H 4I - Z E
•H OS

O OS Oto a. u.

x m
X 4

C M X
X X

Kl CM
© Xx m
X HH
CM

x x C t
x t C M x x
O X O S

XO xx CO
— j o u j u iUl -I I- -I
OS E 4 E« o z o

© - I O S - I C t
- I 4 U l 4 Z
O O I — O U l

O O O O O O ■g Vt Vt * Vt CA■jt O O Ht O O in o * in
r- CM * CM

» - c M K i x t i n « o r x . c o o o * - o o _
r - t - 0 0 0 6 « - * - « - T ^ < r - r - "S c 2 l i r ^ ^ ! * ! n ^ ^ c o o p T - c M K i x t m < o r x . c o o o < - c M K i x t m ' > o r x . o oN N I M N N N I M i n m i o M i A m i n f n m« - « - * - » - « - C M C M C M f M C M C M C M C M C M C M K » K » K I K I K » K I K I K I K I

5-12 60483500 A

a s o c o c o s o c Q C o c x t O T - a s T - a s
U I U I U I U J ! J J U I U I < - r M « - U I < - U ICOtOCOtOCOCOCO-K * * to * to
u i u j u i u i u j u i i i j o c a c a c u j a c u jI - 4 4 4 I - 4 H -

Z X X X Z X z
4 I - I - I - I - I -

r
aeo

4 o
I I - i

O m
- I

I t o
1 CO

O L U l
4 QC
E C t

C t
U l
- I
0 0
4
HH U l
ac SF
4 4>
1
1

Z
1

C M O O O O O O O C M t -
O O O O O O O O O O
O O O O O O O O O O
O O O O O O O O O O
f fi C Q O Q O D O Q C O C O O O C Q C Oa a a a a a a a a a

ZZ <O CM
O O9 °m o
Ct Ct

(9 0 D 0 Q C O C O f fi f fi G 0 m f fi 0 O f fl C Q m
0 ^ 0 0 | x > f M K J x * O v - x t T - 0 0K l < r - * - - O r x . - O

* - C M C M

C M t - E H r (M £ > - v x
0 0 - J C O A 0 0 4 U J _ I
0 0 4 - J M o o z i - o c a e a i O T0 O U I U I 3 0 0 O Z 0 U I H A I -
H Z K C C K K K M U - i X h h
m c o a o p c o m c a m A 4 4 i — i — z
a a a a a a a a h h e c o c o c / > _ o

x - o c o c o c o c o c o c a c o c
< - < O i - 0 0 U J U I U J < - U I U 1 U 1 U 1 U J
* * - K * C 0 C 0 t O * C O t D C D C D C D
a s o s o s a s u i u i u i Q S u i u i u j u i u i _ i
4 4 4 4 H - l - l - 4 h - l - l - l - t - « t
X X X X Z Z Z X Z Z Z Z Z U J

f f i " x . x , . Q) x « 1 . x « , x > . x < . x « . x « . - x » x > . « r
4 C M C M 4 0 0 r - 0 0 0 0 0 4
C M O O C M O O O O O O O O C M
O O O O O O O O O O O O O
r^ n r~i r-k *-x x- i xx *—» ^x ^x ^x *-» «

I O w w w U J w U J U J U J
_ _ - J O O O O O O O O O O
o c o o o o f fi f fi o o o o o D m o o o o" " " ~ ~ " — X X X X X V X V ^ v X V * x A —Ct a ct a a a a a a a a a a

o o c D C O c a c o c o c o c a c o c o f fi c o o Q a]
O N t - 0 « « N O M W ^ T - (V I Or x , t - % o » - o > o i o

CM CM CM
_ O O O O h - O O O OC O A 0 0 0 0 4 0 0 0 0 U I

U I Q S H H U I O O O O I — o o o o a0 3 t - l - < U . I L H W W W I - l - <
o o c o 4 c a o 3 m f fi f fi c D C O m c o a c
O O O A A A A A A A A A A C D

l - l - I - C O
3 3 3 Z
O O O n
as as ac as
ffi 00 CO h-
3 3 3 Z
CO 00 CO HH

u- O x- in
U J K l K l K l
Ct x— x— x—
I
I
I
I

a. as as u.

ffi co oaki rx. m
O K l O

O O Om « O N

3 3 3 3 3o © o © ©
as os as as a:
ffi 00 CO CO 00
3 3 3 3 3
CO CO CO CO CO

CM CM O -O xt

xx OS
4 U l
i i a .o ©

I I I I I I U l
CO

OD 0D COx- CM o rx.
o m o mKl r- rx Oo •o o

1 1 -
CO 1
U l Ioc ■
3 t OS h - oc
C t | CO oo ca > z
U l 1 - 1 O D Z Z CL
o U l O U l H H O
O E - I _J -1 - 1 _ l
OC 4 E E E Ea. z
l I
I

a a A A

-1 OS x x C O
x x Q .
1 1
1 1

U L 4 C D
I I O C
O 4

C O 1 -1 1
_ l 1 ■It x x |
U l 1 CO CO 1 CO
0 0 C O u . CO CO UL 1 CO
4 C O U l rx xt ui C O U l
- 1 U l OS " O K l O S 1- OC

OS T— Z A
1 - A fi C t
Z A O 4
U l 4 CL 1
U l - J m o m > - 1
t - U l f — x- CM CM O S U l
4 O D 1 - E
1 - 4 Z 4
CO -J
1 1

U J z
1 1
1

I - ©CO EZ E AUl O Ul

I H U l U l E
Z _J CO »H
3 - 1 4 1 -
I Ul OS

E 0 0 O U l
4 4 I - . J
05 -I CO hh
C O 0 .
© E E E
O C O O o
CL CO CO O

60483500 A 5-13

x t

5-14 60483500 A

O O
U J U . _ J
X O S 4 •
h - U l O I -

C L Z
Z A C O U l

E Z H H A

m
00- u I Ic >

4 J O J — I x x _ |
■M C H x x X h - O O T 3
C (U < U 0 0 0 D 3 E I -
t U H - H > > H H H O A O
£ t u 1 0 - J - J _ l | | u
O l J x V W (O £ C D 9 1
■m t o t o c o c o a h h t _
C O + J x ^ | | | | _ J j
4-> CO Ul X 00 HH XX H-
t O C O O C O x x I — ©

a s a c 4 x x u t u i • i
H U K K - J 2 W O T 3
O C O X H E I - A C D C
- 3 3 0 4 A U . _ J _ J u i

U l
X C O A O C -1 H
1 - U l U l C O O 4 C Ol - Z © x t 1 -
A 4 f t O C O U l
Z H H u- a. CM t - X
4 O U l 1-

O A C O
K l
4

CO CO f t—̂ L U
Z C O t n x
f t 4 f t t - IX . co r v l
1— CO UJ x x % >£
CL CM A E CM CM
l - t - I Z • - 1 4 HH V.as ui 3 C O U l Z ffi x mo oc O E f t f t t - tt n O U l I i . U l I M %.CO z O 1 - t - X x x
3 © 4 f t Z U l 1 - s x CM , p K l CMCO HH U l U J IX . x t

1— U j < D O S X x— I I X X CO x m
C O 4 - J Z X 1 - x— QC CD u . HH
U l — 1 H H f t 1 - 1 - f t as r x —1 C M
1 — U l u . t - OO ae U l - J CD X X4 as - i OS - 1 K l CM
OS UJ 1 - f - to ■. OS + 4 CO HHh- • a. z z i - f t U J 1 - x i n
0 0 • 1 - U J U l M O OS x t t - x x O K l x x I — HH

CO z > - z as - 1 - 1 ae 1- rx. »— t n 1 - x ~ t - - 1 4 C M
U l O 1— U l C O 4 - i CO 0 0 i i CM x x \ 0 0 t - X X
CO E f t © C O CO U l 0 0 OS OS >- x t Z U J t - 0 0 x t (M
OC Ul —1 o z 3 H i - t - as T - U l n O O O E
4 A f t O H H - 1 3 0 0 0 0 U l T— ae I I x t f t 4 1 - X f 3 x x
X aa 4 > 1 - 4 © 1 - v x ffi 1 - Z 0 0 x - C Mo E 4 0 0 CM rx. CM t n IT f t X O X T - 4 - 1 U l4 a . A X - J _l o - 1 rx. * - x 3 O O O U l 1—E ac 4 - 1 U l oc U l E O U l T - U l I I T— U l 1- «o O 0 0 as t c4 C O o 4 C O U l 4 h - U J U l I I QC OS 1 - I I 1 - 1— 2 Eas OC U l Z CO ae - 1 X X I I V . X HH co f t - J 1 - O 1 - U l HH
CO oc Ul 1 - as hh U l CO - 1 1 - x t OC 4 Z 1- z COo Q. i— Z 4 as 1 - OD - 1 1 - U l f t l - t 00 o 1 - H H OC f t OS QCas f t U l E ui a. 4 O a . t - U l 4 O U l o O C o as _ i U lC L tn oc A U l t - HH CO f t O 1 - tn O S 1 - -1 OQ as I - a . u. CD CL u . C J 1—f t 3 3 X fl A

X U l 1 - O as z
1- oc CO CO as 3 4

o o
O O O o o O O O f x . 0 0

60483500 A 5-15

A 4
Z f t4 O

©
CO CO
Z C O
f t 4
I -
CL CM
f t - I
05 Ul
O OS

U l U . - I
X O S 4 •I - U l O I -

C L Z
Z A C O U l
• H E Z f t C t

4 4 3
A O S _ J I -
Ul CO O 4 CO
Z O x t Hft ac x- © ui
U. CL CM I- X
U l
A CO

5 ©
CO ft
CO 4

I - U l
4 QC

Z > •
© t -
E M
U l - I
A f t
_ &E 4
4 O .
OC 4
CO O
O
QC Ul
OL I -

f t
tn ocf t 3x u ii- os

o E
O U l
O I -
4 HH
UJ CO
- I Z
f t f t
U . I -

4

I O
r x •
o co uix- a E

- I 4
A U l Z

M
U_ Ul

I- UlZ OS
3o too z
O HH
4 >

4
A X

U l C O 4
CO UJ

O - I 3t - 4 O
A A
4 - I U l
U l 4 I -
QS Ul Z

OS ft

A U l
3 X
» - o
CO CO

4 OD X X
l - x x
CO 4 II

E - 1
OS Ul - J
U l X
CO o X X

Ul CO 1 -i -eo co
Z 3 HH
MCO - 1

4 Ulxx Xt
t - o
CO >

x tas o
4 Otn x~
ac ix.
oa ox oo «-x- xt

X * -
J- Kl xxo m x -
O | x . t -
O K l Xu. xt ae
C0<O JA ^ f fi
CM : 4O O I -
O X t o
O x x

H - l - J 4
CO _1 X -I I-M 4 O 4 O
—I O t- O |-+

o -
x x O O
O Z x t
f x 0 0 t -
II A CM
OS xx |
OC OS *-
I t l Z r -

X Q . |
CM © IX.
- I _ J O
U l E r -
OS A -
x * I I
Z - J A
U l - J f t
OL 4 »-
O O CO

xx O
O Xrx. r-
I I oOS o
OS o
U l X

X r -
A O
M O
I - O
C O Z O
I I C O o

> - A x x x t
U l x x « - < oa e a e i t x t

\ _ l x x x -cm os o x- m n
_J -I h- XX |N. XX
U J E * Z I I r -
Q S A X O x x x xx x r H r H
A J O f - x x v x
4 - I O H H f fi O
U l 4 O 3 4 ©
O C O I - - I f fi

O O O O O O O O O

O XX
IX. «- xsS•It xxxco C M Xt- ae x xo o CM CMo o I H X
O f fi x m X Xo X f t «—x + xx CM X
CM X X X X
O x x CM - K l C M
O * - ae o xx x O x x CO o x m CO

O x C O U. O X H H
f x O 4
I I x - J

- J C M X
X C O X XOS CM - J K l m cm

OS O + CO HH X
U J o 1 - O 3 x m

X O x x K l ae 1 - X f t
t - U . x - 1 - - J 4 C M X COz m xx t - X X3 A Z U l CO xt CM N X
© xx o E O - O x OS
O 3 f t 1 - X X O xx CO
U l U h CO X X * - CM -1
4 O C f t x O x - x - < - 1 O U l U lx x " - 1 3 O O O N X Ul -J t - - J
U J E h - «o N X O 0 0 OC E
1— A | | 1 - t - x x A
M - I t - 4 © 1 - U l f t
O S - I 4 Z E h- z CO -1 - 1
3 - J 1 - f t QS f t QC O - 1 OC —1 A
U l 4 O ac o O OS - 1 4 U l 4 ZOS O h- CL U . t 9 0 . u. O O I - O U l

* o o * O* m o rx. 00 * O

Olc

* - C M K I x t i n O | x . 0 0 O O « - C M K I < O r x . 0 0 < 0 r x 0 0 O O*- ▼-«- x- O O O S 2 £ S / ^ x J i W ^ ! f ! S t : S o c ^ O T ~ c v , ' r t x t m < o r x . o o o Q T - c M K i x t^HDJCf™ ^^ ^ ^ MCMCMKl K IK I K IK I K1K I K IK lK l x t x t x t x t x t

aeo

x ^ ^ x »

5-16 60483500 A

/ffP^S
K l • * / x -

ac ac ac ac ac o ac x-
r - i - U J U J 1 1 1 U J U l K l U l C M « - m
* * C O C D C O C D C O * C D * * *o s o s u J u i u i u i u j _ i a c u i a c a s - J _ i o s
4 4 J - I - I - I - I - 4 4 I - 4 4 4 4 4X X Z Z Z Z Z U I X Z X X U I U J X
O O H H H H H H H H H H a S O H H O O O C O C O

> >a aUl Ul

X x X « . x s . x , x N , x H . x % ^ x v X . . X S , r f s» - C M 0 0 0 0 0 4 * - x - x - 4 r -O O O O O O O C M O O O I M OO O O O O O O O O o o o oo o o o o o o o o o o o of fi f fi c a c o c o f fi f fi o f fi o o o o o c oA A A A A A A A A A A A A

f fi o Q m c g m o f fi c o o o f fi c o m c o o a mO O x t O O r x t M O t - C M I x - O O O I x -
K l i - x - ■O x t < 0

t - C M x - E • - x - X t
O O O — I C O A O - J
0 0 0 4 - l H H O f fi U I - I
0 0 0 U J U I 3 0 O U I I - I - A 4
H H H H Z O S O C Q C O C C O E 4 4 H H I —
C Q f f i O f f i f f i C 0 f f i H H 4 l - » - h - O
A A A A A A A E Z C O C O C O H -

U l U l U l
z z z o
f t f t fi f t
f - t - t- tn
3 3 3 Z

CO O f t
CO ac OC OC OC
4 CO CO ax t-
- 1 3 Zo
1
1
1

CO CO CO HH

1
1
1

CO x t C M r -
CO
QC
4
1

ae
xx CJ
4 O
I I - I
O CO

0 .>- U l
K i m m K l K l C M I M ^ O l - t o

K l K l « -

asZ 3 as
a . u i _ j

UJ o as as u.
E -1 -1 -1 o
4 E E E O

a s a s a c a e o s o s a c a c a s Q e A A A _ lo * - o
(M r - T - U I U I U t U I U J U J U I U J U I U I
* * « C D C D C O C D C D C D C O C D C D C Oa s a s — l a e u i u i u i u i u i u j u j u i u i u j — j
4 4 4 4 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 4
X X U J X Z Z Z Z Z Z Z Z Z Z U J

ffi4
f t U lOC
4>11

■X. x,. «J x,. x«,xv,x«,x>.x>.x«.x̂ xsx>.«j
r N < r 0 0 0 0 0 0 0 0 0 4
O O C M o O O O O O O O O O C M
O O O O O O O O O O O O O O
O O O O O O O O O O O O O Oc o c o o c o c o c o c D c o c a c o f fi f fi n o
A A A A A A A A A A A A A A

f fi C Q C O C O f fi n C O f fi C O f fi f fi C Q f fi f fi G O
x t o o > o t n « o i x . m x t K i i n ' O T - t M O

x t i n * - > o * o * - ■« o < o k i c m

« - t - C M C M E t - N r - (M
0 0 0 0 4 1 - 0 0 0 0A C O 0 0 0 0 Z 4 0 0 0 0

a s H H a e > - o o o o o i - o o o oA I — © I — 4 U - U - O C C O C O C O C O I — I — 0 3
A C / > O l H f fi O D O O C O O O C O f fi C O C O O a 4
4 4 C Q O A A A A A A A A A A — J

Ul u i U l U lz z z z
f < fi f t f t
f - t - t - t -
3 3 3 3

CO O O O O
CO OS OS OS OC
4 co ca ffi ca u_ K l x t * o I X . T -—1 3 3 3 3 UJ K l K l K l K l x to

I
I
I
1

CO CO CO CO

CO
UJ
f t

i — x— x—

CO (V i l M O O
CO t -oc x x ac H- t -4
1
1

4
t l

O
UJa.o QC as

1
1

- 1 as
4 COX X I

4 1 II OC
I I 1 CO O 4

O 1 - 1 •It - 1 1
- 1 U l U l CO x x I
x x Q . CO CO u_ ffi OD DO 00 1 CO
1 > CO UJ m m o rx 1 CO
1 1— - 1 UJ as K l O x t o C O U l

CO 1 OS I— ac
U l 1 1 - Z A
OC 1 fi A
3 1 O C f - U l O 4
A 1 C O C O A > CL 1
U l 1 - J a z z U l -1 o o O Oo U l O A U l H H 1 - U l M3 IX. 0 0 O > - 1
O E - 1 - 1 - 1 - 1 00 ac uias 4 E E E E 1 - I - E
C L Z
1 1
1

A A A A oo
1

- I Z 4
U J z
1 1
1

rx o o corx. -o m a

I I I I I I U lco

%0 m o mcm cm rx, oO •<o o

I - otO E
Z E AUl O Ul
-J O CO

I I - A U l
I f t U l U l E

C O Z - J C O H H
o 3 - I 4 H
H H I U l Q S
I - E f fi O U l
C O 4 4 t - - I
f t O C — I C O f tt - c o a .4 © E E EI - a s o o o
C O Q . C O C O o
I
I

/fP^S.

60483500 A 5-17

■f 9. 91
> M

e x x x i — o o - aC U C O C O 3 E C -
< " S + - "▶ - < > H O A O
E S o - I J J I I o
" — ■H' CO CO E 00 CU
+ l ™ U I W M Q H { _<o *a xx n n _ j ,
4 J m L J I f fi H W s _
t o C O O C O x x | _ o

o c a c 4 x x t n u i • i
- Q U I 4 I - _ J Z O O O T >
o c o x i - e i - a c d c

- > 3 O 4 A U l _ I U I

A E
ft CO CO 4

X U l 1 - C O
■ UJ 1- oc z

t o - 1 Z f t U J U l
U l H H U l 3 E X
Z u - a c r u i j -
t - t O 3 U l H -
i— i— ac 4 u i
3 U l C O t - O C
O - 1 U l C O 3
O S H H U l Z C O
CO u- X HH Ul Z
3 1 — H - C O U l

X K)
X 4
C M X

C O Z 3 U l
f t f - O X O

U - Z C C h K -
O A H H f fi X XZ O C 3 t - Z CM CM

fl sui 3 a. co • hh co
3C O O 1 - z ^ t s in3 U . O U l Z 3 t o X HH1— X Ul 1— I M XU l 0 0 1 — E E t_> x XX H H c t U l 4 o oc Kl CM1 - U l H - 1 — O C Z

U J J < < U H O 0_ a s
o

O X
x in

A X
oo a _i x i— o t — 7i I I —1 X flUl O 4 1— 00 0C x x x s - _1 _! C M X\ — o o c l UJ 0 0 as o Z 4 CO X X CO f t X4 U l U l - J 4 U l in cm O N->

O X
x «—

1 - 1 -
Z 4
I t l V

a : x x o o o v x > - CO > 0 0 f t S 0 0
3 HH1— HH HH HH o as U l HH H - f t x mC O x x 1 — > U l OS 00 4 0C | x . IX, x x 1— X f t 00 0 0z u j m o z > u j as CO 1 - Q L I I I I - I CM X |— 0 0O h D Z H U I u. _ i HH co x as OS CO t ~ X X t - t1—

f t
E U l 0 0m J h a z Ula: C O E

1 - A 1 -
U l
_ i

QC
U l

as
U l

1-
4

co xt CM
O X x x

OS

PRINT 50,STUDi F0RMAT("0",9XiRETURN END

E A C L Z • Z f t co i - t s a 1— X O U l <cA E O C A 4 CO 1 - 00 u. U l U l U l 00 X v - _ J 111
4 E O C L f t C t C O 4 - 1 _ i x - 4 f t U l

E
4 O 4 U l
0C Z U l U l E as

fi
U l OS U l

_l xx
E > -

HH
U .

HH
L U oo

X ' u.o HH
h -
3
O
OC
CO
3
CO

UJ4
OS
t o
o
oc
a .

HIS PROG HEN AN I UBROUTIN ND COURS SUBSCHE RE REQUI

CD

CO
fl

4
1 -
4

U l X
C D O
uj co
1- CO
Z 3
HH 00

111as
o>z
f t

A O
4

_1 >
_ l f t
4 0 S
O OL

U la .
O

U l
OS

U .
HH

t -
o
t o

I -z
fl
o c
a .

t -
4
E
OS
ou-

H I
CO
O
_ lo

f t
Eas a
U l z1- Ul

C J
CO
CO
3
t o

U l
X So>zf t

a>
i_
i

* t -
1 - 3 t o 4 4 4

O O O O O O O O O
o o
|x- 00 i n Ul

/^3|Xjy

5-18 60483500 A

/f55\

A E
HH CO CO 4

X UJ 1— CO
• Ul 1- OC z

CO —1 z ft Ul Ul
U l h h U l 3 E X
Z U. A <3 UJ 1—
f t O 3 U l 1 —
I - i - a s 4 u i
3 U J C O 1 — O C
O — 1 U J C O 3
O C f t U l Z C O
CQ U- X HH Ul Z
3 h - 1 — C O U l
C O Z 3 U l

f t t - © X o
U - 2 C C I - I -
© A H H C O •

Z Q C 3 1 - Zu i 3 a . co • f t o
C O O 1 - Z E
3 u . O U l Z 3 E

1 — X U l O
U l C O 1 — E E O
X h h A U l 4
1 - U l 1 - 1 - O C Z

U l _ J 4 4 C O f t
W Q J l h O
Ul © 4 1- CO OC A , « t
1 — O O C L U J CO
4 U J U l O X X Z
OS xx CO O xx x- Z « - ©
|— HH HH M O OS UJ r - f t
C O x x 1 - > 111 O C xx <o
Z U J C O o Z > U l ae co
O t - 3 Z H H U J U . _ l f th- E U l C O U l CO E

HH U l - 1 1 - A Z Q C 1 - A
E a a . z • z f t 4 4 X X
A E O S A 4 C D h- xx
4 E © a . f t a z CO 4 I I

4 O 4 U l H H - J
E as z ui ui e as uj OC Ul - 1
4 tO HH Z CO Ul M ffi U l X
OC O H H O C X 3 CO o N Xt o qc z i- 3 o or co Ul CO 1—o O L 4 3 © C O U J f t 1- CO co
OS O O CO oc Z 3 f t
OL c o z a e 3 4

HH Ul CO A CO Ul h-
X X 3 Z O C 4
1 - 3 C O 4 4 4 A

f t t n - 1

I - ©
co >

o o o o o o o o o

CO xx
Z zo o
fi x -t n o X K I

X 4CO IX. CM Xf t o r x x x
E K l CM CMA CM | x f t X4 x t x i nx m f t x c o X f to rx. t — t - x » CM XT- I X CM x x X Z X X

X K I X O « - QC Kl CM s - i
T - K l X X C M O X O . ae O X CMO r - »- CM x mO K l II CM I I O - J X f tO m X > - O A O _ l _ i C M XU . O X t X Z O X X
0 0 O - J 4 CM U l X o m cm CMA - O ffi > X C M CO f t Xx m 1 - HH O O O O ^ x x mcm : 4 O S rx. IX. O ■» ae 1— X f to o H - a . ii i l I I O f t _ j C M X t l .o x c o oc ea OS U. 00 1 - X X CDa U l as as ca 1 - 0 0 xt CM

1 - —1 U J X X U l A O X> 0 0 f t O X Z X x x 1 - X O U J COz 0 0 U l ac O U J C L U l A U J 00 X x - - J - 1
HH a . X - J o -1 oc x - 4 HH O U l U J—1 —1 _ j X HH - J HH _J o o U . _l H- _ l
E E >■ z u . U . E U J *— C O E < rA A C J x o O A 1 - A Z

4 £ x x N X 1 - U l HH
- 1 —J - 1 O Z - 1 A _ J t - CO - J E _ J—J X —1 f t J - O U I J 4 - 1 f t OC —1 OC - J A4 O 4 OS Z O L 4 U l 4 u . ac o - I 4 U l 4 ZO r -+ (J a . o o+ ac o f t CO O l U .

T — ^ -
O | — O U l

O* * t ° o o O - I t* * * x - rx. oo T - *

« - C M K l x t m - O r x O O O O T - C M K l C O O O ' O l x . O O O O r - C M K l x t m ' O r x . o O O O
* - « — x - r - 0 0 0 0 O O O O O O O O O O O O O O O * - CM Kl xt m *o rx.

60483500 A 5-19

asxx CJ4 O
I I - IO CD

-J Ixx |

CL Ul4 OC
E A

-J I
CO I4 I
f t U J

4 ^

i

oc as os as os xt o o as «- as
U U J U J U J U I < - C M > O C M U I « - U I
CD CO to ID CO * * * * CD « CD
U I U I U I U I U J Q S O S Q S Q S U I O C U I
I - I - I - I - I - 4 4 4 4 I - 4 I -z z z z z x x x x z x z

0 .oae or
C L

1
1

U l

X .

1 o oo OO CM C M 4
1 o o o o o o o o o O x -ae o o o o o o o o o o oo o o o o o o o o o o oo m tn cd m trt tvi ffi CO 00 CO o

- i
CO

A A A A A A A A A A A

1
CO
CO

00 CD ffi CO CO CO
K i x t m o x - o

CO CO ffi
O xf CM

ffi CO COrx. x- oU l c - ' O ' O K i rx
OS T -
A
A
4
1 v- CM T- CM ae i—
1 »- oo o o er _i -1 z
1 4 O O O O t - U J o ffi Ul CO

U l t- oo o o z ui os o 1 - A 1 -
E CO CO CO t- 1— Ul E U l X 4 3 f t
4 00 CO 00 00 ffi A

A A A A A H H
4 O C O t- t- z

Z
1

Z CL CO CO CO 3

o s o s a e o c a s o s o s o c
■O O r - U J U I ^ - T - U I U I U J U J U J U J
* * * O C D * * C D C O C D C O C D C Dosaeasu iu iQCQCUiu iu iu iu i u i
4 4 4 1 — I — 4 4 I - I - I - I — I - I -
X X X Z Z X X Z Z Z Z Z z

a.o > >
OS <s a a
CL U l U l U l

S j : K 2 S j : £ . 0 o o o o oa o o o o o o o o o o o oo g o o o o o o o o o o oo o o o o o o o o o o o o
03 CQ CO CO CO CQ OOOOOOOOOO O
A A A A A A A A A A A A A

00 CO ffi 00 00 CO 00
CM O Kl m <© O O I

t - O
ffi ffi CO 00 ffi
O f x « - f M x tt - x - < 0

CM CM . r N E
0 0 0 0 - J C O A 0 0 4
0 0 0 0 4 - I M 0 0 Z

U I 0 0 0 0 U I U I 3 0 0 OAAu.t i .HH HHacacocacosco
H H © o f f i f f i f f i O O O Q f f i O O O Q f f i
O O A A A A A A A A A A

U l U l U lz z O Z
f t f t f t f t
3 -

f -
3

tn t-Z 3
CO f t ©
CO OS OS OS OS
4 CO ro i- eo
- 1 Z 3o

1
1
1

CO CO f t t n

1
1
1

COtoae
CO •o x ~ O

4
1
1
1
1
1
1
1

o
f toc

Ul Ul
CL>- Ul
1-
1
1
1
1

to

>
1 OS CO

UJ CL as u. 1-
E -1 - i o z
4 E sc O OS
Z A A -1 CL

3 I
A IUJ I
O UlO Eas 4
C L Z

! '

Ul Ul Ul Ul Ulz z z z z
3 3 3 3 3
© © O O Oas as oc oc oc
00 00 CO CO 00
3 3 3 3 3
CO CO CO CO CO

CM CM O -O xt

x t
CM

00 CM O CO
K l O m Ar r l M ZO
I I I I I I U J

COoo ffi caw o o o
X - x t O x t
CM t - | x . oO ■> o o

X X as 1 -
4 U l
II a.

O O OS
- 1 as xx CO
1
1

C l

1
11. 4 CO

II OS
O 4

CO _ l I
-1
Ul 1 C Om CO ffi 00 oo CO 1 C O
4 CO xt O <0 CM C O U l
- J Ul < r o o o 1- ocOS Z A
1 - f t A
Z A O 4t— U l

CO C O A > Z
-1 oo z z a. U l - 1 o o o o >- |A U l H H O 1 - U l x- IX. 00 O OS Ul-J —1 -1 -1 CO 1— Ei . E E E E
A A A A A oo

1
- 1
1

U l Z
1 1

I- o
CO E
Z E A
U l O U l
- I O CO

3
I - A U l
f t U J U l E
Z _1 CO f t
3 - I 4 H -i uj acE ffi O Ul4 4
QC COC O 0 .© E E Eas o o oa. co co o

5-20 60483500 A

Q S O S O S O S O S Q C x t O O r - O S
U I U I U I U I U I U l T - (M < 0 (M « - U I
C O C O C O C D t D C D * * * * + C Du i u i u i u i u i u i a c o s o c o c a s u iI - H - I - I - I - I - 4 4 4 4 4 I -Z X 3 S S S Z Z X X X X X X

/ t S ^ X y

CO <©
co rx-
M o
E K l
A CM
4 x tx m
O i x .
«- IX.

X K l
« - K l X X
O * - ■o
O K lo mCO U. "O f tz 0 0 o O K l

Sin" A « 0
x m X « -

CO CO c m : 1 -
1- CO o o Z 4
Z M O X U I
OS Ea. a N X 3 O

4 X X 1 -
Ul NX co
Z 4 II X X II X X f t
HH E - J - J -1 -1 - 1
1- UJ -1 - 1 - J -1 N X
3 X 4 U J 4 A 1- zo o N X as X X t - 4 O Cae co 1- t - O 1 - f - - 1 E 3
CO o 00 00 CO 0 0 - 1 X f t o c t -
3 3 HH HH f t H H 4 O oca tu
CO CO UJ

■K CA V t ■* V t V t* O O -It

U l
OL
O
OS
0 .
1
1
1
1ae

o
4 O
II _ J
O f fi
- 1
1 CO
1 CO

Ol UJ
4 OS
E A

A
U l
- 1
00
4
t ^ U l
OC
4>

X ^ X ^ X ^ X ^ X ^ X ^ X ^ X ^ X ^ X ^ ^
O O O O O O C M * - « - t - (M 4O O O O O O O O O O O t -o o o o o o o o o o o oo o o o o o o o o o o oCOnOffiffiODGDODCOcOffiO
A A A A A A A A A A A A

ffi 00 ffi ffi CQ ffi 00xtKi xt m o x- o
t - « « r t

CO ffi 00 CO
x t C M t - 3

CM CM
4 1 - 0 0 0 0 0 J ZZ 4 0 0 0 0 I — 111 O U l C O
O I - O O O O Z U I O S O A I —
C O C O C O C O I - I - U 1 E U J X 3 M
0 0 0 0 f fi f fi f fi 0 Q A 4 0 C o l - Z
A A A A A A h h Z Q . 0 0 0 0 3

m m
K l K l

o s o s o s o c a s a s o s
0 < O r - l U U I i - t - U I U l U | U l U I
* * * CO CO -K -tt CD CD tO CD CDa c o c a s u i u j a c a c u j u j u j u j u j4441-1— 4 4 I- H- H- H- I-X X X Z Z X X Z Z Z Z Z

Ulz o
HH HH

3 - z *O fi
ac ac
a x t -3 Z
C O f t

> >a erUl Ul

C M r - C M O O r - C M O O O O Oo o o o o o o o o o o oo o o o o o o o o o o oo o o o o o o o o o o of fi f fi f fi f fi o o m o o n n o n c oA A A A A A A A A A A A

f fi o Q n m o o o o n c o f fi m o D f fi
C M O K i i n « 0 0 0 0 0 | x « - (M« - ' O * - x - - O

CM CM CM
O O O O — I C O A O O
0 0 0 0 4 - l H H O OA U I 0 0 0 0 U I U J 3 0 0

HHAAu.u.HHHHQsasasacos
O H H O O O f fi O O O f fi O O O f fi f fi
O O O A A A A A A A A A

ae ^ v oc 1 -
4 4

II
U la. F.o o OC

- 1 oca. u .
1 i

4 1 CJ
I I 1 f t CO
O 1 OC - 1- 1 U l U l Ulxx CL 00 CO oa
1 > - U l CO x t
1 h - CO - 1 U l x t

CO 1 oc
U l I 1-
OS 1
3 1 Ul
A |
U l 1 UJ - 1
O U l f t u_ I - U l i n
O E - J
O S 4 1 -
C L Z
1 1
1

- 1 co -11

60483500 A 5-21

<*^\

CM O COm o mm r l M Zoo
II II II U l

CO
COrx. 88 K l« xt O Klr- rx oo«o o

xx CO
4 CO X Z
II OS 1- o© 4
-1 1 S i ox x | UJ © UJ
1 CO
1 CO - 1 o t o

3
CO Ul 1 - A U l
»- OC HH Ul Ul E
Z A CO Z -1 CO MHH A 3 - 1 4 1 -O 4 HH 1 Ul OS0 . 1 CO 1 - E 0 0 © U l

1 3 00 4 4 1 - - J> - 1 CO fi OC -1 CO fi
QC Ul 1 - C O C L
H > E O E E E
Z 4 oc H - O S O O ©
U l z
1 1
1

O l c o
1
1

CL CO CO O

I M v O OO K l x -
O x - X
C O C O 4
C L C L E

Q x t C M£ P " >c o r x c mm v o * -

m v o r x .
o K l t -
o < i - o
E > - C O
X C O 3o Q . m

x * ^ \

5-22 60483500 A

USING THE CDCS BATCH TEST FACILITY

x - f f * \

j ^ S

j ^ * \

This user's guide assumes that CDCS is active and
available for your job. This method of operation
implies established schemas, appropriate sub-schema
libraries, and successfully implemented applica
tions. Any change in the data base environment,
such as the addit ion of a new file definit ion,
forces the data administrator to terminate CDCS and
to reinitiate CDCS with a new master directory file
attached. By using the CDCS Batch Test Facility,
you can have CDCS running as a normal batch job.
Each time you run your job, you attach a new ver
sion of the master directory file.

The CDCS Batch Test Facility is an absolute program
called CDCSBTF. The program resides on the system
library and is called into execution by the CDCSBTF
control statement. The format and parameters of
the CDCSBTF control statement are shown in figure
6-1. The CDCSBTF control statement cannot exceed
80 characters in length. A slash (/) indicates the
end of the list of user program file names and the
beginning of the parameter list.

When CDCS is executing as the Batch Test Facility,
the name of the output file produced by CDCS is
CDCSOUT.

DIRECTIVE FILE
An optional directive file can be used to contain
the parameters in addition to or instead of the
parameters in the CDCSBTF control statement. Using
a directive file allows specification of a param
eter list that is longer than that allowed in the
control statement. With the exception of the MFL
parameter, which cannot be specified in either the
control statement or the directive file. The same
parameter cannot, however, be specified in both the
control statement and the directive file. Param
eters can be specified in any order in the directive
file. Any of the parameters, except MFL or DIR,
that are valid in the CDCSBTF control statement are
also valid in the directive file. Parameters can
be specified in the directive file in columns 1
through 80. The first parameter specified in a
line must begin in column 1. Parameters can either
be placed in separate lines or combined in a line
with commas acting as separators. Parameters can
not be split across lines.

PARAMETERS
All the parameters (figure 6-1) of the CDCSBTF
control statement are optional and can be specified
in any order. The CDCSBTF parameters provide
information for the following functions:

• Allocation of maximum pooled buffer space

CDCSBTF(Ifn-1 C,lfn-21 ...C/pDCpD ...)

lfn Specifies the logical file name of a
relocatable binary file containing a user
program. Up to 16 files can be specified.

The end of the user program list and the
beginning of the parameter list

A parameter; the parameters are as follows:

DIR=lfn

BL=nn

CP=t1

I0=t2

MFL=fl

Directive file for
CDCSBTF control
statement parameters

Maximum pooled buffer
space

Central processor time

Input/output time
Maximum field length
for CDCSBTF

CRM=fs1C/fs21... Load CRM capsules
where fs is a file
structure as follows:

AK
DA
IS
MIP or MP

MDPFN=pfn
UN=user-name
ID=user-name
PW=pwrd1C/pwrd2]...
FAM=family-name
PN=pack-name
DT=device-set
SN=set-name

Permanent file
information for
master directory
fi l e

Figure 6-1. CDCSBTF Control Statement Format

• Adjustment of accounting charges

• Al locat ion of the maximum f ie ld length that
CDCSBTF is allowed to use

• Specification of information required to attach
the master directory; these parameters must be
given if online dumping of journal log files is
desired

o S p e c i fi c a t i o n o f a d i r e c t i v e fi l e t h a t c a n
contain any of the CDCSBTF control statement
parameters except MFL and DIR

60483500 B 6-1

If the CP and 10 parameters are specified either in
the CDCSBTF control statement or in the directive
file, the accounting values return to the user's
dayfile are different from the accounting values
returned when the same application executes with
CDCS at the system control point. When CDCSBTF
executes, the accounting values returned include
the application's execution time as well as the
central processor and input/output time charged by
CDCS.

The parameters available for the CDCSBTF control
statement are the same as the parameters available
for the CDCS control statement. See the CDCS Data
Administrator's reference manual for more informa
tion about the parameters.

Be sure your application program executes a DML
TERMINATE statement before a FORTRAN STOP or
END statement. Failure to do this would dis
continue processing for all programs specified
in the CDCSBTF control statement that have not
completed execution.

Set the DB parameter in the FTN5 control state
ment equal to 0. Multiple copies of CDCSBTF
can be run concurrently, and as many as 16 user
programs can be run with a copy of CDCSBTF. If
more than two concurrent calls to the RECOVR
routine are made, CDCS aborts processing.

REQUIREMENTS
When you are running application programs with the
CDCSBTF program, you must meet certain require
ments. These requirements are:

• At tach the master d i rectory f i le . I t can be
attached in two ways: either by information
provided in the CDCSBTF control statement or
directive file or by an ATTACH control state
ment that precedes execution of CDCSBTF. If
the ATTACH control statement is used, the
master directory file must be specified with
the local file name MSTRDIR. However, using
this method of attaching the master directory
prevents online dumping of journal log files
from being performed by CDCSBTF.

• Have the application program in relocatable
binary format as a local or a permanent file.

• Assign unique names to non-CDCS files. Do not
use any of the following names:

OBTAINING LOAD MAPS
You can obtain Load maps by setting sense switches
1 through 4 prior to execution of the CDCSBTF
control statement. Each sense switch setting cor
responds to different information on the Load map.
The settings and the associated types of informa
tion are shown in table 6-1.

TABLE 6-1. LOAD MAP SWITCH SETTINGS

Sett ing Load Map Information

SWITCH(1) S t a t i s t i c s (S)

SWITCH(2) Block maps (B)

SWITCH(3) Entry point maps (EO)

SWITCH(4) Entry point cross-reference maps (X).

INPUT
OUTPUT
MSTRDIR
CDCSOUT
Fnnnnnn
Jnnnnnn
Pnnnnnn
Qnnnnnn ^(where n is any six digits)
Rnnnnnn
Tnnnnnn
Xnnnnnn
A name beginning with ZZZZZ
A log file name

EXECUTING THE CDCS BATCH
TEST FACILITY
You need to include a number of control statements
when executing the CDCS Batch Test Facility for
your FORTRAN application program. Figure 6-2
provides a sample List of statements. Parameters
correspond to the appl icat ion that appears in
appendix C.

6-2 60483500 B

NOS Operating System NOS/BE Operating

Jobname,CMfL.

System

Names the job and specifies maximumJobname,CMfI.
field Length.

USER statement Identifies the user.
CHARGE statement Specifies the account to which the

job's use of system resources is
logged.

ATTACH,SSLIB/UN=xxx. ATTACH,SSLIB,ID=xxx. Attaches the sub-schema.
DML,SB=SSLIB,LV=F5 DML,SB=SSLIB,LV=F5 Preprocesses the DML statements in

the FORTRAN program and writes to
DMLOUT.

FTN5,I=DMLOUT,DB=0. FTN5,I=DMLOUT,DB=0. Compiles the FORTRAN program on
DMLOUT and places it on the LGO file.

SWITCH,2. SWITCH,2. Requests block map on
program-initiated Load.

SWITCH,3. SWITCH,3. Requests entry point map on
program-initiated load.

SWITCH,4. SWITCH,4. Requests entry point cross reference
map on program-initiated load.

LIBRARY,DMSLIB. LIBRARY,DMSLIB. Specifies that library DMSLIB is tobe used to satisfy externals.
CDCSBTF,LGO/MDPFN=MSTRDIR,UN=xxx. CDCSBTF,LGO/MDPFN=MSTRDIR,ID=xxx. Executes CDCSBTF and passes the

master directory permanent file
information as parameters..

REWIND,CDCSOUT. REWIND,CDCSOUT. Rewinds the CDCSBTF output file.
COPY,CDCSOUT,OUTPUT. COPY,CDCSOUT,OUTPUT. Prints the CDCSBTF output file.
CRMEP. CRMEP. Prints the CRM error file.
EXIT. EXIT. Establishes processing if error

occurs.
DMD. DMP. Dumps the exchange package.
DMD,377000. DMP,377000. Dumps the contents of the field

length.
CRMEP. CRMEP. Prints the CRM error file.
REWIND,CDCSOUT. REWIND,CDCSOUT. Rewinds the CDCSBTF output file.
COPY,CDCSOUT,OUTPUT. COPY,CDCSOUT,OUTPUT. Prints the CDCSBTF output file.

Figure 6-2. Sample FORTRAN 5 Execution of CDCS Batch Test Facility

60483500 B 6-3 •

TABLE A-3. ASCII CHARACTER SET COLLATING SEQUENCE

Collating
Sequence

Decimal/Octal

ASCII
Graphic
Subset

Display
Code

ASCII
Code

Collating
Sequence

Decimal/Octal

ASCII
Graphic
Subset

Display
Code

ASCII
Code

0 0 0 0 blank 55 20 3 2 4 0 74 40
0 1 0 1 66 21 3 3 4 1 01 41
0 2 0 2 64 22 3 4 4 2 02 42
0 3 0 3 60 23 3 5 4 3 03 43
0 4 0 4 53 24 3 6 4 4 04 44
0 5 0 5 63t 25 3 7 4 5 05 45
0 6 0 6 67 26 3 8 4 6 06 46
0 7 0 7 70 27 3 9 4 7 07 47
0 8 1 0 51 28 4 0 5 0 10 48
0 9 1 1 52 29 4 1 5 1 11 49
1 0 1 2 47 2A 4 2 5 2 12 4A
1 1 1 3 45 2B 4 3 5 3 13 4B
1 2 1 4 56 2C 4 4 5 4 14 4C
1 3 1 5 46 2D 4 5 5 5 15 4D
1 4 1 6 57 2E 4 6 5 6 16 4E
1 5 1 7 50 2F 4 7 5 7 17 4F
1 6 2 0 33 30 4 8 6 0 20 50
1 7 2 1 34 31 4 9 6 1 21 51
1 8 2 2 35 32 5 0 6 2 22 52
1 9 2 3 36 33 5 1 6 3 23 53
2 0 2 4 37 34 5 2 6 4 24 54
2 1 2 5 40 35 5 3 6 5 25 55
2 2 2 6 41 36 5 4 6 6 26 56
2 3 2 7 42 37 5 5 6 7 27 57
2 4 3 0 43 38 5 6 7 0 30 58
2 5 3 1 44 39 5 7 7 1 31 59
2 6 3 2 oot 3A 5 8 7 2 32 5A
2 7 3 3 77 3B 5 9 7 3 61 5B
2 8 3 4 72 3C 6 0 7 4 75 5C
2 9 3 5 54 3D 6 1 7 5 62 5D
3 0 3 6 73 3E 6 2 7 6 > x . 76 5E
3 1 3 7 71 3F 6 3 7 7 65 5F

'In installation
is display coc

is using a 6
le 63.

3-graphic <set, the °/o graphic does not exist. Th e : graphic

NOS Operating System

Jobname,CMfI.

USER statement
CHARGE statement

ATTACH,SSLIB/UN=xxx.
DML,SB=SSLIB,LV=F5

FTN5,I=DMLOUT,DB=0.

SWITCH,2.

SWITCH,3.

SWITCH,4.

LIBRARY,DMSLIB.

NOS/BE Operating System

Jobname,CMfL.

ATTACH,SSLIB,ID=xxx.
DML,SB=SSLIB,LV=F5

FTN5,I=DML0UT,DB=0.

SWITCH,2.

SWITCH,3.

SWITCH,4.

LIBRARY,DMSLIB.

CDCSBTF,LGO/MDPFN=MSTRDIR,ID=xxx.LULdDi r,LUW/nurrn-no i i \ i /xn,un

REWIND,CDCSOUT.
COPY,CDCSOUT,OUTPUT.
CRMEP.
EXIT.

REWIND,CDCSOUT.
COPY,CDCSOUT,OUTPUT.
CRMEP.
EXIT.

DMD.
DMD,377000.

DMP.
DMP,377000.

CRMEP.
REWIND,CDCSOUT.
COPY,CDCSOUT,OUTPUT.

CRMEP.
REWIND,CDCSOUT.
COPY,CDCSOUT,OUTPUT.

Names the job and specifies maximum
field length.
Identifies the user.
Specifies the account to which the
job's use of system resources is
logged.
Attaches the sub-schema.
Preprocesses the DML statements in
the FORTRAN program and writes to
DMLOUT.
Compiles the FORTRAN program on
DMLOUT and places it on the LGO file.
Requests block map on
program-initiated load.
Requests entry point map on
program-initiated load.
Requests entry point cross reference
map on program-initiated load.
Specifies that library DMSLIB is tobe used to satisfy externals.
Executes CDCSBTF and passes the
master directory permanent file
information as parameters..
Rewinds the CDCSBTF output file.
Prints the CDCSBTF output file.
Prints the CRM error file.
Establishes processing if error
occurs.
Dumps the exchange package.
Dumps the contents of the field
length.
Prints the CRM error file.
Rewinds the CDCSBTF output file.
Prints the CDCSBTF output file.

/J^fes Figure 6-2. Sample FORTRAN 5 Execution of CDCS Batch Test Facility

/ s ^ \

60483500 B 6-3 •

STANDARD CHARACTER SETS

/ ^ ^ V

Control Data operating systems offer the following
variations of a basic character set:

• CDC 64-character set

• CDC 63-character set

• ASCI I 64 -charac te r se t

• ASCI I 63 -charac te r se t

The set in use at a particular installation was
specified when the operating system was installed
or (for NOS only) dead started.

Depending on another insta l la t ion opt ion, the
system assumes an input deck has been punched
either in 026 or in 029 mode (regardless of the
character set in use). Under NOS/BE, the alternate
mode can be specified by a 26 or 29 punched in
columns 79 and 80 of the job statement or any 7/8/9
card. The specified mode remains in effect through

t h e e n d o f t h e j o b u n l e s s i t i s r e s e t b y
specification of the alternate mode on a subsequent
7/8/9 card.

Under NOS, the alternate mode can be specified also
by a 26 or 29 punched in columns 79 and 80 of any
6/7/9 card, as described previously for a 7/8/9
card. In addition, 026 mode can be specified by a
card with 5/7/9 multipunched in column 1, and 029
mode can be spec ified by a card w i th 5 /7 /9
multipunched in column 1 and a 9 punched in
column 2.

Graphic character representation appearing at a
terminal or printer depends on the instal lat ion
character set and the terminal type. Characters
shown in the CDC Graphic column of the standard
character set table (table A-1) are applicable to
BCD te rmina ls ; ASCI I g raph ic charac te rs a re

,, applicable to ASCII-CRT and ASCII-TTY terminals.

Standard collating sequences for the two printer
character sets are shown in tables A-2 and A-3.

60483500 A A-1

TABLE A-1 . STANDARD CHARACTER SETS

Display

CDC ASCII
Hollerith External

Code Graphic Punch BCD Graphic Punch Code
(octal) (026) Code Subset (029) (octal)

00 f : (colon)ft 8-2 00 : (colon) ** 8-2 07201 12-1 61 12-1 10102 12-2 62 12-2 10203 12-3 63 12-3 10304 12-4 64 12-4 10405 12-5 65 12-5 10506 12-6 66 12-6 10607 12-7 67 12-7 10710 12-8 70 12-8 11011 12-9 71 12-9 11112 11-1 41 11-1 11213 11-2 42 11-2 11314 11-3 43 11-3 11415 11-4 44 11-4 11516 11-5 45 11-5 11617 11-6 46 11-6 11720 11-7 47 11-7 12021 11-8 50 11-8 12122 11-9 51 11-9 12223 0-2 22 0-2 12324 0-3 23 0-3 12425 0-4 24 0-4 12526 0-5 25 0-5 12627 0-6 26 0-6 12730 0-7 27 0-7 13031 0-8 30 0-8 13132 0-9 31 0-9 13233 12 06034 01 06135 02 06236 03 06337 04 06440 05 06541 06 066
42 07 06743 10 07044 11 07145 12 60 12-8-6 05346 11 40 11 05547 11-8-4 54 11-8-4 05250 0-1 21 0-1 05751 0-8-4 34 12-8-5 05052 12-8-4 74 11-8-5 05153 11-8-3 53 11-8-3 044
54 8-3 13 86 07555 blank no punch 20 blank no punch 040
56 , (comma) 0-8-3 33 , (comma) 0-8-3 05457 . (period) 12-8-3 73 . (period) 12-8-3 056
60 0-8-6 36 8-3 04361 8-7 17 12-8-2 133
62 lt+ 0-8-2 32 11-8-2 135
63 % t t 8-6 16 % t t 0-8-4 045
64 8-4 14 " (quote) 8-7 04265 r - 0-8-5 35 (underline) 0-8-5 137
66 11-0 52 12-8-7 041
67 0-8-7 37 12 046
70 11-8-5 55 ' (apostrophe) 8-5 047
71 11-8-6 56 0-8-7 077
72 12-0 72 12-8-4 074
73 11-8-7 57 0-8-6 076
74 8-5 15 8-4 100
75 12-8-5 75 0-8-2 134
76 " » 1 2 - 8 - 6 76 - (circumflex) 11-8-7 136
77 ; (s e m i c o l o n) 1 2 - 8 - 7 77 ; (semicolon) 11-8-6 073

Twelve zero bits at the end of a 60-bit wo ■d in a zero b\fte record are an eiid of record mark rather than
two cc Ions.

TTln installations using a 63-graphic set, displav code 00 h as no associated a 'aDhic or card cod e: disolav
code 63 is the colon (8-2 punch). The % graphic and related card codes do not exist and translations
yield a blank (55g).

A-2 60483500 A

TABLE A-2. CDC CHARACTER SET COLLATING SEQUENCE

Collating Collating
Sequence CDC Display External Sequence CDC Display External

Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code BCD

O O O O blank 55 20 3 2 4 0 10 700 1 0 1 74 15 3 3 4 1 11 710 2 0 2 63 t 1 6 t 3 4 4 2 66 52
0 3 0 3 61 17 3 5 4 3 12 410 4 0 4 —*• 65 35 3 6 4 4 13 42
0 5 0 5 60 36 3 7 4 5 14 43
0 6 0 6 67 37 3 8 4 6 15 44
0 7 0 7 70 55 3 9 4 7 16 45
0 8 1 0 71 56 4 0 5 0 17 46
0 9 1 1 73 57 4 1 5 1 20 47
1 0 1 2 75 75 4 2 5 2 21 50
1 1 1 3 — i 76 76 4 3 5 3 22 51
1 2 1 4 57 73 4 4 5 4 62 32
1 3 1 5 52 74 4 5 5 5 23 22
1 4 1 6 77 77 4 6 5 6 24 23
1 5 1 7 45 60 4 7 5 7 25 24
1 6 2 0 53 53 4 8 6 0 26 25
1 7 2 1 47 54 4 9 6 1 27 26
1 8 2 2 46 40 5 0 6 2 30 27
1 9 2 3 50 21 5 1 6 3 31 30
2 0 2 4 56 33 5 2 6 4 32 31
2 1 2 5 51 34 5 3 6 5 00 t nonef
2 2 2 6 54 13 5 4 6 6 33 12
2 3 2 7 64 14 5 5 6 7 34 01
2 4 3 0 72 72 5 6 7 0 35 02
2 5 3 1 01 61 5 7 7 1 36 03
2 6 3 2 02 62 5 8 7 2 37 04
2 7 3 3 03 63 5 9 7 3 40 05
2 8 3 4 04 64 6 0 7 4 41 06
2 9 3 5 05 65 6 1 7 5 42 07
3 0 3 6 06 66 6 2 7 6 43 10
3 1 3 7 G 07 67 6 3 7 7 44 11

'In installations using the 63-graphie set, the % graphic does not exist. The : g raphic isdisp ay code 63,
External BCD code 16.

60483500 A A-3

TABLE A-3. ASCII CHARACTER SET C0LLATIN6 SEQUENCE

Collating
Sequence

ASCII
Graphic

Display
Code

ASCII
Code

Collating
Sequence

ASCII
Graphic Display

Code
ASCII
Code

Decimal/Octal Subset Decimal/Octal Subset

0 0 0 0 blank 55 20 3 2 4 0 74 40
0 1 0 1 66 21 3 3 4 1 01 41
0 2 0 2 64 22 3 4 4 2 02 42
0 3 0 3 60 23 3 5 4 3 03 43
0 4 0 4 53 24 3 6 4 4 04 44
0 5 0 5 63t 25 3 7 4 5 05 45
0 6 0 6 67 26 3 8 4 6 06 46
0 7 0 7 70 27 3 9 4 7 07 47
0 8 1 0 51 28 4 0 5 0 10 48
0 9 1 1 52 29 4 1 5 1 11 49
1 0 1 2 47 2A 4 2 5 2 12 4A
1 1 1 3 45 2B 4 3 5 3 13 4B
1 2 1 4 56 2C 4 4 5 4 14 4C
1 3 1 5 46 2D 4 5 5 5 15 4D
1 4 1 6 57 2E 4 6 5 6 16 4E
1 5 1 7 50 2F 4 7 5 7 17 4F
1 6 2 0 33 30 4 8 6 0 20 50
1 7 2 1 34 31 4 9 6 1 21 51
1 8 2 2 35 32 5 0 6 2 22 52
1 9 2 3 36 33 5 1 6 3 23 53
2 0 2 4 37 34 5 2 6 4 24 54
2 1 2 5 40 35 5 3 6 5 25 55
2 2 2 6 41 36 5 4 6 6 26 56
2 3 2 7 42 37 5 5 6 7 27 57
2 4 3 0 43 38 5 6 7 0 30 58
2 5 3 1 44 39 5 7 7 1 31 59
2 6 3 2 oot 3A 5 8 7 2 32 5A
2 7 3 3 77 3B 5 9 7 3 61 5B
2 8 3 4 72 3C 6 0 7 4 75 5C
2 9 3 5 54 3D 6 1 7 5 62 5D
3 0 3 6 73 3E 6 2 7 6 * f * * 76 5E
3 1 3 7 71 3F 6 3 7 7 65 5F

Mn installationis using a 63-graphic s;et, the 9fo graphic does not exist. Th e : graphic
is display cocle 63.

A-4 60483500 A

GLOSSARY

Access Control -
Protection of data from unauthorized access or
modification.

Actual Key -
A fi le organizat ion in which records are stored
according to their system-assigned key values.

Advanced Access Methods (AAM) -
A file manager that processes indexed sequen
t i a l , d i r e c t a c c e s s , a n d a c t u a l k e y fi l e
o rgan iza t i ons and suppor t s the Mu l t i p le - Index
Processor. See CYBER Record Manager.

Al ias -
A data name used in the sub-schema in place of
a schema data name.

Area -
A uniquely named schema data base subdivision
that contains data records; identified in the
sub-schema as a realm; a file in the operating
system.

Automatic Recovery -
CDCS initiated recovery operations that make a
data base usable and consistent after some type
of software or hardware failure (but not media
fa i lu re) .

Basic Access Methods (BAM) -
A file manager that processes sequential and
word addressable file organizations. See CYBER
Record Manager.

CDCS -
See CYBER Database Control System.

CDCS Batch Test Facility -
A facility that allows an application to simu
late a data base environment without impacting
any other CDCS users on the system.

Chi Id Record Occurrence -
For relation processing, a record occurrence
that has another record occurrence (the parent
record occurrence) at the next numerical ly

| lower rank in the re la t ion .

Common Item -
A data item that appears in two or more files
joined in a relat ion; in each instance, the
data item contains the same value.

Concurrency -
Simultaneous access to the same data in a data
base by two or more application programs during
a given span of time.

Constraint -
A control imposed on records in related files
or on items in a single file for the purpose of
protecting the integrity of data in a data base
dur ing update opera t ions . A cons t ra in t i s
defined in the schema and is based on the com
mon item in the records.

Control Break -
A condition that occurs during a relation read
to signify a new record occurrence was read for
the parent file.

CRM -
See CYBER Record Manager.

CYBER Database Control System (CDCS) -
The controlling module that provides the inter
face between the application program and the
data base.

CYBER Record Manager (CRM) -
A generic term relating to the common products
BAM and AAM, which run under the NOS and NOS/BE
operating systems and allow a variety of record
types, block types, and file organizations to
be created and accessed. The execution time
input/output of the DMS-170 products is imple
mented through CRM. ALL CRM file processing
requests ultimately pass through the operating
system input/output routines.

Data Administrator -
A person who defines the format and organiza
tion of the data base.

Data Base -
A systematical ly organized, central pool of
information; organization is described by a
schema.

Data Base Procedure -
A special-purpose routine that performs a pre
defined operation; specified in the schema and
initiated by CDCS.

Data Base Status Block -
An array defined within an application program
to which CDCS returns information concerning
the status of operations on data base files and
relations. The status block is updated after
each CDCS operation.

Data Base Transaction -
A series of update operations identified by a
user-assigned transact ion ident ifier. A data
base transaction is bracketed by a begin trans
action operation and either a commit or drop
operation. Data base transactions also provide
a program restart capability that can be used
for restarting an application program after a
system failure.

Data Base Version -
A set of data files that is described by a
schema. Data base versions are defined in the
master directory. When data base versions are
used, a schema (the description of the data
base) can be used with more than one set of
fi les (each set of fi les being a data base
version).

Data Description Language (DDL) -
The language used to structure the schema and
the sub-schema.

60483500 B B-1

Data Item -
A unit of data within a record; can be a vari
able or an array in the FORTRAN sub-schema.

Data Manipulation Language (DML) -
The extensions to FORTRAN that provide access
to a DMS-170 data base.

DDL -
See Data Description Language.

Deadlock -
A situation that arises in concurrent data base
access when two or more application programs,
each with locked resources, are contending for
a resource that is Locked by one of the other
application programs, and none of the programs
can proceed without that resource.

Dependent Record Occurrence -
A record occurrence that is the dependent
member of a condition defined by a constraint.

Direct Access -
In the context of CRM, one of the five file
organizations. The organization is character
ized by the system hashing of the unique key
within each file record to distribute records
randomly in blocks called home blocks of the
fi l e .

Log Files -
Files that hold historical records of opera
tions performed by users on data base areas.

Mapping -
The process by which CDCS produces a record or
item image conforming to the schema or sub
schema description.

Master Directory -
A file created by the data administrator and
used by CDCS in processing. This information
consists of schema and sub-schema tables, media
parameters, and data base procedure library and
logging specifications.

Multiple-Index Processor -
A processor that allows AAM files to be accessed
by alternate keys.

Null Record Occurrence -
A record occurrence composed of the display
code right bracket symbol in each character
position. The null record occurrence is used
in a relation occurrence to denote that no
record occurrence qualifies or that a record
occurrence does not exist at a given level in
the relation.

In the context of NOS permanent files, a file
that is accessed and modified direct ly, as
contrasted with an indirect access permanent
fi l e .

DML -
See Data Manipulation Language.

Dominant Record Occurrence -
A record occurrence that is the dominant member
of a condition defined by a constraint.

Exclusive Locking -
Locking mechanism that allows one program
access to a realm or record and prohibits all
access by other users. Contrast with Protected
Locking.

File -
A collection of records treated as a unit; an
area in the schema; a realm in the sub-schema.

Hierarchical Tree Structure -
A representat ion that commonly i l lustrates
r e c o r d o c c u r r e n c e s f o r fi l e s j o i n e d i n a
directed relation. The root of the tree is a
record occurrence in the root file, and each
successive level represents the record occur
rences in each joined file.

Home Block -
Mass storage allocated for a file with direct
access organization at the time the file is
created.

Indexed Sequential -
A file organizat ion in which records are stored
in ascending order by.key.

Keyword -
A word that is required in a source program
statement.

Operation -
A particular function performed on units of
data; for instance, opening or closing an area,
or storing or deleting a record.

Parent Record Occurrence -
For relation processing, a record occurrence
that has another record occurrence at the next
n u m e r i c a l l y h i g h e r r a n k i n t h e r e l a t i o n . |

Permanent File -
A file that resides on a mass storage permanent
file device and can be retained for longer than
a single job. The file is protected against
accidental destruction and can be protected
against unauthorized access.

Privacy Key -
A character constant, variable name, or unsub-
scripted name that is included in a FORTRAN DML
PRIVACY statement to gain access to a particu
lar realm.

Protected Locking -
Locking mechanism that allows one program
access to a realm or record for update opera
tions and prohibits update operations (allows
read operations) by other users. Contrast with
Exclusive Locking.

Rank -
The rank of a file in a relation corresponds to
the position of the file in the schema defini
tion of the relation. The ranks of the files
joined in a relation are numbered consecutively,
with the root file having a rank of 1.

Realm -
A uniquely named sub-schema data base subdivi
sion that contains data records; identified in
the schema as an area; a file.

B-2 60483500 B

J ^ > \

r

Realm Ordinal -
A unique identifier assigned to each realm in a
sub-schema when the sub-schema is compi led.
Sub-schema realm ordinals are used in conjunc
tion with the data base status block.

Record -
A named collection of one or more data items
that are treated as a unit.

Record Occurrence -
An actual data base record that conforms to a
record description in the schema.

Record Type -
The description of the attributes of a record;
record layout.

Recovery -
A process that makes a data base useful after
some type of software or hardware failure has
occurred.

Relation -
A group of files that are related by common
data items; therefore the files can be opened,
closed, or read by a single request. Relations
are defined in the schema.

Relation Occurrence -
The logical concatenation of a record occur
rence from each record type specified in the
relat ion.

Restart Identifier -
A un ique i den t i fie r f o r a run -un i t t ha t i s
maintained by CDCS for program restart opera
tions in data base transactions.

Restart Identifier File -
A random permanent file used internally by CDCS
to suppor t program restar t operat ions for
programs that request a restart identifier.

Restriction -
Criteria that must be satisfied by a record
occurrence in a relation before it can be made
available to the application program. Restric
tions are defined in the sub-schema.

Root Realm -
The first realm listed in a relation; the root
realm has the rank of 1 in a relation; record
occurrences of the root realm are pictured as
the roo t o f a t r ee i n a h ie ra rch i ca l t r ee
structure.

Schema -
A detailed description of the internal struc
ture of the complete data base.

Status Block -
See Data Base Status Block.

Sub-Schema -
A detailed description of the portion of the
data base to be made available to one or more
application programs.

Sub-Schema Item Ordinal -
An identifier, unique within a record, assigned
to each item in a sub-schema when the sub-schema
is compiled. Sub-schema item ordinals are used
in conjunction with the data base status block.

Sub-Schema Library -
A permanent file containing one or more sub
schemas.

Transaction -
See Data Base Transaction.

Transaction Identifier -
A user-assigned ident ifier for a data base
transaction. The identifier is used for program
restart operations in data base transactions.

60483500 B B-3

/***%

THE SAMPLE APPLICATION

yf&ps^"V

/Sffey

This appendix contains the source programs and
control statements used to generate the data base
environment for the university application pre
sented in this user's guide. Although all programs
reflect operation under the NOS operating system,
conversion to the NOS/BE operating system could be
accomplished by making the following changes:

Substitute the NOS/BE REQUEST and CATALOG
control statements for the NOS DEFINE control
statement.

• S u b s t i t u t e t h e N O S / B E f i l e i d e n t i f i c a t i o n
parameter ID for the NOS file identification
parameter UN. This substitution applies to the
source input for the master directory.

Setting up a DMS-170 data management environment is
a data administrator responsibility; the process is
shown here, however, to allow the reader to dup
l ica te the app l ica t ion and use i t to ga in an
understanding of DMS-170 FORTRAN application pro
gramming. The source input for the jobs shown in
this appendix il lustrates the university applica
tion being created by a series of batch jobs. The
source input for each job is shown exactly as
required for processing on NOS with two exceptions:

• End-of-record is indicated by the statement
end-of-record and a blank line that is inserted
to improve readability of the text.

End of input for the job is indicated by the
statement end-of-information.

The steps the data administrator takes to establish
the application are listed in appropriate order as
follows:

1. Design, write, compile, and store the schema
definition as a permanent file. A schema named
UNIVERSITY is stored as a permanent file named
UNIVERS. See figure C-1.

2. Design, write, compile, and store sub-schema
defin i t i ons as a pe rmanen t fi l e l i b ra r y. A
FORTRAN sub-schema library is stored as a
permanent file named SSLIB. Input consists of
four separate sub-schemas (AVERAGE, RELATION,
ADMISSIONS, BURSAR); the sub-schemas follow
each other with no intervening end-of-records.
See figure C-2 for both source input and the
l i s t ing tha t resu l ts f rom compi la t ion . The
FORTRAN sub-schema CREATES is used to create
the data base and is stored in a permanent file
library named CREATES. See figure C-3.

3. Generate a master directory through the DBMSTRD
ut i l i t y. A maste r d i rec to ry i s s to red as a
permanent file named MSTRDIR. See figure C-4.

4. Ini t ia l ize log or recovery files specified for
the schema in the master directory. The master
directory specifies a transaction recovery file
a n d a r e s t a r t i d e n t i fi e r fi l e f o r s c h e m a
UNIVERSITY. The DBREC utility is used to
i n i t i a l i z e t h e s e fi l e s . F o r p r o c e s s i n g o n
NOS/BE, the series of control statements that
must be executed for each Log and recovery file
before the DBREC control statement is executed
is as follows: REQUEST, REWIND, CATALOG, AND
RETURN. See figure C-5.

5. Write a program to store the data base. A
FORTRAN program creates five data base files
(PROFESSOR, COURSE, STUDENT, CURRICULUM,
ACCOUNTING) using the FORTRAN sub-schema
CREATES, and defines the appropriate index
files assigned in the master directory. See
figure C-6. CDCSBTF is used to run this pro
gram; therefore, CDCS does not have to be
active. For processing on NOS/BE, the series
of control statements that must be executed for
each area and index file before the FTN5 con
t ro l s ta tement i s execu ted i s as fo l l ows :
REQUEST, REWIND, CATALOG, and RETURN.

6. Establish CDCS as an active system. This must
be done by the data administrator; the process
is not shown in this guide. If CDCS is not
established as an active system CDCSBTF can be
used.

60483500 B C-1

Job statement
USER statement
CHARGE statement
FILE(PROFESS,FO=IS,XN=PNDX)
FILE(COURSE,FO=IS,XN=CRSNDX>
FILE(STUDENT,FO=IS,XN=SNDX)
FILE(CURRICU,FO=IS,XN=CRNDX)
FILE(ACCOUNT,FO=IS)
DEFINE(UNIVERS=UNIVERS/CT=PU,M=R)
DDL3(DS,SC=UNIVERS)
E n d - o f - r e c o r d

SCHEMA NAME IS UNIVERSITY.

AREA NAME IS PROFESSOR.
RECORD IS PROF-REC WITHIN PROFESSOR.

PROF-ID
PROF-NAME
ACADEMIC-FIELD

TYPE CHARACTER 8.
PICTURE "X(30)M.
TYPE CHARACTER 20.

AREA NAME IS COURSE.
RECORD IS COURSE-REC WITHIN COURSE.

COURSE-ID
COURSE-NAME
SCHOOL
PROF-ID
PREREQUISITE
UNITS

TYPE CHARACTER 6.
PICTURE "X(20)M.
PICTURE "X(20)" .
TYPE CHARACTER 8.
TYPE CHARACTER 6.
TYPE DECIMAL.

AREA NAME IS STUDENT.
RECORD IS STUDENT-REC WITHIN STUDENT.

STUDENT-ID
STUDENT-NAME
STREET-ADDRESS
CITY
STATE
ZIP-CODE
PHONE
MAJOR

TYPE CHARACTER 11.
PICTURE "X(30)" .
PICTURE "X(20)" .
PICTURE "X(10>".
P ICTURE "A(2) " .
P ICTURE "X(5) " .
PICTURE "X(12>".
TYPE CHARACTER 20.

AREA NAME IS CURRICULUM
ACCESS-CONTROL LOCK IS "XX99".
RECORD IS CURR-REC WITHIN CURRICULUM.

IDENT
STUDENT-ID
COURSE-ID
GRADE

COMPLETE-CODE
COMPLETE-DATE
UNITS

TYPE CHARACTER 14.
TYPE CHARACTER 11.
TYPE CHARACTER 6.
TYPE FLOAT

CHECK VALUE 0.0 THRU 4.0.
TYPE CHARACTER 1.
TYPE CHARACTER 8.
TYPE DECIMAL.

AREA NAME IS ACCOUNTING.
RECORD IS ACCT-REC WITHIN ACCOUNTING.

01 STUDENT-ID
01 TUITION
01 LAB-FEES
01 BOOKS
01 MISC-FEES

TYPE CHARACTER 11.
TYPE FLOAT OCCURS 16 TIMES.
TYPE FLOAT OCCURS 16 TIMES.
TYPE FLOAT OCCURS 16 TIMES.
TYPE FLOAT OCCURS 16 TIMES.

DATA CONTROL.

AREA NAME IS PROFESSOR
KEY IS PROF-ID OF PROF-REC

DUPLICATES ARE NOT ALLOWED
KEY IS ALTERNATE ACADEMIC-FIELD

DUPLICATES ARE ALLOWED.

AREA NAME IS COURSE
KEY IS COURSE-ID OF COURSE-REC

DUPLICATES ARE NOT ALLOWED
KEY IS ALTERNATE PROF-ID OF COURSE-REC

DUPLICATES ARE ALLOWED.

AREA NAME IS STUDENT
KEY IS STUDENT-ID OF STUDENT-REC

DUPLICATES ARE NOT ALLOWED
KEY IS ALTERNATE MAJOR

DUPLICATES ARE ALLOWED.

AREA NAME IS CURRICULUM
KEY IS IDENT
KEY IS ALTERNATE STUDENT-ID OF CURR-REC

DUPLICATES ARE ALLOWED
KEY IS ALTERNATE COURSE-ID OF CURR-REC

DUPLICATES ARE ALLOWED
KEY IS ALTERNATE GRADE

DUPLICATES ARE ALLOWED.

AREA NAME IS ACCOUNTING
KEY IS STUDENT-ID OF ACCT-REC

DUPLICATES ARE NOT ALLOWED.

CONSTRAINT NAME IS C0N1
STUDENT-ID OF CURR-REC DEPENDS ON
STUDENT-ID OF STUDENT-REC.

CONSTRAINT NAME IS C0N2
STUDENT-ID OF ACCT-REC DEPENDS ON
STUDENT-ID OF STUDENT-REC.

CONSTRAINT NAME IS C0N3
COURSE-ID OF CURR-REC DEPENDS ON
COURSE-ID OF COURSE-REC.

RELATION NAME IS REL1
JOIN WHERE STUDENT-ID OF STUDENT-REC
EQ STUDENT-ID OF CURR-REC.

RELATION NAME IS REL2
JOIN WHERE STUDENT-ID OF STUDENT-REC
EQ STUDENT-ID OF ACCT-REC.

RELATION NAME IS REL3
JOIN WHERE PROF-ID OF PROF-REC
EQ PROF-ID OF COURSE-REC
COURSE-ID OF COURSE-REC
EQ COURSE-ID OF CURR-REC.

End-of-record

End-of-informat i on

Figure C-1. The UNIVERSITY Schema

C-2 60483500 A

Source Input

Job statement
USER statement
CHARGE statement
ATTACH(UNIVERS)
DEFINE(SSLIB/CT=PU,M=W)
DDLF(F5,SB=SSLIB,SC=UNIVERS)
End-of-record

SUBSCHEMA AVERAGE,SCHEMA=UNIVERSITY

ALIAS(REALM) CFILE=CURRICULUM
ALIAS(RECORD) CRECORD=CURR-REC- ALIAS(ITEM) STUDENT=STUDENT-ID.CURR-REC
ALIAS(ITEM) COURSE=COURS E-ID.CURR-REC

REALM CFILE

RECORD CRECORD

CHARACTER*14 IDENT
CHARACTER*11 STUDENT
CHARACTERS COURSE
REAL GRADE
END

SUBSCHEMA COMPARE,SCHEMA=UNIVERSITY

ALIAS(REALM) PFILE=PROFESSOR
ALIAS(RECORD) PRECORD=PROF-REC
ALIAS(ITEM) PR0FID=PR0F-ID.PROF-REC
ALIAS(ITEM) PNAME=PROF-NAME

ALIAS(REALM) CRSFILE=COURSE
ALIAS(RECORD) CRSREC=COURSE-REC
ALIAS(ITEM) CRSID=COURSE-ID.COURSE-REC
ALIAS(ITEM) CRSNAME=COURSE-NAME
ALIAS(ITEM) PROF=PROF-ID.COURSE-REC
ALIAS(ITEM) FIELD=ACADEMIC-FIELD

ALIAS(REALM) CFILE=CURRICULUM
ALIAS(RECORD) CRECORD=CURR-REC
ALIAS(ITEM) COURSE=COURSE-ID.CURR-REC
ALIAS(ITEM) CODE=COMPLETE-CODE
ALIAS(ITEM) DATE=COMPLETE-DATE

REALM PFILE
REALM CRSFILE
REALM CFILE

RECORD PRECORD
CHARACTERS PROFID
CHARACTER*30 PNAME
CHARACTERS FIELD

RECORD CRSREC
CHARACTER*6 CRSID
CHARACTERS CRSNAME
CHARACTERS PROF

RECORD CRECORD
CHARACTERS 4 IDENT
CHARACTERS COURSE
CHARACTERS CODE
CHARACTERS DATE
REAL GRADE

RELATION REL3
RESTRICT CRECORD (CODE .EQ. 'O
END

Figure C-2. The FORTRAN Sub-Schema Library (Sheet 1 of 8)

60483500 A C-3

SUBSCHEMA RELATION,SCHEMA=UNIVERSITY

ALIAS(REALM) SFILE=STUDENT
ALIAS(RECORD) SRECORD=STUDENT-REC
ALIAS(ITEM) STID=STUDENT-ID.STUDENT-REC

ALIAS(REALM)
ALIAS(RECORD)
ALIAS(ITEM)
ALIAS(ITEM)
ALIAS(ITEM)
ALIAS(ITEM)
ALIAS(ITEM)

REALM SFILE
REALM CFILE

RECORD SRECORD
CHARACTERS 1 STID
CHARACTERS MAJOR

RECORD CRECORD
CHARACTERS4 IDENT
CHARACTERS 1 CSTID
CHARACTERS COURS
REAL GRADE
CHARACTER CODE
CHARACTERS DATE
INTEGER UNITS
RELATION REL1
RESTRICT CRECORD(CODE.EQ.
END

CFILE-CURRICULUM
CRECORD=CURR-REC
CSTID=STUDENT-ID.CURR-REC
COURS=COURSE-ID.CURR-REC
PROF=PROF-NAME
CODE=COMPLETE-CODE
DATE=COMPLETE-DATE

C)

SUBSCHEMA ADMISSIONS,SCHEMA=UNIVERSITY

ALIAS(RECORD)
ALIAS(ITEM)
ALIAS(ITEM)
ALIAS(ITEM)

ALIAS(REALM)
ALIAS(RECORD)
ALIAS(ITEM)
ALIAS(ITEM)
ALIAS(ITEM)

REALM COURSE
REALM CFILE

RECORD CRSREC
CHARACTERS CID
CHARACTERS NAME
CHARACTERS SCHOOL
CHARACTERS PREREQ
INTEGER UNITS

RECORD CURREC
CHARACTERS4 IDENT
CHARACTERS 1 STUDENT
CHARACTERS CCID
CHARACTER CODE
END

CRSREC=COURSE-REC
CID=COURSE-ID.COURSE-REC
NAME=COURSE-NAHE
PREREQ=PREREQUISITE

CFILE=CURRICULUM
CURREC=CURR-REC
STUDENTsSTUDENT-ID
CCID=COURSE-ID.CURR-REC
CODE=COMPLETE-CODE

/ ^ ^ V

^ & \

>*^\

Figure C-2. The FORTRAN Sub-Schema Library (Sheet 2 of 8)

C-4 60483500 A

SUBSCHEMA BURSAR,SCHEMA=UNIVERSITY

ALIAS(RECORD) STREC=STUDENT-REC
ALIAS(ITEM) STID=STUDENT-ID.STUDENT-REC
ALIAS(ITEM) NAME=STUDENT-NAME
ALIAS(ITEM) ADDR=STREET-ADDRESS
ALIAS(ITEM) ZIP=ZIP-CODE

ALIAS(REALM) ACCOUNT=ACCOUNTING
ALIAS(RECORD) ACCTREC=ACCT-REC
ALIAS(ITEM) ASTID=STUDENT-ID.ACCT-REC
ALIAS(ITEM) LAB=LAB-FEES
ALIAS(ITEM) MISC=MISC-FEES

REALM STUDENT
REALM ACCOUNT

RECORD STREC
CHARACTERS 1 STID
CHARACTERS NAME
CHARACTERS ADDR
CHARACTERS0 CITY
CHARACTER*2 STATE
CHARACTERS ZIP

RECORD ACCTREC
CHARACTERS 1 ASTID
REAL TUITI0N(16>
REAL LAB(16)
REAL BOOKS(16)
REAL MISC(16)

RELATION REL2
END

End-of-record

End-of-information

Compilation Source Listings

AVERAGE

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011

** WITHIN CFILE

** ORDINAL 1

** ORDINAL

** ORDINAL

** ORDINAL

00012

00013

00014

00015

00016

* SOURCE LISTING * (80351) DDLF 1.2+538.

SUBSCHEMA AVERAGE,SCHEMA=UNIVERSITY

ALIAS(REALM) CFILE=CURRICULUM
ALIAS(RECORD) CRECORD=CURR-REC
ALIAS(ITEM) STUDENT=STUDENT-ID.CURR-REC
ALIAS(ITEM) COURSE=COURSE-ID.CURR-REC

REALM CFILE

RECORD CRECORD

CHARACTERS4 IDENT

CHARACTERS 1 STUDENT

CHARACTERS COURSE

REAL GRADE

END

Figure C-2. The FORTRAN Sub-Schema Library (Sheet 3 of 8)

60483500 A C-5

00017
** * * *

PRIMARY KEY 00012
ALTERNATE KEY 00013
ALTERNATE KEY 00014
ALTERNATE KEY 00015

** * * *

SUBSCHEMA
AVERAGE

DDLF COMPLETE.
476008 CM USED.

COMPARE

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025

00026
1
00027

>
00028
00029

** WITHIN PFILE

** ORDINAL

** ORDINAL

** ORDINAL 3
00030

** WITHIN CRSFILE
00031

** ORDINAL

** ORDINAL

** ORDINAL

00032
I
00033
00034

END OF SUB-SCHEMA SOURCE INPUT

IDENT FOR AREA CFILE
STUDENT FOR AREA CFILE
COURSE FOR AREA CFILE
GRADE FOR AREA CFILE
RECORD MAPPING IS NEEDED FOR REALM - CFILE

BEGIN SUB-SCHEMA FILE MAINTENANCE

CHECKSUM
35514310376143061021

END OF FILE MAINTENANCE
0 DIAGNOSTICS.

0.064 CP SECS.

* SOURCE LISTING * (80351) DDLF 1.2+538.

SUBSCHEMA COMPARE,SCHEMA=UNIVERSITY

ALIAS(REALM) PFILE=PROFESSOR
ALIAS(RECORD) PRECORD=PROF-REC
ALIAS(ITEM) PROFID=PROF-ID.PROF-REC
ALIAS(ITEM) PNAME=PROF-NAME

ALIAS(REALM) CRSFILE=COURSE
ALIAS(RECORD) CRSREC=COURSE-REC
ALIAS(ITEM) CRSID=COURSE-ID.COURSE-REC
ALIAS(ITEM) CRSNAME=COURSE-NAME
ALIAS(ITEM) PROF=PROF-ID.COURSE-REC
ALIAS(ITEM) FIELD=ACADEMIC-FIELD

ALIAS(REALM) CFILE=CURRICULUM
ALIAS(RECORD) CRECORD=CURR-REC
ALIAS(ITEM) COURSE=COURSE-ID.CURR-REC
ALIAS(ITEM) CODE=COMPLETE-CODE
ALIAS(ITEM) DATE=COMPLETE-DATE

REALM PFILE
REALM CRSFILE
REALM CFILE

RECORD PRECORD

CHARACTERS PROFID

CHARACTERS PNAME

CHARACTERS FIELD

RECORD CRSREC

CHARACTERS CRSID

CHARACTERS CRSNAME

CHARACTERS PROF

Figure C-2. The FORTRAN Sub-Schema Library (Sheet 4 of 8) ."^^\

CS 60483500 A

** WITHIN CFILE

** ORDINAL 1

** ORDINAL

** ORDINAL

** ORDINAL

** ORDINAL

00035

00036
I
00037

2
00038

5
00039

V
00040
00041

00042
PRIMARY KEY 00026
ALTERNATE KEY 00028
PRIMARY KEY 00031
ALTERNATE KEY 00033
PRIMARY KEY 00036
ALTERNATE KEY 00037
ALTERNATE KEY 00040

** * * *
* * * * *
* * * * *
00043
00044
00045
** * * *

RELATION 001

RECORD CRECORD

CHARACTERS 4 IDENT

CHARACTERS COURSE

CHARACTERS CODE

CHARACTERS DATE

REAL GRADE

RELATION REL3
PROFID FOR AREA PFILE
FIELD FOR AREA PFILE
CRSID FOR AREA CRSFILE
PROF FOR AREA CRSFILE
IDENT FOR AREA CFILE
COURSE FOR AREA CFILE
GRADE FOR AREA CFILE
RECORD MAPPING IS NOT NEEDED FOR REALM - PFILE
RECORD MAPPING IS NEEDED FOR REALM - CRSFILE
RECORD MAPPING IS NEEDED FOR REALM - CFILE

RESTRICT CRECORD (CODE .EQ. 'C')
END

END OF SUB-SCHEMA SOURCE INPUT

RELATION
REL3 JOINS

STATISTICS
AREA - PFILE
AREA - CRSFILE
AREA - CFILE

BEGIN SUB-SCHEMA FILE MAINTENANCE

SUBSCHEMA
COMPARE

CHECKSUM
71111404530456653576

DDLF COMPLETE.
50600B CM USED.

END OF FILE MAINTENANCE
0 DIAGNOSTICS.

0.146 CP SECS.

Figure C-2. The FORTRAN Sub-Schema Library (Sheet 5 of 8)

60483500 A C-7

RELATION * SOURCE LISTING * (80351) DDLF 1.2+538.

00001 SUBSCHEMA RELATION,SCHEMA=UNIVERSITY
00002
00003 ALIAS(REALM) SFILE=STUDENT
00004 ALIAS(RECORD) SRECORD=STUDENT-REC
00005 ALIAS(ITEM) STID=STUDENT-ID.STUDENT-REC
00006
00007 ALIAS(REALM) CFILE=CURRICULUM
00008 ALIAS(RECORD) CRECORD=CURR-REC
00009 ALIAS(ITEM) CSTID=STUDENT-ID.CURR-REC
00010 ALIAS(ITEM) COURS=COURSE-ID.CURR-REC
00011 ALIAS(ITEM) PROF=PROF-NAME
00012 ALIAS(ITEM) CODE=COMPLETE-CODE
00013 ALIAS(ITEM) DATE=COMPLETE-DATE
00014
00015 REALM SFILE
00016 REALM CFILE
00017
00018 RECORD SRECORD

** WITHIN SFILE
00019 CHARACTERS 1 STID

** ORDINAL 1
00020 CHARACTERS MAJOR
00021

** ORDINAL 2
00022 RECORD CRECORD** WITHIN CFILE
00023 CHARACTERS 4 IDENT

** ORDINAL 1
00024 CHARACTERS 1 CSTID** ORDINAL 2
00025 CHARACTERS COURS** ORDINAL 3
00026 REAL GRADE

** ORDINAL 4
00027 CHARACTER CODE** ORDINAL 5
00028 CHARACTERS DATE** ORDINAL 6
00029 INTEGER UNITS

** ORDINAL 7
00030 RELATION REL1

PRIMARY KEY 00019 STID FOR AREA SFILE
ALTERNATE KEY 00020 MAJOR FOR AREA SFILE
PRIMARY KEY 00023 IDENT FOR AREA CFILE
ALTERNATE KEY 00024 CSTID FOR AREA CFILE
ALTERNATE KEY 00025 COURS FOR AREA CFILE
ALTERNATE KEY 00026 GRADE FOR AREA CFILE

** * * * RECORD MAPPING IS NEEDED FOR REALM - SFILE
** * * * RECORD MAPPING IS NEEDED FOR REALM - CFILE
00031 RESTRICT CRECORD (CODE.EQ.'C)
00032 END
00033
** * * * END OF SUB-SCHEMA SOURCE INPUT

* * * * * R E L A T I O N S T A T I S T I C S * * * * *
RELATION 001 R E L 1 J O I N S A R E A - S F I L E

AREA - CFILE

BEGIN SUB-SCHEMA FILE MAINTENANCE
SUBSCHEMA CHECKSUM
RELATION 76710464332261536703

END OF FILE MAINTENANCE
DDLF COMPLETE. 0 DIAGNOSTICS.

50500B CM USED. 0.128 CP SECS.

Figure C-2. The FORTRAN Sub-Schema Library (Sheet 6 of 8)

C-8 60483500 A

ADMISSIONS

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017

** WITHIN COURSE
00018

* * ORDINAL 1

** ORDINAL

** ORDINAL

** ORDINAL

** ORDINAL

** WITHIN CFILE

1

00019
2
00020

5
00021

'*
00022
00023

00024

00025
I
00026

?

00027
5
00028

X

00029
00030
* * * * *

PRIMARY KEY 00018
PRIMARY KEY 00025
ALTERNATE KEY 00026
ALTERNATE KEY 00027

* * * * *
* * * * *

** ORDINAL

** ORDINAL

** ORDINAL

** ORDINAL

SUBSCHEMA
ADMISSIONS

DDLF COMPLETE.
50000B CM USED.

* SOURCE LISTING * (80351) DDLF 1.2+538.

SUBSCHEMA ADMISSIONS,SCHEMA=UNIVERSITY

ALIAS(RECORD) CRSREC=COURSE-REC
ALIAS(ITEM) CID=COURSE-ID.COURSE-REC
ALIAS(ITEM) NAME=COURSE-NAME
ALIAS(ITEM) PREREQ=PREREQUISITE

ALIAS(REALM) CFILE=CURRICULUM
ALIAS(RECORD) CURREC=CURR-REC
ALIAS(ITEM) STUDENT=STUDENT-ID
ALIAS(ITEM) CCID=COURSE-ID.CURR-REC
ALIAS(ITEM) CODE=COMPLETE-CODE

REALM COURSE
REALM CFILE

RECORD CRSREC

CHARACTERS CID

CHARACTERS NAME

CHARACTERS SCHOOL

CHARACTERS PREREQ

INTEGER UNITS

RECORD CURREC

CHARACTERS 4 IDENT

CHARACTERS 1 STUDENT

CHARACTERS CCID

CHARACTER CODE

END

END OF SUB-SCHEMA SOURCE INPUT

CID FOR AREA COURSE
IDENT FOR AREA CFILE
STUDENT FOR AREA CFILE
CCID FOR AREA CFILE
RECORD MAPPING IS NEEDED FOR REALM - COURSE
RECORD MAPPING IS NEEDED FOR REALM - CFILE

BEGIN SUB-SCHEMA FILE MAINTENANCE

CHECKSUM
56065313377542307610

END OF FILE MAINTENANCE
0 DIAGNOSTICS.

0.109 CP SECS.

Figure C-2. The FORTRAN Sub-Schema Library (Sheet 7 of 8)

60483500 A C-9

BURSAR * SOURCE LISTING * (80351) DDLF 1.2+538.

00001 SUBSCHEMA BURSAR,SCHEMA=UNIVERSITY
00002
00003 ALIAS(RECORD) STREC=STUDENT-REC
00004 ALIAS(ITEM) STID=STUDENT-ID.STUDENT-REC
00005 ALIAS(ITEM) NAME=STUDENT-NAME
00006 ALIAS(ITEM) ADDR=STREET-ADDRESS
00007 ALIAS(ITEM) ZIP=ZIP-CODE
00008
00009 ALIAS(REALM) ACCOUNT=ACCOUNTING
00010 ALIAS(RECORD) ACCTREC=ACCT-REC
00011 ALIAS(ITEM) ASTID=STUDENT-ID.ACCT-REC
00012 ALIAS(ITEM) LAB=LAB-FEES
00013 ALIAS(ITEM) MISC=MISC-FEES
00014
00015 REALM STUDENT
00016 REALM ACCOUNT
00017
Q0018 RECORD STREC

** WITHIN STUDENT
00019 CHARACTER*!1 STID

** ORDINAL
00020 CHARACTERS NAME** ORDINAL
00021 CHARACTERS ADDR** ORDINAL
00022 CHARACTERSO CITY** ORDINAL
00023 CHARACTERS STATE** ORDINAL
00024 CHARACTERS ZIP
00025** ORDINAL
00026 RECORD ACCTREC

** WITHIN ACCOUNT
00027 CHARACTERS 1 ASTID** ORDINAL
00028 REAL TUITION(16)** ORDINAL
00029 REAL LAB(16)** ORDINAL
00030 REAL BOOKS(16)** ORDINAL
00031 REAL MISC(16)
00032** ORDINAL
00033 RELATION REL2

PRIMARY KEY 00019 STID FOR AREA STUDENT
PRIMARY KEY 00027 ASTID FOR AREA ACCOUNT

*** * * RECORD MAPPING IS NEEDED FOR REALM - STUDENT
*** * * RECORD MAPPING IS NOT NEEDED FOR REALM - ACCOUNT
00034 END
*** * * END OF SUB-SCHEMA SOURCE INPUT
*** * * R E L A T I O N S T A T I S T I C S * * * * *

RELATION 001 REL2 JOINS AREA - STUDENT
AREA - ACCOUNT

BEGIN SUB-SCHEMA FILE MAINTENANCE

SUBSCHEMA CHECKSUMBURSAR 16643753141007716046
END OF FILE MAINTENANCE

DDLF COMPLETE. 0 DIAGNOSTICS.
50500B CM USED. 0.107 CP SECS.

^ ^ \

Figure C-2. The FORTRAN Sub-Schema Library (Sheet 8 of 8)
/^^V

C-10 60483500 A

Job statement RECORD CRSREC
USER statement CHARACTERS CRSID
CHARGE statement CHARACTERSO CRSNAME
ATTACH,UNIVERS. CHARACTERSO SCHOOL
DEFINE(CREATES/CT=PU,M=W) CHARACTERS PROF
DDLF(F5,SB=CREATES,SC=UNIVERS) CHARACTERS PREREQ
End-of-Record INTEGER UNITS

SUBSCHEMA CREATES,SCHEMA=UNIVERSITY RECORD STREC
CHARACTERS 1 STID

ALIAS(REALM) PFILE=PROFESSOR CHARACTERSO NAME
ALIAS(RECORD) PRECORD=PROF-REC CHARACTERSO ADDR
ALIAS(ITEM) PROFID=PROF-ID.PROF-REC CHARACTERSO CITY
ALIAS(ITEM) PNAME=PROF-NAME CHARACTERS STATE
ALIAS(ITEM) FIELD=ACADEMIC-FIELD CHARACTERS ZIP

CHARACTERS 2 PHONE
ALIAS(REALM) CRSFILE=C0URSE CHARACTERSO MAJOR
ALIAS(RECORD) CRSREC=COURSE-REC
ALIAS(ITEM) CRSID=COURSE-ID.COURSE-REC RECORD CRECORD
ALIAS(ITEM) CRSNAME=COURSE-NAME CHARACTERS4 IDENT
ALIAS(ITEM) PROF=PROF-ID.COURSE-REC CHARACTERS 1 CSTID
ALIAS(ITEM) PREREQ=PREREQUISITE CHARACTERS COURSE

REAL GRADE
ALIAS(RECORD) STREC=STUDENT-REC CHARACTERS CODE
ALIAS(ITEM) STID=STUDENT-ID.STUDENT-REC CHARACTERS DATE
ALIAS(ITEM) NAME=STUDENT-NAME INTEGER CRUNITS
ALIAS(ITEM) ADDR=STREET-ADDRESS
ALIAS(ITEM) ZIP=ZIP-CODE RECORD ACCTREC

CHARACTERS 1 ASTID
ALIAS(REALM) CFILE=CURRICULUM REAL TUITION (16)
ALIAS(RECORD) CRECORD=CURR-REC REAL LAB(16)
ALIAS(ITEM) CSTID=STUDENT-ID.CURR-REC REAL BOOKS (16)
ALIAS(ITEM) COURSE=COURSE-ID.CURR-REC REAL MISC(16)
ALIAS(ITEM) CODE=COMPLETE-CODE
ALIAS(ITEM) DATE=COMPLETE-DATE END
ALIAS(ITEM) CRUNITS=UNITS.CURR-REC End-of-Record

ALIAS(REALM) ACCOUNT=ACCOUNTING End-of-informati on
ALIAS(RECORD) ACCTREC=ACCT-REC
ALIAS(ITEM) ASTID=STUDENT-ID.ACCT-REC
ALIAS(ITEM) LAB=LAB-FEES
ALIAS(ITEM) MISC=MISC-FEES

REALM PFILE
REALM CRSFILE
REALM STUDENT
REALM CFILE
REALM ACCOUNT
RECORD PRECORD
CHARACTERS PROFID
CHARACTERSO PNAME
CHARACTERS FIELD

Figure C-3. The FORTRAN Sub-Schema Library CREATES

60483500 B C-11 •

Job statement
USER statement
CHARGE statement
define(mstrdir/ct=pu)
attach(univers)
attach(sslib)
Attach(creates)
dbmstrd(nmd=mstrdir,ld)
End-of-record

SCHEMA NAME IS UNIVERSITY
FILE NAME IS UNIVERS
TRANSACTION RECOVERY FILE

PFN IS "FTNTRF" UN IS "DBID001"
RESTART IDENTIFIER FILE

PFN IS "FTNRIF" UN IS "DBID001".

AREA NAME IS PROFESSOR
PFN IS "PROFESS" UN IS "DBID001"

INDEX FILE ASSIGNED
PFN "PNDX" UN IS "DBID001".

AREA NAME IS COURSE
PFN IS "COURSE" UN IS "DBID001"

INDEX FILE ASSIGNED
PFN "CRSNDX" UN IS "DBID001".

AREA NAME IS STUDENT
PFN IS "STUDENT" UN IS "DBID001"

INDEX FILE ASSIGNED
PFN "SNDX" UN IS "DBID001".

AREA NAME IS CURRICULUM
PFN IS "CURRICU" UN IS "DBID001"

INDEX FILE ASSIGNED
PFN "CRNDX" UN IS "DBID001".

AREA NAME IS ACCOUNTING
PFN IS "ACCOUNT" UN IS "DBID001".

SUBSCHEMA NAME IS AVERAGE
FILE NAME IS SSLIB.

SUBSCHEMA NAME IS COMPARE
FILE NAME IS SSLIB.

SUBSCHEMA NAME IS RELATION
FILE NAME IS SSLIB.

SUBSCHEMA NAME IS ADMISSIONS
FILE NAME IS SSLIB.

SUBSCHEMA NAME IS BURSAR
FILE NAME IS SSLIB.

SUBSCHEMA NAME IS CREATES
FILE NAME IS CREATES.

End-of-Record

End-of-informat i on

Figure C-4. The Master Directory Build

Job Statement
USER statement
CHARGE statement
DEFINE,FTNTRF1,FTNRIF/CT=PU.
RETURN,FTNTRF1,FTNRIF.
ATTACH,MSTRDIR.DBREC.
End-of-Record

SCHEMA NAME IS UNIVERSITY
ALLOCATE

TRANSACTION RECOVERY FILE IS FTNTRF1
RESTART IDENTIFIER FILE IS FTNRIF

End-of-Record

End-of-inforaation

Figure C-5. Log File Initialization

C-12 60483500 B

Job statement
USER statement
CHARGE statement
ATTACH(CREATES)
ATTACH(PDATA,CRSDATA,SDATA,CDATA,ACCDATA)
DEFINE(PROFESS,PNDX/CT=PU,M=W)
DEFINE(COURSE,CRSNDX/CT=PU,M=W)
DEFINE(STUDENT,SNDX/CT=PU,M=W)
DEFINE(CURRICU,CRNDX/CT=PU,M=W)
DEFINE(ACCOUNT/CT=PU,M=W)
RETURN(PROFESS,PNDX,COURSE,CRSNDX)
RETURN(STUDENT,SNDX,CURRICU,CRNDX,ACCOUNT)
DML(LV=F5,SB=CREATES)
FTN5(I=DMLOUT,DB=0)
LIBRARY,DNSLIB.
CDCSBTF(LGO/MDPFN=MSTRDIR,UN=xx)

End-of-record

PROGRAM BUILD
SUBSCHEMA(CREATES)
INVOKE
PRIVACY(CFILE,M0DE=0,PRIVACY=,XX99')
OPEN(PFILE,M0DE=0,ERR=900)
OPEN(1,FILE=»PDATA')

100 READ(1,FMT='(A8,A30,A20)',END=199) PROFID,PNAME,FIELD
WRITE(PFILE,ERR=900)
GOTO 100

199 CLOSE(PFILE,ERR=900)
CLOSE(1,STATUS='DELETE')
OPEN(CRSFILE,M0DE=0,ERR=900)
0PEN(1,FILE='CRSDATA')

200 READd,FMT='(A6,A20,A20,A8,A6,I2)',END=299) CRSID,CRSNAME,SCHOOL,
+ PROF,PREREQ,UNITS
WRITE(CRSFILE,ERR=900)
GOTO 200

299 CL0SE(CRSFILE,ERR=900)
CLOSE d,STATUS='DELETE')
OPEN(STUDENT,MODE=0,ERR=900)
0PEN(1,FILE='SDATA')

300 READ(1,FMT='(A11,A30,A20,A10),,END=399) STID,NAME,ADDR,CITY
READ(1,FMT='(A2,A5,A12,A20)', END=399) STATE,ZIP,PHONE,MAJOR
WRITE(STUDENT,ERR=900)
GOTO 300

399 CLOSE(STUDENT,ERR=900)
CLOSE(1,STATUS='DELETE•)
OPEN(CFILE,MODE=0,ERR=900)
0PEN(1,FILE='CDATA')

400 READd,FMT='(A14,A11,A6,F3.1,A1,A8,F3.1)',END=499) IDENT,CSTID,
+ COURSE,GRADE,CODE,DATE,CRUNITS
WRITE(CFILE,ERR=900)
GOTO 400

499 CLOSE(CFILE,ERR=900)
CLOSE(1,STATUS='DELETE')
OPEN(ACCOUNT,MODE=0,ERR=900)
DO 510 1=1,16

TUITION(I)=0.0
LAB(I)=0.0
BOOKS(I)=0.0

5 1 0 M I S C (I) = 0 . 0
0PEN(1,FILE='ACCDATA')

550 READ(1,FMT='(A11)',END=599) ASTID
WRITE(ACC0UNT,ERR=900)
GOTO 550

599 CL0SE(ACC0UNT,ERR=900)
CLOSE(1,STATUS='DELETE')

900 TERMINATE
END

End-of-Record

End-o f - in fo rmat ion

/gP*v
60483500 B

Figure C-6. The FORTRAN Data Base Creation Program (Sheet 1 of 3)

C-13 •

File PDATA—(Input data for PFILE)

C R L N 0 0 8 0 C A R L I N , W . L . H I S T O R Y
D V S 0 0 5 7 5 D AV I S , M . E . P S Y C H O L O G Y
J C K S N 7 5 0 J A C K S O N , U . B . B U S I N E S S
J M S 0 0 1 6 0 J A M E S , H . L . P S Y C H O L O G Y
M L N 0 0 8 4 0 M A L 0 N E , R . E . H I S T O R Y
R S S 0 0 8 6 0 R O S S , W . R . B U S I N E S S
S M T H 0 4 5 5 S M I T H , P. R . M AT H E M AT I C S
W L S N 0 8 5 5 W I L S O N , G . R . C H E M I S T R Y
Y M D 0 0 1 7 0 Y M A D A , J . V . B U S I N E S S

File CRSDATA— (Input data for CRSFILE)

CHM103BIOCHEMISTRY
CHM005QUANTITATIVE ANAL
CHM110LINEAR OPTIMIZATION
PSY136S0CIAL PSYCHOLOGY
PSY002GENERAL PSYCHOLOGY
PSY003PSYCHONOMICS
HIS103GREEK HISTORY
BUS017C0NSUMER LAW
BUS001ACCOUNTING I
BUS002ACC0UNTING II
MATH10COLLEGE ALGEBRA

SCIENCE
SCIENCE
SCIENCE
LIBERAL ARTS
LIBERAL ARTS
LIBERAL ARTS
LIBERAL ARTS
BUSINESS ADMIN
BUSINESS ADMIN
BUSINESS ADMIN
SCIENCE

CRLN0080CHM0053
WLSN0855N/A 4
WLSN0855MATH103
JMS00160N/A 3
JMS00160N/A 3
DVS00575PSY0023
MLN0084QN/A 3
JCKSN750N/A 3
YMD00170N/A 3
RSS00860BUS0013
SMTH0455N/A 3

File SDATA—(Input data for STUDENT)

122-13-6704WALTER HILL 1960 MONTANA ST. MINNEAPOLI
MN55112612-143-1760HIST0RY
100-22-5860GUY RICHARDS 143 E. LAKE BLVD. MINNEAPOLI
MN55440612-715-9187BI0L0GY
124-33-5780BARBARA YOUNG 413 MAPLE AVE. MINNEAPOLI
MN55440612-731-4632HISTORY
120-44-3760JERI ADAMS 1400 W. OAK LANES MINNEAPOLI
MN55112612-625-7913CHEMISTRY
553-89-2021 PAUL JOHNSON 137 MARKET ST. MINNEAPOLI
MN55104612-649-1377PSYCH0L0GY
687-14-2100PATRICIA ANDREWS 100 KAUREL DR. MINNEAPOLI
MN55112612-436-8750BI0L0GY
197-11-2140CAREN NIELSON 12 MORRIS ST. MINNEAPOLI
MN55104612-136-9800CHEMISTRY
678-12-1144MARK PETERSEN 1372 PARKVIEW DR. MINNEAPOLI
MN55112612-143-9877PSYCH0L0GY
387-14-1232LL0YD DAVIS 692 FIRST ST. APT. 1MINNEAPOLI
MN55104612-993-4773CHEMISTRY
437-56-8943JANET ANDERSON 986 SINCLAIRE AVE. MINNEAPOLI
MN55112612-997-6160BIOLOGY

Figure C-6. The FORTRAN Data Base Creation Program (Sheet 2 of 3)

• C-14 60483500 B

File CDATA— (Input data for CFILE)

122-13-6704-01122-13-6704HIS1034.0C09/22/803.0
1 2 2 - 1 3 - 6 7 0 4 - 0 2 1 2 2 - 1 3 - 6 7 0 4 P S Y 1 3 6 0 . 0 1 3 . 0
100-22-5860-01100-22-5860CHM1033.OC05/30/793.0
100-22-5860-02100-22-5860CHM0054.OC09/22/794.0
100-22-5860-03100-22-5860MATH103.5C05/18/793.0
1 0 0 - 2 2 - 5 8 6 0 - 0 4 1 0 0 - 2 2 - 5 8 6 0 P S Y 0 0 2 0 . 0 1 3 . 0
124-33-5780-01124-33-5780HIS1033.5C09/22/803.0
124-33-5780-02124-33-5780BUS0014.0C02/24/803.0
124-33-5780-03124-33-5780BUS0024.0C09/22/803.0
120-44-3760-01120-44-3760CHM0052.0C09/22/794.0
120-44-3760-02120-44-3760CHM1033.0C05/30/803.0
120-44-3760-03120-44-3760MATH104.OC 05/30/803.0
120-44-3760-04120-44-3760CHM1103.5C09/22/803.0
553-89-2021-01553-89-2021PSY1363.5C05/30/803.0
553-89-2021-02553-89-2021PSY0024.0C05/30/803.0
553-89-2021-03553-89-2021PSY0033.5C09/22/803.0
687-14-2100-01687-14-21O0CHM0054.0C09/22/794.0
687-14-2100-02687-14-2100CHM1033.5C05/30/803.0
687-14-2100-03687-14-2100MATH104.0C05/30/803.0
687-14-2100-04687-14-2100CHM1104.0C05/30/803.0
197-11-2140-01197-11-2140CHM0053.0C05/30/804.0
197-11-2140-02197-11-2140CHM1033.5C09/22/803.0
197-11-2140-03197-11-2140CHM1104.0C09/22/803.0
197-11-2140-04197-11-2140MATH104.0C05/30/803.0
678-12-1144-01678-12-1144PSY1364.0C05/30/803.0
678-12-1144-02678-12-1144BUS0174.0C05/30/803.0
6 7 8 - 1 2 - 11 4 4 - 0 3 6 7 8 - 1 2 - 11 4 4 H I S 1 0 3 0 . 0 1 3 . 0
3 8 7 - 1 4 - 1 2 3 2 - 0 1 3 8 7 - 1 4 - 1 2 3 2 M AT H 1 0 0 . 0 1 3 . 0
3 8 7 - 1 4 - 1 2 3 2 - 0 2 3 8 7 - 1 4 - 1 2 3 2 C H M 0 0 5 0 . 0 1 4 . 0
3 8 7 - 1 4 - 1 2 3 2 - 0 3 3 8 7 - 1 4 - 1 2 3 2 P S Y 1 3 6 0 . 0 1 3 . 0
3 8 7 - 1 4 - 1 2 3 2 - 0 4 3 8 7 - 1 4 - 1 2 3 2 B U S 0 1 7 0 . 0 1 3 . 0
437-56-8943-01437-56-8943MATH103.OC05/30/803.0
437-56-8943-02437-56-8943CHM0053.5C05/30/804.0
437-56-8943-03437-56-8943PSY0023.5C05/30/803.0

File ACCDATA—(Input data for ACCOUNT)

122-13-
100-22-
124-33-
120-44-
553-89-
687-14-
197-11-
678-12-
387-14-
437-56-

6704
5860
5780
3760
2021
2100
2140
1144
■1232
■8943

Figure C-6. The FORTRAN Data Base Creation Program (Sheet 3 of 3)

60483500 B C-15

INDEX

Access control B-1
Actual key file organization 1-3, 3-12, B-1
Advanced Access Methods (AAM) B-1
Alias 2-1, 3-10, B-1
Alternate key

Listed in sub-schema 2-3, 3-10
Multiple-index processing 1-3
Order sequenced 3-14

3-6, 3-12
3-6, 3-14

B-1

READ statement
START statement

Area (see also Data base file)
ASSIGNID statement 3-18
Automatic recovery 3-18, B-1

Basic Access Methods (BAM) B-1
BEGINTRAN statement 3-16

CDCS
Definition B-1
Description 1-2
Interface

Establish 3-2
Terminate 3-4

Locking mechanisms 4-6
CDCS Batch Test Facility 1-2, 6-1, B-1
CDCSBTF control statement 6-1
Child record occurrence 3-9, 3-13, 3-15
CLOSE statement 3-4
COMMITTRAN statement 3-16
Common item 3-8, 3-10, B-1
Concurrency 1-4, B-1
Constraint

Avoiding violations 4-4
Definition B-1
Description 1-4, 4-4

Control break
Definit ion
Description

B-1
3-13

Information returned in status block
Control statements

CDCSBTF 6-1
DML 5-1
LDSET 5-1

CYBER Database Control System (see CDCS)
CYBER Record Manager (CRM)

Definition B-1
Description 1-3
Interface 1-3

Data administrator
Definition B-1
Description 1-1
Responsibilities 3-1, 5-1, C-1

Data base B-1
Data base file (see also Realm)

Accessing 3-1
Attached by CDCS 3-2
Creating 3-5, 4-5
Direct access B-2
Error checking 4-4

4-2, 5-12

File B-2
Lock

Deadlock situation 4-6
LOCK statement 3-4
Use 3-7, 3-8

Manipulating 3-5
Organization 1-3
Position 3-6, 4-3
Privacy 1-4
Processing considerations

Constraint 4-4
Deadlock 4-6
Relation 3-10

Processing function 3-1, 4-3
Status checking 4-4

Data base procedures 1-3, B-1
Data base status block

Content 4-2
Definit ion B-1
Establishing in FORTRAN program 4-2Test for constraint violation 4-4
Test for control break 4-3
Test for deadlock 4-6
Test for null occurrence 4-3

Data base transaction
Begin transaction 3-16
Commit transaction 3-16
Defini t ion B-1
Drop transaction 3-17
Example 5-23
Processing considerations 3-17
Processing operations 3-15

Data base version 1-4, B-1
Data Description Language (see DDL)
Data item B-2
Data Manipulation Language (see DML)
DDL 1-1, B-2 ^
Deadlock 4-4, B-2
DELETE statement 3-8
Dependent record occurrence 4-4, B-2
Direct access file organization 1-3, 3-12, B-2
DML

Control statement 5-1
Definit ion B-1
Description 2-1
Language components 2-1
Preprocessor 5-1
Statement positioning 2-1
Statements 2-4, 3-1
Syntax requirements 2-1
Use in data base transactions 3-15
Use in program restart 3-18

DML statements
ASSIGNID statement 3-18
BEGINTRAN statement 3-16
CLOSE statement

Realm 3-4
Relation 3-10

COMMITTRAN statement 3-16
DELETE statement 3-8
DROPTRAN statement 3-17
FINDTRAN statement 3-18
INVOKE statement 3-2

60483500 B Index-1 •

LOCK statement 3-4
OPEN statement

Realm 3-3
Re la t i on 3 -10

PRIVACY statement 3-3, 3-10
READ statement

Realm 3-6
Re la t i on 3 -12

REWRITE statement 3-7
START statement

Realm 3-6
Re la t i on 3 -14

SUBSCHEMA statement 3-1
TERMINATE statement 3-4
UNLOCK statement 3-4
WRITE statement 3-5

DMLDBST routine 4-3
DMS-170

Desc r ip t i on 1 -1
Feature summary 1-5

Dominant record occurrence 4-4, B-2
DROPTRAN statement 3-17

End option 4-1
E n d - o f - fi l e 3 - 1 2 , 4 - 2
EOF (see End-of-file)
ERR option 4-1
Error processing 4-1
Examples

Data Base C-1
FORTRAN application programs 5-3
Sub-scheaas 2-1, 3-2, 3-11, C-1

Exclus ive lock ing 3-4, B-2

File (see Data base file)
FINDTRAN statement 3-18
FORTRAN DML (see DML)
FORTRAN source program

Compiling and Executing 5-1
Developing 2-1, 3-1, 5-1
Sample programs 5-3

Hierarchical tree structure
Hose block B-2

3-9, B-2

I (mode) 3-3, 3-10
Immediate return 1-4
Indexed sequential file organization
INVOKE statement 3-2
10 (mode) 3-3, 3-10
Item ordinal 2-2, 4-3

KEY option
READ statement 3-6, 3-12
START statement 3-6, 3-14

Keyword B-2

LDSET control statement 5-1
Listing control 5-3
LOCK statement 3-4
Locking 3-4
Log files

Definition B-2
Used with CDCS 1-4
Used with CDCS Batch Test Facility 6-1

1-3, 3-12, B-2

Mapping 2-2, B-2
Master directory

Definit ion B-2
Sample C-1
Used with CDCS 1-2
Used with CDCS Batch Test Facility 6-1

MODE option
Creating a file 3-5
OPEN statement 3-3, 3-10
PRIVACY statement 3-3
Relation processing 3-10

Multiple index
Processing 1-3
Processor B-2

Null record occurrence
Definit ion B-2
Description 3-13
Information returned in status block 4-3

Null values 3-5

0 (aode) 3-5
OPEN statement

Realm 3-3
Relation 3-10

Operation B-2

Parent record occurrence 3-9, 3-13, 3-15
Permanent file B-2
Primary key

DELETE statement 3-8
Listed in sub-schema 2-2, 3-10
Order sequenced 3-12
READ statement 3-6, 3-13
REWRITE statement 3-7
START statement 3-6, 3-14

Privacy key
Definition B-2, 2-1
Description 1-4
Specification requirements 3-2

PRIVACY statement 3-2, 3-10
Protected locking 3-4, B-2

Rank
Control break status 3-13
Definit ion B-2
Description 3-9
Null record status 3-13
Returned in status block 4-3

READ
Random 3-6, 3-13
READ statement

Realm 3-6
Relation 3-12

Sequential 3-6, 3-12
Realm (see also Data base file)

Definit ion B-2
Listed in sub-schema 2-2, 3-1, 3-10
Name returned in status block 4-3

Realm lock
LOCK statement 3-4
Use when updating 3-7, 3-8

Realm ordinal B-3
Record

Definit ion B-3
Order stored 1-3

Record Lock 3-7, 3-8
y r t ^ K

• Index-2 60483500 B

Record occurrence 3-9, 3-12, B-3
Record type B-3
Recovery 1-4, B-3
Relation

Accessing 3-8
Definit ion B-3
Description 1-4
Listed in sub-schema 3-10
Processing considerations 3-10, 3-15
Processing function 3-9
Structure 3-9

Relation occurrence 3-8, 3-12, B-3
Restart

3-18
3-18, B-3

3-18, B-3

Assigning
Iden t i fie r
I d e n t i fi e r fi l e
Operation 3-18
Processing operations

Restriction
Defini t ion B-3
Description 1-4
Listed in sub-schema

REWRITE statement 3-7
Root realm 3-9, B-3

3-18

2-3, 3-10

START statement
Realm 3-6
Relation 3-14

Status block (see Data base status block)
SUBSCHEMA statement 3-1
Sub-schema

Definit ion B-3
Description 1-1
Item ordinal 2-2, 4-3
Samples 2-1
Used in application programs 3-1, 3-10, C-1

Sub-schema item ordinal 2-2, B-3
Sub-schema library 2-1, B-3
Subroutine 5-9
Subscripting 5-15

TERMINATE statement 3-4
Transaction (See Data base transaction)
Transaction identifier 3-18, B-3

UNLOCK statement 3-4
Updating consideration 3-15

/$S*\

Schema 1-1, B-3, C-1
Severity error code 4-2 WRITE statement 3-5

60483500 B Index-3 •

COMMENT SHEET

MANUAL TITLE: CYBER Database Control System Version 2 FORTRAN Application Programming User's Guide

P U B L I C A T I O N N O . : 6 0 4 8 3 5 0 0 R E V I S I O N : B

NAME:

COMPANY:

STREET ADDRESS:

C I T Y : S T A T E : Z I P C O D E :

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

P l e a s e r e p l y N o r e p l y n e c e s s a r y

0^-
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

TAPE
TAPE

FOLD
FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
F I R S T C L A S S P E R M I T N O . 8 2 4 1 M I N N E A P O L I S , M I N N .

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
215 Moffett Park Drive
Sunnyvale, Cali fornia 94086

FOLD FOLD

