60459960

(G2 CONTROL DATA

CDC® CYBER 170 COMPUTER SYSTEMS
MODELS 815, 825, 835, 845, AND 855

CDC® CYBER 180 COMPUTER SYSTEMS
MODELS 810, 830, 835, 840, 845, 850, 855,
860, AND 990

CDC® CYBER 845S, 855S, 840A, 850A, 860A,
990E AND 995E COMPUTER SYSTEMS

GENERAL DESCRIPTION

HARDWARE MAINTENANCE MANUAL



REVISION RECORD

m

REVISION DESCRIPTION

A Manual released.
(07-30-82)

B Manual revised; includes Engineering Change Order 44861. This edition obsoletes all previous
(02-10-84) editions. Because changes are extensive, revision bars and dots are mot used and all pages

reflect the current revision letter.

[ Manual revised; includes Engineering Change Order 47463. Front cover, 3-4, 3-17, 7-6, 7-20, 7-22,
(10-31-85) 7-24, 7-34, 9-3, 9-5, and 9-14 are revised. Index-1 and Index-2 are added.

D Manual revised; includes Engineering Change Order 47774. Front Cover is revised.
(06-13-86)

E Manual revised; includes Engineering Change Order 48291. Front Cover through 6 and 7-7 are revised.
(12-08-86)

Publication No.
604 59960

REVISION LETTERS I, 0. Q. S, X AND Z ARE NOT USED.

Address comments concerning this
manual to:

Control Data

1982. 1984. 1985. 1986 Technical Publications
©17%2 ’ > ' 4201 North Lexington Avenue
by Control Data Corporation St. Paul, Minnesota 55126-6198
All rights reserved
Printed in the United States af America or use Comment Sheet in the back of

this manual.



LIST OF EFFECTIVE PAGES

L~ N e e e

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV
Front Cover - 6--4 B 9-10 B
Title Page - 6-5 B 9-11 B
2 E 6-6 B 9-12 B
3/4 E 7-1 B 9-13 B
5/6 E 7-2 B 9-14 C
7 B 7-3 B 9-15 B
8 C 7-4 B 9-16 B
9 C 7-5 B 9-17 B
1-1 B 7-6 C 10-1 B
2-1 B 7-7 E 10-2 B
2-2 B 7-8 B 10-3 B
2-3 B 7-9 B 10-4 B
2-4 B 7-10 B 10-5 B
2-5 B 7-11 B 10-6 B
2-6 B 7-12 B 10-7 B
2-7 B 7-13 B 11-1 B
2-8 B 7-14 B A-1 B
2-9 B 7-15 B A-2 B
3-1 B 7-16 B A-3 B
3-2 B 7-17 B A-4 B ]
3-3 B 7-18 B A-5 B
3-4 C 7-19 B A-6 B
3-5 B 7-20 C Index-1 C
3-6 B 7-21 B Index-2 c
3-7 B 7-22 [ Comment
3-8 B 7-23 B Sheet E
3-9 B 7-24 C Back Cover -
3-10 B 7-25 B
3-11 B 7-26 B
3-12 B 7-27 B
3-13 B 7-28 B
3-14 B 7-29 B
3-15 B 7-30 B
3-16 B 7-31 B
3-17 C 7-32 B
3-18 B 7-33 B
3-19 B 7-34 C
3-20 B 7-35 B
3-21 B 7-36 B

1 3-22 B 7-37 B
4-1 B 7-38 B
4-2 B 8-1 B
4-3 B 8-2 B
44 B 8-3 B
4-5 B 8~4 B
4-6 B 8-5 B
4=7 B 8-6 B
4-8 B 8-7 B
4-9 B 8-8 B
5-1 B 8-9 B
5-2 B 9-1 B
5-3 B 9-2 B |
5-4 B 9-3 C
5-5 B 9-4 B
5-6 B 9-5 C
5-7 B 9-6 B
6-1 B 9~7 B
6-2 B 9-8 B
6-3 B 9-9 B

60459960 E 3/4






PREFACE

This manual contains information for the CDC® CYBER 170, Models 815, 825, 835, 845, and 855,
the CYBER 180, Models 810, 830, 835, 840, 845, 850, 855, 860, and 990, and the CYBER 845S,
8555, 840A, 850A, 860A, 990E, and 995E Computer Systems.

The manual provides a model-independent overview of the Virtual State System and its
security/protection and interrupt features relative to the computer system”s hardware.

AUDIENCE

This manual is for use by customer, marketing, training, programming, and engineering
services personnel who operate, program, and maintain the computer systems.

RELATED PUBLICATIONS

The following manuals contain related information:

) Publication
Control Data Publication Number
CYBER 170 Computer Systems Models 815, 825, 835, 845, and 855 and
CYBER 180 Computer Systems Models 810, 830, 835, 840, 845, 850, 855,
and 990, and CYBER 990E and 995E Computer Systems Hardware
Reference Manual, Virtual State, Volume II, Instruction
Descriptions, Programming Information 60458890
CYBER 845S and 855S Computer Systems
Hardware Reference Manual, Virtual State,
Volume II, Instruction Descriptions, Programming Information 60463410
CYBER 840A, 850A, and 860A Computer Systems
Hardware Reference Manual, Virtual State,
Volume II, Instruction Descriptions, Programming Information 60463580

Publication ordering information and latest revision levels are available from the
Literature Distribution and Services catalog, publication number 90310500.

60459960 E 5/6






CONTENTS

1.

VIRTUAL STATE OVERVIEW

To be supplied.

2.

VIRTUAL MEMORY MECHANISM

General Description
Address Translation

3.

Page Size
Hashing Algorithms
Page Table Search

SECURITY AND PROTECTION

Software Facilities
Hardware Facilities

4.,

Virtual Memory User Address Space
Segment Attributes
Rings of Protection
Execute Access
Call Access
Read Access
Write Access
Ring Numbers in Pointers
Keys/Locks
Key/Lock Use
Key/Lock Hardware Mechanism
Key/Lock Example

BUFFER MEMORIES

Segment Map

Page Map

Cache Memory

Software Implications

5.

CENTRAL PROCESSOR LOGICAL
ENVIRONMENT

Processor State Registers
Process State Registers

60459960 B

]

w s u>g;%>u:oot»
= OO

TEE
=
NS~ O 00O

3-16
3-16
3-18

U

6. INTERRUPTS PART I

7. CALL/RETURN/POP MECHANISM

Software Considerations
Call - the Basic Mechanism
Return - the Basic Mechanism
Pop - the Basic Mechanism
The Binding Section - Code Sharing
Flags
On-Condition Flag
Critical Frame Flag
Outward Calls/Inward Returns
Object Module Binding
Virtual Machines
Ring Number O
Overall Process Flowcharts

8. CROSSING PROTECTION BOUNDARIES

Changing Address Spaces
Protection Boundaries within an
Address Space
Intersegment Branch
When Hardware Checks Occur
Software Conventions
Rings of Protection
Controlling Procedures
User Responsibilities

9. INTERRUPTS PART II

Interrupt Conditions
Monitor Condition Register (MCR)

Detected Uncorrectable Error

(DUE)

Not Assigned

Short Warning

Instruction Specification
Error

Address Specification Error

CYBER 170 State Exchange
Request



Access Violation 9-6 General Notes on the UCR 9-13
Environment Specification Debug 9-14

Error - Invalid BDP Data 9-14
External Interrupt - Arithmetic Conditions 9-14

Conditions Where the
Instruction Is Inhibited 9-15

Conditions Where the
Instruction Is Executed 9-15

Page Table Search without Find
System Call

System Interval Timer

Invalid Segment/Ring Number 0

O O W WWIWYWWOWwWoWw
]
— = \O \O \O 00 00~

Qutward Call/Inward Return - Vector Instructions 9-16
Soft Ervor Log -10 Simulated Interrupts 9-16
Trap Exception -10 Multiple Interrupts 9-17
General Notes on the MCR -10
User Condition Register (UCR) 9-11
Privileged Instruction Fault 9-12
Unimplemented Instruction 9-12 10. DEBUG 10-1
Free Flag 9-12
Process Interval Timer 9-12
Inter-ring Pop 9-13 11. VIRTUAL STATE SOFTWARE OVERVIEW
Critical Frame Flag 9-13
Keypoint 9-13 To be supplied.
APPENDIX
A. GLOSSARY A-1
INDEX
FIGURES
2-1 Process Virtual Address 2-2 3-12 Program Address Register 3-19
2-2 Address Translation 2-3 3-13 Conceptualization of a User
2-3 Formation of Page Number and Address Space 3-20
Page Offset (for a 4096-Byte 3-14 Virtual Memory Address Transla-
Page) 2-4 tion Flowchart 3-21
2-4 Hashing Algorithm 2-6 3-15 Virtual Memory Protection
2-5 Page Table Search Example 2-7 Flowchart 3-22
2-6 Page Table Search Flowchart 2-8 4-1 Virtual State Buffer Memories 4-1
3-1 Access Control Example 3-1 4-2 Segment Map Operation 4-3
3-2 Process Virtual Address (PVA) 3-4 4-3 Segment Map Allocation 4=4
3-3 Segment Descriptor Entry (SDE) 3-6 4-4 Page Map Operation 4-5
3-4 Segment Protection within an 4-5 Cache Memory Operation 47
Address Space 3-8 5-1 JPS and MPS Registers 5-1
3-5 Ring Brackets 3-11 5-2 PTA Register 5-1
3-6 Example of Ring Bracket Use 3-12 5-3 EID Register 5-2
3-7 Ring Protection within an 5-4 Processor State Registers 5-3
Address Space 3-13 5-5 Virtual State Exchange Package
3-8 Process Virtual Address (PVA) 3-14 (Virtual State Process) 5-4
3-9 A Register Ring Voting 3-15 5-6 Process State Registers 5-6
3-10 Format of SDE Bits 33 through 39 3-16 5-7 Process State Registers Accessed
3-~11 Example of Key/Leck Use 3-18 by Exchange Operation 5~7

8 60459960 C



Basic Interrupt Mechanism 6-1 7-16 Binding Process

Interrupt Conditions 6—-2 7-17 Conversion from Call-Indirect to
Examples of Interrupts 6-3 Call-Relative
6-5
7-2

1

Interrupt Flowchart 7-18 Ring Number O on Load A
Example of Block Structure 7-19 Ring Number O on Call

\I\IO\OI\C'\O\
N = W

-2 Stack Frame Manipulation by 7-20 Call/Trap
Call/Return 7-3 7-21 Return

7-3 Basic Call Mechanism 7-5 7-22 Pop

7-4 Basic Return Mechanism 7-6 8-1 Code Base Pointer (CBP)
7-5 Stack Frame Save Area 7-7 8-2 Calling a Procedure on Behalf of
7-6 Call/Return 7-9 Another Procedure

7-7 Rippling 7-10 8-3 Intersegment Branch

7-8 Example of Pop Instruction 7-13 9-1 Monitor Condition Register
7-9 Call Indirect Example 7-15 9-2 Memory Error Detection
7-10 Code Sharing 7-16 9-3 User Condition Register
7-11 Loading Mechanism 7-17 10-1 Debug List

7-12 On—-Condition Handling 7-19 10-2 Debug List Entries

7-13 OQutward Call 7-21 10-3 Debug Condition Select
7-14 Inward Return 7-23 10-4 Conceptual Debug Procedure
7-15 0S Call 7-25

60459960 C






VIRTUAL STATE OVERVIEW

This section will be supplied later.

60459960 B

1-1






VIRTUAL MEMORY MECHANISM 2

Virtual State contains three main areas:
e Virtual memory mechanism.
o Interrupt system.
e Call/return mechanism.

A complete understanding of each area is necessary to fully comprehend Virtual State.

GENERAL DESCRIPTION

This section deals with the basic concepts of the virtual memory mechanism. The primary
purpose of the mechanism is to provide a solution to the security problem. Each executing
task of the operating system performs in a unique address space. The address space is
divided into a number of segments, each of which can be 2 billion bytes long. The segment
forms the basis of the security and protection mechanisms.

To understand memory management, it is necessary to understand the difference between
segments and pages. A segment is a unit of virtual memory management. It has attributes
such as length and access privileges peculiar to the protection scheme. The page is a unit
of real memory management. Pages do not have attributes. Pages are present in the hardware
to assist the software in managing the very large real memories that can be supported by
Virtual State. The page size is a variable, set during system initialization and constant
from one deadstart to the next.

Virtual memory addresses are the only addresses available to software. Virtual State
processors do not have a real memory address mode. The only places real memory addresses
are used are in the hardware tables used in address translation. The address translation
mechanism is discussed in the following pages. To minimize address translation time, since
the hardware depends upon good locality of reference, all code and data being used at one
time should be collected in virtual memory.

60459960 B 2-1



ADDRESS TRANSLATION

The fundamental address available to a programmer is the process virtual address (PVA). To
the user, this appears as a segment number and a byte offset within the segment

(figure 2-1). It also includes a ring mumber that 1s part of the protection mechanism
discussed later,

16 20 3233 63
RN SEG BN
L sign Bit* [ Byte offset within
a segment
Segment No. '
Ring No.

*Serves to prevent address increments from exceeding the segment.

Figure 2~1., Process Virtual Address

A segment is an entity. Address flow is from the beginning of a segment to the end. An
address does not flow from one segment to the next segment, and it does not wrap around a
given segment. When an address of 31 of more bits is created, an address specification
error (ASE) is detected and program execution is interrupted.

The segment number is a 12-bit field used as an index into a process segment table, The
operating system creates a process segment table for each active process (task)f in the
system. Segment numbers are assigned sequentially from zero.

Segment descriptor table entries (SDEs) are 64 bits long and contain information relating to
the privileges and protection of that segment. SDEs also contain active segment identifiers
(ASIDs). Each ASID is a unique 16-bit identifier created and used by the operating system
to identify each active segment within the system.

Address translation takes place in two steps. The first step uses the process segment
descriptor table (SDT) to translate a PVA to a system virtual address (SVA). SVAs form the
basis for code sharing, and processor cache memories are organized on SVAs, not real memory
addresses. .

tThe terms process and task are synonomous. A task is the unit of execution of the Virtual
State operating system. A process is the hardware term for a task.

2-2 60459960 B



In the first step of the translation, the hardware takes the ASID from the entry in the SDT,
pointed to by the SEG field of the PVA, It then catenates this with the BN field of the PVA
to form the SVA (figure 2-2).

[rn]  sec | BN |
- IASIDI
| |
SVA ASID - |
v
I
|
| HAsH |
SPID | pra
—
v v
[ RMA |

Figure 2-2. Address Translation

60459960 B 2-3



The processor views the BN as both a page number (PN) and a byte offset within that page,
also called a page offset (PO). Figure 2-3 illustrates the formation of PN and PO for a
4096-byte page. To determine where or if the page resides in real memory, another access to
the system page table (SPT) is made. Since many more pages exist in virtual memory than in
real memory, a hashing algorithm is used to compute the page table index. On Virtual State,
the page number and the ASID are hashed via an exclusive OR. The page table index is used
to select a candidate entry from the SPT. The table is then searched forward linearly,
either until a valid page with the desired entry is found or until 32 entries have been
searched. If the search terminates without a hit, the page is assumed not to be in central
memory, and a page fault is indicated.

Once a hit is made, the page frame address (PFA) in the page table is catenated with the
page offset from the SVA to form a 32-bit real memory address (RMA).

BYTE NUMBER 55 63
I0|000000011011010 1011011}101101101

AND AND
coPY ﬁ111ooybooo111\ coPY
PSM NOT PSM
ooooooo11o11o1o1o11ooo| 0000011}101101101
PAGE NUMBER PAGE OFFSET

Figure 2-3., Formation of Page Number and Page Offset
(for a 4096-Byte Page)

PAGE SIZE

The page size 1s determined by the value of the page size mask (PSM). The PSM is a 7-bit
register that expresses the page size in multiples of 512 bytes. The page size is given by:

Page size = 2% x 27~(+/PSM)
where the PSM is a solid mask extending from left to right. A PSM of O indicates the

largest page size (64KB). The term (+/PSM) expresses the summation of the 1 bits (pop
count) in the PSM,

24 60459960 B



HASHING ALGORITHMS

The hashing algorithm takes an exclusive OR of the low-order 16 bits of the page number and
the ASID., If the page number is only 15 bits long, then a 0 is catenated to the left end to
make it 16 bits. Since the resulting hash must be as random as possible, the most random
low—order bits of one quantity should be exclusively ORed with the most random high-order
bits of another. The low-order 16 bits of the PN are the most random part of that quantity,
and the same will be true of the ASID, if it is assigned sequentially starting from zero.
This does not allow appropriate randomness in the ASID, To achieve appropriate randomness,
the operating system may assign ASIDs from zero up and invert the bits. The first 16 ASIDs
then become:

ASID Hexadecimal Binary
1 0000 0000 0000 0000 0000
2 8000 1000 0000 0000 0000
3 4000 0100 0000 0000 0000
4 c000 1100 0000 0000 0000
5 2000 0010 0000 0000 0000
6 A000 1010 0000 0000 0000
7 6000 0110 0000 000C 0000
8 EO000 1110 0000 0000 0000
9 1000 0001 0000 0000 0000
10 9000 1001 0000 0000 0000 .
11 5000 0101 0000 0000 0000
12 D000 1101 0000 0000 0000
13 3000 0011 0000 0000 0000
14 B00OO 1011 0000 0000 0000
15 7000 0111 0000 0000 0000
16 F000 1111 0000 0000 0000

The operating system may also use a pseudorandom number generator for ASID assignment,
although the randomness in the high-order bits of the ASID jis not guaranteed. The
pseudorandom technique is inferior to the hashing algorithm.

60459960 B 2-5



The result of the hash is ANDed to the page table length (PTL), and four 0’s are catenated
to form the page table index (figure 2-4).

PN (15-22)
l ASID (16) J [ 0000001111111111111111

| MM1111111111111

I PN (16)

SELECT LOW-
XOR ORDER 16 BITS

l HASH INDEX J I 0000 [ i PTL ] [ 11111111

CATENATE 4 CATENATE

l HASH INDEX l OOOOJ r PTL 1111111

(PAGE TABLE INDEX) l

Figure 2-4. Hashing Algorithm

2.6 ‘ 60459960 B



PAGE TABLE SEARCH

Since the hashing algorithm is a many-to-one mapping, two different pages may hash to the
same page table entry (PTE). To find the correct entry, the ASID and page number portion of
the SVA is compared with the system page identification held in the PTE. If they are not
equal, a linear search controlled by the VC field (bits O and 1), is initiated. The search
continues either until 32 entries have been searched and the correct entry is found, or
until an end-of-search condition is indicated by bit 1 (figure 2-5).

01 4 42 63
Initial -
Index T =
oj1 *(2)
141 *(3)
11 * REQD. ENTRY * *(4)
I- 1 = Continue Search
1 = Valid Entry

!

*(1) The first entry accessed is valid (bit 0=1) but has the wrong segment page

identifier (SPID). Since bit 1=1, the next entry is checked.
*(2) The second entry is invalid, but search can continue.
*(3) The third entry is the same as the first.
*(4) The fourth entry matches the required SPID. The sequence terminates at this

point. The continue bit (bit 1) does not necessarily indicate an end of search,
since other multiple entries with this hash or an adjacent hash may be present.

Figure 2-5. Page Table Search Example

60459960 B 2~7



The algorithm for setting the continue-search bit is self-evident. When an entry is
invalidated, its continue bit is checked. If it is set, no additiomal action is necessary,
since it is part of a chain to an entry further down in the page table. If it is zero, the
table may be searched backwards to clear out possible continue bits for the now invalid
entry. If the previous entry had its continue bit clear, the process terminates, since there
is no chain to investigate. If the previous entry had its continue bit set, it is cleared
and a check is made to determine whether more continue bits can be cleared. The condition
for further clearing is either an ASID of O (a null entry by software convention) or an ASID
of nonzero that hashes directly to this entry, in which case the continue chain being
cleared could have started higher up (figure 2-6). A special system instruction (load page
table index) has been defined to aid in this process. The instruction is described in
volume II of the Virtual State hardware reference manual (refer to the preface for more
information). ’

CONTINUE
BIT=1?

_ GET PREVIOUS Y
ENTRY

CONTINUE
BIT=12

L

SET CONTINUE
BIT TO ZERO

END

Figure 2-6. Page Table Search Flowchart

2-8 60459960 B



In summary, the hardware uses the SDT to translate a PVA into an SVA. It then uses the SPT
to translate the SVA into an RMA. The SDT and the SPT are hardware tables constructed and
managed by software. The translation of a PVA into an RMA can be time consuming, especially
if every reference requires at least two additional memory references. A number of hardware
buffers are used to eliminate this overhead and to minimize the time necessary for
translation.

To accommodate coincident hash indexes with the minimal search, the operating system assigns
from two to four times as many entries in the page table as there are pages in real memory.
Since the general environment contains two processors, care must be taken when changing page
table entries, and the special interlock instructions must be used for this purpose. The
instructions are described in volume II of the Virtual State hardware reference manual
(refer to the preface for more information).

The only mode of operation of the hardware is a virtual address mode. No instructions deal
directly with real memory addresses. The hardware has been designed with dynamic paging in
mind. Pages are brought into memory on demand, and page table entries are purged based on a
least recently used (LRU) algorithm. This algorithm is the responsibility of the operating
system. However, two flags are kept in the PTE to help in the process. The flags are kept
in the UM field (bits 2 and 3) and have the following meanings.

e Whenever a page is used (read, written, or executed), the hardware sets bit 2 in the
PTE.

e Whenever a page is modified (written), the hardware sets bit 3 in the PTE.

Combinations of bits 2 and 3 have the following meanings.

Value Meaning
00 Unused and unmodified (new page)
01 Unused but modified
10 Used but not modified
11 Used and modified

Pages are chosen as candidates for purging based on the value of the UM field and their LRU
status. Since any modified page must be written to mass storage when it is purged, modified
pages will typically have a higher resistance to purging. The status unused-but-modified
can arise from software algorithms. The UM bits are never cleared by hardware. They are
cleared by software when pages are purged, and are also cleared to force updates to the LRU
status of all pages. In this latter mechanism, it is expected that the operating system
will periodically zero all used bits in the page table. This effectively resets the LRU
status. Ensuing activity automatically updates this status.

Although the hardware has been designed with dynamic paging in mind, it is not a
prerequisite. When running in a pure CYBER 170 State, static paging is used. The entire
CYBER 170 State environment is assigned to a single Virtual State segment that operates in
Virtual State job mode. Pages in this segment and in real memory have a one-to—one
correspondence, and once initialized, the page table does not change. CYBER 170 State
operates in a virtual memory segment that has a size corresponding to the amount of real
memory in the system. If the ASID is set to HEX FFFF and SEG set to 0, a pseudo RMA mode
exists within the hardware. This is a pseudo mode, since the hardware still goes through
the address translation mechanism. However, there are no page faults.

60459960 B 2-9






SECURITY AND PROTECTION 3

Security is particularly important in computer systems. Virtual State has been designed to
meet the most stringent security requirements of the industry. The degree of security
achieved by a Virtual State system is controlled by the software exploitation of the
hardware features. The hardware provides facilities that detect breaches of security, or
attempted breaches of security, but the software really controls the desired level of
security. If a rigid set of conventions is not followed, loopholes may exist and may be
detected by ingenious users. The software and hardware interaction is similar to other
controls that must be followed if a system is to be totally secure. These controls embrace
the installation management, the operators, the administration, and all other parts of an
organization. The computer is only a small part of this whole.

The responsibilities of the organization are not discussed here. Instead, the discussion is
confined to the hardware and software facilities provided by Virtual State systems. It is
divided into two major areas: the first deals with the software facilities and their
interfaces to the end user, and the second deals with the hardware facilities and their use
by the software.

SOFTWARE FACILITIES

A basic objective of NOS/VE is to provide efficient and safe services to many users
simultaneously and asynchronously. Levels of provided service range from the complete
isolation of users from each other to controlled sharing between cooperating users. To
allow these service levels, the system has adopted a general access control strategy or
security model. The model serves as the conceptual basis for the detailed implementation of
all the access control mechanisms in the system.

The access control strategy is based on a conceptual access control matrix. Rows of the
matrix represent all possible users of the system. In the access control matrix these are
called subjects. Columns of the matrix represent all possible system resources that can be
accessed by a subject. In the access control matrix these are called objects, such as
subjects, files, and equipment. Each element in the matrix identified by a subject—object
pair contains the valid kinds of access or access rights that the subject has to that
particular object. Figure 3-1 illustrates access control.

TAPE
SUBJECT SUBJECT FILE FILE DRIVE
A B Cc D E
OWNER OWNER
SUBJECT A ADMIN RW USE
OWNER
SUBJECT B R R.X

Figure 3-1. Access Control Example

60459960 B 3-1



In the example in figure 3-1, subject A is the administrator of subject B and the owner of
file C and tape drive E. Subject A can read and write file C and use tape drive E. Subject
B can read file C and owns and can read and execute file D, Every access a subject makes to
an object is validated via the access control matrix. The access is permitted only if the
corresponding access right is in the appropriate element in the access control matrix.

The operating system cannot maintain a physical matrix that is consulted on every access. A
variety of features of the system architecture interact to implement the conceptual access
control matrix. Some of the major features of the NOS/VE implementation of the access
control architecture are:

e User identification and validation

- A user must be known before gaining access to the system.

- The resources a user can use are a function of user controls, project controls,
and the current state of the system.

~  An attribute of every user is the lowest ring number of execution.

-~ Modification to the user validation information may only be performed by the
system, account, and project administrators who control the user’s installation.

e File system
- All files in the system, local or permanent, are owned by a single user.
- Access to permanent files by any user other than the owner is regulated by an
access control list associated with each file. The access control list contains

the names and access rights of all users permitted to access the file.

-~ All files, local and permanent, have one or more ring brackets associated with
them. The ring brackets are used as qualifiers to file access.

If a file is readable, then it possesses a read bracket that defines the
rings in which it can be read.

1f a file is writable, then it possesses a write bracket that defines the
rings in which it can be written.

If a file is executable, then it possesses an execute bracket that defines
the rings in which it can execute, and a call bracket that defines the rings
from which it can be called.

The ring brackets associated with a file are specified by the owner of the

file. However, the file system does not allow any user to specify any ring
bracket of higher privilege than the ring in which the user is executing.

3-2 60459960 B



- All files, local or permanent, possess certain attributes that describe the
contents of the file. The ring brackets associated with reading, writing,
executing, and calling are all file attributes. Whether a given user has read,
write, or execute permission to another user”s permanent file is determined by
the access control list of the file. The combination of these two factors
allows rings to be a unit of protection that is recognizable to the entire
system. This is useful to the operating system since it attempts to
discriminate between system code and nonsystem code running in a user job,
regardless of the user on whose behalf the job is executing. Since the user’s
installation administrators control the assignment of ring numbers in the
validation files, the user controls the extent and connotation of his or her
installation ring use. If an installation chooses to associate different rings
with different security classifications, it can do so. If it wishes to run all
users at a single ring, the only use of rings is to protect the operating system
from users” programs.

® Segment management

- For a file accessed through the system virtual memory mechanism, the file
protection attributes maintained by the file system are used by segment
management to build the SDEs. The CPU address translation logic uses the SDEs
when referencing the segment. The attributes maintained by the file system
software are continuously enforced by the hardware when the file is being
referenced.

- The loader accesses all object libraries through the segment level access
facility of the file and memory management systems. It also uses segment
management to create the transient segments used for the data areas of the
executing program. The loader is responsible for creating these segments with
the correct protection attributes to assure proper execution and protection of
the program.

An example illustrates how these mechanisms interact to effect access control in NOS/VE.
Consider two users, Tom and Sue. Tom has been validated by the installation to execute in
ring 9. Sue has been validated to run in ring 11. Tom develops an application and stores
it in the permanent file catalog. Since Tom was executing in ring 9 when he cataloged his
application, it has an execute bracket of (9,9) by default. In order to allow Sue to use
his application, Tom must set the call bracket of his application permanent file to 11 and
give Sue execute permission in the access control list of the file. Since Tom is the owner
of his application, he is the only user permitted to set its call bracket and place entries
in its access control list.

In order to use Tom”s application, Sue must first attach the file for execute access. This
will succeed because Tom has placed Sue in the access control list of the file and has
specified execute access. Sue then executes a program that uses Tom s application. Sue”s
program is loaded in ring 11 and Tom”s program is loaded in ring 9. Because Tom”s program
has a call bracket that extends to ring 11, Sue”s program can call Tom"s and use the service
it provides.

60459960 B 3-3



HARDWARE FACILITIES

One of the primary design accomplishments of Virtual State systems is to improve the overall
system reliability. In the past, the operating system has been a limiting factor.

Operating system software is large, on the order of ome million lines of code, and is error
prone. An error in other systems often causes the systems to crash, interrupting normal
service. Since it is unlikely that such a vast quantity of code can be generated error
free, other solutions were sought. In Virtual State, the solution is to give each user his
or her own copy of the operating system. If a particular copy of the system fails, it
causes nothing more serious than a single job to abort. With this approach, the operating
system and the user”s code become an entity, and facilities must be provided to separate and
protect operating system modules from user modules and from each other. This is the primary
reason for the Virtual State security system., A second major objective is to provide
controlled access to all code and data. To this end, users are protected from each other,
and can be protected from the system.

The key to this protection mechanism is the Virtual State virtual memory mechanism. The
virtual memory segment is the basic protected element. Before the attributes of this
segment are discussed, however, it is necessary to understand how segments are arranged in
virtual memory for utilization by a user.

VIRTUAL MEMORY USER ADDRESS SPACE

Address space is the set of addresses known to an executing process. In CYBER 170 State,
this is the set of real memory addresses embraced by reference address (RA) and field length
(FL). 1In Virtual State, it is the set of virtual memory addresses specified by the entries
in the SDT. Each process executing in a Virtual State system has a unique SDT. The address
and length of this table are specified by process state registers held in the exchange
package. The exchange package is used to define the environment of the exchange interval
for each task. Each entry in the SDT consists of a full word and describes all of the
attributes of one segment. Just as CYBER 170 State users are constrained to an address
space by the RA/FL mechanism, so are Virtual State users constrained to an address space by
the SDT. This is the basic element of protection. The discussion of the protection
mechanisms that follows describes the protection offered within a virtual memory address
space.

The following two paragraphs discuss what happens when a user attempts to access code or
data segments not in his or her address space. The only addresses known to the user are
process virtual addresses (PVAs) (figure 3-2). Each PVA has three components: a ring number
(RN), a segment number (SEG), and a byte number (BN).

16 20 32 . 63

PVA RN SEG BN

Figure 3-2. Process Virtual Address (PVA)

34 60459960 C



The ring number is discussed later in this section. The segment anumber is assigned by the
operating system (segment manager) in ascending sequential order starting with zero. The
segment numbers are the only names by which the user knows his or her segments. They act as
an index into the process segment table that contains entries only for those segments to
which the user has access rights. The byte number denotes a byte offset within a segment.
The only way a user can attempt to access a segment not contained within his or her address
space is by specifying a segment number greater than any assigned by the operating system
for that process. However, when an attempt is made to reference that segment, an exchange
interrupt results, since the segment number is greater than the segment table length (STL).
The STL is set by the operating system and held in a process state register that can be read
but not written. The register is set by an exchange jump. The hardware performs this basic
test for every reference made to memory.

Whenever an exchange jump occurs, a switch of address spaces occurs. The operating system
monitor runs in its own address space. This is not true of the bulk of the operating
system. Services such as those offered by record manager reside within the user’s address
space. Additional protection mechanisms, described later, come into play to protect these
parts of the system from the user and vice versa. All of this happens in virtual memory.
Conceptually, operating system segments that reside in the user address space exist as
multiple copies in virtual memory. To optimize the use of real memory, the operating system
typically keeps a single copy of the code in real memory. The copy is shared by several
users. The individual users are unaware of this since they are only aware of what happens
in virtual memory. There is no possible breach of security here since each user is totally
unaware of the existence of other users.

60459960 B 3-5



SEGMENT ATTRIBUTES

Once a user has been confined to an address space, the segment becomes the basis of the
security mechanism. Each segment has a set of attributes recorded in the segment descriptor
table entry (SDE) in the SDT. These attributes are its global system name, its access
attributes, its rings, and its lock. Since these are recorded in the SDE, and the SDE is
unique to a given process, it is possible for a segment to be shared by more than one
process, yet have different attributes for each process. The format of an SDE is shown in
figure 3-3.

0 24 6 8 12 16 32 34 39 63

el (=] s V7777777

Figure 3-3. Segment Descriptor Table Entry (SDE)

A segment also has a length associated with it that is not kept in the SDE.

The first four fields determine the access privileges for the segment. Values for these
fields are:

Field Value Description
VL 00 Invalid entry. A segment no longer used by a process does not have

to have its SDE removed from the SDT, but must have it invalidated.
If segments are viewed as files, their entries are invalidated when
the files (segments) are closed and purged.

01 Reserved.

10 Regular segment. This denotes an active segment for the executing
process.

11 Cache by-pass segment. Certain tables and interlock words must be

kept in a cache by-pass segment. An example is the exchange
package. The exchange jump mechanism works from a real memory
address. Therefore, data in cache memory, which is addressed via a
system virtual address (SVA), does not get updated.

3-6 60459960 B



Field

Value

Xp

RP

60459960 B

00

01

10

11

00

01

10

11

00

01

10

11

Description

Nonexecutable segment. This data segment normally has either read or
write access.

Nonprivileged executable segment. Some instructions can only be
executed if they reside in a segment having the attributes of local
or global privilege. As a result, certain operations are restricted
for use by the operating system and cannot be invoked accidentally by
a user executing garbage, for example, literals.

Local-privileged executable segment. Code contained in segments with
the local-privileged executable attribute may execute all
unprivileged instructions and all instructions restricted to local
privilege. In particular, trap handlers have at least local
privilege, since the trap—enable flip-flop and the trap-enable delay
flip-flop can only be set by a system copy instruction, and these
flags can only be written in local-privileged mode.

Global-privileged executable segment. Code contained in segments
having global privilege may execute all instructions except those
restricted to monitor mode. This includes those instructions
restricted to local-privileged mode, which is a subset of global
privilege.

Nonreadable segment. Such a segment has either write privilege or
execute privilege. An execute-privilege segment normally has only
that attribute. However, literals may be stored in the segment and
read from the segment with load instructions provided for that
purpose. The load instructions always load from an address relative
to P, the program address counter. In this case, the read access is
implicitly equated to the execute access of the segment.

Read under control of the key/lock mechanism. For a segment
controlled by a lock, this control may selectively apply to either
the read or write privilege of the segment. The code indicates that
reads are under key/lock control.

Read not under the control of key/lock. This is a normal read
privilege assigned to the segment.

Binding section. Read not under the control of key/lock. Binding
sections, which contain pointers to external procedures and data,
always have read privilege, and are never subject to key/lock control.

Nonwritable segment. Typically, all executable segments are
nonwritable, because Virtual State code is usually organized into
pure procedures. A user could generate a code segment from assembly
language that modified code. However, this code segment would not be
sharable with other users.

Write controlled by the key/lock mechanism. This is the write
counterpart of RP=0l and indicates that the segment is writable but
only if the key/lock access is correct.

Write not under control of key/lock. This is a normal, writable data
segment.

Reserved.

3-7



The XP, RP, and WP are the first level of protection offered within a user address space.
Figure 3-4 illustrates segment protection within an address space.

"Firewalls"”
- ~ S

USER 1 USER @ USER N
ADDRESS ADDRESS oHellls ADDRESS
SPACE SPACE SPACE

SEG N [ ” JTL_

SEG O = -
w B

| |

Figure 3-4. Segment Protection within an Address Space

Users are absolutely confined to their address space. Within this space, code and data are
organized into segments, and the segments are assigned various privileges. Most of the
operating system and entire subsystems are expected to exist in the user address space.
These constraints are necessary to ensure that appropriate security is maintained at all
times. Even privileged portions of the operating system, such as trap handlers with local
privilege, can reside in the same address space as a user who is executing completely
unchecked, and therefore very unreliable, code.

This level of protection guarantees that code segments are not arbitrarily overwritten by
users, leading to unpredictable results. It also guarantees that read-only data segments
are not destroyed, either willfully or accidentally. However, this level of protection is
insufficient by itself. For example, users could read and write segments of the operating
system, or users with inadequate security clearances could gain access to private data
segments. To accommodate these aspects of security, additional mechanisms are provided.

3-8 60459960



RINGS OF PROTECTION

To provide a separation between code and data segments, and prevent unauthorized access,
each address space is organized into a series of rings of protection. A maximum of 15 such
rings is permitted in an address space. They may be regarded as separate machine states
having differing privileges. The rings are organized hierarchically: the lower the ring
number the higher the privilege (ring 1 has the highest privilege). In general, code
residing in ring n can read and write segments in ring n and higher numbered rings. In
addition, code in ring n can call procedures in ring n and lower numbered rings, although
such calling is carefully controlled. The ring protection mechanism is controlled by the R1
and R2 fields in the SDE, the R3 field in the code base pointer (CBP), and the ring number
carried in all PVAs, particularly those held in the A registers and P registers. Code and
data segments need not reside in a single ring and may exist in several rings. When this
occurs, the segment is said to reside in a ring bracket. The extent of this ring bracket is
defined by the Rl and R2 fields of the SDE.

Four ring brackets are associated with every segment. These ring brackets are for read,
write, execute, and call. The first three of the ring brackets are segment attributes and
are described by the SDE. The fourth, the call bracket, is associated with the segment by
the operating system with no loss in generality. In practice, the operating system does not
only associate these ring brackets with segments but associates them with every file in the
system, either local or permanent, whether or not a given file is a segment. Descriptions
of the checking performed by the hardware for each type of access follow.

Execute Access

A segment that resides in several rings has its execute bracket described by the Rl and R2
fields of the SDE. Thus if:

SDE.R1 < P.RN < SDE.R2

then the segment is a member of the execute bracket. If control is transferred to the
segment from within the execute bracket, the ring number in the P register (P.RN) is
unchanged. If control is transferred from outside the ring bracket (via an inter-ring
call), P.RN is always set to SDE.R2, Calls, if permitted, can only be made inward. The
hardware validates execute access only once when a segment is entered. That calls can only
be made inward (or to the same ring) appears confusing, but the reason is quite
straightforward. Care must always be taken when crossing domains of protection to ensure
that no security violation occurs. This is particularly true when crossing from one domain
to another with higher privilege. If an outward call is permitted, then its counterpart, an
inward return, must also be permitted. However, a return is an unsolicited GO TO, which
implies a crossing of domains of protection without the necessary control. It is really an
inward return that must be prevented.

60459960 B 3-9



Call Access

Two main checks are exercised by the hardware when a call is made. The first ensures that
the call is an inward call.

PVA.RN > SDE.RI

where PVA.RN is the ring number of the PVA containing the entry point of the called
procedure, and SDE.Rl is the lower range of the ring bracket of the called procedure.

The second check ensures that the caller has adequate privilege to call the callee:

PVA.RN < CBP.R3
where CBP.R3 is the CBP gate ring number.
The callee can restrict entry to the procedure so that he or she can only be called from
certain rings. One more case is of interest, where a routine is called on behalf of another
caller. This happens when a caller legitimately calls on a more privileged procedure, but
then requests that the callee in turn call a third procedure, to which the callee has access
but the caller does not. Via a high-level language, this is constructed very simply by a
pointer to procedure. To prevent this form of unauthorized call, the hardware performs an
additional check.

Aj.RN < CBP.R3
where Aj.RN is the ring number of the pointer used to access the binding section containing
the relevant CBP. This A register will not have more privilege than the code requesting the
call, It is the requesting code that must reside within the callee’s call ring bracket. 1In

practice, since P,RN will always be less than or equal to Aj.RN, the hardware only has to
perform the latter test.

Read Access
An executing procedure may read a segment providing the following is true.
PVA.RN < SDE.R2

where PVA.RN is the ring number of the pointer (held in an A register) used to access
virtual memory, and SDE.R2 is the outermost ring number for the segment being accessed.

Thus, a procedure may read a segment from a ring of equal or lower privilege than its own.

For the read access to be successful, of course, the segment must have the read attribute
associated with it.

Write Access
An executing procedure may write a segment providing the following is true.
PVA.RN < SDE.R1
where PVA.RN is the ring number of the pointer (held in the A register) used to access

virtual memory, and SDE.Rl is the innermost ring number of the ring bracket for the segment
being accessed.

3-10 60459960 B



These four major ring brackets are shown in figure 3-5.

MOST PRIVILEGE LEAST PRIVILEGE
\ 1 \ 2 \ 3 X 4 5 6 7 o0
WRITE

BRACKET
1<$n<R1

READ
BRACKET
1€n<R2

EXECUTE
BRACKET
R1snsR2

CALL
BRACKET
R2<n<R3

EXAMPLE R1=3, R2=5, R3=7 R1SR2<$R3 / / /

Figure 3-5. Ring Brackets

In this example the Rl, R2, and R3 parameters, which define the ring brackets for a
particular segment, have been set as follows:

Rl = 3
R2 =5
R3 =7

The segment can be written from another segment, if that other segment resides in ring 3 or
in a lower numbered ring (ring 1 or 2).

The segment can be read from another segment, providing the other segment resides in ring 5
or in a lower numbered ring (rings 1 to 4).

The segment can execute in rings 3, 4, or 5. If the segment is called from ring 3, it will
execute in ring 3; if it is called from ring 5, it will execute in ring 5; and so on. If it
is called from ring 6 (or a ring numbered greater than 6), then it will execute in ring 5,
the least privileged of rings 3, 4, and 5.

The segment can be called from either rings 6 or 7. Segments can always be called from
other segments in the same ring that they are in. Consequently, the segment can be called
from rings 3 through 7. It cannot be called from any rings greater than 7, which are
outside the call bracket. Neither can it be called from a ring number less than 3, since
this would constitute an outward call. This situation is discussed in the call/return
section of this manual. Call/return is the primary mechanism for crossing protection
boundaries within an address space.

60459960 B 3-11



Figure 3-6 shows how ring brackets are used.

R,X R,X R,W
(3,11,11) (11,11,11) (11,11)
RING
1
i i
| 1
| I
R,X RW
(8:8,11) (8.,8) | I
RING | I
8 | |
| |
| |
L 1 1 ]
Ll 1 1 1
R,X RW | l ' !
(3,3.11) (3,3) | | | |
RING | | | |
3 I | | |
I | | |
e — L

Figure 3~-6. Example of Ring Bracket Use

In this example, the extremities of the ring brackets for each segment are indicated by the
numbers in parentheses (R1,R2,R3). The procedure in ring 11 can call on the procedure in
ring 8, since the call bracket for this latter procedure has been set to ll. The procedure
in ring 8 can read and write into the data segment belonging to the procedure in ring 11,
since the segment has read/write access and its Rl and R2 fields have both been set to 1ll.
In this way the procedure in ring 11 can pass parameters to and receive results from the
procedure in ring 8. Likewise, the procedure in ring 3 can be called from either the
procedure in ring 8 or the procedure in ring 11, because the ring 3 procedure has its call
bracket equal to ring 1l1. The logical extensions of the data segments in each ring are
indicated by dotted lines in the diagram. Notice that there are no extensions to the
execute segments, since the Rl and R2 fields restrict execution of the segment to a
particular ring. Thus, the procedure in ring l1 can only be executed in ring 11, the
procedure in ring 8 can only be executed in ring 8, and the procedure in ring 3 can only be
executed in ring 3.

On the left side of the figure there is an execute segment having Rl and R2 fields of 3 and
11, respectively. Consequently, this procedure can be executed in any ring from 3 through
11, inclusive. Such a procedure might be a trap handler or the FORTRAN math library. A
user executing in ring 11 can call on square root, for example, which would then execute in

3-12 60459960 B



ring 11, Similarly, a procedure in ring 8 using square root would have it execute in ring
8. 1In other words, the square root procedure always executes with the privilege of the
caller. This is required, since it is acting on behalf of the caller.

The segment can only be read, written, or executed if it has the appropriate access
permission associated with the segment. For a segment to be written from another segment,
it must contain write permission, and the other segment must reside in a ring from which the
first segment can be written.

Within a single address space, therefore, rings of protection provide a mechanism for
protecting sensitive code and data. Two cases are of particular interest.

o The first case deals with the need to know. A procedure should have access only to
those procedures and data segments necessary to do its task. Remember that the ring
mechanism is hierarchical, for the lower the ring number, the higher the privilege.
A higher clearance (lower ring number) allows access to more documents, but fewer
individuals (segments) are granted such clearance.

e The second case is concerned with degrees of potential damage. The segments of a
system can be effectively segregated into two or more rings, according to the damage
that may be caused if these segments are misused. The segments whose misuse is
likely to cause the greatest damage are given lower ring numbers. By means of this
segregation, the bulk of the operating system can reside within the user’s address
space and yet be protected from the vagaries of undebugged user code. If part of
the operating system does fail, the damage can be contained and cause nothing worse
than the user job to abort. Rings are therefore used extensively by the operating
system for damage control, and also made available for the user to create
hierarchical security structure. Figure 3-7 illustrates the resulting user address

space.
I [ I [ ]
X R RW B - RING N+2
- - = s “G'
- tat
- |
. -
— >
[ I f —
[+
X R AW B o
- RING N+l |
- - - I =
H
- [%]
«C
- W
[ S
X R W B - RING N =
] | | \/

Figure 3-7. Ring Protection within an Address Space

The address space, which is the basic unit of protection, now has two additional protective
mechanisms. The first restricts the type of access to a segment, and the second limits the
region from which a segment can be accessed.

60459960 B 3-13



RING NUMBERS IN POINTERS

The only addresses that programmers deal with are process virtual addresses (PVAs). Figure
3-8 illustrates a PVA. A set of 16 address registers (A registers) exists in the hardware
to hold these addresses during instruction execution.

16 20 32 63
RN SEG BN

Figure 3-8. Process Virtual Address (PVA)

The SEG and BN fields designate the addressed segment and the byte offset within that
segment, respectively. The RN field is the ring number associated with the access being
made. This ring number is most important to the ring security in the system, since it is
common for a procedure to perform work on behalf of another, less privileged procedure. It
is important that the more privileged procedure does not act with greater authority than has
been assigned to the caller. As a result, whenever an A register is loaded, either
explicitly (via a load or copy imstruction) or implicitly (via a return or pop imstruction),
the hardware places the ring number with least privilege into the register. A comparison is
made between the ring number of an A register used for the load, the ring number of the
loaded pointer, and the ring number of the Rl field of the SDE associated with the A
register used to load the pointer (refer to figure 3-9). The largest of these three ring
numbers is entered into the destination A register.

When an A register is loaded via a copy instruction from an X register, a comparison is made
between the ring number of the pointer held in the X register and the ring number held in
the P register. The larger of the two values is used. Since this cannot be as rigorous a
test as that used for loading A registers, care must be exercised in its use. For example,
if a procedure calls on a second procedure in a more privileged ring, and a pointer or
pointers are passed via loading an X register and copying the X register to an A register,
the callee may end up acting on behalf of the caller, with more privilege than the caller is
allowed. When this happens, the callee, the more privileged procedure, is at fault. The
more privileged procedure must maintain the security of the system down through its own
level. Without this fundamental software convention, the hardware cannot maintain system
integrity.

3~-14 60459960 B



A
[ry] seG

BN —

Rngme—

SDT

CENTRAL MEMORY

AN sec | BN

—

[[[[mfrz] aso T P7 T

T

Ak (DESTINATION)

60459960 B

Figure 3-9. A Register Ring Voting

3-15




KEYS/LOCKS

Keys and locks provide another hardware protection mechanism. The mechanism restricts
access to data ‘that is owned by a procedure or procedures. The following paragraphs contain
an example of the key/lock mechanism, a description of the key/lock hardware mechanism, and
an example that summarizes the entire security concept.

Key/Lock Use

An example of key/lock use may be taken from a math function that has been developed and is
being marketed by some organization. Since the function is general purpose it will
typically reside in the same ring of execution as the user who is calling it. However, the
developer may wish to restrict access to coefficients he or she has derived and that exist
in a separate (read-only) segment. If keys/locks are applied to all segments in the ring, a
read-only data segment can only be accessed from a given code segment or segments in the
ring.

Key/Lock Hardware Mechanism

There is a lock associated with every segment. It is described by a 6-bit field in the
SDE. Up to 64 different locks can coexist. Whenever a segment is executed, the lock
associated with that segment becomes the current key. The various values assigned to locks
assume no hierarchical significance, as with rings. It is only important if the keys/locks
are the same or different. The format of SDE bits 33 through 39 is shown in figure 3-10.

32 33 34 39

\\\\ L KEY/LOCK

Figure 3-10. Format of SDE Bits 33 through 39

3-16 60459960 B




The L field has the following meaning.

Procedure Local
0 Master key
1 6-bit key
Data Local
0 No lock
1 6-bit lock

A master key fits any lock, and any key fits a no-lock. In general, access to one segment
from another segment is granted only if the first segment has no lock, if the second segment
has a master key, or if the key exactly matches the lock. These tests, which are executed
by the hardware, are in addition to those already described for rings and type of access.
However, the key/lock tests are performed selectively as controlled by the RP and WP fields
in the SDE. Even though a lock may have been specified for a segment, the test for read
access only applies when the lock applies to read access, as indicated by an RP value of

Ol. Write accesses are similarly controlled by WP.

On a call, the new key is always taken unconditionally from the callee”s key value in the

SDE. On return the hardware verifies that the key obtained from the SFSA exactly matches
the lock taken from caller”s SDE.

60459960 C 3-17



Key/Lock Example

Figure 3-11 illustrates the use of key/lock values.

N

USER (11)
R.X RW RW
(5) (5,R,W) (5)

PROTECTED
APPLICATION (8)

(3)

(3,R.W)

RW
(0,R,W)

R,X
4)

OPERATING SYSTEM (3)

N

RW
(4,R,W)

RW
(0,R,W)

R,X
(1)

RW
(1,w)

R, X
(2)

RW
(2,w)

T

Figure 3-11,

Example of Key/Lock Use

60459960 B




In the example in figure 3~11, there are three rings of protection. Ring 3 is the most
privileged ring, where parts of the operating system reside. Ring 8 contains two
applications that are callable from a user in ring ll. The information in parentheses
defines the lock and whether this lock applies to read accesses (R), write accesses (W), or
both.

Whenever a call is made to a procedure in another segment, the callee executes with his or
her own key. This value is associated with the lock of the data segments accessed by that
procedure. In the example, the user has a read/write data segment to which key/lock
verification applies. It has a unique key/lock value of 5. Consequently, the applications
in ring 8, which have key values of 3 and 4 respectively, and the operating system, which
executes in ring 3 with a key value of either ! or 2, cannot access this data segment. This
is true even though the data segment is available for reading and writing and resides in
ring 11, a ring with very little privilege. Similarly, the operating system cannot read or
write either of the applications’ data segments, since they have different key/lock values
from the operating system and from each other. Key/locks are used to protect local data
regardless of the ring structure in use.

By software convention, the operating system segments (both code and data) are assigned
nonzero key/locks. This has the added advantage of protecting various modules of the
operating system from each other. In the example, there are two modules, both in ring 3,
which can call each other and can read each other’s data segments. However, the data
segments can only be written from the module to which they belong. This is a very powerful
debug aid for the operating system. In other systems, it is not uncommon for one module of
the operating system to accidentally destroy data belonging to another module. The damage
is not discovered until the second module is called, by which time the culprit is
unidentifiable. Through the use of keys/locks, the culprit can be identified both at the
time the data is over-written and/or at the time the overwrite is attempted.

The current key is maintained in the P register. Figure 3-12 indicates the 6-bit field for
this purpose.

0 10 16 20 3233 63

L\\\\\\\Q kev |RING | geq v BN

Figure 3-12. Program Address Register

60459960 B 3-19



In summary, there are three basic forms of protection from within a user space: the type of
access to a segment, the ring protection mechanism, and key/lock values. For every access
attempted, all three of these tests must be successful. If any one of them fails, an access
violation interrupt results, and the user is exchanged out of his or her address space into
the operating system monitor address space, where appropriate action results. The complete,
protected user address space is illustrated in figure 3-13.

Tl Rl A e
TEEETEI DA

OPERATING SYSTEM

X R I X
=

RW RW B

L
-

L

[

T

Figure 3~13. Conceptualization of a User Address Space

3-20 60459960 B



The following flowcharts (figures 3-14 and 3-15) describe the complete virtual memory
address translation and access control.

{ADD SPEC ERRORY

SEG STL? {INVALID SEGMENT}

1 ADDRESS = STA+{8%SEG} I

READ SDE FROM MEMORY }

NO
TRAP {INVALID SEGMENTY
YES

L CHECK ACCESS ‘]

SVA = ASID || BN —I

!

N=BN{32-47} | [ {BN{4E-54IAPSI} ]

f

0={BN{uB=-5UIAPSH} | |BNL55-3} ]

!

SPID = ASID || PN 1

!

ADDRESS=PTA+{8*HASHISPIDIAPT L)I

+ "—_l ADDRESS={ADDRESS+3} PTL
READ PTE FROM MEMORY F

R—

——

-

CONTINUE
BIT SET

SPID=S/PAGEID?

{PAGE TABLE
SEARCH WITH-
OUT FIND}

32 ENTRIES
SEARCHED 2

Iiﬂk:FHﬂICAL ADD VPO

YES

STORE
OPERATION

]

No l SET MODIFIED BIT

| SET USED BIT J_ﬂ*—‘

Figure 3-14. Virtual Memory Address Translation Flowchart

60459960 B

3-21




31IBYOMOTJ UOT3IO9101g KIOWSK TenIATA

°SI

—¢ 2an31g

¢Ty"34SZ Nd“d

E¥t@dF Ny fy

Y- 3ASFNY - VA

22207 ON=T7°3CS

¢T¥-3ASFNY"d

+2¥°30S3Ty7 348

<28 3ASFNY "Ny

60459960 B

3-22



BUFFER MEMORIES 4

To minimize the time necessary to translate a PVA to an RMA, a number of hardware buffer
memories are used. The description given here is based on Model 855 buffer memories. The
organization varies from processor to processor, but the fundamental concepts are the same.

Figure 4~1 is a pictorial representation of these buffer memories. The segment map contains
the most recently used entries from the process segment table. 1In the first stage of
address translation, the processor uses this map to translate the PVA to an SVA. This SVA
is then transmitted to the cache memory and the page map. Each of these buffers is organized
on the basis of the SVA, the page map containing the most recently used entries in the SPT,
and the cache containing the most recently used words in system virtual memory.
Simultaneously, a search is made of the page map and cache. If a cache hit occurs, then no
further action is required. However, if the required data is not in cache, then the search
of the page map is relevant, If a hit occurs, the required address translation completes
and central memory can be accesssed via the appropriate RMA. Only when there is no hit in
the page map must the processor actually search the SPT in real memory.

CENTRAL
PROCESSOR
PVA
SVA
SEGMENT ‘ 1
MAP

PAGE
I ] MAP CACHE

SDT SPT

CENTRAL
MEMORY

Figure 4-1. Virtual State Buffer Memories

60459960 B 41



SEGMENT MAP

The purpose of the segment map is to translate a segment number (SEG) to an active segment
identifier (ASID). This is the first step in the address translation mechanism and
translates a PVA to an SVA. Figure 4-2 illustrates the general process. A set-associative
technique is employed, where an index is used to select a set, and an associative
(simultaneous) comparison is made between each entry in the set and the required segment
number. Model 855 has 16 such sets in its segment map, each set having two members. To
index into the map, the lower 4 bits of the segment number are used as a hash index. These
bits are the most random part of the segment number.

The hash index identifies one of two entries in the segment map that are candidates for
translation of the given SEG. The segment map simultaneously compares the set-tag entries
with the mode of operation (job/monitor) and the upper 8 bits of the SEG. If a hit is made,
the ASID is taken from the segment descriptor word held in the map. If no hit occurs, the
ASID must be fetched from the segment descriptor table (SDT) in real memory.

The tag field of the segment map contains a bit to indicate the entry in the two sets that
is the least recently used (LRU). There are only two candidates. This entry is used to
receive the new segment descriptor. The tag field does not contain the segment table
address (STA). Instead two registers are used, one for the job STA and one for the

monitor. During an exchange to monitor state, the monitor STA is compared with the STA
obtained from the monitor exchange package. Similarly, the monitor STA is compared with the
job STA when an exchange to job state occurs. If the values do not compare, all entries for
either job or monitor in the segment map are invalidated.

4-2 60459960 B



SEG

[ | | |upper s B1Ts OF sEG

LLRU

JOB MONITOR
VALID

ELEMENT 0 ELEMENT 1

TAG SEGMENT TAG SEGMENT
DESCRIPTOR DESCRIPTOR

p = =

SDE *__
DISABLED IF
A HIT

-“omrmov

Figure 4-2. Segment Map Operation

60459960 B



The most recently used segment numbers appear in the map. The more segments used by a
process, the less likely it is to find the entry in the map. The system performs most
efficiently if the map entries for monitor and job are not hashed to the same location in
the map. This is best handled by the operating system assigning job segment numbers
sequentially from zero and monitor segment numbers sequentially from FFF downwards. This
has the effect of creating a 32-entry buffer filled from the top with job segment
descriptors, and from the bottom with monitor segment descriptors (figure 4-3). The choice
of a starting segment number for monitor need not be FFF, but should be of the form XXF. In
fact, FFF is probably used for some special purpose by the operating system, and, in any
case, maximizes the dead space in the monitor segment table. The practical choice for the
starting segment number is computed from:

(number of monitor segments) .OR. OOF
in which case the maximum number of dead entries is 15.

When the map is degraded (due to a parity error), one set is eliminated. The probability of
a miss is heightened and performance degrades.

JOB SEG 1 ——b
JOB SEG 0 —p

TOTAL 32 ENTRIES

5)
(
J)
N\

)
¢

MTR SEG 0 ——»
MTR SEG 1 ——p

Figure 4-3. Segment Map Allocation

b=4 60459960 B



PAGE MAP

The purpose of the page map (figure 4-4) is to translate the SVA from the segment map into
an RMA. As with the segment map, a set—associative technique is used. In this case there
are 32 sets, and the low-order 5 bits of the page number are used as a hash index to select
a set. The page number is formed from the byte number by executing a logical product with
the page size mask (PSM). Depending on the page size, the page number is not right-—
justified, and the hardware performs the necessary justification before extracting the hash

index.
SVA (FROM SEGMENT MAP)
TO
| ASID BN | [>0ACHE

V V

] ASID 11 PN [ po |

¥ ELEMENT 0 y ELEMENT 1
TAG PFA TAG PFA
1
( )
— +

L
E
c
T
| 1] ASID | PN LESS 5-BITS |
MODIFIED

-——LRU STATUS
VALID

Figure 4-4, Page Map Operation

60459960 B 4=5



The page map simultaneously compares the set-tag entries with the high-order 33 bits of the
SVA. The valid bit is not included in this operation. Invalid PVAs (and therefore invalid
SVAs) do not get this far in the translation mechanism. If a hit is made, the RMA is formed
from the SVA in the page map data table, and the page is offset. Otherwise, a page table
search is initiated.

The tag field in the page map contains 2 bits to indicate which entry in the two sets is the
LRU. There are only two candidates. However, 2 bits are allocated on Model 855 to allow for
up to four entries per set.

The most recently used pages appear in the page map. The more pages used by a process, the
less likely it will be to find the entry in the map. When the page map is degraded, one
group of entries is eliminated. The probability of a hit is reduced, and performance
degrades.

The modified bit is carried in the page map, but not the used bit. Descriptions of actions
taken on a hit and a miss follow, and clarify the setting of these bits.

o Map Miss — Page Table Hit

Read (i) Set the used bit in the PTE.
(ii) Copy the modify bit to the map.
(iii) Copy the addresses to the map.

Write (i) Set used and modify bits in the PTE.
(ii) Copy the modify bit to the map.
(iii) Copy the addresses to the map.

° Map Hit
Read (1) Simply form the RMA - no page table access is necessary.
Write (1) If the modify bit is set in the map, the process is identical to
read.
(ii) If the modify bit is not set in the map, a page table search is

required to set the modify bit in the PTE. The same bit is set in
the map. At this time the modify bit in the PTE and in the map is
set, and the used bit is set in the PTE.

The map and the cache perform similar functions. Once the segment map has formed an SVA,
the segment map sends the SVA simultaneously to the page map and the cache., If there is a
cache hit, and the operation is a read, there is no need to access the page map, as data is
being read directly from cache.

On a read, the cache hit overrides everything. It is possible to to get a cache hit even
when the relevant page is not in central memory, since the cache is organized on the SVA,
The operating system must ensure that cache accurately reflects the contents of system
virtual memory at all times. Whether the data actually resides on disk or in real memory is
immaterial. On writes, the situation is different. Virtual State processors always write
through cache. The appropriate entry in cache is either updated or purged on a write.
Actual implementation is processor-model dependent. On CYBER 170 Model 855, when a cache
hit occurs on a write, if it is a full-word write the word is updated. For a partial-word
write, the word is purged. On another processor, cache is updated regardless of the nature
of the write. ’

4-6 60459960 B



CACHE MEMORY

Virtual State supports very large, cost-effective memories.
To make up for this loss of speed, a buffer memory (cache memory) is
The most recently used words in system virtual memory are
The management of this memory is shown in figure

of some memory speed.
placed in the faster processors,
held in a much smaller, faster memory.

4-5, A set-associative technique is used to control entries in the cache.

maximum of four entries per associative set is employed.

It achieves this at the expense

On Model 855, a

An entry in a set consists of a

tag field that identifies the entry and 32 bytes (4 words) of data called a block. There
are 256 sets on Model 855.

[ |ru

ASID | UPPER 19-BITS OF BN ]

VALID

[ ASID ]

BN 8 2|3]

l—BYTE WITHIN WORD

WORD WITHIN
BLOCK

ELEMENT 3

I
/ ELEMENT 2

N

1
ELEMENT 1

60459960 B

1
> ELEMENT 0
TAG DATA BLOCK
>

- A 256
({1 [ | )[wo oJwo 1jwp 2Jwos}[ g

1 vy ——V L
- L o

Cc

K

S

Figure 4-5. Cache Memory Operation

4-7



Bits 51 through 58 of the SVA are used as a hash index into the sets. These bits represent

the most random part of the SVA. The low-order 5 bits of the SVA represent the word within
block and the byte within word, respectively. The ASID does not enter into the hash index

computation. This is deliberate, since in CYBER 170 State only a single segment

(ASID = FFFF) is used, and this segment has no randomness.

Once a set has been selected, a simultaneous comparison of the upper 35 bits of the SVA and
the tag entries is made. If there is a hit, and the entry is valid, that entry is used. If
there is no hit, a set is chosen for the new entry and the appropriate words read up.
Entries are chosen first on the basis of their validity and second on their LRU status.
Whenever a new entry is made in a set, an entire block (four words) is read up, starting
with the required word and proceeding from left to right, unless the imstruction is a
right-to-left (BDP numeric) type. Cache regards central memory as a series of four—word
blocks that always start on a block boundary.

If, at any time, cache is not busy after it finds a hit, it automatically looks ahead one
block. If it gets a hit, then the sequence ends. If cache doesn’t get a hit, it initiates
a read on that block.

Cache is always organized on SVA for Virtual State processors.

SOFTWARE IMPLICATIONS

There are several software implications in the use of the cache and the maps, particularly
in a multiprocessing environment. The operating system software must ensure that stale data
does not exist at any time in the map or the cache (Virtual State physical I/0 and memory
writes performed by another processor do not automatically update the processor-local
cache). The following guidelines should be followed by the software.

e Whenever a page table entry is changed the page maps must be purged, both the page
map in the processor updating the page tables, and the page map in the second
processor, if available. Care must be exercised by the software at this time. The
hardware depends on the software to take certain precautions, since the Virtual
State instructions are not interruptible. Before an instruction is placed in
execution it is prevalidated. The hardware ensures that all pages required to
complete the execution of the instruction are in memory before execution begins.
Once execution starts, the processor assumes that the pages it requires are there.
A second processor must not delete a page from memory without first notifying the
other processor. A typical sequence of events is:

l. Set the invalid bit in the PTE. This ensures that an instruction requiring
this page cannot start; it can complete if it has already started. In other
words, the processor ignores the valid bit once an instruction has been
prevalidated.

2. Send an interrupt to the second processor asking to purge map.

3. First processor waits for acknowledgement from second processor that map has
been purged.

4, TFirst processor updates the PTE.

5. First processor sets valid bit in PTE.

4-8 60459960 B



Since the valid bit was dropped prior to sending the interrupt, no instruction can
be started using the absent or deleted page. An instruction making such a reference
causes a page fault, and this page fault is not processed until the in—progress page
table update is completed. This is another interlock that must be set up by the
operating system software. Only one processor can execute a page table update at
one time.

When a page table update is made, cache memory need not be purged if the operation

R is a write. Since writes always write through cache memory, prevalidation ensures
that the page exists in memory. If the operation is a read, even though the page has
been purged from memory, the copy in cache memory is still good and the hardware
uses this copy, as has already been described.

° There is a danger, in a multiprocessor enviromment, of the cache becoming stale
whenever a processor is assigned to a job. At this time, the operating system
should check the last processor identification (LPID) field in the job exchange
package against the processor identifier (PID), If the quantities are not
identical, the cache must be purged.

These are not the only times when cache and the map must be purged. Similar problems arise

during input/output and are discussed in volume II of the Virtual State hardware reference
manual (refer to the preface for more information).

60459960 B 4-9






CENTRAL PROCESSOR LOGICAL ENVIRONMENT 5

This section discusses processor state and process state registers. Processor state
registers define the operational state of the processor without regard to a specific
process. Process state registers define a specific process.

PROCESSOR STATE REGISTERS

Each processor has a set of registers that define the operational state of the processor.
These registers are described fully in the model-independent general design specification
(MIGDS), however, several points are of interest here.

e Virtual State has an exchange mechanism, similar in function to CYBER 170 State,
that executes quite differently from CYBER 170 State. Whereas on CYBER 170 State a
true exchange occurs (the operating registers are stored in memory and loaded with
the contents of those same memory cells), on Virtual State the operating registers
(process state registers) are stored in one area of memory and loaded from a
different area in memory. Since an exchange jump always changes the operating mode
from job to monitor, or vice versa, two exchange packages are located in memory, a
monitor exchange package and a job exchange package. These exchange packages are
located at RMAs specified by the job process state (JPS) and the monitor process
state (MPS) registers. The exchange packages must not be located at the same
address, nor must they overlap. Finally, the packages must be on a double-word
boundary. For this reason, the least significant 4 bits of the JPS and MPS are
ignored (treated as zeros, as shown in figures 5-1 and 5-2).

2 3
0 ?
LA /
g REAL MEMORY ADDRESS /
Figure 5-1. JPS and MPS Registers
1 2 3
5 3 1
V
¢ v /- /////'

Figure 5-2. PTA Register

60459960 B 5-1



Two registers, the page table address (PTA) and the page table length (PTL), specify
the size of the page table. The page table must be located on a boundary that is
zero modulo the page table length, since the hardware accesses the page table
frequently and computes an index for this purpose. To find the address of the
required entry, the index is catenated to the PTA, a much faster operation than
adding the index to the PTA. Depending on the page table length, the low-order 9
through 17 bits of the PTA must be set to O.

The PTL, which indicates the length of the page table, is used as a mask to ensure
that a hash index with the page table remains within the bounds of the page table.
Its use is described in the section dealing with virtual memory.

The page size mask (PSM) specifies the page size to be used. The page size may be
from 512 bytes to 64K bytes. However, typical page sizes are expected to be 2KB and
4KB., As with the PTL, the use of the PSM is discussed fully in the virtual memory
section.

Two registers deal with equipment identification. These registers are the element
identifier (EID) and the processor identifier (PID). The first is a unique,
world-wide identification. The format of the EID is shown in figure 5~3. The
second is an abbreviated version that uniquely identifies an equipment within a
system. The PID is used on exchanges to identify the last processor identification
(LPID), and is used in a self-discovery process during system initialization. A
third register, options installed (0I), completes the description of the equipment.
This is a 64-bit register that indicates the number of PPs, cache memory size, ports
to central memory, and so forth.

[
o

TYPE MODEL

1D NO . SERIAL NUMBER

5-2

Figure 5-3., EID Register

A 32-bit microsecond counter, the system interval timer (SIT), counts down and is
used to establish job time slices.

One final register of interest is the virtual machine capability list (VMCL). Many
of the Virtual State processors are microprocessors and the microcode may describe
various machines termed virtual machines. Virtual State is one such virtual
machine, but many others are possible, in particular CYBER 170 State. This 16-bit
register controls the virtual machines the user (customer) is permitted to run. For
example, a Virtual State customer who has not purchased the CYBER 170 State emulator
is prevented from executing CYBER 170 State code via the register.

60459960 B




The remaining processor state registers (there are several) deal with the operational status

of the processor and its maintenance.

Access to these registers is controlled.

System Monitor Utility (SMU), and can be read from the processor.
only be written when the appropriate privilege has been granted.

illustrated in figure 5-4.

Many of these registers are model dependent.

Most registers can be read and written from the

However, registers can
Access to the registers is

PROCESSOR MCH
ACCESS ACCESS
E STATUS SUMMARY MCH READ
PID PROCESSOR IDENTIFIER
PROCESSOR VMCL. | VIRTUAL MACHINE caAP. LIST
READ EID | ELEMENT ID. MICH READ
ol OPTIONS INSTALLED |
CONTROL MEMORY ADDRESS
CONTROL MEMORY BREAKPOINT MCH
DEC ENVIRONMENT CONTROL READ/WRITE
PTL | PAGE TABLE LENGTH
PROCESSOR PSM |PAGE SIZE MASK MCH
READ PTA PAGE TABLE ADD. READ/WRITE
MPS MTR. PROC. STATE
PTM* | PROCESSOR TEST MODE
JPS JOB PROC. STATE **
SIT SYS. INT. TIMER **
PROCESSOR CACHE CEL* CORRECTED ERROR LOG MCH
READ/WRITE MAP CEL* CORRECTED ERROR LOG READ/WRITE
CONTROL MEMORY CEL* ]
RETRY CORRECTED ERROR LOG*
PFS* PROCESSOR FAULT STATUS
*  WRITE IN GLOBAL PRIVILEGE MODE ONLY
**  WRITE IN MONITOR MODE ONLY

60459960 B

Figure 5-4. Processor State Registers

5-3




PROCESS STATE REGISTERS

There is a large set of registers that define each process state.

and X registers. These registers completely describe the operational enviromment of a job

or process.

be captured in order for processing to resume after the interrupt has been dealt with.

Included are the P, A,

If the process is interrupted for any reason, that operational environment must

This

is accomplished by the exchange mechanism, which saves all the process state registers in an
exchange package (figure 5-5) and loads from a second exchange package a fresh set of
registers that define the process exchanged to.

BYTE(HEX)

co
c8
Do
D8
EOQ
E8
Fo
F8
100
108
110
118
120
128

198

T
00 07 08 15 16

63

WORD(DEC)
00 U7| 08 15|16 63

P 0

VMID uvmiD A0 1
Flags Trap Enables Al 2
User Mask A2 3
Monitor Mask A3 4
User Condition A4 5
Momitor Condition A5 6
Kypt Class LPID A6 7
Keypoint Mask A7 8
Keypont Code A8 9
A8 10

Process Int. Timer AA 1
AB 12

Base Constant AC 13
AD 14

Model Dependent Flags AE 15
Segment Tahle Length AF 16
X0 17

X1 18

24

X8 25

X9 26

XA 27

XB 28

XC 29

XD 30

XE 3

XF 32

Model Dependent Word 33

Segment Table Address Unt le Pointer 34
Trap Pointer 35

Debug Indexl Debuy Mask Dehug List Pointer 36
Largest Ring Number Top of Stack Ring Number 1 37

= B $ ‘ :L:

Top of Stack Ring Number 15 51

5-4

Figure 5-5.

Virtual State Exchange” Package (Virtual State

Process)

60459960 B




The 33 basic operating registers (P, A, and X registers) are described in section 1 of this
manual. The following summarizes the remaining process state registers.

o The virtual machine identifier (VMID) designates the virtual machine to which
control is being transferred. VMIDs of O (Virtual State) and 1 (CYBER 170 State)
have been defined for the Virtual State processors. The UVMID is a register used to
designate an invalid (undefined) VMID to which the processor attempted to transfer
control. If an exchange jump is attempted to a nonexistent virtual machine, the
exchange completes, and a second exchange interrupt occurs immediately on an
environment specification error. The UVMID is then set to identify the fault to the
operating system.

e A series of flags is located in word 2 of the exchange package. The flags are the
critical frame flag (CFF), the on-condition flag (OCF), the keypoint enable flag
(KEF), the processor not damaged flag (PND), and two flags to control trap
interrupts. These are primarily software flags carried by the hardware. Their use
is described later in this manual.

e The user and monitor mask registers and condition registers are used to control
interrupts and are discussed fully in the sections dealing with interrupts.
Similarly, the keypoint class, keypoint mask, and keypoint code registers are
described in the section dealing with keypoint. These registers control the
keypoint process.

° The LPID has already been introduced (refer to Cache Memory). It records the PID of
the processor executing a given exchange interval. The processor interval timer
(PIT) is a 32-bit microsecond timer analagous to the system interval times (SIT).

It counts down, at a microsecond rate, and interrupts the processor whenever it
reaches zero. It is used for timing within a given task.

) The base constant is a register used by the operating system as an index to a
control point area for an executing task. The segment table address and length (STA
and STL) specify the RMA and length of the SDT to the hardware. Remember, the SDT
is a hardware table used in the virtual memory address translation and, as such, it
must be located at a real memory address. The combination of the STA and STL also
uniquely defines the task address space.

e The model-dependent flags and word are used by the hardware, typically, to help in
hardware checkout. They do not have any particular significance to the software.
The debug index, debug mask, and debug list pointer are used to control the debug
facility, and are discussed fully later.

° The trap pointer carries the address of the trap handler to be used by an executing
task. It is discussed in the sections dealing with interrupts along with the
untranslatable pointer (UTP)., This register holds the pointer or address that could
not be translated, causing an exchange to operating system monitor. There are 15
top-of-stack pointers, one for each ring of execution. Their use is covered in the
section dealing with call/return. On most processors, these pointers are not kept
in live registers, but instead reside in the exchange package in central memory.
The largest ring number register has been included in the event that the
top—of-stack pointers are kept in live registers, in this case, the hardware could
be organized so that the exchange mechanism only has to exchange those pointers
actually in use in the process.

As with the processor state registers, access to the process state registers is carefully
controlled. This access is illustrated in figures 5~6 and 5-7.

60459960 B 5-5



PROCESSOR MCH
ACCESS ACCESS
STL SEGMENT TABLE LENGTH
MCR MONITOR CONDITION REGISTER
UCR USER CONDITION REGISTER
MDF MODEL-DEPENDENT FLAGS
PROCESSOR STA SEG TABLE ADDRESS MCH
READ 5C BASE CONSTANT READ/WRITE
UTP UNTRANSLATABLE POINTER]
P-REGISTER
MDW MODEL-DEPENDENT WORD

PROCESSOR
READ/WRITE

PROCESSOR
READ/WRITE

CRITICAL FRAME FLAG
ON-CONDITION FLAG
DEBUG INDEX
DEBUG MASK REGISTER
USER MASK

TE| TRAP ENABLES*
KCN|{KEYPOINT CLASS NUMBER*
KM* KEYPOINT MASK

PROCESSOR s

READ/WRITE KC KEYPOINT CODE READ/WRITE
PIT* PROC INT TIMER
TP* TRAP POINTER

DLP* DEBUG LIST POINTER

[MM | moniToR MASK**

*  WRITE IN LOCAL PRIVILEGED MODE ONLY

**  WRITE IN MONITOR MODE ONLY

MCH
READ/WRITE

MCH

MCH
READ/WRITE

NOTE: ONLY THOSE PROCESS STATE REGISTERS THAT CAN BE

ACCESSED VIA THE PROCESSOR COPY INSTRUCTION OR
VIA THE MAINTENANCE CHANNEL ARE SHOWN.

Figure 5-6. Process State Registers

60459960 B




VMID VIRTUAL MACHINE ID
UVMID UNTRANSLATABLE VIRTUAL MACHINE ID
LRN LARGEST RING NUMBER

LPI LAST PROCESSOR ID

TOS1 TOP OF STACK RING 1

TOS2 TOP OF STACK RING 2

)

F

32
W

TOS14 TOP OF STACK RING 14

TOS15 TOP OF STACK RING 15

60459960 B

Figure 5-7.

Process State Registers Accessed by Exchange Operation







INTERRUPTS PART I 6

The Virtual State interrupt system is hierarchical. A process can be interrupted and
control transferred to an operating system interrupt handler. Depending on the status of
this new enviromment, it may be interrupted via a different mechanism. The two basic
interrupt mechanisms are exchange interrupts and trap interrupts. Both forms of interrupt
save the current enviromment (as described by the process state registers) and transfer
control to some other code module. In the case of an exchange interrupt, control transfers
from a process address space to the monitor address space. Trap interrupts, on the other
hand, are processed within the address space of the current process.

Trap interrupts are controlled by two process state registers, the trap enable flip-flop
(TEF) and the trap enable delay flip-flop (TED). The settings of these registers are
controlled by the exchange mechanism. It is the software designer’s choice whether a
monitor exchange interrupt is handled with traps enabled or disabled. The importance of
this design decision is described later.

Two pairs of process state registers are used to monitor interrupts and to control the
actions taken when a condition arises that may interrupt a process. These are the monitor
condition register (MCR) and monitor mask register (MM) and the user condition register
(UCR) and user mask register (UM). The condition registers are normally filled with zeros.
Each bit in the registers corresponds to a particular interrupt condition. When that
condition is encountered, the bit is set to indicate that fact. For each bit in the
condition registers, there is a corresponding bit in the mask registers. When both bits are
set, an interrupt is taken. In other words, the processor takes the logical product of the
two register pairs and takes an interrupt if the result is nonzero (figure 6-1).

MCR |06 0 0 0 0 0 0 0 0 1 0 0 0O O 0 O

MM oo 1 1 1 1 1 1 1 1 1 1 1 1 1 1

INTERRUPT

Figure 6-1. Basic Interrupt Mechanism

60459960 B ‘ 6-1



Although there are only two condition registers (for the monitor and user), there are really
four classes of conditions. They have been grouped into two registers for software
convenience. The four classes are monitor conditions, system conditions, user conditions,
and status indicators (figure 6-2). Conditions signaled in the MCR have a higher priority
than (are acted on before) those flagged in the UCR. The MCR contains all system
conditions, flags, and most of the monitor conditions. The UCR contains all user conditions
and some monitor conditions. The monitor conditions in the UCR are there for the user to
process via a trap interrupt from within the user address space.

SYSTEM CONDITIONS MONITOR CONDITIONS
e Power Warning o Detected Uncorrectable Error
e External Interrupt o Instruction Specification Error
e System Interval Timer o Address Specification Error
e Soft Error Log o invalid Segment
® C170 Exchange Request ® Access Violation
— e Environment Specification Error
e Page Table Search Without Find
.

QOutward Call/Inward Return

e Unimplemented Instruction
@ Privileged Instruction Fauit
— e Inter-Ring Pop
o Critical Frame Flag
MONITOR CONDITION USER CONDITION
REGISTER REGISTER
STATUS INDICATORS USER CONDITIONS
o Monitor Call Free Flag
e Trap Exception Process Interval Timer
Keypoint
Divide Fault
Debug

Arithmetic Overflow

Exponent Overfiow

Exponent Underflow
Floating-point Loss of Significance
Floating-point Indefinite
Arithmetic Loss of Significance
Invalid BDP Data

Figure 6-2. Interrupt Conditions

Monitor conditions are organized so they are typically encountered only in job mode, the
exceptions being uncorrectable errors that can occur in either job or monitor mode. When
these conditions arise, an exchange jump from job mode to monitor mode takes place. A
recurrence of the same condition, or another monitor condition, causes the processor to halt
when traps are disabled. With the exception of hardware diagnostics, the code executed in

6-2 60459960 B



monitor state is arranged so these conditions cannot arise. System conditions, on the other
hand, occur any time and cause an exchange interrupt from job state to monitor state. They
are stacked when encountered in monitor mode with traps disabled. Care must be taken when
processing an interrupt to ensure that conditions are not lost.

Consider the following situation: the machine is in job mode with traps enabled and a page
fault occurs (figure 6-3). During the processing of the page fault in monitor mode, a soft
error occurs. Lf traps are disabled, this condition is simply remembered (stacked). When
the page fault processing completes, if an exchange is either taken back to the process
originally interrupted or to another process, the soft error is lost. It is stored away in
the monitor exchange package. There is only one way to guarantee that this condition is not
lost and that is to run in monitor mode with traps enabled. Testing the live MCR does not
suffice, since subsequent to this test, an exchange back to job state must be made, and
there is a finite time between the test and the point where the exchange is committed.

I Runn P -4 -1 1
R MCR is a 'live’ register which collects interrupts.
r " j MM is a 'live’ register which has conditions P
selected.
L nn 1
IT A Page Fault Occurs

NCR JPS
o 010 d] xJ from job mode

Condition causing the
ni monitor mode interrupt is saved in
l ]u E—L.'_—':ﬂ the exchange package
) % pointed to by JPS.

Assumg traps
disabled.

— =
rE_u nn

The 'live’ NCR register is loaded
from the exchange package pointed
to by MPS.

III Soft Error Condition

HCR
0 ——— Old Nothing happens. The condition is stacked {i.q.+
nn rememberaed} but no further action i{s taken.

b —3

IV Page Faylt Processing Completes
’ Stored in MPS XP
nn

b

Loaded from JPS XP.

The MCR in the JPS exchange package is zeroed and an exchange to job
mode executed. The soft aerror is now saved in the MPS exchange package.
and jis not acted on.

Figure 6-3. Examples of Interrupts

60459960 B 6~-3



However, it is not necessary to have traps enabled for all monitor mode processing. The
preferable sequence is to enter monitor with traps enabled, immediately disable traps,
complete processing of the interrupt, enable traps, and return to job mode. Any conditions
that have arisen during the interrupt processing are handled via an appropriate trap handler.

The interrupt system is hierarchical. The hierarchy does have a meaning and should be
used. For conditions logged in the monitor condition register, the hierarchy is:

+--> STACK
-—
EXCHANGE ~> TRAP
-
+-~> HALT

Thus, an interrupt occurring in Virtual State job mode causes an exchange to Virtual State
monitor. An interrupt in Virtual State monitor with traps enabled causes a trap. An
interrupt in Virtual State monitor with traps disabled causes either a stack or halt,
depending on the specific interrupt. The system must spend as little time as possible
processing interrupts with traps disabled, because a higher priority interrupt may be
pending. Some care is necessary in this area when designing the operating system.

The interrupt processing, as it affects the MCR, is very similar for the UCR. This register
collects user conditions that typically lead to a trap interrupt. These conditions are best
handled from within the user’s address space, built by a system routine. The hierarchy for

these conditions is:

TRAP -> STACK

Thus, an interrupt with traps enabled causes a trap whether in a Virtual State job or
monitor. An interrupt with traps disabled is stacked.

In other words, the condition may be acted on or remembered. However, interrupt handlers are
organized so these conditions cannot arise, therefore stacking does not occur very often.

As has been previously stated, the relationship between the UCR and the UM is the same as
that between the MCR and MM. If a particular condition has not been selected by the user in
the UM, then it effectively is stacked indefinitely. Certain instructions, such as
floating-point arithmetic, yield results that could differ depending on the settings in the
user mask., This occurs when end-cases such as exponent overflow and underflow are
encountered. Also held in the UCR are four monitor conditions. The hierarchy for these is:

TRAP -> EXCHANGE -> HALT

Thus, an interrupt with traps enabled causes a trap whether in a Virtual State job or
monitor. An interrupt with traps disabled causes an exchange to Virtual State monitor when
an interrupt occurs in Virtual State job mode, and a halt when an interrupt occurs in
Virtual State monitor mode.

The exchange and halt conditions should normally arise very infrequently or not at all,
since the interrupt handlers can be organized to prevent them. These monitor conditions
have been placed in the UCR for specific reasons. For example, a trap on an unimplemented
instruction is intended to be used for a software simulation of an instruction that is not
in the repertoire of Virtual State. This simulation must take place from within the user’s
address space. Other monitor conditions in the UCR have to wait until the system
instructions have been discussed, in particular call/return.

6-4 60459960 B



A more detailed discussion of the interrupt system, where each condition is considered, is
postponed until the stack processing characteristics of Virtual State are described. Some
final points help to clarify the general process at this stage.

e The overall scheme of events is represented in figure 6-4. In this flowchart,
stacked conditions lead to an RNI (read next instruction). As indicated in the
previous paragraph, this is a conceptual process only.

YES MCR a
MM)=0

?
NO

Monitor NO
Mode EXCHANGE

2
YES

Traps YES
Enabled * TRAP
2

NO

Stacl;able NO HALT

YES

[UCRAN_vES
um)=0 RNI
2

NO

Traps YES
Enabled * TRAP
?

NO

Stackable YES RNI

NO

Monitor YES
Mode HALT
?

NO

IEXCHANGE

* TRAPS ENABLED MEANS THE TRAP ENABLE FLIP-FLOP (TEF) IS SET
AND THE TRAP ENABLE DELAY FLIP-FLOP (TED) IS CLEAR.

Figure 6-4. Interrupt Flowchart

60459960 B 6-5



° Conceptually, the hardware checks for interrupts before, during, and after
instructions. In actuality, only uncorrectable errors can occur at any point, and
the wrapup after one instruction and the prevalidation for the next can become
essentially a single process.

e The hardware typically collects interrupts, not between instructions, but between
the instructions’ points of no return. There comes a point in every Virtual State
instruction when something is written (memory, register file, and so forth). Once
this happens, the instruction is committed, and, with the exception of hardware
faults, interrupt conditions that arise apply up to the next point of no return.

The concept of a point of no return is important, since hardware errors that occur before
this point can be retried. If the retry is successful, a soft error condition is recorded.
Otherwise, a detected uncorrectable error (DUE) is flagged. The processor not damaged (PND)
works in conjunction with the DUE feature. If a fatal error is detected before the point of
no return, the processor sets the PND flag, indicating to the monitor that, although the
processor is broken, the process is still intact. When the error arrives after the point of
no return, but before instruction completion, the process is an unknown state and the PND is
left clear.

6-6 60459960 B



CALL /JRETURN/POP MECHANISM 7

The Virtual State call/return mechanism is the technique used to cross protection boundaries
within an address space. It is also used to transfer control between procedures
(subroutines). It is designed to satisfy the requirements of block-structured 1anguages,
permitting recursive calls such as CYBIL, the implementation language for Virtual State.

SOFTWARE CONSIDERATIONS

Before describing the call/return mechanism, a short introduction to block-structured
languages is needed. Procedures (subroutines) in a block-structured language are organized
into a series of nested blocks (figure 7-1). In each set of blocks, variables are related.
Variables are classified into two types, static and dynamic. Static variables are allocated
to fixed memory addresses and tend to be used throughout a program. Dynamic variables are
allocated to a different memory address each time a procedure is called. This allocation
occurs in a stack. A stack is an area of memory that can grow and shrink dynamically, in
accordance with the demands. Each time a procedure is called, a new stack frame for that
procedure is created. On Virtual State, much of the management of this stack is
accomplished by the hardware of the call/return mechanism. The objective is to contain the
code for a given function in a compartment for which there are controlled modes of entry.
The variables used by this compartment (or block) are generated each time the block is
entered, and are erased when the block is exited.

60459960 B 7-1



In the diagram, two sets of nested blocks are shown in module A.
The replacement statements in procedure C involve variables described in program module A
Knowledge of the whereabouts of these variables is maintained by

and in procedures B and C.

a static link held in the stack frame for each procedure.

6 procedure a;
7 var
8 i_a,
9 j_a: integer;
10 procedure b;
1" var
12 i_b: integer;
13 procedure c;
14 var
15 i_c: integer,
16 j-a: boolean;
17 ic = i_b;
18 if j_a then
19 i_a = i_c;
20 if
21 d; {Call procedure D}
22 procend c;
23 i_b := j_a;
*ERROR* 24 i.b = i_c;
25 ¢; {Call procedure C}
26 procend b;
27
28 procedure d;
29 var
30 i—d: integer;
31 procedure e;
32 var
33 i_e: integer;
34 i_e = i_d;
35 i_e := i_a;
36 procend e;
*ERROR* 37 ¢; {Call procedure C}
38 procend d;
39 b; {Call procedure B}
40 procend a;
LINE SEVERITY
NUMBER LEVEL ERROR MESSAGE
24 ERROR Undeclared identifier - I_C.
37 ERROR Undeclared identifier - C
Figure 7-1. Example of Block Structure

These are B,C and D,E.

This linkage is called static

since it is known by the compiler at compile time and never changes.

7-2

60459960 B




Figure 7-2 illustrates the stack mechanism. The process starts by creating a stack frame
for the dynamic variables in the procedure A. A current stack frame pointer (CSF) points to
the beginning of this stack frame and a dynamic space pointer (DSP) points to the next
available (free) space in the stack. On Virtual State, the stack frame and the pointers are
established by software. When procedure B is called, procedure A’s enviromment is saved and
a stack frame created for procedure B. A dynamic link is created pointing to procedure A’s
stack frame, and a static link pointing, in this case, to the same stack frame. The dynamic
link is termed the previous save area pointer (PSA) and is automatically updated on a call
and return by the Virtual State hardware.

A START
B
Cc
CALL D
CALL C
D
E___
DSP —»
D DSP — CSE B FRAME :]
LLB PSA
CA CSF A FRAME A FRAME
CALLC CALL D
DSP ——
DSP CSF . D FRAME :]
CE PSA
RAME
CSF C FRAME
PSA :]
B FRAME B FRAME
[: A FRAME :] »{ A FRAME :]

Figure 7-2. Stack Frame Manipulation by Call/Return

60459960 B 7-3



A call on procedure C follows in much the same way, and again the static and dynamic links
point to the previous stack frame. When procedure C calls on procedure D, the dynamic link
(for stack management) points to the previous stack frame. The static link, however, points
to the stack frame for module A, but not to those declared in blocks B and C, which are
contained within A but do not contain D. This occurs because procedure D is a block within
base module A, and procedure D has access to variables declared in module A, but not to
those declared in blocks B or C.

On each procedure call the DSP is updated to point to the next available space within the
stack. This is a software function on Virtual State, and represents the reservation of an
area in the stack large enough to accommodate all of the dynamic variables for a given
procedure, a quantity known only to the software.

Since each time a procedure is called the caller’s environment is saved, a procedure may be
reentered or called recursively. This is true, providing all code is organized into pure
procedures. No code modification is permitted.

The call/return mechanism provides facilities for protection, dynamic linking, and virtual
machine switching. These features of call and return are developed separately because of
their importance. First, it is necessary to understand the hardware support for the basic
mechanism.

Consider an executing procedure, procedure A, that calls a second procedure, procedure B
(figure 7-3). Four parameters are of interest:

° Top of stack (TOS) pointer in exchange package.
e Dynamic space pointer (DSP) held in AO.
e Current stack frame (CSF) held in Al.

. Previous stack area (PSA) held in A2,

7-4 60459960 B



PROCEDURE A:
CALL B;
DSP —>
STACK
108 FRAME
cse FOR A
PSA —&
INITIAL STATE
DSP —#
STACK
FRAME
TOS,DSP
CSE™™™ zg: — FOR B
ENVIRONMENT ENVIRONMENT
PSA—s _OFA PSA——___QF_A__"
STACK STACK
FRAME FRAME
FOR A FOR A
AFTER SOFTWARE
AFT:STJES‘LL CREATION OF STACK
FRAME FOR B

Figure 7-3. Basic Call Mechanism

These quantities are pointing within the stack as indicated prior to the call. When the
CALL is issued, the following steps occur:

l. The caller”s environment is saved in the caller”s stack frame, and TOS is updated to
reflect the next free space in the stack.

2. PSA is set to DSP.

3. CSF and DSP are set to TOS.

60459960 B 7-5



Next, the software creates a stack frame to hold dynamic variables for procedure B. At this
time, the four key parameters are pointing into the stack for procedure B precisely as they

had been for procedure A.

Return can be accomplished easily, since the pointers to A’s

stack frame have been saved (in A0, Al, and A2) in the stack frame save area (SFSA) (figure

7-4).

PROCEDURE B;

DSP —»

STACK
FRAME

— FOR B

ENVIRONMENT

PSA — OF A

RETURN
END TOS
CSF

INITIAL STATE

DSP, CSF and PSA are all
reset from A’s stack frame

DSP . save area.

STACK TOS is reset from final
FRAME

CSF value in A1 (CSF) by the
TOS —p— FOR A RETURN mechanism.

PSA —

Figure 7-4, Basic Return Mechanism

60459960 C




CALL - THE BASIC MECHANISM

A stack is created by the operating system for each ring of execution. A TOS pointer for
each of these stacks is kept in the exchange package. Whenever a procedure calls another
procedure, the caller”s enviromment is saved in the SFSA (figure 7-5). The first four words
of this area are stored unconditionally, and the remaining words are stored under the
control of the caller. The caller formats a stack frame descriptor in XO-right prior to
issuing the call. The descriptor specifies which X and A registers are to be saved, in
addition to those saved by default. Registers saved must be consecutively numbered., In the
case of A registers, since A0, Al, and A2 are saved unconditionally, it is only necessary to
specify the upper limit of the consecutive list, The descriptor is analogous to that used
by load/store multiple instructions, which are described later. It must be supplied, and the
terminal A register designator must be greater than or equal to 2. If no X registers are to
be saved, then the terminal X register designator (Xt) should be less than the starting

X register designator (Xs). When the callee returns to the caller, these registers are
automatically restored. The operation of the hardware strongly suggests a software calling
convention whereby the caller saves the environment.

BYTE(HEX) WORD(DEC)
r S 0 P REGISTER 0
MINIMUM g [vmip] A0 REGISTER (DYNAMIC SPACE POINTER) 1
iﬁ‘éi 10 | FRAME DESCRIPTION | A1 REGISTER (CURRENT STACK FRAME POINTER) | 2
18 | USER MASK A2 REGISTER (PREVIOUS SAVE AREA POINTER) 3
20 A3 REGISTER (BINDING SECTION POINTER) 4
28 [ USER CONDITION* A4 REGISTER (ARGUMENT POINTER) 5
30 | MONITOR CONDITION* | A5 REGISTER 6
38 A6 REGISTER 7
40 A7 REGISTER 8
MAXIMUM -
SAVE ~ P . 2
AREA ¢
80 | 00— P15 | AF REGISTER 16
88 X0 REGISTER 17
L J
P o ~
[ ]

K 100 XF REGISTER 32

0o P 63

* STORED ONLY ON TRAP OPERATIONS

Figure 7-5. Stack Frame Save Area

Virtual State supports two forms of the call instruction that may be loosely regarded as
general purpose (call-indirect) and special purpose (call-relative) calls. The call-
indirect may call into a different segment in a different ring and, as will be shown later,
into a different virtual machine. The call-relative, however, calls into the same
environment. Although the same basic mechanism applies to both forms of the call, the
general purpose version must guarantee the privacy of the callee and the caller, who may
have quite different privileges.

60459960 E 7-7



The flowcharts at the end of this section describe these instructions completely, but the
basic steps are:

1.
2.

3.

The caller’s environment is saved.
The caller’s stack frame is pushed.

The P register is updated to point to the first instruction of the callee to be
executed.

A single return instruction inverts this process.

General

The callee’s stack frame is popped.
The caller’s environment is restored.

The P register is updated (from the caller’s enviromment), so it points to the first
instruction to be executed following the original call.

Notes

The caller’s environment is saved in the caller’s stack. In fact, it is saved at
the top of the caller’s stack. To minimize the execution time for a call, this
environment is stored on word boundaries. If the top of stack happens not to be on
a word boundary, the stack frame save area is forced to a word boundary by the call
instruction.

The callee’s stack frame is not automatically created. The CSF pointer is updated
to point to the first entry in the stack frame, but it is the responsibility of the
callee, via software, to reserve the appropriate amount of space in the stack. It
is also recommended that an integral number of words be reserved for that purpose.

Since the call relative calls to a word boundary, every procedure (subroutine) must
start on a word boundary. This is not strictly necessary for external procedures.
However, when the process of binding is described, the reason for this convention
will become apparent.

RETURN ~ THE BASIC MECHANISM

The basic return mechanism pops the callee’s stack frame and restores the caller’s stack
frame as the active frame. The enviromment that exists following the execution of a return
instruction is precisely the environment that existed prior to the execution of the
associated call instruction. Figure 7-6 illustrates the changes that occur in the stack
when the sequence followed is:

Call (intraring).
Call (inter-ring from ring 11 to ring 3).
Return.

Return.

60459960 B



uInisy /I1e) °9~/ 2and1g
aiemrjos Aq penop .
vs4s [TVSd vsds vs4s vsds vsds [ VSd
le—4S0°SOL be— 4S0°SOL
e—4S0'SOL [*—4S0°SOL
._._<u Buli-sa3u) T1VvD bun-enu LL ONIY
le—dSQ vs4s [*VSd je—+dSA
le—SO.L
NYN.L3Yy NHNL3Y
SOL SOL 482'sol je—SOL SOL
*~+dSA € ONIY

7-9

60459960 B



Since calls are typically to inner rings, returns are typically to outer, less privileged
rings. It must be ensured that the callee’s greater privileges are not transmitted to the
caller. The callee’s ring mumber may appear in any A register used by the callee, not just
those saved by the caller. To ensure that this ring number does not get returned to the
caller, the return instruction checks that no A register is returned to the caller with a
ring number that exceeds the caller’s ring number. This process is termed rippling (figure
7-7). The caller’s overall privileges, maintained in the P register, are automatically
restored when the caller’s P register is loaded from the SFSA. A check is made to ensure
that the keys loaded are identical to those found in the caller’s SDE.

1A Registers Yes

Treated?

> END

Get Next
A A-Register

Yes
A.RNZP.RN 7

Set A.RN=P.RN

Figure 7-7. Rippling

7-10 60459960 B



General Notes

Processes typically start execution in their outermost ring. Stacks in all rings
are empty, except for the one in the primary ring of execution. As calls are made
inward, entries are made in other stacks that are emptied as returns are issued.

The question might be asked, Why have fifteen stacks? Again, when the security of
the system is considered, the reason becomes obvious. Since the stack holds the
dynamic variables for an executing process, that process has read/write access to
the stack. If there is only a single stack, an executing process could make a call
to a procedure in an inner ring and access that procedure’s dynamic variables at the
top of the stack. The only way to prevent this is for the callee to zero out all
dynamic variables used. This is prohibitively time consuming.

Call and return are time-consuming operations and are designed to satisfy the
general architectural requirements of Virtual State. In particular, the generalized
form of call (call indirect) should only be used when an external procedure call is
made to a procedure in another segment. When binding is discribed, it will be seen
that the binder assists with this task.

The flowcharts at the end of this section describe the overall process for return.

60459960 B 7-11



POP - THE BASIC MECHANISM

There are times, typically in the presence of an error or a nonlocal GOTO, when an entry or
a number of entries must be eliminated from a particular stack. Since these entries have
been created by a series of calls, a similar series of returns accomplish the required
purge. However, when the purging is to be completed without executing intervening
instructions, this is only achieved by an appropriate software sequence, or by issuing a pop
instruction provided for this purpose. The pop instruction simply moves the CSF, PSA, and
TOS pointers, eliminating the stack frame but not changing the P~counter. Figure 7-8 is an
example, wherein calls have been made three deep into the structure of a program, and the
entire set of calls has been aborted. Pops can only be issued within the current ring of
execution. Access violations are not checked, and if a pop is attempted across rings (as

indicated by the ring number in A2-PSA), the instruction execution is inhibited and the
program interrupted.

7-12 60459960 B



X

Procedure A
Procedure B _
Procedure C

POP

POP
RETURN
CALLC
CALLB
(?ontrol returned_. CALL A
line from C
DSP~+
csF| ©
DSP-» PSA- DSP-»
csFof B B Y
DSP —of PSA—* PSA—* DSP -+
cSF,| A A A A csFel A
DSP—] PSA-+ PSA—# DSP—+]
CSF—o X X X X X X CSF—» X
START CALL A CALL B CALL C POP POP RETURN
Figure 7-8. Example of Pop Instruction

60459960 B

7-13




THE BINDING SECTION - CODE SHARING

The entry to procedures must be carefully controlled. Procedures must receive control only
at the points where they expect to receive control, that is, their entry points. To make
this possible, procedures are not entered directly, but are entered via a pointer to the
procedure. This pointer is held in a binding section. All such pointers are placed in the
binding section by the loader, and the call mechanism guarantees that the call is made via a
binding section.

The objective on Virtual State 1s to have one copy of a code segment located in memory and
shared by several users. Each user has a copy of each code sequence required in his or her
virtual memory address space. For example, the FORTRAN compiler exists only one time in
real memory, but depending on the user who has the CPU, the compiler operates on different
compilation units. There must be nothing in the code segment that makes a direct reference
to modified data. This is accomplished by placing pointers to such data in a binding
section created along with each code module, and then giving the address of the binding
section to the callee when the procedure call is invoked.

Each executing task has some code that it may be sharing with other tasks, and some data
typically unique to itself. When a compiler compiles some source code, it compiles offsets
into the binding section and directives to the loader for building the binding section. It
is then the responsibility of the loader to link all code modules and build the necessary
binding sections. This process is described more fully in volume II of the Virtual State
hardware reference manual (refer to the preface for more information).

The binding section is in a separate segment and is identified uniquely by its SDE (refer to
the section on virtual memory). It typically contains pointers to external procedures and
pointers to working storage areas that hold static variables. Static variables do not
appear in a stack frame. When a procedure calls on another externally defined procedure the
call points into the binding section. The binding section, by convention, has one or two
full-word entries containing a code base pointer (CBP) and a pointer to the callee’s binding
section (figure 7-9). The CBP points to the first executable statement in procedure D. The
VMID and R3 fields in the CBP are discussed shortly. The external procedure flag (EPF)
field in the one state indicates that the procedure being called is an external procedure,
and therefore the next entry in the binding section is the pointer to the callee’s binding
section. This field is nothing more than a flag to differentiate between single-word and
double-word entries in the binding section.

Whenever a call is made to a procedure in another ring, this form of the call instruction
(via the binding section) must be used. However, for critical (intrasegment, intraring)
calls, a shorter form of the call instruction should be used. This form finds the first
executable statement of the caller at P plus an offset and obviates the need for a CBP. The
offset used by this instruction is a 16-bit long-word offset; therefore, all procedures must
start on a word boundary.

7-14 60459960 B



A’s BINDING

60459960 B

SECTION
A
aF— WORKING
\ - STORAGE
C— SECTION
FOR A
CALL B
|-B: BINDING
SECTION
B
_.
CODE BASE POINTER
/ VMID E ? R3 | RN SEG BN
% A
POINTER TO CALLEE’S BINDING SECTION
00
RN SEG BN
7
Figure 7-9. Call Indirect Example

7-15




To make code sharing possible, each task sharing the code must have its own data. The
location of this data is defined through the binding section, defined via the process
segment table. The segment table address (STA) is defined by the exchange package for that
process. Each instance of a process has an exchange package that describes the process
state registers for that exchange interval. This defines the whereabouts of the code and
data to be used by the process, via the virtual memory mechanism. Different tasks using the
same code have their own segment tables and have unique entries in the SPT for their binding
sections and data. However, the page table entry for the code segment is shared by all
tasks sharing the code (figure 7-10)., This is quite simple if one remembers the basic
virtual memory address translation mechanism.

= rm e em = e = mm omm e omm = e = = = = == = — e omm o= e e e am = — = o = = o= ==
r XP_{A} .ﬁl
TASK &
! I
! I
A NPING SN _POINTER SEGMENT TABLE {A}
: FE
A1)
I Thzpol I
PVA FOR TASK A DATA TASK A
u e e oy n
| o543, = == = = = [ T || semn«w STORAGE i
PVA FOR TASK & CODE SYSTEN PAGE TABLE SEGHENT
I [ GL:I ]E-!In 1 I I
I 0022 ] I I
&
" [J‘HAXH 1 I I
I I [
'—n » T pra — —
| mn T F—=—=-= -
I vrIA 11 I I
b seentur 1
_ [ e i
F============ == = = = = !
- [ ! ¥
] | T — ll
1 I 11 - I
!‘ITJ ) [__eFa }
1 VA FOR TASK 8 CODE l SEGMENT TABLE (BY | | [ |
I 01k | I 1 )
I 027 i —* [ era —_— — - I; - - ==
PVA FOR TASK B DATA
[To= 1] (e ' ttls :
| HASH - ! t [
40}
B tasc s smworne sn. porwter 7 | ] i TASK B ]
o} TASK 8 WORKING
fiasH BINDING
I o ] | SECTION STORAGE 1
1S SEGHENT
n / | | ! |
I s UH - == - - — L1 |
i I
i |
! 1

Figure 7-10. Code Sharing

7-16 60459960 B



The key to code sharing lies with the concept of the SVA. Shared code actually resides as
two conceptually separate copies in two address spaces. When this code is referenced via a
PVA, the first step is to translate the PVA into an SVA. The operating system arranges for
code to be shared to have common SVAs. The translation to a real memory address (RMA)
results in the same locations in central memory, regardless of the process requesting the
translation. This is accomplished by assigning common ASIDs to shared code segments, which
happens the first time the segment is referenced. Neither the originator of the shared
code, nor any users of it, need be aware that the code is being shared. The only
contingency is that code be organized into pure procedures. Code sharing by itself is
unrelated to call/return. However, the separation of code and data, the absence of direct
references to the data in the code, and the binding section all play their part. When a
procedure is called from another procedure, the caller gives the callee’s binding section to
him or her. That is, the caller carries a pointer to the callee’s binding section as a
parameter of the call. It is by this mechanism that shared code (that is, code shared in
real memory) receives different data sets to work on. The whereabouts of these binding
sections is determined by the loader, which loads multiple copies of the code to be shared
into virtual memory (figure 7-11).

4 BSA B 1 BSB LBSC

c
CALL B CALL B J.

BSA

CALL €

LOADED INTO
VIRTUAL MEMORY

CALL €

BSB

BSC

Figure 7-11. Loading Mechanism

60459960 B 7-17



Two additional areas, software conventions and parameter passing, need to be discussed
before the basic mechanism can be summarized.

Parameter passing is discussed first. In general, when a procedure is called from another
procedure, parameters need to be passed between them. The general parameter—passing
technique selected for Virtual State is to pass an argument list pointer to the callee.
Typically, this argument list pointer points to a list of pointers, which in turn point to
data to be referenced by the called procedure. By convention, the argument pointer is held
in A4, and the convention is supported by the hardware that transfers the argument list
pointer to A4 during the execution of a call instruction.

Two other pointers are used by procedures, the binding section pointer and the static link.
Of these, the binding section pointer is by far the more important and by convention is held
in A3. As with the argument list pointer, this software convention is supported by the
hardware. The choice of registers A3 and A4 to hold these quantities simplifies the saving
and restoring of them during calls and returns, since the instructions always save a
consecutive set of A registers, and A0 through A2 are always saved by a call. The static
link is not always required, and for those cases where it is needed, it is carried by
software, and the hardware has no part in its maintenance.

FLAGS

Two flags are handled by the call/return/pop instructions. These are the on-condition flag
(OCF) and the critical frame flag (CFF). They are software flags reset by the hardware on
each call to a new procedure.

ON-CONDITION FLAG

The end user causes the OCF to be set by requesting that a particular code sequence be
executed when a chosen error arises. This is generally done via a high-level language, and
the compiler generates the code necessary to set the OCF and generate a dummy stack frame
for the on-condition processing (figure 7-12). A pointer in the user’s stack frame points
to this dummy. All exception conditions are typically selected by the process monitor.
When one arises, a trap interrupt occurs, and the trap handler searches the stack for the
presence of a set OCF. On conditions are set by a particular procedure. When a call is
made, the OCF associated with the calling procedure is saved in the stack frame save area
(SFSA) as part of the caller’s environment, and the OCF is cleared. If an appropriate
exception arises, it is handled by the caller’s on—condition action, unless the callee had
also requested specific action to be taken on the same exception. The following should be
remembered.

® Actions to be taken on exceptions are specified by the user. They are recorded in a
dummy stack frame by setting the OCF,

° Actions are established by a given procedure but carry across procedure calls.

° Each procedure may have its own unique set of on conditioms.

7-18 60459960 B



PROCEDURE A

0CF set and B

—ean lge—dummy stack
oN CO?DITION Do frame created [~ """~~~

CALL B <
l€«—O0CF saved in hl

SFSA of A and DURMY

then cleared FOR

ON CONDITION
PROCEDURE B

Figure 7-12. On-Condition Handling

CRITICAL FRAME FLAG

The critical frame flag (CFF) is a software device used to declare a procedure critical.
The term critical is used to denote that some cleanup is required before leaving the
procedure in question. In other words, exit from the procedure must take place in an
orderly manner. An example helps to clarify this.

Imagine a job running under the control of a subsystem. The job may open a file or set some
locks that must be either closed or cleared before the job is terminated. If the job
terminates abnormally, the standard cleanup procedure pops the stack frames in use prior to
returning to the subsystem for final exit. However, in the case where particular action is
required before a stack frame is eliminated, a different path must be followed. The CFF is
used to alert the subsystem in control of this situation. When the locks are set or the
files opened, the CFF is also set, and subsequently saved in the procedure”s SFSA, whenever
it calls on another procedure. An attempt to pop a stack frame with the CFF set is detected
by the hardware, and a trap interrupt is taken. The trap handler hands control back to the
subsystem that, by an investigation of the user”s stack, can perform the necessary cleanup
operations.

60459960 B 7-19



OUTWARD CALLS/INWARD RETURNS

Calls can be made only within the same ring of protection or to an inner ring (figure
7-13). Hardware prohibits calls to an outer ring. However, when the operating system
initiates (transfers control to) a user’s job, a call must be made to the outer ring where
the user”s program resides. Since the hardware prohibits outward calls, the operating
system software performs a return to the outer ring, Similarly, the "inward return" to the
operating system is accomplished by using an inward call.

Only outward calls made by the operating system will be performed. Outward calls initiated
by the user are not allowed. (Calls are used for transfer of control, not for transfer of
data. Thus, a user may access an outer ring for data, since a call is not being performed.)

When an outward call is attempted, an interrupt occurs and the following steps are taken
(assuming the machine is in the job mode with traps enabled).

1. An exchange interrupt occurs when the outward call is attempted.

2. The exchange interrupt handler sets the free—flag and issues an exchange. (The
free-flag is a mechanism for converting an exchange interrupt into a trap
interrupt.) This causes control to return to the original outward call
instruction. However, before the original call can be retried:

a. A trap interrupt occurs (because free-flag sets). This is an implicit call into
the stack in the operating system”s ring of execution.

b. The trap handler creates two dummy frames in the callee”s (user”s) stack. The
first dummy frame is the user”s eventual stack frame; the second is created

simply to be popped via a return that transfers control to the callee.

c. The trap handler then executes a return to the callee. This pops the second
dummy stack frame (figure 7-13).

Therefore, to perform an outward call, the interrupt handler software arranges to execute an
outward return to the user.

7-20 60459960 C



118D paeming

*€1-L @and1yg

—— 2y ﬁl {-¥3s0L
{-¥3504
[ -u3sou " -y3sou [ -¥rsos [ Ty oy
uoT3idNU3sUT u0TIONUISUT
112) 03 s3juted 11e) 03
suedy Awwnp sjutod awedj deuy
utr Bau-d :3LON Ut -Bau-d :3L0N
-d INIY¥ ¥3INNI
ay av {+4380L {+4330.L
11ed
pueming
{+4}S0L S {+¥}304 ST pasuas
[ Ty'gv —ay [+ Tveov uor3dasxa
Teuly
{+3380L
e Tv-av
ESLEET)
*11e> Teutbrug .
adnduajut dedy -
bartey 03 sjutod Ag pautudazap " Lk
suedy sty3 eaJe aaeg -2 mmw ueydxa pue +4 Bugd
. . B14 9844 S3Bs
ur -bad-g -butu Buty i5rpuel saup . ut aunpasoud
=3817e> SJd33ul s @ay11e) ut s,8871eD Ul TPUEH -3ur -2 03 -y Butu
pue uuniay auedy Auunp awedy yoe3s sJndd0 ur aJsnpadoud
e sansst puUOdBS SWJ0y Auwnp swaoy adnausguy woJj panssy
Jatpuey deuy Jagpuey deuy Jarpuey ded) -7 abueyosxy - T11eD> pueming

+d INI¥ ¥3Ino

7-21

60459960 B



An inward return is the reverse of the outward call procedure and consists of executing an
inward call back to the operating system, as follows (figure 7-14):

7-22

1.

2,

An exchange interrupt occurs (inward call).
The exchange interrupt handler sets the free-flag and issues an exchange. This
causes control to return to the original inward return instruction. However, before

the original return can be retried:

a. A trap interrupt occurs (because free-flag sets). This is really an implied
call into the stack in the callee”s ring of execution.

b. The trap handler calls on the task monitor in the operating system”s ring of
execution.

c. The task monitor then:
(1) Eliminates three frames from the callee”s stack.

(2) Adjusts its own stack frame to point to the operating system”s stack frame.

(3) Issues a return.

60459960 C



uinisy pIemuy

‘]~ 2an3Tg _

]IT.' 1-¥350L

ay

{-343504

[ Ty:poy

< {-y}s0L

[ {-¥31S0L

SJdnd>0
3dnduajuy dedy .p

sabueyoxa pue

bery aady sjas
Ja1puUEH -3ul -

-4 9NIN ¥INNI

f—— {-4}S0L

{+¥}504

udn3ad e sansst
Jojruoy ysey

*h snid

11°) 1eutbrdo

03 jutod 03 Buedy
dedy s,uBr103 UT
«Bad-g s3isnlpe pue
¥de3s s,9871e> y0
IN0 Ssuedy BdJY)
kdear> uojtuoy ysey

(LI 8 {HY

Teutbruo jo Butu
Ut Jojtuoy ysey
STI®> Jarpuey deuy

sJnd>0

un:nguu:«
8sbueyox3y 3

pasuas asue
suot3daoxy -

-——

av

{+¥}30L

Tyveay

udn3ad paemuy ue
S8nss1 autgnoy

«—

+¥ INI¥ ¥3Lno

v

{+3}504
Ty ov

7-23

60459960 B



An outward call and inward return is a time-consuming process and should be used sparingly.
A more efficient method of transferring control does exist, however. The operating system
can determine in advance when an outward call is to be issued. If an outward call is
detected, the operating system will not attempt to execute the call, and will not take the
exchange jump to force a trap interrupt. Instead, the functions that would have been
performed by the trap handler are performed by the operating system. Therefore, an outward
return can be issued directly to transfer control to the callee.

When an outward call is made, the operating system assumes that there will be a subsequent
inward return. Again, the functions that would have been performed by the task monitor if
the prohibited inward return were issued are performed by the operating system. The
operating system accomplishes this by calling on an outward-call service procedure that
creates two stack frames in the callee”s stack. It will seem as though the callee was
called by a service procedure in his own ring of execution and that he called the original
(outward-call) service procedure.

The outward-call service procedure then returns to the operating system to transfer
control. The callee subsequently returns to an inward-return service procedure in his own
ring of execution. This service procedure pops its own stack frame before making an inward
call on the original outward-call service procedure. The outward-call procedure then
returns control to the operating system (figure 7-15).

7-24 60459960 C



118D SO

*GT-/ 2an31yg

Fiol 48
¥ v v oo
v v
e—  4sq | S " vsdq N ds@
vsas ¥S4s ¥s4s vsds
{dSa3 45> soL S0 —
le— 501 = sou e 453 [ 35 i
L
ds s
|
dsa [——  ds¢ [ dsq
+aut3noy
a>tAuas STY3 Aq
PTIE> Sem uasn 4t
se dn 385 st yoe3g
-autinoy avtauag
in3a4 pJemut ue voy
|51 x5e3s puasas ayy
“ds PBI{ed By 4t se +BUTU S, dB1Te> Ut
Sueadde mou awedy Bunpadoud a>tAdas &
+Butd Jsuut A223IS S U438 -ysqd STI®d {re) pueming
UT BUIINOY IDTAUIY BuTINOY 3dTAUAS S443sn 03 jutad 03 ay B8yy -desn e
03 [{e) e sanssT uIn3ad puemut +4asn ay3 o3 s3snlpe pue yde3s 03 [1eD puemino e
~ua7red 03 weuy ¥I835 STy Sdod ayj o3 Butob SJBjsued3 1oujuod 5,937[8D UT Sawedy 83Nd8x3 03 sBySTM
sudn3ag autanoy But3noy adtAUSS TOUUED - uanjay pue udnjad e sansst 3oe3s cmy spreng pue Butindexa
@31AdBg ATreUTH uun3ay puenul e sansst Jasp 2unpasodg a>tauag Bdnpadody adtadsg ST Bunpadeug
-y
— - _ ~S0L I — P
SoL soL ) -soL -so0L
¥s ¥s N
a1 a1 a1
{ le—— VSd .
dsq ¥Sas (A
le— S0L
48
u3sn ¥3sn
[ dsq [ vysd
¥s4s
* sou
+¥

7-25

60459960 B



OBJECT MODULE B INDING

Whenever a procedure is compiled or assembled, directives are compiled with it to enable the
loader to create a binding section. In fact, all references to working storage, external
procedures, and so forth are compiled as offsets into the binding section. When a program
js executed, there are multiple binding sections (one per procedure). There is nothing
wrong with this, except that procedures called from several other procedures have an entry
in several binding sections. This is a waste of space. Also, many calls to external
procedures translate into calls within the same segment (intrasegment calls). These are
actually external procedure calls at compile time. They become internal procedures at
execute time. The difference is that an external procedure call must be made with a call
indirect via the binding section, whereas an internal procedure call can be made with the
more efficient call—relative instruction. The object library generator minimizes these
space and time inefficiencies.

The object library gemerator performs two major functions.

° It eliminates redundancy by taking all procedures in a module to be bound and
placing them in a single code sectiom. It also combines all binding sections into a
single binding section and eliminates redundant entries to external procedures.

. Since many calls to external procedures translate to calls to internal procedures
during the coalescing of the binding sections, the call-indirect instructions are
converted to call-relative instructions for these procedures, and their entries are
eliminated completely from the binding section (figure 7-16).

7-26 60459960 B



CALL
CALL
CALL

CALL
CALL

YRy

CALL

CALL

H

CALL C

CALL B
CALL E

CALL C

CALL E

\
m

CALL D

CALL E

60459960 B

Figure 7-16.

Binding Process

7-27




This second major function of the object library generator imposes a restriction on the
format of the call instructions that have been designed with this purpose in mind. Since
they have similar formats, all that need be done by the object library generator is to
change the operation code from B5 to BO, set the desired value in the Q field, and force the
J field to 3, which is the conventional register for the binding section (figure 7-17).

CALL INDIRECT

AJ+Bxq

Bindin s
Sectiog Argument List Pointer
Pointer

CALL RELATIVE

B D 3 K Q2 P+8x%Q

Figure 7-17. Conversion from Call-Indirect to Call-Relative

7-28 60459960 B



VIRTUAL MACHINES

Virtual State provides a capability to support several virtual machines. The two most
important of these are the native machine (Virtual State) and CYBER 170 State. The call
mechanism permits a procedure being executed on one virtual machine to call another
procedure that will execute with a different virtual machine. The exact mechanism that
accomplishes this machine switch is not described here but is covered in a separate section
on virtual machines.

RING NUMBER O

In the section on virtual memory, it was explained that there are 15 rings of protection on
Virtual State. These are numbered 1 through 15. Ring number O has been reserved for a
special purpose, dynamic linking. Traditionally, a program has been written as a series of
subroutines or procedures. These subroutines are compiled separately, then linked with a
loader prior to their execution. Depending on the system, all subroutines referenced must be
present before the program can be placed in execution. Frequently, this restriction is
imposed even though all subroutines are not used. This is one way of solving the problem of
linking, loading, and placing a program into execution, but it is by no means the only one.
Certainly, this alternative is open to Virtual State and may be a common method chosen by
the user. However, Virtual State provides another option. This option is to link and load
a procedure the first time it is called and not before. If a procedure is referenced but
never called, it need never go through the linking and loading mechanism, and never requires
that memory be allocated to it. This process is known as dynamic linking, and a ring number
of 0 is reserved to denote an unlinked pointer.

Ring numbers of 0 can occur in one of two ways, either in an attempt to load a pointer into
an A register, or in an attempt to call on an unlinked procedure. The Virtual State
bardware automatically detects this condition and causes an exchange interrupt to be taken
if the machine is in job mode. The exchange interrupt handler can then schedule the
appropriate operating system procedure to form the necessary link and to load the required
procedure.

60459960 B 7-29



When ring number O is detected on a load instruction, the following sequence occurs.

l.

The load instruction completes, loading the invalid pointer into the appropriate A
register with a ring number determined by the normal ring number contention
mechanisms (figure 7-18).

An exchange interrupt occurs.

The P register stored in the exchange package (at
JPS) points to the instruction following the load instruction.

LOAD A5+ Ak @

JPS

EXCH
RN=0

¥TFEFI

BN

7]

U

AS

————x [FF F |

BN

Max {Ab-RN.SDE.R1¥

7-30

Figure 7-18, Ring Number 0 on Load A

60459960 B




When ring number 0 is detected on a call instruction, the following sequence occurs.
1. The execution of the call instruction is inhibited.

2. An exchange interrupt is taken. The P register stored in the exchange package (at
JPS) points to the call instruction in question, and the untranslatable pointer
(UTP) register stored in the same exchange package, contains the CBP (with ring
number 0) from the binding section that caused the interrupt (figure 7-19).

JPsS

v

EXCH
RN=D

UTP [ TOIFFFr BN — 1
BS 1

CALL A3.AY4.@

Figure 7-19. Ring Number O on Call

The untranslatable pointer is the key to handling this exception combined with an invalid
segment exception. On sensing an invalid segment condition, the interrupt handler should
check on the UTP. If this has ring number O plus a segment number of all 1’s, a ring number
0 condition has been detected by a call instruction (as opposed to an invalid segment). The
UT'P, by software convention, contains a dummy segment number of all 1’s (to flag an unlinked
pointer) and the byte offset contains pointer to loader tables that contain information
necessary to form the required link. The appropriate entry is made in the binding section
containing the unlinked code base pointer and an executed exchange jump, which causes the
call to be reissued.

If the UTP contained mo indication of the fault (this must be established by software
convention), the individual A registers (at JPS) must be scanned for the fake segment
number. Ring number 0 no longer exists in the register or registers in question, since it
is eliminated by the ring number voting mechanism. The register or registers in question
are loaded with the correct segment number and byte offset, and an exchange jump is issued
to continue processing. Remember to scan all A registers, since several of them could have
ring numbers of 0 if a load multiple instruction is used.

Dynamic linking is an option provided by the Virtual State hardware. It provides an

alternative to conventional loading techniques. However, there is no need to support this
particular technique by software; it is an operating system design decision.

60459960 B 7-31



OVERALL PROCESS FLOWCHARTS

Figures 7-20, 7-21, and 7-22 describe the overall process for call, return, and pop.
Included in the flowchart for call are those steps unique to a trap interrupt. Remember, a
trap interrupt is nothing more than an unsolicited call in which all the A registers and

X registers are saved. There are some additional steps. In particular, the condition
causing the trap is erased from either the user condition register or the monitor condition
register, and those registers are captured in the stack frame save area.

7-32 60459960 B



struction
Specification

Aj point
to a word boundar
{in BS}?

DSP a =
valid PVA?

Address
Specification
Error

K3+8%Q 3
valid PVA?

Aj+Bx{e+1) a No
valid PVA?

Invaelid Segment

A3 Segment
"Binding Section
and Readable

Access Violation

e
“DSP Segmen!
WUritable?

Binding
Section 1in
Real Memory”

Page Table Search
without Find

CALL/TRAP

NOTE: Double edged boxes apply to CALL DIRECT. CALL RELATIVE and TRAP.
Single edged boxes apply to CALL DIRECT and TRAP.

Figure 7-20. Call/Trap (Sheet 1 of 3)

60459960 B 7-33



New P

boundary?

CBP VMID
fnatch VMCL?,

CBP RN=07

New P
SDE vahd?

New P SDE
Executable?

P RN<SDE R1

No

€8P point
0 an External
Rrocedure;

point to a word

No

Address

Error

Access Violation

Environment

Error

thvalid Segment

———#m———  Access Violation

? Outward Call

No Environment

Error

CALL/TRAP

NOTE Double edged boxes apply to CALL DIRECT, CALL RELATIVE and TRAP
Single edged boxes apply to CALL DIRECT and TRAP

7-34

Figure 7-20.

Call/Trap (Sheet 2 of 3)

60459960 C




Callee's Entry Point
B to P i

| Save environmant |
| an SFSA
Update TOS Pointer |
{=AD+8xn}

Tntra-
Ring Call
IP-RN<Callee
DE-R2}

Callee's entry point
to P

Virtual State
Procedure
being calleg

External
Procedure

Set A3 to Binding |
Section Pointe §

Argument List Pointer
i to Al
Set dynamic Link to
Rounded ISP
Clear On-condition
Flag

Clear Critical Frame
Flag

No
L}

! Set CSF from TOS
| for Callee's Ring

SF

| Set dSP to new
i R

Set VHID for Callee
| “tfrom coP¥

NOTE: Double edged boxes apply to CALL DIRECT. CALL RELATIVE and TRAP.
Single edged boxes apply to CALL DIRECT and TRAP.

60459960 B

Figure 7-20. Call/Trap (Sheet 3 of 3)

7-35




PSA

point to a

word boundar
?

Yes

PSA a
valid PVA7

Yes

PSA SDE Valid?

Yes

PSA poin
to a
Readable
Segmen

Yes

Caller
Stack Frame in
Real Memory?

Yes

AT < 27

No

New P SDE valid?

Yes

point to a
Parcel Boundar

a valid PVA?

No
Address
> Specification
Error
No
No _
» Invalid Segment
No —»>- Access Violation
No Page Table Search
> Without Find
Yes N Environment
> Specification
Error
No
> Invalid Segment
No
Address
> Specification
Error
Ng

7-36

Figure 7-21.

Return (Sheet 1 of 2)

60459960 B




ew P
point to an
Executable
Segment?

stack in=
t2

SFSA.VMID
match VMCL?

RN = PSALA2}-RN No

\{

4

Access Violation

Environment
Specification
Ervror

CFF Sét?

Yes

\

Invalid Return

Load Environment
from SFSA

Y

Ripple
For all A Registers
ensure that A.RN=P.RN

Update TOS Pointer
{= Al Final}

f

Clear TED
{enable traps if TEF set)

Critical Frame
Flag

60459960 B

Figure 7-21. Return (Sheet 2 of 2)

7-37




PSA

7-38

Point to word No
boundary?
- Address
Yes - Specification
Errvor
Yes
PSA N
SDE valid? ° Segment
Descriptor
Invalid
Yes
PSA N
oint to a o
pReadal:nle > Address Violation
Segment?
Yes
SFSA in No Page T
0 ge Table Search
Real Memory? > Without Find
Yes
PSA
= 01d DSP No P
1f SFSA}? M nvironment
r‘oglt:ack :'|.n-{:[s Spegif‘:iatlon
tac
Yas
No
P.RN=PSA{AL}.RN? > Inter-ring POP
Yes
Yes
CFF Set? » Critégal Frame
ag
No
Update CSF Pointer
{A) «—SFSA{2}}
Update PSA Pointer
{A2 «—SFSA{3}}
Load CFF and OCF
from SFSA
Update TOS Pointer
{Al to XP}
Figure 7-22, Pop

60459960 B




CROSSING PROTECTION BOUNDARIES 8

The previous sections described the basic protection mechanisms provided by the Virtual
State hardware, including the primary protection afforded by address space, as well as
protection mechanisms that are within the address space. It is now necessary to describe
the techniques for crossing protection boundaries. Two techniques are available, one for
switching between address spaces and one for crossing protection boundaries within an
address space.

CHANGING ADDRESS SPACES

The exchange jump is used to transfer control from one address space to another. When an
exchange jump occurs, the machine state changes between job mode and monitor mode. This
state is controlled by a flip~flop that cannot be cleared or set by software other than by
an exchange jump when the flip—flop is complemented. Virtual State processors are always
deadstarted into monitor mode via a half exchange. The operating system monitor is the most
privileged module of the operating system. It resides in its own address space and has
additional special privileges, because it operates in a unique machine state. It is the
most trustworthy piece of code in the system. The operating system monitor establishes
users’ operating environments by defining their exchange packages and, consequently,
establishes in part their level of security. This concept of trustworthiness is very
important to Virtual State systems. In general, the lower the ring of execution, the more
trustworthy is a code module. Virtual State hardware provides the tools necessary to
construct a system with any desired level of security. Nevertheless, those hardware
facilities are only as good as the software that uses them. For a system to be truly
secure, software conventions must be enforced. These conventions form part of the overall
architectural design of the system. In concert with this theme, the hardware does very
little checking on the operating system monitor. In particular, no ring number checks are
performed during an exchange jump. If the monitor elects to increase a user’s authority by
assigning an A register ring number lower than his or her ring of execution, the user runs
with that greater privilege. Because of this and other reasons, the operating system
monitor should be an extremely small, thoroughly debugged piece of code.

PROTECTION BOUNDARIES WITHIN AN ADDRESS SPACE

Call/return is the primary mechanism for crossing protection boundaries within an address
space. It is the only mechanism for crossing ring boundaries. Two conditions must be
satisifed before crossing a protection boundary. First, the caller must be permitted to
make the call; second, the callee must not act on behalf of caller with more authority than
caller. (Call/return is described in detail in section 7.)

If a user tries to make a call to a more privileged ring than he or she has the right to
use, a potential breach in security occurs. The hardware prevents this occurrence by
detecting attempts either to call outward to a ring of less privilege, or to return inward
to a ring of more privilege. Such an attempted breach in security causes an exchange
interrupt into the monitor address space. The details of security and protection are
discussed in section 3.

60459960 B 8-1



Most of the information pertaining to security is managed by hardware and is contained in
hardware tables, although the tables are comstructed by software. The main such table is
the segment descriptor table (SDT). Whenever a call is made to another segment across a
protection boundary, the transfer must take place in a controlled manner. To accomplish
this, calls across protection boundaries do not take place directly, but instead use an
indirect or process virtual address (PVA) held in a pointer in a binding section. By
software convention, binding sections are not writable in user rings, and are constructed by
the loader based on directives issued by compilers and assemblers. The hardware ensures
that all calls across protection boundaries take place via a binding section entry. An
access violation interrupt causes an exchange to monitor mode if an attempt is made to
bypass this mechanism.

Many other security checks are performed by the hardware during a call. Some are fairly
straightforward. For example:

o The SFSA must be in a segment that has write permission.

e The callee’s entry point (obtained from the binding section) must be in a segment
that has execute permission.

The hardware also ensures that the caller is within the callee’s call bracket, as described
in the discussion of rings of protection. The pointer to the callee’s entry point in the
binding section is named a code base pointer (CBP) and has the format shown in figure 8-1.

12 16 20 32 63

9
%
/ R3 | RN SEG BN

\‘O

VMID

muoum |

VMID VIRTUAL MACHINE IDENTIFIER
EPF EXTERNAL PROCEDURE FLAG

R3 HIGHEST RING NUMBER FOR CALL
RN RING NUMBER

Figure 8-1. Code Base Pointer (CBP)

A call is permitted, providing:

PVA.RN < CBP.R3

The first check performed by the hardware during a call ensures that the caller’s ring
number (held in the P register) is within the callee’s call bracket. That is:

P.RN < CBP.R3
In practice this check is made implicitly. An explicit check is made against the Aj ring

number as described below. Of itself this check is insufficient, since a caller could ask a

more privileged procedure to call on his behalf a third procedure to which he does not
normally have access.

In figure 8-2, procedure A resides in ring 13 and procedure B resides in ring 11.

8-2 60459960 B



INTERSEGMENT BRANCH

It was mentioned earlier that the call/return mechanism is the primary mechanism employed
for crossing protection boundaries. It is the only mechanism available for crossing rings.
However, another instruction, intersegment branch, can be used to transfer control from one
segment to another. Since such a transfer of control involves crossing a key/lock
protection boundary, the hardware must ensure that the correct key/lock transformations
occur. The execution of this instruction is illustrated in figure 8-3.

OLD P-REGISTER

V.. KEYIEﬁI SEG | BN

Aj-REGISTER

[rn| see | BN

——— —

SDT

A

NEW P-REGISTER _,_,_J'_

W////A'ﬁ’h'\'l SEG | | BN

T

(727777

Figure 8-3. Intersegment Branch

Notice that the new P register ring number is forced to the value in the old P register.

Ring boundaries cannot be crossed by this instruction.

In addition, the new P register key

is taken from the associated SDE lock. An executing procedure always runs with its own

key.

60459960 B

8-5




WHEN HARDWARE CHECKS OCCUR

The hardware makes the following checks for access violations on each occurrence of the
following actions.

Read access to a segment:
° The segment must have read access.

. The segment must be readable from the ring of the procedure making the access
(this is via the ring number of the A register used to make this access).

° The current key exactly equals the lock of the segment, in the absence of a
master key or no lock.

Write access to a segment:
° The segment must have write access.

° The segment must be writable from the ring of the procedure making the access
(this is via the ring number of the A register used to make the access).

) The current key exactly equals the lock of the segment, in the absence of a
master key or no lock.

Call to an external procedure:
. The CBP must be in a binding section.
. The current SFSA must be in a segment that has write access.
. The procedure being called must be in a segment that has execute access.
. The caller must be within the callee’s call bracket.

° The call must not be an outward call.

8-6 60459960 B



Return from an external procedure:
e The previous SFSA must be in a segment that has read access.

. The procedure that control is returned to must be in a segment that has execute
access.

e The final key (obtained from the P register in the SFSA) equals the associated
segnent’s (caller’s) lock.

[ ] The return must be an outward return.

In addition, for each A register ring number that is less than the final P register ring
number, the associated A registers ring number is set equal to the P register ring number.

First instruction issued from a new segment:

o The segment must have execute access. This check is not repeated for further
instructions issued from the same segment. Normally, the check occurs during
the execution of the instruction that transferred control to the new segment,
either during the call or intersegment branch.

These are not the only checks performed by the hardware during the execution of these
instructions. These are just the checks made to ensure that an access violation is not
being attempted. Many other checks are made to ensure that the hardware functions
correctly. For example, all branches must be to parcel boundaries, and all calls must be to
word boundaries.

60459960 B 8-7



SOFTWARE CONVENTIONS

The hardware provides the mechanism necessary to construct a secure system. However, it is
the software use of the hardware that determines the ultimate level of security. For the
system to be completely secure, the software must adhere to several conventions. Some of
these have been discussed in the previous sections. They are now summarized in this section.

RINGS OF PROTECTION

Since the ring protection mechanism is hierarchical, the higher the privilege assigned to a
procedure, that is, the lower the ring number, the more trustworthy that procedure must be.
The more privileged a procedure, the more thoroughly it must be checked. The operating
system monitor, which is the most privileged procedure in the system, should be kept as
small as possible and thoroughly checked. Also, the more privileged procedure must always
ensure that its own integrity is not jeopardized. In particular, care must be exercised
when a procedure acts on behalf of a less privileged procedure. In this case, whenever data
is referenced via the caller’s arguments, the callee must reference this data through
directly loaded A registers. That is, the callee must ensure that the hardware A register
ring voting is exercised whenever the caller’s pointers are used. This is in place of a
pointer being loaded in an X register and then being switched into an A register (using a
copy X to A instruction), when the callee’s ring number could result in the caller’s
pointer. Since most software is developed in a high-level language, the compilers must
adhere to this convention.

CONTROLLING PROCEDURES

As has already been described, much of the security of the system is ensured by the
hardware. The hardware utilizes various hardware tables, in particular, the segment
descriptor table (SDT). These tables are constructed by software procedures. These
procedures are trustworthy, and they will execute in low-numbered rings, but not necessarily
in ring 1. They should be developed in such a way that they are self-contained, as small as
possible, and impossible to tamper with, unless the most stringent security checks have been
taken and passed. The security mechanisms that have already been described take care of
security problems when the procedures are being executed. However, when they are modified,
either statically or dynamically, a combination of installation procedures and operating
system services must be brought into play to ensure that the security of the system is
maintained.

8-8 60459960 B



USER RESPONSIBILITIES

The hardware and software mechanisms that interplay to provide system~wide security and
protection have been described. At first glance, it may appear that the utilization of these
facilities places a heavy burden on the end user. Fortunately, this is not the case,
although a responsibility is placed on the installation management. Much of the security of
the system is centered on the operating system file system. Every file carries with it the
four ring brackets, for read, write, execute and call, that have already been described.
Assignment of these ring brackets is based on the privilege the user has been validated

for. Before a user can log in to the system, in either batch or interactive mode, that user
must be known to the system. He or she enters a user number and a password as
identification. These parameters direct the system to a validation file containing the
privileges of the user.

The typical end user should be totally unaware of his ring of execution and whether or not
his code and data segments carry nonzero locks. If the user desires to protect some local
data, suitable directives to the operating system cause the setting of the appropriate lock
values. Again, the actual value of these locks is of no concern to the user. Consequently,
the typical end user, who is, for example, running FORTRAN codes, need not be concerned with
the security mechanisms of the system. At the same time, these mechanisms are in play to
isolate him from other users and from the system.

60459960 B 8-9






INTERRUPTS PART 11 9

The section on call/return should be thoroughly understood before proceeding with this
section. When the subject of interrupts was introduced, their hierarchical nature was
described. This hierarchy involved two types of interrupts, exchange interrupts and trap
interrupts. In an exchange interrupt, the state of the machine changes from job mode to
monitor mode. All process state registers are saved in one area of memory and loaded from
another area. Included in the process state registers is the P register, and execution
continues after the exchange at the address pointed to by the P register.

In a trap interrupt, although the purpose is similar (that is, to stop the normal sequence
of operation and transfer control to another instruction sequence in such a way that the
original sequence can be restarted at the point that it was interrupted), the mechanism is
quite different. In fact, a trap interrupt is an implicit call. Not all the process state
registers are saved and very few are loaded with different values. A maximum SFSA is
created, and all A registers and X registers are saved in it, along with other key process
state registers. The P register is saved, and processing continues at the address given by a
code base pointer (CBP) in the binding section of the interrupted process. The address of
this CBP is given by the trap pointer, and the CBP must point to an external procedure for
the trap interrupt to complete.

Trap interrupts, therefore, transfer control to an address within the address space of the
executing process. This is important, because the trap handler normally has to make
reference to flags and data held in the user’s stack. In fact, the outward-call/inward-
return mechanism described in the last section is conducted primarily in the user address
space, even though it is initiated by an exchange interrupt. The free-flag is used to cause
an interrupt to take place in user’s address space.

O0f major importance to the trap interrupt operation is the management of the condition
registers and trap control flags, both the trap enable flip—-flop (TEF) and trap enable delay
(TED). When the trap interrupt is taken, the user and monitor condition registers are
stored in the SFSA and the bit (or bits) that causes the interrupt is cleared from the
appropriate condition register. These registers are reset on the trap and can start
collecting new fault conditions in an unambiguous manner. Also, when the trap interrupt is
taken, traps are disabled and the TEF is cleared.

To reenable interrupts, two mechanisms are available. Setting the TEF via a copy
instruction accomplishes this. However, this is not the normal technique used. The trap
interrupt is an implicit call, and the continuation of normal processing is accomplished by
a return instruction. Part of the return mechanism reenables interrupts. The sequence of
events is to set the TEF and the TED (by a single copy instruction), then to issue the
return. When the TED is set, traps are disabled regardless of the setting of the TEF. The
return instruction clears the TED which, if the TEF is set, reenables interrupts. Since the
TED is cleared only upon completion of the return instruction, problems associated with
enabling traps in one instruction step, then returning in a second step, are avoided.

60459960 B 9-1



INTERRUPT CONDITIONS

Now that the basic interrupt mechanism has been described, we can proceed to the individual
interrupt conditions. Virtual State interrupts are precise. That is, the interrupt handler
can always refer back exactly to the instruction that caused the interrupt, or that was
being executed when the interrupt occurred. However, depending on the nature of the
interrupt, the method for tracing back to the instruction in question varies.

A basic architectural philosophy of Virtual State is that an instruction is not interrupted
during its execution. Conditions that prevent an instruction from executing are checked
before the instruction is committed. The concept of a point of no return was introduced in
an earlier section on interrupts and this is an important concept. Any exception conditions
detected before the point of no return prevent the instruction from executing, an interrupt
is taken, and the P Register, at the time of the interrupt, points to the instruction that
could not be executed.

MONITOR CONDITION REGISTER (MCR)

Figure 9-1 lists the conditions recorded in the Monitor Condition Register. Following are
some notes on these conditions.

ASSOCIATED MONITOR MASK MK
REGISTER BIT SET CLEAR
TRAP
TRAP ENABLED TRAP DISABLED ENAOBF:'ED
DISABLED
RF; . BIT NUMBER AND DEFINITION “:ggE M?A"ggg R n:gﬁa M::\g;g R ldlgmﬁolfgn
— 48  Detected Uncorrectable Error Mon EXCH TRAP EXCH HALT HALT
- 49  Unassigned EXCH TRAP EXCH HALT HALT
P+ 50 Short Warning Sys EXCH TRAP EXCH STACK STACK
51 instruction Specification Error Mon EXCH TRAP EXCH HALT HALT
52  Address Specification Error Mon EXCH TRAP EXCH HALT HALT
P+ 53 170 Exchange Request Sys EXCH TRAP EXCH STACK STACK
54  Access Violation Mon EXCH TRAP EXCH HALT HALT
55  Environment Specification Error Mon EXCH TRAP EXCH HALT HALT
P+ 56 External Interrupt Sys EXCH TRAP EXCH STACK STACK
P 57 Page Table Search Without Find Mon EXCH TRAP EXCH HALT HALT
P+ 58 System Call Status - This bit is a flag only and does not cause any hardware action.
P+ 59  System Interval Timer Sys EXCH TRAP EXCH STACK STACK
P/P+*{ 60 Invalid Segment/Ring Number Zero Mon EXCH TRAP EXCH HALT HALT
P 61 Outward Call/inward Return Mon EXCH TRAP EXCH HALT HALT
P+ 62  Soft Error Log Sys EXCH TRAP EXCH STACK STACK
- 63 Trap Exception Status - This bit is a flag only and does not cause any hardware action.
* P, unless P+ for RNO on loads

Figure 9-1. Monitor Condition Register

9-2 60459960 B



Detected Uncorrectable Error (DUE)

This interrupt indicates that an uncorrectable error has been detected in either the
processor or the memory on a reference generated by the processor.

Major data paths, registers, or control memories all carry either parity or SECDED. Any
error detected before the point of no return of an instruction causes the instruction to be
retried. A retry counter (one counter that applies to all errors) may be set. If the
instruction retry is unsuccessful, a detected uncorrectable error (DUE) is recorded. The

P register, saved by the interrupt, points to the instruction that was in execution at the
time the interrupt occurred, if it occurred before the point of no return. If the error
arose after the point of no return, then it is handled by the complete portion of the
instruction execution. 1In this case, the P register saved by the interrupt points to the
instruction following the one that was in execution when the error was detected. This means
that there is no way of resuming the instruction stream after the interrupt. However, since
the state of the process that was executing is undefined, there is little point in doing
this.

To aid in recovering processors, the processor not damaged (PND) flag is set if the fault
occurred before the point of no return. When this flag is set, the process enviromment is
intact, even though further processing may be impossible. This fact may be used by the
damage assessor to subsequently restart the process.

Memory malfunctions are included in this condition. An understanding of the types of errors
that can arise in memory may help in an assessment of the best way to handle them. A
simplified picture of memory error detection is shown in figure 9-2, Data transmissions
between a processor and memory are checked for correct parity at the processor port, at the
memory port, and at the memory array paks. Memory itself, such as chips and bank logic, has
SECDED.

™ i
4 EP :
proc. |Q Mo SECDED "Amrav | i
" |r o R GEN/CHECK b i
T RT H
Y ;
READ |- -
* PARITY * PARITY * SECDED
SECDED CODE
WAITE -— — e — »— GENERATED AND
WORD STORED
* PARITY * PARITY
PARTIAL o
WRITE
* PARITY * PARITY
* SECDED
SECDED CODE
——— e e »— GENERATED AND
WORD STORED

PROCESSOR MEMORY
DETECTED DETECTED
ERRORS ERRORS

Figure 9-2. Memory Error Detection

60459960 C 9-3



A read request is essentially a synchronous process. The requesting processor must wait for
the data transmission to complete. The transmission does a SECDED check and then is
parity-checked at the memory port before being routed to the processor. Errors detected up
to this point result in a memory—detected malfunction. The transmission is then
parity—checked at the processor port, and an error here results in a processor-detected
malfunction. The now incorrect data continues to its destination and the process in
execution is handled as previously described.

Two forms of write request are of interest. These forms are a partial write, in which only
a portion of a 64-bit central memory word is written, and a full-word write, in which a
64-bit word is stored in central memory.

On a partial write, the word being modified must first be fetched from central memory, and
then be rewritten. The data transmission is checked for parity at the memory port and again
at the memory array paks (actually at the SECDED generator). The word to be modified is
then fetched and checked for SECDED. Finally it is updated, has a new SECDED code generated
for it, and is saved in central memory. Any detected error is recorded as a memory detected
malfunction.

On a full-word write the sequence is the same as for the partial write, except that the
steps where the word is read from central memory and is updated are omitted. On a full-word
write, only parity errors can be detected.

A write request is essentially an asynchronous event. The processor issues the request to
memory and continues processing. Any errors detected by memory are reported to the
processor at a point in the processing that is not associated with the failed write
operation. It is virtually impossible to relate to the instruction that is affected by the
error. 1t is pointless, therefore, to continue execution of the process in question.

It is not a bad strategy when the errors are encountered to assume that a user job was being
processed, and to attempt to take the interrupt. If the error was transient or in a part of
the machine that can be bypassed, the task can be aborted and processing can proceed, maybe
after an appropriate reconfiguration has taken place. If a second occurrence of the failure
is encountered during the interrupt, the processor either tries to trap or halts. In the
extreme case, the processor halts.

When a DUE is present there may be other bits set in the MCR/UCR as a result of the error,
all of which should be disregarded.

Not Assigned

This bit is not set implicitly by any hardware condition, but may be set or cleared
explicitly by software on exchange or branch on condition register as any other condition
register bit. When set explicitly, this bit causes program interruptions in a manner
identical to bit 48 of the MCR.

9-4 60459960 B



Short Warning

A short warning interrupt is one of several asynchronous interrupts (external events) that
may arise. In all cases like these, the P register saved by the interrupt points to the
next instruction in sequence to be executed. In other words, it is always detected at the
next encountered point of no return. A short warning interrupt indicates that within a
minimum of 2.5 seconds, a system critical component will fail and will automatically shut
itself down. The operating system must take the necessary steps within this timeframe to
ensure an orderly restart. System critical components include, as a minimum, the MG set
(main power supply) and all mainframe elements (processors, memories, and the I0U). In
addition, customers have an option to purchase a configuration environment monitor (CEM).
This monitor detects and reports impending shutdowns in key peripheral equipment, such as
the system disk(s) and controller(s). The short-warning interrupt signals an impending
shutdown of key equipment. It may be a power failure, but it could be a high-temperature
condition, or some other condition likely to cause damage to the equipment unless prompt
action is taken. This interrupt never causes the processor to halt.

The short-warning bit in the MCR remains set as long as the condition holds. Even though an
exchange interrupt occurs, and a new copy of the MCR is obtained, the power warning bit
remains set. If the operating system monitor is entered with the traps enabled, an
immediate trap results.

There is a second indication of a short warning intended for use in CYBER 170 State. A bit
is reserved for that purpose in the processor status summary register. The process of
recording the condition is basically the same as that for the MCR. As long as the situation
holds, the condition remains recorded in the status summary register. In the event that it
clears (a transient power loss), the condition goes away. This enables software to monitor
for restart conditions.

60459960 C 9-5



Instruction Specification Error

The instruction specification error is one of a class of errors where the user has either
made an error (such as executing data), or is deliberately trying to tamper with the

system. In either event, an exchange interrupt is taken with the P register, saved at JPS,
pointing to the instruction that caused the error. The only case where a user may
deliberately be trying to destroy the system is when he or she attempts to execute a monitor
instruction in job mode. The interrupt enables the operating system to abort the job, and
to report to the end-user the precise instruction and address, within the process being
executed, that caused the fault.

The special instructions for use only by monitor are described in volume II of the Virtual
State hardware reference manual (refer to the preface for more information).

Address Specification Error

Certain instructions require the use of a particular form of an address. If the required
form is not used, the address specification error occurs, and the operating system may
follow the actions suggested for an instruction specification error. Here also the

P register, saved at JPS, points to the instruction with the faulty address. 1In addition,
the faulty address is loaded into the untranslatable pointer register (UTP).

CYBER 170 State Exchange Request

Virtual State is designed so it can execute the instructions not only of Virtual State, but
of other machines as well. CYBER 170 State is the most important of these. On CYBER 170
State the IOU can initiate an exchange jump in the CPU. However, when this happens on
Virtual State, it can only be executed if the CYBER 170 State virtual machine is being
executed. If the Virtual State virtual machine is being executed, then an exchange request
interrupt occurs and the Virtual State monitor must exchange to the CYBER 170 State virtual
machine in order for the request to be satisfied. This is an asynchronous interrupt and the
P register, stored at JPS by the interrupt, is set accordingly.

Access Violation

Access violation occurs when a user attempts to access code or data to which he or she has
not been granted access privilege. The Virtual State protection mechanism is described
fully in the section dealing with virtual memory. It is a mechanism built into the
hardware, and any attempt to circumvent it leads to this interrupt. This is the same as an
instruction specification error, in that the P register saved at JPS points to the
instruction that attempted to violate the protection mechanism. In addition, the address
that caused the access violation is saved in the UTP.

9-6 60459960 B



Environment Specification Error

An environment specification error indicates that the environment has been destroyed in some
way, typically by a programming error. The destruction is such that an illogical or
impossible situation develops and further processing is impossible. The most common cause
is the destruction of the information in the stack by a user. Since the stack has
read/write access, and contains dynamic variables along with link information for calls and"
returns, this is not uncommon. Further processing is impossible, and the operating system
must abort the job. This interrupt behaves exactly like an instruction specification error,
with one exception. In most cases the P register saved during the interrupt points to the
instruction that caused the error. However, this error may arise when the processor is
attempting to trap or exchange on another interrupt. If a trap was being attempted but
could not complete, an exchange is attempted if the machine is in job mode. If the exchange
is successful, the P register saved at JPS points to the instruction that originally caused
the trap, and the trap exception bit is set. The operating system must abort the job at
this time, but checks for the trap exception and reports the following to the user.

e The instruction executed or about to be executed when the original interrupt
occurred.

e The nature of the original interrupt.
® The final reason for the job abort, which is the environment specification error.

If the machine is in monitor mode when the trap exception occurs, the machine halts, since
the monitor’s environment has been destroyed.

For exchange interrupts the situation is different. If an exchange from monitor to job is
attempted, so that the job in question is not permitted to execute the given virtual machine
to which it is exchanging, the following happens.

® The exchange from monitor to job completes, and an environment specification error
is detected.

® An exchange is taken immediately from job to monitor.

The environment specification error is associated with the job and is recorded in the
exchange package stored at JPS. Also, the P register saved in this exchange package is
identical to the exchange package that was loaded from JPS when the original exchange from
monitor to job was attempted.

If a virtual machine mismatch occurs on an attempted exchange from job to monitor, the
hardware must have failed in some serious, undetected manner. The processor has no recourse
other than to halt. This situation is unlikely to occur and is also difficult to detect.
There is no indication in the processor error logs, and there is no indication in either the
exchange package at JPS or that at MPS. An investigation of the PVA in the P register at the
time of the halt (by the SMU) and an investigation of the monitor condition register (and
monitor mask register), followed by a check on the registers controlling virtual machine
switching, should reveal the nature of the problem. If unexplained processor halts are to
be avoided, then the code in the SMU must include a check for these conditions.

60459960 B 9-7



External Interrupt

An external interrupt is an asynchronous interrupt. It is a signal to a processor that
another processor requires some action to be performed. The identity of the processor
making the request and the nature of the request must be relayed by software convention. A
message buffer must be set up in central memory to contain this information. Once the
request is satisfied, an exchange jump back to job continues normal processing.

Page Table Search without Find

This is a simple page fault, where a user has tried to access a page that is not in real
memory. The operating system must arrange for the page to be brought into memory before
processing can continue. This condition is always caught in the prevalidation of an
instruction, before the point of no return. Consequently, the P register saved at JPS by
the interrupt points to the instruction that could not be executed because of the missing
page. In addition, the untranslatable pointer register (UTP) contains the address (PVA)
that gave the page fault. To satisfy the page fault, the operating system does not have to
trace back through the code being executed. It can gain all the information it requires
from the UTP. Once the page fault is satisfied, an exchange back to job continues normal
processing. Page faulting does not always result in loading a fresh page in memory. The
operating system must apply various safeguards to ensure that a process running in a write
loop does not consume all of real memory. Typically, this can be done by limiting the size
of the segments being used by the user.

One last point is that certain code segments of the operating system must be wired down and
not paged. This is to avoid the recurrence of faults that could otherwise occur. For
example, the page fault handler itself cannot get a page fault. Such a condition normally
causes a processor halt via the hierarchy mechanism of the Virtual State interrupt system.

System Call

Unlike the conditions discussed to this point, the system call condition is not an interrupt
condition but a flag for the operating system monitor. The value of the corresponding bit
in the monitor mask register has no effect on the setting of this flag. A process executing
in job mode may need to make a request on the operating system monitor for some action. To
do this, the process stores a request message in a message buffer, and then issues an
exchange jump. This switches the machine state from job to monitor, and appears to monitor
as if an exchange interrupt occurred. An investigation of the MCR at JPS reveals the system
call flag set, and the necessary action is taken. The P register saved at JPS during the
exchange points to the instruction following the exchange jump, and an exchange back to job
continues normal processing. Unlike true interrupt conditions, if this flag is set by the
special system instruction that modifies the MCR, an interrupt does not result.

The interrupt handler must ensure that only the MCR is checked for that condition. In the
normal mechanism, the logical product of both the MM and the MCR is checked. The simplest
procedure for the operating system to follow is to ensure that the MM bit (bit 10) is always
set on exchange to job.

9-8 60459960 B



System Interval Timer

The System Interval Timer (SIT), which resides in a processor state register, is a single
timer for the entire system. It is a 32-bit counter that is decremented once every
microsecond. When SIT counts to zero, an interrupt is taken. This is an asynchronous
interrupt and the P register stored at JPS points to the instruction following the one being
executed when the SIT decremented to zero. The SIT is intended to be used for time slicing
and accounting. Once the counter has decremented to zero it does not stop counting. For
example, it will next decrement to -1 (2**32 -1) and continue decrementing.

Invalid Segment/Ring Number 0

The invalid segment condition bit in the MCR combines two conditions. The first of these is
a true invalid segment and the second is an unlinked pointer, ring number O. An invalid
segment condition arises when either a segment descriptor table entry (SDE) has been flagged
as an invalid entry (VL field = 00), or when the segment table length (STL) has been
exceeded. This latter condition occurs when the segment number (SEG) portion of a PVA is
greater than STL. For these conditions, the P register stored at JPS points to the
instruction that attempted the central memory access that gave rise to the condition.

A ring number 0 arises when an unlinked pointer has been loaded. The operating system must
arrange for the loader to form the necessary links, as described previously in the section
dealing with dynamic loading. 1In all cases, the unlinked pointer is placed in the
untranslatable pointer register (UTP), and contains all the information necessary for the
operating system to form the appropriate link. When an unlinked pointer is loaded, the load
completes before the interrupt is taken. The P register stored at JPS points to the
instruction following the load instruction that loaded the unlinked pointer. This means the
unlinked pointer was loaded into an A register, and the operating system must take care to
replace this register value with the correct, linked pointer.

Outward Call/Inward Return

The ring hierarchy has been established so that procedures in inner rings can access code
and data in outer rings (rings with higher numbers and lower privilege), and procedures in
outer rings can call procedures in inner rings in a controlled manner. This has been
described in the section on call/return. This condition has been provided to prevent a user
from attempting an outward call or an inward return, and thereby causing a possible security
breach. The P register stored at JPS points to the call or return instruction in question,
and the operating system must either abort the job or simulate the required call. This
latter process has already been described.

60459960 B 9-9



Soft Error Log

The soft error log bit sets when the processor encounters a hardware error that was
corrected by the hardware. This includes correctable errors in the processor itself and may
include, if selected, single-bit errors in central memory. Examples in the processor
include a successful instruction retry, cache or MAP parity errors, and so forth. These
vary from processor type to processor type. These correctable errors are also reported in
the status summary register (for processor or memory), so the processor does not need to be
interrupted on every correctable error. The choice may be made to ignore this interrupt (by
not setting the appropriate bit in the monitor mask register), and to treat these errors in
an asynchronous manner via the System Monitor Utility (SMU), a designated PP in the IOU.

The P register stored at JPS points to the next instruction to be executed. If the
interrupt is taken, the operating system monitor, after processing the interrupt, only has
to issue an exchange to continue normal processing.

Trap Exception

Trap exception is similar to system call in that it is not an interrupt condition but is a
flag to the operating system. The flag indicates that a trap interrupt was attempted, but
could not be completed because a condition was encountered that prevented it. At least two
other bits are set in the MCR/UCR whenever the trap exception bit is set, one being the bit
that prevented the trap from completing, and the other being the bit that caused the trap.
An example of this process is an arithmetic overflow encountered and a trap attempted.
However, in attempting to store the SFSA, a page fault in the stack is detected and an
exchange interrupt taken. After satisfying the page fault, the operating system exchanges
to the user (taking care to clear the trap exception bit in the MCR), whereupon the trap
takes place since the condition has not been removed from the UCR. The P register stored at
JPS contains the PVA that would have been laid down in the SFSA had the trap been successful.

General Notes on the MCR

e Whenever an invalid pointer is encountered, for whatever reason, an interrupt occurs
and the invalid pointer is placed in the UTP.

) Interrupts that may occur in multiples of particular interest are the four that
cause entries in the UTP: invalid segment/ring number O (ISG), address
specification error (ASE), access violation (AV), and page table search without find
(PSWF). 1If these occur in combination, the following order of precedence applies to
the PVA entered in the UTP: ISG, ASE, AV, PSWF.

9-10 60459960 B



USER CONDITION REGISTER (UCR)

Figure 9-3 lists the conditions recorded in the user condition register.
notes on these conditions.

been grouped into classes that describe their behavior.

Following are some

Rather than repeat information, the arithmetic conditions have

60459960 B

ASSOCIATED USER MASK M:er
REGISTER BIT SET CLEAR
TRAP
TRAP ENABLED TRAP DISABLED ENABLED
DISABLED
P Jos MONITOR JoB moNITOR | 408 OF
REG BIT NUMBER AND DEFINITION MODE MODE MODE MODE MODE
48  Privileged Instruction Fault Mon TRAP TRAP EXCH HALT
49 Unimplemented Instruction Mon TRAP TRAP EXCH HALT These
50 Free Flag User TRAP TRAP STACK STACK mask bits
P+ 51 Process Interval Timer User TRAP TRAP STACK STACK are
52 Inter-ring Pop Mon TRAP TRAP EXCH HALT permanently
53 Critical Frame Flag Mon TRAP TRAP EXCH HALT
P+ 54 Keypoint User TRAP TRAP STACK STACK
55 Divide Fault User TRAP TRAP STACK STACK STACK
56 Debug User TRAP TRAP STACK STACK STACK
P 57 Arithmetic Overflow User TRAP TRAP STACK STACK STACK
P+ 58 Exponent Overflow User TRAP TRAP STACK STACK STACK
P+ 59 Exponent Underflow User TRAP TRAP STACK STACK STACK
P+ 60 F. P. Loss of Significance User TRAP TRAP STACK STACK STACK
61 F. P. Indefinite User TRAP TRAP STACK STACK STACK
62 Arithmetic Loss of Significance User TRAP TRAP STACK STACK STACK
63 Invalid BDP Data User TRAP TRAP STACK STACK STACK
Figure 9-3. User Condition Register



Privileged Instruction Fault

The privileged instruction fault is really a monitor condition and could have been
implemented in the MCR. However, by recording it in the UCR, there is an opportunity for
handling the fault from within the user’s address space. This is the first of four monitor
conditions recorded in the UCR. These conditions cannot be stacked and are termed the
nonstackable conditions. In practice, the privileged instruction fault, which arises
because a user has attempted to execute a privileged instruction in a nonprivileged mode,
normally is handled directly by the operating system. The privileged modes of operation are
fully described in volume II of the Virtual State hardware reference manual (refer to the
preface for more information).

The P register stored in the SFSA points to the instruction that gave the fault. The
execution of this instruction is inhibited.

Unimplemented Instruction

Unimplemented instruction is the second monitor condition flagged in the UCR. It provides a
capability for emulating a model-dependent instruction with suitable software. Since the
emulation should occur from within the user’s address space, a trap rather than an exchange
is taken. The P register stored in the SFSA points to the illegal instruction that caused
the trap.

Free Flag

The free flag’s purpose is to alert a process and cause the process to take some action. An
example of the use of the free flag is given in the section on the call/return mechanism.
In that example, an outward call is simulated by the operating system from within the user’s
address space. The transition from the monitor’s address space to the user’s address space
is made by setting the free flag in the exchange package at JPS and executing an exchange
jump from monitor to job. In the prevalidation of the next instruction to be executed in
the user’s job, the free flag is detected and a trap taken. The P register stored in the
SFSA points to the next instruction to be executed in the user’s code. This UCR condition
is unique in that it takes priority over MCR conditions that may arise at the same time.

Process Interval Timer

The Process Interval Timer (PIT) is a 32-bit counter that decrements once every

microsecond. FEach process has a unique counter when it is in execution. Whenever a PIT
reaches 0, a condition bit sets in the UCR, and if it is enabled, a trap is taken. The PIT
continues counting at this time. The counter assumes a value of -1 (2%*32-1) and the
decrementing continues 1 us after the PIT has zeroed. This condition is an asynchronous
interrupt, similar to the SIT that is recorded in the MCR. The P register saved in the SFSA
points to the next instruction to be executed. In other words, when the trap handler has
completed its processing and issued a return, normal instruction execution resumes.

9-12 60459960 B



Inter-ring Pop

The inter-ring pop is the third monitor condition recorded in the UCR. The pop instruction
is described in the section on the call/return mechanism. TIts function is to dispose of
stack frames, typically during cleanup when a process is being terminated. The pop
instruction merely moves pointers (DSP, CSF, PSA, and TOS) that point at a given stack. It
does not contain any of the safeguards required when crossing rings. If a ring crossing is
attempted in the cleanup process, a trap is taken and software procedures are called to
ensure that the ring crossing takes place in a controlled manner. The P register saved in
the SFSA points to the pop instruction that attempted the ring crossing, and whose execution
was inhibited.

Critical Frame Flag

The critical frame flag (CFF) is the fourth and final monitor condition recorded in the
UCR. The CFF is a software flag acted on by the hardware. Software sets this flag to
prevent the disposal of certain stack frames that may be shared by separate tasks running in
the same address space. The flag is cleared by a call and trap, so that each instance of a
procedure begins in a noncritical state. It is likewise restored on a pop or a return for
the criticality of the current stack frame to be determined. This condition provides an
interrupt into the user”s address space, and the trap handler must determine how the stack
frame can be disposed of. In other words, the criticality of the stack frame is set by
software convention, and any alteration of the criticality or disposal of the stack frame
must be under the control of the same software. The P register, saved in the SFSA, points
to the return or pop instruction that attempted to eliminate the critical stack frame.

Keypoint

The keypoint condition indicates that software is to collect hardware performance data at
this point of the program. A full discussion of this topic is in volume II of the Virtual
State hardware reference manual (refer to the preface for more information). In this case,
the P register saved in the SFSA points to the instruction following the keypoint
instruction that caused the trap.

General Notes on the UCR

® The first seven conditions recorded in the UCR have just been described. They
comprise four monitor conditions and three user conditions. The bits in the user
mask (UM) register corresponding to these seven conditions are permanently selected
by the hardware. If one of these conditions arises and traps are enabled, a trap is
taken.

® TFor the four nonstackable monitor conditions, execution of the instruction causing
the trap is always inhibited. Furthermore, the offending instruction is rarely if
ever executed. However, since the P register saved in the SFSA points to the
offending instruction, the trap handler must advance the value of the P register
saved in the SFSA before issuing a return.

60459960 B 9-13



Debug
A debug indicates that a condition, such as a storage reference made or branch taken, was

met. For a full discussion of the facilities in this area, refer to the section on debug.
The P register saved in the SFSA points to the instruction that caused the trap to occur.

Invalid BDP Data

Invalid BDP data indicates that a BDP instruction encountered data not matching the required
format. 1In this case, the P register saved in the SFSA points to the instruction that
encountered the invalid BDP data.

Arithmetic Conditions

The remaining seven user conditions are arithmetic conditions. These are:

® Divide fault.

® Arithmetic overflow.

® Floating-point indefinite.

[ Arithmetic loss of significance.

® Exponent overflow.

® Exponent underflow.

® Floating-point loss of significance.
These conditions fall into ome of two classes as follows:

® The P register stored in the SFSA points to the instruction that caused the fault.

® The P register points to the instruction following the one that caused the fault.
In addition, the instruction may or may not be executed before the trap is taken.
The general intent of Virtual State is to be able to identify the instruction that caused
the fault. This means that the P register saved in the SFSA normally points to the
instruction in question. This is particularly important, since it is impossible to back up

the instruction stream when an instruction has executed and the P register has been
advanced. (It follows automatically that the instruction execution is normally inhibited.)

9-14 60459960 C



Conditions Where the Instruction Is Inhibited

For this class of arithmetic faults, the execution of the instruction that caused the fault
is inhibited, and the P register saved in the SFSA points to that instruction. Exceptions
are noted in the following text. The conditions that fall into this category are:

e Divide fault (integer, decimal, floating-point).
e Arithmetic overflow (integer, decimal).
e Floating-point indefinite.

e Arithmetic loss of significance (integer, decimal).

General notes:

° Floating-point indefinite falls into this category because it can arise on a branch
instruction (32 bits) as well as on an arithmetic operation (16 bits). Therefore,
it is not possible to back up the instruction stream.

° A divide fault occurs either on a divide by zero, or when the divisor is an
unnormalized floating-point number. The latter case does not necessarily result in a
divide fault, but the single and double precision quotient operations do not
prenormalize. (However, all floating-point operations postnormalize to the extent
that normalized numbers emerge if normalized numbers are input to the floating-point
unit.) Also, if traps are disabled or the divide fault interrupt is not selected,
the instruction is still inhibited and execution continues at the next instruction
in sequence.

° Traps on user conditions have been included for convenience. They may be selected
or disabled by the user via the UM, and cause an interruption to the normal
execution sequence. When the condition has not been selected but is encountered,
the appropriate bit is still set in the UCR, and may be tested and cleared by a
special instruction, called the branch on condition register.

Conditions Where the Instruction Is Executed

For this class of arithmetic faults, the execution of the instruction that caused the fault
is completed, and the P register saved in the SFSA points to the next instruction. The
conditions that fall into this category are:

e Exponent overflow.

e Exponent underflow.

. Floating-point loss of significance.
It is important that the instructions that occurred while the condition arose are executed,
since the Virtual State floating-point format has been chosen so that a true result is
returned, even though an exponent overflow or underflow occurs. It provides a programmer
with the opportunity to scale variables and continue processing if desired. This is fully

described in volume II of the Virtual State hardware reference manual (refer to the preface
for more information).

60459960 B 9-15



Vector Instructions

The vector instructions require some special attention because of the multiple operands
involved. Floating-point vectors may encounter up to four of these conditions. The vector
instruction execution is not inhibited, and the interrupt occurs after the completion of the
vector instruction.

If a single condition is encountered, the P register saved in the SFSA follows the pattern
for scalar instructions.

e P points to the following instruction for:
Exponent overflow
Exponent underflow
Floating-point lost of significance

° P points to the vector instruction that encountered the interrupt for:
Divide fault
Arithmetic overflow
Floating-point indefinite
Arithmetic loss of significance

If multiple conditions are encountered requiring different values of P, the P always is set

to point to the instruction following the vector instruction that encountered the multiple
conditions.

SIMULATED INTERRUPTS

There are two ways in which an interrupt can be artificially generated. A bit can be set in
the UCR (by a branch on condition register instruction), and a bit can be set in the UM when
the corresponding bit is already set in the UCR. In both instances, the P register saved in
the SFSA points to the instruction following the instruction that set the bit in either a
mask register or a condition register, that is, following a branch on condition register
(BCR) or a copy. It is not good practice to set bits in a UCR. This facility has been
included as a diagnostic aid, to verify that the interrupt system is functioning correctly.

9-16 60459960 B



MULTIPLE INTERRUPTS

When more than one interrupt condition arises at one time the following rules apply.
e Exchange interrupts are always serviced by the hardware before trap interrupts.

e Multiple interrupts of the same type are all recorded in the condition registers,
when the interrupts occur simultaneously. The precise mechanism is processor-model
dependent, with some processors recording all coincident conditions simultaneously,
and others recording them one at a time. The interrupt handlers must accommodate
multiple, simultaneous interrupts.

Multiple interrupts arise because of the asynchronous nature of certain interrupt
conditions. Since the P register saved by the interrupt is intended to point to either the
instruction that caused the fault or to the following instruction, it is important to
understand what is contained in that register. The following general rules should help.

e A detected uncorrectable error (DUE) always takes precedence and leaves the
P register in an undefined state, unless PND is set.

) The synchronous interrupts take priority over the asynchronous interrupts.

Care must be taken when designing and generating interrupt handlers, and these rules must be
applied at all times. The following example clarifies the pitfalls.

When an asynchronous interrupt occurs (for example, a PIT), the P register saved in the SFSA
points to the next instruction to be executed. The trap is taken and processed and a return
is issued, which continues normal processing. However, if a PIT occurs simultaneously with,
for example, an unimplemented instruction, the P register saved in the SFSA points to the
unimplemented instruction. If only the PIT is acted on, the return causes the unimplemented
instruction fault to be detected again. However, if only the unimplemented instruction is
acted on, the PIT is never seen. This occurs because on a trap the UCR is saved in the SFSA
and the live UCR is zeroed. It is the live UCR that carries back across the return. This is
different from the exchange mechanism, where a fresh copy of the condition registers is
invoked (either from the exchange package at MPS or that at JPS) for each exchange

interval. If an exchange condition is processed, but the bit in the condition register in
the exchange package in memory is not cleared, an exchange loop follows.

Probably the safest rule to follow is to process all conditions that have arisen, and that
have been selected, at one time.

Finally, software cooperation is needed when interrupts are caused artificially (for
example, by setting the UM dynamically). If the normal action taken by the interrupt
handler is to advance the P counter, an instruction is omitted in this case. For example,
in the sequence:

ENTE  XF,X'E6’
ENTP  XE, 1

CPYXS XE, XF

1X XF, A5, ABC

the LX instruction may be spaced over by the interrupt handler. To avoid such an

occurrence, it is recommended that a do-nothing (CPYXX X0,X0) be inserted immediately
following the instruction causing the trap. In this case the instruction is (CPYXS XE,XF).

60459960 B 9-17






DEBUG 10

Virtual State processors provide a debug facility to assist programmers debugging at the
machine code level in Virtual State. The operation of debug is fairly complex since, in
effect, it provides an interrupt capability during an instruction execution. In practice,
the instruction is not executed until the debug processing is complete, although
prevalidation of the instruction may complete prior to the debug. As a result of this
flexibility, the state of the process must be retained across interrupts, and several
process state registers have been defined for this purpose.

The user may elect to debug based on a number of conditions. These are:
¢ Whenever data is read from a specified area in virtual memory.
e Whenever data is written into a specified area in virtual memory.
e VWhenever an instruction is fetched from a specified area in virtual memory.
e Whenever a branch is made to a specified area in virtual memory.

o Whenever either a call indirect or a call relative instruction is issued to a
procedure in a specified area in virtual memory.

For any instruction issued, the user may elect to debug on any combination of these
conditions, for up to 32 different areas in virtual memory. The conditions are specified in
a debug list (figure 10-1) provided by the user, and further controlled by the debug mask

(DM) register. Finally, debugging is activated by setting bit 56 in the user mask (UM)
register and enabling traps.

60459960 B 10-1



DEBUG LIST POINTER (DLP) DEBUG LIST
1
[ I j
——
DEBUG INDEX (DI) ocY////] SEG Low
| } \ A HIGH
v ST T T T
/17 l
/ / UP TO 32 ENTRIES
//
;!

DC %%;//

BN-LOW

BN-HIGH

~
N N\

A

DEBUG CODE

l— END OF LIST
CALL
BRANCH
INSTRUCTION FETCH
DATA WRITE

L bATA READ

10-2

Figure 10-1.

Debug List

60459960 B




Each entry in the debug list consists of two words, which must be placed on word
The two words describe the debug conditions, the segment in virtual memory to
which the conditions apply, and the range of addresses (byte numbers) in the segment to

boundaries.

which the debug conditions are restricted (figure 10-2).

DEBUG LIST

| A AY

W N = O
N

7
«

by
(44

. o

60459960 B

Figure 10-2.

Debug List Entries

10-3




The debug code (DC) can be selectively activated at run time by setting the DM appropriately
(figure 10-3). For each condition set in the DC there is a corresponding condition select
in the DM.

Debugging occurs only when there is a coincidence between a condition bit in the
DC and a condition select bit in the DM.

—END OF LIST SEEN

—DEBUG SCAN IN PROGRESS
—DATA READ

—DATA WRITE
—INSTRUCTION FETCH
—BRANCH

—CALL

DEBUG MASK

DEBUG CODE

|—END OF LIST
CALL
BRANCH

INSTRUCTION FETCH

DATA WRITE

—DATA READ

Figure 10-3. Debug Condition Select

10-4 60459960 B



A user may insert a debug list into his program, set the DM to select a range of conditions,
but run in a normal mode by not choosing to trap on debug. In this case, the overhead due
to debugging is zero. Performance degradation due to debug testing occurs whenever the
first two items in the following list are true. However, a debug trap does not occur unless
all of the following are true.

e Traps are enabled.
e Bit 56 in the UM is set (debugging selected).
e The process is Virtual State.

° The DM and DC registers both select a test that is satisfied for the current
instruction.

° The end of list seen flag in the DM is not set.

When these conditions are met the debug list is scanned and trap interrupts taken, as
required, by the hardware setting bit 56 in the UCR.

The hardware uses three process state registers to control scanning of the debug list.

These are the debug list pointer (DLP), the debug index (DI), and the DM. The DLP gives the
starting address of the debug list; the DI keeps track of the position within that list; and
the DM contains two flags to control the initiation and termination of the debug. The first
of these flags is the debug scan in progress flag, which controls the start of the process.
Conceptually, whenever an instruction is executed, this flag is cleared. Then when the next
instruction is issued and debug is active, the processor starts scanning the debug list from
the beginning. The second flag is the end of list seen flag, which controls the termination
of debugging for the current instruction. This flag is set when either 32 entries in the
debug list have been scanned, or when an end of list bit is encountered in a debug code.
Again, conceptually the flag is cleared whenever an instruction is executed. The complete,
conceptual hardware process is shown in figure 10-4, These flags are primarily hardware
flags that have been included in a process state register so the hardware can remember where
it is when an interrupt is taken. If they are set by software, they could perturb the
operation of debug.

60459960 B 10-5



!

Instruction
Fetch F—— - 4 - = - === -= = 4« - - =

Traps No

Enabled?

UMSL Set?

Applicable
bit in
DM set?

-
|
i
l
1
|
|
|
|
|
No o > A
I
I
|
|
|
|
|
|

End : i

. Clear End of List
> ofrtlstgsisn Execute »- Seen Flag and Scan

ag de Instruction in Progr Fla

Scan in
Progress
Flag Set?

Set DPI=0 and A\
Scan in progress
lag

Get next two
entries from DL

3 DI=DI+2

DC end of list?

Set End of List
Seen Flag

No DM and BC

match?

A

Set UCRSE

y

TRAP

Figure 10-4. Conceptual Debug Procedure

10-6 60459960 B




General notes on debug:

e Debugging only occurs when traps are enabled. The interrupt handlers cannot make
use of this facility. However, monitor mode code can make use of debug, providing
traps are enabled.

e Debug list entries beyond the 32nd are ignored regardless of whether or not an end
of list seen flag has been encountered in the DC.

e The user must have been granted local privilege in order to alter the DLP. In other
words, local privilege is required to specify a different debug list in the same
process.

° Several instructions apply to more than one debug condition. For example, many BDP
instructions can trap on both read and write since they have both source and
destination operands in memory. One instruction, call indirect, applies to four
debug conditions (it is a call, it reads from the binding section, it writes into
the SFSA, and it is fetched).

) Also, some instructions have more than one operand checked for a debug trap.
Typically, these are instructions that specify the address of a table to be used in
conjunction with two operands (for example, translate and edit).

® Exchange jumps, which branch to a value found in an exchange package at a real
memory address, do not cause a debug trap on branch. Similarly, compare and swap
does not cause a debug trap on branch when it rejects as a result of a hardware lock
sete.

e When a debug trap occurs the P register stored in the SFSA points to the instruction
that would have been executed had the debug trap not been taken. Also, when a debug
trap is taken, the DI has an odd value. That is, it points to the second word of a
word pair entry in the debug list. However, while the debug list is being scanned,
interrupts are enabled, and should an asynchronous interrupt occur, such as PIT or
external interrupt, the DI may be either odd or even.

60459960 B 10-7






VIRTUAL STATE SOFTWARE OVERVIEW

11

This section will be supplied later.

60459960 B

11-1






GLOSSARY

A Register

Address register.
AO/R

Architectural objectives/requirements.
ASE

Address specification error.
ASTID

Active segment identifier.
AV

Access violation.
BC

Base constant.
BCO

Branch on condition.
BCR

Branch on condition register.
BCT

Between command test.
BDP

Business data processing.
BN

Byte number.
BS

Binding section.

CBP

Code base pointer.

60459960 B

CcCcDh

CEL

CEM

CF

CFF

cMU

CPU

CRT

CSF

DAP

Charge—-coupled devices.

Corrected log error.

Configuration environment monitor.

Critical frame.

Critical frame flag.

Central memory.

Central memory access.

Compare-move unit.

Central processing unit.

Cathode ray tube.

Current stack frame.

Design action paper.

Debug code.



DEC

Model~dependent environment control
(compare EC).

DI

Debug index.
DLP

Debug 1list pointer.
DM

Debug mask.
DMR

Debug mask register.
DSP

Dynamic space pointer.
DUE

Detected uncorrectable error.
EBAM

Electron beam accessed memory.
EC

Environment control.
ECC

Error correction code.
ECL

Emitter-coupled logic.
ECM

Extended central memory.
ECS

Extended core storage.
EDMS

European data management system.

EID

EM

EPF

ES

FL

FLC

FLE

FTN

ILH

I/0

I0U

ISG

JEP

JPS

Element identifier.

Exit mode.

External procedure flag.

End suppression toggle.

Field length.

Central memory field length register.

Extended core storage field length
register.

FORTRAN,

Instruction look—ahead.

Input/output.

Input/output unit.

Invalid segment/ring number O.

Job mode exchange package.

Job process state.

60459960 B



KC

Keypoint code.
KCN

Keypoint class number.
KEF

Keypoint enable flag.

Keypoint mask.
LED

Light emitting diode.
LPID

Last processor identification.
LRU

Least recently used.
LSI

Large~-scale integration.
MA

Monitor address.
MAC

Maintenance access control.
MCH

Maintenance channel.
MCI

Maintenance channel interface.
MCR

Monitor condition register.

MDF

Model-dependent flags.

60459960 B

MDW
Model-dependent word.
MEP

Monitor mode exchange package.

Monitor flag.
MID
Maintenance identifier.

MIGDS

Model-independent general design

specification.

Monitor mask.
MOP
Micro-operator.
MOS
Metal-oxide semiconductor.
MPS
Monitor process state pointer.
MTR
Monitor.
MUX

Multiplexer.

Negative sign toggle.
OCF

On-condition flag.
oI

Options installed.



ON

Occurrence number.
OoP

Operation code.
P Register

Program address register.
PCO

Printed circuit operation.
PFA

Page frame address.
PFS

Processor fault status.
PID

Processor identifier.
PIT

Process interval timer.

Performance monitoring flag.
PN

Page number.
PND

Processor not damaged.
PO

Page offset.
PP

Peripheral processor.
PPM

Peripheral processor memory.
PPS

Peripheral processor subsystem.

PPU

Peripheral processor unit,
PSA

Previous save area.
PSF

Previous stack frame.
PSM

Page size mask.
PSR

Process state registers.
PSWF

Page table search without find.
PTA

Page table address.
PTE

Page table entry.
PTL

Page table length.
PTM

Processor test mode.
PVA

Process virtual address.

Reference address.

RA/FL

Reference address/field length.

RAC

Central memory reference address
register.

60459960 B



RAE

RNI

ROM

RP

SCL

SDE

SDT

Extended core storage reference address
register.

Random access memory.

Real memory address.

Ring number.

Read next instruction.

Read-only memory.

Read access control (segment descriptor
field).

System command language.

Segment descriptor table entries.

Segment descriptor table.

SECDED

SEG

Single-error correction/double-error
detection.

Process segment number.

SFSA

SIT

Stack frame save area.

System interval timer.

60459960 B

SMU

SPID

SPT

SRT

Ss

SSP

STA

STL

SVA

TED

TOS

TP

UCR

System monitor utility.

Segment page identifier.

System page table.

Subscript range table.

Status summary.

Subsystem procedure.

Segment table address.

Segment table length.

System virtual address.

Trap enable.

Trap enable delay.

Trap enable flip-flop.

Top of stack.

Trap pointer.

User condition register.



Used/modified control (page descriptor Segment validation (segment descriptor
table). field).
M VMCL
User mask. Virtual machine capability list.
UTP VMID ‘
Untranslatable pointer. Virtual machine identifier.
UWID WP
Untranslatable virtual machine Write access control (segment descriptor
identifier. field).
XP

vC
Execute access control (segment
Search control (page descriptor field). descriptor field).

A-6 60459960 B



INDEX

Active segment identifier (ASID)  2-2
Address specification error (ASE) 2-2
Arithmetic conditions 9-14

Binding section 7-14
Buffer memories 4-1

Byte number (BN) field 2-3; 3-4

Cache memory  4-7
Calls

General description 7-7

Indirect 7-7

Relative 7-7
Code base pointer (CBP) (see Pointers)
Configuration environment monitor (CEM) 9-5
Critical frame flag (CFF) (see Flags)
Current stack frame pointer (CSF) (see

Pointers)

Debug

Debug 10-1

Debug code (DC) 10-4

Debug index (DI) 10-5

Debug list pointer {DLP) (see Pointers)

Debug mask register (DM) 10-1
Detected uncorrectable error (DUE) 6-6
Dynamic space pointer (DSP) (see Pointers)

Element identifier (EID) 5-2
Environment specification error 9-7
External interrupt (see Interrupts)
External procedure flag (EPF) (see Flags)

Field length (FL) 3-4

File system 3-2

Flags
Critical frame (CFF) 7-19
External procedure flag (EPF) 7-14
Keypoint enable (KEF) 5-5
On-condition (OCF) 7-18
Processor not damaged (PND) 5-5

60459960 C

Interrupts
General description 6-1
Interrupt conditions 6-2

Invalid BDP data 9-14

Job process state (JPS) 5-1

Keypoint 9-13

Last processor identification (LPID) 4-9;
5-2
Least recently used (LRU) 2-9

Model-independent general design
specification (MIGDS) 5-1

Monitor condition register (MCR) 6-1
Monitor mask register (MM)  6-1
Monitor process state (MPS) 5-1
Multiple interrupts (see Interrupts)

Nested blocks 7-1

Object library generator 7-26
On-condition flag (OCF)(see Flags)
Outward call (see Calls)

Paging
Dynamic  2-9
General description 2-1
Page fault 2-4
Page frame address (PFA) 2-4
Page number (PN) 2-4
Page offset (PO) 2-4
Page size mask (PSM) 2-4; 5-2
Page table address (PTA) 5-2

Page table entry (PTE) 2-7, 9
Page table length (PTL) 2-6; 5-2
Static 2-9

Pointers
Code base pointer (CBP) 3-9; 7-14

Current stack frame pointer (CSF) 7-3
Debug list pointer (DLP) 10-5
Dynamic space pointer (DSP) 7-3

Index-1



Previous stack area pointer (PSA)
Top of stack pointer (TOS)

Untranslatable pointer (UTP)

Pop 7-12

Previous stack area pointer (PSA)

(see Pointers)

Process virtual address (PVA)
Processor identifier (PID)

Processor interval timer (PIT)
Processor not damaged (PND) (see Flags)

Protection boundaries 8-1
Pseudorandom number generator 2-5

Real memory address (RMA)
Reference address (RA)
Returns 7-8

Ring brackets  3-9
Ring number (RN) 3-4

Seguents
General description

Segment descriptor table entry (SDE)

2-2; 3-6

2-4

3-4

2-1

Segment descriptor table (SDT)

Segment descriptor table variables

3-6, 7
Segment management
Segment number (SEG)

60459960 C

3-3
2-2; 3-4

7-4
5-5

2-2; 3-4, 14
4-9; 5-2
5-5

Segment page identifier (SPID)  2-7
Segment protection 3-8
Segment table address (STA)  4-2; 7-16
Segment table length (STL) 3-5
Short warning 9-5
Stack frame 7-3
Stack frame save area (SFSA) 7-6, 18
State exchange request 9-6
System call 9-8
System interval timer (SIT)  5-2
System monitor utility (SMU)  5-3
System page table (SPT) 2-4
System virtual address (SVA) 2-2

Task 2-2
Top of stack pointer (TO0S) (see Pointers)
Traps
Trap enable delay flip~flop (TED) 6-1
Trap enable flip-flop (TEF) 6-1
Trap interrupt 9-1

Untranslatable pointer (UTP) (see Pointers)
User condition register (UCR)  6-1

User identification and validation 3-2
User mask register (UM) 6-1; 10-1

Vector instructions 9-16
Virtual machine capability list (VMCL)  5-2

Index-2



MANUAL TITLE:

COMMENT SHEET
CDC CYBER 170 Models 815, 825, 835, 845, and 855, CDC CYBER 180

Models 810, 830, 835, 840, 845, 850, 855, 860, and 990
Computer Systems, and CDC CYBER 845S, 855S, 840A, 850A, 860A,
990E, and 995E Computer Systems General Description HMM

PUBLICATION NO.: 60459960 REVISION: E
NAME:

COMPANY:

STREET ADDRESS:

cIry: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

[J Please Reply [0 No Reply Necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.
FOLD ON DOTTED LINES AND TAPE



Comments (continued from other side)

:ase fold on dotted line;

il edges with tape only. . FOLD
ywp_—~—~ ey FLO_LI_D )
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
] ]
]
IBUSINESS REPLY MAIL
rst-Class Mail Permit No. 8241 Minneapolis, MN S
|
POSTAGE WILL BE PAID BY ADDRESSEE [N
-]
L]
'YNTROL DATA I
wnical Publications [T
219 ]
N. Lexington Avenue EEE—

' Hills, MN 55126-9983






CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN 55440 LITHO IN U.S
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

L (@5) CONTROL DATA
JORL Lo



