ADMINISTER _LOCK _FILE 4

ADMINISTER_LOCK _FILEottt 4-1
CLEAR_LOCK _FILE_CONNECTIONcoinln. 4-1
CREATE _LOCK _FILE i 4-2
DELETE _LOCK_FILE ...t 4-3
DISPLAY_LOCK _FILEt 4-4
DISPLAY_LOCK _FILE_CONNECTIONcoiuenan. 4-4
ESTABLISH _LOCK _FILE_CONNECTION 4-5
HELP .. 4-6
QUIT . 4-6
USE_LOCK _FILE e 4-7

60464018 J

ADMINISTER _LOCK _FILE 4

ADMINISTER _LOCK _FILE

Command
Purpose Begins an ADMINISTER _LOCK _FILE utility session.
Format ADMINISTER _LOCK _FILE or
ADMLF
STATUS =status variable
Remarks For more information, see the NOS/VE Advanced File

Management manual.

CLEAR _LOCK _FILE _CONNECTION
ADMLF Subcommand

Purpose

Format

Parameters

Remarks

60464018 J

Deletes the connection between a lock file and a keyed
file.

CLEAR_LOCK _FILE _CONNECTION or
CLELFC

KEYED _FILE =file

STATUS =status variable

KEYED _FILE or KF

Keyed file whose connection to the current lock file is to
be deleted.

This parameter is required.

o After using CLEAR_LOCK _FILE _CONNECTION,
you can connect the lock file to another keyed file.

© Use CLEAR_LOCK _FILE _CONNECTION to delete
all connections before you use DELETE _LOCK _FILE
to delete the lock file.

e After you clear the connection, the keyed file is
automatically connected to the default lock file
$SYSTEM. AAM.AAF$LOCK _FILE. You do not need to
clear this connection before creating another
connection.

ADMINISTER_LOCK _FILE 4-1

CREATE _LOCK _FILE

® For more information, see the NOS/VE Advanced File
Management Usage manual.

CREATE _LOCK _FILE
ADMLF Subcommand

Purpose

Format

Parameters

Creates a lock file.

CREATE _LOCK _FILE or
CRELF
PRIVATE =boolean
FILE _CLASS =application
INITIAL _VOLUME =name
STATUS =status variable

PRIVATE or P

Specifies whether the lock file is used for more than one
keyed file. TRUE indicates the lock file is used for one
keyed file. FALSE indicates the lock file can be used for
more than one keyed file.

The default is TRUE.

FILE _CLASS or FC
Parameter Attributes: BY_NAME

Class of the file to be assigned. The file class specifies
the class of device on which the file will reside. Refer to
the REQUEST_MASS_STORAGE command in the
NOS/VE System Performance and Maintenance manual,
Volume 2, for a complete description of this parameter.

The default is A.

INITIAL _VOLUME or IV
Parameter Attributes;: BY_NAME

Name specifying the volume serial number (vsn) of the
mass storage volume or volumes to which the file is to be
assigned. The name is a 1- to 6-character string. The
volume you specify must belong to the file class you
specified with the FILE _CLASS parameter. Refer to the
REQUEST_MASS_STORAGE command in the NOS/VE
System Performance and Maintenance manual, volume 2,
for a complete description of this parameter.

If omitted, a volume with the appropriate file class is
chosen.

4-2 NOS/VE Commands and Functions 60464018 J

DELETE_LOCK _FILE

Remarks ® The lock file created by CREATE _LOCK _FILE is
specified by the USE _LOCK _FILE subcommand.

0 You need CONTROL and CYCLE permission for the
lock file to use this subcommand.

@ The lock file is given the same ring attributes at
which you are executing.

® The lock file created, by default, has PUBLIC
permission for READ and WRITE.

® You cannot use a file name of
AAF$DEPENDENCY_FILE for the lock file.

o If you do not own the catalog where the lock file will
reside, the lock file is created but the owner of the
catalog owns the lock file.

© For more information, see the NOS/VE Advanced File

Management Usage manual.

DELETE _LOCK _FILE
ADMLF Subcommand

Purpose Deletes the current lock file.
Format DELETE _LOCK _FILE or
DELLF

STATUS =status variable

Remarks 0 To delete a lock file, you need CONTROL and CYCLE
permission for the lock file.

® You need to clear all connections to the lock file with
CLEAR_LOCK _FILE _CONNECTION before you
delete the lock file. Otherwise, you cannot access the
keyed file or files until you recreate the lock file or
connect them to a different lock file.

© For more information, see the NOS/VE Advanced File
Management Usage manual.

60464018 J ADMINISTER_LOCK_FILE 4-3

DISPLAY_LOCK_FILE

DISPLAY_LOCK _FILE
ADMLF Subcommand

Purpose

Format

Parameters

Remarks

Lists the keyed file or files that are connected to the
current lock file.

DISPLAY_LOCK _FILE or
DISLF

OUTPUT=file

STATUS =status variable

OUTPUT or O
File where DISPLAY_LOCK _FILE writes the display.
If omitted, the default is $OUTPUT.

For more information, see the NOS/VE Advanced File
Management manual.

DISPLAY_LOCK _FILE _CONNECTION
ADMLF Subcommand

Purpose

Format

Parameters

Remarks

Displays the lock file that is connected to the specified
keyed file.

DISPLAY_LOCK _FILE _CONNECTION or
DISLFC

KEYED _FILE =file

OUTPUT =file

STATUS =status variable

KEYED _FILE or KF
Keyed file whose lock file connection is displayed.

OUTPUT or O

File where DISPLAY_LOCK _FILE _CONNECTION writes
the display.

If omitted, the default is $OUTPUT.

For more information, see the NOS/VE Advanced File
Management manual.

4-4 NOS/VE Commands and Functions 60464018 J

ESTABLISH_LOCK_FILE_CONNECTION

ESTABLISH _LOCK _FILE _CONNECTION |
ADMLF Subcommand

Purpose Establishes the connection between a lock file and a
keyed file.

Format ESTABLISH _LOCK _FILE _CONNECTION or
ESTLFC
KEYED _FILE =file
STATUS =status variable

Parameters KEYED _FILE or KF

Keyed file to connect to the lock file specified on the
USE _LOCK _FILE subcommand.

This parameter is required.

Remarks o If the keyed file you specify does not exist, the
Administer _Lock _File utility creates it. However, you
need to set the file attributes of the keyed file before
you create it because the default file attributes are
sometimes inappropriate for keyed files. Set the file
attributes outside a Administer _Lock _File utility
session with the SET_FILE _ATTRIBUTES command.
For more information on the
SET_FILE _ATTRIBUTES command, see the manual
NOS/VE Commands and Functions.

® You cannot establish a connection under these
circumstances:

— The lock file is private and the keyed file is
temporary.

—~ The lock file is private and h}a.s an existing
connection.

—~ The keyed file has an existing connection.

e For more information, see the NOS/VE Advanced File
Management Usage manual.

60464018 J ADMINISTER_LOCK_FILE 4-5

HELP

HELP
ADMLF Subcommand

Purpose Provides online help from within the
Administer _Lock _File utility.

Format HELP or
HEL
SUBJECT =string
MANUAL =name
STATUS =status variable

Parameters SUBJECT or S

Topic to be located in the online manual index. The topic
must be enclosed in single quotes.

If omitted, HELP displays a list of the available
subcommands.

MANUAL or M

Online manual file whose index is searched.

AFM
The AFM online manual index is searched.

File
File name of the online manual whose index is
searched.

If MANUAL is omitted, the default is AFM. The working
catalog is searched for the file and then the
$SYSTEM.MANUALS is searched.

Remarks For more information, see the NOS/VE Advanced File
Management manual.

QUIT
ADMLF Subcommand

Purpose Ends the Administer _Lock _File utility session.
Format QUIT or

QUI
STATUS =status variable

4-6 NOS/VE Commands and Functions 60464018 J

USE_LOCK _FILE

Remarks For more information, see the NOS/VE Advanced File
Management manual.

USE _LOCK _FILE
ADMLF Subcommand

Purpose Specifies the lock file that is used by any subsequent
subcommands until you specify another lock file with
USE _LOCK _FILE.

Format USE _LOCK _FILE or
USELF
LOCK _FILE =file
STATUS =status variable

Parameters LOCK _FILE or LF

Lock file to be used by all subsequent subcommands. This
parameter is required.

Remarks © You must use the USE _LOCK_FILE subcommand
before any other subcommand, except for HELP, QUIT,
or DISPLAY_LOCK _FILE _CONNECTION.

® You can switch lock files during an
Administer _Lock _File session by using another
USE _LOCK _FILE subcommand.

® USE_LOCK_FILE attaches the lock file with
exclusive access.

@ The lock file, if it exists, must be a permanent file
with a sequential file organization.

e If the lock file does not exist, you can create it with
the CREATE _LOCK _FILE subcommand.

® For more information, see the NOS/VE Advanced File
Management Usage manual.

60464018 J ADMINISTER_LOCK _FILE 4-7

ADMINISTER _RECOVERY_LOG 5

ADMINISTER_RECOVERY_LOGc..cooiiiiiiiiininn.. 5-1
BACKUP_LOG e 5-1
CANCEL_LOG_CHANGESt 5-2
CLEAR_PROBLEM _JOURNALcociiiiiiiin... 5-3
CONFIGURE _LOG_BACKUPcooiiiiiiiiiiiinn. 5-4
CONFIGURE _LOG_RESIDENCEcoiiiiiiinn., 5-7
DELETE _LOG e 5-10
DISPLAY_LOG_CONFIGURATIONcoiiiiiient. 5-11
DISPLAY_PROBLEM _JOURNALooiiiiiiiiinn, 5-12
HELP .. e 5-13
QUIT L e e e e 5-14
SET_LOG_BACKUP_ACCOUNT ...t 5-15
SET_PERFORMANCE _OPTIONccoiiiiiiiiiinn, 5-18
SET_VERIFICATION_LEVEL, 5-20
USE_LOG ... i i e e 5-21

60464018 J

ADMINISTER _RECOVERY_LOG 5

ADMINISTER _RECOVERY_LOG
Command

Purpose Begins an ADMINISTER _RECOVERY_LOG utility
session.

Format ADMINISTER _RECOVERY_LOG or
ADMRL
STATUS =status variable

Remarks For more information, see the NOS/VE Advanced File
Management manual.

Examples The following is the minimal
ADMINISTER _RECOVERY_LOG session; it does nothing.

/administer_recovery_log
admr1/quit

To see a list of available subcommands you can type
HELP while in this utility.

BACKUP_LOG
ADMRL Subcommand

Purpose Initiates an immediate backup of the log.

Format BACKUP_LOG or
BACL
STATUS =status variable

Remarks © This subcommand must be preceded in the session by
a USE_LOG subcommand to specify the log to be
backed up.

©® This subcommand can be performed only on a log that
has been configured for log backups. (This is done
using the CONFIGURE _LOG_BACKUP subcommand.)

60464018 J ADMINISTER_RECOVERY_LOG 5-1

CANCEL_LOG_CHANGES

® You should use the BACKUP_LOG subcommand in
both of the following situations:

— Log users are receiving the status
AAE$LOG _TEMPORARILY_ FULL, which
indicates that an immediate repository switch is
needed.

- A system failure seems imminent.

® For more information see the NOS/VE Advanced File
Management Usage manual.

Examples The following.session initiates an immediate repository
switch and backup for the existing log in
$SUSER.MY_LOG.

/administer_recovery_log
admr1/use_log,catalog=$user.my_log
admr 1/backup_log

admrl/quit

/

CANCEL _LOG _CHANGES
ADMRL Subcommand

Purpose Discards the log specifications and any delete requests
accumulated in the session.

Format CANCEL _LOG _CHANGES or
CANLC
STATUS =status variable

Remarks ©® This subcommand discards the accumulated log
specifications and delete requests before they are put
into effect by the QUIT subcommand.

© The CANCEL_LOG_CHANGES subcommand is
appropriate only after a USE _LOG subcommand has
been entered.

® You can begin accumulating log specifications again
after the CANCEL _LOG_CHANGES subcommand. To
do so, you must begin with another USE _LOG
subcommand to specify the log to be created or
changed.

5-2 NOS/VE Commands and Functions 60464018 J

CLEAR_PROBLEM_JOURNAL

® For more information, see the NOS/VE Advanced File
Management Usage manual.

Examples The following session enters a change for
$USER.MY_LOG, but then discards the change so the
session does nothing.

/administer_recovery_log

admr1/use_log, $user.my_log, ..
admr1../set_performance_option, emphasis=speed
admri/cancel_log_changes

admri/quit

/

CLEAR _PROBLEM _JOURNAL
ADMRL Subcommand

Purpose Clears the problem journal for the log.

Format CLEAR _PROBLEM _JOURNAL or
CLEPJ
STATUS =status variable

Remarks ® The system maintains a problem journal in each log in
which it records any problems that occur while using
the log.

. ® You must display the problem journal before clearing
it. To do so, use the DISPLAY_PROBLEM _JOURNAL
subcommand.

® The log referenced by a
CLEAR_PROBLEM _JOURNAL subcommand is the
log specified on the USE _LOG subcommand earlier in
the session.

® For more information, see the NOS/VE Advanced File
Management Usage manual.

60464018 J ADMINISTER_RECOVERY_LOG 5-3

CONFIGURE_LOG_BACKUP

Examples The following session prints the contents of the problem
journal for $USER.MY_LOG before clearing the problem
journal.

/administer_recovery_log

admr1/use_log, $user.my_log
admr1/display_problem_journal, output=log_probliems
admr1/print_file, log_problems
admrl/clear_probliem_journal

admri/quit

/

CONFIGURE _LOG _BACKUP
ADMRL Subcommand

Purpose Establishes the backup file pool for the log.

Format CONFIGURE _LOG _BACKUP or
CONLB '

ADD _FILE =file
REMOVE _FILE =file
MEDIA =keyword
EXTERNAL _VSN =list of string
RECORDED _VSN =list of string
TYPE =keyword
VERIFY =boolean
FILE _CLASS =application
INITIAL _VOLUME =name
STATUS =status variable

Parameters ADD _FILE or AF
File to be added to the pool of backup files for the log. If
ADD_FILE is omitted, no backup file is added.
REMOVE _FILE or RF

File to be removed from the pool of backup files for the
log. If REMOVE _FILE is omitted, no backup file is
removed.

5-4 NOS/VE Commands and Functions 60464018 J

60464018 J

CONFIGURE_LOG_BACKUP

MEDIA or M

Device class of the file specified by the ADD_FILE
parameter.

MAGNETIC _TAPE _DEVICE or MTD

Indicates that the log files are backed up to a labeled
tape.

MASS_STORAGE _DEVICE or MSD

Indicates that the log files are backed up to disk. (The
next four parameters are not used.)

The default value is MAGNETIC _TAPE _DEVICE.

EXTERNAL _VSN or EVSN

List of external VSNs identifying the tape volumes that
compose the file specified by the ADD_FILE parameter.
The VSNs are specified as strings of from 1 through 6
characters enclosed in apostrophes. This parameter must
be specified if MEDIA is set to

MAGNETIC _TAPE _DEVICE.

RECORDED _VSN or RVSN

List of recorded VSNs of the tape volumes that compose
the file specified by the ADD_FILE parameter. The
recorded VSN is in the ANSI VOL1 label on the volume.
The VSNs are specified as strings of from 1 through 6
characters enclosed in apostrophes. This parameter must
be specified if MEDIA is set to

MAGNETIC _TAPE _DEVICE.

TYPE or T

Tape density written by a tape drive for the file specified
by the ADD_FILE parameter. This parameter is used
only if MEDIA is set to MAGNETIC _TAPE _DEVICE.

MT9$800
Indicates 800 cpi written by a nine-track tape drive.

MT9$1600
Indicates 1600 cpi written by a nine-track tape drive.

MT9$6250
Indicates 6250 cpi written by a nine-track tape drive.

ADMINISTER_RECOVERY_LOG 5-5

CONFIGURE_LOG_BACKUP

Remarks

MT18$38000
Indicates 38000 cpi written by a 16-track tape drive.
The default value is MT18%38000.

VERIFY or V

Indicates whether the backup file specified by the
ADD_FILE parameter is verified. This parameter is used
only if MEDIA is set to MAGNETIC _TAPE _DEVICE.

TRUE or YES or ON

The magnetic tape is mounted; the backup file is
opened to verify that it exists and that it has read
and write capabilities.

FALSE or NO or OFF
The backup file is not verified.
The default value is TRUE.

FILE _CLASS or FC

Specifies the class of the file to be assigned. Refer to the
REQUEST_MASS_STORAGE command in the NOS/VE
System Performance and Maintenance, Volume 2,
Maintenance manual for class assignments and a complete
description of this parameter. This parameter is used only
if MEDIA is set to MASS_STORAGE _DEVICE.

INITIAL _VOLUME or IV

Name specifying the volume serial number (VSN) of the
mass storage volume to which the file is to be assigned.
The name is specified as a string of from 1 through 6
characters. Refer to the REQUEST_MASS_STORAGE
command in the NOS/VE System Performance and
Maintenance, Volume 2, Maintenance manual for a
complete description of this parameter. This parameter is
used only if MEDIA is set to MASS_STORAGE _DEVICE.

© A mass storage backup file is specified by its file
path. However, any file cycle specification on the file
path is ignored. The backup is always written to cycle
1. (Cycle 1 is created if it does not exist and
overwritten if it does exist.)

56 NOS/VE Commands and Functions 60464018 J

CONFIGURE _LOG_RESIDENCE

® If any backup files are configured for the log, a
backup file must be configured for each log repository.
For example, if backup files are configured, a log with
five repositories must have five backup files.

® The FILE _CLASS and INITIAL_VOLUME parameters
are described in detail as parameters of the
REQUEST_MASS_STORAGE command in the
NOS/VE System Performance and Maintenance,
Volume 2, Maintenance manual.

o For more information, see the NOS/VE Advanced File
Management Usage manual.

CONFIGURE _LOG _RESIDENCE
ADMRL Subcommand

Purpose Establishes configuration of the log.

Format CONFIGURE _LOG _RESIDENCE or
CONLR

REPOSITORIES =integer
REPOSITORY_SWITCHING _SIZE =integer
REPOSITORY_SWITCHING _TIME =integer
SWITCH _SUPPRESSION _SIZE =keyword or integer
SWITCH _SUPPRESSION _TIME =keyword or integer
REPOSITORY _SIZE _LIMIT =integer
FILE _CLASS =application
INITIAL _VOLUME =name
STATUS =status variable

Parameters REPOSITORIES or R

Number of disk-resident repositories for the log (integer
from 2 through 4096). The default value is 5.

If a backup acecount or backup pool is specified for the
log, the log must have at least 3 repositories.

REPOSITORY _SWITCHING _SIZE or RSS

Repository size threshold for the log (in bytes, from
500,000 through 2,132,483,647 [(23! - 1) - 15,000,000]).
The default value is 70,000,000 bytes.

60464018 J ADMINISTER_RECOVERY_LOG 5-7

CONFIGURE _LOG_RESIDENCE

REPOSITORY _SWITCHING _TIME or RST

Repository time threshold for the log (in minutes, from 1

through 525,600 [365 days]). The default value is 1440 (24
hours).

SWITCH _SUPPRESSION _SIZE or SSS

Specifies the minimum repository size before switching.
Options are:

Integer

Minimum repository size required before switching (in
bytes, from 500,000 through 2,132,483,647 [(231 - 1) -
15,000,000]).
NONE
No minimum repository size is required before
switching.
The default is NONE.
SWITCH _SUPPRESSION _TIME or SST
Specifies the minimum repository time before switching.
Options are:
Integer
Minimum repository time required before switching (in
minutes, from 1 through 525,600 [365 days]).
NONE
No minimum repository time is required before
switching.
The default is NONE.

REPOSITORY_SIZE _ LIMIT or RSL

Absolute maximum repository size limit (in bytes, from
15,500,000 through 2,147,483,647 [23! - 1]). It must be at
least 15,000,000 bytes larger than the
REPOSITORY_SWITCHING _SIZE. The default value is
100,000,000 bytes.

5-8 NOS/VE Commands and Functions 60464018 J

CONFIGURE _LOG_RESIDENCE

FILE _CLASS or FC

Specifies the class of the file to be assigned. Refer to the
REQUEST_MASS_STORAGE command in the NOS/VE
System Performance and Maintenance, Volume 2,
Maintenance manual for class assignments and a complete
description of this parameter.

INITIAL _VOLUME or IV

Name specifying the volume serial number (VSN) of the
mass storage volume to which the file is to be assigned.
The name is specified as a string of from 1 through 6
characters. Refer to the REQUEST_MASS_STORAGE
command in the NOS/VE System Performance and
Maintenance, Volume 2, Maintenance manual for a
complete description of this parameter.

Remarks ® You cannot modify an existing log while any keyed
file that uses the log is being updated. The
subcommand notifies you when it cannot get exclusive
access to the log. You should then quit the session and
try again later.

© This subcommand can be specified only for a new log.
The configuration cannot be changed for an existing
log.

® During normal log activity, the active repository size
should never approach the
" REPOSITORY_SIZE _LIMIT.

© The FILE _CLASS and INITIAL_VOLUME parameters
are described in detail as parameters of the
REQUEST_MASS_STORAGE command in the
NOS/VE System Performance and Maintenance,
Volume 2, Maintenance manual.

o For more information see the NOS/VE Advanced File
Management Usage manual.

60464018 J ADMINISTER_RECOVERY_LOG 5-9

DELETE_LOG

DELETE _LOG
ADMRL Subcommand

Purpose Requests deletion of an existing log.

Format DELETE _LOG or
DELL
CATALOG =file
RETAIN _CONFIGURATION =boolean
STATUS =status variable

Parameters CATALOG or C

Catalog path of the log to be deleted. This parameter is
required.

RETAIN _CONFIGURATION or RC
Indicates whether the log configuration is kept.

TRUE or YES or ON

Empty the repositories and the log journal, but keep
the log configuration.

FALSE or NO or OFF

Delete all files composing the log, including the
repositories, the log journal, and mass storage log
backup files.

This parameter is required.

Remarks © The logs specified by DELETE _LOG subcommands are
not deleted until the QUIT subcommand is entered for
the session. A CANCEL _LOG_CHANGES
subcommand clears any pending deletion requests.

e If the log configuration is to be retained, the
subcommand deletes all the log data, but the log data
on the repositories continues to exist and can continue
to be used.

If the log configuration is not to be retained, the
subcommand requests deletion of all files relating to
the log in the catalog. The catalog will no longer be
usable as a log until a new log is created in it.

If the subcommand requests deletion of all files in the
catalog, the catalog is deleted as well.

5-10 NOS/VE Commands and Functions 60464018 J

DISPLAY_LOG_CONFIGURATION

® The catalog used is specified on the DELETE _LOG
subcommand. Therefore, the subcommand does not
reference the log specified by the USE _LOG
subcommand. More than one log can be deleted in a
session.

® For more information see the NOS/VE Advanced File
Management Usage manual.

Examples The following session requests deletion of log
$USER.MY_LOG, but then cancels the request:

/administer_recovery_log

admr1/delete_log, $user.my_log, retain_configuration=false
admr1/cancel_log_changes

admr1/quit

/

DISPLAY_LOG _CONFIGURATION
ADMRL Subcommand

Purpose Displays the current log specifications.

Format DISPLAY_LOG _CONFIGURATION or
DISLC
OUTPUT =file
STATUS =status variable

Parameters OUTPUT or O
File to which the display is written.
The subcommand positions the file according to the file
position ($BOI, $EOI) appended to the file reference or, if
no position is specified, according to its OPEN _POSITION
attribute value.

If OUTPUT is omitted, the display is written to the
standard output file, $OUTPUT.

Remarks © This subcommand must be preceded in the session by
a USE _LOG subcommand to specify the log whose
configuration is displayed.

© For more information see the NOS/VE Advanced File
Management Usage manual.

60464018 J ADMINISTER_RECOVERY_LOG 5-11

DISPLAY_PROBLEM_JOURNAL

DISPLAY_PROBLEM _JOURNAL
ADMRL Subcommand

Purpose

Format

Parameters

Remarks

Examples

Displays the problem journal for the log.

DISPLAY_PROBLEM _JOURNAL or
DISPJ

OUTPUT =file

STATUS =status variable

OUTPUT or O
File to which the display is written.

The subcommand positions the file according to the file
position ($BOI, $EOI) appended to the file reference or, if
no position is specified, according to its OPEN _POSITION
attribute value.

If OUTPUT is omitted, the display is written to the
standard output file, $OUTPUT.

® The system records any problems that have occurred
while using the log in the problem journal for the log.

@ The log referenced by a
DISPLAY_PROBLEM _JOURNAL subcommand is the
log specified on the USE _LOG subcommand earlier in
the session.

© For more information see the NOS/VE Advanced File
Management Usage manual.

The following session writes the problem journal for
$USER.MY_LOG to file LOG_PROBLEMS and prints it.

/administer_recovery_log
admr1/use_log, $user.my_liog
admr1/display_problem_journal, ..
admr1../output=1og_problems
admri/print_file, log_problems
admri/quit

/

5-12 NOS/VE Commands and Functions 60464018 J

HELP

HELP

ADMRL Subcommand

Purpose

Format

Parameters

Remarks

60464018 J

Provides access to online information about the utility.

HELP or

HEL .
SUBJECT =string
MANUAL =file

STATUS =status variable

SUBJECT or S

Topic to be found in the index of the online manual. The
topic must be enclosed in apostrophes (‘topic').

If you omit the SUBJECT parameter, HELP displays a
list of the available subcommands and prompts for display
of a subcommand description in the online manual.

MANUAL or M
Online manual file whose index is searched.

AFM
The AFM online manual index is searched.

File
File name of the online manual whose index is
searched.

If MANUAL is omitted, the default is AFM. The working
catalog is searched for the file and then the
$SYSTEM.MANUALS is searched.

0 If the SUBJECT parameter specifies a topic that is not
in the manual index, a nonfatal error is returned
notifying you that the topic could not be found.

© The default manual file, $SYSTEM.MANUALS.AFM,
contains the online version of the NOS/VE Advanced
File Management Usage manual, as provided with the
NOS/VE system.

0 If your terminal is defined for screen applications,
online manuals are displayed in screen mode. Help is
available for reading the online. To leave the online
manual and return to the utility, use QUIT.

ADMINISTER_RECOVERY_LOG 5-13

QUIT

® For more information, see the NOS/VE Advanced File
Management Usage manual.

Examples The following session shows the default display returned
by the HELP subcommand.

/administer_recovery_log

admr1/help

The following Administer_Recovery_Log subcommands are available:
BACKUP_LOG .
CANCEL _LOG_CHANGES
CLEAR_PROBLEM_JOURNAL

CONF IGURE _LOG_BACKUP

CONFIGURE _LOG_RESIDENCE

DELETE_LOG

DISPLAY_LOG_CONFIGURATION
DISPLAY_PROBLEM_JOURNAL

HELP

QIT

SET_LOG_BACKUP_ACCOUNT
SET_PERFORMANCE _OPTION
SET_VERIFICATION_LEVEL

For a description of a subcommand in the online manual,
enter: HELP subject = '<subcommand>'

To return from an online manual, enter: QUIT

admr1/quit
/
QUIT
ADMRL Subcommand
Purpose Executes the accumulated log specifications and ends the
session.

Format QUIT or
QUI
APPLY_LOG _CHANGES =boolean
STATUS =status variable

Parameters APPLY _LOG_CHANGES or ALC

Indicates whether the log repositories are created or
updated based upon the accumulated log specifications.

TRUE or YES or ON

The log is created or updated. Any logs specified on a
DELETE _LOG subcommand during the session are
deleted.

5-14 NOS/VE Commands and Functions . 60464018 J

Remarks

SET_LOG_BACKUP_ACCOUNT

If a new log is being created, the log catalog is
created if it does not exist. The log files are created
and initialized. If the log catalog already exists, only
the performance option and backup account information
can be changed.

FALSE or NO or OFF

Log repositories are not created or updated; log
specifications are discarded. Any logs specified on a
DELETE _LOG subcommand during the session are
kept.

The default value is TRUE.

® To discard the accumulated log specifications or delete
requests before ending the session, enter a
CANCEL _LOG _CHANGES subcommand before
entering the QUIT subcommand.

® The changes specified by the following subcommands
do not take effect until the log changes are applied
when the QUIT subcommand is entered:

CONFIGURE _LOG_BACKUP
CONFIGURE _LOG _RESIDENCE
DELETE _LOG
SET_LOG_BACKUP_ACCOUNT
SET_PERFORMANCE _OPTION
SET_VERIFICATION _LEVEL

® For more information, see the NOS/VE Advanced File
Management Usage manual.

SET_LOG _BACKUP_ACCOUNT
ADMRL Subcommand

Purpose

60464018 J

Specifies the validation information used by backup jobs
for the log.

NOTE

Each time the password is changed for the user name
used as the backup account, the password must also be
changed in the log configuration. Otherwise, all
subsequent backup jobs fail to execute.

ADMINISTER_RECOVERY_LOG 5-15

SET_LOG_BACKUP_ACCOUNT

Format SET_LOG _BACKUP_ACCOUNT or
SETLBA
USER =name
PASSWORD =name
FAMILY _NAME =name
USER _JOB _NAME =name
JOB _CLASS =name
ACCOUNT =name
PROJECT =name
OUTPUT _DISPOSITION =keyword or file
USER _INFORMATION =string
STATUS =status variable

Parameters USER or U
User name under which backup jobs are run. This
parameter is required.
PASSWORD or PW
Password for the user name specified by the USER
parameter. This parameter is required.

FAMILY _NAME or FN

Optional family name under which backup jobs are run. If
FAMILY_ NAME is omitted, backup jobs run under the
family to which the specified user name belongs.

USER _JOB _NAME or JOB _NAME or UJN or JN

Optional name by which the backup jobs are identified in
the system. If USER_JOB_NAME is omitted, the name
assigned backup jobs is the user name.

JOB _CLASS or JC

Optional job class in which the backup jobs are run. If
JOB_ CLASS is omitted, the jobs run in the default job
class for the user name.

ACCOUNT or A

Account to which resource usage is charged for the
backup jobs. If you omit this parameter for a user name
that requires an account, the backup jobs will fail to
execute. (See the Remarks.)

5-16 NOS/VE Commands and Functions 60464018 J

SET_LOG_BACKUP_ACCOUNT

PROJECT or P

Project to which resource usage is charged for the backup
jobs. If you omit this parameter for a user name that
requires a project, the backup jobs will fail to execute.
(See the Remarks.)

OUTPUT _DISPOSITION or OD or ODI or
STANDARD _OUTPUT or SO

Specifies the default for how the backup job's standard
output is to be disposed. If omitted, the attribute
associated with this parameter does not change.

File name
The standard output is copied to the specified file
name at job end.

DISCARD _ALL_OUTPUT or DAO

All output generated by the backup job is to be
discarded at job end.

DISCARD _STANDARD _OUTPUT or DSO
Standard output is to be discarded at job end.

LOCAL or L

Any output generated by the backup job is printed at
the destination system rather than being returned to
the originating user's default output station.

PRINTER or P

Any output generated by the backup job is returned to
the originating user's default output station.

WAIT_QUEUE or WQ

Any output generated by the backup job is returned to
the originating user's $WAIT_QUEUE subcatalog on
the originating system using the user's job name for
the file name. If the $WAIT_QUEUE subcatalog does
not exist at the time the output files are returned, it
is created for the user.

The default value is PRINTER.

60464018 J ADMINISTER_RECOVERY_LOG 5-17

SET_PERFORMANCE _OPTION

Remarks

USER _INFORMATION or Ul

Specifies a user information string of up to 256
characters. This string enables you to pass information
(such as a file path) to a backup job. This string is also
passed on to all output files generated by the backup job.

If omitted, the user information string associated with the
backup job is assumed.

® If backup files are included in the log configuration,
each repository switch for the log starts a job to back
up the log. Each backup job uses the validation
information specified on this subcommand.

® To determine if the ACCOUNT and PROJECT
parameters are required and the valid JOB _CLASS
values, display the validation information for the user
name.

To display validation information for a user name, use
the Administer _User utility with the DISPLAY_USER
subcommand. If you are logged in as the family
administrator, you can display information on any user
in the family; otherwise, you can display information
only for the user name you are using.

For more information about family administration and
user validation-see the NOS/VE User Validation
manual and the NOS/VE System Usage manual.

© For more information see the NOS/VE Advanced File
Management Usage manual.

SET_PERFORMANCE _OPTION
ADMRL Subcommand

Purpose

Format

Specifies the performance emphasis (speed or reliability)
for the log.

SET_PERFORMANCE _OPTION or
SETPO

EMPHASIS = keyword

LOG _ENTRY =keyword

STATUS =status variable

5-18 NOS/VE Commands and Functions 60464018 J

SET_PERFORMANCE_OPTION

Parameters EMPHASIS or E
Specifies whether speed or reliability is more important.

SPEED or S
Speed is more important than reliability.

RELIABILITY or R
Reliability is more important than than speed.

BALANCED or B
Both speed and reliability are important.
This parameter is required.

LOG _ENTRY or LOG _ENTRIES or LE

Indicates the types of log entries to which the specified
emphasis applies.

RECORD or R
Record entries, but not parcel entries.

PARCEL or P
For future implementation.

ALL or A
For future implementation.
The default value is RECORD.

Remarks ® This subcommand determines how frequently log
entries in memory are written to disk. (Its purpose is
similar to that of the FORCED _WRITE attribute for
keyed files.)

@ If this subcommand is not specified, the default
performance option is BALANCED.

® The EMPHASIS values have the following meanings:

SPEED

The system memory manager determines when log
entries are written to disk.

60464018 J ADMINISTER_RECOVERY_LOG 5-19

SET_VERIFICATION _LEVEL

RELIABILITY

Each log entry is written to disk before the next
log entry begins.

BALANCED

The system must begin writing a log entry to disk
before the next log entry can begin.

© Any value specified for parcels is recorded for future
use, but is currently ignored.

® For more information, see the NOS/VE Advanced File
Management Usage manual.

Examples The following session changes the performance options for
$USER.MY_LOG.

/administer_recovery_log
admr1/use_log, $user.my_log
admr1/set_performance_option, ..
admr1../emphasis=reliability
admr1/quit

/

SET_VERIFICATION _LEVEL
ADMRL Subcommand

Purpose Indicates whether checksums should be performed for the
header and trailer parts of log records.

Format SET_VERIFICATION _LEVEL or
SETVL
VERIFY_LOG _ENTRIES =boolean
STATUS =status variable
Parameters VERIFY_LOG _ENTRIES or VLE

Indicates whether checksums are performed for the log.

TRUE or YES or ON
Checksums are performed.

FALSE or NO or OFF
Checksums are not performed.
This parameter is required.

5.20 NOS/VE Commands and Functions 60464018 J

USE_LOG

Remarks ® This subcommand can be specified only for a new log.
The verification level cannot be changed for an
existing log.

® This subcommand is optional. If it is omitted from a
session that creates a new log, the default verification
level is FALSE.

® For more information see the NOS/VE Advanced File
Management Usage manual.

USE _LOG
ADMRL Subcommand

Purpose Establishes the log to be created or changed by the
session.

Format USE _LOG or
USEL
CATALOG=file
STATUS =status variable

Parameters CATALOG or C

Catalog path for the log created or changed by the
session.

A session can create or change only one log; therefore,
any subsequent USE _LOG subcommands are ignored.

If the catalog does not exist, the subcommand creates it.
If the catalog exists, but does not contain a log, a log is
created in it. If a log exists in the catalog, the session
verifies that the log contains the proper characteristics.

This parameter is required.

Remarks ® You must establish a catalog before any of the other
subcommands (except QUIT, DELETE _LOG, HELP, or
CANCEL _LOG_CHANGES (after DELETE _LOGQ))
can be entered.

® Once established, the catalog can only be changed
after using CANCEL _LOG_CHANGES.

e For more information see the NOS/VE Advanced File
Management Usage manual.

60464018 J ADMINISTER_RECOVERY_LOG 5-21

USE_LOG

Examples The following session establishes $USER.MY_LOG as the
log to be used. The performance options for
$USER.MY_LOG are changed, but then the changes are
canceled and another log is specified.

/administer_recovery_log

admr1/use_log, $user.my_log
admr1/set_performance_option, emphasis=reliability
admr1/cancel_log_changes

admri/use_log, $user.my_log_2

admri/

5-22 NOS/VE Commands and Functions 60464018 J

ADMINISTER _VALIDATIONS 6

ADMINISTER _VALIDATIONSt 6-1
CHANGE _DEFAULT_ACCOUNT_PROJECT 6-1
CHANGE _LINK _ATTRIBUTE_CHARGE 6-2
CHANGE _LINK _ATTRIBUTE _FAMILY 6-3
CHANGE _LINK _ATTRIBUTE _PASSWORD e 6-3
CHANGE _LINK _ATTRIBUTE _PROJECT 6-4
CHANGE _LINK _ATTRIBUTE_USERc...... 6-5
CHANGE _LOGIN_PASSWORDcciiiiiiiiiian . 6-5
CHANGE _USER i 6-8 -
CHANGE _USER_EPILOGccoiiiiiiiiiiiiiannan... 6-9
CHANGE _USER_PROLOG oottt 6-10
DISPLAY_USER i 6-11
QUIT o e e 6-12
END_CHANGE_USER ...t 6-12

60464018 J

ADMINISTER _VALIDATIONS 6

ADMINISTER _VALIDATIONS
Command

Purpose Starts the ADMINISTER _VALIDATIONS utility to change
and display validations.

Format ADMINISTER _VALIDATIONS or
ADMINISTER _VALIDATION or
ADMV
STATUS =status variable

Remarks For more information, see the NOS/VE User Validation
manual.

CHANGE _DEFAULT_ACCOUNT_PROJECT
CREU and CHAU Subcommand

Purpose Changes the default account and project for the LOGIN
and SUBMIT_JOB commands.

Format CHANGE _DEFAULT_ACCOUNT _PROJECT or
CHADAP
ACCOUNT =keyword or name
PROJECT =keyword or name
STATUS =status variable

Parameters ACCOUNT or A

Specifies the account name. If the validation level is
ACCOUNT or PROJECT and the account you specify does
not exist, a warning message appears. You can specify a
name or one of the following keywords:

DEFAULT
The account is set to the default value specified in the

DEFAULT_ACCOUNT_PROJECT field description.
CURRENT

The account of the job executing this command is
used.

60464018 J ADMINISTER_VALIDATIONS 6-1

CHANGE _LINK _ATTRIBUTE_CHARGE

NONE

There is no default account for the user name.

PROJECT or P

Specifies the project name. If the validation level is
PROJECT and the project you specify does not exist, a
warning message appears. You can specify a name or one
of the following keywords:

DEFAULT

The project is set to the default value specified in the
DEFAULT_ACCOUNT_PROJECT field description.
CURRENT

The project of the job executing this command is used.

NONE
There is no default project for the user name.

Remarks For more information, see the NOS/VE User Validation
manual.

Examples To change the default login account and project, enter:

ADMV/change_user
CHAU/change_default_account_project ..
Changing user TERRY.

CHAU. ./account=a project=b

CHAU/quit

CHANGE _LINK _ATTRIBUTE _CHARGE
CREU and CHAU Subcommand

Purpose Changes the charge number needed to gain access to NOS
or NOS/BE permanent files or to submit a job to NOS or
NOS/BE.

Format CHANGE _LINK _ATTRIBUTE _CHARGE or
CHALAC
VALUE =keyword or string
STATUS =status variable

6-2 NOS/VE Commands and Functions 60464018 J

CHANGE _LINK _ATTRIBUTE_FAMILY

Parameters VALUE or V

Specifies a NOS or NOS/BE charge number. By default,
the link attribute charge number is not changed. If you
specify DEFAULT, the default is the value specified in the
LINK _ATTRIBUTE _CHARGE field description.

Remarks ® You can override this value using the
CHANGE _LINK _ATTRIBUTE command.

© For more information, see the NOS/VE User
Validation manual.

CHANGE _LINK _ATTRIBUTE _FAMILY
CREU and CHAU Subcommand

Purpose Changes the family name needed to gain access to NOS
or NOS/BE permanent files or to submit a job to NOS or
NOS/BE. .

Format CHANGE _LINK _ATTRIBUTE _FAMILY or
CHALAF
VALUE =keyword or string
STATUS =status variable

Parameters VALUE or V

Specifies a NOS or NOS/BE family name. By default, the
link attribute family is not changed. If you specify
DEFAULT, the default is the value specified in the
LINK _ATTRIBUTE _FAMILY field description.

Remarks © You can override this value using the
CHANGE _LINK _ATTRIBUTE command.

@ For more information, see the NOS/VE User
Validation manual.

CHANGE _LINK _ATTRIBUTE _PASSWORD
CREU and CHAU Subcommand

Purpose Changes the password needed to gain access to NOS or
NOS/BE permanent files, or to submit a job to NOS or
NOS/BE.

60464018 J ADMINISTER _VALIDATIONS 6-3

CHANGE _LINK _ATTRIBUTE _PROJECT

Format

Parameters

Remarks

CHANGE _LINK _ATTRIBUTE _PASSWORD or
CHALAPW

VALUE =keyword or string

STATUS =status variable

VALUE or V
Parameter Attributes: SECURE

Specifies a NOS or NOS/BE password. By default, the
link attribute password is not changed. If you specify
DEFAULT, the default is the value specified in the
LINK _ATTRIBUTE _PASSWORD field description.

© You can override this value using the
CHANGE _LINK _ATTRIBUTE command.

® For more information, see the NOS/VE User
Validation manual.

CHANGE _LINK _ATTRIBUTE _PROJECT
CREU and CHAU Subcommand

Purpose

Format

Parameters

Changes the project number needed to gain access to NOS
or NOS/BE permanent files, or to submit a job to NOS or
NOS/BE.

CHANGE _LINK _ATTRIBUTE _PROJECT or
CHALAP

VALUE =keyword or string

STATUS =status variable

VALUE or V

Specifies a project number needed to gain access to NOS
and NOS/BE permanent files or to submit a job to NOS
or NOS/BE. By default, the link attribute project is not
changed. If you specify DEFAULT, the default is the value
specified in the LINK _ATTRIBUTE _PROJECT field
description.

® You can override this value using the
CHANGE _LINK _ATTRIBUTE command.

® For more information, see the NOS/VE User
Validation manual.

6-4 NOS/VE Commands and Functions 60464018 J

CHANGE _LINK_ATTRIBUTE _USER

CHANGE _LINK _ATTRIBUTE _USER
CREU and CHAU Subcommand

Purpose

Format

Parameters

Remarks

Changes the user name needed to gain access to NOS or
NOS/BE permanent files, or to submit a job to NOS or
NOS/BE.

CHANGE _LINK _ATTRIBUTE _USER or
CHALAU

VALUE =keyword or string

STATUS =status variable

VALUE or V

Specifies a NOS or NOS/BE user name. By default, the
link attribute user is not changed. If you specify
DEFAULT, the default is the value specified in the
LINK _ATTRIBUTE _USER field description.

® You can override this value using the
CHANGE _LINK _ATTRIBUTE command.

® For more information, see the NOS/VE User
Validation manual.

CHANGE _LOGIN _PASSWORD
CREU and CHAU Subcommand

Purpose

Format

60464018 J

Changes information about the user's login password.

CHANGE _LOGIN _PASSWORD or
CHALPW 7
OLD _PASSWORD =name
NEW_PASSWORD =name
EXPIRATION _DATE =keyword or date _time
EXPIRATION _INTERVAL =keyword or integer
EXPIRATION _WARNING _INTERVAL =keyword or
integer
MAXIMUM _EXPIRATION _INTERVAL =keyword or
integer
ADD _ATTRIBUTES =keyword or list of name
DELETE _ATTRIBUTES =keyword or list of name
STATUS =status variable

ADMINISTER _VALIDATIONS 6-5

CHANGE _LOGIN _PASSWORD

Parameters OLD _PASSWORD or OPW
Parameter Attributes: SECURE

Specifies the current login password. To change a
password, a user must specify the old password.
Administrators need not specify the old password to
change a password.

NEW_PASSWORD or NPW
Parameter Attributes: SECURE

Specifies a new login password for the user. By default,
the password is not changed.

EXPIRATION _DATE or ED
Parameter Attributes: BY_NAME

Specifies the date and time the password expires. The
number of days between the current date and the
EXPIRATION _DATE cannot exceed the number of days
specified by the MAXIMUM _EXPIRATION _INTERVAL
parameter.

The format is YYYY-MM-DD.HH:MM:SS. The hours,
minutes, and seconds portion is optional, and the time
defaults to midnight 00:00:00.

The default expiration date for new passwords is the
current date plus the value specified by the
EXPIRATION _INTERVAL parameter. The default
expiration date for an existing password is the current
expiration date for that password.

NONE)
The password does not have an expiration date.

DEFAULT
The expiration date is set to the default value
specified in the LOGIN _PASSWORD field description.
EXPIRATION _INTERVAL or EI
Parameter Attributes: BY_NAME

Speclfies the number of days (1 to 365) until the password
expires. The number of days specified by the
EXPIRATION _INTERVAL parameter must not exceed the
MAXIMUM _EXPIRATION _INTERVAL parameter. By

6-6 NOS/VE Commands and Functions 60464018 J

60464018 J

CHANGE _LOGIN _PASSWORD

default, the current EXPIRATION _INTERVAL parameter
value is not changed. You can also specify one of the
following keywords:

UNLIMITED

The password will not expire unless a specific date is

specified by the EXPIRATION _DATE parameter.

DEFAULT

The expiration interval is set to the default value

specified in the LOGIN _PASSWORD field description.
EXPIRATION _WARNING _INTERVAL or EWI
Parameter Attributes: BY _NAME

Specifies the number of days (0 to 365) before the
password expiration date that warnings are sent to the
user that the password will expire. If you specify zero, the
user does not receive a warning. The default is that the
current value is not changed. You can also specify one of
the following keywords:

UNLIMITED
The user always receives a warning during each login.

DEFAULT

The expiration warning interval is set to the default
value specified in the LOGIN _PASSWORD field
description.

MAXIMUM _EXPIRATION _INTERVAL or MAXEI

Parameter Attributes: BY_NAME, ADVANCED

Specifies the maximum value for the
EXPIRATION _INTERVAL parameter. Only users with

~ user administration capability can specify a value for this

parameter.

ADD _ATTRIBUTES or AA
Parameter Attributes: BY_NAME, ADVANCED

Specifies a list of site-defined password attributes to be
added. Only users with user administration capabilities
can specify a value for this parameter.

ADMINISTER _VALIDATIONS 6-7

CHANGE_USER

Remarks

Examples

DELETE _ATTRIBUTES or DA
Parameter Attributes: BY_NAME, ADVANCED

Specifies a list of site-defined password attributes to be
deleted. Only users with user administration capability
can specify this parameter.

® You can also change passwords using the
CHANGE _LOGIN _PASSWORD command.

® You can change your expiration date only when you
change your password.

® For more information, see the NOS/VE User
Validation manual.

To change the password and set the expiration date,
enter:

ADMV/change_user

Changing user ABC.
CHAU/change_login_password

CHAU. ./o1d_password=example ..
CHAU. . /new_password=sample ..

CHAU. ./expiration_date=1989-12-10 .
CHAU. ./expiration_interval=60 ..
CHAU/quit

ADMV/

This password expires in 60 days. -

CHANGE _USER
ADMYV Subcommand

Purpose

Format

Parameters

Starts the CHANGE _USER subutility to change
validations for an existing user.

CHANGE _USER or
CHAU
USER =name
STATUS =status variable

USER or U

Specifies the user name to be changed. The default is the
user name specified during login.

6-8 NOS/VE Commands and Functions 60464018 J

CHANGE _USER_EPILOG

Remarks ® A system or family administrator can change any user
validations; aceount or project members with a user
administration capability can change user validations
only for users under their control; users can change
only some of their own validations.

® For more information, see the NOS/VE User
Validation manual.

Examples To change the default account and project for the LOGIN
and SUBMIT_JOB commands, enter:

ADMV/change_user user=ABC

Changing user ABC.
CHAU/change_default_account_project account=a ..
CHAU../project=b

CHAU/quit

ADMV/

CHANGE _USER _EPILOG
CREU and CHAU Subcommand

Purpose Changes the name of the user's epilog file.

Format CHANGE _USER _EPILOG or
- CHAUE
VALUE =keyword or file or string
STATUS =status variable

Parameters VALUE or V

Specifies the new file reference. If you specify a file path,
the system resolves the reference immediately. If you
specify a string, the system resolves the string reference
during epilog execution.

DEFAULT

The name of the user epilog is set to the default value
defined by the administrator.

NONE
The file reference $NULL is used.

Remarks For more information, see the NOS/VE User Validation
manual.

60464018 J ADMINISTER _VALIDATIONS 6-9

CHANGE _USER_PROLOG

Examples To change your epilog so that file ALL_DONE is used,
enter:

ADMV/change_user

Changing user ABC.

CHAU/change_user_epilog value=$user.all_done
CHAU/quit

ADMV/

CHANGE _USER _PROLOG
CREU and CHAU Subcommand

Purpose Changes the name of the user's prolog file.

Format CHANGE _USER _PROLOG or
CHAUP
VALUE =keyword or file or string
STATUS =status variable

Parameters VALUE or V

Specifies the new file reference. If you specify a file path,
the system resolves the file path immediately; if you
specify a string, the system resolves the reference during
prolog execution.

DEFAULT
The name of the user prolog is set to the default
value defined by the administrator.

NONE
The file reference $NULL is used.

Examples To change your prolog so that file START_UP is used,
enter:

ADMV/change_user

Changing user ABC.

CHAU/change_user_prolog value=$user.start_up
CHAU/quit

ADMV/

6-10 NOS/VE Commands and Functions 60464018 J

DISPLAY_USER

DISPLAY_USER
ADMYV Subcommand

Purpose

Format

Parameters

Remarks

Examples

60464018 J

Displays your validations.

DISPLAY_USER or
DISPLAY_USERS or
DISU
USER =keyword or list of name
OUTPUT =file
DISPLAY _OPTION =keyword or list of name
STATUS =status variable

USER or USERS or U

Specifies the user names to be displayed. The default is
the user name specified during login.

OUTPUT or O

Specifies the file to which information is written. The
default is $OUTPUT.

DISPLAY _OPTION or DISPLAY _OPTIONS or DO
Parameter Attributes: BY_NAME

Specifies the names of the user validations to be
displayed. You can specify a list of names or one of the
following keywords; the default is ALL:

ALL
Displays the value of all user validations.

NONE
Displays only user names.

For more information, see the NOS/VE User Validation
manual.

@ To display all of the validations, enter:
ADMV/display_user
® To display the default login account and project, enter:

ADMV/display_user all ..
ADMV. ./display_option=default_account_project

ADMINISTER _VALIDATIONS 6-11

QUIT

QUIT
ADMYV Subcommand

Purpose Ends an ADMINISTER _VALIDATIONS utility session.

Format QUIT or
ENDAV or
END _ADMINISTER _VALIDATIONS or
QUI

Parameters None.

Remarks For more information, see the NOS/VE User Validation
manual.

END _CHANGE _USER
CHAU Subcommand

Purpose Ends a CHANGE _USER subutility session.

Format END _CHANGE _USER or
ENDCU or
QUIT or
QUI
WRITE _CHANGES =boolean
Parameters WRITE _CHANGES or WC

Specifies whether the changes made during the
CHANGE _USER subutility session are written to the
validation file. The default is TRUE.

TRUE
The changes are written to the validation file.

FALSE
The changes are not written to the validation file.

Remarks For more information, see the NOS/VE User Validation
manual.

6-12 NOS/VE Commands and Functions 60464018 J

ANALYZE _OBJECT _LIBRARY 7

ANALYZE _OBJECT_LIBRARY ...\viitiiie i 7-1
DISPLAY_LIBRARY_ANALYSISttt 7-2
DISPLAY_MODULE _ANALYSISttt 7-4
DISPLAY_PERFORMANCE _DATAc.viiteeanannnann, 7-7
DISPLAY_SECTION _ANALYSIS0ttt 7-10
QUIT ..., e 7-13
USE _LIBRARY ..ttt e e 7-14

60464018 J

ANALYZE _OBJECT_LIBRARY 7

ANALYZE _OBJECT_LIBRARY
Command

Purpose Begins an ANALYZE _OBJECT_LIBRARY utility session.
The subcommands for this object code utility display the
internal characteristics of object modules, including: object
record counts, section sizes, section attributes, and
performance data for modules on an object library or
object file.

Format ANALYZE _OBJECT_LIBRARY or
ANAOL
LIBRARY =file
STATUS =status variable

Parameters LIBRARY or L
Object library or object file to be analyzed.

If LIBRARY is omitted, you must use the USE_LIBRARY
subcommand to specify the object library or object file.

Remarks ® After entering the ANALYZE _OBJECT_LIBRARY
command, you can enter any of the ANAQL
subcommands. The ANAOL session ends when you
enter the QUIT subcommand.

® An object library or file must be specified on the
ANALYZE _OBJECT_LIBRARY command or on the
USE _LIBRARY subcommand before an ANAOL
session can continue.

e For more information, see the NOS/VE Object Code
Management manual.

60464018 J ANALYZE_OBJECT_LIBRARY 17-1

DISPLAY_LIBRARY_ANALYSIS

Examples

The following is a sequence that enters the

ANALYZE _OBJECT_LIBRARY utility, specifies LGO as
the file to be analyzed, and displays the characteristics of
library LGO.

/analyze_object_library 1go
AOL/display_library_analysis
Library Analysis of LGO
Number of modules: 2
Record Analysis

Identification records: 2

Libraries: 2 - items: 10
Section definitions: 9
Text records: 21 - items: 519
Relocation records: 2 - items: 8
Binding templates: 8
Transfer symbols: 2

Total records: 84

AOL/quit

DISPLAY_LIBRARY_ANALYSIS
ANAOL Subcommand

Purpose

Format

Displays the number of modules and/or the total number
of each type of object record on the current object library
or file. The current object library or file is specified by a
previous USE _LIBRARY subcommand or
ANALYZE _OBJECT_LIBRARY command.

DISPLAY_LIBRARY_ANALYSIS or

DISLA
DISPLAY _OPTIONS =keyword or list of keyword
OUTPUT =file
STATUS =status variable

7.2 NOS/VE Commands and Functions 60464018 J

DISPLAY_LIBRARY_ANALYSIS

Parameters DISPLAY_OPTIONS or DISPLAY_OPTION or DO

List of one or more keywords indicating the analysis
information to be displayed. Options are:

NUMBER _OF_MODULES or NOM
Number of modules on the object library or file.

RECORD _ANALYSIS or RA
Total number of each type of object record on the
object library or file.
ALL
All of the previously listed options.
IF DISPLAY_OPTION is omitted, all analysis information
is displayed.
OUTPUT or O
Output file. This file can be positioned.
If OUTPUT is omitted, file $OUTPUT is used.

Remarks ® In a library analysis (see example), the record analysis
contains the number of each type of object record in
the library or file. The total number of adaptable
items is also listed with the object records that have
adaptable fields.

® For more information, see the NOS/VE Object Code
Management manual.

60464018 J ANALYZE _OBJECT_LIBRARY 7-3

DISPLAY_MODULE_ANALYSIS

Examples The following ANAOL session lists the number of modules
and the type and number of object records in the current
library LGO.

/analyze_object_library igo
AOL/display_library_analysis

Library Analysis of LGO
Number of modules: 2

Record Analysis

Identif ication records: 2
Libraries: 2 items: 10
Section definitions: 9
Text records: 21 items: 518
Address formulation records: 31 items: 31
External linkage records: 5 items: 5
Entry definitions: 2
Relocation records: 2 items: 8
Binding templates: 8
Transfer symbols: 2
Total records: 84
AOL/
DISPLAY_MODULE _ANALYSIS
ANAOL Subcommand
Purpose Displays analysis information about specified modules on

the object library or file, such as:

® Total number of each type of object record in the
module.

® Size, type, attributes initialized, addresses in, externals
in, and addresses to each section in the module.

The current object library or file is specified by a
previous USE _LIBRARY subcommand or
ANALYZE _OBJECT_LIBRARY command.

Format DISPLAY_MODULE _ANALYSIS or
DISMA
MODULES =keyword or list of program _name or list
of range of program _name
DISPLAY _OPTIONS =keyword or list of keyword
OUTPUT=file
STATUS =status variable

7-4 NOS/VE Commands and Functions 60464018 J

Parameters

Remarks

60464018 J

DISPLAY_MODULE _ANALYSIS

MODULES or MODULE or M

List of modules whose analysis information is to be
displayed.

You use a string value for a module whose name is not
an SCL name or a COBOL name.

If MODULE is omitted or the keyword ALL is used,
analysis information for all modules in the object library
or file is displayed.

DISPLAY _OPTIONS or DISPLAY_OPTION or DO

List of one or more keywords indicating the analysis
information to be displayed. Options are:

RECORD _ANALYSIS or RA

Total number of each type of object record in the
module.

" SECTION _ANALYSIS or SA

Size, type, attributes, bytes initialized, addresses built
in this section, and addresses built in other sections
that the loader will build that point to this section.

ALL
All of the previously listed options.

If DISPLAY_OPTION is omitted, all analysis information
is displayed.

OUTPUT or O

Output file. This file can be positibned. If OUTPUT is
omitted, file $OUTPUT is used.

6 In a module analysis display, the record analysis
contains the number of each type of object record in
the module. The total number of adaptable items is
also listed with the object records that have adaptable
fields. The number of items contained in the next
column lists the total size of the adaptable record

types.

ANALYZE _OBJECT_LIBRARY 7-5

DISPLAY_MODULE_ANALYSIS

® The section analysis display includes the following:

- Total number of bytes in the section.

- Section type: code section, binding section, working
storage section, common block, extensible working
storage, and extensible common block.

-~ Attributes of the section: R=read, W=write,
X =execute, and B=Dbinding.

- Number of bytes initialized in the section by text
and replication records or by allotted text.

— Number of internal addresses (Addresses in) the
loader will build in this section.

— Number of addresses (Addresses to) in other
sections the loader will build that point to this
section. :

® For more information, see the NOS/VE Object Code
Management manual.

76 NOS/VE Commands and Functions 60464018 J

DISPLAY_PERFORMANCE _DATA

Examples The following subcommand lists the record analysis and
section analysis of module TEST.

AOL/display_module_analysis module=test

Module Analysis of TEST

Record Analysis

ldentification records:

1

tibraries: 1 items: 5
Section definitions: 4
Text records: 9 items: 233
Address formulation records: 15 items: 15
External linkage records: 2 items: 2
Entry definitions: 1
Relocation records: 1 items: 4
Binding templates: 4
Transfer symbols: 1

Total records: 33

Section Analysis

Section: TEST 60 bytes CODE [R X]

Bytes initialized: B0 Addresses to: 1
Section: 56 bytes BINDING [B]

Externals in: 2 Addresses in: 3 Addresses to: !
Section: 207 bytes WORKING STORAGE [R 1

Bytes initialized: 163 Addresses in: 6 Addresses to: 8
Section: 104 bytes WORKING STORAGE [R W]

Bytes initialized: 10 Addresses in: 7 Addresses to: S

AQL/

DISPLAY_PERFORMANCE _DATA
ANAOL Subcommand

Purpose Displays possible load and execution time performance
problems that may exist in specified modules on the object
library or file. The current object library or file is
specified by a previous USE _LIBRARY subcommand or
ANALYZE _OBJECT_LIBRARY command.

Format DISPLAY_PERFORMANCE _DATA or
DISPD
MODULES =keyword or list of program _name or list
of range of program _name
PERFORMANCE _DATA =keyword or list of keyword
DISPLAY _OPTION =keyword or list of keyword
OUTPUT =file
STATUS =status variable

60464018 J ANALYZE_OBJECT_LIBRARY 7-7

DISPLAY_PERFORMANCE _DATA

Parameters MODULES or MODULE or M

List of modules whose performance data is to be
displayed.

You use a string value for a module whose name is not
an SCL name or a COBOL name,

If MODULE is omitted or keyword ALL is specified,
performance data for all modules is displayed.

PERFORMANCE _DATA or PD

List of one or more keywords indicating the performance
data to be displayed. Options are:

BOUND _MODULES or BM
Bound modules that have not been prelinked.

LINE _TABLES or LT
Modules that have debug line address tables.

LOAD_MODULES or LM
Load modules that have not been bound.

MULTIPLE _ENTRY_POINTS or MEP

Bound or prelinked modules that have multiple entry
points.

OBJECT_MODULES or OM
Object modules that are not on an object library.

OPT_DEBUG or OD

Modules that are compiled with the parameter
OPTIMIZATION _LEVEL=DEBUG.

OPT_LOW or OL

Modules that are compiled with the parameter
OPTIMIZATION _LEVEL=LOW.

PARAMETER _CHECKING or PC
Modules that have parameter checking records.

RUNTIME _CHECKING or RC

Modules that have run-time range checking for
variables, subscripts, and substring character
expressions.

7-8 NOS/VE Commands and Functions 60464018 J

DISPLAY_PERFORMANCE _DATA

RUNTIME _LIBRARIES or RL

Modules that have text-embedded run-time library
directives.

RUNTIME _LIBRARY_CALLS or RLC
Modules that have calls to local run-time libraries.

SYMBOL _TABLES or ST
Modules that have debug symbol tables.

UNREFERENCED _SECTIONS or US

Modules that have uninitialized and unreferenced
sections.

ALL

Both DESCRIPTION and MODULE _NAMES display
options.

If PERFORMANCE _DATA is omitted, all performance
data is displayed.
DISPLAY _OPTION or DISPLAY _OPTIONS or DO
List of one or more keywords indicating the information
to be displayed. The number of modules with the possible
performance problem is always displayed. Options are:
NONE
No information other than the number of modules with
the possible performance problem.
MODULE _NAMES or MN

Names of modules with the possible performance
problem.

DESCRIPTION or D

Brief description of the possible performance problem
and recommended changes to correct the problem.
ALL

Both DESCRIPTION and MODULE _NAMES options.

If DISPLAY_OPTION is omitted, the number of modules
with the possible problem and the description of the
problem (DESCRIPTION) are displayed.

60464018 J ANALYZE_OBJECT_LIBRARY 17-9

DISPLAY_SECTION_ANALYSIS

OUTPUT or O
Output file. This file can be positioned.
If OUTPUT is omitted, file $OUTPUT is used.

Remarks ® The analysis performed is very general, and the
recommendations may not be applicable to all
programs. Each recommendation should be looked at to
determine if any changes should be made to the
program or its packaging.

© The quality of analysis performed depends on the
amount of information placed in the object modules by
the compilers. Some modules may have performance
problems that are not detected.

© Some compilers put performance information in the
comment string in the module header. If this string
has been changed, the information will not be
available to DISPLAY_PERFORMANCE _DATA.

© Since binding and prelinking may hide some of a
product's performance problems, analysis should alse
be done on the unbound product.

® For more information, see the NOS/VE Object Code
Management manual.

DISPLAY_SECTION _ANALYSIS
ANAOL Subcommand

Purpose Displays section usage information for specified modules
on the object library or file. Information displayed
includes size, attributes, bytes initialized, addresses in the
section, and addresses to the section. The current object
library or file is specified by a previous USE _LIBRARY
subcommand or ANALYZE _OBJECT_LIBRARY command.

Format DISPLAY_SECTION _ANALYSIS or
DISSA
MODULES =keyword or list of program _name or list
of range of program _name
SECTION _KINDS =keyword or list of keyword

7-10 NOS/VE Commands and Functions 60464018 J

Parameters

60464018 J

DISPLAY_SECTION _ANALYSIS

SECTION _ACCESS _ATTRIBUTES =keyword or list
of keyword
SECTION _NAME =name
OUTPUT =file
STATUS =status variable
MODULES or MODULE or M

List of modules whose section usage information is to be
displayed.

Use a string value for a module whose name is not an
SCL name or a COBOL name.

If MODULE is omitted or the keyword ALL is used,
section usage information for all modules in the object
library or file is displayed.

SECTION _KINDS or SK

List of one or more keywords indicating the type of
section to be displayed. Types are:

CODE or C
Code section.

BINDING or B
Binding section.

WORKING_STORAGE or WS
Working storage section.

EXTENSIBLE _WORKING _STORAGE or EWS
Extensible working storage section.

COMMON _BLOCK or CB
Common block section.

EXTENSIBLE _COMMON _BLOCK or ECB
Extensible common block section.

ALL
All of the previously listed section types:

If SECTION _KIND is omitted, all section types are
displayed.

ANALYZE_OBJECT_LIBRARY 7-11

DISPLAY_SECTION_ANALYSIS

Remarks

SECTION _ACCESS _ATTRIBUTES or SAA
List of one or more keywords indicating the access
attributes of the section to be displayed. The access
attributes are:

READ or R

Read attributes.

WRITE or W
Write attributes.

EXECUTE or E
Execute attributes.

BINDING or B
Binding attributes.

ALL

Any of the listed attributes.)
If SECTION _ACCESS_ATTRIBUTE is omitted, sections
with any attributes are displayed.
SECTION _NAME or SN

The name of the section to be displayed. If
SECTION _NAME is omitted, sections with any names are
displayed.

Use a string value for a section whose name is not an
SCL name.

OUTPUT or O

Output file. This file can be positioned.

If OUTPUT is omitted, file $OUTPUT is used.

The section analysis display (see example) includes the
following:

@ Name of section (if any).
e Total number of bytes in the section.
© Section type: code section, binding section, working

storage section, common block, extensible working
storage, and extensible common block.

7-12 NOS/VE Commands and Functions 60464018 J

QUIT

® Attributes of the section: R=read, W=write,
X=execute, B=binding.

® Number of bytes initialized in the section by text and
-replication records or by allotted text.

® Number of internal addresses (Addresses in) and
external addresses (Externals in) the loader will build
in this section.

® Number of addresses (Addresses to) in other sections
which the loader will build that point to this section.

® For more information, see the NOS/VE Object Code
Management manual.

Examples The following subcommand lists the section definitions for
module SUB.

AOL/display_section_analysis ‘module=sub

Section Usage of SUB

Section: SUB 50 bytes CODE [R X]
Bytes initiatized: 50
Section: 24 bytes BINDING [B]
Externals in: 1 Addresses in: 1
Section: 125 bytes WORKING STORAGE [R]
~. - Bytes initialized: 101 Addresses in: 4 Addresses to: 2
Sect ion: 64 bytes WORKING STORAGE [R W]

Bytes initialized: 12 Addresses in: 2 Addresses to: 5

AOL/

QUIT
ANAOL Subcommand

Purpose Ends the ANALYZE _OBJECT_LIBRARY session.

Format QUIT or
QUI

Parameters None.

Remarks For more information, see the NOS/VE Object Code
Management manual.

60464018 J ANALYZE_OBJECT_LIBRARY 7-13

USE_LIBRARY

Examples

The following sequence writes a library and a module
analysis of LIBRARY_1 to file OUT1 and writes a library
analysis of OBJECT_FILE _2 to file OQUT2. The output
files are then printed.

/analyze_object_library tibrary_1
AOL/display_library_analysis output=out1
AOL/display_module_analysis display_option=..
AOL. ./section_analysis output=out1.$eoi
AOL/use_library object_file_2
AOL/display_library_analysis output=out2
AOL/quit

/print_file out1

/print_file out2

USE _LIBRARY
ANAOL Subcommand

Purpose

Format

Parameters

Remarks

Examples

Specifies the object library or object file to be analyzed.

USE _LIBRARY or

USEL
LIBRARY =file
STATUS =status variable

LIBRARY or L

Object library or object file to be analyzed. This
parameter is required.

® If an object library or object file was not specified on
the ANALYZE _OBJECT_LIBRARY command, you
must specify the library or file with the
USE _LIBRARY subcommand before you can analyze
the library, its modules, or its sections.

® You use this subcommand to specify a new object
library or object file to analyze.

@ For more information, see the NOS/VE Object Code
Management manual.

The following subcommand selects object file LGO as the
next library to be analyzed.

AOL/use_library 1go

7-14 NOS/VE Commands and Functions 60464018 J

BACKUP_PERMANENT _FILES 8

BACKUP_PERMANENT_FILES ..., 8-1
BACKUP_CATALOGo 8-2
BACKUP_FILEo 8-3
DELETE _CATALOG_CONTENTScociiiiiiian, 8-4
DELETE _FILE_CONTENTS ...ttt 8-6
EXCLUDE _CATALOG e 8-7
EXCLUDE _FILEt 8-7
EXCLUDE _HIGHEST_CYCLESt 8-8
INCLUDE_CYCLES i 8-9
INCLUDE _EMPTY_CATALOGS ...t 8-10
INCLUDE _LARGE _CYCLESt 8-11
INCLUDE _SMALL_CYCLES ...ttt 8-12
INCLUDE_VOLUMES oo ee 8-13
QUIT . 8-14
SET_BACKUP_OPTIONS ...t 8-15
SET_LIST_OPTIONSt 8-17

60464018 J

BACKUP_PERMANENT_FILES 8

BACKUP_PERMANENT_FILES
Command

Purpose

Format

Parameters

Remarks

Examples

60464018 J

Initiates execution of the utility that backs up permanent
files and catalogs. Further processing is directed by utility
subcommands.

BACKUP_PERMANENT_FILES or
BACKUP_PERMANENT_FILE or
BACPF

BACKUP_FILE =file

LIST =file

STATUS =status variable

BACKUP_FILE or BF

Specifies the file to which backup information is copied.
You can specify a file position of beginning-of-information
or end-of-information if the file is a mass storage file or a
labelled tape. If no file position is specified, or the file is
an unlabelled tape, the file is initially positioned to
beginning-of-information. This parameter is required.

LIST or L

Identifies the file to which a summary of the results of
executing the backup utility is written and, optionally,
specifies how the file is to be positioned prior to use.
Omission causes $LIST to be used.

® You can back up only the files for which you have
read access.

® For more information, see the NOS/VE System Usage
manual.

The following command initiates a
BACKUP_PERMANENT_FILE command utility session.
The command specifies that the backed up files are to be
written to file BACKED _UP_FILES with the report
listing written to file BACKUP_LISTING.

/backup_permanent_files bf=backed_up_files ..
../1=backup_listing

BACKUP_PERMANENT_FILES 8-1

BACKUP_CATALOG

Following the entry of this command,
BACKUP_PERMANENT_FILE subcommands can be
entered in response to the following prompt.

Pus/

BACKUP_CATALOG
BACPF Subcommand

Purpose Creates a backup copy of each file cycle and catalog
registered in a specified catalog.

Format BACKUP_CATALOG or
BACC
CATALOG =file
STATUS =status variable

Parameters CATALOG or C

Specifies the catalog to be backed up. This parameter is
required.

Remarks @ Starting at the specified catalog, the complete catalog
hierarchy is followed to obtain a backup copy of each
file and its associated catalog information.

® You must have READ access to the files in the
catalog to be backed up and not be required to share
the files for APPEND, MODIFY or SHORTEN access.

© If you are not the owner of the catalog, back up copies
for all file cycles (and their associated catalogs) to
which you have read access and only for those files -
that have null passwords are made.

o BACKUP_CATALOG skips a file cycle if the file cycle
is busy (that is, if it cannot access the file with an
access mode of read and a share mode of read and
execute).

® Previous EXCLUDE _CATALOG and EXCLUDE _FILE
subcommands enable you to exclude catalogs and files
from the backup operation.

8-2 NOS/VE Commands and Functions 60464018 J

BACKUP_FILE

© Previous INCLUDE _CYCLES, INCLUDE _VOLUME,
INCLUDE _LARGE _CYCLES, and
EXCLUDE _HIGHEST _CYCLE subcommands can limit
the number of cycles actually backed up with the
BACKUP_CATALOG subcommand.

¢ For more information, see the NOS/VE System Usage
manual.

Examples - The following command and subcommands back up all
files in the master catalog:

/backup_permanent_files bf=back_up_files ..
PUB../1ist=backup_listing
PUB/backup_catalog c=$user

PUB/quit

BACKUP_FILE
BACPF Subcommand

Purpose Creates a backup copy of a specified permanent file.

Format BACKUP_FILE or
BACF
FILE =file
PASSWORD =keyword or name
STATUS =status variable

Parameters FILE or F
Specifies the permanent file or permanent file cycle for
which a backup copy is to be made. This parameter is
required.
PASSWORD or PW
Parameter Attributes: SECURE

Specifies the password of the file to be backed up. If you
omit this parameter or specify the keyword NONE, no
password is used.

60464018 J BACKUP_PERMANENT_FILES 8-3

DELETE_CATALOG_CONTENTS

Remarks ® If the FILE parameter specifies a cycle reference, only
that cycle is backed up. If a cycle reference is omitted,
all cycles of the file are backed up.

© You must have READ access to the files to be backed
up and not be required to share the files for APPEND,
MODIFY, or SHORTEN access.

e BACKUP_FILE skips a file cycle if the file cycle is
busy (that is, if it cannot access the file with an
access mode of read and a share mode of read and
execute).

© A previous EXCLUDE _FILE subcommand can be used
to exclude specific cycles from the backup operation.

® Previous INCLUDE _CYCLES, INCLUDE _VOLUME,
INCLUDE _LARGE _CYCLES, and
EXCLUDE _HIGHEST_CYCLE subcommands can limit
the number of cycles actually backed up w1th the
BACKUP_FILE subcommand.

® For more information, see the NOS/VE System Usage
manual.

Examples The following example backs up cycle number 87 of file
DATA _FILE _0 in subcatalog CATALOG_1 of the master
catalog:

/bacpf bf=copy_of_file

PUB/backup_file $user.catalog_1.data_file_0.87 ..
PUB. ./pw=new_data_0_pw

PUB/quit

DELETE _CATALOG _CONTENTS
BACPF Subcommand

Purpose Deletes all files and subcatalogs in a catalog.

Format DELETE _CATALOG _CONTENTS or
DELETE _CATALOG _CONTENT or
DELCC
CATALOG=file
STATUS =status variable

8-4 NOS/VE Commands and Functions 60464018 J

Parameters

Remarks

Examples

60464018 J

DELETE_CATALOG_CONTENTS

CATALOG or C

Specifies the catalog whose contents is to be deleted. This
parameter is required.

Only the owner of a catalog can use this subcommand
to delete a catalog and to delete files that do not have
passwords.

Alternate users can use this request to delete all files:

- To which they have control and read access
permission.

- That they are not required to share for modify,
shorten, and append access.

— That have null passwords.

If a file cycle is in use at the time this subcommand
is entered, the actual delete is not done until the last
user detaches the file.

Previous EXCLUDE _CATALOG, EXCLUDE _FILE,
EXCLUDE _HIGHEST_CYCLES, INCLUDE _CYCLES,
INCLUDE _LARGE _CYCLES, INCLUDE _VOLUME,
and INCLUDE _EMPTY_CATALOGS subcommands can
be used to specify a subset of the permanent files to
be deleted.

DELETE _CATALOG_CONTENT skips a file cycle if
the file cycle is busy (that is, if it cannot access the
file with an access mode of read and a share mode of
read and execute).

You can obtain the same results by specifying the
keyword CAC on the DELETE _OPTION parameter of
the SCL command DELETE _CATALOG.

For more information, see the NOS/VE System Usage
manual.

The following example deletes the contents of catalog
CATALOG_1 for the current user:

/backup_permanent_files bf=backup_of_files
PUB/delcc $user.catalog_1

BACKUP_PERMANENT_FILES 8-5

DELETE_FILE_CONTENTS

DELETE _FILE _CONTENTS
BACPF Subcommand

Purpose

Format

Parameters

Remarks

Deletes all cycles of a file.

DELETE _FILE _CONTENTS or
DELETE _FILE _CONTENT or
DELFC '

FILE =file

PASSWORD =keyword or name

STATUS =status variable

FILE or F

Specifies the file to be deleted. The cycle number is
ignored. This parameter is required.

PASSWORD or PW
Parameter Attributes: SECURE

Specifies the file password of the file to be deleted. This
name must match the password registered with the file.
Omission or specifying the keyword NONE causes no
password to be used.

© Only the owner of the file or a user with control and
read access permission and a share mode permission
that does not include modify, shorten, or append can
delete a file.

o DELETE_FILE__CONTENT skips a file cycle if the
file cycle is busy (that is, if it cannot access the file
with an access mode of read and a share mode of read
and execute).

e If a file cycle is in use at the time this subcommand
is entered, the actual delete is not done until the last
user detaches the file.

® Previous EXCLUDE _FILE,
EXCLUDE _HIGHEST_CYCLES,
INCLUDE _VOLUME, INCLUDE _LARGE _CYCLES,
and INCLUDE _CYCLES subcommands can be used to

specify a subset of the permanent file cycles to be
deleted.

© For more information, see the NOS/VE System Usage
manual.

8-6 NOS/VE Commands and Functions 60464018 J

EXCLUDE_CATALOG

Examples The following example deletes all cycles of permanent file
DATA _FILE _1 for the current user:

/bacpf backup_of_files
PUB/delete_file_contents $user.data_file_1

EXCLUDE _CATALOG
BACPF Subcommand

Purpose Excludes a catalog from subsequent backup and delete
operations.

Format EXCLUDE _CATALOG or
EXCC
CATALOG=file
STATUS =status variable

Parameters CATALOG or C

Specifies the catalog that is to be excluded from
subsequent backup and delete operations. This parameter
is required.

Remarks ® This subcommand takes precedence over all INCLUDE
subcommands.

® The catalog is excluded only if the subsequent backup
operation is at a higher level in the catalog hierarchy;
thus, you can override this subcommand by explicitly
backing up a catalog that is at a lower level in the
catalog hierarchy.

® For more information, see the NOS/VE System Usage
manual.

EXCLUDE _FILE
BACPF Subcommand

Purpose Excludes a file or cycle from subsequent backup and
delete operations.

Format EXCLUDE _FILE or
EXCF
FILE =file
STATUS =status variable

60464018 J BACKUP_PERMANENT_FILES 8-7

EXCLUDE _HIGHEST_CYCLES

Parameters

Remarks

FILE or F

Specifies the file or cycle that is to be excluded from

subsequent backup and delete operations. This parameter
is required.

® This subcommand takes precedence over all INCLUDE
subcommands.

® The file or cycle is excluded only if the subsequent
backup or delete operation is at a higher level in the
catalog hierarchy; thus, you can override this
subcommand by explicitly backing up the file or cycle.

® For more information, see the NOS/VE System Usage
manual.

EXCLUDE _HIGHEST_CYCLES
BACPF Subcommand

Purpose

Format

Parameters

Remarks

Causes the specified number of high (largest numbered)
cycles of permanent files to be excluded from subsequent
backup and delete operations.

EXCLUDE _HIGHEST_CYCLES or
EXCLUDE _HIGHEST_CYCLE or
EXCHC

NUMBER _OF _CYCLES =keyword or integer
STATUS =status variable

NUMBER _OF _CYCLES or NOC

Specifies the number of high cycles to be excluded. The
value must be an integer in the range from 0 through
999. Omission causes 3 to be used.

e This subcommand takes precedence over all INCLUDE
subcommands.

® For more information, see the NOS/VE System Usage
manual.

8-8 NOS/VE Commands and Functions 60464018 J

INCLUDE_CYCLES

Examples The following example excludes the highest cycle of each
file in a user's catalog from a subsequent
DELETE _CATALOG_CONTENTS command:

/bacpf bf=backup_of_files
PUB/exclude_highest_cycles noc=1
PUB/delete_catalog_contents $user

INCLUDE _CYCLES
BACPF Subcommand

Purpose Includes cycles in subsequent backup and delete operations
based on the creation date and time, last access date and
time, last modification date and time, or expiration date
of the cycle.

Format INCLUDE _CYCLES or
INCLUDE _CYCLE or
INCC :
SELECTION _CRITERIA =keyword
AFTER =date _time
BEFORE =date _time
STATUS =status variable
Parameters SELECTION _CRITERIA or SC

Specifies the selection criteria to be used in determining
which cycles will be backed up on subsequent backup and
delete operations. Choose one of the following:

ACCESSED (A)

Selects files based on the date and time they were last
accessed.

CREATED (C)

Selects files based on the date and time they were
created.

EXPIRED (E)

Selects files based on their expiration dates and times.

MODIFIED (M)

Selects files based on the date and time they were last
modified.

60464018 J BACKUP_PERMANENT_FILES 8-9

INCLUDE _EMPTY_CATALOGS

Remarks

IGNORE _DATE _TIME (IDT)

Do not select files based on a date and time. This
option turns off any criteria that may have been
selected in previous INCLUDE _CYCLES commands.

This parameter is required.

AFTER or A

Specifies the date and time after which the

SELECTION _CRITERIA operation must have occurred in
order for a file to be included in subsequent backup and
delete operations. If omitted, 1980-01-01.00:00:00.000 is
used.

BEFORE or B

Specifies the date and time before which the
SELECTION _CRITERIA operation must have occurred in
order for a file to be included in subsequent backup and
delete operations. If omitted, $NOW is used.

® The values specified on this command take precedence
over any previous calls to INCLUDE _CYCLES.

® For more information, see the NOS/VE System Usage
manual.

INCLUDE _EMPTY_CATALOGS
BACPF Subcommand

Purpose

Format

Parameters

Specifies whether or not subsequent
DELETE _CATALOG _CONTENTS subcommands should
delete empty catalogs.

INCLUDE _EMPTY_CATALOGS or
INCLUDE _EMPTY_CATALOG or
INCEC
DELETE _ CATALOGS =boolean
STATUS =status variable

DELETE _CATALOGS or DELETE _CATALOG or DC

Specifies whether or not empty catalogs encountered
during a subsequent DELETE _ALL_FILES or

DELETE _CATALOG_CONTENTS subcommand should be
deleted. Omission causes TRUE to used.

8-10 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

INCLUDE_LARGE_CYCLES

¢ This subcommand must be entered during a
BACKUP_PERMANENT_FILES command utility
session.

® If this subcommand is not issued prior to a
DELETE _ALL _FILES or
DELETE _CATALOG_CONTENTS subcommand, empty
catalogs are not deleted when those subcommands are
entered.

® For more information, see the NOS/VE System Usage
manual.

@ The following example deletes all catalogs in
subcatalog CATALOG_1 of a user's master catalog:

PUB/include_empty_catalogs
PUB/delete_catalog_contents ..
PUB../$user.catalog_1

® The following example saves empty catalogs from
being deleted for user DLH in family FAMILY1:

PUB/include_empty_catalogs dc=false
PUB/delete_catalog_contents :family1l.dlh

INCLUDE _LARGE _CYCLES
BACPF Subcommand

Purpose

Format

Parameters

60464018 J

Specifies that subsequent backup and delete operations
should include only permanent file cycles whose size is
greater than or equal to a specified number of bytes. An
excluded cycle is not backed up or deleted, regardless of
its size.

INCLUDE _LARGE _CYCLES or
INCLUDE _LARGE _CYCLE or
INCLC
MINIMUM _SIZE =integer
STATUS =status variable

MINIMUM _SIZE or MS

Specifies the minimum size in bytes of cycles included on
subsequent backup and delete operations. This parameter
is required.

BACKUP_PERMANENT_FILES 8-11

INCLUDE _SMALL_CYCLES

Remarks

Examples

For more information, see the NOS/VE System Usage
manual.

The following example backs up and deletes all cycles
greater than or equal to 1,000,000 bytes in size:

PUB/include_large_cycles ms=1000000
PUB/backup_catalog c=$user
PUB/delete_all_files

INCLUDE _SMALL _CYCLES
BACPF Subcommand

Purpose

Format

Parameters

Remarks

Examples

Specifies that subsequent backup and delete operations
should include only permanent file cycles whose size is
less than or equal to a specified number of bytes. An
excluded cycle is not backed up or deleted, regardless of
its size.

INCLUDE _SMALL _CYCLES or
INCLUDE _SMALL_CYCLE or
INCSC
MAXIMUM _SIZE =keyword or integer
STATUS =status variable

MAXIMUM _SIZE or MS

Specifies the maximum size in bytes of cycles included on
subsequent backup and delete operations. The keyword ‘
MAXIMUM specifies that no limit is placed on the size of
cycles included in subsequent backup commands. This
parameter is required.

For more information, see the NOS/VE System Usage
manual.

The following example backs up and deletes all cycles less
than or equal to 1,000,000 bytes in size:

PUB/include_small_cycles ms=1000000
PUB/backup_catalog c=$user
PUB/delete_all_files

8-12 NOS/VE Commands and Functions 60464018 J

INCLUDE_VOLUMES

INCLUDE _VOLUMES
BACPF Subcommand

Purpose

Format

Parameters

Remarks

60464018 J

Specifies which permanent file cycles included in a
specified volume are to be backed up or deleted by
subsequent backup operations.

INCLUDE _VOLUMES or

INCLUDE _VOLUME or

INCV
RECORDED _VSNS=list of: keyword or name
CYCLE _SELECTION =keyword
STATUS =status variable

RECORDED _VSNS or RECORDED _VSN or RVSN

Specifies the volumes to include; must be a name of from
1 to 6 characters or the keyword ALL. The

RECORDED _VSN specified when the volume was
initialized must be supplied. This parameter is’ required.

CYCLE _SELECTION or CS

Specifies which cycles on a volume should be backed up.
Options are:

INITIAL _VOLUME (IV)

Back up only the cycles whose beginning of
information (BOI) is on the volume. Cycles whose BOI
is on another volume are skipped.

MULTIPLE _VOLUMES (MV)

Back up all cycles which reside either partially or
completely on the volume.

If CYCLE _SELECTION is omitted,
MULTIPLE _VOLUMES is used.

@ The CYCLE_SELECTION parameter is ignored when
the keyword ALL is specified on the
RECORDED_VSN parameter.

e If you select the MULTIPLE _VOLUMES option and
cycles reside on more than one volume and each
volume is backed up by a different backup, then cycles
will be redundantly backed up. If the system fails due
to a permanent file device failure, you may reload the

BACKUP_PERMANENT_FILES 8-13

QUIT

lost cycles with the Permanent File Restore utility's
RESTORE _EXCLUDED _ FILE _CYCLES subcommand
on just the backup tapes containing the cycles of the
failed device.

® If you select the INITIAL _VOLUME option, data will
not be redundantly backed up. Hence, all volumes in a
backup must be read when a restore operation is done
after a device failure.

© For more information, see the NOS/VE System Usage
manual.

Examples The following example backs up all files that reside on
the disk volume VOLO033 and then deletes and restores
the files so that they are dispersed over all volumes in
the permanent file system:

/backup_permanent_f1iles bf=temp_backup
PUB/include_volume rvsn=VOL033 cs=mv
PUB/backup_catalog $user
PUB/delete_catalog_contents $user
PUB/quit

/restore_permanent_f1iles
PUR/restore_existing_catalog ..

PUR. ./$user bf=temp_backup

PUR/quit '

/

QUIT ,
BACPF Subcommand
Purpose Ends a BACKUP_PERMANENT_FILES utility session.

Format QUIT or
QUI

Parameters None.

Remarks For more information, see the NOS/VE System Usage
manual.

8-14 NOS/VE Commands and Functions 60464018 J

SET_BACKUP_OPTIONS

SET_BACKUP_OPTIONS
BACPF Subcommand

Purpose Specifies actions for the BACKUP_PERMANENT_FILE
utility.

Format SET_BACKUP_OPTIONS or

SET_BACKUP_OPTION or

SETBO
EXCLUDE _CATALOG _INFORMATION =boolean
NULL _BACKUP_FILE _OPTION =keyword
INCLUDE _ARCHIVE _INFORMATION = boolean
INCLUDE _DATA =list of keyword
STATUS =status variable

Parameters EXCLUDE _CATALOG _INFORMATION or ECI

Reserved for the site administrator's use. For more
information, see the NOS/VE System Performance and
Maintenance manual, Volunie 2.

NULL _BACKUP_FILE _OPTION or NBFO

Specifies whether to read file data backups to $NULL or
to any file assigned to the NULL device class. This
parameter has no effect unless $NULL is specified on the
BACKUP_FILE parameter of the
BACKUP_PERMANENT_FILES command. Specify one of
the following values:

READ _DATA or RD

Reads all file data when backing up to $NULL.

UNSPECIFIED

Does not read all file data when backing up to
$NULL, but generates a listing of the file base.

The default is the previously specified value for this
parameter. If none exists, the default is UNSPECIFIED.

INCLUDE _ARCHIVE _INFORMATION or IAI
Reserved for site personnel.

60464018 J BACKUP_PERMANENT_FILES 8-15

SET_BACKUP_OPTIONS

INCLUDE _DATA or ID

Specifies the file cycle data to include in the backup
based on archive status and storage location (disk or
archive medium). Specify one or more of the following
values:

UNRELEASABLE _DATA or UD

Includes data for file cycles never duplicated and for
file cycles modified since they were last duplicated.

RELEASABLE _DATA or RD

Includes data for file cycles not modified since they
were last duplicated.

OFFLINE _DATA or OD

Includes data for file cycles released from mass
storage and residing on an archive medium.

ALL

Includes data for all file cycles making no distinctions
based on archive status or storage location.

The default is UNRELEASABLE _DATA and
RELEASABLE _DATA.

Remarks © We recommend that you specify parameters by name
rather than by position (we anticipate adding
parameters at a future date).

@ When you specify
INCLUDE _DATA =0FFLINE _DATA, the system
retrieves archived file cycle data as it is attached for
the backup. The backup continues after the data is
retrieved, and the retrieved data is released from mass
storage immediately after it is backed up.

® For more information, see the NOS/VE System Usage
manual.

8-16 NOS/VE Commands and Functions 60464018 J

SET_LIST_OPTIONS

SET_LIST_OPTIONS
BACPF Subcommand

Purpose Specifies the information that is written to the list file by
subsequent subcommands.

Format SET_LIST_OPTIONS or
SET_LIST_OPTION or
SETLO
FILE _DISPLAY_OPTIONS =list of keyword
CYCLE _DISPLAY _OPTIONS =list of keyword
DISPLAY _EXCLUDED _ITEMS = boolean
STATUS =status variable

Parameters FILE _DISPLAY_OPTIONS or FILE _DISPLAY_OPTION
or FDO

Selects the data to be displayed with the file name.
Options are:

ACCOUNT (A)
Displays the account name.

PROJECT (P)
Displays the project name.

NONE
Displays only the file name.

ALL
Displays the account and project name.
Omission causes NONE to be used.

CYCLE _DISPLAY_OPTIONS or
CYCLE _DISPLAY_OPTION or CDO

Selects the data to be displayed for each cycle backed up.
The cycle number and whether the cycle was excluded is
also displayed. Options are:

ALL
Selects all of the following.

ACCESS_COUNT (AC)
Displays the number of accesses to the cycle.

60464018 J V BACKUP_PERMANENT_FILES 8-17

SET_LIST_OPTIONS

ACCESS _DATE _TIME (ADT)

Displays the date and time the cycle was last
accessed.

ALTERNATE _FILE _MEDIA _DESCRIPTOR (AFMD)
Displays archive information.

CREATION _DATE _TIME (CDT)
Displays the date and time the cycle was created.

EXPIRATION _DATE (ED)
Displays the expiration date of the cycle.

GLOBAL _FILE_NAME (GFN)

Displays the internally generated global file name.
This name is neither backed up nor restored.

MODIFICATION _DATE _TIME (MDT)

Displays the date and time the cycle was last
modified.

NONE
Displays the cycle number.

RECORDED _VSN (RVSN)

Displays all mass storage volumes on which the cycle

resides.

SIZE (S)

Displays the size of the cycle in bytes.
Omission causes (MODIFICATION _DATE _TIME, SIZE) to
be used.
DISPLAY_EXCLUDED _ITEMS or
DISPLAY_EXCLUDED _ITEM or DEI
Specifies whether excluded catalogs, files, and cycles are
displayed on the list file.

TRUE

The identification of all excluded catalogs, files, and
cycles is displayed. This is the default.

8-18 NOS/VE Commands and Functions 60464018 J

SET_LIST_OPTIONS

FALSE
Excluded items are not displayed.

Remarks For more information, see the NOS/VE System Usage
manual.

60464018 J BACKUP_PERMANENT_FILES 8-19

Build Software Utility 9

BUILD _SOFTWAREttt e 9-1
$ALTERNATE _SOURCE_LIBRARIEScooovuirinnnnn... 9-3
$BASE _SOURCE _LIBRARYttt 9-4
$BUILD _CATALOGottt i 9-4
S$BUILD _TARGET\ttt e 9-5
$BUILD _TARGET_KINDttt 9-6
$BUILD _TARGET_LAYERSottt 9-6
SCHANGED _DECKS . ..ottt e e e e 9-7
SCOMPOSITION .. .ottt e e e e e e e e 9-7
$COMPOSITION _MAP ..ottt 9-8
DEFINE _BUILD _TARGETottt 9-9
DEFINE _PARAMETER _LIST0turitiriiiiiiianeanns. 9-11
DEFINE _PROCESSOR ...ttt ittt e e 9-13
DEFINE _SOURCE_LIBRARIESoviviiiiiiiainnnn.. 9-14
SDEPENDENCES ..ottt it e e 9-15
SDISPLAY _OPTIONS ..ottt et e e et 9-16
SERRORS _FILE ...ttt e e 9-16
$EXTERNAL_SOURCE _LIBRARIESciviiiniinnnn.. 9-17
$INTERNAL_SOURCE _LIBRARIEScooiviinieninnennn.. 9-18
BLAYE RS ..ot 9-18
SOUTPUT_FILE ...\ttt et et et 9-19
$PARAMETER _LIST_VALUE ..ottt 9-19
$PROCESSOR _ATTRIBUTE ...ttt 9-20
QUIT _SAVE oottt e e 9-21
SET_BUILD _CATALOG . ..o\ttt et 9-21
$UNKNOWN _LIBRARY_ENTRIESccorvuiiiiniiiinnannnn. 9-22

60464018 J

Build Software Utility

BUILD _SOFTWARE
Command

Purpose

Format

Parameters

60464018 J

Initiates the Build Utility.

BUILD _SOFTWARE or

BUIS
INPUT=file
BUILD _TARGETS =keyword or list of file
DECKS =keyword or list of name
EXECUTE _TRANSFORMATIONS = boolean
DISPLAY _OPTIONS =list of keyword or keyword
OUTPUT =file
ERRORS =file
STATUS =status variable

INPUT or I

Specifies a file that describes your file system or library
to BU. This file may contain NOS/VE commands and BU
subcommands.

BUILD _TARGETS or BUILD _TARGET or BT

Specifies which build targets from the Input file should be
analyzed.

You can reference the build targets by name or use one
of the following keywords:

FIRST
Specifies the first build target in the Input file.

ALL
Specifies all build targets in the Input file.

DECKS or DECK or D
Specifies the decks to build.

You can specify a deck name, a list of deck names, or the
keyword ALL.

Build Software Utility 9-1

BUILD_SOFTWARE

ALL
Specifies all decks.

By default, BU determines which decks are out of date by
comparing the date/time stamp on the source deck with
the date/time stamp on the build target.

There are only three occasions when you will want to
specify this parameter.

© When you want a full build.

® When you know that a deck was changed in such a
way that the object code will not be affected. For
example, changing a comment in a program does not
affect the execution of the object code.

© When you know exactly which decks need to be built.

EXECUTE _TRANSFORMATIONS or ET

Specifies whether to execute the transformations for an
out-of-date build target.

This parameter accepts a boolean value. If you specify
FALSE, the transformations are not made. Only the
analysis phase of the build is executed. This allows you to
determine which decks would be built without actually
performing a build.

The default value is TRUE.

By specifying the DISPLAY_OPTIONS parameter, you can
cause BU to display the out-of-date build targets and the
reasons they were found to be out of date.
DISPLAY_OPTIONS or DO

Specifies the information to display about the build. BU
writes this information to the file specified by the
OUTPUT parameter.

Specify one of the following keys.

ANALYSIS_TRACE or AT
Writes the steps taken by BU during the build.

ANALYSIS _RESULTS or AR
Writes the results of the build.

9-2 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

$ALTERNATE _SOURCE _LIBRARIES .

NONE
Indicates that no information is written.
The default value is NONE.

OUTPUT or O

Specifies the name of the file to which the information
generated by the DISPLAY_OPTIONS parameter is
written.

The default value is $OUTPUT.

ERRORS or E

Specifies the name of the file to which error messages are
written.

The default value is SERRORS.

This is the only BU command that can be entered directly
from the command prompt.

The following example uses the BUILD _SOFTWARE
command to start BU. IFILE is the name of the BU Input
file.

/build_software input=ifile display_options=analysis_trace

or abbreviated,

/ouis ifile do=at

SALTERNATE _SOURCE _LIBRARIES
BUIS Function

Purpose

Format

Parameters

Remarks

60464018 J

Returns a list of the internal and external source libraries
excluding the first internal source library given.

$ALTERNATE _SOURCE _LIBRARIES or
$ASL

None.

If no alternate source libraries are specified, an empty list
is returned.

Build Software Utility 9-3

$BASE_SOURCE_LIBRARY

Examples The following example uses the
: $alternate _source _libraries function.

define_source_libraries..
internal_source_libraries=(1ib1,1ib2)

display_value $alternate_source_libraries
The result is:
:V01.kevin.1ib2

$BASE _SOURCE _LIBRARY
BUIS Function

Purpose Returns the name of the first internal source library
defined in the DEFINE _SOURCE _LIBRARY command.

Format. $BASE_SOURCE _LIBRARY or
$BSL

Parameters None.

Examples The following example uses the $base_source _library
function.

define_source_libraries..
internal_source_libraries=(1ib1,11b2)

display_value $base_source_library
The result is:

:V01.kevin.11b1

$BUILD _CATALOG
BUIS Function

Purpose Returns the name of the catalog used during the build.

Format $BUILD _CATALOG or
$BC

Parameters None.

94 NOS/VE Commands and Functions 60464018 J

Format $BUILD _TARGET or

$BUILD_TARGET

Remarks If the Input file does not specify the
SET_BUILD _CATALOG command, this function returns
the name of the working catalog established when BU
was initiated.

Examples The following example uses the $build _catalog function.

set_working_catalog..
working_catalog=$user.exmps

display_value $build_catalog
The result is:

:V01.kevin.exmps

$BUILD _TARGET
BUIS Function

Purpose Returns the name of the build target whose
transformation is currently executing.

$BT
Parameters None.
Examples The following example uses the $build__target function.

define_build_target..
build_target=target1..
build_target_kind=none. .

display_value $build_target

The result is:

:V01.kevin.target1

60464018 J Build Software Utility 9-5

$BUILD_TARGET_KIND

. $BUILD _TARGET_KIND
. BUIS Function

Purpose Returns the type of build target whose transformation is
currently executing.

. Format $BUILD _TARGET _KIND or
1 $BTK

Parameters None.

Examples The following example uses the $build _target_kind
function.

define_build_target..
build_target=1ibi..
build_target_kind=object_1library

display_value $build_target_kind
The result is:

object_1library

: $BUILD _TARGET _LAYERS

BUIS Function

Purpose Returns the file reference for every layer of the specified
build target.

Format $BUILD _TARGET_LAYERS or
$BTL
(BUILD _TARGET: file)

Parameters BUILD _TARGET

Specifies the build target to use.

If the specified file is not a build target, the function
returns the file that was given. If no file is specified, the
function returns the name of the build target whose
transformation is currently executing.

96 NOS/VE Commands and Functions 60464018 J

$CHANGED_DECKS

$CHANGED _DECKS
BUIS Function

Purpose Returns the names of the expandable decks that compose
the build target whose transformation is currently
executing.

Format $CHANGED _DECKS or
$CD

Parameters None.

Remarks The value returned depends on the value of the DECKS
parameter of the BUILD _SOFTWARE command. If ALL
was specified, the function returns a list of all decks in
the current build target. If no value for the DECKS
parameter was specified, the function returns a list of
decks from the current build target that are out of date.
If a deck name or list of decks was specified in the
DECKS parameter, the function returns a list of these
decks.

Examples The following example uses the $changed__decks function.

build_software i=infile d=(deck1 deck2 deck3)

display_value $changed_decks
The result is:

deck1
deck2
deck3

$COMPOSITION
BUIS Function

Purpose Returns a list of all decks that comprise the build target
whose transformation is currently executing.

Format $COMPOSITION or
$C

Parameters None.

60464018 J Build Software Utility 9-7

$COMPOSITION_MAP

If the COMPOSITION parameter on the

Remarks
DEFINE _BUILD _TARGET command was not specified,
no value is returned.
Examples The following example uses the $composition function.
define_build_target..
build_target=target1..
build_target_kind=0L..
composition="incd d=(deck! deck2)”..
display_value $composition
The result is:
deck 1
deck2
. $SCOMPOSITION _MAP
BUIS Function
. Purpose Returns a list of the decks and their corresponding object
: library entries that comprise the build target whose
transformation is currently executing.
. Format $COMPOSITION _MAP or
$CM
Parameters None.
Remarks If the COMPOSITION _MAP parameter on the
DEFINE _BUILD_TARGET command was not specified,
an empty list is returned.
. Examples This example uses the following composition map file:

deck1 ent1t
deck2 ent2
deck3 ent3

display_value $composition_map

The result is:

9-8 NOS/VE Commands and Functions 60464018 J

DEFINE_BUILD_TARGET

deck1
ent1
deck?2
ent2
deck3

DEFINE _BUILD _TARGET
BUIS Subcommand

Purpose Defines a build target by specifying the files it depends
on and the transformation to be performed when the
target is found to be out of date.

Format DEFINE _BUILD _TARGET or
DEFBT
BUILD _TARGET=file
BUILD _TARGET _KIND =keyword or name
DEPENDENCES =list of file
COMPOSITION =keyword or file or string
COMPOSITION _MAP=file
LAYERS =list of file
TRANSFORMATION =keyword or file or string
STATUS =status variable

Parameters BUILD _TARGET or BT

Specifies the build target name. A file name or library
must be specified.

BUILD _TARGET _KIND or BTK
Specifies the type of the build target.

Specify an appropriate name or one of the following
keywords:

OBJECT_LIBRARY or OL

Indicates that the build target type is an object
library.

NONE
No type is assigned to the build target.

DEPENDENCES or D
Specifies a list of files that the build target depends upon.

Files that are specified in this parameter can also be
build targets.

60464018 J Build Software Utility 9-9

- DEFINE _BUILD_TARGET

If omitted, BU assumes that the build target is dependent

on decks rather than files and uses the COMPOSITION
parameter to determine the decks.

COMPOSITION or C

Specifies the expandable decks that compose the build
target.

Specify a string or a file containing SCU selection criteria
commands, or the following keyword:

MAPPED _DECKS_ONLY or MDO

Indicates that the build target is only dependent on
the decks specified by the COMPOSITION _MAP
parameter.

If omitted, BU assumes that the build target is dependent
on files rather than decks and uses the DEPENDENCES
parameter to determine the files.

COMPOSITION _MAP or CM

Specifies a file containing a list of source decks mapped to
object library entries. Each mapping has the following
format:

deck:name=$required object_library_entry:name=$required

If omitted, the name in the object library matches the
name . of the deck. -

LAYERS or L

Specifies a list of files that comprise the layers of a
system. These layers are searched in order starting with
the build target itself to find the first occurrence of a
module. BU uses this module as the basis for its analysis.

TRANSFORMATION or T

Specifies the transformation to perform when the build
target is out of date.

Specify a string or file which contains one or more SCL
commands, or the following keyword:

9-10 NOS/VE Commands and Functions 60464018 J

DEFINE_PARAMETER_LIST

DEFAULT or D

- Specifies that transformation is determined by the
BUILD _TARGET_KIND parameter. In order to use
DEFAULT for the TRANSFORMATION parameter, the
BUILD _TARGET_KIND must not be NONE.

Remarks ® This command can only be used in a BU Input file.

® A build target can be any file, including an object
library.

© A build target can be dependent on other build
targets.

® You must specify either the DEPENDENCES
parameter or the COMPOSITION parameter on this
command.

Examples The following example defines a build target named
targetl as an object library.

define_build_target..
build_target=target1..
build_target_kind=object_library..
composition="incd d=(deck1 deck2 deck3)”..
transformat ion=default

or abbreviated,

defbt..
bt=target1..
btk=o1l..
c="incd d=(deck1 deck2 deck3)’..
t=default

DEFINE _PARAMETER _LIST
BUIS Subcommand

Purpose Defines the parameters to pass to the specified processor
during a transformation.

60464018 J Build Software Utility 9-11

DEFINE _PARAMETER_LIST

Format

Parameters

Remarks

Examples

DEFINE _PARAMETER _LIST or
DEFPL
PARAMETER _LIST _NAME =name
PARAMETER _LIST =string
PROCESSOR =name
STATUS =status variable

PARAMETER _LIST _NAME or PLN

Specifies a name to associate with the parameter list. The
name must be unique to this parameter list.

The default value is the name DEFAULT.

PARAMETER _LIST or PL

Specifies a string containing the parameters to pass to a
given processor.

PROCESSOR or P

Specifies a processor to associate with the parameter list.
The processor specified in this parameter must be defined
with a DEFINE _PROCESSOR command prior to being
referenced by this parameter.

® This command can only be used in a BU Input file.

The following example defines a parameter list to pass to
the COBOL processor:

def ine_parameter_list..
parameter_list_name=plist1..
parameter_list=’i=compile bo=object_file’..
processor=cobol

or abbreviated,

defpl..
pin=plist1..
pl=’i=compile bo=object_file’..
p=cobol

9-12 NOS/VE Commands and Functions 60464018 J

DEFINE _PROCESSOR

DEFINE _PROCESSOR
BUIS Subcommand

Purpose

Format

Parameters

Remarks

Examples

60464018 J

Defines a processor to use during the execution of a
transformation.

DEFINE _PROCESSOR or

DEFP
PROCESSOR =name
PREPROCESSOR =keyword or name
DEFAULT _PARAMETER _LIST =name
STATUS =status variable -

PROCESSOR or P
Specifies the name of the processor to define.

PREPROCESSOR or PP

Specifies a preprocessor to use prior to executing the
processor. A preprocessor prepares the source text for the
main processor. An example of a preprocessor is DMFPC,
which converts all the embedded DM commands in source
code to FORTRAN code.

The default is NONE.

DEFAULT _PARAMETER _LIST or DPL

Specifies the name of the default parameter list to use for
the processor. BU uses this parameter list when the
processor attribute of a deck header is not specified.

The parameter list must be defined using the
DEFINE _PARAMETER _LIST command.

By default, BU uses the parameter list name DEFAULT.
® This command can only be used in a BU Input file.

© This command must be specified before specifying the
DEFINE _ PARAMETER _LIST command.

The following example defines a COBOL processor and
uses the default parameter list PLIST1:

define_processor..
processor=cobol..
default_parameter_list=plist1

or abbreviated,

Build Software Utility 9-13

DEFINE_SOURCE_LIBRARIES

defp..
p=cobol..
dpl=plist

. DEFINE _SOURCE _LIBRARIES
BUIS Subcommand

. Purpose Specifies the internal and external source libraries to use
during the build.

Format DEFINE _SOURCE _LIBRARIES or
DEFSL
INTERNAL _SOURCE _LIBRARIES =list of file
EXTERNAL _SOURCE _LIBRARIES =list of file
ANALYZE _EXTERNAL _SOURCE =boolean
- DEFAULT _PROCESSOR =name
STATUS =status variable

Parameters INTERNAL_SOURCE _LIBRARIES or ISL

Specifies one or more source libraries to use during the
build. BU searched these libraries in the order they are
specified.

EXTERNAL _SOURCE _LIBRARIES or ESL

Specifies one or more source libraries containing decks
that are external to the system being built, but are
referenced by internal decks. BU searches these libraries
in the order they are specified.

ANALYZE _EXTERNAL _SOURCE or AES

Specifies whether to include the external decks in the
dependency analysis.

The default is FALSE.

DEFAULT _PROCESSOR or DP

Specifies the processor to use during a build when the
processor attribute in a deck header is undefined.

The processor must be defined using the
DEFINE _PROCESSOR command prior to being referenced
by this parameter.

If omitted, the processor is defined by each deck's
PROCESSOR attribute.

9-14 NOS/VE Commands and Functions 60464018 J

$DEPENDENCES

Remarks ® This command can only be used in a BU Input file.

@ This command is a required component of the Input
file when any of the build targets are defined as object
libraries.

Examples The following example defines a source library called
source _lib and specifies COBOL as the default processor:

define_source_libraries..
internal_source_libraries=source_1lib..
default_processor=cobol

or abbreviated,

defsl..
isl=source_lib..
dp=cobol

$DEPENDENCES
BUIS Function

Purpose Returns the list of files that the build target whose
transformation is currently executing depends upon.

Format $DEPENDENCES or
$D
(KIND: keyword)
Parameters KIND
' Specifies the files to return.
Specify one of the following keywords:

YOUNGER_THAN _TARGET or YTT

Returns only files that are younger than the target
(the changed files).

ALL

Returns all files referenced in the DEPENDENCES
parameter.

The default is YOUNGER _THAN _TARGET.

60464018 J Build Software Utility 9-15

$DISPLAY_OPTIONS

. Examples The following example uses the $dependences function.

define_build_target..
build_target=targeti..
build_target_kind=none..
dependences=(filel file2)

display_value $dependences
The result is:

:V01.kevin.file1l
:V01.kevin.file2

$DISPLAY_OPTIONS
BUIS Function

Purpose Returns the display option specified for the build.

Format $DISPLAY_OPTIONS or
$DO

Parameters None.

Remarks If no display options were specified, an empty list is
returned.

$ERRORS _FILE
BUIS Function

Purpose Returns the name of the file containing the error
messages from the build.

Format $ERRORS _FILE or
$EF

Parameters INone.

9-16 NOS/VE Commands and Functions 60464018 J

Examples

$EXTERNAL_SOURCE _LIBRARIES

The following example assumes that no errors file was
specified on the BUILD _SOFTWARE command.

display_value $errors_file
The result is:

:$local.serror.1

S$EXTERNAL _SOURCE _LIBRARIES
BUIS Function

Purpose

Format

Parameters

Remarks

Examples

60464018 J

Returns a list of external source libraries specified for the
build.

$EXTERNAL _SOURCE _LIBRARIES or
$ESL

None.

If no external source libraries are specified, an empty list
is returned.

The following example uses the
$external _source _libraries function.

define_source_libraries..
internal_source_libraries=slib..
external_source_libraries=(1ib3 1ib4)..

display_value $external_source_libraries
The result is:

:V01.kevin.1ib3
:V01.kevin.lib4g

Build Software Utility 9-17

$INTERNAL_SOURCE _LIBRARIES

$INTERNAL _SOURCE _LIBRARIES
BUIS Function

Purpose Returns a list of internal source libraries specified for the
build.
Format S$INTERNAL _SOURCE _LIBRARIES or
$ISL
Parameters None.
Examples The following example uses the $internal _source _libraries
function.
define_source_libraries..
internal_source_libraries=slib..
external_source_libraries=(1ib3 1ib4)..
display_value $internal_source_libraries
The result is:
:V01.kevin.slib
S$LAYERS

BUIS Function

Purpose

Format

Parameters
Remarks

Examples

Returns a list of files that comprise the layers of the
build target whose transformation is currently executing.

$LAYERS or
$L

None.
If no layers are specified, an empty list is returned.
The following example uses the $layers function.
define_build_target..
build_target=target1..

build_target_kind=object_library..
layers=(filel file2)

9-18 NOS/VE Commands and Functions 60464018 J

$OUTPUT_FILE

display_value $layers
The result is:

:V01.kevin.filel
:V01.kevin.file2

$OUTPUT_FILE
BUIS Function

Purpose Returns the name of the output file specified for the
build.

Format $OUTPUT_FILE or
$OF

Parameters None.
Remarks If no output file is specified, $OUTPUT is returned.

Examples The following example assumes that no output file was
specified on the BUILD _SOFTWARE command.

disptay_value $output_file
The result is:

:$local.$output .1

$PARAMETER _LIST_VALUE
BUIS Function

Purpose Returns a string containing the list of parameters to pass
to the processor.

Format $PARAMETER _LIST_VALUE or
$PLV
(PROCESSOR: keyword or name
PARAMETER _LIST_NAME: keyword or name)

60464018 J Build Software Utility 9-19

$PROCESSOR _ATTRIBUTE

Parameters PROCESSOR

Specifies the name of the processor to use. To use the
default processor established for this build, specify the
keyword DEFAULT_PROCESSOR.

PARAMETER _LIST _NAME

Specifies the name of the parameter list. To use the
default parameter list for the specified processor, specify
the keyword DEFAULT_PARAMETER _LIST. ‘

Examples The following example uses the $parameter _list _value
function:

display_value $parameter_list_value(expand_source default)

The result is:

d=$changed_decks b=$base_source_library ab=$alternate_source_libraries 1=
$output_file e=Serrors_file

$PROCESSOR _ATTRIBUTE
BUIS Function

Purpose Returns the name of the preprocessor or the default
parameter list for the specified processor.

Format $PROCESSOR _ATTRIBUTE or
$PA
(PROCESSOR: name
. ATTRIBUTE: keyword)
. Parameters PROCESSOR

Specifies the name of the processor.

ATTRIBUTE
Specifies the processor attribute.
Enter one of the following keywords:

PREPROCESSOR or PP

Returns the name of the preprocessor associated with
the specified processor. If the processor does not have
a preprocessor assigned to it, NONE is returned.

9.20 NOS/VE Commands and Functions 60464018 J

Examples

QUIT_SAVE

DEFAULT_PARAMETER _LIST or DPL

Returns the name of the default parameter list for the
specified processor. If no default parameter list is
specified, UNDEFINED is returned.

The following example uses the $processor _attribute
function.

display_value $processor_attribute(expand_source default_parameter_list)

The result is:

default

QUIT_SAVE
BUIS Subcommand

Purpose

Format

Ends the BU session.

QUIT_SAVE or
QUI or
QUIT or
QUIS
STATUS =status variable

SET_BUILD _CATALOG
BUIS Subcommand

Purpose

Format

Parameters

Remarks

60464018 J

Specifies the catalog to use during the build.

SET_BUILD _CATALOG or
SETBC
BUILD _CATALOG=file
STATUS =status variable
BUILD _CATALOG or BC
Specifies the full path name of the catalog to use during
the build.

o If you omit this command, the catalog that was active
when BU was initiated is used.

® This command can only be used in a BU Input file.

Build Software Utility 9-21

$UNKNOWN _LIBRARY_ENTRIES
: $UNKNOWN _LIBRARY_ENTRIES
~ BUIS Function

Purpose Returns a list of all object library modules for which no
source deck is present in the build target.

© Format $UNKNOWN _LIBRARY_ENTRIES or
f $ULE

i Parameters None.

Remarks If no unknown library modules are found, an empty list is
: returned.

9-22 NOS/VE Commands and Functions 60464018 J

CHANGE _KEYED _FILE and

. CREATE _KEYED _FILE 10
CHANGE _KEYED _FILE ...\ttt e 10-1
CREATE _KEYED _FILE 0t 10-2

. ADD_RECORDS ..\ttt 10-4
COMBINE _RECORDSttt et 10-6
CREATE _ALTERNATE _INDEXES0ttt 10-8
CREATE _NESTED _FILE ...ttt 10-9
DELETE _NESTED _FILEot 10-14
DELETE _RECORDS ...ttt e 10-15
DISPLAY_NESTED _FILEttt 10-17
DISPLAY_RECORDS ...ttt e 10-19
EXTRACT_RECORDS ...\ttt e 10-22
1 31.) 1 - N 10-23
(4] 81 4 10-24
REPLACE _RECORDSveitit e, 10-25
SELECT_NESTED _FILE ...ttt e, 10-27

60464018 J

CHANGE _KEYED _FILE and
CREATE _KEYED _FILE 10

"CHANGE _KEYED _FILE
Command

Purpose Begins a CHANGE _KEYED_FILE utility session.

Format CHANGE _KEYED _FILE or
CHANGE _KEYED _FILES or
CHAKF
INPUT =file
OUTPUT=file'
STATUS =status variable

Parameters INPUT or 1

File path of an existing keyed file. If an output file is
specified, the input file is opened and copied to the output
file and then closed.

This parameter is required.

OUTPUT or O

File path of the keyed file to which the input keyed file
is copied. The output file must be a duplicate of the input
file. If the output file does not exist, the command creates
it.

If an output file is specified, only the output file is
changed. If OUTPUT is omitted, the input file is changed.

Remarks 0 The command utility prompt is:
chakf/

In response to the chakf/ prompt, you can enter SCL
commands and any of these subcommands:

ADD_RECORDS
REPLACE _RECORDS
COMBINE _RECORDS
EXTRACT_RECORDS
DELETE _RECORDS
CREATE _NESTED _FILE
SELECT_NESTED _FILE
DELETE _NESTED _FILE

60464018 J CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-1

CREATE_KEYED_FILE

DISPLAY_NESTED_FILE
CREATE _ALTERNATE _INDEXES
HELP

QUIT

® All subcommands in the session apply to the currently
selected nested file. The initially selected nested file is
$MAIN _FILE. The nested file selection can be
changed by a CREATE _NESTED _FILE or
SELECT_NESTED _FILE subcommand.

o If the existing keyed file or a new nested file to be
created uses a user-defined collation table, hashing
procedure, or compression procedure, the object library
containing the compiled table or procedure must be in
the program library list before the
CHANGE _KEYED_FILE session begins.

To add one or more object libraries to the program
library list, use the ADD_LIBRARIES parameter on.a
SET_PROGRAM ATTRIBUTES command. For
example:

set_program_attributes, add_library=$user.hash_1ibrary

© For more information, see the NOS/VE Advanced File
Management Usage manual.

Examples The following session copies an existing keyed file and
then ends. '
/change_keyed_file, input=$user.existing_keyed_file, ..
../output=$user.new_keyed_f ile

chakf/quit
/

CREATE _KEYED _FILE
Command

Purpose Begins a CREATE _KEYED _FILE utility session.

Format CREATE _KEYED _FILE or
CREATE _KEYED _FILES or
CREKF
OUTPUT=file
STATUS =status variable

10-2 NOS/VE Commands and Functions 60464018 J

CREATE_KEYED_FILE

Parameters OUTPUT or O

File path of the keyed file to be created. The keyed-file
attributes must already be specified by
SET_FILE _ATTRIBUTES commands.

This parameter is required.

The minimum attributes that must be defined are
KEY_LENGTH and MAXIMUM _RECORD _LENGTH. If
the FILE _ORGANIZATION is omitted,

CREATE _KEYED_FILE creates an indexed-sequential
file.

Remarks ® The command utility prompt is:
crekf/

In response to the crekf/ prompt, you can enter SCL
commands and any of these subcommands:

ADD _RECORDS
REPLACE _RECORDS
COMBINE _RECORDS
EXTRACT_RECORDS
DISPLAY_RECORDS
DELETE _RECORDS
CREATE _NESTED _FILE
SELECT_NESTED _FILE
DELETE _NESTED _FILE
DISPLAY_NESTED _FILE
CREATE _ALTERNATE _INDEXES
HELP

QUIT

© The new keyed file is created with one nested file,
named $MAIN _FILE. It is the initially selected nested
file and all subcommands apply to it until a
CREATE _NESTED _FILE or SELECT_NESTED_FILE
subcommand selects another nested file.

© If any nested file in the new keyed file uses a
user-defined collation table, hashing procedure, or
compression procedure, the object library containing
the compiled table or procedure must be in the
program library list before the
CREATE _KEYED_FILE session begins.

60464018 J CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-3

ADD_RECORDS

Examples

To add one or more object libraries to the program '
library list, use the ADD_LIBRARIES parameter on a
SET_PROGRAM _ ATTRIBUTES command. For
example:

set_program_attributes, add_library=$user.hash_1ibrary

o If you specify DIRECT_ACCESS as the
- FILE _ORGANIZATION attribute on the
SET_FILE _ATTRIBUTES command, but omit the
INITIAL _HOME _BLOCK _COUNT attribute,
CREATE _KEYED _FILE prompts you for calculation
of the INITIAL_HOME _BLOCK _COUNT.

® For more information, see the NOS/VE Advanced File
Management Usage manual.

This CREATE _KEYED _FILE example defines the file
$USER.INDEXED _SEQUENTIAL _FILE with the
SET_FILE _ATTRIBUTES command and then creates it.

/set_file_attributes, file=$user. indexed_sequential_file ..
../file_organization=indexed_sequential ..
../maximum_record_length=32, minimum_record_length=14 ..
../key_length=14

/create_keyed_file, output=$user. indexed_sequential_file
crekf/

ADD _RECORDS
CHAKF and CREKF Subcommand

Purpose

Format

Parameters

Adds records to the currently selected nested file.

ADD _RECORDS or

ADD _RECORD or

ADDR
INPUT=list of record
SORT =boolean
ERROR _LIMIT =integer
STATUS =status variable

INPUT or 1

List of one or more files whose records are to be copied.
You must have at least read access to the files. This
parameter is required.

To specify a nested file in a keyed file, enclose all
elements of the list in parentheses. An element can be
specified in one of the following ways:

104 NOS/VE Commands and Functions 60464018 J

ADD_RECORDS

@ Enclose the file reference followed by the nested-file
name in parentheses, or

® Enclose a comma followed by the nested-file name in
parentheses. In this case, the file reference is the
keyed file specified on the command utility (CREKF or
CHAKF). Or

® Enclose a single comma in parentheses. In this case,
the file reference is the keyed file specified on the
command utility (CREKF or CHAKF), and the
nested-file name specifies $MAIN _FILE.

SORT or S

Indicates whether the records are sorted before they are
added to the file. (Sorting is recommended for better file
performance.)

TRUE, ON, or YES

The records from the input file list are copied to a
temporary file and sorted. Records for an
indexed-sequential file are sorted by their primary-key
value; records for a direct-access file are sorted by
their hash value.

FALSE, OFF, or NO

The records are copied to a temporary file, but are not
sorted.

If SORT is omitted, the default is TRUE.

ERROR _LIMIT or EL

Number of nonfatal errors required to force termination of
the add (0 through 65535). A 0 sets an unlimited error
limit. .

If ERROR _LIMIT is omitted, 0 is used.

Remarks For more information, see the NOS/VE Advanced File
Management Usage manual.

60464018 J CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-5

COMBINE_RECORDS

Examples This Create _Keyed _File example creates the file
$USER.INDEXED _SEQUENTIAL _FILE, adds the records
of file $USER.ADD_RECORDS to it, and then displays
the file.

/set_file_attributes ..

../file=$user. indexed_sequential_file ..
../file_organization=indexed_sequential ..
.. /max imum_record_length=32 ..
../minimum_record_length=14 ..

. ./key_length=14

/create_keyed_file ..
.. /output=8$user. indexed_sequential_file
crekf/add_records input=$user.add_records

crekf/display_records count=all

Display_Nested_File 1986-02-17
NOS/VE Keyed File Utilities 1.2 85357 11:19:36
File = :NVE.USERS9. INDEXED_SEQUENTIAL_FILE.1
Display of records in SMAIN_FILE

Byte: 0 ASCII: Everest Asia 8848
Byte: 0 ASCII: K2 Asia 861
Byte: 0 ASCII: Kilimanjaro Africa 5895
Byte: 0 ASC11: Matterhorn Europe 4478
Byte: 0 ASCII: McKinley North America 6194
crekf/

COMBINE _RECORDS

CHAKF and CREKF Subcommand

Purpose Combines additional records with the records in the
currently selected nested file.

Format COMBINE _RECORDS or
COMBINE _RECORD or
COMR
INPUT =list of record
SORT =boolean
ERROR _LIMIT =integer
STATUS =status variable

Parameters INPUT or I

List of one or more files whose records are to be copied.
You must have at least read access to the files. This
parameter is required.

To specify a nested file in a keyed file, enclose all
elements of the list in parentheses. An element can be
specified in one of the following ways:

o Enclose the file reference followed by the nested-file
name in parentheses, or

10-6 NOS/VE Commands and Functions 60464018 J

COMBINE_RECORDS

® Enclose a comma followed by the nested-file name in
parentheses. In this case, the file reference is the
keyed file specified on the command utility (CREKF or
CHAKEF). Or

® Enclose a single comma in parentheses. In this case,
the file reference is the keyed file specified on the
command utility (CREKF or CHAKF), and the
nested-file name specifies $MAIN _FILE.

SORT or S

Indicates whether the input records are sorted before they
are combined. (Sorting is recommended for better file
performance.)

TRUE

The records from the input file list are copied to a
temporary file and sorted. Records for an
indexed-sequential file are sorted by their primary-key
value; records for a direct-access file are sorted by
their hash value.

FALSE

The records are copied to a temporary file, but are not
sorted.

If SORT is omitted, the default is TRUE.

ERROR _LIMIT or EL

Number of nonfatal errors required to force termination of
the combine (0 through 65535). A 0 sets an unlimited
error limit.

If ERROR _LIMIT is omitted, 0 is used.

Remarks For more information, see the NOS/VE Advanced File
Management Usage manual.

60464018 J CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-7

CREATE _ALTERNATE _INDEXES

Examples This Create _Keyed _File example adds records that have
a new primary key and replaces records that have an
existing primary-key value.

/copy_keyed_file_add_file

Everest Africa 8800
- K2 Asia 8611
Kilimanjaro Africa 5895
/copy_keyed_file combine_file
Everest Asia 8348
Matterhorn Europe 4478
McKinley North America 6194

/create_keyed_file ..
.. /output=$user. indexed_sequent ial_f ile
crekf/add_records input-$user.add_file
crekf/combine_records input=$user.combine_file
crekf/display_records count=all
Display_Nested_File 1986-02-17
NOS/VE Keyed File Utilities 1.2 85357 . 12:01:46
File =:NVE.USER99. INDEXED_SEQUENTIAL_FILE.1
Display of records in SMAIN_FILE

Byte: 0 ASCI1: Everest Asia 8848
Byte: 0 ASCII: K2 X Asia 8611
Byte: 0 ASCII: Kilimanjaro Africa 5885
Byte: 0 ASCII: Matterhorn Europe 4478
Byte: 0 ASCII: McKinley North America 6194
crekf/

CREATE _ALTERNATE _INDEXES
CHAKF and CREKF Subcommand

Purpose Initiates execution of thé
CREATE _ALTERNATE _INDEXES command utility.

Format CREATE _ALTERNATE _INDEXES or
CHANGE _ALTERNATE _INDEX or
CHANGE _ALTERNATE _INDEXES or
CHANGE _ALTERNATE _INDICES or
CREALI or
CREATE _ALTERNATE _INDEX or
CREATE _ALTERNATE _INDICES or
CHAAI

STATUS =status variable

Remarks ® The subutility prompt is:
creai/

In response to the creai/ prompt, you can enter
NOS/VE commands and any of these subcommands:

CREATE _KEY_DEFINITIONS

10-8 NOS/VE Commands and Functions 60464018 J

CREATE _NESTED_FILE

DISPLAY_KEY_DEFINITIONS
DELETE _KEY_DEFINITIONS
CANCEL_KEY_DEFINITIONS
APPLY_KEY_DEFINITIONS
HELP

QUIT

® For more information, see the NOS/VE Advanced File
Management Usage manual.

Examples The following subutility session creates an alternate-key
definition and then displays it.

crekf/creat_alternate_indexes

creai/create_key_def initions ..

creai../Key_name=alternate_key_1 ..

creai../key_position=28 key_length=4

creai/display_key_definitions display_options=all

Display_Nested_File 1986-02-17
NOS/VE Keyed File Utilities 1.2 86034 12:20:26
File = :NVE. INDEXED_SEQUENTIAL_FILE
Nested_File_Name

KEY_NAME POSITION LENGTH TYPE STATE
ALTERNATE _KEY_1 28 4 uncollated creation pending
Duplicate_Key_value : not_allowed

Null_Suppression : no

RECORD 1 ...(in ascii) :Everest Asia

(in hex) :45766572657374202020202020204 1736961202020202020

ALTERNATE_KEY_1

(in ascii) : 88438
(in hex) :2020202038383438
> u_b_b_u_
creai/
CREATE _NESTED _FILE

CHAKF and CREKF Subcommand
Purpose Creates and selects a new nésted file.

Format CREATE _NESTED _FILE or
CRENF
NAME =name
KEY_LENGTH =integer
KEY _POSITION =integer
KEY_TYPE =keyword
MAXIMUM _RECORD _LENGTH =integer
COLLATE _TABLE _NAME =name
COMPRESSION _PROCEDURE _NAME =keyword or

60464018 J CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-9

CREATE _NESTED_FILE

Parameters

entry _point _reference
DATA _PADDING =integer
DYNAMIC _HOME _BLOCK _SPACE =boolean
EMBEDDED _KEY =boolean
FILE _ ORGANIZATION =keyword
HASHING _PROCEDURE _NAME = keyword or
entry _point _reference
INDEX _PADDING =integer
INITIAL _HOME _BLOCK _COUNT =integer
LOADING _FACTOR =integer
MINIMUM _RECORD _LENGTH =integer
RECORDS _PER _BLOCK =integer
RECORD _TYPE =keyword
STATUS =status variable

NAME or N

Name of the new nested file. It must be unique in the
keyed file.

This parameter is required.

KEY_LENGTH or KL

Primary-key length in bytes (for integer keys, 1 through
8; for character keys from 1 through 255).

This parameter is required.

KEY_POSITION or KP

Position of the leftmost byte of the primary key (specified
only if the key is embedded). The byte positions in a
record are numbered from the left, from 0 through 65535,
beginning with 0.

If KEY_POSITION is omitted, the default is 0.

KEY_TYPE or KT
Primary key type.

UNCOLLATED or UC

Key values ordered byte-by-byte according to the
ASCII collating sequence.

INTEGER or I
Key values ordered numerically as integer values.

10-10 NOS/VE Commands and Functions 60464018 J

60464018 J

CREATE _NESTED_FILE

COLLATED or C

Key values ordered byte-by-byte according to the
collating sequence specified by the

COLLATE _TABLE _NAME parameter (invalid if
FILE _ORGANIZATION =DIRECT_ACCESS).

If KEY_TYPE is omitted, the default is UNCOLLATED.

MAXIMUM _RECORD _LENGTH or MAXRL

Maximum number of bytes of data in a record (1 through
65497).

This parameter is required.

COLLATE _TABLE _NAME or CTN

Name of the collating sequence used to sort the primary
key (indexed-sequential files only).

This parameter is required if the KEY_TYPE is
COLLATED.

COMPRESSION _PROCEDURE _NAME or CPN

Name

Data compression or encryption procedure used with
the nested file. The name can be either the name of

the system-defined compression procedure
(AMP$RECORD _ COMPRESSION or the name of an
entry point in the current program library list.

NONE

No compression procedure is used with the nested file.
If COMPRESSION _PROCEDURE _NAME is omitted, the
nested file does not use a compression procedure.

DATA _PADDING or DP

Percentage of data block space left empty when the
indexed-sequential file is created (integer from 0 through
99).

The percentage must allow for storage of at least one
maximum-length record per block.

If DATA _PADDING is omitted, the default is 0.

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-11

CREATE _NESTED_FILE

DYNAMIC _HOME _BLOCK _SPACE or DHBS

This parameter is reserved for future use. Its default
value is FALSE.

EMBEDDED _KEY or EK
Indicates whether the primary-key value is embedded in
the record data.

TRUE, ON, or YES

Primary-key value is embedded in the record data.

FALSE, OFF, or NO
Primary-key value is not part of the record data.
If EMBEDDED _KEY is omitted, the default is TRUE.

FILE _ORGANIZATION or FO
Keyed-file structure used.

INDEXED _SEQUENTIAL or IS

Data records accessed by searching for the primary-key
value in a hierarchical index.

DIRECT_ACCESS or DA
Data record block accessed directly by hashed
primary-key value.

If FILE _ORGANIZATION is omitted, the default is
INDEXED_SEQUENTIAL.

HASHING _PROCEDURE _NAME or HPN

Name

Hashing procedure to be executed for the direct-access
file.

NONE

No hashing procedure is executed with this
direct-access file.

If HASHING _PROCEDURE _NAME is omitted, the
default is the system-provided hashing procedure (named
AMP$SYSTEM _HASHING _PROCEDURE).

10-12 NOS/VE Commands and Functions 60464018 J

CREATE _NESTED_FILE

INDEX _ PADDING or IP

Percentage of index block space left empty when the
indexed-sequential file is created (integer from 0 through
99).

The percentage must allow for storage of at least one
index record per block. (The length of an index record is
the key length plus 4.)

If INDEX _PADDING is omitted, the default is 0.

INITIAL _HOME _BLOCK _COUNT or IHBC

Number of home blocks to be created in the direct-access
file (1 through 2**31-1).

This parameter is required when
FILE _ORGANIZATION =DIRECT _
FILE _ORGANIZATION ACCESS.

LOADING _FACTOR or LF

Percentage of file space used when the direct-access file is
created (no more than 90%).

If an initial home block count is specified, the loading
factor is ignored. Otherwise, if LOADING_FACTOR is
omitted, the default is 75%.

MINIMUM _RECORD _LENGTH or MINRL

Minimum number of bytes of data in a record (0 through
65497).

The minimum record length for a fixed-length record is
the same as its maximum record length. The default
minimum record length for variable-length records with
an embedded key is the sum of the key_position and the
key _length. Otherwise, the default minimum record
length is 0.

RECORDS _PER _BLOCK or RPB
Reserved.

RECORD _TYPE or RT
Record type.

FIXED or F
Fixed-length records.

© 60464018 J CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-13

DELETE _NESTED_FILE

VARIABLE or V
Variable-length records.

UNDEFINED or U
Variable-length records.

If RECORD _TYPE is omitted, the default is
UNDEFINED.

Remarks For more information, see the NOS/VE Advanced File
Management Usage manual.

Examples This Create _Keyed _File example creates a new nested
file NESTED _FILE _1 and then displays the newly
created file.

crekf/create_nested_f ile name=nested_file_1 ..
crekf../maximum_record_length=32, key_length=14 ..
crekf../file_organization=indexed_sequential
crekf/display_nested_file
Display_Nested_File 1986-02-17
NOS/VE Keyed File Utilities 1.2 85357 12:42:49
File = :NVE. INDEXED_SEQUENTIAL_FILE

List of Nested Files for file INDEXED_SEQUENTIAL_FILE
NESTED_FILE_1 (currently selected nested file)
$SMAIN_FILE

DELETE _NESTED _FILE
CHAKF and CREKF Subcommand

Purpose Deletes one or more nested files.

Format DELETE _NESTED _FILE or
DELNF
NAMES=list of name
STATUS =status variable

Parameters NAMES or NAME or N
List of one or more nested files to be deleted.
This parameter is required.

Remarks ® You cannot delete the currently selected nested file or
$MAIN _FILE.

© To delete the currently selected nested file, select
another nested file first using the
SELECT_NESTED _FILE subcommand and then issue
the DELETE _NESTED _FILE subcommand.

10-14 NOS/VE Commands and Functions 60464018 J

DELETE_RECORDS

e To display the names of the nested files, enter a
DISPLAY_NESTED _FILE subcommand.

¢ For more information, see the NOS/VE Advanced File
Management Usage manual.

Examples This Create _Keyed _File example aisplays the list of
nested files and then deletes the nested file
NESTED _FILE _2.

crekf/display_nested_file

Display_Nested_File 1986-02-17
NOS/VE Keyed File Utilities 1.2 85357 12:50: 12
File = :NVE. INDEXED_SEQUENTIAL_FILE

List of Nested Files for file INDEXED_SEQUENTIAL_FILE
NESTED_FILE_1 (currently selected nested file)
NESTED_FILE_2
$SMAIN_FILE

crekf/delete_nested_f ile name=nested_file_2
crekf/display_nested_file

Display_Nested_File 1986-02-17
NOS/VE Keyed File Utilities 1.2 85357 12:52:02
File =:NVE. INDEXED_SEQUENTIAL FILE

List of Nested Files for file INDEXED_SEQUENTIAL_FILE

SMAIN_FILE (currently selected nested file)
NESTED_FILE_1

DELETE _RECORDS
CHAKF and CREKF Subcommand

Purpose Deletes records from the currently selected nested file.

Format DELETE _RECORDS or
DELETE _RECORD or

DELR
KEYS=range of: integer or keyword range of: string or
keyword

COUNT =keyword or integer
VETO =boolean
STATUS =status variable

60464018 J CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-15

DELETE_RECORDS

Parameters KEYS or KEY or K

Optional range of primary-key values to be deleted. The
range may be specified as either:

1. Two primary-key values separated by two periods (..).
(such as 'KEY1'..'KEY2'). The first key value must be
less than the second. (Valid only for indexed-sequential
files.)

2. One primary-key value specifying the beginning of the
range. The number of records in the range is specified
by the COUNT parameter.

The keywords $FIRST_KEY and $LAST_KEY can specify
the lowest and highest key values, respectively, in an
indexed-sequential file.

If KEYS is omitted, the range of records to be deleted
begins with the first record in the nested file.

COUNT or C

Number of records to be deleted (0 through
4,398,046,511,103 or, to delete all records, the keyword
ALL or A).

If a range is specified by the KEYS parameter, the
COUNT value limits the number of records deleted.

If COUNT is omitted, but KEYS is specified, the default
count the number of records in the specified range.
Otherwise, the default is 1.

VETO or V

Indicates whether the interactive user must confirm each
deletion.

TRUE

Each record to be deleted is displayed with the prompt
Okay to delete?==>.

FALSE

All specified records are deleted.
If VETO is omitted, the default is FALSE.
The possible responses to the veto prompt are:

YESor Y
Delete the record.

10-16 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

DISPLAY_NESTED_FILE

NO or N
Do not delete the record.

ALL or A
Delete the rest of the records without prompts.

QUIT or Q

Stop without deleting any more records.

HEX or H

Redisplays the record in hexadecimal and reissues the

prompt.

For more information, see the NOS/VE Advanced File
Management Usage manual.

This Create _Keyed _File example deletes a record in the

currently selected nested file.

crekf/delete_records, keys=‘'Matterhorn’..’McKinley’ ..
crekf../count=2, veto=true

Byte: 0 ASCII: Matterhorn Europe 4478
Okay to delete: ==>Yes

Byte: 0 ASCI1: McKinley North America 6194
Okay to delete: ==>No

--INFORMATIVE AA 501285-- As requested by the user, this record was not

deleted.
--INFORMATIVE AA 501285-- The Delete_Records subcommand of

CREATE_KEYED_FILE deleted 1 record from nested file $MAIN_FILE in file

:NVE. INDEXED_SEQUENTIAL _FILE.
crekf/

DISPLAY_NESTED _FILE
CHAKF and CREKF Subcommand

Purpose

Format

60464018 J

Displays the nested file definitions and the alternate-key

names and number of records in each nested file.

DISPLAY_NESTED _FILE or
DISNF
NAMES =keyword or list of name
OUTPUT =file
DISPLAY _OPTIONS =keyword or list of keyword
STATUS =status variable

CHANGE_KEYED_FILE and CREATE_KEYED_FILE

10-17

DISPLAY_NESTED_FILE

Parameters NAMES or NAME or N

List of one or more names of nested files to be displayed
or the keyword ALL to display all nested files in the file.

If NAMES ‘'is omitted, the default is ALL.

OUTPUT or O

File to which the display is written. The file must be a
sequential file.

If OUTPUT is omitted, the default file is $OUTPUT.
DISPLAY_OPTIONS or DISPLAY_OPTION or DO

List of one or more keywords indicating the type of
information to be displayed.

DEFINITIONS or DEFINITION or D
Nested-file definitions.

KEY_NAMES or KEY_NAME or KN
Names of the alternate keys in each nested file.

NAMES or NAME or N
Nested-file names.

RECORD _COUNTS or RECORD _COUNT or RC
Number of records in each nested file.

ALL or A
All of the above.
If DISPLAY_OPTION is omitted, the default is NAMES.

Remarks © The currently selected nested file is marked as such in
the list of nested files.

® For more information, see the NOS/VE Advanced File
Management Usage manual.

10-18 NOS/VE Commands and Functions 60464018 J

DISPLAY_RECORDS

Examples This Create __Keyed _File example displays the default
nested file ($MAIN _FILE) with the DISPLAY_OPTIONS
parameter set to ALL. No alternate keys have been
defined.

crekf/display_nested_f ile Display_options=all
Display_Nested_File 1986-02-17
NOS/VE Keyed File Utilities 1.2 86034 12:59:58
File = :NVE.INDEXED_SEQUENTIAL_FILE
SMAIN_FILE (currently selected nested file)
Record_Count HK]
Nested_File_Def initions

Compress ion_Procedure_Name : hone

Embedded_Key : yes

Key-Position : 0

Key-Length 2 14

Maximum_Record_Length : 32

Minimum_Record_Length : 32

Record_Type : undef ined

File_Organization : indexed_sequential

Key_Type : uncollated

Collate_Table_Name :

Data_Padding : 0

Index Padding : 0

DISPLAY_RECORDS

CHAKF and CREKF Subcommand

Purpose Displays records in the currently selected nested file.

Format DISPLAY_RECORDS or

. DISPLAY_RECORD or
DISR
OUTPUT =file A
KEYS =range of: integer or keyword range of: string or
keyword

COUNT =keyword or integer
DISPLAY _OPTION =keyword
STATUS =status variable

60464018 J CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-19

DISPLAY_RECORDS

Parameters

OUTPUT or O

File to which the display is written. The file must be a
sequential file for which you have append access.

If OUTPUT is omitted, $OUTPUT is the default.

KEYS or KEY or K

Optional range of primary-key values to be displayed. The
range may be specified as either:

1. Two primary-key values separated by two periods (..).
(such as 'KEY1'..'"KEY2'). The first key value must be
less than the second. (Valid only for indexed-sequential
files.)

2. One primary-key value specifying the beginning of the
range. The number of records in the range is specified
by the COUNT parameter.

The keywords $FIRST_KEY and $LAST_KEY can specify
the lowest and highest key values, respectively, in an
indexed-sequential file.

If KEYS is omitted, the range of records to be displayed
begins with the first record in the nested file.
COUNT or C

Number of records to be displayed (0 through
4,398,046,511,103 or, to display all records, the keyword
ALL or A).

If a range is specified by the KEYS parameter, the
COUNT value limits the number of records displayed.

If COUNT is omitted, but KEYS is specified, the default
count is the number of records in the specified range.
Otherwise, the default is 1.

DISPLAY_OPTION or DO

List of one or more keywords indicating the
representation used to display records.

ASCII
ASCII characters.

HEX or H
Hexadecimal digits.

10-20 NOS/VE Commands and Functions 60464018 J

DISPLAY_RECORDS

BOTH)
Both ASCII characters and hexadecimal digits.

ALTERNATE _KEY_DEFINITION or AKD or ALL

Both ASCII and hexadecimal representation with
alternate-key values marked.

If DISPLAY_OPTION is omitted, the default is ASCII.

Remarks ® The ALTERNATE _KEY_DEFINITION display shows
the record contents in ASCII characters and
hexadecimal digits with the alternate-key values
underscored.

¢ For more information, see the NOS/VE Advanced File
Management Usage manual.

Examples The following session displays a range of records showing
both ASCII and hexadecimal representations.

crekf/display_records display_option=both ..

crekf../keys='Everest’.. Kilimanjaro’

Display_Nested_File 1986-04-23
NOS/VE Keyed Fite Utilities 1.2 86099 15:08: 18
File = :NVE.USERS9. INDEXED_SEQUENTIAL_FILE.1

Display of records in $MAIN_FILE for:

COUNT: all

FIRST_KEY: Everest

LAST_KEY: Kilimanjaro

Byte: 0 ASCII: Everest Asia

Byte: 0(16) HEX: 45766572657374202020202020204 173696120202020202020
Byte: 25 ASCII: 8848

Byte: 19(16) HEX: 20202038303438

Byte: 0 ASCII: K 2 Asia

Byte: 0(16) HEX: 4B322020202020202020202020204 173696120202020202020
Byte: 25 ASCII: 8611

Byte: 19(16) HEX: 20202038363131

Byte: 0 ASCII: Kilimangjaro Africa

Byte: (16) HEX: 4B696CE36D6 16E6AL1726F2020204 166726963612020202020
Byte: 25 ASCII: 5895

Byte: 19(16) HEX: 20202035383935

crekf/

60464018 J CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-21

EXTRACT_RECORDS

EXTRACT_RECORDS
CHAKF and CREKF Subcommand

Purpose

Format

Parameters

Copies records from the currently selected nested file.

EXTRACT_RECORDS or
EXTRACT_RECORD or
EXTR
OQUTPUT =record
KEYS =range of: integer or keyword range of: string or
keyword
COUNT =keyword or integer
ERROR _LIMIT =integer
STATUS =status variable

OUTPUT or O

File to which records are copied. You must have at least
append access to the file. If OUTPUT is omitted, the
default is $OUTPUT.

To specify a nested file in a keyed file, you can:

o Enclose the file reference followed by the nested-file
name in parentheses, or

® Enclose a comma followed by the nested-file name in

parentheses. In this case, the file reference is the
keyed file specified on the command utility (CREKF or
CHAKF). Or :

® Enclose a single comma in parentheses. In this case,
the file reference is the keyed file specified on the
command utility (CREKF or CHAKF), and the
nested-file name specifies $MAIN _FILE.

KEYS or KEY or K

Optional range of primary-key values of the records to be
copied. The range may be specified as either:

1. Two primary-key values separated by two periods (..)
(such as 'KEY1'.'KEY2"). The first key value must be
less than the second. (Valid only for indexed-sequential
files.)

10-22 NOS/VE Commands and Functions 60464018 J

Remarks

HELP

HELP

2. One primary-key value specifying the beginning of the
range. The number of records in the range is specified
by the COUNT parameter.

The keywords $FIRST_KEY and $LAST_KEY can specify
the lowest and highest key values, respectively, in an
indexed-sequential file.

If KEYS is omitted, the range of records to be copied
begins with the first record in the nested file.

COUNT or C

Number of records to be copied (0 through
4,398,046,511,103 or, to copy all records, the keyword ALL
or A).

If a range is specified by the KEYS parameter, the
COUNT value limits the number of records copied.

If COUNT is omitted, but KEYS is specified, the default
count is the number of records in the specified range.
Otherwise, the default is 1.

ERROR _LIMIT or EL

Number of nonfatal (trivial) errors allows for the
EXTRACT_RECORDS operation (integer from 0 through
65535). A 0 value indicates no limit; 0 is the default
value.

® Records are extracted only from the currently selected
nested file.

® For more information, see the NOS/VE Advanced File
Management Usage manual.

CHAKF and CREKF Subcommand

Purpose

Format

60464018 J

Displays information about utility subcommands.

HELP or

HEL
SUBJECT =string
MANUAL =keyword or file
STATUS =status variable

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-23

QUIT

Parameters SUBJECT or S
Index topic to be located in the online manual.
If SUBJECT is omitted, the HELP subcommand lists the
names of the utility subcommands.
MANUAL or M
Online manual whose index is searched.

AFM
The AFM online manual index is searched.

File
File name of the online manual whose index is
searched.

If MANUAL is omitted, the default is AFM. The working
catalog is searched for the file and then the
$SYSTEM.MANUALS is searched.

Remarks o If you enter a topic that is not in the manual index, a
message appears telling you that the topic could not
be found.

® The default manual, $SYSTEM.MANUALS.AFM,
contains the online version of the NOS/VE Advanced
File Management Usage manual, as provided with the
NOS/VE system.

© If your terminal is defined for screen applications, the
online manual is displayed in screen mode.

To leave the online manual, use QUIT. To get help on
reading the online manual, use HELP.

@ For more information, see the NOS/VE Advanced File

Management Usage manual.

QUIT
CHAKF and CREKF Subcommand

Purpose Ends the utility session and closes the output file.

Format QUIT or
QUI
STATUS =status variable

10-24 NOS/VE Commands and Functions 60464018 J

REPLACE _RECORDS

REPLACE _RECORDS
CHAKF and CREKF Subcommand

Purpose

Format

Parameters

60464018 J

Replaces existing records in the currently selected nested
file.

REPLACE _RECORDS or
REPLACE _RECORD or
REPR
INPUT =list of record
SORT =boolean
ERROR _LIMIT =integer
STATUS =status variable

INPUT or I

List of one or more files whose records are to replace the
corresponding records already in the keyed file. You must
have at least read access to the input files. This
parameter is required.

To specify a nested file in a keyed file, enclose all
elements of the list in parentheses. An element can be
specified in one of the following ways:

o Enclose the file reference followed by the nested-file
name in parentheses, or

® Enclose a comma followed by the nested-file name in
parentheses. In this case, the file reference is the
keyed file specified on the command utility (CREKF or
CHAKF). Or

® Enclose a single comma in parentheses. In this case,
the file reference is the keyed file specified on the
command utility (CREKF or CHAKF), and the
nested-file name specifies $MAIN _FILE.

SORT or S

Indicates whether the records are sorted before they are
copied to the file. (Sorting is recommended for better file
performance.)

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-25

REPLACE_RECORDS

Remarks

Examples

TRUE, ON, or YES

The records from the input file list are copied to a
temporary file and sorted. Records for an
indexed-sequential file are sorted by their primary-key
value; records for a direct-access file are sorted by
their hash value.

FALSE, OFF, or NO

The records are copied to a temporary file, but are not
sorted.

If SORT is omitted, the default is TRUE.

ERROR _LIMIT or EL

Number of nonfatal errors required to force termination of
the replace (0 through 65535). A 0 sets an unlimited error
limit.

If ERROR _LIMIT is omitted, 0 is used.

For more information, see the NOS/VE Advanced File
Management Usage manual.

This Create_Keyed_File example replaces records in file
$USER.INDEXED _SEQUENTIAL _FILE that have the
same primary key.

/copy_keyed_file $user.add_file

Everest Africa 8800
K2 Asia 8611
Kilimanjaro Africa 5895
/copy_keyed_file $user.replace_file
Everest Asia 8848

/create_keyed_file ..

../Joutput=$user. indexed_sequential_file

crekf/add_records input=$user.add_file

crekf/replace_records input=$user.replace_file
crekf/display_records count=atll

Display_Nested_file 1986-02-17

NOS/VE Keyed File Utilities 1.2 85357 13:18:24
File = :NVE.USER99. INDEXED_SEQUENTIAL_FILE. 1

Display of records in $MAIN_FILE

Byte: 0 ASCII: Everest Asia 8848
Byte: 0 ASCII: K2 Asia 8611
Byte: 0 ASCII: Kilimanjaro Africa 5895
crekf/

10-26 NOS/VE Commands and Functions 60464018 J

SELECT_NESTED_FILE

SELECT_NESTED _FILE
CHAKF and CREKF Subcommand

Purpose

Format

Parameters

Remarks

60464018 J

Selects the nested file to which subsequent subcommands
are to apply.

SELECT_NESTED _FILE or
SELNF

NAME =name

STATUS = status variable

NAME or N

Name of an existing nested file. To select the default
nested file, specify $MAIN _FILE.

This parameter is required.

For more information, see the NOS/VE Advanced File
Management Usage manual.

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-27

CREATE _ALTERNATE _INDEXES 11

CREATE _ALTERNATE_INDEXESoiiiiuiaen. 11-1
ADD_PIECEo it 11-3
APPLY_KEY_DEFINITIONSttt 11-5
CANCEL_KEY_DEFINITIONSccoiiiiiiiiininnn.. 11-9
CREATE _KEY_DEFINITION ..., 11-10
DELETE _KEY_DEFINITIONccooiiet S 11-16
DISPLAY_KEY_DEFINITIONScooiiiit. 11-17
HELP .. 11-20
HELP .. 11-21
QUIT . e 11-23
QUIT .. e e 11-24
SEPARATE_KEY_GROUPScciiiiiiiiiiinn.e. 11-25

60464018 J

CREATE _ALTERNATE _INDEXES 11

CREATE _ALTERNATE _INDEXES
Command

Purpose

Format

Parameters

Remarks

60464018 J

Initiates execution of the

CREATE _ALTERNATE _INDEXES command utility. The
utility can create, delete, and display alternate-key
definitions in a keyed file.

CREATE _ALTERNATE _INDEXES or
CREATE _ALTERNATE _INDEX or
CREATE _ALTERNATE _INDICES or
CREAI .

INPUT =record

STATUS =status variable

INPUT or I

Keyed file to be processed by the utility. The file
permissions required depend on the subcommands entered
during the utility as described in the Remarks. This
parameter is required.

To specify a nested file, first specify the file reference and
then the nested-file name, enclosed in parentheses.

® The command utility prompt is:
creai/

® In response to the creai/ prompt, you can enter
NOS/VE commands and any of these subcommands:

QUIT
DISPLAY_KEY_DEFINITIONS
CREATE _KEY_DEFINITION
DELETE _KEY_DEFINITION
CANCEL_KEY_DEFINITIONS
APPLY_KEY_DEFINITIONS

CREATE_ALTERNATE _INDEXES 11-1

CREATE _ALTERNATE _INDEXES

® The CREATE _ALTERNATE _INDEXES utility creates
the specified keyed file if:

- The file does not exist and,

- A SET_FILE _ATTRIBUTES command has
specified the KEY_LENGTH and
MAXIMUM _RECORD _LENGTH attributes for the
file.

If the SET_FILE _ATTRIBUTES command defining the
new file omits an attribute, the default attribute value
is used. However, if it omits the

FILE _ORGANIZATION attribute, indexed-sequential
organization is used.

¢ The CREATE _ALTERNATE _INDEXES command does
not check your file permissions. The subcommands you
enter in the utility session check that you have the
required permissions to do the operation.

To display key definitions, you must have at least
read permission. To create, delete, cancel, or apply key
definitions, you must have at least three permissions:
append, modify, and shorten.

® For more information, see the NOS/VE Advanced File
Management Usage manual.

Examples This command begins a utility session that displays the

11-2

alternate key definitions of keyed file $USER.IS_FILE.

/create_alternate_indexes input=$user.is_file

creai/display_key_def initions key_names=all display_options=brief
Disptay_Key_Def initions NOS/VE Keyed File Utilities 1.1

File = :NVE.USER99. IS_FILE

KEY NAME POSITION LENGTH TYPE STATE

ALTERNATE_KEY_1 0 10 uncollated Exists in file
creai/quit “The APPLY_KEY_DEFINITIONS parameter is not required here
"because no creation or deletion requests are pending.

NOS/VE Commands and Functions 60464018 J

ADD_PIECE

ADD _PIECE
CREKD Subcommand

Purpose Defines a piece of a concatenated key within a
CREATE _KEY_DEFINITION utility session.

Format ADD _PIECE or
ADDP
POSITION =integer
LENGTH =integer
TYPE =keyword
STATUS =status variable

Parameters POSITION or KEY_POSITION or P or KP
Byte position in the record at which the piece begins. The
byte positions are numbered from the left, beginning with
0. The maximum byte position is 65496. This parameter
is required.
LENGTH or KEY_LENGTH or L or KL

Number of bytes in the piece. The maximum length is
255 bytes. The piece must be within the minimum record
length unless sparse-key control is used. This parameter
is required.

TYPE or KEY_TYPE or T or KT

Type of the piece.

INTEGER (I)
Integer key ordered numerically.

UNCOLLATED (UC or U)

Character key ordered byte-by-byte according to the
ASCII collating sequence.

COLLATED (C)

Character key ordered byte-by-byte according to the
collation table specified by the

COLLATE _TABLE _NAME parameter on the
CREATE _KEY_DEFINITION command.

The default key type is UNCOLLATED.

60464018 J CREATE_ALTERNATE_INDEXES 11-3

ADD_PIECE

Remarks

The utility is initiated in response to a
CREATE _KEY_DEFINITION subcommand that
specifies the CONCATENATED _PIECES=TRUE
parameter.

To end concatenated-key specification, enter the QUIT
subcommand for the CREATE _KEY_DEFINITION
utility.

You must enter an ADD_PIECE subcommand for each
piece to be concatenated to the first piece to define a
concatenated key. The first piece is defined by the
KEY_LENGTH, KEY_POSITION, and KEY_TYPE
parameters on the CREATE _KEY_DEFINITION
command.

- A concatenated key can comprise from 2 through 64

pieces. The pieces are concatenated in the order that
you enter the ADD_PIECE subcommands that define
the pieces.

For more information, see the NOS/VE Advanced File
Management Usage manual.

11-4 NOS/VE Commands and Functions 60464018 J

APPLY_KEY_DEFINITIONS

This CREATE _ALTERNATE _INDEXES session defines
an alternate key that concatenates the first, third and
fifth bytes of the record in reverse order. It displays the
definition and then cancels the request.

Examples

/create_alternate_index input=$user.is_fitle

creai/create_key_definition key_name=alternate_key_2 ..

creai../key_position=4 key_length=1 concatenated_pieces=yes

crekd/add_piece key_position=2 key_length=1

crekd/addp kp=0 k1=1

crekd/quit

creai/display_key_def initions
Display_Key_Def initions

File = .NVE.USER99. IS_FILE

NOS/VE Keyed File Utilities 1.1

KEY NAME POSITION LENGTH TYPE STATE
ALTERNATE_KEY_2 4 1 uncollated Creation pending
piece b 2 1 uncollated
piece C 0 1 uncollated
Duplicate_Key_Values : not_allowed
Null_Suppression : no
RECORD 1 (inascii) : This is the first recor-
d
(in hex) : 5468697320697320746865206669727374207265636F72
ALTERNATE_KEY_2 :c. b. a_
(in ascii) : d .
(in hex) : B42E

>
creai/quit cancel
/

APPLY_KEY_DEFINITIONS
CREAI Subcommand

Purpose Applies the pending alternate-key definition and deletion
requests within a CREATE _ALTERNATE _INDEXES
utility session.

Format APPLY_KEY_DEFINITIONS or
APPLY_KEY_DEFINITION or
APPKD

ERROR _LIMIT =integer
STATUS =status variable

Parameters ERROR _LIMIT or EL
Number of trivial (nonfatal) errors allowed for the apply
operation (integer from 0 through 65535).

A 0 value indicates no limit; 0 is the default value.
See Remarks for a description of apply error processing.

60464018 J CREATE _ALTERNATE _INDEXES 11-5

APPLY_KEY_DEFINITIONS

Remarks ® This CREATE _ALTERNATE _INDEXES subcommand
applies all pending alternate-key creation and deletion
requests to the file. It applies deletion requests first
and then the creation requests.

e The ERROR_LIMIT file attribute value has no effect
on keyed-file utility processing. This is done so that
nonfatal errors (such as typing errors during
interactive use) do not terminate the utility session.

However, you can specify an error limit that applies to
the apply operation only by specifying the
ERROR _LIMIT parameter.

® The two nonfatal (trivial) errors that an apply
operation can detect result from improper record data,
as follows:

Duplicate _Key__Value

The duplicate _key _value attribute of the alternate
index being built is NOT_ALLOWED, but the
apply operation finds an alternate-key value
matching an alternate-key value already in the
alternate index.

Sparse _Key_Beyond _EOR

The apply operation is building an alternate index
that uses sparse-key control and it finds a record
for which an alternate-key value should be included
in the index except that the record is too short to
provide a complete alternate-key value.

© APPLY_KEY_DEFINITIONS keeps a count of the
number of times it detects a nonfatal (trivial) error.
Each time it increments the count, it checks whether

the count has reached the value specified on the
ERROR _LIMIT parameter.

~ If the error limit is not yet reached,
APPLY_KEY_DEFINITIONS performs the
correction processing. for the condition as described
later.

— If the error limit is reached,
APPLY_KEY_DEFINITIONS terminates with a
fatal error. The fatal error returned depends on the
last nonfatal error detected:

11-6 NOS/VE Commands and Functions 60464018 J

60464018 J

APPLY_KEY_DEFINITIONS

For a Duplicate _Key _Value error, it returns
AAE$DUPLICATE _KEY_LIMIT.

For a Sparse__Key_Beyond _EOR error, it
returns AAESERROR _LIMIT_EXCEEDED.

Before terminating, APPLY _KEY_DEFINITIONS
discards all alternate indexes it has built. (Deleted
alternate indexes are not restored.)

If APPLY_KEY_DEFINITIONS finds one or more
nonfatal errors, but completes its processing before
reaching the error limit, it returns a warning message.

As correction processing for a

sparse _key__beyond _EOR error,
APPLY_KEY_DEFINITIONS does not enter an
alternate-key value for the record in the alternate
index it is building, even though the sparse-key
character indicates that a value should be entered for
the record.

As correction processing for a Duplicate _Key__Value
error, APPLY_KEY_DEFINITIONS changes the
duplicate _key _values attribute of the alternate-key
definition from NOT_ALLOWED to

ORDERED _BY_PRIMARY_KEY. It then discards the
partially-built index and begins building the index
again, ordering duplicate alternate-key values by their
primary-key value.

Entry of a pause-break character is ignored during
application of alternate-key definitions.

Entry of a terminate_break _character during
application of alternate-key definitions returns a
prompt to the terminal user, asking for confirmation.

As described in the prompt, the terminal user should
then enter a carriage return or any entry other than
RUIN FILE (uppercase or lowercase) to continue the
application of alternate-key definitions. Applied
alternate-key definitions can be removed without harm
to the file after the apply operation executes.

CREATE _ALTERNATE_INDEXES 11-7

APPLY_KEY_DEFINITIONS

© A request to ruin the file is not recommended. No file
operation can be performed on a ruined file; therefore,
no data can be retrieved from the file.

© For more information, see the NOS/VE Advanced File
Management Usage manual.

Examples This CREATE _ALTERNATE _INDEXES session attempts
to create and apply .an alternate key. The attempt fails
when it finds a duplicate alternate-key value because the
alternate-key definition does not allow duplicate values
and the error limit for the apply is 1.

/create_alternate_indexes input=$user.is_file
creai/create_key_def inition key_name=alternate_key 6 ..
creai../key_position=5 key_length=10
creai/apply_key_definition error_timit=1

-- File :NVE.USER9S. IS_FILE : begin creating labels for

alternate key def initions.

-- File :NVE.USERSS. IS_FILE : finished creating labels for

alternate key definitions.

-- File :NVE.USER9S.IS_FILE : begin collecting the alternate

key values from the file.

~- File :NVE.USERS9.IS_FILE : AMP$APPLY_KEY_DEFINITIONS has

reached a file boundary: EOI.

-- File :NVE.USERS9. IS_FILE : collecting of the alternate key

values completed.

-~ File :NVE.USERSS. IS_FILE : begin sorting the alternate key

values.

-- File :NVE.USER99. IS_FILE : sorting of the alternate key

values completed.

-- File :NVE.USER99.IS_FILE : begin building alternate key

indexes into the file.

-- File :NVE.USER99.IS_FILE : the ALTERNATE_KEY_6 index
is being built. . .

-- File :NVE.USER9S. IS_FILE : Alternate key ALTERNATE_KEY_6
has been deleted.

~-ERROR-- File :NVE.USER99.IS_FILE :
AMPSAPPLY_KEY_DEFINITIONS encountered a duplicate key
and found that error limit had been reached. Because
ERROR_LIMIT was involved, any new indexes were removed
{though deleted indexes are gone). Had ERROR_LIMIT not
been reached, the key definition would have been
modified to allow duplicates. The duplicate key values
relate to alternate key name = ALTERNATE_KEY_6, primary
key = 96070, alternate_key_value = John Smith.

-- FATAL-- File :NVE.USER99.IS_FILE :
AMP$APPLY_KEY_DEFINITIONS : the user-declared maximum
number of trivial errors has been recorded since the
last OPEN.

creai/quit

/

11-8 NOS/VE Commands and Functions 60464018 J

CANCEL_KEY_DEFINITIONS

CANCEL _KEY_DEFINITIONS
CREAI Subcommand

Purpose Removes a pending request to create or delete an
alternate key within a CREATE _ALTERNATE _INDEXES
utility session. '

Format CANCEL _KEY_DEFINITIONS or
CANCEL _KEY_DEFINITION or
CANKD
NAMES =keyword or list of name
STATUS =status variable

Parameters NAMES or KEY_NAME or KEY_NAMES or N or
NAME or KN

Pending requests to be canceled.

list of names
Cancel the requests for the listed alternate-key names.

ALL
Cancel all requests.
This parameter is required.

Remarks ©. The CANCEL_KEY_DEFINITIONS subcommand can
cancel creation and deletion requests only while they
are pending.

© After a creation or deletion request is applied, the
- CANCEL _KEY_DEFINITIONS subcommand has no
effect. To reverse the action of an
APPLY_KEY_DEFINITIONS subcommand, you must
issue new requests to delete the created alternate key
or recreate the deleted alternate key.

© For more information, see the NOS/VE Advanced File
Management Usage manual.

60464018 J CREATE_ALTERNATE_INDEXES 11-9

CREATE _KEY_DEFINITION

Examples This CREATE _ALTERNATE _INDEXES session requests
creation of an alternate key and deletion of another
alternate key, cancels the creation request, and finally
applies the deletion request.

/create_alternate_indexes input=$user.is_fiie
creai/create_key_definition key_name=alternate_key_4 ..
creai../key_position=5 key_length=2
creai/delete_key_def inition key_name=alternate_key_1
creai/cancel_key_def inition alternate_key_4

creai/quit apply

-- File :NVE.USER99. IS_FILE : begin deleting alternate key
def initions.

-- File :NVE.USER99.IS_FILE : Alternate key ALTERNATE_KEY_1
has been deleted.

-- File :NVE.USER99. IS_FILE : end deleting alternate key
def initions.

/

CREATE _KEY_DEFINITION
CREAI Subcommand

Purpose Creafes a pending alternate-key definition within a
CREATE _ALTERNATE _INDEXES utility session.

Format CREATE _KEY_DEFINITION or
CREKD

NAME =name
POSITION =integer
LENGTH =integer
TYPE =keyword
COLLATE _TABLE _ NAME =name
DUPLICATE _KEY_VALUES =keyword or boolean
NULL _SUPPRESSION =boolean
SPARSE _KEY_CONTROL _POSITION =integer
SPARSE _KEY_CONTROL _CHARACTERS =string
SPARSE _KEY_CONTROL _EFFECT =keyword
REPEATING _GROUP_LENGTH =integer
REPEATING _GROUP_COUNT =integer or keyword
GROUP_NAME =name
CONCATENATED _PIECES =boolean
VARIABLE _LENGTH _KEY =string
STATUS =status variable

11-10 NOS/VE Commands and Functions 60464018 J

CREATE _KEY_DEFINITION

Parameters INAME or KEY_NAME or N or KN
Name of the new alternate key. The name must follow
the SCL naming rules. This parameter is required.
POSITION or KEY_POSITION or P or KP
Byte position within the record at which the alternate-key
field begins. The byte positions are numbered from the
left, beginning with 0. The maximum byte position is
65496. This parameter is required.
LENGTH or KEY_LENGTH or L or KL

Number of bytes in the alternate-key field. The maximum
length is 255 bytes. The key field must be within the
minimum record length (unless sparse key control is
used). This parameter is required.

TYPE or KEY_TYPE or T or KT

Type of the alternate key.

INTEGER (1)
Integer key ordered numerically.

UNCOLLATED (UC or U)

Character key ordered byte-by-byte according to the
ASCII collating sequence.

COLLATED (C)

Character key ordered byte-by-byte according to the
collation table specified by the
COLLATE _TABLE _NAME parameter.

If the KEY_TYPE parameter is omitted, the key type is
UNCOLLATED.

COLLATE _TABLE _NAME or CTN

Name of the collation table used to order the alternate
key if its key type is collated. The collation table can be
for NOS/VE predefined collating sequence or a
user-defined collating sequence.

If the file is an indexed-sequential file with a collated
primary key, the collation table for the primary key is
used as the default collation table for an alternate key.

Otherwise, you must specify a collation table for a
collated alternate key.

60464018 J CREATE _ALTERNATE _INDEXES 11-11

CREATE _KEY_DEFINITION

DUPLICATE _KEY_VALUES or DKV

Keyword value indicating whether duplicate alternate-key
values are allowed and, if so, how the duplicate values
are ordered.

NOT_ALLOWED (NA)
No duplicate values are allowed for the alternate key.

ORDERED _BY_PRIMARY_KEY (OBPK)

Duplicate values are allowed. Duplicates are accessed
in order by their primary key.

FIRST_IN _FIRST_OUT (FIFO)

Duplicate values are allowed. Duplicates are accessed
in the order of their primary-key value.

TRUE (ON or YES)
Duplicate values are allowed.

FALSE (OFF or NO)
No duplicates are allowed for the alternate key

If the DUPLICATE _KEY_VALUES parameter is omitted,
no duplicate values are allowed.

NULL _SUPPRESSION or S
Reserved.

SPARSE _KEY_CONTROL _POSITION or SKCP

Byte position of the sparse-key control character. The
position must be within the minimum record length. The
byte positions are numbered from the left, beginning with
0. The maximum byte position is 65496.

NOTE

The two parameters,

SPARSE _KEY_CONTROL _POSITION and

SPARSE _KEY_CONTROL_CHARACTERS, work
together; they must either both be specified or both be
omitted. If they are omitted, sparse-key control is not
used for the alternate key.

11-12 NOS/VE Commands and Functions 60464018 J

CREATE _KEY_DEFINITION

SPARSE _KEY_CONTROL _CHARACTERS or SKCC

String containing the set of characters with which the
sparse-key control character in each record is compared.

SPARSE _KEY_CONTROL _EFFECT or SKCE

Indicates whether a sparse-key control character match
causes the alternate-key value to be included in or
excluded from the alternate index.

INCLUDE _KEY_VALUE (IKV)

The alternate-key value is included in the alternate
index.

EXCLUDE _KEY_VALUE (EKV)

The alternate-key value is excluded from the alternate
index.
You can specify the SPARSE_KEY_EFFECT parameter
only if you specify the SPARSE _KEY_POSITION and
SPARSE _KEY_CHARACTERS parameters.

If the SPARSE _KEY_CONTROL_EFFECT parameter is
omitted, INCLUDE _KEY_VALUE is used.

REPEATING _GROUP_LENGTH or RGL

Length, in bytes of the repeating group of fields. It is the
distance from the beginning of an alternate-key value to
the beginning of the next value for the same alternate
key in the same record.

The group length range is from 1 through 65497.

If the REPEATING _GROUP_LENGTH parameter is
omitted, the alternate key has no more than one value
per record.

REPEATING _GROUP_COUNT or RGC

Indicates how many alternate-key values are in a record.
(The alternate-key value is in a repeating group of fields.)

integer (1 through 65497)

Number of times the alternate key occurs in a record.
The specified number of alternate-key values must
occur within the minimum record length.

60464018 J CREATE_ALTERNATE_INDEXES 11-13

CREATE _KEY_DEFINITION

REPEAT_TO _END _OF_RECORD (RTEOR)

The alternate key repeats until the record ends. (An
incomplete key at the end of the record is not used.)
You can specify the REPEATING _GROUP_COUNT
parameter only if you specify the
REPEATING _GROUP_LENGTH parameter.

If the REPEATING _GROUP_COUNT parameter is
omitted, the alternate key repeats until the end of the
record.

GROUP_NAME or GN or KEY_GROUP_NAME or KGN

Name of the key group for this key. The key-grouping
feature is not currently implemented. The default value
for the key-group name is the key name.

CONCATENATED _PIECES or CONCATENATED _PIECE
or CP

Indicates whether the alternate key is a concatenated key.

TRUE (ON or YES)
The key is a concatenated key.

FALSE (OFF or NO)
The key is not a concatenated key.

If you specify CONCATENATED _PIECES=TRUE, the
CREATE _KEY_DEFINITION command initiates the
CREATE _KEY_DEFINITION subcommand utility. The
utility prompt is crekd/ and it processes ADD_PIECE,
HELP, and QUIT subcommands.

If the CONCATENATED _PIECES parameter is omitted,
the key is not a concatenated key.

VARIABLE _LENGTH _KEY or VLK

Indicates that the key is a variable _length key by
specifying its set of delimiter characters. The set is
specified as a string (0 through 256 characters, enclosed
in apostrophes).

If the REPEATING _GROUP_LENGTH parameter is
omitted, no more than one value for the key is taken
from a record. The end of the value is marked by a
delimiter character, by the end of the key field
(KEY_LENGTH length), or by the end of the record,
whichever occurs first after the KEY_POSITION.

11-14 NOS/VE Commands and Functions 60464018 J

CREATE _KEY_DEFINITION

If the REPEATING _GROUP_LENGTH parameter is
specified, the record can contain more than one value for
the key. Multiple key values are separated by one or
more delimiter characters. The

REPEATING _GROUP_COUNT parameter indicates
whether the sequence of values continues to the end of
the record or is limited to a fixed number of characters.

If VARIABLE _LENGTH _KEY is omitted, the alternate
key has fixed-length values.

Remarks 0 The CREATE _KEY_DEFINITION subcommand defines
an alternate key but does not apply the definition to
the file. The definition remains pending until it is
either applied or canceled.

© A definition is applied by either an
APPLY_KEY_DEFINITIONS subcommand or an
APPLY_KEY_DEFINITIONS=YES parameter on the
QUIT subcommand. It is canceled by a
CANCEL_KEY_DEFINITIONS subcommand or an
APPLY_KEY_DEFINITIONS=NO parameter on the
QUIT subcommand.

© The REPEATING _GROUP_LENGTH and the
VARIABLE _LENGTH _KEY parameters cannot be
specified with either the CONCATENATED _PIECES
parameter or the
DUPLICATE .KEY_VALUES=FIRST_IN _FIRST_OU-
T parameter.

0 If the alternate-key definition defines a collated key,
CREATE _KEY_DEFINITIONS searches for the
collation-table name as an entry point in the object
libraries in the program-library list.

® You must set the program-library list before you enter
the utility. You cannot change the object libraries
searched from within the utility session.

o The following command adds an object library to the
program-library list:

/set_program_attributes add_library=file_reference

® For more information, see the NOS/VE Advanced File
Management Usage manual.

60464018 J CREATE_ALTERNATE_INDEXES 11-15

DELETE _KEY_DEFINITION

Examples This CREATE _ALTERNATE _INDEXES utility session
creates and applies an alternate-key definition to file
$USER.IS_FILE.

/create_alternate_index input=$user.is_file
creai/create_key_definition key_name=alternate_key_1
creai../key_position=0 key_length=10

creai/quit apply

~- File :NVE.USER99.IS_FILE : begin creating labels for
alternate key definitions.

-- File :NVE.USERS9.IS_FILE : finished creating labels for
alternate key definitions.

~- File :NVE.USER99.IS_FILE : begin collecting the alternate
key values from the file.

~- File :NVE.USER99.IS_FILE : AMP$SAPPLY_KEY_DEFINITIONS has
reached a file boundary: EOI .

-- File :NVE.USER9S.IS_FILE : collecting of the alternate key
values completed.

-- File :NVE.USER99.IS_FILE : begin sorting the alternate key
values.

-- File :NVE.USERS9.IS_FILE : sorting of the alternate key
values completed.

-- File :NVE.USER99.IS_FILE : begin building alternate key
indexes into the file.

-- File :NVE.USERS9.IS_FILE : the ALTERNATE_KEY_1 index is
being built.

~-- File :NVE.USERS9.IS_FILE : AMP$APPLY_KEY_DEFINITIONS
completed building the alternate indexes into the file.

/

DELETE _KEY_DEFINITION
CREAI Subcommand

Purpose Requests the deletion of an existing alternate key within
a CREATE _ALTERNATE _INDEXES utility session.

Format DELETE _KEY_DEFINITION or
DELKD
NAME =name
STATUS =status variable

Parameters NAME or KEY_NAME or N or KN

Name of the alternate key to be deleted. This parameter
is required.

Remarks ¢ The DELETE _KEY_DEFINITION subcommand
requests deletion of an alternate key but does not
actually delete the key from the file. The deletion
remains pending until it is applied by either an
APPLY_KEY_DEFINITIONS or QUIT subcommand or,
it is canceled by a CANCEL _KEY_DEFINITIONS
subcommand.

11-16 NOS/VE Commands and Functions 60464018 J

Examples

DISPLAY_KEY_DEFINITIONS

© For more information, see the NOS/VE Advanced File
Management Usage manual.

This CREATE _ALTERNATE _INDEXES session deletes an
alternate key named ALTERNATE _KEY_1.

/create_alternate_indexes input=g$user.is_file
creai/delete_key_def inition key_name=alternate_key_!1
creai/quit apply_key_definitions=yes

-- File :NVE.USER9S.IS_FILE : begin deleting alternate key
def initions.

-- File :NVE.USER9S.IS_FILE : Alternate key ALTERNATE_KEY_1
has been deleted.

-- File :NVE.USERS9.IS_FILE : end deleting alternate key
definitions.

/

DISPLAY_KEY_DEFINITIONS
CREAI Subcommand

Purpose

Format

Parameters

60464018 J

Displays alternate-key definitions within a
CREATE _ALTERNATE _INDEXES utility session.

DISPLAY_KEY_DEFINITIONS or
DISPLAY_KEY_DEFINITION or
DISKD
NAMES =keyword or list of name
DISPLAY __OPTION =keyword
SAMPLE _RECORD _COUNT =integer or keyword
OQUTPUT =file
STATUS =status variable

NAMES or KEY_NAME or KEY_NAMES or N or
NAME or KN

Indicates the alternate key definitions displayed.

list of names
Displays the specified alternate-key definitions.

PENDING

Displays only the pending alternate-key creations and
deletions.

CREATE _ALTERNATE_INDEXES 11-17

DISPLAY_KEY_DEFINITIONS

ALL

Displays both pending and existing alternate-key
definitions.

If the KEY_NAMES parameter is omitted, only the
pending alternate-key creations and deletions are
displayed.

DISPLAY _OPTION or DO
Indicates the contents of the display.

BRIEF (B)

Displays the key name, position, length, type, and
state.

FULL (F)
Displays all information in the alternate-key definition.

SAMPLE _RECORDS (SR)

Displays only sample records with the alternate keys
marked.

BRIEF_SAMPLE _RECORDS (BSR)
Displays the brief definition and the sample records.

FULL _SAMPLE _RECORDS (FSR)
Displays the full definition and the sample records.
ALL (A)

If the DISPLAY_OPTIONS parameter is omitted, the full
definition and the sample records are displayed.

SAMPLE _RECORD _COUNT or SRC

Indicates the number of records displayed if the
DISPLAY_OPTIONS parameter requests a sample record
display.

integer

Displays the specified number of records. Values can
be 0 through 4398046511103.

11-18 NOS/VE Commands and Functions 60464018 J

DISPLAY_KEY_DEFINITIONS

ALL
Displays all records in the file.
The default is a one-record display.

OUTPUT or O

File to which the display is written. If the OUTPUT
parameter is omitted, the display is written to file
$OUTPUT.

Remarks © A sample-record display shows the record contents in
ASCII characters and hexadecimal digits with the
alternate-key fields underscored. Each alternate key is
shown separately by underscores as follows:

If the concatenated-key or repeating-groups
attributes are not defined for the key, the
underscore characters indicate the alternate-key
type (C for collated, I for integer, or U for
uncollated).

If the key is a concatenated key, the underscores
for each key field include one or two letters
indicating the order the fields are concatenated
(a_, b_, and so forth up to z_ and then, aa, ba,
ca, and so forth).

If the alternate-key definition specifies repeating
groups, the underscores for each alternate-key
value in the record include a number (1, 2, and so
forth).

0 For more information, see the NOS/VE Advanced File
Management Usage manual.

Examples This CREATE _ALTERNATE _INDEXES session writes a
display to file LIST. The listing includes all records in the
file, marked with the proposed alternate-key
ALTERNATE _KEY_2.

/create_alternate_indexes input=$user.is_file
creai/crekd key_name=alternate_key.2 ..
creai../key_position=0 key_length=2 ..
creai../repeat ing_group_length=20
creai/display_key_definitions ..
creai../display_opt ion=sample_records ..
creai../sample_record_count=all output=1ist
creai/quit apply_key_definitions=no

/

60464018 J CREATE_ALTERNATE_INDEXES 11-19

HELP

HELP

The following CREATE _ALTERNATE _INDEXES session
contains a DISPLAY_KEY_DEFINITIONS subcommand
for a default display, that is, a full definition of all
pending alternate-key creations and deletions and a single
sample record.

/create_alternate_indexes input=$user.is_file
creai/create_key_definition key_name=alternate_key_t ..
creai../key_position=0 key_length=2 ..
creai/display_key_def initions

Display_Key_Def initions NOS/VE Keyed File Utilities 1.1
File = .NVE.USER99.IS_FILE

KEY NAME POSITION LENGTH TYPE STATE
ALTERNATE_KEY_1 0 2 uncollated Creation pending
Duplicate_Key_Values : not_allowed
Nui1_Suppression . : no
Repeat ing_Groups_Specif ied
Repeat ing_Group_Length ;4

Repeating_Group_Count : repeat_to_end_of _record

RECORD 1 (in ascii) : This is the first record
(in hex) : 5468697320697320746865206669727374207265636F 72
..o+l 22 33, 44 55 6.6
(in ascii) : d .
(in hex) : B42E

>

creai/quit apply_key_definitions=no
/

ALTERNATE_KEY_1

CREAI Subcommand

Purpose

Format

Parameters

Displays information about utility subcommands.

HELP or
HEL
SUBJECT =string
MANUAL =keyword or file
STATUS =status variable
SUBJECT or S
Index topic to be located in the online manual.
If SUBJECT is omitted, the HELP subcommand lists the
names of the utility subcommands.
MANUAL or M

Online manual file whose index is searched.

AFM

The AFM online manual index is searched.

11-20 NOS/VE Commands and Functions 60464018 J

Remarks

HELP

CREKD Subcommand

Purpose

Format

60464018 J

If MANUAL is omitted, the default is AFM. The working
catalog is searched for the file and then the

HELP

FILE

File name of the online manual whose index is
searched.

$SYSTEM.MANUALS is searched.

[«)

Displays information about utility subcommands.

HELP or
HEL

If you enter a topic that is not in the manual index, a
message appears telling you that the topic could not
be found.

The default manual, $SYSTEM.MANUALS.AFM,
contains the online version of the NOS/VE Advanced
File Management Usage manual, as provided with the
NOS/VE system.

If your terminal is defined for screen applications, the
online manual is displayed in screen mode.

To leave the online manual, use QUIT. To get help on
reading the online manual, use HELP.

For more information, see the NOS/VE Advanced File
Management Usage manual.

SUBJECT =string
MANUAL =file
STATUS =status variable

CREATE_ALTERNATE_INDEXES 11-21

HELP

Parameters SUBJECT or S
Index topic to be located in the online manual.
If SUBJECT is omitted, the HELP subcommand lists the
names of the utility subcommands.
'MANUAL or M

Online manual whose index is searched.

AFM
The AFM online manual index is searched.

File

File name of the online manual whose index is
searched.

If MANUAL is omitted, the default is AFM. The working
catalog is searched for the file and then the
$SYSTEM.MANUALS is searched.

Remarks o If you enter a topic that is not in the manual index, a
message appears telling you that the topic could not
be found.

® The default manual, $SYSTEM.MANUALS.AFM,
contains the online version of the NOS/VE Advanced

File Management Usage manual, as provided with the
NOS/VE system.

® If your terminal is defined for screen applications, the
online manual is displayed in screen mode.

To leave the online manual, use QUIT. To get help on
reading the online manual, use HELP.

® For more information, see the NOS/VE Advanced File
Management Usage manual.

11-22 NOS/VE Commands and Functions 60464018 J

QUIT

QUIT
CREAI Subcommand

Purpose Ends the CREATE _ALTERNATE _INDEXES utility
session.

Format QUIT or
QUI .
APPLY_KEY_DEFINITIONS =boolean or keyword
ERROR _LIMIT =integer
STATUS =status variable

Parameters APPLY_KEY_DEFINITIONS or APPLY_KEY_
DEFINITION or AKD

Indicates how pending alternate-key creation and deletion
requests are processed.

APPLY (A), TRUE (ON or YES)

Apply all pending creation and deletion requests.

CANCEL (C), FALSE (OFF or NO)

Cancel all pending creation and deletion requests.
This parameter is required if creation or deletion requests
are pending.

ERROR _LIMIT or EL

Number of trivial (nonfatal) errors allowed for the apply
operation (integer from 0 through 65535).

0 is the default value and indicates no limit.

See the APPLY_KEY_DEFINITIONS command description
for a description of apply error processing.

Remarks ¢ The APPLY_KEY_DEFINITIONS parameter is
required only if alternate-key creation or deletion
requests are pending. In this case, you must specify
whether to apply or cancel the pending requests.

If you request application of the pending creations
and deletions, the QUIT subcommand performs the
same processing as the APPLY_KEY_
DEFINITIONS subcommand before exiting the
utility.

60464018 J CREATE _ALTERNATE_INDEXES 11-23

QUIT

Examples

QUIT

If you request cancellation of the requests, the
QUIT subcommand performs the same processing
as the CANCEL _KEY_DEFINITIONS subcommand
before exiting the utility.

o For more information, see the APPLY_KEY_
DEFINITIONS and CANCEL _KEY_DEFINITIONS
subcommand descriptions.

o For more information, see the NOS/VE Advanced File
Management Usage manual.

This CREATE _ALTERNATE _INDEXES session requests
an alternate-key deletion and an alternate-key creation,
but then cancels the requests.

/create_alternate_indexes file=$user.isfile
creai/delete_key_definition alternate_key_1
creai/create_key_definition alternate_key_1 ..

' creai../key_position=0 key_length=5 key_type=integer
creai/quit apply_key_definitions=no
/

CREKD Subcommand

Purpose

Format

Remarks

Examples

Exits the CREATE _KEY_DEFINITION utility, ending
concatenated-key specification.

QUIT or
QUI
STATUS =status variable

© Entry of the QUIT subcommand returns you to the
CREATE _ALTERNATE _INDEXES utility session.
This is indicated by the prompt creai/.

@ For more information, see the NOS/VE Advanced File
Management Usage manual.

This CREATE _ALTERNATE _INDEXES session defines a
concatenated alternate key having two pieces. The first
piece is the ten bytes beginning at byte 5. (Remember,
bytes are numbered from the left beginning with zero.)
The second piece is the five-byte integer at the beginning
of the record.

11-24 NOS/VE Commands and Functions 60464018 J

SEPARATE _KEY_GROUPS

/create_alternate_indexes input=$user.is_file
creai/create_key_def inition alternate_key_3 ..
creai../key_position=b key_length=10 ..
creai../concatenated_pieces=yes

crekd/add_piece key_position=0 key_length=5 ..

crekd. . /key_type=integer

crekd/quit “Exits CREATE_KEY_DEFINITIONS.
creai/quit no "Exits CREATE_ALTERNATE_INDEXES without
/ "applying the alternate-key definition.

SEPARATE _KEY_GROUPS
CREAI Subcommand

Remarks Reserved for site personnel, Control Data, or future use.

60464018 J CREATE_ALTERNATE_INDEXES 11-25

CREATE _INTERSTATE _CONNECTION 12

CREATE _INTERSTATE _CONNECTION 12-1
DELETE _INTERSTATE _CONNECTION 12-2
EXECUTE _INTERSTATE_COMMAND 12-2

60464018 J

CREATE _INTERSTATE _CONNECTION 12

CREATE _INTERSTATE _CONNECTION
Command

Purpose

Format

Parameters

Remarks

60464018 J

Establishes a NOS batch control point on a dual state
system.

CREATE _INTERSTATE _CONNECTION or
CREIC

PARTNER _JOB _CARD =string

STATUS =status variable

PARTNER _JOB _CARD or PJC

Specifies the job statement parameters to be used for the
NOS batch job. The parameter syntax must conform to
NOS job statement rules.

Omission causes the NOS default job statement
parameters to be used (an infinite time limit and no other
parameters specified).

© After you enter a CREATE _INTERSTATE _
CONNECTION command, prompts are issued until you
enter QUIT (QUI) or DELETE _INTERSTATE _
CONNECTION (DELIC).

0 While the interstate connection is open, you can enter
any NOS/VE command (except another CREIC
command). You can enter NOS commands to be
executed on the NOS side of the dual state system
through the EXECUTE _INTERSTATE _COMMAND
command. The CREIC command is generally used in
conjunction with the File Management Utility to
migrate files between NOS and NOS/VE.

0 For more information, see the NOS/VE Advanced File
Management Usage manual.

CREATE_INTERSTATE _CONNECTION 12-1

DELETE_INTERSTATE _CONNECTION

Examples The following commands create an interstate connection,
execute NOS commands (ATTACH, DEFINE, and COPY),
and close the connection. FA is the CREATE _
INTERSTATE _CONNECTION prompt for user input.

/create_interstate_connection partner_job_card=..
../*myjob, ,64."

FA/execute_interstate_command command=‘attach,oldf1.”
FA/execute_interstate_command command=‘define,newfl.”
FA/execute_interstate_command command=. .
FA../’copy,oldfl,newfl.”’
FA/delete_interstate_connection

/

DELETE _INTERSTATE _CONNECTION
CREIC Subcommand

Purpose Ends a CREATE _INTERSTATE _CONNECTION session.

Format DELETE _INTERSTATE _ CONNECTION or
QUI or
QUIT or
DELIC

Parameters None.

Remarks For more information, see the NOS/VE Advanced File
Management manual.

EXECUTE _INTERSTATE _COMMAND
CREIC Subcommand

Purpose Precedes all NOS commands when the interstate
connection established by CREATE _INTERSTATE _
CONNECTION (CREIC) is in effect.

Format EXECUTE _INTERSTATE _COMMAND or
EXEIC
COMMANDS =list of string
STATUS =status variable

Parameters COMMANDS or COMMAND or C

A NOS command followed by a period. The command
string can include up to 80 characters and must be
enclosed in apostrophes. This command is required.

12-2 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

EXECUTE _INTERSTATE _COMMAND

For more information, see the Migration From NOS to
NOS/VE manual.

CREATE_INTERSTATE_CONNECTION 12-3

CREATE _OBJECT_LIBRARY 13

CREATE _OBJECT_LIBRARYcccciiiiiiiiiiiiiin. 13-1
ADD _BOX . e 13-2
ADD _CONSTANT_TEXTottt 13-4
ADD_CONSTANT_TEXT_BOXot 13-6
ADD _DISPLAY ... 13-8
ADD_EVENT e e e e e 13-10
ADD_LINE s 13-12
ADD_MODULE ... e 13-14
ADD_STORED _TEXT ...ttt 13-16
ADD_TABLE e 13-18
ADD_VARIABLE 13-19
ADD_VARIABLE _TEXTottt 13-24
ADD_VARIABLE _TEXT_BOXt 13-26
BIND_MODULE i iiiie e 13-29
CHANGE _COMMAND _DESCRIPTION 13-32
CHANGE _FUNCTION _DESCRIPTION 13-36
CHANGE _MODULE_ATTRIBUTEc.oiiiiinin... 13-38
CHANGE _PROGRAM _DESCRIPTIONc.ooun. 13-45
COMBINE_MODULEo, 13-56
CREATE _APPLICATION_MENUcooiiiiiinennn. 13-59
CREATE _BRIEF_HELP_MESSAGE 13-59
CREATE _COMMAND _DESCRIPTION 13-60
CREATE_FORM_MODULE, 13-66
CREATE _FULL_HELP_MESSAGE 13-67
CREATE _FUNCTION_DESCRIPTION 13-68
CREATE _LINKED_MODULEcoiiiiiiiiiinnt. 13-72
CREATE_MENU _CLASS i 13-78
CREATE_MENU_ITEM ..ottt 13-78
CREATE _MESSAGE_MODULEcooiiiiiiiian. 13-81
CREATE_MODULE ...t 13-83
CREATE _PARAMETER _ASSIST_MESSAGE 13-87
CREATE _PARAMETER _HELP_MESSAGE 13-88
CREATE _PARAMETER _PROMPT_MESSAGE 13-89
CREATE _PROGRAM _DESCRIPTIONc.cevuenn.. 13-91
CREATE _STATUS_MESSAGEcooiiiiinet. 13-102
DELETE_MODULE ..., 13-105
DISPLAY_NEW_LIBRARYciiiiiiiiia... 13-105
END_APPLICATION_MENUo, 13-108
END_FORM_MODULE ... 13-109
END_MESSAGE_MODULEc..ciiiiiiiiiiienn.. 13-109
GENERATE _LIBRARY 13-110
QUIT . e 13-113
REORDER_MODULE ...ttt 13-113

60464018 J

REPLACE_MODULE o 13-115

SATISFY_EXTERNAL_REFERENCE 13-117
SET_CHARACTER_INPUT oo, 13-119
SET_COBOL_DATA e 13-120
SET_COBOL _OUTPUTcciiiiiiiiiiiiieenneanne. 13-122
SET_DISPLAY_OPTIONottt 13-124
SET_EXPONENT_OUTPUTc.oiiiiiiiinin.. 13-126
SET_FLOAT_OUTPUT i 13-128
SET_FORM ... i 13-129
SET_INTEGER_INPUT i, 13-133
SET_INTEGER_OUTPUT ..., 13-134
SET_MONEY_INPUT i 13-135
SET_MONEY_OUTPUT ...t 13-137
SET_REAL_INPUT ... iiiiieeeeens 13-138

60464018 J

CREATE _OBJECT_LIBRARY 13

CREATE _OBJECT_LIBRARY
Command

Purpose Begins a CREATE _OBJECT_LIBRARY utility session.
The utility produces an object library or an object file and
allows post-compilation manipulation of object or load
modules. It can also produce a text version of certain
kinds of modules on an object library.

Format CREATE _OBJECT_LIBRARY or
CREOL or
OCU
STATUS =status variable

Remarks ® The following files can be created by the
GENERATE _LIBRARY subcommand of this utility.
The utility issues a warning and does not process
input files whose attributes do not conform to the
attributes listed in the right-hand column of the table
below. The utility sets the accompanying file attributes
listed for output files it creates. You can override
attributes with the SCL SET_FILE _ATTRIBUTE

command.

File Created Attributes Given to the File

Form source FILE _CONTENT=LEGIBLE _
SCL_INCLUDE

Form variable FILE _CONTENT =LEGIBLE

Object library FILE _CONTENT=0BJECT_
LIBRARY

Object file FILE _CONTENT=0OBJECT_
DATA

SCL procedure FILE _CONTENT=LEGIBLE _

file SCL_PROCEDURE

Message module FILE _CONTENT=LEGIBLE _

file SCL_INCLUDE

60464018 J CREATE _OBJECT_LIBRARY 13-1

-ADD_BOX

© The CREOL session ends when you enter the QUIT
subcommand.

0 For more information, see the NOS/VE Object Code
Management manual.

Examples Following is a sequence that removes an object library
from the command list, creates a new version of the
object library from the modules on file $LOCAL.LGO, and
then adds the object library to the command list.

/delete_command_list_entry entry=$local.my_commands
/create_object_library

COL/add_module $local.lgo

COL/generate_1library $local.my_commands

COL/quit

/create_command_list_entry entry=$local.my_commands
/

. ADD _BOX
. CREFM Subcommand

Purpose ADD_BOX adds a graphic box object to a form.

i Format ADD _BOX or

ADDB
COLUMN =integer
LINE =integer
WIDTH = integer
HEIGHT =integer
DISPLAY =list of keyword
NAME =name or cobol _name
OCCURRENCE =integer
STATUS =status variable

Parameters COLUMN or C

The column position for the upper left corner of the
graphic box object. Column 1 is the upper left corner of
the form. The valid values are from 1 through 256. This
parameter is required.

13-2 NOS/VE Commands and Functions 60464018 J

60464018 J

ADD_BOX

LINE or L

The line position for the upper left corner of the graphic
box object. Line 1 is the upper left corner of the form.
The valid values are from 1 through 256. This parameter
is required.

WIDTH or W

The number of columns the graphic box object occupies.
The valid values are from 1 through 256. This parameter
is required.

HEIGHT or H

The number of lines the graphic box object occupies. The
valid values are from 1 through 256. This parameter is
required.

DISPLAY or DISPLAYS or D

A list of display attributes for the graphic box object. The
following values are valid:

INVERSE
LOW_INTENSITY

HIGH _INTENSITY
BLINK

BLACK _BACKGROUND
BLUE _BACKGROUND
GREEN _BACKGROUND
MAGENTA _BACKGROUND
RED_BACKGROUND
CYAN _BACKGROUND
YELLOW_BACKGROUND
WHITE _ BACKGROUND
BLACK _FOREGROUND
BLUE _FOREGROUND
GREEN _FOREGROUND
MAGENTA _FOREGROUND
RED_FOREGROUND
CYAN _FOREGROUND
YELLOW_FOREGROUND
WHITE _FOREGROUND
FINE _LINE

MEDIUM _LINE
BOLD_LINE

The defaults are the foreground and background colors of
the form.

CREATE_OBJECT_LIBRARY 13-3

Remarks

Purpose

¢ Format

. Parameters

ADD_CONSTANT_TEXT

NAME or N
The name of the graphic box object. The default is spaces.

OCCURRENCE or O
The occurrence of the name. The valid values are from 1
through 1000. The default is 1.

For more information, see the NOS/VE Screen Fermatting
manual. '

. ADD _CONSTANT_TEXT
CREFM Subcommand

ADD_CONSTANT_TEXT adds a constant text object to
the form. A constant text object occupies a single line. In

contrast, a constant text box object occupies more than
one line (see ADD_CONSTANT_TEXT_BOX).

ADD _CONSTANT_TEXT or
ADDCT
COLUMN =integer
LINE =integer
TEXT =string
DISPLAY =list of keyword
NAME =name or cobol _name
OCCURRENCE =integer
WIDTH =integer
STATUS =status variable

COLUMN or C

The position for the first column of the constant text
object. Column 1 is the upper left corner of the form. The
valid values are from 1 through 256. This parameter is
required.

LINE or L

The line position for the constant text object. Line 1 is
the upper left corner of the form. The valid values are
from 1 through 256. This parameter is required.

13-4 NOS/VE Commands and Functions 60464018 J

ADD_CONSTANT_TEXT

TEXT or T

The constant text. Neither the application program nor
the application user can change this text. You can enter a
string of from 1 to 65,535 characters. This parameter is
required.

DISPLAY or DISPLAYS or D

A list of display attributes for the constant text object.
The program can change these attributes. The following
values are valid:

INVERSE

LOW_INTENSITY

HIGH _INTENSITY

BLINK

HIDDEN

UNDERLINE

BLACK _BACKGROUND
BLUE _BACKGROUND
GREEN_BACKGROUND
MAGENTA _BACKGROUND
RED _BACKGROUND

CYAN _BACKGROUND
YELLOW_BACKGROUND
WHITE _BACKGROUND
BLACK _FOREGROUND
BLUE _FOREGROUND
GREEN _FOREGROUND
MAGENTA _FOREGROUND
RED _FOREGROUND

CYAN _FOREGROUND
YELLOW_FOREGROUND
WHITE _FOREGROUND
ITALIC

TITLE

INPUT

ERROR

MESSAGE
DISPLAY_LEFT_TO_RIGHT
DISPLAY_RIGHT_TO_LEFT

The defaults are the foreground and background colors of
the form and DISPLAY_LEFT_TO_RIGHT.

60464018 J CREATE_OBJECT_LIBRARY 13-5

ADD_CONSTANT_TEXT_BOX

Remarks

NAME or N

The name of the constant text object. The default is
spaces.

OCCURRENCE or O

The occurrence of the name. The valid values are from 1
through 1000. The default is 1.

WIDTH or W

The number of columns the constant text object occupies.
The valid values are from 1 through 256. The default is
the number of characters in the text.

Use this parameter to specify a display attribute that
occupies more space than the text.

For more information, see the NOS/VE Screen Formatting
manual.

ADD _CONSTANT _TEXT_BOX
CREFM Subcommand

: Purpose

Format

Parameters

ADD_CONSTANT_TEXT_BOX adds a constant text box
object to a form. A constant text box object occupies more

than one line. In contrast, a constant text object occupies
only one line (see ADD_CONSTANT_TEXT).

ADD _CONSTANT_TEXT_BOX or
ADDCTB
COLUMN =integer
LINE =integer
TEXT = string
WIDTH =integer
HEIGHT =integer
DISPLAY =list of keyword
NAME =name or cobol _name
OCCURRENCE =integer
TEXT _FORMAT = keyword
STATUS =status variable

COLUMN or C

The column position of the upper left corner of the
constant text box object. Column 1 is the upper left
corner of the form. The valid values are from 1 through
256. This parameter is required.

13-6 NOS/VE Commands and Functions 60464018 J

60464018 J

ADD_CONSTANT_TEXT_BOX

LINE or L

The line position for the upper left corner of the constant
text box object. Line 1 is the upper left corner of the
form. The valid values are from 1 through 256. This
parameter is required.

TEXT or T

The constant text (neither the application program nor the
application user can change this text). You can enter a
string of from 1 through 65,535 characters. This
parameter is required.

WIDTH or W

The number of columns the constant text box object
occupies. The valid values are from 1 through 256. This
parameter is required.

HEIGHT or H

The number of lines the constant text box object occupies.
The valid values are from 1 through 256. This parameter
is required.

DISPLAY or DISPLAYS or D

A list of display attributes for the constant text box
object. (The program can change these attributes.) The
following values are valid:

INVERSE

LOW_INTENSITY

HIGH _INTENSITY

BLINK

HIDDEN

UNDERLINE

BLACK _BACKGROUND
BLUE _BACKGROUND
GREEN _BACKGROUND
MAGENTA _BACKGROUND
RED_BACKGROUND
CYAN _BACKGROUND
YELLOW_BACKGROUND
WHITE _BACKGROUND
BLACK _FOREGROUND
BLUE _FOREGROUND
GREEN _FOREGROUND
MAGENTA _FOREGROUND

CREATE_OBJECT_LIBRARY 13-7

ADD_DISPLAY

RED _FOREGROUND

CYAN _FOREGROUND
YELLOW_FOREGROUND
WHITE _FOREGROUND
ITALIC

TITLE

INPUT

ERROR

MESSAGE
DISPLAY_LEFT_TO _RIGHT
DISPLAY_RIGHT_TO _LEFT

The defaults are the foreground and background colors of
the form and DISPLAY_LEFT_TO_RIGHT.

NAME or N

The name of the constant text box object. The default is
spaces.

OCCURRENCE or O

The occurrence of the name. The valid values are from 1
through 1000. The default is 1.

TEXT_FORMAT or TF

The format for breaking text between lines. The following
values are valid:

Value Meaning

WRAP_WORDS Breaks text between words.

WRAP_CHARACTERS Breaks text at any character.
The default is WRAP_WORDS.

Remarks For more information, see the NOS/VE Screen Formatting
manual.

ADD _DISPLAY
- CREFM Subcommand

. Purpose ADD _DISPLAY specifies a program name for a terminal
. display attribute. When the program interacts with the
form to change a display attribute of an object, it uses
the name specified by this subcommand.

13-8 NOS/VE Commands and Functions 60464018 J

Format

Parameters

60464018 J

ADD_DISPLAY

ADD _DISPLAY or

ADDD
NAME =name or cobol _name
DISPLAY =list of keyword
STATUS =status variable

NAME or N

The name the program uses to change display attributes
for objects on the form. This parameter is required.

DISPLAY or DISPLAYS or D

A list of display attributes. These attributes correspond to
the attributes specified in the terminal definition input
statement. (For more information, see the NOS/VE
Terminal Definitions manual.) This parameter is required.

The following values are valid:

INVERSE
LOW_INTENSITY

HIGH _INTENSITY
BLINK

UNDERLINE

PROTECT

HIDDEN

BLACK _BACKGROUND
BLUE _BACKGROUND
GREEN _BACKGROUND
MAGENTA _BACKGROUND
RED _BACKGROUND
CYAN _BACKGROUND
YELLOW_BACKGROUND
WHITE _BACKGROUND
BLACK _FOREGROUND
BLUE _FOREGROUND
GREEN _FOREGROUND
MAGENTA _FOREGROUND
RED _FOREGROUND
CYAN _FOREGROUND
YELLOW_FOREGROUND
WHITE _FOREGROUND
FINE _LINE

MEDIUM _LINE
BOLD_LINE

ITALIC

TITLE

CREATE_OBJECT_LIBRARY 13-9

ADD_EVENT

INPUT

ERROR

MESSAGE
DISPLAY_LEFT_TO _RIGHT
DISPLAY_RIGHT_TO _LEFT

: Remarks For more information, see the NOS/VE Screen Formatting
: manual.
ADD _EVENT

CREFM Subcommand

Purpose

Format

: Parameters

ADD_EVENT adds an event definition to the form.

ADD _EVENT or

ADDE ;
PROGRAM _EVENT =name or cobol _name
TERMINAL _EVENT=keyword
ACTION =keyword '
LABEL =string
STATUS =status variable

PROGRAM _EVENT or PE

The name the program uses for an event. This parameter
is required.

TERMINAL _EVENT or TE

The key or keys that execute the event. The values
correspond to the function keys specified in the terminal
definition input statements (for information, see the
NOS/VE Terminal Definitions manual). For information on
how Screen Formatting uses the value you specify to
assign a key, see the NOS/VE Screen Formatting manual.
This parameter is required.

The following values are valid:

NEXT SHIFT_NEXT

HELP SHIFT_HELP

STOP SHIFT_STOP

BACK SHIFT_BACK

UP SHIFT_UP

DOWN SHIFT_DOWN
FORWARD SHIFT_FORWARD
BACKWARD SHIFT_BACKWARD
UNDO

13-10 NOS/VE Commands and Functions 60464018 J

60464018 J

ADD_EVENT

REDO

QUIT

EXIT

FIRST

LAST

EDIT SHIFT_EDIT
DATA SHIFT_DATA
F1 SHIFT_F1
F2 ' SHIFT_F2
F3 SHIFT_F3
F4 SHIFT_F4
F5 SHIFT_F5
Fé SHIFT_F6
F7 SHIFT_F7
F8 SHIFT_F8
F9 SHIFT_F9
F10 SHIFT_F10
F11 SHIFT_F11
F12 SHIFT_F12
F13 SHIFT_F13
F14 SHIFT_F14
F15 ‘ SHIFT_F15
F16 SHIFT_F16
PICK

INSERT_LINE
DELETE _LINE
HOME

The following terminal events are equivalent:

QUIT STOP

EXIT SHIFT_STOP

FIRST SHIFT_BACKWARD
LAST SHIFT_FORWARD

When Screen Formatting returns these events, it uses the
second form in the list.

ACTION or A

Screen Formatting's action when the terminal event
occurs. For descriptions of the values, see the NOS/VE
Screen Formatting manual. This parameter is required.

The following values are valid:

RETURN _NORMAL
RETURN ABNORMAL

CREATE_OBJECT_LIBRARY 13-11

ADD_LINE

PAGE _TABLE _FORWARD

PAGE _TABLE _BACKWARD
SCROLL _TABLE _FORWARD
SCROLL_TABLE _BACKWARD
DISPLAY_HELP

ERASE _HELP

IGNORE

TAB _NEXT

TAB _PREVIOUS

SCROLL _VARIABLE _FORWARD
SCROLL _VARIABLE _BACKWARD
PAGE _VARIABLE _FORWARD
PAGE _VARIABLE _BACKWARD
PAGE _VARIABLE _FIRST

PAGE _VARIABLE _LAST

PAGE _TABLE _FIRST

PAGE _TABLE _LAST

LABEL or L

The label for the event (this label appears on the screen).
The label is a 0- to 6-character string. The default is no
label.

. Remarks For more information, see the NOS/VE Screen Formatting
manual.

ADD _LINE
CREFM Subcommand

Purpose ADD_LINE adds a graphic line object to form.

Format ADD _LINE or
ADDL

START_COLUMN =integer
START_LINE =integer
END _COLUMN =integer
END _LINE =integer
DISPLAY =list of keyword
NAME =name or cobol _name
OCCURRENCE =integer
STATUS =status variable

13-12 NOS/VE Commands and Functions 60464018 J

Parameters

60464018 J

ADD_LINE

START_COLUMN or SC

The column position for the start of the graphic line
object. Column 1 is the upper left corner of the form. The
valid values are from 1 through 256. This parameter is
required.

START_LINE or SL

The line position for the start of the graphic line object.
Line 1 is the upper left corner of the form. The valid
values are from 1 through 256. This parameter is
required.

END _COLUMN or EC

The column position for the end of the graphic line object.
The valid values are from 1 through 256. This parameter
is required.

. END_LINE or EL

The line position for the end of the graphic line object.
The valid values are from 1 through 256. This parameter
is required.

DISPLAY or DISPLAYS or D

A list of display attributes for the graphic line object. The
following values are valid:

INVERSE

LOW_INTENSITY

HIGH _INTENSITY

BLINK

BLACK _BACKGROUND
BLUE _BACKGROUND
GREEN _BACKGROUND
MAGENTA _BACKGROUND
RED_BACKGROUND
CYAN _BACKGROUND
YELLOW_BACKGROUND
WHITE _BACKGROUND
BLACK _FOREGROUND
BLUE _FOREGROUND
GREEN _FOREGROUND
MAGENTA _FOREGROUND
RED_FOREGROUND

CYAN _FOREGROUND
YELLOW_FOREGROUND

CREATE_OBJECT_LIBRARY 13-13

ADD_MODULE

Remarks

WHITE _FOREGROUND
FINE _LINE

MEDIUM _LINE
BOLD_LINE

The defaults are the foreground and background colors of
the form.

NAME or N _
The name of the graphic line object. The default is spaces.

OCCURRENCE or O
The occurrence of the name. The valid values are from 1
through 1000. The default is 1.

For more information, see the NOS/VE Screen Formatting
manual.

ADD _MODULE
CREOL Subcommand

Purpose

Format

Parameters

Adds one or more modules to the module list.

ADD _MODULE or
ADD _MODULES or
ADDM
LIBRARY =list of file
MODULE =list of program _name or list of range of
program _name
PLACEMENT = keyword
DESTINATION =program _name
STATUS =status variable

LIBRARY or LIBRARIES or L

Object files, SCL procedure files, or object library files
containing the modules to be added. This parameter is
required.

MODULE or MODULES or M
Modules to be added.

You use a string value for a module whose name is not
an SCL name or a COBOL name. An example of such a
module name is a C function, where lowercase is
significant. ‘

13-14 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

ADD_MODULE

If MODULE is omitted, all modules on the files specified
on the LIBRARY parameter are added.

PLACEMENT or P

Indicates whether the added modules are placed before or
after the module specified on the DESTINATION
parameter. Options are:

BEFORE (B)
Modules added before the destination module.

AFTER (A)
Modules added after the destination module.
If PLACEMENT is omitted, AFTER is used.

DESTINATION or D

Module before or after which the added modules are
placed.

If DESTINATION is omitted, the location depends on the
PLACEMENT parameter value. If
PLACEMENT=BEFORE, the modules are placed at the
beginning of the module list; if PLACEMENT =AFTER,
the modules are placed at the end of the module list.

© The ADD_MODULE subcommand can specify object
files, SCL procedure files, or object-libraries. The
CREOL utility adds modules from files in the order
you specify the files on the LIBRARY parameter. If
you do not want to use all modules in the files,
specify which modules to be added on the MODULE
parameter.

© The ADD_MODULE subcommand adds each module to
the end of the module list unless otherwise specified
by the PLACEMENT and DESTINATION
PARAMETERS. If the module list already contains a
medule of the same name, a warning status message
is returned and the module is not added.

® The ADD_MODULE subcommand does not replace
modules in the module list. To replace modules, enter
a REPLACE _MODULES subcommand. To add and
replace modules, enter a COMBINE _MODULES
subcommand.

CREATE _OBJECT_LIBRARY 13-15

ADD_STORED _TEXT

o If you specify an SCL procedure whose header
references a non-standard type, you must make the
type definition available. For instance, if you want to
add the following procedure:

PROCEDURE show(
p1: address_list = $required
status)

PROCEND show

then the type definition for ADDRESS _LIST must be
created outside the procedure. This is accomplished by
using the TYPE control statement, as in:

TYPE .
address_1list : list 1..3 of string
TYPEND

® For more information, see the NOS/VE Object Code
Management manual.

Examples The following subcommand adds all modules on files
BINARY1 and BINARY2 to the beginning of the module
list.

COL/add_module (binaryil,binary2) placement=before

. ADD _STORED _TEXT
. CREFM Subcommand

Purpose ADD_STORED _TEXT adds an initial value for a table
variable occurrence that does not initially appear on the
form.

Format ADD_STORED _TEXT or
ADDST
VARIABLE _NAME =name or cobol _name
OCCURRENCE =integer
TEXT =string
DISPLAY =list of keyword
STATUS =status variable

13-16 NOS/VE Commands and Functions 60464018 J

Parameters

60464018 J

ADD_STORED_TEXT

VARIABLE _NAME or VN
The name of the stored object. This parameter is required.

OCCURRENCE or O

The occurrence of the name. The value 1 is the first or
only occurrence. The valid values are from 1 through
1000. This parameter is required.

TEXT or T

The initial text for the stored object. You can enter a
string of from 1 through 65,535 characters. The default is
spaces. -

DISPLAY or DISPLAYS or D

A list of display attributes for the variable text object.
The following values are valid:

INVERSE
LOW_INTENSITY

HIGH _INTENSITY
BLINK

UNDERLINE

PROTECT

HIDDEN

BLACK _BACKGROUND
BLUE _BACKGROUND
GREEN _BACKGROUND
MAGENTA _BACKGROUND
RED_BACKGROUND
CYAN _BACKGROUND
YELLOW_BACKGROUND
WHITE _BACKGROUND
BLACK _FOREGROUND
BLUE _FOREGROUND
GREEN _FOREGROUND
MAGENTA _FOREGROUND
RED_FOREGROUND
CYAN _FOREGROUND
YELLOW_FOREGROUND
WHITE _FOREGROUND
ITALIC

TITLE

INPUT

ERROR

MESSAGE

CREATE_OBJECT_LIBRARY 13-17

ADD_TABLE

: Remarks

DISPLAY_LEFT_TO_RIGHT
DISPLAY_RIGHT_TO _LEFT

The defaults are the foreground and background colors of
the form and DISPLAY_LEFT_TO_RIGHT.

For more information, see the NOS/VE Screen Formatting
manual.

. ADD _TABLE
. CREFM Subcommand

Purpose

Format

Parameters

ADD_TABLE adds a table (a group of one or more
variables). The table may have one or more occurrences.

ADD _TABLE or

ADDT
TABLE _NAME =name or cobol_name
VARIABLE _NAME =list of: name or cobol _name
STORED _OCCURRENCE =integer
VISIBLE _OCCURRENCE =integer
STATUS =status variable

TABLE _NAME or TN
The name of the table. This parameter is required.

VARIABLE _NAME or VARIABLE _NAMES or VN

A list of the names of variables that belong to the table. -
This parameter is required.

STORED _OCCURRENCE or STORED _
OCCURRENCES or SO

The maximum number of stored occurrences allowed in
the table. The value must be greater than or equal to the
value for the VISIBLE_OCCURRENCE parameter. The
valid values are from 1 through 1000. This parameter is
required.

VISIBLE _OCCURRENCE or VISIBLE _OCCURRENCES
or VO

The number of occurrences visible to the user. You must

add a variable text object for each visible occurrence. The
valid values are from 1 through 1000. The default is the

value specified for STORED _OCCURRENCE.

13-18 NOS/VE Commands and Functions 60464018 J

ADD_VARIABLE

Remarks For more information, see the NOS/VE Screen Formatting
manual.

ADD _VARIABLE
CREFM Subcommand

Purpose ADD_VARIABLE specifies general attributes for a
variable.

Format ADD _VARIABLE or
ADDV
VARIABLE _ NAME =name or cobol_name
IO _MODE =keyword
DATA _TYPE =keyword
ERROR _PROCESSING =keyword or name or string
ERROR _DISPLAY =list of keyword
HELP_PROCESSING =keyword or name or string
LENGTH =integer
USER _ENTRY =list of keyword
COMMENT =list of string
STATUS =status variable

Parameters VARIABLE _NAME or VN
The name of the variable. This parameter is required.

I0 _MODE or IM

The input and output performed on the variable. The
following values are valid:

Value Meaning

INPUT The user inputs data, which is
blanked as soon as possible.

INPUT_OUTPUT The user inputs data, which
remains visible. The program
outputs data to this variable.

60464018 J CREATE_OBJECT_LIBRARY 13-19

ADD_VARIABLE

OUTPUT The program outputs data to the
terminal (the user cannot enter
data). Any user modification to the
variable is corrected as soon as
possible.

PROGRAM Programs save data from one
terminal interaction to another.
The terminal user does not see the
variable.

The default is INPUT_OUTPUT.

DATA _TYPE or DT
The data type of the variable. The following values are

valid:

Value Meaning

CHARACTER Passes user-entered characters to the
program without converting them.

COBOL Converts user-entered characters to a
COBOL format.

INTEGER Converts user-entered characters to
an integer.

REAL Converts user-entered characters to a
real number. '

UPPERCASE Converts both user-entered and
program-supplied characters to
uppercase.

The default is CHARACTER.

ERROR _PROCESSING or EP

Error processing for the variable. Error processing occurs
when:

® The user enters data that cannot be converted to the
specified program data type.

® The data is not one of the valid values for the
variable.

13-20 NOS/VE Commands and Functions 60464018 J

ADD_VARIABLE

© The user did not enter required data.
The following values are valid:

Value Meaning

name When an error occurs, Screen Formatting
displays a form with the specified name.

string When an error occurs, Screen Formatting
displays the specified string. The string
can be from 0 through 256 characters.

NONE Screen Formatting displays nothing on
the screen, but returns the error in the
VARIABLE _STATUS parameter of the
application program call.

SYSTEM When an error occurs, Screen Formatting
displays a default message.

The default is NONE.

ERROR _DISPLAY or ERROR _DISPLAYS or ED

A list of attributes for displaying an error when a
variable does not pass validation. The following values are
valid:

INVERSE

LOW_INTENSITY

HIGH _INTENSITY

BLINK

UNDERLINE

PROTECT

HIDDEN
BLACK_BACKGROUND
BLUE _BACKGROUND
GREEN _BACKGROUND
MAGENTA _BACKGROUND
RED _BACKGROUND
CYAN _BACKGROUND
YELLOW_BACKGROUND
WHITE _BACKGROUND
BLACK _FOREGROUND
BLUE _FOREGROUND
GREEN _FOREGROUND
MAGENTA _FOREGROUND
RED_FOREGROUND

60464018 J CREATE _OBJECT_LIBRARY 13-21

ADD_VARIABLE

CYAN _FOREGROUND
YELLOW_FOREGROUND
WHITE _FOREGROUND
ITALIC

TITLE

INPUT

ERROR

MESSAGE

The defaults are INVERSE and UNDERLINE.

HELP_PROCESSING or HP

Help processing for the variable. Help processing occurs
when the user executes a help event. The following values

are valid:

Value Meaning

name Displays a form with the specified name.

string Displays the specified string. The string
can be from 0 through 256 characters.

NONE Displays no help information.

SYSTEM Displays a default message.

The default is NONE.

LENGTH or L

The length of the variable in characters. This attribute
applies only to variables with the data type CHARACTER
or UPPERCASE. The user can execute scrolling
commands to see all the data in the program variable.
The valid values are from 1 through 65535. The default is
the size of the text object for the variable.

13-22 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

ADD_VARIABLE

USER _ENTRY or USER _ENTRIES or UE

The user entry actions for the variable. The following
values are valid:

Value Meaning

OPTIONAL The user does not need to enter data
for the variable.

MUST_ENTER The user must enter data for the
variable.

The initial value of the variable need
not be in the list of valid values. For
example, you can use this value to
require the user to enter a password,
although you do not want to let the
user see a valid password. The list of
valid values lists valid passwords.
You specify spaces as the initial
value.

The default is OPTIONAL.

COMMENT or COMMENTS or C

A list of strings to be saved as comments with the
variable definition. By default, no comments are saved.

© When you use this subcommand, you must also use
either the ADD_VARIABLE _TEXT or ADD_
VARIABLE _TEXT_BOX subcommand.

0 When you specify COBOL for the DATA _TYPE
parameter, you can also use the following
subcommands to specify the program format and the
display format for a COBOL variable:

SET_COBOL _DATA
SET_COBOL_OUTPUT

If you do not use these subcommands, Screen
Formatting uses the following string for each
subcommand:

PIC X(n)
(n represents the size of the variable text object.)

CREATE_OBJECT_LIBRARY 13-23

ADD_VARIABLE _TEXT

® If you want Screen Formatting to validate a COBOL
variable, use the following subcommands:

SET_INTEGER _INPUT
SET_REAL_INPUT
SET_CHARACTER _INPUT

For more information on validating COBOL variables,
see the NOS/VE Screen Formatting manual.

© When you specify CHARACTER, INTEGER, REAL, or
UPPERCASE for the DATA _TYPE parameter, you can
also use the following subcommands to specify the user
entry format, the valid values, and the display format
for the variable:

SET_CHARACTER _INPUT
SET_EXPONENT_OUTPUT
SET_FLOAT_OUTPUT
SET_INTEGER _INPUT
SET_INTEGER _OUTPUT
SET_MONEY_INPUT
SET_MONEY_OUTPUT
SET_REAL_INPUT

If you do not use the preceding subcommands, Screen
Formatting uses the defaults appropriate to the data
type of the variable.

® For more information, see the NOS/VE Screen
Formatting manual.

ADD _VARIABLE _TEXT
CREFM Subcommand

© Purpose ADD _VARIABLE _TEXT adds a variable text object to
the form. A variable text object occupies a single line. In

contrast, a variable text box object occupies more than
one line (see ADD_VARIABLE _TEXT_BOX).

Format ADD _VARIABLE _TEXT or
ADDVT
COLUMN =integer
LINE =integer
TEXT = string

13-24 NOS/VE Commands and Functions 60464018 J

Parameters

60464018 J

ADD_VARIABLE _TEXT

VARIABLE _NAME =name or cobol _name
OCCURRENCE =integer

DISPLAY =list of keyword

WIDTH =integer

STATUS =status variable

COLUMN or C

The position for the first column of the variable text
object. Column 1 is the upper left corner of the form. The
valid values are from 1 through 256. This parameter is
required.

LINE or L

The line position for the variable text object. Line 1 is
the upper left corner of the form. The valid values are
from 1 through 256. This parameter is required.

TEXT or T

The initial text for the variable text object. You can enter
a string of from 0 through 65,535 characters. If you want
the initial display to be blank space, specify a null string
and the WIDTH parameter. This parameter is required.

VARIABLE _NAME or VN

The name of the variable text object. This parameter is
required.

OCCURRENCE or O

The occurrence of the name. The valid values are from 1
through 1000. The default is 1.

DISPLAY or DISPLAYS or D

A list of display attributes for the variable text object.
The following values are valid:

INVERSE
LOW_INTENSITY

HIGH _INTENSITY
BLINK

UNDERLINE

PROTECT

HIDDEN

BLACK _BACKGROUND
BLUE _BACKGROUND
GREEN _BACKGROUND

CREATE_OBJECT_LIBRARY 13-25

ADD_VARIABLE_TEXT_BOX

© Remarks

MAGENTA _BACKGROUND
RED _BACKGROUND
CYAN _BACKGROUND
YELLOW_BACKGROUND
WHITE _BACKGROUND
BLACK _FOREGROUND
BLUE _FOREGROUND
GREEN _FOREGROUND
MAGENTA _FOREGROUND
RED _FOREGROUND
CYAN _FOREGROUND
YELLOW_FOREGROUND
WHITE _FOREGROUND
ITALIC
TITLE
INPUT
ERROR
MESSAGE

" DISPLAY_LEFT_TO _RIGHT
DISPLAY_RIGHT_TO _LEFT

The defaults are the foreground and background colors of
the form and DISPLAY_LEFT_TO_RIGHT.
WIDTH or W

The number of columns the variable text object occupies.
The valid values are from 1 through 256. The default is
the number of characters in the text.

Use this parameter when you want a display attribute to
occupy more space than the text.

® When you use this subcommand, you must also use
the ADD_VARIABLE subcommand.

® For more information, see the NOS/VE Screen
Formatting manual.

ADD _VARIABLE _TEXT_BOX
CREFM Subcommand

Purpose

ADD_VARIABLE _TEXT_BOX adds a variable text box
object to a form. A variable text box object occupies more
than one line. In contrast, variable text occupies only one
line (see ADD_VARIABLE _TEXT).

13-26 NOS/VE Commands and Functions 60464018 J

Format

Parameters

60464018 J

ADD_VARIABLE_TEXT_BOX

ADD _VARIABLE _TEXT_BOX or
ADDVTB
COLUMN =integer
LINE =integer
TEXT = string
WIDTH =integer
HEIGHT =integer
VARIABLE _NAME =name or cobol _name
OCCURRENCE =integer
DISPLAY =list of keyword
TEXT _FORMAT =keyword
STATUS =status variable

COLUMN or C

The column position of the upper left corner of the
variable text box object. Column 1 is the upper left corner
of the form. The valid values are from 1 through 256.
This parameter is required.

LINE or L

The line position of the upper left corner of the variable
text box object. Line 1 is the upper left corner of the
form. The valid values are from 1 through 256. This
parameter is required.

TEXT or T

The initial text for the variable text box object. You can
enter a string of from 0 through 65,535 characters. If you
want the initial display to be blank space, specify a null
string. This parameter is required.

WIDTH or W

The number of columns the variable text box object
occupies. The valid values are from 1 through 256. This
parameter is required.

HEIGHT or H

The number of lines the variable text box object occupies.
The valid values are from 1 through 256. The parameter
is required.

VARIABLE _NAME or VN

The name of the variable text box object. This parameter
is required.

CREATE_OBJECT_LIBRARY 13-27

ADD_VARIABLE _TEXT_BOX.

OCCURRENCE or O

The occurrence of the name. The valid values are from 1
through 1000. The default is 1.

DISPLAY or DISPLAYS or D

A list of display attributes for the variable text box
object. The following values are valid:

‘INVERSE

LOW_INTENSITY

HIGH _INTENSITY

BLINK

UNDERLINE

PROTECT

HIDDEN

BLACK _BACKGROUND
BLUE _BACKGROUND
GREEN _BACKGROUND
MAGENTA _BACKGROUND
RED_BACKGROUND
CYAN _BACKGROUND
YELLOW_BACKGROUND
WHITE _BACKGROUND
BLACK _FOREGROUND
BLUE _FOREGROUND
GREEN _FOREGROUND
MAGENTA _FOREGROUND
RED_FOREGROUND

CYAN _FOREGROUND
YELLOW_FOREGROUND
WHITE _FOREGROUND
ITALIC

TITLE

INPUT

ERROR

MESSAGE
DISPLAY_LEFT_TO _RIGHT
DISPLAY_RIGHT_TO _LEFT

The defaults are the foreground and background colors of
the form.

13-28 NOS/VE Commands and Functions 60464018 J

BIND_MODULE

TEXT_FORMAT or TF

The format for breaking text between lines. The following
values are valid:

Value Meaning
WRAP_WORDS Breaks text between words.

WRAP_CHARACTERS Breaks text at any character.
The default is WRAP_WORDS.

Remarks ® When you use this subcommand, you must also use
the ADD _VARIABLE subcommand.
@ For more information, see the NOS/VE Screen
Formatting manual.
BIND _MODULE
CREOL Subcommand
Purpose Subcommand used in a restructuring procedure to bind
component modules into a single load module. This
subcommand is not recommended for your use. The
subcommand description is provided only to help you
interpret the commands in a restructuring procedure. To
create a new module by binding component modules, you
should use the subcommand CREATE _MODULE.
Format BIND _MODULE or
BINM
MODE =keyword
NAME =program _name
FILE =file
STARTING _PROCEDURE =program _name
SECTION _ORDER =list of record
PRESET _VALUE =keyword
INCLUDE _BINARY_SECTION _MAPS =boolean
OUTPUT =file
STATUS =status variable
60464018 J CREATE_OBJECT_LIBRARY 13-29

BIND_MODULE

Parameters

MODE or M

Indicates whether additional BIND _MODULE
subcommands for the module follow this subcommand.
Options are:

CONTINUE
More BIND _MODULE subcommands follow.

QUIT

This is the last BIND _MODULE subcommand for the
module.

This parameter is required.

NAME or N

Name of the new module. This parameter is required only
on the first BIND _MODULE subcommand for the module.

Use a string value for a module name which is not an
SCL name or a COBOL name.
FILE or F

File containing the modules to be bound. This parameter
is required only on the first BIND _MODULE
subcommand for the module.

STARTING _PROCEDURE or SP

Name of the transfer symbol for the new module.

You use a string value for a transfer symbol whose name
is not an SCL name.

If STARTING_PROCEDURE is omitted, the last transfer
symbol encountered is used.

SECTION _ORDER or SO

Parameter Attributes: BY_NAME

Code section ordering for the component modules in the
new module. Each record in the list contains a module
name and its section ordinal.

13-30 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

BIND_MODULE.

PRESET_VALUE or PV
Parameter Attributes: BY _NAME
Specifies text record reduction as follows.

ZERO (Z)

Reduces the number of individual text records in an
object module. Reducing the number of records reduces
the amount of time it takes to load the module.

If PRESET_VALUE is omitted, the number of text records
is not reduced.

INCLUDE _BINARY_SECTION _MAPS or IBSM
Parameter Attributes: BY_NAME

Indicates whether the binary section map is included in
the information element for the bound module.

OUTPUT or O
Parameter Attributes: BY_NAME

File to which the section map for the new module is
written. This file can be positioned. If OUTPUT is
omitted, no section map is written.

© The new module is not generated until you enter a
GENERATE _LIBRARY subcommand. Therefore, the
section map for the module is not written on the file
specified on the OUTPUT parameter until the module
is generated.

© A restructuring procedure uses a sequence of BIND _
MODULE subcommands to direct the generation of the
load module. The first subcommand in the sequence
must specify the module name and the file containing
the modules to be bound. Each subcommand except the
last in the sequence for the module must specify
MODE=CONTINUE. The last subcommand in the
sequence must specify MODE=QUIT. Refer to the
Application Efficiency chapter of the Object Code
Management manual for more information on
restructuring.

® For more information, see the NOS/VE Object Code
Management manual.

CREATE_OBJECT_LIBRARY 13-31

Examples

Puri)bse

Format

: Parameters

CHANGE _COMMAND _DESCRIPTION

The following is a restructuring procedure generated for
two object modules named EXAMP and NAND on file
BINS3.

PROCEDURE MY_PROC(
target _text,tt:file=:$LOCAL.BIN3
restructured_module,rm: fi1e=$LOCAL.MY_FILE
restructured_module_name, rmn:program_name=‘MY_FILE’
status)
create_object_1ibrary
bind_module name=$string(restructured_module_name) ..
file=target_text mode=continue

bind_module "EXAMP " section_order=(('EXAMP’ 1)) ..
mode=cont inue
bind_module "NAND " section_order=({'NAND* 1)) ..
mode=qQuit
generate_library library=restructured_module
quit
PROCEND

CHANGE _COMMAND _DESCRIPTION
CREOL Subcommand

Changes the command description for a command
processor.

CHANGE _COMMAND _DESCRIPTION or
CHACD
NAME =list of name
STARTING _PROCEDURE =program _name
LIBRARY =keyword or file or string
SYSTEM _COMMAND _NAME =name
AVAILABILITY =keyword
SCOPE =keyword
LOG _OPTION =keyword
APPLICATION _IDENTIFIER =keyword or name
STATUS =status variable

NAME or NAMES or N

The names of the command descriptions being changed.
This parameter is required.

STARTING _PROCEDURE or SP
Parameter Attributes: BY_NAME

Name of the command processor's starting procedure
(entry point in the module). Specify a name which
conforms to the type PROGRAM _NAME. For names that
are not SCL or COBOL names, use a string value. An
example is a C function name, in which lowercase is
significant.

13-32 NOS/VE Commands and Functions 60464018 J

60464018 J

CHANGE _COMMAND _DESCRIPTION

You may specify either this parameter or the SYSTEM _
COMMAND _NAME parameter, but not both.

LIBRARY or L
Parameter Attributes: BY_NAME

Designates the library containing the command processor's
starting procedure. Enter the name of the library, or
enter the file path to the library as a string value. File
paths containing $FAMILY, $USER, or $SYSTEM
elements or file variable names should be entered as
strings. The string is then evaluated at the time the
command description is used.

The keyword OSF$CURRENT _LIBRARY specifies the
library containing the command description.

You may specify this parameter only if a STARTING _
PROCEDURE parameter is specified for the command
description.

SYSTEM _COMMAND _NAME or SCN
Parameter Attributes: BY _NAME

The name of a command in the $SYSTEM command list
entry. This name need not be the same as the name
specified on the NAME parameter.

When this parameter is specified, the command is called
by means of the library containing the command
description and not actually via $SYSTEM. To the user,

" however, this distinction is transparent.

You may specify either this parameter or the
STARTING _PROCEDURE parameter, but not both.
AVAILABILITY or A
Parameter Attributes: BY_NAME
Specifies whether the command is included in a display of
the command list. Keyword options are:

NORMAL _USAGE (NU)

The command is included in displays of the command
list as output on the DISPLAY_COMMAND _LIST _
ENTRY command and other similar situations.

CREATE_OBJECT_LIBRARY 13-33

CHANGE_COMMAND _DESCRIPTION

ADVANCED _USAGE (AU)

The command is included in displays of the user's
command list but only if the user specifies the
ADVANCED _USAGE display option for the DISPLAY
COMMAND _LIST_ENTRY command.

HIDDEN (H)

The command is not included in displays of the user's
command list.

The default is NORMAL _USAGE.

SCOPE or S
Parameter Attributes: BY _NAME
The manner in which the command processor may be
called. The keyword options are:
XDCL (X)
The command is externally declared and may be called
from outside the object library on which it resides.
GATE (G)
The command processor can be invoked from ring
brackets that are less privileged than the command
processor's execution ring brackets. The GATE
attribute implies the XDCL attribute.
LOCAL (L)
Reserved.
The default is XDCL.

LOG_OPTION or LO
Parameter Attributes: BY_NAME

Determines the manner in which calls to the command
are logged. The keyword options are:

AUTOMATIC (A)
The logging is performed by the SCL Interpreter.

MANUAL (M)

Logging is performed by the command processor. Use
this option to suppress logging of secure information
that should not be written to a log.

13-34 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

CHANGE _COMMAND _DESCRIPTION

The default is AUTOMATIC.

APPLICATION _IDENTIFIER or Al
Parameter Attributes: BY _NAME, ADVANCED

Name of the application associated with the command.
When the command is executed, accounting statistics for
the application are gathered.

Only a user with APPLICATION _ADMINISTRATION
capability can specify an application identifier.

If this parameter is not specified, no application is
associated with the command.

@ This command changes values for an-already existing
command description. For more information about
command descriptions, see the CREATE _COMMAND _
DESCRIPTION subcommand.

@ For more information, see the NOS/VE Object Code
Management manual.

You use this subcommand to change an existing command
description. The following example changes the command
description for the command processor TAPE _FILE _
DUMP. The example shows the changing of the LIBRARY
and STARTING _PROCEDURE for TAPE _FILE _DUMP.

COL/change_command_description ..
COL../name=tape_file_dump ..

COL. ./starting_procedure=new_tape_prog ..
COL../1library=:nve.smith.program_library

When the TAPE _FILE _DUMP command is called, the
module containing starting procedure NEW_TAPE _PROG
in library :NVE.SMITH.PROGRAM _LIBRARY will be
loaded.

CREATE_OBJECT_LIBRARY 13-35

CHANGE_FUNCTION _DESCRIPTION

CHANGE _FUNCTION _DESCRIPTION
CREOL Subcommand

Purpose

Format

Parameters

Changes the function description parameters for a function
processor.

CHANGE _FUNCTION _DESCRIPTION or
CHAFD
NAME =data _name or list of data_name
STARTING _PROCEDURE =program _name
LIBRARY =keyword or file or string
AVAILABILITY = keyword
SCOPE =keyword
STATUS =status variable

NAME or NAMES or N
The names of the function descriptions being changed.

For more information about the DATA _NAME type, see
the NOS/VE System Usage manual.

This parameter is required.

STARTING _PROCEDURE or SP
Parameter Attributes: BY_NAME

Name of the function processor's starting procedure (entry
point in the module). Specify a name which conforms to
the type PROGRAM _NAME. For names other than SCL
or COBOL names, use a string value. An example is a C
function name, in which lowercase is significant.

LIBRARY or L
Parameter Attributes: BY_NAME

Designates the library containing the function processor's
starting procedure. Enter the name of the library, or
enter the file path to the library as a string value. File
paths containing $FAMILY, $USER, or $SYSTEM
elements or file variable names should be entered as
strings. The string is then evaluated at the time the
function description is added to the task from which the
function is called.

The keyword OSF$CURRENT_LIBRARY specifies the
library containing the function description.

13-36 NOS/VE Commands and Functions 60464018 J

60464018 J

CHANGE_FUNCTION_DESCRIPTION

AVAILABILITY or A

Parameter Attributes: BY_NAME

Specifies whether the function is included in a display of

the command list. Keyword options are:
NORMAL_USAGE (NU)

The command is included in displays of the command
list as output on the DISPLAY_COMMAND _LIST_
ENTRY command and other similar situations.

ADVANCED _USAGE (AU)

The command is included in displays of the user's
command list but only if the user specifies the
ADVANCED _USAGE display option for the DISPLAY_
COMMAND _LIST_ENTRY command.

HIDDEN (H)

The command is not included in displays of the user's
command list.

The default is NORMAL _USAGE.

SCOPE or S
Parameter Attributes: BY_NAME
The manner in which the function processor may be
called. The keyword options are:
XDCL (X)
The function is externally declared and may be called
from outside the object library on which it resides.
GATE (G)

The function processor can be invoked from rings less
privileged than the function processor's execution ring
brackets. The GATE attribute implies the XDCL
attribute.

LOCAL (L)
Reserved.
The default is XDCL.

CREATE_OBJECT_LIBRARY 13-37

- CHANGE _MODULE _ATTRIBUTE

Remarks © This command changes values for an already existing
function description. For more information about
function descriptions, see the CREATE _ FUNCTION _
DESCRIPTION subcommand.

© For more information, see the NOS/VE Object Code
Management manual.

Examples You use this subcommand to change an existing function
: description. The following example changes the function
description for the function processor $WHO.

COL /change_function_description name=$who ..
COL../availability=advanced_usage

CHANGE _MODULE _ATTRIBUTE
CREOL Subcommand

Purpose Changes one or more attributes of a module in the
module list.

Format CHANGE _MODULE _ATTRIBUTE or
CHANGE _MODULE _ATTRIBUTES or
CHAMA
MODULE =keyword or list of program _name or
list of range of program _name
NEW_NAME =program _name
SUBSTITUTE =list of record
OMIT =list of program _name
GATE =keyword or list of program _name
NOT _GATE =keyword or list of program _name
STARTING _PROCEDURE =program _name
OMIT _LIBRARY =list of name
ADD _LIBRARY =list of name
RETAIN =keyword or list of program _name
NOT _RETAIN =keyword or list of program _name
OMIT _NON _RETAINED _ENTRY _POINTS =boolean
OMIT _DEBUG _TABLES =keyword or list of keyword
COMMENT =string
APPLICATION _IDENTIFIER =keyword or name
CYBIL _PARAMETER _CHECKING = keyword
STATUS =status variable

13-38 NOS/VE Commands and Functions 60464018 J

Parameters

60464018 J

CHANGE _MODULE _ATTRIBUTE

MODULE or MODULES or M
Modules whose attributes are changed.

You use a string value for an entry point whose name is
not an SCL name or a COBOL name. An example of such
a module name is a C function, where lowercase is
significant.

ALL may be specified to change the attributes of all
modules.

This parameter is required.

NEW_NAME or NN
New module name.

You use a string value for an entry point whose name is
not an SCL name or a COBOL name. Other kinds of
module names must be specified as a string.

If the keyword ALL is specified on the MODULE
parameter, or more than one name is specified on the
MODULE parameter, NEW_NAME should not be used.

If NEW_NAME is omitted, the module name is not
changed.

SUBSTITUTE or SUBSTITUTES or S
Parameter Attributes: BY_NAME

List of name substitutions. Each record in the list
specifies two names: the name to be replaced and the
name to replace it.

You use a string value for an entry point whose name is
not an SCL name or a COBOL name. An example of such
a name is in the C language where lowercase is
significant.

The name to be replaced can be an entry point name or
the name of a CYBIL variable with the XDCL attribute.
If SUBSTITUTE is omitted, no names are changed.

OMIT or O

Parameter Attributes: BY_NAME

List of names whose definitions are removed from the
module. The name to be removed can be an entry point
name or the name of a CYBIL variable with the XDCL
attribute.

CREATE_OBJECT_LIBRARY 13-39

CHANGE_MODULE _ATTRIBUTE

You use a string value for an entry point whose name is
not an SCL name. If OMIT is omitted, no name
definitions are removed.

GATE or GATES or G

Parameter Attributes: BY_NAME

List of entry points to which the gate attribute is added.

You use a string value for an entry point whose name is
not an SCL name or a COBOL name. An example of such
an entry point is a name in the C language where
lowercase is significant.

If ALL is specified, the gate attribute is added to all
entry points in the module.

If GATE is omitted, the gate attribute is not added to any
entry point name.

NOT_GATE or NOT_GATES or NG
Parameter Attributes: BY_NAME

List of entry points from which the gate attribute is
removed.

You use a string value for an entry point whose name is

not an SCL name or a COBOL name. An example of such
an entry point is in the C a language where lowercase is

significant.

If ALL is specified, the gate attribute is removed from all
entry points in the module.

If NOT_GATE is omitted, the gate attribute is not
removed from any entry point.

STARTING _PROCEDURE or SP
Parameter Attributes: BY_NAME

Name of the entry point where execution begins.

You use a string value for an entry point whose name is
not an SCL name or a COBOL name. An example of such
an entry point name is in the C language where
lowercase is significant.

If STARTING _PROCEDURE is omitted, the starting
procedure is not changed.

13-40 NOS/VE Commands and Functions 60464018 J

CHANGE _MODULE_ATTRIBUTE

OMIT _LIBRARY or OMIT_LIBRARIES or OL
Parameter Attributes: BY_NAME

List of local file names to be removed from the object text
(text-embedded libraries). The local file names specify
object libraries to be added to the program library list
when the module is loaded. All specifications for these
files are removed from the object text when the load
module is written on the new object library.

If OMIT_LIBRARY is omitted, no library specifications
are removed.

ADD _LIBRARY or ADD _LIBRARIES or AL
Parameter Attributes: BY_NAME

List of local file names to be added to the object text
(text-embedded libraries). The local file names specify
object libraries to be added to the program library list
when the module is loaded. The CREOL utility adds the
file specifications to each module when it writes the load
module on the new object library.

If ADD _LIBRARY is omitted, no library specifications are
added.

RETAIN or R
Parameter Attributes: BY_NAME

List of additional entry points to be given the retain
attribute. An entry point with the retain attribute is kept
in a new module created by combining this module with
other. modules.

You use a string value for an entry point whose name is
not an SCL name or a COBOL name. An example of such
an entry point is in the C language, where lowercase is
significant.

If ALL is specified, the retain attribute is given to all
entry points.

If RETAIN is omitted, no additional entry points are
given the retain attribute.

NOT_RETAIN or NR

Parameter Attributes: BY_NAME

List of entry points from which the retain attribute is
removed. Without the retain attribute, the entry point is
removed from any new module created by combining this

60464018 J CREATE_OBJECT_LIBRARY 1341

CHANGE _MODULE _ATTRIBUTE

module with other modules that reference the entry point.
You use a string value for an entry point whose name is
not an SCL name or a COBOL name. An example of such
an entry point is in the C language where lowercase is

significant.

If ALL is specified, the retain attribute is removed from
all entry points.

If NOT_RETAIN is omitted, the retain attribute is not
removed from any entry point.

OMIT _NON _RETAINED _ENTRY _POINTS or ONREP
Parameter Attributes: BY_NAME

Specifies that all entry points are removed from the
module unless they are explicitly retained. If OMIT_)
NON_RETAINED _ENTRY_POINTS is omitted, all entry
points are retained.

OMIT _DEBUG _TABLES or OMIT_DEBUG _TABLE or
oDT
Parameter Attributes: BY_NAME

List of one or more keywords indicating the debug tables
to be omitted when the module is loaded. Options are:

LINE _TABLE (LT)

Omits the debug table containing line numbers that
correspond to the module.

SYMBOL _TABLE (ST)

Omits the debug table containing the names and
addresses of the program variables in the module.

SUPPLEMENTAL_DEBUG_TABLE (SDT)

Omits the debug table containing information used to
debug the module in screen mode.

PARAMETER _CHECKING (PC)
Omits parameter checking records in the module.

13-42 NOS/VE Commands and Functions 60464018 J

CHANGE_MODULE _ATTRIBUTE

ALL
Omits all debug tables.

Using the OMIT_DEBUG_TABLE parameter causes the
module to load faster. If it is omitted, any debug tables in
the module are included when the module is loaded.
(Debug tables are generated during compilation, if
requested by the compiler command.)

COMMENT or C
Parameter Attributes: BY_NAME

Commentary stored in the module header (1 to 40
characters). If COMMENT is omitted, the commentary is
not changed.

APPLICATION _IDENTIFIER or Al
Parameter Attributes: BY _NAME, ADVANCED

Name of the application associated with the module.

When the module is executed, accounting statistics are
gathered for the application. The application identifier is
stored in the module header. You can associate application
identifiers only with program description modules,
command description modules, command procedure
modules, and load modules.

Only a user with APPLICATION _ADMINISTRATION
capability can specify an application identifier.

If the keyword $UNSPECIFIED is used, the application
identifier is removed.

If an application identifier is already assigned and this
parameter is omitted, the application identifier is not
changed.

CYBIL _PARAMETER _CHECKING or CPC

Parameter Attributes: BY_NAME

Specifies the kind of parameter checking to be performed
for each entry point in the module when the module is
loaded, bound, or prelinked. This parameter affects only
entry points in CYBIL modules. Options are:

SOURCE (S)

Perform parameter checking based on the source text
of the entry point definition. This is a stronger
type-checking algorithm.

60464018 J CREATE_OBJECT_LIBRARY 1343

CHANGE _MODULE_ATTRIBUTE

Remarks

OBJECT (O)

Perform parameter checking based on the object text
of the entry point definition.

When any change occurs in a type definition referenced
by an entry point definition, source text parameter
checking detects parameter verification errors in CYBIL
programs that reference the entry point. To override the
parameter verification errors, change the

TERMINATION _ERROR _LEVEL to FATAL. To eliminate
the errors, recompile the program with the correct type
declarations.

Parameter checking based on object text requires
recompilation of programs when the structure of the
interface changes. This type of parameter checking error
always indicates an interface incompatibility.
Recompilation is required.

Parameter checking based on object text detects the
following kinds of changes:

- The number of parameters.

- The order of parameters.

- The type (integer, record, pointer, etc.) of a parameter.
- The size of any field in the fixed part of a record.

- The number of fields in the fixed part of a record.

- The size of the largest variant of a variant record.

- A change from a fixed type to an adaptable type.

- A change from an adaptable type to a fixed type.

- Array bounds.

- Component type of an array.

For example, assume a change is made to the upper or
lower bound of a subrange of a type that does not affect
the number of bytes in the type. Object parameter
checking would not detect the change, but source
parameter checking would detect the change.

If CYBIL _PARAMETER _CHECKING is omitted, the kind
of parameter checking is not changed.

® The MODULE parameter specifies the module whose
attributes are changed. The module must be in the
current module list.

® You specify an attribute parameter value for each
attribute to be changed. If you omit an attribute
parameter, the attribute value is not changed.

13-44 NOS/VE Commands and Functions 60464018 J

CHANGE _PROGRAM _DESCRIPTION

© The CHANGE _MODULE _ATTRIBUTES subcommand
only changes the attributes of the module written by a
subsequent GENERATE _LIBRARY subcommand. It
does not change the attributes of the original module.

© For more information, see the NOS/VE Object Code
Management manual.

Examples The following subcommand changes the name of entry
point EXAMPLE in module MY_MODULE to
EXAMPLE _1.

COL/change_module_attributes my_module ..
COL../substitute=((example,example_1))

CHANGE _PROGRAM _DESCRIPTION
CREOL Subcommand

Purpose Changes the components of a program description.

Format CHANGE _PROGRAM _DESCRIPTION or
CHAPD
NAME =list of program _name
FILE = keyword or list of: file or string
LIBRARY =keyword or list of: keyword or file or string
MODULE =keyword or list of program _name
STARTING _PROCEDURE =keyword or program _
name
LOAD _ MAP =keyword or file or string
LOAD _MAP_OPTION =keyword or list of keyword
TERMINATION _ERROR _LEVEL =keyword
PRESET_VALUE =keyword
STACK _SIZE =keyword or integer
ABORT _FILE =keyword or file or string
DEBUG _INPUT =keyword or file or string
DEBUG _OQUTPUT =keyword or file or string
DEBUG _MODE =keyword or boolean
AVAILABILITY =keyword
SCOPE =keyword
LOG _OPTION =keyword
APPLICATION _IDENTIFIER =keyword or name
ARITHMETIC _OVERFLOW =keyword or boolean
ARITHMETIC _LOSS _OF_SIGNIFICANCE =keyword
or boolean
DIVIDE _FAULT =keyword or boolean
EXPONENT_OVERFLOW =keyword or boolean

60464018 J CREATE_OBJECT_LIBRARY 13-45

CHANGE_PROGRAM_DESCRIPTION

Parameters

EXPONENT _UNDERFLOW =keyword or boolean
FP_INDEFINITE =keyword or boolean

FP_LOSS _OF_SIGNIFICANCE =keyword or boolean
INVALID _BDP_DATA =keyword or boolean

STATUS =status variable

NAME or NAMES or N

Specifies the names of the program descriptions being
changed. This parameter is required.

FILE or FILES or F

List of object files or object libraries to be unconditionally
loaded when the program is executed.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

If the FILE parameter is omitted, the FILE parameter of
the program description is not changed. If
$UNSPECIFIED is used, the FILE parameter is removed
from the program description.

LIBRARY or LIBRARIES or L

List of library files to be added to the program library
list when the program is executed. A file value is
evaluated when the object library is generated. Path
values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

If $UNSPECIFIED is used, the LIBRARY parameter is
removed from the program description.

The keyword OSF$TASK _SERVICES_LIBRARY specifies
the system table, and keyword OSF§CURRENT_LIBRARY
represents the library that contains the program
description being changed.

If the LIBRARY parameter is omitted, the LIBRARY
parameter of the program description is not changed.

MODULE or MODULES or M

List of modules to be loaded from the program library list
when the program is executed. The modules are loaded in
the order in which they are specified.

13-46 NOS/VE Commands and Functions 60464018 J

60464018 J

CHANGE_PROGRAM_DESCRIPTION

For module names which are not SCL or COBOL names,
use a string value. An example is a C function name, in
which lowercase is significant.

If the MODULE parameter is omitted, the MODULE
parameter of the program description is not changed. If
$UNSPECIFIED is used, the MODULE parameter is
removed from the program description.

STARTING _PROCEDURE or SP

Name of the entry point at which program execution
begins.

You use a string value for an entry point whose name is
not an SCL or COBOL name. An example is the name of
a C function in which lowercase is significant.

If the STARTING _PROCEDURE parameter is omitted,
the STARTING _PROCEDURE parameter of the program
description is not changed. If $UNSPECIFIED is used, the
STARTING _PROCEDURE parameter is removed from the
program description.

LOAD _MAP or LM
Parameter Attributes: BY_NAME

File on which the load map is written. A file value is
evaluated when the object library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

-If the LOAD _MAP parameter is omitted, the LOAD _

MAP parameter of the program description is not
changed. If $UNSPECIFIED is used, the LOAD _MAP
parameter is removed from the program description.

LOAD _MAP_OPTION or LOAD _MAP_OPTIONS or
LMO
Parameter Attributes: BY_NAME
List one or more keywords indicating the information to
include in the load map. Options are:

NONE

No load map is written.

CREATE_OBJECT_LIBRARY 13-47

CHANGE_PROGRAM_DESCRIPTION

SEGMENT (S)
Segment map.

BLOCK (B)
Block map.

ENTRY_POINT (EP)
Entry point map.

CROSS_REFERENCE (CR)
Entry point cross-reference.

ALL

Selects SEGMENT, BLOCK, ENTRY_POINT, and
CROSS_REFERENCE.

$UNSPECIFIED

" The LOAD_MAP_OPTION parameter is removed from
the program description.

If the LOAD_MAP_OPTION parameter is omitted, the
LOAD _MAP_OPTION parameter of the program
description is not changed.

TERMINATION _ERROR _LEVEL or TEL
Parameter Attributes: BY_NAME

Specifies the severity level of error that terminates
program loading. Options are:

WARNING (W)
Warning, error, or fatal severity level errors.

ERROR (E)
Error or fatal severity level errors.

FATAL (F)
Fatal severity level errors.

13-48 NOS/VE Commands and Functions 60464018 J

60464018 J

CHANGE _PROGRAM_DESCRIPTION

$UNSPECIFIED

The TERMINATION _ERROR_LEVEL parameter is
removed from the program description.

If the TERMINATION _ERROR _LEVEL parameter is
omitted, the TERMINATION _ERROR _LEVEL parameter
of the program description is not changed.
PRESET_VALUE or PV
Parameter Attributes: BY_NAME
Value to store in all uninitialized data words. Options
are:

ZERO (Z)

All zeroes.

FLOATING_POINT_INDEFINITE (FPI)
Floating-point indefinite value.

INFINITY (I)
Floating-point infinite value.

ALTERNATE _ONES (AO)

Alternating 0 and 1 bits; the leftmost (highest order)
bit is 1.

UNSPECIFIED
The PRESET_VALUE parameter is removed from the
program description.

If the PRESET_VALUE parameter is omitted, the
parameter of the program description is not changed.

STACK _SIZE or SS
Parameter Attributes: BY_NAME

Maximum number of bytes in the run-time stack. The
program uses the run-time stack for procedure call
linkages and local variables. If STACK _SIZE is omitted,
the system default value is used. You can display the
default stack size by entering a DISPLAY_PROGRAM _
ATTRIBUTE command. If §UNSPECIFIED is used, the
STACK _SIZE parameter is removed from the program
description.

CREATE_OBJECT_LIBRARY 13-49

CHANGE _PROGRAM_DESCRIPTION

ABORT_FILE or AF
Parameter Attributes: BY_NAME

File containing Debug commands to be processed if the
program aborts. The commands are executed only if the
program is not executed in Debug mode. A file value is
evaluated when the object library is generated.

Path values containing $FAMILY, $USER, $WORKING _
CATALOG, or $SYSTEM elements can be supplied as
strings to be evaluated when the program description is
used.

If ABORT_FILE is omitted, the program description for
the ABORT_FILE parameter is not changed. If
$UNSPECIFIED is used, the ABORT_FILE parameter is
removed from the program description.

DEBUG _INPUT or DI
Parameter Attributes: BY_NAME

File containing Debug commands. The commands are read
only if the program is executed under the control of
Debug (refer to the DEBUG_MODE parameter). This file
can be positioned. A file value is evaluated when the
object library is generated.

Path values containing $FAMILY, $USER, $WORKING _
CATALOG, or $SYSTEM elements can be supplied as
strings to be evaluated when the program description is
used.

If DEBUG _INPUT is omitted, the DEBUG_INPUT
parameter of the program description is not changed. If
$UNSPECIFIED is used, the DEBUG _INPUT parameter
is removed from the program description.

DEBUG _OUTPUT or DO

Parameter Attributes: BY_NAME

File on which Debug output is written. OQutput is written
only if the program is executed in Debug mode. This file

can be positioned. A file value is evaluated when the
object library is generated.

Path values containing $FAMILY, $USER, $WORKING _
CATALOG, or $SYSTEM elements can be supplied as
strings to be evaluated when the program description is
used.

13-50 NOS/VE Commands and Functions 60464018 J

60464018 J

CHANGE _PROGRAM_DESCRIPTION

If DEBUG_OUTPUT is omitted, the DEBUG_OUTPUT
parameter of the program description is not changed. If
$UNSPECIFIED is used, the DEBUG_OUTPUT
parameter is removed from the program description.

DEBUG _MODE or DM
Parameter Attributes;: BY_NAME

Indicates whether the program is to be run under the
control of Debug. (For information on using Debug, refer
to the program's specific source language manual.) Options
are:

ON
Program executed under control of the Debug program.

OFF
Program executed without the Debug program.

If the DEBUG_MODE parameter is omitted, the
DEBUG_MODE parameter of the program description is
not changed. If $UNSPECIFIED is used, the DEBUG _
MODE parameter is removed from the program
description.

AVAILABILITY or A

Parameter Attributes: BY_NAME

Specifies whether or not the program description is made
known to users as a command. Options are:

NORMAL _USAGE (ADVERTISED, A, or NU)

Program description appears in the output produced by
the DISPLAY_COMMAND _LIST_ENTRY command
(and in similar situations).

ADVANCED _USAGE (AU)

The command is included in displays of the user's
command list if the user specifies the ADVANCED _
USAGE display option for the DISPLAY_COMMAND _
LIST_ENTRY command.

HIDDEN (H)

Program description is suppressed from the output
produced by DISPLAY_COMMAND _LIST_ENTRY
command (and in similar situations).

CREATE_OBJECT_LIBRARY 13-51

CHANGE _PROGRAM_DESCRIPTION

If this parameter is omitted, the AVAILABILITY
parameter of the program description is not changed.
SCOPE or 8

Parameter Attributes: BY_NAME‘

The manner in which the command processor may be
called. The keyword options are:

XDCL (X)
The command is externally declared and may be called
from outside the object library on which it resides.
GATE (G) '
The program can be invoked from rings less privileged
than the program's execution ring brackets. The GATE
attribute implies the XDCL attribute.
LOCAL (L)
Reserved.

The default is XDCL.

LOG _OPTION or LO
Parameter Attributes: BY _NAME
Determines the manner in which calls to the program are
logged. The keyword options are:
AUTOMATIC (A)
The logging is performed by the SCL Interpreter.

MANUAL (M)

Logging is performed by the program. Use this option
to suppress the logging of secure information that
should not be written to a log.

The default is AUTOMATIC. If you omit this parameter,
the logging option for the program description is not
changed.

13-52 NOS/VE Commands and Functions 60464018 J

60464018 J

CHANGE _PROGRAM_DESCRIPTION

APPLICATION _IDENTIFIER or AI
Parameter Attributes: BY_NAME, ADVANCED

Name of application associated with the program. When
the program is executed, accounting statistics will be
emitted for the application. The application identifier is
stored in the module header.

Only a user with APPLICATION _ADMINISTRATION
capability can specify an application identifier.

If the keyword $UNSPECIFIED is used, the application
identifier is removed. If this parameter is omitted, the
application identifier is not changed.

ARITHMETIC _OVERFLOW or AO

Parameter Attributes: BY_NAME, ADVANCED

This parameter specifies whether or not the hardware
condition ARITHMETIC _OVERFLOW causes an interrupt.
Valid specifications are:

ON

ARITHMETIC _OVERFLOW is enabled. The condition
causes an interrupt.

OFF
ARITHMETIC _OVERFLOW is disabled. The condition
does not cause an interrupt.
ARITHMETIC _LOSS _OF_SIGNIFICANCE or ALOS
Parameter Attributes: BY_NAME, ADVANCED

This parameter specifies whether or not the hardware
condition ARITHMETIC_LOSS_OF_SIGNIFICANCE
causes an interrupt. Valid specifications are:

ON

ARITHMETIC _LOSS _OF_SIGNIFICANCE is enabled.
The condition causes an interrupt.

OFF

ARITHMETIC _LOSS _OF_SIGNIFICANCE is disabled.
The condition does not cause an interrupt.

CREATE_OBJECT_LIBRARY 13-53

CHANGE _PROGRAM_DESCRIPTION

DIVIDE _FAULT or DF
Parameter Attributes: BY_NAME, ADVANCED

This parameter specifies whether or not the hardware
condition DIVIDE _FAULT causes an interrupt. Valid
specifications are:

ON
DIVIDE _FAULT is enabled. The condition causes an
interrupt.
OFF
DIVIDE _FAULT is disabled. The condition does not
cause an interrupt.
EXPONENT_OVERFLOW or EO
Parameter Attributes: BY_NAME, ADVANCED
This parameter specifies whether or not the hardware
condition EXPONENT_OVERFLOW causes an interrupt.
Valid specifications are:
ON
EXPONENT_OVERFLOW is enabled. The condition
causes an interrupt.
OFF
EXPONENT_OVERFLOW is disabled. The condition
does not cause an interrupt.
EXPONENT _UNDERFLOW or EU
Parameter Attributes: BY_NAME, ADVANCED
This parameter specifies whether or not the hardware
condition EXPONENT_UNDERFLOW causes an interrupt.
Valid specifications are:
ON
EXPONENT_UNDERFLOW is enabled. The condition
causes an interrupt.
OFF

EXPONENT_UNDERFLOW is disabled. The condition
does not cause an interrupt.

13-54 NOS/VE Commands and Functions 60464018 J

60464018 J

CHANGE_PROGRAM_DESCRIPTION

FP_INDEFINITE or FPI or FI
Parameter Attributes: BY_NAME, ADVANCED
This parameter specifies whether or not the hardware
condition FP_INDEFINITE causes an interrupt. Valid
specifications are:
ON
FP_INDEFINITE is enabled. The condition causes an
interrupt.
OFF
FP_INDEFINITE is disabled. The condition does not
cause an interrupt.
FP_LOSS _OF_SIGNIFICANCE or FPLOS or FLOS
Parameter Attributes: BY_NAME, ADVANCED
This parameter specifies whether or not the hardware
condition FP_LOSS_OF_SIGNIFICANCE causes an
interrupt. Valid specifications are:
ON
FP_LOSS_OF_SIGNIFICANCE is enabled. The
condition causes an interrupt.
OFF
FP_LOSS_OF_SIGNIFICANCE is disabled. The
condition does not cause an interrupt.
INVALID _BDP_DATA or IBDPD or IBD
Parameter Attributes: BY._ NAME, ADVANCED
This parameter specifies whether or not the hardware
condition INVALID _BDP_DATA causes an interrupt.
Valid specifications are:
ON
INVALID _ BDP_DATA is enabled. The condition causes
an interrupt.
OFF

INVALID _BDP_DATA is disabled. The condition does
not cause an interrupt.

CREATE_OBJECT_LIBRARY 13-55

COMBINE_MODULE

Remarks

Examples

© To allow users the option of rescinding a previously
specified value or of not including a given parameter
in the CHAPD command, the keyword $UNSPECIFIED
may be used for some parameters. This removes the
parameter from the description. The result of using
$UNSPECIFIED is the same as not supplying the
parameter on the CREATE _PROGRAM _
DESCRIPTION subcommand. When the program is
executed, the corresponding job default program
attribute value is used.

® For more information, see the NOS/VE Object Code
Management manual.

See the NOS/VE Object Code Management manual for a
detailed example.

COMBINE _MODULE
CREOL Subcommand

Purpose

Format

Parameters

Adds new modules and replaces existing modules in the
module list.

COMBINE _MODULE or
COMBINE _MODULES or
COMM
LIBRARY =list of file
MODULE =list of program _name or list of range of
program _name
PLACEMENT =keyword
DESTINATION =program _name
STATUS =status variable

LIBRARY or LIBRARIES or L

Object files, SCL procedure files, or object library files
containing the modules to be combined. This parameter is
required.

MODULE or MODULES or M

Modules to be combined.

You use a string value for a module whose name is not
an SCL name or a COBOL name. An example of such a
module name is in the C language where lowercase is

significant.

13-56 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

COMBINE_MODULE

If MODULE is omitted, all modules on the specified files
or libraries are combined.

PLACEMENT or P

Indicates whether the added modules are placed before or
after the module specified on the DESTINATION
parameter. Options are:

BEFORE (B)
Modules added before the destination module.

AFTER (A)
Modules added after the destination module.
If PLACEMENT is omitted, AFTER is used.

DESTINATION or D

Module before or after which the added modules are
placed.

This parameter does not affect the location of replacement
modules. A replacement module is always placed in the
same location as the module it replaces.

If DESTINATION is omitted, added modules are placed
according to the PLACEMENT parameter value. If the
value of PLACEMENT is BEFORE, the modules are
placed at the beginning of the library. If the value of
PLACEMENT is AFTER, the modules are placed at the
end of the library.

6 The COMBINE _MODULES subcommand can specify
object files, SCL procedure files, or object libraries
that are processed in the order you specify the files on
the LIBRARY parameter.

® The COMBINE _MODULES subcommand checks for
duplicate modules in the specified files and reports an
error if duplicates are found.
You can, however, combine modules in libraries with
duplicate modules. You add one of the libraries to the
module list with an ADD_MODULES subcommand
and then perform a COMBINE _MODULES of the
second library.

o If you do not want to use all modules in a file, specify
the modules to be used on the MODULE parameter.

CREATE_OBJECT_LIBRARY 13-57

COMBINE_MODULE

© A module to be combined replaces an existing module
with the same name in the module list. If the name is
not already in the module list, the module to be
combined is added to the module list.

® A replacement module is placed in the same location
as the module it replaces. An added module is added
at the end of the list, unless you specify another
location with the DESTINATION and PLACEMENT
parameters. You can change the module order later
with a REORDER _MODULES subcommand.

® If you specify an SCL procedure whose header
references a non-standard type, you must make the
type definition available. For instance, if you want to
add the following procedure:

PROCEDURE show(
pl: address_list = $required
status)

PROCEND

then the type definition for ADDRESS_LIST must be
created outside the procedure. This is accomplished by
using the TYPE control statement, as in:

TYPE
address_list : 1ist 1..3 of string
TYPEND

® For more information, see the NOS/VE Object Code
Management manual.

Examples The following subcommand combines all modules in files
MY_LIBRARY and YOUR_LIBRARY with the modules
already in the module list.

COL/combine_module (my_library,your_library)

13-58 NOS/VE Commands and Functions 60464018 J

CREATE _APPLICATION _MENU
CREMM Subcommand

Purpose

Format

Parameters

Remarks

CREATE _APPLICATION _MENU

Initiates the CREATE _APPLICATION _MENU utility
session.

CREATE _APPLICATION _MENU or
CREAM

NAME =name

STATUS =status variable

NAME or N

Specifies the name of the application menu. The NAME
parameter is a string containing 1 through 31 characters.
This parameter is required.

For more information, see the NOS/VE Object Code
Management manual.

CREATE _BRIEF_HELP_MESSAGE
CREMM Subcommand

Purpose

Format

Parameters

Remarks

60464018 J

Creates a brief description of a command. The complete
description is generated by the CREATE _FULL_HELP_
MESSAGE subcommand.

CREATE _BRIEF_HELP_MESSAGE or
CREBHM)
COLLECT _TEMPLATE _UNTIL =string
STATUS =status variable

COLLECT _TEMPLATE _UNTIL or CTU

Specifies the termination string to use when collecting the
template of the brief help message. If the COLLECT_
TEMPLATE _UNTIL parameter is omitted, the string "**'
is used.

For more information, see the NOS/VE Object Code
Management manual.

CREATE_OBJECT_LIBRARY 13-59

CREATE _COMMAND _DESCRIPTION

Examples The following example creates a brief help message.

CMM/create_brief_help_message
? The DISPLAY_FILE command displays information
? about the specified file.

?tt

cmm/

CREATE _COMMAND _DESCRIPTION
CREOL Subcommand

Purpose Defines the means of access to a command. This
subcommand identifies either a program to be dynamically
loaded or a system-supplied command.

NOTE

Do not create command descriptions for command
processors written in languages other than CYBIL. The
run-time library routines for other languages (such as
FORTRAN) may depend on static initialization of data or
may call the PMP$EXIT or PMP$ABORT procedures.

. Format CREATE _COMMAND _DESCRIPTION or
CRECD

NAME =record

STARTING _PROCEDURE =program _name
LIBRARY =keyword or file or string
SYSTEM _COMMAND _NAME =name
AVAILABILITY =keyword

SCOPE =keyword

LOG _OPTION =keyword

MERGE _OPTION =keyword

APPLICATION _IDENTIFIER =name
STATUS =status variable

~ Parameters NAME or NAMES or N

The command name and its aliases; the name by which
the user calls the command. Specify the names in a
record with the following format: ‘

record

name: name

aliases: list rest of name = $optional
recend

1360 NOS/VE Commands and Functions 60464018 J

60464018 J

CREATE_COMMAND _DESCRIPTION

For example, specify this parameter as follows:
name = (tape_file_dump, tapfd, tfd)

The first name qualifies as the NAME field in the record
followed by the names for the ALIASES field.

This parameter is required.

STARTING _PROCEDURE or SP
Parameter Attributes; BY_NAME

Name of the command processor's starting procedure
(entry point in the module). Specify a name which
conforms to the type PROGRAM _NAME. For names other
than SCL or COBOL names, use a string value. An
example is a C function name, in which lowercase is

significant.

You must specify either this parameter or the SYSTEM _
COMMAND _NAME parameter, but not both.

LIBRARY or L
Parameter Attributes: BY_NAME

Designates the library containing the command processor's
starting procedure. Enter the name of the library, or
enter the file path to the library as a string value. File
paths containing $FAMILY, $USER, or $SYSTEM
elements or file variable names should be entered as
strings. The string is then evaluated at the time the
command description is used.

The keyword, OSF$CURRENT_LIBRARY specifies the
library containing the command description.

You may specify this parameter only if you specify the
STARTING _PROCEDURE parameter.

SYSTEM _COMMAND _NAME or SCN
Parameter Attributes: BY_NAME

The name of a command in the $SYSTEM command list
entry. This name need not be the same as the name
specified on the NAME parameter.

When this parameter is specified, the command is called
by means of the library containing the command
description and not actually via $SYSTEM. To the user,
however, this distinction is transparent.

CREATE_OBJECT_LIBRARY 13-61

CREATE _COMMAND _DESCRIPTION

You must specify either this parameter or the
STARTING _PROCEDURE parameter, but not both.
AVAILABILITY or A
Parameter Attributes: BY_NAME
Specifies whether the command is included in a display of
the command list. Keyword options are:
NORMAL_USAGE (NU)
The command is included in displays of the command
list as output on the DISPLAY_COMMAND _LIST _
ENTRY command and other similar situations.
ADVANCED _USAGE (AU)

The command is included in displays of the user's
command list if the user specifies the ADVANCED _
USAGE display option for the DISPLAY_COMMAND _
LIST_ENTRY command.

HIDDEN (H)

The command is not included in displays of the user's
command list.

The default is NORMAL _USAGE.

SCOPE or S
Parameter Attributes: BY _NAME
The manner in which the command processor may be
called. The keyword options are:
XDCL (X)
The command is externally declared and may be called
from outside the object library on which it resides.
GATE (G)
The command processor can be invoked from rings less
privileged than the command processor's execution ring
brackets. The GATE attribute implies the XDCL
attribute.
LOCAL (L)
Reserved.
The default is XDCL.

13-62 NOS/VE Commands and Functions 60464018 J

CREATE_COMMAND_DESCRIPTION

LOG _OPTION or LO
Parameter Attributes: BY _NAME

Determines the manner in which calls to the command
are logged. The keyword options are:

AUTOMATIC (4) _
The logging is performed by the SCL Interpreter.

MANUAL (M)

Logging is performed by the command processor. Use
this option to suppress the logging of secure
information that should not be written to a log.

The default is AUTOMATIC.

MERGE _OPTION or MO
Parameter Attributes: BY_NAME
Indicates whether the module containing the command
description will be added or replaced within the module.
The keyword options are:

ADD (4A)

Adds the module to the end of the module list.

REPLACE (R)

Replaces the module in the current module list which
has the same name.

COMBINE (C)

Adds the new module to the end of the module list
unless a module of the same name already exists, in
which case that module is replaced with the new
module.

The default is COMBINE.

APPLICATION _IDENTIFIER or Al
Parameter Attributes: BY_NAME, ADVANCED

Name of the application associated with the command.
When the command is executed, accounting statistics for
the application are gathered.

Only a user with APPLICATION _ADMINISTRATION
capability can specify an application identifier.

60464018 J CREATE_OBJECT_LIBRARY 13-83

CREATE _COMMAND_DESCRIPTION

If this parameter is not specified, no application is
associated with the command.

Remarks ©

13-64

This subcommand creates a command description
similar to an abbreviated program description which is
used to control access to the command.

Access to the command processor is by means of either
a $SYSTEM command or by a starting procedure as
established with the parameters on this command.

The command processor is loaded into the task from
which the command is called. Because access to the
command is through a command description, a
separate task is not generated and the command
processor has access to the data already in use in the
current task. (Calls to commands defined within
program descriptions always create new, separate
tasks).

For command descriptions which name a command in
$SYSTEM, the SCL Interpreter executes the command
processor. However, if the command description names
a starting procedure, the loader is called to execute
the command.

For command descriptions naming a starting procedure
and, optionally, an object library, the dynamic loading
of the command processor occurs as follows:

— If the starting procedure is already loaded in the
current task, no loading occurs; the process is
complete.

-~ If a library was specified as part of the command
description the library is the searched for the
module containing the starting procedure.

~ If no library is specified as part of the command
description, the program library list of the current
task is searched for a module containing the
starting procedure.

NOS/VE Commands and Functions 60464018 J

Examples

60464018 J

CREATE _COMMAND _DESCRIPTION

- If you choose to have your command processor
implemented using a command description, take
care not to call the CYBIL procedures PMPS$EXIT
or PMP$ABORT in the code for the command
processor. Both CYBIL procedures will cause task
termination.

- To read about the loading process and satisfying of
external references for these methods of loading,
see The Loading Process in Detail in the NOS/VE
Object Code Management manual.

For more information, see the NOS/VE Object
Code Management manual.

The following examples show how to create command
descriptions that access commands either through a
starting procedure or by means of a system command.
The first example defines access to a TAPE _FILE _DUMP
command (and its aliases) through procedure TAPE_
FILE _PROG in library :NVE.SMITH.PROGRAM _
LIBRARY.

COL/create_command_description ..

COL. . /name=(tape_f ile_dump, dump_tape, tapfd) ..
COL. ./starting_procedure=tape_file_prog ..
COL../library=:nve.smith.program_library ..
COL../scope=xdc] availability=normal_usage ..
COL. . /merge_option=add

COL/generéte-library library=:nve.smith. tape_command_1ibrary

The next example shows how to create access to a

DELETE _FILE command and its aliases through the

system command, DELETE _FILE.
COL/create_command_description ..

COL../name=(delete_file, delete, delf) ..
COL../sys;em_command_name=delete_file

COL/generéte_library library=:nve.smith. delete_commands

At the completion of the session, you add the generated
library to the command list, and, if you want to restrict
users to the use of just the commands in the library, you
can delete the $SYSTEM command list entry for those
users.

For more information about command lists, see the
NOS/VE System Usage manual.

CREATE_OBJECT_LIBRARY 13-65

CREATE _FORM_MODULE

CREATE _FORM _MODULE
CREOL Subcommand

Purpose

Format

i Parameters

: Remarks

CREATE _FORM _MODULE starts the CREATE _FORM _
MODULE utility, which is subordinate to the CREOL
utility. Using the subcommands of CREATE _FORM _
MODULE, you create a form.

CREATE _FORM _MODULE or
CREFM
FORM _NAME=name
MERGE _OPTION =keyword
STATUS =status variable

FORM _NAME or FN

The name of the form. The application program uses this
name to open the form. This parameter is required.

MERGE _OPTION or MO

Specifies how to merge the form module you are creating
with existing modules on the object library. The following
values are valid:

ADD or A

Adds the module to the object library. If a module
with the same name already exists on the library,
ADD does not replace it. (To replace an existing
module, use REPLACE or COMBINE.)

REPLACE or R

Replaces a module on the library with the module you
are creating, if they have the same names. REPLACE
does not add a new module. (To add a new module,
use either ADD or COMBINE.)

COMBINE or C
Adds a new module or replaces an existing module.
The default is COMBINE.

© The CREATE _FORM _MODULE subcommand
establishes default attributes for the form. (For a list
of the attributes and their defaults, see the description
of the SET_FORM subcommand of the CREATE _
FORM _MODULE utility.)

13-66 NOS/VE Commands and Functions 60464018 J

Examples

CREATE_FULL_HELP_MESSAGE

¢ The END_FORM_MODULE subcommand ends the
creation of a form and quits the CREATE _FORM _
MODULE utility.

® For information about screen formatting, form
modules, and adding form modules to object libraries,
see the NOS/VE Screen Formatting manual.

The following example shows how to create form
SELECT_FORM for use with a COBOL program.

COL/create_form_module form_name=select_form
CFM/set_form form_processor=cobol

CFM/add_event program_event=compute ..

CFM. . /terminal_event=next action=return_normal ..
CFM. . /label="COMP’

CFM/ more create_form_module subcommands

CFM/end_form_module
COL/generate_library 1ibrary=:nve.bonnie.forms_library

CREATE _FULL _HELP_MESSAGE

CREMM

Purposke

Format

Parameters

Remarks

60464018 J

Subcommand

Creates a message conté.ining a complete description of
the command. A brief description is generated with the
CREATE _BRIEF_HELP_MESSAGE subcommand.

CREATE _FULL _HELP_MESSAGE or
CREFHM
COLLECT _TEMPLATE _UNTIL =string
STATUS =status variable

COLLECT _TEMPLATE _UNTIL or CTU

Specifies the termination string to use when collecting the
template of the full help message. If the COLLECT_
TEMPLATE _UNTIL parameter is omitted, the string "**'
is used.

For more information, see the NOS/VE Object Code
Management manual.

CREATE _OBJECT_LIBRARY 13-67

CREATE _FUNCTION _DESCRIPTION

Examples

The following example creates a full help message.

CMM/create_full_help_message

? The DISPLAY_FILE command displays information about
? the file onto your terminal screen. You can

? specify the level of detail by entering a value

? for the DISPLAY_OPTIONS parameter of this command.
?

x¥

Ccvm/

CREATE _FUNCTION _DESCRIPTION
CREOL Subcommand

Purpose

Format

Parameters

Creates a function description which is used to load the
program containing the function processor when the
function is called.

NOTE

Do not create function descriptions for function processors
written in languages other than CYBIL. The run-time
library routines for other languages (such as FORTRAN)
may depend on static initialization of data or may call the
PMPS$EXIT or PMP$ABORT procedures.

CREATE _FUNCTION _DESCRIPTION or
CREFD
NAME =data _name or record
STARTING _PROCEDURE =program _name
LIBRARY =keyword or file or string
AVAILABILITY =keyword
SCOPE =keyword
MERGE _OPTION =keyword
STATUS =status variable

NAME or NAMES or N

The name and aliases by which the function is called. The
name you specify must conform to the type DATA _
NAME. SCL names are valid DATA _NAME types.

You can specify a single name or you can specify a
function name and aliases, using a record which has the
following format:

13-68 NOS/VE Commands and Functions 60464018 J

-

60464018 J

CREATE_FUNCTION _DESCRIPTION

record

name: data_name

aliases: list rest of data_name = $optional
recend

For example, the following shows how to specify the name
of a function and its aliases using this parameter:

name=($tape_dump_files, $tdf)

For more information about the DATA _NAME type, see
the NOS/VE System Usage manual.

This parameter is required.

STARTING _PROCEDURE or SP
Parameter Attributes: BY_.NAME

Name of the function processor's starting procedure (entry
point in the module). Specify a name which conforms to
the type PROGRAM _NAME. For names other than SCL
or COBOL names, use a string value. An example is a C
function name, in which lowercase is significant.

This parameter is required.

LIBRARY or L
Parameter Attributes: BY_NAME

Designates the library containing the function processor's
starting procedure. Enter the name of the library, or
enter the file path to the library as a string value. File
paths containing $FAMILY, $USER, or $SYSTEM
elements or file variable names should be entered as
strings. The string is then evaluated at the time the
function description used.

The keyword OSF$CURRENT_LIBRARY specifies the
library containing the function description.
AVAILABILITY or A

Parameter Attributes: BY_NAME

Specifies whether the function is included in a display of
the command list. Keyword options are:

CREATE_OBJECT_LIBRARY 13-69

CREATE _FUNCTION _DESCRIPTION

NORMAL_USAGE (NU)

The command is included in displays of the command
list as output on the DISPLAY_COMMAND _LIST_
ENTRY command and other similar situations.

ADVANCED _USAGE (AU)

The command is included in displays of the user's
command list but only if the user specifies the
ADVANCED _USAGE display option for the DISPLAY_
COMMAND _LIST_ENTRY command.

HIDDEN (H)

The command is not included in displays of the user's
command list.

The default is NORMAL _USAGE.

SCOPE or S .

Parameter Attributes: BY_NAME

The manner in which the function processor may be

called. The keyword options are:
XDCL (X)
The function is externally declared and may be called
from outside the object library on which it resides.
GATE (Q)
The function processor can be invoked from rings less
privileged than the processor's execution ring brackets.
The GATE attribute implies the XDCL attribute.
LOCAL (L)
Reserved.

The default is XDCL.

MERGE _OPTION or MO
Parameter Attributes: BY _NAME
Indicates whether the module containing the function
description will be added or replaced within the module
list. The keyword options are:

ADD (A)

Added to the end of the module list.

13-70 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

CREATE _FUNCTION_DESCRIPTION

REPLACE (R)

Replaces the module in the current module list which
has the same name.

COMBINE (C)

Added to the end of the module list if a module
having the same name does not exist. If a module
having the same name does exist, this option acts the
same as the REPLACE keyword option.

The default is COMBINE.

This subcommand creates a function description
(similar to an abbreviated program description) which
is used to control access to the function.

The function is loaded into the task from which it is
called. A separate task is not generated and the
function processor has access to the data already in
use in the current task.

The dynamic loading of the function processor occurs
as follows:

— If the starting procedure is already loaded in the
current task, no loading is required..

~ If a library was specified as part of the function
description, the library is searched for the module
containing the starting procedure.

— If no library is specified as part of the function
description, the current task's program library list
is searched for a module containing the starting
procedure.

To read about the loading process and satisfying
external references for these methods of loading, see
the section titled The Loading Process in Detail in the
NOS/VE Object Code Management manual.

— For more information, see the NOS/VE Object Code
Management manual.

CREATE_OBJECT_LIBRARY 13-71

CREATE _LINKED_MODULE

Examples The following examples show how to create a function
description that accesses a function processor through a
starting procedure in a library. The description defines
access to the $LIST_TAPE _FILES function (and its
aliases) through procedure TAPE _FILE _FUNCTION in
library :NVE.SMITH.PROGRAM _LIBRARY.

COL/create_function_description ..
COL../name=($1ist_tape_file, $1tf) ..
COL../starting_procedure=tape_f ile_function ..
COL../1library=:nve.smith.program_1ibrary

CdL/generate_library library=:nve.smith. tape_command_1ibrary

To make the function available to users, the library of
function descriptions must be added to the command list.

For more information about command lists, see the
NOS/VE System Usage manual.

CREATE _LINKED _MODULE
CREOL Subcommand

Purpose Creates a prelinked module from an existing module and
adds it to the module list.

Format CREATE _LINKED _MODULE or
CRELM

NAME =program _name

COMPONENT=list of record

RING _BRACKETS =record

RETAIN _COMMON _BLOCK =keyword or list of
program _name

IGNORE _SECTION _NAMES =boolean

STARTING _SEGMENT =integer

QUTPUT =file

DEBUG _TABLE =file

NEXT _AVAILABLE _ SEGMENT =integer variable

APPLICATION _IDENTIFIER =name

DEFER _ENTRY_POINTS =keyword or record or list
of program _name

DEFER _COMMON _BLOCKS =keyword or record or
list of program _name

STATUS =status variable

13-72 NOS/VE Commands and Functions 60464018 J

CREATE _LINKED_MODULE

Parameters NAME or N
Name of the new prelinked module.

For modules with other than SCL or COBOL names, use
a string value. An example is a C function name, in
which lowercase is significant.

This parameter is required.

COMPONENT or COMPONENTS or C

Component modules of the new module. Each item in the
list is a record consisting of a file name followed by a
series of module names which are to be used. A range of
names may be specified. If no module names are specified
for a file, all modules on the file are used.

For modules with other than SCL or COBOL names, use
a string value. An example is a C function name, in
which lowercase is significant.

NOTE

A component module can be only an object, load, or bound
module.

This parameter is required. At least one file must be
specified.

RING _BRACKETS or RB

Specifies three integers representing the rl, r2, and r3
ring execution values for the new module. The ring values
can be from 3 through 15. If RING_BRACKETS is
omitted, all three values will default to the current ring.

RETAIN _COMMON _BLOCK or RETAIN _COMMON _
BLOCKS or RCB

Parameter Attributes: BY_NAME, ADVANCED

Specifies which common block names are retained in the
new modules. The keyword ALL specifies that all common
blocks are retained.

For a common block with other than an SCL or COBOL
name, use a string value. An example is a C function
name, in which lowercase is significant.

If RETAIN _COMMON _BLOCK is omitted, no common
blocks are retained.

60464018 J CREATE_OBJECT_LIBRARY 13-73

CREATE _LINKED_MODULE

IGNORE _SECTION _NAMES or ISN
Parameter Attributes: BY_NAME, ADVANCED

Specifies whether working storage sections with different
names should be placed in unique segments. If IGNORE _
SECTION _NAMES is omitted or IGNORE _SECTION _
NAMES=TRUE, sections with similar access attributes
(read and write) are placed in the same segments,
regardless of section name.

STARTING _SEGMENT or SS
Parameter Attributes: BY_NAME, ADVANCED

First segment number to use in prelinking this module.
The STARTING _SEGMENT parameter provides a unique
starting segment number. It is used only when creating
multiple prelinked modules that are loaded together.

Use the NEXT_AVAILABLE _SEGMENT parameter to
generate the integer value for the STARTING _SEGMENT
parameter on the next CREATE _LINKED _MODULE
subcommand.

Integer values are 0 through 4,095. The operating system
reserves segments 36 through 63 for prelinked programs.
Each program must fit into these segments. Do not use
segments 0 through 35, and 64 through 4,095.

If STARTING _SEGMENT is omitted, the integer value 36
is used as the starting segment number.
OUTPUT or O

File to which the prelink information and diagnostics are
written. This file can be positioned.

If OUTPUT is omitted, information is written to file
$LOCAL.LINKMAP.

DEBUG _TABLE or DT

File to which the table containing binary debug
information is written. This parameter is for Control Data
internal use only.

If DEBUG _TABLE is omitted, no debug information is
written.

13-74 NOS/VE Commands and Functions 60464018 J

CREATE _LINKED_MODULE

NEXT_AVAILABLE _SEGMENT or NAS
Parameter Attributes: BY _NAME, ADVANCED

Integer variable which returns the address of the next
available segment number. Use this parameter only for
creating multiple prelinked modules which will be loaded
together. This parameter generates unique segment
numbers which will be used by the STARTING _
SEGMENT parameter on the next CREATE _LINKED _
MODULE subcommand.

If this parameter is omitted, no segment number is
returned.

APPLICATION _IDENTIFIER or Al
Parameter Attributes: BY_NAME, ADVANCED

Name of the application identifier stored in the module
header and included on the application accounting
statistics when the software is executed.

Only a user with APPLICATION _ADMINISTRATION
capability can specify an application identifier.

If an application identifier is placed on a load module, the
module is assumed to be a unit-measured application.

If APPLICATION _IDENTIFIER is omitted, no application
identifier is assigned to the module.

DEFER _ENTRY_POINTS or DEP
Parameter Attributes: BY_NAME, ADVANCED

Defers the loading of entry points in the module. Specify
the keywords ALL, NONE, or $NOT_RETAINED (§NR)
for this parameter, or specify one or more entry points
whose names conform to the type PROGRAM _NAME.

For example, to defer the loading of entry points EP1 and
EP2, enter them as a list of names as follows:

defer_entry_points=(ep1, ep2)

Alternatively, you can defer loading of all except certain
specified entry points, using a record which has the
following format:

60464018 J CREATE_OBJECT_LIBRARY 13-75

CREATE _LINKED_MODULE

record
action: key
($defer_all_except, $dae)
keyend
entry_points: list rest of program_name
recend

For example, to defer loading of all entry points except
EP1 and EP2, enter the following:

defer_entry_points=($defer_all_except (ep1, ep2))

The default is NONE; all entry points in the module are
loaded.

DEFER _COMMON _BLOCKS or DCB
Parameter Attributes: BY _NAME, ADVANCED

Defers the loading of common blocks specified on this
parameter. You can specify the keywords ALL or NONE,
or you can provide a list of names that conform to the
type PROGRAM _NAME. For example, to defer the
loading of common blocks COM1 and COM2, specify them
as a list of names as follows:

defer_common_blocks=(com1, com2)

Alternatively, you can defer the loading of all common
. blocks except those specified by using a record with the
following format:

record
action: key
($defer_alli_except, $dae)
keyend
common_blocks: 1ist rest of program_name
recend

For example, to defer loading of all common blocks except
COM1 and COM2, enter the following:

defer_common_blocks=($defer_all_except (comil,com2))

The default is NONE; all common blocks in the module
are loaded.

13-76 NOS/VE Commands and Functions 60464018 J

CREATE _LINKED_MODULE

For more information about using the DEFERRED _
ENTRY_POINTS and DEFERRED _COMMON _BLOCKS
parameters, see Deferred Loading of Entry Points and
Common Blocks in chapter 8.

Remarks @ When building programs that consist of multiple
prelinked modules, all predefined segment numbers
must be unique for the entire load sequence.

© Use the STARTING_SEGMENT parameter on the
CREATE _LINKED_MODULE subcommand to specify
the first reserved segment number for a module. This
allows modules that are prelinked separately to be
used together at execution time.

© The system issues a warning diagnostic message for
all text-embedded libraries encountered during
prelinking. If the warning is ignored, the loader
attempts to satisfy text-embedded library references at
load time.

© During prelinking, an output file is generated that
contains diagnostics and information on how the
program was prelinked. This link map's default file
name is $LOCAL.LINKMAP.

© Do not prelink COBOL programs that use CALL and
CANCEL into a single module because CALL will try
to overlay a single component module that is no
longer available.

0 Once you have prelinked modules, they can no longer
be debugged using the interactive debugger. The debug
information written to the file specified by the
DEBUG_TABLE parameter is not the same as the
debug tables used by the interactive debugger.

0 For more information, see the NOS/VE Object Code
Management manual.

Examples The following sequence creates a prelinked module named
PRELINKED