NOS/VE

Advanced File Management

Usage 60486413

® NOS/VE Advanced File Management

Usage

' This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and

‘ parameters.

Publication Number 60486413

Manual History

System Version/ Product

Revisions PSR Level Version Date

A 1.0.2 1.0 October 1983

B 1.1.1/613 1.0 June 1984

C 1.1.2/630 1.0 March 1985

D 1.1.3/644 1.1 October 1985

E 1.1.4/649 1.2 January 1986
F 1.2.1/664 1.2/1.3 July 1986

G 1.2.2/678 1.3/1.4 April 1987

H 1.2.3/688 1.3/1.5 September 1987
J 1.3.1/700 1.3/1.6 April 1988

This revision:

Revision J documents Sort/Merge 1.3, the keyed-file utilities 1.6, and
FMU 1.1 for NOS/VE Version 1.3.1 at PSR level 700. It was
published in April 1988.

This revision documents the new NOS/VE command utility
RESTORE_LOG, which is used to recover damaged log files. Also,
minor technical and editorial changes have been made. '

©1983, 1984, 1985, 1986, 1987, 1988 by Control Data Corporation .
All rights reserved.
Printed in the United States of America.

2 NOS/VE Advanced File Management Usage Revision J

Contents

About This Manual 7
Audience T
Manual Organization 7
Submitting Comments . .. 9
In Case of Trouble 10

Part I: Sort/Merge

Introducing Sort/Merge . . 1-1
What Sort/Merge Does . . 1-1

Sort Keys 1-3
Specifying the Record

Length. 1-14
Short Records 1-15
Zero-Length Records . . 1-16
Invalid Records 1-17
Performance

Considerations 1-18

The SCL Commands

SORT and MERGE. . . . 2-1
Specifying Parameters by
Position. 2-1
Specifying Parameters in
Directive Files 2-3
The Sort/Merge
Parameters 2-6
Owncode Procedures . . . 3-1

Owncode Procedure
Parameters 3-2

Owncode Record Length . 3-3
Owncode 1: Processing

Input Records. 3-3
Owncode 2: Processing
Input Files 3-5

Revision J

Owncode 3: Processing

Output Records. 3-6
Owncode 4: Processing
the Output File 3-8

Owncode 5: Processing
Records With Equal

Keys. 3-9
Examples 4-1
Command Sort on One
Key 4-2
Command Sort on
Multiple Keys 4-4
Command Merge 4-5

Using a Directive File . . 4-6
Creating an Object

Library 4-8
Summing Records . .. 4-10
Defining Your Own

Collating Sequence. . . 4-12

Part II: Keyed-File Utilities

Keyed-File Concepts . . . 5-1
Keyed-File
Organizations. 5-2
Alternate Keys 5-16
Nested Files. 5-29

Displaying, Copying, and

Creating Keyed Files. . . 6-1
Keyed-File Displays . .. 6-2
Copying to or From a

Keyed File 6-15

Creating a Keyed File . 6-26

Re-Creating a Keyed
File........... 6-39

Contents 3

Create_ Alternate _
Indexes Utility. 7-1

Creating Alternate Keys. 7-2
Deleting Alternate Keys . 7-3
Displaying Alternate

Keys. 7-4

Alternate-Key Creation
and Deletion Example. . 7-5

CREATE _KEYED_FILE
and CHANGE _
KEYED_FILE Utilities. . 8-1

Using the Utilities 8-1
Preparation Before Using

the Utilities. 8-2
Manipulating Nested

Files. 8-3

Adding and Replacing
Records From Input

Files. 8-4
Selecting Records 8-7
Calculating the

INITIAL_HOME _

BLOCK_COUNT. 8-9
CREATE_KEYED_FILE

Example. 8-11

Keyed-File Recovery . .. 9-1
Protecting Your Keyed

Files. 9-1
Recovering Your Keyed

Files. 9-8
Recover_Keyed_File

Utility. 9-10
Administer__Recovery_

Log Utility 9-26
Restore_Log Utility . . 9-70

Part III: FMU

4 SCL Advanced File Management Usage

Introducing FMU 10-1

Performance
Considerations 10-2
FMU Command and
Directives. 11-1
Describing NOS/VE
Files. 11-1
FMU Directives 11-5

CREATE _OUTPUT_
RECORD Statements. . 12-1

Statement Conventions . 12-1
Logical Expressions 12-2
Assignment Statement . 12-4

Data Field Referencing . 13-1

Field Descriptors 13-1
Data Types 13-5
Intrinsic Functions . . . 13-14
Boolean Expressions . . 13-26
Arithmetic Expressions 13-32

Keyed File Reformatting 14-1
Keyed Record

Conversion 14-1

FMU Examples 15-1

Reformatting Data . . . 15-1
Replacing Occurrences of

a String. 15-5

Creating an
Indexed-Sequential File 15-7

Glossary A-1

Revision J

Related Manuals B-1 Using User-Defined
. . Collation Tables E-3
Ordering Printed Creati Collati
Manuals. B-1 reating a Lollation
A ing Onli Table E-4
coessirg LUniine NOS/VE Predefined
Manuals. B-2 Collation Table
Listings E-10
ASCII Character Set . . . C-1
FMU Conversion Rules,
Predecessor Product Storage Requirements,
Comparison. D-1 and Syntax Diagrams . . F-1
NOS/VE Sort/Merge and Data Type Conversion
Sort/Merge 5 Between NOS/VE Files . F-2
Differences D-1 Storage Requirements for
Keyed-File Utilities Computational Items. . . F-6
Comparison. D-7 FMU Statement Syntax
FORM and FMU Diagrams F-8
Comparison. D-8
FMU Error Messages . . . G-1
Collation Tables E-1 About FMU Diagnostics . G-1
Using NOS/VE Messages Listing G-4
Predefined Collation
Tables. E-2
Index Index-1
Figures
2-1. Directive File Order . . 2-5 E-1. Uninitialized Collation
5-1. Minimal Table. E-6
Indexed-Sequential E-2. Collation Table
Structure. 5-4 Initialized to the Default
5.2. Data-Block Split 56 ASCII Collating Sequence . E-7
5-3. Index-Block Split 5-8 E-3. CASE_INSENSITIVE
Collating Sequence
Initialization Module. . . . E-8
Tables
1-1. Maximum Key Field 1-3. Sign Overpunch
Sizes 1-5 Representation 1-13
1-2. Numeric Data 2-1. Parameter Positional
Formats 1-8 Order. 2-2
Revision J Contents 5

2-2. Result Array Format
2-3. Maximum Sum Field
Sizes
3-1. Owncode Procedure
Parameters
13-1. Sign Position for H
‘Fields.
13-2. Sign Position for H
Fields.
B-1. Related Manuals
C-1. ASCII Character Set
D-1. Sort/Merge 5 to

NOS/VE Sort/Merge
Conversion.

D-2. Counterparts of the
FMU and FORM
Directives

D-3. Comparison of CREOR
and REF Directives. . . .

D-4. Functional FMU and
FORM Comparisons. . . .

D-5. Handling Keys for
Indexed Sequential Files.

E-1. OSV$ASCII6_
FOLDED Collating
Sequence.

E-2. OSV$ASCII6_STRICT
Collating Sequence

6 SCL Advanced File Management Usage

D-10

D-11

D-13

E-12

E-15

E-3. OSV$COBOL6_
FOLDED Collating
Sequence.

E-4. OSV$COBOL6__
STRICT Collating
Sequence.

E-5. OSV$DISPLAY63_
FOLDED Collating
Sequence.

E-6. OSV$DISPLAY63_
STRICT Collating
Sequence.

E-7. OSV$DISPLAY64_
FOLDED Collating
Sequence.

E-8. OSV$DISPLAY64_
STRICT Collating
Sequence.

E-9. OSV$EBCDIC
Collating Sequence

E-10. OSVS$EBCDIC6_
FOLDED Collating
Sequence.

E-11. OSV$EBCDIC6_
STRICT Collating
Sequence.

F-1. Storage Requirements
for Computational Items. .

Revision J

About This Manual

This manual describes three CONTROL DATA® System Command
Language (SCL) file management tools for use under the Control
Data’s Network Operating System/Virtual Environment (NOS/VE). The
three file management tools are Sort/Merge, the keyed-file utilities,
and the File Management Utility (FMU).

Audience

This manual is written for any user of NOS/VE files who requires a
means of sorting or reformatting records or uses keyed files
(indexed-sequential or direct-access files).

The reader is assumed to be familiar with SCL command conventions,
NOS/VE system access, and the NOS/VE file system. This information
is given in the NOS/VE System Usage manual.

This manual is a usage manual, meaning that it contains a
comprehensive description of how to use the software indicated in its
title. For a tutorial that introduces you to the software described in
this manual, see the SCL Advanced File Management Tutorial
manual.

Manual Organization

This manual is divided into four parts as follows:

® The first part describes the SCL interface to Sort/Merge.
® The second part describes the keyed-file utilities.

® The third part describes FMU usage.

® The fourth part of this manual contains appendixes. The
appendixes provide a glossary, character set and collating sequence
listings, and a comparison of the NOS/VE products described in
this manual and their predecessor products.

Two appendixes in this part supplement the FMU descriptions.
These are the FMU Messages appendix and the FMU Conversion
Rules, Storage Requirements, and Syntax Diagrams appendix.

This manual is also available as the online manual, AFM.

Revision J About This Manual 7

Conventions

When describing NOS/VE command formats, this manual uses the
conventions used by the other NOS/VE manuals.

The following conventions are used in this manual.

boldface Denotes the required parts of a format.
italics Denotes the optional parts of a format.
blue Denotes user input within interactive

session examples.

UPPERCASE In formats, denotes the parts of the format
that must be entered exactly as shown. In
text, names are shown in uppercase.

lowercase In formats, denotes the parts of the format
that the user supplies.

nonproportional typeface Denotes examples (the nonproportional
typeface simulates computer output). User
input is indicated by blue print. System
output is indicated by black print.

number base All numbers are decimal unless otherwise
indicated.

In formats, indicates that the preceding
items can be repeated.

In examples, indicates that additional
statements would appear at this point, but
are not shown.

Vertical bars in the margin indicate changes or additions to the text
from the previous revision. An example of a change bar is shown in
the margin next to this paragraph.

8 SCL Advanced File Management Usage Revision J

Submitting Comments

The last page of this manual is a comment sheet. Please tell us about
any errors you found in this manual and any problems you had using
it.

If the comment sheet in this manual has been used, please send your
comments to us at this address:

Control Data Corporation
Technology and Publications Division
P.O. Box 3492

Sunnyvale, California 94088-3492

Include this information with your comments:

The manual title and publication number (for this manual:
NOS/VE Advanced File Management Usage, 60486413) and the
revision level from the page footer.

Your system’s PSR level (if you know it).

Your name, your company’s name and address, your work phone
number, and whether you want a reply.

Also, if you have access to SOLVER, the Control Data online facility
for reporting problems, you can use it to submit comments about this
manual. When it prompts you for a product identifier for your report,
please specify SM8 for the Sort/Merge documentation, AA8 for the
keyed-file utilities documentation, or FM8 for the FMU documentation.

Revision J About This Manual 9

In Case of Trouble

Control Data’s CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help beyond
that provided in the documentation or find that the product does not
perform as described, call us at one of the following numbers and a
support analyst will work with you.

From the USA and Canada: (800) 345-9903
From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address
questions about the physical packaging and/or distribution of printed
manuals to Literature and Distribution Services at the following
address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street

St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are a Control Data employee,
call CONTROLNET® 243-2100 or (612) 292-2100.

10 SCL Advanced File Management Usage Revision J

Part I: Sort/Merge

Introducing Sort/Merge, 1-1
The SCL Commands SORT and MERGE 2-1
Owncode Procedures. 3-1

Examples e 4-1

ikt

{
o

N T o
)h

0

y‘h
i, w
i

i
,yw i

1 wt,u"g

“ ﬂ i

i
“‘u“l»‘(\ i
i

ik
’s

iy

)
ity wk‘q““

2)
ety

'm "Ju Q‘(
i

il
| ‘\ "‘w

w‘;m‘ i
it
fi3 el Wl

| Mny“u)
i
A

m

‘ ,5 L
e i 4 :g\“ i
u,\.{\“ i

m\
ity
;

‘ 1
r(! i \im

““Mf

i
;w |

1
hv Iy \

\‘ A

o x‘mk:\‘
‘\ M“' u“nw i

‘va ;

; ‘”Hw“ mu \[u, u*"

“ : (o |‘\l/v>m il

H!\" “\l“v i

i W”\" i “"‘ '
i 1

i ;s;:"u/c‘

m‘
"'“.‘

‘, i
n‘\h ,’\

M“‘ C\‘\

”J“

T i !
I

il
i, b
. ,’m“”

w
i
i

gl 1 ‘ww\
‘\‘m
Al

i
‘N ‘;\\‘\ﬂ ‘”J‘m

dolfie
MR RAREN
r"h‘”“‘ sy “'”'l
W i i

X ,m‘u

, m‘wm

L)

i u.
j ‘W 1
o

\anl,a W

e M}‘J”“

,.“‘,H,L“F“‘N‘ e " : ’ ‘

T I “‘ﬂ :
« a s

TRt
m I i ‘ M

"fm fi,
‘alm‘?“ﬁ‘

iy
“‘“\"“" Ly

il \“v ”'u"
ahi!
)

s

d \mw “

\
ey

W
EA

i

il

LR

14
Vg

i
‘.\vf i
N« il

i
. e
u“ il
,,\\‘.1“'*

i
W
et

iyt

e

"‘L“;f“w

.‘G Y

e
M g

i

o ‘\ "y d(‘\ i

ity ;‘“ A i
] ! !

U
» e
Ww““ i “’“

il
ik

il
m‘ WW

R
d"“v\m’n” ;A
{ip

i
i

ol
i W

A

i
iy

M“‘ 3,“,‘,\ !
Ly

EREMI) “‘L i ‘“

\ ';h“h” i it

s

i

il

,"\"',u‘
m b
;\\
.w“m i),A" |
Mm A
m”vwi *"’\"‘ it I
M\u,\%
Lk “‘ﬁv ul ;
i
m“ kY
“‘” H ‘H\Hl fh " !
A "'w"“,‘ ;a’w i

‘,~“uw""“

4 3
Ok .\y

i

J
W
al Wv“"" 7
i

Introducing Sort/Merge 1

Sort/Merge is the NOS/VE software available for sorting records.
Sort/Merge can be executed using a single System Command Language
(SCL) command or using procedure calls from within a program
written in COBOL, CYBIL, or FORTRAN. For information on using
Sort/Merge in a program, refer to the programming language manual
(COBOL Usage, CYBIL Keyed-File and Sort/Merge Interfaces, or
FORTRAN Language Definition Usage manual). This chapter
introduces Sort/Merge use through SCL.

What Sort/Merge Does

The purpose of sorting is to arrange items in order. The purpose of
merging is to combine two or more sets of preordered items. Ordered
information makes reports more meaningful and suggests critical
relationships. Searches for information are faster with ordered lists.

The purpose of Sort/Merge is to arrange records in the sequence you
specify. You describe the records you want sorted or merged and
information on how Sort/Merge is to order them.

Sort/Merge can:
® Sort or merge in response to a single command entry.
® Use an optional directives file for sort or merge specification.

® Sort or merge records from as many as 100 files with one
command.

® Sort character and noncharacter key types.

® Read input records of variable-length (V), ANSI fixed-length (F), or
trailing-character-delimited (T) record type.

® Read input records from sequential, indexed-sequential, or
direct-access files and write output records to sequential or
indexed-sequential files.

® Use mass storage files and magnetic tape files as input and output
files.

® Sort using any of twelve predefined collating sequences, thirteen
numeric formats, and one or more user-defined collating sequences.

Revision G Introducing Sort/Merge 1-1

What Sort/Merge Does

® Sum fields in records that have equivalent key values.

® Use user-defined owncode procedures to insert, substitute, modify,
or delete records during the sort or merge.

To start a sort, you enter a SORT command; to start a merge, you

enter a MERGE command. Sort/Merge performs the sort or merge .
based on the parameters that you specify on the SORT or MERGE
command. The command parameters are described in chapter 2.

Sort/Merge allows you to specify additional parameters on directives in
a directives file. This is provided for two reasons:

® An SCL command parameter can only be specified once on a
command. Certain Sort/Merge specifications require that you
specify the same parameter more than once.

® The length of an SCL command is limited to 256 characters. A
Sort/Merge specification may be longer than that.

Records are sorted or merged on fields of data within each input

record; the fields are called sort keys. The data in a sort key field

can be 8-bit ASCII character codes, signed or unsigned binary integer,
packed decimal, or floating-point numbers. Sort keys are described in .
detail in later in this chapter.

Depending on the owncode procedures you specify, owncode procedures
are executed to process input records, output records, input files, the
output file, or records with equal keys. Owncode procedures are
described in detail in chapter 3.

Merge capabilities are more restricted than those of a sort. Merge
records cannot be supplied by an owncode procedure. Merge input
records must be pre-sorted before the files are merged. If the merge
specifies summing, the files must also be pre-summed.

Sort/Merge writes the sorted or merged records to a single output file
or passes them to an owncode procedure for processing.

1-2 SCL Advanced File Management Usage Revision G

Sort Keys

Sort Keys

Sort/Merge orders records according to the contents of the sort key
fields defined for the sort or merge. The sort key fields are defined by
key field definitions on KEY parameters on the SORT or MERGE
command. This chapter describes sort keys and the information you
supply to define them.

A sort key is a fixed field of data in each input record. This means it
must occur in the same position and be the same length in each
record. The maximum combined length of all key fields in a record is
1023 bytes. Character data should be left-justified in the field, and
numeric data should be right-justified in the field.

Major and Minor Sort Keys

The first key you specify is the most important key and is called the
major sort key. This key is sorted or merged first. The keys you
specify after the first key are of lesser importance and are called
minor sort keys. The minor keys are numbered in the order they are
specified. For example, if three sort keys are specified, the first key is
the major sort key (key number 1), the next key listed is a minor key
(key number 2), and the third key is another minor key (key number
3).

When two or more records have equal major key values, Sort/Merge
determines their order by looking at the subsequent minor keys in
order (key number 2, key number 3, and so on). Sort/Merge compares
the minor keys until either an unequal key is found, or until there
are no more keys.

For example, suppose a file of student records is to be sorted on the
field of study and then on the student’s name. The field of study is
specified as the major key so all students with the same field of study
are listed together. Because the student name is specified as the
minor key, the students with the same field of study are listed in
alphabetic order by name.

The file could also be sorted by the class code as the major key and
the grade point average as the minor key. If the minor key is sorted
in descending order, the sorted list would group the students by class
and list the students in each class in order from highest to lowest
grade point average.

Revision G Introducing Sort/Merge 1-3

Sort Keys

Describing Sort Keys

If you omit the KEY parameter from the Sort/Merge specification, the
default sort key begins with the first byte in the record and extends
to the smallest minimum record length value for all input files. If the
minimum MINIMUM_RECORD_LENGTH attribute for all input files

is 0, Sort/Merge uses 1 as the key length. If the minimum .
MINIMUM_RECORD_LENGTH attribute for all input files is greater

than 1023 bytes, Sort/Merge uses 1023 bytes as the key length.

Otherwise, if you specify one or more KEY parameters, each sort key
is defined by a key field definition. Key field definitions include the
following information:

® Starting location of the key within the record
® Key length

® Type of data in the key field

® Sort order (ascending or descending)

Sort/Merge allows key fields to overlap other key fields, except for the
following:

® Key fields that are ordered by collating sequences defined with the
alter option

® Key fields that overlap sum fields

Key Field Definition

The key field definitions are specified on the KEY parameter on the
SORT or MERGE command or in a KEY parameter on a directive in
the directives file. A key field definition is a value set of up to four
values. Only the first value, specifying the key position, is required.

If a key field definition specifies more than one value, it must be
enclosed in parentheses. Values within a value set are separated by a

comma or a space. .

A key field definition has one of the following formats:

(position..position, key_type, sort_order)
(position, length, key_type, sort_order)

1-4 SCL Advanced File Management Usage Revision G

Sort Keys

Byte and bit positions in the record are numbered from the left
beginning with 1. Sort/Merge interprets the key field position and
length specification as bytes unless the key type is INTEGER_BITS
or BINARY_BITS.

Table 1-1 lists the maximum key field sizes.

Table 1-1. Maximum Key Field Sizes

Maximum

Size (in Maximum Size
Key Type bytes) Key Type (in bytes)
Character 1023 BINARY 8
NUMERIC_FS 1023 BINARY_BITS 8184 (bits)
NUMERIC_LO 38 INTEGER 8
NUMERIC_LS 38 INTEGER_BITS 8184 (bits)
NUMERIC_NS 38 PACKED 19
NUMERIC_TO 38 PACKED_NS 19
NUMERIC_TS 38 REAL 8 or 16

Key Field Definition Using a Range

If the first value in the key field definition is a range, it defines the
position and length of the key field. The range specifies as its upper
and lower bounds the first and last positions in the key field. For
example, the range 1..3 defines a key field from position 1 through
position 3.

The lower bound of the range (its second value) is optional. When
omitted, the lower bound is assumed to be the same as the upper
bound so the length of the key field is 1.

Key Field Definition Without a Range

If the first value in the key field definition is not a range, the first
two values in the definition are integers that define the position and
length of the key field. The first value specifies the first byte or bit
position in the field. The second value specifies the number of bytes
or bits in the field.

The first value, specifying the key position, is required. If you omit
the second value, the key length is assumed to be 1.

Revision J Introducing Sort/Merge 1-5

Sort Keys

Key Type

After specifying the key field position and length, the key field .
definition specifies the type of data in the key field. It can be the
name of a collating sequence or the name of a numeric data format.

By default, the key field is assumed to contain ASCII character data .
to be sorted according to the default ASCII collating sequence.

The key type specified depends on the contents of the sort key field
and on whether the key is to be sorted in numerical order or in
collating sequence order:

® If the data is ASCII character codes, but it represents a number to
be sorted by numerical value, the key type should specify a
numeric data format.

® If the ASCII character codes are to be sorted byte-by-byte
according to a collating sequence, the key type should specify a
collating sequence.

® If the data is an arithmetic representation of a number (binary,
integer, floating-point, or packed-decimal), the key type should
specify the corresponding numeric format. .

If a key field contains data that is not meaningful for the key type
you specify (such as an alphabetic character in a numeric character
field), Sort/Merge determines that the field contains invalid data and
so cannot be sorted. If an exception records file has been specified for
the sort or merge, the record is removed from the sort or merge and
written to exception records file. Otherwise, the record remains in the
sort or merge, but its place in the sort order is undefined.

Collating Sequences

A collating sequence determines the precedence given to each
character in relation to the other characters. Character data must be
in ASCII character codes.

If you do not specify a key type, the default ASCII collating sequence
(ASCII) is used. ASCII is the fastest predefined character collating .
sequence.

1-6 SCL Advanced File Management Usage Revision J

Sort Keys

NOS/VE has twelve predefined collating sequences. Sort/Merge allows
you to use six of these collating sequences without explicitly loading
the collation table. The six are:

Key Type NOS/VE Predefined Collation Table

ASCII The default ASCII collating sequence
ASCII6 OSV$ASCII6_FOLDED

COBOL6 OSV$COBOL6_FOLDED

DISPLAY OSV$DISPLAY64_FOLDED
EBCDIC OSV$EBCDIC

EBCDIC6 OSV$EBCDIC6_FOLDED

To use the other predefined NOS/VE collating sequences you must
explicitly load the collating sequence by specifying a LOAD_
COLLATING_TABLE parameter. The predefined collating sequences
are listed in appendix E.

You can also create your own collating sequence using the
COLLATING_SEQUENCE_x parameters described in chapter 2.

Numeric Data Formats
The available numeric data formats are listed in table 1-2.

For Better Performance

Of the numeric data formats, the most efficient key types are
INTEGER, BINARY, and REAL.

Revision G Introducing Sort/Merge 1-7

Sort Keys

Table 1-2. Numeric Data Formats

Name Data Type Sign Comments
BINARY Binary None The field must start
integer and end on character
boundaries.
BINARY_BITS Binary None The field need not
integer start or end on
character boundaries.
INTEGER Two’s Positive if The field must start
complement leftmost bit and end on character
binary is 0; boundaries.
integer negative if
leftmost bit
is 1
INTEGER_ Two's Positive if The field does not start
BITS complement leftmost bit or end on character
binary is 0; boundaries.
integer negative if

leftmost bit
is 1

1-8 SCL Advanced File Management Usage

(Continued)

Revision G

Sort Keys

Table 1-2. Numeric Data Formats (Continued)

. Name Data Type Sign Comments
NUMERIC_FS Leading - sign for The field contains
blanks, negative leading blanks (leading
numeric values; a + zeros must be
‘ characters character is converted to blanks

NUMERIC_LO Numeric
characters

not allowed

Leading
overpunch

before calling
Sort/Merge); if the
value is negative, the
rightmost leading blank
must be converted to a
minus sign. If the field
contains no leading
blanks or does not
begin with a negative
sign, the value must be
positive. This format is
equivalent to the
FORTRAN 1 format, or
the COBOL picture
clause for zero
suppressed editing of
numeric item.

All characters are
decimal digits except
the leading character,
which indicates a sign
by an overpunch. All
forms of zero are
ordered equally.

Revision G

(Continued)

Introducing Sort/Merge 1-9

Sort Keys

Table 1-2. Numeric Data Formats (Continued)

Name

Data Type

Sign

Comments

NUMERIC_LS

NUMERIC_NS

NUMERIC_TO

NUMERIC_TS

Numeric
characters

Numeric
characters

Numeric
characters

Numeric
characters

Leading
separate

None

Trailing
overpunch

Trailing
separate

All characters are
decimal digits except
the leading character,
which is a negative or
positive sign.
Specifying a field that
is not at least two
characters in length
causes a fatal error.
All forms of zero are
ordered equally.

All characters are
decimal digits.

All characters are
decimal digits except
the trailing character,
which indicates a sign
by an overpunch. All
forms of zero ordered
equally.

All characters are
decimal digits except
the trailing character,
which is a negative or
positive sign.
Specifying a field that
is not at least two
characters in length
causes a fatal error.
All forms of zero
ordered equally.

1-10 SCL Advanced File Management Usage

(Continued)

Revision G

Sort Keys

Table 1-2. Numeric Data Formats (Continued)

Name Data Type Sign Comments

PACKED Packed Signed Data is ordered
decimal according to numeric

value.

PACKED_NS Unsigned Unsigned PACKED_NS is the
packed same as COBOL
decimal COMPUTATIONAL-3

with no sign.

REAL Normalized Signed All forms of zero are
floating- ordered equally. The
point order of indefinite
number, values is undefined.
either Infinite values are
single- ordered as if their
precision (8 value were infinity
bytes) or (can be signed infinity).
double-
precision
(16 bytes)

Floating Sign

The NUMERIC_FS format contains a floating sign if the value is
negative. This means that the character preceding the numeric
characters must be a minus (-) character. All leading characters must
be blanks. Positive values in this format are not signed. The following
examples are valid floating sign formats:

- 12
123

D WO O - =

The following examples are invalid floating sign formats:

NO O
CO Mt

Revision G

Leading zero not allowed
Leading zero not allowed
Positive sign not allowed
All blank field not allowed

Introducing Sort/Merge 1-11

Sort Keys

Sort/Merge issues diagnostic messages for invalid floating sign
formats.

Qverpunch Sign

A negative sign overpunch is equivalent to overstriking a digit with a
-, which is a punch in row 11 of a punched card. A positive sign
overpunch is equivalent to overstriking a digit with a +, which is a
punch in row 12 of a punched card.

When a signed overpunch digit is received as input, the digit is
punched as indicated in the second column of table 1-3. When a
signed overpunch digit is entered from a terminal or displayed as
output, the digit appears as indicated in the third column of table 1-3.
The hexadecimal value is in the fourth column.

Sort Order

The optional fourth value in the value set specifies the sort order.
Sort order is either ascending or descending as indicated by the
keyword value A or D, respectively. If you specify neither, the sort
order is assumed to be ascending.

When sorting a numeric key in ascending order, Sort/Merge sorts the
key values in numeric order from least to greatest. When sorting a
numeric key in descending order, Sort/Merge sorts the key values in
numeric order from greatest to least.

A character key is sorted according to the collating sequence you
specify for the key. For ascending order, the key values are sorted in
the order given by the collating sequence, For descending order, the
key values are sorted in reverse order from the collating sequence.

1-12 SCL Advanced File Management Usage Revision G

Sort Keys

Table 1-3. Sign Overpunch Representation

Sign and Input Input/Qutput Hexadecimal
Digit Punch Representation Value
+0 0 0 30
+1 1 1 31
+2 2 2 32
+3 3 3 33
+4 4 4 34
+5 5 5 35
+6 6 6 36
+7 7 7 37
+8 8 8 38
+9 9 9 39
+0 12-0 { B
+1 12-1 A 41
+2 12-2 B 42
+3 12-3 C 43
+4 12-4 D 44
+5 12-5 E 45
+6 12-6 F 46
+7 12-7 G 47
+8 12-8 H 48
+9 12-9 I 49
-0 11-0 } D
-1 11-1 J 4A
-2 11-2 K 4B
-3 11-3 L 4C
-4 11-4 M 4D
-5 11-5 N 4E
-6 11-6 (0] 4F
-7 11-7 P 50
-8 11-8 Q 51
-9 11-9 R 52
+0 12-8-4 < 3C
+0 12 & 26
-0 12-8-7 ! 21
-0 11 - 2D

Revision J Introducing Sort/Merge 1-13

Specifying the Record Length

Specifying the Record Length

Sort/Merge can sort records up to 65,535 bytes long. Sort/Merge
determines the maximum and minimum record lengths for a file by
its MAXIMUM RECORD_LENGTH and MINIMUM_RECORD_
LENGTH file attributes.

The record length attributes are set when the file is created. You can
specify the record for a new file with a SET_FILE_ATTRIBUTE
command. If you specify an already existing file on the SET_FILE_
ATTRIBUTE command, the command is ignored. For details on the
SET_FILE_ATTRIBUTE command, refer to the NOS/VE System
Usage manual.

The default sort key begins with the first byte in the record and
extends to the smallest minimum record length value for all input
files. If the minimum MINIMUM_RECORD_LENGTH attribute for
all input files is 0, Sort/Merge uses 1 as the key length. If the
minimum MINIMUM_RECORD_LENGTH attribute for all input files
is greater than 1023 bytes, Sort/Merge uses 1023 bytes as the key
length.

Sort performance is best when the maximum record length attribute ‘
value is equal to the longest record to be sorted. Sort/Merge can sort
records up to 65,535 bytes long.

If the SORT command specifies an owncode 1 procedure to supply
input records and an owncode 3 procedure to perform output
processing and omits the FROM and TO parameters, the command
must specify the record length using either the OWNCODE_FIXED_
LENGTH or OWNCODE_MAXIMUM_RECORD_LENGTH parameter.

1-14 SCL Advanced File Management Usage Revision J

Short Records

Short Records

A short record is a record that does not contain all key and sum
fields defined for the sort or merge. Sort/Merge determines that a
record is short when it reads the record from the input source.
Therefore, missing or partial key and sum fields are detected even if
Sort/Merge does not use their contents.

NOTE

Records can become short when the system strips off trailing blanks
from variable-length (V) records. For example, when a variable-length
record containing all spaces is displayed by the SCL command
DISPLAY_FILE, the spaces are stripped from the record, leaving a
zero-length record.

When Sort/Merge finds that a key or sum field is entirely beyond the
end of the record, it uses a default value for the field. For character
keys, the default value is all spaces. For numeric keys and sum fields,
the default value is zero in the appropriate format.

The default value does not actually become part of the record data.
Sort/Merge uses the default value only when using the key value or
sum field value. It does not pass the default value to an owncode
procedure or store the default value in the output record.

Sort/Merge processing differs when the field is only partially beyond
the end of the record. If the partial field is a character key field,
Sort/Merge pads it with spaces, but if the partial field is a numeric
key field or sum field, Sort/Merge processes it as an exception.

Exception processing for partial sum fields is described in detail under
the SUM topic in chapter 2. Exception processing for partial numeric
key fields is as follows:

1. The record is written to the exception records file if one is
specified for the sort or merge.

2. If an exception records file exists, the record is removed from the
sort or merge; otherwise, its order is left undefined.

3. The count of partial numeric key fields is incremented. A warning
error message gives the count at the end of the sort or merge.

Revision G Introducing Sort/Merge 1-15

Zero-Length Records

Zero-Length Records

A zero-length record is a record that contains no data and so its
record length is 0. The processing of zero-length records read from
input files depends on the ZERO_LENGTH_RECORDS parameter

specification.

By default, Sort/Merge deletes all zero-length records from the sort or
merge. This is the DELETE option.

However, instead of the DELETE option, ZERO_LENGTH_RECORDS
can specify one of the following options for zero-length records:

PAD Assigns default values to key fields and sum fields in
zero-length records (as it would short records) and keeps the
zero-length records in the sort or merge.

LAST Writes zero-length records at the end of the output file.

Zero-length records are never written to the exception records file if
the DELETE option is selected.

Zero-length records are written to the exception records file if the
PAD option is selected and either of the following situations exist:

® If merge order verification is requested and the input files contain
zero-length records that are not pre-sorted on the merge keys.

® If the system procedures that writes the record (AMP$PUT_NEXT)
detects an error while writing a zero-length record. (In general,
attempts to write zero-length records to an indexed-sequential file
cause errors.)

If OMIT_DUPLICATES=YES and ZERO_LENGTH_RECORDS=PAD
are both specified, only one zero-length record is included in the sort
or merge.

Zero-length records are passed to owncode procedures only if the PAD
option is selected. When passing a zero-length record, Sort/Merge
passes an empty array of the maximum record length and a record
length of zero.

1-16 SCL Advanced File Management Usage Revision G

Invalid Records

The count kept in the result array for the sort or merge' may differ
depending on the ZERO_LENGTH_RECORDS specification:

Element 2, number of records read:
Zero-length records are always included in the count.
Element 6, number of records sorted or merged:
Zero-length records are included only if PAD is selected.

Elements 13, 14, and 15, number of records written, the minimum
record length, and the average record length:

Zero-length records are included in these values only if PAD or
LAST is selected.

Element 17, the number of zero-length records deleted from the
sort or merge:

This count is kept only if DELETE is selected.

Invalid Records

Sort/Merge checks that the data in all key fields is valid. It
determines whether the data in sum fields is valid only when it
attempts to use the data. It does not validate the data in any other
record fields.

If an exception records file is specified, Sort/Merge copies each invalid
record to the exception records file. It then removes the invalid record
from the sort or merge. Therefore, if all input records are invalid and
an exception records file is specified, no records are written to the
output file.

If an exception records file is not specified, records with invalid key
values or sum values are not deleted from the sort or merge. The
order of records with invalid key fields is undefined. The contents of
sum fields with invalid data is also undefined.

Revision G Introducing Sort/Merge 1-17

Performance Considerations

Write Errors ‘

Sort/Merge also considers a record to be invalid if an error is

returned by an attempt to write the record. Sort/Merge writes records

to the output file using the system procedure AMP$PUT_NEXT. If
AMP$PUT_NEXT returns an error for a record, Sort/Merge writes the
records to the exception records file (if one is specified) and deletes it .
from the sort or merge.

AMP$PUT_NEXT may return errors (such as duplicate primary-key
value) when writing to an indexed-sequential file. The invalid record
is written to the exception records file (if one is specified) and deleted
from the sort or merge.

Performance Considerations

To improve Sort/Merge performance, consider the following:

Do not use owncode procedures except when necessary.

Ensure that all key fields and sum fields are within the minimum
record length for all input records. Additional processing is
required for short records. '

If possible, use a fixed record length instead of a variable record
length.

Of the numeric data formats, the most efficient key types are
INTEGER, BINARY, and REAL.

Sort/Merge can read and write files faster if the files use the
default attributes, as follows:

- Sequential file organization

- F or V record type

- System-specified blocking

— No error-exit procedure .
-~ No file access procedure (FAP)

- The padding character is space

1.18 SCL Advanced File Management Usage Revision G

Performance Considerations

Limiting Memory Usage

By default, Sort/Merge limits the memory assigned to its sorting array
to 262,144 (256K) bytes.

You can change the Sort/Merge memory limit by defining an SCL
integer variable named SMV$MEMORY_USAGE_LIMIT. The integer
you assign to the variable is used as the memory usage limit for
subsequent sorts within the scope of the variable. For example, the
following command creates the SMV$MEMORY_USAGE_LIMIT
variable and assigns it the value 64.

create_variable, smv$memory_usage_limit, kind=integer, ..
value=64, scope=job)

The integer that you specify is multiplied by 1024 (1K) to determine
the limit in bytes. The minimum limit is 64; if you specify an integer
less than 64, Sort/Merge uses 64. The maximum limit is 16,383; if
you specify an integer greater than 16,383, Sort/Merge uses 16,383. A
warning error is issued when you specify a value outside the range of
64 through 16,383.

The SMVSMEMORY_USAGE_LIMIT value is not used to limit
memory usage for merges; it is used only for sorts (including the
internal merge that is part of a sort).

Setting the Page_Aging _Interval

The page_aging_interval is the job attribute that controls how
quickly pages are aged from the working set of a task. If you increase
the memory usage limit for your sorts, you should also increase your
page_aging_interval value.

The optimum page_aging__interval depends on the CYBER 180 model
you use. A smaller value is appropriate for a faster models. For
example, when the default memory usage limit of 256 pages is used,
the optimum page_aging_interval for a CYBER 180/830 is about
500,000 microseconds, while for a CYBER 180/860, the optimum value
is about 100,000 microseconds.

To see your current page_aging_interval attribute value, enter the
following SCL command:

display_job_attribute, display_option=page_aging_interval

Revision G Introducing Sort/Merge 1-19

Performance Considerations

To change your page_aging._interval value, use the CHANGE_JOB_
ATTRIBUTE command. For example, the following command changes
the page_aging_ interval to 500,000 microseconds:

change_job_attribute, page_aging_intervai=500000

1-20 SCL Advanced File Management Usage Revision G

A &at’#‘l ‘

N

The SCL Commands SORT and MERGE 2

This chapter describes the use of Sort/Merge via the System Command
Language (SCL) commands SORT and MERGE. It first describes the
command format and then provides detailed individual descriptions of
each parameter.

Specifying Parameters by Position

As on any SCL command, a Sort/Merge parameter can be specified
without its parameter name. In this case, the parameter value is
assigned to a parameter by its position in the parameter sequence.
Table 2-1 lists the positional order of the Sort/Merge parameters.

For example, both of the following SORT commands specify parameter
values for the FROM, TO, and EXCEPTION parameters (positions 1,
2, and 11).

sort, $user.inputil, $user.output2,,,,,,,,,$user.exception_file
sort, from=$user.inputi, to=$user.output2,
erf=guser.exception_file

As you can see by the example, it is more difficult to see which
parameters have values specified when the values are specified by
position. Use of the parameter names is recommended.

Revision J The SCL Commands SORT and MERGE 2-1

Specifying Parameters by Position

Table 2-1. Parameter Positional Order

Parameter
Position Name Position Parameter Name
1 FROM 16 OWNCODE _PROCEDURE_1
2 TO 17 OWNCODE _PROCEDURE_2
3 KEY 18 OWNCODE_PROCEDURE_3
4 DIRECTIVES_ 19 OWNCODE _PROCEDURE _4
FILE
5 LIST 20 OWNCODE_PROCEDURE_5
6 LIST_ 21 RETAIN_ORIGINAL_ORDER
OPTIONS
7 ERROR 22 COLLATING_SEQUENCE_
NAME
8 ERROR_ 23 COLLATING_SEQUENCE _
LEVEL STEP
9 Reserved 24 COLLATING_SEQUENCE_
REMAINDER
10 ESTIMATED_ 25 COLLATING_SEQUENCE_
NUMBER_ ALTER
RECORDS
11 EXCEPTION_ 26 STATUS
RECORDS_
FILE
12 C170_ 27 SUM
COMPATIBLE
13 OMIT_ 28 ZERO_LENGTH_RECORDS
DUPLICATES
14 OWNCODE_ 29 VERIFY_MERGE_INPUT_
FIXED_ ORDER
LENGTH
15 OWNCODE_ 30 LOAD_COLLATING_TABLE
MAXIMUM_
RECORD_
LENGTH

31

RESULT_ARRAY

2.2 SCL Advanced File Management Usage

Revision J

Specifying Parameters in Directive Files

Specifying Parameters in Directive Files

You can use directive files to repeat Sort/Merge parameters. A
parameter can appear only once on an SCL command. However, if so
indicated in the individual parameter description, the parameter can
appear on the command and/or on directives in a directive file.

Also, an SCL command can be no longer than 256 characters long.
When your Sort/Merge specifications are longer than 256 characters,
you can continue the parameter specifications in directives files.

A sort or merge can use up to 100 directive files. The first list of
directive files is specified on the DIRECTIVES_FILE parameter on
the SORT or MERGE command. Each directive can also specify a list
of directive files on a DIRECTIVES_FILE parameter. Figure 2-1
illustrates the order in which directive files are read.

A Sort/Merge directives file contains one or more directives. It can
also contain SCL commands and comments. (Each SCL comment
begins with a quote ["] character.)

Sort/Merge directives have the same format as a SORT or MERGE
command and are processed according to SCL command conventions.
Like SCL commands, each directive:

® Begins with the word SORT or MERGE followed by a comma or
space.

® (Can specify each parameter only once.
® (Can be up to 256 characters in length.

® (Can continue over more than one line. A line to be continued ends
with two or more periods. The continuation periods are not
included in the directive length.

Revision G The SCL Commands SORT and MERGE 2-3

Specifying Parameters in Directive Files

NOTE

Because a range is also specified using two periods (for example, 1..3),
do not split a command or directive within a range.

For example, the directive .
SORT,OLD,NEW KEY=(1..10),DIRECTIVES_FILE =FILE1 can be

written as follows:

SORT,OLD,NEW, . .
KEY=(1..10), DIRECTIVES_FILE=..
FILE1

In general, Sort/Merge specifications can use uppercase or lowercase
letters. However, an exception exists for owncode procedure names.
Unless you specify C170_COMPATIBLE=YES, all owncode procedure
names must be specified using uppercase letters only. (This is because
entry point names are stored using only uppercase letters and no
conversion is performed unless requested.)

2-4 SCL Advanced File Management Usage Revision G

Specifying Parameters in Directive Files

SORT DIR=DIR1, KEY=1

O]

Directive File DIR1

SORT DIR=(DIR2,DIR3), KEY=2

@

L]
Directive File DIR2

SORT DIR=DIR4, KEY=3

]

Directive File DIR3

SORT DIR=DIRS, KEY=§

K

Directive File DIR4

SORT KEY=4 @

v

Directive File DIRS

SORT KEY=6

NOTE: The circled numbers represent the
order the directive files are read.

Revision G

Figure 2-1. Directive File Order

The SCL Commands SORT and MERGE 2-5

The Sort/Merge Parameters

The Sort/Merge Parameters

This section discusses each Sort/Merge parameter in detail. The
parameter descriptions are presented in alphabetical order. The
parameter name abbreviations appear in parentheses after the
parameter name.

You can enter the Sort/Merge parameter values using uppercase,
lowercase, or a combination of uppercase and lowercase. The one
exception is owncode procedure names, which must be specified using
all uppercase unless you specify C170_COMPATIBLE =YES.

26 SCL Advanced File Management Usage Revision G

The Sort/Merge Parameters

C170 _COMPATIBLE (CC)

‘ Purpose

Format

. Remarks

Revision G

Specifies whether lowercase letters in owncode procedure
names are to be converted to uppercase letters. This is
required for loading of the owncode procedures.

Default:

If you omit the C170_COMPATIBLE parameter, the
default is OFF and the owncode procedure names are not
converted. Therefore, the names must be specified using
uppercase letters.

C170_COMPATIBLE =boolean

An SCL boolean is a logical true or false value specified
by the keyword YES, TRUE, or ON for true or NO,
FALSE, or OFF for false. A true specification indicates
that Sort/Merge converts owncode procedure names to
uppercase letters, if necessary. A false specification
indicates Sort/Merge does not convert lowercase letters;
names must be specified using uppercase letters.

® When Sort/Merge attempts to load an owncode
procedure, it passes the procedure name as you have
specified it on the OWNCODE_PROCEDURE_n
parameter. If you specify the name with lowercase
letters, Sort/Merge passes the lowercase letters unless
the C170_COMPATIBLE parameter requests
conversion.

® The system stores entry point names using uppercase
letters only. Therefore, if the loader is given a
procedure name containing lowercase letters, it cannot
find that name in the program library list and so it
cannot load the requested procedure.

The SCL Commands SORT and MERGE 2.7

The Sort/Merge Parameters

COLLATING _SEQUENCE _x (CSx or SEQx)

The COLLATING_SEQUENCE_x parameters allow you to define your
own collating sequence. (You can also load your own collating
sequences using LOAD_COLLATING_TABLE parameters. The total
number of user-defined collating sequences used by a sort or merge
cannot exceed 100.)

A collating sequence specifies the sort or merge order for character
data. It defines the collating position assigned to each of the 256

ASCII characters. Any characters not explicitly assigned a collating
position are assigned to the last position in the collating sequence.

A collating sequence consists of a series of value steps; each value
step in the sequence is assigned a collating position from lowest to
highest. Each value step contains at least one ASCII character. When
a value step contains more than one character, all characters in the
step have the same collating weight and are collated equally.

For example, suppose a collating sequence has 27 value steps. The 26
letters of the alphabet are each assigned a value step in standard
alphabetical order (A through Z). The rest of the ASCII character set
is assigned to the 27th value step. Using this collating sequence, a
sorted sequence would have the letters sorted first from A through Z
followed by all non-alphabetic characters collated equally. (The order
of the non-alphabetic characters is random unless other processing is
specified by equivalent key values.)

Each collating sequence definition begins with a COLLATING_
SEQUENCE_NAME parameter and continues until Sort/Merge reads
a parameter other than COLLATING_SEQUENCE_STEP,
COLLATING_SEQUENCE_REMAINDER, or COLLATING_
SEQUENCE_ALTER.

The default ASCII collating sequence assigns one character to each

value step. The value steps are ordered as the characters are ordered
in the ASCII character set listing in appendix C.

2-8 SCL Advanced File Management Usage Revision G

The Sort/Merge Parameters

COLLATING _SEQUENCE_NAME (CSN or SEQN)

. Purpose Marks the start of a collating sequence definition and
specifies the name of the collating sequence.

Format COLLATING_SEQUENCE_NAME =name

‘ Default:

None. The COLLATING_SEQUENCE_NAME parameter
is required to begin a Sort/Merge collating sequence
definition. (Collating sequence definitions are optional.)

Remarks ® The COLLATING_SEQUENCE_NAME parameter can
be specified once on the command and once on each
directive. It can be specified only once per collating
sequence definition.

® The specified collating sequence name cannot be the
name of a predefined collating sequence or a collating
sequence already defined for the sort or merge.

® The collating sequence name is specified as the key
‘ type for the key field to be sorted or merged according
to the collating sequence. For example, the following
parameter begins a collating sequence definition and
names the collating sequence MYSEQUENCE:

COLLATING_SEQUENCE_NAME=mysequence

The following key definition indicates that the key
contains character data to be sorted according to the
MYSEQUENCE collating sequence:

KEY=((1..10,mysequence))

® The SEQN abbreviation is provided for CYBER 170
SORTS compatibility; its continued use is not
recommended.

Revision G The SCL Commands SORT and MERGE 2-9

The Sort/Merge Parameters

COLLATING _SEQUENCE _STEP (CSS or SEQS)

Purpose

Format

Remarks

Defines one or more value steps within the collating
sequence.

COLLATING_SEQUENCE_STEP =list of value step
definitions

Default:

None. At least one COLLATING_SEQUENCE_STEP
parameter must be specified in a Sort/Merge collating
sequence definition.

® The SEQS parameter can be specified once on the

command and once on each directive. Multiple
COLLATING_SEQUENCE_STEP parameters can be
specified in each collating sequence definition.

The position of the defined value steps within the
sequence is indicated by the position of the
COLLATING_SEQUENCE_STEP parameter within
the collating sequence definition. For example, the
second COLLATING_SEQUENCE_STEP parameter in
the collating sequence definition defines the second
value step in the collating sequence.

You can specify a single character either by the ASCII
graphic character enclosed in apostrophes or by the
character ordinal in the SCL function $CHAR. The
character ordinal is the position of the character
within the ASCII character set as shown in appendix
C. For example, the character A can be specified as
A’ or $CHAR(65).

The apostrophe character can be specified as four
apostrophes (") or $CHAR(39).

The SEQS abbreviation is provided for CYBER 170
SORTS5 compatibility; its continued use is not
recommended.

2.10 SCL Advanced File Management Usage Revision G

The Sort/Merge Parameters

Single Value Step of a Single Character

A COLLATING_SEQUENCE_STEP parameter can define a single
value step containing one character. For example, the following two
parameters each specify a value step containing a single letter (the
letters A and B).

COLLATING_SEQUENCE_STEP=(‘A")
COLLATING_SEQUENCE_STEP=($CHAR(66))

Single Value Step of Several Characters

A COLLATING_SEQUENCE_STEP parameter can define a single
value step containing several characters. To do so, it specifies a list
beginning with a single character followed by one or more single
characters or ranges of characters. The list is enclosed in parentheses.

For example, the following parameter specifies a single value step
containing the blank character and the digits 0, 1, 2, and 3, which
collate equally.

COLLATING_SEQUENCE_STEP=(” “, ‘0‘, “1°, “2’, “3’)

Another way of specifying the same value step is shown below. The
range '0’..’3’ specifies the range of digits from 0 through 3.

COLLATING_SEQUENCE_STEP=(“, “07..°3")

A fatal error is issued if a COLLATING_SEQUENCE_STEP
specification begins with a range followed by one or more single
character specifications or ranges of a different size.

Several Value Steps of One Character

A COLLATING_SEQUENCE_STEP parameter can define several
value steps, each containing one character. To do so, it specifies a
single range of characters. The range defines a sequence of value
steps, one for each character in the range.

For example, to specify a sequence of four value steps each containing
one character, for the characters 0, 1, 2, and 3, you can use either
the single value step definition on the left or the four value step
definitions on the right:

Revision G The SCL Commands SORT and MERGE 2-11

The Sort/Merge Parameters

rns

COLLATING_SEQUENCE_STEP=(“0’..°3”) COLLATING_SEQUENCE_STEP=(‘0")
COLLATING_SEQUENCE_STEP=("1")
COLLATING_SEQUENCE_STEP=("2")
COLLATING_SEQUENCE_STEP=(’3")

.

y-X

i}

Several Steps of Several Characters

A COLLATING_SEQUENCE_STEP parameter can define several
value steps, each containing more than one character. Each value step
is assigned one character from each of the ranges specified on the
parameter. The character has the same position within each of the
ranges. Therefore, all specified ranges must be the same size.

For example, suppose the collating sequence is to assign equal value
to uppercase and lowercase letters. This requires definition of 26 value
steps each containing an uppercase letter and a lowercase letter. The
first value step should contain both A and a, the second value step B
and b, and so forth. You can define the 26 value steps for the
alphabetic characters using this parameter:

COLLATING_SEQUENCE_STEP=(‘a‘’..‘z’, ‘A’..°2’)

If the COLLATING_SEQUENCE_STEP specification begins with a
range, all subsequent ranges must be the same size; otherwise, a fatal
error is issued.

COLLATING_SEQUENCE_REMAINDER (CSR or SEQR)

Purpose Defines a special value step. This special step contains all
characters not specified by other COLLATING_
SEQUENCE_STEP parameters within the collating
sequence definition.

Default:

When you omit the COLLATING_SEQUENCE_
REMAINDER parameter, Sort/Merge assumes a true
specification and creates a value step containing all
unspecified characters as the last value step in the
collating sequence.

Format COLLATING_SEQUENCE_REMAINDER = boolean

An SCL boolean is a logical true or false value. A true
specification (TRUE) indicates that the special value step
is used in the collating sequence; a false specification
(FALSE) indicates that the special value step is not used.

2-12 SCL Advanced File Management Usage Revision G

Remarks

Examples

The Sort/Merge Parameters

® The SEQR abbreviation is provided for CYBER 170
SORTS compatibility; its continued use is not
recommended.

® A directives file can contain more than one collating
sequence definition. The COLLATING_SEQUENCE _
REMAINDER parameter can appear only once in a
collating sequence definition. It can appear anywhere
in the definition after the COLLATING_SEQUENCE_
NAME parameter.

The following directive sequence defines a collating
sequence that uses the special value step. In this case,
the special value step contains all nondigits and
nonletters (such as periods, commas, and slashes):

SORT, COLLATING_SEQUENCE_STEP=(‘0‘..°9")
SORT, COLLATING_SEQUENCE_REMAINDER=YES
SORT, COLLATING_SEQUENCE_STEP=(‘A’..°Z")

This sequence defines value steps in the following order:
digits in numeric order, nondigits and nonletters, and
letters in alphabetic order. The nondigits and nonletters
have equal collating positions.

COLLATING _SEQUENCE _ALTER (CSA or SEQA)

Purpose

Format

Revision G

Used with the COLLATING_SEQUENCE_STEP
parameter to specify whether characters are altered in the
output. If characters are altered, all characters within a
value step specified on a COLLATING_SEQUENCE _
STEP parameter are output as the first character in the
value step.

Default:

If this parameter is omitted, the characters in the value
step are not altered.

COLLATING_SEQUENCE_ALTER =boolean

An SCL boolean is a logical true or false value specified
by the keyword YES, TRUE, or ON for true or NO,
FALSE, or OFF for false. A true specification indicates
that characters are altered; a false specification indicates
that characters are not altered.

The SCL Commands SORT and MERGE 2-13

The Sort/Merge Parameters

Remarks A directives file can contain more than one collating
sequence definition. The COLLATING_SEQUENCE_
ALTER parameter can appear only once in a collating
sequence definition. It can appear anywhere in the
definition after the COLLATING_SEQUENCE_NAME

parameter. .

Examples The following sequence alters all asterisks and
ampersands to slashes in the output:

SORT, COLLATING_SEQUENCE_STEP=(‘/‘, “**, “&")
SORT, COLLATING_SEQUENCE_ALTER=YES

Storing a Collating Sequence Definition in a File

Collating sequences are usually defined in directive files. This is
because almost all collating sequence definitions require more than
one COLLATING_SEQUENCE_STEP parameter, but only one
COLLATING_SEQUENCE_STEP parameter can appear on a SORT or
MERGE command.

It is also convenient to store the directives defining a collating

sequence in a file so that the collating sequence can be reused. A ‘
collating sequence definition in a directive file can then be used by ’
any sort or merge that specifies the file.

2-14 SCL Advanced File Management Usage Revision G

DIRECTIVES_FILE (DF or DIR or DIRECTIVES)

DIRECTIVES_FILE (DF or DIR or DIRECTIVES)

Purpose Specifies one or more directive files from which sort or
merge directives are read.

Format DIRECTIVES_FILE =list of file
Default:

If you omit the DIRECTIVES_FILE parameter, no
parameters are read from a directive file, the sort or
merge is completely specified on the SORT or the MERGE
command.

Remarks ® Use of directives files is described at the beginning of
this chapter under the heading Specifying Parameters
in Directives Files. An example of directives file use is
given in chapter 11.

® Parameters are read from directives only after all
command parameters have been read. When more than
one directive file is specified, Sort/Merge reads the
directive files in the following order:

1. The first directive file

2. All subsequent directive files referenced by the
first directive file or referenced by the subsequent
files

3. Directive file(s) named after the first directive file
and the subsequent files, as indicated above

® A directive file name referenced without a file path is
assumed to be in the working catalog unless the file
name is for a standard system file. Standard system
files, such as $INPUT or $OUTPUT, are assumed to
be in the $LOCAL catalog.

® If Sort/Merge cannot access a specified file, it issues a
warning message.

® The DIRECTIVES and DIR abbreviations are provided
for CYBER 170 SORT5 compatibility; their continued
use is not recommended.

Revision J The SCL Commands SORT and MERGE 2-15

ERROR (E)

ERROR (E) .
Purpose Specifies the file to which diagnostic messages are
written.

Format ERROR =file
Default:

If you omit the parameter, diagnostic messages are
written to file $ERRORS.

Remarks ® Sort/Merge writes the error file only if it detects
errors of at least the severity specified by the
ERROR_LEVEL parameter.

® The error file is not rewound before or after the
Sort/Merge operation unless repositioning is requested
by the file position indicator ($BOI) on the file
reference.

® If you specify ERROR=$NULL, diagnostic messages
are not written.

® If you specify the same file for the listing file and for .
the error file, each error diagnostic message is written
only once to the file. Otherwise, each message is
written twice, once to the listing file and once to the
error file.

® An error file name referenced without a file path is
assumed to be in the working catalog unless the file
name is for a standard system file. Standard system
files, such as $INPUT or $OUTPUT, are assumed to
be in the $LOCAL catalog.

2-16 SCL Advanced File Management Usage Revision J

ERROR_LEVEL (EL)

‘ Purpose

Format
Remarks
Revision G

The Sort/Merge Parameters

Specifies the minimum error severity of the diagnostic
messages written to the error file.

Default:

If you omit the ERROR_LEVEL parameter, only warning,
fatal, and catastrophic messages are written to the error

file.

ERROR_LEVEL =keyword

The valid keyword values are as follows:

INFORMATIONAL (I)

TRIVIAL (T)

WARNING (W)

FATAL (F)

CATASTROPHIC (C)
NONE

Report informational, warning,
fatal, and catastrophic errors

Same as informational (This is a
nonstandard value and its use is
not recommended)

Report warning, fatal, and
catastrophic errors only

Report fatal and catastrophic
errors only

Report catastrophic errors only

Report no errors

® A Sort/Merge error can be one of the following error

severities:

Informational An informational error results from a
usage that is syntactically correct but
questionable. An informational message
is issued.

Warning A warning error results when
Sort/Merge finds an error but recovers
by making assumptions about your
attempt.

The SCL Commands SORT and MERGE 2-17

The Sort/Merge Parameters

Fatal A fatal error results when Sort/Merge
cannot resolve an error. Sort/Merge
treats error severities ERROR and
FATAL as fatal errors.

Catastrophic = A catastrophic error causes immediate
Sort/Merge termination.

2.18 SCL Advanced File Management Usage Revision G

ESTIMATED_NUMBER_RECORDS (ENR)

ESTIMATED _NUMBER _RECORDS (ENR)

Purpose

Format

Revision J

Although you can specify a value on the ESTIMATED_
NUMBER_RECORDS parameter, NOS/VE Sort/Merge
does not use the value. The parameter exists to provide
compatibility with the CYBER 170 SORTS5 product.

ESTIMATED_NUMBER_RECORDS =range

An SCL range is specified as two integer values separated
by two periods (..). The minimum lowerbound on an
ESTIMATED_NUMBER_RECORDS range is 1; the
maximum upperbound is 16777215.

The SCL Commands SORT and MERGE 2-19

EXCEPTION_RECORDS_FILE (ERF)

EXCEPTION_RECORDS_FILE (ERF)

Purpose Specifies the file to which invalid records are written.
Format EXCEPTION_RECORDS_FILE =file
Default:

If you omit the parameter, invalid records are written
with the valid records on the output file. The order of the
records with invalid key fields is undefined; the contents
of invalid sum fields is also undefined.

Remarks ® The file specified as the exception records file cannot
also be specified as an output file on the TO
parameter.

¢ If you specify EXCEPTION_RECORDS_
FILE=$NULL, Sort/Merge deletes all records that
would be written to the exception records file.

® An exception records file name referenced without a
file path is assumed to be in the working catalog
unless the file name is for a standard system file.
Standard system files, such as $INPUT or $OUTPUT,
are assumed to be in the $LOCAL catalog.

® The exception records file cannot be a keyed file.

® The records written to the exception file include the
following:

- Records containing invalid key data.

- Records containing invalid sum data if summing is
attempted. (For more information, see the SUM
parameter description.)

- Records that caused an arithmetic overflow or
underflow condition when their sum fields were
summed.

— Short records containing a partial numeric key
field or a partial sum field.

- OQut-of-order merge input records if the
VERIFY =YES is specified.

2-20 SCL Advanced File Management Usage Revision J

EXCEPTION_RECORDS_FILE (ERF)

- Records for which an error was returned when the
system procedure AMP$PUT_NEXT attempted to
write the record to the output file.

® For additional information on the processing of short
and invalid records, see Short Records and Invalid
Records in chapter 3.

® Records written to the exception records file are
deleted from the sort or merge. A summary of records
written to the exception records file is printed in the
error and list files. If the DE option is specified on the
LIST_OPTIONS parameter, detailed exception
information is written to the error and list files.

Revision J The SCL Commands SORT and MERGE 2-21

FROM (F)

FROM (F)

Purpose Specifies one or more input files from which input records
are read.
NOTE

Merge input files must be pre-sorted. Files to be summed
by a merge must be pre-sorted and pre-summed.

Format FROM =(list of files)
Default:

If you omit the FROM parameter but specify the
OWNCODE_PROCEDURE_1 parameter, Sort/Merge
assumes that input records are provided by the owncode 1
procedure; it does not require an input file in this case.

If you omit the FROM parameter and the OWNCODE_
PROCEDURE_1 parameter, Sort/Merge attempts to read
records from file $LOCAL.OLD. If file OLD does not exist,

Sort/Merge performs a null sort or merge (no input ’
records).
Remarks ® An input file name referenced without a file path is

assumed to be in the working catalog unless the file
name is for a standard system file. Standard system
files, such as $INPUT or $OUTPUT, are assumed to
be in the $LOCAL catalog.

® A single SORT or MERGE command can read as
many as 100 input files. The files are read in the
order specified on the command and on directives.

® More than one FROM parameter can be specified for a
sort or merge: the command can specify one FROM
parameter and each Sort/Merge directive can specify
one FROM parameter.

® If a specified input file does not exist, Sort/Merge .
issues a warning error.

® Specifying FROM =$NULL indicates that no input files
are specified. Assuming no owncode 1 procedure is .
specified, this results in a null sort or merge; a null
sort or merge has no records sorted or merged.

2-22 SCL Advanced File Management Usage Revision J

FROM (F)

® Sort/Merge does not read records from an input file
past an embedded end-of-partition delimiter or the
end-of-information.

® Sort/Merge input files can reside on mass storage or
magnetic tape. For information on assigning file names
to magnetic tape, see the NOS/VE System Usage
manual.

® Sort/Merge input files can be have sequential,
indexed-sequential, or direct-access file organization
and variable-length (V), fixed-length (F), or
trailing-character-delimited (T) record type.

® If an input file is an indexed-sequential file or
direct-access file with a nonembedded key, the
primary-key value is inserted at the beginning of the
record when the record is read. Thus, position 1 is the
first byte of the primary-key value and so key field
and sum field definitions must be adjusted accordingly.

® Sort/Merge input files can be written using segment
access as well as record access. However, Sort/Merge
uses record access calls to open its input files;
therefore, the records written using segment access
must conform to the attributes of the file.

® For example, the record format must conform that that
specified by the RECORD_TYPE attribute and the
record length must not exceed the length specified by
the MAX_RECORD_LENGTH attribute.

Revision J The SCL Commands SORT and MERGE 2-23

KEY (K)

KEY (K)

Purpose

Format

Remarks

Specifies one or more key field definitions.

KEY =((key field definition 1), ..(key_field_definition_2),
)

Default:

A single key beginning at the first byte position of the
record. Its length is the smallest minimum record length
of the input files. Its type is ASCII and it is sorted in
ascending order.

If the minimum MINIMUM_RECORD_LENGTH attribute
for all input files is the default value zero, Sort/Merge
uses 1 byte as the key length. If the minimum
MINIMUM_RECORD_LENGTH attribute for all input
files is greater than 1023 bytes, Sort/Merge uses 1023
bytes as the key length.

® The KEY parameter can be specified once on the
command and once on each directive.

® The key field definition order is the order that the
defined keys are used. The first definition defines the
major key; any subsequent definitions define minor
keys. Sort key concepts are discussed in chapter 5.

® The total number of bytes in key fields cannot exceed
1023. The total number of key fields defined for a sort
or merge cannot exceed 106. Sort/Merge issues a fatal
error if either limit is exceeded.

® Sort/Merge allows key fields to overlap other key
fields, except for key fields that are ordered by
collating sequences defined with the alter option and
key fields that overlap sum fields.

e If the output (TO) file is an indexed-sequential file,
the major sort key must be the embedded primary key
defined for the output file. For more information, see
the TO parameter description.

® Key field definitions within the list are separated by a
comma or a space. If more than one definition is
specified, the list must be enclosed in parentheses.

2-24 SCL Advanced File Management Usage Revision J

Revision J

KEY (K)

NOTE

Be careful not to confuse the parentheses enclosing a
key field definition with the parentheses enclosing the
list of key field definitions. For example, the following
parameters both define a single key that is 20 bytes
long, starting in byte 6:

KEY=6..25 KEY=((6,20))

The following parameter does not define the same key;
it defines a sort on two single-byte keys where byte 6
is the major key and byte 20 is the minor key:

KEY=(6,20)

The SCL Commands SORT and MERGE 2-25

LIST (L)

LIST (L)

Purpose Specifies the file to which listing information is written.
Format LIST =file
Default:

If you omit the L parameter, listing information is
written to file $LIST.

Remarks ® A listing file name referenced without a file path is
assumed to be in the working catalog unless the file
name is for a standard system file. Standard system
files, such as $INPUT or $OUTPUT, are assumed to
be in the $LOCAL catalog.

® If you specify the file $NULL with the L parameter,
listing information is not written.

® Listing information includes the Sort/Merge version
and level numbers, time and date, error messages, an
exception file summary, and the number of records

sorted or merged. .

® The following are messages written to the listing file
at the end of a sort or merge.

If a catastrophic error occurred, the message is:
CATASTROPHIC ERROR

If one or more fatal errors occurred, the message is:
FATAL ERROR(S)

The message stating the number of records sorted or
merged is:

n records sorted/merged

If records were written to the exception file, the
following message summarizes the number (n) of ‘
records written to the exception records file:

Exception file summary (n records written)
At the end of a sort, this message is written on the ’
job log:

2-26 SCL Advanced File Management Usage Revision J

The Sort/Merge Parameters

MERGE COMPLETED

If Sort/Merge cannot complete the sort or merge
request, the message written is one of the following:

SORT UNABLE TO COMPLETE
MERGE UNABLE TO COMPLETE

Revision G The SCL Commands SORT and MERGE 2-27

The Sort/Merge Parameters

LIST_OPTIONS (LO)

Purpose Specifies the additional information written to the listing
file.

Default:

LO=S (only the source and the minimum information is
written to the listing file). The minimum information
Sort/Merge writes to the file is the page heading, error
messages, the exception records file summary, and the
number of records sorted or merged.

Format LIST_OPTIONS =(list of keyword value)

The following keyword values request additional
information. The LO list can specify more than one of
these keywords in any order:

OFF ‘All listing information is suppressed.
NONE Same as the OFF keyword.

S Source (copies of all directives read by
Sort/Merge).
DE Detailed exception information. A message is

written for each occurrence that causes a
record to be written to the exception file.

The DE keyword value is valid only if you
specify an exception records file; otherwise, an
informational error is issued and messages are
written only once per key, sum field, or file
that causes records to be written to the
exception records file.

RS Record statistics for the records sorted or
merged. The statistics are from the result
array; a message is written for each element of
the array except the first. The result array
format is shown in table 2-2.

MS Merge statistics for the records merged.

2-28 SCL Advanced File Management Usage Revision G

LIST_OPTIONS (LO)

Remarks Specify either the keyword value OFF or NONE to
indicate that no additional information is to be written to
the listing file. If you specify a keyword value requesting
no additional information, you cannot also specify a
keyword value that requests additional information.

Revision J The SCL Commands SORT and MERGE 2-29

LIST_OPTIONS (LO)

Table 2-2. Result Array Format

Array

Element Contents

1 Number of elements of results you want returned (0
through 17).

2 Number of records read from input files.

3 Number of records deleted by an owncode 1 procedure.

4 Number of records inserted by an owncode 1 procedure.

5 Number of records inserted by an owncode 2 procedure.

6 Number of records sorted or merged. (Does not include
any records written to the exception records file or any
zero-length records unless ZERO_LENGTH_
RECORDS=PAD is selected.)

7 Number of records deleted by an owncode 3 procedure.

8 Number of records inserted by an owncode 3 procedure.

9 Number of records inserted by an owncode 4 procedure.

10 Number of records written to the exception records file.

11 Number of records deleted by an owncode 5 procedure.

12 Number of records combined by summing.

13 Number of records written to the output file.

14 Actual minimum record length of all input records.

15 Average record length. (Total record length divided by
the total number of input records.)

16 Actual maximum record length of all input records.

17 Number of zero-length records removed from the sort or
merge by the ZERO_LENGTH_RECORDS=DELETE
option.

18 Number of duplicate records removed from the sort or

merge by the OMIT_DUPLICATES=YES option.

2-30 SCL Advanced File Management Usage Revision J

The Sort/Merge Parameters

LOAD_COLLATING_TABLE (LCT)

. Purpose

Format

Remarks

Revision G

Loads a collation table, that is, a weight table that
defines a collating sequence. The table may be a NOS/VE
predefined collating table or a user-defined collation table
in an object library.

Default:

Required to load a collation table; otherwise, the collating
sequences available are the six Sort/Merge collating
sequences and collating sequences defined by
COLLATING_SEQUENCE_x parameters. For more
information, see chapter 1.

LOAD_COLLATING_TABLE =(key_ type,table_name)

key_type

Name to be used in a key field definition to specify
the collating sequence produced by the collation table.
The name cannot be the name of a predefined
collating sequence or the name of a collating sequence
you have already defined.

table__name

Name of a collation table (either a NOS/VE predefined
collation table or a user-defined collation table in an
object library).

The collation table must be loadable by PMP$LOAD
and specify a value for each of the 256 ASCII
character codes.

® The LOAD_COLLATING_TABLE parameter can be
specified once on the command and once on each
directive.

® The total number of COLLATING_SEQUENCE_
NAME and LOAD_COLLATING_TARLE parameters
cannot exceed 100.

® LOAD_COLLATING TABLE is not used with the
COLLATING_SEQUENCE_x parameters; it is an
entirely separate means of specifying a collating
sequence.

The SCL Commands SORT and MERGE 2-31

The Sort/Merge Parameters

® NOS/VE supplies 11 predefined collation tables. To use
one of the NOS/VE predefined collation tables, you
specify the name of the predefined collation tables as
the table_name.

® Unlike user-defined collation table modules, use of
NOS/VE predefined collation tables does not require ‘
the addition of an object library to the program library
list. For more information, see appendix E.

® After a LOAD_COLLATING_TABLE parameter
associates a key type name with a collation table, the
key type name can be used in a key field definition.

® For example, to use the predefined collation table
OSVS$EBCDIC to define the key type FULL_EBCDIC,
you would specify this parameter:

LOAD_COLLATING_TABLE=(full_ebcdic, OSV$EBCDIC)

® Then to define the first 10 bytes of the record as a
key field to be sorted in ascending order using the key
type, you would specify this Sort/Merge parameter:

KEY=((1,10,full_ebcdic,a)) ‘

® You can use any collation table stored as a module in
an object library file if you have permission to read
the file. To use the module, you perform these steps:

1. Add the object library to your program library list
using a SET_PROGRAM_ATTRIBUTES command,
such as:

set_program_attributes ..
add_library=$user.object_library

2. Specify the name of the module defining the
collation table and the table_name. For example:

sort from=unsorted_file to=sorted_file .. ’
load_collating_table=(upper_lower, ..
case_insensitive), key=((1..24,upper_lower,d))

2-32 SCL Advanced File Management Usage Revision G

The Sort/Merge Parameters

OMIT_DUPLICATES (OD)

Purpose

Format

Remarks

Revision G

Specifies whether Sort/Merge outputs only one record in
each set of records with equivalent key values.

Default:

Duplicates are not omitted; equivalent key values are
processed as specified by the OWNCODE_PROCEDURE_
5, RETAIN_ORIGINAL_ORDER, or SUM parameter.

OMIT_DUPLICATES =boolean
TRUE, YES, or ON Duplicates are omitted.

FALSE, NO, or Duplicates are not omitted.
OFF

® Duplicate records are records that have equivalent key
values.

® Each sort or merge can specify only one method of
processing records with equivalent key values.
Therefore, the OMIT_DUPLICATES, OWNCODE_
PROCEDURE_5, RETAIN_ORIGINAL_ORDER, and

SUM parameters are mutually exclusive.

® When duplicates are to be omitted, Sort/Merge
removes the shorter duplicate records from the sort or
merge. When the duplicates are the same length, any
of the duplicates could be the one that is kept.

® A count is kept in word 18 of the result array of the
number of duplicate records deleted from the sort or
merge.

® Zero-length records are duplicates only if the ZERO_
LENGTH_PARAMETER specifies the PAD option.

The SCL Commands SORT and MERGE 2-33

The Sort/Merge Parameters

OWNCODE _FIXED_LENGTH (OWNFL or OFL)

Purpose Specifies the length of each fixed-length record entering a
sort or merge from an owncode procedure.

Default:

The record length is specified by the OWNCODE_ ‘
MAXIMUM_RECORD_LENGTH parameter or the largest
MAXIMUM_RECORD_LENGTH attribute of the input or
output files.

If you specify OWNCODE_PROCEDURE_1 and
OWNCODE_PROCEDURE_3 parameters, but omit the
FROM and TO parameters, you must specify either the
OWNCODE_FIXED_LENGTH or OWNCODE_
MAXIMUM_RECORD_LENGTH parameter.

Format OWNCODE_FIXED_LENGTH = integer expression

Remarks ® The record length can be from 1 through 65,535 bytes.
Sort/Merge issues a fatal error for each record
supplied whose length is not equal to the fixed record

length. .

® You cannot specify both the OWNCODE_FIXED_
LENGTH and OWNCODE_MAXIMUM_RECORD_
LENGTH parameters for the same sort.

® The OWNFL abbreviation is provided for CYBER 170
SORTS compatibility; its continued use is not
recommended.

2-34 SCL Advanced File Management Usage Revision G

The Sort/Merge Parameters

OWNCODE _MAXIMUM _RECORD _LENGTH
. (OWNMRL or OMRL)

Purpose

‘ Format

Remarks

‘

Revision G

Specifies the maximum length of all variable-length
records entering the sort or merge from an owncode
procedure.

Default:

If you omit both the OWNCODE_MAXIMUM_RECORD_
LENGTH and the OWNCODE_FIXED_LENGTH
parameters, the input record length is the record length of
the input and output files. If all input and output files
have fixed-length records of the same length, this length
is used. Otherwise, the largest maximum record length
from any input or output file is used.

If you specify OWNCODE_PROCEDURE_ 1 and
OWNCODE_PROCEDURE_3 parameters, but omit the
FROM and TO parameters, you must specify either the
OWNCODE_FIXED_LENGTH or OWNCODE_
MAXIMUM_RECORD_LENGTH parameter.

OWNCODE_MAXIMUM_RECORD_LENGTH = integer
expression

® The maximum record length can be from 1 through
65,535 bytes.

® The integer must be large enough for all of the keys
or else the sort order is undefined.

® Sort/Merge issues a fatal error if an owncode
procedure supplies a record whose length is greater
than the maximum record length.

® You do not need to specify a record length parameter
if the sort has an input or output file with a
maximum record length at least as long as the longest
record supplied by an owncode procedure.

® You cannot specify both the OWNCODE_FIXED__
LENGTH and OWNCODE_MAXIMUM_RECORD_
LENGTH parameters for the same sort.

The SCL Commands SORT and MERGE 2-35

The Sort/Merge Parameters

® The OWNMRL abbreviation is provided for CYBER
170 SORT5 compatibility; its continued use is not
recommended.

2-36 SCL Advanced File Management Usage Revision G

OWNCODE_PROCEDURE_n (OPn or OWNn)

OWNCODE_PROCEDURE_n (OPn or OWNn)

Purpose Specifies the name of an owncode procedure that is
executed each time a certain event occurs during the sort
or merge.

Default:

If you omit all OWNn parameters, no owncode procedures
are executed.

Format OWNCODE_PROCEDURE_n=name

The suffix n is the digit 1, 2, 3, 4, or 5. The specified
name is an entry point name in an object library.

NOTE

Owncode procedure names must be specified using
uppercase letters only unless you specify C170_
COMPATIBLE=YES.

Remarks ® Each sort or merge can specify only one method of
‘ processing records with equivalent key values.
Therefore, the OWNCODE_PROCEDURE_5, OMIT_

DUPLICATES, RETAIN_ORIGINAL_ORDER, and
SUM parameters are mutually exclusive.

® You cannot specify an owncode 1 or an owncode 2
procedure for a merge.

® Owncode procedures are described in detail in chapter
3.

® The OWNn abbreviations are provided for CYBER 170
SORT5 compatibility; their continued use is not
recommended.

® To make your owncode procedure available to
Sort/Merge requires two steps: generation of an object
library containing your owncode procedure and
. addition of the object library to the current object
library list.

To generate an object library, you use the CREATE_

. OBJECT_LIBRARY command utility. For more
information, see the NOS/VE Object Code Management
Usage manual.

Revision J The SCL Commands SORT and MERGE 2-37

OWNCODE_PROCEDURE_n (OPn or OWNn)

To add the object library to the current object library

list, enter a SET_PROGRAM_ATTRIBUTE command {{J)
before the SORT or MERGE command. The SET_
PROGRAM_ATTRIBUTE command is described in the
NOS/VE Object Code Management Usage manual.

Chapter 4 contains an example showing the generation .
of an object library and its addition to the current
object library list.

2-38 SCL Advanced File Management Usage Revision J

The Sort/Merge Parameters

RESULT_ARRAY (RA or RESA)

Purpose Specifies an SCL array variable to be used as the result
array.

Default:

If this parameter is omitted, the Sort/Merge statistics are
not stored in an SCL variable. However, the statistics
may be written to the listing file depending on the LIST_
OPTIONS parameter value.

Format RESULT_ARRAY =array name

Remarks ® The result array is a single dimensional array of up to
18 integers. You set the first element of the result
array to the number of elements in the result array to
receive information (0 through 17).

® The SCL array variable must be defined before the
SORT or MERGE command. For example, these
commands create a variable and initialize its first
element to 15:

‘ create_variable, result_array, kind=integer ..
dimension=1..16
result_array(1)=15

® The statistics returned in the array are listed in table
2-2.

® The RESA abbreviation is provided for CYBER 170
SORTS5 compatibility; its continued use is not
recommended.

Revision G The SCL Commands SORT and MERGE 2-39

The Sort/Merge Parameters

RETAIN _ORIGINAL_ORDER (ROO or RETAIN or

RET)

Purpose

Format

Remarks

Specifies whether Sort/Merge is to output records with
equivalent keys in the same order as the records are
input.

Default:

The original order is not retained (records with equal sort
key values are output in either order).

RETAIN_ORIGINAL_ORDER =boolean

An SCL boolean is a logical true or false value. A true
specification (TRUE) indicates that the original order is to
be retained; a false specification (FALSE) indicates that
the original order need not be retained.

® Each sort or merge can specify only one method of

processing records with equivalent key values.
Therefore, the RETAIN_ORIGINAL_ORDER, OMIT_
DUPLICATES, OWNCODE_PROCEDURE_S5, and
SUM parameters are mutually exclusive.

Maintaining the original order of records with equal
key values increases the required processing time
because Sort/Merge must keep track of the input
order.

If you specify more than one input file, the order you
specify the files is the order the records with equal
key values are output.

The RETAIN and RET abbreviations are provided for
CYBER 170 SORT5 compatibility; their continued use
is not recommended.

2-40 SCL Advanced File Management Usage Revision G

STATUS

Purpose

Format

Remarks

Revision dJ

STATUS

Specifies an SCL status variable in which the SORT or
MERGE task returns its completion status.

Default:

None (the completion status is displayed at the terminal
or written in the batch job log).

STATUS =status variable

® The status variable is created before the sort or merge
by the SCL command CREATE_VARIABLE. For
example, the following command creates a status
variable named SORT_STATUS:

create_variable, sort_status, kind=status

For more information, see the NOS/VE Commands and
Functions manual.

® A status variable is often used when the command is
executed as part of a procedure. A fatal Sort/Merge
error does not terminate the procedure. After command
execution, the procedure should check the contents of
the status variable to determine the next command
executed.

® Sort/Merge treats errors of severity ERROR as fatal
errors.

The SCL Commands SORT and MERGE 2-41

SUM (S)

SUM (S) ’

Purpose Specifies that, when the sort or merge encounters two
records having equal key values, the contents of the fields
specified on the SUM parameter are to be summed and a
single record written to the output file, replacing the two
records with equal key values. .

(Although the original records are removed from the sort
or merge, they are not written to the exception records
file.)

Default:
If you omit the SUM parameter, records are not summed.

Remarks The SUM parameter can be specified once on the
command and once on each directive.

Sum Field Specification
The format of the SUM parameter is as follows:

SUM=((sum field definition_1), (sum_field_definition_2), ...) .

Each sum field definition in the list is separated by a comma or a
space. A sum field definition is a list of positional values that define
a sum field using either of the following formats:

(range,data_ type,repeat_ count)
(first,length,data_ type,repeai__count)
Only the first value is required; all additional values are optional.

The first value in the sum field definition is required. If the first
value in the definition is a range, it defines the position and length of
the sum field. The range specifies upper and lower integer bounds
that are the first and last byte or bit positions in the sum field. For
example, the range 10..15 defines a sum field from bit or byte position
10 through bit or byte position 15.

If the first value in the value set is not a range, the first value
specifies the first position of the sum field and the optional second
value specifies the field length. The default field length is 1. '

2-42 SCL Advanced File Management Usage Revision J

SUM (8S)

Byte and bit positions in the record are numbered from the left
beginning with 1. Sort/Merge interprets the key field location and
length as bytes unless the data type is INTEGER_BITS or BINARY_
BITS.

Table 2-3 lists the maximum sum field sizes.

The third value in the list specifies the data type. The default data
type is INTEGER. All numeric formats, binary or character, are valid.
See chapter 1 for the list of numeric data formats.

The fourth value in the sum field definition, the repeat count, is
optional; the default value is 1. If specified, the SUM parameter
defines contiguous sum fields within the record. Each sum field has
the same length and contains the same type of numeric data.

Revision J The SCL Commands SORT and MERGE 2-43

SUM (S)

For example, the following sum field definition defines three sum .
fields at byte positions 1 through 10, 11 through 20, and 21 through
30.

(1,10,BINARY,3)

Table 2-3. Maximum Sum Field Sizes

Maximum Maximum
Numeric Size (in Size (in
Format bytes) Numeric Format bytes)
NUMERIC_FS 1023 BINARY 8
NUMERIC_LO 38 BINARY_BITS 8184 (bits)
NUMERIC_LS 38 INTEGER 8
NUMERIC_NS 38 INTEGER_BITS 8184 (bits)
NUMERIC_TO 38 PACKED 19
NUMERIC_TS 38 PACKED_NS 19
REAL 8 or 16

Sum Field Rules

The new record contains the eqivalent key values in the key fields .
and the summed values in the sum fields. A data field that is not a

key or sum field is written to the new record as the contents of the

field in the longer of the two original records.

You can specify a maximum of 100 sum fields in a record. You can
specify the SUM parameter more than once in a directive file.

Sum fields cannot overlap one another. Sum fields cannot overlap key
fields.

Each sort or merge can specify only one method of processing records
with equivalent key values. Therefore, the RETAIN_ORIGINAL_
ORDER, OMIT_DUPLICATES, OWNCODE _PROCEDURE_S5, and
SUM parameters are mutually exclusive.

If a sum field contains no data because the input record is too short

to include the field, a default value of zero in the appropriate format .
is used. The processing of partial sum fields and sum fields that

contain invalid data is described later.

2-44 SCL Advanced File Management Usage Revision J

The Sort/Merge Parameters

Sum Field Example

Suppose a university has two files of student information: a master
file and an update file. The files contain identical information except
that the master file contains information from past semesters while
the update file contains only information for the current semester.
Each record in both files contains these fields: student number,
number of units registered, number of units completed, and grade
points.

A new master file is generated by merging the two files. When the
files are merged, the records having matching student numbers are
summed and a new record written replacing the records from the
master and update files. The new record in the output file contains
the student number and the total number of units attempted, total
number of units completed, and the total number of grade points.

Chapter 4 contains an example of SUM parameter use.

Exception Processing for Partial Sum Fields

Sort/Merge checks that each record is long enough to contain all
defined sum fields when it reads the record. If an entire sum field is
omitted, Sort/Merge sums the record as if it has a zero value in the
field.

If the record contains a partial sum field, Sort/Merge processes it as
an exception. The exception processing differs if an exception records
file is specified:

If an exception records file is specified:

Sort/Merge writes the record with the partial sum field to the
exception records file. It writes the record with its original data as
it was read from the input file. It then removes the record from
the sort or merge.

If an exception records file is not specified:

Sort/Merge keeps the record with the partial sum field in the sort
or merge.

Revision G The SCL Commands SORT and MERGE 2-45

The Sort/Merge Parameters

If Sort/Merge firds additional records whose key fields are

equivalent to those of the record with the partial sum field, it .
sums the records as if the partial sum field contains a valid value;

it does not process the partial sum field as invalid data. However,
because the results of summing with a partial field are undefined,

the resulting contents of the sum field are undefined.

If it reads any records with partial sum fields, Sort/Merge returns a
summary diagnostic at the end of the sort or merge that gives the
number of records with partial sum fields.

Exception Processing for Summing Errors

Sort/Merge detects summing errors when it attempts to sum fields.
Only one error is detected per sum field. The summing error is
processed as an exception.

If the LIST_OPTIONS parameter requests detailed error reporting
(DE), Sort/Merge issues a diagnostic for each summing error.

The exception processing performed for summing errors depends on
the error detected and whether an exception records file is specified
for the sort or merge. .

If an exception records file is specified:

1. Sort/Merge restores all sum fields of both records so the contents
of each sum field are the same as before the summing of the
records began.

2. If the error is due to invalid data or an indefinite real, Sort/Merge
knows that at least one of the sum fields in the records is in
error; it does not know whether the same sum field in the other
record is also in error.

3. Therefore, Sort/Merge writes the record it knows to be in error to
the exception records file and removes it from the sort or merge,
but leaves the other record in the sort or merge.

If Sort/Merge detects an arithmetic overflow or underflow error or
finds that each record has invalid data in different sum fields, it .
knows that both rcords are in error. Therefore, it writes both records

to the exception records file and removes both from the sort or merge.

If an exception records file is not specified: ‘

2-46 SCL Advanced File Management Usage Revision G

SUM (S)

Sort/Merge deletes one of the records. If one record is longer than
the other, the shorter record is deleted. Otherwise, either record

could be deleted.

2. The other record remains in the sort or merge with undefined data
in the sum field for which the error was detected. Summing is
completed for the other sum fields.

Revision J The SCL Commands SORT and MERGE 2-47

TO (T)

TO (T)

Purpose

Format

Remarks

Specifies the output file to which sorted or merged records
are written (if records are left after owncode procedure
processing).

TO =file
Default:

If you omit the TO parameter but specify the
OWNCODE_PROCEDURE_3 parameter, Sort/Merge
assumes the owncode 3 procedure performs output
processing. If the owncode 3 procedure passes records back
to Sort/Merge, Sort/Merge writes the records on file NEW.
If file NEW does not exist, Sort/Merge creates file NEW
in the $LOCAL catalog.

If you omit the TO parameter and the OWNCODE _
PROCEDURE_3 parameter, Sort/Merge writes all output
records to file NEW. If file NEW does not exist,
Sort/Merge creates file NEW in the $LOCAL catalog.

® An output file name referenced without a file path is
assumed to be in the working catalog unless the file
name is for a standard system file. Standard system
files, such as $INPUT or $OUTPUT, are assumed to
be in the $LOCAL catalog.

® The output file cannot also be an input file.

® If you specify the file $NULL with the TO parameter,
sorted or merged records are not written to a file.

® Sort/Merge writes records to the output file using the
system procedure AMP$PUT_NEXT. If AMP$PUT_
NEXT returns an error for a record, Sort/Merge writes
the record to the exception records file instead (if one
is specified).

® The Sort/Merge output file can reside on either mass
storage or magnetic tape. For more information on
assigning file names to magnetic tape, see the
NOS/VE System Usage manual.

2-48 SCL Advanced File Management Usage Revision J

Revision G

The Sort/Merge Parameters

The output (TO) file cannot be a direct-access file.

If the output (TO) file is a direct-access file,
Sort/Merge issues a fatal error. If appropriate, use the
COPY_KEYED_FILE command to convert the TO file
to a direct-access file.

If the outut file is an indexed-sequential file with a
nonembedded primary key, the primary-key value is
removed from the beginning of each output record
before the record is written. The primary-key value is
stored in the primary index. The record data is
shortened by key-length bytes.

If the output file is an indexed-sequential file, the
major sort key must be the primary key for the file.
Thus, the major sort key value for each input record
must be unique because the indexed-sequential file
origanization requires unique primary-key values. This
can be ensured by specifying the OMIT_
DUPLICATES=YES parameter or using an owncode 5
procedure.

If the output (TO) file is an indexed-sequential file,
Sort/Merge checks the KEY_POSITION, KEY_
LENGTH, and KEY_TYPE attributes:

— If the major sort key position does not match the
KEY_POSITION attribute value, Sort/Merge issues
a fatal error and terminates.

- If the major sort key length does not match the
KEY_LENGTH attribute value, Sort/Merge issues
a warning error and changes the major sort key
length to match the primary key length.

-~ If the major sort key type does not match the
KEY_TYPE attribute value, Sort/Merge issues a
warning error and changes the major sort key type
if the KEY_TYPE value is UNCOLLATED or
INTEGER. (It does not issue a warning or change
the key type if the KEY_TYPE value is
COLLATED.)

If the KEY_TYPE is UNCOLLATED, the major
sort key type is changed to ASCIL

The SCL Commands SORT and MERGE 2-49

The Sort/Merge Parameters

« If the KEY_TYPE is INTEGER, the major sort
key type is changed to INTEGER.

- You can define the output file attributes using a
SET_FILE_ATTRIBUTES command. To read about
indexed-sequential file attributes, see the discussion
of keyed file creation in chapter 5.

2-50 SCL Advanced File Management Usage Revision G

The Sort/Merge Parameters

VERIFY_MERGE _INPUT_ORDER (VMIO or
VERIFY or VER)

Purpose

Format

Remarks

Revision G

Specifies whether Sort/Merge checks the order of the
merge input records. The records must be in sorted order.

Default:

If the VERIFY_MERGE_INPUT_ORDER parameter is
omitted, the record order is not checked.

VERIFY_MERGE_INPUT_ORDER = boolean

An SCL boolean is a logical true or false value. A true
specification (TRUE) indicates that the order of the merge
input records is to be checked; a false specification
(FALSE) indicates the order of the merge input is not to
be checked.

® If the records in the merge input files are not
pre-sorted on the sort keys for the merge, the
PR B (P, P P R W (. [SRPUR. UGS S
OuuL-01-0raer recoras reindiin our-0i-0oraer 1n uae merge
output file. The order of the out-of-order records is
undefined.

® If, while verifying the record order, Sort/Merge
encounters a record out of order, it issues a warning
message and continues merging.

® If an exception records file was specified for the
merge, the out-of-order record is written to the
exception records file and deleted from the merge
operation. If an exception records file was not
specified, the out-of-order record is kept in the merge;
its position within the output file is undefined.

¢ If you specify the VERIFY_MERGE_INPUT_ORDER
parameter on a sort, Sort/Merge issues a warning
message but otherwise ignores the parameter.

® The VERIFY and VER abbreviations are provided for
CYBER 170 SORT5 compatibility; their continued use
is not recommended.

The SCL Commands SORT and MERGE 2-51

The Sort/Merge Parameters

ZERO_LENGTH_RECORDS (ZLR)
Purpose Specifies the disposition of zero-length input records. ’
NOTE

This parameter applies only to records read from input
files; it does not apply to records supplied by owncode .
procedures.

Default:
DELETE.

Format ZERO_LENGTH_RECORDS =keyword

One of the following keywords specifying the disposition of
all zero-length input records read for the sort or merge:

DELETE Each zero-length record is deleted from the
sort or merge. It is not written to the
exception records file.

PAD Each zero-length record is processed as a ‘
short record. For more information, see
Short Records in chapter 1.
LAST Each zero-length record is written at the end
of the output.
Remarks For more information, see Zero-Length Records in chapter
1.

2.52 SCL Advanced File Management Usage Revision G

,M
ik
£ ‘MAH

i)
i

ey

H"a il

‘f‘h}}f? il

: mféw%

u“
h M{.

b
\' ,1‘ iy

A
,‘ i .fm.;‘

«m
i

%
i mm,, i ‘“‘&)
A
(\n,.‘u ')‘» N‘ ’\%“ ; ““y"‘ J b
‘»‘«’q” o T N ,”"“{h\,‘
i ! 5 i i ‘j‘vw*l

e

i i
il W\Fr i At \m‘{

it

bk s

fuitd ‘ ,‘J‘- " (l«}%‘.“hf““
i i

i

‘”u

\
“‘\m ‘3‘,

ui'v e
R it
'

LML
F"M itk
'»«

il
:}_‘h,y“ Fii o
it ““‘M AL

W
fm M

b
i

m- 4

1 n’r,'{
e

V“"W‘W pl
H

0\u! o

m

,«“‘"‘
'@»‘é' A

LA
i ¥ P
H,A b

1
fifsif
L

|“ i

[y
il

\ I
) i i
s .‘ i '“l**‘.ﬂ I

il

il

g Lﬁl,‘;
iy
f‘«‘n*ﬁ‘:

AR

u“‘z

i il
B i

w o

i
M .ﬂ

‘a;““
i1

e

u‘“\"%\::p

it ‘,‘i i il

L g A | u y I e
A joifloh BN / b S
i fie AR ! i e

ey ¥
)
i
i

e
R

LA
G e
kD

i
bt
bl
L
[
il

A
o

] Bl iy
it 5 poees x\r\"«‘ ARl
e

A

e
el
TR il
“\‘r“‘h‘m’i,’ Y i
R T it
Al bk

!

i Wt chr 1], b g e e
iy s S iy Ll
g v el oy 158
Mt o ;

iy
i
i

?; j’]’[y:;)
)

AR
!
3 ;
DRI i |
S il i 8
e i ik
8 i iy,

i
i

Wy

G

it , .
W
i j Ll

i
(e

e
i

L e
A
T
it o

s
i1

i

e
i

i
i
i
R
e ML
AT
t ¥ A‘Y"L" =

i
fi

e

B
it
i

i
i

“p
(£
R

e
flch
TR

i

R
: “,3“;0‘“‘;\\,‘&5'
o

Ll

)
[
b e

Ao A
R

10

RN
iy
by . b
ot

i

o

ot L ¥
A ; i ao i
i i . 4
e I

i
i it

Al
)
it g
W

g
ER R
B!

LR
SRR

i

i

Owncode Procedures 3

You can write subprograms to insert, substitute, modify, or delete
input and output records during Sort/Merge processing. Such a
subprogram, called an owncode procedure, is executed each time the
sort or merge reaches a certain point in Sort/Merge processing. The
points at which owncode procedures are called are listed below:

Sorts Only:
Owncode 1 After an input record is read.
Owncode 2 After the end of an input file is read.

Sorts or Merges:

Owncode 3 Before an output record is written.
Owncode 4 After the output file is written.
Owncode 5 When two records are compared and found to have

equivalent key values.

Sort/Merge passes a record to the owncode procedure, which processes
the record. When the record is returned to Sort/Merge from the
owncode procedure, Sort/Merge processes the record according to a
code specified by the owncode procedure.

Owncode procedures can also supply the records to be sorted. When
Sort/Merge is ready for a record, it calls the owncode 1 procedure
which then passes a record to Sort/Merge.

Owncode procedures are written in a programming language such as
FORTRAN (subroutine subprograms), COBOL (subprograms compiled
with COBOL SP=TRUE option), CYBIL, or any other language that
uses the standard calling sequence. CYBIL owncode procedures must
be declared as XDCL procedures.

Owncode procedure must be compiled and saved as load modules on
object libraries. Object libraries are created using the CREATE _
OBJECT_LIBRARY utility as described in the NOS/VE Object Code
Management Usage manual.

To use an owncode procedure in a sort or merge, the procedure must
be loadable from the program library list. You can add object libraries
to the program library list using the SET_PROGRAM_ATTRIBUTES

command.

Revision J Owncode Procedures 3-1

Owncode Procedure Parameters

Chapter 4 contains an example of storing an owncode procedure in an
object library.

Owncode Procedure Parameters

Sort/Merge communicates with an owncode procedure via the
procedure parameter list. Sort/Merge passes record data to the
procedure and the procedure returns record data and a code indicating
how Sort/Merge is to process the record data.

Table 3-1 summarizes the parameters passed between Sort/Merge and
owncode procedures.

Table 3-1. Owncode Procedure Parameters

Parameter Description

return_code Integer code set by the owncode procedure and
returned to Sort/Merge

reca Array containing record data
rla Integer length of the reca record
recb Array containing record data for second record (used

only by an owncode 5 procedure)

rlb Integer length of the recb record (used only by an
owncode 5 procedure)

The return_code parameter passes an integer code back to Sort/Merge
specifying how Sort/Merge is to process the returned record.
Sort/Merge always initializes the return_code value to 0 when it calls
an owncode procedure.

The owncode procedure can leave the return_code value unchanged or
change it to one of the valid values for the owncode procedure. (The
valid values are listed in the individual owncode procedure
descriptions.) If an invalid return_code value is returned, Sort/Merge
returns a fatal error.

The subsequent parameters are used to pass one or two records to the
owncode procedure. For an owncode 1 through owncode 4 procedure,
Sort/Merge passes only one record, the curent record being input or
output. The record data is passed in the reca variable and the record
length in bytes in the rla variable.

3-2 SCL Advanced File Management Usage Revision J

Owncode Record Length

When calling an owncode 5 procedure, Sort/Merge passes two records
having equivalent key values. The record data is passed in the reca
and recb variables and the corresponding record lengths in the rla and
rlb variables, respectively.

An owncode procedure can change the record data and record length
values passed to it. However, the procedure must ensure that the
correct record length is returned for the record data.

Owncode Record Length

Sort/Merge checks the length of each record returned to it by an
owncode procedure. If a record is too long, Sort/Merge issues an error.

The Sort/Merge specification can explicitly specify the owncode record
length. Otherwise, by default, the maximum record length is the
largest MAXIMUM_RECORD_LENGTH attribute value of the input
and output files specified for the sort or merge.

To explicitly specify the owncode record length, use the OWNCODE_
FIXED_LENGTH or OWNCODE_MAXIMUM_RECORD_LENGTH
parameter. If the sort specifies owncode 1 and owncode 3 procedures
but no input or output files, a parameter to specify the owncode
record length is required.

If you specify OWNCODE_FIXED_LENGTH, the record length
returned by an owncode procedure must exactly match the specified
record length value. If you specify OWNCODE_MAXIMUM_
RECORD_LENGTH, each record length returned cannot exceed the
specified record length value.

Owncode 1: Processing Input Records

You specify an owncode 1 procedure to process or supply the input
records for a sort. An owncode 1 procedure is used only with a sort;
specifying an owncode 1 procedure for a merge returns a fatal error.

Owncode 1 procedure processing varies depending on whether input
files are specified for the sort.

Revision G Owncode Procedures 3-3

Owncode 1: Processing Input Records

One or More Input Files Specified

If you specify one or more input files for a sort (even if the input file
is $NULL), Sort/Merge calls the owncode 1 procedure each time it
rads an input record. Sort/Merge passes the input record in the reca
variable, the record length in the rla variable, and the return_code
variable initialized to 0.

After owncode processing of the record, control returns to Sort/Merge,
which processes the record passed back in reca according to the
return_code value set by the owncode 1 procedure. The contents of
the reca and rla variables can differ from those originally passed to
the procedure.

The following are the valid return_code values and their meanings:

0 Sort/Merge sorts the record passed back in reca and reads the
next input record.

1 Sort/Merge does not sort the record in reca and reads the next
input record.

2 Sort/Merge sorts the record passed back in reca, but does not
read the next input record. Instead, Sort/Merge calls the
owncode 1 procedure again so additional records can be added to
the sort. The owncode 1 procedure should continue to specify
return_code 2 until all records to be inserted at this point have
been passed; it should then set the return_code to 0.

3 Sort/Merge does not sort the record passed back in reca. It
closes the current input file and calls the owncode 2 procedure
(if any). After owncode 2 procedure processing, it opens the next
input file (if any) and reads the next input record.

For example, to insert one record after the current input record, the
owncode 1 procedure performs the following steps:

1. Checks that the record passed in reca is the record after which the
new record is to be inserted.

2. Sets the return_code value to 2 and returns control to Sort/Merge.

3. When called again, it stores the new record in reca, stores the
length of the new record in rla, sets the return_code value to 0,
and returns control to Sort/Merge.

3-4 SCL Advanced File Management Usage Revision G

Owncode 2: Processing Input Files

Input Files Not Specified

If you do not specify any input files for the sort (the FROM
parameter is omitted), Sort/Merge calls the owncode 1 procedure as
the source of input records. Sort/Merge passes reca as an empty array
of the maximum record length, rla set to 0, and the return_code
value initialized to 0.

The following are the valid return_code values and their meanings:

0 Sort/Merge sorts the record passed back in reca, clears the reca
array, sets the rla and return_code variables to 0, and calls the
owncode 1 procedure again.

2 Sort/Merge sorts the record passed back in reca, leaves the data
in reca and the record length in rla, initializes the return__code
to 0, and calls the owncode 1 procedure again.

3 Sort/Merge does not sort the record passed back in reca and
calls the owncode 2 procedure if one has been specified;
otherwise, it terminates the input process.

Owncode 2: Processing Input Files

You specify an owncode 2 procedure to supply input at the end of
each input file. An owncode 2 procedure is used only with a sort;
specifying an owncode 2 procedure for a merge returns a fatal error.

Owncode 2 procedure processing varies depending on whether input
files are specified for the sort.

One or More Input Files Specified

If you specify one or more input files for the sort (even if the input
file is $NULL), Sort/Merge calls the owncode 2 procedure when it
terminates input. It terminates input when it reads an end-of-partition
delimiter, or the end-of-information, or receives a return_code value
of 3 from an owncode 1 procedure.

Sort/Merge passes reca as an empty array of the maximum record
length, rla set to 0, and the return_code variable initialized to 0.

Revision G Owncode Procedures 3-5

Owncode 3: Processing Cutput Records

The following are the valid return_code values and their meanings:

0 Owncode 2 processing ends; Sort/Merge opens the next input
file, if any, and reads the next input record.

1 Sort/Merge sorts the record passed back in reca and calls the
owncode 2 procedure again.

For example, to insert one record at the end of an input file, the
owncode 2 procedure performs the following steps:

1. Stores the record in reca, stores the record length in rla, sets the
return_code value to 1 and returns control to Sort/Merge.

2. When called again, it leaves the return_code value set to 0 and
returns control to Sort/Merge.

Input Files Not Specified

If you do not specify any input files for the sort (the FROM
parameter is omitted), Sort/Merge calls the owncode 2 procedure after
the owncode 1 procedure returns a return_code value of 3.

Sort/Merge passes reca as an empty array of the maximum record
length, rla set to 0, and the return_code value initialized to 0.

The following are the valid return_code values and their meanings:

0 Owncode 2 processing ends, signaling the end of the input
records for the sort.

1 Sort/Merge sorts the record passed back in reca and calls the
owncode 2 procedure again.
Owncode 3: Processing Output Records

You specify an owncode 3 procedure to process output records from a
sort or merge.

Owncode 3 procedure processing varies depending on whether an
output file is specified for the sort or merge.

36 SCL Advanced File Management Usage Revision G

Owncode 3: Processing Output Records

Output File Specified

If you specify an output file for the sort or merge (even if it is
$NULL), Sort/Merge calls the owncode 3 procedure each time an
output record is ready to be written. Sort/Merge passes the output
record to the procedure in the reca variable, the record length in
bytes in the rla variable, and the return_code variable initialized to
0.

After owncode processing of the record, control returns to Sort/Merge,
which processes the record passed back in reca according to the
return_code value set by the owncode 3 procedure. The contents of
the reca and rla variables can differ from those originally passed to
the procedure.

The following are the valid return_code values and their meanings:

0 Sort/Merge writes the record passed back in reca to the output
file. It then passes the next output record, if any, to the
owncode 3 procedure.

1 Sort/Merge does not write the record passed back in reca to the
output file. It passes the next output record, if any, to the
owncode 3 procedure.

2 Sort/Merge writes the record passed back in reca to the output
file, leaves the data in reca and the record length in rla,
initializes the return_code to 0, and calls the owncode 3
procedure again.

3 Sort/Merge does not write the record passed back in reca. It
calls the owncode 4 procedure if one is specified; otherwise, it
terminates the sort or merge.

For example, to insert one record after the current output record, the
owncode 3 procedure performs the following steps:

1. Checks that the record passed in reca is the record after which the
new record is to be inserted.

2. Sets the return_code value to 2 and returns control to Sort/Merge.

3. When called again, it stores the new record in reca, stores the
length of the new record in rla, sets the return_code value to 0,
and returns control to Sort/Merge.

Revision G Owncode Procedures 3-7

Owncode 4: Processing the Output File

Output File Not Specified

If you do not specify an output file (you omit the TO parameter), the
owncode 3 procedure performs all processing of output records.
Sort/Merge passes each output record to the owncode 3 procedure, but
it does not process any record returned by the procedure. Sort/Merge
does not write any output records.

Sort/Merge passes the output record to the procedure in the reca
variable, the record length in bytes in the rla variable, and the
return_code variable initialized to 0.

The following are the valid return_code values and their meanings:

0 Sort/Merge calls the procedure again, passing the next output
record.

1 Sort/Merge calls the procedure again, passing the next output
record.

2 Sort/Merge calls the procedure again, passing the same output
record.

3 Sort/Merge terminates the output process, even if it has
additional output records. It then calls the owncode 4 procedure
if one has been specified; otherwise, it terminates the sort or
merge.

Owncode 4: Processing the Output File

You specify an owncode 4 procedure to write additional output records
to the end of the output file. An owncode 4 procedure can be used
with a sort or a merge.

Owncode 4 procedure processing varies depending on whether an
output file is specified for the sort or merge.

Output File Specified

If you specify an output file for the sort or merge (even if it is
$NULL), Sort/Merge calls the owncode 4 procedure after it has
written its last output record to the output file.

Sort/Merge passes reca as an empty array of the maximum record
length, rla set to 0, and the return_code initialized to 0.

3-8 SCL Advanced File Management Usage Revision G

Owncode 5: Processing Records With Equal Keys

The following are the valid return_code values and their meanings:

‘ 0 Sort/Merge terminates the sort or merge without writing the
record passed back in reca.

1 Sort/Merge writes the record passed back in reca and calls the
. owncode 4 procedure again.

Output File Not Specified

An owncode 4 procedure cannot supply additional output records when
no output file has been specified. Still, if you specify an owncode 4
procedure for a sort or merge without an output file, Sort/Merge calls
the owncode 4 procedure after the owncode 3 procedure (if any) has
terminated output.

The following are the valid return_code values and their meanings:
0 Sort/Merge terminates the sort or merge.

1 Sort/Merge terminates the sort or merge.

@ Owncode 5: Processing Records With Equal
Keys
When an owncode 5 procedure is specified, Sort/Merge calls the
owncode 5 procedure each time it compares the key values of two

records and finds that the values are equivalent. It passes both
records to the owncode 5 procedure for processing.

NOTE

Sort/Merge can interpret character key values that are not identical
as equivalent . When the collating sequence used for the key assigns
the same collating weight to more than one character, those
characters are equivalent key values.

Revision G Owncode Procedures 3-9

Owncode 5: Processing Records With Equal Keys

An owncode 5 procedure cannot be used when the OMIT_
DUPLICATES, RETAIN_ORIGINAL_ORDER, or SUM parameter is
specified for the sort or merge. A sort or merge can use only one
method of processing records with equivalent key values.

For a given number (n) of records with equivalent key values, each
record is passed to the owncode 5 procedure log n times. The order in
which the records are passed is not defined.

NOTE

An owncode 5 procedure can change the record data passed to it, but
it must not change the data in the key fields of the record. If it does,
the sort order of the modified key fields is undefined.

The following are the valid return_code values and their meanings:

0 Sort/Merge accepts the first rla bytes of reca as the first record
and the first rlb bytes of recb as the second record.

1 Sort/Merge accepts the first rla bytes of reca as the first record
and deletes recb from the sort or merge.

2 Sort/Merge accepts the first rlb bytes of recb as the first record
and the first rla bytes of reca as the second record.

3 Sort/Merge accepts the first rlb bytes of recb as the first record
and deletes reca from the sort or merge.

4 Sort/Merge deletes both records from the sort or merge.

5 Sort/Merge does not read the record data returned by the
procedure; it processes the two records in their original order
(reca before recb).

6 Sort/Merge does not read the record data returned by the
procedure, but it deletes the second record (recb) from the sort
or merge.

7 Sort/Merge does not read the record data returned by the
procedure, but it reverses the order of the two records (recb
before reca).

8 Sort/Merge does not read the record data returned by the
procedure, but it deletes the first record (reca) from the sort or
merge.

3-10 SCL Advanced File Management Usage Revision G

Owncode 5: Processing Records With Equal Keys

For Better Performance

When the owncode 5 procedure does not change the record data, it
should use return_code values 5, 6, 7, or 8 instead of return_code
values 0, 1, 2, or 3. Performance is improved because Sort/Merge does
not read the returned record data.

Do not use return_code 0 to reverse the order of the two records by
exchanging the contents of reca and recb. Performing an exchange
sort is both incompatible with and much slower than the Sort/Merge
sorting algorithm.

If the owncode 5 procedure sorts the two records using one or more
keys in addition to those specifed for the sort or merge, the procedure
should use return_code values 5 and 7 only. (Return_code values 0
and 2 could also be used, but performance would be slower.)

Revision G Owncode Procedures 3-11

R 1R
FRAA Y
3} LE

~'::vr»

il L 5
) M," b \\‘

¥

i gm

L’“‘

ki

O
il

Dire

ve‘

!
i

““‘vlu‘;,x\\,‘?‘
T

! W
iy wp“,
dep

ot
&,.4”\ R
M;w

f % \l
ot aling il V '\
&

i
i b R
i w,‘r(é Wi

s

i *r

s

h
el
il

o]
ik

f
\m\wm

i

it
Ny, !
Y

v‘.‘ it
iy

Il “:l’-.\'m;‘,- ¢
A
i "\\ ,‘;v.‘(‘ ‘“I»\

‘r ¥
gL e

Ity
¥

!‘U
il

H

i

g
i AR

AR
AT

i
s
Ty

L I
il
{1t

e
i

!‘1

i

CRa

o
i

I
8

i

.I‘Yy\
i

il
v‘y"u |

i
KRR

)

i
i

e
IM‘]

Ly

‘,,

g

iy
HER T

ai il

N

i

Examples 4

This chapter contains examples of sorts and merges. The examples are
as follows:

Command sort on one key
Command sort on multiple keys
Command merge

Using a directive file

Creating an object library
Summing a file

Defining your own collating sequence

NOTE

File names referenced without a file path are assumed to be in the
working catalog unless the file name is for a standard system file.
Standard system files, such as $INPUT or $OUTPUT, are assumed to
be in the $LOCAL catalog.

Revision J Exzamples 4-1

Command Sort on One Key

Command Sort on One Key

The record layout of a university student file named UNIVERSITY_
STUDENTS is shown below.

1 11 13 15 21 27 35 38
TUDENT
LAST NAME s :O DOB STUDY GPA
AL A A
FIRST INITIAL _l L MIDDLE INITIAL CODE

Each record includes the last name and first and middle initials, the
student number, the date of birth, the field of study, the grade point
average, and a code representing class (4=freshman, 3=sophomore,
2=junior, 1=senior); all fields contain character data. The file is
maintained with the student number as the major key. Records are
ordered in ascending order according to the student number as follows
in file UNIVERSITY_STUDENTS.

WALLACE
JOHNSON
SANDERS
NEECE
TERRELL
OKADA
REYES
SUGARMAN
PHILLIPS
KRUTZ
SMITH

OnP>P>oOoONVIZARORN
D -4 O0OAMr>»IrDa A

YEH
WARNES
CARLSON
FUHRMAN
MCMAHON
JUNG
POPOVICH
JONES

cIOETrH-rETO™M

4-2 SCL Advanced File Management Usage

> EO0OOE X

87366 110255ENGIR 2861
9024806305 IMATH 2253
99855022858BUS 3011
99911121358ART 2291
99998040356ENG 3861
100103111750UNDEC 2225
10024603 1558ANTHRO 3341
100528070457S0C 3501
100531121158EDU 2112
100532010353POLISCI 1981
100610 103058MATH 3791
102005 120645ART 2764
10211606086 1POLISCI 2814
102126022355ENGIR 3454
102212111859CHEM 3204
10222306 1260ENG 2784
10230105256 1PHYSED 2214
10231110096 1BUS 2434
10231808 1555EDU 2844

Revision J

Command Sort on One Key

The command for sorting file UNIVERSITY_STUDENTS to generate
‘ an alphabetic list of students is:

SORT , FROM=UNIVERSITY_STUDENTS, TO=SORTED_FILE ,KEY=1..10

The SORT command calls for records from UNIVERSITY_STUDENTS

. to be sorted in ascending order on a key that occupies character
positions 1 through 10 in each record according to the default ASCIl
collating sequence. Sorted records are written to file SORTED_FILE,
which is created as a local file during the sort. The contents of
SORTED_FILE output from the sort is shown below.

BARTLETT S S 100800100957ART 2735
BILLINGS C Y 101579111855MUS 2965
CARLSON M K 102126022355ENGIR 3454
CHARLES S H 101418032459ANTHRO 2453
CLARK D V 10102310 1956ENG 2083
CLARK D N 101400102954ECON 3782
COCHRAN G L 100725111857BIO 3011
DAVIES E D 100812080656JO0URN 2031
DAVIS D A 10097207 1650ENR 3541
WALLIN G E 10105604 1659P0LISCI 3151
. WARNES D VvV 102116060861POLISCI 2814
WILSON W L 10196701026 IMATH 3454
WONG S T 101001012755PSYCH 2152
wo0 R M 101315100159BUS 3223
WOODSTOCK C T 101497030 160CHEM 3483
YEH F L 102005120645ART 2764
YOST D L 100880111158ENG 2582
ZEITZ F K 100963111858MATH 2612
ZIMMERS C A 101075063059MATH 2992

Revision G Examples 4-3

Command Sort on Multiple Keys

Command Sort on Multiple Keys

The command for sorting file UNIVERSITY_STUDENTS on three

keys is:

SORT,FROM=university_students,TO=field_of_study,...

KEY=((27..34),(38,1),(1..10))

Another way of specifying the sort is as follows:

SORT,FROM=university_students,TO=field_of_study, ...

KEY=(27..34,38,1..10)

The SORT command calls for records to be first sorted on the field of
study (key number 1), which occupies character positions 27 through
34 in each record. Records with equal keys for the major key are then
sorted on the class code (key number 2), which is a l-character field
in position 38. The third key sorts students with the same field of

study and class by their last name (key number 3).

The commands also illustrate continuing the SORT command beyond
one line. The first line of the command ends with three periods,
indicating continuation. The second line contains the KEY parameter.
Sorted records are written to the file FIELD_OF_STUDY shown

below.

REYES S L 10024603 1558ANTHRO
MAYER M I 100991122359ANTHRO
CHARLES S H 1014180324538ANTHRO
MARTIN R C 100955082157ART
NEECE ML 99911121358ART
NAKAMURA S L 101529051260ART
YEH F L 102005120645ART
BARTLETT S S 100800100957ART
COCHRAN G L 100725111857BIO
KRUTZ S T 100532010353POLISCI
WALLIN G E 101056041659P0L1SCI
WARNES D V 102116060861POL1ISCI
WONG S T 101001012755PSYCH
LANGDON M A 101754080549PSYCH
LASEUR P T 100678042256PSYCH
SUGARMAN B T 100528070457S0C
SMITH F R 101062120758S0C
DOUGLAS M L 10132507 1558UNDEC
OKADA N A 100103111750UNDEC

4-4 SCL Advanced File Management Usage

3341
2882
2453
2891
2291
2594
2764
2735
3011

1981
3151
2814
2152
2013
2233
3501
2913
2585
2225

Revision G

Command Merge

Command Merge

The file ADD_STUDENTS is ordered according to the student number
as shown below.

File ADD_STUDENTS:

QUINTERA L S 90154101253BI0 3451

KING M
ANDRUS J
UNGERMAN J
KLEIN S
IRVING w
ALLEN M
GREENWOOD M
ANDERSEN C
EBERHARD N
GOMEZ J

L

R
M
A
R
G
R
R
I
R

100012090848BUS 2431
100478042855J0URN 2121
100933120356PHYSED 3012
100987051260ENGIR 2762
101750111855ENG 3943
10205601256 ILNGUIS 3854
10216810196 1EDU 2264
102308032 160POLISCI 2544
102320061158BUS 3014
102379022260COMPSCI 2984

The files UNIVERSITY_STUDENTS and ADD_STUDENTS can be
merged because they are sorted on the same key. The command to
merge the two files is:

MERGE , FROM=(university_students,add_students), ...
TO=new_students_file,KEY=((15..20,NUMERIC_NS))

A new file (NEW_STUDENTS_FILE) is created as a permanent file
to which merged records are written.

The MERGE command names the two input files and the new output
file. The student number is the key on which the files are merged
(the field on which the files are presorted). This field is numeric
character data with leading blanks. The file NEW_STUDENTS_FILE

output from the merge is shown below.

WALLACE
QUINTERA
JOHNSON
SANDERS
NEECE

TERRELL
KING
OKADA
REYES
ANDRUS

Revision G

zToETruon

rodoc v~

D >»r x

87366 110255ENGIR 2861
90154101253B10 3451
9024806305 1MATH 22583
99855022858BUS 3011
99911121358ART 2291

99988040356ENG 3861
100012090848BUS 2431
100103111750UNDEC 2225
10024603 1558ANTHRO 3341
100478042855J0URN 2121

Examples 4-5

Using & Directive File

Using a Directive File
The contents of three directive files are shown below.
Directive File DIR_FILE_1:

SORT, FROM=UNIVERSITY_STUDENTS
SORT, TO=SORTED_STUDENT_NAMES
SORT,KEY=1..10

Directive File DIR_FILE_2:

SORT, FROM=ADD_STUDENTS
SORT, TO=SORTED_ADDED_STUDENTS
SORT,KEY=1..10

Directive File DIR_FILE_3:

MERGE , FROM=(SORTED_STUDENT_NAMES, SORTED_ADDED_STUDENTS)
MERGE , TO=MERGED_STUDENT_NAMES
MERGE ,KEY=1..10

File DIR_FILE_1 sorts the student’s names from the file
UNIVERSITY_STUDENTS in ascending order, creating a new file
called SORTED_STUDENT_NAMES. File DIR_FILE_2 sorts the
student’s names from the file ADD_STUDENTS in ascending order,
creating a new file SORTED_ADDED_STUDENTS. Finally, file DIR_
FILE_3 merges the files SORTED_STUDENT. NAMES and
SORTED_ADDED_STUDENTS according to the student’s name in
ascending order, creating a new file called MERGED_STUDENT_
NAMES.

The commands to call the three directive files are:
SORT,DIR=dir_file_1

SORT,DIR=dir_file_2
MERGE ,DIR=dir_file_3

46 SCL Advanced File Management Usage Revision G

Using a Directive File

The contents of the file MERGED_STUDENT_NAMES output from
the directive file sorts and merge is shown below. The records are in
alphabetic order.

BARTLETT
BILLINGS
BRISCOE
CARLSON
CHARLES
CLARK
CLARK
COCHRAN
DAVIES
DAVIS

WALLIN
WARNES
WILSON
WONG

W00
WOODSTOCK
YEH

YOST
ZEITZ
ZIMMERS

Revision J

> OMZ< I XTI <O

> X rrH=2 A4 < m

100800100957ART
101579111855MUS
102343121157ENVIRO
102126022355ENGIR
101418032453ANTHRO
10102310 1956ENG
101400102954ECON
100725111857B10
100812080656 JOURN
10097207 1650ENR

10105604 1659POLISCI
10211606086 1POLISCI
10196701026 1MATH
101001012755PSYCH
101315100 159BUS
101497030 160CHEM
102005120645ART
100880111158ENG
100963111858MATH
101075063059MATH

2735
2965
2544
3454
2453
2083
3782
3011
2031
3541

3151
2814
3454
2152
3223
3483
2764
2582
2612
2992

Exzamples 4-7

Creating an Object Library

Creating an Object Library .

You must place an owncode procedure into an object library before

using it in a sort or merge, as detailed in chapter 3. A FORTRAN

subroutine named OWNCODE that can be used as an owncode 3

procedure is shown below. The suboutine deletes the first record in a

file. The variable COUNT keeps track of the number of times the .
owncode procedure is entered.

SUBROUTINE OWNCODE (retcode,reca,rla)
INTEGER retcode, rila, count
CHARACTER reca*38
DATA count /0/
count = count +1
IF (count.eq.1) THEN
retcode = 1

ELSE
retcode = 0
ENDIF
RETURN
END
For detailed information on placing a compiled subroutine into a
library, see the NOS/VE Object Code Management Usage manual. .

Assuming the source text for the OWNCODE subroutine is on file
$USER.OWNCODE, the commands to place OWNCODE into an object
library on file $USER.OWN_LIBRARY are shown below.

/fortran input=$user.owncode
/create_object_library

COL/add_module library=$local.lgo
COL/-generate_library library=$user.own_library
COL/aquit

/display_object_library library=$user.own_library ..
../display_option=entry_point
OWNCODE - load module
entry points .

OWNCODE .
/set_program_attribute add_library=$user.own_library

4-8 SCL Advanced File Management Usage Revision J

Creating an Object Library

After executing these commands, a SORT command such as the

following can use the OWNCODE subroutine:

sort from=university_students to=results key=1..10 ..
owncode_procedure_3=0WNCODE

After the SORT command is executed, the file UNIVERSITY_
STUDENTS is sorted, with the first record deleted. The sorted records
are written to the file RESULTS as shown below.

BILLINGS
BRISCOE
CARLSON
CHARLES
CLARK
CLARK
COCHRAN
DAVIES
DAVIS

WALLIN
WARNES
WILSON
WONG

w00
WOODSTOCK
YEH

YOST
ZEITZ
ZIMMERS

Y
H
K
H
N
v
L
D
A

> Xrr44Ar<m

101579111855MUS
102343121157ENVIRO
102126022355ENGIR
1014 18032459ANTHRO
101400 102954ECON
10102310 1956ENG
100725111857BI0
1008 12080656 JOURN
10097207 1650ENR

10105604 1659P0OLISCI
10211606086 1POLISCI
10196701026 1MATH
101001012755PSYCH
101315100 159BUS
101497030 160CHEM
102005120645ART
100880111158ENG
100963111858MATH
101075063059MATH

2965
2544
3454
2453
3782
2083
3011
2031
3541

3151
2814
3454
2152
3223
3483
2764
2582
2612
2992

Note that the owncode procedure has deleted the first record in the

file.

Revision G

Examples 4-9

Summing Records

Summing Records

The record layout of a university student file named STUDENTS is
shown below.

LAST NAME SIUDINE oy SIUDY
\NO

FIRST INTIINL J L MIDDUL ANTEINL L GRADE POINTS
UNFES ALBEMPLHED UNELS COMPLETED

Each record contains three numeric fields. They are: number of units
attempted, number of units completed, and grade points. The file
STUDENTS is shown below with multiple records for each student.

GREENWOOD M R 102168101961EDU 002002000
IRVING W R 101750111855ENG 004004016
GREENWOOD M R 102168101961EDU 003003009
IRVING W R 101750111855ENG 098095375
QUINTERA L S 90154101253BI0 003000000
ALLEN M G 10205601256 1LNGUIS 005000000
ALLEN M G 102056012561LNGUIS 025020077
ALLEN M G 102056012561LNGUIS 004004012

Records are to be sorted according to the student number. Using the
SUM parameter, records with the same student number are combined
into one record by adding the numeric fields together. The new record
will give the total number of units attempted, total number of units
completed, and the total number of grade points.

The SORT command to sort and sum the file STUDENTS is as
follows:

SORT, FROM=students, TO=summed_file, KEY=(15..20),...
SuM=((36,3,numeric_ns,3))

The input file STUDENTS is named, and the output file SUMMED_
FILE will contain the results of the summing. The student number
(positions 15 through 20) is specified as the sort key. The SUM
parameter specifies that a three-position numeric field of type
NUMERIC_NS begins in position 36 in each record. The repetition
indicator specifies that three contiguous fields are to be summed. The

4-10 SCL Advanced File Management Usage Revision G

Summing Records

output from the sort is shown below. Each record ends with nine

. digits: the first three digits are the total units attempted, the next
three are the total units completed, and the final three are the total
grade points.

v QUINTERA L S 90154101253BI0 003000000
. IRVING W R 101750111855ENG 102099391
ALLEN M G 10205601256 1LNGUIS 034024089
GREENWOOD M R 10216810196 1EDU 005005009

The output file contains one record for each student. The numeric
fields are the totals of the units attempted, units completed, and grade
points.

Revision G Exemples 4-11

Defining Your Own Collating Sequence

Defining Your Own Collating Sequence

The file BIRTHDATES, ordered according to the student name, is
shown below. The file contains the students’ last names, students’ first
and middle initials, and the students’ dates of birth.

ALLEN M G 10-09-61
ANDERSEN C R 05-01-60
EBERHARD N 1 06 05 58
GREENWOOD M R 09-12-61

IRVING W R 01/07/55
KING ML 11 11 48
QUINTERA L S 08/12/53
WALLACE S T 12/09/55

You can standardize the separators (hyphens, blanks, and slashes) in
the students’ birthdates by defining your own collating sequence.

A directive file is used to sort the file BIRTHDATES. The SORT
command to call the directive file is as follows:

SORT DIR=date_dir_file
The directive file DATE_DIR_FILE is shown below.

SORT, FROM=birthdates

SORT, KEY=((25, 2, mysequence))
SORT, KEY=((19, 3, myseguence))
SORT, KEY=((22, 3, mysequence))
SORT, SEQN=mysequence

SORT, SEQS=(‘0’..’9°)

SORT, SEQS=("-7, ° “, */")
SORT, SEQA=YES

SORT, TO=dates_sorted

The SORT command defines a collating sequence named
MYSEQUENCE. The first SEQS parameter specifies ten value steps
from 0 through 9. This defines the order of the numbers. The next
SEQS parameter specifies one step consisting of hyphens, blanks, and
slashes. This defines the hyphen, blank, and slashes as equal values.
The SEQA parameter specifies that blanks and slashes are to be
output as hyphens. The file is sorted according to the date of birth.

4-12 SCL Advanced File Management Usage ’ Revision G

Defining Your Own Collating Sequence

The file DATES_SORTED output from the sort is shown below.

KING ML 11-11-48
QUINTERA L S 08-12-53
IRVING W R 01-07-55
WALLACE S T 12-09-55
EBERHARD N I 06-05-58
ANDERSEN C R 05-01-60
GREENWOOD M R 09-12-61
ALLEN M G 10-09-61

The file BIRTHDATES has been sorted in numeric order according to
dates of birth, and the separators in the dates have been changed to

hyphens in all records.

Revision G

Examples 4-13

Part II: Keyed-File Utilities

Keyed-File Concepts 5-1
Displaying, Copying, and Creating Keyed Files 6-1
Create_ Alternate_Indexes Utility 7-1

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-1

Keyed-File Recovery 9-1

once

IRES

Jmy R
[

b
SR
it

ssion
Contro
K

d
G

AL gt

B

i
i
gk

i i

i A i

Nested F
PRGN

b

g
i

i
i
il

w,

i
i
e
v
N
i T
G IR
i »‘.‘[(.M,\
i
il

P AR . (e i s
X Rt v . : e el o b
iy % i L SO R
" [L .‘\wﬂ"u”“'h N TR fﬁ &
Ol s e : L
hy ! R

[EAPRES ! \
in L R B

REXTRHE e Ry S ; Hod : i/

i il L § Ay TR ¥ P TER! ' ERNAAR e

i b
ot Bl

i
iy

il
Al et
VLR
i

T
M
T

o
AT

el
¥

i
Sy DR
i) g

A R L RN T idbns
- AT o £ Pyl
.

RN et
it i

RN P |
iy ;; “_1\ i L)mm i

! L 0
. il L
i) ! i)
A IS AR O P Lk
e i o S i ¥ 4
4 ! i
RN “\‘M"u‘

B o
OO N
) ki

it
AN
Porad “\;4 ! e L
; b i i

i : : : & it

{i

il
G it

b i L ; 3 Aetal!

it
s

i
Al

il i
v

i

i
W

Keyed-File Concepts 5

The keyed-file utilities are a group of SCL utilities that can help you
create and use keyed files. A keyed file is a file whose organization
allows record access by key value. The keyed-file organizations are
indexed-sequential and direct-access. This chapter describes keyed-file
concepts so that you can more easily create and use keyed files.

You may already understand the concepts described in this chapter if
you have used keyed files through a programming language (such as
CYBIL, COBOL, or FORTRAN). Keyed-file concepts are also described
in the CYBIL Keyed-File and Sort/Merge Interfaces manual, the
COBOL Usage manual, and the FORTRAN Language Definition
manual.

This chapter assumes that you already have a general understanding
of NOS/VE files as described in the NOS/VE System Usage manual. It
assumes that you have used sequential files and, possibly,
byte-addressable files.

Sequential files, byte-addressable files and keyed files are alike in
that all are written and read using record access. This means that the
data in the files is contained in records.

A record is a collection of data that is read and written as a unit. A
record could contain several fields of data, some of a fixed length and
others varying in length. Thus, a record may have a fixed length or
be variable in length.

For example, a record could contain three data items of different
types: an integer, a floating point number, and a string of characters.
To write a record, a program writes all three data items together as a
record; when the record is later read, all three data items are
delivered to the program.

The records in a sequential or byte-addressable file are stored as a
simple sequence. The records in a keyed file are stored within a file
structure.

Revision J Keyed-File Concepts 5-1

Keyed-File Organizations

Keyed-File Organizations

A keyed file is defined as such by its file_organization attribute.
Currently, the keyed-file organizations are indexed-sequential and
direct-access.

A keyed-file organization allows you to read any record in the file
directly by specifying its key value. The key value for a record is
determined when the record is written to the file.

The keyed-file interface performs all processing required to relate a
key value to a record location; the user does not specify how this is
done beyond choosing the file organization. The method of relating a
key value to a record location differs for each keyed-file organization.

Indexed-Sequential File Organization

The indexed-sequential file organization allows content addressing of
records; that is, you can directly access a record by the contents of
one or more fields of data in the record. The fields of data by which a
record is addressed are its key fields, and the contents of those fields
are its key values.

An indexed-sequential file always has a primary key. (It can also have
one or more alternate keys as described in the Alternate Keys section
of this chapter.)

Each primary key value is unique within the file; there can be no
duplicate primary-key values in a file.

The indexed-sequential file organization can be used only when you
can assign a unique value to each record stored in the file. This
unique value is usually a field of data within the record (an embedded
key), although it can be a value assigned to the record and not
included in the record data (a nonembedded key).

For example, the primary key for an employee file could be the
employee’s name. However, because two employees could have the
same name, it is better to assign a unique identification number to
each employee and use that number as the primary key for the file.

The indexed-sequential file organization should be used if a
requirement exists to read file records both sequentially and
randomly. For example, the records in an employee file could be read
sequentially to produce a listing of all employees or read randomly to
update individual records.

5-2 SCL Advanced File Management Usage Revision J

Keyed-File Organizations

When an indexed-sequential file is read sequentially, its records are
accessed in ascending order by key value. For example, if an employee
file is read sequentially using its primary key (the employee
identification number) the records are read in ascending order by their
identification number. The order is kept even when new records are
added to the file.

Indexed-Sequential File Structure

This section gives a general description of the indexed-sequential
structure. You can use indexed-sequential files without knowing their
structure. However, if you understand the indexed-sequential structure
and how it grows, you can create more efficient indexed-sequential
files by specifying appropriate values for structural parameters.

The internal structure of an indexed-sequential file is designed to
provide both random and sequential access to the data records in the
file. File space is divided into blocks, all the same size.

A block contains a block header and one of the following:

Internal tables
Data records (a data block)
Index records (an index block)

Each index record points to a data block. The index record contains
the location of the data block and the range of key values of the data
records stored in that block.

You can display the formatted contents of all components of an
indexed-sequential file, the internal tables and index blocks as well as
the data blocks, using the DISPLAY_KEYED_FILE command
described in chapter 6.

As you might expect, the actual internal index mechanism is complex,
but the simplified examples in this part provide the level of detail
appropriate for indexed-sequential file use.

To see how an index works, let’s look at a very small file that
contains one index block and two data blocks. As shown in figure 5-1,
the index block contains two index records. Each index record points
to a data block in the file.

Revision G Keyed-File Concepts 5-3

Keyed-File Organizations

Data Block
1

P
>

Index Block 4

’ —_—

5

Data Block

gl B

r——- — n—
6

Figure 5-1. Minimal Indexed-Sequential Structure

Let’s suppose you request to read randomly the record with key value
6. To read the record, these steps are performed:

1.

The index records are searched to find the index record whose
range of key values includes the key value 6.

After the correct index record (the second one) is found, the search
for the record continues with the data block pointed to by the
second index record.

The second data block is searched for the record with key value 6.
When the record is found, its data is returned to the requester.

Next, suppose you request that all records in the file shown in figure
5-1 be read sequentially. These steps are performed.

1.

2
3.
4

The first index record is read to find the first data block.
The records from the first data block are read in order.
The second index record is read to find the second data block.

The records from the second data block are read in order.

54 SCL Advenced File Management Usage Revision G

Keyed-File Organizations

5. The sequential read ends because there are no more index records,
therefore, no more data blocks to read.

This process reads the records in key-value order because both the
index records and the data records are kept in key-value order.

Data-Block Split

Usually, a block has some empty space, called padding, that was left
empty so that additional records could be written later to the block.
Suppose, as shown in figure 5-2, that a data block has been filled, a
new record is to be written, and its key value is within the range of
key values of the records in the full data block. For the file structure
to be maintained, the data block must be split.

When a data-block split occurs, records in the data block whose key
values are less than the key value of the new record remain in the
existing block. All records in the existing block that come after the
new record are moved to the newly created block.

The new record is put into either the new block or the existing block,
depending on the relative amount of empty space in the blocks and
the size of the new record. If the new record does not fit in either
block, a second new block is created and the new record is put into
that block.

Revision G Keyed-File Concepts 5-5

Keyed-File Organizations

New Record

Before the Data-Block Split:

I 2 I

After the Data-Block Split:

Keyed File
Index Block Data Block
I N g TR N
3
| 4
|5
6
Keyed File
Data Block
> 1
— — —
Index Block E -
1
3
— — —
Data Block
> 3]
| 4]
[5
| 6

Figure 5-2. Data-Block Split

5-6 SCL Advanced File Management Usage

Revision G

Keyed-File Organizations

Index Levels

As with data blocks, index blocks are also initially created with some
empty space (index-block padding). However, for each new data block
created due to a data-block split, another index record must be
created. With the addition of many data records, the initial index
block becomes full. When the index block is full, the next data-block
split causes an index-block split.

As shown in figure 5-3, when the initial index block splits, it causes
the creation of another index level.

The index levels are numbered from the top down as index level 0,
index level 1, and so forth. Index level 0 always has only one index
block; it is always the starting point for an index search.

The index block at an upper level contains an index record for each
index block at the next lower level. The index block at level 0
contains an index record for each index block at level 1.

A search for a data record requires an index-block search at each
index level. The level-0 search finds the index record that points to
the appropriate level-1 index block. If the file has only two index
levels, the level 1 search finds the index record that points to the
appropriate data block.

As you can see, the addition of another index level increases the time
required to find an individual data record.

Index levels can be added up to the index-level limit of 15 levels. This
sets a limit on the number of records in the file.

The index-level limit is reached when addition of another record to
the file would require creation of another index level, but 15 index
levels already exist in the file. When this happens, the
index-level-overflow flag is set and no more records can be added to
the file.

Revision G Keyed-File Concepts 5-7

Keyed-File Organizations

Before the Index-Block Split: .

Keyed File
Data Block
Data Block !
P} 2
4
pr——— S— —
New Record Index Block 6
l S l]
7 Data Block
(8] Data Block &]
9 >y
o
10] — T
Data Block

o 10

Figure 5-3. Index-Block Split
(Continued)

5-8 SCL Advanced File Management Usage Revision G

Keyed-File Organizations

(Continued)

After the Index-Block Split:

Keved File
Data Block
' Index Block 1
— | J Data Block —:- -
L — Ei——
[& 3
4
Index Block —5 —_—
l m—
7 —
e — e Data Block
7
e — —
Index Block Dats Block
! 7 e X
o cm— I e — c—
8 1
e —]
9
— — =
10
Datas Block
9
Data Block
‘ 10

Figure 5-3. Index-Block Split

Indexed-Sequential Primary Keys

The primary key for an indexed-sequential file is defined when the
file is created. The primary-key value must be unique for each record
I in the file.

A primary-key definition requires specification of these attributes:

Embedded or nonembedded key (the default is embedded)
Key position (if the key is embedded)

. Key length
Key type (the default is uncollated)

Revision G Keyed-File Concepts 5-9

Keyed-File Organizations

Collate-table name (if the key type is collated)

A key is embedded if the key value is part of the data in the record.
An embedded key value is returned as part of the record data when
the record is read; a nonembedded key value is not.

The key position in the record must be specified if the key is
embedded. The first byte position in a record is byte 0. If the key is
nonembedded, you do not specify a key position.

You must specify the key length whether the key is embedded or
nonembedded. It indicates the number of bytes in the key.

Key Length
pr—m—

Record | : I I

Key Position

The key type describes the data in the key. These are the possible
key types:

Integer key The key value is a signed binary value from 1
through 8 bytes long. (In general, except for
packed CYBIL records, an integer value is
written as 8 bytes.) Integer key values are
sorted in ascending numerical order.

Uncollated key The key value is a string of characters; it is
sorted byte-by-byte according to the ASCII
collating sequence.

Collated key The key value is a string of characters; it is
sorted byte-by-byte according to a collating
sequence that you specify.

If the key is a collated key, you must specify
the collating sequence to be used to order the
key values. The collating sequence is specified
by its name. NOS/VE provides several
predefined collating sequences (listed in
appendix E). You can also create a collating
sequence as described in appendix E.

5-10 SCL Advanced File Management Usage Revision G

Keyed-File Organizations

Direct-Access File Organization

The second keyed-file organization is direct-access. In general, it
should be used when fast individual record access is required, but
sequential ordering of records using the primary key is not needed.
(Sequential ordering is possible using an alternate key.) Also, the
direct-access file organization is most effective when file updates (and
the resulting file structure changes) are minimized. The following
paragraphs compare the direct-access and indexed-sequential file
organizations.

Both the indexed-sequential and direct-access file organizations use a
primary key. You define the primary key for the file when you create
the file. It can be a field embedded in the record or a nonembedded
value. Each primary-key value in the file must be unique; the file can
contain no duplicate primary-key values.

Like an indexed-sequential file, a direct-access file can have alternate
keys. An alternate key for a direct-access file is the same as an
alternate key for an indexed-sequential file. (See the Alternate Keys
discussion later in this chapter.)

Like indexed-sequential file records, you must specify the primary-key
value when writing or deleting a direct-access file record. Similarly,
you must specify either a primary-key value or an alternate-key value
to read a direct-access file record.

Direct-access and indexed-sequential files differ in their ordering of
records in the file:

® When you read records sequentially from an indexed-sequential
file, the records are returned in order, sorted by their primary-key
values.

® A sequential pass through a direct-access file reads all records in
the file, but the records are not returned in order by their
primary-key values.

In general, random record access is faster for the direct-access file
organization than for the indexed-sequential file organization. This is
because the direct-access file organization determines the location of a
record directly from its primary-key value, unlike indexed-sequential
files where a record can be found only after a search at each index
level.

Revision G Keyed-File Concepts 5-11

Keyed-File Organizations

Direct-Access File Structure

The direct-access file structure is designed to locate each record
directly by its primary-key value. The primary-key value directly
specifies the file block containing the record.

File space in a direct-access file is divided into equal-size blocks.

Initially, all blocks in the file are home blocks (as opposed to overflow

blocks).

When a record is written to a direct-access file, its primary-key value
is hashed to produce the number of the home block in which the
record is written. If the home block does not contain enough empty
space for the new record, the record is written in an overflow block.

Assuming the hashing procedure produces a uniform distribution of
numbers from the primary-key values in the file, the records are
uniformly distributed among the home blocks of the file. Thus, each
record can be found by a single search of its home block without
additional searches of overflow blocks.

You specify the initial number of home blocks when you create the
file. By default, a system hashing procedure is used to distribute the
records among the home blocks although you can provide another
hashing procedure for the file if you like.

As an illustration of a small direct access file, suppose you define a
direct access file as having five home blocks.

0 1 2 3 4

Home
Blocks

The first record written to the file has primary-key value XYZ.
Assume that this primary-key value is hashed to produce the block
number 2. The record is then written in home block 2.

Home
Blocks

5-12 SCL Advanced File Management Usage Revision G

Keyed-File Organizations

Assume you want to read the record with primary-key value XYZ.
The value XYZ is hashed and, as before, produces the block number
2. The keyed-file interface searches for the record with primary-key
value XYZ in home block 2. (The records in a block are ordered by
primary-key value so each record can be quickly found.)

Suppose that many records have been written to the file and home
block 2 has been filled.

0

Home
Blocks

At this point, a record is to be written with primary-key value ABC.
Hashing of the value ABC produces block number 2, but there is
insufficient space for the record in home block 2 so it is written in an
overflow block.

0

Home
Blocks

Overflow
Block

Later, to read the record with primary-key value ABC, the
primary-key value is hashed to produce block number 2. Home block 2
is searched for primary-key value ABC. When it is not found in the
home block, the search continues in the overflow block until the
record is found.

An ideal direct-access file structure has these characteristics:

® Sufficient home blocks are allocated and records are uniformly
distributed among the home blocks so as to avoid overflow.

® Each block contains a limited number of records so as to minimize
the search time in each block.

Revision G Keyed-File Concepts 5-13

Keyed-File Organizations

® The number of home blocks is not so large that the file contains
excessive unused space. .

These characteristics are determined by the file attribute values
specified when the file is created. You must specify the initial__
‘home_block_count and can optionally specify the maximum_block_
length and hashing_procedure_name attributes. (The attribute
parameters are described in chapter 6.)

One other characteristic to be considered when selecting the number
of home blocks is the loading factor. The loading factor is the
percentage of block space used. To allow for less-than-uniform
distribution of records in the home blocks, the loading factor should
be no greater than 90%.

You can use the following equations to determine the minimum
home_block_count for a given loading factor if the number of bytes
of data in the file and the block size are known.

If the file has fixed-length records, reduce the block size by 39 bytes,
as follows:

record_count x fixed_record_length

home_block_count = '

(1oading_factor/100) x (block_size - 39)

If the file has variable-length records, reduce the block size by 36
bytes and use the average record length plus 3 as the record length,
as follows:

record_count x (average_record_length + 3)

home_block_count =
(1oading_factor/100) x (block_size - 36)

To illustrate, suppose the direct-access file is to contain 10,000 80-byte
records (80,000 bytes of record data). Using a block size of 4096 bytes
and a loading factor of 90%, the equation appears as follows:

10000 x 80
home_block_count =
(90/100) x (4096 - 39) ‘

The equation gives 22 blocks as the minimum home block count for

the file. However, it is recommended that the home block count be a
prime number so 23 would be a better home block count for the file
in this example.

5-14 SCL Advanced File Management Usage Revision G

Keyed-File Organizations

Hashing Procedures

The system provides a default hashing procedure named
AMP$SYSTEM_HASHING_PROCEDURE or, you may specify your
own hashing procedure. This would be appropriate if the procedure
would produce a more uniform distribution of numbers from the
primary-key values in your file.

The system executes the hashing procedure each time a record is
requested by key value from the direct-access file. The hashing
procedure is not stored with the file so the system must be able to
load the procedure each time the direct-access file is opened.

Hashing procedures can only be written in the CYBIL programming
language. For more information on writing a hashing procedure, see
the CYBIL Keyed-File and Sort/Merge Interfaces manual.

Direct-Access Primary Keys

In general, the primary key of a direct-access file has the same
characteristics as the primary key of an indexed-sequential file. You
specify whether the primary key is embedded or nonembedded, its
position (if the key is embedded), and the key length. However, for
direct-access files, the specified KEY_TYPE attribute value is ignored;
the KEY_TYPE attribute for a direct-access file is always uncollated.

Unlike an indexed-sequential file, sequential access calls to a
direct-access file while the primary key is selected do not return the
file records sorted by primary-key value. The calls return records
according to their physical location in the direct-access file. Records
within a block are ordered according to the default ASCII collating
sequence, but the blocks are not ordered by primary-key values.

Direct-access file records can be accessed in order if one or more
alternate keys are defined for the file. The alternate index keeps the
alternate-key values in sorted order. Sequential access calls while an
alternate key is selected return records in the order provided by the
alternate index.

If appropriate, you could define an alternate key for the same field as
an embedded primary key. In this way, you could access direct-access
file records in primary-key value order.

Revision G Keyed-File Concepts 5-15

Alternate Keys

NOTE

If you specify a collation table for a direct-access file using the ‘
COLLATE_TABLE_NAME attribute, the collation table is loaded

when the new file is first opened. However, the collation table is not

used by the primary key, nor can it be used by any alternate key.

Alternate Keys

A record within a keyed file can always be accessed by its
primary-key value. An alternate key provides an additional way to
access records.

An alternate key defines a value in the data record by which the
record can be accessed. An alternate key is defined as a field or group
of fields in the record.

Although a program can use alternate keys to read records or to
position a file, alternate keys cannot be used to write, replace, or
delete records. The primary-key value must be used to identify a
record to be written, replaced, or deleted.

Alternate-Key Characteristics

Alternate-key fields can overlap each other and the primary key. For
example, the primary-key field could be bytes 0 through 9 and two
alternate-key fields bytes 0 through 19 and bytes 4 through 14.

_ 10 15 20 21 25

Primary Key

Record

Alternate Key 1

——T
Alternate Key 2

Unlike a primary-key value, one alternate-key value can be associated '
with several records in a file. This is because an alternate-key value

need not be unique. The same alternate-key value can occur in

several records. For example, the same job title can be associated with
many names as follows: .

5-16 SCL Advanced File Management Usage Revision G

Data Record:

Alternate Keys

Hanson Computer Programmer
Jones Computer Programmer
Smith Computer Programmer

Alternate Index: Alternate-Key Value

Primary-Key Value

Computer Programmer

Hanson
Jones
Smith

A record can contain more than one alternate-key value if the
alternate key is defined as a field that repeats in the record; thus, a
single record could contain several alternate-key values. For example,
the license numbers of several cars owned by one person as follows:

Data Record:

Alternate Index: Alternate-Key Value

R. Petty 1 LB AU 2ASM451 ELK 592

Primary-Key Value

1LB AU
2ASM451R
ELK 592

R. Petty
R. Petty
R. Petty

The Alternate Index

The index for the primary key was described earlier in this chapter.
Each alternate key defined for a file has its own index.

An alternate index contains index records, each of which associates an
alternate-key value with the primary-key values of the records
containing that alternate-key value. The list of primary-key values
associated with an alternate-key value is the key list for that
alternate-key value.

When you select an alternate key and then specify an alternate-key
value, the system searches for the value in the alternate index. If it
finds the alternate-key value, it uses the primary-key values in the

key list for the alternate-key value to access the data records.

When one or more alternate keys are defined for a file, file updates
require more time because the alternate indexes must also be updated.
Alternate keys should be used only when the additional record access
capability offsets the cost of increased time spent for file updates.

Revision G Keyed-File Concepts 5-17

Alternate Keys

Alternate-Key Definition .

The attributes of an alternate key are specified by its alternate-key
definition.

These attributes are required to define an alternate-key field:

Key name
Key position
Key length

An alternate key has a name so that it can be selected for use. The
alternate-key position and length define the alternate-key field within
the record.

These optional attributes define how the alternate key is processed:

Key type

Collate table name (if the key type is collated)

Duplicate key values

Null suppression

Sparse-key control

Repeating groups

Concatenated key .
Variable-length key

The key type of an alternate key determines the order of the
alternate-key values in the alternate index, and therefore, the order in
which records are accessed sequentially when you use the alternate
key. The key types for an alternate key are the same as the key
types for the primary key as described earlier in this chapter.

Collated Alternate Key

If the key type is collated, the alternate key requires a collation table.
In most cases, you should explicitly specify the collation table to be
used. However, if the file is an indexed-sequential file with a collated
primary key, you can use the primary-key collation table as the
default collation table for the alternate key.

Collated key values are stored in collated form in the index. The ’
collation is performed after the key values are read from the file and
immediately before the values are stored in the index.

5-18 SCL Advanced File Management Usage Revision G

Alternate Keys

Thus, collation does not affect the selection of key values for the
index. When null suppression is used, the key value is determined to
be a null value before collation. Similarly, when the key is a
variable-length key, collation does not apply to the key delimiter
characters.

Duplicate Key Values

By default, duplicate values for an alternate key are not allowed.
However, if you want to allow duplicate key values, you can specify
whether the records having the same alternate-key value are accessed
in primary-key-value order or in first-in, first-out order.

In a key list ordered by primary key, the primary-key values are
stored in sorted order according to the primary-key type. New values
are added to the key list so that the primary-key-value order is kept.

In a key list ordered first-in, first-out, the primary-key values are
stored in the key list in the order the values are added to the key
list, instead of in primary-key-value order. New values are always
added to the end of the list.

For Better Performance

When alternate-key values are frequently duplicated in a file, the key
lists should be ordered by primary-key value. First-in, first-out
ordering of key lists requires that delete and replace operations
sequentially search the key list to find the primary-key value; a
sorted key list provides faster access to a primary-key value.

For example, suppose you write three records to the file in this order:

McDarrels Hamburgers
Burger Duke Hamburgers
Willys Hamburgers

The following shows the resulting key list in primary-key order and
in first-in, first-out order:

Alternate Key Key List - Ordered Key List - First-In,
Value by Primary Key First-Out
Hamburgers Burger Duke McDarrels

McDarrels Burger Duke

Willys Willys

Revision G Keyed-File Concepts 5-19

Alternate Keys

Duplicate Key Value Error Processing

If duplicate values are not allowed and a duplicate is found in a
record about to be written to the file, the record is not written to the
file and a nonfatal error (aae$duplicate_alternate_key) is returned.

A nonfatal error (aae$unexpected_dup_encountered) also occurs if a
duplicate value is found while a new alternate index is being created.
However, the record containing the duplicate value cannot be
discarded, as it is already in the file. Subsequent processing depends
on whether incrementing the nonfatal-error count causes the count to
reach the nonfatal-error limit as set by the user.

® If the nonfatal-error limit is not reached, the alternate key being
applied is redefined to allow duplicates, ordered by primary-key
value, and the current apply operation continues.

® If the nonfatal-error limit is reached, the error condition
aae$duplicate__key_limit occurs and the effects of the current
apply operation are undone as far as possible. Deletions cannot be
undone, but any creations that have taken place are undone, and a
message is issued for each one.

In either case, a message describing the action taken is written to the
$ERRORS file.

Null Suppression

By default, if an alternate-key field contains a null value, the null
value is stored as the alternate-key value for the record. The null_
suppression attribute allows you to exclude null values from an
alternate index.

Null suppression excludes any record with a null alternate-key value
from the alternate index. Null suppression can save space, access
time, and update time because the index is smaller when null
alternate-key values are excluded. (Null suppression does not remove
the null value from the data record.)

The null value depends on the key type as follows:

Key Type Null Value

Integer Zero

Uncollated Spaces

Collated Spaces (before collation)

5-20 SCL Advanced File Management Usage Revision G

Alternate Keys

If null suppression is not specified, records containing a null value in
the alternate-key field are indexed by the null value. The records can
later be accessed by specifying the null value as the alternate-key
value.

For example, suppose the spouse’s name is defined as an alternate key
to a membership file. Unmarried members would have a null value
for the alternate-key field. Therefore, the key list for the null value
lists all unmarried members. The following shows the alternate index
with and without null suppression:

Without Null Suppression With Null Suppression

Spouse’s Spouse’s

Name Member’s ID Name Member’s ID
1626736 Diana Simmons 4872672
8273648 Mark Ramsey 2673651

Diana Simmons 4872672 Shelly Gable 7726184

Mark Ramsey 7726184

Shelly Gable 2673651

Sparse-Key Control

You can use sparse-key control to create an alternate index that
includes or excludes records depending on the character in a specific
position in the record (the sparse-key control position).

The sparse-key control position must be within the minimum record
length. If you specify sparse-key control for an alternate key, the
alternate-key field or fields need not be within the minimum record
length.

If the character at the sparse-key control position indicates that the
record should be included in the alternate index, but the record has
no alternate-key value because the record ends before the
alternate-key field, the record is not included in the alternate index.
Although the record is not included in the alternate index, it is
written to the file and a trivial error (AAE$SPARSE_KEY_
BEYOND_EOR) is returned.

For example, suppose a student file has a one-character code
indicating the student’s class. To get a mailing list for juniors and
seniors only, you could define an alternate index controlled by the
class code.

To specify sparse-key control, you specify three values:

Revision J Keyed-File Concepts 5-21

Alternate Keys

Value Example

Sparse-key control position Position of the class code in the record '
Sparse-key control characters Junior and senior class code characters

Sparse-key control effect Included if the class code indicates a
(Indicates whether the junior or senior record .
alternate-key value should

be included or excluded if

the sparse-key character

matches)

Assume that the sparse-key control position is the first character after
the name field and that the junior and senior class codes are 3 and 4.
If the following records are copied to the file, the first three records
are included in the alternate index, but not the last record.

Louis Skolnik
Gilbert Sullivan
El1liot Wermzer
Judy Manhasset

N W bH D

Concatenated Keys '

A concatenated key is an alternate key formed from several fields, or
pieces, in the record. A concatenated key can comprise up to 64
pieces.

The concatenated pieces can be noncontiguous and can be concatenated
in any order. Each piece can be a different key type. All collated-key
pieces use the same collation table.

The first piece you specify is the leftmost piece of the key. You
specify it the same as you specify a nonconcatenated key. The pieces
to be concatenated to the leftmost field are defined by individual
subcommands. The subcommand order specifies the order of the
concatenated pieces.

A concatenated key can use sparse-key control and/or null suppression.
A concatenated key is considered to have a null value if the values in .
all fields of the key are null (before collation for collated keys).

For example, suppose you decide to define an alternate key consisting
of the initials of the member’s name. The first piece of the key value
would be the first letter of the member’s first name, the second piece .

5-22 SCL Advanced File Management Usage Revision J

Alternate Keys

would be the first letter of the member’s middle name, and the third
piece would be the first letter of the member’s last name. Consider
this data record:

0 20 40

Kennedy John Fitzgerald

The alternate key value is JFK, assuming the concatenated-key pieces
are defined as:

First piece: Key_Position=20, Key_Length=1
Second piece: Key_Position=40, Key_Length=1
Third piece: Key_Position=0, Key_Length=1

Repeating Groups

The repeating-groups attribute allows a data record to contain more
than one value for the same alternate key. This allows a primary-key
value to be associated with more than one alternate-key value.

To specify an alternate-key field within a repeating group:

1. Specify the first alternate-key field by its key position, key length,
and key type. All subsequent alternate-key fields have the same
length and type as the first.

2. Specify repeating groups for the alternate key by specifying the
repeating group length, that is, the distance from the beginning of
the first instance of the alternate key to the beginning of the
second instance of the alternate key in the record.

3. Specify the repeating-group count, that is, how many times the
alternate key field repeats in the record.

You can specify that the repeating group repeats a fixed number of
times or that it repeats until the end of the record.

® If the alternate-key field repeats a fixed number of times, all
alternate-key fields must be within the minimum record length.

Revision G Keyed-File Concepts 5-23

Alternate Keys

® If the alternate-key field repeats to the end of the record, the
minimum record length imposes no restriction. The system stores ‘
as many alternate-key values as the record length allows; it
ignores trailing information not long enough to contain an
alternate-key value.

Repeating groups cannot be used with concatenated keys or when .
duplicate-key values are allowed and ordered first-in-first-out.

For example, suppose each record in a membership file lists the sports
the member enjoys and his years of experience as follows (columns
are counted from zero):

Field: Sports and Sports Experience

Columns: Variable number of 2-field pairs beginning at column 75
The Sports field is 10 characters followed by a 2-digit
Sports Experience field

Type: ASCII characters

75 87 99 111

g g v’ um— m——
Key Length

N ——— A ——— ~m— o ——

Repeating Group Length

You could define an alternate key for the Sports values (without the
Sports-Experience values) as follows:

Key_Position=75, Key_Length=10, Key_Type=uncollated,
Repeat ing_Group_Length=12,

Repeat ing_Group_Count=repeat_to_end_record,
Duplicate_Key_Values=ordered_by_primary_key

The key list for an alternate-key value would list the identification
numbers of all members that enjoy that sport. ‘

The following shows the primary keys for three records and their
contents from column 75 to the end of the record:

§-24 SCL Advanced File Management Usage Revision G

Alternate Keys

Primary Key Record Contents Beginning at Column 75

1662876 Volleybal102Running 03Basketbal102
6166287 Bicycling 10vVolleyball01
0027840 Running 15Running 15Running 15

If these were the only records in the file, the alternate index would
appear as follows:

Alternate-Key Value Primary-Key Value
Basketball 1662876

Bicycling 6166287

Running 0027840 1662876
Volleyball 1662876 6166287

Notice that because the key type is Uncollated and the duplicate-key
values specification is Ordered_by_primary_key, each key list is
sorted according to the default ASCII collating sequence.

Notice also, as shown by the Running key list, each primary-key
value is listed only once in a key list, regardless of the number of
times the alternate-key value occurs in the record.

Variable-Length Key

A variable-length alternate key is an alternate key whose values vary
in length. Its alternate-key definition specifies its starting position, its
maximum length, and its set of delimiter characters. The end of a
variable-length key value is marked by a delimiter character, the end
of the key field, or the end of the record, whichever is found first
starting at the key_ position.

By defining the key as a variable-length key, you can use the
following values as alternate keys:

® The first value beginning at a certain position of the record.
® The last field in a variable-length record.
® All data in a variable-length record.

By defining the key as a variable-length key with the repeating
groups attribute, you can use these values as alternate keys:

® A value found anywhere in a fixed-length field (if all other
characters in the field are in the set of delimiter characters for
the alternate key).

Revision G Keyed-File Concepts 5-25

Alternate Keys

® A value found anywhere in a fixed-length field (if all other
characters in the field are in the set of delimiter characters for ‘
the alternate key).

® Each value in a sequence of values, separated by one or more
consecutive delimiter characters. The sequence of values can be

within: o
- A fixed-length field.
- A variable-length field at the end of the record.

- The entire record.

For Better Performance

Define a key as a variable-length key only when necessary. The
requirement to scan the key field for delimiter characters adds
processing time when the alternate index is built and when the file is
updated.

The following examples use the CREATE_ALTERNATE_INDEXES
subcommand CREATE_KEY_DEFINITION to define variable-length »
keys. .

Example 1:

This subcommand defines the first sequence of non-blank characters in
each record as an alternate-key value. The maximum key-value length
is 80 characters.

create_key_definition, key_name=first_token, ..
key_position=0, key_length=80, variable_length_key=‘ *

0 EOR
[First token in each record.]
g —

Key Value

If the entire record is 80 characters or less and the record contains no
blanks, the key value would be the entire record. .

Example 2:

Suppose each record consists of a required 20-byte portion and an
optional variable-length portion of up to 120 bytes. .

5-26 SCL Advanced File Management Usage Revision G

Alternate Keys

0 20 EOR
[Fi.xed portion Variabie portion

Key Value

This subcommand defines the variable-length portion as an alternate
key.

create_key_definition, key_name=variable_portion, ..
key_position=20, key_length=120, variable_length_key=’"

The null string (") defines an empty delimiter set, indicating that the
end of the key value is marked by either the end of the 120-byte field
or the end of the record.

Example 3:

Suppose a 100-byte field at byte 5 contains one value from 0 through
100 bytes, right-justified and blank-filled.

0 S 99
right-justified

m—_——
Key Value

S

This subcommand defines the value as a variable-length key.

create_key_definition, key_name=right_just, ..
key_position=5, key_length=100, ..
variable_length_key=" “,
repeat ing_group_length=1, repeating_group_count=256

Because the value is right-justified in the field, the key must be
defined with the repeating groups attribute so the search for the value
does not end at the first delimiter.

For a repeating variable-length key, the repeating_ group.length
value can be any integer greater than zero. (The actual value is
irrelevant.) The repeating. group_count is the length of the
alternate-key field.

Revision G Keyed-File Concepts 5-27

Alternate Keys

Example 4:
Suppose that each token in a record is to be a key value.

0 EOR
IEach word, in this record, is a key value

e g gy

Key Values

To define each string of letters in the data as a key value, first,
define an SCL string variable containing all ASCII characters except
the uppercase and lowercase letters, then define the key using the
string variable.

create_variable, key_delimiters, kind=(string,76),..
value=’ 1234567890-=!1@#$% " &*()_+[1 {}";"" :"|,./<>?"..

//$CHAR(000)//$CHAR(001)//$CHAR(002)//$CHAR(003) . .
//$CHAR (004)//$CHAR(005)//$CHAR (006)//$CHAR(007) . .
//$CHAR(008)//$CHAR(008)//$CHAR(010)//$CHAR(011)..
//$CHAR(012)//$CHAR(013)//$CHAR(014)//$CHAR(D15) ..
//$CHAR(016)//$CHAR(017)//$CHAR(018)//$CHAR(019). .
//$CHAR(020)//$CHAR(021)//$CHAR(022)//$CHAR(023) . .
//$CHAR(024)//$CHAR(025)//$CHAR(026)//$CHAR(027) . .
//$CHAR(028)//$CHAR(029)//$CHAR(030)//$CHAR(031) ..
//$CHAR(127)

Notice that the concatenation operator (//) must be left-justified on the
line so that no extra spaces are put in the string. No spaces can
precede the continuation (..) indicator.

This command defines the key using the string variable:

create_key_definition, key_name=words,..
key_position=0, key_length=80,..
variable_length_key=key_delimiters,..
repeat ing_group_length=1, ..
repeat ing_group_count=repeat_to_end_of_record

The repeating_group_length can be any integer greater than zero.
(The actual value is irrelevant). The repeating_group_count is the
alternate-key field length; repeat__to_end_of_record specifies that the
sequence of values continues until the end of the record.

5-28 SCL Advanced File Management Usage Revision G

Nested Files

Nested Files

A nested file is a keyed-file structure defined within a NOS/VE file
cycle. It is recognized and used by the keyed-file interface only, it is
not recognized or used by the NOS/VE file system.

All nested files in a file share the same catalog entry so if one nested
file is damaged and cannot be accessed, all nested files in the file are
considered damaged and cannot be accessed.

The keyed-file interface provides nested files so as to extend the
NOS/VE limit on the number of files a task can use. All nested files
defined in a file share the same memory segment. This provides
effective memory use when the nested files are much smaller than the
segment size limit (232 bytes).

The keyed-file interface creates the initial nested file (named $MAIN_
FILE) when it creates the keyed file. The nested file $MAIN_FILE is
always the default nested file used when no other nested file is
explicitly selected.

Currently, additional nested files can be created by:

® A CYBIL program (as described in the CYBIL Keyed-File and
Sort/Merge Interfaces manual)

® A COPY_KEYED_FILE command that copies an existing nested
file

® The CREATE NESTED FILE subcommand of the CREATE _
KEYED_FILE and CHANGE_KEYED_FILE utilities

When creating a nested file, COPY_KEYED_FILE uses the attributes
of the nested file copied. The CREATE_NESTED_FILE subcommand
defines the attributes of the nested file created.

The following attributes belong to each nested file individually:
® File organization (indexed-sequential or direct-access)

® Record attributes, including the record type and the minimum and
maximum record lengths

® Primary-key attributes, including its key position, key length, key
type, and collation table

¢ Compression procedure name

Revision G Keyed-File Concepts 5-29

Nested Files

® Structural attributes applicable to the file organization

The display produced by a DISPLAY_KEYED_FILE_PROPERTIES
command lists the attributes of each nested file separately (as
described in chapter 6).

All other file attributes apply to all nested files in a keyed file. The
RECORD_LIMIT attribute specifies the maximum number of records
in each nested file.

Each alternate-key definition applies to only one nested file, the
nested file selected when the alternate key is defined.

5-30 SCL Advanced File Management Usage Revision G

i

i '“';M","‘ l‘*iy‘

il
i ;| i,
o st
gl

i
R 7
B i
nEREL : TR R it
o [
P g g T A B
T e sp T
BT T T) ;
! : il [N

dily

iy

il

PR

L

LR SRt

o Fify \yu

L iy

bl

iy
(i

|
il S
L PRy
iy g

G \: (g
e SN,
il il el

i ‘

At i
b :
bl

[

LY

A

SR
| i

e

1,
i |

Shhi
R
iy

RN I
i Y ;
W g Ly b 3 o
i R T

A
IEEH R AU T Wik
g < A i
iy

il Ly

i :

} il s
] .
)) R A L3
i il i Sk Pt LY :
i W, 1 i | i (e i At o K G
ki T TR I TSRk il o \1 Wiy ! Sl
Lo i by 4 il i RN (R !

T ‘
i W

i

S48 Fy

iz ettt]
it g
i K

i

AR
L il”y“”‘ B | V
e Ll

! M R i SR L R g ‘ Pty
Ll : : Kt R NI . b
Vi L N
b w‘}'! B S M’r:‘\‘4“‘ s 1‘!?]““0 ;
i)

i

o

Sl fiotd
i

LR
f i
i |
[3§

IR (L N
oI s e
il oAl

i
e
s

b

el
fa

.
ey

B 0
i i
il b W‘W\‘;’“‘

('

IO

IR i

e ; L o

, ; i) el
ek

i
i
i

M‘;’“ T"
e
i s

it

i

i ol
) (T i
y i il
if't ! " i ;M‘N,\

e
e

Displaying, Copying, and Creating Keyed
‘ Files 6

This chapter describes several basic tasks you can perform on keyed
. files using SCL commands.

Task Commands

Display the properties of DISPLAY_KEYED_ FILE_PROPERTIES
an existing keyed file

Dump the internal DISPLAY_KEYED_FILE
structure and contents of
an existing keyed file

Copy a file COPY_KEYED_FILE
record-by-record

Create a keyed file and SET_FILE_ATTRIBUTES and COPY_
copy data to the new file KEYED_FILE

Re-create an existing SET_FILE_ATTRIBUTES and COPY_
‘ keyed file to improve the KEYED_FILE
file structure

It is assumed that the keyed-file tasks described in this part are used
to prepare files for programs that read keyed files. For information on
writing programs that use keyed files, refer to the CYBIL Keyed-File
and Sort/Merge Interfaces manual, the FORTRAN Language Definition
manual, or the COBOL Usage manual.

Revision G Displaying, Copying, and Creating Keyed Files 6-1

Keyed-File Displays

Keyed-File Displays

To list the contents and properties of an existing keyed file, use the
keyed-file display commands DISPLAY_KEYED_FILE and DISPLAY_
KEYED_FILE_PROPERTIES.

The DISPLAY_KEYED_FILE_PROPERTIES command can list file
attributes and statistics for an existing keyed file. If the file has
alternate keys, it also lists the alternate-key attributes.

The DISPLAY_KEYED_FILE_PROPERTIES display can indicate a
structural error condition by the contents of the Altered_Not_Closed
and Ruined_Flag fields. The other structural properties displayed
show the efficiency of the file structure.

When a structural problem appears in a keyed file, the DISPLAY_
KEYED_FILE command can be used to produce a formatted dump of
the part of the keyed file that is in error. A dump of the file may
help recover the data and fix any software error that caused the
structural error in the file.

6-2 SCL Advanced File Management Usage Revision G

DISPLAY_KEYED_FILE_PROPERTIES Command

DISPLAY_KEYED_FILE _PROPERTIES Command

Purpose

Format

Parameters

Revision H

Displays properties of a keyed file. The displayed
properties can include file attributes, structural properties,
and statistics.

DISPLAY_KEYED_FILE _PROPERTIES (DISKFP)
FILE =file or (file, nested _file_name)
OUTPUT =file
DISPLAY_OPTIONS =list of keyword_value
STATUS =status_variable

FILE or F

Keyed file for which properties are to be displayed. You
must have at least read permission to the file. This
parameter is required.

To specify a nested file, first specify the file reference and
then the nested-file name, enclosed in parentheses.
OUTPUT or O

File to which the display is written. If you omit the
OUTPUT parameter, the display is written to file
$OUTPUT.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO

List of one or more keyword values indicating the
property types to be displayed.

FILE_ATTRIBUTES or File attributes kept for the life

FA of the keyed file.

STATISTICS or S Statistics maintained for the
keyed file.

STRUCTURAL_ Internal organization properties

PROPERTIES or SP of the keyed file.

ALL or A All of the above. (You cannot
specify other keywords with
ALL))

If you omit the DISPLAY_OPTIONS parameter, the
display includes the file attributes and structural
properties, but not statistics.

Displaying, Copying, and Creating Keyed Files 6-3

DISPLAY_KEYED_FILE_PROPERTIES Command

STATUS

Optional SCL status variable. If you specify the STATUS
parameter, the command returns its completion status in
the specified variable.

Remarks ® The display consists of two or more pages of output.

- The first page lists the properties that pertain to
the entire file.

- The second and any subsequent pages list the
properties of each nested file in the file and the
alternate keys defined for each nested file.

Unless additional nested files have been created in the
file, a keyed file contains only one nested file; it is
named $MAIN_FILE.

® At the file level, the file attributes and their possible
values are as follows:

Application_Information : none or string

Block_Length "actual" . 4096

Error_Exit_Name . none or name .

File_Access_Procedure : none or name

File_Content . UNKNOWN, LIST,
LEGIBLE, OBJECT, or
SOURCE

File_Limit . integer "bytes"

Forced_ Write : unforced, forced or
forced_if_structure_
change

Log_Residence : none or catalog path

Logging_ Options : none, enable_media_

recovery, enable_
request__recovery, or

all

Maximum_ Record_ : integer "bytes"

Length

Minimum_Record_Length : integer "bytes"

Open_ Position : $boi, $bop, $eoi or .
$asis

6-4 SCL Advanced File Management Usage Revision H

DISPLAY_KEYED_FILE_PROPERTIES Command

Permanent : yes or no

Record__ Limit : integer

Ring_ Attributes . (integer, integer,
integer)

Size : integer "blocks"

User_ Information : none or string

Revision H Displaying, Copying, and Creating Keyed Files 6-4.1

DISPLAY_KEYED_FILE_PROPERTIES Command

This page intentionally left blank.

6-4.2 SCL Advanced File Management Usage Revision H

Revision H

DISPLAY_KEYED_FILE_PROPERTIES Command

Nested File Attributes

® For each nested file, the file attributes and their
possible values are as follows:

Compression_ Procedure__
Name
Creation_Date

Embedded__Key
File__Organization

Key_Length-
Key_Position
Key_Type

Maximum_ Record_ Length
Minimum_ Record_Length
Record_Type

name

mm/dd/yy
hh:mm:ss.nnn

yes or no
indexed__sequential
or direct_access
integer "bytes"
integer

uncollated, collated
or integer

integer "bytes"
integer "bytes"
undefined, variable
or fixed

The key values apply only to the primary key.

In addition, for indexed-sequential files only:

Collate_Table_Name
Character_ Mapping

Character _Ordering

Data_Padding
Index_Padding

name
$CHAR(character__
ordinal) "symbol" =>
collating weight in
hex.

collate sequence
position = > character
integer "%"

integer "%"

In addition, for direct-access files only:

Dynamic_Home_Block _
Space

Hashing__ Procedure_
Name

Home_Block_ Count

yes or no

name or
AMP$SYSTEM _
HASHING_
PROCEDURE
integer

Displaying, Copying, and Creating Keyed Files 6-5

DISPLAY_KEYED_FILE_PROPERTIES Command

Alternate-Key Attributes .

® For each alternate key, DISPLAY_KEYED_FILE_
PROPERTIES lists only those properties defined for

the key. These are the possible alternate-key file

attributes and values:

Collate_Table_Name

Character_Mapping

Character__Ordering

Concatenated__Key

Key_ Length "Piece nn"
Key__Position "Piece nn"
Key_Type "Piece nn"

Creation_Date

Duplicate_Key_ Values

Key_Group_Name
Null_Suppression
Repeating_ Groups_
Specified

Repeating_ Group_ Count

Repeating_ Group_ Length

Sparse__Key_ Control
Sparse__Key_ Control _
Position
Sparse__Key__Control _
Characters
Sparse_Key_ Control _
Effect
Variable_Length__Key
Key_Delimiter_
Characters

6-6 SCL Advanced File Management Usage

name or (defaulted to
primary-key table)
$CHAR(character_
ordinal) "symbol" =>
collating weight in
hex.

collate sequence
position => character
yes or no

integer "bytes"
integer

uncollated, collated or
integer

mm/dd/yy
hh:mm:ss.nnn
ordered_by_primary_
key, first_in_ first_
out, or not_allowed
name

yes or no

yes or no

integer
integer "bytes"
yes or no
integer

$CHAR(nnn) "x" //
$CHAR(nnn) "x"
include__key_value or
exclude_key__value
yes

$CHAR(nnn) "x" //
$CHAR(nnn) "x"

Revision H

DISPLAY_KEYED_FILE_PROPERTIES Command

® The values subordinate to the Concatenated_ Key,
Repeating_ Groups_ Specified, Sparse_Keys, and
Variable_Length_Key fields are displayed only if
defined for the key.

If the key is not a concatenated key, only one set of
Key_Length, Key_Position, and Key_Type values is
listed. Otherwise, a set is listed for each piece of the
concatenated key.

® The Collate_Table_Name file attribute is displayed
only if a collated key is defined for the file (either the
primary key or an alternate key). The Collate_Table
itself is displayed if the collation table name does not
begin with OSV$ (that is, the collating sequence is not
one of the NOS/VE collating sequences listed in
appendix E).
The collate table is displayed twice: The first display
shows the collating weight assigned to each character,
and the second display shows the characters in weight
order.

® At the file level, the structural properties and their
possible values are as follows:

Altered_Not_Closed
Nested_File_Count
Ruined_Flag

Segment_Information
Blocks_In_Use
Empty_ Block__Count

yes or no
integer

off, file_ruined_at_
flush, bad_rasp_
structure, read_error,
write_error,
alternate_key_
mismatch, cannot_
find_rasp, bad_
empty__chain

integer
integer

Displaying, Copying, and Creating Keyed Files 6-7

DISPLAY_KEYED_FILE_PROPERTIES Command

® At the nested-file level, the structural properties and
their possible values are as follows:

Block__Count : integer
Ruined__Flag : (same as at file level)

In addition, for indexed-sequential files only:

Index_Levels "current" . integer
Index_ Level _Overflow . yes or no

® For each alternate key, the structural properties and
their possible values are as follows:

Block_Count . integer

Index_Levels "current" : integer
Index__Level_Overflow . yes or no
Ruined_Flag . (same as at file level)

® You can use DISPLAY_KEYED_FILE_PROPERTIES
to determine whether the keyed-file structure is intact.

- The structural property Altered_Not_Closed is a
flag that indicates a structural error. It is most
often set when a system failure during file
modification prevents the file from being closed
(flushed).

- The structural property Ruined_Flag lists the
structural error condition if one exists. If the
Ruined_Flag is set for any nested file or alternate
key in a file, it is set at the file level also.

® This statistic is listed at the file level:

Segment_ Information
Last_Flush : mm/dd/yy hh:mm:ss.nnn

6-8 SCL Advanced File Management Usage Revision H

Examples

Revision H

DISPLAY_KEYED_FILE_PROPERTIES Command

These statistics are listed at the nested file level:

Alternate__Keys : integer
File_ Accesses

Open_Count : integer
Delete__Count : integer
Get_Count . integer
Get_Next_ Count . integer
Put_Count . integer
Putrep_Count : integer
Replace_Count : integer
Record_Count : integer

In addition, for direct-access files only:

Overflow_Block_ . integer
Count
Overflow_Record_ : integer
Count

The file access statistics listed may be inaccurate if
the file has been read without modify permission. The
reason for this is that when the file is read without
modify permission, the statistics for that read cannot
be recorded.

If the file specified on the command is not a keyed
file, DISPLAY_KEYED_FILE_PROPERTIES returns
the warning status, AAE$FILE_IS_NOT_A_KEYED_
FILE.

If the file specified on the command does not exist,
DISPLAY_KEYED_FILE_PROPERTIES returns the
warning status, AAE$FILE_DOES_NOT_EXIST.

This command lists statistics and structural properties for
file $USER.KEYED_FILE on file $USER.LIST:

display_keyed_file_properties ..
file=$user .keyed_file output=$user.list ..
display_option=(statistics, structural_properties)

Displaying, Copying, and Creating Keyed Files 6-9

DISPLAY_KEYED_FILE_PROPERTIES Command

This command lists the file attributes and structural
properties of file $USER.ISFIL on $OUTPUT. The
resulting display is shown:

/diskfp $user.isfil

Display Keyed_File_Properties 1986-11-03
NOS/VE Keyed File Utilities 1.3 85259 10:31:23
File = .NVE.USERSS.ISFIL
File_attributes and structural_properties at the
file level
Altered_Not_Closed : no
Application_Information : none
Block_Length "actual” : 4096 "bytes”
Error_Ex it_Name : none
File_Access_Procedure : none
File_Content © UNKNOWN
File_Limit . 4398046511103 "bytes”
Forced_Write : unforced
Log_Residence : none
Logging_Options 1 none
Maximum_Record_Length : 80 “bytes"”
Minimum_Record_Length : 50 "bytes"
Nested_File_Count i1
Open_Position : $boi
Permanent : yes
Record_L imit : 4398046511103
Ring_Attributes (11, 11, 1)
Ruined_Flag : off
Segment _Information
Blocks_In_Use : 2
Empty_Block _Count : 0
Size : 2 "blocks”
User _Information : none
Display Keyed_File_Properties 1985-10-03
NOS/VE Keyed File Utilities 1.1 85259 10:31:23
File_attributes and structural_properties of
$MAIN_FILE
Block_Count 1
Compress ion_Procedure_Name :
Creation_Date : 3/25/85 15:50:14.274
Data_Padding A
Embedded_Key : yes
File_Organization : indexed_sequential
Index_Levels “"current” : 0
Index_Level_Overf low : no
Index_Padding 20
Key_Length : 5 "bytes”
Key_Position : 0
Key_Type : uncollated
Max imum_Record_Length : 80 "bytes”
Minimum_Record_Length : 5 "bytes”
Record_Type . undef ined
Ruined_Flag . off
6-10 SCL Advanced File Management Usage Revision H

Keyed-File Displays

DISPLAY_KEYED_FILE Command

Purpose

Format

Parameters

Revision G

Formats and displays the contents of a keyed file.

For Better Performance

Do not use DISPLAY_KEYED_FILE while the file is
being updated. DISPLAY_ KEYED_FILE must wait until
all (shorten, append, modify) updates in progress have
completed before it begins, and then it forces all file
updates to wait until it completes.

DISPLAY_KEYED_FILE or

DISKF
INPUT =file
OUTPUT =file

FORMAT = keyword_value

DISPLAY_ OPTIONS =list of keyword_ value
BLOCK _LIST =list of range of integer
STATUS =status__variable

INPUT or 1

File whose contents are to be displayed. You must have
at least read permission to the file. This parameter is
required.

OUTPUT or O

File to which the formatted display is written. If you omit
the OUTPUT parameter, the display is written to file
$OUTPUT.

FORMAT or F

List of one or more keyword values indicating the
representation used for the contents of records.

ASCII or A ASCII characters.
HEXADECIMAL or H Hexadecimal digits.

ALL Both ASCII characters and
hexadecimal digits. (No other
formats can be specified with
ALL)

Displaying, Copying, and Creating Keyed Files 6-11

Keyed-File Displays

If you omit the FORMAT parameter, the representation
used is ASCII.
DISPLAY_OPTIONS or DISPLAY_ OPTION or DO

List of one or more keyword values indicating the types
of information to be displayed.

MAP or M Cross-reference of all blocks
TABLES or T Formatted contents of internal
tables

INDEX_BLOCKS or IB Index records
or I

DATA_BLOCKS or DB Data records

or D
EMPTY_BLOCKS or Block numbers of empty blocks
EB or E
ALL or A All the preceding options. (No
other display options can be
specified with ALL.) ’

The default value depends on whether the BLOCK_LIST
parameter is specified. If the BLOCK_LIST parameter is
not specified, the default value is MAP. If the BLOCK__
LIST parameter is specified, the default value is ALL.

BLOCK_LIST or BL

Optional list of block numbers indicating the blocks to be
displayed. The blocks are displayed in the order specified
in the list.

You can specify from 1 through 999 block numbers and
ranges of block numbers. Block numbers range from 0
through 4398046511103 ([2**42] - 1).

The BLOCK_LIST parameter does not limit the blocks in
the MAP cross-reference. .

If you omit the BLOCK_LIST parameter, the command
applies to all blocks in the file.

6-12 SCL Advanced File Management Usage Revision G

Keyed-File Displays

STATUS

Optional SCL status variable. If you specify the STATUS
parameter, the command returns its completion status in
the specified variable.

Remarks ® A dump of even a small keyed file produces a very
long listing. So it is recommended that you first get a
cross-reference listing of the file (DISPLAY_

OPTION =MAP) so that you can limit the file dump to
only the pertinent information.

The parameters that limit the file dump are FORMAT,
DISPLAY_ OPTIONS, and BLOCK_LIST.

® Do not specify FORMAT=ALL unless you require both
ASCII and hexadecimal representation; ALL doubles
the number of lines required to list record contents.

® The DISPLAY_OPTIONS parameter specifies the types
of information dumped.

The MAP keyword produces a cross-reference. The
cross-reference lists the header, index, and data block
numbers for each nested file and the header and index
block numbers for each alternate key. It also lists the
empty blocks.

The TABLES keyword produces a listing of these
internal tables:

Block header

File configuration

Rasp configuration

Segment control

Rasp list

Alternate-key definition
If the EMPTY_BLOCKS keyword is specified, each
empty block encountered adds a line to the display,
containing the block number of the empty block. If the
EMPTY_BLOCKS keyword is omitted, empty blocks
encountered are ignored.

Revision G Displaying, Copying, and Creating Keyed Files 6-13

Keyed-File Displays

® In general, the DISPLAY_OPTIONS and BLOCK_
LIST parameters work together to limit the
information in the display. The display includes only
the types of information specified that apply to the
blocks specified. The only exception is for the MAP
keyword; whenever it is specified, a cross-reference for
all blocks is displayed.

® If the file specified on the command is not a keyed
file, DISPLAY_KEYED_FILE returns the warning
status, AAE$FILE_IS_NOT_A_KEYED_FILE.

® If the file specified on the command does not exist,
DISPLAY_KEYED_FILE returns the warning status,
AAES$FILE_DOES_NOT_EXIST.

Examples This command writes a cross-reference of the contents of
file $USER.ISFILE on file ISMAP:

/display_keyed_file input=$user.isfile output=ismap

Assume that using the cross-reference from the previous
example, you decide to dump the data records from blocks
6 and 7 and blocks 9 through 15 in ASCII format. To do
so, you enter this command:

/display_keyed_file input=s$user.isfile ..
../output=isdump display_option=data_blocks ..
../block_list=(6,7,9..15)

You could then print the listing on file ISDUMP.

6-14 SCL Advanced File Management Usage Revision G

Copying To or From a Keyed File

. Copying To or From a Keyed File

To copy data records to or from a keyed file, use the COPY_
KEYED_FILE command. It can:

® (Copy data records from a sequential file to a keyed file

® Copy data records from a keyed file to another keyed file with
different attributes

® Duplicate an existing keyed file
® Copy data records from a keyed file to a sequential file
® Add data records to an existing keyed file.

The first three operations are shown in later examples in this chapter.
The first operation (copying from a sequential file to a keyed file) is
shown as part of keyed-file creation and the second and third
operations (copying a keyed file to another keyed file) are shown as
part of keyed-file re-creation. The last two operations are described
here.

. Copying Data Records From a Keyed File to a
Sequential File

A COPY_KEYED_FILE command can copy records from a keyed file
to a sequential file. It reads records sequentially from the input file.

A sequential read from an indexed-sequential file reads records in
ascending order by primary-key value. For example, the following
command copies the records in an indexed-sequential file to the
sequential file, $OUTPUT. The records are listed in order by their
primary key (the restaurant name).

/copy_keyed_file input=$user.restaurants output=$output

Arnold’s Casual Pizza
Burger Duke Casual Hamburgers
Gung Ho Casual Chinese

(A file copied to $OUTPUT must contain only displayable characters.)

Revision G Displaying, Copying, and Creating Keyed Files 6-15

Copying To or From a Keyed File

Adding Data Records to an Existing Keyed File

To add data to an existing keyed file, you must specify $ASIS or
$EOI as the file position designator on the output file reference.
Otherwise, COPY_KEYED_FILE opens the output file at its
beginning-of-information (BOI) and discards all existing data in the
file.

For example, the following command adds the data records on file
$USER.NEW_MEMBERS to the existing keyed file
$USER.MEMBERSHIP:

/copy_keyed_file input=$user.new_members ..
. ./output=$user .membership.$eoi

When COPY_KEYED_FILE finds an error (such as a duplicate
primary-key value), it terminates with only part of the records added.
The following shows the error messages you receive when this
happens:

/copy_keyed_file, $user.new_members, temporary_file.$eoi
--ERROR-- File TEMPORARY_FILE already contains the key of this
AMP$PUT_NEXT operation -- primary_key = 96070

—--FATAL-- File TEMPORARY_FILE: COPY_KEYED_FILE encountered an
error while calling AMP$PUT_RECORD. Some of the copy has
occurred, and processing stops.

All of the records in the input file up to the record with the duplicate
key value have been added to the output file. To add the rest of the
records, you must create another input file containing only those
records.

Because of the possibility of duplicate primary-key values, you may
want to add the data to a temporary copy of the output file. If the

operation succeeds, you would then replace the permanent copy with
the temporary copy. For example:

/copy_keyed_file, $user.output_file, temporary_file
/copy_keyed_file, $user.new_records, temporary_file.$eoi
/copy_keyed_file, temporary_file, $user.output_file

6-16 SCL Advanced File Management Usage Revision G

Copying To or From a Keyed File

COPY_KEYED_FILE Command

Purpose

Format

Parameters

Revision G

Performs a record-by-record copy.

COPY_KEYED_FILE or

COPKF
INPUT=f{ile or (file, nested _file_name)
OQUTPUT =file or (file, nested_file_name)
PRESERVE_KEY_DEFINITIONS = boolean
STATUS =status__variable

INPUT or 1

File to be copied. You must have at least read permission
to the file. This parameter is required.

To specify a nested file, enclose the file reference followed
by the nested-file name in parentheses. If you omit the
nested-file name, each nested file in the keyed file is
copied.

COPY_KEYED_FILE positions the file before the copy
according to the open position specified for the file. If a
file position is not specified on the file reference, the
OPEN_POSITION attribute is used. (The default OPEN_
POSITION attribute value is $BOI.)

If the open position is $EOI or $ASIS, only the file
attributes are copied; no records are copied from the input
file.

OUTPUT or O

File to which the input file is copied. You must have at
least append permission to the file. The default output file
is the standard file $OUTPUT.

If the INPUT parameter specifies a nested-file reference,
the OUTPUT parameter can specify a nested-file
reference. (This copies one nested file; you cannot copy
multiple nested files to a single nested file or to a
sequential file.)

To specify a nested file, enclose the file reference followed
by the nested-file name in parentheses.

Do not specify the nested-file name $MAIN_FILE on the
OUTPUT parameter when the open_ position of the output
file is $BOI. (This requests deletion of $MAIN_FILE
which is not allowed.)

Displaying, Copying, and Creating Keyed Files 6-17

Copying To or From a Keyed File

PRESERVE_KEY_DEFINITIONS or PKD

Indicates whether the alternate-key definitions from the ’
input file (if any) are copied to the output file.

TRUE or ON or Apply alternate-key definitions.

= ®
FALSE or OFF or Do not apply alternate-key
NO definitions.

If PRESERVE_KEY_DEFINITIONS is omitted, the
alternate-key definitions are copied.

STATUS

Optional SCL status variable. If you specify the STATUS
parameter, the command returns its completion status in
the specified variable.

The first error returned by COPY_KEYED_FILE is
stored in the specified status variable; any subsequent
error messages are written to the $ERRORS file.

Remarks ® The INPUT and OUTPUT parameters cannot specify
the same file cycle unless the parameters specify '
different nested files in the file cycle.

® COPY_KEYED_FILE supports copying to and from
files with sequential and keyed-file organizations. It
does not support copying to or from byte-addressable
files.

® If the INPUT or OUTPUT file could be shared by
more than one instance of open, you should attach the
file for exclusive access (SHARE_MODE =NONE)
before the copy. This prevents other tasks from locking
records, which would cause COPY_KEYED_FILE to
terminate.

® COPY_KEYED_FILE reads records sequentially using
the CYBIL procedure AMP$GET_NEXT. It reads
records from the input file until it reads an ‘
end-of-partition or end-of-information delimiter.

As each record is read, COPY_KEYED_FILE writes
the record sequentially to the output file using the
CYBIL procedure AMP$PUT_NEXT. ‘

6-18 SCL Advanced File Management Usage Revision G

Revision G

Copying To or From a Keyed File

® COPY_KEYED_FILE writes statistics to $ERRORS if

requested by the respective MESSAGE_CONTROL
attributes of the input and output files. It writes the
output file statistics before the input file statistics.
(For a sequential file, no statistics are written because
the MESSAGE_CONTROL attribute has no effect for
sequential files.)

New File

® If the output file is a new file (a file that has never

been opened), the output file is given the preserved
attributes of the input file that have not been defined
for the output file.

Temporary attributes are not copied.

If no attributes have been defined for the output file
(no SET_FILE_ATTRIBUTES commands have been
executed for the file), the new output file is given all
attributes of the input file with the following
exception:

The RING_ATTRIBUTES attribute of the input file is
not given to the output file. The output file is given
the RING_ATTRIBUTES attribute of the caller of the
COPY_KEYED_FILE command.

Existing File

When copying to an existing file, the file attributes of
the output file are not changed. The copy performed
depends on the output file position as follows:

- If the file position is $BOI, the output file is
overwritten. All output file data and alternate keys
are discarded.

~ If the file position is $ASIS or $EOI, the files are
merged. The records already existing in the output
file are not deleted or replaced.

If the output file is a keyed file, the primary-key
value for each input record is entered, if
appropriate, in the alternate indexes already
existing in the file.

Displaying, Copying, and Creating Keyed Files 6-19

Copying To or From a Keyed File

LIST File

® When copying to a file whose FILE_CONTENTS
attribute value is LIST, COPY_KEYED_FILE inserts
a space character at the beginning of each record to
serve as the carriage control character.

The FILE_CONTENTS attribute value of a keyed file
cannot be LIST.

Fixed-Length Records

¢ When the output file has fixed-length (F) records,
COPY_KEYED_FILE pads input records shorter than
the output record length. It pads using the character
specified by the PADDING_CHARACTER attribute of
the output file. (The default is the space character.)

Differing EMBEDDED _KEY Attributes

® When the input file has nonembedded keys, COPY_
KEYED_FILE prefixes the key value to the record
data when it reads each record. When the output file
has nonembedded keys, COPY_KEYED_FILE assumes
that the key value is prefixed to the input record data.

For example, suppose FILE1, a file with 3-byte
nonembedded keys, contains this record:

Key Value Record Data
KEY DATA

Assume you copy FILE1 to FILEZ2, a file with
embedded keys (or a sequential file). The record is
written to FILE2 as:

Record Data
KEYDATA

6-20 SCL Advanced File Management Usage Revision G

Revision G

Copying To or From a Keyed File

Next, if you copy either FILE1l or FILE2 to FILE3, a
file with 1-byte nonembedded keys, the record is
written to FILE3 as:

Key Value Record Data

K EYDATA

When the EMBEDDED_KEY attribute differs for the
input and output files and PRESERVE_KEY_
DEFINITIONS=TRUE is specified, COPY_KEYED_
FILE adjusts the alternate-key positions before
applying the alternate-key definitions to the output
file. The following example shows a copy from
embedded to nonembedded:

Suppose FILE1 has a 5-byte embedded primary key
and an alternate key that begins at byte 10. FILE2 is
defined with a 5-byte nonembedded primary key. This
command is executed:

copy_keyed_file filel file2 ..
preserve_key_definitions=yes

COPY_KEYED_FILE stores the first 5 bytes of each
input record as the primary-key value and writes the
rest of the input record as the output record. It then
changes the alternate-key position from byte 10 to
byte 5. (It subtracts the primary-key length from the
old alternate-key position.)

A copy from nonembedded to embedded works the
same way except that it adds (instead of subtracts) the
primary-key length to the alternate-key position.

If an alternate key overlaps the primary key, the
alternate-key definition is no longer valid in a file
with a nonembedded key. COPY_KEYED_FILE does
not apply such an alternate-key definition; it sends a
message to notify you of the overlap.

COPY_KEYED_FILE cannot merge files when the
EMBEDDED_KEY attributes of the input and output
files differ. Thus, when the EMBEDDED_KEY
attributes differ, the file position indicator on the
output file reference cannot be $ASIS or $EOI.

Displaying, Copying, and Creating Keyed Files 6-21

Copying To or From a Keyed File

® If you prefer that the nonembedded key values be
discarded rather than prefixed to the data, use FMU .
to copy the file, instead of COPY_KEYED_FILE. For
more information, see chapter 6.

Alternate Keys .

® After the data records have been copied to a keyed
file, any alternate-key definitions in the input file are
applied to the output file (assuming the command does
not specify PRESERVE_KEY_DEFINITIONS=FALSE).

¢ COPY_KEYED_FILE cannot preserve the first-in,
first-out ordering of duplicate values in an alternate
index.

When COPY_KEYED_FILE builds an alternate index,
it reads all records in the file sequentially. This
means that, for a direct-access file, the records are
read in random order and so duplicate values are
stored in random order. For an indexed-sequential file,
the records are read in order by primary-key value.
Thus, each duplicate value is found and stored in

primary-key order. .
First-in, first-out ordering is still in effect for later
updates to the file.

To copy a keyed file and keep the first-in, first-out
ordering of duplicate key values, use a command that
performs a byte-by-byte copy, such as COPY_FILE,
BACKUP_PERMANENT_FILE, or CHANGE_
KEYED_FILE.

® COPY_KEYED_FILE cannot copy a user-defined
collation table directly from the input file to the
output file. It gets the collation table name from the
input file and then reloads the collation table from the
program library list.

So, before copying a keyed file with a user-defined

collation table, you must add the object library

containing the collation table to the program library .
list using a SET_PROGRAM_ATTRIBUTES command.

For more information, see appendix E.

6-22 SCL Advanced File Management Usage Revision G

Revision G

Copying To or From a Keyed File

Nested Files

COPY_KEYED_FILE copies a single nested file when
its INPUT parameter specifies a nested-file name.
Otherwise, it copies all nested files in the input file.

COPY_KEYED_FILE cannot copy multiple nested
files (all nested files in the input file) to a single
nested file or to a sequential file.

Do not specify the nested-file name $MAIN_FILE on
the OUTPUT parameter when the open position of the
output file is $BOI. (This requests deletion of $MAIN_
FILE which is not allowed.)

COPY_KEYED_FILE creates a new nested file when
a nested-file name is specified on the OUTPUT
parameter and the open position of the output file is
$BOL. It creates the nested file with the attributes of
the input nested file. If the input file is a sequential
file, COPY_KEYED_FILE cannot create the nested
file so it terminates with a fatal error.

COPY_KEYED_FILE requires append, shorten, and
modify permissions to create or replace a nested file.

COPY_KEYED_FILE merges the records of the input
file with those of the output nested file when the open
position of the output file is $ASIS or $EOL

To merge the records from one nested file into another
nested file in the same file, you must copy the records
from the input nested file to a temporary file and then
copy the temporary file to the output nested file.

For example, to merge $MAIN_FILE with NESTED_
FILE_1 in file $USER.KEYED_FILE:

/copy_keyed_file, ($USER.KEYED_FILE, ..
$MAIN_FILE), temp
/copy_keyed_file,temp, ($USER .keyed_file.$eoi, ..
nested_file_1)

Displaying, Copying, and Creating Keyed Files 6-23

Copying To or From a Keyed File

® When copying all nested files in the input file (no
nested-file name is specified on the INPUT parameter),
the copy performed depends on the open position of the
output file, as follows:

-~ If the open position is $BOI, the contents of the
output file are discarded and all input nested files
are copied to the output file.

- If the open position is $ASIS or $BOI, the contents
of the input and output files are merged. If an
output nested file exists with the same name as an
input nested file, the nested files are merged;
otherwise, the input nested file is created in the
output file. (All nested files that existed in the
output file before the copy remain in the output
file after the copy.)

Examples This command copies the keyed file .YOUR.ISFILE to the
keyed file $USER.ISFILE. It discards any data or
alternate keys on $USER.ISFILE and then copies the data
and alternate keys from .YOUR.ISFILE to $USER.ISFILE.

copy_keyed_file .your.isfile $user.isfile '

This command copies the keyed file $USER.ISFILE to the
next cycle of the file. It does not copy the alternate-key
definitions.

copkf $user.isfile $user.isfile.$next pkd=no

This command copies one nested file to a second nested
file. (If the second nested file does not exist, it is created,
identical to the first nested file.)

copy_keyed_file, ..
input=($user .direct_access_file, nested_file_1) ..
output=($user.direct_access_file, nested_file_2)

6-24 SCL Advanced File Management Usage Revision G

Revision H

COPY_KEYED_FILE Command

These commands create a new file cycle (cycle 2)
containing three nested files. The first command creates
the default nested file $MAIN_FILE containing the
records from SEQUENTIAL_FILE. The second and third
commands create the nested files NF1 and NF2,
respectively, each identical to the corresponding nested
file in cycle 1.

copy_keyed_file, ..

sequential_file $user.keyed_file.2
copy_keyed_file, ..

($user .keyed_file.1,nf1) ($user.keyed_file.2,nf1)
copy_keyed_file, ..

($user .keyed_file.1,nf2) ($user.keyed_file.2,nf2)

Displaying, Copying, and Creating Keyed Files 6-25

Creating a Keyed File

Creating a Keyed File

You can create a keyed file using SCL commands or by using the
CREATE_KEYED_FILE utility described in chapter 8.

Creating a keyed file using SCL commands involves three steps:
1. Associate a file cycle with a set of file attributes.

2. Copy data to the new keyed file.

3. Create optional alternate keys.

It is most efficient to create the alternate keys after the data has
been copied to the file. However, step 3 can precede step 2. (You can
create alternate keys before copying data to the file).

The first step, associating the file name with a set of file attributes,
is described in the next subsection.

After defining the attributes for the new keyed file, copying data to a
new keyed file (step 2) requires these steps:

1. Enter the data records in a sequential file if the data has not
already been captured. (If the data records require reformatting,
use FMU as described in chapter 10 of this manual.)

2. Create the keyed file by copying the data records to it. This can
be done by executing a COPY_KEYED_FILE command.

(When using COPY_KEYED_FILE to copy to an empty file that
already contains alternate-key definitions, specify $EOI or $ASIS
as the output file open position. Otherwise, the alternate-key
definitions are evicted from the output file.)

Or, for an indexed-sequential file, a SORT or MERGE command
can sort and copy the data records to the file. This is useful if:

a. The input records are not sorted by the primary key.

b. The data records are in more than one file.

(For more information, see the Sort/Merge TO parameter
description in chapter 2.)

The third step, defining alternate keys, is described in chapter 3.

6-26 SCL Advanced File Management Usage Revision H

Creating a Keyed File

Defining Keyed-File Attributes

The NOS/VE command SET_FILE_ATTRIBUTES defines the
attributes of a file. The first parameter of the command specifies the
file cycle. Each subsequent parameter specifies the value of a file
attribute.

The SET_FILE_ATTRIBUTES command can set any of the file
attributes. This section describes only the keyed-file attributes. For
the complete SET_FILE_ATTRIBUTES command format, see the
NOS/VE Commands and Functions manual.

NOTE

Most attributes have a default value that is used if you do not specify
the attribute on the SET_FILE_ATTRIBUTES command. However,
the default value is sometimes inappropriate for keyed files. Therefore,
it is recommended that you explicitly specify a value for all relevant
keyed-file attributes.

To create a keyed file, you specify a keyed-file organization as the
file_organization attribute.

For an indexed-sequential file, specify:

FILE_ORGANIZATION =INDEXED_SEQUENTIAL
or, abbreviated, FO=IS

For a direct-access file, specify:

FILE_ORGANIZATION =DIRECT_ACCESS
or, abbreviated, FO=DA

The FILE_ORGANIZATION attribute is a preserved attribute.

The other keyed-file attributes define record attributes, primary-key
attributes, file structure attributes, and processing attributes.

Revision J Displaying, Copying, and Creating Keyed Files 6-27

Creating a Keyed File

Record Attributes

These attributes describe the data records to be copied to the keyed
file. To determine the attribute values of the sequential file containing
the data to be copied to the keyed file, use a DISPLAY_FILE_
ATTRIBUTES command, such as:

/display_file_attributes data_file ..
../display_options=(record_type, maximum_record_iength, ..
../minimum_record_length)

NOTE

The record attributes are all preserved attributes, that is, the
attribute value is stored with the file when the file is first opened
and cannot be changed thereafter.

Each parameter description begins with the parameter name followed
by its abbreviation in parentheses.

RECORD_TYPE or RT

Record type: FIXED (F), VARIABLE (V), or UNDEFINED (U). The
default is UNDEFINED. (For keyed files, the record types ‘
VARIABLE and UNDEFINED are processed as the same and the

record type TRAILING_CHARACTER_DELIMITED [T] is not

supported.)

MAXIMUM_RECORD_LENGTH or MAXRL

Maximum number of bytes in a data record (from 1 through
65497). This parameter is required.

MINIMUM_RECORD_LENGTH or MINRL

Minimum number of bytes in a data record (from 0 through
65497).

If the RECORD_TYPE is FIXED, the default minimum record

length is 0. However, the length of all fixed-length records must

be the MAXIMUM_RECORD_LENGTH value.

When the records are variable-length and the key is embedded, the
default is the sum of the KEY_POSITION and KEY_LENGTH ()
values. The default for variable-length records with a nonembedded

key is 1.

6-28 SCL Advanced File Management Usage Revision J

Creating a Keyed File

. For variable-length records, you should explicitly specify this
attribute. The minimum record length must include:

® The primary-key field

. ® All fixed-length alternate-key fields (or their sparse-key control
characters) unless the key repeats to the end of the record.

Primary-Key Attributes

These attributes define the primary key of the new file. See chapter 5
for more information on primary keys.

NOTE

The primary-key attributes are all preserved attributes, that is, the
attribute value is stored with the file when the file is first opened
and cannot be changed thereafter.

Each parameter description begins with the parameter name followed
by its abbreviation.

. EMBEDDED_KEY or EK

SCL boolean value indicating whether the primary key is part of
the record data (embedded) or separate from the record data
(nonembedded). The default is TRUE (embedded keys).

KEY_LENGTH or KL

Integer specifying the primary-key length in bytes (for integer
keys, from 1 through 8; for other key types, from 1 through 255).
This parameter is required.

KEY_POSITION or KP

Position of the leftmost byte in the primary key (specified only if
the key is embedded). The byte positions in a record are numbered
from the left, beginning with 0. The default is 0.

KEY_TYPE or KT

. Primary key type: UNCOLLATED (UC), INTEGER (I), or
COLLATED (C). The default is UNCOLLATED.

For a direct-access file, any value specified for the KEY_TYPE
. attribute is ignored; the KEY_TYPE attribute value for
direct-access files is always UNCOLLATED.

Revision J Displaying, Copying, and Creating Keyed Files 6-29

Creating a Keyed File

COLLATE_TABLE_NAME or CTN

Name of the collating sequence by which collated keys are ordered
(required if the KEY_TYPE is COLLATED).

The name can be the name of a NOS/VE predefined collating sequence
or a user-defined collating sequence (an entry point in an object
library). See appendix E for more information.

If a collation table name has been specified, the collation table is
loaded when the file is first opened; however, it is not used unless the
file is an indexed-sequential file with a collated primary key.

File Structure Attributes

The file structure attributes define characteristics of the internal file
structure. Some attributes are common to all keyed-file organizations
while others apply to only one organization. See chapter 5 for a
description of keyed-file structure.

NOTE

The FILE_LIMIT attribute sets a limit on the maximum file length
in bytes. If the length of a keyed file reaches its FILE_LIMIT value,
the ruined flag is set. (This prevents access to the file data so the file
must be re-created using COPY_KEYED_FILE.)

The default FILE_LIMIT value is its maximum value (2%2-1) so, for
keyed files, use the default FILE_LIMIT value.

Each parameter description begins with the parameter name followed
by its abbreviation.

RECORD_LIMIT or RL

Maximum number of data records allowed in each nested file in
the file (integer greater than 0).

The default value is the maximum allowed value (242-1). Thus, you
should specify this attribute only when you want to limit the
number of records in the file to less than the maximum.

You can increase the RECORD_LIMIT value with a CHANGE _
FILE_ATTRIBUTE command even after the file has been opened.
For more information, see the NOS/VE System Usage manual.

6-30 SCL Advanced File Management Usage Revision J

Creating a Keyed File

MAXIMUM_BLOCK_LENGTH or MAXBL

Number of bytes in each block (integer from 1 through 16777215).
If the value is less than the maximum record length, it is
increased to that value. Then, if the value is not a power of 2
between 2048 and 65536, it is changed as follows:

® A value less than 2048 is increased to 2048 (the minimum
allocation unit).

® A value between 2048 and 65536, but not a power of 2, is
increased to the next power of 2 (4096, 8192, 16384, 32768, or
65536).

® A value greater than 65536 is decreased to 65536.

The minimum block length is one page if the MAXIMUM_
BLOCK_LENGTH attribute is not specified. The minimum block
length is 2048 bytes if the MAXIMUM_BLOCK_LENGTH is
specified.

NOTE

If the file will be shared by more than one concurrent instance of
open and forced-writing will be used (the FORCED_WRITE
attribute is either TRUE or FORCED_IF_STRUCTURE_
CHANGE), its block size should be a multiple of a system page
size. This ensures that more than one instance of open is not
updating blocks in the same page; otherwise, a forced-write
operation could write a page to mass storage that contains
partially-altered blocks. (A warning message is issued if this
situation exists.)

It is recommended that you do not specify the block length with
the MAXIMUM_BLOCK_LENGTH attribute, but rather, allow the
system to calculate the block length using values specified by the
following parameters:

NOTE

The following parameters do not set limits; their values are used
only as guidelines for determining the block length when the file
is created.

Revision H Displaying, Copying, and Creating Keyed Files 6-31

Creating a Keyed File

AVERAGE_RECORD_LENGTH or ARL

Estimated median record length, in bytes, of the data records to be .
stored in the file. (The length should not include a nonembedded

key. If a compression procedure is used, the average record length
should be that of the compressed record.) If you omit this

parameter, the system uses the arithmetic mean between the

maximum and minimum record lengths in its calculation of the .
block size.

ESTIMATED_RECORD_COUNT or ERC

Estimated number of data records to be stored in the file. If you
omit this parameter, the system uses in its calculation of the block
size either the RECORD_LIMIT value or, if that parameter is
omitted, the value 100000.

Block Length Guideline Attributes for Indexed-Sequential Files
Only

INDEX_LEVELS or INDEX_LEVEL or IL
Target number of index levels for the file (0 through 15). The
default value is 2.

RECORDS_PER_BLOCK or RPB ’

Estimated number of data records to be stored in each data block.
If you omit this parameter, the system uses the value 2 in its
calculation of the block size.

File Structure Attributes for Indexed-Sequential Files Only

DATA_PADDING or DP

Percentage of data-block space left empty when a block is created
(integer from 0 through 99). The default is 0. The percentage must
allow for storage of at least one maximum-length record per block.

INDEX_PADDING or IP

Percentage of index-block space left empty when a block is created
(integer from 0 through 99). The default is 0. The percentage must
allow for storage of at least three index records per block. (The .
index record length is the key length plus 4.)

6-32 SCL Advanced File Management Usage Revision H

Creating a Keyed File

File Structure Attributes for Direct-Access Files Only

. INITIAL_HOME_BLOCK_COUNT or IHBC

Number of home blocks to be created in the file (1 through 242-1).
This attribute must be specified when creating a direct-access file.
For more information, see the Direct-Access File Structure

' discussion in chapter 5.

HASHING_PROCEDURE_NAME or HPN

Name of the hashing procedure to be executed with this file. The
default hashing procedure is the one provided by the system
AMPS$SYSTEM_HASHING_PROCEDURE. For more information,
see the hashing procedure discussion in chapter 5.

Processing Attributes
The following attributes set keyed-file processing options.

COMPRESSION_PROCEDURE_NAME or CPN

Name of the data compression or encryption procedure (preserved
attribute).

The attribute has no default value. Unless a procedure is specified
. when the file is created, no compression procedure is used.

The name must be either the name of the system-defined
compression procedure (AMP$RECORD_COMPRESSION) or the
name of an entry point in the current program library list.

For more information on data compression and encryption, see the
FORTRAN Language Definition or CYBIL Keyed-File and
Sort/Merge Interfaces manual.

ERROR_LIMIT or EL

Maximum number of nonfatal (trivial) errors that can occur before
the nonfatal errors cause a fatal error. The default value is 0,
meaning no limit.

ERROR_LIMIT is a temporary attribute; its value can be changed
each time the file is used.

. COPY_KEYED_FILE and COPY_FILE do not copy temporary
attributes so, if the ERROR_LIMIT is to be greater than 0, you
must set the attribute explicitly for the file copy.

Revision H Displaying, Copying, and Creating Keyed Files 6-33

Creating a Keyed File

LOCK_EXPIRATION_TIME or LET

Number of milliseconds between the time a lock is granted and '
the time that it could expire (integer from 0 through 604,800,000).

The default value is 60,000 milliseconds (60 seconds). For an

unlimited expiration time, set the attribute to 0. This attribute

value can be changed by a CHANGE_FILE_ATTRIBUTES

command. Locks are described in the COBOL Usage, CYBIL ‘
Keyed-File and Sort/Merge Interfaces, and FORTRAN Language
Definition manuals.

MESSAGE_CONTROL or MC

List of one or more keyword values indicating the additional
information written to the $ERRORS file besides fatal and
catastrophic error messages.

TRIVIAL_ERRORS or T Nonfatal-error messages

MESSAGES or M Informative messages
STATISTICS or S Statistical messages
NONE Suppress nonfatal-error, informative,
and statistical messages. ‘

The default value is NONE.

MESSAGE_CONTROL is a temporary attribute; its value can be
changed each time the file is used.

COPY_KEYED_FILE and COPY_FILE do not copy temporary
attributes so the MESSAGE_CONTROL value will be NONE
unless you set the attribute explicitly for the file copy.

Recovery Attributes

The recovery attributes define options that enable recovery of the
keyed file. For more information, see chapter 9.

FORCED_WRITE or FW

SCL boolean or keyword value indicating when the system copies
modified blocks to mass storage. .

TRUE
Write modified blocks immediately.

6-34 SCL Advanced File Management Usage Revision H

Creating a Keyed File

FALSE

Allow modified blocks to remain in memory until the next
flush or close request.
FORCED_IF_STRUCTURE_CHANGE or FISC

Write modified blocks immedi?.tely if the change affects more
than one block.

The default value is FALSE.

For Better Performance

To prevent serious performance degradation, the FORCED_
WRITE attribute should be set to FALSE if the LOGGING_
OPTIONS attribute is set to ENABLE_MEDIA_RECOVERY.

LOG_RESIDENCE or LR

Catalog path for the update recovery log for the keyed file. The
log must be created by the Administer_Recovery_Log utility
described in chapter 9.

Any number of keyed files can use the same log; the log entries

for a keyed file are identified by a unique identifier (a signature)
for the file to which they apply.

Log entries are not written for the file unless its LOGGING_
OPTIONS attribute specifies ENABLE_MEDIA_RECOVERY. If so,
the default log is $SYSTEM.AAM.SHARED_RECOVERY_LOG.

NOTE

It is not recommended that the default log,
$SYSTEM.AAM.SHARED_RECOVERY_LOG, be used extensively
for logging update operations. In general, you should specify a
different LOG_RESIDENCE for vital applications. This enables
you to isolate the effects of a media failure on the log.

Also, whenever you change the LOG_RESIDENCE of an existing
file to a log other than the default log, you should immediately
backup the file; otherwise, no entries are logged. If a backup has
not been done since the change and the file is damaged, the
RECOVER_FILE_MEDIA subcommand of the AMP$RECOVER _
KEYED_FILE call cannot execute successfully for the file.

Revision J Displaying, Copying, and Creating Keyed Files 6-35

Creating a Keyed File

LOGGING_OPTIONS or LOGGING_OPTION or LO

Set of options enabling use of the request keyed-file recovery
options. (For more information, see chapter 9.)

ENABLE_PARCELS or EP
For future implementation.

ENABLE_MEDIA_RECOVERY or EMR

Indicates that an update recovery log is to be maintained for
the keyed file.

ENABLE_REQUEST_RECOVERY or ERR

Indicates that the automatic close upon task abort removes any
partially-completed update operation caused by a system failure
(see Protecting Your Keyed Files described in chapter 9).

ALL
All logging options are enabled.

NONE
No logging options are enabled.
The default value is NONE, no logging options enabled.

For Better Performance

Whenever you change the LOGGING_OPTIONS attribute of an
existing file, you should immediately backup the file; otherwise,
no entries are logged. If a backup has not been done since the
change and the file is damaged, the RECOVER_FILE_MEDIA
subcommand of the AMP$RECOVER_KEYED_FILE call
cannot execute successfully for the file.

Also, to prevent serious performance degradation, the
FORCED_WRITE attribute should be set to FALSE if the
LOGGING_OPTIONS attribute is set to ENABLE_MEDIA_
RECOVERY.

6-36 SCL Advanced File Management Usage Revision J

Creating a Keyed File
Keyed-File Creation Example

Let’s assume that you have been asked to convert the membership
records file from a sequential file to an indexed-sequential file. The
format of the data in each record is to stay the same; only the file

' organization is to change. Data reformatting would require use of
FMU as described in chapter 10.)

For the purposes of this example, assume that a sequential character
data file exists with these specifications:

File $USER.MEMBER_RECORDS
reference:

Record 125 to 150 bytes

length:

Primary key: First six characters of each record

Number of Approximately 5000
records:

. Future space Replaced records may increase size up to 20%.
estimates: Number of records may increase up to 25%. During
addition of the first 5000 records, the primary key of
each new record will always be greater than those of
existing records.

Assume also, that you decide that the default attribute values are
appropriate for the record type (undefined), embedded key (TRUE), key
position (0), and key type (uncollated).

To create the indexed-sequential file named $USER.MEMBERSHIP,
you execute these commands:

/set_file_attributes .. “Attributes of the new
.. /file=$user.membership .. "indexed-sequential
" ../file_organization=indexed_sequential .. “file.

.. /max imum_record_length=150 .. "Max imum and minimum
.. /minimum_record_length=125 .. "record lengths of the
../key_length=6 data_padding=20 .. “sequential file.
../ index_padding=25 ..

. .. /estimated_record_count=6250 "5000 existing records +
/sort from=$user.member_records .. "25% growth.
.. /to=$user.membership .. "Sorts the input records
.. /key=((1..8,ascii,a)) "by the primary key and

"then writes the records
"to the defined indexed-

. "sequential file.

Revision J Displaying, Copying, and Creating Keyed Files 6-37

Creating a Keyed File

If desired, you could next define alternate keys for
$USER.MEMBERSHIP using the CREATE_ALTERNATE_INDEXES .
utility described in chapter 8.

6-38 SCL Advanced File Management Usage Revision J

Re-Creating a Keyed File

Re-Creating a Keyed File

Keyed file re-creation is required when the ruined flag has been set
for a file. It is also recommended when file updates (record additions,
deletions, and replacements) have produced an inefficient file
structure.

A DISPLAY_KEYED_FILE_PROPERTIES display shows the ruined
flag value and structural property values that could indicate an
inefficient file structure. The display could show:

Excessive index levels or overflow blocks
A large empty block count

An excessive number of data blocks in relation to the number of
data records in the file

If the display shows that the index-level-overflow flag has been set,
you must re-create the keyed file to allow record additions.

Keyed-file re-creation is also required when record reformatting is
required. It can be done using FMU. For example, suppose the

. identification number used as the primary key of a file is changed
from a 6-character to a 7-character field. The existing records must be
reformatted so the identification number is a 7-character field and the
file is recreated with a 7-character primary key.

To re-create a keyed file using FMU, see chapter 10 of this manual.
This section only describes re-creation using COPY_KEYED_FILE.

To re-create a keyed file for improved file efficiency, you perform two
steps:

1. Set the file attributes that are to change for the re-created file.

2. Copy the data from the old keyed file to the new keyed file cycle.

Revision J Displaying, Copying, and Creating Keyed Files 6-39

Re-Creating a Keyed File

Keyed-File Re-Creation Example

For example, suppose the file structure for the membership file
created in the keyed-file creation example has become inefficient. The
file specifications are as follows:

File reference: $USER.MEMBERSHIP.

Record length: 125 to 150 bytes.

Primary key: First six characters of each record.

Number of records: Approximately 10000.

Replaced records may increase size up to
20%. Number of records may increase up to
100%. The primary key of each new record
is not always greater than those of existing
records.

Future space estimates:

Assume that you decide to keep the default attribute values used for
the old keyed file: record type (undefined), embedded key (TRUE), key
position (0), and key type (uncollated).

To re-create the indexed-sequential file $USER.MEMBERSHIP, you
execute these commands:

/ display_catalog_entry file=$user.membership
../«display_option=cycles
membership 1,441,792 bytes

/- set_file_attributes ..

../ file=$user.membership.2 ..

.. /idata_padding=50 index_padding=50 ..
.. /restimated_record_count=20000

/copy_keyed_f ile input=$user.membership.1 ..
../ output=$user.membership.2

/ display_catalog_entry, $user.membership, ..
../ display_option=cycles

membership 2,883,584 bytes
-- cycle 1 1,441,792 bytes
--cycle 2 1,441,792 bytes

/ delete_file file=$user.membership.1

6-40 SCL Advanced File Management Usage

.. "Display the existing

"file cycles (only one
"cycle [1], exists).

"Set the file attributes

“for cycle 2 that are to
"differ from cycle 1.

"Copy the file data
"from the old cycle
"to the new cycle.

"Display the file cycles.

"Delete the old cycle.

Revision J

i k\z"u‘,»y
s

] Subcom{hérgq '

L Rt

‘u\‘j““‘u‘\ \"N
sy

W LRIEN] L k
wM“ W LR s

E
e e B e
\ i W

2l :

y@\w
4,

(R

i
i e 4",‘&,\«1\7
e il
) H it i}
;‘,,: i
it el

i

N
HM, vl

| e A ‘uy‘ ;| f

il L e i it R A AR \

i ¢ ; i [IMEERdTE Aw f A i e e

,w‘,mix‘\ i 13k iy . ; i N B g ” WAL i
i " ! ¥ " X b il i ‘mﬁ“‘ '

vuL""‘rv\ i i A b i

3 i ‘

R
\'Nh(“ b i e o] “““'\‘“‘:“(’4:" i
el "l
A '.M‘ ol v’}(\h» i

Ui
i hw }V '\) ”\W‘i) : L ol um
¥ p I 1 et} st ke i wc‘uy;“:,
u MR ! X M ety I L
‘h 4\"‘\«"“ ‘1 nww j it e) “\“M,J“', \ 'y ! W‘ Nt I A oy “?““':t"
‘4‘ “)me ik ‘,« h,“ SR il “‘MH 1 i \‘ R AR RCAAAY AL i
e g A i I
b” i i o b Al)
‘,‘l‘ i 'w‘))

u(m [k
\‘nr il “‘H‘
i
ml
i (my\“y‘ ; ; ; § 2 i
ity i (e i DAL gt gy i ‘ i il “,v gt
;u,‘.\"w [AREN by Y bie Iy ¢
'M‘“m
: v(R y ; ! b
o i . i L8 G Ll " it A b et B
ity B i £an ;. ‘,‘y“,«.‘ R wi]w«‘ H‘ : A i ; ‘m‘ it
M Rt g :
w\‘w i "y\‘
i i

‘m”
/i
i

“‘1 i
‘“U,"ﬂh L \w,‘”’

i
b
! 1 i Y)jl, 1»” mwmb
gt i M
Lt i I
N N” } \‘H i '."k ‘h i
,, i k‘n“. ‘\t‘l,
e k V) Ay m’w‘
W el i {1 N
;u‘;n,\m\; d bl ()
t

w!“{‘m‘\
i LY i i
! bl

L

‘:“‘l‘m) . ey i ! [B"Q“”Ti“;‘"?‘
¥ i i il

i
i
pael
b

(it
by

g W
Ehh
i

i

it
I

s

[J‘»
AR
}“(dm\y

;‘“.S 1

AL

IR i
i At by
T kg A
}v“d"““ 1 g 1!!" 1

i

fit o
"J‘j‘#g f‘.” i ? s ki) i g
g AR B Sl e | : St s
R R R

g
i

e
it

i

8 l
i e eI T Rt
if s { ,J:‘AV\J, éy."‘)(\‘\‘h‘l?‘{\‘!ﬁ".;

i

. Create _Alternate _Indexes Utility 7

This chapter describes the use of the CREATE_ALTERNATE_
INDEXES command utility (also known as the CHANGE _
ALTERNATE_INDEXES utility). The utility can create, delete, and
display alternate keys in a keyed file.

Alternate key concepts are described in chapter 5 of this manual.

A CREATE_ALTERNATE_INDEXES utility session processes the
alternate-key definitions for a single nested file, the nested file
specified on the CREATE_ALTERNATE_INDEXES command that
begins the session. (If no nested-file name is specified, CREATE_
ALTERNATE_INDEXES processes the alternate keys for the default
nested file, $MAIN_FILE.)

The CREATE_ALTERNATE_INDEXES command utility is an SCL
command utility. As with all SCL command utilities, its use requires
three steps:

1. Enter the command (in this case, CREATE_ALTERNATE_
INDEXES) to begin the utility session.

. 2. Enter utility subcommands to direct the utility in the tasks it is to
perform.

3. Enter the utility subcommand QUIT to end the utility session.

Any SCL command can be entered in response to a utility prompt.

Revision G Create_Alternate_Indexes Utility 7-1

Creating Alternate Keys

Creating Alternate Keys

Alternate-key creation requires two steps:

1. Definition of one or more alternate keys.

2. Application of the alternate-key definitions to the file.

Within a CREATE_ALTERNATE_INDEXES session, these steps
correspond to the following commands:

1. One or more CREATE_KEY_DEFINITION subcommands to define
the attributes of the new alternate keys.

2. Either an APPLY_KEY_DEFINITIONS subcommand to apply the
alternate-key definitions or a QUIT APPLY_KEY_
DEFINITIONS=YES subcommand to both apply the alternate-key
definitions and end the utility session.

Step 2 (application of the key definition) does not inevitably follow
step 1 (definition of an alternate key). Step 1 specifies a pending
alternate-key definition, that is, an alternate-key definition that has
not yet been applied to the file. You can cancel any pending
alternate-key definition with a CANCEL_KEY_DEFINITION

subcommand.

Any number of subcommands can be entered between the specification
of an alternate-key definition and its application to the file. The
APPLY_KEY_DEFINITIONS subcommand or parameter applies all
definition and deletion requests pending at that time.

7-2 SCL Advanced File Management Usage Revision G

Deleting Alternate Keys

‘ Deleting Alternate Keys

Alternate-key deletion is similar to alternate-key creation. It requires
two steps:

. 1. One or more requests to delete alternate keys.
2. Application of the alternate-key deletion requests to the file.

Within a CREATE_ALTERNATE_INDEXES session, these steps
correspond to the following commands:

1. One or more DELETE_KEY_DEFINITION subcommands to
request the alternate-key deletions.

2. Either an APPLY_KEY_DEFINITIONS subcommand to apply the
alternate-key deletion requests or a QUIT APPLY_KEY_
DEFINITIONS=YES subcommand to both apply the alternate-key
deletion requests and end the utility session.

As with alternate-key creation, step 2 (application of the key deletion
request) does not inevitably follow step 1 (requesting deletion of an
alternate key). Step 1 defines a pending deletion request, that is, an

. alternate-key deletion request that has not yet been applied to the
file. You can cancel any pending deletion requests with a CANCEL_
KEY_DEFINITIONS subcommand.

Revision G Create_Alternate_Indexes Utility 7-3

Displaying Alternate Keys

Displaying Alternate Keys '

These methods are available to display existing alternate-key
information:

® DISPLAY_KEYED_FILE PROPERTIES: displays all alternate-key
definitions that have been applied to a keyed file (described in .
chapter 6).

® In a CREATE_KEYED_FILE or CHANGE_KEYED_FILE utility
session (described in chapter 7):

- DISPLAY_NESTED_FILE can list the alternate-key names.
- DISPLAY_RECORDS can display the alternate-key values.

However, to display information about both existing and pending
alternate-key definitions, you must use the DISPLAY_KEY_
DEFINITIONS subcommand in a CREATE_ALTERNATE_INDEXES

session.

The DISPLAY_KEY_ DEFINITIONS subcommand has several options.
Depending on the parameter values specified, you can:

® Choose the definitions and deletions displayed: .
- By name
- By state (pending or pending and applied)

® Choose the display content:
- Brief or full attribute listing

- Sample records with alternate-key fields marked

7-4 SCL Advanced File Management Usage Revision G

Alternate-Key Creation and Deletion Example

Alternate-Key Creation and Deletion Example

The following interactive session illustrates use of the CREATE_
ALTERNATE_INDEXES utility:

/create_alternate_indexes .. "Starts the utility session.
../input=$user.restaurants
creai/display_file_attributes .. "The alternate keys defined must
creai../file=$user.restaurants .. "be within the minimum record
creai../display_option=minimum_record_length “length.
Minimum_Record_Length : 36
creai/display_key_definitions .. "Displays the existing alternate
creai../key_names=all "key definitions.
Display_Key_Def initions 1985-10-03
NOS/VE Keyed File Utilities 1.1 85259 13:54: 09
File = .NVE.USERS9.RESTAURANTS
KEY NAME POSITION LENGTH TYPE STATE
FOOD 15 15 uncollated Exists in file
Duplicate_Key_Values : not_allowed
Nu11_Suppression : no
RECORD 1 (in ascii) : Burger Duke Hamburge
(in hex) : 4275722676722044756876202020204861606275726765
FOOD : U_U_U_U_U_U_U_
(in ascii) : r s Casual

(in hex) : 7273202020202043617375616C
> U_U_U_U_U VUL

creai/delete_key_definition .. "Requests deletion of the
creai. . /key_name=food “existing alternate key.
creai/create_key_definition key_name=food .. "Redefines the alternate key.

creai../key_position=15 key_length=15 ..

creai../duplicate_key_value=..

creai../ordered_by_primary_key

creai/create_key_definition .. “Defines a new alternate key.
creai../key_name=style key_position=30 ..

creai../key_length=6 duplicate_key_values=..

creai../ordered_py_primary_key

Revision G Create_Alternate_Indexes Utility 7-5

Alternate-Key Creation and Deletion Example

creai/display_key_def initions “Displays the pending requests.
Display_Key_Def initions 1986-11-03
NOS/VE Keyed File Utilities 1.3 85259 13:54:59
File = .NVE.USERS9.RESTAURANTS
'KEY NAME POSITION LENGTH TYPE STATE
STYLE 30 6 uncollated Creation pending
Duplicate_Key_values : ordered_by_primary_key
Nu11_Suppress ion : no
FOOD 15 15 uncollated Creation pending
Duplicate_Key_Values : ordered_by_primary_key
Null_Suppression : no
RECORD 1 (in ascii) : Burger Duke Hamburge
(in hex) : 427572267672204475687620202020486 1606275726765
STYLE :
FOOD : U_U_U_U_U_U_U_
(in ascii) : r's Casvuvail
(in hex) : 7273202020202043617375616C
> [VRVRVRVRVEVS
> U_U_U_U_U_u_u_
creai/cancel_key_def inition key_name=style “Cancels a pending definition.
creai/apply_key_definitions "Applies the key definitions.

-- File :NVE.USER39.RESTAURANTS : begin deleting alternate key def initions.

-- File :NVE.USERSS.RESTAURANTS : alternate key FOOD has been deleted.

-- File :NVE.USERSS.RESTAURANTS : end deleting alternate key definitions.

-- File :NVE.USER99.RESTAURANTS : begin creating labels for alternate key
definitions.

-~ File :NVE.USER99.RESTAURANTS : finished creating labels for alternate key
definitions.

-- File :NVE.USERS9.RESTAURANTS : begin collecting the alternate key values from
the file.

-- File :NVE.USER99.RESTAURANTS : AMP$APPLY_KEY_DEFINITIONS has reached a file
boundary: EOI .

~- File :NVE.USER99.RESTAURANTS : collection of the alternate key values

is complete.

-- File :NVE.USERS9.RESTAURANTS : begin sorting the alternate key values.

-- File :NVE.USERS9.RESTAURANTS : sorting of the alternate key values completecd.
-- File :NVE.USERSS.RESTAURANTS : begin building alternate key indexes into the
file.

-- File :NVE.USER99.RESTAURANTS : the FOOD index is being built.

-- File :NVE.USER9S.RESTAURANTS : AMPS$APPLY_KEY_DEFINITIONS completed building
the alternate indexes into the file."

creai/quit

7-6 SCL Advanced File Management Usage

Revision G

Alternate-Key Creation and Deletion Example

CREATE _ALTERNATE _INDEXES Command

Purpose

Format

Parameters

Revision J

Begins a CREATE_ALTERNATE_INDEXES utility
session to create, delete, and/or display alternate-key
definitions in a keyed file.

CREATE _ALTERNATE _INDEXES or
CHANGE _ALTERNATE _INDEXES or
CREATE _ALTERNATE _INDICES or
CHANGE _ALTERNATE _INDICES or
CREATE _ALTERNATE _INDEX or
CHANGE _ALTERNATE _INDEX or
CREAI or
CHAAI
INPUT=file or (file, nested _file _name)
STATUS =status_variable

INPUT or I

Keyed file to be processed by the utility. The file
permissions required depend on the subcommands entered
during the utility as described in the Remarks. This
parameter is required.

The operations performed during the session apply to only
one nested file. If no nested file is specified on the
command, the default nested file, $MAIN_FILE, is used.

To process the alternate-key definitions for a nested file
other than $MAIN_FILE, enclose the file reference
followed by the nested-file name in parentheses.

If the specified input file does not exist, the command
attempts to create it as described in the Remarks.

STATUS

Optional SCL status variable. Use of this variable depends
on whether the utility is executed in an SCL block. If it
is, the status of each subcommand is stored in the status
variable specified on the CREATE _ALTERNATE _
INDEXES command and a subcommand error terminates
the utility session.

Otherwise, only the status of the CREATE _
ALTERNATE_INDEXES command and the QUIT
subcommand that ends the session are stored in the
status variable; a subcommand error does not terminate
the utility session.

Create_Alternate_Indexes Utility 7-7

Alternate-Key Creation and Deletion Example

Remarks ® The command utility prompt is:
creai/

® In response to the creai/ prompt, you can enter
NOS/VE commands and any of these subcommands:

QUIT
HELP

DISPLAY_KEY_ DEFINITIONS
CREATE_KEY_DEFINITION
DELETE_KEY_DEFINITION
CANCEL_KEY_DEFINITIONS
APPLY_KEY_DEFINITIONS

® The CREATE_ALTERNATE_INDEXES utility creates
the specified keyed file if:

— The file does not exist and,

- A SET_FILE_ATTRIBUTES command has
specified the KEY_LENGTH and MAXIMUM_
RECORD_LENGTH attributes for the file.

If the SET_FILE_ATTRIBUTES command defining the
new file omits an attribute, the default attribute value
is used. However, if it omits the FILE_
ORGANIZATION attribute, indexed-sequential
organization is used.

® The CREATE_ALTERNATE_INDEXES command does
not check your file permissions; the subcommands you
enter in the utility session check that you have the
required permissions to do the operation.

To display key definitions, you must have at least
read permission; to create, delete, cancel, or apply key
definitions, you must have at least the three
permissions: append, modify, and shorten.

7-8 SCL Advanced File Management Usage Revision J

Examples

Revision G

Alternate-Key Creation and Deletion Example

This command begins a utility session that displays the
alternate-key definitions of keyed file $USER.IS_FILE.

/create_alternate_indexes input=$user.is_file
creai/display_key_def initions key_names=all ..
creai../display_options=brief

Display_Key_Def initions 1985-10-03
NOS/VE Keyed File Utilities 1.1 85259 13:58:09
File = :NVE.USERSS. IS_FILE
KEY NAME POSITION LENGTH TYPE STATE
ALTERNATE _KEY_1 0 10 uncollated Exists in
file
creai/quit “The APPLY_KEY_DEFINITIONS parameter is not required here

"because no creation or deletion reqguests are pending.

Create_Alternate_Indexes Utility 7-9

Alternate-Key Creation and Deletion Ezample

APPLY_KEY_DEFINITIONS Subcommand

Purpose Applies the pending alternate-key definition and deletion
requests within a CREATE_ALTERNATE_INDEXES
utility session.

For Better Performance

Use a batch job to apply key definitions to a large file,
not an interactive session. The building of an alternate
index can be time-consuming, preventing use of the
terminal.

Format APPLY_KEY_DEFINITIONS or
APPLY_KEY_DEFINITION or
APPKD
ERROR_LIMIT =integer
STATUS =status_variable

Parameters ERROR_LIMIT or EL
Number of nonfatal (trivial) errors allowed for the zigply
operation (integer from 0 through 4398046511103 [2* -
1.

A 0 value indicates no limit; 0 is the default value.

See the Remarks for a description of apply error
processing.

STATUS

Optional SCL status variable. If you specify the STATUS
parameter, the command returns its completion status in
the specified variable.

Remarks e This CREATE_ALTERNATE_INDEXES subcommand
applies all pending alternate-key creation and deletion
requests to the file. It applies the deletion requests
first and then the creation requests.

® The ERROR_LIMIT file attribute value has no effect
on the utility. This is so that nonfatal errors (such as
typing errors during interactive use) do not terminate
the utility session.

However, you can specify an error limit for the apply
operation with the ERROR_LIMIT parameter.

7-10 SCL Advanced File Management Usage Revision G

Revision G

Alternate-Key Creation and Deletion Example

Nonfatal Errors

The two nonfatal (trivial) errors that an apply operation
can detect result from improper record data, as follows:

Duplicate_Key_ Value: the duplicate-key-values
attribute of the alternate index being built is NOT_
ALLOWED, but the apply operation finds an
alternate-key value matching an alternate-key value
already in the alternate index.

Sparse_Key_Beyond_EOR: the apply operation is
building an alternate index that uses sparse-key
control and it finds a record for which an
alternate-key value should be included in the index
except that the record is too short to provide a
complete alternate-key value.

Nonfatal Error Processing

APPLY_KEY_DEFINITIONS keeps a count of the number
of times it detects a nonfatal (trivial) error. Each time it
increments the count, it checks whether the count has
reached the value specified by the ERROR_LIMIT
parameter.

If the error limit has not yet been reached, APPLY_
KEY_DEFINITIONS performs the correction
processing for the condition as described later.

If the error limit is reached, APPLY_KEY_
DEFINITIONS terminates with a fatal error. The fatal
status returned depends on the last nonfatal error
dectected:

- For a Duplicate_Key_Value error, it returns
AAE$DUPLICATE_KEY_ LIMIT.

- For a Sparse_Key_Beyond_EOR error, it returns
AAES$ERROR_LIMIT_EXCEEDED.

Before terminating, APPLY_KEY_DEFINITIONS
discards all alternate indexes it has built. (Deleted
alternate indexes are not restored.)

Create_ Alternate_Indexes Utility 7-11

Alternate-Key Creation and Deletion Example

If APPLY_KEY_DEFINITIONS finds one or more
nonfatal errors, but completes its processing before
reaching the error limit, it returns the warning status
AAES$ERRORS_IN_APPLY.

Correction Processing

As correction processing for a Sparse_Key_Beyond_EOR
error, APPLY_ KEY_DEFINITIONS does not enter an
alternate-key value for the record in the alternate index it
is building, even though the sparse-key character indicates
that a value should be entered for the record.

As correction processing for a Duplicate_Key_ Value
error, APPLY_KEY_DEFINITIONS changes the
duplicate__key_values attribute of the alternate-key
definition from NOT_ALLOWED to ORDERED_BY_
PRIMARY_KEY. It then discards the partially-built index
and begins building the index again, ordering duplicate
alternate-key values by their primary-key value.

. Terminate Break

If you enter the terminate_break_ character (usually %2
or control-t) during application of alternate-key definitions,
you are sent a prompt requesting confirmation of your
intentions.

You should then enter a carriage return or any entry
other than RUIN FILE (uppercase or lowercase) to
continue the application of alternate-key definitions. If the
apply operation is allowed to complete, the CREATE _
ALTERNATE_INDEXES utility can remove any unwanted
alternate-key definitions without harm to the file.

A request to ruin the file is not recommended. No file
operation can be performed on a ruined file, and so no
data can be retrieved from the file.

Pause Break .

Entry of the pause_break_character (usually %1 or
control-p) is ignored during application of alternate-key
definitions.

7-12 SCL Advanced File Management Usage Revision G

Examples

Revision G

Alternate-Key Creation and Deletion Example

This CREATE_ALTERNATE_INDEXES session attempts
to create and apply an alternate key. However, the
attempt fails when it finds a duplicate alternate-key value
because duplicate key values are not allowed and the
specified error limit is 1.

/create_alternate_indexes input=$user.is_file

creai/create_key_def inition key_name=alternate_key_6 ..
creai../key_position=5 key_length=10

creai/apply_key_def inition error_limit=1

-- File :NVE.USER9S.IS_FILE : begin creating labels for alternate
key definitions.

-- File :NVE.USER9S.IS_FILE : finished creating labels for alternate
key definitions.

-- File :NVE.USERSQ.IS_FILE : begin collecting the alternate key
values from the file.

-- File :NVE.USER9S.IS_FILE : AMP$APPLY_KEY_DEFINITIONS has reached
a file boundary: EOI.

-- File :NVE.USER99.IS_FILE : collection of the alternate key values

is complete.

-- File :NVE.USER9S.IS_FILE : begin sorting the alternate key
values.

-- File :NVE.USERSS.IS_FILE : sorting of the alternate key values
completed.

-- File :NVE.USERS9.IS_FILE : begin building alternate key indexes
into the file.

-- File :NVE.USER99.IS_FILE : the ALTERNATE_KEY_6 index is being
built.

-- File :NVE.USERS9.IS_FILE : alternate key ALTERNATE_KEY_6 has been
deleted.

--ERROR-- File :NVE.USER9S.IS_FILE : AMPSAPPLY_KEY_DEFINITIONS encountered
a duplicate key and found that the nonfatal-error limit had been
reached. It then discarded any new alternate indexes it had built
(although it cannot restore any alternate indexes it deleted). Had
ERROR_LIMIT not been reached, the alternate-key def inition would have
been modified to allow duplicates. The duplicate key values relate
to alternate key name = ALTERNATE_KEY_6, primary key = 86070,
alternate_key_value = John Smith.

-- FATAL-- File :NVE.USERSS.IS_FILE : AMPSAPPLY_KEY_DEFINITIONS : the
user-geclared maximum number of trivial errors has been recorded
since the last OPEN.

creai/quit

Create_Alternate_Indexes Utility 7-13

Alternate-Key Creation and Deletion Example

CANCEL_KEY_DEFINITIONS Subcommand

Purpose Removes a pending request to create or delete an
alternate key within a CREATE_ALTERNATE_INDEXES
session.

Format CANCEL_KEY_DEFINITIONS or
CANCEL_KEY_DEFINITION or
CANKD
KEY_NAMES=list of names or keyword _value
STATUS =status_variable

Parameters KEY_NAMES or KEY_NAME or NAMES or NAME
or KN or N

Pending requests to be canceled.

list of Cancel the requests for the listed
names alternate-key names.
ALL Cancel all requests.

This parameter is required.

STATUS @

Optional SCL status variable. If you specify the
STATUS parameter, the command returns its
completion status in the specified variable.

Remarks ® The CANCEL_KEY_DEFINITIONS subcommand can
cancel pending creation and deletion requests. A
request can be canceled only while it is pending.

® After a creation or deletion request is applied, the
CANCEL_KEY_DEFINITIONS subcommand has no
effect. To reverse the action of an APPLY_ KEY_
DEFINITIONS subcommand, you must issue new
requests to delete the created alternate key or recreate
the deleted alternate key.

7-14 SCL Advanced File Management Usage Revision G

Alternate-Key Creation and Deletion Example

Examples This CREATE_ALTERNATE_INDEXES session requests
creation of an alternate key and deletion of another
alternate key, cancels the creation request, and finally
applies the deletion request.

/create_alternate_indexes input=$user.is_file
creai/create_key_def inition key_name=alternate_key_4 ..
creai../key_position=5 key_length=2
creai/delete_key_def inition key_name=alternate_key_1 ..
creai/cancel_key_def inition alternate_key_4

creai/quit apply :

-- File :NVE.USER9S. IS_FILE : begin deleting alternate
key definitions.

-- File :NVE.USERS9.IS_FILE : alternate key
ALTERNATE_KEY_1 has been deleted.

-- File :NVE.USER99.IS_FILE : end deleting alternate
key definitions.

Revision G Create_Alternate_Indexes Utility 7-15

Alternate-Key Creation and Deletion Example

CREATE _KEY_DEFINITION Subcommand

Purpose Creates a pending alternate-key definition within a
CREATE_ALTERNATE_INDEXES session.

Format CREATE _KEY_DEFINITION or
CREKD
KEY_NAME =name
KEY_POSITION =integer
KEY_LENGTH =integer
KEY_TYPE =keyword__value
COLLATE_TABLE_NAME =name
DUPLICATE_KEY_ VALUES =boolean or keyword_
value
NULL_SUPPRESSION = boolean
SPARSE_KEY_CONTROL_POSITION =integer
SPARSE_KEY_CONTROL_CHARACTERS =string
SPARSE_KEY_CONTROL_EFFECT =keyword_ value
REPEATING_GROUP_LENGTH =integer
REPEATING_GROUP_COUNT =integer or keyword_
value
KEY_GROUP_NAME =name
CONCATENATED_PIECES = boolean
VARIABLE _LENGTH_KEY =string
STATUS =status_ variable

Parameters KEY_NAME or NAME or KN or N

Name of the new alternate key. The name must follow
the SCL naming rules. This parameter is required.

KEY_POSITION or POSITION or KP or P

Byte position within the record at which the alternate-key
field begins. The byte positions are numbered from the
left, beginning with 0. The maximum byte position is
65496. This parameter is required.

KEY_LENGTH or LENGTH or KL or L

Number of bytes (1 through 255) in the alternate-key
field. (For variable-length keys, it is the maximum key
length.)

The key field (or its sparse-key control character) must be
within the minimum record length (except for
variable-length keys and fixed-length keys that repeat to
the end of record).

7-16 SCL Advanced File Management Usage Revision G

@

Alternate-Key Creation and Deletion Example

This parameter is required.

KEY_TYPE or TYPE or KT or T
Type of the alternate key.

INTEGER or I Integer key ordered numerically; its
leftmost bit is its sign bit. (The
INTEGER key type is invalid for
variable-length keys).

UNCOLLATED Character key ordered byte-by-byte
or UCor U according to the ASCII collating
sequence.

COLLATED or Character key ordered byte-by-byte

C according to the collation table specified
by the COLLATE_TABLE_NAME
parameter.

If you omit the KEY_TYPE parameter, the key type is
UNCOLLATED.

COLLATE_TABLE_NAME or CTN

Name of the collation table used to order the alternate
key if its key type is collated.

If the file is an indexed-sequential file with a collated
primary key, the collation table for the primary key is
used as the default collation table for an alternate
key. Otherwise, you must specify a collation table for
a collated alternate key.

The collation table can be a NOS/VE predefined
collation table or a user-defined collation table. For
more information, see appendix E.

DUPLICATE_KEY_VALUES or DKV

Indicates whether duplicate alternate-key values are
allowed and, if so, how the duplicate values are
ordered.

Revision G Create_Alternate_Indexes Utility 7-17

Alternate-Key Creation and Deletion Example

NOT_ALLOWED or NA No duplicate values are
or FALSE or OFF or NO allowed for the alternate

key.
ORDERED_BY_ Duplicate values are
PRIMARY_ KEY or allowed; duplicates are
OBPK or TRUE or ON accessed in order by their
or YES primary-key value.

FIRST_IN_FIRST_OUT Duplicate values are

or FIFO allowed; duplicates are
accessed in the order the
values were entered in the
index.

If you omit the DUPLICATE_KEY_VALUES parameter,
no duplicate values are allowed.

NULL_SUPPRESSION or NS

Indicates whether null alternate-key values should be
stored in the alternate index. (The null value is all
zeros for integer keys, all blanks for the other key

types.)
TRUE or ON or Null values are not included in
YES the index.

FALSE or OFF or All values are included in the
NO index.

If you omit the NULL_SUPPRESSION parameter, all
values, including nulls, are stored in the index.

NOTE

The two parameters, SPARSE_KEY_CONTROL_
POSITION and SPARSE_KEY_CONTROL_
CHARACTERS, work together; they must either both be
specified or both be omitted. If they are omitted,
sparse-key control is not used for the alternate key.

7-18 SCL Advanced File Management Usage Revision G

Revision G

Alternate-Key Creation and Deletion Example

SPARSE_KEY_CONTROL_POSITION or SKCP

Byte position of the sparse-key control character. The
position must be within the minimum record length.
The byte positions are numbered from the left,
beginning with 0. The maximum byte position is
65496.

SPARSE_KEY_ CONTROL_CHARACTERS or SKCC

String containing the set of characters with which the
sparse-key control character in each record is
compared.

SPARSE_KEY_CONTROL_EFFECT or SKCE

Indicates whether a sparse-key control character match
causes the alternate-key value to be included in or
excluded from the alternate index.

INCLUDE_KEY_ The alternate-key value is

VALUE or IKV included in the alternate
index.

EXCLUDE_KEY_ The alternate-key value is

VALUE or EKV excluded from the alternate
index.

If you omit the SPARSE_KEY_CONTROL_EFFECT
parameter, INCLUDE_KEY_VALUE is used.

You can specify the SPARSE_KEY_CONTROL_EFFECT
parameter only if you specify the SPARSE_KEY_
POSITION and SPARSE_KEY_CHARACTERS
parameters.

REPEATING_GROUP_LENGTH or RGL

If specified, indicates that each record can contain
more than one value for the alternate key.

For a repeating fixed-length key, the value is the
distance (1 through 65497 bytes) from the beginning of
an alternate-key value to the beginning of the next
value for the same alternate key in the same record.

For a repeating variable-length key, specify any
integer from 1 through 65497. (The actual value is
irrelevant.)

Create_Alternate_Indexes Utility 7-19

Alternate-Key Creation and Deletion Example

If you omit the REPEATING_GROUP_LENGTH
parameter, the alternate key has no more than one
value per record.

REPEATING_GROUP_COUNT (RGC)
Indicates where the search for alternate-key values
ends.

NOTE

REPEATING_GROUP_COUNT parameter is valid only
when you specify the REPEATING_GROUP_LENGTH

parameter.

REPEAT_TO_END_OF_RECORD or RTEOR
Search continues to the end of the record.

For a fixed-length key, the repeating group of fields
continues to the end of the record. The key value that
ends the record is not used if it is shorter than the
key length.

For a variable-length key, the record data from the
key position to the end of the record is processed as a
sequence of key values, separated by delimiter
characters. The end of the last value is marked by a
delimiter character or by the end of the record.

integer (1 through 65497)
Search continues to the specified limit.

For a fixed-length key, the specified integer is the
number of alternate-key values that each record
contains. (The value must lie within the minimum
record length.)

For a variable-length key, the specified integer is the
length, in bytes, of the key field. The contents of the
field is processed as a sequence of key values,
separated by delimiter characters. The end of the last
value is marked by a delimiter character, the end of
the field, or the end of the record, whichever occurs
first.

If you omit the REPEATING_GROUP_COUNT
parameter, the search for values continues until the
end of the record.

7.20 SCL Advanced File Management Usage .Revision G

Revision G

. Alternate-Key Creation and Deletion Example

KEY_GROUP_NAME or KGN

Name of the key group for this key. The key-grouping
feature is not currently implemented. The default
value for the key-group name is the key name.

CONCATENATED_PIECES or CONCATENATED_
PIECE or CP

Indicates whether the alternate key is a concatenated
key.

TRUE (ON or The key is a concatenated key.
YES)

FALSE (OFF or The key is not a concatenated key.
NO)

If you omit the CONCATENATED_PIECES parameter,
the key is not a concatenated key.

If you specify CONCATENATED_PIECES=TRUE, the
CREATE_KEY_DEFINITION command initiates the
CREATE_KEY_DEFINITION subcommand utility. The
utility prompt is crekd/ and it processes ADD_PIECE and
QUIT subcommands (described in the following pages).

VARIABLE_LENGTH_KEY or VLK

Indicates that the key is a variable_length key by
specifying its set of delimiter characters. The set is
specified as a string (0 through 256 characters,
enclosed in apostrophes).

If the REPEATING_GROUP_LENGTH parameter is
omitted, no more than one value for the key is taken
from a record. The end of the value is marked by a
delimiter character, by the end of the key field (KEY_
LENGTH length), or by the end of the record,
whichever occurs first after the KEY_POSITION.

If the REPEATING_GROUP_LENGTH parameter is
specified, the record can contain more than one value
for the key. Multiple key values are separated by one
or more delimiter characters. The REPEATING_
GROUP_COUNT parameter indicates whether the
sequence of values continues to the end of the record
or is limited to a fixed number of characters.

Create_Alternate_Indexes Utility 7-21

Alternate-Key Creation and Deletion Example

If VARIABLE_LENGTH_KEY is omitted, the

alternate key has fixed-length values. .
STATUS

Optional SCL status variable. If you specify the

STATUS parameter, the command returns its

completion status in the specified variable. .

Remarks ® The CREATE_KEY_DEFINITION subcommand defines
an alternate key but does not apply the definition to
the file. The definition remains pending until it is
either applied or canceled.

A definition is applied by either an APPLY_KEY_
DEFINITIONS subcommand or an APPLY_KEY_
DEFINITIONS=YES parameter on the QUIT
subcommand; it is canceled by a CANCEL_KEY_
DEFINITIONS subcommand or an APPLY_KEY_
DEFINITIONS=NO parameter on the QUIT
subcommand.

® The various alternate-key attributes are described in
chapter 5.

Incompatible Parameters .
These parameters are incompatible:

e REPEATING_GROUP_LENGTH and either of the
following:

DUPLICATE_KEY_VALUES=FIRST_IN_FIRST_
ouT
CONCATENATED_PIECES=TRUE

e VARIABLE_LENGTH_KEY and any of the following:

KEY_TYPE=INTEGER
DUPLICATE_KEY_VALUES=FIRST_IN_FIRST_

ouT

CONCATENATED_PIECES=TRUE
NULL_SUPPRESSION =TRUE ‘
SPARSE_KEY_CONTROL_POSITION

7-22 SCL Advanced File Management Usage Revision G

Alternate-Key Creation and Deletion Example

Collation Table Loading

® If the alternate-key definition defines a collated key,

CREATE_KEY_DEFINITIONS searches for the
collation-table name as an entry point in the object
libraries in the program-library list.

You must set the program-library list before you enter
the utility; you cannot change the object libraries
searched from within the utility session. The following
command adds an object library to the program-library
list:

set_program_attributes add_library=file_reference

See appendix E for more information on collation
tables.

This CREATE_ALTERNATE_INDEXES session creates
and applies an alternate-key definition to file $USER.IS_
FILE.

/create_alternate_index, input=$user.is_file

creai/create_key_def inition, key_name=alternate_key_1 ..

creai../key_position=0, key_length=10

creai/quit, apply

-- File :NVE.USERS9.IS_FILE : begin creating labels for alternate key

def initions.

-- File :NVE.USERSS.IS_FILE : finished creating labels for alternate
key definitions.

-- File :NVE.USERSS.IS_FILE : begin collecting the alternate key
vatues from the file.

-~ File :NVE.USER9S.IS_FILE : AMPSAPPLY_KEY_DEFINITIONS has reached
a file boundary: EQI

-- File :NVE.USERS9.IS_FILE : collection of the alternate key values
is complete.

-- File :NVE.USER99.IS_FILE : begin sorting the alternate key values.

-~ File :NVE.USERSS.IS_FILE : sorting of the alternate key values

completed.

-- File :NVE.USERSS.IS_FILE : begin building alternate key indexes
into the file.

-- File :NVE.USER9S.IS_FILE : the ALTERNATE_KEY_1 index is being built.

-- File :NVE.USERSS.IS_FILE : AMP$APPLY_KEY_DEFINITIONS completed

building the alternate indexes into the file.

Create_Alternate_Indexes Utility 7-23

Alternate-Key Creation and Deletion Example

ADD _PIECE Subcommand

Purpose Defines a piece of a concatenated key within a CREATE_
KEY_DEFINITION subutility session.

Format ADD_PIECE or
ADDP
KEY_POSITION =integer
KEY_LENGTH =integer
KEY_ TYPE =keyword_value
STATUS =status_variable

Parameters KEY_POSITION or POSITION or KP or P
Byte position in the record at which the piece begins. The
byte positions are numbered from the left, beginning with
0. The maximum byte position is 65496. This parameter
is required.

KEY_LENGTH or LENGTH or KL or L

Number of bytes in the piece. The maximum length is
255 bytes. The piece must be within the minimum record
length (unless sparse-key control is used). This parameter
is required.

KEY_TYPE or TYPE or KT or T
Type of the piece.

INTEGER or 1 Integer key ordered numerically.

UNCOLLATED Character key ordered byte-by-byte
or UCor U according to the ASCII collating
sequence.

COLLATED or Character key ordered byte-by-byte

C according to the collation table specified
by the COLLATE_TABLE_NAME
parameter on the CREATE_KEY_
DEFINITION command.

The default key type is UNCOLLATED.

7-24 SCL Advanced File Management Usage Revision G

Alternate-Key Creation and Deletion Example

STATUS

Optional SCL status variable. If STATUS is specified, the
command returns its completion status in the specified
. variable.

Remarks ® You enter this subcommand in response to this
prompt:

crekd/

The utility is initiated in response to a CREATE_
KEY_DEFINITION subcommand that specifies the
CONCATENATED_PIECES=TRUE parameter. To end
concatenated-key specification, enter the QUIT
subcommand for the CREATE_KEY_DEFINITION
utility.

® To define a concatenated key, you must enter an
ADD_PIECE subcommand for each piece to be
. concatenated to the first piece. The first piece is
defined by the KEY_LENGTH, KEY_POSITION, and
KEY_TYPE parameters on the CREATE_KEY_
DEFINITION command.

® A concatenated key can comprise from 2 through 64
pieces. The pieces are concatenated in the order that
you enter the ADD_PIECE subcommands that define
the pieces.

Revision G Create_Alternate_Indexes Utility 7-25

Alternate-Key Creation and Deletion Example

Examples

This CREATE_ALTERNATE_INDEX session defines an
alternate key that concatenates the first, third and fifth

bytes of the record in reverse order. It displays the
definition and then cancels the request.

Jcreate_alternate_index input=Suser.is_file
creai/create_key_definition key_name=alternate_key_2 ..
creai../Key_position=4 key_length=1 concatenated_pieces=yes
crekd/add_piece key_position=2 key_length=1

crekd/addap kp=0 ki=1

crekd/quit
creai/display_key_gef initions
Display_Key_Def initions 1985-10-03
NOS/VE Keyed File Utilities 1.1 85259 14:04:22
File = .NVE.USERSS.IS_FILE
KEY NAME POSITION LENGTH TYPE STATE
ALTERNATE_KEY_2 4 1 uncollated Creation
pending
piece b 2 1 uncollated
piece ¢ 0 1 uncollated
Duplicate_Key_Values : not_allowed
Nu11_Suppression : no
RECORD 1 (inascii): This is the first recor
(in hex) : 5468697320697320746865206663727374207265636F72
ALTERNATE_KEY_2 sC. o booa

(in ascii) : d .
(in hex) : B42E

>

creai/auit cancel

7-26 SCL Advanced File Management Usage Revision G

Alternate-Key Creation and Deletion Example

HELP Subcommand (for the CREATE _KEY_
DEFINITION Utility)

Purpose Provides online help from within a CREATE_KEY_
DEFINITION session.

Format HELP or
HEL
SUBJECT =string
MANUAL =file

STATUS =status_variable

Parameters SUBJECT or S

Topic to be located in the online manual index. The topic
must be enclosed in apostrophes (topic’).

If you omit the SUBJECT parameter, HELP displays a
list of the available subcommands.

MANUAL or M

File containing the online manual whose index is
searched. If you omit the MANUAL parameter, the
default is AFM. The working catalog is searched for the
file and then the $SYSTEM.MANUALS catalog.

STATUS

Optional SCL status variable. If you specify the STATUS
parameter, the command returns its completion status in
the specified variable.

Remarks ® If you enter a topic that is not in the manual index, a
message appears telling you that the topic could not
be found.

® The default manual file, $SYSTEM.MANUALS.AFM,
contains the online version of the NOS/VE Advanced
File Management Usage manual, as provided with the
NOS/VE system.

® If your terminal is defined for full-screen applications,
the online manual is displayed in screen mode. To
leave the online manual, press the QUIT function key.

® To request help in reading the online manual, enter
HELP while in the manual.

Revision J Create_Alternate_Indexes Utility 7-27

Alternate-Key Creation and Deletion Example

QUIT Subcommand (for the CREATE_KEY_
DEFINITION Utility)

Purpose

Format

Parameters

Remarks

Examples

Exits the Create_Key_ Definition utility, ending
specification of the concatenated-key.

QUIT or
QUI
STATUS =status_ variable

STATUS

Optional SCL status variable. If you specify the STATUS
parameter, the command returns its completion status in
the specified variable.

Entry of the QUIT subcommand returns you to the
CREATE_ALTERNATE_INDEXES utility session. This is
indicated by the prompt creai/.

This CREATE_ALTERNATE_INDEXES session defines a
concatenated alternate key having two pieces. The first
piece is the ten bytes beginning at byte 8. (Remember,
bytes are numbered from the left beginning with zero.)
The second piece is the eight-byte integer at the
beginning of the record.

/ create_alternate_indexes input=$user.is_file

creai/create_key_definition alternate_key_3 ..

creai../key_position=8 key_length=10 ..

creai../concatenated_pieces=yes

crekd/ add_piece key_position=0 key_length=8 ..

crekd. ./ key_type=integer

crekd/ quit "Exits CREATE_KEY_DEFINITIONS.

creai/quit no "Exits CREATE_ALTERNATE_INDEXES
"without applying the
“alternate-key definition.

7-28 SCL Advanced File Management Usage Revision J

Alternate-Key Creation and Deletion Example

DELETE _KEY_DEFINITION Subcommand

Purpose Requests the deletion of an existing alternate key within
a CREATE_ALTERNATE_INDEXES utility session.

Format DELETE _KEY_DEFINITION or
DELKD
KEY_NAME =name
STATUS =status_variable

Parameters KEY_NAME or NAME or KN or N

Name of the alternate key to be deleted. This parameter
is required.

STATUS

Optional SCL status variable. If you specify the STATUS
parameter, the command returns its completion status in
the specified variable.

Remarks ® The DELETE_KEY_DEFINITION subcommand
requests deletion of an alternate key but does not
actually delete the key from the file. The deletion
remains pending until it is applied by an APPLY_
KEY_DEFINITIONS or QUIT subcommand or it is
canceled by a CANCEL_KEY_DEFINITIONS
subcommand.

® You could use the following subcommand to list the
alternate-key names:

display_key_definitions, all, display_option=brief

Examples This CREATE_ALTERNATE_INDEXES session deletes an
alternate key named ALTERNATE_KEY_1.

/create_alternate_indexes input=$user.is_file

creai/delete_key_def inition key_name=alternate_key_1

creai/quit apply_key_definitions=yes

-~ File :NVE.USERSS.IS_FILE : begin deleting alternate key definitions.
-- File :NVE.USERSS.IS_FILE : alternate key ALTERNATE_KEY_1 has been
deleted.

-- File :NVE.USER9S.IS_FILE : end deleting alternate key definitions.

Revision G Create_Alternate_Indexes Utility 7-29

Alternate-Key Creation and Deletion Example

DISPLAY_KEY_DEFINITIONS Subcommand

Purpose Displays alternate-key definitions within a CREATE_
ALTERNATE_INDEXES session.

Format DISPLAY_KEY_DEFINITIONS or

DISPLAY_KEY_DEFINITION or

DISKD
KEY_NAMES =keyword_value or list of names
DISPLAY_ OPTIONS = keyword_value
SAMPLE_RECORD_COUNT =integer or keyword_

value

OUTPUT =file_reference
STATUS =status_variable

Parameters KEY_NAMES or KEY_NAME or NAMES or NAME or
KN or N

Indicates the alternate-key definitions displayed.

list of names Displays the specified alternate-key
definitions.

PENDING or Displays only the pending alternate-key
P creations and deletions.

ALL or A Displays both pending and existing
alternate-key definitions.

If you omit the KEY_NAMES parameter, only the
pending alternate-key creations and deletions are
displayed.

DISPLAY_OPTIONS or DISPLAY_OPTION or DO
Indicates the contents of the display.

BRIEF or B Displays the key name, position,
length, type, and state.

FULL or F Displays all information in the
alternate-key definition.

SAMPLE_ Displays only sample records with
RECORDS or SR the alternate keys marked.

7-30 SCL Advanced File Management Usage Revision G

Remarks

Revision G

Alternate-Key Creation and Deletion Example

BRIEF_SAMPLE_ Displays the brief definition and the
RECORDS or BSR sample records.

FULL_SAMPLE_ Displays the full definition and the
RECORDS or FSR sample records.
or ALL or A

If you omit the DISPLAY_OPTIONS parameter, ALL is
used (full definition and sample records).

SAMPLE_RECORD_COUNT or SRC

Indicates the number of records displayed if the
DISPLAY_OPTIONS parameter requests a sample record
display.

integer (0 Displays the specified number of
through records.

4398046511103)

ALL or A Displays all records in the file.

The default is a one-record display.

OUTPUT or O

File to which the display is written. If you omit the
OUTPUT parameter, the display is written to the
standard file $OUTPUT.

STATUS

Optional SCL status variable. If you specify the STATUS
parameter, the command returns its completion status in
the specified variable.

® A sample-record display shows the record contents in
ASCII characters and hexadecimal digits. For a
fixed-length key, the alternate-key fields are
underscored. For a variable-length key, the
alternate-key values are underscored.

Create_Alternate_Indexes Utility 7-31

Alternate-Key Creation and Deletion Example

® The underscores for each alternate key appear on a
separate line as follows:

- If the concatenated-key or repeating-groups
attributes are not defined for the key, the
underscore characters indicate the alternate-key
type (C for collated, I for integer, or U for
uncollated).

-~ If the key is a concatenated key, the underscores
for each key field include one or two letters. The
fields concatenated are a_, b_, and so forth up to
z_ and then, aa, ba, ca, and so forth.

-~ If the alternate-key definition specifies repeating
groups, the underscores for each alternate-key
value in the record include a number (1, 2, and so
forth).

Examples This CREATE_ALTERNATE_INDEXES session writes a
display to file LIST. The listing includes all records in the
file, marked with the proposed alternate-key
ALTERNATE_KEY_2.

/create_alternate_indexes input=Suser.is_file o
creai/create_key_definition key_name=alternate_key_2 ..

creai../key_position=0 key_length=2 ..

creai../repeating_group_length=20

creai/display_key_def initions ..

creai../display_option=sample_records ..

creai../sample_record_count=all output=1list

creai/quit apply_key_def initions=no

7-32 SCL Advanced File Management Usage Revision G

Revision J

Alternate-Key Creation and Deletion Example

The following CREATE _ALTERNATE_INDEXES session
contains a DISPLAY_KEY_DEFINITIONS subcommand
for a default display, that is, a full definition of all
pending alternate-key creations and deletions and a single
sample record.

/create_alternate_indexes input=$user.is_file

creai/create_key_def inition key_name=alternate_key_1 key_position=0 ..

creai../key_length=2 repeating_group_length=4
creai/display_key_definitions

Display_Key_Def initions 1985-10-03
NOS/VE Keyed File Utilities 1.1 85259 14:09: 01
File = .NVE.USERSS.IS_FILE
KEY NAME POSITION LENGTH TYPE STATE
ALTERNATE _KEY_1 0 2 uncollated Creation
pending
Duplicate_Key_Values : not_allowed
Nu11_Suppression : no
Repeat ing_Groups_Specif ied
Repeat ing_Group_Length)
Repeat ing_Group_Count . repeat_to_end_of _record
RECORD 1(inascii) : This is the first recor
(in hex) : 5468697320697320746865206669727374207265636F72
ALTERNATE _KEY_1 I D 2_2_ 3.3_ 4_4_ 5.5_ 6_6_

(in ascii) : d .
(in hex) : 642E

>

creai/quit apply_key_def initions=no

Create_Alternate_Indexes Utility 7-33

Alternate-Key Creation and Deletion Example

HELP Subcommand (for the CREATE _ALTERNATE _
INDEXES Utility)

Purpose

Format

Parameters

Remarks

Provides online help from within a CREATE__
ALTERNATE_INDEXES session.

HELP or

HEL
SUBJECT =string
MANUAL =file

STATUS =status_variable

SUBJECT or S

Topic to be located in the online manual index. The topic
must be enclosed in apostrophes (topic’).

If you omit the SUBJECT parameter, HELP displays a
list of the available subcommands.

MANUAL or M

File containing the online manual whose index is
searched. If you omit the MANUAL parameter, the
default is AFM. The working catalog is searched for the
file and then the $SYSTEM.MANUALS catalog.

STATUS

Optional SCL status variable. If you specify the STATUS
parameter, the command returns its completion status in
the specified variable.

® If you enter a topic that is not in the manual index, a
message appears telling you that the topic could not
be found.

® The default manual file, $SYSTEM.MANUALS.AFM,
contains the online version of the NOS/VE Advanced
File Management Usage manual, as provided with the
NOS/VE system.

® If your terminal is defined for full-screen applications,
the online manual is displayed in screen mode. To
leave the online manual, press the QUIT function key.

® To request help in reading the online manual, enter
HELP while in the manual.

7-34 SCL Advanced File Management Usage Revision J

Alternate-Key Creation and Deletion Example

QUIT Subcommand (for the CREATE _ALTERNATE _
INDEXES Utility)

Purpose

Format

Parameters

Revision G

Ends the CREATE_ALTERNATE_INDEXES utility
session.

QUIT or
QUI
APPLY_KEY_DEFINITIONS =boolean or
keyword _value
ERROR _ LIMIT =integer
STATUS =status__variable

APPLY_KEY_DEFINITIONS or APPLY_KEY_
DEFINITION or AKD

Indicates how pending alternate-key creation and deletion
requests are processed.

APPLY or A or Apply all pending creation and
TRUE or ON or deletion requests.
YES

CANCEL or C or Cancel all pending creation and
FALSE or OFF or deletion requests.
NO

This parameter is required if creation or deletion requests
are pending.
ERROR_LIMIT or EL

Number of nonfatal (trivial) errors allowed for the apply
operation (integer from 0 through 4398046511103

[242. 1)).

A 0 value indicates no limit; 0 is the default value.

See the APPLY_ KEY_DEFINITIONS description for a
description of apply error processing.

STATUS

Optional SCL status variable. If you specify the STATUS
parameter, the command returns its completion status in
the specified variable.

Create_Alternate_Indexes Utility 7-35

Alternate-Key Creation and Deletion Example

Remarks ® The APPLY_KEY. DEFINITIONS parameter is
required only if alternate-key creation or deletion
requests are pending. In this case, you must specify
whether to apply or cancel the pending requests.

® If you request application of the pending creations and
deletions, the QUIT subcommand (before exiting the
utility) performs the same processing as the APPLY_
KEY_DEFINITIONS subcommand.

Similarly, if you request cancellation of the requests,
the QUIT subcommand performs the same processing
as the CANCEL_KEY_DEFINITIONS subcommand
before exiting the utility.

For more information, see the APPLY_KEY_
DEFINITIONS and CANCEL_KEY_ DEFINITIONS
subcommand descriptions.

Examples This CHANGE_ALTERNATE__INDEXES session requests
an alternate-key deletion and an alternate-key creation,
but then cancels the requests:
/ change_alternate_ingexes file=Suser.isfile
creai/ delete_key_def inition alternate_key_1
creai/ create_key_def inition alternate_key_1 .. .

creai../key_position=0 key_lengtn=5 key_type=integer
creai/Quit apply_key_def initions=no

736 SCL Advanced File Management Usage Revision G

Al

e Utiliti

Al

ubco

“‘,(“gy‘ytw“
ey
ke

g
b

s

AR AT
G

v
L Sy
AT

il
by b g 1
i ,.
A (D il
il ”Mp‘ﬁ i
A i i :
T TR) i
i Itk e et Lt
ST R
B SRR R
! i ;
i3 | “"L sl i i
i ' |

i 4 :
i ity AN
) St

e
i
iy

it
ik o
s
T
[. i
hitae IRy
i] |
Ml
i

W,
i
!

R R
LN
o il)
' e

iy “’)r
¥
il
e [

L f
L w150 i

e i

b
it

PN

f A
i

ommang .../
FILE Subcomma
Subcommand

W i

e

i
t

19, £l
3

i

Y

i

A
L
i
i

g
T
1 o)

NS

el)
i i
HIVNAY

" " . , , . T
s ; ! g ¢ i
e ey My i i f ! : ! i i

AHEE oy i AT

! R
j

o i
e A] PR
i 3 A i RN RO
Bt i ! Jobn

i
i ‘,‘:‘”"

U e
R e
PRETANIGL
RTINS

AN
ok
iy

! L R
g by b i i ; S v e L i el e
Ly i) v

it
Ut
Al
A

i

AR,

i "
R i
iy

i W) ! bR
e | pihs L i

i R

A

e i
TR

3.%:‘?1{\‘1;;@,‘ Pl i b
T IR ¥ i i ; i

i,
Tt
i
it

it
BN
R

i
L
i

L

g
Ve
“"“»\ﬁfv‘w“;{
(e

st
AR

CERITR A
2
i
i

3
i

CREATE _KEYED_FILE and CHANGE _
KEYED _FILE Utilities 8

This chapter describes the use of two NOS/VE command utilities:
CREATE_KEYED_FILE and CHANGE_KEYED_FILE. These
utilities can manipulate nested file definitions and the records stored
in keyed files.

The CREATE_KEYED_FILE command utility creates a new keyed
file. (The keyed file must be previously defined by a SET_FILE_
ATTRIBUTE command.) The RECOVER_KEYED_FILE/ommand
utility can change an existing keyed file or a copy of an existing
keyed file.

You can create and change alternate-key definitions while using
CREATE_KEYED_FILE or CHANGE_KEYED_FILE by executing
the Create_Alternate_Indexes utility as a subutility in the session.
The subcommands for the CREATE_ALTERNATE_INDEXES
subutility are described in detail in chapter 7.

Using the Utilities

The CREATE_KEYED_FILE and CHANGE_KEYED_FILE command
utilities use the same subcommands. However, the two utilities differ
in the keyed file used as follows:

® The file specified on the CREATE_KEYED_FILE command must
not exist, but its attributes must be previously defined by a SET_
FILE_ATTRIBUTES command.

® The input file specified on the CHANGE_KEYED_FILE command
must be an existing keyed file. The command can also specify an
output file which may not be an existing file. If an output file is
specified, CHANGE_KEYED_FILE copies the input file to the
output file; the session subcommands manipulate the contents of
the output file.

Online help is available in a utility session via the HELP
subcommand. A utility session ends when the QUIT subcommand is
entered. The utility prompts are crekf/ and chakf/. Any NOS/VE
command can be entered in response to these prompts.

Revision J CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-1

Preparation Before Using the Utilities

Preparation Before Using the Utilities

Before using the CREATE_KEYED_FILE and CHANGE_KEYED_
FILE utilities, you may need to enter certain NOS/VE commands as
follows:

® Before creating a new keyed file, you must first define the keyed
file with a SET_FILE_ATTRIBUTES command. The new file must
be defined, but it must not be used for any other purpose (that is,
opened) before the CREATE_KEYED_FILE session.

The attributes used to define a new keyed file are described in
chapter 6. The following is an example of a command to create an
indexed-sequential file.

/set_file_attributes, file=$user.my_isfile, ..
../ file_organization=indexed_sequential, record_type=fixed, ..
../ maximum_record_length=80, key_length=10 ..

® Before creating or changing a keyed file that uses a user-defined
hashing procedure, collation table, or compression procedure, you
must add the object library containing the procedure or collation
table to the program library list. The object library must be added
before the utility session begins.

For example, the following command adds an object library to the
program library list.

/ set_program_attribute, add_library=$user.my_hash_1library

For more information on the program library list and the
commands that affect it, see the NOS/VE Object Code Management
Usage manual.

8-2 SCL Advanced File Management Usage Revision J

Manipulating Nested Files

Manipulating Nested Files

The CREATE_KEYED_FILE or CHANGE_KEYED_FILE session
can manipulate the nested-file definitions in the file. One nested file
(named $MAIN_FILE) is created when the file is created.

The following subcommands manipulate nested files:

Subcommands Purpose
CREATE_NESTED_FILE Creates and selects a new
nested file.
DELETE_NESTED_FILE Deletes one or more nested
files.
DISPLAY_NESTED_FILE Displays information about the

nested files.

SELECT_NESTED_FILE Selects the nested file to
become the currently selected
nested file.

The other utility subcommands reference one nested file, the currently
selected nested file. A CREATE_ALTERNATE_INDEXES subutility
session applies only to the currently selected nested file. Initially, the
currently selected nested file is $MAIN_FILE. You can select another
nested file with the SELECT_NESTED_FILE subcommand or create
and select a new nested file with the CREATE_NESTED_FILE
subcommand.

Revision G CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-3

Adding and Replacing Records From Input Files

Adding and Replacing Records From Input
Files

The following subcommands copy records from the input files specified
on the subcommand:

Subcommands Purpose

ADD_RECORDS Puts the records into the selected nested
file. (Their primary-key values must be
unique in the nested file.)

COMBINE_RECORDS Puts the records with new primary-key
values and replaces the records with
existing primary-key values.

REPLACE_RECORDS Replaces records in the selected nested
file. (Their primary-key values must
already exist in the nested file.)

The following rules apply to the record manipulation subcommands:

® The subcommand operates only on the records in the currently
selected nested file. The initially selected nested file is $MAIN_ .
FILE. You can change the selected nested file with a SELECT_
NESTED_FILE or CREATE_NESTED_FILE subcommand.

® When SORT=TRUE is specified, the input records for an
indexed-sequential file are sorted by primary-key value; input
records for a direct-access file are sorted by hash result value.

For Better Performance

Pre-sorting the input records by specifying SORT=TRUE or by
using the SORT command is highly recommended. (The SORT
command is described in chapter 2 of this manual.)

When SORT=TRUE, the subcommand uses additional temporary

space to sort the input records. This additional space could be

significant if the input files are very large. If necessary, specify .
SORT=FALSE to prevent sorting of the input records.

When SORT=TRUE, the subcommand writes any records with

duplicate primary key values to the temporary file AAF$CREKF_
DUPLICATE_LOG. The records written to AAF$CREKF_
DUPLICATE_LOG are in no specific order. .

8-4 SCL Advanced File Management Usage Revision G

Adding and Replacing Records From Input Files

The ERROR_LIMIT file attribute controls the maximum number
of nonfatal errors that can occur before the nonfatal errors cause a
fatal error (error_limit_exceeded) that terminates the
subcommand.

If you receive a fatal error during subcommand processing,
processing is suspended with records added only up to the record
that caused the error. A message tells you how to add the rest of
the records.

To do so, you enter, in response to the crekf/ prompt, another
subcommand specifying AAF$CONTINUE as the only input file.
(AAF$CONTINUE is a temporary file in which the command has
copied the input records. It is positioned at the record following
the record in error.) The subcomand can also specify the ERROR_
LIMIT parameter.

The subcommand detects a nonfatal error when a record:

- Is shorter than the MINIMUM_RECORD_LENGTH or longer
than the MAXIMUM_RECORD_LENGTH of the nested file.

- Contains an alternate-key value that duplicates an existing key
value.

- Contains a duplicate primary-key value.

-~ Contains a sparse-key value that indicates that the
alternate-key value should be included in the alternate index,
but the record is too short to include the alternate-key field.

If the output file has fixed-length (F) records and the input record
is shorter than the MAXIMUM_RECORD_LENGTH of the output
file, the subcommand pads the output record to the maximum
record length using the PADDING_CHARACTER attribute value.
The default padding character is the space.

Revision G CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-5

Adding and Replacing Records From Input Files

® If you specify the standard input file $INPUT on the subcommand
in an interactive session, you are prompted for record entry from
the terminal. (The prompt is the PROMPT_STRING connection
attribute value. Unless changed, its value is ?.)

To end record entry, enter the END_OF_INFORMATION
connection attribute value as the response to the prompt. Unless
changed, its value is *EOI.

For example:
crekf/add_records, $input
? This is a new record to be added.
? *EOI
crekf/

8-6 SCL Advanced File Management Usage Revision G

Selecting Records

Selecting Records

The following subcommands manipulate selected records in the
currently selected nested file:

Subcommands Purpose

DELETE_RECORDS Deletes selected records from the nested
file.

DISPLAY_RECORDS Formats and displays selected records.

EXTRACT_RECORDS Copies selected records from the nested

file to another file.

The following rules apply to the subcommands that select records:

The subcommand only selects records from the currently selected
nested file.

When specifying values for a key range, you do not have to specify
the entire key value. For example, if you specify KEYS="A’."Z’,
the range begins with the first key value whose first character is
greater than or equal to A and ends at the first key value whose
first character is greater than Z.

If you specify the KEYS parameter with only one key value, the
full key value must be specified. This is to ensure that the correct
record is selected. (This rule is not effective for a DELETE_
RECORDS subcommand with VETO=TRUE, because in that case,
you must confirm that the correct record is being deleted.)

When you specify a single key value on the KEY parameter, the
subcommand searches for that key value and, if it cannot find that
value, it does not select any records. In contrast, when you specify
a range on the KEY parameter, the subcommand searches for that
key value or the next greater key value.

Revision G CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-7

Selecting Records

For example, suppose a file has only two records; their

primary-key values are B and C. The following subcommands are

entered:
delete_record, key="A’

No record has key value A so no records are selected.

delete_record, key="A’."2’
Both records are selected.
delete_record, key="A’, count=20

No record has key value A so no records are selected.

delete_record, key="A’. $LAST_KEY, count=20
Both records are selected.

® The COUNT parameter selects records until either the count is
satisfied or the upper value of the key range is encountered.

8-8 SCL Advanced File Management Usage

Revision G

Calculating the INITIAL_HOME_BLOCK_COUNT

Calculating the INITIAL_HOME _BLOCK _
COUNT

Creation of a new keyed file or nested file using the direct-access file
organization requires an INITIAL_HOME_BLOCK_COUNT value for
the file. (The INITIAL_HOME_BLOCK_COUNT value is the number
of blocks allocated for the file when it is created, as described under
Direct-Access File Structure in chapter 5.)

For a new keyed file, you can specify the INITIAL_HOME_BLOCK_
COUNT value on the SET_FILE_ATTRIBUTES command for the file
or have the CREATE_KEYED_FILE command calculate the value for
you. Similarly, for a new nested file, you can specify the INITIAL_
BLOCK_COUNT on the CREATE_NESTED_FILE subcommand or
have the subcommand calculate the value for you.

In both cases, if you omit the INITIAL_HOME_BLOCK_COUNT
value, you receive the following message and the prompt IHBC/:

--INFORMATIVE-- The output file is a direct-access file but a
value was not provided for INITIAL_HOME_BLOCK_COUNT.
Please enter ADD_RECORDS commands in response to the prompt
"THBC/". Enter QUIT after specifying ALL files to be copied.
CREATE_KEYED_FILE will then compute the INITIAL_HOME_
BLOCK_COUNT and copy the records into the new file. IHBC/

The command should calculate the INITIAL_HOME_BLOCK_COUNT
value only if all input records for the new keyed file or new nested
file are available. If additional records are to be added later, after the
creation of the file or nested file, you should enter QUIT after the
IHBC/ prompt. In this case, you must choose an INITIAL_HOME_
BLOCK_COUNT for the file or nested file and specify it on the
command or subcommand.

However, if all records to be stored in the direct-access file are
available, you can have the command or subcommand calculate the
appropriate initial_home_block_count for you. To have the initial__
home_block_count calculated for you, you must specify the files
containing ALL input records for the new file or nested file. You
specify the files on ADD_RECORDS subcommands.

The command or subcommand reads the files specified on the ADD_
RECORDS subcommand and accumulates the records to be put into
the file. When you enter the QUIT subcommand, it calculates the
initial__home_block_count value, creates the direct-access file, and
puts the records into the file.

Revision G CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-9

Calculating the INITIAL_HOME_BLOCK_COUNT

The initial_home_block_count is calculated using this formula:

(average_record_length + 3) * record_count

(loading_factor/100) * (block_length - 36)

You can specify the loading factor used by the formula on the
CREATE_KEYED_FILE command or CREATE_NESTED_FILE
subcommand. The default is 75.

For example, the following commands create a direct-access file
containing the records from a file and a nested file:

IHBC/ add_records, $user.seguential_file

IHBC/ add_records, ($user.keyed_file, $main_file)

IHBC/ quit

--INFORMATIVE-- INITIAL_HOME_BLOCK_COUNT=105 based upon
LOAD_FACTOR=75, AVERAGE_RECORD_LENGTH=63,
RECORD_COUNT=12000 and BLOCK_LENGTH=512.

crekf/

8-10 SCL Advanced File Management Usage Revision G

CREATE_KEYED_FILE Example

CREATE _KEYED _FILE Example

The following interactive session illustrates use of the CREATE_
KEYED_FILE command utility:

/copy_keyed_file input=$user .add_file “Displays contents of
Everest Africa 8800 “$USER.ADD_FILE.

Fuji Asia 7000

K2 Asia 8611

Kilimanjaro Africa 5895

/copy_keyed_file input=$user.replace_file “Displays contents of
Everest Asia 8848 “$USER .REPLACE_FILE.

/copy_keyed_file input=$user.combine_file "Displays contents of

Matterhorn Europe 4478 "$USER .COMBINE_FILE.
McKinley North America 6194

Fuji Asia 6999

/set_file_attributes .. “Defines the file attributes
../file=guser.indexed_sequential_file .. "of file $USER.INDEXED_
../file_organization=indexed_sequential .. "SEQUENTIAL_FILE.

. ./maximum_record_length=32 ..
../minimum_record_length=14 ..
../key_length=14, key_position=0

/create_keyed_file .. *Starts the utility session.
. ./output=guser. indexed_sequential_file

crekf/add_records .. *Adds records.
crekf../input=guser.add_file

crekf/replace_records .. “Replaces records.
crekf../input=$user.replace_file

crekf/combine_records .. "Adds and replaces records.
crekf../input=$user.combine_file

crekf/display_records count=all *Displays records.
Display_Nested_File 1986-02-17
NOS/VE Keyed File Utilities 1.2 85357 11:19:36

File = :NVE.USER99.INDEXED_SEQUENTIAL_FILE.1

Revision G CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-11

CREATE_KEYED_FILE Example

Byte:
Byte:
Byte:
Byte:
Byte:
Byte:

(= = I = B = R o B]

crekf/extract_records output=new_file ..

ASCII:
ASCII:
ASCII:
ASCII:
ASCII:
ASCII:

Everest
Fuji

K2
Kilimanjaro
Matterhorn
McKintey

crekf../keys="E’.."’Ma’, count=3
--INFORMATIVE AA 501275-- The Extract_Records subcommand of
CREATE_KEYED_FILE copied 3 records from nested file
$MAIN_FILE in file :NVE.USER99.INDEXED_SEQUENTIAL_FILE

to NEW_FILE.

crekf/delete_records ..
crekf../keys="Matterhorn’..’McKinley’

crekf../count=2, veto=true
ASCII:
==>Yes
ASCII:
==>No

Byte: 0
Okay to delete?
Byte: 0
Okay to delete?

--INFORMATIVE AA 501305--
record was not deleted.
--INFORMATIVE AA 501285--
CREATE_KEYED_FILE deleted 1 record from nested file
$MAIN_FILE in file :NVE.USER99.INDEXED_SEQUENTIAL_FILE.

crekf/create_nested_file ..
crekf../name=nested_file_1

Matterhorn

McKinley

Asia 8848
Asia 6999
Asia 8611
Africa 5895
Europe 4478

North America 6194

"Extracts records.

"Deletes records.

Europe 4478

North America 6194

As requested by the user, this

The Delete_Records subcommand of

"Creates a new nested file.

crekf../maximum_record_length=32 ..
crekf../key_length=14 ..
crekf../ file_organization=indexed_sequential

crekf/display_nested_file
Display_Nested_File

NOS/VE Keyed File Utilities
File = :NVE.USER99.INDEXED_SEQUENTIAL_FILE

"Displays the nested files.

1.2 85357

1986-02-17
12:20:36

List of Nested Files for file INDEXED_SEQUENTIAL_FILE
(currently selected nested file)

NESTED_FILE_1
$MAIN_FILE

crekf/ select_nested_file ..

crekf../name=$main_file

*Selects another nested file.

8-12 SCL Advanced File Management Usage

Revision G

CREATE_KEYED_FILE Example

crekf/display_nested_file "Displays the nested files.
Display_Nested_File 1986-02-17
NOS/VE Keyed File Utilities 1.2 85357 12:25:36

File = :NVE.USER99.INDEXED_SEQUENTIAL_FILE

List of Nested Files for file INDEXED_SEQUENTIAL_FILE
$MAIN_FILE (currently selected nested file)
NESTED_FILE_1

crekf/delete_nested_file .. "Deletes a nested file.
crekf../name=nested_file_1

crekf/display_nested_file *Displays the nested files.
Display_Nested_File 1986-02-17
NOS/VE Keyed File Utilities 1.2 85357 12:30:46

File = :NVE.INDEXED_SEQUENTIAL_FILE

List of Nested Files for file INDEXED_SEQUENTIAL_FILE
$MAIN_FILE (currently selected nested file)

crekf/quit "Ends the session.

Revision G CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-13

CREATE_KEYED_FILE Example

CREATE _KEYED_FILE Command

Purpose

Format

Parameters

Creates the keyed file specified on the command and
begins a CREATE_KEYED_FILE utility session.

NOTE

The new keyed file must be previously defined by a SET_
FILE_ATTRIBUTES command.

CREATE_KEYED_FILE or
CREKF

OUTPUT =file

STATUS =status__variable

OUTPUT or OB

File path of the keyed file to be created. The file must be
a new file (never opened), but its attributes must have
been specified by previous SET_FILE_ATTRIBUTES
commands. This parameter is required.

The minimum attributes that must be defined are KEY_
LENGTH and MAXIMUM_RECORD_LENGTH. If the
FILE_ORGANIZATION is omitted, CREATE_KEYED_
FILE creates an indexed-sequential file.

STATUS
Optional status variable.

In a batch job, when a subcommand without its own
status variable returns an error, the error is stored in the
CREATE_KEYED_FILE status variable, if any, and the
utility session terminates.

In an interactive session, when a subcommand without its
own status variable returns an error, the error is
displayed at the terminal, but the utility session does not
end. The user can continue the session with another
subcommand.

In an interactive session, only the completion status of
the CREATE_KEYED_FILE command and the QUIT

command that ends the session are stored in the
CREATE_KEYED_FILE status variable.

8-14 SCL Advanced File Management Usage Revision G

CREATE_KEYED_FILE Command

Remarks ® The command utility prompt is:
crekf/

In response to the crekf/ prompt, you can enter
NOS/VE commands and any of these subcommands:

ADD_RECORDS
COMBINE_RECORDS
CREATE_ALTERNATE_INDEXES
CREATE_NESTED_FILE
DELETE_NESTED_FILE
DELETE_RECORDS
DISPLAY_NESTED_FILE
DISPLAY_RECORDS
EXTRACT_RECORDS
HELP

QUIT
REPLACE_RECORDS
SELECT_NESTED_FILE

® The new keyed file is created with one nested file,
named $MAIN_FILE. It is the initially selected nested
file and all subcommands apply to it until a
CREATE_NESTED_FILE or SELECT_NESTED_FILE
subcommand selects another nested file.

® If any nested file in the new keyed file will use a
user-defined collation table, hashing procedure, or
compression procedure, the object library containing
the compiled table or procedure must be in the
program library list before the CREATE_KEYED_
FILE session begins.

To add one or more object libraries to the program
library list, use the ADD_LIBRARIES parameter on a
SET_PROGRAM_ATTRIBUTES command. For
example:

set_program_attributes, add_library=$user.hash_1ibrary

Revision J CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-15

CREATE_KEYED_FILE Command

® If you specify DIRECT._ACCESS as the FILE_
ORGANIZATION attribute on the SET_FILE_
ATTRIBUTES command, but omit the INITIAL_
HOME_BLOCK_COUNT attribute, CREATE _
KEYED_FILE prompts you for calculation of the
INITIAL_HOME_BLOCK_COUNT. For more
information, see Calculating the INITIAL_HOME_
BLOCK_COUNT earlier in this chapter.

Examples This CREATE_KEYED_FILE example defines the file
$USER.INDEXED_SEQUENTIAL_FILE with the SET_
FILE_ATTRIBUTES command and then creates it.

/set_file_attributes..
../file=$user.indexed_sequential_file ..
../file_organization=indexed_sequential ..
../maximum_record_length=32..
../minimum_record_length=14 ..
../key_length=14

/create_keyed_file..
../output=$user . indexed_sequential_file
crekf/

At this point, the file has been opened and, therefore,
exists, but is empty.

8-16 SCL Advanced File Management Usage Revision J

CHANGE_KEYED_FILE Command

CHANGE _KEYED _FILE Command

Purpose

Format

Parameters

Revision J

Changes an existing keyed file or a copy of the keyed file
and begins a CHANGE_KEYED_FILE utility session.

CHANGE _KEYED_FILE or
CHAKF

INPUT =file

OUTPUT =file

STATUS =status__variable

INPUT or 1

File path of an existing keyed file. You must have at
least read access to the input file. This parameter is
required.

OUTPUT or O

File path of the keyed file to which the input file is
copied.

If file does not exist, CHANGE_KEYED_FILE creates it
when it copies the input file. If the file does exist, it
must have the same attributes as the input file.

If you omit the OUTPUT parameter, CHANGE_KEYED_
FILE does not use an output file; instead, it opens the
input file and changes it directly.

STATUS
Optional status variable.

In a batch job, when a subcommand without its own
status variable returns an error, the error is stored in the
CHANGE_KEYED_FILE status variable, if any, and the

utility session terminates.

In an interactive session, when a subcommand without its
own status variable returns an error, the error is
displayed at the terminal, but the utility session does not
end. The user can continue the session with another
subcommand.

In an interactive session, only the completion status of
the CHANGE_KEYED_FILE command and the QUIT
command that ends the session are stored in the
CHANGE_KEYED_FILE status variable.

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-17

CHANGE_KEYED_FILE Command

Remarks ® The command utility prompt is:
chakf/

® In response to the chakf/ prompt, you can enter
NOS/VE commands and any of these subcommands:

ADD_RECORDS
COMBINE_RECORDS
CREATE_ALTERNATE_INDEXES
CREATE_NESTED_FILE
DELETE_NESTED_FILE
DELETE_RECORDS
DISPLAY_NESTED_FILE
DISPLAY_RECORDS
EXTRACT_RECORDS
HELP

QUIT
REPLACE_RECORDS
SELECT_NESTED_FILE

® All subcommands in the session apply to the currently
selected nested file. The initially selected nested file is
$MAIN_FILE. The nested file selection can be
changed by a CREATE_NESTED_FILE or SELECT_
NESTED_FILE subcommand.

® If the existing keyed file or a new nested file to be
created uses a user-defined collation table, hashing
procedure, or compression procedure, the object library
containing the compiled table or procedure must be in
the program library list before the CHANGE_
KEYED_FILE session begins.

To add one or more object libraries to the program
library list, use the ADD_LIBRARIES parameter on a
SET_PROGRAM_ATTRIBUTES command. For
example:

set_program_attributes, add_library=$user.hash_1ibrary
Examples The following session copies an existing keyed file and
then ends.
/change_keyed_file, input=$user.existing_keyed_file, ..

.. /output=8user.new_keyed_file
chakf/quit

8-18 SCL Advanced File Management Usage Revision J

.

CREATE_KEYED_FILE Example

ADD_RECORDS Subcommand

Purpose

Format

Parameters

Remarks

Revision G

Puts records into the currently selected nested file.

ADD_RECORDS or
ADD_RECORD or
ADDR
INPUT=file or list of files
SORT = boolean
ERROR _LIMIT =integer
STATUS =status__variable

INPUT or 1

List of one or more files whose records are to be copied.
You must have at least read access to the input files.
This parameter is required.

SORT or S

Indicates whether the subcommand sorts the input records
before adding them to the currently selected nested file. If
you omit the SORT parameter, the default is
SORT=TRUE.

ERROR_LIMIT or EL

Number of nonfatal (trivial) errors allowed for the ADD_
RECORDS operation (integer from 0 through
4398046511103[242-1)).

A 0 value indicates no limit; 0 is the default value.
See the Remarks for a description of error processing.

STATUS

Optional SCL status variable. If you specify the STATUS
parameter, the command returns its completion status in
the specified variable.

See the rules for record copying subcommands listed
under Adding and Replacing Records From Input Files at
the beginning of this chapter.

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-19

CREATE_KEYED_FILE Exzample

Examples This CREATE_KEYED_FILE example creates the file
$USER.INDEXED_SEQUENTIAL_FILE, adds the records
of file $USER.ADD_RECORDS to it, and then displays

the file.

/ set_file_attributes ..

../ file=Suser. indexed_sequential_file ..

../ file_organizat ion=indexed_seguential ..
../ maximum_record_length=32 ..
../ minimum_record_length=14 ..

../ key_length=14

/ create_keyed_file ..

../ output=$user. indexed_sequential_file
crekf/ add_records input=$user.add_records

crekf/display_records count=all

Display_Nested_File
NOS/VE Keyed File Utilities

1.2 85357

File = :NVE.USERSS. INDEXED_SEQUENTIAL_FILE.1
Display of records in $MAIN_FILE

Byte:
Byte:
Byte:
Byte:
Byte:
crekf/

oOooooco

ASCII:
ASCI1:
ASCII:
ASCI1:
ASCII:

Everest

K2
Kilimanjaro
Matterhorn
McKinley

8-20 SCL Advanced File Management Usage

North America 6194

1986-02-17
11:19:36
Asia 8848
Asia 8611
Africa 5895
Europe 4478

Revision G

CREATE_KEYED_FILE Example

COMBINE _RECORDS Subcommand

Purpose Puts and replaces records in the currently selected nested
file.

Format COMBINE _RECORDS or
COMBINE_RECORD or
COMR
INPUT=file or list of files
SORT =boolean
ERROR _ LIMIT =integer
STATUS =status_ variable

Parameters INPUT or I

List of one or more files whose records are to be copied.
You must have at least read permission to the input files.
This parameter is required.

SORT or S
Indicates whether the subcommand sorts the input records
combining them with the currently selected nested file. If

you omit the SORT parameter, the default is
SORT=TRUE.

ERROR_LIMIT or EL

Number of nonfatal (trivial) errors allowed for the
COMBINE_RECORDS operation (integer from 0 through
4398046511103[2%2-1]).

A 0 value indicates no limit; 0 is the default value.
See the Remarks for a description of error processing.

STATUS

Optional SCL status variable. If you specify the STATUS
parameter, the command returns its completion status in
the specified variable.

Remarks ® Because the COMBINE_RECORDS subcommand does
not lock key values it is recommended that you do not
use this subcommand when another task could be
updating the same records. If you attach the output
file with no write share modes (SHARE _
MODES=READ or SHARE_MODES=NONE) before
the session, the file cannot be shared for updating.

Revision G CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-21

CREATE_KEYED_FILE Example

Examples

® See the rules for record copying subcommands listed

under Adding and Replacing Records From Input Files
at the beginning of this chapter.

/copy_keyed_file add_file

Everest Africa 8800
K2 Asia 8611
Kilimanjaro Africa 5895
/copy_keyed_file combine_file

Everest Asia 8848
Matterhorn Europe 4478
McKinley North America 6194

/create_keyed_file ..

.. /output=$user. indexed_sequential_file
crekf/add_records input=$user.add_file

crekf/combine_records input=$user.combine_file

crekf/display_records count=all
Display_Nested_File

NOS/VE Keyed File Utilities 1.2 85357

File = :NVE.USERSS. INDEXED_SEQUENTIAL_FILE.1

Display of records in $MAIN_FILE

Byte: 0 ASCI1: Everest
Byte: 0 ASCII: K2

Byte: 0 ASCII: Kilimanjaro
Byte: 0 ASCI1: Matterhorn
Byte: O ASCII: McKinley
crekf/

8-22 SCL Advanced File Management Usage

This CREATE_KEYED_FILE example adds records that
have a new primary key and replaces records that have
an existing primary-key value.

1886-02-17

12:01:46
Asia 8848
Asia 8611
Africa 5885
Europe 4478

North America 6194

Revision G

CREATE_KEYED_FILE Ezample

CREATE _ALTERNATE _INDEXES Subcommand

Purpose

Format

Parameters

Revision G

Begins a CREATE_ALTERNATE_INDEXES subutility
session to create, delete, and display alternate-key
definitions in the currently selected nested file.

CREATE _ALTERNATE _INDEXES or
CHANGE _ALTERNATE _INDEXES or
CREATE _ALTERNATE _INDICES or
CHANGE _ALTERNATE _INDICES or
CREATE _ALTERNATE _INDEX or
CHANGE _ALTERNATE _INDEX or
CREAI or
CHAALI

STATUS = status__variable

STATUS
Optional status variable.

In a batch job, when a subcommand without its own
status variable returns an error, the error is stored in the
CREATE_ALTERNATE_INDEXES status variable, if any,
and the subutility session terminates.

In an interactive session, when a subcommand without its
own status variable returns an error, the error is
displayed at the terminal, but the subutility session does
not end. The user can continue the session with another
subcommand.

In an interactive session, only the completion status of
the CREATE_ALTERNATE_INDEXES command and the
QUIT command that ends the session are stored in the
CREATE_ALTERNATE_INDEXES status variable.

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-23

CREATE_KEYED_FILE Exzample

Remarks ® The subutility prompt is:

creai/ .

In response to the creai/ prompt, you can enter SCL
commands and any of these subcommands:

CREATE_KEY_DEFINITIONS .
DISPLAY_KEY_DEFINITIONS

DELETE_KEY_DEFINITIONS

CANCEL_KEY_DEFINITIONS

APPLY_KEY_DEFINITIONS

HELP

QUIT

For detailed descriptions of the CREATE_
ALTERNATE_INDEXES subcommands, see chapter 7.

¢ The CREATE_ALTERNATE_INDEXES subcommand
does not check your file permissions; each subcommand
you enter in the subutility session check that you have
the required permissions to do the operation.
To display key definitions, you must have at least
read permission; to create, delete, cancel, or apply key
definitions, you must have at least the three
permissions: append, modify, and shorten.

8-24 SCL Advanced File Management Usage Revision G

Examples

Revision G

CREATE_KEYED_FILE Example

The following subutility session creates an alternate-key
definition and then displays it.

crekf /create_alternate_indexes

creai/create_key_def initions ..

creai../key_name=alternate_key_1 ..

creai../key_position=28 key_length=4
creai/display_key_definitions display_options=all
Display_Nested_File 1886-02-17

NOS/VE Keyed File Utilities 1.2 86034 12:20:26
File = :NVE. INDEXED_SEQUENTIAL_FILE

Nested_File_Name

KEY_NAME POSITION LENGTH TYPE STATE
ALTERNATE _KEY_1 28 4 uncollated creation
pending
Duplicate_Key_value : not_allowed
Nu11_Suppression : no
RECORD 1 ..(in ascii) :Everest Asia

(in hex) :45766572657374202020202020204 1736961202020202020

ALTERNATE_KEY_1

(in ascii) : 8848
(in hex) :2020202038383438
> u_U_u_u_

creai/

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-25

CREATE_KEYED_FILE Example

CREATE _NESTED_FILE Subcommand

Purpose

Format

Parameters

Creates and selects a new nested file.

CREATE_NESTED_FILE or
CRENF
NAME =name

MAXIMUM _RECORD_LENGTH =integer

KEY_LENGTH =integer
KEY_POSITION =integer

KEY_TYPE =keyword

FILE _ORGANIZATION =keyword
EMBEDDED_ KEY =boolean

MINIMUM _RECORD_LENGTH =integer
RECORD_TYPE =keyword

COMPRESSION_PROCEDURE_NAME =name

COLLATE_ TABLE_NAME =name
DATA_PADDING = integer
INDEX_ PADDING =integer

INITIAL_HOME_BLOCK_COUNT =integer

HASHING_PROCEDURE_NAME =name

DYNAMIC_HOME _BLOCK_ SPACE =boolean

LOADING _FACTOR =integer
RECORDS_PER_BLOCK =integer
STATUS =status__variable

NAME or N

Name of the new nested file. It must be unique in the

keyed file. This parameter is required.

MAXIMUM_RECORD_LENGTH or MAXRL

Maximum number of bytes in a data record (from 1

through 65497). This parameter is required.
KEY_LENGTH or KL

Integer specifying the primary-key length in bytes (for
integer keys, from 1 through 8; for other key types, from

1 through 255). This parameter is required.
KEY_POSITION or KP

Position of the leftmost byte in the prima