
NOS/VE
Advanced File Management

Usage 60486413

NOSNE Advanced File Management

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60486413

Manual History

Revisions

A
B
c
D
E
F
G
H
J

This revision:

System Version/
PSR Level

1.0.2
1.1.1/613
1.1.2/630
1.1.3/644
1.1.4/649
1.2.1/664
1.2.2/678
1.2.3/688
1.3.1/700

Product
Version

1.0
1.0
1.0
1.1
1.2
1.2/1.3
1.3/1.4
1.3/1.5
1.3/1.6

Date

October 1983
June 1984
March 1985
October 1985
January 1986
July 1986
April 1987
September 1987
April 1988

Revision J documents Sort/Merge 1.3, the keyed-file utilities 1.6, and
FMU 1.1 for NOS/VE Version 1.3.1 at PSR level 700. It was
published in April 1988.

This revision documents the new NOS/VE command utility
RESTORE_LOG, which is used to recover damaged log files. Also,
minor technical and editorial changes have been made.

@1983, 1984, 1985, 1986, 1987, 1988 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 NOSIVE Advanced File Management Usage Revision J

e Contents

About This Manual 7 Owncode 3: Processing
Output Records. 3-6

Audience 7 Owncode 4: Processing
Manual Organization . 7 the Output File. 3-8
Submitting Comments 9 Owncode 5: Processing
In Case of Trouble . . 10 Records With Equal

Keys 3-9

Part I: Sort/Merge
Examples 4-1

Introducing Sort/Merge. 1-1 Command Sort on One
Key 4-2

What Sort/Merge Does . 1-1
Command Sort on

Sort Keys 1-3 Multiple Keys . . 4-4
Specifying the Record Command Merge 4-5

Length. 1-14
Using a Directive File . 4-6

Short Records 1-15
Creating an Object

Zero-Length Records 1-16 Library 4-8
Invalid Records . 1-17 Summing Records 4-10
Performance Defining Your Own

Considerations . 1-18 Collating Sequence. 4-12

The SCL Commands Part II: Keyed-File Utilities
SORT and MERGE. 2-1

Specifying Parameters by Keyed-File Concepts 5-1
Position 2-1

Specifying Parameters in Keyed-File
Directive Files . 2-3 Organizations. 5-2

The Sort/Merge Alternate Keys 5-16
Parameters . . . 2-6 Nested Files .. 5-29

Owncode Procedures 3-1 Displaying, Copying, and
Creating Keyed Files. 6-1

Owncode Procedure
Parameters 3-2 Keyed-File Displays 6-2

Owncode Record Length 3-3 Copying to or From a
Owncode 1: Processing Keyed File 6-15

Input Records. 3-3 Creating a Keyed File . 6-26
Owncode 2: Processing Re-Creating a Keyed

Input Files 3-5 File 6-39

Revision J Contents 3

Create_ Alternate_ Introducing FMU 10-1
Indexes Utility. . . 7-1 e Performance

Creating Alternate Keys. 7-2 Considerations . 10-2
Deleting Alternate Keys . 7-3
Displaying Alternate FMU Command and e Keys 7-4 Directives 11-1
Alternate-Key Creation

Describing NOSNE and Deletion Example. 7-5
Files 11-1

FMU Directives .. 11-5
CREATE _KEYED _FILE
and CHANGE_
KEYED _FILE Utilities. . 8-1 CREATE_OUTPUT_

RECORD Statements. 12-1
Using the Utilities 8-1
Preparation Before Using Statement Conventions . 12-1

the Utilities. 8-2 Logical Expressions 12-2
Manipulating Nested Assignment Statement . 12-4

Files 8-3
Adding and Replacing Data Field Referencing . 13-1

Records From Input
Files 8-4 Field Descriptors 13-1

Selecting Records . . 8-7 Data Types 13-5 e Calculating the Intrinsic Functions . 13-14
INITIAL_ HOME_ Boolean Expressions 13-26
BLOCK_COUNT. . 8-9

CREATE_KEYED_FILE
Arithmetic Expressions 13-32

Example 8-11
Keyed File Reformatting 14-1

Keyed-File Recovery 9-1 Keyed Record

Protecting Your Keyed
Conversion 14-1

Files 9-1
Recovering Your Keyed FMU Examples 15-1

Files 9-8 Reformatting Data 15-1
Recover _Keyed_ File

...
Replacing Occurrences of Utility 9-10 a String 15-5

Administer_ Recovery_
Creating an Log Utility 9-26

Indexed-Sequential File 15-7 e Restore_Log Utility 9-70

Part III: FMU
Glossary A-1

e
4 SCL Advanced File Management Usage Revision J

Related Manuals .

Ordering Printed
Manuals

Accessing Online
Manuals

B-1

B-1

B-2

ASCII Character Set C-1

Predecessor Product
Comparison.

NOSNE Sort/Merge and
Sort/Merge 5

D-1

Differences D-1
Keyed-File Utilities

Comparison . . . D-7
FORM and FMU

Comparison . . D-8

Collation Tables

Using NOSNE
Predefined Collation

E-1

Tables E-2

Figures

2-1. Directive File Order . . 2-5
5-1. Minimal

Indexed-Sequential
Structure. 5-4

5-2. Data-Block Split 5-6
5-3. Index-Block Split . 5-8

Tables

1-1. Maximum Key Field
Sizes 1-5

1-2. Numeric Data
Formats 1-8

Revision J

Using User-Defined
Collation Tables . .

Creating a Collation
Table

NOSNE Predefined
Collation Table
Listings

FMU Conversion Rules,
Storage Requirements,
and Syntax Diagrams .

Data Type Conversion

E-3

E-4

E-10

F-1

Between NOSNE Files . F-2
Storage Requirements for

Computational Items. . F-6
FMU Statement Syntax

Diagrams F-8

FMU Error Messages G-1

About FMU Diagnostics
Messages Listing . .

G-1
G-4

Index Index-1

E-1. Uninitialized Collation
Table. E-6

E-2. Collation Table
Initialized to the Default
ASCII Collating Sequence . E-7

E-3. CASE_INSENSITIVE
Collating Sequence
Initialization Module . . . E-8

1-3. Sign Overpunch
Representation . . .

2-1. Parameter Positional
Order

1-13

2-2

Contents 5

2-2. Result Array Format 2-30 E-3. OSV$COBOL6_ e 2-3. Maximum Sum Field FOLDED Collating
Sizes 2-44 Sequence E-18

3-1. Owncode Procedure E-4. OSV$COBOL6_
Parameters. 3-2 STRICT Collating

13-1. Sign Position for H Sequence E-21 e -Fields 13-10 E-5. OSV$DISPLAY63_

13-2. Sign Position for H FOLDED Collating

Fields 13-11 Sequence E-24

B-1. Related Manuals . . . B-2 E-6. OSV$DISPLAY63_
STRICT Collating

C-1. ASCII Character Set C-1 Sequence E-27
D-1. Sort/Merge 5 to E-7. OSV$DISPLAY64_

NOSNE Sort/Merge FOLDED Collating
Conversion. D-2 Sequence E-30

D-2. Counterparts of the E-8. OSV$DISPLAY64_
FMU and FORM STRICT Collating
Directives D-9 Sequence E-33

D-3. Comparison of CREOR E-9. OSV$EBCDIC
and REF Directives. . . . D-10 Collating Sequence . E-36

D-4. Functional FMU and E-10. OSV$EBCDIC6_
FORM Comparisons. . . . D-11 FOLDED Collating

D-5. Handling Keys for Sequence E-44 e Indexed Sequential Files . D-13 E-11. OSV$EBCDIC6_
E-1. OSV$ASCil6_ STRICT Collating

FOLDED Collating Sequence E-47
Sequence E-12 F-1. Storage Requirements

E-2. OSV$ASCil6_STRICT for Computational Items. F-6
Collating Sequence E-15

6 SCL Advanced File Management Usage Revision J

About This Manual

This manual describes three CONTROL DATA® System Command
Language (SCL) file management tools for use under the Control
Data's Network Operating System/Virtual Environment (NOS/VE). The
three file management tools are Sort/Merge, the keyed-file utilities,
and the File Management Utility (FMU).

Audience

This manual is written for any user of NOSNE files who requires a
means of so~ting or reformatting records or uses keyed files
(indexed-sequential or direct-access files).

The reader is assumed to be familiar with SCL com;nand conventions,
NOS/VE system access, and the NOS/VE file system. This information
is given in the NOS/VE System Usage manual.

This manual is a usage manual, meaning that it contains a
comprehensive description of how to use the software indicated in its
title. For a tutorial that introduces you to the software described in
this manual, see the SCL Advanced File Management Tutorial
manual.

Manual Organization

This manual is divided into four parts as follows:

• The first part describes the SCL interface to Sort/Merge.

• The second part describes the keyed-file utilities.

• The third part describes FMU usage.

• The fourth part of this manual contains appendixes. The
appendixes provide a glossary, character set and collating sequence
listings, and a comparison of the NOS/VE products described in
this manual and their predecessor products.

Two appendixes in this part supplement the FMU descriptions.
These are the FMU Messages appendix and the FMU Conversion
Rules, Storage Requirements, and Syntax Diagrams appendix.

This manual is also available as the online manual, AFM.

Revision J About This Manual 7

Conventions

::: When describing NOSNE command formats, this manual uses the
::! conventions used by the other NOSNE manuals.

The following conventions are used in this manual.

boldface Denotes the required parts of a format.

italics Denotes the optional parts of a format.

blue Denotes user input within interactive
session examples.

UPPERCASE In formats, denotes the parts of the format
that must be entered exactly as shown. In
text, names are shown in uppercase.

lowercase In formats, denotes the parts of the format
that the user supplies.

nonproportional typeface Denotes examples (the nonproportional
typeface simulates computer output). User
input is indicated by blue print. System
output is indicated by black print.

number base All numbers are decimal unless otherwise
indicated.

In formats, indicates that the preceding
items can be repeated.

In examples, indicates that additional
statements would appear at this point, but
are not shown.

Vertical bars in the margin indicate changes or additions to the text
from the previous revision. An example of a change bar is shown in

lll the margin next to this paragraph.

8 SCL Advanced File Management Usage Revision J

Submitting Comments
The last page of this manual is a comment sheet. Please tell us about
any errors you found in this manual and any problems you had using
it.

e If the comment sheet in this manual has been used, please send your
comments to us at this address:

Control Data Corporation
Technology and Publications Division
P.O. Box 3492
Sunnyvale, California 94088-3492

Include this information with your comments:

The manual title and publication number (for this manual:
NOSNE Advanced File Management Usage, 60486413) and the
revision level from the page footer.

Your system's PSR level (if you know it).

Your name, your company's name and address, your work phone
number, and whether you want a reply.

Also, if you have access to SOLVER, the Control Data online facility
for reporting problems, you can use it to submit comments about this
manual. When it prompts you for a product identifier for your report,
please specify SM8 for the Sort/Merge documentation, AAS for the
keyed-file utilities documentation, or FM8 for the FMU documentation.

Revision J About This Manual 9

In Case of Trouble
~

?: Control Data's CYBER Software Support maintains a hotline to assist
¥. you if you have trouble using our products. If you need help beyond

that provided in the documentation or find that the product does not
perform as described, call us at one of the following numbers and a
support analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address
questions about the physical packaging and/or distribution of printed
manuals to Literature and Distribution Services at the following
address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are a Control Data employee,
call CONTROLNET® 243-2100 or (612) 292-2100.

10 SCL Advanced File Management Usage Revision J

Part I: Sort/Merge

e Introducing SortJMerge

The SCL Commands SORT and MERGE .

Owncode Procedures .

Examples

1-1

2-1

3-1

4-1

Introducing Sort/Merge 1

Sort/Merge is the NOSNE software available for sorting records.
Sort/Merge can be executed using a single System Command Language
(SCL) command or using procedure calls from within a program
written in COBOL, CYBIL, or FORTRAN. For information on using
Sort/Merge in a program, refer to the programming language manual
(COBOL Usage, CYBIL Keyed-File and Sort/Merge Interfaces, or
FORTRAN Language Definition Usage manual). This chapter
introduces Sort/Merge use through SCL.

What Sort/Merge Does

The purpose of sorting is to arrange items in order. The purpose of
merging is to combine two or more sets of preordered items. Ordered
information makes reports more meaningful and suggests critical
relationships. Searches for information are faster with ordered lists.

The purpose of Sort/Merge is to arrange records in the sequence you
specify. You describe the records you want sorted or merged and
information on how Sort/Merge is to order them.

Sort/Merge can:

• Sort or merge in response to a single command entry.

• Use an optional directives file for sort or merge specification.

• Sort or merge records from as many as 100 files with one
command.

• Sort character and noncharacter key types.

• Read input records of variable-length (V), ANSI fixed-length (F), or
trailing-character-delimited (T) record type.

• Read input records from sequential, indexed-sequential, or
direct-access files and write output records to sequential or e indexed-sequential files.

• Use mass storage files and magnetic tape files as input and output
files.

• Sort using any of twelve predefined collating sequences, thirteen
numeric formats, and one or more user-defined collating sequences.

Revision G Introducing Sort/Merge 1-1

What Sort/Merge Does

• Sum fields in records that have equivalent key values.

• Use user-defined owncode procedures to insert, substitute, modify,
or delete records during the sort or merge.

To start a sort, you enter a SORT command; to start a merge, you
enter a MERGE command. SortlMerge performs the sort or merge
based on the parameters that you specify on the SORT or MERGE
command. The command parameters are described in chapter 2.

SortlMerge allows you to specify additional parameters on directives in
a directives file. This is provided for two reasons:

• An SCL command parameter can only be specified once on a
command. Certain Sort/Merge specifications require that you
specify the same parameter more than once.

• The length of an SCL command is limited to 256 characters. A
Sort/Merge specification may be longer than that.

Records are sorted or merged on fields of data within each input
record; the fields are called sort keys. The data in a sort key field
can be 8-bit ASCII character codes, signed or unsigned binary integer,
packed decimal, or floating-point numbers. Sort keys are described in e
detail in later in this chapter.

Depending on the owncode procedures you specify, owncode procedures
are executed to process input records, output records, input files, the
output file, or records with equal keys. Owncode procedures are
described in detail in chapter 3.

Merge capabilities are more restricted than those of a sort. Merge
records cannot be supplied by an owncode procedure. Merge input
records must be pre-sorted before the files are merged. If the merge
specifies summing, the files must also be pre-summed.

SortlMerge writes the sorted or merged records to a single output file
or passes them to an owncode procedure for processing.

1-2 SCL Advanced File Management Usage Revision G

Sort Keys

Sort Keys

Sort/Merge orders records according to the contents of the sort key
fields defined for the sort or merge. The sort key fields are defined by
key field definitions on KEY parameters on the SORT or MERGE
command. This chapter describes sort keys and the information you
supply to define them.

A sort key is a fixed field of data in each input record. This means it
must occur in the same position and be the same length in each
record. The maximum combined length of all key fields in a record is
1023 bytes. Character data should be left-justified in the field, and
numeric data should be right-justified in the field.

Major and Minor Sort Keys

The first key you specify is the most important key and is called the
major sort key. This key is sorted or merged first. The keys you
specify after the first key are of lesser importance and are called
minor sort keys. The minor keys are numbered in the order they are
specified. For example, if three sort keys are specified, the first key is
the major sort key (key number 1), the next key listed is a minor key
(key number 2), and the third key is another minor key (key number
3).

When two or more records have equal major key values, Sort/Merge
determines their order by looking at the subsequent minor keys in
order (key number 2, key number 3, and so on). Sort/Merge compares
the minor keys until either an unequal key is found, or until there
are po more keys.

For example, suppose a file of student records is to be sorted on the
field of study and then on the student's name. The field of study is
specified as the major key so all students with the same field of study
are listed together. Because the student name is specified as the
minor key, the students with the same field of study are listed in
alphabetic order by name.

The file could also be sorted by the class code as the major key and
the grade point average as the minor key. If the minor key is sorted
in descending order, the sorted list would group the students by class
and list the students in each class in order from highest to lowest
grade point average.

Revision G Introducing Sort/Merge 1-3

Sort Keys

Describing Sort Keys

If you omit the KEY parameter from the Sort/Merge specification, the
default sort key begins with the first byte in the record and extends
to the smallest minimum record length value for all input files. If the
minimum MINIMUM_RECORD_LENGTH attribute for all input files
is 0, Sort/Merge uses 1 as the key length. If the minimum
MINIMUM_RECORD_LENGTH attribute for all input files is greater
than 1023 bytes, Sort/Merge uses 1023 bytes as the key length.

Otherwise, if you specify one or more KEY parameters, each sort key
is defined by a key field definition. Key field definitions include the
following information:

• Starting location of the key within the record

• Key length

• Type of data in the key field

• Sort order (ascending or descending)

Sort/Merge allows key fields to overlap other key fields, except for the
following: e
• Key fields that are ordered by collating sequences defined with the

alter option

• Key fields that overlap sum fields

Key Field Definition

The key field definitions are specified on the KEY parameter on the
SORT or MERGE command or in a KEY parameter on a directive in
the directives file. A key field definition is a value set of up to four
values. Only the first value, specifying the key position, is required.

If a key field definition specifies more than one value, it must be
enclosed in parentheses. Values within a value set are separated by a
comma or a space.

A key field definition has one of the following formats:

(pcs1tion .. position, key_type, sort_order)
(Position, length, key_type, sort_order)

1-4 SCL Advanced File Management Usage Revision G

e

Sort Keys

Byte and bit positions in the record are numbered from the left
beginning with 1. SortJMerge interprets the key field position and
length specification as bytes unless the key type is INTEGER_BITS
or BINARY_BITS.

Table 1-1 lists the maximum key field sizes.

Table 1-1. Maximum Key Field Sizes

Maximum
Size (in Maximum Size

Key Type bytes) Key Type (in bytes)

Character 1023 BINARY 8
NUMERIC_FS 1023 BINARY_BITS 8184 (bits)
NUMERIC_LO 38 INTEGER 8
NUMERIC_LS 38 INTEGER_ BITS 8184 (bits)
NUMERIC_NS 38 PACKED 19
NUMERIC_ TO 38 PACKED_NS 19
NUMERIC_ TS 38 REAL 8 or 16

Key Field Definition Using a Range e If the first value in the key field definition is a range, it defines the
position and length of the key field. The range specifies as its upper
and lower bounds the first and last positions in the key field. For
example, the range 1..3 defines a key field from position 1 through
position 3.

The lower bound of the range (its second value) is optional. When
omitted, the lower bound is assumed to be the same as the upper
bound so the length of the key field is 1.

Key Field Definition Without a Range

If the first value in the key field definition is not a range, the first
two values in the definition are integers that define the position and
length of the key field. The first value specifies the first byte or bit
position in the field. The second value specifies the number of bytes
or bits in the field.

The first value, specifying the key position, is required. If you omit
the second value, the key length is assumed to be 1.

Revision J Introducing Sort/Merge 1-5

Sort Keys

Key Type

After specifying the key field position and length, the key field
definition specifies the type of data in the key field. It can be the
name of a collating sequence or the name of a numeric data format.

By default, the key field is assumed to contain ASCII character data e
to be sorted according to the default ASCII collating sequence.

The key type specified depends on the contents of the sort key field
and on whether the key is to be sorted in numerical order or in
collating sequence order:

• If the data is ASCII character codes, but it represents a number to
be sorted by numerical value, the key type should specify a
numeric data format.

• If the ASCII character codes are to be sorted byte-by-byte
according to a collating sequence, the key type should specify a
collating sequence.

• If the data is an arithmetic representation of a number (binary,
integer, floating-point, or packed-decimal), the key type should
specify the corresponding numeric format. e

If a key field contains data that is not meaningful for the key type
you specify (such as an alphabetic character in a numeric character
field), Sort/Merge determines that the field contains invalid data and
so cannot be sorted. If an exception records file has been specified for
the sort or merge, the record is removed from the sort or merge and
written to exception records file. Otherwise, the record remains in the
sort or merge, but its place in the sort order is undefined.

Collating Sequences

A collating sequence determines the precedence given to each
character in relation to the other characters. Character data must be
in ASCII character codes.

If you do not specify a key type, the default ASCII collating sequence A
(ASCII) is used. ASCII is the fastest predefined character collating 9
sequence.

1-6 SCL Advanced File Management Usage Revision J

Sort Keys

NOSNE has twelve predefined collating sequences. Sort/Merge allows
you to use six of these collating sequences without explicitly loading
the collation table. The six are:

Key Type NOS/VE Predefined Collation Table

ASCII
ASCII6
COBOL6
DISPLAY
EBCDIC
EBCDIC6

The default ASCII collating sequence
OSV$ASCII6_FOLDED
OSV$COBOL6_FOLDED
OSV$DISPLAY64_FOLDED
OSV$EBCDIC
OSV$EBCDIC6_FOLDED

To use the other predefined NOSNE collating sequences you must
explicitly load the collating sequence by specifying a LOAD_
COLLATING_ TABLE parameter. The predefined collating sequences
are listed in appendix E.

You can also create your own collating sequence using the
COLLATING_SEQUENCE_x parameters described in chapter 2.

Numeric Data Formats

e The available numeric data formats are listed in table 1-2.

For Better Performance

Of the numeric data formats, the most efficient key types are
INTEGER, BINARY, and REAL.

Revision G Introducing SortJMerge 1·7

Sort Keys

Table 1-2. Numeric Data Formats

Name Data Type Sign Comments

BINARY Binary None The field must start
integer and end on character

boundaries.

BINARY_BITS Binary None The field need not
integer start or end on

character boundaries.

INTEGER Two's Positive if The field must start
complement leftmost bit and end on character
binary is O; boundaries.
integer negative if

leftmost bit
is 1

INTEGER_ Two's Positive if The field does not start
BITS complement leftmost bit or end on character

binary is O; boundaries.
integer negative if

leftmost bit e is 1

(Continued)

1-8 SCL Advanced File Management Usage Revision G

Sort Keys

Table 1-2. Numeric Data Formats (Continued) e Name Data Type Sign Comments

NUMERIC_FS Leading - sign for The field contains
blanks, negative leading blanks (leading

e numeric values; a + zeros must be
characters character is converted to blanks

not allowed before calling
Sort/Merge); if the
value is negative, the
rightmost leading blank
must be converted to a
minus sign. If the field
contains no leading
blanks or does not
begin with a negative
sign, the value must be
positive. This format is
equivalent to the
FORTRAN I format, or
the COBOL picture

e clause for zero
suppressed editing of
numeric item.

NUMERIC_LO Numeric Leading All characters are
characters overpunch decimal digits except

the leading character,
which indicates a sign
by an overpunch. All
forms of zero are
ordered egually.

(Continued)

Revision G Introducing Sort/Merge 1-9

Sort Keys

Table 1-2. Numeric Data Formats (Continued)

Name Data Type

NUMERIC_LS Numeric
characters

NUMERIC_NS Numeric
characters

NUMERIC_TO Numeric
characters

NUMERIC_ TS Numeric
characters

Sign

Leading
separate

None

Trailing
overpunch

Trailing
separate

1-10 SCL Advanced File Management Usage

Comments

All characters are
decimal digits except
the leading character,
which is a negative or
positive sign.
Specifying a field that
is not at least two
characters in length
causes a fatal error.
All forms of zero are
ordered equally.

All characters are
decimal digits.

All characters are
decimal digits except
the trailing character,
which indicates a sign
by an overpunch. All
forms of zero ordered
equally.

All characters are
decimal digits except
the trailing character,
which is a negative or
positive sign.
Specifying a field that
is not at least two
characters in length
causes a fatal error.
All forms of zero
ordered equally.

(Continued)

Revision G

e

e

-

Sort Keys

Table 1-2. Numeric Data Formats (Continued)

Name Data Type Sign Comments

PACKED Packed Signed Data is ordered
decimal according to numeric

value.

PACKED_NS Unsigned Unsigned PACKED_NS is the
packed same as COBOL
decimal COMPUTATIONAL-3

with no sign.

REAL Normalized Signed All forms of zero are
floating- ordered equally. The
point order of indefinite
number, values is undefined.
either Infinite values are
single- ordered as if their
precision (8 value were infinity
bytes) or (can be signed infinity).
double-
precision
(16 bytes)

Floating Sign

The NUMERIC_FS format contains a floating sign if the value is
negative. This means that the character preceding the numeric
characters must be a minus (-) character. All leading characters must
be blanks. Positive values in this format are not signed. The following
examples are valid floating sign formats:

- 1
1

- 0
0

- 1 2 3
2 3 4

The following examples are invalid floating sign formats:

0 1
- 0 1

+ 1 2 3

Revision G

Leading zero not allowed
Leading zero not allowed
Positive sign not allowed
All blank field not allowed

Introducing Sort/M:erge 1-11

Sort Keys

Sort/Merge issues diagnostic messages for invalid floating sign
formats.

Overpunch Sign

A negative sign overpunch is equivalent to overstriking a digit with a A
-, which is a punch in row 11 of a punched card. A positive sign W
overpunch is equivalent to overstriking a digit with a +, which is a
punch in row 12 of a punched card.

When a signed overpunch digit is received as input, the digit is
punched as indicated in the second column of table 1-3. When a
signed overpunch digit is entered from a terminal or displayed as
output, the digit appears as indicated in the third column of table 1-3.
The hexadecimal value is in the fourth column.

Sort Order

The optional fourth value in the value set specifies the sort order.
Sort order is either ascending or descending as indicated by the
keyword value A or D, respectively. H you specify neither, the sort
order is assumed to be ascending.

When sorting a numeric key in ascending order, Sort/Merge sorts the
key values in numeric order from least to greatest. When sorting a
numeric key in descending order, Sort/Merge sorts the key values in
numeric order from greatest to least.

A character key is sorted according to the collating sequence you
specify for the key. For ascending order, the key values are sorted in
the order given by the collating sequence, For descending order, the
key values are sorted in reverse order from the collating sequence.

1-12 SCL Advanced File Management Usage Revision G

Sort Keys

e Table 1-3. Sign Overpunch Representation

Sign and Input Input/Output Hexadecimal
Digit Punch Representation Value

+o 0 0 30 e +1 1 1 31
+2 2 2 32
+3 3 3 33
+4 4 4 34
+5 5 5 35
+6 6 6 36
+7 7 7 37
+8 8 8 38
+9 9 9 39
+o 12-0 { 7B
+1 12-1 A 41
+2 12-2 B 42
+3 12-3 c 43
+4 12-4 D 44
+5 12-5 E 45
+6 12-6 F 46

e +7 12-7 G 47
+8 12-8 H 48
+9 12-9 I 49
-0 11-0 } 7D
-1 11-1 J 4A
-2 11-2 K 4B
-3 11-3 L 4C
-4 ,ll-4 M 4D
-5 11-5 N 4E
-6 11-6 0 4F
-7 11-7 p 50
-8 11-8 Q 51
-9 11-9 R 52
+o 12-8-4 < 3C
+o 12 & 26
-0 12-8-7 21
-0 11 2D

e

Revision J Introducing Sort/Merge 1-13

Specifying the Record Length

Specifying the Record Length

Sort/Merge can sort records up to 65,535 bytes long. Sort/Merge
determines the maximum and minimum record lengths for a file by
its MAXIMUM RECORD_LENGTH and MINIMUM_RECORD_
LENGTH file attributes.

The record length attributes are set when the file is created. You can
specify the record for a new file with a SET_FILE_ATTRIBUTE
command. If you specify an already existing file on the SET_FILE_

::: ATTRIBUTE command, the command is ignored. For details on the

.:'~.,i,:.: SET_FILE_ATTRIBUTE command, refer to the NOS/VE System
Usage manual.

The default sort key begins with the first byte in the record and
extends to the smallest minimum record length value for all input
files. If the minimum MINIMUM_RECORD_LENGTH attribute for
all input files is 0, Sort/Merge uses 1 as the key length. If the
minimum MINIMUM_RECORD_LENGTH attribute for all input files
is greater than 1023 bytes, Sort/Merge uses 1023 bytes as the key
length.

Sort performance is best when the maximum record length attribute
value is equal to the longest record to be sorted. Sort/Merge can sort
records up to 65,535 bytes long.

If the SORT command specifies an owncode 1 procedure to supply
input records and an owncode 3 procedure to perform output
processing and omits the FROM and TO parameters, the command
must specify the record length using either the OWNCODE_FIXED_
LENGTH or OWNCODE_MAXIMUM_RECORD_LENGTH parameter.

1-14 SCL Advanced File Management Usage Revision J

Short Records

Short Records

A short record is a record that does not contain all key and sum
fields defined for the sort or merge. Sort/Merge determines that a
record is short when it reads the record from the input source.
Therefore, missing or partial key and sum fields are detected even if
Sort/Merge does not use their contents.

NOTE

Records can become short when the system strips off trailing blanks
from variable-length (V) records. For example, when a variable-length
record containing all spaces is displayed by the SCL command
DISPLAY_FILE, the spaces are stripped from the record, leaving a
zero-length record.

When Sort/Merge finds that a key or sum field is entirely beyond the
end of the record, it uses a default value for the field. For character
keys, the default value is all spaces. For numeric keys and sum fields,
the default value is zero in the appropriate format.

The default value does not actually become part of the record data.
Sort/Merge uses the default value only when using the key value or
sum field value. It does not pass the default value to an owncode
procedure or store the default value in the output record.

Sort/Merge processing differs when the field is only partially beyond
the end of the record. If the partial field is a character key field,
Sort/Merge pads it with spaces, but if the partial field is a numeric
key field or sum field, Sort/Merge processes it as an exception.

Exception processing for partial sum fields is described in detail under
the SUM topic in chapter 2. Exception processing for partial numeric
key fields is as follows:

1. The record is written to the exception records file if one is
specified for the sort or merge.

2. If an exception records file exists, the record is removed from the
sort or merge; otherwise, its order is left undefined.

3. The count of partial numeric key fields is incremented. A warning
error message gives the count at the end of the sort or merge.

Revision G Introducing Sort/Merge 1-15

Zero-Length Records

Zero-Length Records

A zero-length record is a record that contains no data and so its
record length is 0. The processing of zero-length records read from
input files depends on the ZERO_LENGTH_RECORDS parameter
specification.

By default, Sort/Merge deletes all zero-length records from the sort or
merge. This is the DELETE option.

However, instead of the DELETE option, ZERO_LENGTH_RECORDS
can specify one of the following options for zero-length records:

PAD Assigns default values to key fields and sum fields in
zero-length records (as it would short records) and keeps the
zero-length records in the sort or merge.

LAST Writes zero-length records at the end of the output file.

Zero-length records are never written to the exception records file if
the DELETE option is selected.

Zero-length records are written to the exception records file if the A
PAD option is selected and either of the following situations exist: W

• If merge order verification is requested and the input files contain
zero-length records that are not pre-sorted on the merge keys.

• If the system procedures that writes the record (AMP$PUT_NEXT)
detects an error while writing a zero-length record. (In general,
attempts to write zero-length records to an indexed-sequential file
cause errors.)

If OMIT_DUPLICATES=YES and ZERO_LENGTH_RECORDS=PAD
are both specified, only one zero-length record is included in the sort
or merge.

Zero-length records are passed to owncode procedures only if the PAD
option is selected. When passing a zero-length record, Sort/Merge
passes an empty array of the maximum record length and a record
length of zero.

1-16 SCL Advanced File Management Usage Revision G

•

Invalid Records

The count kept in the result array for the sort or merge may differ
depending on the ZERO_LENGTH_RECORDS specification:

Element 2, number of records read:

Zero-length records are always included in the count .

Element 6, number of records sorted or merged:

Zero-length records are included only if PAD is selected.

Elements 13, 14, and 15, number of records written, the minimum
record length, and the average record length:

Zero-length records are included in these values only if PAD or
LAST is selected.

Element 17, the number of zero-length records deleted from the
sort or merge:

This count is kept only if DELETE is selected.

Invalid Records

Sort/Merge checks that the data in all key fields is valid. It
determines whether the data in sum fields is valid only when it
attempts to use the data. It does not validate the data in any other
record fields.

If an exception records file is specified, Sort/Merge copies each invalid
record to the exception records file. It then removes the invalid record
from the sort or merge. Therefore, if all input records are invalid and
an exception records file is specified, no records are written to the
output file.

If an exception records file is not specified, records with invalid key
values or sum values are not deleted from the sort or merge. The
order of records with invalid key fields is undefined. The contents of
sum fields with invalid data is also undefined.

Revision G Introducing Sort/Merge 1·17

Performance Considerations

Write Errors

Sort/Merge also considers a record to be invalid if an error is
returned by an attempt to write the record. Sort/Merge writes records
to the output file using the system procedure AMP$PUT_NEXT. If
AMP$PUT_NEXT returns an error for a record, Sort/Merge writes the
records to the exception records file (if one is specified) and deletes it
from the sort or merge.

AMP$PUT_NEXT may return errors (such as duplicate primary-key
value) when writing to an indexed-sequential file. The invalid record
is written to the exception records file (if one is specified) and deleted
from the sort or merge.

Performance Considerations
To improve Sort/Merge performance, consider the following:

• Do not use owncode procedures except when necessary.

•

• Ensure that all key fields and sum fields are within the minimum
record length for all input records. Additional processing is
required for short records. e

• If possible, use a fixed record length instead of a variable record
length.

• Of the numeric data formats, the most efficient key types are
INTEGER, BINARY, and REAL.

• Sort/Merge can read and write files faster if the files use the
default attributes, as follows:

- Sequential file organization

- F or V record type

- System-specified blocking

- No error-exit procedure

- No file access procedure (FAP)

The padding character is space

1-18 SCL Advanced File Management Usage Revision G

Performance Considerations

Limiting Memory Usage

By default, SortJMerge limits the memory assigned to its sorting array
to 262,144 (256K) bytes.

You can change the Sort/Merge memory limit by defining an SCL
integer variable named SMV$MEMORY_ USAGE_LIMIT. The integer
you assign to the variable is used as the memory usage limit for
subsequent sorts within the scope of the variable. For example, the
following command creates the SMV$MEMORY_ USAGE_LIMIT
variable and assigns it the value 64.

create_variable, smv$memory_usage_limit, kind=integer, ..
value=64, scope=job)

The integer that you specify is multiplied by 1024 (lK) to determine
the limit in bytes. The minimum limit is 64; if you specify an integer
less than 64, SortJMerge uses 64. The maximum limit is 16,383; if
you specify an integer greater than 16,383, SortJMerge uses 16,383. A
warning error is issued when you specify a value outside the range of
64 through 16,383.

The SMV$MEMORY_USAGE_LIMIT value is not used to limit
memory usage for merges; it is used only for sorts (including the
internal merge that is part of a sort).

Setting the Page_Aging_lnterval

The page_aging_interval is the job attribute that controls how
quickly pages are aged from the working set of a task. If you increase
the memory usage limit for your sorts, you should also increase your
page_aging_interval value.

The optimum page_aging_interval depends on the CYBER 180 model
you use. A smaller value is appropriate for a faster models. For
example, when the default memory usage limit of 256 pages is used,
the optimum page_aging_interval for a CYBER 180/830 is about
500,000 microseconds, while for a CYBER 180/860, the optimum value
is about 100,000 microseconds.

To see your current page_aging_interval attribute value, enter the
following SCL command:

display_job_attribute, display_option=page_aging_interval

Revision G Introducing Sort/Merge 1-19

Performance Considerations

To change your page_aging_interval value, use the CHANGE_JOB_
ATTRIBUTE command. For example, the following command changes e
the page_aging_interval to 500,000 microseconds:

change_job_attribute, page_aging_interval=SOOOOO

1·20 SCL Advanced File Management Usage Revision G

The SCL Commands SORT and MERGE 2

This chapter describes the use of Sort/Merge via the System Command
Language (SCL) commands SORT and MERGE. It first describes the
command format and then provides detailed individual descriptions of
each parameter.

Specifying Parameters by Position

As on any SCL command, a Sort/Merge parameter can be specified
without its parameter name. In this case, the parameter value is
assigned to a parameter by its position in the parameter sequence.
Table 2-1 lists the positional order of the Sort/Merge parameters.

For example, both of the following SORT commands specify parameter
values for the FROM, TO, and EXCEPTION parameters (positions 1,
2, and 11).

sort, $user.input1, $user.output2,,,, ,,,,,$user.exception_file
sort, from=$user. input 1, to=$user .out put2, ..
erf=$user.exception_file

As you can see by the example, it is more difficult to see which
parameters have values specified when the values are specified by
position. Use of the parameter names is recommended.

Revision J The SCL Commands SORT and MERGE 2-1

Specifying Parameters by Position

Table 2-1. Parameter Positional Order

Parameter
Position Name Position Parameter Name

1 FROM 16 OWNCODE_PROCEDURE_l
2 TO 17 OWNCODE_PROCEDURE_2
3 KEY 18 OWNCODE_PROCEDURE_3
4 DIRECTIVES_ 19 OWNCODE_PROCEDURE_4

FILE
5 LIST 20 OWNCODE_PROCEDURE_5
6 LIST_ 21 RETAIN_ ORIGINAL_ ORDER

OPTIONS
7 ERROR 22 COLLATING_SEQUENCE_

NAME
8 ERROR_ 23 COLLATING_SEQUENCE_

LEVEL STEP
9 Reserved 24 COLLATING_SEQUENCE_

REMAINDER
10 ESTIMATED_ 25 COLLATING_ SEQUENCE_

NUMBER_ ALTER
RECORDS

11 EXCEPTION_ 26 STATUS
RECORDS_
FILE

12 C170_ 27 SUM
COMPATIBLE

13 OMIT_ 28 ZERO_LENGTH_RECORDS
DUPLICATES

14 OWNCODE_ 29 VERIFY_ MERGE_ INPUT_
FIXED_ ORDER
LENGTH

15 OWN CODE_ 30 LOAD_COLLATING_ TABLE
MAXIMUM_
RECORD_
LENGTH

31 RESULT_ARRAY

2-2 SCL Advanced File Management Usage Revision J

•

Specifying Parameters in Directive Files

Specifying Parameters in Directive Files
You can use directive files to repeat Sort/Merge parameters. A
parameter can appear only once on an SCL command. However, if so
indicated in the individual parameter description, the parameter can
appear on the command and/or on directives ·in a directive file .

Also, an SCL command can be no longer than 256 characters long.
When your Sort/Merge specifications are longer than 256 characters,
you can continue the parameter specifications in directives files.

A sort or merge can use up to 100 directive files. The first list of
directive files is specified on the DIRECTIVES_FILE parameter on
the SORT or MERGE command. Each directive can also specify a list
of directive files on a DIRECTIVES_FILE parameter. Figure 2-1
illustrates the order in which directive files are read.

A Sort/Merge directives file contains one or more directives. It can
also contain SCL commands and comments. (Each SCL comment
begins with a quote ['1 character.)

Sort/Merge directives have the same format as a SORT or MERGE
command and are processed according to SCL command conventions.
Like SCL commands, each directive:

• Begins with the word SORT or MERGE followed by a comma or
space.

• Can specify each parameter only once.

• Can be up to 256 characters in length.

• Can continue over more than one line. A line to be continued ends
with two or more periods. The continuation periods are not
included in the directive length.

Revision G The SCL Commands SORT and MERGE 2·3

Specifying Parameters in Directive Files

NOTE

Because a range is also specified using two periods (for example, 1..3),
do not split a command or directive within a range.

For example, the directive
SORT,OLD,NEW,KEY=(l..10),DIRECTIVES_FILE=FILEl can be
written as follows:

SORT ,OLD, NEW, ..
KEY=(l .. 10), DIRECTIVES_FILE= ..
FILEl

In general, Sort/Merge specifications can use uppercase or lowercase
letters. However, an exception exists for owncode procedure names.
Unless you specify C170_COMPATIBLE=YES, all owncode procedure
names must be specified using uppercase letters only. (This is because
entry point names are stored using only uppercase letters and no
conversion is performed unless requested.)

2-4 SCL Advanced File Management Usage Revision G

0

Revision G

Specifying Parameters in Directive Files

SORT DIR=DIRl, KEY=I

CD ~
I

Directive File DIR 1

SORT DIR=(DIR2,DIR3), KEY=2

0 J l
_f

Dir~GtiV~ Filt> DIR2

SORT DIR=DIR4, KEY=3

J
j_

Directive File DIR3

SORT DIR=DIRS, KEY=S

'"""::]_
1

Directive File DIR4

SORT KEY=4

i
Directive File DIRS

SORT KEY=6

NOTE: The circled numbers represent the
order the directive files are read.

Figure 2·1. Directive File Order

©

The SCL Commands SORT and MERGE !-5

The Sort/Merge Parameters

The Sort/Merge Parameters
This section discusses each SortJMerge parameter in detail. The
parameter descriptions are presented in alphabetical order. The
parameter name abbreviations appear in parentheses after the
parameter ·name.

You can enter the Sort/Merge parameter values using uppercase,
lowercase, or a combination of uppercase and lowercase. The one
exception is owncode procedure names, which must be specified using
all uppercase unless you specify Cl 70_ COMPATIBLE= YES.

2-6 SCL Advanced File Management Usage Revision G

The Sort/Merge Parameters

C170_COMPATIBLE (CC)

Purpose

Format

Remarks

Specifies whether lowercase letters in owncode procedure
names are to be converted to uppercase letters. This is
required for loading of the owncode procedures.

Default:

If you omit the C170_COMPATIBLE parameter, the
default is OFF and the owncode procedure names are not
converted. Therefore, the names must be specified using
uppercase letters.

Cl 70 _COMPATIBLE= boolean

An SCL boolean is a logical true or false value specified
by the keyword YES, TRUE, or ON for true or NO,
FALSE, or OFF for false. A true specification indicates
that Sort/Merge converts owncode procedure names to
uppercase letters, if necessary. A false specification
indicates Sort/Merge does not convert lowercase letters;
names must be specified using uppercase letters.

• When Sort/Merge attempts to load an owncode
procedure, it passes the procedure name as you have
specified it on the OWNCODE_PROCEDURE_n
parameter. If you specify the name with lowercase
letters, Sort/Merge passes the lowercase letters unless
the C170_COMPATIBLE parameter requests
conversion.

• The system stores entry point names using uppercase
letters only. Therefore, if the loader is given a
procedure name containing lowercase letters, it cannot
find that name in the program library list and so it
cannot load the requested procedure.

Revision G The SCL Commands SORT and MERGE 2-7

The Sort/Merge Parameters

COLLATING _SEQUENCE _x (CSx or SEQx)

The COLLATING_SEQUENCE_x parameters allow you to define your
own collating sequence. (You can also load your own collating
sequences using LOAD_COLLATING_ TABLE parameters. The total
number of user-defined collating sequences used by a sort or merge
cannot exceed 100.)

A collating sequence specifies the sort or merge order for character
data. It defines the collating position assigned to each of the 256
ASCII characters. Any characters not explicitly assigned a collating
position are assigned to the last position in the collating sequence.

A collating sequence consists of a series of value steps; each value
step in the sequence is assigned a collating position from lowest to
highest. Each value step contains at least one ASCII character. When
a value step contains more than one character, all characters in the
step have the same collating weight and are collated equally.

For example, suppose a collating sequence has 27 value steps. The 26
letters of the alphabet are each assigned a value step in standard
alphabetical order (A through Z). The rest of the ASCII character set
is assigned to the 27th value step. Using this collating sequence, a A
sorted sequence would have the letters sorted first from A through Z W
followed by all non-alphabetic characters collated equally. (The order
of the non-alphabetic characters is random unless other processing is
specified by equivalent key values.)

Each collating sequence definition begins with a COLLATING_
SEQUENCE_NAME parameter and continues until SorUM.erge reads
a parameter other than COLLATING_SEQUENCE_STEP,
COLLATING_SEQUENCE_REMAINDER, or COLLATING_
SEQUENCE_ALTER.

The default ASCII collating sequence assigns one character to each
value step. The value steps are ordered as the characters are ordered
in the ASCII character set listing in appendix C.

2-8 SCL Advanced File Management Usage Revision G

The Sort/Merge Parameters

COLLATING_SEQUENCE_NAME (CSN or SEQN)

Purpose

Format

Remarks

Revision G

Marks the start of a collating sequence definition and
specifies the name of the collating sequence.

COLLATING_SEQUENCE_NAME =name

Default:

None. The COLLATING_SEQUENCE_NAME parameter
is required to begin a Sort/Merge collating sequence
definition. (Collating sequence definitions are optional.)

• The COLLATING_SEQUENCE_NAME parameter can
be specified once on the command and once on each
directive. It can be specified only once per collating
sequence definition.

• The specified collating sequence name cannot be the
name of a predefined collating sequence or a collating
sequence already defined for the sort or merge.

• The collating sequence name is specified as the key
type for the key field to be sorted or merged according
to the collating sequence. For example, the following
parameter begins a collating sequence definition and
names the collating sequence MYSEQUENCE:

COLLATING_SEQUENCE_NAME=myseQuence

The following key definition indicates that the key
contains character data to be sorted according to the
MYSEQUENCE collating sequence:

KEY=((1 .. 10,myseQuence))

• The SEQN abbreviation is provided for CYBER 170
SORT5 compatibility; its continued use is not
recommended.

The SCL Commands SORT and MERGE 2-9

The Sort/Merge Parameters

COLLATING_SEQUENCE_STEP (CSS or SEQS)

Purpose

Format

Remarks

Defines one or more value steps within the collating
sequence.

COLLATING_SEQUENCE_STEP=list of value step
definitions

Default:

None. At least one COLLATING_SEQUENCE_STEP
parameter must be specified in a SortlMerge collating
sequence definition.

• The SEQS parameter can be specified once on the
command and once on each directive. Multiple
COLLATING_SEQUENCE_STEP parameters can be
specified in each collating sequence definition.

• The position of the defined value steps within the
sequence is indicated by the position of the
COLLATING_SEQUENCE_STEP parameter within
the collating sequence definition. For example, the A
second COLLATING_SEQUENCE_STEP parameter in W
the collating sequence definition defines the second
value step in the collating sequence.

• You can specify a single character either by the ASCII
graphic character enclosed in apostrophes or by the
character ordinal in the SCL function $CHAR. The
character ordinal is the position of the character
within the ASCII character set as shown in appendix
C. For example, the character A can be specified as
'A' or $CHAR(65).

The apostrophe character can be specified as four
apostrophes ("") or $CHAR(39).

• The SEQS abbreviation is provided for CYBER 170
SORT5 compatibility; its continued use is not
recommended.

2-10 SCL Advanced File Management Usage Revision G

The Sort/Merge Parameters

Single Value Step of a Single Character

A COLLATING_SEQUENCE_STEP parameter can define a single
value step containing one character. For example, the following two
parameters each specify a value step containing a single letter (the
letters A and B).

COLLATING_SEQUENCE_STEP=('A')
COLLATING_SEQUENCE_STEP=($CHAR(66})

Single Value Step of Several Characters

A COLLATING_SEQUENCE_STEP parameter can define a single
value step containing several characters. To do so, it specifies a list
beginning with a single character followed by one or more single
characters or ranges of characters. The list is enclosed in parentheses.

For example, the following parameter specifies a single value step
containing the blank character and the digits 0, 1, 2, and 3, which
collate equally.

COLLATING_SEQUENCE_STEP=(' ', 'O', '1', '2', '3')

e Another way of specifying the same value step is shown below. The
range 'O'. .'3' specifies the range of digits from 0 through 3.

COLLATING_SEQUENCE_STEP=(' I. 'O' .. '3')

A fatal error is issued if a COLLATING_SEQUENCE_STEP
specification begins with a range followed by one or more single
character specifications or ranges of a different size.

Several Value Steps of One Character

A COLLATING_SEQUENCE_STEP parameter can define several
value steps, each containing one character. To do so, it specifies a
single range of characters. The range defines a sequence of value
steps, one for each character in the range.

For example, to specify a sequence of four value steps each containing
one character, for the characters 0, 1, 2, and 3, you can use either
the single value step definition on the left or the four value step
definitions on the right:

Revision G The SCL Commands SORT and MERGE 2-11

The Sort/Merge Parameters

COLLATING_SEQUENCE_STEP=('O' .. '3') COLLATING_SEQUENCE_STEP=('O')
COLLATING_SEQUENCE_STEP=('1')
COLLATING_SEQUENCE_STEP=('2')
COLLATING_SEQUENCE_STEP=('3')

Several Steps of Several Characters e
A COLLATING_SEQUENCE_STEP parameter can define several
value steps, each containing more than one character. Each value step
is assigned one character from each of the ranges specified on the
parameter. The character has the same position within each of the
ranges. Therefore, all specified ranges must be the same size.

For example, suppose the collating sequence is to assign equal value
to uppercase and lowercase letters. This requires definition of 26 value
steps each containing an uppercase letter and a lowercase letter. The
first value step should contain both A and a, the second value step B
and b, and so forth. You can define the 26 value steps for the
alphabetic characters using this parameter:

COLLATING_SEQUENCE_STEP=('a' .. 'z', 'A' .. 'Z')

If the COLLATING_SEQUENCE_STEP specification begins with a A
range, all subsequent ranges must be the same size; otherwise, a fatal •
error is issued.

COLLATING_SEQUENCE_REMAINDER (CSR or SEQR)

Purpose

Format

Defines a special value step. This special step contains all
characters not specified by other COLLATING_
SEQUENCE_STEP parameters within the collating
sequence definition.

Default:

When you omit the COLLATING_SEQUENCE_
REMAINDER parameter, Sort/Merge assumes a true
specification and creates a value step containing all
unspecified characters as the last value step in the
collating sequence.

COLLATING_ SEQUENCE_REMAINDER =boolean

An SCL boolean is a logical true or false value. A true
specification (TRUE) indicates that the special value step
is used in the collating sequence; a false specification
(FALSE) indicates that the special value step is not used.

2-12 SCL Advanced File Management Usage Revision G

Remarks

Examples

The SorUMerge Parameters

• The SEQR abbreviation is provided for CYBER 170
SORT5 compatibility; its continued use is not
recommended.

• A directives file can contain more than one collating
sequence definition. The COLLATING_SEQUENCE_
REMAINDER parameter can appear only once in a
collating sequence definition. It can appear anywhere
in the definition after the COLLATING_SEQUENCE_
NAME parameter.

The following directive sequence defines a collating
sequence that uses the special value step. In this case,
the special value step contains all nondigits and
nonletters (such as periods, commas, and slashes):

SORT, COLLATING_SEQUENCE~STEP=('O' .. '9')
SORT, COLLATING_SEQUENCE_REMAINDER=YES
SORT, COLLATING_SEQUENCE_STEP=('A' .. 'Z')

This sequence defines value steps in the following order:
digits in numeric order, nondigits and nonletters, and
letters in alphabetic order. The nondigits and nonletters
have equal collating positions.

COLLATING_SEQUENCE_ALTER (CSA or SEQA)

Purpose

e Format

Revision G

Used with the COLLATING_SEQUENCE_STEP
parameter to specify whether characters are altered in the
output. If characters are altered, all characters within a
value step specified on a COLLATING_SEQUENCE_
STEP parameter are output as the first character in the
value step.

Default:

If this parameter is omitted, the characters in the value
step are not altered.

COLLATING_SEQUENCE_ALTER =boolean

An SCL boolean is a logical true or false value specified
by the keyword YES, TRUE, or ON for true or NO,
FALSE, or OFF for false. A true specification indicates
that characters are altered; a false specification indicates
that characters are not altered.

The SCL Commands SORT and MERGE 2-13

The SortJMerge Parameters

Remarks

Examples

A directives file can contain more than one collating
sequence definition. The COLLATING_SEQUENCE_
ALTER parameter can appear only once in a collating
sequence definition. It can appear anywhere in the
definition after the COLLATING_SEQUENCE_NAME
parameter.

The following sequence alters all asterisks and
ampersands to slashes in the output:

SORT, COLLATING_SEQUENCE_STEP=('/', '*' '&')
SORT, COLLATING_SEQUENCE_ALTER=VES

Storing a Collating Sequence Definition in a File

Collating sequences are usually defined in directive files. This is
because almost all -collating sequence definitions require more than
one COLLATING_SEQUENCE_STEP parameter, but only one
COLLATING_SEQUENCE_STEP parameter can appear on a SORT or
MERGE command.

It is also convenient to store the directives defining a collating
seq11uet~ce in a file sdo fith~t: th~ collad~ingt_sequfie1nce canhbe rbeused.dAb __
co a mg sequence e m1 ion m a 1rec ive I e can t en e use y
any sort or merge that specifies the file.

2-14 SCL Advanced File Manairement Usa1re Revision G

DIRECTIVES_FILE <DF or DIR or DIRECTIVES)

DIRECTIVES_FILE (DF or DIR or DIRECTIVES)

Purpose

Format

Remarks

Specifies one or more directive files from which sort or
merge directives are read.

DIRECTNES_FILE=list of file

Default:

If you omit the DIRECTIVES_FILE parameter, no
parameters are read from a directive file; the sort or
merge is completely specified on the SORT or the MERGE
command.

• Use of directives files is described at the beginning of
this chapter under the heading Specifying Parameters
in Directives Files. An example of directives file use is
given in chapter 11.

• Parameters are read from directives only after all
command parameters have been read. When more than
one directive file is specified, Sort/Merge reads the
directive files in the following order:

1. The first directive file

2. All subsequent directive files referenced by the
first directive file or referenced by the subsequent
files

3. Directive file(s) named after the first directive file
and the subsequent files, as indicated above

• A directive file name referenced without a file path is
assumed to be in the working catalog unless the file
name is for a standard system file. Standard system
files, such as $INPUT or $OUTPUT, are assumed to
be in the $LOCAL catalog.

• If Sort/Merge cannot access a specified file, it issues a
warning message.

• The DIRECTIVES and DIR abbreviations are provided
for CYBER 170 SORT5 compatibility; their continued
use is not recommended.

Revision J The SCL Commands SORT and MERGE 2-15

ERROR (E)

ERROR (E)

Purpose

Format

Remarks

Specifies the file to which diagnostic messages are
written.

ERROR=file

Default:

If you omit the parameter, diagnostic messages are
written to file $ERRORS.

• Sort/Merge writes the error file only if it detects
errors of at least the severity specified by the
ERROR_LEVEL parameter.

• The error file is not rewound before or after the
Sort/Merge operation unless repositioning is requested
by the file position indicator ($BOI) on the file
reference.

• If you specify ERROR=$NULL, diagnostic messages
are not written.

• If you specify the same file for the listing file and for
the error file, each error diagnostic message is written
only once to the file. Otherwise, each message is
written twice, once to the listing file and once to the
error file.

• An error file name referenced without a file path is
assumed to be in the working catalog unless the file
name is for a standard system file. Standard system
files, such as $INPUT or $OUTPUT, are assumed to
be in the $LOCAL catalog.

2-16 SCL Advanced File Management Usage Revision J

e

The Sort/Merge Parameters

ERROR_LEVEL (EL)

Purpose

Format

Remarks

Specifies the minimum error severity of the diagnostic
messages written to the error file.

Default:

If you omit the ERROR_LEVEL parameter, only warning,
fatal, and catastrophic messages are written to the error
file.

ERROR_ LEVEL= keyword

The valid keyword values are as follows:

INFORMATIONAL (I)

TRIVIAL (T)

WARNING (W)

FATAL (F)

CATASTROPHIC (C)

NONE

Report informational, warning,
fatal, and catastrophic errors

Same as informational (This is a
nonstandard value and its use is
not recommended)

Report warning, fatal, and
catastrophic errors only

Report fatal and catastrophic
errors only

Report catastrophic errors only

Report no errors

• A Sort/Merge error can be one of the following error
severities:

Informational An informational error results from a
usage that is syntactically correct but
questionable. An informational message
is issued.

Warning A warning error results when
Sort/Merge finds an error but recovers
by making assumptions about your
attempt.

Revision G The SCL Commands SORT and MERGE 2·17

The Sort/Merge Parameters

Fatal

Catastrophic

A fatal error results when Sort/Merge
cannot resolve an error. Sort/Merge e
treats error severities ERROR and
FATAL as fatal errors.

A catastrophic error causes immediate A
Sort/Merge termination. •

2-18 SCL Advanced File Management Usage Revision G

ESTIMATED _NUMBER_RECORDS (ENR)

ESTIMATED_NUMBER_RECORDS (ENR)

Purpose

Format

Revision J

Although you can specify a value on the ESTIMATED_
NUMBER_RECORDS parameter, NOS/VE Sort/Merge
does not use the value. The parameter exists to provide
compatibility with the CYBER 170 SORT5 product.

ESTIMATED_NUMBER_RECORDS =range

An SCL range is specified as two integer values separated
by two periods (..). The minimum lowerbound on an
ESTIMATED_NUMBER_RECORDS range is 1; the
maximum upperbound is 16777215.

The SCL Commands SORT and MERGE 2-19

I

EXCEPTION_RECORDS_FILE (ERF)

EXCEPTION _RECORDS_FILE (ERF)

Purpose

Format

Remarks

Specifies the file to which invalid records are written.

EXCEPTION _RECORDS_FILE =file

Default:

If you omit the parameter, invalid records are written
with the valid records on the output file. The order of the
records with invalid key fields is undefined; the contents
of invalid sum fields is also undefined.

• The file specified as the exception records file cannot
also be specified as an output file on the TO
parameter.

• If you specify EXCEPTION_RECORDS_
FILE= $NULL, Sort/Merge deletes all records that
would be written to the exception records file.

• An exception records file name referenced without a
file path is assumed to be in the working catalog
unless the file name is for a standard system file.
Standard system files, such as $INPUT or $OUTPUT,
are assumed to be in the $LOCAL catalog.

• The exception records file cannot be a keyed file.

• The records written to the exception file include the
following:

Records containing invalid key data.

Records containing invalid sum data if summing is
attempted. (For more information, see the SUM
parameter description.)

Records that caused an arithmetic overflow or
underflow condition when their sum fields were
summed.

Short records containing a partial numeric key
field or a partial sum field.

Out-of-order merge input records if the
VERIFY= YES is specified.

2-20 SCL Advanced File Management Usage Revision J

EXCEPTION_RECORDS_FILE (ERF)

Records for which an error was returned when the
system procedure AMP$PUT_NEXT attempted to
write the record to the output file.

• For additional information on the processing of short
and invalid records, see Short Records and Invalid
Records in chapter 3.

• Records written to the exception records file are
deleted from the sort or merge. A summary of records
written to the exception records file is printed in the
error and list files. If the DE option is specified on the
LIST_OPTIONS parameter, detailed exception
information is written to the error and list files.

Revision J The SCL Commands SORT and MERGE 2-21

FROM (F)

FROM (F)

Purpose

Format

Remarks

Specifies one or more input files from which input records
are read.

NOTE

Merge input files must be pre-sorted. Files to be summed
by a merge must be pre-sorted and pre-summed.

FROM =(list of files)

Default:

If you omit the FROM parameter but specify the
OWNCODE_PROCEDURE_l parameter, Sort/Merge
assumes that input records are provided by the owncode 1
procedure; it does not require an input file in this case.

If you omit the FROM parameter and the OWNCODE_
PROCEDURE_ I parameter, Sort/Merge attempts to read
records from file $LOCAL.OLD. If file OLD does not exist,
Sort/Merge performs a null sort or merge (no input
records).

• An input file name referenced without a file path is
assumed to be in the working catalog unless the file
name is for a standard system file. Standard system
files, such as $INPUT or $OUTPUT, are assumed to
be in the $LOCAL catalog.

• A single SORT or MERGE command can read as
many as 100 input files. The files are read in the
order specified on the command and on directives.

• More than one FROM parameter can be specified for a
sort or merge: the command can specify one FROM
parameter and each Sort/Merge directive can specify
one FROM parameter.

• If a specified input file does not exist, Sort/Merge e
issues a warning error.

• Specifying FROM= $NULL indicates that no input files
are specified. Assuming no owncode 1 procedure is A
specified, this results in a null sort or merge; a null W
sort or merge has no records sorted or merged.

2-22 SCL Advanced File Management Usage Revision J

FROM (F)

• Sort/Merge does not read records from an input file
past an embedded end-of-partition delimiter or the
end-of-information.

• Sort/Merge input files can reside on mass storage or
magnetic tape. For information on assigning file names
to magnetic tape, see the NOSNE System Usage
manual.

• Sort/Merge input files can be have sequential,
indexed-sequential, or direct-access file organization
and variable-length (V), fixed-length (F), or
trailing-character-delimited (T) record type.

• If an input file is an indexed-sequential file or
direct-access file with a nonembedded key, the
primary-key value is inserted at the beginning of the
record when the record is read. Thus, position 1 is the
first byte of the primary-key value and so key field
and sum field definitions must be adjusted accordingly.

• Sort/Merge input files can be written using segment
access as well as record access. However, Sort/Merge
uses record access calls to open its input files;
therefore, the records written using segment access
must conform to the attributes of the file.

• For example, the record format must conform that that
specified by the RECORD_ TYPE attribute and the
record length must not exceed the length specified by
the MAX_RECORD_LENGTH attribute.

Revision J The SCL Commands SORT and MERGE 2-23

KEY (K)

KEY (K)

Purpose

Format

Remarks

Specifies one or more key field definitions.

KEY =((key field definition 1), .. (key _field_definition_2),
...)

Default:

A single key beginning at the first byte position of the
record. Its length is the smallest minimum record length
of the input files. Its type is ASCII and it is sorted in
ascending order.

If the minimum MINIMUM_RECORD_LENGTH attribute
for all input files is the default value zero, Sort/Merge
uses 1 byte as the key length. If the minimum
MINIMUM_RECORD_LENGTH attribute for all input
files is greater than 1023 bytes, Sort/Merge uses 1023
bytes as the key length.

• The KEY parameter can be specified once on the
command and once on each directive.

• The key field definition order is the order that the
defined keys are used. The first definition defines the
major key; any subsequent definitions define minor
keys. Sort key concepts are discussed in chapter 5.

• The total number of bytes in key fields cannot exceed
1023. The total number of key fields defined for a sort
or merge cannot exceed 106. Sort/Merge issues a fatal
error if either limit is exceeded.

• Sort/Merge allows key fields to overlap other key
fields, except for key fields that are ordered by
collating sequences defined with the alter option and
key fields that overlap sum fields.

• If the output (TO) file is an indexed-sequential file,
the major sort key must be the embedded primary key e
defined for the output file. For more information, see
the TO parameter description.

• Key field definitions within the list are separated by a A
comma or a space. If more than one definition is W'
specified, the list must be enclosed in parentheses.

2-24 SCL Advanced File Management Usage Revision J

Revision J

KEY (K)

NOTE

Be careful not to confuse the parentheses enclosing a
key field definition with the parentheses enclosing the
list of key field definitions. For example, the following
parameters both define a single key that is 20 bytes
long, starting in byte 6:

KEY=6 .. 25 KEY=((6, 20))

The following parameter does not define the same key;
it defines a sort on two single-byte keys where byte 6
is the major key and byte 20 is the minor key:

KEY=(6,20)

The SCL Commands SORT and MERGE 2-25

LIST (L)

LIST (L)

Purpose

Format

Specifies the file to which listing information is written.

LIST=file

Default:

If you omit the L parameter, listing information is
written to file $LIST.

• A listing file name referenced without a file path is
assumed to be in the working catalog unless the file
name is for a standard system file. Standard system
files, such as $INPUT or $OUTPUT, are assumed to
be in the $LOCAL catalog.

• If you specify the file $NULL with the L parameter,
listing information is not written.

• Listing information includes the Sort/Merge version
and level numbers, time and date, error messages, an
exception file summary, and the number of records
sorted or merged.

• The following are messages written to the listing file
at the end of a sort or merge.

If a catastrophic error occurred, the message is:

CATASTROPHIC ERROR

If one or more fatal errors occurred, the message is:

FATAL ERROR(S)

The message stating the number of records sorted or
merged is:

n records sorted/merged

If records were written to the exception file, the
following message summarizes the number (n) of
records written to the exception records file:

Exception file summary (n records written)

At the end of a sort, this message is written on the
job log:

2-26 SCL Advanced File Management Usage Revision J

Revision G

The Sort/Merge Parameters

MERGE COMPLETED

If Sort/Merge cannot complete the sort or merge
request, the message written is one of the following:

SORT UNABLE TO COMPLETE
MERGE UNABLE TO COMPLETE

The SCL Commands SORT and MERGE 2-27

The Sort/Merge Parameters

LIST_ OPTIONS (LO)

Purpose

Format

Specifies the additional information written to the listing
file.

Default:

LO= S (only the source and the minimum information is
written to the listing file). The minimum information
Sort/Merge writes to the file is the page heading, error
messages, the exception records file summary, and the
number of records sorted or merged.

LIST_ OPTIONS =(list of keyword value)

The following keyword values request additional
information. The LO list can specify more than one of
these keywords in any order:

OFF All listing information is suppressed.

NONE Same as the OFF keyword.

s Source (copies of all directives read by
Sort/Merge).

DE Detailed exception information. A message is
written for each occurrence that causes a
record to be written to the exception file.

The DE keyword value is valid only if you
specify an exception records file; otherwise, an
informational error is issued and messages are
written only once per key, sum field, or file
that causes records to be written to ·the
exception records file.

RS Record statistics for the records sorted or
merged. The statistics are from the result
array; a message is written for each element of
the array except the first. The result array
format is shown in table 2-2.

MS Merge statistics for the records merged.

2-28 SCL Advanced File Management Usage Revision G

e

e

Remarks

Revision J

LIST_OPTIONS (LO)

Specify either the keyword value OFF or NONE to
indicate that no additional information is to be written to
the listing file. If you specify a keyword value requesting
no additional information, you cannot also specify a
keyword value that requests additional information.

The SCL Commands SORT and MERGE 2-29

LIST_OPTIONS (LO)

Table 2-2. Result Array Format

Array
Element

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Contents

Number of elements of results you want returned (0
through 17).

Number of records read from input files.

Number of records deleted by an owncode 1 procedure.

Number of records inserted by an owncode 1 procedure.

Number of records inserted by an owncode 2 procedure.

Number of records sorted or merged. (Does not include
any records written to the exception records file or any
zero-length records unless ZERO_LENGTH_
RECORDS=PAD is selected.)

Number of records deleted by an owncode 3 procedure.

Number of records inserted by an owncode 3 procedure.

Number of records inserted by an owncode 4 procedure.

Number of records written to the exception records file.

Number of records deleted by an owncode 5 procedure.

Number of records combined by summing.

Number of records written to the output file.

Actual minimum record length of all input records.

Average record length. (Total record length divided by
the total number of input records.)

Actual maximum record length of all input records.

Number of zero-length records removed from the sort or
merge by the ZERO_LENGTH_RECORDS=DELETE
option.

Number of duplicate records removed from the sort or
merge by the OMIT_DUPLICATES=YES option.

2-30 SCL Advanced File Management Usage Revision J

e

e

The Sort/Merge Parameters

LOAD_COLLATING_TABLE (LCT)

Purpose

Format

Remarks

Revision G

Loads a collation table, that is, a weight table that
defines a collating sequence. The table may be a NOSNE
predefined collating table or a user-defined collation table
in an object library.

Default:

Required to load a collation table; otherwise, the collating
sequences available are the six Sort/Merge collating
sequences and collating sequences defined by
COLLATING_SEQUENCE_x parameters. For more
information, see chapter 1.

LOAD_COLLATING_TABLE=(key_type,table_name)

key_type

Name to be used in a key field definition to specify
the collating sequence produced by the collation table.
The name cannot be the name of a predefined
collating sequence or the name of a collating sequence
you have already defined.

table_name

Name of a collation table (either a NOSNE predefined
collation table or a user-defined collation table in an
object library).

The collation table must be loadable by PMP$LOAD
and specify a value for each of the 256 ASCII
character codes.

• The LOAD_COLLATING_ TABLE parameter can be
specified once on the command and once on each
directive.

• The total number of COLLATING_SEQUENCE_
NAME and LOAD_COLLATING_ TABLE parameters
cannot exceed 100.

• LOAD_COLLATING TABLE is not used with the
COLLATING_SEQUENCE_x parameters; it is an
entirely separate means of specifying a collating
sequence.

The SCL Commands SORT and MERGE 2-31

The Sort/Merge Parameters

• NOSNE supplies 11 predefined collation tables. To use
one of the NOSNE predefined collation tables, you e
specify the name of the predefined collation tables as
the table_name.

• Unlike user-defined collation table modules, use of
NOSNE predefined collation tables does not require e
the addition of an object library to the program library
list. For more information, see appendix E.

• After a LOAD_COLLATING_ TABLE parameter
associates a key type name with a collation table, the
key type name can be used in a key field definition.

• For example, to use the predefined collation table
OSV$EBCDIC to define the key type FULL_EBCDIC,
you would specify this parameter:

LOAD_COLLATING_TABLE=(full_ebcdic, OSV$EBCDIC)

• Then to define the first 10 bytes of the record as a
key field to be sorted in ascending order using the key
type, you would specify this SortJMerge parameter:

KEY=((1,10,full_ebcdic,a))

• You can use any collation table stored as a module in
an object library file if you have permission to read
the file. To use the module, you perform these steps:

1. Add the obje::t library to your program library list
using a SET_PROGRAM_ATTRIBUTES command,
such as:

set_program_attributes
add_library=$user.object_library

2. Specify the name of the module defining the
collation table and the table_name. For example:

sort from=unsorted_file tocsorted_file ..
load_collating_table=(upper_lower, ..
case_insensitive), key=((1 .. 24,upper_lower,d))

2-32 SCL Advanced File Management Usage Revision G

The Sort/Merge Parameters

OMIT _DUPLICATES (OD)

Purpose

Format

Remarks

Specifies whether Sort/Merge outputs only one record in
each set of records with equivalent key values.

Default:

Duplicates are not omitted; equivalent key values are
processed as specified by the OWNCODE_PROCEDURE_
5, RETAIN_ORIGINAL_ORDER, or SUM parameter.

OMIT_ DUPLICATES= boolean

TRUE, YES, or ON Duplicates are omitted.

FALSE, NO, or Duplicates are not omitted.
OFF

• Duplicate records are records that have equivalent key
values.

• Each sort or merge can specify only one method of
processing records with equivalent key values.
Therefore, the OMIT_DUPLICATES, OWNCODE_
PROCEDURE_5, RETAIN_ORIGINAL_ORDER, and
SUM parameters are mutually exclusive.

• When duplicates are to be omitted, Sort/Merge
removes the shorter duplicate records from the sort or
merge. When the duplicates are the same length, any
of the duplicates could be the one that is kept.

• A count is kept in word 18 of the result array of the
number of duplicate records deleted from the sort or
merge.

• Zero-length records are duplicates only if the ZERO_
LENGTH_PARAMETER specifies the PAD option.

Revision G The SCL Commands SORT and MERGE 2-33

The Sort/Merge Parameters

OWNCODE_FIXED_LENGTH (OWNFL or OFL)

Purpose

Format

Remarks

Specifies the length of each fixed-length record entering a
sort or merge from an owncode procedure.

Default:

The record length is specified by the OWNCODE_
MAXIMUM_RECORD_LENGTH parameter or the largest
MAXIMUM_RECORD_LENGTH attribute of the input or
output files.

If you specify OWNCODE_PROCEDURE_ l and
OWNCODE_PROCEDURE_3 parameters, but omit the
FROM and TO parameters, you must specify either the
OWNCODE_FIXED_LENGTH or OWNCODE_
MAXIMUM_RECORD_LENGTH parameter.

OWNCODE_FIXED_LENGTH = integer expression

• The record length can be from 1 through 65,535 bytes.
Sort/Merge issues a fatal error for each record
supplied whose length is not equal to the fixed record
length. e

• You cannot specify both the OWNCODE_FIXED_
LENGTH and OWNCODE_MAXIMUM_RECORD_
LENGTH parameters for the same sort.

• The OWNFL abbreviation is provided for CYBER 170
SORT5 compatibility; its continued use is not
recommended.

2-34 SCL Advanced File Management Usage Revision G

The Sort/Merge Parameters

OWNCODE_MAXIMUM_RECORD_LENGTH e (OWNMRL or OMRL)
Purpose

e Format

Remarks

Revision G

Specifies the maximum length of all variable-length
records entering the sort or merge from an owncode
procedure.

Default:

If you omit both the OWNCODE_MAXIMUM_RECORD_
LENGTH and the OWNCODE_FIXED_LENGTH
parameters, the input record length is the record length of
the input and output files. If all input and output files
have fixed-length records of the same length, this length
is used. Otherwise, the largest maximum record length
from any input or output file is used.

If you specify OWNCODE_PROCEDURE_ l and
OWNCODE_PROCEDURE_3 parameters, but omit the
FROM and TO parameters, you must specify either the
OWNCODE_FIXED_LENGTH or OWNCODE_
MAXIMUM_RECORD_LENGTH parameter.

OWNCODE_MAXIMUM_RECORD_LENGTH = integer
expression

• The maximum record length can be from 1 through
65,535 bytes.

• The integer must be large enough for all of the keys
or else the sort order is undefined.

• Sort/Merge issues a fatal error if an owncode
procedure supplies a record whose length is greater
than the maximum record length.

• You do not need to specify a record length parameter
if the sort has an input or output file with a
maximum record length at least as long as the longest
record supplied by an owncode procedure.

• You cannot specify both the OWNCODE_FIXED_
LENGTH and OWNCODE_MAXIMUM_RECORD_
LENGTH parameters for the same sort.

The SCL Commands SORT and MERGE 2·35

The Sort/Merge Parameters

• The OWNMRL abbreviation is provided for CYBER
170 SORT5 compatibility; its continued use is not
recommended.

2-36 SCL Advanced File Management Usage Revision G

OWNCODE_PROCEDURE_n (0Pn or OWNn)

OWNCODE_PROCEDURE_n (OPn or OWNn)

Purpose

Format

Remarks

Revision J

Specifies the name of an owncode procedure that is
executed each time a certain event occurs during the sort
or merge.

Default:

If you omit all OWNn parameters, no owncode procedures
are executed.

OWN CODE_ PROCEDURE_ n=name

The suffix n is the digit 1, 2, 3, 4, or 5. The specified
name is an entry point name in an object library.

NOTE

Owncode procedure names must be specified using
uppercase letters only unless you specify Cl 70_
COMPATIBLE= YES.

• Each sort or merge can specify only one method of
processing records with equivalent key values.
Therefore, the OWNCODE_PROCEDURE_5, OMIT_
DUPLICATES, RETAIN_ORIGINAL_ORDER, and
SUM parameters are mutually exclusive.

• You cannot specify an owncode 1 or an owncode 2
procedure for a merge.

• Owncode procedures are described in detail in chapter
3.

• The OWN n abbreviations are provided for CYB ER 170
SORT5 compatibility; their continued use is not
recommended.

• To make your owncode procedure available to
Sort/Merge requires two steps: generation of an object
library containing your owncode procedure and
addition of the object library to the current object
library list.

To generate an object library, you use the CREATE_
OBJECT_LIBRARY command utility. For more
information, see the NOSNE Object Code Management
Usage manual.

The SCL Commands SORT and MERGE 2-37

I

OWNCODE_PROCEDURE_n (OPn or OWNn)

To add the object library to the current object library A
list, enter a SET_PROGRAM_ATTRIBUTE command W
before the SORT or MERGE command. The SET_
PROGRAM_ATTRIBUTE command is described in the
NOS/VE Object Code Management Usage manual.

Chapter 4 contains an example showing the generation A
of an object library and its addition to the current W
object library list.

2-38 SCL Advanced File Management Usage Revision J

The Sort/Merge Parameters

RESULT_ARRAY (RA or RESA)

Purpose

Format

Remarks

Revision G

Specifies an SCL array variable to be used as the result
array.

Default:

If this parameter is omitted, the Sort/Merge statistics are
not stored in an SCL variable. However, the statistics
may be written to the listing file depending on the LIST_
OPTIONS parameter value.

RESULT _ARRAY =array name

• The result array is a single dimensional array of up to
18 integers. You set the first element of the result
array to the number of elements in the result array to
receive information (O through 17).

• The SCL array variable must be defined before the
SORT or MERGE command. For example, these
commands create a variable and initialize its first
element to 15:

create_variable, result_array, kind=integer ..
dimension=1 .. 16

result_array(1)=15

• The statistics returned in the array are listed in table
2-2.

• The RESA abbreviation is provided for CYBER 170
SORT5 compatibility; its continued use is not
recommended.

The SCL Commands SORT and MERGE 2-39

The Sort/Merge Parameters

RETAIN_ORIGINAL_ORDER (ROO or RETAIN or
Mn e
Purpose

Format

Remarks

Specifies whether Sort/Merge is to output records with
equivalent keys in the same order as the records are
input.

Default:

The original order is not retained (records with equal sort
key values are output in either order).

RETAIN_ ORIGINAL_ ORDER= boolean

An SCL boolean is a logical true or false value. A true
specification (TRUE) indicates that the original order is to
be retained; a false specification (FALSE) indicates that
the original order need not be retained.

• Each sort or merge can specify only one method of
processing records with equivalent key values.
Therefore, the RETAIN_ORIGINAL_ORDER, OMIT_
DUPLICATES, OWNCODE_PROCEDURE_5, and
SUM parameters are mutually exclusive.

• Maintaining the original order of records with equal
key values increases the required processing time
because Sort/Merge must keep track of the input
order.

• If you specify more than one input file, the order you
specify the files is the order the records with equal
key values are output.

• The RETAIN and RET abbreviations are provided for
CYBER 170 SORTS compatibility; their continued use
is not recommended.

2-40 SCL Advanced File Management Usage Revision G

STATUS

STATUS

Purpose Specifies an SCL status variable in which the SORT or
MERGE task returns its completion status.

Format

Remarks

Revision J

Default:

None (the completion status is displayed at the terminal
or written in the batch job log).

STATUS=status variable

• The status variable is created before the sort or merge
by the SCL command CREATE_ VARIABLE. For
example, the following command creates a status
variable named SORT_ STATUS:

create_variable, sort_status, kind=status

For more information, see the NOSNE Commands and
Functions manual.

• A status variable is often used when the command is
executed as part of a procedure. A fatal Sort/Merge
error does not terminate the procedure. After command
execution, the procedure should check the contents of
the status variable to determine the next command
executed.

• Sort/Merge treats errors of severity ERROR as fatal
errors.

The SCL Commands SORT and MERGE 2-41

SUM($)

SUM (S)

Purpose Specifies that, when the sort or merge encounters two
records having equal key values, the contents of the fields
specified on the SUM parameter are to be summed and a
single record written to the output file, replacing the two
records with equal key values.

(Although the original records are removed from the sort
or merge, they are not written to the exception records
file.)

Default:

If you omit the SUM parameter, records are not summed.

Remarks The SUM parameter can be specified once on the
command and once on each directive.

Sum Field Specification

The format of the SUM parameter is as follows:

SUM=((sum field definition 1), (sum_field_def i nit ion_2), . . .) e
Each sum field definition in the list is separated by a comma or a
space. A sum field definition is a list of positional values that define
a sum field using either of the following formats:

(range ,data_ type,repeat_ count)

(first, length, data_ type,repeat_ count)

Only the first value is required; all additional values are optional.

The first value in the sum field definition is required. If the first
value in the definition is a range, it defines the position and length of
the sum field. The range specifies upper and lower integer bounds
that are the first and last byte or bit positions in the sum field. For
example, the range 10 .. 15 defines a sum field from bit or byte position
10 through bit or byte position 15. e
If the first value in the value set is not a range, the first value
specifies the first position of the sum field and the optional second
value specifies the field length. The default field length is 1.

2-42 SCL Advanced File Management Usage Revision J

SUM (S)

Byte and bit positions in the record are numbered from the left
beginning with 1. SorUMerge interprets the key field location and
length as bytes unless the data type is INTEGER_BITS or BINARY_
BITS.

Table 2-3 lists the maximum sum field sizes.

The third value in the list specifies the data type. The default data
type is INTEGER. All numeric formats, binary or character, are valid.
See chapter 1 for the list of numeric data formats.

The fourth value in the sum field definition, the repeat count, is
optional; the default value is 1. If specified, the SUM parameter
defines contiguous sum fields within the record. Each sum field has
the same length and contains the same type of numeric data.

Revision J The SCL Commands SORT and MERGE 2-43

SUM (S)

For example, the following sum field definition defines three sum
fields at byte positions 1 through 10, 11 through 20, and 21 through
30.

(1 , 10 , BINARY, 3)

Table 2-3. Maximum Sum Field Sizes

Numeric
Format

NUMERIC_FS
NUMERIC_LO
NUMERIC_LS
NUMERIC_NS
NUMERIC_ TO
NUMERIC_ TS
REAL

Sum Field Rules

Maximum
Size (in
bytes)

1023
38
38
38
38
38
8 or 16

Numeric Format

BINARY
BINARY_BITS
INTEGER
INTEGER_ BITS
PACKED
PACKED_NS

Maximum
Size (in
bytes)

8
8184 (bits)
8
8184 (bits)
19
19

The new record contains the eqivalent key values in the key fields
and the summed values in the sum fields. A data field that is not a
key or sum field is written to the new record as the contents of the
field in the longer of the two original records.

You can specify a maximum of 100 sum fields in a record. You can
specify the SUM parameter more than once in a directive file.

Sum fields cannot overlap one another. Sum fields cannot overlap key
fields.

Each sort or merge can specify only one method of processing records
with equivalent key values. Therefore, the RETAIN_ORIGINAL_
ORDER, OMIT_DUPLICATES, OWNCODE_PROCEDURE_5, and
SUM parameters are mutually exclusive.

If a sum field contains no data because the input record is too short
to include the field, a default value of zero in the appropriate format e
is used. The processing of partial sum fields and sum fields that
contain invalid data is described later.

2-44 SCL Advanced File Management Usage Revision J

The SortJMerge Parameters

Sum Field Example

Suppose a university has two files of student information: a master
file and an update file. The files contain identical information except
that the master file contains information from past semesters while
the update file contains only information for the current semester.
Each record in both files contains these fields: student number,
number of units registered, number of units completed, and grade
points.

A new master file is generated by merging the two files. When the
files are merged, the records having matching student numbers are
summed and a new record written replacing the records from the
master and update files. The new record in the output file contains
the student number and the total number of units attempted, total
number of units completed, and the total number of grade points.

Chapter 4 contains an example of SUM parameter use.

Exception Processing for Partial Sum Fields

Sort/Merge checks that each record is long enough to contain all
defined sum fields when it reads the record. If an entire sum field is
omitted, Sort/Merge sums the record as if it has a zero value in the
field.

If the record contains a partial sum field, Sort/Merge processes it as
an exception. The exception processing differs if an exception records
file is specified:

If an exception records file is specified:

Sort/Merge writes the record with the partial sum field to the
exception records file. It writes the record with its original data as
it was read from the input file. It then removes the record from
the sort or merge.

If an exception records file is not specified:

Sort/Merge keeps the record with the partial sum field in the sort
or merge.

Revision G The SCL Commands SORT and MERGE 2-45

The Sort/Merge Parameters

If SortJMerge finds additional records whose key fields are
equivalent to those of the record with the partial sum field, it
sums the records as if the partial sum field contains a valid value;
it does not process the partial sum field as invalid data. However,
because the results of summing with a partial field are undefined,
the resulting contents of the sum field are undefined.

If it reads any records with partial sum fields, SortJMerge returns a
summary diagnostic at the end of the sort or merge that gives the
number of records with partial sum fields.

Exception Processing for Summing Errors

SortJMerge detects summing errors when it attempts to sum fields.
Only one error is detected per sum field. The summing error is
processed as an exception.

If the LIST_OPTIONS parameter requests detailed error reporting
(DE), SortJMerge issues a diagnostic for each summing error.

The exception processing performed for summing errors depends on
the error detected and whether an exception records file is specified
for the sort or merge.

If an exception records file is specified:

1. Sort/Merge restores all sum fields of both records so the contents
of each sum field are the same as before the summing of the
records began.

2. If the error is due to invalid data or an indefinite real, Sort/Merge
knows that at least one of the sum fields in the records is in
error; it does not know whether the same sum field in the other
record is also in error.

3. Therefore, SortJMerge writes the record it knows to be in error to
the exception records file and removes it from the sort or merge,
but leaves the other record in the sort or merge.

If Sort/Merge detects an arithmetic overflow or underflow error or
finds that each record has invalid data in different sum fields, it
knows that both rcords are in error. Therefore, it writes both records
to the exception records file and removes both from the sort or merge.

If an exception records file is not specified:

2-46 SCL Advanced File Management Usage Revision G

SUM (S)

1. Sort/Merge deletes one of the records. If one record is longer than
the other, the shorter record is deleted. Otherwise, either record
could be deleted.

2. The other record remains in the sort or merge with undefined data
in the sum field for which the error was detected. Summing is
completed for the other sum fields.

Revision J The SCL Commands SORT and MERGE 2-47

TO (T)

TO (T)

Purpose

Format

Remarks

Specifies the output file to which sorted or merged records
are written (if records are left after owncode procedure
processing).

TO=file

Default:

If you omit the TO parameter but specify the
OWNCODE_PROCEDURE_3 parameter, Sort/Merge
assumes the owncode 3 procedure performs output
processing. If the owncode 3 procedure passes records back
to Sort/Merge, Sort/Merge writes the records on file NEW.
If file NEW does not exist, Sort/Merge creates file NEW
in the $LOCAL catalog.

If you omit the TO parameter and the OWNCODE_
PROCEDURE_3 parameter, Sort/Merge writes all output
records to file NEW. If file NEW does not exist,
Sort/Merge creates file NEW in the $LOCAL catalog.

• An output file name referenced without a file path is
assumed to be in the working catalog unless the file
name is for a standard system file. Standard system
files, such as $INPUT or $OUTPUT, are assumed to
be in the $LOCAL catalog.

• The output file cannot also be an input file.

• If you specify the file $NULL with the TO parameter,
sorted or merged records are not written to a file.

• Sort/Merge writes records to the output file using the
system procedure AMP$PUT_NEXT. If AMP$PUT_
NEXT returns an error for a record, Sort/Merge writes
the record to the exception records file instead (if one
is specified).

• The Sort/Merge output file can reside on either mass A
storage or magnetic tape. For more information on W'
assigning file names to magnetic tape, see the
NOSNE System Usage manual.

2-48 SCL Advanced File Management Usage Revision J

Revision G

The SortJMerge Parameters

• The output (TO) file cannot be a direct-access file.

If the output (TO) file is a direct-access file,
Sort/Merge issues a fatal error. If appropriate, use the
COPY_KEYED_FILE command to convert the TO file
to .a direct-access file.

• If the outut file is an indexed-sequential file with a
nonembedded primary key, the primary-key value is
removed from the beginning of each output record
before the record is written. The primary-key value is
stored in the primary index. The record data is
shortened by key-length bytes.

• If the output file is an indexed-sequential file, the
major sort key must be the primary key for the file.
Thus, the major sort key value for each input record
must be unique because the indexed-sequential file
origanization requires unique primary-key values. This
can be ensured by specifying the OMIT_
DUPLICATES=YES parameter or using an owncode 5
procedure.

• If the output (TO) file is an indexed-sequential file,
Sort/Merge checks the KEY_POSITION, KEY_
LENGTH, and KEY_ TYPE attributes:

- If the major sort key position does not match the
KEY_POSITION attribute value, Sort/Merge issues
a fatal error and terminates.

- If the major sort key length does not match the
KEY_LENGTH attribute value, Sort/Merge issues
a warning error and changes the major sort key
length to match the primary key length.

- If the major sort key type does not match the
KEY_ TYPE attribute value, Sort/Merge issues a
warning error and changes the major sort key type
if the KEY_TYPE value is UNCOLLATED or
INTEGER. (It does not issue a warning or change
the key type if the KEY_ TYPE value is
COLLATED.)

If the KEY_ TYPE is UNCOLLATED, the major
sort key type is changed to ASCII.

The SCL Commands SORT and MERGE 249

The Sort/Merge Parameters

If the KEY_ TYPE is INTEGER, the major sort
key type is changed to INTEGER. e

- You can define the output file attributes using a
SET_FILE_ATTRIBUTES command. To read about
indexed-sequential file attributes, see the discussion
of keyed file creation in chapter 5. e

2-50 SCL Advanced File Management Usage Revision G

The Sort/Merge Parameters

VERIFY_MERGE_INPUT_ORDER (VMIO or
VERIFY or VER)

Purpose

Format

Remarks

Revision G

Specifies whether SortJMerge checks the order of the
merge input records. The records must be in sorted order.

Default:

If the VERIFY_MERGE_INPUT_ORDER parameter is
omitted, the record order is not checked.

VERIFY _MERGE_INPUT _ORDER= boolean

An SCL boolean is a logical true or false value. A true
specification (TRUE) indicates that the order of the merge
input records is to be checked; a false specification
(FALSE) indicates the order of the merge input is not to
be checked.

• If the records in the merge input files are not
pre-sorted on the sort keys for the merge, the
out-of-order :records remain out-of-order in the merge
output file. The order of the out-of-order records is
undefined.

• If, while verifying the record order, SortJMerge
encounters a record out of order, it issues a warning
message and continues merging.

• If an exception records file was specified for the
merge, the out-of-order record is written to the
exception records file and deleted from the merge
operation. If an exception records file was not
specified, the out-of-order record is kept in the merge;
its position within the output file is undefined.

• If you specify the VERIFY_MERGE_INPUT_ORDER
parameter on a sort, SortJMerge issues a warning
message but otherwise ignores the parameter.

• The VERIFY and VER abbreviations are provided for
CYBER 170 SORT5 compatibility; their continued use
is not recommended.

The SCL Commands SORT and MERGE 2-51

The Sort/Merge Parameters

ZERO_LENGTH_RECORDS(ZLR)
Purpose

Format

Remarks

Specifies the disposition of zero-length input records.

NOTE

This parameter applies only to records read from input
files; it does not apply to records supplied by owncode
procedures.

Default:

DELETE.

ZERO _LENGTH_RECORDS =keyword

One of the following keywords specifying the di~position of
all zero-length input records read for the sort or merge:

DELETE

PAD

LAST

Each zero-length record is deleted from the
sort or merge. It is not written to the
exception records file.

Each zero-length record is processed as a
short record. For more information, see
Short Records in chapter 1.

Each zero-length record is written at the end
of the output.

For more information, see Zero-Length Records in chapter
1.

2-52 SCL Advanced File Management Usage Revision G

Owncode Procedures

You can write subprograms to insert, substitute, modify, or delete
input and output records during Sort/Merge processing. Such a
subprogram, called an owncode procedure, is executed each time the
sort or merge reaches a certain point in Sort/Merge processing. The
points at which owncode procedures are called are listed below:

Sorts Only:

Owncode 1 After an input record is read.

Owncode 2 After the end of an input file is read.

Sorts or Merges:

Owncode 3 Before an output record is written.

Owncode 4 After the output file is written.

3

Owncode 5 When two records are compared and found to have
equivalent key values.

e Sort/Merge passes a record to the owncode procedure, which processes
the record. When the record is returned to Sort/Merge from the
owncode procedure, Sort/Merge processes the record according to a
code specified by the owncode procedure.

Owncode procedures can also supply the records to be sorted. When
Sort/Merge is ready for a record, it calls the owncode 1 procedure
which then passes a record to Sort/Merge.

Owncode procedures are written in a programming language such as
FORTRAN (subroutine subprograms), COBOL (subprograms compiled
with COBOL SP=TRUE option), CYBIL, or any other language that
uses the standard calling sequence. CYBIL owncode procedures must
be declared as XDCL procedures.

Owncode procedure must be compiled and saved as load modules on
object libraries. Object libraries are created using the CREATE_
OBJECT_LIBRARY utility as described in the NOSNE Object Code
Management Usage manual.

To use an owncode procedure in a sort or merge, the procedure must
be loadable from the program library list. You can add object libraries
to the program library list using the SET_PROGRAM_ATTRIBUTES
command.

Revision J Owncode Procedures 3-1

Owncode Procedure Parameters

Chapter 4 contains an example of storing an owncode procedure in an A
object library. ._

Owncode Procedure Parameters

Sort/Merge communicates with an owncode procedure via the e
procedure parameter list. Sort/Merge passes record data to the
procedure and the procedure returns record data and a code indicating
how Sort/Merge is to process the record data.

Table 3-1 summarizes the parameters passed between Sort/Merge and
owncode procedures.

Table 3-1. Owncode Procedure Parameters

Parameter

return_ code

reca

rla

recb

rlb

Description

Integer code set by the owncode procedure and
returned to Sort/Merge

Array containing record data

Integer length of the reca record

Array containing record data for second record (used
only by an owncode 5 procedure)

Integer length of the recb record (used only by an
owncode 5 procedure)

The return_code parameter passes an integer code back to Sort/Merge
specifying how Sort/Merge is to process the returned record.
Sort/Merge always initializes the return_code value to 0 when it calls
an owncode procedure.

The owncode procedure can leave the return:.....code value unchanged or
change it to one of the valid values for the owncode procedure. (The
valid values are listed in the individual owncode procedure
descriptions.) If an invalid return_code value is returned, Sort/Merge
returns a fatal error.

The subsequent parameters are used to pass one or two records to the
owncode procedure. For an owncode 1 through owncode 4 procedure,
Sort/Merge passes only one record, the curent record being input or
output. The record data is passed in the reca variable and the record
length in bytes in the rla variable.

3-2 SCL Advanced File Management Usage Revision J

Owncode Record Length

When calling an owncode 5 procedure, Sort/Merge passes two records
having equivalent key values. The record data is passed in the reca
and recb variables and the corresponding record lengths in the rla and
rlb variables, respectively.

An owncode procedure can change the record data and record length
values passed to it. However, the procedure must ensure that the
correct record length is returned for the record data.

Owncode Record Length

Sort/Merge checks the length of each record returned to it by an
owncode procedure. If a record is too long, Sort/Merge issues an error.

The Sort/Merge specification can explicitly specify the owncode record
length. Otherwise, by default, the maximum record length is the
largest MAXIMUM_RECORD_LENGTH attribute value of the input
and output files specified for the sort or merge.

To explicitly specify the owncode record length, use the OWNCODE_
FIXED_LENGTH or OWNCODE_MAXIMUM_RECORD_LENGTH
parameter. If the sort specifies owncode· 1 and owncode 3 procedures
but no input or output files, a parameter to specify the owncode
record length is required.

If you specify OWNCODE_FIXED_LENGTH, the record length
returned by an owncode procedure must exactly match the specified
record length value. If you specify OWNCODE_MAXIMUM_
RECORD_LENGTH, each record length returned cannot exceed the
specified record length value.

Owncode 1: Processing Input Records

You specify an owncode 1 procedure to process or supply the input
records for a sort. An owncode 1 procedure is used only with a sort;
specifying an owncode 1 procedure for a merge returns a fatal error.

Owncode 1 procedure processing varies depending on whether input
files are specified for the sort.

Revision G Owncode Procedures 3-3

Owncode 1: Processing Input Records

One or More Input Files Specified

If you specify one or more input files for a sort (even if the input file
is $NULL), Sort/Merge calls the owncode 1 procedure each time it
rads an input record. Sort/Merge passes the input record in the reca
variable, the record length in the rla variable, and the return_code
variable initialized to 0.

After owncode processing of the record, control returns to Sort/Merge,
which processes the record passed back in reca according to the
return_code value set by the owncode 1 procedure. The contents of
the reca and rla variables can differ from those originally passed to
the procedure.

The following are the valid return_code values and their meanings:

0 Sort/Merge sorts the record passed back in reca and reads the
next input record.

1 Sort/Merge does not sort the record in reca and reads the next
input record.

2 Sort/Merge sorts the record passed back in reca, but does not
read the next input record. Instead, Sort/Merge calls the e
owncode 1 procedure again so additional records can be added to
the sort. The owncode 1 procedure should continue to specify
return_code 2 until all records to be inserted at this point have
been passed; it should then set the return_code to 0.

3 Sort/Merge does not sort the record passed back in reca. It
closes the current input file and calls the owncode ~ procedure
(if any). After owncode 2 procedure processing, it opens the next
input file (if any) and reads the next input record.

For example, to insert one record after the current input record, the
owncode 1 procedure performs the following steps:

1. Checks that the record passed in reca is the record after which the
new record is to be inserted.

2. Sets the return_code value to 2 and returns control to Sort/Merge. :9
3. When called again, it stores the new record in reca, stores the

length of the new record in rla, sets the return_code value to 0,
and returns control to Sort/Merge.

3-4 SCL Advanced File Management Usage Revision G

Owncode 2: Processing Input Files

Input Files Not Specified

If you do not specify any input files for the sort (the FROM
parameter is omitted), Sort/Merge calls the owncode 1 procedure as
the source of input records. Sort/Merge passes reca as an empty array
of the maximum record length, rla set to 0, and the return_code
value initialized to 0.

The following are the valid return_code values and their meanings:

0 Sort/Merge sorts the record passed back in reca, clears the reca
array, sets the rla and return_code variables to 0, and calls the
owncode 1 procedure again.

2 Sort/Merge sorts the record passed back in reca, leaves the data
in reca and the record length in rla, initializes the return_code
to 0, and calls the owncode 1 procedure again.

3 Sort/Merge does not sort the record passed back in reca and
calls the owncode 2 procedure if one has been specified;
otherwise, it terminates the input process.

e Owncode 2: Processing Input Files

You specify an owncode 2 procedure to supply input at the end of
each input file. An owncode 2 procedure is used only with a sort;
specifying an owncode 2 procedure for a merge returns a fatal error.

Owncode 2 procedure processing varies depending on whether input
files are specified for the sort.

One or More Input Files Specified

If you specify one or more input files for the sort (even if the input
file is $NULL), Sort/Merge calls the owncode 2 procedure when it
terminates input. It terminates input when it reads an end-of-partition
delimiter, or the end-of-information, or receives a return_code value
of 3 from an owncode 1 procedure.

Sort/Merge passes reca as an empty array of the maximum record
length, rla set to 0, and the return_code variable initialized to 0.

Revision G Owncode Procedures 3-5

Owncode 3: Processing Output Records

The following are the valid return_code values and their meanings:

0 Owncode 2 processing ends; Sort!Merge opens the next input
file, if any, and reads the next input record.

1 Sort/Merge sorts the record passed back in reca and calls the
owncode 2 procedure again.

For example, to insert one record at the end of an input file, the
owncode 2 procedure performs the following steps:

1. Stores the record in reca, stores the record length in rla, sets the
return_code value to 1 and returns control to Sort/Merge.

2. When called again, it leaves the return_code value set to 0 and
returns control to Sort/Merge.

Input Files Not Specified

If you do not specify any input files for the sort (the FROM
parameter is omitted), Sort/Merge calls the owncode 2 procedure after
the owncode 1 procedure returns a return_code value of 3.

Sort/Merge passes reca as an empty array of the maximum record
length, rla set to 0, and the return_code value initialized to 0.

The following are the valid return_code values and their meanings:

0 Owncode 2 processing ends, signaling the end of the input
records for the sort.

1 Sort/Merge sorts the record passed back in reca and calls the
owncode 2 procedure again.

Owncode 3: Processing Output Records

You specify an owncode 3 procedure to process output records from a
sort or merge.

Owncode 3 procedure processing varies depending on whether an
output file is specified for the sort or merge.

3-6 SCL Advanced File Management Usage Revision G

Owncode 3: Processing Output Records

Output File Specified

If you specify an output file for the sort or merge (even if it is
$NULL), Sort/Merge calls the owncode 3 procedure each time an
output record is ready to be written. Sort/Merge passes the output
record to the procedure in the reca variable, the record length in
bytes in the rla variable, and the return_code variable initialized to
0.

After owncode processing of the record, control returns to Sort/Merge,
which processes the record passed back in reca according to the
return_code value set by the owncode 3 procedure. The contents of
the reca and rla variables can differ from those originally passed to
the procedure.

The following are the valid return_code values and their meanings:

0 Sort/Merge writes the record passed back in reca to the output
file. It then passes the next output record, if any, to the
owncode 3 procedure.

1 Sort/Merge does not write the record passed back in reca to the
output file. It passes the next output record, if any, to the
owncode 3 procedure.

2 Sort/Merge writes the record passed back in reca to the output
file, leaves the data in reca and the record length in rla,
initializes the return_code to 0, and calls the owncode 3
procedure again.

3 Sort/Merge does not write the record passed back in reca. It
calls the owncode 4 procedure if one is specified; otherwise, it
terminates the sort or merge.

For example, to insert one record after the current output record, the
owncode 3 J>rocedure performs the following steps:

1. Checks that the record passed in reca is the record after which the
new record is to be inserted. e 2. Sets the return_code value to 2 and returns control to Sort/Merge.

3. When called again, it stores the new record in reca, stores the
length of the new record in rla, sets the return_code value to 0,
and returns control to Sort/Merge.

Revision G Owncode Procedures 3-7

Owncode 4: Processing the Output File

Output File Not Specified

If you do not specify an output file (you omit the TO parameter), the
owncode 3 procedure performs all processing of output records.
Sort/Merge passes each output record to the owncode 3 procedure, but
it does not process any record returned by the procedure. Sort/Merge
does not write any output records.

Sort/Merge passes the output record to the procedure in the reca
variable, the record length in bytes in the rla variable, and the
return_code variable initialized to 0.

The following are the valid return_code values and their meanings:

0 Sort/Merge calls the procedure again, passing the next output
record.

1 Sort/Merge calls the procedure again, passing the next output
record.

2 Sort/Merge calls the procedure again, passing the same output
record.

3 Sort/Merge terminates the output process, even if it has e
additional output records. It then calls the owncode 4 procedure
if one has been specified; otherwise, it terminates the sort or
merge.

Owncode 4: Processing the Output File
You specify an owncode 4 procedure to write additional output records
to the end of the output file. An owncode 4 procedure can be used
with a sort or a merge.

Owncode 4 procedure processing varies depending on whether an
output file is specified for the sort or merge.

Output File Specified

If you specify an output file for the sort or merge (even if it is
$NULL), Sort/Merge calls the owncode 4 procedure after it has
written its last output record to the output file.

Sort/Merge passes reca as an empty array of the maximum record
length, rla set to 0, and the return_code initialized to 0.

3-8 SCL Advanced File Management Usage Revision G

Owncode 5: Processing Records With Equal Keys

The following are the valid return_code values and their meanings:

0 Sort/Merge terminates the sort or merge without writing the
record passed back in reca.

1 Sort/Merge writes the record passed back in reca and calls the
owncode 4 procedure again.

Output File Not Specified

An owncode 4 procedure cannot supply additional output records when
no output file has been specified. Still, if you specify an owncode 4
procedure for a sort or merge without an output file, Sort/Merge calls
the owncode 4 procedure after the owncode 3 procedure (if any) has
terminated output.

The following are the valid return_code values and their meanings:

0 Sort/Merge terminates the sort or merge.

1 Sort/Merge terminates the sort or merge.

Owncode 5: Processing Records With Equal
Keys

When an owncode 5 procedure is specified, Sort/Merge calls the
owncode 5 procedure each time it compares the key values of two
records and finds that the values are equivalent. It passes both
records to the owncode 5 procedure for processing.

NOTE

Sort/Merge can interpret character key values that are not identical
as equivalent . When the collating sequence used for the key assigns
the same collating weight to more than one character, those
characters are equivalent key values.

Revision G Owncode Procedures 3-9

Owncode 5: Processing Records With Equal Keys

An owncode 5 procedure cannot be used when the OMIT_
DUPLICATES, RETAIN_ORIGINAL_ORDER, or SUM parameter is
specified for the sort or merge. A sort or merge can use only one
method of processing records with equivalent key values.

For a given number (n) of records with equivalent key values, each A
record is passed to the owncode 5 procedure log n times. The order in W
which the records are passed is not defmed.

NOTE

An owncode 5 procedure can change the record data passed to it, but
it must not change the data in the key fields of the record. If it does,
the sort order of the modified key fields is undefmed.

The following are the valid return_code values and their meanings:

0 Sort/Merge accepts the first rla bytes of reca as the first record
and the first rib bytes of recb as the second record.

1 Sort/Merge accepts the first rla bytes of reca as the first record
and deletes recb from the sort or merge.

2 Sort/Merge accepts the first rib bytes of recb as the first record
and the first rla bytes of reca as the second record.

3 Sort/Merge accepts the first rib bytes of recb as the first record
and deletes reca from the sort or merge.

4 Sort/Merge deletes both records from the sort or merge.

5 Sort/Merge does not read the record data returned by the
procedure; it processes the two records in their original order
(reca before recb).

6 Sort/Merge does not read the record data returned by the
procedure, but it deletes the second record (recb) from the sort
or merge.

7 Sort/Merge does not read the record data returned by the
procedure, but it reverses the order of the two records (recb
before reca).

8 Sort/Merge does not read the record data returned by the
procedure; but it deletes the first record (reca) from the sort or
merge.

3-10 SCL Advanced File Management Usage Revision G

Ownoode 5: Processing Records With Equal Keys

For Better Performance

When the owncode 5 procedure does not change the record data, it
should use return_code values 5, 6, 7, or 8 instead of return_code
values 0, 1, 2, or 3. Performance is improved because Sort/Merge does
not read the returned record data.

Do not use return_code 0 to reverse the order of the two records by
exchanging the contents of reca and recb. Performing an exchange
sort is both incompatible with and much slower than the SortJMerge
sorting algorithm.

If the owncode 5 procedure sorts the two records using one or more
keys in addition to those specifed for the sort or merge, the procedure
should use return_code values 5 and 7 only. (Return_code values 0
and 2 could also be used, but performance would be slower.)

Revision G Owncode Procedures 3·11

Examples 4

This chapter contains examples of sorts and merges. The examples are
as follows:

e Command sort on one key

Command sort on multiple keys

Command merge

Using a directive file

Creating an object library

Summing a file

Defining your own collating sequence

NOTE

File names referenced without a file path are assumed to be in the
working catalog unless the file name is for a standard system file.
Standard system files, such as $INPUT or $OUTPUT, are assumed to
be in the $LOCAL catalog.

Revision J Examples 4-1

Command Sort on One Key

Command Sort on One Key

The record layout of a university student file named UNIVERSITY_
STUDENTS is shown below.

11 13 15 21 27 35 38
T

LAST NAME
STUDENT

NO.
DOB STUDY GPA

4

FIRST INITIAL - .__ MIDDLE INITIAL cloE

Each record includes the last name and first and middle initials, the
student number, the date of birth, the field of study, the grade point
average, and a code representing class (4=freshman, 3=sophomore,
2 =junior, 1 =senior); all fields contain character data. The file is
maintained with the student number as the major key. Records are
ordered in ascending order according to the student number as follows
in file UNIVERSITY_STUDENTS.

WALLACE S T 87366110255ENGIR 2861
JOHNSON M J 90248063051MATH 2253
SANDERS G R 99855022858BUS 3011
NEECE M L 99911121358ART 2291
TERRELL T H 99998040356ENG 3861
OKADA N A 100103111750UNDEC 2225
REYES S L 100246031558ANTHRO 3341
SUGARMAN B T 100528070457SOC 3501
PHILLIPS A D 100531121158EDU 2112
KRUTZ S T 100532010353POLISCI 1981
SMITH C R 100610103058MATH 3791

YEH F L 102005120645ART 2764
WARNES D V 102116060861POLISCI 2814
CARLSON MK 102126022355ENGIR 3454
FUHRMAN LW 102212111859CHEM 3204
MCMAHON MC 102223061260ENG 2784
JUNG G D 102301052561PHYSED 2214
POPOVICH H W 102311100961BUS 2434
JONES J A 102318081555EDU 2844

4-2 SCL Advanced File Management Usage Revision J

e

e

Command Sort on One Key

The command for sorting file UNIVERSITY_STUDENTS to generate
an alphabetic list of students is:

SORT,FROM=UNIVERSITY_STUDENTS,TO=SORTED_FILE,KEY=1 .. 10

The SORT command calls for records from UNIVERSITY_STUDENTS
to be sorted in ascending order on a key that occupies character
positions 1 through 10 in each record according to the default ASCII
collating sequence. Sorted records are written to file SORTED_FILE,
which is created as a local file during the sort. The contents of
SORTED_FILE output from the sort is shown below.

BARTLETT s s 100800100957ART 2735
BILLINGS c y 101579111855MUS 2965
CARLSON M K 102126022355ENGIR 3454
CHARLES S H 101418032459ANTHRO 2453
CLARK D V 101023101956ENG 2083
CLARK D N 101400102954ECON 3782
COCHRAN G L 100725111857BIO 3011
DAVIES E D 1D0812080656JOURN 2031
DAVIS D A 100972071650ENR 3541

WALLIN G E 101056041659POLISCI 3151
WARNES D V 102116060861POLISCI 2814
WILSON W L 101967010261MATH 3454
WONG S T 101001012755PSYCH 2152
woo R M 101315100159BUS 3223
WOODSTOCK C T 101497030160CHEM 3483
YEH F L 102005120645ART 2764
YOST 0 L 100880111158ENG 2582
ZEITZ F K 100963111858MATH 2612
ZIMMERS C A 101075063059MATH 2992

Revision G Examples 4-3

Command Sort on Multiple Keys

Command Sort on Multiple Keys
The command for sorting file UNIVERSITY_STUDENTS on three
keys is:

SORT,FROM=university_students,TO=field_of_study, ...
KEY= ((27 .. 34) • (38, 1) , (1. . 10))

Another way of specifying the sort is as follows:

SORT,FROM=univers1ty_students,TO=field_of_study, ...
KEY=(27 .. 34,38,1 .. 10)

The SORT command calls for records to be first sorted on the field of
study (key number 1), which occupies character positions 27 through
34 in each record. Records with equal keys for the major key are then
sorted on the class code (key number 2), which is a I-character field
in position 38. The third key sorts students with the same field of
study and class by their last name (key number 3).

The commands also illustrate continuing the SORT command beyond
one line. The first line of the command ends with three periods,
indicating continuation. The second line contains the KEY parameter.
Sorted records are written to the file FIELD_OF_STUDY shown
below.

REYES S L 100246031558ANTHRO 3341
MAYER M I 100991122359ANTHRO 2882
CHARLES S H 101418032459ANTHRO 2453
MARTIN R C 100955082157ART 2891
NEECE M L 99911121358ART 2291
NAKAMURA S L 101529051260ART 2594
YEH F L 102005120645ART 2764
BARTLETT s s 100800100957ART 2735
COCHRAN G L 100725111857810 3011

KRUTZ S T 100532010353POLISCI 1981
WALLIN G E 101056041659POLISCI 3151
WARNES D V 102116060861POLISCI 2814
WONG S T 101001012755PSYCH 2152
LANGDON M A 101754080549PSYCH 2013
LASE UR p T 100678042256PSYCH 2233
SUGARMAN B T 100528070457SOC 3501
SMITH F R 101062120758SOC 2913
DOUGLAS M L 101325071558UNDEC 2585
OKADA N A 100103111750UNDEC 2225

4-4 SCL Advanced File Management Usage ReYision G

-

Command Merge

Command Merge
The file ADD_STUDENTS is ordered according to the student number
as shown below.

File ADD_STUDENTS:

OUINTERA L S 90154101253BIO 3451
KING ML 100012090848BUS 2431
ANDRUS J R 100478042855JOURN 2121
UNGERMAN J M 100933120356PHYSED 3012
KLEIN S A 100987051260ENGIR 2762
IRVING WR 101750111855ENG 3943
ALLEN MG 102056012561LNGUIS 3854
GREENWOOD M R 102168101961EDU 2264
ANDERSEN C R 102308032160POLISCI 2544
EBERHARD N I 102320061158BUS 3014
GOMEZ J R 102379022260COMPSCI 2984

The files UNIVERSITY_STUDENTS and ADD_STUDENTS can be
merged because they are sorted on the same key. The command to
merge the two files is:

~ MERGE,FROM=(untverstty_students,add_students), ...
TQsnew_students_ftle,KEY=((15 .. 20,NUMERIC_NS))

A new file (NEW_STUDENTS_FILE) is created as a permanent file
to which merged records are written.

The MERGE command names the two input files and the new output
file. The student number is the key on which the files are merged
(the field on which the files are presorted). This field is numeric
character data with leading blanks. The file NEW_STUDENTS_FILE
output from the merge is shown below.

WALLACE S T 87366110255ENGIR 2861
QUINTERA L S 90154101253810 3451
JOHNSON M J 90248063051MATH 2253
SANDERS G R 99855022858BUS 3011
NEECE M L 99911121358ART 2291

TERRELL TH 99998040356ENG 3861
KING M L 100012090848BUS 2431
OKADA N A 100103111750UNDEC 2225
REYES S L 100246031558ANTHR0 3341
ANDRUS J R 10047804285SJOURN 2121

Revision G Examples 4-5

Using a Directive File

Using a Directive File
The contents of three directive files are shown below.

Directive File DIR_FILE_l:

SORT,FROM=UNIVERSITY_STUDENTS
SORT,TO=SORTED_STUDENT_NAMES
SORT,KEY=l .. 10

Directive File DIR_FILE_2:

SORT,FROM=ADD_STUDENTS
SORT,TO=SORTED_ADDED_STUDENTS
SORT,KEY .. 1 .. 10

Directive File DIR_FILE_3:

MERGE,FROM=(SORTED_STUDENT_NAMES,SORTED_ADDED_STUOENTS)
MERGE,TO=MERGEO_STUDENT_NAMES
MERGE,KEY.,1 .. 10

File DIR_FILE_ l sorts the student's names from the file
UNIVERSITY_STUDENTS in ascending order, creating a new file ~
called SORTED_STUDENT_NAMES. File DIR_FILE_2 sorts the W
student's names from the file ADD_STUDENTS in ascending order,
creating a new file SORTED_ADDED_STUDENTS. Finally, file DIR_
FILE_3 merges the files SORTED_STUDENT_NAMES and
SORTED_ADDED_STUDENTS according to the student's name in
ascending order, creating a new file called MERGED_STUDEN'T_
NAMES.

The commands to call the three directive files are:

SORT,DIR=dir_file_l
SORT,DIR=dir_f11e_2
MERGE,DIR=dir_file_3

4-6 SCL Advanced File Management Usage Revision G

Using a Directive File

e The contents of the file MERGED_STUDENT_NAMES output from
the directive file sorts and merge is shown below. The records are in
alphabetic order.

BARTLETT s s 100800100957ART 2735
BILLINGS c y 10 157911 1855MUS 2965
BRISCOE J H 102343121157ENVIRO 2544
CARLSON M K 102126022355ENGIR 3454
CHARLES S H 101418032459ANTHRO 2453
CLARK D V 101023101956ENG 2083
CLARK D N 101400102954ECON 3782
COCHRAN G L 100725111857BIO 3011
DAVIES E D 100812080656JOURN 2031
DAVIS D A 100972071650ENR 3541

WALLIN G E 101056041659POLISCI 3151
WARNES D V 102116060861POLISCI 2814
WILSON W L 10196701026 lMATH 3454
WONG S T 101001012755PSYCH 2152
woo R M 101315100159BUS 3223
WOODSTOCK C T 101497030160CHEM 3483
YEH F L 102005120645ART 2764
YOST D L 100880111158ENG 2582
ZEITZ F K 100963111858MATH 2612
ZIMMERS C A 101075063059MATH 2992

Revision J Examples 4-7

Creating an Object Library

Creating an Object Library

You must place an owncode procedure into an object library before
using it in a sort or merge, as detailed in chapter 3. A FORTRAN
subroutine named OWNCODE that can be used as an owncode 3
procedure is shown below. The suboutine deletes the first record in a
file. The variable COUNT keeps track of the number of times the
owncode procedure is entered.

SUBROUTINE OWNCODE (retcode,reca,rla)
INTEGER retcode, rla, count
CHARACTER reca*38
DATA count /0/
count = count +1
IF (count.eQ.1) THEN

retcode 1
ELSE

retcode O
ENDIF
RETURN
END

:,:.,l,i For detailed information on placing a compiled subroutine into a A
library, see the NOSNE Object Code Management Usage manual. 9'
Assuming the source text for the OWNCODE subroutine is on file
$USER.OWNCODE, the commands to place OWNCODE into an object
library on file $USER.OWN_LIBRARY are shown below.

/fortran input=$user.owncode
/create_object_library
COL/add_module library=$1ocal. lgo
COL/·generate_ library 1 i brary=$user .own_ library
COL/ QUit
/display_object_library library=$user.own_library
.. /display_option=entry_point

OWNCODE - load module

entry points

OWNCODE

/set_program_attribute add_library=$user.own_library

4-8 SCL Advanced File Management Usage Revision J

Creating an Object Library

After executing these commands, a SORT command such as the
following can use the OWNCODE subroutine:

sort from=university_students to=results key=1 .. 10
owncode_procedure_3=0WNCODE

After the SORT command is executed, the file UNIVERSITY_
STUDENTS is sorted, with the first record deleted. The sorted records
are written to the file RESULTS as shown below.

BILLINGS c y 101579111855MUS 2965
BRISCOE J H 102343121157ENVIRO 2544
CARLSON M K 102126022355ENGIR 3454
CHARLES S H 101418032459ANTHRO 2453
CLARK D N 101400102954ECON 3782
CLARK D V 101023101956ENG 2083
COCHRAN G L 100725111857810 3011
DAVIES E D 100812080656JOURN 2031
DAVIS D A 100972071650ENR 3541

WALLIN G E 101056041659POLISCI 3151
WARNES D V 102116060861POLISCI 2814
WILSON W L 101967010261MATH 3454
WONG S T 101001012755PSYCH 2152
woo R M 101315100159BUS 3223
WOODSTOCK C T 101497030160CHEM 3483
YEH F L 102005120645ART 2764
YOST D L 100880111158ENG 2582
ZEITZ F K 100963111858MATH 2612
ZIMMERS C A 101075063059MATH 2992

Note that the owncode procedure has deleted the first record in the
file.

Revision G Examples 4-9

Summing Records

Summing Records
The record layout of a university student file named STUDENTS is
shown below.

l \SI '\\II
...JI f)1" ~It Jn

lli<"I 1\.111 \l \11111111 1'111 \I

I \I I~ \ 111 \!I'! I I) I 'II' C 0 ... 11'1 I 11 J)

Each record contains three numeric fields. They are: number of units
attempted, number of units completed, and grade points. The file
STUDENTS is shown below with multiple records for each student.

GREENWOOD M R 102168101961EDU 002002000
IRVING W R 101750111855ENG 004004016
GREENWOOD M R 102168101961EDU 003003009
IRVING W R 101750111855ENG 098095375
QUINTERA L S 90154101253BIO 003000000
ALLEN M G 102056012561LNGUIS 005000000
ALLEN MG 102056012561LNGUIS 025020077
ALLEN MG 102056012561LNGUIS 004004012

Records are to be sorted according to the student number. Using the
SUM parameter, records with the same student number are combined
into one record by adding the numeric fields together. The new record
will give the total number of units attempted, total number of units
completed, and the total number of grade points.

The SORT command to sort and sum the file STUDENTS is as
follows:

SORT, FROM=students, TO=sunrned_file, KEY=(15 .. 20), ...
SUM=((36,3,numer1c_ns,3))

The input file STUDENTS is named, and the output file SUMMED_
FILE will contain the results of the summing. The student number
(positions 15 through 20) is specified as the sort key. The SUM
parameter specifies that a three-position numeric field of type
NUMERIC_NS begins in position 36 in each record. The repetition
indicator specifies that three contiguous fields are to be summed. The

4-10 SCL Advanced File Management Usage Revision G

•

Summing Records

output from the sort is shown below. Each record ends with nine
digits: the first three digits are the total units attempted, the next
three are the total units completed, and the final three are the total
grade points.

OUINTERA L S 90154101253BIO 003000000
IRVING
ALLEN

WR 101750111855ENG 102099391
M G 102056012561LNGUIS 034024089

GREENWOOD M R 102168101961EDU 005005009

The output file contains one record for each student. The numeric
fields are the totals of the units attempted, units completed, and grade
points.

Revision G Examples 4-11

Defining Your Own Collating Sequence

Defining Your Own Collating Sequence
The file BIRTHDATES, ordered according to the student name, is
shown below. The file contains the students' last names, students' first
and middle initials, and the students' dates of birth.

ALLEN M G 10-09-61
ANDERSEN C R 05-01-60
EBERHARD N I 06 05 58
GREENWOOD MR 09-12-61
IRVING WR 01/07/55
KING ML 11 , 1 48
QUINTERA L S 08/12/53
WALLACE S T 12/09/55

You can standardize the separators (hyphens, blanks, and slashes) in
the students' birthdates by deiming your own collating sequence.

A directive file is used to sort the file BIRTHDATES. The SORT
command to call the directive file is as follows:

SORT DIR=date_d;r_file

The directive file DATE_DIR_FILE is shown below.

SORT, FROM=birthdates
SORT, KEY=((25, 2, myseQuence))
SORT, KEY=((19, 3, myseQuence))
SORT, KEY=((22, 3, myseQuence))
SORT, SEQN=myseQuence
SORT, SEQS=('O' .. '9')
SORT, SEQS= (' - ' • ' ' , 'I')
SORT, SEQA=YES
SORT, TO=dates_sorted

The SORT command defines a collating sequence named
MYSEQUENCE. The first SEQS parameter specifies ten value steps
from 0 through 9. This defines the order of the numbers. The next

e

SEQS parameter specifies one step consisting of hyphens, blanks, and
slashes. This defines the hyphen, blank, and slashes as equal values. A
The SEQA parameter specifies that blanks and slashes are to be W
output as hyphens. The file is .sorted according to the date of birth.

4·12 SCL Advanced File Management Usage Revision G

Defining Your Own Collating Sequence

The file DATES_SORTED output from the sort is shown below.

KING ML 11-11-48
QUINTERA L S 08-12-53
IRVING W R 01-07-55
WALLACE S T 12-09-55
EBERHARD N I 06-05-58
ANDERSEN C R 05-01-60
GREENWOOD M R 09-12-61
ALLEN M G 10-09-61

The file BIRTHDATES has been sorted in numeric order according to
dates of birth, and the separators in the dates have been changed to
hyphens in all records.

Revision G Examples 4-13

Part II: Keyed-File Utilities

e Keyed-File Concepts 5-1

Displaying, Copying, and Creating Keyed Files 6-1

Create_Alternate_lndexes Utility. 7-1

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-1

Keyed-File Recovery . 9-1

Keyed-File Concepts 5

The keyed-file utilities are a group of SCL utilities that can help you
create and use keyed files. A keyed file is a file whose organization
allows record access by key value. The keyed-file organizations are
indexed-sequential and direct-access. This chapter describes keyed-file
concepts so that you can more easily create and use keyed files.

You may already understand the concepts described in this chapter if
you have used keyed files through a programming language (such as
CYBIL, COBOL, or FORTRAN). Keyed-file concepts are also described
in the CYBIL Keyed-File and Sort/Merge Interfaces manual, the
COBOL Usage manual, and the FORTRAN Language Definition
manual.

This chapter assumes that you already have a general understanding
of NOS/VE files as described in the NOS/VE System Usage manual. It
assumes that you have used sequential files and, possibly,
byte-addressable files.

Sequential files, byte-addressable files and keyed files are alike in
that all are written and read using record access. This means that the
data in the files is contained in records.

A record is a collection of data that is read and written as a unit. A
record could contain several fields of data, some of a fixed length and
others varying in length. Thus, a record may have a fixed length or
be variable in length.

For example, a record could contain three data items of different
types: an integer, a floating point number, and a string of characters.
To write a record, a program writes all three data items together as a
record; when the record is later read, all three data items are
delivered to the program.

The records in a sequential or byte-addressable file are stored as a
simple sequence. The records in a keyed file are stored within a file
structure.

Revision J Keyed-File Concepts 5·1

Keyed-File Organizations

Keyed-File Organizations

A keyed file is defined as such by its file_organization attribute.
Currently, the keyed-file organizations are indexed-sequential and
direct-access.

A keyed-file organization allows you to read any record in the file
directly by specifying its key value. The key value for a record is
determined when the record is written to the file.

The keyed-file interface performs all processing required to relate a
key value to a record location; the user does not specify how this is
done beyond choosing the file organization. The method of relating a
key value to a record location differs for each keyed-file organization.

Indexed-Sequential File Organization

The indexed-sequential file organization allows content addressing of
records; that is, you can directly access a record by the contents of
one or more fields of data in the record. The fields of data by which a
record is addressed are its key fields, and the contents of those fields
are its key values.

An indexed-sequential file always has a primary key. (It can also have
one or more alternate keys as described in the Alternate Keys section
of this chapter.)

Each primary key value is unique within the file; there can be no
duplicate primary-key values in a file.

The indexed-sequential file organization can be used only when you
can assign a unique value to each record stored in the file. This
unique value is usually a field of data within the record (an embedded
key), although it can be a value assigned to the record and not
included in the record data (a nonembedded key).

For example, the primary key for an employee file could be the
employee's name. However, because two employees could have the
same name, it is better to assign a unique identification number to
each employee and use that number as the primary key for the file.

The indexed-sequential file organization should be used if a
requirement exists to read file records both sequentially and
randomly. For example, the records in an employee file could be read
sequentially to produce a listing of all employees or read randomly to
update individual records.

5-2 SCL Advanced File Management Usage Revision J

Keyed-File Orgarrizations

When an indexed-sequential file is read sequentially, its records are
accessed in ascending order by key value. For example, if an employee
file is read sequentially using its primary key (the employee
identification number) the records are read in ascending order by their
identification number. The order is kept even when new records are
added to the file.

Indexed-Sequential File Structure

This section gives a general description of the indexed-sequential
structure. You can use indexed-sequential files without knowing their
structure. However, if you understand the indexed-sequential structure
and how it grows, you can create more efficient indexed-sequential
files by specifying appropriate values for structural parameters.

The internal structure of an indexed-sequential file is designed to
provide both random and sequential access to the data records in the
file. File space is divided into blocks, all the same size.

A block contains a block header and one of the following:

Internal tables
Data records (a data block)
Index records (an index block)

Each index record points to a data block. The index record contains
the location of the data block and the range of key values of the data
records stored in that block.

You can display the formatted contents of all components of an
indexed-sequential file, the internal tables and index blocks as well as
the data blocks, using the DISPLAY_KEYED_FILE command
described in chapter 6.

As you might expect, the actual internal index mechanism is complex,
but the simplified examples in this part provide the level of detail
appropriate for indexed-sequential file use.

To see how an index works, let's look at a very small file that
contains one index block and two data blocks. As shown in figure 5-1,
the index block contains two index records. Each index record points
to a data block in the file.

Revision G Keyed-File Concepts 5-3

Keyed-File Organizations

Index Block

5

Data Block

2

4

Data Block

5

6

Figure 5·1. Minimal Indexed·Sequential Structure

Let's suppose you request to read randomly the record with key value e
6. To read the record, these steps are performed:

1. The index records are searched to fmd the index record whose
range of key values includes the key value 6.

2. After the correct index record (the second one) is found, the search
for the record continues with the data block pointed to by the
second index record.

3. The second data block is searched for the record with key value 6.
When the record is found, its data is returned to the requester.

Next, suppose you request that all records in the file shown in figure
5·1 be read sequentially. These steps are performed.

1. The first index record is read to fmd the first data block.

2. The records from the first data block are read in order.

3. The second index record is read to fmd the second data block.

4. The records from the second data block are read in order.

5-4 SCL Advanced File Management Usage Revision G

Keyed-File Organizations

5. The sequential read ends because there are no more index records,
therefore, no more data blocks to read.

This process reads the records in key-value order because both the
index records and the data records are kept in key-value order.

e Data-Block Split

Usually, a block has some empty space, called padding, that was left
empty so that additional records could be written later to the block.
Suppose, as shown in figure 5-2, that a data block has been filled, a
new record is to be written, and its key value is within the range of
key values of the records in the full data block. For the file structure
to be maintained, the data block must be split.

When a data-block split occurs, records in the data block whose key
values are less than the key value of the new record remain in the
existing block. All records in the existing block that come after the
new record are moved to the newly created block.

The new record is put into either the new block or the existing block,
depending on the relative amount of empty space in the blocks and
the size of the new record. If the new record does not fit in either
block, a second new block is created and the new record is put into
that block.

Revision G Keyed-File Concepts 5-5

Keyed-File Organizations

Before the Data-Block Split:

Keyed File

New Record Index Block

I 2

After the Data-Block Split:

Keyed File

Index Block

3

Data Block

1

3

4

s
6

Data Block

2

Data Block

3

4

s
6

Figure 6-2. Data-Block Split

15-6 SCL Advanced File Management Usage Revision G

Keyed-File Organizations

Index Levels

As with data blocks, index blocks are also initially created with some
empty space (index-block padding). However, for each new data block
created due to a data-block split, another index record must be
created. With the addition of many data records, the initial index
block becomes full. When the index block is full, the next data-block
split causes an index-block split.

As shown in figure 5-3, when the initial index block splits, it causes
the creation of another index level.

The index levels are numbered from the top down as index level 0,
index level 1, and so forth. Index level 0 always has only one index
block; it is always the starting point for an index search.

The index block at an upper level contains an index record for each
index block at the next lower level. The index block at level 0
contains an index record for each index block at level 1.

A search for a data record requires an index-block search at each
index level. The level-0 search finds the index record that points to
the appropriate level-1 index block: If the file has only two index
levels, the level 1 search finds the index record that points to the
appropriate data block.

As you can see, the addition of another index level increases the time
required to find an individual data record.

Index levels can be added up to the index-level limit of 15 levels. This
sets a limit on the number of records in the file.

The index-level limit is reached when addition of another record to
the file would require creation of another index level, but 15 index
levels already exist in the file. When this happens, the
index-level-overflow flag is set and no more records can be added to
the file.

Revision G Keyed-File Concepts 5-7

Keyed-File Organizations

B•for• th• lnd•x-Block Split:

Sew Re<ord

K•y•d File

7

8

9

10

Data Block

l>•l• Block

y

Figure 5-3. Index-Block Split

5-8 SCL Advanced File Management Usage

Dal• Blod

3

4

ti

l>ala Block

I!

l>•l• Block

10

(Continued)

Revision G

(Continued)

Arter lhc Index-Block Split:

Ktytd File

Index Block

7

Keyed-File Organizations

Dala Block

l>ala Bloc~ :

)

4

s

l>at• Block

Dal• Block

Figure 5-3. Index-Block Split

Indexed-Sequential Primary Keys

The primary key for an indexed-sequential file is defined when the
file is created. The primary-key value must be unique for each record
in the file.

A primary-key definition requires specification of these attributes:

Embedded or nonembedded key (the default is embedded)
Key position (if the key is embedded)
Key length
Key type (the default is uncollated)

Revision G Keyed-File Concepts 5.9

Keyed-File Organizations

Collate-table name (if the key type is collated)

A key is embedded if the key value is part of the data in the record.
An embedded key value is returned as part of the record data when
the record is read; a nonembedded key value is not.

The key position in the record must be specified if the key is
embedded. The first byte position in a record is byte 0. If the key is
nonembedded, you do not specify a key position.

You must specify the key length whether the key is embedded or
nonembedded. It indicates the number of bytes in the key.

Record

Key Le111th __...._...
J I
Key Position

The key type describes the data in the key. These are the possible
key types:

Integer key

Uncollated key

Collated key

The key value is a signed binary value from 1
through 8 bytes long. (In general, except for
packed CYBIL records, an integer value is
written as 8 bytes.) Integer key values are
sorted in ascending numerical order.

The key value is a string of characters; it is
sorted byte-by-byte according to the ASCII
collating sequence.

The key value is a string of characters; it is
sorted byte-by-byte according to a collating
sequence that you specify.

If the key is a collated key, you must specify
the collating sequence to be used to order the
key values. The collating sequence is specified
by its name. NOSNE provides several
predefined collating sequences (listed in
appendix E). You can also create a collating
sequence as described in appendix E.

5-10 SCL Advanced File Management Usage Revision G

Keyed-File Organizations

Direct-Access File Organization

The second keyed-file organization is direct-access. In general, it
should be used when fast individual record access is required, but
sequential ordering of records using the primary key is not needed.
(Sequential ordering is possible using an alternate key.) Also, the
direct-access file organization is most effective when file updates (and
the resulting file structure changes) are minimized. The following
paragraphs compare the direct-access and indexed-sequential file
organizations.

Both the indexed-sequential and direct-access file organizations use a
primary key. You define the primary key for the file when you create
the file. It can be a field embedded in the record or a nonembedded
value. Each primary-key value in the file must be unique; the file can
contain no duplicate primary-key values.

Like an indexed-sequential file, a direct-access file can have alternate
keys. An alternate key for a direct-access file is the same as an
alternate key for an indexed-sequential file. (See the Alternate Keys
discussion later in this chapter.)

Like indexed-sequential file records, you must specify the primary-key
value when writing or deleting a direct-access file record. Similarly,
you must specify either a primary-key value or an alternate-key value
to read a direct-access file record.

Direct-access and indexed-sequential files differ in their ordering of
records in the file:

• When you read records sequentially from an indexed-sequential
file, the records are returned in order, sorted by their primary-key
values.

• A sequential pass through a direct-access file reads all records in
the file, but the records are not returned in order by their
primary-key values.

In general, random record access is faster for the direct-access file
organization than for the indexed-sequential file organization. This is
because the direct-access file organization determines the location of a
record directly from its primary-key value, unlike indexed-sequential
files where a record can be found only after a search at each index
level.

Revision G Keyed-File Concepts 5-11

Keyed-File Organizations

Direct-Access File Structure

The direct-access file structure is designed to locate each record
directly by its primary-key value. The primary-key value directly
specifies the file block containing the record.

File space in a direct-access file is divided into equal-size blocks. e
Initially, all blocks in the file are home blocks (as opposed to overflow
blocks).

When a record is written to a direct-access file, its primary-key value
is hashed to produce the number of the home block in which the
record is written. If the home block does not contain enough empty
space for the new record, the record is written in an overflow block.

Assuming the hashing procedure produces a uniform distribution of
numbers from the primary-key values in the file, the records are
uniformly distributed among the home blocks of the file. Thus, each
record can be found by a single search of its home block without
additional searches of overflow blocks.

You specify the initial number of home blocks when you create the
file. By default, a system hashing procedure is used to distribute the A
records among the home blocks although you can provide another 9
hashing procedure for the file if you like.

As an illustration of a small direct access file, suppose you define a
direct access file as having five home blocks.

Home
Blocks

0 I 2 3 4

DDDDD
The first record written to the file has primary-key value XYZ.
Assume that this primary-key value is hashed to produce the block
number 2. The record is then written in home block 2.

0 I 2 3 4

Home
Blocks DDLJDD

6-12 SCL Advanced File Management Usage Revision G

Keyed-File Organizations

Assume you want to read the record with primary-key value XYZ.
The value XYZ is hashed and, as before, produces the block number
2. The keyed-file interface searches for the record with primary-key
value xyz in home block 2. (The records in a block are ordered by
primary-key value so each record can be quickly found.)

Suppose that many records have been written to the file and home
block 2 has been filled.

Home
Blocks

0 1 2 3 4

~LJ-~~
At this point, a record is to be written with primary-key value ABC.
Hashing of the value ABC produces block number 2, but there is
insufficient space for the record in home block 2 so it is written in an
overflow block.

Home
Blocks

Overflow
Block

.0 1

~LJ
2

II'

Later, to read the record with primary-key value ABC, the
primary-key value is hashed to produce block number 2. Home block 2
is searched for primary-key value ABC. When it is not found in the
home block, the search continues in the overflow block until the
record is found.

An ideal direct-access file structure has these characteristics:

• Sufficient home blocks are allocated and records are uniformly
distributed among the home blocks so as to avoid overflow.

• Each block contains a limited number of records so as to minimize
the search time in each block.

Revision G Keyed-File Concepts 5·13

Keyed-File Organizations

• The number of home blocks is not so large that the file contains
excessive unused space. e

These characteristics are determined by the file attribute values
specified when the file is created. You must specify the initial_
home_block_count and can optionally specify the maximum_block_ a
length and hashing_procedure_name attributes. (The attribute -
parameters are described in chapter 6.)

One other characteristic to be considered when selecting the number
of home blocks is the loading factor. The loading factor is the
percentage of block space used. To allow for less-than-uniform
distribution of records in the home blocks, the loading factor should
be no greater than 90%.

You can use the following equations to determine the mm1mum
home_block_count for a given loading factor if the number of bytes
of data in the file and the block size are known.

If the file has fixed-length records, reduce the block size by 39 bytes,
as follows:

record_count x fixed_record_length
home_block_count = ------------------------------------

(loading_factor/100) x (block_size - 39)

If the file has variable-length records, reduce the block size by 36
bytes and use the average record length plus 3 as the record length,
as follows:

record_count x (average_record_length + 3)
home_block_count

(loading_factor/100) x (block_size - 36)

To illustrate, suppose the direct-access file is to contain 10,000 80-byte
records (80,000 bytes of record data). Using a block size of 4096 bytes
and a loading factor of 90%, the equation appears as follows:

10000 x 80
home_block_count

(90/100) x (4096 - 39)

The equation gives 22 blocks as the minimum home block count for
the file. However, it is recommended that the home block count be a
prime number so 23 would be a better home block count for the file
in this example. e
5·14 SCL Advanced File Management Usage Revision G

Keyed-File Organizations

Hashing Procedures

The system provides a default hashing procedure named
AMP$SYSTEM_HASHING_PROCEDURE or, you may specify your
own hashing procedure. This would be appropriate if the procedure
would produce a more uniform distribution of numbers from the
primary-key values in your file.

The system executes the hashing procedure each time a record is
requested by key value from the direct-access file. The hashing
procedure is not stored with the file so the system must be able to
load the procedure each time the direct-access file is opened.

Hashing procedures can only be written in the CYBIL programming
language. For more information on writing a hashing procedure, see
the CYBIL Keyed-File and Sort/Merge Interfaces manual.

Direct-Access Primary Keys

In general, the primary key of a direct-access file has the same
characteristics as the primary key of an indexed-sequential file. You
specify whether the primary key is ~mbedded or nonembedded, its
position (if the key is embedded), and the key length. However, for
direct-access files, the specified KEY_ TYPE attribute value is ignored;
the KEY_ TYPE attribute for a direct-access file is always uncollated.

Unlike an indexed-sequential file, sequential access calls to a
direct-access file while the primary key is selected do not return the
file records sorted by primary-key value. The calls return records
according to their physical location in the direct-access file. Records
within a block are ordered according to the default ASCII collating
sequence, but the blocks are not ordered by primary-key values.

Direct-access file records can be accessed in order if one or more
alternate keys are defined for the file. The alternate index keeps the
alternate-key values in sorted order. Sequential access calls while an
alternate key is selected return records in the order provided by the
alternate index.

If appropriate, you could define an alternate key for the same field as
an embedded primary key. In this way, you could access direct-access
file records in primary-key value order.

Revision G Keyed-File Concepts 5-15

Alternate Keys

NOTE

If you specify a collation table for a direct-access file using the
COLLATE_ TABLE_NAME attribute,. the collation table is loaded
when the new file is first opened. However, the collation table is not
used by the primary key, nor can it be used by any alternate key.

Alternate Keys
A record within a keyed file can always be accessed by its
primary-key value. An alternate key provides an additional way t.o
access records.

An alternate key defines a value in the data record by which the
record can be accessed. An alternate key is defined as a field or group
of fields in the record.

Although a program can use alternate keys t.o read records or t.o
position a file, alternate keys cannot be used t.o write, replace, or
delete records. The primary-key value must be used t.o identify a
record t.o be written, replaced, or deleted.

Alternate-Key Characteristics

Alternate-key fields can overlap each other and the primary key. For
example, the primary-key field could be bytes 0 through 9 and two
alternate-key fields bytes 0 through 19 and bytes 4 through 14.

Record

0 s 10 JS

-....­
Primary Key

---,------~--~------~ Alternate Key 1 -­Alternate Key 2

20 21 25

Unlike a primary-key value, one alternate-key value can be associated
with several records in a file. This is because an alternate-key value
need not be unique. The same alternate-key value can occur in
several records. For example, the same job title can be associated with
many names as follows:

6·16 SCL Advanced File Management Usage Revision G

e

Data Record:

Alternate Index:

Hanson
Jones
Smith

Computer Progranmer
Computer Progranrner
Computer Progranmer

Alternate Keys

Alternate-Key Value Primary-Key Value

Computer Programner Hanson
Jones
Smith

A record can contain more than one alternate-key value if the
alternate key is defined as a field that repeats in the record; thus, a
single record could contain several alternate-key values. For example,
the license numbers of several cars owned by one person as follows:

Data Record: R. Petty 1 LB AU 2ASM451 ELK 592

Alternate Index: Alternate-Key Value Primary-Key Value

1 LB AU R. Petty
2ASM451R R. Petty
ELK 592 R. Petty

The Alternate Index

The index for the primary key was described earlier in this chapter.
Each alternate key defined for a file has its own index.

An alternate index contains index records, each of which associates an
alternate-key value with the primary-key values of the records
containing that alternate-key value. The list of primary-key values
associated with an alternate-key value is the key list for that
alternate-key value.

When you select an alternate key and then specify an alternate-key
value, the system searches for the value in the alternate index. If it
finds the alternate-key value, it uses the primary-key values in the
key list for the alternate-key value to access the data records.

When one or more alternate keys are defined for a file, file updates
require more time because the alternate indexes must also be updated.
Alternate keys should be used only when the additional record access
capability offsets the cost of increased time spent for file updates.

Revision G Keyed-File Concepts 5-17

Alternate Keys

Alternate-Key Definition

The attributes of an alternate key are specified by its alternate-key
definition.

These attributes are required to defme an alternate-key field:

Key name
Key position
Key length

An alternate key has a name so that it can be selected for use. The
alternate-key position and length define the alternate-key field within
the record.

These optional attributes defme how the alternate key is processed:

Key type
Collate table name (if the key type is collated)
Duplicate key values
Null suppression
Sparse-key control
Repeating groups
Concatenated key
Variable-length key

The key type of an alternate key determines the order of the
alternate-key values in the alternate index, and therefore, the order in
which records are accessed sequentially when you use the alternate
key. The key types for an alternate key are the same as the key
types for the primary key as described ear lier in this chapter.

Collated Alternate Key

If the key type is collated, the alternate key requires a collation table.
In most cases, you should explicitly specify the collation table to be
used. However, if the file is an indexed-sequential file with a collated
primary key, you can use the primary-key collation table as the
default collation table for the alternate key.

Collated key values are stored in collated form in the index. The
collation is performed after the key values are read from the file and
immediately before the values are stored in the index.

5-18 SCL Advanced File Management Usage Revision G

Alternate Keys

Thus, collation does not affect the selection of key values for the
index. When null suppression is used, the key value is determined to
be a null value before collation. Similarly, when the key is a
variable-length key, collation does not apply to the key delimiter
characters.

Duplicate Key Values

By default, duplicate values for an alternate key are not allowed.
However, if you want to allow duplicate key values, you can specify
whether the records having the same alternate-key value are accessed
in primary-key-value order or in first-in, first-out order.

In a key list ordered by primary key, the primary-key values are
stored in sorted order according to the primary-key type. New values
are added to the key list so that the primary-key-value order is kept.

In a key list ordered first-in, first-out, the primary-key values are
stored in the key list in the order the values are added to the key
list, instead of in primary-key-value order. New values are always
added to the end of the list.

For Better Performance

When alternate-key values are frequently duplicated in a file, the key
lists should be ordered by primary-key value. First-in, first-out
ordering of key lists requires that delete and replace operations
sequentially search the key list to find the primary-key value; a
sorted key list provides faster access to a primary-key value.

For example, suppose you write three records to the file in this order:

McDarrels
Burger Duke
Wi 1 lys

Hamburgers
Hamburgers
Hamburgers

The following shows the resulting key list in primary-key order and
in first-in, first-out order:

Alternate Key
Value

Hamburgers

Revision G

Key List - Ordered
by Primary Key

Burger Duke
McDarrels
Willys

Key List - First-In,
First-Out

McDarrels
Burger Duke
Wi 11 ys

Keyed-File Concepts 5-19

Alternate Keys

Duplicate Key Value Error Processing

If duplicate values are not allowed and a duplicate is found in a
record about to be written to the file, the record is not written to the
file and a nonfatal error (aae$duplicate_alternate_key) is returned.

A nonfatal error (aae$.unexpected_dup_encountered) also occurs if a
duplicate value is found while a new alternate index is being created.
However, the record containing the duplicate value cannot be
discarded, as it is already in the file. Subsequent processing depends
on whether incrementing the nonfatal-error count causes the count to
reach the nonfatal-error limit as set by the user.

• If the nonfatal-error limit is not reached, the alternate key being
applied is redefined to allow duplicates, ordered by primary-key
value, and the current apply operation continues.

• If the nonfatal-error limit is reached, the error condition
aae$duplicate_key_limit occurs and the effects of the current
apply operation are undone as far as possible. Deletions cannot be
undone, but any creations that have taken place are undone, and a
message is issued for each one.

In either case, a message describing the action taken is written to the e
$ERRORS file.

Null Suppression

By default, if an alternate-key field contains a null value, the null
value is stored as the alternate-key value for the record. The null_
suppression attribute allows you to exclude null values from an
alternate index.

Null suppression excludes any record with a null alternate-key value
from the alternate index. Null suppression can save space, access
time, and update time because the index is smaller when null
alternate-key values are excluded. (Null suppression does not remove
the null value from the data record.)

The null value depends on the key type as follows:

Key Type

Integer
Uncollated
Collated

Null Value

Zero
Spaces
Spaces (before collation)

5-20 SCL Advanced File Management Usage Revision G

Alternate Keys

If null suppression is not specified, records containing a null value in
the alternate-key field are indexed by the null value. The records can
later be accessed by specifying the null value as the alternate-key
value.

For example, suppose the spouse's name is defined as an alternate key
to a membership file. Unmarried members would have a null value
for the alternate-key field. Therefore, the key list for the null value
lists all unmarried members. The following shows the alternate index
with and without null suppression:

Without Null Suppression

Spouse's
Name

Diana Sinmons
Mark Ramsey
Shelly Gable

Member's ID

1626736
8273648
4872672
7726184
2673651

Sparse-Key Control

With Null Suppression

Spouse's
Name

Diana Sinmons
Mark Ramsey
Shelly Gable

Member's ID

4872672
2673651
7726184

You can use sparse-key control to create an alternate index that
includes or excludes records depending on the character in a specific
position in the record (the sparse-key control position).

The sparse-key control position must be within the minimum record
length. If you specify sparse-key control for an alternate key, the
alternate-key field or fields need not be within the minimum record
length.

If the character at the sparse-key control position indicates that the
record should be included in the alternate index, but the record has
no alternate-key value because the record ends before the
alternate-key field, the record is not included in the alternate index.
Although the record is not included in the alternate index, it is
written to the file and a trivial error (AAE$SPARSE_KEY_
BEYOND_EOR) is returned.

For example, suppose a student file has a one-character code
indicating the student's class. To get a mailing list for juniors and
seniors only, you could define an alternate index controlled by the
class code.

To specify sparse-key control, you specify three values:

Revision J Keyed-File Concepts 5-21

Alternate Keys

Value Example

Sparse-key control position Position of the class code in the record

Sparse-key control characters Junior and senior class code characters

Sparse-key control effect
(Indicates whether the
alternate-key value should
be included or excluded if
the sparse-key character
matches)

Included if the class code indicates a
junior or senior record

Assume that the sparse-key control position is the first character after
the name field and that the junior and senior class codes are 3 and 4.
If the following records are copied to the file, the first three records
are included in the alternate index, but not the last record.

Louis Skolnik 4

Gilbert Sullivan 4
E 11 iot Wermzer
Judy Manhasset

Concatenated Keys

3
2

A concatenated key is an alternate key formed from several fields, or
pieces, in the record. A concatenated key can comprise up to 64
pieces.

The concatenated pieces can be noncontiguous and can be concatenated
in any order. Each piece can be a different key type. All collated-key
pieces use the same collation table.

The first piece you specify is the leftmost piece of the key. You
specify it the same as you specify a nonconcatenated key. The pieces
to be concatenated to the leftmost field are defined by individual
subcommands. The subcommand order specifies the order of the
concatenated pieces.

A concatenated key can use sparse-key control and/or null suppression.
A concatenated key is considered to have a null value if the values in A
all fields of the key are null (before collation for collated keys). W'

For example, suppose you decide to define an alternate key consisting
of the initials of the member's name. The first piece of the key value A
would be the first letter of the member's first name, the second piece W

5-22 SCL Advanced File Management Usage Revision J

Alternate Keys

would be the first letter of the member's middle name, and the third
piece would be the first letter of the member's last name. Consider
this data record:

0 20

I Kennedy I Fitzgerald

The alternate key value is JFK, assuming the concatenated-key pieces
are defmed as:

First piece: Key_Pos1t1on•20, Key_Length•1

Second piece: Key_Pos1t1on•40, Key_Length•1

Third piece: Key_Pos1t1on•O, Key_Length•1

Repeating Groups

The repeating-groups attribute allows a data record to contain more
than one value for the same alternate key. This allows a primary-key
value to be associated with more than one alternate-key value.

To specify an alternate-key field within a repeating group:

1. Specify the first alternate-key field by its key position, key length,
and key type. All subsequent alternate-key fields have the same
length and type as the first.

2. Specify repeating groups for the alternate key by specifying the
repeating group length, that is, the distance from the beginning of
the first instance of the alternate key to the beginning of the
second instance of the alternate key in the record.

3. Specify the repeating-group count, that is, how many times the
alternate key field repeats in the record.

You can specify that the repeating group repeats a fixed number of
times or that it repeats until the end of the record.

• If the alternate-key field repeats a fixed number of times, all
alternate-key fields must be within the minimum record length.

Revision G Keyed-File Concept.a 5-23

Alternate Keys

• If the alternate-key field repeats to the end of the record, the
minimum record length imposes no restriction. The system stores e
as many alternate-key values as the record length allows; it
ignores trailing information not long enough to contain an
alternate-key value.

Repeating groups cannot be used with concatenated keys or when e
duplicate-key values are allowed and ordered first-in-first-out.

For example, suppose each record in a membership file lists the sports
the member enjoys and his years of experience as follows (columns
are counted from zero):

Field: Sports and Sports Experience

Columns: Variable number of 2-field pairs beginning at column 75
The Sports field is 10 characters followed by a 2-digit
Sports Experience field

Type: ASCII characters

75 87 99 111

I I I I I I -..- --...- --.­
Key Length

Repeating Group Length

You could define an alternate key for the Sports values (without the
Sports-Experience values) as follows:

Key_Pos1t1on=75, Key_Length•10, Key_Type=uncollated,
Repeat1ng_Group_Length=12,
Repeat1ng_Group_Count=repeat_to_end_record,
Dup11cate_Key_Values•ordered_by_pr1mary_key

The key list for an alternate-key value would list the identification
numbers of all members that enjoy that sport.

The following shows the primary keys for three records and their
contents from column 75 to the end of the record:

6·24 SCL Advanced File Management Usage Revision G

Alternate Keys

Primary Key Record Contents Beginning at Column 75

1662876
6166287
0027840

Volleyball02Running 03Basketbal102
Bicycling 10Volleyba1101
Running 15Runnlng 15Runnlng 15

If these were the only records in the file, the alternate index would
appear as follows:

Alternate-Key Value

Basketbal 1
Bicycling
Running
Vol leybal I

Primary-Key Value

1662876
6166287
0027840 1662876
1662876 6166287

Notice that because the key type is Uncollated and the duplicate-key
values specification is Ordered_by_primary_key, each key list is
sorted according to the default ASCII collating sequence.

Notice also, as shown by the Running key list, each primary-key
value is listed only once in a key list, regardless of the number of
times the alternate-key value occurs in the record.

Variable-Length Key

A variable-length alternate key is an alternate key whose values vary
in length. Its alternate-key definition specifies its starting position, its
maximum length, and its set of delimiter characters. The end of a
variable-length key value is marked by a delimiter character, the end
of the key field, or the end of the record, whichever is found first
starting at the key _position.

By defining the key as a variable-length key, you can use the
following values as alternate keys:

• The first value beginning at a certain position of the record.

• The last field in a variable-length record.

e· All data in a variable-length record.

By defining the key as a variable-length key with the repeating
groups attribute, you can use these values as alternate keys:

• A value found anywhere in a fixed-length field (if all other
characters in the field are in the set of delimiter characters for
the alternate key).

Revision G Keyed-File Concepts 5-25

Alternate Keys

• A value found anywhere in a fixed-length field (if all other
characters in the field are in the set of delimiter characters for
the alternate key).

• Each value in a sequence of values, separated by one or more
consecutive delimiter characters. The sequence of values can be
within:

A fixed-length field.

A variable-length field at the end of the record.

The entire record.

For Better Performance

Define a key as a variable-length key only when necessary. The
requirement to scan the key field for delimiter characters adds
processing time when the alternate index is built and when the file is
updated.

The following examples use the CREATE_ALTERNATE_INDEXES
subcommand CREATE_KEY_DEFINITION to define variable-length
keys.

Example 1:

This subcommand defines the first sequence of non-blank characters in
each record as an alternate-key value. The maximum key-value length
is 80 characters.

create_key_definition, key_name=f1rst_token, ..
key_pesition=O, key_length=BO, variable_length_key~' '

0 EOR

jFirst token in each record., --Key Value

If the entire record is 80 characters or less and the record contains no A
blanks, the key value would be the entire record. W

Example 2:

Suppose each record consists of a required 20-byte portion and an
optional variable-length portion of up to 120 bytes.

5-26 SCL Advanced File Management Usage Revision G

Alternate Keys

O 20 EOR
,,;;.1F-ix-ed_po_ru_·o_n ___ _,J,..t:§±j-a-ria_b_le-po-rti-on--.

Key Value

This subcommand defmes the variable-length portion as an alternate
key.

create_key_def1n1t1on, key_name=vartable_p0rtton, ..
key_p0sttton=20, key_length=120, var1able_length_key=''

The null string (") defines an empty delimiter set, indicating that the
end of the key value is marked by either the end of the 120-byte field
or the end of the record.

Example 3:

Suppose a 100-byte field at byte 5 contains one value from 0 through
100 bytes, right-justified and blank-filled.

0 5

I I
99

right-justified j
-.­

Key Value

This subcommand defmes the value as a variable-length key.

create_key_deftnttton, key_name=rtght_just,
key_p0s1tton•S. key_length=100, ..
vartable_length_key=' ', ..
repeattng_group_length=1, repeattng_group_count=256

Because the value is right-justified in the field, the key must be
defined with the repeating groups attribute so the search for the value
does not end at the first delimiter.

For a repeating variable-length key, the repeating_group_length
value can be any integer greater than zero. (The actual value is
irrelevant.) The repeating_group_count is the length of the
alternate-key field.

Revision G Keyed-File Concepts 6·27

Alternate Keys

Example 4:

Suppose that each token in a record is to be a key value.

0 EOR

jEach word, in this record, is a key value I
YYYY?=YYYY

Key Values

To define each string of letters in the data as a key value, first,
define an SCL string variable containing all ASCII characters except
the uppercase and lowercase letters, then define the key using the
string variable.

create_variable, key_delim1ters, k1nd=(str1ng,76), ..
value•' 1234567890-·!~#$%-&•()_+[J'{}-;'' :"!,./<>?' ..

//$CHAR(000)//$CHAR(001)//$CHAR(002)//$CHAR(003) ..
//SCHAR(004)//$CHAR(005)//$CHAR(006)//SCHAR(007) ..
//SCHAR(008)//$CHAR(009)//SCHAR(010)//SCHAR(011) ..
//SCHAR(012)//$CHAR(013)//SCHAR(014)//$CHAR(015) ..
//$CHAR(016)//$CHAR(017)//$CHAR(018)//SCHAR(019) ..
//$CHAR(020)//$CHAR(021)//$CHAR(022)//$CHAR(023) ..
//$CHAR(024)//$CHAR(025)//$CHAR(026)//SCHAR(027) ..
//$CHAR{028)//$CHAR(029)//$CHAR(030)//$CHAR{031) ..
//$CHAR(127)

Notice that the concatenation operator (//) must be left-justified on the
line so that no extra spaces are put in the string. No spaces can
precede the continuation (..) indicator.

This command defines the key using the string variable:

create_key_defin1t1on, key_name•words, ..
key_position=O, key_length=SO, ..
var1able_length_key•key_de11m1ters, ..
repeat1ng_group_length=1, ..
repeat1ng_group_count•repeat_to_end_of_record

The repeating_group_length can be any integer greater than zero.
(The actual value is irrelevant). The repeating_group_count is the
alternate-key field length; repeat_to_end_of_record specifies that the
sequence of values continues until the end of the record.

6-28 SCL Advanced File Management Usage Revision G

Nested Files

Nested Files
A nested file is a keyed-file structure defined within a NOSNE file
cycle. It is recognized and used by the keyed-file interface only; it is
not recognized or used by the NOSNE file system.

All nested files in a file share the same catalog entry so if one nested
file is damaged and cannot be accessed, all nested files in the file are
considered damaged and cannot be accessed.

The keyed-file interface provides nested files so as to extend the
NOS/VE limit on the number of files a task can use. All nested files
defined in a file share the same memory segment. This provides
effective memory use when the nested files are much smaller than the
segment size limit (232 bytes).

The keyed-file interface creates the initial nested file (named $MAIN_
FILE) when it creates the keyed file. The nested file $MAIN _FILE is
always the default nested file used when no other nested file is
explicitly selected.

Currently, additional nested files can be created by: e • A CYBIL program (as described in the CYBIL Keyed-File and
Sort/Merge Interfaces manual)

• A COPY_KEYED_FILE command that copies an existing nested
file

• The CREATE NESTED FILE subcommand of the CREATE_
KEYED_FILE and CHANGE_KEYED_FILE utilities

When creating a nested file, COPY_KEYED_FILE uses the attributes
of the nested file copied. The CREATE_NESTED_FILE subcommand
defines the attributes of the nested file created.

The following attributes belong to each nested file individually:

• File organization (indexed-sequential or direct-access)

• Record attributes, including the record type and the minimum and
maximum record lengths

• Primary-key attributes, including its key position, key length, key
type, and collation table

• Compression procedure name

Revision G Keyed-File Concepts 5-29

Nested Files

• Structural attributes applicable to the file organization

The display produced by a DISPLAY_KEYED_FILE_PROPERTIES
command lists the attributes of each nested file separately (as
described in chapter 6).

All other file attributes apply to all nested files in a keyed file. The
RECORD_LIMIT attribute specifies the maximum number of records
in each nested file.

Each alternate-key defmition applies to only one nested file, the
nested file selected when the alternate key is defmed.

5-30 SCL Advanced File Management Usage Revision G

Displaying, Copying, and Creating Keyed
Files

This chapter describes several basic tasks you can perform on keyed
files using SCL commands.

Task

Display the properties of
an existing keyed file

Dump the internal
structure and contents of
an existing keyed file

Copy a file
record-by-record

Create a keyed file and
copy data to the new file

Re-create an existing
keyed file to improve the
file structure

Commands

DISPLAY_KEYED_FILE_PROPERTIES

DISPLAY_KEYED_FILE

COPY_KEYED_FILE

SET_FILE_ATTRIBUTES and COPY_
KEYED_FILE

SET_FILE_ATTRIBUTES and COPY_
KEYED_FILE

6

It is assumed that the keyed-file tasks described in this part are used
to prepare files for programs that read keyed files. For information on
writing programs that use keyed files, refer to the CYBIL Keyed-File
and SortJMerge Interfaces manual, the FORTRAN Language Definition
manual, or the COBOL Usage manual.

Revision G Displaying, Copying, and Creating Keyed Files 6-1

Keyed-File Displays

Keyed-File Displays

To list the contents and properties of an existing keyed file, use the
keyed-file display commands DISPLAY_KEYED_FILE and DISPLAY_
KEYED_FILE_PROPERTIES.

The DISPLAY_KEYED_FILE_PROPERTIES command can list file
attributes and statistics for an existing keyed file. If the file has
alternate keys, it also lists the alternate-key attributes.

The DISPLAY_KEYED_FILE_PROPERTIES display can indicate a
structural error condition by the contents of the Altered_Not_Closed
and Ruined_Flag fields. The other structural properties displayed
show the efficiency of the file structure.

When a structural problem appears in a keyed file, the DISPLAY_
KEYED_FILE command can be used to produce a formatted dump of
the part of the keyed file that is in error. A dump of the file may
help recover the data and fix any software error that caused the
structural error in the file.

6-2 SCL Advanced File Management Usage Revision G

DISPL.AY_KEYED_FILE_PROPERTIES Command

DISPLAY _KEYED _FILE _PROPERTIES Command

Purpose

Format

Displays properties of a keyed file. The displayed
properties can include file attributes, structural properties,
and statistics.

DISPLAY _KEYED_ FILE _PROPERTIES (DISKFP)
FILE= file or (file, nested _file _name)
OUTPUT= file
DISPLAY_ OPTIONS= list of keyword_ value
STATUS =status_variable

Parameters FILE or F

Revision H

Keyed file for which properties are to be displayed. You
must have at least read permission to the file. This
parameter is required.

To specify a nested file, first specify the file reference and
then the nested-file name, enclosed in parentheses.

OUTPUT or 0

File to which the display is written. If you omit the
OUTPUT parameter, the display is written to file
$OUTPUT.

DISPLAY_OPTIONS or DISPLAY _OPTION or DO

List of one or more keyword values indicating the
property types to be displayed.

FILE_ATTRIBUTES or
FA

STATISTICS or S

STRUCTURAL_
PROPERTIES or SP

ALL or A

File attributes kept for the life
of the keyed file.

Statistics maintained for the
keyed file.

Internal organization properties
of the keyed file.

All of the above. (You cannot
specify other keywords with
ALL.)

If you omit the DISPLAY_OPTIONS parameter, the
display includes the file attributes and structural
properties, but not statistics.

Displaying, Copying, and Creating Keyed Files 6-3

I
l
i/I

~~~ 

DISPLAY_KEYED _FILE_PROPERTIES Command 

Remarks 

STATUS 

Optional SCL status variable. If you specify the STATUS e 
parameter, the command returns its completion status in 
the specified variable. 

• The display consists of two or more pages of output. 

- The first page lists the properties that pertain to 
the entire file. 

- The second and any subsequent pages list the 
properties of each nested file in the file and the 
alternate keys defined for each nested file. 

Unless additional nested files have been created in the 
file, a keyed file contains only one nested file; it is 
named $MAIN _FILE. 

• At the file level, the file attributes and their possible 
values are as follows: 

Application_ Information 
Block_Length "actual" 
Error_Exit_Name 
File_Access_Procedure 
File_ Content 

File_Limit 
Forced_ Write 

Log_Residence 
Logging_ Options 

Maximum_Record_ 
Length 
Minimum_ Record_ Length 
Open_ Position 

none or string 
4096 
none or name 
none or name 
UNKNOWN, LIST, 
LEGIBLE, OBJECT, or 
SOURCE 
integer "bytes" 
unforced, forced or 
forced_ if_ structure_ 
change 
none or catalog path 
none, enable_media_ 
recovery, enable_ 
request_recovery, or 
all 
integer "bytes" 

integer "bytes" 
$boi, $bop, $eoi or 
$asis 

6-4 SCL Advanced File Management Usage Revision H 



Revision H 

DISPLAY_KEYED _FILE_PROPERTIES Command 

Permanent 
Record_ Limit 
Ring_Attributes 

Size 
User_ Information 

yes or no 
integer 
(integer, integer, 
integer) 
integer "blocks" 
none or string 

Displaying, Copying, and Creating Keyed Files 6-4.1 

I 



DISPLAY_KEYED _FILE_PROPERTIES Command 

This page intentionally left blank. 

6-4.2 SCL Advanced File Management Usage Revision H 



Revision H 

DISPLA Y_KEYED _FILE_PROPERTIES Command 

Nested File Attributes 

• For each nested file, the file attributes and their 
possible values are as follows: 

Compression_ Procedure_ 
Name 
Creation_ Date 

Embedded_ Key 
File_ Organization 

Key_Length­
Key_Position 
Key_Type 

Maximum_ Record_ Length 
Minimum_ Record_ Length 
Record_ Type 

name 

mm/dd/yy 
hh:mm:ss.nnn 
yes or no 
indexed_ sequential 
or direct_access 
integer "bytes" 
integer 
uncollated, collated 
or integer 
integer "bytes" 
integer "bytes" 
undefined, variable 
or fixed 

The key values apply only to the primary key. 

In addition, for indexed-sequential files only: 

Collate_ Table_N ame 
Character _Mapping 

Character_ Ordering 

Data_ Padding 
Index_ Padding 

name 
$CHAR( character_ 
ordinal) "symbol" = > 
collating weight in 
hex. 
collate sequence 
position = > character 
integer "%" 
integer "%" 

In addition, for direct-access files only: 

Dynamic_ Home_ Block_ 
Space 
Hashing_ Procedure_ 
Name 

Home_Block_ Count 

yes or no 

name or 
AMP$SYSTEM_ 
HASHING_ 
PROCEDURE 
integer 

Displaying, Copying, and Creating Keyed Files 6-5 



DISPLAY_KEYED_FILE_PROPERTIES Command 

Alternate-Key Attributes 

• For each alternate key, DISPLAY_KEYED_FILE_ 
PROPERTIES lists only those properties defined for 
the key. These are the possible alternate-key file 
attributes and values: 

Collate_ Table_ Name 

Character _Mapping 

Character_ Ordering 

Concatenated_ Key 
Key_Length "Piece nn" 
Key _Position "Piece nn" 
Key_Type "Piece nn" 

Creation_Date 

Duplicate_ Key_ Values 

Key_ Group_N ame 
N ulL Suppression 
Repeating_ Groups_ 
Specified 
Repeating_ Group_ Count 
Repeating_ Group_ Length 
Sparse_ Key_ Control 
Sparse_ Key_ Control_ 
Position 
Sparse_ Key_ Control_ 
Characters 
Sparse_Key _ ControL 
Effect 
Variable_ Length_ Key 
Key_ Delimiter_ 
Characters 

6-6 SCL Advanced File Management Usage 

name or (defaulted to 
primary-key table) 
$CHAR(character _ 
ordinal) "symbol" = > 
collating weight in 
hex. 
collate sequence 
position = > character 
yes or no 
integer "bytes" 
integer 
uncollated, collated or 
integer 
mm/dd/yy 
hh:mm:ss.nnn 
ordered_ by _primary_ 
key, first_in_first_ 
out, or not_allowed 
name 
yes or no 
yes or no 

integer 
integer "bytes" 
yes or no 
integer 

$CHAR(nnn) "x" II 
$CHAR(nnn) "x" 
include_key_ value or 
exclude_ key_ value 
yes 
$CHAR(nnn) "x" II 
$CHAR(nnn) "x" 

Revision H 



Revision H 

DISPLAY_KEYED_FILE_PROPERTIES Command 

• The values subordinate to the Concatenated_Key, 
Repeating_Groups_Specified, Sparse_Keys, and 
Variable_Length_Key fields are displayed only if 
defined for the key. 

If the key is not a concatenated key, only one set of 
Key_Length, Key_Position, and Key_Type values is 
listed. Otherwise, a set is listed for each piece of the 
concatenated key. 

• The Collate_ Table_Name file attribute is displayed 
only if a collated key is defined for the file (either the 
primary key or an alternate key). The Collate_ Table 
itself is displayed if the collation table name does not 
begin with OSV$ (that is, the collating sequence is not 
one of the NOSNE collating sequences listed in 
appendix E). 

The collate table is displayed twice: The first display 
shows the collating weight assigned to each character, 
and the second display shows the characters in weight 
order. 

• At the file level, the structural properties and their 
possible values are as follows: 

Altered_ Not_ Closed 
Nested_ File_ Count 
Ruined_ Flag 

Segment_ Information 
Blocks_ln_ Use 
Empty _Block_ Count 

yes or no 
integer 
off, file_ruined_at_ 
flush, bad_rasp_ 
structure, read_ error, 
write_ error, 
alternate_key _ 
mismatch, cannot_ 
find_ rasp, bad_ 
empty _chain 

integer 
integer 

Displaying, Copying, and Creating Keyed Files 6-7 



DISPLAY_KEYED_FILE_PROPERTIES Command 

• At the nested-file level, the structural properties and 
their possible values are as follows: e 
Block_ Count 
Ruined_ Flag 

integer 
(same as at file level) 

In addition, for indexed-sequential files only: 

Index_Levels "current" 
Index_ Level_ Overflow 

integer 
yes or no 

• For each alternate key, the structural properties and 
their possible values are as follows: 

Block_ Count 
Index_Levels "current" 
Index_ Level_ Overflow 
Ruined_ Flag 

integer 
integer 
yes or no 
(same as at file level) 

• You can use DISPLAY_KEYED_FILE_PROPERTIES 
to determine whether the keyed-file structure is intact. 

The structural property Altered_Not_Closed is a 
flag that indicates a structural error. It is most 
often set when a system failure during file 
modification prevents the file from being closed 
(flushed). 

The structural property Ruined_Flag lists the 
structural error condition if one exists. If the 
Ruined_Flag is set for any nested file or alternate 
key in a file, it is set at the file level also. 

• This statistic is listed at the file level: 

Segment_ Information 
Last_ Flush 

6-8 SCL Advanced File Management Usage 

mm/dd/yy hh:mm:ss.nnn 

Revision H 



Examples 

Revision H 

DISPLAY_KEYED_FILE_PROPERTIES Command 

• These statistics are listed at the nested file level: 

Alternate_ Keys 
File_Accesses 
Open_ Count 
Delete_ Count 
Get_ Count 
Get_Next_Count 
Put_ Count 
Putrep_ Count 
Replace_ Count 
Record_ Count 

integer 

integer 
integer 
integer 
integer 
integer 
integer 
integer 
integer 

• In addition, for direct-access files only: 

Overflow _Block_ 
Count 
Overflow _Record_ 
Count 

integer 

integer 

• The file access statistics listed may be inaccurate if 
the file has been read without modify permission. The 
reason for this is that when the file is read without 
modify permission, the statistics for that read cannot 
be recorded. 

• If the file specified on the command is not a keyed 
file, DISPLAY_KEYED_FILE_PROPERTIES returns 
the warning status, AAE$FILE_IS_NOT_A_KEYED_ 
FILE. 

• If the file specified on the command does not exist, 
DISPLAY_KEYED_FILE_PROPERTIES returns the 
warning status, AAE$FILE_DOES_NOT_EXIST. 

This command lists statistics and structural properties for 
file $USER.KEYED_FILE on file $USER.LIST: 

display_keyed_file_properties .. 
file=$user.keyed_file output=$user. list 
display_option=(statistics, structural_properties) 

Displaying, Copying, and Creating Keyed Files 6-9 



DISPLAY_KEYED_FILE_PROPERTIES Command 

This command lists the file attributes and structural 
properties of file $USER.ISFIL on $OUTPUT. The 
resulting display is shown: 

/diskfp $user. isfil 
Display Keyed_File_Properties 1986-11-03 

NOS/VE Keyed File Utilities 1.3 85259 10:31:23 
File= .NVE.USER99.ISFIL 

File_attributes and structural_properties at the 
file level 

Altered_Not_Closed : no 
Appl1cation_Jnformation : none 
Block_Length "actual" : 4096 "bytes·· 
Error Exit Name none 
File_Access_Procedure 
Fi le_Content 
Fi le_L im it 
Forced_Wr i te 
Log_Residence 
Logging_Dpt ions 
Maximum_Record_Length 
Minimum_Record_Length 
Nested_Fi le_Count 
Dpen_Position 
Permanent 
Record_L im it 
Ring_Attributes 
Ruined_Flag 
Segment_ Information 

none 
UNKNOWN 
4398046511103 "bytes" 
unforced 
none 
none 
80 "bytes" 
50 "bytes" 
1 
Sboi 
yes 
4398046511103 
( 11. 11' 11) 
off 

Block:s_Jn_Use 
Empty _Bl ock_Count 

Size 
User_ Inf ormat ion 

"blocks" 
none 

Display Keyed_Fi le_Properties 
NOS/VE Keyed Fi le Utilities 1. 1 85259 

Fi le_attributes and structural_properties of 
$MAIN_F!LE 

Block_Count 
Compression_Procedure_Name 
Creat ion_Date 
Data_Padding 
Embedded_ Key 
File_Organization 
I ndex_Leve ls "current" 
lndex_Level_Overflow 
Index_Padding 
Key_Length 
Key_Position 
Key_ Type 
Maximum_Record_Length 
Min imum_Record_Length 
Record_ Type 
Ru; ned_F lag 

6-10 SCL Advanced File Management Usage 

3/25/8515:50:14.274 
0 ":C:' 
yes 
i ndexed_sequent i al 
0 
no 
0 ":C:" 
5 "bytes" 
0 
uncollated 
80 "bytes" 
5 '"bytes" 
undefined 
off 

1985-10-03 
10: 31: 23 

Revision H 



Keyed-File Displays 

DISPLAY_KEYED_FILE Command 

Purpose Formats and displays the contents of a keyed file. 

For Better Performance 

Do not use DISPLAY_KEYED_FILE while the file is 
being updated. DISPLAY_KEYED_FILE must wait until 
all (shorten, append, modify) updates in progress have 
completed before it begins, and then it forces all file 
updates to wait until it completes. 

Format DISPLAY_KEYED_FILE or 
DI SKF 

INPUT=file 
OUTPUT= file 
FORMAT= keyword_ value 
DISPLAY_ OPTIONS= list of keyword_ value 
BLOCK_LIST =list of range of integer 
STATUS= status_ variable 

Parameters INPUT or I e File whose contents are to be displayed. You must have 
at least read permission to the file. This parameter is 
required. 

Revision G 

OUTPUT or 0 
File to which the formatted display is written. If you omit 
the OUTPUT parameter, the display is written to file 
$OUTPUT. 

FORMAT or F 

List of one or more keyword values indicating the 
representation used for the contents of records. 

ASCII or A 

HEXADECIMAL or H 

ALL 

ASCII characters. 

Hexadecimal digits. 

Both ASCII characters and 
hexadecimal digits. (No other 
formats can be specified with 
ALL.) 

Displaying, Copying, and Creating Keyed Files 6·11 



Keyed-File Displays 

If you omit the FORMAT parameter, the representation 
used is ASCII. e 
DISPLAY_ OPTIONS or DISPLAY_ OPTION or DO 

List of one or more keyword values indicating the types 
of information to be displayed. 

MAP or M Cross-reference of all blocks 

TABLES or T Formatted contents of internal 
tables 

INDEX_BLOCKS or IB Index records 
or I 

DATA_BLOCKS or DB Data records 
or D 

EMPTY_BLOCKS or 
EB or E 

ALL or A 

Block numbers of empty blocks 

All the preceding options. (No 
other display options can be A 
specified with ALL.) • 

The default value depends on whether the BLOCK_LIST 
parameter is specified. If the BLOCK_LIST parameter is 
not specified, the default value is MAP. If the BLOCK_ 
:LIST parameter is specified, the default value is ALL. 

BLOCK_LIST or BL 

Optional list of block numbers indicating the blocks to be 
displayed. The blocks are displayed in the order specified 
in the list. 

You can specify from 1 through 999 block numbers and 
ranges of block numbers. Block numbers range from 0 
through 4398046511103 ([2**42] - 1). 

The BLOCK_LIST parameter does not limit the blocks in 
the MAP cross-reference. 

If you omit the BLOCK_ LIST parameter, the command 
applies to all blocks in the file. 

6-12 SCL Advanced File Management Usage Revision G 



Remarks 

Revision G 

Keyed-File Displays 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• A dump of even a small keyed file produces a very 
long listing. So it is recommended that you first get a 
cross-reference listing of the file (DISPLAY_ 
OPTION= MAP) so that you can limit the file dump to 
only the pertinent information. 

The parameters that limit the file dump are FORMAT, 
DISPLAY_OPTIONS, and BLOCK_LIST. 

• Do not specify FORMAT=ALL unless you require both 
ASCII and hexadecimal representation; ALL doubles 
the number of lines required to list record contents. 

• The DISPLAY_OPTIONS parameter specifies the types 
of information dumped. 

The MAP keyword produces a cross-reference. The 
cross-reference lists the header, index, and data block 
numbers for each nested file and the header and index 
block numbers for each alternate key. It also lists the 
empty blocks. 

The TABLES keyword produces a listing of these 
internal tables: 

Block header 
File configuration 
Rasp configuration 
Segment control 
Rasp list 
Alternate-key definition 

If the EMPTY_BLOCKS keyword is specified, each 
empty block encountered adds a line to the display, 
containing the block number of the empty block. If the 
EMPTY_BLOCKS keyword is omitted, empty blocks 
encountered are ignored. 

Displaying, Copying, and Creating Keyed Files 6-13 



Keyed-File Displays 

Examples 

• In general, the DISPLAY_OPTIONS and BLOCK_ 
LIST parameters work together to limit the e 
information in the display. The display includes only . 
the types of information specified that apply to the 
blocks specified. The only exception is for the MAP 
keyword; whenever it is specified, a cross-reference for a 
all blocks is displayed. W 

• If the file specified on the command is not a keyed 
file, DISPLAY_KEYED_FILE returns the warning 
status, AAE$FILE_IS_NOT_A_KEYED_FILE. 

• If the file specified on the command does not exist, 
DISPLAY_KEYED_FILE returns the warning status, 
AAE$FILE_DOES_NOT_EXIST. 

This command writes a cross-reference of the contents of 
file $USER.ISFILE on file ISMAP: 

/dtsplay_keyed_ftle tnput=$user.tsfile output=tsmap 

Assume that using the cross-reference from the previous 
example, you decide to dump the data records from blocks A 
6 and 7 and blocks 9 through 15 in ASCII format. To do W 
so, you enter this command: 

/display_keyed_file 1nput=$user.isfile .. 
.. /output=isdump display_optton=data_blocks 
.. /block_list=(6,7,9 .. 15) 

You could then print the listing on file ISDUMP. 

6-14 SCL Advanced File Management Usage Revision G 



Copying To or From a Keyed File 

Copying To or From a Keyed File 

To copy data records to or from a keyed file, use the COPY_ 
KEYED_FILE command. It can: 

• Copy data records from a sequential file to a keyed file 

• Copy data records from a keyed file to another keyed file with 
different attributes 

• Duplicate an existing keyed file 

• Copy data records from a keyed file to a sequential file 

• Add data records to an existing keyed file. 

The first three operations are shown in later examples in this chapter. 
The first operation (copying from a sequential file to a keyed file) is 
shown as part of keyed-file creation and the second and third 
operations (copying a keyed file to another keyed file) are shown as 
part of keyed-file re-creation. The last two operations are described 
here. 

e Copying Data Records From a Keyed File to a 
Sequential File 

A COPY_KEYED_FILE command can copy records from a keyed file 
to a sequential file. It reads records sequentially from the input file. 

A sequential read from an indexed-sequential file reads records in 
ascending order by primary-key value. For example, the following 
command copies the records in an indexed-sequential file to the 
sequential file, $OUTPUT. The records are listed in order by their 
primary key (the restaurant name). 

/copy_keyed_file input=Suser.restaurants output=$output 
Arnold's Casual Pizza 
Burger Duke 
Gung Ho 

Casual 
Casual 

Hamburgers 
CMnese 

(A file copied to $OUTPUT must contain only displayable characters.) 

Revision G Displaying, Copying, and Creating Keyed Files 6-15 



Copying To or From a Keyed File 

Adding Data Records to an Existing Keyed File 

To add data to an existing keyed file, you must specify $ASIS or 
$EOI as the file position designator on the output file reference. 
Otherwise, COPY_KEYED_FILE opens the output file at its 
beginning-of-information (BOIY and discards all existing data in the 
file. 

For example, the following command adds the data records on file 
$USER.NEW_MEMBERS to the existing keyed file 
$USER.MEMBERSHIP: 

/copy_keyed_file input=$user.new_members 
.. /output=$user.membership.$eoi 

When COPY_KEYED_FILE finds an error (such as a duplicate 
primary-key value), it terminates with only part of the records added. 
The following shows the error messages you receive when this 
happens: 

/copy_keyed_file, $user.new_members, temporary_file.$eoi 
--ERROR-- File TEMPORARY_FILE already contains the key of this 
AMPSPUT_NEXT operation -- primary_key = 96070 
--FATAL-- File TEMPORARY_FILE: COPY_KEYED_FILE encountered an 
error while calling AMP$PUT_RECORD. Some of the copy has 
occurred, and processing stops. 

All of the records in the input file up to the record with the duplicate 
key value have been added to the output file. To add the rest of the 
records, you must create another input file containing only those 
records. 

Because of the possibility of duplicate primary-key values, you may 
want to add the data to a temporary copy of the output file. If the 
operation succeeds, you would then replace the permanent copy with 
the temporary copy. For example: 

/copy_keyed_file, $user.output_file, temporary_file 
/copy_keyed_file, $user.new_records, temporary_file.$eoi 
/copy_keyed_file, temporary_file, $user.output_file 

6-16 SCL Advanced File Management Usage Revision G 



Copying To or From a Keyed File 

COPY_KEYED_FILE Command 

Purpose 

Format 

Performs a record-by-record copy. 

COPY_KEYED_FILE or 
COPKF 

INPUT=file or (file, nested_file_name) 
OUTPUT= file or (file, nested_file_ name) 
PRESERVE_KEY_DEFINITIONS=boolean 
STATUS= status_ variable 

Parameters INPUT or I 

Revision G 

File to be copied. You must have at least read permission 
to the file. This parameter is required. 

To specify a nested file, enclose the file reference followed 
by the nested-file name in parentheses. If you omit the 
nested-file name, each nested file in the keyed file is 
copied. 

COPY_KEYED_FILE positions the file before the copy 
according to the open position specified for the file. If a 
file position is not specified on the file reference, the 
OPEN_POSITION attribute is used. (The default OPEN_ 
POSITION attribute value is $BOI.) 

If the open position is $EOI or $ASIS, only the file 
attributes are copied; no records are copied from the input 
file. 

OUTPUT or 0 

File to which the input file is copied. You must have at 
least append permission to the file. The default output file 
is the standard file $OUTPUT. 

If the INPUT parameter specifies a nested-file reference, 
the OUTPUT parameter can specify a nested-file 
reference. (This copies one nested file; you cannot copy 
multiple nested files to a single nested file or to a 
sequential file.) 

To specify a nested file, enclose the file reference followed 
by the nested-file name in parentheses. 

Do not specify the nested-file name $MAIN _FILE on the 
OUTPUT parameter when the open_position of the output 
file is $BOI. (This requests deletion of $MAIN _FILE 
which is not allowed.) 

Displaying, Copying, and Creating Keyed Files 6-17 



Copying To or From a Keyed File 

Remarks 

PRESERVE_KEY_DEFINITIONSorPKD 
Indicates whether the alternate-key definitions from the 
input file (if any) are copied to the output file. 

TRUE or ON or 
YES 

FALSE or OFF or 
NO 

Apply alternate-key definitions. 

Do not apply alternate-key 
definitions. 

If PRESERVE_KEY_DEFINITIONS is omitted, the 
alternate-key definitions are copied. 

STATUS 
Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

The first error returned by COPY_KEYED_FILE is 
stored in the specified status variable; any subsequent 
error messages are written to the $ERRORS file. 

• The INPUT and OUTPUT parameters cannot specify 
the same file cycle unless the parameters specify 
different nested files in the file cycle. 

• COPY_KEYED_FILE supports copying to and from 
files with sequential and keyed-file organizations. It 
does not support copying to or from byte-addressable 
files. 

• If the INPUT or OUTPUT file could be shared by 
more than one instance of open, you should attach the 
file for exclusive access (SHARE_MODE=NONE) 
before the copy. This prevents other tasks from locking 
records, which would cause COPY_KEYED_FILE to 
terminate. 

• COPY_KEYED_FILE reads records sequentially using 
the CYBIL procedure AMP$GET_NEXT. It reads 
records from the input file until it reads an 
end-of-partition or end-of-information delimiter. 

As each record is read, COPY_KEYED_FILE writes 
the record sequentially to the output file using the 
CYBIL procedure AMP$PUT_NEXT. 

6-18 SCL Advanced File Management Usage Revision G 



Revision G 

Copying To or From a Keyed File 

• COPY_KEYED_FILE writes statistics to $ERRORS if 
requested by the respective MESSAGE_CONTROL 
attributes of the input and output files. It writes the 
output file statistics before the input file statistics. 
(For a sequential file, no statistics are written because 
the MESSAGE_ CONTROL attribute has no effect for 
sequential files.) 

New File 

• If the output file is a new file (a file that has never 
been opened), the output file is given the preserved 
attributes of the input file that have not been defined 
for the output file. 

Temporary attributes are not copied. 

If no attributes have been defmed for the output file 
(no SET_FILE_ATTRIBUTES commands have been 
executed for the file), the new output file is given all 
attributes of the input file with the following 
exception: 

The RING_ATTRIBUTES attribute of the input file is 
not given to the output file. The output file is given 
the RING_ATTRIBUTES attribute of the caller of the 
COPY_KEYED_FILE command. 

Existing File 

• When copying to an existing file, the file attributes of 
the output file are not changed. The copy performed 
depends on the output file position as follows: 

- If the file position is $BOI, the output file is 
overwritten. All output file data and alternate keys 
are discarded. 

- If the file position is $ASIS or $EOI, the files are 
merged. The records already existing in the output 
file are not deleted or replaced. 

If the output file is a keyed file, the primary-key 
value for each input record is entered, if 
appropriate, in the alternate indexes already 
existing in the file. 

Displaying, Copying, and Creating Keyed Files 6-19 



Copying To or From a Keyed File 

LIST File 

• When copying to a file whose FILE_ CONTENTS 
attribute value is LIST, COPY_KEYED_FILE inserts 
a space character at the beginning of each record to 
serve as the carriage control character. 

The FILE_ CONTENTS attribute value of a keyed file 
cannot be LIST. 

Fixed-Length Records 

• When the output file has fixed-length (F) records, 
COPY_KEYED_FILE pads input records shorter than 
the output record length. It pads using the character 
specified by the PADDING_CHARACTER attribute of 
the output file. (The default is the space character.) 

Differing EMBEDDED _KEY Attributes 

• When the input file has nonembedded keys, COPY_ 
KEYED_FILE prefixes the key value to the record 
data when it reads each record. When the output file 
has nonembedded keys, COPY_KEYED_FILE assumes A 
that the key value is prefixed to the input record data. -
For example, suppose FILEl, a file with 3-byte 
nonembedded keys, contains this record: 

Key Value Record Data 

KEY DATA 

Assume you copy FILEl to FILE2, a file with 
embedded keys (or a sequential file). The record is 
written to FILE2 as: 

Record Data 

KEYDATA 

6-20 SCL Advanced File Management Usage Revision G 



Revision G 

Copying To or From a Keyed File 

Next, if you copy either FILE! or FILE2 to FILE3, a 
file with 1-byte nonembedded keys, the record is 
written to FILE3 as: 

Key Value Record Data 

K EYDATA 

• When the EMBEDDED_KEY attribute differs for the 
input and output files and PRESERVE_ KEY_ 
DEFINITIONS=TRUE is specified, COPY_KEYED_ 
FILE adjusts the alternate-key positions before 
applying the alternate-key definitions to the output 
file. The following example shows a copy from 
embedded to nonembedded: 

• Suppose FILE! has a 5-byte embedded primary key 
and an alternate key that begins at byte 10. FILE2 is 
defined with a 5-byte nonembedded primary key. This 
command is executed: 

copy_keyed_file file1 file2 .. 
preserve_key_definitions=yes 

COPY_KEYED_FILE stores the first 5 bytes of each 
input record as the primary-key value and writes the 
rest of the input record as the output record. It then 
changes the alternate-key position from byte 10 to 
byte 5. (It subtracts the primary-key length from the 
old alternate-key position.) 

A copy from nonembedded to embedded works the 
same way except that it adds (instead of subtracts) the 
primary-key length to the alternate-key position. 

If an alternate key overlaps the primary key, the 
alternate-key definition is no longer valid in a file 
with a nonembedded key. COPY_KEYED_FILE does 
not apply such an alternate-key definition; it sends a 
message to notify you of the overlap. 

• COPY_KEYED_FILE cannot merge files when the 
EMBEDDED_KEY attributes of the input and output 
files differ. Thus, when the EMBEDDED_KEY 
attributes differ, the file position indicator on the 
output file reference cannot be $ASIS or $EOI. 

Displaying, Copying, and Creating Keyed Files 6-21 



Copying To or From a Keyed File 

• If you prefer that the nonembedded key values be 
discarded rather than prefixed to the data, use FMU 
to copy the file, instead of COPY_KEYED_FILE. For 
more information, see chapter 6. 

Alternate Keys 

• After the data records have been copied to a keyed 
file, any alternate-key definitions in the input file are 
applied to the output file (assuming the command does 
not specify PRESERVE_KEY_DEFINITIONS=FALSE). 

• COPY_KEYED_FILE cannot preserve the first-in, 
first-out ordering of duplicate values in an alternate 
index. 

When COPY_KEYED_FILE builds an alternate index, 
it reads all records in the file sequentially. This 
means that, for a direct-access file, the records are 
read in random order and so duplicate values are 
stored in random order. For an indexed-sequential file, 
the records are read in order by primary-key value. 
Thus, each duplicate value is found and stored in 
primary-key order. 

First-in, first-out ordering is still in effect for later 
updates to the file. 

To copy a keyed file and keep the first-in, first-out 
ordering of duplicate key values, use a command that 
performs a byte-by-byte copy, such as COPY_FILE, 
BACKUP _PERMANENT_FILE, or CHANGE_ 
KEYED_FILE. 

• COPY_KEYED_FILE cannot copy a user-defined 
collation table directly from the input file to the 
output file. It gets the collation table name from the 
input file and then reloads the collation table from the 
program library list. 

So, before copying a keyed file with a user-defined 
collation table, you must add the object library 
containing the collation table to the program library 
list using a SET_PROGRAM_ATTRIBUTES command. 
For more information, see appendix E. 

6-22 SCL Advanced File Management Usage Revision G 



Revision G 

Copying To or From a Keyed File 

Nested Files 

• COPY_KEYED_FILE copies a single nested file when 
its INPUT parameter specifies a nested-file name. 
Otherwise, it copies all nested files in the input file. 

• COPY_KEYED_FILE cannot copy multiple nested 
files (all nested files in the input file) to a single 
nested file or to a sequential file. 

• Do not specify the nested-file name $MAIN _FILE on 
the OUTPUT parameter when the open position of the 
output file is $BO!. (This requests deletion of $MAIN_ 
FILE which is not allowed.) 

• COPY_KEYED_FILE creates a new nested file when 
a nested-file name is specified on the OUTPUT 
parameter and the open position of the output file is 
$BO!. It creates the nested file with the attributes of 
the input nested file. If the input file is a sequential 
file, COPY_KEYED_FILE cannot create the nested 
file so it terminates with a fatal error. 

• COPY_KEYED_FILE requires append, shorten, and 
modify permissions to create or replace a nested file. 

• COPY_KEYED_FILE merges the records of the input 
file with those of the output nested file when the open 
position of the output file is $ASIS or $EOI. 

• To merge the records from one nested file into another 
nested file in the same file, you must copy the records 
from the input nested file to a temporary file and then 
copy the temporary file to the output nested file. 

For example, to merge $MAIN _FILE with NESTED_ 
FILE_l in file $USER.KEYED_FILE: 

/copy_keyed_file,($USER.KEYED_FILE. 
$MAIN_FILE). temp 
/copy_keyed_file,temp,($USER.keyed_file.$eoi, 
nested_fi le_ 1) 

Displaying, Copying, and Creating Keyed Files 6-23 



Copying To or From a Keyed File 

Examples 

• When copying all nested files in the input file (no 
nested-file name is specified on the INPUT parameter), e 
the copy performed depends on the open position of the · 
output file, as follows: 

- If the open position is $BOI, the contents of the A 
output file are discarded and all input nested files W 
are copied to the output file. 

- If the open position is $ASIS or $BOI, the contents 
of the input and output files are merged. If an 
output nested file exists with the same name as an 
input nested file, the nested files are merged; 
otherwise, the input nested file is created in the 
output file. (All nested files that existed in the 
output file before the copy remain in the output 
file after the copy.) 

This command copies the keyed file .YOUR.ISFILE to the 
keyed file $USER.ISFILE. It discards any data or 
alternate keys on $USER.ISFILE and then copies the data 
and alternate keys from . YOUR.ISFILE to $USER.ISFILE. 

copy_keyed_flle .your.1sf1le Suser.tsftle 

This command copies the keyed file $USER.ISFILE to the 
next cycle of the file. It does not copy the alternate-key 
definitions. 

copkf $user.1sf1le Suser.tsfile.Snext pkd=no 

This command copies one nested file to a second nested 
file. (If the second nested file does not exist, it is created, 
identical to the first nested file.) 

copy_keyed_file, .. 
1nput=($user.d1rect_access_ftle, nested_file_1) .. 
output=($user.d1rect_access_ftle, nested_flle_2) 

6-24 SCL Advanced File Management Usage Revision G 



Revision H 

COPY_KEYED_FILE Command 

These commands create a new file cycle (cycle 2) 
containing three nested files. The first command creates 
the default nested file $MAIN _FILE containing the 
records from SEQUENTIAL_FILE. The second and third 
commands create the nested files NFI and NF2, 
respectively, each identical to the corresponding nested 
file in cycle 1. 

copy_keyed_file, .. 
seouential_file $user.keyed_file.2 

copy_keyed_file, .. 
($user.keyed_file. 1,nf1) ($user.keyed_file.2,nf1) 

copy_keyed_file, .. 
($user.keyed_file. 1,nf2) ($user.keyed_file.2,nf2) 

Displaying, Copying, and Creating Keyed Files 6-25 



Creating a Keyed File 

Creating a Keyed File 

You can create a keyed file using SCL commands or by using the 
CREATE_KEYED_FILE utility described in chapter 8. 

Creating a keyed file using SCL commands involves three steps: 

1. Associate a file cycle with a set of file attributes. 

2. Copy data to the new keyed file. 

3. Create optional alternate keys. 

It is most efficient to create the alternate keys after the data has 
been copied to the file. However, step 3 can precede step 2. (You can 
create alternate keys before copying data to the file). 

The first step, associating the file name with a set of file attributes, 
is described in the next subsection. 

After defining the attributes for the new keyed file, copying data to a 
new keyed file (step 2) requires these steps: 

1. Enter the data records in a sequential file if the data has not A 
.,:,,1:1 already been captured. (If the data records require reformatting, W 

use FMU as described in chapter 10 of this manual.) 

2. Create the keyed file by copying the data records to it. This can 
be done by executing a COPY_KEYED_FILE command. 

(When using COPY_KEYED_FILE to copy to an empty file that 
already contains alternate-key definitions, specify $EOI or $ASIS 
as the output file open position. Otherwise, the alternate-key 
definitions are evicted from the output file.) 

Or, for an indexed-sequential file, a SORT or MERGE command 
can sort and copy the data records to the file. This is useful if: 

a. The input records are not sorted by the primary key. 

b. The data records are in more than one file. 

(For more information, see the Sort/Merge TO parameter 
description in chapter 2.) 

The third step, defining alternate keys, is described in chapter 3. 

6-26 SCL Advanced File Management Usage Revision H 



Creating a Keyed File 

Defining Keyed-File Attributes 

The NOSNE command SET_FILE_ATTRIBUTES defines the 
attributes of a file. The first parameter of the command specifies the 
file cycle. Each subsequent parameter specifies the value of a file 
attribute. 

The SET_FILE_ATTRIBUTES command can set any of the file 
attributes. This section describes only the keyed-file attributes. For 
the complete SET_FILE_ATTRIBUTES command format, see the 
NOSNE Commands and Functions manual. 

NOTE 

Most attributes have a default value that is used if you do not specify 
the attribute on the SET_FILE_ATTRIBUTES command. However, 
the default value is sometimes inappropriate for keyed files. Therefore, 
it is recommended that you explicitly specify a value for all relevant 
keyed-file attributes. 

To create a keyed file, you specify a keyed-file organization as the 
file_organization attribute. 

For an indexed-sequential file, specify: 

FILE_ ORGANIZATION =INDEXED_SEQUENTIAL 
or, abbreviated, FO =IS 

For a direct-access file, specify: 

FILE_ ORGANIZATION= DIRECT_ACCESS 
or, abbreviated, FO =DA 

The FILE_ORGANIZATION attribute is a preserved attribute. 

The other keyed-file attributes define record attributes, primary-key 
attributes, file structure attributes, and processing attributes. 

Revision J Displaying, Copying, and Creating Keyed Files 6-27 



Creating a Keyed File 

Record Attributes 

These attributes describe the data records to be copied to the keyed 
file. To determine the attribute values of the sequential file containing 
the data to be copied to the keyed file, use a DISPLAY_FILE_ 
ATTRIBUTES command, such as: 

/display_file_attributes data_file .. 

NOTE 

. . /display_options=(record_type, maximum_record_length, 

. .lminimum_record_ length) 

The record attributes are all preserved attributes, that is, the 
attribute value is stored with the file when the file is first opened 
and cannot be changed thereafter. 

Each parameter description begins with the parameter name followed 
by its abbreviation in parentheses. 

RECORD_TYPE or RT 

Record type: FIXED (F), VARIABLE (V), or UNDEFINED (U). The 
default is UNDEFINED. (For keyed files, the record types A 
VARIABLE and UNDEFINED are processed as the same and the W 
record type TRAILING_CHARACTER_DELIMITED [T] is not 
supported.) 

MAXIMUM_RECORD_LENGTH or MAXRL 

Maximum number of bytes in a data record (from 1 through 
65497). This parameter is required. 

MINIMUM_RECORD_LENGTH or MINRL 

Minimum number of bytes in a data record (from 0 through 
65497). 

If the RECORD_ TYPE is FIXED, the default minimum record 
length is 0. However, the length of all fixed-length records must 
be the MAXIMUM_RECORD_LENGTH value. 

When the records are variable-length and the key is embedded, the A 
default is the sum of the KEY_POSITION and KEY_LENGTH W 
values. The default for variable-length records with a nonembedded 
key is 1. 

6-28 SCL Advanced File Management Usage Revision J 



Creating a Keyed File 

For variable-length records, you should explicitly specify this 
attribute. The minimum record length must include: 

• The primary-key field 

• All fixed-length alternate-key fields (or their sparse-key control 
characters) unless the key repeats to the end of the record. 

Primary-Key Attributes 

These attributes define the primary key of the new file. See chapter 5 
for more information on primary keys. 

NOTE 

The primary-key attributes are all preserved attributes, that is, the 
attribute value is stored with the file when the file is first opened 
and cannot be changed thereafter. 

Each parameter description begins with the parameter name followed 
by its abbreviation. 

e EMBEDDED_KEY or EK 

SCL boolean value indicating whether the primary key is part of 
the record data (embedded) or separate from the record data 
(nonembedded). The default is TRUE (embedded keys). 

KEY_LENGTH or KL 

Integer specifying the primary-key length in bytes (for integer 
keys, from 1 through 8; for other key types, from 1 through 255). 
This parameter is required. 

KEY_POSITION or KP 

Position of the leftmost byte in the primary key (specified only if 
the key is embedded). The byte positions in a record are numbered 
from the left, beginning with 0. The default is 0. 

KEY_ TYPE or KT 

Primary key type: UNCOLLATED (UC), INTEGER (I), or 
COLLATED (C). The default is UNCOLLATED. 

For a direct-access file, any value specified for the KEY_ TYPE 
attribute is ignored; the KEY_ TYPE attribute value for 
direct-access files is always UNCOLLATED. 

Revision J Displaying, Copying, and Creating Keyed Files 6-29 



Creating a Keyed File 

COLLATE_ TABLE_ NAME or CTN 

Name of the collating sequence by which collated keys are ordered 
(required if the KEY_ TYPE is COLLATED). 

The name can be the name of a NOSNE predefined collating sequence 
or a user-defined collating sequence (an entry point in an object 
library). See appendix E for more information. 

If a collation table name has been specified, the collation table is 
loaded when the file is first opened; however, it is not used unless the 
file is an indexed-sequential file with a collated primary key. 

File Structure Attributes 

The file structure attributes define characteristics of the internal file 
structure. Some attributes are common to all keyed-file organizations 
while others apply to only one organization. See chapter 5 for a 
description of keyed-file structure. 

NOTE 

The FILE_ LIMIT attribute sets a limit on the maximum file length 
in bytes. If the length of a keyed file reaches its FILE_LIMIT value, 
the ruined flag is set. (This prevents access to the file data so the file 
must be re-created using COPY_KEYED_FILE.) 

The default FILE_LIMIT value is its maximum value (242-1) so, for 
keyed files, use the default FILE_LIMIT value. 

Each parameter description begins with the parameter name followed 
by its abbreviation. 

RECORD_LIMIT or RL 

Maximum number of data records allowed in each nested file in 
the file (integer greater than 0). 

The default value is the maximum allowed value (242-1). Thus, you 
should specify this attribute only when you want to limit the 
number of records in the file to less than the maximum. 

You can increase the RECORD_LIMIT value with a CHANGE_ e 
FILE_ATTRIBUTE command even after the file has been opened. 
For more information, see the NOSNE System Usage manual. 

6-30 SCL Advanced File Management Usage Revision J 



Creating a Keyed File 

MAXIMUM_BLOCK_LENGTH or MAXBL 

Number of bytes in each block (integer from 1 through 16777215). 
If the value is less than the maximum record length, it is 
increased to that value. Then, if the value is not a power of 2 
between 2048 and 65536, it is changed as follows: 

• A value less than 2048 is increased to 2048 (the minimum 
allocation unit). 

• A value between 2048 and 65536, but not a power of 2, is 
increased to the next power of 2 (4096, 8192, 16384, 32768, or 
65536). 

• A value greater than 65536 is decreased to 65536. 

The minimum block length is one page if the MAXIMUM_ 
BLOCK_LENGTH attribute is not specified. The minimum block 
length is 2048 bytes if the MAXIMUM_BLOCK_LENGTH is 
specified. 

NOTE 

If the file will be shared by more than one concurrent instance of 
open and forced-writing will be used (the FORCED_ WRITE 
attribute is either TRUE or FORCED_IF_STRUCTURE_ 
CHANGE), its block size should be a multiple of a system page 
size. This ensures that more than one instance of open is not 
updating blocks in the same page; otherwise, a forced-write 
operation could write a page to mass storage that contains 
partially-altered blocks. (A warning message is issued if this 
situation exists.) 

It is recommended that you do not specify the block length with 
the MAXIMUM_BLOCK_LENGTH attribute, but rather, allow the 
system to calculate the block length using values specified by the 
following parameters: 

NOTE 

The following parameters do not set limits; their values are used 
only as guidelines for determining the block length when the file 
is created. 

Revision H Displaying, Copying, and Creating Keyed Files 6-31 



Creating a Keyed File 

AVERAGE_RECORD_LENGTH or ARL 

Estimated median record length, in bytes, of the data records to be e 
stored in the file. (The length should not include a nonembedded 
key. If a compression procedure is used, the average record length 
should be that of the compressed record.) If you omit this 
parameter, the system uses the arithmetic mean between the A 
maximum and minimum record lengths in its calculation of the • 
block size. 

ESTIMATED_RECORD_COUNT or ERC 

Estimated number of data records to be stored in the file. If you 
omit this parameter, the system uses in its calculation of the block 
size either the RECORD_LIMIT value or, if that parameter is 
omitted, the value 100000. 

Block Length Guideline Attributes for Indexed-Sequential Files 
Only 

INDEX_LEVELS or INDEX_LEVEL or IL 

Target number of index levels for the file (O through 15). The 
default value is 2. 

RECORDS_PER_BLOCK or RPB 

Estimated number of data records to be stored in each data block. 
If you omit this parameter, the system uses the value 2 in its 
calculation of the block size. 

File Structure Attributes for Indexed-Sequential Files Only 

DATA_PADDING or DP 

Percentage of data-block space left empty when a block is created 
(integer from 0 through 99). The default is 0. The percentage must 
allow for storage of at least one maximum-length record per block. 

INDEX_PADDING or IP 

Percentage of index-block space left empty when a block is created 
(integer from 0 through 99). The default is 0. The percentage must A 
allow for storage of at least three index records per block. (The W 
index record length is the key length plus 4.) 

6-32 SCL Advanced File Management Usage Revision H 



Creating a Keyed File 

File Structure Attributes for Direct-Access Files Only 

e INITIAL_HOME_BLOCK_COUNT or IHBC 

Number of home blocks to be created in the file (1 through 2'42-1). 
This attribute must be specified when creating a direct-access file. 
For more information, see the Direct-Access File Structure 
discussion in chapter 5. 

HASHING_PROCEDURE_NAME or HPN 

Name of the hashing procedure to be executed with this file. The 
default hashing procedure is the one provided by the system 
AMP$SYSTEM_HASHING_PROCEDURE. For more information, 
see the hashing procedure discussion in chapter 5. 

Processing Attributes 

The following attributes set keyed-file processing options. 

COMPRESSION_PROCEDURE_NAME or CPN 

Name of the data compression or encryption procedure (preserved 
attribute). 

The attribute has no default value. Unless a procedure is specified 
when the file is created, no compression procedure is used. 

The name must be either the name of the system-defined 
compression procedure (AMP$RECORD_COMPRESSION) or the 
name of an entry point in the current program library list. 

For more information on data compression and encryption, see the 
FORTRAN Language Definition or CYBIL Keyed-File and 
Sort/Merge Interfaces manual. 

ERROR_LIMIT or EL 

Maximum number of nonfatal (trivial) errors that can occur before 
the nonfatal errors cause a fatal error. The default value is 0, 
meaning no limit. 

ERROR_LIMIT is a temporary attribute; its value can be changed 
each time the file is used. 

COPY_KEYED_FILE and COPY_FILE do not copy temporary 
attributes so, if the ERROR_LIMIT is to be greater than 0, you 
must set the attribute explicitly for the file copy. ::: 

Revision H Displaying, Copying, and Creating Keyed Files 6-33 



Creating a Keyed File 

LOCK_ EXPIRATION_ TIME or LET 

Number of milliseconds between the time a lock is granted and e 
the time that it could expire (integer from 0 through 604,800,000). 

The default value is 60,000 milliseconds (60 seconds). For an 
unlimited expiration time, set the attribute to 0. This attribute 
value can be changed by a CHANGE_FILE_ATTRIBUTES 
command. Locks are described in the COBOL Usage, CYBIL 
Keyed-File and SortJMerge Interfaces, and FORTRAN Language 
Definition manuals. 

MESSAGE_CONTROL or MC 

List of one or more keyword values indicating the additional 
information written to the $ERRORS file besides fatal and 
catastrophic error messages. 

TRIVIAL_ERRORS or T 

MESSAGES or M 

STATISTICS or S 

NONE 

The default value is NONE. 

Nonfatal-error messages 

Informative messages 

Statistical messages 

Suppress nonfatal-error, informative, 
and statistical messages. 

MESSAGE_CONTROL is a temporary attribute; its value can be 
changed each time the file is used. 

COPY_KEYED_FILE and COPY_FILE do not copy temporary 
attributes so the MESSAGE_CONTROL value will be NONE 
unless you set the attribute explicitly for the file copy. 

Recovery Attributes 

The recovery attributes define options that enable. recovery of the 
keyed file. For more information, see chapter 9. 

FORCED_ WRITE or FW 

SCL boolean or keyword value indicating when the system copies 
modified blocks to mass storage. 

TRUE 

Write modified blocks immediately. 

6-34 SCL Advanced File Management Usage Revision H 



Creating a Keyed File 

FALSE 

Allow modified blocks to remain in memory until the next 
flush or close request. 

FORCED_IF_STRUCTURE_CHANGE or FISC 

Write modified blocks immediately if the change affects more 
than one block. ' 

The default value is FALSE. 

For Better Performance 

To prevent serious performance degradation, the FORCED_ 
WRITE attribute should be set to FALSE if the LOGGING_ 
OPTIONS attribute is set to ENABLE_MEDIA_RECOVERY. 

LOG_RESIDENCE or LR 

Catalog path for the update recovery log for the keyed file. The 
log must be created by the Administer _Recovery _Log utility 
described in chapter 9. 

Any number of keyed files can use the same log; the log entries 
for a keyed file are identified by a unique identifier (a signature) 
for the file to which they apply. 

Log entries are not written for the file unless its LOGGING_ 
OPTIONS attribute specifies ENABLE_MEDIA_RECOVERY. If so, 
the default log is $SYSTEM.AAM.SHARED_RECOVERY_LOG. 

NOTE 

It is not recommended that the default log, 
$SYSTEM.AAM.SHARED_RECOVERY_LOG, be used extensively 
for logging update operations. In general, you should specify a 
different LOG_RESIDENCE for vital applications. This enables 
you to isolate the effects of a media failure on the log. 

Also, whenever you change the LOG_RESIDENCE of an existing 
file to a log other than the default log, you should immediately 
backup the file; otherwise, no entries are logged. If a backup has 
not been done since the change and the file is damaged, the 
RECOVER_FILE_MEDIA subcommand of the AMP$RECOVER_ 
KEYED_FILE call cannot execute successfully for the file. 

Revision J Displaying, Copying, and Creating Keyed Files 6-35 



I 
I 

Creating a Keyed File 

LOGGING_OPTIONS or LOGGING_OPTION or LO 

Set of options enabling use of the request keyed-file recovery 
options. (For more information, see chapter 9.) 

ENABLE_PARCELS or EP 

For future implementation. 

ENABLE_MEDIA_RECOVERY or EMR 

Indicates that an update recovery log is to be maintained for 
the keyed file. 

ENABLE_REQUEST_RECOVERY or ERR 

Indicates that the automatic close upon task abort removes any 
partially-completed update operation caused by a system failure 
(see Protecting Your Keyed Files described in chapter 9). 

ALL 

All logging options are enabled. 

NONE 

No logging options are enabled. 

The default value is NONE, no logging options enabled. 

For Better Performance 

Whenever you change the LOGGING_OPTIONS attribute of an 
existing file, you should immediately backup the file; otherwise, 
no entries are logged. If a backup has not been done since the 
change and the file is damaged, the RECOVER_FILE_MEDIA 
subcommand of the AMP$RECOVER_KEYED_FILE call 
cannot execute successfully for the file. 

Also, to prevent serious performance degradation, the 
FORCED_ WRITE attribute should be set to FALSE if the 
LOGGING_OPTIONS attribute is set to ENABLE_MEDIA_ 
RECOVERY. 

6-36 SCL Advanced File Management Usage Revision J 



Creating a Keyed File 

Keyed-File Creation Example 

Let's assume that you have been asked to convert the membership 
records file from a sequential file to an indexed-sequential file. The 
format of the data in each record is to stay the same; only the file 
organization is to change. Data reformatting would require use of 
FMU as described in chapter 10.) 

For the purposes of this example, assume that a sequential character 
data file exists with these specifications: 

File 
reference: 

$USER.MEMBER_ RECORDS 

Record 125 to 150 bytes 
length: 

Primary key: First six characters of each record 

Number of Approximately 5000 
records: 

Future space 
estimates: 

Replaced records may increase size up to 20%. 
Number of records may increase up to 25%. During 
addition of the first 5000 records, the primary key of 
each new record will always be greater than those of 
existing records. 

Assume also, that you decide that the default attribute values are 
appropriate for the record type (undefined), embedded key (TRUE), key 
position (O), and key type (uncollated). 

To create the indexed-sequential file named $USER.MEMBERSHIP, 
you execute these commands: 

/set_f i le_attributes .. 
., If i 1 e=Suser . membership . . 
.. /file_organization=indexed_sequential .. 
.. /maximum_record_length=150 .. 
.. /minimum_record_length=125 . 
.. /key_length=6 data_padding=20 .. 
. . I index_padding=25 .. 
. . /estimated_record_count=6250 
/sort from=$user.member_records 
. . /to=$user.membEirship .. 
.. /key=(( 1. .6,asci i ,a)) 

"Attributes of the new 
" indexed-sequent i a 1 
"file . 
"Maximum and minimum 
"record lengths of the 
"sequential file . 

"5000 existing records • 
"25% growth . 
"Sorts the input records 
"by the primary key and 
"then writes the records 
"to the defined indexed­
"sequent ia 1 file. 

Revision J Displaying, Copying, and Creating Keyed Files 6-37 



Creating a Keyed File 

If desired, you could next define alternate keys for 
$USER.MEMBERSHIP using the CREATE_ALTERNATE_INDEXES 
utility described in chapter 8. 

6·38 SCL Advanced File Management Usage Revision J 



Re-Creating a Keyed File 

9 Re-Creating a Keyed File 

Keyed file re-creation is required when the ruined flag has been set 
for a file. It is also recommended when file updates (record additions, 
deletions, and replacements) have produced an inefficient file e structure. 

A DISPLAY_KEYED_FILE_PROPERTIES display shows the ruined 
flag value and structural property values that could indicate an 
inefficient file structure. The display could show: 

Excessive index levels or overflow blocks 

A large empty block count 

An excessive number of data blocks in relation to the number of 
data records in the file 

If the display shows that the index-level-overflow flag has been set, 
you must re-create the keyed file to allow record additions. 

Keyed-file re-creation is also required when record reformatting is 
required. It can be done using FMU. For example, suppose the 
identification number used as the primary key of a file is changed 
from a 6-character to a 7-character field. The existing records must be 
reformatted so the identification number is a 7-character field and the 
file is recreated with a 7-character primary key. 

To re-create a keyed file using FMU, see chapter 10 of this manual. 
This section only describes re-creation using COPY_KEYED_FILE. 

To re-create a keyed file for improved file efficiency, you perform two 
steps: 

1. Set the file attributes that are to change for the re-created file. 

2. Copy the data from the old keyed file to the new keyed file cycle. 

Revision J Displaying, Copying, and Creating Keyed Files 6-39 



Re-Creating a Keyed File 

Keyed-File Re-Creation Example 

For example, suppose the file structure for the membership file 
created in the keyed-file creation example has become inefficient. The 
file specifications are as follows: 

File reference: 

Record length: 

Primary key: 

Number of records: 

$USER.MEMBERSHIP. 

125 to 150 bytes. 

First six characters of each record. 

Approximately 10000. 

Future space estimates: Replaced records may increase size up to 
20%. Number of records may increase up to 
100%. The primary key of each new record 
is not always greater than those of existing 
records. 

Assume that you decide to keep the default attribute values used for 
the old keyed file: record type (undefined), embedded key (TRUE), key 
position (0), and key type (uncollated). 

To re-create the indexed-sequential file $USER.MEMBERSHIP, you 
execute these commands: 

/ display_catalog_entry file=$user.membership .. "Display the existing 
.. /•display_option=cycles "file cycles (only one 
membership 1,441,792 bytes "cycle [1). exists). 

/set_fi le_attributes .. 
. ./ f i 1 e=$user. membership. 2 .. 
.. /•data_padding=50 index_padding=50 
. . /•est imated_recoro_count=20000 

/•copy_keyed_f i le input=$user. membership. l 
.. / output=$user. membership. 2 

/display_cata log_ entry, $user. membership, 
. . / disp lay_opt ion=cycles 
membership 2,883,584 bytes 
-- cycle 1 l ,44 l, 792 bytes 
-- cycle 2 l,441,792 bytes 
/ delete_f i le f i le=Suser. membership. l 

6-40 SCL Advanced File Management Usage 

"Set the file attributes 
"for cycle 2 that are to 
"differ from cycle 1 . 

"Copy the file data 
"from the old cycle 
"to the new cycle. 

"Display the file cycles . 

"Delete the old cycle. 

Revision J 







Create _Alternate _Indexes Utility 

This chapter describes the use of the CREATE_ALTERNATE_ 
INDEXES command utility (also known as the CHANGE_ 
ALTERNATE_INDEXES utility). The utility can create, delete, and 
display alternate keys in a keyed file. 

Alternate key concepts are described in chapter 5 of this manual. 

A CREATE_ALTERNATE_INDEXES utility session processes the 
alternate-key definitions for a single nested file, the nested file 
specified on the CREATE_ALTERNATE_INDEXES command that 
begins the session. (If no nested-file name is specified, CREATE_ 
ALTERNATE_INDEXES processes the alternate keys for the default 
nested file, $MAIN _FILE.) 

The CREATE_ALTERNATE_INDEXES command utility is an SCL 
command utility. As with all SCL command utilities, its use requires 
three steps: 

1. Enter the command (in this case, CREATE_ALTERNATE_ 
INDEXES) to begin the utility session. 

7 

2. Enter utility subcommands to direct the utility in the tasks it is to 
perform. 

3. Enter the utility subcommand QUIT to end the utility session. 

Any SCL command can be entered in response to a utility prompt. 

Revision G Create_Alternate_lndexes Utility 7-1 



Creating Alternate Keys 

Creating Alternate Keys 

Alternate-key creation requires two steps: 

1. Definition of one or more alternate keys. 

2. Application of the alternate-key definitions to the file. 

Within a CREATE_ALTERNATE_INDEXES session, these steps 
correspond to the following commands: 

1. One or more CREATE_KEY_DEFINITION subcommands to define 
the attributes of the new alternate keys. 

2. Either an APPLY_KEY_DEFINITIONS subcommand to apply the 
alternate-key definitions or a QUIT APPLY_KEY_ 
DEFINITIONS= YES subcommand to both apply the alternate-key 
definitions and end the utility session. 

Step 2 (application of the key definition) does not inevitably follow 
step 1 (definition of an alternate key). Step 1 specifies a pending 
alternate-key definition, that is, an alternate-key definition that has 
not yet been applied to the file. You can cancel any pending 
alternate-key definition with a CANCEL_KEY_DEFINITION -
subcommand. 

Any number of subcommands can be entered between the specification 
of an alternate-key definition and its application to the file. The 
APPLY_KEY_DEFINITIONS subcommand or parameter applies all 
definition and deletion requests pending at that time. 

7·2 SCL Advanced File Management Usage Revision G 



Deleting Alternate Keys 

Deleting Alternate Keys 
Alternate-key deletion is similar to alternate-key creation. It requires 
two steps: 

1. One or more requests to delete alternate keys. 

2. Application of the alternate-key deletion requests to the file. 

Within a CREATE_ALTERNATE_INDEXES session, these steps 
correspond to the following commands: 

1. One or more DELETE_KEY_DEFINITION subcommands to 
request the alternate-key deletions. 

2. Either an APPLY_KEY_DEFINITIONS subcommand to apply the 
alternate-key deletion requests or a QUIT APPLY_KEY_ 
DEFINITIONS= YES subcommand to both apply the alternate-key 
deletion requests and end the utility session. 

As with alternate-key creation, step 2 (application of the key deletion 
request) does not inevitably follow step 1 (requesting deletion of an 
alternate key). Step 1 defmes a pending deletion request, that is, an 
alternate-key deletion request that has not yet been applied to the 
file. You can cancel any pending deletion requests with a CANCEL_ 
KEY_DEFINITIONS subcommand. 

Revision G Create_Alternate_Inde:ires Utility '1-3 



Displaying Alternate Keys 

Displaying Alternate Keys 

These methods are available to display existing alternate-key 
information: 

• DISPLAY_KEYED_FILE PROPERTIES: displays all alternate-key A 
definitions that have been applied to a keyed file (described in -
chapter 6). 

• In a CREATE_KEYED_FILE or CHANGE_KEYED_FILE utility 
session (described in chapter 7): 

- DISPLAY_NESTED_FILE can list the alternate-key names. 

- DISPLAY_RECORDS can display the alternate-key values. 

However, to display information about both existing and pending 
alternate-key definitions, you must· use the DISPLAY_ KEY_ 
DEFINITIONS subcommand in a CREATE_ALTERNATE_INDEXES 
session. 

The DISPLAY_KEY_DEFINITIONS subcommand has several options. 
Depending on the parameter values specified, you can: 

• Choose the definitions and deletions displayed: 

- By name 

- By state (pending or pending and applied) 

• Choose the display content: 

- Brief or full attribute listing 

- Sample records with alternate-key fields marked 

7-4 SCL Advanced File Management Usage Revision G 



Alternate-Key Creation and Deletion Example 

Alternate-Key Creation and Deletion Example 
The following interactive session illustrates use of the CREATE_ 
ALTERNATE_INDEXES utility: 

/create_alternate_ indexes .. 
. . /input =Suser. restaurants 
creai/display_file_attributes 
crea i .. /f i le=Suser. restaurants .. 
creai .. /display_option=minimum_record_length 
Min imum_Record_Length : 36 
creai/display_key_definitions .. 
creai .. /key_names=a11 

Display_Key_Definitions 
NJS/VE Keyed File Utilities 1.1 85259 
File= .NVE.USER99.RESTAURANTS 

"Starts the utility session. 

"The altemate keys defined must 
"be within the minimum record 
''length. 

"Displays the existing alternate 
"'key definitions. 

1985·10-03 
13:54:09 

KEY NAME POSITION LENGTH TYPE STATE 

15 15 unco 1 lated Exists in f i le FOOD 
Duplicate_Key_Values 
Nul l_Suppression 

: not_a llowed 
: no 

RECCRD ............ (in asc ii) B u r g e r D u k e H a m b u r g e 
( in hex ) 4275722676722044756876202020204861606275726765 

FOOD u_u_u_u_u_u_u_ 
(in asci i) r s C a s u a 1 
( in hex ) 7273202020202043617375616C 

.. u_u_u_u_u_u_u_ 
creai/delete_key_definition .. 
creai .. /key_name=food 
creai/create_key_def in it ion key_name=food 
creai .. /key_position=15 key_length=15 
creai.. /dupl icate_key_value= .. 
creai .. /ordered_by_primary_key 
creai/create_key_definition .. 
creai .. /key_name=style key_position=30 
creai .. /key_length=6 duplicate_key_values= .. 
crea i .. /ordered_by _primary _key 

Revision G 

"ReQuests de let ion of the 
"existing alternate key. 
"Redefines the alternate key. 

"Def i nes a new a 1 ternate key. 

Create_Alternate _Indexes Utility 7 ·5 



Alternate-Key Creation and Deletion Example 

creai/display_key_defin1tions 
Display_Key_Def initions 

NOS/VE Keyed File Utilities 1.3 85259 
Fi le = . NVE. USER99. RESTAURANTS 

"Displays the pending requests. 
1986-11-03 

13:54:59 

°KEY NAME 

STYLE 
Duplicate_Key_Values 
Nu11_Suppress ion 

FOOD 
Dup l icate_Key _Values 
Nu 11 _Suppress ion 

POSITION LENGTH TYPE STATE 

30 6 unco l lated Creation pending 
ordered_by_primary_key 
no 

15 15 uncollated Creation pending 
ordered_by _primary _key 
no 

RECORD 1 ............ (in asc ii) B u r g e r D u k e H a m b u r g e 
( in hex ) 4275722676722044756876202020204861606275726765 

STYLE 
FOOD u_u_u_u_u_u_u_ 

(in asc ii) r s C a s u a l 
( in hex ) 7273202020202043617375616C 

u_u_u_u_u_u_ 
> u_u_u_u_u_u_u_ 

creai/cancel_key_definition key_name=style "cancels a pending definition. 
"'Applles the key definitions. 

begin deleting alternate key definitions. 
alternate key FOOD has been deleted. 

creai/apply_key_def 1nitions 
-- F i le : NVE . USER99 . RESTAURANTS 

File :NVE.USER99.RESTAURANTS 
-- Fi le :NVE. USER99. RESTAURANTS 
-- File :NVE.USER99.RESTAURANTS 
definitions. 
-- File :NVE.USER99.RESTAURANTS 
def in it ions. 
-- File :NVE.USER99.RESTAURANTS 
the file. 
- - F i le : NVE. USER99 . RESTAURANTS 
boundary: EOI 

File :NVE.USER99.RESTAURANTS 
1s complete. 

Fi le : NVE. USER99. RESTAURANTS 
File :NVE.USER99.RESTAURANTS 
File :NVE.USER99.RESTAURANTS 

file. 

end deleting alternate key definitions. 
begin creating labels for alternate key 

finished creating labels for alternate key 

begin collecting the alternate key values from 

AMP$APPLY_KEY_DEFINITIONS has reached a file 

collection of the alternate key values 

begin sorting the alternate key values. 
sorting of the alternate key values completed. 
begin building alternate key indexes into the 

-- File :NVE.USER99.RESTAURANTS the FOOD index is being built. 
-- File :NVE.USER99.RESTAURANTS AMP$APPLY_KEY_DEFINJTIONS completed building 
the alternate indexes into the file.· 
crea i/quit 

7-6 SCL Advanced File Management Usage Revision G 



Alternate-Key Creation and Deletion Example 

CREATE _ALTERNATE _INDEXES Command 

Purpose 

Format 

Begins a CREATE_ALTERNATE_INDEXES utility 
session to create, delete, and/or display alternate-key 
definitions in a keyed file. 

CREATE_ALTERNATE_INDEXES or 
CHANGE_ALTERNATE_INDEXES or 
CltEATE_ALTERNATE_INDICES or 
CHANGE_ALTERNATE_INDICES or 
CREATE_ALTERNATE_INDEX or 
CHANGE_ALTERNATE_INDEX or 
CREAi or 
CHAAI 

INPUT=tile or (tile, nested_tile_name) 
STATUS =status_ variable 

Parameters INPUT or I 

Revision J 

Keyed file to be processed by the utility. The file 
permissions required depend on the subcommands entered 
during the utility as described in the Remarks. This 
parameter is required. 

The operations performed during the session apply to only 
one nested file. If no nested file is specified on the 
command, the default nested file, $MAIN _FILE, is used. 

To process the alternate-key definitions for a nested file 
other than $MAIN _FILE, enclose the file reference 
followed by the nested-file name in parentheses. 

If the specified input file does not exist, the command 
attempts to create it as described in the Remarks. 

STATUS 

Optional SCL status variable. Use of this variable depends 
on whether the utility is executed in an SCL block. If it 
is, the status of each subcommand is stored in the status 
variable specified on the CREATE_ALTERNATE_ 
INDEXES command and a subcommand error terminates 
the utility session. 

Otherwise, only the status of the CREATE_ 
ALTERNATE_INDEXES command and the QUIT 
subcommand that ends the session are stored in the 
status variable; a subcommand error does not terminate 
the utility session. 

Create_Alternate_Indexes Utility 7-7 



Alternate-Key Creation and Deletion Example 

Remarks • The command utility prompt is: 

creai/ 

• In response to the creai/ prompt, you can enter 
NOSNE commands and any of these subcommands: 

QUIT 
HELP 
DISPLAY_KEY_DEFINITIONS 
CREATE_ KEY_ DEFINITION 
DELETE_ KEY_ DEFINITION 
CANCEL_ KEY_ DEFINITIONS 
APPLY_ KEY_ DEFINITIONS 

• The CREATE_ALTERNATE_INDEXES utility creates 
the specified keyed file if: 

- The file does not exist and, 

- A SET_FILE_ATTRIBUTES command has 
specified the KEY_LENGTH and MAXIMUM_ 
RECORD_LENGTH attributes for the file. 

If the SET_FILE_ATTRIBUTES command defining the 
new file omits an attribute, the default attribute value 
is used. However, if it omits the FILE_ 
ORGANIZATION attribute, indexed-sequential 
organization is used. 

• The CREATE_ALTERNATE_INDEXES command does 
not check your file permissions; the subcommands you 
enter in the utility session check that you have the 
required permissions to do the operation. 

To display key definitions, you must have at least 
read permission; to create, delete, cancel, or apply key 
definitions, you must have at least the three 
permissions: append, modify, and shorten. 

7-8 SCL Advanced File Management Usage Revision J 



Examples 

Revision G 

Alternate-Key Creation and Deletion Example 

This command begins a utility session that displays the 
alternate-key definitions of keyed file $USER.IS_FILE. 

/create_alternate_1ndexes input=$user. 1s_file 
creai/display_key_definitions key_names=all .. 
creai .. /display_options=orief 

Display_Key_Def in it ions 
NOS/VE Keyed File Ut il it ies l. 1 852.59 
File • :NVE.USER99. IS_FILE 

1985-10-03 
13:58:09 

KEY NAME POSITION LENGTH TYPE STATE 

ALTERNATE_KEY_l 0 10 uncollated Exists in 
f; le 

creai/quit "The APPLY_KEY_OEFINITIONS parameter is not reQUired here 
"because no creation or deletion requests are pending. 

Create_Alternate_Indexes Utility 7.9 



Alternate-Key Creation and Deletion Example 

APPLY_KEY_DEFINITIONS Subcommand 

Purpose 

Format 

Applies the pending alternate-key definition and deletion 
requests within a CREATE_ALTERNATE_INDEXES 
utility session. 

For Better Performance 

Use a batch job to apply key definitions to a large file, 
not an interactive session. The building of an alternate 
index can be time-consuming, preventing use of the 
terminal. 

APPLY_KEY_DEFlNITIONS or 
APPLY_KEY_DEFINITION or 
APPKD 

ERROR_LIMIT =integer 
STATUS= status_ variable 

Parameters ERROR_LIMIT or EL 

Remarks 

Number of nonfatal (trivial) errors allowed for the ~ply 
operation (integer from 0 through 4398046511103 [2 -
l]). 

A 0 value indicates no limit; 0 is the default value. 

See the Remarks for a description of apply error 
processing. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• This CREATE_ALTERNATE_INDEXES subcommand 
applies all pending alternate-key creation and deletion 
requests to the file. It applies the deletion requests 
first and then the creation requests. 

• The ERROR_LIMIT file attribute value has no effect 
on the utility. This is so that nonfatal errors (such as 
typing errors during interactive use) do not terminate 
the utility session. 

However, you can specify an error limit for the apply 
operation with the ERROR_LIMIT parameter. 

7·10 SCL Advanced File Management Usage Revision G 



Revision G 

Alternate-Key Creation and Deletion Example 

Nonfatal Errors 

The two nonfatal (trivial) errors that an apply operation 
can detect result from improper record data, as follows: 

• Duplicate_Key_ Value: the duplicate-key-values 
attribute of the alternate index being built is NOT_ 
ALLOWED, but the apply operation finds an 
alternate-key value matching an alternate-key value 
already in the alternate index. 

• Sparse_Key_Beyond_EOR: the apply operation is 
building an alternate index that uses sparse-key 
control and it finds a record for which an 
alternate-key value should be included in the index 
except that the record is too short to provide a 
complete alternate-key value. 

Nonfatal Error Processing 

APPLY_KEY_DEFINITIONS keeps a count of the number 
of times it detects a nonfatal (trivial) error. Each time it 
increments the count, it checks whether the count has 
reached the value specified by the ERROR_LIMIT 
parameter. 

• If the error limit has not yet been reached, APPLY_ 
KEY_DEFINITIONS performs the correction 
processing for the condition as described later. 

• If the error limit is reached, APPLY_KEY_ 
DEFINITIONS terminates with a fatal error. The fatal 
status returned depends on the last nonfatal error 
dectected: 

For a Duplicate_Key_ Value error, it returns 
AAE$DUPLICATE_KEY_LIMIT. 

For a Sparse_Key_Beyond_EOR error, it returns 
AAE$ERROR_LIMIT_EXCEEDED. 

Before terminating, APPLY_KEY_DEFINITIONS 
discards all alternate indexes it has built. (Deleted 
alternate indexes are not restored.) 

Create_Alternate_lndexes Utility 7-11 



Alternate-Key Creation and Deletion Example 

If APPLY_KEY_DEFINITIONS finds one or more 
nonfatal errors, but completes its processing before 
reaching the error limit, it returns the warning status 
AAE$ERRORS_IN _APPLY. 

Correction Processing 

As correction processing for a Sparse_Key_Beyond_EOR 
error, APPLY_KEY_DEFINITIONS does not enter an 
alternate-key value for the record in the alternate index it 
is building, even though the sparse-key character indicates 
that a value should be entered for the record. 

As correction processing for a Duplicate_Key_ Value 
error, APPLY_KEY_"DEFINITIONS changes the 
duplicate_key _values attribute of the alternate-key 
definition from NOT_ALLOWED to ORDERED_BY_ 
PRIMARY_KEY. It then discards the partially-built index 
and begins building the index again, ordering duplicate 
alternate-key values by their primary-key value. 

Terminate Break 

If you enter the terminate_break_character (usually %2 e 
or control-t) during application of alternate-key definitions, 
you are sent a prompt requesting confirmation of your 
intentions. 

You should then enter a carriage return or any entry 
other than RUIN FILE (uppercase or lowercase) to 
continue the application of alternate-key definitions. If the 
apply operation is allowed to complete, the CREATE_ 
ALTERNATE_INDEXES utility can remove any unwanted 
alternate-key definitions without harm to the file. 

A request to ruin the file is not recommended. No file 
operation can be performed on a ruined file, and so no 
data can be retrieved from the file. 

Pause Break 

Entry of the pause_break_character (usually %1 or 
control-p) is ignored during application of alternate-key 
definitions. 

7-12 SCL Advanced File Management Usage Revision G 



Examples 

Revision G 

Alternate-Key Creation and Deletion Example 

This CREATE_ALTERNATE_INDEXES session attempts 
to create and apply an alternate key. However, the 
attempt fails when it finds a duplicate alternate-key value 
because duplicate key values are not allowed and the 
specified error limit is 1. 

/create_alternate_indexes input=Suser.is_file 
creai/create_key_definition key_name=alternate_key_6 
creai .. /Key_DQSition=5 key_length=lO 
creai/apply_key_definition error_limit=l 
-- File :NVE.USER99. IS_FILE begin creating labels for alternate 
key definitions. 
-- File :NVE.USER99.IS_FILE finished creating labels for alternate 
key definitions. 
-- File :NVE.USER99.IS_FILE begin collecting the alternate key 
values from the file. 
-- File :NVE.USER99.IS_FILE AMP$APPLY_KEY_DEFJNITIONS has reached 
a file boundary: EOI. 
-- File :NVE.USER99.IS_FILE collection of the alternate key values 
is complete. 
-- File :NVE.USER99.!S_FILE begin sorting the alternate key 
values. 
-- File :NVE.USER99.IS_FILE sorting of the alternate key values 
completed. 
-- File :NVE.USER99.IS_FILE begin building alternate key indexes 
into the file. 
-- File :NVE.USER99.IS_FILE the ALTERNATE_KEY_6 index is being 
built. 
-- File :NVE.USER99.!S_FILE alternate key ALTERNATE_KEY_6 has been 
aeleted. 
--ERROR-- Fi le :NVE.USER99. IS_FILE : AMPSAPPLY_KEY_DEFJNJTIONS encountered 
a duplicate key and found that the nonfatal-error 1 imit had been 
reached. It then discarded any new alternate indexes it had built 
(although it cannot restore any alternate indexes it deleted). Had 
ERROR_LIMJT not been reached, the alternate-key definition would have 
been modified to allow duplicates. The duplicate key values relate 
to alternate key name= ALTERNATE_KEY_6, primary key= 96070, 
alternate_Key_value = John Smith. 
-- FATAL-- File :NVE.USER99 IS_FILE : AMPSAPPLY_KEY_DEFINITIONS : the 
user-declared maximum number of trivial errors has been recorded 
since the last oPEN. 
creai/quit 

Create_Alternate_Indexes Utility 7-13 



Alternate-Key Creation and Deletion Example 

CANCEL_KEY _DEFINITIONS Subcommand 

Purpose 

Format 

Removes a pending request to create or delete an 
alternate key within a CREATE_ALTERNATE_INDEXES 
session. 

CANCEL_KEY_DEFINITIONS or 
CANCEL_KEY_DEFINITION or 
CANKD 

KEY_NAMES=list of names or keyword_ value 
STATUS= status_ variable 

Parameters KEY_NAMES or KEY_NAME or NAMES or NAME 
or KN or N 

Remarks 

Pending requests to be canceled. 

list of 
names 

ALL 

Cancel the requests for the listed 
alternate-key names. 

Cancel all requests. 

This parameter is required. 

STATUS 

Optional SCL status variable. If you specify the 
STATUS parameter, the command returns its 
completion status in the specified variable. 

• The CANCEL_KEY_DEFINITIONS subcommand can 
cancel pending creation and deletion requests. A 
request can be canceled only while it is pending. 

• After a creation or deletion request is applied, the 
CANCEL_KEY_DEFINITIONS subcommand has no 
effect. To reverse the action of an APPLY_KEY_ 
DEFINITIONS subcommand, you must issue new 
requests to delete the created alternate key or recreate 
the deleted alternate key. 

7-14 SCL Advanced File Management Usage Revision G 



Examples 

Revision G 

Alternate-Key Creation and Deletion Example 

This CREATE_ALTERNATE_INDEXES session requests 
creation of an alternate key and deletion of another 
alternate key, cancels the creation request, and finally 
applies the deletion request. 

/create_alternate_indexes input=Suser.is_file 
creai/create_key_definition key_name=alternate_key_4 .. 
creai .. /key_pasition=5 key_length=2 
creai/delete_key_definition key_name=alternate_key_l .. 
crea i/cancel_key_def in it ion alternate_key_4 
creai/Q.Jit apply 
-- File :NVE.USER99. IS_FILE : begin deleting alternate 
key definitions. 
-- File :NVE.USER99.IS_FILE: alternate key 
ALTERNATE_KEY_l has been deleted. 
-- File :NVE.USER99.IS_FILE: end deleting alternate 
key def in it ions. 

Create_Altemate_lndexes Utility 7-15 



Alternate-Key Creation and Deletion Example 

CREATE _KEY _DEFINITION Subcommand 

Purpose 

Format 

Creates a pending alternate-key definition within a 
CREATE_ALTERNATE_INDEXES session. 

CREATE_KEY_DEFINITION or 
CREKD 

KEY_NAME =name 
KEY_POSITION =integer 
KEY_LENGTH =integer 
KEY_ TYPE= keyword_ value 
COLLATE_ TABLE_NAME =name 
DUPLICATE_KEY_ VALUES=boolean or keyword_ 

value 
NULL_ SUPPRESSION= boolean 
SPARSE_KEY _ CONTROL_POSITION =integer 
SPARSE_KEY _CONTROL_ CHARACTERS =string 
SPARSE_KEY _CONTROL_EFFECT= keyword_ value 
REPEATING _GROUP _LENGTH= integer 
REPEATING_GROUP _COUNT=integer or keyword_ 

value 
KEY_GROUP _NAME =name 
CONCATENATED _PIECES =boolean 
VARIABLE _LENGTH _KEY =string 
STATUS= status_ variable 

Parameters KEY _NAME or NAME or KN or N 

Name of the new alternate key. The name must follow 
the SCL naming rules. This parameter is required. 

KEY_POSITION or POSITION or KP or P 

Byte position within the record at which the alternate-key 
field begins. The byte positions are numbered from the 
left, beginning with 0. The maximum byte position is 
65496. This parameter is required. 

KEY_LENGTH or LENGTH or KL or L 

Number of bytes (1 through 255) in the alternate-key 
field. (For variable-length keys, it is the maximum key e 
length.) 

The key field (or its sparse-key control character) must be 
within the minimum record length (except for 
variable-length keys and fixed-length keys that repeat to A 
the end of record). W 

·1-16 SCL Advanced File Management Usage Revision G 



Revision G 

Alternate-Key Creation and Deletion Example 

This parameter is required. 

KEY_ TYPE or TYPE or KT or T 

Type of the alternate key. 

INTEGER or I Integer key ordered numerically; its 
leftmost bit is its sign bit. (The 
INTEGER key type is invalid for 
variable-length keys). 

UNCOLLATED Character key ordered byte-by-byte 
or UC or U according to the ASCII collating 

sequence. 

COLLATED or 
c 

Character key ordered byte-by-byte 
according to the collation table specified 
by the COLLATE_ TABLE_NAME 
parameter. 

If you omit the KEY_ TYPE parameter, the key type is 
UNCOLLATED. 

COLLATE_ TABLE_NAME or CTN 

Name of the collation table used to order the alternate 
key if its key type is collated. 

If the file is an indexed-sequential file with a collated 
primary key, the collation table for the primary key is 
used as the default collation table for an alternate 
key. Otherwise, you must specify a collation table for 
a collated alternate key. 

The collation table can be a NOSNE predefined 
collation table or a user-defined collation table. For 
more information, see appendix E. 

DUPLICATE_ KEY_ VALUES or DKV 

Indicates whether duplicate alternate-key values are 
allowed and, if so, how the duplicate values are 
ordered. 

Create_Alternate_Indexes Utility 7-17 



Alternate-Key Creation and Deletion Example 

NOT_ALLOWED or NA 
or FALSE or OFF or NO 

ORDERED_BY_ 
PRIMARY_ KEY or 
OBPK or TRUE or ON 
or YES 

FIRST_IN _FIRST_ OUT 
or FIFO 

No duplicate values are 
allowed for the alternate 
key. 

Duplicate values are 
allowed; duplicates are 
accessed in order by their 
primary-key value. 

Duplicate values are 
allowed; duplicates are 
accessed in the order the 
values were entered in the 
index. 

If you omit the DUPLICATE_KEY_ VALUES parameter, 
no duplicate values are allowed. 

NULL_SUPPRESSION or NS 

Indicates whether null alternate-key values should be 
stored in the alternate index. (The null value is all 
zeros for integer keys, all blanks for the other key 
types.) 

TRUE or ON or 
YES 

Null values are not included in 
the index. 

FALSE or OFF or All values are included in the 
NO index. 

If you omit the NULL_SUPPRESSION parameter, all 
values, including nulls, are stored in the index. 

NOTE 

The two parameters, SPARSE_KEY_CONTROL_ 
POSITION and SPARSE_KEY_CONTROL_ 
CHARACTERS, work together; they must either both be 
specified or both be omitted. If they are omitted, 
sparse-key control is not used for the alternate key. 

7-18 SCL Advanced File Management Usage Revision G 



Revision G 

Alternate-Key Creation and Deletion Example 

SPARSE_K.EY _ CONTROL_POSITION or SKCP 
Byte position of the sparse-key control character. The 
position must be within the minimum record length. 
The byte positions are numbered from the left, 
beginning with 0. The maximum byte position is 
65496. 

SPARSE_K.EY_CONTROL_CHARACTERSorSKCC 
String containing the set of characters with which the 
sparse-key control character in each record is 
compared. 

SPARSE_K.EY_CONTROL_EFFECTorSKCE 
Indicates whether a sparse-key control character match 
causes the alternate-key value to be included in or 
excluded from the alternate index. 

INCLUDE_KEY_ 
VALUE or IKV 

EXCLUDE_ KEY_ 
VALUE or EKV 

The alternate-key value is 
included in the alternate 
index. 

The alternate-key value is 
excluded from the alternate 
index. 

If you omit the SPARSE_KEY_CONTROL_EFFECT 
parameter, INCLUDE_KEY_ VALUE is used. 

You can specify the SPARSE_KEY_CONTROL_EFFECT 
parameter only if you specify the SPARSE_KEY_ 
POSITION and SPARSE_KEY_CHARACTERS 
parameters. 

REPEATING_GROUP _LENGTH or RGL 
If specified, indicates that each record can contain 
more than one value for the alternate key. 

For a repeating fixed-length key, the value is the 
distance (1 through 65497 bytes) from the beginning of 
an alternate-key value to the beginning of the next 
value for the same alternate key in the same record. 

For a repeating variable-length key, specify any 
integer from 1 through 65497. (The actual value is 
irrelevant.) 

Create_Alternate_Indexes Utility 7-19 



Alternate-Key Creation and Deletion Example 

If you omit the REPEATING_GROUP_LENGTH 
parameter, the alternate key has no more than one 
value per record. 

REPEATING_GROUP_COUNT (RGC) 

Indicates where the search for alternate-key values 
ends. 

NOTE 

REPEATING_GROUP _COUNT parameter is valid only 
when you specify the REPEATING_GROUP_LENGTH 
parameter. 

REPEAT_TO_END_OF_RECORD or RTEOR 

Search continues to the end of the record. 

For a fixed-length key, the repeating group of fields 
continues to the end of the record. The key value that 
ends the record is not used if it is shorter than the 
key length. 

For a variable-length key, the record data from the 
key position to the end of the record is processed as a e 
sequence of key values, separated by delimiter 
characters. The end of the last value is marked by a 
delimiter character or by the end of the record. 

integer (1 through 65497) 

Search continup.s to the specified limit. 

For a fixed-length key, the specified integer is the 
number of alternate-key values that each record 
contains. (The value must lie within the minimum 
record length.) 

For a variable-length key, the specified integer is the 
length, in bytes, of the key field. The contents of the 
field is processed as a sequence of key values, 
separated by delimiter characters. The end of the last 
value is marked by a delimiter character, the end of 
the field, or the end of the record, whichever occurs 
first. 

If you omit the REPEATING_GROUP_COUNT 
parameter, the search for values continues until the 
end of the record. 

7-20 SCL Advanced File Management Uaage .Rev1sion G 



Revision G 

. Alternate-Key Creation and Deletion Example 

KEY _GROUP _NAME or KGN 

Name of the key group for this key. The key-grouping 
feature is not currently implemented. The default 
value for the key-group name is the key name. 

CONCATENATED_PIECES or CONCATENATED_ 
PIECE or CP 

Indicates whether the alternate key is a concatenated 
key. 

TRUE (ON or 
YES) 

FALSE (OFF or 
NO) 

The key is a concatenated key. 

The key is not a concatenated key. 

H you omit the CONCATENATED_PIECES parameter, 
the key is not a concatenated key. 

H you specify CONCATENATED_PIECES=TRUE, the 
CREATE_KEY_DEFINITION command initiates the 
CREATE_KEY_DEFINITION subcommand utility. The 
utility prompt is crekd/ and it processes ADD_PIECE and 
QUIT subcommands (described in the following pages). 

VARIABLE_LENGTH_KEY or VLK 

Indicates that the key is a variable_ length key by 
specifying its set of delimiter characters. The set is 
specified as a string (0 through 256 characters, 
enclosed in apostrophes). 

H the REPEATING_GROUP _LENGTH parameter is 
omitted, no more than one value for the key is taken 
from a record. The end of the value is marked by a 
delimiter character, by the end of the key field (KEY_ 
LENGTH length), or by the end of the record, 
whichever occurs first after the KEY_POSITION. 

If the REPEATING_GROUP_LENGTH parameter is 
specified, the record can contain more than one value 
for the key. Multiple key values are separated by one 
or more delimiter characters. The REPEATING_ 
GROUP_ COUNT parameter indicates whether the 
sequence of values continues to the end of the record 
or is limited to a fixed number of characters. 

Create_Alternate_Indexes Utility 7·21 



Alternate-Key Creation and Deletion Example 

Remarks 

If VARIABLE_LENGTH_KEY is omitted, the 
alternate key has fixed-length values. 

STATUS 
Optional SCL status variable. If you specify the 
STATUS parameter, the command returns its 
completion status in the specified variable. e 

• The CREATE_KEY_DEFINITION subcommand defmes 
an alternate key but does not apply the defmition to 
the file. The definition remains pending until it is 
either applied or canceled. 

A definition is applied by either an APPLY_KEY_ 
DEFINITIONS subcommand or an APPLY_KEY_ 
DEFINITIONS=YES parameter on the QUIT 
subcommand; it is canceled by a CANCEL_KEY_ 
DEFINITIONS subcommand or an APPLY_KEY_ 
DEFINITIONS=NO parameter on the QUIT 
subcommand. 

• The various alternate-key attributes are described in 
chapter 5. 

Incompatible Parameters 

These parameters are incompatible: 

• REPEATING_GROUP _LENGTH and either of the 
following: 

DUPLICATE_ KEY_ VALUES= FIRST_IN _FIRST_ 
OUT 
CONCATENATED_PIECES =TRUE 

• VARIABLE_LENGTH_KEY and any of the following: 

KEY_ TYPE= INTEGER 
DUPLICATE_KEY_ VALUES=FIRST_IN_FIRST_ 
OUT 
CONCATENATED_PIECES=TRUE 
NULL_ SUPPRESSION= TRUE 
SPARSE_ KEY_ CONTROL_ POSITION 

7·22 SCL Advanced File Management Usage Revision G 



Examples 

Revision G 

Alternate-Key Creation and Deletion Example 

Collation Table Loading 

• If the alternate-key definition defines a collated key, 
CREATE_KEY_DEFINITIONS searches for the 
collation-table name as an entry point in the object 
libraries in the program-library list. 

• You must set the program-library list before you enter 
the utility; you cannot change the object libraries 
searched from within the utility session. The following 
command adds an object library to the program-library 
list: 

set_program_attributes add_library=file_reference 

See appendix E for more information on collation 
tables. 

This CREATE_ALTERNATE_INDEXES session creates 
and applies an alternate-key definition to file $USER.IS_ 
FILE. 

/create_alternate_ index, input=$user. is_f i le 
creai/create_key_definit1on, key_name=alternate_key_ 1 .. 
creai .. /key_posit1on=O, key_length=10 
creai/quit, apply 
-- Fi le :NVE.USER99. IS_FILE begin creating labels for alternate key 
definitions. 
-- File :NVE.USER99 IS_FILE finished creating labels for alternate 
key definitions. 

-- File :NVE.USER99.IS_FILE begin collecting the alternate key 
values from the file. 

-- File :NVE.USER99. IS_FILE AMP$APPLY_KEY_DEFINITIONS has reached 
a file boundary: EOI 

-- Fi le :NVE.USER99. IS_FILE collection of the alternate key values 
is complete. 

-- File :NVE.USER99. IS_FILE begin sorting the alternate key values. 
-- File :NVE.USER9S.IS_FILE sorting of the alternate key values 
completed. 
-- File :NVE.USER99.IS_F!LE begin building alternate key indexes 
into the file. 
-- File :NVE.USER99.IS_F!LE the ALTERNATE_KEY_l inOex is being built. 
-- File :NVE.USER99. IS_FILE AMP$APPLY_KEY_DEFIN!T!ONS completed 
building the alternate indexes into the file. 

Create_Alternate_lndexes Utility 7-23 



Alternate-Key Creation and Deletion Example 

ADD _PIECE Subcommand 

Purpose Defines a piece of a concatenated key within a CREATE_ 
KEY_DEFINITION subutility session. 

Format ADD_PIECE or 
ADDP 

KEY_POSITION =integer 
KEY_LENGTH =integer 
KEY_ TYPE= keyword_ value 
STATUS= status_ variable 

Parameters KEY_ POSITION or POSITION or KP or P 

Byte position in the record at which the piece begins. The 
byte positions are numbered from the left, beginning with 
0. The maximum byte position is 65496. This parameter 
is required. 

KEY_LENGTH or LENGTH or KL or L 

Number of bytes in the piece. The maximum length is 
255 bytes. The piece must be within the minimum record 
length (unless sparse-key control is used). This parameter 
is required. ~ 

KEY_ TYPE or TYPE or KT or T 

Type of the piece. 

INTEGER or I Integer key ordered numerically. 

UNCOLLATED Character key ordered byte-by-byte 
or UC or U according to the ASCII collating 

sequence. 

COLLATED or 
c 

Character key ordered byte-by-byte 
according to the collation table specified 
by the COLLATE_ TABLE_NAME 
parameter on the CREATE_KEY_ 
DEFINITION command. 

The default key type is UNCOLLATED. 

7-24 SCL Advanced File Management Usage Revision G 



Remarks 

Revision G 

Alternate-Key Creation and Deletion Example 

STATUS 

Optional SCL status variable. If STATUS is specified, the 
command returns its completion status in the specified 
variable. 

• You enter this subcommand in response to this 
prompt: 

crekd/ 

The utility is initiated in response to a CREATE_ 
KEY_DEFINITION subcommand that specifies the 
CONCATENATED_PIECES=TRUE parameter. To end 
concatenated-key specification, enter the QUIT 
subcommand for the CREATE_KEY_DEFINITION 
utility. 

• To define a concatenated key, you must enter an 
ADD_PIECE subcommand for each piece to be 
concatenated to the first piece. The first piece is 
defined by the KEY_LENGTH, KEY_POSITION, and 
KEY_ TYPE parameters on the CREATE_ KEY_ 
DEFINITION command. 

• A concatenated key can comprise from 2 through 64 
pieces. The pieces are concatenated in the order that 
you enter the ADD_PIECE subcommands that define 
the pieces. 

Create_Alternate_Indexes Utility 7-25 



Alternate-Key Creation and Deletion Example 

Examples This CREATE_ALTERNATE_INDEX session defines an 
alternate key that concatenates the first, third and fifth 
bytes of the record in reverse order. It displays the 
definition and then cancels the request. 

1create_alternate_index input=Suser.is_file 
creai/Create_key_oefinition key_name=alternate_key_2 
creai .. /key_position=4 key_lengtn=l concatenated_pieces=yes 
crekd/add_piece key_position=2 key_lengtn=1 
crekd/ aeiC!D kp=O kl= 1 
crekd/QUit 
creai/display_key_definitions 

Display_Key_Definitions 1985-10-03 
NOS/VE Keyed File Utilities 1.1 85259 14:04:22 
File= .NVE.USER99. IS_FILE 

KEY NAME POSITION LENGTH TYPE STATE 

ALTERNATE_KEY_2 
pending 

Duplicate_Key_Values 
Nul !_Suppress ion 

piece b 
piece c 

4 

2 
0 

not_a llowed 
no 

1 uncollated Creation 

1 uncollated 
1 uncollated 

RECORD 1 ...•... (in asci;) : T n i s i s t n e f i r s t r e c o r 
(in hex ) : 5468697320697320746865206669727374207265636F72 

ALTERNATE_KEY_2 

creai/OUit cancel 

c_ b_ ~­
(in ascii) d 
( in hex ) : 642E 

7-26 SCL Advanced File Management Usage Revision G 



Alternate-Key Creation and Deletion Example 

HELP Subcommand (for the CREATE _KEY_ 
DEFINITION Utility) 

Purpose 

Format 

Provides online help from within a CREATE_KEY_ 
DEFINITION session. 

HELP or 
HEL 

SUBJECT= string 
MANUAL= file 
STATUS= status_ variable 

Parameters SUBJECT or S 

Remarks 

Topic to be located in the online manual index. The topic 
must be enclosed in apostrophes ('topic'). 

If you omit the SUBJECT parameter, HELP displays a 
list of the available subcommands. 

MANUAL or M 

File containing the online manual whose index is 
searched. If you omit the MANUAL parameter, the 
default is AFM. The working catalog is searched for the 
file and then the $SYSTEM.MANUALS catalog. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• If you enter a topic that is not in the manual index, a 
message appears telling you that the topic could not 
be found. 

• The default manual file, $SYSTEM.MANUALS.AFM, 
contains the online version of the NOSNE Advanced 
File Management Usage manual, as provided with the 
NOSNE system. 

• If your terminal is defined for full-screen applications, 
the online manual is displayed in screen mode. To 
leave the online manual, press the QUIT function key. 

• To request help in reading the online manual, enter 
HELP while in the manual. 

Revision J Create_Alternate_Indexes Utility 7-27 



Alternate-Key Creation and Deletion Example 

QUIT Subcommand (for the CREATE _KEY_ 
DEFINITION Utility) 

Purpose Exits the Create_Key_Definition utility, ending 
specification of the concatenated-key. 

Format QUIT or 
QUI 

STATUS= status_ variable 

Parameters STATUS 

Remarks 

Examples 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

Entry of the QUIT subcommand returns you to the 
CREATE_ALTERNATE_INDEXES utility session. This is 
indicated by the prompt creai/. 

This CREATE_ALTERNATE_INDEXES session defines a 
concatenated alternate key having two pieces. The first 
piece is the ten bytes beginning at byte 8. (Remember, 
bytes are numbered from the left beginning with zero.) 
The second piece is the eight-byte integer at the 
beginning of the record. 

/create_alternate_indexes input=$user.is_file 
creai/create_key_definition alternate_key_3 
creai .. /key_pos1t1on=8 key_length=10 .. 
creai .. /concatenated_pieces=yes 
crekd/add_piece key_position=O key_length=B 
crekd .. /key_type=integer 
crekd/Quit "Exits CREATE_KEY_OEFINITIONS. 
creai/ Quit no "Exits CREATE_ALTERNATE_INOEXES 

"without applying the 
•alternate-key definition. 

7-28 SCL Advanced File Management Usage Revision J 



Altemate-Key Creation and Deletion Example 

DELETE_KEY_DEFINITION Subcommand 

Purpose 

Form.at 

Requests the deletion of an existing alternate key within 
a CREATE_ALTERNATE_INDEXES utility session. 

DELETE_KEY_DEFINITION or 
DELKD 

KEY_NAME=name 
STATUS =status_variable 

Parameters KEY_ NAME or NAME or ~N or N 

Remarks 

Examples 

Revision G 

Name of the alternate key to be deleted. This parameter 
is required. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• The DELETE_KEY_DEFINITION subcommand 
requests deletion of an alternate key but does not 
actually delete the key from the file. The deletion 
remains pending until it is applied by an APPLY_ 
KEY_DEFINITIONS or QUIT subcommand or it is 
canceled by a CANCEL_KEY_DEFINITIONS 
subcommand. 

• You could use the following subcommand to list the 
alternate-key names: 

display_key_defin1tions, all, display_option=brief 

This CREATE_ALTERNATE_INDEXES session deletes an 
alternate key named ALTERNATE_KEY_ l. 

/create_alternate_ indexes input=Suser. is_f i le 
creai/Clelete_key_definition key_name=alternate_key_1 
creai/QUit apply_key_def init ions=yes 
-- File :NVE.USER99. IS_FILE : begin deleting alternate key definitions. 
-- Fi le :NVE.USER99. IS_FILE : alternate key ALTERNATE_KEY_ 1 has been 
deleted. 
-- File :NVE.USER99. IS_FILE : end delet1ng alternate key definitions. 

Create_Altemate_lndexes Utility 7-29 



Alternate-Key Creation and Deletion Example 

DISPLAY_KEY_DEFINITIONS Subcommand 

Purpose 

Format 

Displays alternate-key definitions within a CREATE_ 
ALTERNATE_INDEXES session. 

DISPLAY_KEY_DEFINITIONS or 
DISPLAY_KEY_DEFINITION or 
DISKD 

KEY _NAMES= keyword_ value OT list of names 
DISPLAY_ OPTIONS= keyword_ value 
SAMPLE_RECORD_COUNT=integer or keyword_ 

value 
OUTPUT= file_ reference 
STATUS= status_ vaTiable 

Parameters KEY_NAMES OT KEY_NAME or NAMES OT NAME OT 
KN oTN 

Indicates the alternate-key definitions displayed. 

list of names Displays the specified alternate-key 

PENDING or 
p 

ALL or A 

definitions. 

Displays only the pending alternate-key 
creations and deletions. 

Displays both pending and existing 
alternate-key definitions. 

If you omit the KEY_NAMES parameter, only the 
pending alternate-key creations and deletions are 
displayed. 

DISPLAY_ OPTIONS or DISPLAY_ OPTION OT DO 

Indicates the contents of the display. 

BRIEF or B 

FULL or F 

SAMPLE_ 
RECORDS or SR 

Displays the key name, position, 
length, type, and state. 

Displays all information in the 
alternate-key definition. 

Displays only sample records with 
the alternate keys marked. 

7-30 SCL Advanced File Management Usage Revision G 



Remarks 

Revision G 

BRIEF_SAMPLE_ 
RECORDS or BSR 

FULL_SAMPLE_ 
RECORDS or FSR 
or ALL or A 

Alternate-Key Creation and Deletion Example 

Displays the brief definition and the 
sample records. 

Displays the full definition and the 
sample records. 

If you omit the DISPLAY_OPTIONS parameter, ALL is 
used (full definition and sample records). 

SAMPLE_RECORD_COUNT or SRC 

Indicates the number of records displayed if the 
DISPLAY_OPTIONS parameter requests a sample record 
display. 

integer (0 
through 
4398046511103) 

ALL or A 

Displays the specified number of 
records. 

Displays all records in the file. 

The default is a one-record display. 

OUTPUT or 0 
File to which the display is written. If you omit the 
OUTPUT parameter, the display is written to the 
standard file $OUTPUT. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• A sample-record display shows the record contents in 
ASCII characters and hexadecimal digits. For a 
fixed-length key, the alternate-key fields are 
underscored. For a variable-length key, the 
alternate-key values are underscored. 

Create_Alternate_Indexes Utility 7-31 



Alternate-Key Creation and Deletion Example 

Examples 

• The underscores for each alternate key appear on a 
separate line as follows: 

If the concatenated-key or repeating-groups 
attributes are not defined for the key, the 
underscore characters indicate the alternate-key 
type (C for collated, I for integer, or U for A 
uncollated). W 

If the key is a concatenated key, the underscores 
for each key field include one or two letters. The 
fields concatenated are a_, b_, and so forth up to 
z_ and then, aa, ba, ca, and so forth. 

If the alternate-key definition specifies repeating 
groups, the underscores for each alternate-key 
value in the record include a number (1, 2, and so 
forth). 

This CREATE_ALTERNATE_INDEXES session writes a 
display to file LIST. The listing includes all records in the 
file, marked with the proposed alternate-key 
ALTERNATE_KEY_2. 

/create_alternate_indexes input=Suser. is_file 
crea i / create_key _aef in it ion key _name=a l ternate_key _2 .. 
creai .. /key_position=O key_length=2 .. 
creai .. /repeating_grOUP_length=20 
creai/display_key_Clef in it ions .. 
creai .. / display_opt 'on=sample_recordS .. 
creai.. / sample_record_count=all output= list 
creai/Q.Jit apply_key_Clef initions=no 

7-32 SCL Advanced File Management Usage Revision G 



Revision J 

Alternate-Key Creation and Deletion Example 

The following CREATE_ALTERNATE_INDEXES session 
contains a DISPLAY_KEY_DEFINITIONS subcommand 
for a default display, that is, a full definition of all 
pending alternate-key creations and deletions and a single 
sample record. 

/create_alternate_1ndexes input=$user. is_file 
creai/create_Key_definit1on Key_name=alternate_Key_l Key_position=O 
creai .. /Key_length=2 repeating_group_length=4 
creai/display_Key_definitions 

D1splay_Key_Def in it ions 1985-10-03 
NOS/VE Keyed File Utilities 1. 1 85259 14:09:01 
File= .NVE.USER99. !S_FILE 

KEY NAME 

ALTERNATE_KEY_l 

Dupl icate_Key_Values 
Nu l l _Suppress i on 
Repeating_Groups_Specif ied 

Repeating_Group_Length 
Repeat1ng_Group_Count 

POSITION LENGTH TYPE STATE 

not _a 1 lowed 
no 

2 unco 11 ated Creation 
pending 

repeat_to_end_of_record 

RECORD 1 .. (in asc ii) T h i s i s t h e f i r s t r e c o r 
( in hex ) 5468697320697320746865206669727374207265636F72 

ALTERNATE_KEY I 1 1 2 2 3_3_ 4 4 5_5_ 6_6_ 
(in asci i) d 
( in hex ) 642E 

creai/quit apply_Key_definitions=no 

Create_Alternate_lndexes Utility 7-33 



Alternate-Key Creation and Deletion Example 

HELP Subcommand (for the CREATE_ALTERNATE_ A 
INDEXES Utility) W' 

Purpose Provides online help from within a CREATE_ 
ALTERNATE_INDEXES session. 

Format HELP or 
HEL 

SUBJECT=string 
MANUAL= file 
STATUS= status_ variable 

Parameters SUBJECT or S 

Remarks 

Topic to be located in the online manual index. The topic 
must be enclosed in apostrophes ('topic'). 

If you omit the SUBJECT parameter, HELP displays a 
list of the available subcommands. 

MANUAL or M 

File containing the online manual whose index is 
searched. If you omit the MANUAL parameter, the 
default is AFM. The working catalog is searched for the 
file and then the $SYSTEM.MANUALS catalog. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• If you enter a topic that is not in the manual index, a 
message appears telling you that the topic could not 
be found. 

• The default manual file, $SYSTEM.MANUALS.AFM, 
contains the online version of the NOSNE Advanced 
File Management Usage manual, as provided with the 
NOSNE system. 

• If your terminal is defined for full-screen applications, 
the online manual is displayed in screen mode. To 
leave the online manual, press the QUIT function key. 

• To request help in reading the online manual, enter 
HELP while in the manual. 

7-34 SCL Advanced File Management Usage Revision J 



Alternate-Key Creation and Deletion Example 

QUIT Subcommand (for the CREATE _ALTERNATE_ 
INDEXES Utility) 

Purpose 

e Format 

Ends the CREATE_ALTERNATE_INDEXES utility 
session. 

QUIT or 
QUI 

APPLY_KEY_DEFINITIONS=boolean or 
keyword_ value 

ERROR_LIMIT =integer 
STATUS= status_ variable 

Parameters APPLY_KEY_DEFINITIONS or APPLY_KEY_ 
DEFINITION or AKD 

Revision G 

Indicates how pending alternate-key creation and deletion 
requests are processed. 

APPLY or A or 
TRUE or ON or 
YES 

CANCEL or C or 
FALSE or OFF or 
NO 

Apply all pending creation and 
deletion requests. 

Cancel all pending creation and 
deletion requests. 

This parameter is required if creation or deletion requests 
are pending. 

ERROR_LIMIT or EL 

Number of nonfatal (trivial) errors allowed for the apply 
operation (integer from 0 through 4398046511103 
[242 - I]). 

A 0 value indicates no limit; 0 is the default value. 

See the APPLY_KEY_DEFINITIONS description for a 
description of apply error processing. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

Create_Alternate_Indexes Utility 7-35 



Alternate-Key Creation and Deletion Example 

Remarks 

Examples 

• The APPLY_KEY_DEFINITIONS parameter is 
required only if alternate-key creation or deletion 
requests are pending. In this case, you must specify 
whether to apply or cancel the pending requests. 

• If you request application of the pending creations and 
deletions, the QUIT subcommand (before exiting the A 
utility) performs the same processing as the APPLY_ W 
KEY_DEFINITIONS subcommand. 

Similarly, if you request cancellation of the requests, 
the QUIT subcommand performs the same processing 
as the CANCEL_KEY_DEFINITIONS subcommand 
before exiting the utility. 

For more information, see the APPLY_KEY_ 
DEFINITIONS and CANCEL_KEY_DEFINITIONS 
subcommand descriptions. 

This CHANGE_ALTERNATE_INDEXES session requests 
an alternate-key deletion and an alternate-key creation, 
but then cancels the requests: 

/ Change_alternate_ indexes f i le=Suser. iSf ile 
creai/ctelete_key_Clefinition alternate_key_l 
creai/create_key_ctefinition alternate_key_l .. 
creai .. / key_pos it ion=O key_ lengtn=5 key_type=integer 
creai/QUit apply_key_ctefinitions=no 

7-36 SCL Advanced File Management Usage Revision G 







CREATE _KEYED _FILE and CHANGE_ 
KEYED_FILE Utilities 

This chapter describes the use of two NOSNE command utilities: 
CREATE_KEYED_FILE and CHANGE_KEYED_FILE. These 
utilities can manipulate nested file definitions and the records stored 
in keyed files. 

The CREATE_KEYED_FILE command utility creates a new keyed 
file. (The keyed file must be previously defined by a SET_FILE_ 
ATTRIBUTE command.) The RECOVER_KEYED_FILE/ommand 
utility can change an existing keyed file or a copy of an existing 
keyed file. 

You can create and change alternate-key definitions while using 
CREATE_KEYED_FILE or CHANGE_KEYED_FILE by executing 
the Create_Alternate_lndexes utility as a subutility in the session. 
The subcommands for the CREATE_ALTERNATE_INDEXES 
subutility are described in detail in chapter 7. 

Using the Utilities 

8 

The CREATE_KEYED_FILE and CHANGE_KEYED_FILE command 
utilities use the same subcommands. However, the two utilities differ 
in the keyed file used as follows: 

• The file specified on the CREATE_KEYED_FILE command must 
not exist, but its attributes must be previously defined by a SET_ 
FILE_ATTRIBUTES command. 

• The input file specified on the CHANGE_KEYED_FILE command 
must be an existing keyed file. The command can also specify an 
output file which may not be an existing file. If an output file is 
specified, CHANGE_KEYED_FILE copies the input file to the 
output file; the session subcommands manipulate the contents of 
the output file. 

Online help is available in a utility session via the HELP 
subcommand. A utility session ends when the QUIT subcommand is 
entered. The utility prompts are crekf/ and chakf/. Any NOSNE 
command can be entered in response to these prompts. 

Revision J CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-1 



Preparation Before Using the Utilities 

Preparation Before Using the Utilities 

Before using the CREATE_KEYED_FILE and CHANGE_KEYED_ 
FILE utilities, you may need to enter certain NOSNE commands as 
follows: 

• Before creating a new keyed file, you must first define the keyed e 
file with a SET_FILE_ATTRIBUTES command. The new file must 
be defined, but it must not be used for any other purpose (that is, 
opened) before the CREATE_KEYED_FILE session. 

The attributes used to define a new keyed file are described in 
chapter 6. The following is an example of a command to create an 
indexed-sequential file. 

I set_ f ile_attr i but es, f i 1 e=$user. my_ i sf i le, .. 
. . /file_organization=indexed_sequential, record_type=fixed, 
.. /maximum_record_length=80, key_length=10 .. 

• Before creating or changing a keyed file that uses a user-defined 
hashing procedure, collation table, or compression procedure, you 
must add the object library containing the procedure or collation 
table to the program library list. The object library must be added 
before the utility session begins. 

For example, the following command adds an object library to the 
program library list. 

/set_program_attribute, add_library=$user.my_hash_library 

For more information on the program library list and the 
commands that affect it, see the NOSNE Object Code Management 
Usage manual. 

8-2 SCL Advanced File Management Usage Revision J 



Manipulating Nested Files 

Manipulating Nested Files 
The CREATE_KEYED_FILE or CHANGE_KEYED_FILE session 
can manipulate the nested-file definitions in the file. One nested file 
(named $MAIN _FILE) is created when the file is created. 

The following subcommands manipulate nested files: 

Subcommands 

CREATE_NESTED_FILE 

DELETE_NESTED_FILE 

DISPLAY_NESTED_FILE 

SELECT_NESTED_FILE 

Purpose 

Creates and selects a new 
nested file. 

Deletes one or more nested 
files. 

Displays information about the 
nested files. 

Selects the nested file to 
become the currently selected 
nested file. 

The other utility subcommands reference one nested file, the currently 
selected nested file. A CREATE_ALTERNATE_INDEXES subutility 
session applies only to the currently selected nested file. Initially, the 
currently selected nested file is $MAIN_FILE. You can select another 
nested file with the SELECT_NESTED_FILE subcommand or create 
and select a new nested file with the CREATE_NESTED_FILE 
subcommand. 

Revision G CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities g.3 



Adding and Replacing Records From Input Files 

Adding and Replacing Records From Input A 
Files • 
The following subcommands copy records from the input files specified 
on the subcommand: 

Subcommands 

ADD_RECORDS 

COMBINE_RECORDS 

REPLACE_RECORDS 

Purpose 

Puts the records into the selected nested 
file. (Their primary-key values must be 
unique in the nested file.) 

Puts the records with new primary-key 
values and replaces the records with 
existing primary-key values. 

Replaces records in the selected nested 
file. (Their primary-key values must 
already exist in the nested file.) 

The following rules apply to the record manipulation subcommands: 

• The subcommand operates only on the records in the currently 
selected nested file. The initially selected nested file is $MAIN_ 
FILE. You can change the selected nested file with a SELECT_ 
NESTED_FILE or CREATE_NESTED_FILE subcommand. 

• When SORT=TRUE is specified, the input records for an 
indexed-sequential file are sorted by primary-key value; input 
records for a direct-access file are sorted by hash result value. 

For Better Performance 

Pre-sorting the input records by specifying SORT= TRUE or by 
using the SORT command is highly recommended. (The SORT 
command is described in chapter 2 of this manual.) 

When SORT=TRUE, the subcommand uses additional temporary 
space to sort the input records. This additional space could be 
significant if the input files are very large. If necessary, specify e 
SORT= FALSE to prevent sorting of the input records. 

When SORT=TRUE, the subcommand writes any records with 
duplicate primary key values to the temporary file AAF$CREKF _ 
DUPLICATE_LOG. The records written to AAF$CREKF_ A 
DUPLICATE_LOG are in no specific order. • 

8-4 SCL Advanced File Management Usage Revision G 



Adding and Replacing Records From Input Files 

• The ERROR_LIMIT file attribute controls the maximum number 
of nonfatal errors that can occur before the nonfatal errors cause a 
fatal error (error_ limit_ exceeded) that terminates the 
subcommand. 

If you receive a fatal error during subcommand processing, 
processing is suspended with records added only up to the record 
that caused the error. A message tells you how to add the rest of 
the records. 

To do so, you enter, in response to the crekf/ prompt, another 
subcommand specifying AAF$CONTINUE as the only input file. 
(AAF$CONTINUE is a temporary file in which the command has 
copied the input records. It is positioned at the record following 
the record in error.) The subcomand can also specify the ERROR_ 
LIMIT parameter. 

• The subcommand detects a nonfatal error when a record: 

Is shorter than the MINIMUM_RECORD_LENGTH or longer 
than the MAXIMUM_RECORD_LENGTH of the nested file. 

Contains an alternate-key value that duplicates an existing key 
value. 

Contains a duplicate primary-key value. 

Contains a sparse-key value that indicates that the 
alternate-key value should be included in the alternate index, 
but the record is too short to include the alternate-key field. 

• If the output file has fixed-length (F) records and the input record 
is shorter than the MAXIMUM_RECORD_LENGTH of the output 
file, the subcommand pads the output record to the maximum 
record length using the PADDING_ CHARACTER attribute value. 
The default padding character is the space. 

Revision G CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-5 



Adding and Replacing Records From Input Files 

• If you specify the standard input file $INPUT on the subcommand 
in an interactive session, you are prompted for record entry from 
the terminal. (The prompt is the PROMPT_STRING connection 
attribute value. Unless changed, its value is ?.) 

To end record entry, enter the END_OF_INFORMATION 
connection attribute value as the response to the prompt. Unless 
changed, its value is *EOI. 

For example: 

crekf/add_records, $input 
? This is a new record to be added. 
? *EOI 

crek.f/ 

8-6 SCL Advanced File Management Usage Revision G 



Selecting Records 

Selecting Records 
The following subcommands manipulate selected records in the 
currently selected nested file: 

Subcommands 

DELETE_RECORDS 

DISPLAY_ RECORDS 

EXTRACT_ RECORDS 

Purpose 

Deletes selected records from the nested 
file. 

Formats and displays selected records. 

Copies selected records from the nested 
file to another file. 

The following rules apply to the subcommands that select records: 

• The subcommand only selects records from the currently selected 
nested file. 

• When specifying values for a key range, you do not have to specify 
the entire key value. For example, if you specify KEYS='A'.!Z', 
the range begins with the fi.rst key. value whose first character is 
greater than or equal to A and ends at the first key value whose 
first character is greater than Z. 

• If you specify the KEYS parameter with only one key value, the 
full key value must be specified. This is to ensure that the correct 
record is selected. (This rule is not effective for a DELETE_ 
RECORDS subcommand with VETO=TRUE, because in that case, 
you must confirm that the correct record is being deleted.) 

• When you specify a single key value on the KEY parameter, the 
subcommand searches for that key value and, if it cannot find that 
value, it does not select any records. In contrast, when you specify 
a range on the KEY parameter, the subcommand searches for that 
key value or the next greater key value. 

Revision G CREATE_KEYED_FILE and CHANGE_KEYEI>_FILE Utilities 8-7 



Selecting Records 

For example, suppose a file has only two records; their 
primary-key values are B and C. The following subcommands are e 
entered: 

delete_record, key='A' 
No record has key value A so no records are selected. 

delete_record, key='A' . .'2' 
Both records are selected. 

delete_record, key='A', count=20 
No record has key value A so no records are selected. 

delete_record, key='A' .. $LAST_KEY, count=20 
Both records are selected. 

• The COUNT parameter selects records until either the count is 
satisfied or the upper value of the key range is encountered. 

8-8 SCL Advanced File Management Usage Revision G 



Calculating the INITIAL_HOME_BLOCK_COUNT 

Calculating the INITIAL_HOME_BLOCK_ 
COUNT 
Creation of a new keyed file or nested file using the direct-access file 
organization requires an INITIAL_HOME_BLOCK_COUNT value for 
the file. (The INITIAL_HOME_BLOCK_COUNT value is the number 
of blocks allocated for the file when it is created, as described under 
Direct.Access File Structure in chapter 5.) 

For a new keyed file, you can specify the INITIAL_HOME_BLOCK_ 
COUNT value on the SET_FILE_ATTRIBUTES command for the file 
or have the CREATE_KEYED_FILE command calculate the value for 
you. Similarly, for a new nested file, you can specify the INITIAL_ 
BLOCK_COUNT on the CREATE_NESTED_FILE subcommand or 
have the subcommand calculate the value for you. 

In both cases, if you omit the INITIAL_HOME_BLOCK_COUNT 
value, you receive the following message and the prompt IHBC/: 

--INFORMATIVE- The output file is a direct-access file but a 
value was not provided for INITIAL_HOME_BLOCK_COUNT. 
Please enter ADD_RECORDS commands in response to the prompt 
"IHBCf'. Enter QUIT after specifying ALL files to be copied. 
CREATE_KEYED_FILE will then compute the INITIAL_HOME_ 
BLOCK_COUNT and copy the records into the new file. IHBC/ 

The command should calculate the INITIAL_HOME_BLOCK_COUNT 
value only if all input records for the new keyed file or new nested 
file are available. If additional records are to be added later, after the 
creation of the file or nested file, you should enter QUIT after the 
IHBC/ prompt. In this case, you must choose an INITIAL_HOME_ 
BLOCK_ COUNT for the file or nested file and specify it on the 
command or subcommand. 

However, if all records to be stored in the direct-access file are 
available, you can have the command or subcommand calculate the 
appropriate initiaLhome_block_count for you. To have the initial_ 
home_block_count calculated for you, you must specify the files 
containing ALL input records for the new file or nested file. You 
specify the files on ADD_RECORDS subcommands. 

The command or subcommand reads the files specified on the ADD_ 
RECORDS subcommand and accumulates the records to be put into 
the file. When you enter the QUIT subcommand, it calculates the 
initial_home_block_count value, creates the direct-access file, and 
puts the records into the file. 

Revision G CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8·9 



Calculating the INITIAL_HOME_BLOCK_COUNT 

The initiaLhome_block_count is calculated using this formula: 

(average_record_length + 3) * record_count 

(loading_factor/100) * (block_length - 36) 

You can specify the loading factor used by the formula on the 
CREATE_KEYED_FILE command or CREATE_NESTED_FILE 
subcommand. The default is 75. 

For example, the following commands create a direct-access file 
containing the records from a file and a nested file: 

IHBC/add_records, $user.seouential_file 
IHBC/add_records, ($user.keyed_file, $main_file) 
!HBC/ QU1 t 
--INFORMATIVE-- INITIAL_HOME_BLOCK_COUNT=105 based upon 
LOAD_FACTOR=75, AVERAGE_RECORD_LENGTH=63, 
RECORD_COUNT=12000 and BLOCK_LENGTH=512. 
crekf/ 

8-10 SCL Advanced File Management Usage Revision G 



CREATE_KEYED_FILE Example 

CREATE _KEYED _FILE Example 
The following interactive session illustrates use of the CREATE_ 
KEYED_FILE command utility: 

/copy_keyed_file input=Suser.add_file 
Everest Africa 8800 
Fuji Asia 7000 
K2 Asia 8611 
Kilimanjaro Africa 5895 

/copy_keyed_file input=$user.replace_file 
Everest Asia 8848 

/copy_keyed_file input=$user.combine_file 
Matterhorn Europe 4478 
McKinley North America 6194 
Fuji Asia 6999 

•otsplays contents of 
•$USER.ADD_FILE. 

•o;splays contents of 
"$USER.REPLACE_FILE. 

"Displays contents of 
"$USER.COMBINE_FILE. 

/set_file_attributes "Defines the file attributes 
.. /ftle=$user.indexed_sequential_file .. "of file $USER.INDEXED_ 
.. /file_organization=indexed_seouential "SEQUENTIAL_FILE . 
.. /maximum_record_length=32 .. 
.. /minimum_record_length=14 .. 
.. /key_length=14, key_position=O 

/create_keyed_file . . •starts the utility session . 
.. /output=$user.1ndexed_seouential_file 

crekf/add_records .. "Adds records. 
crekf .. /input=$user.add_file 

crekf/replace_records .. "Replaces records. 
crekf .. /input=$user.replace_file 

crekf/combine_records .. "Adds and replaces records. 
crekf .. /tnput=$user.combine_file 

crekf/display_records count=all 
Display_Nested_File 

NOS/VE Keyed File Utilities 1.2 85357 
File= :NVE.USER99.INDEXED_SEQUENTIAL_FILE.1 

"Displays records. 
1986-02-17 

11:19:36 

Revision G CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-11 



CREATE_KEYED_FILE Example 

Byte: 0 ASCII: Everest Asia 8848 
Byte: 0 ASCII: Fuj1 Asia 6999 
Byte: 0 ASCII: K2 Asia 8611 
Byte: 0 ASCII: K 11 imanjaro Africa 5895 
Byte: 0 ASCII: Matterhorn Europe 4478 
Byte: 0 ASCII: McKinley North America 6194 

crekf/extract_records output=new_file •Extracts records. 
crekf .. / keys='E' .. 'Ma', count=3 
--INFORMATIVE AA 501275-- The Extract_Records subconmand of 
CREATE_KEYED_FILE copied 3 records from nested file 
$MAIN_FILE in ffle :NVE.USER99.INDEXED_SEQUENTIAL_FILE 
to NEW_FILE. 

crek f I de 1 et e_records •oeletes records. 
crekf ... / keys='Matterhorn' .. 'McKinley' 
crekf . ./count=2, veto=true 
Byte: O ASCII: Matterhorn 
Okay to delete? •=>Yes 

Europe 4478 

Byte: 0 ASCII: McKinley North America 6194 
Okay to delete? ==>No 
--INFORMATIVE AA 501305-- As reQuested by the user, thfs 
record was not deleted. 
--INFORMATIVE AA 501285-- The Delete_Records subconmand of 
CREATE_KEYED_FILE deleted 1 record from nested f11e 
$MAIN_FILE in file :NVE.USER99.INDEXED_SEQUENTIAL_FILE. 

crek f I crea t e_nest ed_ f i 1 e .. 
crekf . ./ name=nested_fi le_ 1 .. 
crekf .. /maximum_record_length=32 
crekf . ./key_ length= 14 .. 

•creates a new nested file. 

crekf .. /file_organization=indexed_seQuential 

crekf/display_nested_file 
Display_Nested_File 

•01splays the nested files. 
1986-02-17 

NOS/VE Keyed File Utilities 1.2 85357 
File = :NVE.USER99.INDEXED_SEQUENTIAL_FILE 

12:20:36 

List of Nested Files for ff le INDEXED_SEQUENTIAL_FILE 
NESTED_FILE_1 (currently selected nested file) 
$MAIN_ FILE 

crekf I select_nested_ff le 
crekf .. I name•$mai n_f i le 

8-12 SCL Advanced File Management Usage 

•selects another nested file. 

Revision G 



CREATE_KEYED_FILE Example 

crekf/display_nested_file •01splays the nested files. 
1986-02-17 Display_Nested_File 

NOS/VE Keyed File Utilities 1.2 85357 12:25:36 
File= :NVE.USER99.INDEXED_SEQUENTIAL_FILE 

List of Nested Files for file INDEXED_SEQUENTIAL_FILE 
$MAIN_FILE (currently selected nested file) 
NESTED_FILE_l 

crekf/delete_nested_file 
crekf .. /name=nested_file_l 

•oeletes a nested file. 

crekf/display_nested_file •oisplays the nested files. 
1986-02-17 Display_Nested_File 

NOS/VE Keyed File Utilities 1.2 85357 
File~ :NVE.INDEXED_SEQUENTIAL_FILE 

12:30:46 

List of Nested Files for file INDEXED_SEQUENTIAL_FILE 
$MAIN_FILE (currently selected nested file) 

crekf/Quit •Ends the session. 

Revision G CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8·13 



CREATE_KEYED_FILE Example 

CREATE_KEYED_FILE Command 

Purpose 

Format 

Creates the keyed file specified on the command and 
begins a CREATE_KEYED_FILE utility session. 

NOTE 

The new keyed file must be previously defined by a SET_ e 
FILE_A'ITRIBUTES command. 

CREATE_KEYED_FILE or 
CREKF 

OUTPUT= tile 
STATUS= status_ variable 

Parameters OUTPUT or OB 

File path of the keyed file to be created. The file must be 
a new file (never opened), but its attributes must have 
been specified by previous SET_FILE_A'ITRIBUTES 
commands. This parameter is required. 

The minimum attributes that must be defined are KEY_ 
LENGTH and MAXIMUM_RECORD_LENGTH. If the A 
FILE_ORGANIZATION is omitted, CREATE_KEYED_ W 
FILE creates an indexed-sequential file. 

STATUS 

Optional status variable. 

In a batch job, when a subcommand without its own 
status variable returns an error, the error is stored in the 
CREATE_KEYED_FILE status variable, if any, and the 
utility session terminates. 

In an interactive session, when a subcommand without its 
own status variable returns an error, the error is 
displayed at the terminal, but the utility session does not 
end. The user can continue the session with another 
subcommand. 

In an interactive session, only the completion status of 
the CREATE_KEYED_FILE command and the QUIT 
command that ends the session are stored in the 
CREATE_KEYED_FILE status variable. 

8·14 SCL Advanced File Management Usage Revision G 



Remarks 

Revision J 

CREATE_KEYED_FILE Command 

• The command utility prompt is: 

crekf/ 

In response to the crekf/ prompt, you can enter 
NOSNE commands and any of these subcommands: 

ADD_RECORDS 
COMBINE_RECORDS 
CREATE_ALTERNATE_INDEXES 
CREATE_NESTED_FILE 
DELETE_NESTED_FILE 
DELETE_RECORDS 
DISPLAY_NESTED_FILE 
DISPLAY_RECORDS 
EXTRACT_RECORDS 
HELP 
QUIT 
REPLACE_RECORDS 
SELECT _NESTED _FILE 

• The new keyed file is created with one nested file, 
named $MAIN_FILE. It is the initially selected nested 
file and all subcommands apply to it until a 
CREATE_NESTED_FILE or SELECT_NESTED_FILE 
subcommand selects another nested file. 

• If any nested file in the new keyed file will use a 
user-defined collation table, hashing procedure, or 
compression procedure, the object library containing 
the compiled table or procedure must be in the 
program library list before the CREATE_KEYED_ 
FILE session begins. 

To add one or more object libraries to the program 
library list, use the ADD_LIBRARIES parameter on a 
SET_PROGRAM_ATTRIBUTES command. For 
example: 

set_program_attributes, add_library=$user.hash_library 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-15 



CREATE_KEYED_FILE Command 

Examples 

• If you specify DIRECT_ACCESS as the FILE_ 
ORGANIZATION attribute on the SET_FILE_ 
ATTRIBUTES command, but omit the INITIAL_ 
HOME_BLOCK_COUNT attribute, CREATE_ 
KEYED_FILE prompts you for calculation of the 
INITIAL_HOME_BLOCK_COUNT. For more 
information, see Calculating the INITIAL_HOME_ 
BLOCK_COUNT earlier in this chapter. 

This CREATE_KEYED_FILE example defines the file 
$USER.INDEXED_SEQUENTIAL_FILE with the SET_ 
FILE_ATTRIBUTES command and then creates it. 

/set_file_attributes .. 
. . /file=$user.indexed_sequential_file 
.. /file_organization=indexed_sequential 
.. /maximum_record_length=32 .. 
. . /minimum_record_length=14 
. ./key_ length= 14 
/create_k.eyed_file .. 
. . /output=$user.indexed_sequential_file 
crek.f/ 

At this point, the file has been opened and, therefore, 
exists, but is empty. 

8-16 SCL Advanced File Management Usage Revision J 



CHANGE_KEYED_FILE Command 

CHANGE _KEYED _FILE Command 

Purpose 

Format 

Changes an existing keyed file or a copy of the keyed file 
and begins a CHANGE_KEYED_FILE utility session. 

CHANGE_KEYED_FILE or 
CHAKF 

INPUT=file 
OUTPUT=file 
STATUS =status_ variable 

Parameters INPUT or I 

Revision J 

File path of an existing keyed file. You must have at 
least read access to the input file. This parameter is 
required. 

OUTPUT or 0 

File path of the keyed file to which the input file is 
copied. 

If file does not exist, CHANGE_KEYED_FILE creates it 
when it copies the input file. If the file does exist, it 
must have the same attributes as the input file. 

If you omit the OUTPUT parameter, CHANGE_KEYED_ 
FILE does not use an output file; instead, it opens the 
input file and changes it directly. 

STATUS 

Optional status variable. 

In a batch job, when a subcommand without its own 
status variable returns an error, the error is stored in the 
CHANGE_KEYED_FILE status variable, if any, and the 
utility session terminates. 

In an interactive session, when a subcommand without its 
own status variable returns an error, the error is 
displayed at the terminal, but the utility session does not 
end. The user can continue the session with another 
subcommand. 

In an interactive session, only the completion status of 
the CHANGE_KEYED_FILE command and the QUIT 
command that ends the session are stored in the 
CHANGE_KEYED_FILE status variable. 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-17 



CHANGE_KEYED_FILE Command 

Remarks 

Examples 

• The command utility prompt is: 

chakf/ 

• In response to the chakf/ prompt, you can enter 
NOSNE commands and any of these subcommands: 

ADD_RECORDS 
COMBINE_RECORDS 
CREATE_ALTERNATE_INDEXES 
CREATE_NESTED _FILE 
DELETE_NESTED _FILE 
DELETE_RECORDS 
DISPLAY_NESTED_FILE 
DISPLAY_RECORDS 
EXTRACT_RECORDS 
HELP 
QUIT 
REPLACE_ RECORDS 
SELECT_NESTED_FILE 

• All subcommands in the session apply to the currently 
selected nested file. The initially selected nested file is 
$MAIN _FILE. The nested file selection can be 
changed by a CREATE_NESTED_FILE or SELECT_ 
NESTED_FILE subcommand. 

• If the existing keyed file or a new nested file to be 
created uses a user-defined collation table, hashing 
procedure, or compression procedure, the object library 
containing the compiled table or procedure must be in 
the program library list before the CHANGE_ 
KEYED_FILE session begins. 

To add one or more object libraries to the program 
library list, use the ADD_LIBRARIES parameter on a 
SET_PROGRAM_ATTRIBUTES command. For 
example: 

set_program_attributes, add_library=$user.hash_library 

The following session copies an existing keyed file and 
then ends. 

/change_keyed_f i le, input=$user. exist ing_keyed_f i le, 
.. /output=$user.new_keyed_file 
chakf/quit 

8-18 SCL Advanced File Management Usage Revision J 



CREATE_KEYED_FILE Example 

ADD_RECORDS Subcommand 

Purpose 

Format 

Puts records into the currently selected nested file. 

ADD_RECORDS or 
ADD_RECORD or 
ADDR 

INPUT= file or list of files 
SORT=boolean 
ERROR_LIMIT =integer 
STATUS= status_ variable 

Parameters INPUT or I 

Remarks 

Revision G 

List of one or more files whose records are to be copied. 
You must have at least read access to the input files. 
This parameter is required. 

SORT or S 

Indicates whether the subcommand sorts the input records 
before adding them to the currently selected nested file. If 
you omit the SORT parameter, the default is 
SORT=TRUE. 

ERROR_LIMIT or EL 

Number of nonfatal (trivial) errors allowed for the ADD_ 
RECORDS operation (integer from 0 through 
4398046511103[242-m. 
A 0 value indicates no limit; 0 is the default value. 

See the Remarks for a description of error processing. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

See the rules for record copying subcommands listed 
under Adding and Replacing Records From Input Files at 
the beginning of this chapter. 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-19 



CREATE_KEYED_FILE Example 

Examples This CREATE_KEYED_FILE example creates the file 
$USER.INDEXED_SEQUENTIAL_FILE, adds the records A 
of file $USER.ADD_RECORDS to it, and then displays W 
the file. 

I set_fi le_attributes 
.. / f i le=Suser. indexed_sequent ia l_f i le .. 
. . / fi le_organization=indexed_seouential .. 
. . / 111ax imum_record_ length=32 
.. / 11inimum_record_length=l4 .. 
. . / key_ length= 14 

I create_keyed_f i le 
.. / output=Suser. inclexed_sequent ial_f i le 
crekf I add_records input=Suser .add_records 

crekf /display_records count=all 

Display_Nested_File 1986-02-17 
NOS/VE Keyed Fi le Ut i 1 it ies 1. 2 85357 
File= :NVE.USER99. lll[)EXED_SEQUENTIAL_FILE. 1 
Display of records in $MAIN_FILE 

Byte: 0 ASC! I: Everest Asia 
Byte: 0 ASCII: K2 Asia 
Byte: 0 ASCII: Ki 1 imanjaro Africa 
Byte: 0 ASCII: Matterriorn Europe 

11:19:36 

8848 
8611 
5895 
4478 

Byte: 0 ASCII: McKinley North America 6194 
crekf/ 

8-20 SCL Advanced File Management Usage Revision G 



CREATE_KEYED_FILE Example 

COMBINE _RECORDS Subcommand 

Purpose 

Format 

Puts and replaces records in the currently selected nested 
file. 

COMBINE_RECORDS or 
COMBINE_RECORD or 
COMR 

INPUT= file or list of files 
SORT= boolean 
ERROR_UMIT=integer 
STATUS= status_ variable 

Parameters INPUT or I 

Remarks 

Revision G 

List of one or more files whose records are to be copied. 
You must have at least read permission to the input files. 
This parameter is required. 

SORT or S 

Indicates whether the subco~mand sorts the input records 
combining them with the currently selected nested file. If 
you omit the SORT parameter, the default is 
SORT=TRUE. 

ERROR_LIMIT or EL 

Number of nonfatal (trivial) errors allowed for the 
COMBINE_R&CORDS operation (integer from 0 through 
4398046511103(242-1]). 

A 0 value indicates no limit; 0 is the default value. 

See the Remarks for a description of error processing. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• Because the COMBINE_RECORDS subcommand does 
not lock key values it is recommended that you do not 
use this subcommand when another task could be 
updating the same records. If you attach the output 
file with no write share modes (SHARE_ 
MODES=READ or SHARE_MODES=NONE) before 
the session, the file cannot be shared for updating. 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-21 



CREATE_KEYED _FILE Ex.ample 

Examples 

• See the rules for record copying subcommands listed 
under Adding and Replacing Records From Input Files e 
at the beginning of this chapter. 

This CREATE_KEYED_FILE example adds records that 
have a new primary key and replaces records that have 
an existing primary-key value. e 

/copy_keyed_file add_file 
Everest Africa 8800 
K2 Asia 8611 
Kilimanjaro Africa 5895 

/copy_keyed_file combine_file 
Everest Asia 8848 
MatterhQrn Europe 4478 
McKinley North America 6194 

/create_keyecU; le .. 
. . /output=$user. inaexed_sequent ia l_f i le 
crekf/ado_records input=Suser.add_file 
crekf/combine_records input=$user.comb1ne_file 
crekf/display_records count=all 

Display_Nested_File 
NOS/VE Keyed File Utilities 1.2 85357 
File= :NVE.USER99. INDEXED_SEQUENT!AL_FILE. 1 
Display of records in SMA!N_FILE 

Byte: 0 ASCII: Everest Asia 
Byte: 0 ASCII: K2 Asia 
Byte: 0 ASCII: Kilimanjaro Africa 
Byte: 0 ASCII: MatterhOrn Eurepe 

1986-02-17 
12:01 :46 

8848 
8611 
5895 
4478 

Byte: 0 ASCJJ: MCK in ley North Amer 1 ca 619~ 
crekf/ 

8-22 SCL Advanced File Management Usage Revision G 



CREATE_KEYED_FILE Example 

CREATE _ALTERNATE _INDEXES Subcommand 

Purpose 

Format 

Begins a CREATE_ALTERNATE_INDEXES subutility 
session to create, delete, and display alternate-key 
definitions in the currently selected nested file. 

CREATE_ALTERNATE_INDEXESor 
CHANGE_ALTERNATE_INDEXES or 
CREATE _ALTERNATE _INDICES or 
CHANGE_ALTERNATE_INDICES or 
CREATE _ALTERNATE _INDEX or 
CHANGE_ALTERNATE_INDEX or 
CREAI or 
CHAAI 

STATUS= status_ variable 

Parameters STATUS 

Revision G 

Optional status variable. 

In a batch job, when a subcommand without its own 
status variable returns an error, the error is stored in the 
CREATE_ALTERNATE_INDEXES status variable, if any, 
and the subutility session terminates. 

In an interactive session, when a subcommand without its 
own status variable returns an error, the error is 
displayed at the terminal, but the subutility session does 
not end. The user can continue the session with another 
subcommand. 

In an interactive session, only the completion status of 
the CREATE_ALTERNATE_INDEXES command and the 
QUIT command that ends the session are stored in the 
CREATE_ALTERNATE_INDEXES status variable. 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8·23 



CREATE_KEYED_FILE Example 

Remarks • The subutility prompt is: 

creai/ 

In response to the creai/ prompt, you can enter SCL 
commands and any of these subcommands: 

CREATE_KEY_OEFINITIONS 
DISPLAY_KEY_DEFINITIONS 
DELETE_KEY_DEFINITIONS 
CANCEL_KEY_DEFINITIONS 
APPLY_KEY_DEFINITIONS 
HELP 
QUIT 

For detailed descriptions of the CREATE_ 
ALTERNATE_INDEXES subcommands, see chapter 7. 

• The CREATE_ALTERNATE_INDEXES subcommand 
does not check your file permissions; each subcommand 
you enter in the subutility session check that you have 
the required permissions to do the operation. 

To display key definitions, you must have at least A 
read permission; to create, delete, cancel, or apply key • 
definitions, you must have at least the three 
permissions: append, modify, and shorten. 

8-24 SCL Advanced File Management Usage Revision G 



Examples 

Revision G 

CREATE_KEYED _FILE Example 

The following subutility session creates an alternate-key 
definition and then displays it. 

crekf/create_alternate_indexes 
creai/create_key_definit1ons .. 
creai .. /key_name=alternate_Key_l 
creai .. /key_pesition=28 Key_length=4 
creai/display_Key_definitions d1splay_options=a11 
Display_Nested_File 1986-02-17 
ta>/VE Keyed File Utilities 1.2 86034 
File= :NVE. INOEXED_SEQUENTIAL_FILE 
Nested_File_Name 

KEY_NAME. POSITION LENGTH TYPE 

12:20:26 

STATE 

ALTERNATE_KEY_l 
pending 
Duplicate_Key_Value 
Null_Suppression 

28 4 uncollated creation 

not_allowed 
no 

RECORD 1 .. (in asc i i) : E v e r e s t A s i a 
( in hex ) :457665726573742020202020202041736961202020202020 

ALTERNATE_KEY_l 

creai/ 

(inasci1) 8848 
( in hex ) :2020202038383438 

u_u_u_u_ 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-25 



CREATE_KEYED_FILE Example 

CREATE _NESTED _FILE Subcommand 

Purpose 

Format 

Creates and selects a new nested file. 

CREATE_NESTED_FILE or 
CRENF 

NAME=name 
MAXIMUM _RECORD _LENGTH= integer 
KEY_LENGTH =integer 
KEY _POSITION= integer 
KEY_ TYPE =keyword 
FILE_ ORGANIZATION= keyword 
EMBEDDED _KEY= boolean 
MINIMUM _RECORD _LENGTH =integer 
RECORD_ TYPE =keyword 
COMPRESSION _PROCEDURE_NAME =name 
COLLATE_ TABLE_NAME =name 
DATA_PADDING= integer 
INDEX_PADDING=integer 
INITIAL_HOME_BLOCK_ COUNT= integer 
HASHING_PROCEDURE_NAME =name 
DYNAMIC_HOME_BLOCK_SPACE=boolean 
LOADING _FACTOR =integer 
RECORDS_PER_BLOCK=integer 
STATUS= status_ variable 

Parameters NAME or N 

Name of the new nested file. It must be unique in the 
keyed file. This parameter is required. 

MAXIMUM_RECORD_LENGTH or MAXRL 

Maximum number of bytes in a data record (from 1 
through 65497). This parameter is required. 

KEY_LENGTH or KL 

Integer specifying the primary-key length in bytes (for 
integer keys, from 1 through 8; for other key types, from 
1 through 255). This parameter is required. 

KEY _POSITION or KP 

Position of the leftmost byte in the primary key (specified 
only if the key is embedded). The byte positions in a 
record are numbered from the left, beginning with 0. The 
default is 0. 

8·26 SCL Advanced File Management Usage Revision G 



ReYision G 

CREATE_KEYED_FILE Example 

KEY_TYPE or KT 
Primary key type: UNCOLLATED (UC), INTEGER (I), or 
COLLATED (C). The default is UNCOLLATED. 

For a direct-access file, any value specified for the KEY_ 
TYPE attribute is ignored; the KEY_ TYPE attribute 
value for direct-access files is always UNCOLLATED. 

FILE_ORGANIZATIONorFO 
Organization of the file: either INDEXED_SEQUENTIAL 
(IS) or DIRECT_ACCESS (DA). The default file 
organization is INDEXED_SEQUENTIAL. 

EMBEDDED_KEYorEK 
SCL boolean value indicating whether the primary key is 
part of the record data (embedded) or separate from the 
record data (nonembedded). The default is TRUE 
(embedded keys). 

MINIMUM_RECORD_LENGTHorMINRL 
Minimum number of bytes in a data record (from 0 
through 65497). 

If the RECORD_TYPE is FIXED, the default minimum 
record length is 0, but the length of each fixed-length 
record must be the MAXIMUM_RECORD_LENGTH 
value. 

If the RECORD_ TYPE is UNDEFINED or VARIABLE 
and the key is embedded, the default is the sum of the 
KEY_POSITION and KEY_LENGTH values. Otherwise, 
the default is 1. 

For variable-length records, you should explicitly specify 
this attribute. The minimum record length must include: 

• The primary-key field 

• All fixed-length alternate-key fields (or their 
sparse-key control character$) unless the key repeats 
to the end of the record. 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8·27 



CREATE_KEYED_FILE Example 

RECORD_ TYPE or RT 

Record type: FIXED (F), VARIABLE (V), or UNDEFINED 
(U). 

For keyed files, the record types VARIABLE and 
UNDEFINED are processed as the same and the 
TRAILING_CHARACTER_DELIMITED (T) record type is 
not supported.) 

COMPRESSION_PROCEDURE_NAME or CPN 

Name of the compression procedure to be executed with 
this file. The compression procedure provided by the 
system is AMP$RECORD_COMPRESSION. A compression 
procedure is optional. 

COLLATE_TABLE_NAME or CTN 

Name of the collating sequence by which collated keys are 
ordered (required if the KEY_ TYPE is COLLATED). This 
parameter may be specified for indexed-sequential nested 
files only. 

The name can be the name of a NOSNE predefined 
collating sequence or a user-defined collating sequence (an 
entry point in an object library). See appendix E for more e 
information. 

DATA_PADDING or DP 

Percentage of data-block space left empty when a block is 
created (integer from 0 through 99). The default is 0. 

The percentage must allow for storage of at least one 
maximum-length record per block. This parameter may be 
specified for indexed-sequential nested files only. 

INDEX_PADDING or IP 

Percentage of index-block space left empty when a block 
is created (integer from 0 through 99). The default is 0. 

The percentage must allow for storage of at least three 
index records per block. (The index record length is the 
key length plus 4). This parameter may be specified for A 
indexed-sequential nested files only. W 

8-28 SCL Advanced File Management Usage Revision G 



e Remarks 

Revision G 

CREATE_KEYED_FILE Example 

INITIAL_HOME_BLOCK_COUNTorIHBC 

Number of home blocks to be created in the file (1 
through 231-1). This parameter may be specified for 
direct-access nested files only. For more information, see 
the Direct-Access File Structure discussion in chapter 5. 

HASHING_PROCEDURE_NAME or HPN 

Name of the hashing procedure to be executed with this 
file. The default hashing procedure is the one provided by 
the system AMP$SYSTEM_HASHING_PROCEDURE. 
This parameter may be specified for direct-access nested 
files only. For more information, see the hashing 
procedure discussion in chapter 5. 

DYNAMIC_HOME_BLOCK_SPACE or DHBS 

This parameter is reserved for future use. The parameter 
default is FALSE. 

LOADING _FACTOR or LF 

Percentage of home block space used in a direct-access 
file. 

The default percentage is 75%. To allow for 
less-than-uniform distribution of records in the home 
blocks, the loading factor should be no greater than 90%. 
If the INITIAL HOME BLOCK_COUNT is specified, the 
loading factor is ignored. 

See the Remarks section for more information on 
computing the INITIAL_HOME_BLOCK_COUNT. 

RECORDS_PER_BLOCKorRPB 

This parameter is reserved for future use. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• If the new nested file is to use a user-defined collation 
table, hashing procedure, or compression procedure, the 
object library containing the compiled table or 
procedure must be in the program library list before 
the CREATE_KEYED_FILE or CHANGE_KEYED_ 
FILE session begins. 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-29 



CREATE_KEYED_FILE Example 

Examples 

To add one or more object libraries to the program 
library list, use the ADD_LIBRARIES parameter on a A 
SET_PROGRAM_ATTRIBUTES command. For W 
example: 

set_program_attr ibutes, add_ l 1brary=Suser. hash_ l 1brary 

• If you specify DIRECT_ACCESS as the FILE_ e 
ORGANIZATION attribute on the CREATE_NESTED_ 
FILE subcommand, but omit the INITIAL_HOME_ 
BLOCK_ COUNT attribute, you are prompted for 
calculation of the INITIAL_HOME_BLOCK_ COUNT. 
For more information, see Calculating the INITIAL_ 
HOME_BLOCK_COUNT earlier in this chapter. 

This CREATE_KEYED_FILE example creates a new 
nested file NESTED_FILE_l and then displays the newly 
created nested file. 

crekf/create_nested_file name=nested_file_l .. 
crefk .. /max imum_recora_ length=32. key_ length= 14 .. 
crekf .. /file_organization=inaexed_seQUential 
crekf / display_nested_f i le 

Oisplay_Nested_File 
NOS/VE Keyed File Ut i 1 it ies 1. 2 85357 
File= :NVE.INDEXEO_SEQUENTIAL_FILE 

List of Nested Files for file ll()EXED_SEQUENTIAL_FILE 

1986-02-17 
12:42:49 

NESTED_FILE_l <currently selectea nestea file) 
SMAIN_FILE 

8-30 SCL Advanced File Management Usage Revision G 



CREATE_KEYED_FILE Eumple 

DELETE _NESTED _FILE Subcommand 

Purpose 

Format 

Parameters 

Remarks 

E:icamples 

Revision G 

Deletes one or more nested files. 

DELETE_NESTED_FILE or 
DELNF 

NAME= nameor list of names 
STATUS =status_ variable 

NAME or N 

List of one or more nested files to be deleted. This 
parameter is required. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• You cannot delete the currently selected nested file or 
$MAIN _FILE. 

• To delete the currently selected nested file, select 
another nested file first using the SELECT_NESTED_ 
FILE subcommand and then issue the DELETE_ 
NESTED_FILE subcommand. 

• To display the names of the nested files, enter a 
DISPLAY_NESTED_FILE subcommand. 

This CREATE_KEYED_FILE example displays the list of 
nested files and then deletes the nested file NESTED_ 
FILE_2. 

crekf/display~nested_f; le 
Display_Nested_File 

NOS/VE Keyed File Utilities 1.2 85357 
File• :NVE.INDEXED_SEQUENTIAL_FILE 

List of Nested Files for file lt.C>EXED_SEQUENTIAL_FILE 

1986-02-17 
12:50: 12 

NESTED_FILE_l (currently selected nested file) 
NESTED_FILE_2 
SMAIN_FILE 

crekf/delete_nested_f ile name•nested_f ile_2 
crekf /display_nested_f i le 

Display_Nested_Fi le 
NOS/VE Keyed Fi le Ut i 1 it ies 1. 2 85357 
File• :NVE.lt.DEXED_SEQUENTIAL_FILE 

List of Nested Files for file Jt{)EXED_SEQUENTIAL_FILE 

1986-02-17 
12:52:02 

SMAIN_FILE (currently selected nested file) 
NESTEO_FILE_l 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-31 



CREATE_KEYED_FILE Example 

DELETE_RECORDS Subcommand 

Purpose 

Format 

Deletes records from the currently selected nested file. 

DELETE_RECORDS or 
DELETE_RECORD or 
DELR 

KEYS= range of key 
COUNT= integer 
VETO= boolean 
STATUS= status_ variable 

Parameters KEYS or KEY or K 

Optional range of primary-key values to be deleted. The 
range may be specified in one of the following ways: 

• As two primary-key values separated by two periods 
( .. ). The first value must be lower than or equal to the 
second value. 

• As one primary-key value specifying the beginning of 
the range. The number of records deleted is specified 
by the COUNT parameter. 

For indexed-sequential files, you may use the keywords 
$FIRST_KEY and $LAST_KEY in the key range to 
specify the lowest and highest key values, respectively. 

For direct-access files, you can specify only one key value; 
a range of key values is not permitted. The only exception 
to this is the range $FIRST_KEY .. $LAST_KEY, which 
deletes all records in the currently selected nested file. 

If you omit the KEYS parameter, no default is assumed 
and records are deleted beginning with the first record. 

COUNT or C 

Indicates the number of records to be deleted. 

Integer (O Deletes the specified number of records. 
through 
4398046511103) ~ 

ALL or A Deletes all records in the file. 

8-32 SCL Advanced File Management Usage Revision G 



Revision G 

CREATE_KEYED_FILE Example 

If you omit the COUNT parameter, the default is 1, 
unless a range is specified by the KEYS parameter and 
then the default is the number of records in the range. If 
both a key range and a count is specified, the count 
limits the number of records deleted within the range. 

VETO or V 

Indicates whether the interactive user must confirm each 
deletion. 

TRUE or YES or ON Confirmation requested. 

FALSE or NO or OFF No confirmation requested. 

DELETE_RECORDS requests confirmation by displaying 
the record to be deleted following by the prompt, Okay to 
delete? = = >. You respond with one of the following: 

YES or Y Delete the record. 

NO or N Do not delete record. 

QUIT or Q Terminate the subcommand without 
deleting any more records. 

HEX or H Redisplays the current record using 
hexadecimal representation and reissues the 
prompt. 

All or A Continue deleting records without further 
confirmation prompts. 

If this parameter is omitted, the default is FALSE. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-33 



CREATE_KEYED_FILE Example 

Remarks 

Examples 

• Because the DELETE_RECORDS subcommand does 
not lock key values, it is recommended that you do 
not use this subcommand when another task could be 
updating the same records. If you attach the output 
file with no write share modes (SHARE_ 
MODES=READ or SHARE_MODES=NONE} before 
the session, the file cannot be shared for updating. 

• See the rules listed under Selecting Records at the 
beginning of this chapter. 

This CREATE_KEYED_FILE example deletes a record in 
the currently selected nested file. 

crellf I ctelete_records. keys='Mattemorn' .. 'McKinley' .. 
crekf .. / count =2, veto= true 
Byte: 0 ASCII: MatterhOrn Europe 4478 
Okay to delete? ==>Yes 
Byte: 0 ASCII: McKinley North America 6194 
Okay to delete? ==>No 
--INFORMATIVE AA 501305-- As requested by the user, this record was 
not deleted. 
--INFORMATIVE AA 501285-- The Delete_Records subcommand of 
CREATE_KEYED_FILE deleted 1 records from nested file $MAIN_FILE in 
file :NvE. INDEXED_SEQUENTIAL_FILE. 
crekf I 

8-34 SCL Advanced File Management Usage Revision G 



CREATE_KEYED_FILE Example 

DISPLAY_NESTED_FILE Subcommand 

Purpose 

Format 

Displays the following information for the specified nested 
files: 

• Nested-file definition 

• Names of its alternate keys 

• Number of data records stored in the nested file 

DISPLAY_NESTED_FILE or 
DIS NF 

NAME=name or list of names 
OUTPUT=file 
DISPLAY_OPTIONS=list of keywords 
STATUS= status_ variable 

Parameters NAME or N 

Revision G 

List of nested file names for which information is to be 
displayed. The default keyword ALL specifies all nested 
files in the keyed file. 

OUTPUT or 0 

File to which the display is written. The file must be a 
sequential file. If you omit the OUTPUT parameter, the 
display is written to file $OUTPUT. 

DISPLAY_ OPTIONS or DO 

List of keywords indicating the type of information to be 
displayed. 

DEFINITIONS or 
DEFINITION or D 

KEY_NAMES or KEY_ 
NAME or K 

NAMES or NAME or N 

RECORD_ COUNTS or 
RECORD_ COUNT or 
RC 

ALL or A 

Nested file definition 

Alternate-key names for each 
nested file. 

Nested file names only. 

Number of data records in 
each nested file. 

All of the above. 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-35 



CREATE_KEYED_FILE E:zample 

Remarks 

Examples 

If you omit the DISPLAY_OPTIONS parameter, the 
display lists only the nested-file names (NAMES). e 
STATUS 
Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in A 
the specified variable. W 

• The currently selected nested file is marked as such in 
the list of nested files. 

This CREATE_KEYED_FILE example displays the 
default nested file ($MAIN _FILE) with the DISPLAY_ 
OPTIONS parameter set to ALL. No alternate keys have 
been defined. 

crekf I display_nested_f i le display_opt ions=al l 
Display_Nested_File 

1'()5/VE Keyed File Utilities 1.2 86034 
File= :NVE. lt>DEXED_SEQUENTIAL_FILE 

1986-02-17 
12:59:58 

SWllN_FILE 
Record_Count 

<currently selected nested file) 
: 3 

Nested_File_Definitions 
Compression_Procedure_Name 
Emlledded_Key 
Key _Pos i ti on 
Key_Length 
Maximum_Record_Length 
Minimum_Record_Length 
Record_ Type 
File_Organization 
Key_ Type 
Collate_Tallle_Name 
Data_Padding 
Index Padding 

: none 
: yes 
: 0 
: 14 
: 32 
: 32 
: undefined 
: indexed_seauential 
: unco11ated 

0 
: 0 

8-36 SCL Advanced File Management Usage Revision G 



CREATE_KEYED_FILE Example 

DISPLAY_RECORDS Subcommand 

Purpose 

Format 

Formats and displays the records in the currently selected 
nested file. 

DISPLAY_RECORDS or 
DISPLAY_RECORD or 
DISR 

OUTPUT=fue reference 
KEYS= range of key 
DISPLAY_ OPTIONS= keyword_ value 
COUNT= integer 
STATUS =status_ variable 

Parameters OUTPUT or 0 

Revision G 

File t.o which the display is written. The file must be a 
sequential file. You must have at least append permission 
to the file. If you omit the OUTPUT parameter, records 
are written to the standard file $OUTPUT. 

KEYS or KEY or K 

Optional range of primary-key values to be displayed. The 
range may be specified in one of the following ways: 

• As two primary-key values separated by two periods 
( .. ). The first value must be lower than or equal to the 
second value. 

• As one primary-key value specifying the beginning of 
the range. The number of records displayed is specified 
by the COUNT parameter. 

For indexed-sequential files, you may use the keywords 
$FIRST_KEY and $LAST_KEY in the key range to 
specify the lowest and highest key values, respectively. 

For direct-access files, you can specify only one key value; 
a range of key values is not permitted. 

If you omit the KEYS parameter, no default is assumed 
and records are displayed beginning with the first record. 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-37 



CREATE_KEYED_FILE Example 

Remarks 

DISPLAY_OPTIONS or DISPLAY_OPTION or DO 

List of one or more keyword values indicating the 
representation used for the contents of records. 

ASCII 

HEX or H 

BOTH 

ALTERNATE_ 
KEY_ DEFINITION 
or AKD or ALL 

ASCII characters. 

Hexadecimal digits. 

Both ASCII characters and 
hexadecimal digits. 

Records are displayed in both ASCII 
and hexadecimal with the 
alternate·key values marked. 

If you omit the DISPLAY_OPTION parameter, the 
representation used is ASCII. 

COUNT or C 

Indicates the number of records to be displayed. 

Integer (O through 
4398046511103) 

ALL or A 

Displays the specified number of 
records. 

Displays all records in the file. 

If you omit the COUNT parameter, the default is 1, 
unless a range is specified by the KEYS parameter and 
then it is the number of records in the range. If both a 
key range and a count are specified, the count limits the 
number of records displayed in the range. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• See the rules listed under Selecting Records at the 
beginning of this chapter. 

• The ALTERNATE_KEY_DEFINITION display shows 
the record contents in ASCII characters and 
hexadecimal digits with the alternate·key values 
underscored. Each alternate key is shown separately 
by underscores as follows: 

8-38 SCL Advanced File Management Usage Revision G 



Examples 

Revision G 

CREATE_KEYED_FILE Eumple 

If the concatenated-key or repeating groups 
attributes are not defined for the key, the 
underscore characters indicate the alternate-key 
type (C for collated, I for integer, or U for 
uncollated). 

If the alternate-key definition specifies repeating 
groups, the underscores for each alternate-key 
value in the record include a number (1, 2, and so 
forth). 

If the key is a concatenated key, the underscores 
for each key field include one or two letters. The 
fields concatenated are a_, b_, and so forth up to 
z_ and then, aa, ha, ca, and so forth. 

The following session displays a range of records showing 
both ASCII and hexadecimal representations. 

crekf/display_records display_option=both .. 
crekf .. /keys='Everest' .. 'Kilimanjaro' 

Display_Nested_Fi le 1986-04-23 
NOS/VE Keyed File Utilities 1.2 86099 15:08:18 
File= :NVE.USER99.INDEXED_SEQUENTIAL_FILE. 1 
Display of records in SMAIN_FILE for: 

COUNT: 
FIRST_KEY: 

LAST_KEY: 
Byte: 0 
Byte: O< 16) 
Byte: 25 
Byte: 19( 16) 
Byte: 0 
Byte: 0( 16) 
Byte: 25 
Byte: 19( 16) 
Byte: 0 
Byte: ( 16) 
Byte: 25 
Byte: 19( 16) 
crekf I 

all 
Everest 
Ki 1 imanjaro 

ASCII: Eve r est As i a 
HEX: 45766572657374202020202020204173696120202020202020 

ASCII: 8 8 4 8 
HEX: 20202038383438 

ASCII: K 2 As i a 
HEX: 4B322020202020202020202020204 173696120202020202020 

ASCII: 8 6 1 1 
HEX: 20202038363131 

ASCII: K i 1 i man j a r o A f r , ca 
HEX: 4B696C6960616E6A61726F2020204 166726963612020202020 

ASCII: 5 8 9 5 
HEX: 20202035383935 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-39 



CREATE_KEYED_FILE Example 

EXTRACT _RECORDS Subcommand 

Purpose 

Format 

Copies records from the currently selected nested file to 
another file. 

EXTRACT_RECORDSor 
EXTRACT_RECORD or 
EXTR 

OUTPUT= file reference or nested-file reference 
KEYS= range of key 
COUNT= integer 
ERROR_LIMIT =integer 
STATUS= status_ variable 

Parameters OUTPUT or 0 

File to which records are copied. You must have at least 
append permission to the file. If you omh the OUTPUT 
parameter, records are written to the standard file 
$OUTPUT. 

The OUTPUT parameter for EXTRACT_RECORDS can 
specify either a sequential or a keyed file. If the output 
file is a keyed file and a nested file is not specified, the a 
records are copied to the default nested file $MAIN_ • 
FILE. 

To specify a nested file in a keyed file, enclose the file 
reference followed by the nested file name in parentheses. 

An open position of $BOI indicates that any records 
existing ir. the nested file are to be discarded. Do not 
specify the nested-file name $MAIN _FILE on the 
OUTPUT parameter when the open_position of the output 
file is $BOI. (This would request deletion of $MAIN _FILE 
which is not allowed.) 

An open position of $EOI indicates the input records are 
to be merged into the output file. 

KEYS or KEY or K 

Optional range of primary-key values to be extracted. The A 
range may be specified in one of the following ways: • 

• As two primary-key values separated by two periods 
( .. ). The first value must be lower than or equal to the 
second value. 

8-40 SCL Advanced File Management Usage Revision G 



Revision G 

CREATE_KEYED_FILE Example 

• As one primary-key value specifying the beginning of 
the range. The number of records extracted is specified 
by the COUNT parameter. 

For an indexed-sequential file, you may use the keywords 
$FIRST_KEY and $LAST_KEY in a key range to specify 
the lowest and highest key values, respectively. 

Key ranges are not allowed for direct-access files. You 
can extract records by key value one at a time or use 
COUNT=ALL. 

If you omit the KEYS parameter, no default is assumed 
and records are extracted beginning with the first record. 

COUNT or C 

Indicates the number of records to be extracted. 

Integer (O 
through 
4398046511103) 

ALL or A 

Extracts the specified number of 
records. 

Extracts all records in the nested file. 

If you omit the COUNT parameter, the default is 1, 
unless a range is specified by the KEYS parameter and 
then it is the number of records in the range. If both a 
key range and a count are specified, the count limits the 
number of records extracted in the range. 

ERROR_LIMIT or EL 

Number of nonfatal (trivial) errors allowed for the 
EXTRACT_RECORDS operation (integer from 0 through 
4398046511103 (242-1]). 

A 0 value indicates no limit; 0 is the default value. 

See the Remarks for a description of error processing. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-41 



CREATE_KEYED_FILE Example 

Remarks • See the rules listed under Selecting Records at the 
beginning of this chapter. Also, see the rules for 
ERROR_LIMIT processing under Adding and 
Replacing Records From Input Files at the beginning 
of this chapter. 

• Records are extracted only from the currently selected e 
nested file. 

• The OUTPUT parameter cannot specify the same file 
cycle as the CREATE_KEYED_FILE or CHANGE_ 
KEYED_FILE output file, unless the parameter 
specifies a different nested file in the file cycle. 

• EXTRACT_RECORDS supports copying to files with 
sequential and keyed-file organizations. It does not 
support copying to byte-addressable files. 

• The records are not sorted if the output file is 
sequential. 

If the output file is a keyed file, records are sorted if 
certain attributes of the currently selected nested file 
differ from the EXTRACT_RECORDS output nested 
file; otherwise, no sorting is performed. The attributes 
that force sorting are the file_organization, hashing_ 
procedure_name, collate_table_name, key_length, 
key_type, and key_position. 

8-42 SCL Advanced File Management Usage Revision G 



Examples 

Revision J 

EXTRACT_RECORDS Subcommand 

This CREATE_KEYED_FILE example extracts records 
within the key range and then copies the records to 
NEW_FILE_OUTPUT. 

/copy_keyed_file $user.new_file 
Everest Asia 8848 
K2 Asia 8611 
Kilimanjaro Africa 5895 
Matterhorn Europe 4478 
McKinley North America 6194 

/create_keyed_file .. 
. . /output=$user.indexed_seQuential_file 
crekf/add_records input=$user.new_file 
crekf/extract_records output=new_file_output 
crekf .. /keys='E' .. 'Ma', count=3 
--INFORMATIVE AA 1275-- The Extract_Records 
subconmand of CREATE_KEYED_FILE copied 3 records from 
nested file $MAIN_FILE in file 
:NVE.USER99.INDEXED_SEQUENTIAL_FILE to 
NEW_FILE_OUTPUT. 
crekf/copy_file input=new_file_output 
Everest Asia 8848 
K2 Asia 8611 
Kilimanjaro Africa 5895 
crekf / 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-43 



HELP Subcommand 

HELP Subcommand 

Purpose 

Format 

Provides online HELP from within the keyed-file utilities. 

HELP or 
HEL 

SUBJECT= string 
MANUAL=name 
STATUS= status_ variable 

Parameters SUBJECT or S 

Remarks 

Topic to be located in the online manual index. The topic 
must be enclosed in apostrophes ('topic'). 

If you omit the SUBJECT parameter, HELP displays a 
list of the available subcommands. 

MANUAL or M 

Name of the online manual whose index is searched. If 
you omit the manual parameter, the default is AFM. If 
the AFM file is not found in the current working catalog, 
the $SYSTEM.MANUALS catalog is searched. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• If you enter a topic that is not in the manual index, a 
message appears telling you that the topic could not 
be found. 

• The default manual, $SYSTEM.MANUALS.AFM, 
contains the online version of the NOSNE Advanced 
File Management Usage manual, as provided with the 
NOSNE system. 

• If your terminal is defined for full-screen applications, 
the online manual is displayed in screen mode. 

To leave the online manual, use QUIT. To get help on e 
reading the online manual, use HELP. 

8-44 SCL Advanced File Management Usage Revision J 



Examples 

Revision J 

HELP Subcommand 

This CREATE_KEYED_FILE example accesses the HELP 
subcommand within the CREATE_KEYED_FILE utility 
session. 

crelcf /help 

The fol lowing CREATE_KEYED_FILE subcommands are available: 

ADD_RECORDS 
REPLACE_RECORDS 
COMBINE_RECORDS 
EXTRACT_RECORDS 
DJSPLAY_RECORDS 
DELETE_RECORDS 
CREATE_NESTED_F!LE 
SELECT_NESTED_FILE 
DELETE_NESTED_FILE 
DISPLAY_NESTED_FILE 
CREATE_ALTERNATE_INDEXES 
QUIT 

For a description of a subcommand in the onl1ne manual, enter: 

HELP subJect = '<subcommand>' 

To return from an onl1ne manual, enter: 

QUIT 
crelcf/ 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-45 



QUIT Subcommand 

QUIT Subcommand 

Purpose Terminates the CREATE_KEYED_FILE or CHANGE_ 
KEYED_FILE session and closes the output file. 

Format QUIT or 
QUI 

STATUS_status_variable 

Parameters STATUS 

Examples 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

This CHANGE_KEYED_FILE example creates an exact 
byte-by-byte copy of the input file. The QUIT subcommand 
terminates the CHANGE_KEYED_FILE utility session. 

/change_keyed_f11e .. 
. . /input=$user.new_file 
.. /output=$user.indexed_seQuential_file 
crekf /QUit 

8-46 SCL Advanced File Management Usage Revision J 



CREATE_KEYED_FILE Example 

REPLACE _RECORDS Subcommand 

Purpose 

Format 

Replaces records in the currently selected nested file. 

REPLACE_RECORDS or 
REPLACE_RECORD or 
REPR 

INPUT=file or list of files 
SORT= boolean 
ERROR_LIMIT =integer 
STATUS= status_ variable 

Parameters INPUT or I 

Remarks 

Revision G 

List of one or more files whose records are to be copied. 
For each input record, there must be a record in the 
currently selected nested file with the same primary-key 
value. You must have at least read access to the input 
files. This parameter is required. 

SORT or S 

Indicates whether the input records are sorted before they 
are added to the currently selected nested file. If you omit 
the SORT parameter, the default is SORT=TRUE. 

ERROR_LIMIT or EL 

Number of nonfatal (trivial) errors allowed for the 
REPLACE_RECORDS operation (integer .from 0 through 
4398046511103(242-1]). 

A 0 value indicates no limit; 0 is the default value. 

See the Remarks for a description of error processing. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• Because the REPLACE_RECORDS subcommand does 
not lock key values, it is recommended that you do 
not use this subcommand when another task could be 
updating the same records. If you attach the output 
file with no write share modes (SHARE_ 
MODES=READ or SHARE_MODES=NONE) before 
the session, the file cannot be shared for updating. 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-47 



CREATE_KEYED_FILE Example 

Examples 

• See the rules for record copying subcommands listed 
under Adding and Replacing Records From Input Files e 
at the beginning of this chapter. 

This CREATE_KEYED_FILE example replaces records in 
file $USER.INDEXED_SEQUENTIAL_FILE that have 
the same primary key. e 

Everest 
K2 
Ki 1 imanjaro 

I 
Everest 

I 
.. / 
crekf/ 
crekf I 
crekf/ 

Africa 8800 
Asia 8611 
Africa 5895 

Asia 8848 

Display_Nested_File 
NOS/VE Keyed File Utilities 1.2 85357 
File• :NVE.USER99. !NDEXED_SEQIJENTIAL_FILE. 1 
Display of records in SMAIN_FILE 

Byte: 0 
Byte: 0 
Byte: 0 

crekf/ 

ASCII: Everest Asia 
ASCII: K2 Asia 
ASCII: Ki 1 imanjaro Africa 

1986-02-17 
13: 19: 24 

8848 
8611 
5895 

8-48 SCL Advanced File Management Usage Revision G 



CREATE_KEYED_FILE Example 

SELECT _NESTED _FILE Subcommand 

Purpose 

Format 

Selects the nested file to which subsequent subcomands 
are to apply. 

SELECT_NESTED_FILE or 
SELNF 

NAME=name 
STATUS =status_ variable 

Parameters NAME or N 

Remarks 

Examples 

Revision G 

Name of an existing nested file. This parameter is 
required. 

STATUS 

Optional SCL status variable. If you specify the STATUS 
parameter, the command returns its completion status in 
the specified variable. 

• To select the default nested file, $MAIN _FILE, specify 
NAME= $MAIN _FILE. 

This CREATE_KEYED_FILE example selects the nested 
file NESTED_FILE_2 and then displays the list of nested 
files. 

crekf/select_nested_file name=nested_file_2 
crekf/display_nested_file 

Oisp lay_Nested_F i le 
N'.JS/VE Keyed File Utilities 1.2 85357 
File= :NYE. INDEXED_SEQUENTIAL_FILE 

List of Nested Files for file INDEXED_SEQUENTIAL_F!LE 

1986-02-17 
13:25:31 

NESTED_FILE_2 (currently selected nested file) 
NESTED_FILE_l 
$MA!N_F!LE 

crekf/ 

CREATE_KEYED_FILE and CHANGE_KEYED_FILE Utilities 8-49 









Keyed-File Recovery 

This chapter describes the following topics: 

• The means of protecting your keyed files. 

• The means of recoverihg damaged keyed files. 

• The Recover_Keyed_File command utility. 

• The Administer_ Recovery_ Log command utility. 

• The Restore_Log command utility. 

Protecting Your Keyed Files 

NOSNE provides several features that can protect your keyed files 
against data loss and file structure damage. These features include: 

• File and catalog permits to prevent unauthorized access (as 
described in the NOSNE System Usage and CYBIL File 
Management manuals). 

• Record locking to coordinate access between instances of open of 
the same keyed file. 

9 

• Attributes that enable recovery of your keyed files in the event of 
a system failure. 

This section describes how to enable file recovery to protect against a 
system failure. It first describes the types of possible system failure; 
then how to protect your keyed files against system failures; and 
finally, how to recover your keyed files when a system failure occurs. 

Possible System Failures 

System failures that could affect your keyed files can be categorized 
as processing failures and/or media failures. 

Revision J Keyed-File Recovery 9-1 



Protecting Your Keyed Files 

A processing failure is the result of an error affecting the CPU or 
memory, but not mass storage. It can affect your keyed file only if 
the file is open for updating when the failure occurs. When a 
processing failure occurs without media failure, the copy of the keyed 
file on mass storage remains intact, but the following keyed-file errors 
could result: 

• If the failure causes a task abort during an update operation on a 
keyed file, the operation could be left only partially completed. 

• A memory error could lose or corrupt keyed-file blocks that have 
been modified in memory, but have not yet been copied to mass 
storage. 

• Both of the above failures (partial updates and lost or corrupted 
file blocks) could result in an incoherent file structure in the 
keyed file on mass storage. 

Unlike a processing failure, a media failure is the result of a data 
storage device error. It could affect your keyed file by making the file 
inaccessible, by damaging the file structure, or by corrupting the file 
data. 

All these failures are possible, and different methods are available to e 
protect your keyed files against them. However, each file protection 
method is optional. If you judge the damage that could result from a 
type of failure is not worth the cost of protection, you can choose not 
to use that method of protection. The next section describes the 
protection methods available. 

Protection Methods 

The following are the methods of protecting your keyed files against 
system failures: 

• Maintaining frequent backup file copies. 

• Enabling the removal of a partial update due to a task abort. 

• Forcing the writing of keyed-file blocks from memory to mass 
storage. 

9-2 SCL Advanced File Management Usage Revision J 



Protecting Your Keyed Files 

• Maintaining a log of all updates to the keyed file. 

More than one method can be used. In fact, the last method, logging 
of updates, is possible only if backup file copies are maintained. 

The following sections describe these protection methods in detail. 

Maintaining Backup Copies 

In general, sites maintain backup copies of all permanent files. If a 
system failure causes the loss of a permanent file, the most recent 
backup copy of the lost file is reloaded. The reload restores the file to 
its state when the backup copy was written. Any updates to the file 
since the backup copy was written are lost unless the user has a 
method of reconstructing them. (One method, using an update log, is 
described later.) 

The more frequently backup copies are written, the fewer updates are 
lost when a file reload is required. A site usually has a fixed schedule 
for backups, but you can perform more frequent backups if you wish. 
You can backup files using the Backup_Permanent_File utility 
described in the NOSNE System Usage manual. 

e Backup_Permanent_File allows you to backup any file you have 
permission to read but are not required to share in append, modify, or 
shorten modes. (You cannot backup a file while it could be updated.) 

NOTE 

It is recommended that you always use the Backup_Permanent_File 
utility to write backup copies, rather than keeping additional file 
copies. The RECOVER_FILE_MEDIA subcommand of the Recover_ 
Keyed_File utility can only use backup copies written by the 
Backup_Permanent_File utility. (The ENABLE_MEDIA_RECOVERY 
logging option must be enabled before the backup is done.) 

Also, a keyed file protected by the ENABLE_MEDIA_RECOVERY 
option must be backed up after its password, LOG_RESIDENCE 
attribute, or LOGGING_OPTIONS attribute, is changed. 

Revision J Keyed-File Recovery 9-3 



Protecting Your Keyed Files 

Enabling Partial Update Removal 

An update could be interrupted by a system failure and left partially 
completed. The update could be a single update operation. 

A partially completed update operation could prevent subsequent 
access to a keyed file if the following scenario occurs: 

1. A processing failure occurs while an update operation for a keyed 
file is in progress. 

2. The processing failure causes the task to abort, leaving the update 
operation only partially completed. 

3. The task abort causes an automatic close of the keyed file. 

4. The close operation, when it finds the partially completed update, 
sets the ruined flag for the entire keyed file. 

5. Because its ruined flag is set, the keyed file cannot be accessed 
until it has been re-created. 

To protect against this type of failure, you can request that when an 
automatic close finds a partial update, it removes it, leaving the file a 
as it was before the update operation began. • 

To request this protection, specify the ENABLE_REQUEST_ 
RECOVERY option in the set of values for the LOGGING_OPTIONS 

~=: attribute. The LOGGING_OPTIONS attribute is a preserved attribute 

·1· ~;l~~~t~;t~E~ll~~~~;~~~~~nge it using the NOSNE command 

To prepare for partial update removal, the system need only keep 
enough information to remove the last update. Therefore, this failure 
protection requires little system overhead. The recovery is performed 
automatically; no additional user processing is required. 

Forcing Memory Writes 

To understand how forcing memory writes can protect your files, you 
need to understand how NOSNE uses memory to modify a mass 
storage file. 

9-4 SCL Advanced File Management Usage Revision J 



Protecting Your Keyed Files 

All mass storage files exist as blocks of space allocated on mass 
storage devices. When a program issues a request to read or modify a 
file, the block containing the requested data is copied into memory. 
An update request then modifies the block in memory. By default, 
only the modified block is copied back to mass storage when the 
memory space is needed for other data. Therefore, for a short time, 
the modified file block exists only in memory and not on mass 
storage. 

The process of copying all modified blocks to mass storage is called 
flushing. A normal close of an open file flushes the file to mass 
storage. However, if the close discovers that a memory error has 
caused a modified file block to be lost or corrupted, it sets the 
altered_not_closed flag for the file. The next attempt to open the file 
returns the status AAE$ALTERED_NOT_CLOSED, which prevents 
use of the file because its integrity is in doubt. (The means of 
recovering from this failure are described in the next section.) 

Forced memory writes shorten the time in which modified blocks do 
not have a mass storage copy. To request forced writing, you change 
the FORCED_ WRITE file attribute value to either TRUE or 
FORCED_IF_STRUCTURE_CHANGE. The FORCED_ WRITE 
attribute is a preserved attribute stored with the file; you can change 
its value with the NOSNE command CHANGE_FILE_ATTRIBUTES. 

The default FORCED_ WRITE attribute value is FALSE, which 
requests no forced writing. The two options requesting forced writing 
are: 

FORCED_ WRITE=FORCED_IF_STRUCTURE_CHANGE 

This option requests that each time a request changes more than 
one file block (that is, it changes the file structure), the modified 
blocks are copied to mass storage at completion of the request. 

With this option, in most cases, a memory failure would leave the 
file structure intact. All single-block updates since the last 
forced-write could be lost. Also, if a file structure change is 
interrupted by the system failure, the file structure could be 
damaged, but the existing file records would still be in order and, 
therefore, could be salvaged. 

Revision J Keyed-File Recovery 9-5 



Protecting Your Keyed Files 

FORCED_ WRITE= TRUE 

This option requests that each time a request changes a file block, 
the modified block is copied to mass storage at completion of the 
request. 

With this option, a memory failure could lose only the update in 
progress for each instance of open of the file. However, if the lost 
update is a file structure change, the file structure could be 
damaged and its restoration required. 

For Better Performance 

Forced memory writes add to the 1/0 time for the keyed file. In 
particular, the FORCED_ WRITE=TRUE option causes a small 
increase for random updates, but a severe increase for sequential 
updates. 

Maintaining Update Logs 

When a file is damaged, the best recovery available may be to replace 
the file with a backup copy. However, complete restoration of the file 
would require a means of reconstructing all updates to the file since e 
the backup copy was written. 

The most reliable method for reconstructing file updates is through 
use of an update log that contains a record for each update to the 
file. By reading the log records in chronological order, the updates can 
be performed on the backup copy in the same order they were 
performed on the original file. This results in a complete restoration 
of the damaged file. 

To request maintenance of an update log for a keyed file, you request 
the option ENABLE_MEDIA_RECOVERY in the set of values for the 
LOGGING_OPTIONS file attribute. By default, the update log for the 
file is kept on catalog $SYSTEM.AAM.SHARED_RECOVERY_LOG. 
However, you can specify the catalog to contain the log as the LOG_ 
RESIDENCE file attribute. (The log must first be created by the 
Administer_Recovery_Log utility as described later in this chapter.) 

9-6 SCL Advanced File Management Usage Revision J 



Protecting Your Keyed Files 

NOTE 

It is not recommended that the default log, $SYSTEM.AAM.SHARED_ 
RECOVERY_LOG, be used extensively for logging update operations. 
In general, you should specify a different LOG_RESIDENCE for vital 
applications. This enables you to isolate the effects of a media failure 
on the iog. 

Also, after changing the file password, the LOG_RESIDENCE 
attribute, or the LOGGING_OPTIONS attribute, you must request a 
backup of the keyed file before the file is updated again. 

The Backup_Permanent_File utility records the backup as an entry f 

~~;~;£~~:.;;I~;1~-0~E~~;~~~~~~~- The entry for the :tj 
backup copy marks the point in the log at which reading of the log 
should begin when the keyed file is reconstructed using that backup 
copy. The log entry states when the backup was performed and where 
the backup file resides. 

You should also maintain backup copies of the log itself because it, 
too, could be damaged by a system failure. (A damaged log can be i!\ 

restored using the Restore_Log utility.) The log is backed up ::: 
automatically as specified by the log attributes. (The log attributes are 
specified when the log is created by the Administer _Recovery _Log 
utility.) ::: 

Revision J Keyed-File Recovery 9-7 



Recovering Your Keyed Files 

Recovering Your Keyed Files 

This section describes strategies for determining whether your keyed 
files are damaged and, if they are damaged, methods of file recovery. 
The recovery method used depends on the type of file damage and 
whether a usable backup copy and log are available for the file. 

Recovering From a Processing Failure 

Usually, you are notified of a processing failure when an application 
terminates abnormally and one or more messages indicate that the 
task aborted due to a system failure. If the application was using one 
or more files when the failure occurred, you should determine if the 
files were damaged and if file updates were lost. To do so: 

1. Attempt to attach the file. If a permanent file cannot be found, the 
mass storage copy of the file has been lost, indicating a media 
failure. (See the discussion under Recovering from a File Media 
Failure.) 

2. Attempt to open and read the file. (For example, you could 
attempt to copy it.) If the attempt fails with a message stating 
that the file is ruined or unusable, a flag has been set indicating e 
that the file structure may be damaged. 

If a usable backup copy and update recovery log are available for 
the file, attempt to recover the file using Recover _Keyed_ File. If 
not, you could attempt to clear the error flag by duplicating the 
file using a COPY_KEYED_FILE command. (The Recover_ 
Keyed_File utility is described later in this chapter. The COPY_ 
KEYED_FILE command is described in chapter 6.) 

3. If you use COPY_KEYED_FILE to clear the error flag, you 
should determine if any updates were lost. For example, if you 
know what the last update should have been, you should read that 
record to determine if it was updated. If updates are missing, 
re-run the updates. 

Recovering From a File Media Failure 

A media failure can damage your files even if the file is not in use. 
You may become aware of a media failure when: 

• Site personnel notify you that your file was lost and its most 
recent backup copy has been loaded in its place. 

9-8 SCL Advanced File Management Usage Revision J 



Recovering Your Keyed Files 

• You cannot attach your file because the permanent file manager 
cannot find it. 

• Even though no processing failure has occurred, an attempt to 
open your file returns a message indicating that the file is ruined. 

e • An application finds that your file contains bad data. 

If the file has not been updated since the last backup copy was 
written, a reload of the backup copy restores the file. 

If the file has been updated since the last backup copy, determine if a 
usable log is available for the file. If a log is available, reconstruct 
the updates using the log. To do so, execute the Recover _Keyed_ File 
utility with the RECOVER_FILE_MEDIA subcommand. 

NOTE 

Once a keyed file is recovered using the Recover _Keyed_ File utility 
with the RECOVER_FILE_MEDIA subcommand, it must be backed 
up (using the Backup_Permanent_File utility) before it can be 
updated. 

If the file has been updated since the last backup copy, but no log is 
available, the file might be usable again if the the file structure error 
flag can be cleared. To do so, duplicate the file using the COPY_ 
KEYED_FILE command described in chapter 6. 

Also, if no log is available, any lost updates must be restored by 
other means. If the damaged file is available, attempt to salvage the 
data records from it. 

Revision J Keyed-File Recovery 9-9 



Recover_Keyed_File Utility 

Recover _Keyed_File Utility 

The Recover _Keyed_File utility is an NOSNE command utility with 
which you can initiate recovery attempts for a damaged keyed file. 

A Recover_Keyed_File utility session begins with a RECOVER_ 
KEYED_FILE command followed by a subcommand for the recovery 
attempt. The session ends when a recovery attempt returns a fatal 
error or when you enter the QUIT subcommand to end the session. 

Currently, the Recover _Keyed_ File subcommands are as follows: 

RECOVER_ FILE_ MEDIA 

Reloads a backup of the file and then updates it using an update 
recovery log for the file. 

VOID_LOG_FOR_RESTORED_FILE 

Discards the update recovery log associated with a restored file. 

HELP 

Provides access to online information about the utility. 

QUIT 

Ends the session. 

9-10 SCL Advanced File Management Usage Revision J 



RECOVER_KEYED_FILE Command 

RECOVER_KEYED_FILE Command 

Purpose 

Format 

Begins a keyed-file recovery attempt. 

RECOVER KEYED FILE or 
RECKF 

FILE=file 
PASSWORD=name or NONE 
STATUS= status_ variable 

Parameters FILE or F 

Revision J 

File path to the damaged keyed file to be recovered. This 
parameter is required. 

If the damaged file does not currently exist, its cycle 
number cannot be determined by default. Therefore, the 
file path must explicitly specify the file cycle number so 
that the utility can reload the correct backup copy. 

PASSWORD or PW 

File password specified when Backup_Permanent_File 
wrote the backup copy of the file. A file password is 
optional, but, if a password exists for the file, it is 
required on this command. If no password exists for the 
file, NONE can be specified. 

NOTE 

The file password in effect when the backup copy was 
written must be the same password in effect when the file 
was damaged. Otherwise, the backup copy cannot replace 
the damaged file. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. Its use depends on 
whether the command is executed in a batch job or an 
interactive session. 

In a batch job, when an error· is returned for a 
subcommand without its own status variable, the error is 
stored in the Recover_ Keyed_ File status variable, if any, 
and the session terminates. 

Keyed-File Recovery 9-11 



RECOVER_KEYED_FILE Command 

Remarks 

Examples 

In an interactive session, only the completion status of 
the Recover_Keyed_File command and its QUIT 
subcommand are stored in the RECOVER_KEYED_FILE 
status variable. Errors returned by subcommands are 
displayed at the terminal and the session continues. 

• The LOG_RESIDENCE attribute of the file specified 
on the command must match the LOG_RESIDENCE 
attribute of the backup copy to be reloaded. Recover_ 
Keyed_File cannot use a backup copy that was 
written before the LOG_RESIDENCE attribute of the 
file was changed. 

• If the file does not currently exist and the LOG_ 
RESIDENCE of its backup copy is not the default log, 
you must enter a SET_FILE_ATTRIBUTE command 
for the file. The command must specify the same file 
cycle specified on the RECOVER_KEYED_FILE 
command and the same LOG_RESIDENCE as that of 
the backup copy to be used. (See the Example.) 

• Similarly, if the file does not currently exist, but the 
file had a password when the backup copy was 
written, you must create the file with the same 
password. To do so, enter a CREATE_FILE command 
specifying the file path (including its cycle number) 
and the PASSWORD parameter. (See the Example.) 

The following session attempts to restore a keyed file that 
no longer exists using its latest backup copy. When the 
latest backup copy was written, the file password was 
HUSH_HUSH and the LOG_RESIDENCE attribute was 
$USER.MY_LOG. Therefore, those values must be 
reestablished for the file cycle. 

/recover_keyed_file, $user.keyed_file.1 
reckf/create_fi le, $user .keyed_fi le. 1, .. 
reckf .. /password=hush_hush 
reckf/set_file_attribute, $user.keyed_file.1, 
reckf .. /log_residence=$user.my_log 
reckf/recover_file_media 

--INFORMATIVE AA 1495-- Log 
$SYSTEM.AAM.AAF$SHARED_RECOVERY_LOG: 
Recover_File_Media is attempting to find a backup 
of file :NVE.KEYED_FILE.1 in this log. 

9-12 SCL Advanced File Management Usage Revision J 



Revision J 

RECOVER_KEYED_FILE Command 

--WARNING AA 1410-- IMPORTANT - File :NVE.MY_ 
KEYED_FILE.1 : RECOVER_KEYED_FILE is deleting this 
file to ensure there is disk space for the backup 
file to be reloaded. To restart RECOVER_KEYED_ 
FILE, if it terminates before the file is 
successfully restored, you must supply the full 
file path, including the cycle number (1). 

--WARNING AA 1480-- IMPORTANT - File :NVE.MY_ 
KEYED_FILE.1 : The cycle number of this file 
is 1. 

--WARNING AA 1415-- IMPORTANT - The LOG_RESIDENCE 
should also be set to :NVE.MY_LOG using the 
SET_FILE_ATTRIBUTES command if RECOVER_KEYED_FILE 
is restarted for this file. 

--INFORMATIVE AA 1380-- Recover_Keyed_File is now 
attempting to restore :NVE.KEYED_FILE.1 from the 
backup file. 

--INFORMATIVE AA 1495-- Log :NVE.MY_LOG : 
Recover_File_Media is attempting to find a backup 
of file :NVE.MY_KEYED_FILE.1 in this log. 

--INFORMATIVE AA 1500-- Recover_File_Media has 
successfully reloaded file :NVE.KEYED_FILE.1 
using the backup record from log :NVE.MY_LOG. 
The date of the backup was February 10, 1987 
at 2:57 PM. 

--INFORMATIVE AA 1385-- Recover_Keyed_File is now 
applying the changes from the log to the file 
restored from the backup. 

--INFORMATIVE AA 1465-- File :NVE.KEYED_FILE. 1 : 
Recover_File_Media processed 4 records from the log. 
There were 0 trivial errors. 

reckf/quit 
I 

Keyed-File Recovery 9-13 



i 

RECOVER_FILE_MEDIA Subcommand 

RECOVER_FILE_MEDIA Subcommand 

Purpose 

Format 

Reloads a backup of the file and then updates it using an 
update recovery log for the file. 

RECOVER_FILE_MEDIA or 
REC FM 

DAYS_SINCE_LAST _GOOD= integer 
HOURS_SINCE_LAST_GOOD=integer 
MINUTES_SINCE_LAST_GOOD or MSLG=integer 
FILE_ CLASS =character 
INITIAL_ VOLUME =name 
STATUS=status variable 

Parameters DAYS_SINCE_LAST_GOOD or DSLG 

Number of days since the damaged file was intact (any 
integer not less than 0). It is used with the next two 
parameters to determine the backup copy to be reloaded. 

If the first three parameters are omitted, the default 
value for each is 0, causing the latest backup copy to be 
reloaded. 

HOURS_SINCE_LAST_GOOD or HSLG 

Number of hours (added to the days specified by the first 
parameter) since the damaged file was intact (an integer 
from 0 through 23). 

If the first three parameters are omitted, the latest 
backup copy is reloaded. 

MINUTES_SINCE_LAST_GOOD or MSLG 

Number of minutes (added to the days and hours specified 
by the first two parameters) since the damaged file was 
intact (an integer from 0 through 59). 

If the first three parameters are omitted, the latest 
backup copy is reloaded. 

FILE_ CLASS or FC 

Specifies the class of the file to be assigned. Refer to the 
REQUEST_MASS_STORAGE command in the NOSNE 
System Performance and Maintenance manual, Volume 2, 
for class assignments and a complete description of this 
parameter. 

9-14 SCL Advanced File Management Usage Revision J 



Remarks 

Revision J 

RECOVER_FILE_MEDIA Subcommand 

INITIAL_ VOLUME or N 

Name specifying the volume serial number (VSN) of the 
mass storage volume to which the file is to be assigned. ! The name is specified as a string of from 1 through 6 
characters. Refer to the REQUEST_MASS_STORAGE 
command in the NOSNE System Performance and 
Maintenance manual, Volume 2, for a complete description _,:,:_,· 
of this parameter. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

• This subcommand is effective only if both a backup 
copy and an update recovery log are available for the 
file. 

• An update recovery log is maintained for the file only 
if its LOGGING_OPTIONS attribute includes the 
option ENABLE_MEDIA_RECOVERY. 

• Only backup copies created by the Backup_ 
Permanent_File utility can be reloaded because those 
backup copies are recorded in the update recovery log 
for the file. (The ENABLE_MEDIA_RECOVERY 
logging option must be set before the backup.) 

• For a backup copy to be used, the file password (if 
any), the LOG_RESIDENCE attribute, and the 
LOGGING_OPTIONS attribute for the file must not 
have changed since the backup copy was written. 

• The FILE_CLASS and INITIAL_ VOLUME parameters 
are described in detail as parameters of the 
REQUEST_MASS_STORAGE command in the 
NOSNE System Performance and Maintenance 
manual, Volume 2. 

Keyed-File Recovery 9-15 



RECOVER_FILE_MEDIA Subcommand 

NOTE 

Before entering the RECOVER_FILE_MEDIA 
subcommand, write down the following information: 

The file cycle number. 

- The file password, if any. 

The LOG_RESIDENCE attribute of the file if it is 
not the default log. 

If the recovery attempt fails (because of a system 
crash), the file may have been deleted. Because the 
file no longer exists, if reattempting the reload you 
must provide Recover _Keyed_ File with the above 
information, as follows: 

Specify the file cycle number on the file path. 

Specify the file password on a CREATE_FILE 
command for the file cycle. 

Specify the LOG_RESIDENCE attribute on a 
SET_FILE_ATTRIBUTE command. 

• The recovery attempt proceeds as follows: 

1. The specified file is checked for a keyed file whose 
LOGGING_OPTIONS attribute includes ENABLE_ 
MEDIA_ RECOVERY. 

2. The system log is searched for the entry of the 
most recent backup of the file cycle before the time 
specified on the subcommand. 

If the backup copy is on magnetic tape, it requests 
the appropriate tape volume. The reloaded file 
replaces the existing file copy. 

If the LOG_RESIDENCE attribute indicates a user 
log (rather than the default system log), the same A 
search is performed on the user log as the search W 
described for the system log in step 2, looking for 
an entry of a more recent usable backup copy. 

9-16 SCL Advanced File Management Usage Revision J 



RECOVER_FILE_MEDIA Subcommand 

The Restore_Permanent_File Utility is called to 
reload the most recent backup copy indicated by 
the system and/or user log. Validation of the 
restored backup file is performed to ensure that 
the correct file has been restored. 

3. The updates recorded in the log are applied to the 
backup copy in the order recorded on the log, 
starting from the time of the restored backup. 

Only updates recorded on the log are performed. 

• Progress messages are issued as recovery proceeds. Be 
sure to read the messages as they appear. 

• Once a keyed file is recovered using RECOVER_ 
FILE_MEDIA, it must be backed up (using the 
Backup_Permanent_File utility) before it can be 
updated. 

Revision J Keyed-File Recovery 9-17 



RECOVER_FILE_MEDIA Subcommand 

Examples The following session recovers the file using the last 
backup copy. 

/recover_keyed_file, $user.my_keyed_file 
reckf/recover_file_media 

--INFORMATIVE AA 1495-- Log $SYSTEM.AAM.AAF$SHARED_ 
RECOVERY_LOG : Recover_File_Media is attempting to 
find a backup of file :NVE.MY_KEYED_FILE.1 in this 
log. 

--WARNING AA 1410-- IMPORTANT - File :NVE.MY_KEYED_ 
FILE.1 : RECOVER_KEYED_FILE is deleting this file to 
ensure there is disk space for the backup file to be 
reloaded. To restart RECOVER_KEYED_FILE, if it 
terminates before the file is successfully restored, 
you must supply the full file path, including the 
cycle number (1). 

--WARNING AA 1480-- IMPORTANT - File :NVE.MY_ 
KEYED_FILE.1 : The cycle number of this file is 1. 

--WARNING AA 1415-- IMPORTANT - The LOG_RESIDENCE 
should also be set to :NVE.MY_LOG using the 
SET_FILE_ATTRIBUTES command if RECOVER_KEYED_FILE 
is restarted for this file. 

--INFORMATIVE AA 1380-- Recover_Keyed_File is now 
attempting to restore :NVE.MY_KEYED_FILE.1 from 
the backup file. 

--INFORMATIVE AA 1495-- Log :NVE.MY_LOG : 
Recovery_File_Media is attempting to find a 
backup of file :NVE.MY_KEYED_FILE.1 in this 
log. 

--INFORMATIVE AA 1500-- Recover_File_Media has 
successfully reloaded file :NVE.MY_KEYED_FILE.1 
using the backup record from log :NVE.MY_LOG. 
The date of the backup was February 10, 1987 
at 2:57 PM. 

--INFORMATIVE AA 1385-- Recover_Keyed_File is now 
applying the changes from the log to the file 
restored from the backup. 

9-18 SCL Advanced File Management Usage Revision J 



Revision J 

RECOVER_FILE_MEDIA Subcommand 

--INFORMATIVE AA 1465-- File :NVE.MY_KEYED_FILE 
Recover_File_Media processed 4 records from the log. 
There were O trivial errors. 

reckf/quit 
I 

Keyed-File Recovery 9-19 



VOID_LOG_FOR_RESTORED_FILE Subcommand 

VOID _LOG _FOR_RESTORED _FILE Subcommand 

Purpose 

Format 

Discards the update recovery log associated with a file 
that has been restored using the Restore_Permanent_File 
utility. 

VOID _LOG _FOR_RESTORED _FILE or 
VOILFRF 

STATUS= status_ variable 

Parameters STATUS 

Remarks 

Optional SCL status variable in which the completion 
status of the command is returned. 

• This subcommand is provided for situations in which 
an older version of the file is restored using the 
Restore_Permanent_File utility, and the user, content 
with this version, does not want to try to recover lost 
updates from the log. 

• Updates cannot be recorded on a log that is associated 
with a restored file. This is because the updates on 
the log do not correspond to the restored version A 
(usually an older version) of the file. Therefore, this W 
subcommand is used to discard all past logged updates 
for the restored file. 

• After the update recovery log is discarded, a backup 
copy of the file must be created by the Backup_ 
Permanent_File utility if subsequent updates are to be 
recorded on the log. 

• An update recovery log is maintained for a file only if 
its LOGGING_OPTIONS attribute includes the option 
ENABLE_MEDIA_RECOVERY. 

9-20 SCL Advanced File Management Usage Revision J 



Examples 

Revision J 

VOID _LOG_FOR_RESTORED _FILE Subcommand 

The following session discards the update recovery log 
associated with the restored file $USER.KEYED_FILE: 

/recover_keyed_file, $user.keyed_file 
reckf/void_log_for_restored_file 

--File : V02.SONYA.KEYED_FILE : Void_Log_For_ 
Restored_File has successfully discarded all 
previous log information for this file. 
Logging will resume after you have performed 
a BACPF of this file. 

reckf/quit 
I 

Keyed-File Recovery 9-21 



HELP Subcommand 

HELP Subcommand 

Purpose 

Format 

Provides access to online information about the utility. 

HELP or 
HEL 

SUBJECT= string 
MANUAL=file 
STATUS=status variable 

Parameters SUBJECT or S 

Remarks 

Topic to be found in the index of the online manual. The 
topic must be enclosed in apostrophes ('topic'). 

If you omit the SUBJECT parameter, HELP displays a 
list of the available subcommands and prompts for display 
of a subcommand description in the online manual. 

MANUAL or M 

Online manual file to be read. If you omit the MANUAL 
parameter, the default is AFM. The working catalog is 
searched for the AFM file and then the 
$SYSTEM.MANUALS catalog. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

If STATUS is omitted, the completion status is returned to 
the terminal in an interactive session or, in a batch job, 
to the status variable specified on the RECOVER_ 
KEYED_FILE command, if any. 

• If the SUBJECT parameter specifies a topic that is not 
in the manual index, a nonfatal error is returned 
notifying you that the topic could not be found. 

• The default manual file, $SYSTEM.MANUALS.AFM, 
contains the online version of the NOSNE Advanced 
File Management Usage manual, as provided with the 
NOSNE system. 

• If your terminal is defined for full-screen applications, 
the online manual is displayed in screen mode. Help is 
available for reading the online manual. To leave the 
online manual and return to the utility, use QUIT. 

9-22 SCL Advanced File Management Usage Revision J 



Examples 

Revision J 

HELP Subcommand 

The following session shows the default display returned 
by the HELP subcommand. 

/recover_keyed_file, $user.keyed_file. 1 
reckf/help 

The following Recover_Keyed_File subcolTVllands are 
available: 

RECOVER_FILE MEDIA 
VOID_LOG_FOR_RESTORED_FILE 
HELP 
QUIT 

For a description of a subcommand in the online 
manual , enter : 

HELP subject = '<subcommand>' 

.To return from an online manual, enter: 

QUIT 
reckf/quit 
I 

Keyed-File Recovery 9-23 



QUIT Subcommand 

QUIT Subcommand 

Purpose Ends the Recover_Keyed_File session. 

Format QUIT or 
QUI 

STATUS =status variable 

Parameters STATUS 

Remarks 

Examples 

Optional SCL status variable in which the completion 
status of the command is returned. 

If STATUS is omitted, the completion status is returned to 
the terminal in an interactive session or, in a batch job, 
to the status variable specified on the RECOVER_ 
KEYED_FILE command, if any. 

• The QUIT command is required to end a session. 

• A recovery attempt that returns a fatal error ends the 
session. 

The following session is ended after a recovery attempt 
fails. 

/recover_keyed_file, $user.my_keyed_file 
reckf/recover_file_media 

--INFORMATIVE AA 1495-- Log $SYSTEM.AAM$SHARED_ 
RECOVERY_LOG : Recover_File_Media is attempting 
to find a backup of file : V01.KF4077.MV_KEYED_ 
FILE. 1 in this log. 

--WARNING AA 1410-- IMPORTANT - File: : 
V01.KF4077.MV_KEYED_FILE.1 : 
RECOVER_KEVED_FILE is deleting this file to ensure 
there is disk space for the backup file to be 
reloaded. To restart RECOVER_KEYED_FILE, if it 
terminates before the file is successfully 
restored, you must supply the full file path, 
including the cycle number (1). 

--WARNING AA 1480-- IMPORTANT - File 
:V01.KF4077.MY_KEYED_FILE.1 : The cycle 
number of this file is 1. 

9-24 SCL Advanced File Management Usage Revision J 



Revision J 

QUIT Subcommand 

--WARNING AA 1415-- IMPORTANT - The LOG_RESIDENCE 
should also be set to :V01.KF4077.MY_LOG using the 
SET_FILE_ATTRIBUTES convnand if RECOVER_KEYED_FILE 
is restarted for this file. 

--INFORMATIVE AA 1380-- RECOVER KEYED_FILE is now 
attempting to restore : V01.KF4077.MY_KEYED_ 
FILE.1 from the backup file. 

--INFORMATIVE AA 1495-- Log : V01.KF4077.MY_LOG : 
Recover_File_Media is attempting to find a backup 
of file :V01.KF4077.MY_KEYED_FILE. 1 in this log. 

--Log $SYSTEM.AAM.SHARED_RECOVERY_LOG : 
No record was found in this log for a backup of 
file :V01.KF4077.MY_KEYED_FILE.1 prior to 
July 7, 1987 at 3:53 PM. 

--FATAL-- File :V01.KF4077.MY_KEYED_FILE. 1 
Could not be recovered because the log does 
not contain a log record for a valid backup 
of this file. 

reckf/quit 
I 

Keyed-File Recovery 9-25 



Administer _Recovery _Log Utility 

Administer _Recovery _Log Utility 

The Administer_Recovery_Log utility is the NOSNE command utility 
used to create and maintain the logs used by the keyed-file interface. 

An update recovery log is the log on which all update operations for a 
file are recorded when the LOGGING_OPTIONS attribute of the file 
includes ENABLE_MEDIA_RECOVERY. 

Any number of keyed files can use the same log; the log entries 
contain a unique identifier [a signature] for the file to which they 
apply. 

A log cannot be used until it has been created by the Administer_ 
Recovery_Log utility. 

Ring Constraints 

The Administer_Recovery_Log utility enforces the following ring 
constraints: 

• To modify a log, the Administer_Recovery_Log utility must be 
executed in a ring at least as privileged as the ring in which the 
log was created. 

• To create or modify the default system log, you must execute the 
Administer _Recovery _Log utility in ring 6 or lower (at the 
system console). The default system log, 
$SYSTEM.AAM.SHARED_RECOVERY_LOG, is created during 
system installation. 

Although the Administer_Recovery_Log utility enforces the ring 
constraints described above, the files the utility creates have the ring 
attributes (4,4,4). Thus, files created using the Administer_Recovery_ 
Log utility can only be deleted using the Administer _Recovery _Log 
utility. 

9-26 SCL Advanced File Management Usage Revision J 



-

e 

Administer_Recovery _Log Utility 

Administer _Recovery _Log Tasks 

The Administer_ Recovery_ Log utility can perform the following tasks: 

Task Applicable Subcommands 

Delete existing logs DELETE_LOG 
QUIT 

Create a new log, or USE_ LOG 
change an existing log CONFIGURE_LOG_RESIDENCE 

SET_LOG_BACKUP_ACCOUNT 
CONFIGURE_LOG_BACKUP 
SET_ PERFORMANCE_ OPTION 
SET_ VERIFICATION_ LEVEL 
DISPLAY_ LOG_ CONFIGURATION 
CANCEL_ LOG_ CHANGES 
QUIT 

Display and clear USE_LOG 
the problem journal DISPLAY_PROBLEM_JOURNAL 

CLEAR_PROBLEM_JOURNAL 
QUIT 

Backup a log USE_LOG 
immediately BACKUP_LOG 

QUIT 

Creating a New Log 

The following steps outline the process of creating a new log. 

1. In general, the ADMINISTER_RECOVERY_LOG command creates 
the catalog specified on the command if it does not exist. However, 
if you are creating a log in a catalog that belongs to another user, 
the other user must create the catalog and give you access to it. 
(The commands to do so are described in the NOSNE System 
Usage manual.) For example, assuming the user name of the log 
administrator is LOG_ADMINISTRATOR, the following commands 
create the catalog $USER.MY_LOG: 

create_catalog, $user.my_log 
create_catalog_permit, $user.my_log, group=user, .. 
.. user=log_administrator, access_modes=(all, cycle, control) 

Revision J Keyed-File Recovery 9-27 



Administer _Recovery _Log Utility 

2. Begin the Administer _Recovery_ Log session by entering an 
ADMINISTER_RECOVERY_LOG command. For example: 

administer_recovery_log 

3. Specify the catalog in which the new log is to be created using the A 
USE_LOG subcommand. Administer_Recovery_Log creates a new W 
log only if the specified catalog does not already contain a log. (If 
it already contains a log, the session modifies the existing log [see 
Modifying an Existing Log later in this chapter].) For example: 

use_log, $user.my_log 

4. Establish the configuration of the log using the CONFIGURE_ 
LOG_RESIDENCE subcommand. For example, to configure the log 
to use four (4) repositories, perform the following: 

configure_log_residence, repositories=4 

5. To have the log backed up automatically, perform this step: 

a. Specify the account to be used by the jobs the system initiates 
to backup the log. This is done using the SET_LOG_ 
BACKUP _ACCOUNT subcommand. For example: 

set_log_backup_account, user=sonya, password=uquiwi 

b. Specify a backup file for each repository specified on the 
CONFIGURE_LOG_RESIDENCE subcommand using 
CONFIGURE_LOG_BACKUP subcommands. For example, if 
you specified that the log use four (4) repositories, you must 
enter four CONFIGURE_LOG_BACKUP subcommands. 

NOTE 

If you use the CONFIGURE_LOG_BACKUP subcommand to 
backup files to tape (which is the default), the tape is mounted 
and validated immediately, and the file is backed up at that 
time. Also, the tape used must be labeled. Labeling of tapes is 
done at the system console by the system operator. 

configure_log_backup, backup1, recorded_vsn='tp1' 
conlb, backup2, rvsn='tp2' 
conlb, backup3, rvsn='tp3' 
conlb, backup4, rvsn='tp4' 

9-28 SCL Advanced File Management Usage Revision J 



Administer _Recovery _Log Utility 

6. If desired, you can set performance and verification options for the 
log using the SET_PERFORMANCE_OPTION and SET_ 
VERIFICATION _LEVEL subcommands. (The SET_ 
VERIFICATION_LEVEL subcommand is effective only when 
creating a new log; it cannot be changed after the log is created.) 
For example: 

set_performance_option, emphasis=reliability 
set_verification_level, verify_log_entries=yes 

7. Check that the log specifications are as desired by entering the 
DISPLAY_LOG_CONFIGURATION subcommand. For example: 

admrl/display_log_configuration 

Administer_Recover_Log 
NOS/VE Keyed File Utilities 1.4 87156 

1987-06-05 
15:37:37 

Log_Control_Fi le= :NVE.SONYA.MY_LOG.AAF$LOG_CONTROL_FILE.1 

Number_Of_Repositories 
Current_Repository 
Repository_Expiration_Time 
Repository_Size_Limit 
Repository_Switching_Size 
Repository_Switching_Time 
Switch_Suppression_Size 
Switch_Suppression_Time 
Oldest_Valid_Entry 

Performance_Option 
Parcel 
Record 

Verify_Log_Entries 

Backup_Account 

Revision J 

User 
Family_Name 
User_Job_Name 
Job_Class 
Account 
Project 
Output_Disposition 
user_Information 

4 

0 

100000000 "bytes" 
70000000 "bytes" 
1440 "minutes" 
o "bytes" 
O "minutes" 

Rel iabi 1 ity 
Rel iabi 1 ity 
Yes 

SONYA 
UQUIWI 

PRINTER 

Keyed-File Recovery 9-29 



l 

Administer _Recovery _Log Utility 

Log_Back.up_Pool 
Tape_F i 1 e_Name 

Media 
Device_ Type 
Count_of_VSNs 

Externat_VSN 
Recorded_VSN 

Tape_F i l e_Name 
Media 
Device_ Type 
Count_of_VSNs 

External_VSN 
Recorded_VSN 

Tape_File_Name 
Media 
Device_ Type 
Count_of_VSNs 

External_VSN 
Recorded_VSN 

Tape_File_Name 
Media 
Device_ Type 
Count_of_VSNs 

External_VSN 
Recorded_VSN 

Damage_Conditions 

: BACKUPl 
next available log back.up tape l 

Tape 
MT9$6250 

tpl 
tpl 

BACKUP2 
Tape 
MT9$6250 
1 

tp2 
tp2 

BACKUPS 
Tape 
MT9$6250 
1 

tp3 
tp3 

BACKUP4 
Tape 
MT9$6250 

tp4 
tp4 

None 

8. To change a specification, re-enter the appropriate subcommand 
with the correction. Or, you can cancel all specifications and delete 
requests for the log with the CANCEL_LOG_CHANGES 
subcommand or by specifying APPLY_LOG_CHANGES=FALSE on 
the QUIT subcommand. 

With the exception of the performance option (SET_ 
PERFORMANCE_OPTION) and backup account information (SET_ 
LOG_BACKUP _ACCOUNT), the configuration of the log cannot 
be changed after it is created by Administer_Recovery_Log. 

9. If the log specifications are correct, enter the QUIT subcommand 
to apply the specifications and end the session. For example: e 

Quit 

9-30 SCL Advanced File Management Usage Revision J 



Administer _Recovery _Log Utility 

10. You should immediately backup the new log specifications. To do 
so, use the Backup_Permanent_File utility to backup the file 
AAF$LOG_CONTROL_FILE in the log catalog. For example, the 
following session uses the backup file $USER.LOG_CONTROL_ 
BACKUP to backup the log specifications for $USER.MY_LOG: 

/backup_permanent_file, $user. Jog_control_backup, .. 
. ./ 11 st =$out put 
PUB/backup_file, $user.my_log.aaf$log_control_file 
PUB/Quit 
I 

The backup file written by these commands is reloaded only if a 
system failure damages the log before it is put into use and 
backed up by an automatic log backup job. 

11. The owner of the catalog containing the new log must give the 
following permissions to all users who can update keyed files that 
use the log. 

Access_Modes=(read, write) 
Share_Modes=none 

For example, the following command allows all users to use the 
log in $USER.MY_LOG: 

create_catalog_permit, $user.my_Jog, group=public, 
access_modes=(read, write), share_modes=none 

Modifying an Existing Log 

This section describes how to modify an existing log. 

To modify an existing log: 

1. Begin the session by entering an ADMINISTER_RECOVERY_LOG 
command. 

2. Specify the log to be changed using the USE_LOG subcommand. 

3. Display the existing log specifications with the DISPLAY_LOG_ 
CONFIGURATION subcommand. 

Revision J Keyed-File Recovery 9-31 



Administer_Recovery_Log Utility 

4. Enter the changes using one or more of the following 
subcommands: 

SET_LOG_BACKUP_ACCOUNT 
SET_PERFORMANCE_OPTION 

5. Display the new log specifications with the DISPLAY_LOG_ 
CONFIGURATION subcommand. 

6. To change a specification, re-enter the appropriate command. Or, 
you can cancel all changes and delete requests for the log with the 
CANCEL_LOG_CHANGES subcommand or by specifying APPLY_ 
LOG_ CHANGES= FALSE on the QUIT subcommand. 

7. If the log changes are correct, enter the QUIT subcommand to 
carry out the changes and end the session. 

8. You should immediately backup the log changes. To do so, use the 
Backup_Permanent_File utility to backup the file AAF$LOG_ 
CONTROL_FILE in the log catalog. 

Configuring a Log 

As stated before, a log is a catalog of files. One log, identified by its e 
catalog path, can be used by any number of keyed files. 

The NOS/VE log manager software identifies the entries made to the 
log such that the collection of entries written as the update recovery 
log for a keyed file can be considered logically separate from all other 
log entries. Thus, that collection of entries can be referred to as a 
logical log. All entries in a logical log have the same unique identifier 
(called its signature). 

When the Administer_Recovery_Log utility configures a new log or 
changes an existing log configuration, it is configuring the physical 
log, not a particular logical log. Therefore, the configuration affects all 
keyed files which refer to that log in their LOG_RESIDENCE 
attribute. 

Log Repositories 

The log configuration describes the repositories in the log and 
provides for backups of those repositories. A repository is a log file in 
which log entries are written. Each log must have two or more 
repositories. If the log is configured for automatic backups, at least 
three repositories are required. 

9-32 SCL Advanced File Management Usage Revision J 



Administer_Recovery _Log Utility 

Only one repository is active at a time. Data is written to the active 
repository until the system determines that a repository switch should 
occur. 

Repositories are switched in round-robin order. In other words, each 
repository is written in order until all have been written and then 
each repository, starting with the first, is overwritten in order. So, the 
number of entries stored in a log at any time is the sum of the 
entries in its repositories. 

Repository Size Limits 

The overall log length is the sum of the lengths of its repositories. 
Therefore, the number of repositories and the limits on the size of the 
repositories determine the maximum length of the log. 

NOTE 

A log must be long enough to record all updates to the keyed files in 
the interval between backups of the keyed files. For example, if the 
keyed files using the log are backed up daily, the log must be able to 
record at least a full day of updates to those files. A substantial 
margin is recommended. 

Also, you must consider a recovery situation in which users are 
recovering updates from the oldest repositories while other users are 
simultaneously recording log entries. In this situation, a repository 
switch is made to the oldest repository for purposes of recording log 
entries while the same repository is being read for recovery purposes. 
The log entries continue at the expense of the recovery. Configuring 
the log with extra repositories (two extra repositories are usually 
enough) is therefore recommended to avoid this conflict. 

The length of a repository is the number of bytes of data written to it 
before the system switches to the next repository. Therefore, the 
repository length is determined by the parameters that determine 
when the repository is switched. (The parameters are specified by the 
CONFIGURE_LOG_RESIDENCE subcommand.) 

An automatic repository switch occurs when either of the following 
events occurs: 

• When the repository size reaches the REPOSITORY_SWITCHING_ 
SIZE for the log, the system checks whether the SWITCH_ 
SUPPRESSION_ TIME has passed since the last repository switch. 
If so, a switch occurs. 

Revision J Keyed-File Recovery 9-33 



Administer _Recovery _Log Utility 

• When the time since a repository switch reaches the 
REPOSITORY_SWITCHING_ TIME for the log, the system checks 
whether the SWITCH_SUPPRESSION_SIZE has been reached. If 
so, a switch occurs. 

The REPOSITORY_SIZE_LIMIT parameter sets an absolute limit on 
the size of any repository in the log. During normal log activity, the e 
active repository size should never approach the REPOSITORY_SIZE_ 
LIMIT. 

Estimating Repository Size 

When estimating an appropriate repository size, you should assume 
that each log entry is approximately 150 bytes plus the record data 
and the nonembedded primary-key value, if any. You also need to 
know the number of keyed files that will be using the log and the 
expected update rates (number of updates per hour) for each file. This 
allows you to estimate the repository size required to hold the log 
entries for a given period of time. 

For example, suppose only 5 keyed files will use the log and the 
number of updates per hour is assumed to be no more than 100 per 
file. If a repository should hold the log entries for approximately 4 
hours, it should hold approximately 2000 log entries. Assuming that, 
for each file, the record length is 80 bytes and the primary key is 
embedded, the expected log entry size would be 230 bytes (150 + 80). 
Therefore, the length of a repository for 2000 log entries would be 
approximately 460,000 bytes. 

Log Backup Files 

To protect the log from system failures, you can configure backup files 
for the log. If backup files are configured, each repository switch 
initiates a backup job to backup the repository just switched from. 

For example, suppose the log has four repositories and a repository 
switch from repository 2 to repository 3 occurs. If backup files are 
configured for the log, a backup job is started. It copies repository 2 
to a backup file. 

The number of backup files, if any, must be the same as the number 
of repositories for the log. Only one backup file is used by each 
backup job. The backup files are used in round-robin order. After all 
backup files are used, the next backup job overwrites the oldest 
backup file. 

9-34 SCL Advanced File Management Usage Revision J 



-

Administer _Recovery _Log Utility 

For example, suppose a log has four repositories (1, 2, 3, and 4) and 
four backup files (A, B, C, and D). The repositories on each backup 
file would be as follows: 

Backup Used for 
File Switch Repositories 

A 1 to 2 1 

B 2 to 3 2 

c 3 to 4 3 

D 4 to 1 4 

Each backup file must be at least as long as one repository plus the 
log control file. 

The log backup configuration specifies the backup files and whether 
each backup file is a mass storage file or a magnetic tape file: 

• If the file is a magnetic tape file, the configuration specifies the 
tape volumes that comprise the file and the tape density. These 
parameters determine the amount of data that can be recorded on 
the tape file. 

• If the file is a mass storage file, the maximum length of the file 
is the maximum file length allowed the user to which the file 
belongs. 

Log_ Temporarily _Full Status 

Typically a switch from one repository to the next occurs when 
REPOSITORY_SWITCHING_SIZE or REPOSITORY_SWITCHING_ 
TIME is reached. However, if SWITCH_SUPPRESSION_TIME is set 
to other than its default value of 0 (no suppression), switching could 
be suppressed such that the active repository grows beyond 
REPOSITORY_SWITCHING_SIZE. Such growth cannot proceed 
forever; if it reaches the midpoint between REPOSITORY_ 
SWITCHING_SIZE and the REPOSITORY_SIZE_LIMIT, no more e update operations will be allowed for the files using the log. 

Each update of a keyed file returns the nonfatal status AAE$LOG_ 
TEMPORARILY_FULL. This continues until a repository switch 
occurs. 

Revision J Keyed-File Recovery 9-35 



Administer_Recovery _Log Utility 

When users are receiving the AAE$LOG_ TEMPORARILY_FULL 
status, the log administrator can clear the status using the BACKUP_ e 
LOG subcommand of the Administer_Recovery_Log utility. The 
BACKUP_ LOG subcommand initiates an immediate repository switch, 
as part of the backup process. 

However, the log administrator should also determine why the e 
AAE$LOG_ TEMPORARILY_FULL status occurred. It may indicate 
that: 

• An unusually large number of updates were being made in a 
relatively short time to the files that use the log, or 

• The log is too small for the normal update activity of the keyed 
files that use it, or 

• SWITCH_SUPPRESSION_ TIME is too large for the normal 
update activity of the keyed files that use it. 

The following configuration changes would decrease the frequency of 
the AAE$LOG_ TEMPORARILY_ FULL status. (The following changes 
can be made only to new logs. If the log already exists, it must be 
deleted, then recreated.) 

• Decrease the SWITCH_ SUPPRESSION_ TIME interval so that a 
switch can occur sooner. 

Care should be taken not to reduce the lifespan of the log (the 
length of time covered by the log entries in the log) to less than 
the time between backups of the keyed files using the log. 

• Increase REPOSITORY_SWITCHING_SIZE and/or REPOSITORY_ 
SIZE_LIMIT so that more logging can be done on a repository 
(making it more likely that SWITCH_SUPPRESSION_ TIME will 
expire before the AAE$LOG_ TEMPORARILY_FULL condition 
occurs). 

This will cause more log entries to reside on each repository, 
which has certain drawbacks. For one, more disk space is 
consumed by the log. For another, if the log is configured for 
backups, at any given time there will be more log entries (a 
repository's worth) that are not on a backup (furthermore, the .A. 
individual backups will be larger). 'W' 

Besides the changes described above, the log administrator may choose 
to increase the overall log size by increasing the number of 
repositories. This would require additional backup files (if backup files e 
are included in the configuration). 

9-36 SCL Advanced File Management Usage Revision J 



ADMINISTER_RECOVERY_LOG Command 

ADMINISTER_RECOVERY_LOG Command 

Purpose 

Format 

Begins an Administer _Recovery _Log utility session. 

ADMINISTER_RECOVERY_LOG or 
ADMRL 

STATUS= status_ variable 

Parameters STATUS 

Examples 

Revision J 

Optional SCL status variable in which the completion 
status of the command is returned. Its use depends on 
whether the command is executed in a batch job or an 
interactive session. 

In a batch job, when an error is returned for a 
subcommand without its own status variable, the error is 
stored in the ADMINISTER_RECOVERY_LOG status 
variable, if any, and the session terminates. 

In an interactive session, only the completion status of 
the ADMINISTER_RECOVERY_LOG command and its 
QUIT subcommand are stored in the ADMINISTER_ 
RECOVERY_LOG status variable. Errors returned by 
other subcommands are displayed at the terminal and the 
session continues. 

The following is the minimal Administer _Recovery _Log 
session; it does nothing. 

/administer_recovery_log 
admr l/qui t 
I 

Keyed-File Recovery 9-37 



BACKUP_LOG Subcommand 

BACKUP _LOG Subcommand 

Purpose 

Format 

Initiates an immediate backup of the log. 

BACKUP _LOG or 
BACL 

STATUS= status_ variable 

Parameters STATUS 

Remarks 

Examples 

Optional SCL status variable in which the completion 
status of the subcommand is returned. 

• This subcommand must be preceded in the session by 
a USE_ LOG subcommand to specify the log to be 
backed up. 

• This subcommand can be performed only on a log that 
has been configured for log backups. (This is done 
using the CONFIGURE_LOG_BACKUP subcommand.) 

• This subcommand cannot be used in the same session 
in which the log is configured. This is because a log 
that is configured in a session is considered to be a A 
new log, and new logs cannot be backed up. WI' 

• This subcommand causes an immediate repository 
switch which, in turn, initiates a backup of the log. 

• You should use this subcommand in both of the 
following situations: 

Log users are receiving the status AAE$LOG_ 
TEMPORARILY_FULL, which indicates that an 
immediate repository switch is needed. 

- A system failure seems imminent. 

The following session initiates an immediate repository 
switch and backup for the existing log in $USER.MY_ 
LOG. 

/administer_recovery_log 
admrl/use_log, catalog=$user.my_log 
admrl/backup_log 
admr l I c:iu H 
I 

9-38 SCL Advanced File Management Usage Revision J 



CANCEL_LOG_CHANGES Subcommand 

CANCEL_LOG _CHANGES Subcommand 

Purpose 

Format 

Discards the log specifications and any delete requests 
accumulated in the session. 

CANCEL_LOG_CHANGESor 
CANLC 

STATUS= status_ variable 

Parameters STATUS 

Remarks 

Examples 

Optional SCL status variable in which the completion 
status of the subcommand is returned. 

• All accumulated log specifications and delete requests 
are discarded before they are put into effect by the 
QUIT subcommand. 

• This subcommand is appropriate only after a USE_ 
LOG or DELETE_LOG subcommand has been entered. 

• You can begin accumulating log specifications again 
after this subcommand. To do so, you must begin with 
another USE_LOG subcommand to specify the log to 
be created or changed. 

The following session enters a change for $USER.MY_ 
LOG, but then discards the change so the session does 
nothing. 

/administer_recovery_log 
admrl/use_log, $user.my_log 
admrl/set_performance_option, emphasis=speed 
admrl/cancel_log_changes 
admrl/Quit 
I 

Revision J Keyed-File Recovery 9-39 



CLEAR_PROBLEM_JOURNAL Subcommand 

CLEAR_PROBLEM_JOURNAL Subcommand 

Purpose 

Format 

Clears the problem journal for the log. 

CLEAR_PROBLEM_JOURNAL or 
CLEPJ 

STATUS= stat-us_ variable 

Parameters STATUS 

Remarks 

Examples 

Optional SCL status variable in which the completion 
status of the subcommand is returned. 

• The system maintains a problem journal in each log in 
which it records any problems that have occurred 
while using the log. 

• You should display the problem journal before clearing 
it. To do so, use the DISPLAY_PROBLEM_JOURNAL 
subcommand. 

• The log referenced is the log specified on the USE_ 
LOG subcommand ear lier in the session. 

• unlike log changes, this subcommand clears the e 
problem journal itself; the request does not wait until 
the QUIT subcommand is entered. Thus, a request to 
clear the problem journal cannot be undone by a 
CANCEL_LOG_CHANGES subcommand. 

The following session prints the contents of the problem 
journal for $USER.MY_LOG before clearing the problem 
journal. 

/adm;nister_recovery_log 
admrl/use_log, Suser.my_log 
admrl/display_problem_journal, output=log_problems 
admrl/print_f;Je, log_problems 
admrl/clear_problem_journal 
admrl/Quit 
I 

9-40 SCL Advanced File Management Usage Revision J 



CONFIGURE_LOG_BACKUP Subcommand 

CONFIGURE _LOG _BACKUP Subcommand 

Purpose 

Format 

Establishes the backup file pool for the log. 

CONFIGURE_LOG_BACKUP or 
CONLB 

ADD_FILE =file 
REMOVE_FILE =file 
MEDIA= keyword 
EXTERNAL_ VSN=list of string 
RECORDED_ VSN =list of string 
TYPE= keyword 
VERIFY= boolean 
FILE_ CLASS =character 
INITIAL_ VOLUME=name 
STATUS= status_ variable 

Parameters ADD _FILE or AF 

Revision J 

File to be added to the pool of backup files for the log. If 
ADD_FILE is omitted, no backup file is added. 

REMOVE _FILE or RF 

File to be removed from the pool of backup files for the 
log. If REMOVE_FILE is omitted, no backup file is 
removed. 

MEDIA or M 

Device class of the file specified by the ADD_FILE 
parameter. 

MAGNETIC_ TAPE_DEVICE or MTD 

Indicates that the log files are backed up to a labeled 
tape. 

MASS_STORAGE_DEVICE or MSD 

Indicates that the log files are backed up to disk. (The 
next four parameters are not used.) 

The default value is MAGNETIC_ TAPE_DEVICE. 

Keyed-File Recovery 9-41 



CONFIGURE_LOG_BACKUP Subcommand 

EXTERNAL_ VSN or EVSN 

List of external VSN s identifying the tape volumes that 
compose the file specified by the ADD_FILE parameter. 
The VSN s are specified as strings of from 1 through 6 
characters enclosed in apostrophes. This parameter must 
be specified if MEDIA is set to MAGNETIC_ TAPE_ 
DEVICE. 

RECORDED_ VSN or RVSN 

List of recorded VSN s of the tape volumes that compose 
the file specified by the ADD_FILE parameter. The 
recorded VSN is in the ANSI VOLl label on the volume. 
The VSN s are specified as strings of from 1 through 6 
characters enclosed in apostrophes. This parameter must 
be specified if MEDIA is set to MAGNETIC_ TAPE_ 
DEVICE. 

TYPE or T 

Tape density written by a nine-track tape drive for the 
file specified by the ADD_FILE parameter. This 
parameter is used only if MEDIA is set to MAGNETIC_ 
TAPE_ DEVICE. 

MT9$800 

Indicates 800 cpi. 

MT9$1600 

Indicates 1600 cpi. 

MT9$6250 

Indicates 6250 cpi. 

The default value is MT9$6250. 

VERIFY or V 

Indicates whether the backup file specified by the ADD_ 
FILE parameter is verified. This parameter is used only if 
MEDIA is set to MAGNETIC_ TAPE_ DEVICE. 

TRUE or YES ot ON 

The magnetic tape is mounted; the backup file is 
opened to verify that it exists and that it has read 
and write capabilities. 

9-42 SCL Advanced File Management Usage Revision J 



Remarks 

Revision J 

CONFIGURE_LOG_BACKUP Subcommand 

FALSE or NO or OFF 

The backup file is not verified. 

The default value is TRUE. 

FILE_CLASS or FC 

Specifies the class of the file to be assigned. Refer to the 
REQUEST_MASS_STORAGE command in the NOSNE 
System Performance and Maintenance manual, Volume 2, 
for class assignments and a complete description of this 
parameter. This parameter is used only if MEDIA is set 
to MASS_STORAGE_DEVICE. 

INITIAL_ VOLUME or IV 

Name specifying the volume serial number (VSN) of the 
mass storage volume to which the file is to be assigned. 
The name is specified as a string of from 1 through 6 
characters. Refer to the REQUEST_MASS_STORAGE 
command in the NOSNE System Performance and 
Maintenance manual, Volume 2, for a complete description 
of this parameter. This parameter is used only if MEDIA 
is set to MASS_STORAGE_ DEVICE. 

STATUS 

Optional SCL status variable in which the completion 
status of the subcommand is returned. 

• This subcommand should be preceded in this session 
by a SET_LOG_BACKUP _ACCOUNT subcommand. 

• When a file is backed up to tape, the tape is mounted, 
validated, and initialized at the time this subcommand 
is entered. 

• A tape backup file must be labeled. Labeling of tapes 
is done from the system console by the system 
operator. 

• A mass storage backup file must not previously exist; 
it is created and initialized at the time this 
subcommand is entered. 

• A mass storage backup file is specified by its file 
path. However, any file cycle specification on the file 
path is ignored. The backup is always written to cycle 
1. 

Keyed-File Recovery 9-43 



CONFIGURE_LOG_BACKUP Subcommand 

• If any backup files are configured for the log, a 
backup file must be configured for each log repository. e 
For example, if backup files are configured, a log with 
five repositories must have five backup files. 

• This subcommand can be specified only for a new log. A 
Backup files cannot be configured for an existing log. • 

• Each CONFIGURE_LOG_BACKUP subcommand can 
specify one file to be added and one file to be removed 
from the pool of backup files for the log. 

The files specified by the ADD_FILE and REMOVE_ 
FILE parameters can be the same file. This would be 
done when changing the description of the backup file. 

The log referenced by each CONFIGURE_LOG_ 
BACKUP subcommand is the log specified on the 
USE_LOG subcommand earlier in the session. 

The backup file pool takes effect when the QUIT 
subcommand is entered. It is discarded if a 
CANCEL_LOG_CHANGES subcommand is 
entered. 

Once in effect, the backup file pool cannot be 
modified. If modification is desired, the log must be 
deleted (using DELETE_LOG) and reconfigured. 

To see the current backup files, enter a DISPLAY_ 
LOG_ CONFIGURATION subcommand. The list 
reflects the changes made by subcommands in the 
session, although the changes do not take effect 
until the QUIT subcommand. 

• The FILE_ CLASS and INITIAL_ VOLUME parameters 
are described in detail as parameters of the 
REQUEST_MASS_STORAGE command in the 
NOSNE System Performance and Maintenance 
manual. 

• If you have established a working catalog, you must e 
enter tape file names as $LOCAL.filename for the 
ADD_FILE and REMOVE_FILE parameters. 

9.44 SCL Advanced File Management Usage Revision J 



Examples 

Revision J 

CONFIGURE_LOG_BACKUP Subcommand 

The following session configures the backup files TAPEl, 
TAPE2, and TAPE3 for log $USER.MY_LOG. Each tape is 
to consist of two labeled, 6250 cpi tape volumes. 

/admrl 

admrl/usel, $user.my_log 

admrl/conlr, repositories=3 

admrl/setlba, u=sonya, p=uquiwi 
admr l I con 1 b , tape 1 , .. 

admrl . ./evsn=( 'TPl', 'TP2'), rvsn=( 'X3241', 'X3242') :: 
admr 1/ con 1 b, tape2, .. 

admrl .. /evsn=('TP3', 'TP4'), rvsn=('Y4310', 'Y4311') 
admrl/conlb, tape3, .. 

admrl .. /evsn=('TP5', 'TP6'), rvsn=('Z5011','Z5012') 

admr 1/ Quit 

I 

Keyed-File Recovery 9-45 



CONFIGURE_LOG_RESIDENCE Subcommand 

CONFIGURE_LOG_RESIDENCE Subcommand 

Purpose 

Format 

Establishes the configuration of the log. 

CONFIGURE _LOG _RESIDENCE or 
CONLR 

REPOSITORIES= integer 
REPOSITORY _SWITCHING _SIZE =integer 
REPOSITORY _SWITCHING_ TIME= integer 
SWITCH_SUPPRESSION_SIZE=integer or keyword 
SWITCH_SUPPRESSION_TIME=integer or keyword 
REPOSITORY _SIZE _LIMIT= integer 
FILE_ CLASS= character 
INITIAL_ VOLUME =name 
STATUS= status_ variable 

Parameters REPOSITORIES or R 

Number of disk-resident repositories for the log (integer 
from 2 through 4096). The default value is 5. 

If a backup account and backup pool are specified for the 
log, the log must have at least 3 repositories. 

REPOSITORY_SWITCHING_SIZE or RSS 

Repository size threshold for the log (in bytes, from 
500,000 through 2,132,483,647 [(231 - 1) - 15,000,000]). The 
default value is 70,000,000 bytes. 

REPOSITORY_SWITCHING_TIME or RST 

Repository time threshold for the log (in minutes, from 1 
through 525,600 [365 days]). The default value is 1440 (24 
hours). 

SWITCH_SUPPRESSION _SIZE or SSS 

Minimum repository size required before switching (in 
bytes, from 500,000 through 2,132,483,647 [(231 - 1) -
15,000,000]). The default value is 0. 

SWITCH_SUPPRESSION_TIME or SST 

Minimum repository time required before switching (in 
minutes, from 1 through 525,600 [365 days]). The default 
value is 0. 

9-46 NOSNE Advanced File Management Usage Revision J 



Remarks 

Revision J 

CONFIGURE_LOG_RESIDENCE Subcommand 

REPOSITORY_SIZE_LIMIT or RSL 

Absolute maximum repository size limit (in bytes, from 
15,500,000 through 2,147,483,647 [231 - 1]). It must be at 
least 15,000,000 bytes larger than the REPOSITORY_ 
SWITCHING_SIZE. The default value is 100,000,000 
bytes. 

FILE_ CLASS or FC 

Specifies the class of the file to be assigned. Refer to the 
REQUEST_MASS_STORAGE command in the NOSNE 
System Performance and Maintenance manual, Volume 2, 
for class assignments and a complete description of this 
parameter. 

INITIAL_ VOLUME or IV 

Name specifying the volume serial number (VSN) of the 
mass storage volume to which the file is to be assigned. 
The name is specified as a string of from 1 through 6 
characters. Refer to the REQUEST_MASS_STORAGE 
command in the NOSNE System Performance and 
Maintenance manual, Volume 2, for a complete description 
of this parameter. 

STATUS 

Optional SCL status variable in which the completion 
status of the subcommand is returned. 

• For more information on the log configuration 
parameters, see Configuring a Log earlier in this 
chapter. 

• The FILE_CLASS and INITIAL_ VOLUME parameters 
are described in detail as parameters of the 
REQUEST_MASS_STORAGE command in the 
NOSNE System Performance and Maintenance 
manual, Volume 2. 

• A repository switch occurs when any of the following 
events occurs: 

- When the repository size reaches the 
REPOSITORY_SWITCHING_SIZE for the log, the 
system checks whether the SWITCH_ 
SUPPRESSION_ TIME has passed since the last 
repository switch. If so, a switch occurs. 

Keyed-File Recovery 9-47 



CONFIGURE_LOG_RESIDENCE Subcommand 

- When the time since a repository switch reaches ~ 
the REPOSITORY_SWITCHING_ TIME for the log, WI' 
the system checks whether the SWITCH_ 
SUPPRESSION _SIZE has been reached. If so, a 
switch occurs. 

- When you enter a BACKUP_LOG subcommand. e 
• During normal log activity, the active repository size 

should never approach the REPOSITORY_SIZE_ 
LIMIT. 

If the repository size reaches the midpoint between the 
REPOSITORY_SWITCHING_SIZE and the 
REPOSITORY_SIZE_LIMIT, no more update 
operations are allowed for the files using the log. Each 
update attempt returns the abnormal status 
AAE$LOG_ TEMPORARILY_FULL. This continues 
until a repository switch occurs. 

You can clear an AAE$LOG_TEMPORARILY_FULL 
status by entering a BACKUP _LOG subcommand in 
an Administer_Recovery_Log utility session. The 
subcommand initiates an immediate repository switch ~ 
as part of the back process. W 

• This subcommand can be specified only for a new log. 
The configuration cannot be changed for an existing 
log. 

9-48 SCL Advanced File Management Usage Revision J 



Examples 

Revision J 

CONFIGURE_LOG_RESIDENCE Subcommand 

The following session creates a new log using only three 
repositories. Three mass storage files are designated as 
the backup files. All other log specifications use the 
default values. 

/administer_recovery_log 
admr1/use_log, $user.my_log 
admr1/configure_1og_residence, 
admrl .. /repositories=3 
admr1/set_1og_backup_account, user=sonya, 
admrl .. /Password=uquiwi 
admr1/configure_log_backup, .. 
admrl .. /add_file=$user.backup1, 
admrl .. /media=mass_storage_device 
admrl/Conlb, $user.backup2, m=msd 
admr1/conlb,$user.backup3, m=msd 
admrl/display_log_configuration 

Administer_Recovery_Log 
NOS/VE Keyed File Utilities 1.4 87156 

1987-06-05 
16:36:29 

Log_Control_File = :NVE.SONYA.MY_LOG.AAF$LOG_ 
CONTROL_FILE.1 
Number_Of_Repositories 
Current Repository 
Repository_Expiration_Time 
Repository_Size_Limit 
Repository_Switching_Size 
Repository_Switching_Time 
Switch_Suppression_Size 
Switch_Suppression_Time 

Performance_Option 
Parcel 
Record 

Verify_Log_Entries 

3 
0 

100000000 "bytes• 
70000000 "bytes" 
1440 "mi nut es• 
O "bytes" 
0 "minutes" 

Balanced 
Balanced 
No 

Keyed-File Recovery 9-49 



CONFIGURE_LOG_RESIDENCE Subcommand 

Backup_Account 
User 
Fami ly_Name 
User_Job_Name 
Job_Class 
Account 
Project 
Output_Disposition 
User_Information 

Oldest_Valid_Log_Entry 

Log_Backup_Pool 
Log_Backup_File_Path 

SONYA 
UQUIWI 

PRINTER 

: :NVE.SONYA.BACKUP1.1 
[next available log backup file 

Media 
Oldest_Entry 
Newest_Entry 
Damage_Conditions 

Log_Backup_File_Path 

Media 
Oldest_Entry 
Newest_Entry 
Damage_Conditions 

Log_Backup_File_Path 

Media 
Oldest_Entry 
Newest_Entry 
Damage_Conditions 

admr 1/ quit 
I 

9-50 SCL Advanced File Management Usage 

Disk 

None 

:NVE.SONYA.BACKUP2. 1 

Disk 

None 

:NVE.SONYA.BACKUP3.1 

Disk 

None 

Revision J 



DELETE_LOG Subcommand 

DELETE _LOG Subcommand 

Purpose Requests deletion of an existing log. 

NOTE 

Orice the log is deleted, any keyed file using the log 
cannot be updated until either logging for the file is 
turned off (the LOGGING_OPTIONS attribute of the file 
includes NONE) or the log is recreated. If the log is 
recreated, any keyed files using the log must be backed 
up before entries can be made. 

Format DELETE _LOG or 
DELL 

CATALOG= file 
RETAIN_ CONFIGURATION= boolean 
STATUS =status_variable 

Parameters CATALOG or C 

Revision J 

Catalog path of the log to be deleted. This parameter is 
required. 

RETAIN_ CONFIGURATION or RC 

Indicates whether the log configuration is kept. This 
parameter is required. 

TRUE or YES or ON 

Empty the repositories and the log journal, but keep 
the log configuration. This has the same effect as 
deleting the log completely and then recreating it with 
the same configuration. 

FALSE or NO or OFF 

Delete all files composing the log, including the ::: 
repositories, the log journal, and mass storage log _,l_,._,I 

backup files. 

STATUS 

Optional SCL status variable in which the completion 
status of the subcommand is returned. 

Keyed-File Recovery 9-51 



DELETE_LOG Subcommand 

Remarks 

Examples 

• The logs specified by DELETE_LOG subcommands are 
not deleted until the QUIT subcommand is entered for 
the session. A CANCEL_LOG_CHANGES 
subcommand clears any pending deletion requests. 

• If the log configuration is to be retained, the 
subcommand deletes all of the log data on the 
repositories but the log continues to exist and can 
continue to be used. (You may want to backup your 
keyed files before deleting the log data; otherwise you 
are not protected by a recovery log. Be aware that 
once the log data is deleted, any keyed files using the 
log must be backed up again. This is because a 
backup indicator recorded on the log is required for 
any keyed file that will use the log. By deleting the 
log data, all past backup indicators are lost.) 

If the log configuration is not to be retained, the 
subcommand deletes all files relating to the log in the 
catalog. The catalog is no longer usable as a log until 
a new log is created in it. 

If all files in the catalog have been deleted, the 
catalog is deleted as well. 

• The catalog used is specified on the DELETE_ LOG 
subcommand. Therefore, the subcommand does not 
reference the log specified by the USE_LOG 
subcommand. More than one log can be deleted in a 
session. 

• To change the RETAIN_ CONFIGURATION value, 
re-enter this subcommand with the correction. 

The following session requests deletion of log $USER.MY_ 
LOG, but then cancels the request: 

/administer_recovery_log 
admrl/delete_log, $user.my_log, 
admrl .. /retain_configuration=false 
adrnrl/cancel_log_changes 
adrnr l I quit 
I 

9-52 SCL Advanced File Management Usage Revision J 



DISPLAY_LOG_CONFIGURATION Subcommand 

DISPLAY_LOG _CONFIGURATION Subcommand 

Purpose 

Format 

Displays the current log specifications. 

DISPLAY_LOG_CONFIGURATION or 
DISLC 

OUTPUT=file 
STATUS= status_ variable 

Parameters OUTPUT or 0 

Remarks 

Revision J 

File to which the display is written. 

The file is positioned according to the file position ($BOI, 
$EOI) appended to the file reference or, if no position is 
specified, according to its OPEN_POSITION attribute 
value. 

If OUTPUT is omitted, the display is written to the 
standard output file, $OUTPUT. 

STATUS 

Optional SCL status variable in which the completion 
status of the subcommand is returned. 

• This subcommand must be preceded in the session by 
a USE_LOG subcommand to specify the log whose 
configuration is displayed. 

• The display includes the following information: 

Number of repositories configured for the log 
Current repository 
Repository expiration time 
Repository size limit 
Repository switching size 
Repository switching time 
Switch suppression size 
Switch suppression time 
Validation information used by backup jobs 
(The password is suppressed.) 
Backup file names and specifications 
Performance option (speed or reliability for records) 
Verification level (checksum or no checksum) 
Oldest valid log entry 

Keyed-File Recovery 9-53 



DISPLA Y_LOG_ CONFIGURATION Subcommand 

Examples The following session begins configuring a log for 
$USER.MY_LOG, but then cancels the configuration and 
quits. 

/administer_recovery_log 
admrl/use_log, $user.my_log 
admrl/configure_log_residence, repositories=6 
admrl/display_log_configuration 
Administer_Recover_Log 1987-06-05 
NOS/VE Keyed File Utilities 1.4 87156 15:37:37 

Log_Control_File = :NVE.SONYA.MY_LOG.AAF$LOG_ 
CONTROL_FILE.1 

Number_Of_Repositories 
Current_Repository 
Repository_Expiration_Time 
Repository_Size_Limit 
Repository_Switching_Size 
Repository_Switching_Time 
Switch_Suppression_Size 
Switch_Suppression_Time 

Performance_Option 
Parcel 
Record 

Verify_Log_Entries 

Backup_Account 
User 
Family_Name 
Job_Class 
Account 
Project 
Output_Disposition 
User_Information 

Oldest_Valid_Log_Entry 

The Log_Backup_Pool is empty. 

admrl/cancel_log_changes 
admrl/ Quit 
I 

6 
0 

100000000 "bytes" 
70000000 "bytes" 
1440 "minutes" 
o "bytes" 
0 "minutes" 

Balanced 
Balanced 
No 

PRINTER 

9-54 SCL Advanced File Management Usage Revision J 



DISPLAY_PROBLEM_JOURNAL Subcommand 

DISPLAY_PROBLEM_JOURNAL Subcommand 

Purpose 

Format 

Displays the problem journal for the log. 

DISPLAY_PROBLEM_JOURNAL or 
DISPJ 

OUTPUT=file 
STATUS= status_ variable 

Parameters OUTPUT or 0 

Remarks 

Revision J 

File to which the display is written. 

The file is positioned according to the file position ($BOI, 
$EOI) appended to the file reference or, if no position is 
specified, according to its OPEN _POSITION attribute 
value. 

If OUTPUT is omitted, the display is written to the 
standard output file, $OUTPUT. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

• The system records any problems that have occurred 
while using the log in the problem journal for the log. 
The problems could be: 

- Checksum errors (if verification is requested) 

- Situations that caused the log to be temporarily 
full (nonfatal status AAE$LOG_ TEMPORARILY_ 
FULL). 

- Partial log entries (indicating log interruptions). 

- Tape loading errors for a log backup file. 

- Tape parity errors for a log backup file. 

• The log referenced is the log specified on the USE_ 
LOG subcommand ear lier in the session. 

Keyed-File Recovery 9-55 



DISPLAY_PROBLEM_JOURNAL Subcommand 

Examples The following session writes the problem journal for 
$USER.MY_LOG to file LOG_PROBLEMS and prints it. 

/administer_recovery_Jog 
admrl/use_log, $user.my_Jog 
admrl/dispJay_problem_journal, 
admrl .. /output=log_problems 
admrl/print_fi le, Jog_problems 
admr 1/ quit 
I 

9-56 SCL Advanced File Management Usage Revision J 



HELP Subcommand 

HELP Subcommand 

Purpose 

Format 

Provides access to online information about the utility. 

HELP or 
HEL 

SUBJECT=string 
MANUAL=file 
STATUS =status_variable 

Parameters SUBJECT or S 

Remarks 

Topic to be found in the index of the online manual. The 
topic must be enclosed in apostrophes ('topic'). 

If you omit the SUBJECT parameter, HELP displays a 
list of the available subcommands and prompts for display 
of a subcommand description in the online manual. 

MANUAL or M 

Online manual file to be read. If you omit the MANUAL 
parameter, the default is AFM. The subcommand searches 
for the file in the working catalog and then in the 
$SYSTEM.MANUALS catalog. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

If STATUS is omitted, the completion status is returned to 
the terminal in an interactive session or, in a batch job, 
to the status variable specified on the ADMINISTER_ 
RECOVERY_LOG command, if any. 

• If the SUBJECT parameter specifies a topic that is not 
in the manual index, a nonfatal error is returned 
notifying you that the topic could not be found. 

• The default manual file, $SYSTEM.MANUALS.AFM, 
contains the online version of the NOS/VE Advanced 
File Management Usage manual, as provided with the 
NOS/VE system. 

• If your terminal is defined for full-screen applications, 
online manuals are displayed in screen mode. Help on 
reading online manuals is available in the online 
manual. To leave the online manual and return to the 
utility, use QUIT. 

Revision J Keyed-File Recovery 9-57 



HELP Subcommand 

Examples The following session shows the default display returned 
by the HELP subcommand. 

/administer_recovery_log 
admrl/helo 

The following Administer_Recovery_Log subcommands are ~ 
available: 

BACKUP_LOG 
CANCEL_LOG_CHANGES 
CLEAR_PROBLEM_JOURNAL 
CONFIGURE_LOG_BACKUP 
CONFIGURE_LOG_RESIDENCE 
DELETE_LOG 
DISPLAY_LOG_CONFIGURATION 
DISPLAY_PROBLEM_JOURNAL 
HELP 
QUIT 
SET_LOG_BACKUP_ACCOUNT 
SET_PERFORMANCE_OPTION 
SET_VERIFICATION_LEVEL 
USE_ LOG 

For a description of a subcommand in the online 
manua 1, enter: 

HELP subject = '<subcommand>' 

To return from an online manual, enter: 

QUIT 
admrl/quit 
I 

9-58 SCL Advanced File Management Usage Revision J 



QUIT Subcommand 

QUIT Subcommand 

Purpose 

Format 

Ends the Administer_Recovery_Log session. 

QUIT or 
QUI 

APPLY _LOG_ CHANGES= boolean 
STATUS =status_ variable 

Parameters APPLY_LOG_CHANGES or ALC 

Revision J 

Indicates whether the log repositories are created or 
updated based upon the accumulated log specifications. 

TRUE or YES or ON 

The log is created or updated. Any logs specified on a 
DELETE_LOG subcommand during the session are 

!~:~~;/~~ ~:.~:~ =~h!"~o!0~1:~; :eated ... =· •.• -···''· ••• ········''.·············'' 

and initialized. If the log catalog already exists, only 
the performance option and backup account information 
can be changed. 

FALSE or NO or OFF 

The log is not created or updated; log specifications 
are discarded. Any logs specified on a DELETE_LOG 
subcommand during the session are kept. 

The default value is TRUE. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

Keyed-File Recovery 9-59 



QUIT Subcommand 

Remarks • To discard the accumulated log specifications and 
delete requests before ending the session, you can also e 
enter a CANCEL_LOG_CHANGES subcommand 
before entering the QUIT subcommand. 

• The changes specified by the following subcommands 
do not take effect until the log changes are applied 
when the QUIT subcommand is entered: 

CONFIGURE_LOG_BACKUP 
CONFIGURE_LOG_RESIDENCE 
DELETE_LOG 
SET_LOG_BACKUP_ACCOUNT 
SET_PERFORMANCE_OPTION 
SET_VERIFICATION_LEVEL 

9-60 SCL Advanced File Management Usage Revision J 



SET_LOG_BACKUP _ACCOUNT Subcommand 

SET _LOG _BACKUP _ACCOUNT Subcommand 

Purpose 

Format 

Specifies the validation information used by backup jobs 
for the log. 

NOTE 

Each time the password is changed for the user name 
used as the backup account, the password must also be 
changed in the log configuration. Otherwise, all 
subsequent backup jobs fail to execute. 

SET_LOG_BACKUP_ACCOUNT or 
SETLBA 

USER=name 
PASSWORD= name 
FAMILY _NAME= name 
USER_JOB_NAME =name 
JOB_ CLASS =name 
ACCOUNT=name 
PROJECT= name 
OUTPUT_DISPOSITION=file or keyword 
USER_INFORMATION =string 
STATUS =status_variable 

Parameters USER or U 

Revision J 

User name under which backup jobs are run. This 
parameter is required. 

PASSWORD or PW 

Password for the user name specified by the USER 
parameter. This parameter is required. 

FAMILY_NAME or FN 

Optional family name under which backup jobs are run. If 
FAMILY_NAME is omitted, backup jobs run under the 
family to which the specified user name belongs. 

USER_JOB_NAME or UJN or JOB_NAME or JN 

Optional name by which the backup jobs are identified in 
the system. If USER_JOB_NAME is omitted, the name 
assigned backup jobs is the user name. 

Keyed-File Recovery 9-61 



SET_LOG_BACKUP_ACCOUNT Subcommand 

JOB_CLASS or JC 

Optional job class in which the backup jobs are run. If 
JOB_CLASS is omitted, the jobs run in the default job 
class for the user name. 

ACCOUNT or A 

Account to which resource usage is charged for the 
backup jobs. If you omit this parameter for a user name 
that requires an account, the backup jobs will fail to 
execute. (See the Remarks.) 

PROJECT or P 

Project to which resource usage is charged for the backup 
jobs. If you omit this parameter for a user name that 
requires a project, the backup jobs will fail to execute. 
(See the Remarks.) 

OUTPUT_DISPOSITION or OD or STANDARD_ 
OUTPUT or SO 

Specifies the default for how the backup job's standard 
output is to be disposed. If omitted, the attribute 
associated with this parameter does not change. 

File name 

The standard output is copied to the specified file 
name at job end. 

DISCARD_ALL_OUTPUT or DAO 

All output generated by the backup job is to be 
discarded at job end. 

DISCARD_STANDARD_OUTPUT or DSO 

Standard output is to be discarded at job end. 

LOCAL or L 

Any output generated by the backup job is printed at 
the destination system rather than being returned to 
the originating user's default output station. e 
PRINTER or P 

Any output generated by the backup job is returned to 
the originating user's default output station. e 

9-62 SCL Advanced File Management Usage Revision J 



e Remarks 

Revision J 

SET_LOG_BACKUP_ACCOUNT Subcommand 

WAIT_QUEUE or WQ 

Any output generated by the backup job is returned to 
the originating user's $WAIT_QUEUE subcatalog on 
the originating system using the user's job name for 
the file name. If the $WAIT_ QUEUE subcatalog does 
not exist at the time the output files are returned, it 
is created for the user. 

The default value is PRINTER. 

USER_INFORMATION or Ul 

Specifies a user information string of up to 256 
characters. This string enables you to pass information 
(such as a file path) to a backup job. This string is also 
passed on to all output files generated by the backup job. 

If omitted, the user information string associated with the 
backup job is assumed. 

STATUS 

Optional SCL status variable in which the completion 
status of the subcommand is returned. 

• If backup files are included in the log configuration, 
each repository switch for the log starts a job to 
backup the log. Each backup job uses the validation 
information specified on this subcommand. 

• To determine if the ACCOUNT and PROJECT 
parameters are required and the valid JOB_CLASS 
values, display the validation information for the user 
name. 

To display validation information for a user name, use 
the Administer_ User utility with the DISPLAY_ USER 
subcommand. If you are logged in as the family 
administrator, you can display information on any user 
in the family; otherwise, you can only display 
information for the user name you are using. 

The following example shows only the display 
information that is specified: 

/administer_user 
AV/display_user, sonya, .. 
AV .. /do=(project,project_reQuired,job_class, 
AV .. /job_class_defaults) 
User = SONYA 

Keyed-File Recovery 9-63 

II 

I 



I 

SET_LOG_BACKUP_ACCOUNT Subcommand 

Examples 

Project 
Project_ReQuired 
Job_Class 

Job_Class_Defaults 

(ACCTX, PROJY) 
FALSE 
(MAINTENANCE, 

INTERACTIVE, 
BATCH,LONG_BATCH, 
BACKGROUND, 
FILE_ TRANSFER, 
SHORT_BATCH 

Interactive = INTERACTIVE Batch = BATCH 

The Project line shows the account and project for the 
user and the Project_Required line indicates whether 
their entry is required. The Job_Class line lists the 
valid job classes and the Job_Class_Defaults lists the 
default job class for each mode. 

For more information on family administration, see the 
NOS/VE User Validation manual. For more 
information on user validation, see the NOSNE 
System Usage manual. 

The following session modifies the $USER.MY_LOG 
configuration when the password for its backup account 
has changed. 

/administer_recovery_Jog 
admrl/use_log, $user.my_Jog 
admrl/set_log_backup_account, user=sonya, .. 
admrl .. /password=newpw 
admr l I QU it 
I 

9-64 SCL Advanced File Management Usage Revision J 



SET_PERFORMANCE_ OPTION Subcommand 

SET_PERFORMANCE_OPTION Subcommand 

Purpose 

Format 

Specifies the performance emphasis (speed or reliability) 
for the log. 

SET_PERFORMANCE_OPTION or 
SETPO 

EMPHASIS= keyword 
LOG _ENTRY= keyword 
STATUS= status_ variable 

Parameters EMPHASIS or E 

Revision J 

Specifies whether speed or reliability is more important. 
This parameter is required. 

SPEED or S 

Speed is more important than reliability. 

RELIABILITY or R 

Reliability is more important than speed. 

BALANCED or B 

Both speed and reliability are important. 

LOG _ENTRY or LOG _ENTRIES or LE 

Indicates the types of log entries to which the specified 
emphasis applies. 

RECORD or R 

Record entries. 

PARCEL or P 

For future implementation. 

ALL or A 

For future implementation. 

The default value is RECORD. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

Keyed-File Recovery 9-65 



11. 

SET_PERFORMANCE_ OPTION Subcommand 

Remarks 

Examples 

• This subcommand determines how frequently log 
entries in memory are written to disk. (Its purpose is 
similar to that of the FORCED_ WRITE attribute for 
keyed files.) 

• If this subcommand is not specified, the default 
performance option is BALANCED. 

• The EMPHASIS values have the following meanings: 

SPEED 

The system memory manager determines when log 
entries are written to disk. 

RELIABILITY 

Each log entry is written to disk before the next 
log entry begins. 

BALANCED 

The system must begin writing a log entry to disk 
before the next log entry can begin. 

• Any value specified for parcels is recorded for future 
use, but is currently ignored. 

The following session changes the performance options for 
$USER.MY_ LOG. 

/administer_recovery_log 
admrl/use_log, $user.my_log 
admrl/set_performance_option, 
admrl .. /emphasis=reliability 
admr l I c:iu i t 
I 

9-66 SCL Advanced File Management Usage Revision J 



SET_ VERIFICATION_LEVEL Subcommand 

SET_ VERIFICATION _LEVEL Subcommand 

Purpose 

Format 

Indicates whether checksums should be performed for the 
header and trailer parts of log records. 

SET_ VERIFICATION_LEVEL or 
SETVL 

VERIFY _LOG _ENTRIES= boolean 
STATUS= status_ variable 

Parameters VERIFY_LOG_ENTRIES or VLE 

Remarks 

Revision J 

Indicates whether checksums are performed for the log. 
This parameter is required. 

TRUE or YES or ON 

Checksums are performed. 

FALSE or NO or OFF 

Checksums are not performed. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

• This subcommand can be specified only for a new log. 
The verification level cannot be changed for an 
existing log. 

• This subcommand is optional. If it is omitted from a 
session that creates a new log, the default verification 
level is FALSE. 

Keyed-File Recovery 9-67 



USE_LOG Subcommand 

USE _LOG Subcommand 

Purpose Establishes the log to be created or changed by the 
session. 

Format USE_LOG or 
USEL 

CATALOG= name 
STATUS =status_variable 

Parameters CATALOG or C 

Catalog path for the log created or changed by the 
session. 

A session can create or change only one log; therefore, 
any subsequent USE_LOG subcommands are ignored. 

If the catalog does not exist, it is created. If the catalog 
exists, but does not contain a log, a log is created in it. 
(The catalog and log are actually created at the end of 
the session when you enter the QUIT subcommand.) If a 
log exists in the catalog, the session verifies that the log 
contains the proper characteristics. 

This parameter is required. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

• You must establish a catalog before any of the other 
subcommands (except QUIT, DELETE_LOG, HELP, or 
CANCEL_LOG_CHANGES (after DELETE_LOG)) 
can be entered. 

• Once established, the catalog can only be changed 
after using CANCEL_LOG_CHANGES. 

9-68 SCL Advanced File Management Usage Revision J 



Examples 

Revision J 

USE_LOG Subcommand 

The following session establishes $USER.MY_LOG as the 
log to be used. The performance options for $USER.MY_ 
LOG are changed, but then the changes are cancelled and 
another log is specified. 

/administer_recovery_Jog 
admrl/use_log, $user.my_log 
admrl/set_performance_option emphasis=reliability 
admrl/cancel_log_changes 
admrl/use_log, $user.my_Jog_2 
admrl/ 

Keyed-File Recovery 9-69 



Restore_Log Utility 

Restore_Log Utility 

The Restore_Log utility is the NOSNE command utility used to 
restore a damaged log. (For a description of logs, see Maintaining 
Update Logs in this chapter.) Just as a keyed file can become 
damaged because of a system failure, one or more of the files 
composing the log can become damaged. If this happens, none of the 
keyed files using the damaged log can be updated or restored until 
the log is restored. Damage to the log can be detected at any time 
during an open, update, or close operation on a keyed file. 

NOTE 

It is recommended that the Restore_Log utility be used only by the 
log administrator. It is a powerful utility that, if used 
indiscriminately, can cause unnecessary loss of log information. 

Since the log consists of a log control file and a pool of repositories (a 
repository being a log file in which log entries are written), the type 
and extent of log damage can vary widely. If the damage affects the 
log control file itself, you must first restore the log control file, then 
restore the log repositories. If the log control file is not damaged, you A 
can restore the repositories immediately. In any case, complete W 
restoration of the log can never be guaranteed. The extent of damage 
can be determined by using the RESTORE_REPOSITORIES or 
VALIDATE_LOG subcommands of the Restore_Log utility. 

NOTE 

The Restore_Log utility can only be used to restore older repositories 
(the repositories that are not active) and the log control file if the log 
was configured for log backups. This is done using the CONFIGURE_ 
LOG _BACKUP subcommand during an Administer_ Recovery_ Log 
utility. 

Otherwise, if only the active repository is to be replaced, log backups 
are not required. 

A restored log can be put to use depending on the degree of e 
restoration. If the log is completely restored, that is, no recovery 
information has been lost, the log is available for both recovery 
operations and for logging further entries. 

9-70 SCL Advanced File Management Usage Revision J 



Restore_Log Utility 

If, however, recovery information is lost (for example, the active 
repository is lost, which had not yet been backed up), or the log 
control file was restored, the log is available only for recovery 
operations. To begin recording log entries again, you must switch to a 
different log, or you must delete the log, then recreate it. 

Revision J Keyed-File Recovery 9-71 



Restoring a Log 

Currently, the Restore_Log subcommands are: 

Applicable Subcommand 

RESTORE_REPOSITORIES 

VALIDATE_LOG 

RESTORE_LOG_ CONTROL_FILE 

DELETE_LOG_CONTROL_FILE 

DELETE_REPOSITORIES 

ENABLE_LOG 

HELP 

QUIT 

Restoring a Log 

Task 

Disables the log, determines 
the usability of the log, and 
restores repositories from the 
backup files. 

Disables a damaged log and 
determines the usability of the 
log. 

Disables a damaged log and 
restores the log control file 
from the backup file. 

Deletes the log control file. 

Deletes log repositories. 

Enables the log. This makes 
the log available for general 
use. 

Provides access to online 
information about the utility. 

Ends the session. 

The following steps outline the process of restoring a log, then 
recovering a keyed file. 

In this example, a keyed file that is protected by the ENABLE_ 
MEDIA_RECOVERY logging option is determined damaged by an 
error returned during a keyed-file update. The Restore_ Log utility is 
used to restore the log. The Recover _Keyed_ File utility is then used 
to restore the damaged keyed file from the backup file and update it 
using the restored log. e 
NOTE 

Depending on the type and extent of damage to the log, other error 
messages may be displayed in this example. 

9-72 SCL Advanced File Management Usage Revision J 



Restoring a Log 

1. Before any recovery begins, stop processing on all keyed files that 
use the log. 

2. As an extra precaution, turn off logging on all files that use the 
log (to do this, change the LOGGING_ OPTIONS attribute to 
include NONE), and immediately back up all good files that have 
been updated since the last backup. 

3. Before recovering the keyed file, the log must be restored. Begin 
the Restore_Log session by entering a RESTORE_LOG command 
and specifying the catalog of the log to be restored. For example: 

/restore_log $user.my_log 
resl/ 

4. If the log control file is damaged, you must restore it from the 
backup file using the RESTORE_LOG_CONTROL_FILE. For 
example: 

resl/restore_log_control_file media=mass_storage_device 
resl .. /backup_file=$user.my_log_backupl 

--INFORMATIVE AA 1600-- The attempt to restore the log 
control file was successful. 

--INFORMATIVE AA 1675-- The Restore_Repositories subcommand 
should now be entered. 

The most recently written backup file should be specified first. If 
RESTORE_LOG_CONTROL_FILE fails, try again specifying the 
next most recent backup file, and so on. 

5. Restore the repository log files by entering the RESTORE_ 
REPOSITORIES subcommand. For example: 

resl/restore_repositories 

--WARNING AA 1650-- The Restore_Repositories subcomnand of 
Restore_Log was successful but the log control file may be out 
of date. 

--INFORMATIVE AA 1640-- The last available update found in 
the log was at 01/26/88 13:39:09. Please ensure this 1s 
correct before attempting to use this log for recovery or 
resuming the logging of updates. 

Revision J Keyed-File Recovery 9-73 



Restoring a Log 

-WARNING AA 1680-- Because the active repository or the log 
control file was replaced, the entries in the currently 
active repository, if any, have been lost. 

--WARNING AA 1690-- The log may be enabled by entering the 
Enable_Log subconmand of Restore_Log. The log may then 
only be used for recovering keyed files with Recover_Keyed_ 
File. Logging may not resume on this log. 

Once the log is restored, if recovery information is lost (for 
example, the active repository is lost, which had not yet been 
backed up), or if the log control file has been restored, the log is 
available only for recovery operations. To begin recording log 
entries again, you must switch to a different log, or you must 
delete the log, then recreate it. 

6. Enable the log so that it is available for general use. For example: 

resl/enable_log 

--INFORMATIVE AA 1600-- The attempt to enable the log was 
successful . 

7. Enter the QUIT subcommand to end the session. For example: 

resl/quit 
I 

8. Begin a Recover _Keyed_ File session to restore the keyed file from 
its latest backup copy. For example: 

/recover_keyed_file $user.my_ keyed_file 
reckf/recover_file_media 

--INFORMATIVE AA 1495-- Log $SYSTEM.AAM.AAF$SHARED_ 
RECOVERY_LOG : Recover_File_Media is attempting to find a 
backup of file :NVE.MY_KEYED_FILE.1 in this log. 

--WARNING AA 1410-- IMPORTANT - File :NVE.MY_KEYED_FILE.1 
RECOVER_KEYED_FILE is deleting this file to ensure there is 
disk space for the backup file to be reloaded. To re-start 
RECOVER_KEYED_FILE, if it terminates before the file is 
successfully restored, you must supply the full file path, 
including the cycle number (1). 

--WARNING AA 1480-- IMPORTANT - File :NVE.MY_KEYED_FILE.1 
The cycle number of this file is 1. 

9-74 SCL Advanced File Management Usage Revision J 



Restoring a Log 

--WARNING AA 1415-- IMPORTANT - The LOG_RESIDENCE should 
also be set to :NVE.MY_LOG using the SET_FILE_ATTRIBUTES 
conmand if RECOVER_KEYED_FILE is restarted for this file. 

--INFORMATIVE AA 1380-- Recover_Keyed_File is now attempting 
to restore :NVE.MY_KEYED_FILE.1 from the backup file. 

--INFORMATIVE AA 1495-- Log :NVE.MY_LOG: Recovery_File_ 
Media is attempting to find a backup of file 
:NVE.MY_KEYED_FILE.1 in this log. 

--INFORMATIVE AA 1500-- Recover_File_Media has successfully 
reloaded file :NVE.MY_KEYED_FILE.1 using the backup record 
from log :NVE.MY_LOG. The date of the backup was 
January 26, 1988 at 1:37 PM. 

--INFORMATIVE AA 1385-- Recover_Keyed_File is now applying the 
changes from the log to the file restored from the backup. 

--INFORMATIVE AA 1465-- File :NVE.MY_KEYED_FILE.1 : 
Recover_File_Media processed 4 records from the log. There 
were 0 trivial errors. 

9. Enter the QUIT subcommand to end the session. For example: 

reck.f/Quit 
I 

Revision J Keyed-File Recovery 9-75 



RESTORE_LOG Command 

11 RESTORE_LOG Command 
~1 

Purpose 

Format 

Parameters 

I~~ 

I Remarks 

I Eumple• 

Begins a Restore_Log utility session. 

RESTORE_LOG or 
RESL 

LOG _RESIDENCE= catalog 
STATUS= status_ variable 

LOG _RESIDENCE or LR 

Catalog path containing the files composing the log to be 
restored. This parameter is required. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

Only the completion status of the RESTORE_LOG 
command and its QUIT subcommand are stored in the 
RESTORE_LOG status variable. Errors returned by other 
subcommands are displayed at the terminal and the 
session continues. 

Immediately after entering the Restore_Log session, you 
should use the VALIDATE_LOG or RESTORE_ 
REPOSITORIES subcommands (described later in this 
chapter) to determine the type and extent of log damage, 
if any. 

Assuming $USER.MY_LOG is an existing update recovery 
log, the following is the minimal Restore_Log session; it 
does nothing. 

/restore_log, $user.my_log 
resl/quit 
I 

9-76 SCL Advanced File Management Usage Revision J 



RESTORE_REPOSITORIES Subcommand 

RESTORE _REPOSITORIES Subcommand 

Purpose 

Format 

Restores damaged repository log files from the log backup 
files. 

RESTORE_REPOSITORIES or 
RESR 

STATUS =status_variable 

Parameters STATUS 

Remarks 

Revision J 

Optional SCL status variable in which the completion 
status of the command is returned. 

• Older repositories (that is, non-active repositories) can 
be restored only if the log was configured for 
automatic backups (see CONFIGURE_LOG_ 
BACKUPS of the Administer _Recovery _Log utility). If 
the active repository is to be replaced, backups are not 
required. 

• If the log is not already disabled, RESTORE_ 
REPOSITORIES immediately disables it. This is to 
ensure that the log is not used while it is being 
restored. Once the log is restored, it can be enabled 
using ENABLE_LOG (described later in this section). 

• Initially, RESTORE_REPOSITORIES determines the 
usability of the log; that is, the type and extent of log 
damage, if any. The usability of the log is determined 
as follows: 

If damage to the log control file is detected, the 
following message is displayed: 

The log control file did not pass 
validation. It should be reloaded from 
a log backup using the Restore_Log_ 
Control_File subconmand. Unfortunately, 
if there are any entries in the currently 
active repository, they will be lost when 
this conmand completes. 

In this case, you must restore the damaged log 
control file from the backup file using RESTORE_ 
LOG_CONTROL_FILE. Repositories can then be 
restored using RESTORE_REPOSITORIES. 

Keyed-File Recovery 9.77 



RESTORE_REPOSITORIES Subcommand 

If damage to a repository is detected, RESTORE_ 
REPOSITORIES immediately overwrites all existing 
repositories and restores copies from the backup 
files. 

If no damage to the log is detected, the following 
messages are displayed: 

--INFORMATIVE AA 1640-- The last available 
update found in the log was at 01/26/88 
1339:09. Please ensure this is correct 
before attempting to use this log for 
recovery or resuming the logging of 
updates. 

--INFORMATIVE AA 1625-- Restore repositories 
completed successfully. 

Because no damage is detected, no repositories are 
restored. 

The date and time displayed in the first message 
indicates the last update in the most recent 
repository. Thus, up to this time you can restore a e 
damaged keyed file using the Recover _Keyed_File 
utility. 

Enter ENABLE_LOG before ending the Restore_ 
Log session to enable the log; this makes it 
available for general use. 

• Once the log is restored, if recovery information is lost 
(for example, the active repository is lost, which had 
not yet been backed up), or if the log control file has 
been restored, the log is available only for recovery 
operations. To begin recording log entries again, you 
must switch to a different log, or you must delete the 
log, then recreate it. 

Revision J 



Examples 

Revision J 

RESTORE_REPOSITORIES Subcommand 

The following session replaces all damaged repositories for 
log $USER.MY_LOG from the backup files: 

/restore_log $user.my_log 
resl/restore_repositories 

--WARNING AA 1650-- The Restore_Repositories 
subcommand of Restore_Log was successful but the 
log control file may be out of date. 

--INFORMATIVE AA 1640-- The last available update 
found in the log was at 01/26/88 1339:09. Please 
ensure this is correct before attempting to use 
this log for recovery or resuming the logging of 
updates. 

--WARNING AA 1680-- Because the active repository 
or the log control file was replaced, the entries 
in the currently active repository, if any, have 
been lost. 

--WARNING AA 1690-- The log may be enabled by 
entering the Enable_Log subcommand of Restore_Log. 
The log may then only be used for recovering 
keyed files with Recover_Keyed_File. Logging 
may not resume on this log. 

resl/enable_log 
resl/quit 
I 

Keyed-File Recovery 9-79 



VALIDATE_LOG Subcommand 

VALIDATE_LOG Subcommand 

Purpose 

Format 

Determines the usability of the log; that is, the type and 
extent of log damage, if any. 

VALIDATE_LOG or 
VALL 

STATUS= status_ variable 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

• If damage to the log is detected and if the log is not 
already disabled, VALIDATE_LOG immediately 
disables it. This is to ensure that the log is not used 
while it is being restored. Once the log is restored, it 
can be enabled using ENABLE_LOG (described later 
in this section). If no damage to the log is detected, 
the log is not disabled. 

• The usability of the log is determined as follows: 

If damage to the log control file is detected, the 
following message is displayed: 

The log control file did not pass 
validation. It should be reloaded from 
a log backup using the Restore_Log_ 
Control_File subcommand. Unfortunately, 
if there are any entries in the currently 
active repository, they will be lost when 
this command completes. 

In this case, you must restore the damaged log 
control file from the backup file using RESTORE_ 
LOG_CONTROL_FILE. 

If damage to a repository is detected, the following 
message is displayed: 

The Jog control file is not ready for 
the DAMAGED condition to be reset and 
the log family is not ready for use in 
recovery. Enter the RESTORE_REPOSITORIES 
subconmand. 

9-80 SCL Advanced File Manaizement Usaize Revision J 



Ro,,rlc:rinn .. T 

VALIDATE_LOG Subcommand 

In this case, you must restore copies from the 
backup files using RESTORE_REPOSITORIES. 

If no damage to the log is detected, the following 
message is displayed: 

--INFORMATIVE AA 1630-- No problems were 
found during the validation of the log. 

In this case, the log is left enabled and unchanged. 



RESTORE_LOG_ CONTROL_FILE Subcommand 

RESTORE_LOG_CONTROL_FILE Subcommand 

Purpose Restores the log control file from the specified log backup 
file. 

Format RESTORE_LOG_CONTROL_FILE or 
RESLCF 

MEDIA= keyword 
BACKUP _FILE= file 
RECORDED_ VSN =list of string 
EXTERNAL_ VSN=list of string 
TYPE= keyword 
STATUS= status_ variable 

Parameters MEDIA or M 

Device class of the log backup file to be restored. This 
parameter is required. 

MAGNETIC_ TAPE_DEVICE or MTD 

Indicates that the log backup file is stored on a 
labeled tape. (In this case, the BACKUP _FILE 
parameter is not used.) 

MASS_STORAGE_DEVICE or MSD 

Indicates that the log backup file specified by the 
BACKUP _FILE parameter is stored on disk. (In this 
case, the RECORDED_ VSN, EXTERNAL_ VSN, and 
TYPE parameters are not used.) 

BACKUP _FILE or BF 

The file path name of one of the backup files in the log 
(previously established by the CONFIGURE_LOG_ 
BACKUP subcommand of the Administer_Recovery_Log 
utility) to be used for restoring the log control file. This 
parameter must be specified if MEDIA is set to MASS_ 
STORAGE_DEVICE. 

RECORDED_ VSN or RVSN 

List of recorded VSNs of the tape volumes that compose 
the log backup file. The recorded VSN is in the ANSI 
VOLl label on the volume. The VSNs are specified as 
strings of from 1 through 6 characters enclosed in 
apostrophes. This parameter must be specified if MEDIA 
is set to MAGNETIC_ TAPE_DEVICE. 

9-82 8C,L Advanced File Mana!!'ement Usa!!'e Revision J 



Remarks 

Revision J 

RESTORE_LOG_ CONTROL_FILE Subcommand 

EXTERNAL_ VSN or EVSN 

List of external VSN s identifying the tape volumes that 
compose the log backup file. The VSNs are specified as 
strings of from 1 through 6 characters enclosed in 
apostrophes. This parameter is used only when MEDIA is 
set to MAGNETIC_ TAPE_DEVICE. 

TYPE or T 

Tape density of the nine·track tape drive on which the log 
backup file was written. This parameter is used only 
when MEDIA is set to MAGNETIC_ TAPE_DEVICE. 

MT9$800 

Indicates 800 cpi. 

MT9$1600 

Indicates 1600 cpi. 

MT9$6250 

Indicates 6250 cpi. 

The default value is MT9$6250. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

• In general, the backup file that was written to most 
recently is the best one to specify first as the log 
backup file. If RESTORE_LOG_CONTROL_FILE 
fails, try again specifying the next most recent backup 
file, and so on. 

• The log control file can be restored only if the log was 
configured for log backups (see the CONFIGURE_ 
LOG_BACKUP subcommand of the Administer_ 
Recovery _Log utility). A copy of the log control file 
exists at the front of each log backup file, having been 
written there as part of the ongoing process of backing 
up the log. 

Keyed-File Recovery 9-83 



I 

RESTORE_LOG_CONTROL_FILE Subcommand 

Examples 

• If the log control file is not already disabled, 
RESTORE_LOG_CONTROL_FILE immediately 
disables it. This is to ensure the log is not used while 
it is being restored. The log can be enabled using 
ENABLE_LOG (described later in this chapter). 

• RESTORE_LOG_CONTROL_FILE restores a log 
control file only if it detects damage to the log control 
file. Damage to the log control file can also be 
detected by the RESTORE_REPOSITORIES or 
VALIDATE_LOG subcommands. 

• Once a damaged log control file is restored, the log is 
no longer available for logging entries. The log is 
available only for recovering keyed files. To begin 
logging entries again, you must switch to a different 
log, or you must delete the log whose log control file 
has been restored, then recreate it. 

The following session replaces the log control file and all 
damaged repositories for log $USER.MY_LOG from the 
backup files: 

resl/restore_log_control_file 
resl/media=mass_storage_device .. 
resl .. /backup_file=$user.my_log_backup1 

--INFORMATIVE AA 1600-- The attempt to restore 
the log control file was successful. 

--INFORMATIVE AA 1675-- The Restore_Repositories 
subconmand should now be entered. 

9-84 SCL Advanced File Management Usage Revision J 



Revision J 

RESTORE_LOG_ CONTROL_FILE Subcommand 

resl/restore_repositories 

--WARNING AA 1650-- The Restore_Repositories 
subcommand of Restore_Log was successful but the 
log control file may be out of date. 

--INFORMATIVE AA 1640-- The last available update 
found in the log was at 01/26/88 13:39:09. Please 
ensure this is correct before attempting to use 
this log for recovery or resuming the logging of 
updates. 

--WARNING AA 1680-- Because the active repository 
or the log control file was replaced, the entries 
in the currently active repository, if any, have 
been lost. 

--WARNING AA 1690-- The log may be enabled by 
entering the Enable_Log subcommand of Restore_Log. 
The log may then only be used for recovering keyed 
files with Recover_Keyed_File. Logging may not 
resume on this log. 

resl/enable_log 

--INFORMATIVE AA 1600-- The attempt to enable the log 
was successfu I . 

resl/quit 
I 

Keyed-File Recovery 9-85 



DELETE_LOG_ CONTROL_ FILE Subcommand 

DELETE_LOG_CONTROL_FILE Subcommand 

Purpose 

Format 

Deletes the log control file. 

DELETE_LOG_CONTROL_FILE or 
DELLCF 

STATUS= status _variable 

Parameters STATUS 

Remarks 

Optional SCL status variable in which the completion 
status of the command is returned. 

The log control file should be deleted only if it is 
damaged or if you want to force the log control file to be 
restored from the backup file. Damage to the log control 
file can be detected by the VALIDATE_LOG, RESTORE_ 
REPOSITORIES, or RESTORE_LOG_CONTROL_FILE 
subcommands. 

9-86 SCL Advanced File Manal?ement Usal?e Revision J 



DELETE_REPOSITORIES Subcommand 

DELETE_REPOSITORIES Subcommand 

Purpose 

Format 

Deletes log repositories. 

DELETE _REPOSITORIES or 
DELR 

REPOSITORIES= list of range of integer or ALL 
STATUS= status_ variable 

Parameters REPOSITORIES or R 

Remarks 

Revision J 

Specifies which repositories in the log are to be deleted. 
This parameter is required. 

List of integer 

Specifies the repositories to be deleted. Values can be 
a list of repository numbers specified in the repository 
name. Repositories have names in the format 
AAF$REPOSITORY_n where n is the integer value 
specified; that is, AAF$REPOSITORY_ l, starting at 
one for the first repository, and incremented 
sequentially and contiguously. The last repository is 
specified as AAF$REPOSITORY_O. You can specify as 
many values as there are repositories to be deleted. If 
more than one value is specified, the values must be 
enclosed in parentheses and separated by commas or 
spaces. 

ALL or A 

All repositories in the log are deleted. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

Repositories should be deleted only if they are damaged or 
if you want to force the repositories to be restored from 
the backup files. Damage to repositories can be detected 
by the VALIDATE_LOG or RESTORE_REPOSITORIES 
subcommands. 

Keyed-File Recovery 9-87 



ENABLE_LOG Subcommand 

ENABLE_LOG Subcommand 

Purpose 

Format 

Enables a disabled log; that is, makes the log available 
for general use. 

ENABLE_LOG or 
ENAL 

STATUS= status_ variable 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

• If the log is disabled and it is usable; that is, the log 
is undamaged, ENABLE_LOG enables it. This makes 
the log available for general use. 

• If the log is disabled but not usable, an error is 
displayed and the log remains disabled. Damage can 
be detected on the log control file and/or the 
repositories as follows: 

If damage to the log control file is detected, the 
following message is displayed: 

The log control file did not pass 
validation. It should be reloaded from 
a log backup using the RESTORE_LOG_ 
CONTROL_FILE subconmand. Unfortunately, 
if there are any entries in the currently 
active repository, they will be Jost when 
this conmand completes. 

In this case, you must restore the damaged log 
control file from the backup file using RESTORE_ 
LOG_ CONTROL_FILE. 

If damage to a repository is detected, the following 
message is displayed: 

The log control file is not ready for the 
DAMAGED condition to be reset and the log 
family is not ready for use in recovery. 
Enter the RESTORE_REPOSITORIES subconmand. 

9-88 SCL Advanced File Management Usage Revision J 



ENABLE_LOG Subcommand 

In this case, you must restore repositories from the 
backup files using RESTORE_REPOSITORIES. 

If no damage to the log is detected, the following 
message is displayed: 

--INFORMATIVE AA 1630-- No problems were 
found during the validation of the log. 

In this case, the log is left enabled and unchanged. 

• After enabling the log, and if the active repository and 
the log control file were not restored, you can turn on 
logging for the log (if it was previously turned off), 
then backup the keyed file. 

• A log must be enabled and usable before you can use 
it to recover keyed files. 

Revision J Keyed-File Recovery 9-89 



HELP Subcommand 

I Puamete" 

Remarks 

HELP or 
HEL 

SUBJECT= string 
MANUAL=file 
STATUS= status_ variable 

SUBJECT or S 

Topic to be found in the index of the online manual. The 
topic must be enclosed in apostrophes ('topic'). 

If you omit the SUBJECT parameter, HELP displays a 
list of the available subcommands and prompts for display 
of a subcommand description in the online manual. 

MANUAL or M 

Online manual file to be read. If you omit the MANUAL 
parameter, the default is AFM. The subcommand searches 
for the file in the working catalog and then in the 
$SYSTEM.MANUALS catalog. 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

If STATUS is omitted, the completion status is returned to 
the terminal, to the status variable specified on the 
RESTORE_LOG command, if any. 

• If the SUBJECT parameter specifies a topic that is not 
in the manual index, a nonfatal error is returned 
notifying you that the topic could not be found. 

• The default manual file, $SYSTEM.MANUALS.AFM, 
contains the online version of the NOSNE Advanced 
File Management Usage manual, as provided with the 
NOSNE system. 

• If your terminal is defined for full-screen applications, 
online manuals are displayed in screen mode. Help on 
reading online manuals is available in the online 
manual. To leave the online manual and return to the 
utility, use QUIT. 

9-90 SCL Advanced File Management Usage Revision J 



Examples 

Revision J 

HELP Subcommand 

The following session shows the default display returned 
by the HELP subcommand. 

/restore_ log 
resl/help 

The following Restore_Log subconmands are available: 

VALIDATE_LOG 
RESTORE_REPOSITORIES 
RESTORE_LOG_CONTROL_FILE 
DELETE_REPOSITORIES 
DELETE_LOG_CONTROL_FILE 
ENABLE_LOG 
HELP 
QUIT 

For the description of a subconmand in the online 
manual, enter: HELP subject= '<subconmand>' 

To return from an online manual, enter: QUIT 
resl/Qult 
I 

Keyed-File Recovery 9-91 



QUIT Subcommand 

QUIT Subcommand 

Purpose 

Format 

Parameters 

Ends the Restore_Log session. 

QUIT or 
QUI 

STATUS= status_ variable 

STATUS 

Optional SCL status variable in which the completion 
status of the command is returned. 

If STATUS is omitted, the completion status is returned to 
the terminal, to the status variable specified on the 
RESTORE_LOG command, if any. 

The QUIT command is required to end a session. 

9-92 SCL Advanced File Management Usage Revision J 



Part III: FMU 

Introducing FMU ... 

FMU Command and Directives 

CREATE_OUTPUT_RECORD Statements 

Data Field Referencing . 

Keyed File Reformatting 

FMU Examples . . . . . 

10-1 

11-1 

12-1 

13-1 

14-1 

15-1 









Introducing FMU 10 

The File Management Utility (FMU) is a general-purpose data 
reformatting tool. FMU reads records from an input file and reformats 
the records according to your specifications. FMU can change the 
order, contents, and representation of record fields. A single FMU run 
can write multiple output files and can format the records differently 
for each file. 

FMU can perform the following tasks: 

• Selectively reformat and reorder data fields 

• Selectively convert data to another data type 

• Add sequence numbers to records 

• Format a file for printing 

It can also be used to migrate files from other systems as described in 
the migration manuals listed in appendix B. 

Introducing FMU 10-1 



Performance Considerations 

Performance Considerations 

As you would expect, the speed of an FMU run depends on the 
amount of work to be performed by the run. For example, a simple 
file copy runs faster than a complicated file reformatting for several 
output files. This section highlights the FMU specifications that A 
increase the work performed by an FMU run. • 

Directive parsing 

An FMU command to copy a file to one output file should use the 
INPUT and OUTPUT parameters, not directives. Better yet, when 
appropriate, use the COPY_FILE command to perform a 
byte-by-byte copy instead of the record-by-record copy performed by 
FMU. 

Print file formatting 

Specify a SET_PRINT_ATTRIBUTES directive only if needed. The 
print formats vary from fastest to slowest in this order: 1, 2, 3, 
DUMP. 

Filling in unassigned output fields 

Using NO_PRESET as the RECORD_PRESET_ VALUE parameter 
value specifies less work than a value that requires assignment of 
values to unassigned fields. 

Iterative statements (FOR, LOOP, REPEAT, WHILE) 

Processing of an interative statement requires a test and compare 
for each iteration of the loop. This takes more time than the 
equivalent sequence of assignment statements. 

Expression evaluation 

Use the simplest possible expressions; do not use unnecessary 
function references. 

Data type conversion and assignment 

The time required to convert data types depends on the complexity 
of the data type. The data types in order from simplest to most 
complex are: A I H J P Y Z U Q L F N B G. e 
Field descriptors that specify a trailing position 

When possible, specify the field length in the descriptor so that 
FMU does not need to calculate the length from the starting and 
trailing position values. 

10-2 SCL Advanced File Mana1rement Usa1re RAvir::ion H 







FMU Command and Directives 

FMU use requires three steps: 

1. Describe the input and output files. (For NOSNE files, use the 
SET_FILE_ATTRIBUTES command.) 

2. Enter FMU directives in a file. The directives identify the input 
file and one or more output files and the desired data 
reformatting. 

3. Execute the FMU command with appropriate parameters. 

This chapter first describes the commands required to describe the 
files used by FMU. It then describes the FMU command itself. 
Finally, it describes the directives that can be stored in an FMU 
directive file. 

Describing NOSNE Files 

11 

This section describes the NOSNE commands for setting, displaying, 
and changing file attributes. 

SET _FILE _ATTRIBUTES Command 

To specify file attribute values for a NOSNE file, use the NOSNE 
SET_FILE_ATTRIBUTES command. You specify the file reference on 
the SET_FILE_ATTRIBUTES command followed by one or more 
attribute parameters. 

For example, this command specifies indexed-sequential file attributes 
for your new permanent file MYFILE: 

set_fi le_attributes $user.myfile .. 
file_organization=indexed_sequential 
maximum_record_length=150 
minimum_record_length=125 
key_length=5 

The complete description of the SET_FILE_ATTRIBUTES is in the 
NOSNE Commands and Functions manual. Use of the SET_FILE_ 
ATTRIBUTES command to describe keyed files is described in chapter 
6 of this manual. Use of the SET_FILE_ATTRIBUTES command to 
describe sequential and byte-addressable files is described in the 
NOSNE System Usage manual. 

Revision J FMU Command and Directives 11-1 



Describing NOSNE Files 

DISPLAY_FILE_ATTRIBUTES Command 

To see the attribute values defined for a NOSNE file, enter the 
DISPLAY_FILE_ATTRIBUTES command specifying the file reference 
and one or more attributes to be displayed. 

For example, this command requests display of the maximum_record_ e 
length attribute for your permanent file MYFILE: 

display_file_attributes $user.myfile 
display_option=maximum_record_length 

.:

f_,:_,i The complete description of the DISPLAY_FILE_ATTRIBUTES is in 
the NOSNE Commands and Functions manual. 

CHANGE _FILE _ATTRIBUTES Command 

A SET_FILE_ATTRIBUTES command cannot change some attributes 
after the file has been opened. (If there is data in the file, the file 
has been opened.) 

Some attributes that cannot be changed by a SET_FILE_ 
ATTRIBUTES command can be changed by a CHANGE_FILE_ 

:,::_:_:.: ATTRIBUTES command. The complete description of the CHANGE_ 
FILE_ATTRIBUTES command is in the NOSNE Commands and 

::: Functions manual. 

The FMU Command 

To execute FMU, you enter the FMU command. This section describes 
the FMU command and how it is used. 

The FMU command is entered like any other NOSNE command. All 
FMU parameters are optional. The command has two formats. 

This format is used when a directive file is needed: 

FILE_MANAGEMENT_ UTILITY or 
FMU 

DIRECTIVES= file 
LIST=file 
ERROR_DISPOSITION =keyword 
STATUS =status_variable 

11-2 SCL Advanced File Management Usage Revision J 



This format performs simple file copying: 

FILE_MANAGEMENT_UTILITY (FMU) 
INPUT=file 
OUTPUT=file 
LIST=file 
ERROR_DISPOSITION =keyword 
STATUS =status_variable 

Describing NOS/VE Files 

These are the parameter descriptions for the FMU command: 

DIRECTIVES (DIR) 

File from which FMU reads directives. If you omit the INPUT and 
OUTPUT parameters, you must specify the DIRECTIVES 
parameter. If you specify the DIRECTIVES parameter, you must 
omit the INPUT and OUTPUT parameters. 

INPUT (I) 

File to be copied. If you specify this parameter, you must omit 
DIRECTIVES (or set DIRECTIVES= $NULL) and must specify the 
OUTPUT parameter. The default for INPUT is $INPUT. 

OUTPUT (0) 

File to which the input file is copied. When specifying this 
parameter, you must omit DIRECTIVES (or specify 
DIRECTIVES=$NULL) and must specify the INPUT parameter. 
The default for OUTPUT is $OUTPUT. 

LIST (L) 

File to receive the summary of the FMU run, including diagnostic 
messages. If you omit this parameter, LIST= $LIST is assumed. In 
an interactive session, the default connection for $LIST is $NULL 
which discards the listing. 

ERROR_DISPOSITION (ED) 

Indicates whether FMU aborts if an output file is closed 
prematurely due to an error. 

ABORT (A) 
NO_ABORT (NA) 

FMU aborts. 
FMU continues writing the other output files. 

If you omit this parameter, FMU aborts when an output file 
aborts. 

Revision J FMU Command and Directives 11-3 



Describing NOSNE Files 

STATUS 

Optional SCL status variable in which the FMU completion status 
is returned. Specifying a status variable allows you to test for 
error conditions. To use this parameter, you need to have 
previously declared an SCL STATUS variable. 

If you use STATUS, the FMU task does not abort and does not go 
to a WHEN/WHENEND condition handler. Instead, an error that 
would abort the task causes FMU to terminate. The status 
variable is set to the error condition code. See the NOSNE System 
Usage manual for an explanation of the STATUS variable and 
condition handling. 

Using FMU to Copy a File 

·,!'_,~ .. _! File copying is usually performed by the NOSNE COPY_FILE or 
COPY_KEYED_FILE commands. However, the FMU command can 
also copy a file. 

For example, this command copies file FILEl to file FILE2. 

fmu input=file1 output=file2 llst=list 

A file copy can copy data to a file whose file attributes differ from 
those of the input file. 

Using the FMU Directive File 

To use FMU directives, you must enter the directives in a file and 
specify the file on the DIRECTIVES parameter. 

For example, this command specifies DIRECTIVES_FILE as the file 
from which directives are read: 

fmu, directives=directives_file, list=listing_file 

The input and output files are identified by the SET_INPUT_ 
ATTRIBUTES and SET_OUTPUT_ATTRIBUTES directives in the 
directives file. (File attributes can be specified, as always, by SET_ 
FILE_ATTRIBUTES or CHANGE_FILE_ATTRIBUTES commands.) 

11-4 SCL Advanced File Management Usage Revision J 



FMU Directives 

FMU Directives 
Generally, when you use FMU, you use FMU directives. You enter 
the directives in a directive file and specify the file on the 
DIRECTIVES (DIR) parameter of the FMU command. Not all of the 
directives are required at all times. 

The following is a summary of the FMU directives. 

Directive 

SET_INPUT_ 
ATTRIBUTES 

SET_OUTPUT_ 
ATTRIBUTES 

SET_SEQUENCE_ 
ATTRIBUTES 

SET_PRINT_ 
ATTRIBUTES 

CREATE_ OUTPUT_ 
RECORD 

CREATE_ OUTPUT_ 
RECORD_END 

Abbreviation Function 

SETIA Specifies the input file 

SETOA Specifies the output file 

SETSA Adds record sequence 
numbers 

SETPA Specifies print format 

CREOR 

CREOREND 

Marks the beginning of a 
list of statements that 
define the record 
reformatting for an 
output file 

Marks the end of the 
data reformatting 
statement list 

The detailed descriptions of these directives follow the next sections 
giving general information about directive specification. 

Revision H FMU Command and Directives 11-5 



FMU Directives 

Directive Order 

You can specify the directives in any order except: 

• SET_INPUT_ATTRIBUTES must precede all other directives. 

• SET_OUTPUT_ATTRIBUTES for a given output file must precede A 
all other directives for that file. W 

When more than one output file is used, FMU writes to the output 
files in the order that their corresponding SET_ OUTPUT_ 
ATTRIBUTES directives are specified in the directives file. 

Order of Processing 

During file processing, each input record is processed by all directives 
before the next input record is read. FMU processes each input record 
as follows: 

1. Reads a record from the file specified by the FILE parameter of 
the SET_INPUT_ATTRIBUTES directive. 

2. Creates the current output record. The CREATE_ OUTPUT_ 
RECORD directive (if specified for the output file) is used to 
control this process. 

3. Sequences the current output record as specified by the SET_ 
SEQUENCE_ATTRIBUTES directive for the output file (if any). 

4. Formats the current output record for printing as specified by 
SET_PRINT_ATTRIBUTES directive for the output file (if any). 

5. Writes the current output record to the output file specified by the 
SET_ OUTPUT_ATTRIBUTES directive. 

FMU executes multiples of the same directive types in the order that 
their associated SET_OUTPUT_ATTRIBUTES directives are specified 
in the directive file. 

FMU checks the syntax of all directives in the directive file before it 
begins file processing. Any diagnostics pertaining to the directives are e 
written to the FMU list file. (For more information on FMU 
diagnostics, see appendix G.) 

FMU gives control back to you when the input file has been read 
completely and execution terminates. e 
11-3 SCL Advanced File Management U 1uu1e 



FMU Directives 

FMU Directive Format 

An FMU directive consists of a directive name followed by a 
parameter-list. The directive name and the parameter-list are 
separated by a comma or space. The parameter-list is one or more 
parameters with one or more spaces or a comma separating each pair 
of parameters. 

For the CREATE_OUTPUT_RECORD directive, the list of parameters 
is followed by a list of statements, which is terminated by a 
CREATE_ OUTPUT_RECORD_END directive. 

A directive can begin in any column and span more than one line. A 
continuation is indicated by two or more periods (..) at the end of a 
line. 

Here is an example of a set of directives in a directive file: 

SET_INPUT_ATTRIBUTES, FILE=infile 
SET_OUTPUT_ATTRIBUTES, FILE=outfile, ERROR_DISPOSITION=NO_ABORT 

SET_SEQUENCE_ATTRIBUTES, FILE=outfile, SEQUENCE_FIELD=Z[1,3] 
SET_PRINT_ATTRIBUTES, FILE=outfile, PRINT_TITLE='June 

Printout' 
CREATE_OUTPUT_RECORD, FILE=outfile, 

RECORD_PRESET_VALUE=CHARACTER_BLANK; 
IF A[S,2) = 'XX' THEN 

A[12,4) = A[17,4] 
!FEND; 

CREATE_OUTPUT_RECORD_END 

FMU Directive Parameters 

You can specify directive parameters according to their position or 
independent of their position, or both. 

Parameters of directives can be expressed in the format: 

parameter _name= value 

With this format, you can specify the parameters in any order. 
Parameters can be separated by commas or blanks. 

An example of parameters expressed in this format is: 

SET_OUTPUT_ATTRIBUTES, FILE=myfile, 
ERROR_DISPOSITION=NO_ABORT 

Revision H FMU Command and Directives 11-7 



FMU Directives 

You can specify a parameter value without its parameter name. When 
doing so, however, you must be sure that the parameter keeps its A 
relative position in the parameter list. Omitted parameters are W 
indicated by additional commas (one for each omitted parameter). The 
parameter order is shown in the directive description. 

The previous SET_OUTPUT_ATTRIBUTES directive can be entered A 
in position-dependent form as follows: W 

SET_OUTPUT_ATTRIBUTES, myfile, , NO_ABORT 

Directives can have both position-independent and position-dependent 
parameters, as shown in this example: 

SET_OUTPUT_ATTRIBUTES, myfile, ERROR_DISPOSITION=NO_ABORT 

DUPLICATE _SPECIFICATION Parameter 

All directives, except SET_INPUT_ATTRIBUTES, have a 
DUPLICATE_SPECIFICATION (08) parameter. This parameter 
enables you to request an identical directive specification for more 
than one output file Without having to repeat parameters or 
statements. 

The format of any directive using the DUPLICATE_SPECIFICATION 
parameter is: 

directive _name, FILE= lfnl, DUPLICATE_ SPECIFICATION= lfn2 

directive _name 

Name of the directive; cannot be SET_INPUT_ATTRIBUTES. 

FILE=lfnl 

File for which the directive is to be specified. 

DUPLICATE _SPECIFICATION= lfn2 

File for which the directive specifications to be copied have been 
previously specified. 

The impact of the DUPLICATE_SPECIFICATION parameter can best e 
be seen in its use with the CREATE_OUTPUT_RECORD directive, 
which can have long statement lists. 

11-8 SCL Advanced File Management Usage Revision H 



• 
For example, consider the following directive sequence: 

SET_INPUT_ATTRIBUTES infile 
SET_OUTPUT_ATTRIBUTES outfile1 
SET_OUTPUT_ATTRIBUTES outfile2 
CREATE_OUTPUT_RECORD outfile1, .. 

RECORD_PRESET_VALUE=CHARACTER_BLANK 
IF A[3,8] = 'SJCODE' THEN 

A[7, ] = A[13, ] 
A[15,25] = A[22,25] 
A[41,8] = A[52,8] 

I FEND 
CREOREND 

FMU Directives 

CREATE_OUTPUT_RECORD, outfile2, DUPLICATE_SPECIFICATION=outfile1 
CREOREND 

In the example, information is taken from the input file, reformatted, 
and placed on the output files OUTFILEl and OUTFILE2. 

When the DUPLICATE_SPECIFICATION parameter is used, the 
MACHINE_FORMAT (MF) parameter value must be the same for 
both output files. 

Basic Directive Elements 

This section lists the the rules for constructing FMU directives. 

Permitted Characters 

For constructing a directive, FMU recognizes the following characters: 

Lowercase letters a through z 
Uppercase letters A through Z 
Digits 0 through 9 
Special characters + - ( ) = blank , ' ; " . [ ] 

In names, FMU recognizes lowercase and uppercase letters, digits 0 
through 9, and special characters _ $ # @. 

Lowercase letters and uppercase letters are equivalent when used in 
directives (including directive names, keywords, and statements). 

Revision H FMU Command and Directives 11-9 



FMU Directives 

Delimiters 

The following characters can be used as delimiters: 

" 

( ) 

Delimits literals. 

Delimits comments. 

Encloses some parameter values; encloses position including 
bit offset; encloses relational expressions; encloses function 
parameter. 

[ ] Encloses field descriptor parameters. 

Separates parameters. 

Terminates a statement or separates statements; terminates 
directives. 

Continues statement or directive to next line; can be more 
than two periods. 

blank Separates parameters within directives. 

Separates a keyword from its associated parameter value; is 
the assignment operator used in the CREATE_ OUTPUT_ 
RECORD directive assignment statements. 

Comments in Directives 

You can place comments anywhere, except within literals. 

Comments are delimited by a quotation mark ("). The end of a line 
also terminates a comment. 

Names in Directives 

A name is a string of from one to 31 alphanumeric characters (also $ 
# @ _), the first of which must not be a digit. A name must be 
delimited at both ends by a space, comment, graphic operator, 
delimiter, or beginning or end of line. A user-supplied name can be a e 
file name or a variable name. 

11-10 SCL Advanced File Management Usage Revision H 



FMU Directives 

Although NOSNE allows use of the international characters ([ ] { } \ I 
- " A) in names, FMU does not. If the name of a file to be used 
contains an international character, attach the file with a local file 
name valid for FMU, if possible. Otherwise, use COPY_FILE to copy 
the file to a file with a name valid for use by FMU. 

You should not create a name that uses the $ character because it 
may already be a CDC-defined name. 

Integer Constants 

Integer constants are unsigned and can be specified as parameter 
values to directives, functions, field descriptors, and FOR statements. 

An integer constant has the form: 

n[n .. .] 

Literals 

A literal is a string of characters that represents an actual value; the 
value can be alphanumeric, numeric, or logical. 

e Literals are represented by a string of alphanumeric characters 
enclosed by apostrophes. The delimiting apostrophes are excluded from 
the literal. An apostrophe can be represented in the literal by two 
successive apostrophes between the delimiting apostrophes. 

A literal must not exceed 256 characters. 

Strings 

ASCII string data can be represented by literals. Blanks are 
significant and character case (lowercase or uppercase) is preserved in 
ASCII string literals. 

Revision H FMU Command and Directives 11-11 



FMU Directives 

Numeric Literals 

In numeric literals, blanks are ignored. FMU performs required 
character-to-numeric conversion based on type and context of 
associated item specifications. The notation for representing numbers 
is one of the following: 

'[+] n [n ... ] [.] [n ... ] [E[ +] n [n ... ]]' 

' [+] n [n ... ] [.] [n ... ] [D[ +] n [n ... ] ] ' 

where n is a digit. 

You can also use this form: 

' [ + l n [n ... ] [(base)] ' 

where the base can be 2, 8, 10, or 16. The default base is 10. 

For example, the following relational expressions are equivalent: 

N[1,6] 

N[1,6] 

N[1,6] 

N[1,6] 

Logical Data 

'16' 
'16(10)' 

'10(16)' 

'20(8)' 

An alphabetic literal can represent a logical value (data type L) for 
storage into an L field of an output record. 

If the leftmost nonblank character in the literal string is T or t, the 
L field is set to the binary equivalent of TRUE. 

If the leftmost nonblank character of the literal string is F or f, the L 
field is set to the binary equivalent of FALSE. 

If the leftmost nonblank character is a period (.), the next character 
must be a T, t, F, or f, and is processed as previously described. A 
field with all blanks is processed as FALSE. 

For all other cases, an error occurs. 

11-12 SCL Advanced File Management Usage Revision H 



SET_INPUT_ATTRIBUTES Directive 

SET_INPUT_ATTRIBUTES Directive 

Purpose 

Format 

Specifies the single input file that is required for an FMU 
run. 

SET _INPUT _ATTRIBUTES (SET _INPUT_ 
ATTRIBUTE or 
SETIA) 

FILE = local file_ name 
STAR.TING_FILE_POSITION=(integer, keywordl, 

keyword2) 
MAXIMUM_FILE_ UNITS =(integer, keyword) 
MACHINE_FORMAT =keyword 

Parameters FILE (F) 

Revision J 

Local file name of the file in the working catalog 
containing input records. This parameter is required. 

STAR.TING_FILE_POSITION (SFP) 

Value set specifying the file repositioning to be performed. 
If you omit the STARTING_FILE_POSITION parameter, 
the default is no repositioning. 

The value set is three values enclosed in parentheses. The 
first value is an unsigned integer specifying the number 
of units to be skipped; the default is 1. 

The second value is one of the following keyword values 
specifying the type of unit skipped. 

RECORDS Skips records (default) 
(RECORD or R) 
PARTITIONS Skips partitions 
(PARTITION or P) 

The third value is one the following keyword values 
specifying the skip direction. 

FORWARD (F) 
BACKWARD (B) 

Skips forward (default) 
Skips backward 

Be careful when using a default value in a parameter 
value set. Possible variants include SFP=n, SFP=(,u), 
SFP=(,,d), SFP=(n,u), SFP=(n,,d), and SFP=(,u,d). 

FMU Command and Directives 11-13 



SET_INPUT_ATTRIBUTES Directive 

Examples 

MAXIMUM_ FILE_ UNITS (MFU) 

Value set indicating the maximum number of file units to 9 
be processed. If you omit the MAXIMUM_ FILE_ UNITS 
parameter, no limit is set; all records in the file are 
processed. 

The value set is two values enclosed in parentheses. The 9 
first value is an unsigned integer indicating the file unit 
limit; the default is 1. 

The second value is a keyword value indicating the unit 
type as follows: 

RECORDS The limit is in records (default). 
(RECORD or R) 
PARTITIONS The limit is in partitions. 
(PARTITION or P) 

Be careful when using a default value in a parameter 
value set. Possible variants include MFU = n and 
MFU=(,u). 

MACHINE_FORMAT (MF) 

The system that wrote the file. 

C180 
C170 
C7600 
IBM 
VAX 
VAXG 

NOSNE (default) 
NOS or NOS/BE 
SCOPE 2 
IBM 
VAXNMS (8-bit floating point exponent) 
VAXNMS (11-bit floating point exponent) 

This directive specifies the FMU input file as INFILE. 

SET_INPUT_ATTRIBUTES FILE=infile 

This directive specifies the FMU input file as INFILE. It 
also specifies the starting file position as 1 record forward 
and the maximum file units as 50 records. 

SETIA infile STARTING_FILE_POSITION=1, .. 
MAXIMUM_FILE_UNITS=SO 

11-14 SCL Advanced File Management Usage Revision J 



SET_ OUTPUT_ATTRIBUTES Directive 

SET_OUTPUT_ATTRIBUTES Directive 

Purpose 

Format 

Declares an output file to be written. 

Each output file requires a SETOA directive. FMU writes 
a record to each output file in the order that you specify 
the SETOA directives. 

SET_ OUTPUT _ATTRIBUTES or 
SET_OUTPUT_ATTRIBUTE or 
SETO A 

FILE= local _file _name 
DUPLICATE_SPECIFICATION = local_file_ name 
ERROR_DISPOSITION =keyword 
PARTITION _DISPOSITION= keyword 
MAXIMUM _FILE_ UNITS =(integer, keyword) 
MACHINE_FORMAT =keyword 
CONDITION_ COLLATING _SEQUENCE= keyword 
EXCEPTION _RECORDS_FILE =file 
CONVERSION _ERROR_DISPOSITION =keyword 

Parameters FILE or F 

Revision J 

Local file name of the file in the working catalog to 
contain output records. This parameter is required. If no 
output is to be written, specify $NULL. 

DUPLICATE_ SPECIFICATION or DS 

Local file name whose SET_OUTPUT_ATTRIBUTES 
directive specifications are to be duplicated for this file 
(see Duplicating Directive Specifications later in this 
chapter). 

ERROR_DISPOSITION or ED 

Determines whether generation of the output file is 
aborted if an error occurs at execution time. 

ABORT or A 
NO_ABORT or NA 

Abort on error (default) 
Do not abort on an error 

Aborting on an error means that if an error occurs, the 
output file is closed, and processing for this file ceases. 

If NO_ABORT is specified, formatting of the output file 
continues, but the record that causes the error is 
discarded. 

FMU Command and Directives 11·15 



SET_ OUTPUT_ATTRIBUTES Directive 

PARTITION _DISPOSITION or PD 
Causes partition boundaries to be included or excluded. 
This parameter is applicable only when the input and 
output files are sequential; otherwise, it is ignored. 

INCLUDE_PARTITION or 
IP 

EXCLUDE_PARTITION 
or EP 

Include partition boundaries 
(default) 

Exclude partition boundaries 

MAXIMUM_FlLE_UNITSorMFU 
Value set indicating the maximum number of file units to 
be written to this output file. If you omit the 
MAXIMUM_ FILE_ UNITS parameter, no limit is set; all 
records are written. 

The value set is two values enclosed in parentheses. The 
first value is an unsigned integer indicating the file unit 
limit; the default is 1. 

The second value is a keyword value indicating the unit 
type as follows: 

RECORDS or 
RECORD or R 

The limit is in records (default). 

PARTITIONS or 
PARTITION or P 

The limit is in partitions. 

Be careful when using a default value in a parameter 
value set. Possible variants include MFU = n and 
MFU=(,u). 

MACHINE_FORMATorMF 
The machine format in which the file is to be written. 

C180 NOSNE (default) 
Cl 70 NOS or NOS/BE 

Use of the MACHINE_FORMAT parameter is described 
in the migration manuals. (The migration manuals are 
listed in appendix B of this manual.) 

11-16 SCL Advanced File Management Usage Revision J 



Revision J 

SET_ OUTPUT_ATTRIBUTES Directive 

CONDITION_COLLATING_SEQUENCE or CCS 

Optional collating sequence to be used when FMU 
compares or searches for string values when reformatting 
records for this output file. See the following Remarks for 
the methods of specifying a collating sequence. 

If you omit this parameter, the default ASCII collating 
sequence is used. (The default differs when migrating 
files; for details, see the appropriate migration manual.) 

EXCEPTION_RECORDS_FILE or EXCEPTION_ 
RECORD_FILE or ERF 

File in the working catalog to which records that cannot 
be written to the output file are written, The record is 
written when an error is found during CREATE_ 
OUTPUT_RECORD processing of the record. 

If this directive specifies ERROR_DISPOSITION=NO_ 
ABORT, each record in error is written to the exception 
records file. Otherwise, if the ERROR_DISPOSITION 
parameter is omitted or specifies ABORT, no more than 
one record is written to the file because the first record 
error terminates the processing of the output file. 

The default exception records file is $NULL, in which 
case, the records in error are discarded. 

CONVERSION _ERROR_DISPOSITION or CED 

Action to be taken when a conversion error occurs 
because the source field contains unrecognizable data. 

ABORT or A 

RECOVER or 
R 

No recovery attempt is made; a record 
formatting error is returned (default). 

FMU attempts to recover from the error 
by using the default value for the source 
field as follows: 

0 (zero) 
Spaces 
FALSE 

Numeric fields 
Character (A) fields 
Logical (L) fields 

FMU Command and Directives 11-17 



SET_OUTPUT_ATTRIBUTES Directive 

Remarks The following remarks describe the methods of specifying 
a collating sequence on the CONDITION_COLLATING_ 
SEQUENCE parameter. 

Predefined Collating Sequences 

You can specify a predefined collating sequenc~ on the e 
CONDITION_COLLATING_SEQUENCE parameter of the 
SET_OUTPUT_ATTRIBUTES directive using one of these 
keywords: 

Keyword Collating Sequence 

ASCII or A Default ASCII collating 
sequence or as the character 
set is listed in appendix C 

ASCil6_FOLDED or AF OSV$ASCil6_FOLDED 

ASCil6_STRICT or AS OSV$ASCil6_STRICT 

COBOL6_FOLDED or CF OSV$COBOL6_FOLDED 

COBOL6_STRICT or CS OSV$COBOL6_STRICT 

DISPLAY63_FOLDED or OSV$DISPLAY63_FOLDED 
DF3 

DISPLAY63_STRICT or OSV$DISPLAY63_STRICT 
DS3 

DISPLAY64_FOLDED or OSV$DISPLAY64_FOLDED 
DF4 

DISPLAY64_STRICT or OSV$DISPLAY64_STRICT 
DS4 

EBCDIC or E OSV$EBCDIC 

EBCDIC6_FOLDED or EF OSV$EBCDIC_FOLDED 

EBCDIC6_STRICT or ES OSV$EBCDIC_STRICT 

11-18 SCL Advanced File Management Usage Revision J 



Revision H 

SET_ OUTPUT_ATTRIBUTES Directive 

Lowercase and Uppercase Equal 

This manual does not contain listings for the following 
two collating sequences. These sequences are the same as 
the default ASCII collating sequence listed in appendix C 
except that uppercase and lowercase letters are collated 
equally. 

Keyword 

LOWER_ TO_ UPPER or 
LTU 
UPPER_TO_LOWER or 
UTL 

Indexed-Sequential File 

Collating Sequence 

Lowercase collated as 
uppercase 
Uppercase collated as 
lowercase 

FMU can also use the collation table stored with the 
input file or with this output file. (A collation table is 
stored only for an indexed-sequential file with a collated 
primary key.) 

Keyword 

INPUT_FILE or IF 
OUTPUT_FILE or OF 

Collating Sequence 

Input file collation table 
Output file collation table 

A collation table to be stored with a file is specified as 
the COLLATE_ TABLE_NAME file attribute before the 
first open of the file. The stored collating sequence can be 
displayed using a DISPLAY_KEYED_FILE_PROPERTIES 
command. 

User-Defined Collating Sequence 

You can define a new collating sequence on the 
CONDITION_COLLATING_SEQUENCE parameter. The 
collating sequence is specified by a sequence of values 
enclosed in parentheses. Each value specifies the 
characters assigned to that position in the collating 
sequence. 

A value can be a string of one or more characters or a 
range of characters or two or more strings or ranges 
enclosed in parentheses. 

FMU Command and Directives 11-19 



SET_ OUTPUT_ ATTRIBUTES Directive 

Examples 

A range is specified by two characters separated by two 
periods (such as A .. Z). The range specifies all characters A 
between, and including, the two characters in the ASCII W 
character set. A backwards range (such as Z .. A) is valid. 

Each character can be specified by its graphic enclosed in 
apostrophes (such as 'A') or by its integer character code A 
(such as 65). • 

Any omitted characters are assigned to the last position of 
the sequence. No character can appear more than once. 

Consider the following example: 

COND lT ION_COLLA Tl NG_ SEQUENCE= (('A' .. 'Z' , 'a' .. 'z'), .. 
'012.3456789'' ('.,' , ! , ' '?' )) 

The defined collating sequence has four positions as 
follows: 

1. All uppercase and lowercase letters. 
2. All digits. 
3. The characters ., !, and ?. 
4. All other ASCII characters. 

This directive specifies all default values for file 
$LOCAL.TEMP (abort at first error, include partition 
boundaries, copy only one record, use CYBER 180 format, 
the ASCII collating sequence, no exception records file, 
and no error recovery). 

set_output_attributes, file=temp 

This directive specifies attributes for the output file 
OUTFILEl: 

set_output_attributes, 
fi le=outfi 1e1, .. 
partition_disposition=exclude_boundaries, 
maximum_file_units=(100, records), .. 
condition_collating_sequence=lower_to_upper, 
error_d1spos1t1on=no_abort, .. 
exception_records_file=invalid_records, 
conversion_error_disposition=recover 

11-20 SCL Advanced File Manae-ement Usae-e Revision H 



SET_SEQUENCE_ATTRIBUTES Directive 

SET_SEQUENCE_ATTRIBUTES Directive 

Purpose 

Format 

Parameters 

Revision J 

Places a sequence number in each record of an output 
file. The sequence number replaces the contents of the 
designated field in the record. 

Specify a separate SET_SEQUENCE_ATTRIBUTES 
directive for each output file you want to sequence. Each 
SET_SEQUENCE_ATTRIBUTES directive must follow the 
SET_OUTPUT_ATTRIBUTES directive specifying the 
name of the output file to be sequenced. 

SET_SEQUENCE_ATTRIBUTES (SET_SEQUENCE_ 
ATTRIBUTE or 
SETSA) 

FILE= local file_ name 
DUPLICATE _SPECIFICATION= local_ file_ name 
SEQUENCE_FIELD=data_field_reference 
SEQUENCE_NUMBER_PRESET=integer 
SEQUENCE _NUMBER_INCREMENT =integer 

FILE(F) 

Local file name of the output file in the working catalog. 
This parameter is required. 

DUPLICATE_SPECIFICATION (DS) 

Local file name whose SET_SEQUENCE_ATTRIBUTES 
directive specifications are to be duplicated for this file 
(see Duplicating Directive Specifications later in this 
chapter). 

SEQUENCE_FIELD (SF) 

Required field descriptor for the sequence field. 

Field descriptor format: d[p,l] 

d Data type (such as A for ASCII data). 

p Beginning position of the sequence field in the output 
record. It can be specified as a single integer (the 
byte position) or as a set of two integers for data 
type B, that is, (byte,bit). It cannot be a function. 

Length of the sequence field. This must conform to 
rules of the selected data type. 

FMU Command and Directives 11-21 



SET_SEQUENCE_ATTRIBUTES Directive 

Examples 

The brackets are required; for more information, see the 
discussion of field descriptors in chapter 12. 

SEQUENCE_NUMBER_PRESET (SNP) 

Initial value (unsigned decimal integer) of the sequence 
number. The default is 1. 

SEQUENCE_NUMBER_INCREMENT (SNI) 

The sequence increment. This is an unsigned decimal 
integer. The default is 1. 

The following directive sequence specify INFILE as the 
input file and OUTFILEl as the output file. The SET_ 
SEQUENCE_ATTRIBUTES directive specifies that a 
sequence number is to be entered in the 3-byte field 
beginning at byte 4 of each OUTFILEl record. 

SET_INPUT_ATTRIBUTES FILE=infile 
SET_OUTPUT_ATTRIBUTES FILE=outfilel 
SET_SEQUENCE_ATTRIBUTES FILE=OUTFILEl 

SEQUENCE_FIELD=A[4,3] 

The sequence field data type is ASCII (A). By default, 
sequence numbers start with 1 and are incremented by 1. 

11-22 SCL Advanced File Management Usage Revision J 



SET_PRINT_ATTRIBUTES Directive 

SET _PRINT _ATTRIBUTES Directive 

Purpose 

Format 

Chooses formatting options for printing an output file. 

SET _PRINT _ATTRIBUTES (SET_ PRINT_ 
ATTRIBUTE or 
SETPA) 

FILE= local file_name 
DUPLICATE_SPECIFICATION=local_file_name 
PRINT _FORMAT= keyword 
PRINT_ TITLE= literal 

Parameters FILE (F) 

Revision J 

Local file name of the output file in the working catalog 
to be formatted for printing. The file organization of the 
file must be sequential. This parameter is required. 

DUPLICATE_SPECIFICATION (DS) 

Local file name whose SET_PRINT_ATTRIBUTES 
directive specifications are to be duplicated for this file 
(see Duplicating Directive Specifications later in this 
chapter). 

PRINT _FORMAT (PF) 

Print format. When the file attribute FILE_CONTENT is 
set to LIST, FMU inserts the necessary carriage control 
character: 

Keyword 

I 
2 
3 
DUMP 

Meaning 

Single space (default). 
Double space. 
Triple space. 
Dump option; output records are single 
spaced. A 30-byte record prefix, consisting of 
a decimal record number and character count, 
is printed for each record. The character 
count is the record length in characters that 
the record length would have been if SETPA 
had not been specified for the file. 

PRINT_ TITLE (PT) 

Character string to be used as the print title. Must be a 
literal. The print title must not exceed 116 characters. 

FMU Command and Directives 11-23 



SET_PRINT_ATTRIBUTES Directive 

Remarks 

Examples 

• You must specify a separate SET_PRINT_ 
ATTRIBUTES directive for each output file to be 
printed. A SET_OUTPUT_ATTRIBUTES directive for 
the file must precede the SET_PRINT_ATTRIBUTES 
directive. 

• The print file can be a sequential or byte-addressable 
file; it cannot be a keyed file. 

• The record type of the print file must be variable (V). 

• The maximum record length of the print file must be 
at least the page width plus 1 (for the carriage control 
character). 

• The print file is formatted so that a page number is 
printed on the first line of each page. 

• If the FILE_CONTENT attribute value of the print 
file is LIST, an appropriate carriage control character 
is inserted in the first character position of each 
record. Otherwise, FMU inserts an appropriate number 
of blank lines to achieve the correct spacing. 

• Your job must issue the command to print the file. 
(FMU can format a file for printing, but it cannot 
print it.) 

• These file attributes are significant to SET_PRINT_ 
ATTRIBUTES formatting: 

PAGE_ FORMAT 

PAGE_LENGTH 

PAGE_ WIDTH 

FILE_ CONTENT 

For more information, see the attribute descriptions in the 
SCL System Interface Usage manual. 

The following directive sequence directs FMU to format 
each INFILE record for printing and then write it to 
OUTFILEl. 

SET_INPUT_ATTRIBUTES ;nf;le 
SET_OUTPUT_ATTRIBUTES outf;le1 
SET_PRINT_ATTRIBUTES outf;le1 PRINT_FORMAT=2, 

PRINT_TITLE='OUTFILE1 CONTENTS' 

The output file is formatted for double spacing and titling. 

11-24 SCL Advanced File Management Usage Revision J 



CREATE_ OUTPUT_RECORD Directive 

CREATE_OUTPUT_RECORD Directive 

Purpose 

Format 

Parameters 

Revision J 

Controls the order and format of data fields in each 
output record. 

You can use the CREATE_OUTPUT_RECORD directive 
to: 

• Rearrange data fields 
• Insert literals at any position within a record 
• Place the key of an input record into an output record 
• Convert fields from one data type to another 

CREATE_OUTPUT_RECORD (CREOR) 
FILE= local f'tle name 
DUPLICATE_SPECIFICATION=local file name 
RECORD _PRESET_ VALUE= keyword 
Statement-List 

CREATE_OUTPUT_RECORD_END (CREOREND) 

FILE (F) 

Local file name of the output file in the working catalog. 
This parameter is required. 

DUPLICATE_SPECIFICATION (DS) 

Local file name whose CREATE_ OUTPUT_RECORD 
directive specifications are to be duplicated for this file 
(see Duplicating Directive Specifications later in this 
chapter). 

RECORD_PRESET _VALUE (RPV) 

Value to which FMU sets fields not referenced in the 
CREOR statement-list. 

NO_PRESET (NP) 

CHARACTER_BLANK (CB) 

CHARACTER_ZERO (CZ) 

No preset value 
(default) 

Blank characters 

Zero characters 

FMU Command and Directives 11-25 



CREATE_OUTPUT_RECORD Directive 

Remarks 

BINARY_ZERO (BZ) 

INPUT_RECORD (IR) 

statement-list 

Zero bits 

Data in the output 
record is to be the 
same as the 
corresponding data in 
the input record, 
unless altered by 
assignment 
statements. 

(The statement list is not a parameter although it is part 
of the CREATE_OUTPUT_RECORD directive.) 

Statements that perform data manipulations (see the 
statement descriptions in chapter 12. 

Statement-list must be separated from the parameters by 
a statement separator (end-of-line or semicolon). 

CREATE_OUTPUT_RECORD_END(CREOREND) 
Required terminator for the CREOR directive. CREOR is 
the only directive with a terminator. You must use this A 
terminator whenever you specify a CREOR directive. W 

• Nonsignificant blanks can be included anywhere in the 
CREOR directive specification except within names, 
keywords, literals, ellipses, and relational operators. 

• The CREATE_OUTPUT_RECORD directive formats 
the record according to your specifications. If you 
specify overlapping fields, your last specification 
establishes the final format. 

• You must specify a separate CREATE_OUTPUT_ 
RECORD directive for each output file to be 
reformatted. Only one CREATE_OUTPUT_RECORD 
can be used for an output file. You can duplicate the 
functions of one CREATE_OUTPUT_RECORD 
directive by specifying the DUPLICATE_ 
SPECIFICATION parameter in the CREATE_ 
OUTPUT_RECORD directive of another file (see the 
discussion under Duplicate_Specification Parameter in 
this chapter). 

11-26 SCL Advanced File Management Usage Revision J 



Examples 

Revision H 

CREATE_ OUTPUT_RECORD Directive 

• The statement-list part of the directive specifies 
statements that perform the desired data 
manipulations. Statements consist of instructions that 
reformat input fields, test for conditions in the input 
record data, perform iterations on statements, and stop 
statement processing. See chapter 12 for detailed ,1_,1,i 

statement descriptions. 

This directive sequence specifies the input file, an output 
file, and the data reformatting FMU is to perform on the 
records to be written to the output file. 

SET_INPUT_ATTRIBUTES infile 
SET_OUTPUT_ATTRIBUTES outfile 

ERROR_DISPOSITION=NO_ABORT 
CREATE_OUTPUT_RECORD, FILE=outfile, 

RECORD_PRESET_VALUE=INPUT_RECORD 
IF A[2,3]='ABC' THEN 

A[2,3]='0UT' 
I FEND 

CREATE_OUTPUT_RECORD END 

Because the CREATE_OUTPUT_RECORD directive 
specified RECORD_PRESET_ VALUE= INPUT_RECORD, 
the input fields that are not manipulated stay the same 
when output. 

The IF statement can begin on the same line as the 
CREATE_OUTPUT_RECORD directive if it is separated 
from the parameter-list by a semi~olon. 

FMU Command and Directives 11-27 









CREATE_ OUTPUT _RECORD Statements 12 

The statements described in this chapter are used in the 
statement-list part of the CREATE_OUTPUT_RECORD directive. You 
use them to specify exactly how you want your output record to be 
formatted. 

Statement Conventions 

This section gives the general rules for specifying statements in a 
CREATE_OUTPUT_RECORD statement list. 

Statement Separation, Termination, and Continuation 

The semicolon (;) is a statement separator and terminator. Multiple 
statement separators are considered to be one separator. 

Statements can be written as follows: 

statement [; statement] 

or 

statement 
[statement] 

where the end of a line is also a statement separator and terminator. 

Statement continuation is done by placing two or more periods at the 
end of a statement line. 

Comment Insertion 

You can insert comments anywhere that blanks can be inserted. They 
are processed as blanks. 

The quotation mark (") signifies the start of a comment. A comment 
can be ended by either a closing quotation mark or the end of a line. 

You can continue a comment with two or more periods. 

Revision H CREATE_OUTPUT_RECORD Statements 12-1 



Logical Expressions 

Structured Statements 

A structured statement is a statement that contains a statement list. 
The structured statements are BLOCK, FOR, IF, LOOP, REPEAT, and 
WHILE. In general, the FMU structured statements are used like 
their SCL counterparts. 

A structured statement can be labeled. The label allows an EXIT or 
CYCLE statement to reference the structured statement. The EXIT or 
CYCLE statement must be in the statement list of the structured 
statement. 

The label can be any valid SCL name. A preceding label must end 
with a colon (:). No space can precede the colon; spaces can follow the 
colon. 

Logical Expressions 
A logical expression is an expression that can be evaluated as true or 
false. Logical expressions are required on IF, REPEAT, and WHILE 
statements and are optional on CYCLE and EXIT statements. 

A logical expression can be a single boolean expression or it can 
combine two or more boolean expressions with logical operators. You 
can negate any boolean expression by preceding it with the word 
NOT. 

One of the following logical operators combines each pair of boolean 
expressions in a logical expression: 

AND Both boolean expressions must be true for the logical 
expression to be true. 

OR One of the boolean expressions must be true for the logical 
expression to be true. 

XOR One, but not the other, of the boolean expressions must be 
true for the logical expression to be true. 

AND is evaluated before OR or XOR; OR and XOR have the same 
precedence. 

A boolean expression is one of the following: 

• Field descriptors of data type L (the contents of the input field is 
interpreted as a true or false value). 

12-2 SCL Advanced File Management Usage Revision H 



Logical Expressions 

• Intrinsic functions that return a boolean value ($IN _RECORD or 
$VALID_DATA)For more information, see the function descriptions 
in chapter 13. 

• Relational expressions. 

A relational expression compares two items using one of these 
operators: 

< Less than 
< = Less than or equal to 

= Equal to 

> Greater than 
> = Greater than or equal 

to 
< > Not equal to 

A relational expression can compare any two of these items: 

• Intrinsic functions (valid only to the left of the operator) 

• Contents of an input record field (specified as a field descriptor or 
the word KEY) 

• Literal enclosed in apostrophes (' ') 

• Arithmetic expression (for more information, see the discussion of 
arithmetic expressions in chapter 13). 

Revision H CREATE_OUTPUT_RECORD Statements 12-3 



Assignment Statement 

Assignment Statement 
An assignment statement causes a value to be stored in the output 
record. The value can be a literal or the value of a data field in the 
input record. If an input record data field is specified, the assignment 
statement also specifies the data reformatting performed on the field. 

An assignment statement uses one of the following formats: 

destination-item = source-item 

or 

source-item 

A source item can be a field descriptor, a literal, or the keyword 
KEY. (Field descriptors are described in chapter 13.) KEY, on the 
right side of the equal sign, specifies that the data to be moved or 
reformatted is the primary-key value of the input record. The key of 
the input record is the data in the primary-key field defined by the 
KEY_POSITION and KEY_LENGTH attributes of the input file. 

A destination item can be a field descriptor or the keyword KEY. 
(Field descriptors are described in chapter 13.) KEY, on the left side 
of the equal sign, specifies that the data is to be stored in the key 
field of the output record. The output key field is defined by the 
KEY_LENGTH and KEY_POSITION attributes of the output file. 

These are some examples of assignment statements: 

A[3,8] = A[7,8] 

A[4,3] 'ABC' 

A[1,9] Z[1,10] 

Moves the 8-byte alphanumeric field beginning at 
byte 7 in the input record to the 8-byte 
alphanumeric field beginning at byte 3 in the 
output record. Both source and destination fields 
are described by field descriptors. 

Moves the literal ABC to the alphanumeric (A) 
output field beginning at byte 4; the output field 
is three bytes long. 

Moves Z-type data in the first 10 bytes of the 
input record to the first nine bytes of the output 
record. Data is converted from integer (Z) to 
alphanumeric (A) and truncated. (For information 
on data type conversions, see appendix F.) 

12-4 SCL Advanced File Manai?ement Usai?e Revision H 



N[ 1,5] = KEY 

~ KEY = N[1,7] 

KEY = KEY 

Assignment Statement 

Moves the key in the input record to the 5-byte 
normal integer (N) field at the beginning of the 
output record. The key field is defined by the 
KEY_POSITION and KEY_LENGTH attributes of 
the input file. 

Makes the 7-byte normal integer (N) field of the 
input record the key of the output record. The key 
field is defined by the KEY_POSITION and 
KEY_LENGTH attributes of the output file. 

Moves the input key value to the output key field. 
The keys are defined by the KEY_POSITION and 
KEY_LENGTH attributes of the input and output 
files. 

Reformatting Considerations 

This section discusses the data field reformatting considerations when 
using the assignment statement. 

Field Length 

The source-item value is reformatted to fit the length of the 
destination-item field. A character string that is too long is truncated 
on the right. A character string that is too short is left-justified and 
blank-filled. 

If no length is specified for the destination item, the default length for 
the destination-item data type is used. 

Specifying zero as the length of a source data field has special 
significance. A zero-length A field represents a blank. A zero-length L 
field represents FALSE. A zero length for all the other data types is 
taken as zero. 

If you specify zero as the 'length on the destination field descriptor, 
the source field is skipped. Specifying a zero-length destination field 
has the effect of establishing the current output position (the value 
that would be returned by the $CURRENT_OUTPUT_POS intrinsic 
function). You can use the zero-length destination item, together with 
the RECORD_PRESET_ VALUE parameter, to add padding characters 
at the end of the output record. 

Revision H CREATE_ OUTPUT_RECORD Statements 12-5 



Assignment Statement 

If a zero-length record results from statement-list operations, a 
zero-length record is written to the output file. For example, assuming A 
that the RECORD_PRESET_ VALUE parameter is not set to INPUT_ • 
RECORD, these statements write a zero-length record if the test for 
A[l,1] = A[3,1] is false. 

CREATE_OUTPUT_RECORD, FILE=OUTFILE1, A 
RECORD_PRESET_VALUE=NO_PRESET • 

IF A[1,1] = A[3,1] THEN 
A[2, 1] = A[3, 1] 

I FEND 
CREATE_OUTPUT_RECORD_END 

Current Position Pointers 

FMU maintains pointers for the input and output records. Each 
pointer initially points to byte 1, bit 1 of the record. After an 
assignment statement is executed, the pointers are reset to point to 
the byte (or bit for data type B) following the field just processed. 

If you omit a position in a field descriptor, the pointer value is used 
as the default value for the position. The default position for a field 
descriptor on the left of the equal sign in an assignment statement is 
the value of the output record pointer. The default position for a field 
descriptor on the right of the equal position of the input record is 
accessed. If the data type is not B and the current bit index is 
greater than 1, the pointer is advanced to bit 1 of the next byte 
position. 

To specify the input and output position pointer values explicitly in a 
field descriptor, use the intrinsic functions $CURRENT_INPUT_POS 
and $CURRENT_OUTPUT_POS. (Intrinsic functions are described in 
chapter 13.) 

Single Field Descriptor 

When an assignment statement consists of a single field descriptor, 
the field descriptor describes the source item. The destination item is 
a field having the same data type and length as the source item and A 
beginning at the current output position pointer in the output record. W 

If length is not specified in the single field descriptor, the default 
lengths, based on data types and the MACHINE_FORMAT (MF) 

:

!_,!,: parameter value, are used for source and destination fields. (Data 
types are described in chapter 13.) 

12-6 SCL Advanced File Mana2ement Usa2e Revision H 



Assignment Statement 

The following examples show assignment statements using single field 
descriptors given with their equivalent assignment statements: 

A[4,3] is equivalent to A[ ,3]=A[4,3] or A[SCOP, 3]=A[4,3]. 

A[ ,3] is equivalent to A[ ,3]=A[ ,3] or A[SCOP, 3]=A[$CIP, 3]. 

e A is equivalent to A=A or A[, 1]=A[, 1] or A[$COP, 1]=A[$CIP, 1]. 

The single field descriptor is useful when you reference 
variable-length fields, because the destination field equals the length 
of the source field. An example of this is when the position and 
length of a source field are defined record by record by the $INPUT_ 
STRING_POS function. 

Data Alignment 

Alignment is never forced to a word boundary. If you need to align 
data by word boundary or by other means, you must supply the 
proper fill items explicitly, or specify position. 

Revision H CREATE_OUTPUT_RECORD Statements 12-7 



Block/Blockend Statement 

Block/Blockend Statement 

Purpose 

Format 

Examples 

Groups a sequence of statements into a block. 

label: BLOCK 
statement_list 
BLOCKEND label 

Variable Elements 

label 

Optional label for statement. The label can be 
referenced by EXIT statemen,_ts in the statement list. 

The label is optional. You can specify a preceding 
label without a trailing label. If you specify both 
labels, they must be identical. 

statement_list 

Sequence of one or more statements. The statement 
list is executed once unless an EXIT or STOP 
statement ends its execution. 

The following BLOCK statement has a statement list of A 
three statements. The first assignment is always done; the W' 
second assignment is done only if the condition on the 
EXIT statement is false. 

prefix: BLOCK 
A[1,5] = 1[1,8] 

EXIT prefix WHEN $1NPUT_RECORD_LENGTH = 8 
A[6,5] = I[1,8] 

BLOCKEND prefix 

12·8 SCL Advanced File Manaizement Usasre Revision H 



Cycle Statement 

Cycle Statement 

Purpose 

Format 

Remarks 

Revision H 

Initiates immediate execution of the next iteration of an 
enclosing statement list. It can be used in LOOP, FOR, 
WHILE, and REPEAT statements. 

CYCLE label 
WHEN logical_expression 

Variable Elements 

label 

Optional label specifying the enclosing statement to be 
cycled. If the label is omitted, the innermost LOOP, 
FOR, WHILE, or REPEAT statement is cycled. 

WHEN logical_expression 

Optional condition tested to determine if the statement 
is cycled. If the condition is evaluated TRUE, the 
statement is cycled; if the condition is evaluated 
FALSE, the statement is not cycled and processing of 
the statement list continues. 

• The following lists the processing performed when the 
statement is cycled: 

LOOP 

FOR 

WHILE or 
REPEAT 

The first statement in the LOOP 
statement list is processed. 

The iteration count is incremented 
and compared with the final value. 

The condition controlling iteration 
of the statement is evaluated to 
determine if the statement list is 
repeated. 

• FMU diagnoses these CYCLE errors: 

- The specified label does not match the label of an 
enclosing FOR, LOOP, REPEAT, or WHILE 
statement. 

- The CYCLE statement has no label and it is not 
in a FOR, LOOP, REPEAT, or WHILE statement 
list. 

CREATE_ OUTPUT_RECORD Statements 12-9 



Cycle Statement 

Examples This statement cycles the FOR statement when the IF 
statement condition is true. 

FOR iterations = 1 TO 2 DO 
•assignment statement• 
IF I[$CURRENT_INPUT_POS,8] > 99999 

CYCLE 
I FEND 
nassignment statement" 

FORE ND 

12-10 SCL Advanced File Manal!'ement Usal!'e RAviAinn H 



Exit Statement 

Exit Statement 

Purpose 

Format 

Examples 

Revision H 

Ends execution of the statement list in which it occurs. 

EXIT label 
WHEN logical_expression 

Variable Elements: 

label 

Optional label specifying the enclosing statement to be 
ended. If the label is omitted, the innermost BLOCK, 
FOR, IF, LOOP, REPEAT, or WHILE statement is 
ended. 

WHEN logical_expression 

Optional condition tested to determine if the statement 
is ended. If the condition is evaluated TRUE, the 
statement is ended. If the condition is evaluated 
FALSE, the statement is not ended; processing of the 
statement continues. 

The word WHEN can be omitted. 

The following statements show two nested blocks (the 
second block is enclosed by the first block). The first 
EXIT statement ends the first block. The second EXIT 
statement ends the second block. 

first: BLOCK 
second: BLOCK 

IF A[1,1] = A[2,1] 
EXIT first 

ELSEIF A[1,1] = A[3,1] 
EXIT second 

I FEND 
"assignment statement" 

BLOCKEND second 
"assignment statement" 

BLOCKEND first 

CREATE_OUTPUT_RECORD Statements 12·11 



For/Forend Statement 

For/Forend Statement 

Purpose 

Format 

Unconditionally repeats execution of a statement list a 
number of times. 

label: FOR name = initial TO final BY step DO; 
statement_list 
FOREND label 

Variable Elements: 

label 

Optional label for statement. The label can be 
referenced by CYCLE and EXIT statements in the 
statement list. 

The label is optional. You can specify a preceding 
label without a trailing label. If you specify both 
labels, they must be identical. 

name 

SCL name for the loop index variable. It should not be 
an FMU reserved word. The reserved words are listed 
in the following table. 

In a nested FOR loop, the inner FOR statements must 
not use the same name as the outer FOR statements. 

initial 

Initial value of the iteration count. This value is an 
integer or arithmetic expression. 

final 

Maximum value of the iteration count. It is an 
integer, an arithmetic expression, or a field descriptor. 
When a field decriptor is specified, the value in the 
field is converted to an integer value if necessary. 

BY step 

Increment value specified as an integer constant or 
arithmetic expression. Unlike other integer values, it 
can be a negative value, causing the index to 
decrement instead of increment. If it is omitted, the 
iteration count is incremented by 1. 

You can omit the word BY. 

12-12 SCL Advanced File Management Usage Revision H 



Remarks 

Revision H 

For/Forend Statement 

statement_list 

Sequence of one or more statements executed once for 
each value of the index count. 

Reserved Words 

A ELSEIF KEY STOP 
AND EXIT L THEN 
B F LOOP TO 
BY FOR LOO PEND u 
BLOCK FOREND MOD UNTIL 
BLOC KE ND G N WHEN 
CREOR H NOT WHILE 
CREOREND I OR WHILE ND 
CYCLE IF p XOR 
DO !FEND Q y 
ELSE J REPEAT z 
• The FOR phrase must end with the word DO, a 

semicolon and/or the end of the line. 

• The index variable is set to the initial value when 
FOR statement processing begins. The index variable 
can be referenced within the FOR statement. It is 
incremented by the step when a CYCLE statement is 
processed and at the end of each iteration of the 
statement list. 

• The incremented index value is then compared with 
the final statement list and is executed again. If the 
index value is greater than or equal to the final value 
processing continues with the statement following the 
FOREND. 

• The current value of the loop index can be referenced 
by the name, but a new value cannot be assigned to 
the name. 

CREATE_OUTPUT_RECORD Statements 12-13 



For/Forend Statement 

Examples This FOR statement moves three contiguous 3-byte fields 
in the input record to three contiguous 4-byte fields in the 
output record, converting the data from type A to type Z. 

FOR DUMMY = 1 to 3 DO 
Z[ ,4] = A[ ,3] 

FORE ND 

The following shows the data from an input record moved 
to the output record: 

Input record: 123456789 

Output record: +123+456+789 

This FOR statement iterates three times. (The FOR range 
is from 2 to 6 incremented by 2.) At each iteration, a 
search is made of the input record for the string k 
(lowercase) beginning at the current pointer position. As 
each k is found, it is placed in the output record at the 
same position as in the input record. 

FOR dumname = 2 TO 6 BY 2 DO 
A[$INPUT_FIELD_POS,1] = A[$INPUT_STRING_POS('k', .. 

$CURRENT_INPUT_POS,1,FIRST_CHARACTER),1] 
FORE ND 

Input record: aaakaaakaaak 

Output record: k k k 

(The preceding example assumes that RECORD_ 
PRESET_ VALUE=CHARACTER_BLANK is specified on 
the CREATE_OUTPUT_RECORD directive.) 

The number of times the following FOR statement iterates 
is equivalent to the integer value in the I[l0,2] field of 
the input record. Each iteration moves a three-character 
field from the current position of the input record to the 
current position of the output record. 

FOR I = 
A[,3] 

FORE ND 

TO 1[10,2] DO 
A[ ,3] 

12-14 SCL Advanced File Management Usage Revision H 



If/Elseif/Else/Ifend Statement 

If/Elseif/Else/Ifend Statement 

Purpose 

Format 

Remarks 

Revision H 

Executes one of the statement lists in the statement if the 
condition for the statement list is evaluated as true. 

IF logical_expression THEN; 
statement_list 

ELSE IF logical_ expression; 
statement_ list 

ELSE; statement_list 
I FEND 

Variable Elements: 

logical_ expression 

Expression evaluated to determine if the following 
statement list is executed. If the expression is 
evaluated as true, the statement list is executed. If the 
expression is evaluated as false, the statement list is 
not executed and processing continues with the next 
part of the IF statement. 

statement_list 

Sequence of one or more statements executed if the 
preceding logical_expression is evaluated as true or, 
for the ELSE statement list, if all preceding conditions 
are evaluated as false. 

• Only the IF phrase, its statement list, and the IFEND 
terminator are required. The ELSEIF and ELSE 
phrases and their statement lists are optional. You can 
specify multiple ELSEIF phrases and statement lists, 
but only one ELSE phrase and statement list. 

• The IF phrase must end with the word THEN, a 
semicolon (;) or the end of the line. Each ELSEIF and 
ELSE phrase must end with semicolon (;) or the end 
of the line. 

CREATE_OUTPUT_RECORD Statements 12-15 



If/Elseif/Else/lfend Statement 

Examples The following IF statement list contains a nested IF 
statement. 

H 111 IF Z[l,3] = '+01' "If true, do 2; 
11211 A[S,2] = A[S,2] .. if false, do 9. 
11311 IF A[ 14, 1] > A[15,1] "If true, do 4; 
114u Z[14,2] '+1' II if false, do 6. 
11511 ELSE "This ELSE belongs 
11511 Z[14,2] '+2' "the IF at 3. 
11711 I FEND 
11911 

11911 ELSEIF Z[l,3] = '+02' "If true, do 10; 
II 1011 A[S,2] = A[9,2] "if false, do 12. 
11 1, II 

II 12 11 ELSEIF Z[l,3] = '=03' "If true, do 13; 
II 13" A[S,2] = A[ 11, 1] "if false, do 14. 
II 14" IF END 

to 

12-16 SCL Advanced File Management Usage Revision H 

e 



Loop/Loopend Statement 

Loop/Loopend Statement 

Purpose 

Format 

Examples 

Revision H 

Repeats a statement list an unlimited number of times. 

label: LOOP 
statement_list 

LOOPEND label 

Variable Elements: 

label 

Optional label for statement. The label can be 
referenced by CYCLE and EXIT statements in the 
statement list. 

The label is optional. You can specify a preceding 
label without a trailing label. If you specify both 
labels, they must be identical. 

statement_list 

Sequence of one or more statements. The statement 
list is executed repeatedly until an EXIT or STOP 
statement ends its execution. 

The following LOOP statement repeats until the IF 
condition is evaluated as true and the STOP statement is 
executed. 

LOOP 
"assignment statement• 
IF $CURRENT_INPUT_POS = $1NPUT_RECORD_LENGTH 

STOP 
I FEND 
"asstgnment statement" 

LOOP END 

CREATE_ OUTPUT_RECORD Statements 12-17 



Repeat/Until Statement 

Repeat/Until Statement 

Purpose 

Format 

Examples 

Repeats a statement list until a condition is true. The 
statement list is executed at least once. 

label: REPEAT 
statement_list 
UNTIL logical_ expression 

Variable Elements: 

label 

Optional label for statement. The label can be 
referenced by CYCLE and EXIT statements in the 
statement list. 

The label is optional. Unlike other statements, a 
trailing label is not valid on a REPEAT statement. 

statement _list 

Sequence of one or more statements. The statement 
list is executed repeatedly until the logical_expression 
is true or an EXIT or STOP statement ends its 
execution. 

logical_ expression 

Required expression evaluated after each repetition of 
the statement list. If the expression is evaluated true, 
the statement following the UNTIL is executed. If the 
expression is evaluated false, the REPEAT statement_ 
list is executed again. 

The following REPEAT statement repeats until either the 
EXIT condition or the UNTIL condition is true. 

REPEAT 
"assignment statement" 
EXIT WHEN A[1,9] = 'BLUE MOON' 
"assignment statement" 

UNTIL $CURRENT_OUTPUT_POS = 80 

12-18 SCL Advanced File Management Usage Revision H 



Stop Statement 

Stop Statement 

Purpose 

Format 

Examples 

Revision H 

Immediately ends formatting of the current output record 
by the CREATE_OUTPUT_RECORD statement list. Any 
unassigned fields in the record are assigned the value 
specified by the RECORD_PRESET_ VALUE parameter on 
the CREATE_OUTPUT_RECORD directive. 

STOP 

The following CREATE_OUTPUT_RECORD statement 
list contains a STOP. 

CREATE_OUTPUT_RECORD, FILE=outfile 
RECORD_PRESET_VALUE= INPUT_RECORD 

A[1,2] = '01' 
A[3,4] = '0002' 
IF N[6,10] > '9999' 

STOP 
IFEND 
IF A[15,, 17] A[20,,22] 

A[ 15,, 17] A[ 15,, 17] 
ELSE 

A[15,,17] 'EEE' 
I FEND 

CREOREND 

The field described by Z[6,10] is the record number. 
Additional output formatting is to be done for record 
numbers less than or equal to 9999. Once that number 
has been surpassed, only the literals are to be placed in 
the next record. 

When 9999 is passed, the STOP statement stops statement 
list processing on the record. Because the RECORD_ 
PRESET_ VALUE is INPUT_RECORD, the unassigned 
output fields are assigned the contents of the 
corresponding fields of the input record. Processing 
continues with the next record. 

CREATE_OUTPUT_RECORD Statements 12-19 



While/Whilend Statement 

While/Whilend Statement 

Purpose 

Format 

Examples 

Repeats a statement list while a condition is true. The 
statement list is not executed if the condition is initially 
false. 

label: WHILE logical_expression DO 
statement_list 
WHILEND label 

Variable Elements: 

label 

Optional label for statement. The label can be 
referenced by CYCLE and EXIT statements in the 
statement list. 

The label is optional. You can specify a preceding 
label without a trailing label. If you specify both 
labels, they must be identical. 

logical_ expression 

Required expression evaluated before each repetition of 
the statement list. If it is evaluated as true, the e 
statement list is executed. If it is evaluated as false, 
execution continues with the statement following the 
WHILEND. 

statement_list 

Sequence of one or more statements. The statement 
list is executed repeatedly while the logical_expression 
is true or until an EXIT or STOP statement ends its 
execution. 

The following WHILE statement repeats until either the 
WHILE condition or the EXIT condition is true. 

WHILE $CURRENT_OUTPUT_POS <= 80 DO 
"assignment statement" 
EXIT WHEN A[1,9] = 'FULL MOON' 
"assignment statement" 

WHILEND 

12-20 SCL Advanced File Management Usage Revision H 







Data Field Referencing 13 

This chapter describes the means of specifying FMU data fields. Data 
field references are used in the CREATE_ OUTPUT_RECORD 
statements described in chapter 11 and to specify the sequence field 
on the SET_SEQUENCE_ATTRIBUTES directive described in chapter 
11. 

Field Descriptors 

A field descriptor describes a field in an input or output record. To 
describe a field, a field descriptor specifies the data type and the 
position and length of the field. 

The data type specifies the representation of the data in the field. For 
example, data type A specifies an ASCII string. 

The field starting position is specified as the first byte or bit in the 
field. You can specify the length ·as either the number of bytes or bits 
in the field or the position of the last byte or bit in the field. 

e Field Descriptor Format 

A field descriptor can have one of the following formats. The brackets 
a ]) are part of the formats. Everything between the brackets is 
optional. If any of the items within the brackets are used, the 
brackets are required. 

data-type 

data-type[start-position,length] 

data-type[start-position,, trailing-position] 

(Notice the two commas in this format.) 

data-type 

The one-character mnemonic for an FMU data type. The data 
types are described later in this chapter. 

Revision H Data Field Referencing 13·1 



Field Descriptors 

start-position 

Starting position of the field. For data type B, it is a bit position. e 
For all other data types, it is a byte position. 

A byte position is specified as a single value; a bit position is 
specified as two values as follows: 

(byte,bit) 

A byte value or a bit value can be specified as an unsigned 
integer, a position intrinsic function, or a field descriptor. Bytes 
and bits are numbered from the left beginning with 1. 

Default start-position: 

The default byte position is the current byte position (the value 
that would be returned at this point by a $CURRENT_INPUT_ 
POSITION or $CURRENT_OUTPUT_POSITION function). The 
value returned is the byte position immediately following the last 
field referenced. (If no field was previously referenced, 
start-position 1 is used.) 

When specifying a field descriptor for data type B, the default bit 
position depends on how the byte position is specified: 

• If the byte position is omitted, the default is the current bit A 
position (the value that would be returned at this point by a -
$CURRENT_INPUT_BIT_POS or $CURRENT_OUTPUT_BIT_ 
POS function). 

• If the byte position is specified as an integer or field 
descriptor, the default bit position is 1. 

• If the byte position is specified by an intrinsic function, the 
default bit position is the default value for the corresponding 
bit-position intrinsic function. For example, the bit-position 
function corresponding to the byte-position function $INPUT_ 
FIELD_POS is $INPUT_FIELD_BIT_POS. 

length 

Field length in bytes (or in bits for a data type B). It can be 
specified as an integer constant, a length intrinsic function, or a 
field descriptor. e 
The default value is the default length for the data type. To see 
the default lengths for NOSNE data types, see Data Types in this 
chapter. 

13-2 SCL Advanced File Management Usage Revision H 



Field Descriptors 

trailing-position 
Designates the rightmost, or ending, position of the field. 

This is an alternate specification for length. You can specify either 
length or trailing-position in a field descriptor but not both. 
Trailing-position can be specified in the same way as start-position. 

Field Descriptor Examples 

The following are examples of field descriptors: 

A[S, 10] 

A[S,, 14] 

A 

Z[2, 10] 

B[(S,2),8] 

B[(S,2),,(8,3)] 

A[$CIP,4] 

Revision H 

Alphanumeric data type, beginning at byte 
position 5, and 10 bytes long. 

Alphanumeric data type, beginning at at byte 
position 5, ending with byte position 14. 
Equivalent to the previous example. 

Alphanumeric data type, equivalent to A[ ,I], 
beginning at the current pointer position with 
a length of 1 byte. 

Type Z (integer character string with leading 
zeros and leading sign), beginning at byte 
position 2 with a length of 10 bytes. 

Type B, beginning at bit number 2 of byte 
position 5 with a length of 8 bits. 

Type B, beginning at bit number 2 of byte 
position 5 and ending on bit number 3 of byte 
position 8. 

Type A, beginning at the current input byte 
position as returned by the intrinsic function 
$CURRENT_INPUT_POS ($CIP) with a length 
of 4 bytes. (The $CIP intrinsic function is 
described later in this chapter.) 

Data Field Referencing 13-3 



Field IJescriptors 

A[$CIP+1,4] 

A[3,I[1,2]] 

Type A, beginning at the next byte after the 
current input byte position as found by the 
intrinsic function $CIP with a length of 4 
bytes. 

Type A, beginning at byte 3 and ending at the 
byte position specified by the value in the ~ 
1[1,2] field. This is an example of a nested field W 
descriptor as described in the next section. 

Nested Field Descriptors 

The position or length of a field can be specified by the contents of 
another field in the record. This is specified using a nested field 
descriptor. 

For example, a variable-length string starts at byte 6 and has a 
2-byte integer header (beginning at byte 4) that specifies the string 
length. The field descriptor for the variable-length string field is as 
follows: 

A [6,I [4,2] ] 

To interpret a field descriptor containing a nested field descriptor, 
FMU first gets the value of the field described by the nested field 
descriptor. 

If necessary, FMU converts the value of the nested field into a 64-bit 
integer using the standard A-to-I transformation. (The A-to-I 
transformation rules are listed in appendix F.) 

If an error occurs during conversion of a nested field value, the output 
record being constructed is discarded. (FMU does not assign a default 
value to a nested field.) Further processing depends on the specified 
ERROR_DISPOSITION parameter value (ABORT or NO_ABORT). 

13·4 SCL Advanced File Management Usage Revision H 



Data Types 

e Data Types 

These are the valid FMU data types: 

Character Strings: 

e Data Maximum Default 
Type Description Length Length 

A Any ASCII characters None 1 
G Characters representing a 40 22 

floating point number 

Character Representations of Integers: 

Data Maximum Default 
Type Description Length Length 

N Leading spaces, floating None 19 
negative sign 

y Leading zeros, sign is 38 19 

e rightmost character 
z Leading zeros, sign is leftmost 38 19 

character 
H Trailing combined sign 38 18 
J Leading combined sign 38 18 

Numeric Arithmetic Representations: 

Data Maximum Default 
Type Description Length Length 

B Unsigned binary 128 1 
F Floating point 8 or 16 8 
I Signed integer 8 8 
L Logical 8 8 
p Signed packed decimal 19 10 

e Q Unsigned packed decimal 19 10 
u Unsigned unpacked decimal 38 18 

Data type I is a signed integer. The leftmost bit is always considered 
a sign bit. For an unsigned integer, use data type B. 

e 
Revision H Data Field Referencing 13-5 



Data Types 

NOSNE FORTRAN Data Types 

If the data was written by a NOS/VE FORTRAN program, use the 
data type corresponding to the FORTRAN data declaration as follows: 

Data NOSNE Data 
Type FORTRAN Type NOS/VE FORTRAN 

A CHARACTER I INTEGER 
B Any J CHARACTER 
F [,8] REAL L LOGICAL 
F [,16] DOUBLE N CHARACTER 

PRECISION y CHARACTER 
G CHARACTER z CHARACTER 
H CHARACTER 

The notation F [,8] refers to a an 8-byte NOSNE floating point 
number. F [,16] .refers to a 16-byte NOS/VE floating point number. 
FORTRAN type COMPLEX data is handled as two fields of type F. 

NOSNE COBOL Data Types 

e 

If the data was written by a NOS/VE COBOL program, use the data A 
type corresponding to the COBOL data declaration as follows: W' 

Data 
Type 

B 
F [,10/8] 
F [,20/16] 
I 
p 

Q 
u 
A 
H 
J 
N 
y 

z 

NOS/VE COBOL 

Any 
COMP-1 
COMP-2 
COMP PIC S9 ... 
COMP-3 PIC S9 .. . 
COMP-3 PIC 99 .. . 
PIC 99 ... 
PIC X 
Any PIC S9 ... SIGN IS TRAILING 
Any PIC S9 ... SIGN IS LEADING 
Any PIC ... ZZZ9 
Any PIC S9 ... 
SIGN IS TRAILING SEPARATE 
Any PIC S9 ... 
SIGN IS LEADING SEPARATE 

For COMP PIC 89 ... data, COBOL determines the number of bytes 
from the number of nines in the PICTURE clause. 

13-G SCL Advanced File Management Usage Revision H 



e 

e 

Data Types 

Maximum Precision of NOSNE Data Types 

The following table lists the maximum data precision possible for each 
FMU data type. 

Number of Guaranteed 
Accurate Decimal 

Data Precision in Digits (Rounded Digits (Rounded Down 
Type Up to the Nearest Integer) to the Nearest Integer) 

F[,81 15 14 
F[,16] 29 28 
G[,m] m m 
H[,m] m m 
l[,m] log10(2JB*m)-l 1) log10 (2JB*m)-l l) 
J[,m] m m 
N[,m] min(m, 19) min(m, 18) 
P[,m] '>.m-1 2m-1 
Q[,m] 2m 2m 
U[,m] m m 
Y[,m] m-1 m-1 
Z[,m] m-1 m-1 

Data Type A 

Data type A is an alphanumeric character string. It can include any 
member of the ASCII character set. The length is not restricted to 
256 bytes, nor is there any restriction as to field contents. 

For an A to A conversion, a left-to-right byte move is performed until 
the destination field is full. If the source is prematurely exhausted, 
the remainder of the destination is blank-filled. 

Examples A[1,10] = 'alpha23 Output: lal 1 lplhlal2131 I I I 

Data Type B 

Data type B is an unsigned binary integer. The field does not have to 
begin on a byte boundary (that is, be byte-aligned). The length is 
restricted to 128 bits on NOSNE. An attempt to assign a negative 
value to an unsigned binary field results in an error. 

Revision H Data Field Referencing 13-7 



Data Types 

Examples B[1,, (2,3)] , 10011101001(2), 

8[1,8] '11110001(2)' 

8[(5,2),8]='10101111(2)' 

8[1,7) '123' 

Data Type F 

The base 2 number is 
placed in an 11-bit 
field beginning at bit 1 
of byte 1. 

Eight binary digits are 
placed in an 8-bit field A 
beginning at bit 1 of W 
byte 1. 

The binary digits are 
stored in an 8-bit field 
beginning at bit 2 of 
byte 5. 

The binary form of the 
literal (decimal number 
123) is placed in a 
7-bit field beginning at 
bit 1 of byte 1. 

Data type F is floating-point data. It is unlike the other data types in e 
that only two lengths are permissible: 8 bytes and 16 bytes. F(S) 
represents single-precision (FORTRAN REAL) data and F(16) 
represents double-precision floating-point data. The minimum (and 
maximum) length is one word for single precision and two words for 
double precision. 

Examples These values are stored in eight bytes each: 

F[2,8]='1234' 
F[4,8]='12345678901234' 
F[3,8]='1.23456789E+13' 

This value is stored in 16 bytes: 

F[5,16]='1.234567890123456789012' 

13-8 SCL Advanced File Management Usage Revision H 



Data Types 

Data Type G 

Data type G is the general character representation for floating-point 
numbers. The field length is limited to 40 bytes. When the exponent 
of the number to be output is in the range: 

-6 < = x < 9 

the number is output in F style. Otherwise, the number is output in 
E style. 

Examples G[ 1, 101=' 1234S678901234' Output: I 11. 121314ISIDl+f 1 l31 

G[ 1,5) = '25' Output: I I 12 IS I . I 

For more information on the E format descriptor, see the FORTRAN 
Language Definition Usage manual. 

Data Type H 

Data type H is for trailing-sign Hollerith data. Data type H offers the 
most precision of all the data types, with up to 38 decimal digits. 

The sign of the field and its low-order (units) numeric digit are 
contained in the low-order byte as shown in table 13-1. 

In COBOL, this data is described by PICTURE IS S9(n) SIGN IS 
TRAILING, USAGE IS DISPLAY. 

Examples H [ 1 , 4 ] = 'SO ' Output: I o I o IS I { I 

Revision H Data Field Referencing 13-9 



Data Types 

Table 13-1. Sign Position for H Fields 

Low-Order 
Digit 

Character Placed 
in That Position 
+ (Sign) 

{ 
A 
B 
c 
D 
E 
F 
G 
H 
I 

Data Type I 

Character Placed 
in That Position 
- (Sign) 

} 
J 
K 
L 
M 
N 
0 
p 

Q 
R 

Data type I is a signed integer. It is a variable-length binary format, 
with the leftmost bit being the sign bit. 

NOS/VE data in this format can vary in length from 1 to 8 bytes, 
where a byte consists of 8 bits. Negative values are represented in 
the two's complement form. 

Examples I[3,4]= '25' 

Data Type J 

The source is converted to a binary 
number located in bytes 3 through 6. 

Data type J is for leading-sign Hollerith data. The sign of the field 
and high-order numeric digit are contained in the high-order byte as 
shown in the table 13-2. 

In COBOL, this data is described by PICTURE IS S9(n) SIGN IS 
LEADING, USAGE IS DISPLAY. 

Examples J[ 1,4] = '50' Output: IOIOIEIOI 

13·10 SCL Advanced File Management Usage Revision H 



Data Types 

Table 13-2. Sign Position for H FieldB 

Low-Order 
Digit 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Character Placed 
in That Position 
+ (Sign) 

{ 
A 
B 
c 
D 
E 
F 
G 
H 
I 

Character Placed 
in That Position 
- (Sign) 

} 
J 
K 
L 
M 
N 
0 
p 

Q 
R 

Data Type L 

Data type L is the FMU equivalent of FORTRAN LOGICAL. If the 
sign bit (leftmost bit) of the source field is zero, the value is taken as 
FALSE. Otherwise, the value of the source field is taken as TRUE. 
For NOSNE data, the length can be from 1 through 8 bytes. 

For a transformation of data from character data to logical (L), see 
Data Type Conversion Between NOSNE Files in appendix F. 

Examples L[3,8]=' .TRUE.' 

L[3,4]=A[5,4] 

Revision H 

The output field is binary data with 
a nonzero sign bit. 

The sign bit of the destination is 
zero or nonzero (FALSE or TRUE) 
depending on the source data. 

Data Field Referencing 13-11 



Data Types 

Data Type N 

Data type N is the integer character string with leading blanks. 
There is no length restriction for this decimal integer format. The 
value representable, however, is limited to a value that is 
representable by data type I. 

The character digits are right-justified in the field, with blank fill. If 
the number is negative, a negative sign replaces the rightmost blank. 
The contained value must be representable in a 64-bit two's 
complement word. 

Examples N[4,8] '325' 

N[2,4] '-12' 

N [ 1 , 3] '+ 123' 

Data Type P 

Output: I I I I 1312151 

Output: I - I 1121 

Output: I 11 12131 

Data type P is for signed packed-decimal data. Two decimal binary 
digits are packed per byte, up to a total of 37 digits. The sign of the 
field and the low-order, units digit are contained in the low-order 
(rightmost) byte, as follows: 

Units 
Digits 

4 5 8 

Sign 

In COBOL, this data type can be described by PICTURE IS S9(n) 
USAGE IS PACKED-DECIMAL. 

Examples P[4,2]= '12' Output: 1_1+11121 

13-12 SCL Advanced File Management Usage Revision H 



e 

Data Types 

Each digit is a binary digit contained in a half byte. Valid sign codes 
are as follows: 

Hex Bit Pattern Sign 

A 1010 + 
B 1011 + 
c 1100 + Preferred code used when a P field is 

generated. 
D 1101 Preferred code used when a P field is 

generated. 
E 1110 + 
F + 

Data Type Q 

Data type Q is the unsigned packed decimal data type. Two decimal 
binary digits are packed per byte, up to a total of 38 digits (19 bytes). 

The data field is always an integral number of bytes. If the number 
has an odd number of digits, the leftmost 4 bits of the leftmost bytes 
are zero. 

e In COBOL, this data type can be described by: 

PICTURE IS 9(n) USAGE IS PACKED-DECIMAL. 

Examples Q[4,2]= '12' Output: 01011121 

Data Type U 

Data type U is the unsigned unpacked decimal data type. Each byte 
contains one right-justified decimal digit with zero fill up to 38 digits 
(19 bytes). 

In COBOL, this data type can be described by: 

PICTURE IS 9(n). 

Examples U[4,2]= '12' Output: I O 11 I o 121 

Revision H Data Field Referencing 13-13 



Intrinsic Functions 

Data Type Y 

Data type Y is an integer character string, an alphanumeric 
representation of up to 37 decimal integer digits with trailing sign. 
The field is zero-filled to the left of the most significant digit. Its 
minimum length is two and includes the sign. 

In COBOL, this data type is described by PICTURE IS S9(n) SIGN IS 
TRAILING SEPARATE, USAGE IS DISPLAY. 

Examples Y[3, 5] = '25' Output: 101012151+1 

Data Type Z 

Data type Z is an integer character string, an alphanumeric 
representation of up to 37 decimal integer digits with leading sign, 
and character zero fill between the sign and the most significant digit. 
Its minimum length is two and includes the sign. 

In COBOL, this data type is described by PICTURE IS S9(n) SIGN IS 
LEADING SEPARATE, USAGE IS DISPLAY. 

Examples Z[3, 5] = '25' Output: 1+101012151 

Intrinsic Functions 

You can write field descriptors with explicit values designating 
position and length. For example, the field descriptors N[l,4] and 
Z[3,,10] specify explicit values. 

However, when you do not know the exact location or length of a data 
item, such as when data has variable length or position, you can use 
intrinsic functions to get the correct value. 

The intrinsic functions can be categorized as follows: 

• Position Functions 

• Length Functions 

• String Search Functions 

13-14 SCL Advanced File Management Usage Revision H 



Intrinsic Functions 

Position Functions 

Position functions are used in the start-position and trailing-position 
parts of a field descriptor to establish those positions. Position 
functions return either a byte position or bit position. Bit-position 
functions are used only for the bit-position portions of a field 
descriptor and only when the data type is B. 

$CURRENT _INPUT _POS ($CIP) 

The $CURRENT_INPUT_POS ($CIP) function returns the current 
input position. The current input position is the byte after the last 
byte that has been processed by a source item in a CREATE_ 
OUTPUT_RECORD assignment statement. 

For example, if the last byte processed in the source item A[2,4] is 5 
and [$CIP,3] is in the next assignment statement, $CIP would yield 
byte position 6. 

$CURRENT _INPUT _BIT _POS ($CIBP) 

The $CURRENT_INPUT_BIT_POS ($CIBP) function returns the last 
input record bit position established by a source item of a CREATE_ 
OUTPUT_RECORD assignment statement that has just been executed. 
The current input position is the bit after the last bit in the input 
record processed by a source item in an assignment statement. 

For example, suppose the last bit processed in the source item 
B[(5,2),8] is bit 1 of byte 6. $CIBP at this time has a value of 2. The 
function is used in a subsequent source item B[(9,$CIBP),8]. 

$CURRENT_OUTPUT_POS ($COP) 

The $CURRENT_OUTPUT_POS ($COP) returns the current output 
position. 

The current output position in the output record is the byte after the 
last byte processed by a destination item in a CREATE_OUTPUT_ 
RECORD assignment statement. 

For example, the last byte processed by a destination item Z[S,,11] is 
11. If [$COP] is in the next assignment statement, it returns byte 
position 12. 

Revision H Data Field Referencing 13-15 



Intrinsic Functions 

The following example demonstrates the use of $CIP and $COP: 

A[1,1] = A[2,1] 
A[$COP,1] = A[$CIP,1] 
A[$CIP,2] = A[2,2] 

"$COP = 2, $CIP = 3" 
"$CIP = 4" 

$CURRENT_ OUTPUT _BIT _POS ($COBP) 

The $CURRENT_OUTPUT_BIT POS ($COBP) function returns the 
last output record bit position established by a destination item of a 
CREATE_OUTPUT_RECORD assignment statement that has just 
been executed. Current output bit position is the bit in the output 
record after the last bit processed by a destination item in an 
assignment statement. 

For example, the last bit processed in the destination item B[(3,1),4] 
is bit 4 of byte 3. $COBP at this time has the value of bit 5 and can 
be used in a subsequent destination item such as B[(,$COBP),4]. 

$INPUT_ FIELD_ POS ($IFP) 

The $INPUT_FIELD_POS ($IFP) returns the position part of the last 
established source item. $IFP includes only the byte position of the 
last source item referenced. 

For example, if the last established source item in the assignment 
statement A[3,,$IFP] =A[6,2] has position at byte 6, $IFP takes 6 as 
its value. 

The following example shows how $IFP and $IFL (described later) are 
used: 

A[ 1, 1] = A[2, 1] 
A[$IFP, $!FL] =A[3,1] "$1FP = 3, $!FL = 1" 
A[3,$IFL] = A[2,,$1FP] "$IFP = 3, $!FL 2" 
A[3,$IFL] = A[$IFP, ,2] "$1FP = 2, $IFL = 1" 

13-16 SCL Advanced File Management Usage Revision H 



Intrinsic Functions 

$INPUT_ FIELD_ BIT _POS ($IFBP) 

The $1NPUT_FIELD_BIT_POS ($IFBP) function returns the last 
established position part of a source item. $IFBP includes only the bit 
position of the last source item referenced. 

Examples In the assignment statement B[(5,$IFBP),4] =B[(5,2),4], 
$1FBP returns the value 2. 

In the statement B[(5,$IFBP),4] =B[3,,(6,3)], $IFBP returns 
the value 1. 

$1NPUT_ TRAILING_POS ($1TP) 

The $1NPUT_ TRAILING_POS ($1TP) returns the position of the last 
byte in the current input record. 

For example, suppose that the last field in the input record has a 
variable length. An assignment statement such as 
A[20,$IFLJ =A[l0,,$ITP] can be used to reformat the field into the 
output record. (The function $IFL gives the length of the source-item 
in bytes.) 

e $INPUT_ TRAILING _BIT_ POS ($ITBP) 

The $INPUT_ TRAILING_BIT_POS ($ITBP) function returns the 
position of the last bit in the current input record. 

$MAX_OUTPUT_TRAILING_BIT_POS ($MOTBP) 

The $MAX_OUTPUT_ TRAILING_BIT_POS ($MOTBP) function 
returns the position of the last bit in the last byte of a 
maximum-length record. The maximum record length for the file is 
the value of its MAXIMUM_RECORD_LENGTH file attribute. 

$MAX_OUTPUT_TRAILING_POS ($MOTP) 

The $MAX_OUTPUT_TRAILING_POS ($MOTP) returns the 
maximum record length of the file. The maximum record length is the 
position of the last byte in the largest possible output record. It is 
determined by the MAXIMUM_RECORD_LENGTH attribute of the 
file. 

Revision H Data Field Referencing 13-17 



Intrinsic FWlctions 

For example, the destination item in the following assignment 
statement comprises the entire output record (from byte 1 through the A 
maximum byte position). W 

A[ 1,,$MOTP] = A[ 1., 10] 

$OUTPUT_ TRAILING _POS ($OTP) 

The $0UTPUT_ TRAILING_POS ($OTP) returns the position of the 
last byte in the current output record (thus far built). 

For example, suppose that the length of a destination item changes, 
as in A[2,$INPUT_FIELD_LENGTH] =A[25,,$INPUT_ TRAILING_ 
POSITION]. To use the position of the last byte in the output record 
thus far built, specify the statement A[$0TP+ 1,$INPUT_FIELD_ 
LENGTH] =A[$CURRENT_INPUT_POS,5]. Note that $OTP here is 
equivalent to $CURRENT_OUTPUT_POS-l. 

$0UTPUT_TRAILING_BIT_POS ($0TBP) 

The $0UTPUT_ TRAILING_BIT_POS ($0TBP) function returns the 
position of the last bit in the last byte of the current output record. 

13-18 SCL Advanced File Management Usage Revision H 



Intrinsic Functions 

Length Functions 

Length functions are used in the length portion of a field descriptor to 
establish the length of a data field. Bit-count length functions are 
used to return length in bits in field descriptors having data type B. 

$INPUT_FIELD_LENGTH ($1FL) 

The $INPUT_FIELD_LENGTH ($1FL) function returns the length in 
bytes of the last source field referenced by a source-item. 

Examples A[1.$1FL] • A[9.8] 
A[ , $!FL] • A[ , $!FL] 

A [ 1,$JFL] • A [1,.$ITP] 

A[l, $!FL] • 8[1,8] 

"JFL•8" 
"IFL•8" 

"Here the output field 
"assumes the length of the 
" input record. 

"IFL•l" 

$INPUT_FIELD_LENGTH_BITS ($1FLB) 

The $INPUT_FIELD_LENGTH_BITS ($1FLB) returns the length part 
of the last source item in number of bits. 

e Examples In the statement B[4, $IFLB] =B[(5,2),,(6,1)], $IFLB 
returns the value 8. 

$1NPUT_RECORD_LENGTH ($1RL) 

The $INPUT_RECORD_LENGTH ($1RL) function returns the current 
input record's length as a byte count. 

Examples A[3,$1Rl.J = A[l,$1RL] takes a variable-length input 
record with alphanumeric data and reformats it as a 
variable-length output record. 

$INPUT_RECORD_LENGTH_BITS ($1RLB) 

The $INPUT_RECORD_LENGTH_BITS ($1RLB) function returns the 
current input record's length in number of bits. 

Examples 

Revision H 

In the statement B[l, $IRLB] =B[l, , $1TBP], the value of 
$1RLB is the length of the input record in bits. 

Data Field Referencing 13-19 



Intrinsic Functions 

$OUTPUT _RECORD _LENGTH ($0RL) 

The $0UTPUT_RECORD_LENGTH ($0RL) function returns the 
current output record's length as a byte count. The length is the byte 
count of the output record thus far built. 

For example, the destination descriptor A[3,$0RL] uses the function as 
its length. 

$0UTPUT _RECORD _LENGTH_BITS ($0RLB) 

The $0UTPUT_RECORD_LENGTH_BITS ($0RLB) function returns 
the current output record's length in number of bits. The length value 
is the length of the record thus far built. 

Examples B = [ ,$0RLB] doubles the size of the output record by 
appending data from the input record. 

13-20 SCL Advanced File Management Usage Revision H 



Intrinsic Functions 

String Search Functions 

You can use the input string position functions in the start-position 
and trailing-position parts of a field descriptor. 

The input string position functions are as follows: 

• $CURRENT_INPUT_STRING_POS 

• $INPUT_STRING_POS 

$CURRENT _INPUT _STRING _POS ($CISP) 

The $CURRENT_INPUT_STRING_POS ($CISP) function returns the 
result of the last $INPUT_STRING_POS function. If none was 
executed, the value 1 is returned. 

$INPUT_STRING_POS functions are evaluated in a field descriptor 
from left to right; where nested, they are evaluated inner to outer. 
Generally, field descriptors are evaluated from left to right. In 
assignment statements, however, the source item is evaluated before 
the destination item. 

e An example of how $CISP works is: 

Example 

A[3,SINPUT_FIELD_LENGTH] 
A[2,,$INPUT_STRING_POS('X',2 ,1 , FC)] 

"$ISP = 5, SIFL = 4" 
A[10,2] = A[$CISP+1,2] "$CISP = 5, $CISP+1 = 6" 

Input record: 011 lXAB 

Output record: 111 x AB 

$INPUT_STRING_POS searches for X, establishing the trailing 
position of a 4-byte field. 11 lX is placed into the 4-byte output 
field beginning at byte 3. The second statement places the string 
AB into the output record starting at byte 10. 

$1NPUT _STRING_ POS ($ISP) 

The $INPUT_STRING_POS ($ISP) searches for and establishes the 
position of a specified character string in an input record. 

Revision H Data Field Referencing 13-21 



Intrinsic Functions 

$INPUT _STRING _POS Format 

This function differs in format from the other intrinsic functions. Its 
format is: 

$INPUT _STRING _POS('string' ,byte-position,occurrence,_ 
position-returned,_ default) 

You can replace the commas in the function format by one or more 
blanks. 

string 

ASCII string you are searching for. It cannot exceed 256 
characters. 

byte-position 

Byte position at which the search is to begin. You specify position 
the same way as in the field descriptors, except that bit positions 
cannot be used. If you do not specify a value, $CURRENT_ 
INPUT_POS is used. 

occurrence 

Number of occurrences of the string to be found. If you do not 
specify a value, only the first occurrence is found. 

position-returned 

Indicates whether the function should return the byte position of 
the first or last character of the string. 

FIRST_ CHARACTER 
(FC) 

LAST_CHARACTER 
(LC) 

default 

First character (default) 

Last character 

Arithmetic expression specifying the integer value the function is 
to return if it does not find the specified string occurrence. 

In general, if this argument is omitted, the function returns an 
error when it cannot find the specified occurrence of the string. 
The exception is when the function is in a $IN_RECORD or 
$VALID_DATA function and the default argument is omitted .• In 
that case, a failure to find the string occurrence does not return 
an error and processing continues. 

13-22 SCL Advanced File Management Usage Revision H 



Intrinsic Functions 

How $INPUT_STRING_POS Works 

$ISP searches the current input record from left to right for a 
specified string, beginning the search at a specified byte. The function 
searches for the desired occurrence of that string. 

The function returns the position of the string as either the first 
character of the string or the last character, whichever you request on 
the function. 

The $1NPUT_STRING_POS function can be substituted in the field 
descriptor for an unknown starting or trailing position or both. 

A failure by the $1NPUT_STRING_POS function to find the string 
occurrence in a record returns an error except in these cases: 

• A default value is specified on the $INPUT_STRING_POS 
function 

• The $INPUT_STRING_POS function is used in a boolean function 
($IN _RECORD or $VALID_DATA). 

You can specify how you want file processing to continue after the 
error by the ERROR_DISPOSITION parameter on the SET_ 
OUTPUT_ATTRIBUTES directive. 

$INPUT_STRING_POS in Boolean Expressions 

You can use a field descriptor containing $ISP in a relational 
expression of an IF statement to compare some aspect of input data. 
An example of a boolean relational expression containing $ISP is as 
follows: 

IF A [$ISP('E', 1, 1, FC), 3) = 'EEE' THEN; 

You can also use $ISP with an IF statement to test whether the field 
descriptor using the $ISP describes a field that exists in the record or 
whether data is valid for a particular data type. To apply that 
operation, use the $ISP in a field descriptor specified by a boolean 
function in the IF statement. For example: 

IF $IN_RECORO(A [$ISP('D' ,1,1,FC), 1)) THEN; 

IF $VALIO_OATA(Z [$ISP ( ' = ' , 1 , 1 , FC ) +1,2) ) THEN; 

Revision H Data Field Referencing 13-23 



Intrinsic Functions 

$INPUT _STRING _POS Examples 

Example A 

A[1,3] = A[$ISP('C', 1, 2, LC)+1, 3] 

Input record: ABABC1BABABC2BABABC3B 

• $ISP searches for the second occurrence of character C, beginning 
at byte position 1. The + 1 establishes start-position as the byte 
position after the last character in the string. 

• $ISP is 12, because the second occurrence of C is at byte position 
12; one more byte sets start-position at byte 13. 

• Therefore, the data in the input field beginning at byte 13 with 
length of 3 bytes is placed in the output record starting at byte 1. 
The value in that field is 2BA. 

Example B 

a[$1sp('2', 1, 1,fc),11 = '9' 

Input record: ABABC1BABABC2BABABC3B 

• The $ISP replaces the string 2 with a 9. The input record is 
searched for the first occurrence of the string 2, beginning at byte 
1. The position returned is the position of 2, which is byte 13. 

• The literal 9 is entered in the output record at byte 13 of the 
output record. 

Example C 

A[ 1, 1] = A[$INPUT _STRING_POS( 'C', .. 
$INPUT_STRING_POS('AB', 1, 2, .. 
LAST_CHARACTER) + 1, 1, LAST_CHARACTER) + 1 , , .. 
$1NPUT_STRING_POS('B', $CURRENT_INPUT_STRING_POS, 1, 
FIRST_CHARACTER) -1] 

Input record: ABABC1BABABC2BABABC3B 

• The position of the source item is established by nested $INPUT_ 
STRING_POS functions. The search for the first occurrence of C 
begins at the position established by the inner $INPUT_STRING_ 
POS of the start-position part. The inner $1NPUT_STRING_POS 
has searched for the second AB; the resulting byte index is the 
location of the last character in the string AB, and is byte 4. 

13-24 SCL Advanced File Management Usage Revision H 



Intrinsic Functions 

• Thus, the outer $INPUT_STRING_POS begins its search from 
byte index 5, because 1 is added to the byte position established 
by the inner $INPUT_STRING_POS. The C is found immediately 
at byte position 5. 

• Because of LAST_ CHARACTER and + 1, the start-position of the 
source item is established at byte 6. The $INPUT_STRING_POS 
in trailing-position establishes the length of the data item by 
trailing position. The search for the first occurrence of B starts 
from the $CURRENT_INPUT_STRING_POS value, which is 5. B 
is found at byte 7 but is excluded from the length calculation by 
the -1. 

• The character that is written to the output record is 1. 

Revision H Data Field Referencing 13-25 



Boolean Expressions 

Boolean Expressions 

A boolean expression is an expression that is evaluated as true or 
false. Boolean expressions can contain: 

• Relational expressions 

• Boolean functions 

• Boolean fields 

A boolean expression can specify a logical value to be stored in a fieid 
or a condition to be tested by a CYCLE, EXIT, IF, REPEAT, or 
WHILE statement. 

Relational Expressions 

A relational expression has one of these formats: 

source-item <relational operator> source-item 

or 

intrinsic function 
field descriptor 
KEY 
literal 
integer constant 
arithmetic expression 
relational expression 

<relational > 

operator 

intrinsic function 
field descriptor 

KEY 
literal 

integer constant 
arithmetic expression 
relational expression 

FMU ignores blanks; you can use them to improve readability. 

13-26 SCL Advanced File Management Usage Revision H 



Boolean Expressions 

Relational Operators 

e Relational operators are symbols that compare two values. The 
relational operators are as follows: 

e 
Operator Meaning 

<= Less than or equal to 
< Less than 

Equal to 
<> Not equal to 
> Greater than 
>= Greater than or equal to 

Relational Expression Examples 

Examples of relational expressions used in IF statements are: 

IF N[12,3] < N[18,3] THEN; 

IF Z[1,3] '+02' THEN; 

IF KEY<= '120' THEN; 

Revision H 

Tests whether the value in the 
3-byte normal integer field 
beginning at byte 12 is less 
than the value in the 3-byte 
field beginning at byte 18. 

Tests whether the input field 
has the value +02. 

Tests whether the value of the 
input key is less than or equal 
to 120. 

Data Field Referencing 13-27 



~ 
<-
~; 

~~ 
<· 

Boolean Expressions 

Comparisons Between Data Types 

Before FMU can compare the operands in a relational expression, it 
must reduce both operands to a common format. FMU performs the 
necessary conversion as indicated in this matrix: 

A B F G H L N p Q u y z 

I : 

A Bs F F H H J L H H H H H H 

Bs 

I : I H 

~= J 

L 

N 

p 

Q 

u 

y 

II z ,, 
:.-: 

~l 

F F 

F F 

Bs F 

Bs F 

Bs F 

L L 

Bs F 

Bs F 

Bs F 

Bs F 

Bs F 

Bs F 

F F F 

H H 

I 

H H 

L 

F H I 

p 

p 

p 

F H H 

F H H 

Explanations of matrix notations: 

F L F F F 

H L HIP HIP HIP 

H L p p p 

L 

J L I p p p 

L p p p 

L p p p 

L p p p 

H L H p p p H 

H L H p p p H 

Bs Compared as an unsigned binary if both are positive; a 
negative field is always less than an unsigned binary field. 

HIP No conversion required. 

H 

H 

F Conversions during comparisons made using single or double 
precision floating point, depending on the largest number 
representable by either field. 

13-28 SCL Advanced File Management Usage Revision H 



Boolean Expressions 

Order of Precedence 

e The order of precedence of data types in a relational comparison is as 
follows: 

e 
1. L 

2. F and G 

3. H, J, P, Q, U, Y and Z 

4. I and N 

5. B 

6. A 

All data types except A and L are numeric. When an A field is 
compared to a numeric, the A field must be numeric. 

If a numeric is compared to an L field, a zero value in the numeric 
field is taken as FALSE, and nonzero as TRUE. (This applies to NOS 
and NOS/BE files as well.) 

e Effect of Collation Tables 

Regardless of whether a user-supplied collation table is provided for a 
NOSNE file, all relationals evaluated in data type A comparison 
mode are ranked according to the ASCII collating sequence. 

Boolean Functions 

You can use a boolean function in place of a relational expression. A 
boolean function also yields a true or false result. 

In a boolean function, a string search failure by $1NPUT_STRING_ 
POS results in a function evaluation of FALSE. 

The boolean functions are: 

• $IN _RECORD 

• $VALID_DATA 

Revision H Data Field Referencing 13-29 



Boolean Expressions 

$IN _RECORD ($IR) 

An $IN _RECORD ($IR) function returns a TRUE value if the field is e 
within the record. Otherwise, it returns a FALSE value. 

Its format is: 

$IN_RECORD(field descriptor) 

The field descriptor specified in the function must follow the rules for 
valid field descriptors. 

Examples of $IN _RECORD are shown in short IF statements: 

• IF $IN_RECORD(A[$ISP('D' ,1,1,FC),1]) THEN 

e A[S,1] = A[$CISP,1] 

• !FEND 

A simple search is done to find the 1-byte string D. If it is in the 
record, it is placed in the output record at byte position 5. Otherwise, 
the operation is skipped. 

• IF $IR(A[20,2]) THEN 

• A[l,2] = A[20,2] 

• IFEND 

This test determines whether there is a 2-byte alphanumeric field 
in the record at byte 20. If there is, it is placed in the output 
record; otherwise, the operation is skipped. 

$VALID _DATA ($VD) 

The $VALID_DATA ($VD) function returns a TRUE value if the data 
in the field is valid for the specified type; otherwise, it returns a 
FALSE value. 

Its format is: 

$VALID_DATA(field descriptor) 

13-30 SCL Advanced File Management Usage Revision H 



Boolean Expressions 

The field descriptor specified in the function must follow the rules for 
valid field descriptors. 

An example of $VALID_DATA is shown as used in an IF statement: 

IF $VALID_DATA(N[1,3]) THEN 
N[5,3] = N[1,3] 

I FEND 

This test determines whether the 3-byte field beginning at byte 1 
contains a normal integer character. If it does, it is placed in the 
output record; otherwise, the operation is skipped. 

In a boolean function, a string search failure by $INPUT_STRING_ 
POS results in a function evaluation of FALSE. 

Boolean Fields 

A boolean field is a field descriptor that has a data type of L. It can 
be used in place of a boolean function. 

The L data type is in binary format. That is, binary zero in the 
leftmost bit is defined as FALSE; a binary one in the leftmost bit is 
defined as TRUE. 

Examples IF L[5,4] THEN; :IFEND 

The IF statement evaluates as TRUE or FALSE, depending on the 
contents of the field beginning at byte 5. 

$1NPUT _STRING _POS in Boolean Expressions 

You can use an $1NPUT_STRING_POS ($ISP) function in the field 
descriptors of boolean expressions. Failure of the function to find the 
string occurrence searched for depends on the type of boolean 
expression containing the function. 

When $INPUT_STRING_POS is used in a relational expression, a 
string search failure is an error. The response to the error is 
determined by the ERROR_DISPOSITION parameter on the SET_ 
OUTPUT_ATTRIBUTES directive. 

When $INPUT_STRING_POS is used in a field descriptor of a 
boolean function, a string search failure is not an error. 

Revision H Data Field Referencing 13-31 



Arithmetic Expressions 

Arithmetic Expressions 

An FMU arithmetic expression is evaluated as an integer value. It 
can be used anywhere in a CREATE_OUTPUT_RECORD statement 
list to specify an integer value. 

To evaluate an arithmetic expression, FMU performs arithmetic 
operations on integer operands. 

The arithmetic operations, in order of precedence, are: 

* I Multiplication and division 

mod Modulus (remainder after division) 

+ - Addition and subtraction 

The integer operands in an arithmetic expression can be specified as: 

Integer constants 

Literals 

Field descriptors 

The word KEY (to specify the primary-key field) 

Intrinsic functions 

Arithmetic expressions composed of the preceding elements and 
enclosed in parentheses 

Operand values that are not integers are converted to integer. If this 
is not possible, an error is returned. 

Floating point arithmetic is not supported. A value read by a field 
descriptor using the F or G data type is converted to integer before it 
is used. 

13-32 SCL Advanced File Manae"ement Usal!"e R.P.vil<inn H 







e 

Keyed File Reformatting 14 

A keyed file is a file whose organization allows record access by key 
value. The FILE_ ORGANIZATION attribute of the file must specify 
one of the keyed-file organizations described in chapter 5 of this 
manual. 

In most cases, you should use the COPY_KEYED_FILE command to 
copy keyed files. (The COPY_KEYED_FILE command is described in 
chapter 6 of this manual.) However, if record reformatting is required, 
you must use FMU to copy the keyed file. 

Keyed Record Conversion 

FMU can read records from a keyed file and/or write records to a 
keyed file. 

The data type of a key is determined by the KEY_ TYPE attribute 
value: 

Key Type Data Type 

Collated A 
(Symbolic) 
Uncollated A 
Integer I 

Key Conversion Using FMU Command Copy 

An FMU command copy results from an FMU command that specifies 
an input file and an output file, but no directives file. The key 
conversion performed by an FMU command copy depends on whether 
the keyed file is the input file, the output file, or both. 

When the Input File is a Keyed File, But the Output File is Not: 

Key conversion in this case depends on whether the input key is 
embedded or not, that is, it depends on the value of the 
EMBEDDED_KEY attribute. 

EMBEDDED_KEY=TRUE for input file: 

The data from the input record (including the key value) is 
copied to the output record. 

Revision H Keyed File Reformatting 14·1 



Keyed Record Conversion 

EMBEDDED_KEY=FALSE for input file: 

The data from the input record is copied to the output record, 
but the key value (because it is separate from the record) is 
discarded. 

When the Output File is a Keyed File, But the Input File is Not: e 
In this case, the EMBEDDED_KEY attribute of the output file 
must be TRUE. The data from the input record is copied to the 
output record and the embedded primary key is defined by the key 
attributes of the output file. 

If the EMBEDDED_KEY attribute of the output file is FALSE, an 
error results. This is because FMU cannot determine the value of 
the key because no key value is defined for the input record. 

When Both the Input File and the Output File are Keyed Files: 

FMU processing when both the input file and the output file are 
keyed files depends on the EMBEDDED_KEY attribute of the 
input file and of the output file. 

Input Key Nonembedded, Output Key Nonembedded: 

The nonembedded input key value becomes the nonembedded 
output key value. The input record data is copied to the output 
record. 

Input Key Nonembedded, Output Key Embedded: 

The nonembedded input key value is discarded. The input 
record data is copied to the output record. The output key is 
the value in the key field defined by the KEY_POSITION and 
KEY_LENGTH attributes of the output file. 

Input Key Embedded, Output Key Nonembedded: 

The embedded input key value becomes the nonembedded 
output key value. The input record data is copied to the output 
record. (The input key value is written twice: once as the 
nonembedded key and once in the record data.) 

14-2 SCL Advanced File Manairement Usalle Revision H 



Keyed Record Conversion 

Input Key Embedded, Output Key Embedded: 

The input record data is copied to the output record. The 
output key is the value in the key field defined by the KEY_ 
POSITION and KEY_LENGTH attributes of the output file. 
(The KEY_POSITION and KEY_LENGTH attributes of the 
input file have no effect on the definition of the output key.) 

Key Conversion Using CREATE_OUTPUT_RECORD 
Assignment Statements 

To change the contents of the records in the new keyed file, you must 
use the CREATE_OUTPUT_RECORD directive. (For example, the 
fields of the record are reordered instead of merely being copied.) 

You can use the CREATE_OUTPUT_RECORD assignment statements 
to transfer keys from input to output. The output key is initialized 
following the rules given for an FMU command copy and then the 
reformatting specified by the CREATE_OUTPUT_RECORD directive 
is performed. 

You can use the keyword KEY to reference the input key or output e key. In either case, the key can be embedded or nonembedded. 

Examples of the use of the KEY operand are: 

A [5,6] = KEY stores the key of the input record in the 6-byte 
field starting at position 5 of the output record. 

KEY = A [1,5] stores the 5-byte input field in the area defined 
for the output key. 

KEY = KEY places the value of the input key into the area 
defined for the output key. 

Depending on the input file, use one of the following if you want to 
set the output key explicitly: 

KEY = field descriptor 

KEY = literal 

KEY KEY 

If the key of the output file is embedded and the position, length, and 
FMU data type of the key are known, you can use a field descriptor 
to set the key; this practice, however, is not recommended. 

Revision H Keyed File Reformatting 14-3 









FMU Examples 15 

This chapter contains simple examples of these FMU applications: 

• Reformatting data 

• Replacing occurrences of a string 

• Creating an indexed-sequential file 

Reformatting Data 

The following example demon-strates some FMU functions: reordering 
data fields, using the $INPUT_STRING_POS to locate and reformat 
information, and adding a sequence number to each record. 

If you are familiar with the FORM utility on NOS, this example is 
similar to the reformatting example in the FORM reference manual. 
Record selection, however, has not been included in the FMU example. 

Input File Characteristics: 

A file of student information, STDNTRF, is to be reformatted. The 
data in the input file STDNTRF is as follows: 

Field Position Length 

name 1-20 20 
number 21-26 6 
age 27-28 2 
sex 29 1 
dept 30-31 2 
year 32 1 
level 33-34 2 
address 35-80 46 

The records appear on the input file STDNTRF as follows: 

Fender, A.T. 
Bender, R.L. 
Kettle, V.H. 
McKee, N.R. 

Revision H 

12345621M023JR123 A ST., Pozo, Calif. 
61234524F045SR456 North ST., Booneville, Calif. 
56123422M034SR33 Main ST., San Jose, Calif. 
45612325F026SR2216 Bush ST., Bear Valley, Calif. 

FMU Examples 15-1 



Reformatting Data 

Output File Characteristics: 

Name and number are to remain the same positionally. Age and sex 
are excluded from the new file. Year and department switch relative 
positions and are placed in the spots formerly occupied by age and 
sex. 

Department 02 is to be changed to department 04. Level is excluded. 
Blanks are inserted. 

Only the city part of the address will be extracted and placed on the 
new file. 

The result is a 62-byte record. 

The data fields for file GRADF are as follows: 

Field Position Length 

name 1-20 20 
number 21-26 6 
year 27 1 
department 28-29 2 
blank 30-32 3 
city 33-62 30 

The contents of the output file GRADF after the FMU run are as 
follows: 

Fender, A.T. 
Bender, R.L. 
Kett I e • v . H . 
McKee, N.R. 

1 123456304 
2 612345504 
3 561234403 
4 456123604 

Pozo 
Booneville 
San Jose 
Bear Valley 

The commands and the directive file for this job are as follows: (The I 
is a terminal prompt.) 

/set_file_attribute file=stdntrf 
/fmu, directives=stntdir, list=output 

The directives in the directives file are: 

set_input_attributes,file=stdntrf 

set_output_attributes,file=gradf 

15-2 SCL Advanced File Management Usa£re 

•specifies the input file 
"STDNTRF. 

"Specifies the output file 
•GRADF. 

RAvi1:iinn H 



set_sequence_attributes, .. 
file=gradf,sequence_field=N[18,2l 

Reformatting Data 

"Specifies sequence 
"numbering of records 
•beginning in byte position 
"18, which is part of the 
"name field of the output 
•record. 

create_output_record, fi le=gradf . . "Specifies the formatting of 
"the output record_preset_ 
"value=character_blank 
"record. The RECORD_ 
"PRESET_VALUE parameter 
"indicates that the input 
"record fields that are 
•unreferenced by the CREOR 
"statements should be set 
"to blanks in the output 
"record. 

A[1,20] 
N[21,6] 
N[27, 1] 

A[1,20] 
N[21,6] 
N[32, 1] 

if A[30,2] = '02' then 
A[28,2] '04' 

else 
A[28,2] [30,2] 

ifend 

A[30,3] 

"Specifies the formats of the 
"first 27 bytes of the 
"output record. 

"Tests whether the input 
"field at position 30 is a 
"' 02' . If it is, '04' is 
•stored in the department 
"field; otherwise, the 
"contents of the input 
"field are stored in the 
"department field. 

"Stores three blanks in the 
"next three bytes. 

"This statement is 
"described after the 
"example. 

A[33,29] = A[$input_string_pos(',', 35, 1, first_character) + 
1,, $input_string_pos(',', $current_input_string_pos, 2, fc) 
- 1] 

Revision H FMU Examples 15-3 



Reformatting Data 

creorend "Terminates the CREATE_ 
"OUTPUT_RECORD 
"directive. 

The final assignment statement extracts the city from the input 
address field and places it in the output record. The source item 
specifies that a $INPUT_STRING_POS search begins at position 35 
to find the first occurrence of a comma (,). The comma is not to be 
carried into the output record so + 1 is specified. The $INPUT_ 
STRING_POS search for the second comma begins at the position 
returned by the last $ISP function. (The $CURRENT_INPUT_ 
STRING_POS indicates the position at which the last comma was 
found.) The second comma is not to be carried into the output record 
so -1 is specified. 

15-4 SCL Advanced File Management Usage Revision H 



• 

Replacing Occurrences of a String 

Replacing Occurrences of a String 

This example demonstrates replacing a character or string with 
another character or string. The following elements are used: 

• $IN_RECORD boolean function 

• FOR statement for looping 

• $CISP on the destination side of an assignment statement 

The example input file SEMIF contains records that have semicolons 
scattered throughout. (The positions of the semicolons are not fixed.) 
FMU is to replace each semicolon with a dash (-). 

FMU can replace a finite number of occurrences of character strings, 
but you must specify the upper limit on the number of occurrences. 
For this example, it was estimated that the semicolon occurs no more 
than 11 times in any one record. 

The records in the input file SEMIF appear as follows: 

AAAA;AAAAAAA 
BBB; ;BBB;BBB 

;CCCCCCCC 
DDDDDDDDDDD 
EEE;E;E;E;E;E 
....... 
'''' J'. 

FFFFFFFFFF; 
;GGGGGGGGG; 
; ; ; ; ;HH;;;; ;H 

After the FMU run, the output file DASHF appears as follows: 

AAAA-AAAAAAA 
BBB--BBB-BBB 

-cccccccc 
DDDDDDDDDDD 
EEE-E-E-E-E-E 
-----------·· .... 
FFFFFFFFFF­
-GGGGGGGGG-

J J J JI J 

-----HH-----H 

Revision H FMU Examples 15-5 



Replacing Occurrences of a String 

As you can see, 11 iterations were not enough to replace all 
semicolons. Specifying 17 would have been sufficient. 

The commands and the directive file for this job are as follows. (This 
example was run on a terminal; I is a prompt.) 

/set_file_attribute file=dashf max1mum_record_length=20 
/fmu, directives=repldir, list=output 

The directives in the directives file are as follows: 

set_input_attributes,file=SEMIF 

set_output_attributes,file=DASHF 

create_output_record,file=DASHF, recordJ)reset_value=character_ 
blank; 

"The RECORD_PRESET _VALUE parameter specifies that fields not 
"referenced in the CREOR assigiment statements are to 
"duplicate the corresponding fields in the input record. 

if $in_record(A[ Sinput_string_pos( ';', 1, 1, fc), 1 l ) then 

"The initial boolean function SIN_RECORD tests for the 
"existence of a semicolon. The function's argument is a 
"field descriptor with a SINPUT_STRING_POS search function 
"in start-position. 

A[ Scurrent_input_string_pos, 1] = '-' 

"If the SIN_RECDRD encounters a semicolon, the semicolon 
"is replaced by a dash. (SCISP indicates the position 
··returned by the last SISP and designates the start­
"position of the output field.) 

"After the first seareh is successful, a 10-iteration 
"FDR statement is entered. Each successive search for 
"a semi-colon begins with the position returned by SCISP. 
"Also, the second occurrence relative to the last 
"occurrence is specified. 

for iterations = 1 to 10 do 
if Sin_record( A[ Sisp( , , Scisp, 2, fc), 1 ] ) then 

A[ Scisp, 1 J = '-' 
else 

stop 
if end 

forend 

"All 10 iterations occur even if no semicolons follow 
"the first semicolon. A $ISP search failure does not 
"return an error when used within the SIN_RECORD 
"function. 

if end 
create_output_record_end 

15-6 SCL Advanced File Management Usage Revision H 



Creating an Indexed-Sequential File 

Creating an Indexed-Sequential File 

This example uses FMU to both reformat records and create an 
indexed sequential file with embedded keys. 

The input file SEQFIL is a character data file; its records contain a 
3-digit integer, 2 spaces, and a name as follows: 

002 Church, Jared 
001 Begelman, Nancy 
020 Kowlski, Benjamin 
003 Johnson, Tom 
013 O'Toole, Donald 
005 Williamson, Cary 
007 Seger, Lawrence 
011 Chang, Peter 
014 Inouye, Leonard 
006 Peterson, Lori 

The example removes the spaces between the number and the name. 

The interactive session is as follows: ( I , . ./ and ct? are prompts.) 

"Defines the attributes of the 
"new indexed seQuential file. 
/set_file_attributes file=isfil 
.. /file_organization=indexed_seQuential 
.. /key_length=3 minimum_record_length=3 
.. /maximum_record_length=25 
"Creates the directives file. 
/collect_text output=directives 
ct? set_input_attributes file=seQfil 
ct? set_output_attributes file=isfil 
ct? create_output_record file=isfil 
ct? a[1,3] = a[1,3] "Moves 3-digit number. 
ct? a[4,25] = a[6,$input_record_length] "Moves name. 
ct? create_output_record_end 
ct? ** 
"Executes directives file. 
/fmu directives=directives 

Revision H FMU Examples 15·7 



Creating an Indexed-Sequential File 

To see that the file reformatting worked, you can enter a COPY_ 
KEYED_FILE command to copy the file to $OUTPUT (if the file 
contains only displayable characters). 

/copy_keyed_file input=$user.isfil output=$output 
001Begelman, Nancy 
002Church, Jared 
003Johnson, Tom 
OOSWilliamson, Cary 
006Peterson, Lori 
007Seger, Lawrence 
011Chang, Peter 
0130'Toole, Donald 
014Inouye, Leonard 
020Kowlski, Benjamin 

As you can see, the spaces between the number and the name are 
gone and the records are in sorted order by the primary key (the 
3-digit number). , 

15-8 SCL Advanced File Management Usage Revision H 







Advanced Access Methods (AAM) ASCII 

Glossary 

This appendix contains a glossary of terms listed in alphabetical 
order. 

e A 

Advanced Access Methods (AAM) 

The file management software that processes keyed files. 

Alternate Index 

An index built in a keyed file for an alternate key. The index 
associates each alternate-key value with a key list of one or more 
primary-key values. 

Alternate Key 

A 

An optional key defined in addition to the primary key. An alternate 
key provides another method of directly accessing records in a keyed 
file. Unlike the primary key, an alternate key can be defined to allow 
duplicate values so that more than one record can have the same 
alternate-key value. 

Alternate-Key Definition 

The set of attributes that specify alternate-key characteristics. The 
alternate-key definition is used to build the alternate index for the 
key. 

Ascending Sort Order 

Ordering values from lowest to highest value. See Sort Order. 

ASCII 

American National Standard Code for Information Interchange. A 7-bit 
code representing a prescribed set of characters. NOSNE stores each 
7-bit ASCII code right-justified in an 8-bit byte. 

Revision H Glossary A-1 



Backup Copy Byte Index 

B 

Backup Copy 

Copy kept for possible future recovery. Keyed-file backup copies should 
be written using the Backup_Permanent_File utility so they can be 
reloaded using the Recover_Keyed_File utility or the Restore_ 
Permanent_ File utility. 

Basic Access Methods (BAM) 

The file management software that processes sequential and 
byte-addressable files. 

Beginning-of-Information (BOI) 

The point at which file data begins. For a keyed file, the BOI file 
position means that the file is positioned to read the record with the 
lowest key value. 

Bit 

A binary digit. It has the value 0 or 1. See Byte. 

Bit Index 

The bit location relative to the first bit in a byte. NOSNE bit e 
positions start at bit 1 on the left and end at bit 8 on the right. NOS 
and NOS/BE bit positions start at bit 1 and end at bit 6. 

Block 

A logical or physical grouping of data. In a keyed file, blocks are 
units of file space linked by pointers. 

Byte 

A contiguous group of bits. A NOSNE word has 8 bytes having 8 bits 
each. NOSNE stores each ASCII character code in the rightmost 7 
bits of a byte. 

Byte-Addressable File Organization 

A file organization in which records are accessed by their byte 
address in the file. 

Byte Index 

The byte position in a record relative to the beginning of the record. 

A-2 SCL Advanced File Management Usage Revision H 



Character Character 

e c 
Character 

A letter, digit, space, or symbol represented by a code in a character 
set. The NOSNE character set is the standard ASCII character set, 
so, unless stated otherwise, the term character in this manual refers 
to one of the 256 ASCII characters. 

Revision H Glossary A-2.1 



This page intentionally left blank. 

A-2.2 SCL Advanced File Management Usage Revision H 



Close Request Command Utility 

Close Request 

A program request notifying the system that the program no longer 
intends to access file data through the specified instance of open. In 
response, the system flushes all modified data from memory to the file 
and ends the connection between the program and the file. 

Collated Key 

The key type that orders key values according to a user-specified 
collation table. Contrast with Uncollated Key. 

Collating Sequence 

A set of values defining the collation weights of the 256 ASCII 
characters. The collation weights determine the sequence in which 
characters are ordered and their relative values when compared. 

Collation Table 

A data structure defining a collating sequence. 

Collation Weight 

The value assigned to a character that determines the position of that 
character when ordered using the collating sequence. 

e Command 

A statement that initiates a specific operation. The SCL interpreter 
recognizes a command name if it is in the command list. 

Command List 

One or more entries that define the commands that are currently 
available. 

Command Merge 

A merge performed solely on the basis of MERGE command 
parameters. 

Command Sort 

A sort performed solely on the basis of SORT command parameters. 

Command Utility 

A NOSNE program that adds its command list to the command list 
stack. it reads subcommands from the command file to determine its 
processing. Entry of a final subcommand (usually QUIT) ends 
command utility processing. 

Revision G Glossary A-3 



Concatenated Key Direct-Access File Organization 

Concatenated Key 

An alternate key that has two or more pieces. The pieces can be 
noncontiguous and can be concatenated in any order. 

Cycle Reference 

Specifies the specific cycle of a permanent file to be accessed. A cycle 
reference can be either an unsigned integer or one of the following 
designators: $HIGH, $LOW, $NEXT, $NEXT_LOW. 

D 

Data Block 

A block in an indexed-sequential file in which data records are stored. 
Contrast with Index Block. 

Data-Block Split 

The process of creating two or three data blocks from an existing data 
block when a record to be written does not fit into the remaining 
space of the existing block. 

Data Compression 

The process of converting data so that it can be represented in less 
space. Usually, compressed data must be decompressed before it can 
be used. 

Default Value 

The value used for the parameter value if no value is explicitly 
specified. 

Descending Sort Order 

Ordering values from highest to lowest value. See Sort Order. 

Destination Item 

The description of an output field as used in an Fl\lfC CREATE_ 
OUTPUT_RECORD directive assignment statement. It can be a field 
descriptor or KEY. 

Direct-Access File Organization 

A keyed-file organization in which each record is accessed directly by 
hashing its primary-key value. Records can be accessed sequentially, 
but the records are not returned in sorted order. Contrast with 
Indexed-Sequential File Organization. 

A-4 SCL Advanced File Management Usage Revision G 



Directive End-of-Information (EOl) 

Directive 

A statement that specifies processing options for a command or 
subcommand. Both FMU and Sort/Merge interpret a set of directives. 
Their directives consist of a directive name followed by a parameter 
list. 

Directive File 

A file that contains only directives. 

Display Code 

A 6-bit character code used by NOS and NOS/BE systems. 

Dual State Operations 

Two operating systems executing simultaneously in the same 
mainframe. A CYBER 180 mainframe can execute NOSNE and either 
NOS or NOS/BE. 

Duplicate Key Value 

The situation detected when a record to be written to the file has a 
key value that matches a key value already in the file (or another 
value for the alternate key in the same record). It can also be 
detected during application of a new alternate-key definition to a file. 

Duplicate Key Value Control 

The alternate-key attribute that indicates whether duplicate values are 
allowed for the key and, if so, how the duplicates are ordered. 

E 

EBCDIC 

The abbreviation for extended binary-coded decimal interchange code, 
an 8-bit code representing a coded character set. 

Embedded Key 

Key that is part of the data in each record. (Alternate keys are 
always embedded.) Contrast with Nonembedded Key. 

End-of-Information (EOI) 

The point at which the data in a file ends. For a keyed file, the EOI 
file position means that the file is positioned after the record with the 
highest key value. 

Revision J Glossary A-5 



End-of-Partition (EOP) File Attribute 

End-of-Partition (EOP) 

A special delimiter in a file that uses the CDC variable (V) record 
type. 

Exception Records File 

A file to which invalid records are written before the records are 
removed from the process. 

F 

F Record Type 

Fixed-length records, as defined by the ANSI standard. 

Field 

A subdivision of a record. 

A field in a data record is defined by its position and length in the 
record. The location of a key value in a record is defined as a field. 

A field in an SCL variable can be referenced by name. For example, 
the field NORMAL in a status record variable named OLD_STATUS 
is referenced as follows: OLD_STATUS.NORMAL 

Field Descriptor 

An FMU element that describes a data field in an input or output 
record in terms of data type, starting position, and field length. 

File 

A collection of information referenced by name. A file is an 
autonomous collection of information that exists separately from the 
programs that read or write the file. 

SCL references an element consisting of a file path, an optional cycle 
reference (for permanent files), and a file position designator as 
follows: 

file_path.cycle_ reference.file_position 

File Attribute 

A characteristic of a file. The file attribute set defines the file 
structure and processing limitations. 

A-6 SCL Advanced File Management Usage Revision J 



File Cycle File Position 

File Cycle 

A version of a file. All cycles of a file share the same file entry in a 
catalog. The file cycle is specified in a file reference by its number or 
by a special indicator, such as $NEXT. 

File Organization 

The file attribute that determines the record access method for the 
file. See Sequential File Organization, Byte-Addressable File 
Organization, and Keyed File Organization. 

File Position 

The current position of the file. The position at which the file is to be 
opened can be specified by the OPEN_POSITION file attribute or 
when specifying the file, using one of these designators: 

$ASIS 

$BOI 

$EOI 

Revision J 

Leave the file in its current position. 

Position the file at the beginning-of-information. 

Position the file at the end-of-information. 

Glossary A-6.1 



This page intentionally left blank. 

A-6.2 SCL Advanced File Management Usage Revision J 



File Reference Graphic 

File Reference 

An SCL element that identifies a file and optionally the file position 
to be established prior to the file's use. The format of a file reference 
is 

:family .catalog.file.cycle.file_position 

where catalog is one or more catalog names separated by a period. 

where file is a 1- to 31-character name. 

where cycle is a numeric value from 1 to 999 that represents a 
version of the file. 

where file_position is one of the following: 

$ASIS 

$BOI 

$EOI 

See also File and File Position. 

Floating-Point Number 

A method of internal binary representation for numbers written with 
a decimal point; corresponds to a FORTRAN REAL or COBOL 
COMPUTATIONAL-I number. Also stored as double precision, 
corresponding to FORTRAN DOUBLE PRECISION or COBOL 
COMPUTATIONAL-2. 

Flush Request 

A program request to write to the file device the parts of a file that 
have been modified in memory since the last time the file was 
written. For keyed files, the file device is always disk; for sequential 
files, the flush request can write to disk or to an interactive terminal. 

G 

Graphic 

A character that can be printed or displayed. 

Revision J Glossary A-7 



Hashing Procedure Indexed-Sequential File Organization 

H 

Hashing Procedure 

The procedure used to transform a primary-key value into a home 
block number in a direct-access file. The procedure is executed for 
each file request that specifies a key value. 

Home Block 

A unit of space in a direct-access file. If possible, data records are 
stored in home blocks. Contrast with Overflow Blocks. 

I 

Index Block 

A block in an indexed-sequential file in which index records are 
stored. Contrast with Data Block. 

Index-Block Split 

The process of creating two index blocks from an existing index block 
when a record to be written does not fit into the remaining space of A 
the existing block. ,. 

Index Level 

A rank in the index-block hierarchy in an indexed-sequential file. To 
find the pointer to a data record, an index block must be searched for 
each index level. 

Index Level Overflow 

The condition when a record cannot be written to a file because 
writing the record would require addition of another index level and 
the file already has 15 index levels. 

Index Record 

A record in an index block that associates a key value with a pointer 
to either a data block or an index block in the next fower level of the 
index hierarchy. 

Indexed-Sequential File Organization 

A keyed-file organization in which records can be read sequentially 
ordered by key values or accessed individually by a key value. 

A·S SCL Advanced File Management Usage Revision J 



Integer Keyed-File Organization 

Integer 

Numeric data (positive or negative) that does not have any digits to 
the right of the assumed decimal point. An integer is stored internally 
as a binary value rather than a character value. 

Integer Key 

The key type that orders key values numerically. The key values can 
be positive or negative integers. 

J 

Job 

A set of tasks executed for a user name. NOS/VE accepts interactive 
and batch jobs. 

K 

Key 

For Sort/Merge, a key is a record field used to determine the position 
of the record within a sorted sequence of records. 

In a keyed file, a key is a value associated with a record as a means 
of accessing the record. It may be a record field. See Primary Key 
and Alternate Key. 

Key List 

The sequence of primary-key values associated with an alternate-key 
value in an alternate index. If duplicate values are allowed for the 
key, a key list contains a primary-key value for each record in the 
file that contains the alternate-key value. 

Key Type 

The kind of data in a key. 

For Sort/Merge, a key type is the name of a numeric data format or 
collating sequence. 

For a keyed file, the possible key types are uncollated, collated, and 
integer. 

Keyed-File Organization 

A file organization that provides for record access by a key value. See 
Direct-Access File Organization and Indexed-Sequential File 
Organization. 

Revision H Glossary A-9 



Keyword Logout 

Keyword 

A word within a format that must be entered exactly as shown. 

L 

Literal 

A symbol or quantity that is itself data rather than a reference to 
data. See Nonnumeric Literal and Numeric Literal. 

Local File 

A file that is accessed via the local catalog ($LOCAL). See also File, 
Path, and Local Path. 

Local File Name 

The name used by an executing job to reference a file while the file 
is assigned to the job's $LOCAL catalog. Only one file can be 
associated with a given name in one job; however, a file can have 
more than one instance of open in one job by that name. 

Local Path 

Identifies a local file as follows: 

$LOCAL.file_name 

Lock 

A mechanism that makes a primary-key value (or, for a file lock, all 
primary-key values) inaccessible to other instances of open of the file . 

. :

!,!.·, ::,:~ies recording a chronological series of events. The keyed-file 
interface uses the update recovery log. See also Update Recovery Log. 

Login 

The process used at a terminal to gain access to the system. 

Logout 

The process used to end a terminal session. 

A-10 SCL Advanced File Management Usage Revision H 



Major Sort Key Major Sort Key 

M 

Major Sort Key 

A sort key that is the most important key and is specified first. 
SortJMerge uses this key before any other key. Contrast with Minor 
Sort Key. 

Revision H Glossary A-10.1 



This page intentionally left blank. 

A-10.2 SCL Advanced File Management Usage Revision H 



Mass Storage Null Suppression 

Mass Storage e A disk pack or rotating mass storage device; not a magnetic tape. 

Media 

Storage device on which data is recorded. Currently, NOS/VE files can 
be recorded on mass storage or magnetic tape. 

Merge 

The process of combining two or more presorted files. 

Minor Sort Key 

A sort key that is specified after the major sort key on a SORT or 
MERGE command or in a procedure call. Minor keys are sorted after 
the major sort key. Contrast with Major Sort Key. 

Module 

A unit of code. A CYBIL source code module is a compilation unit. 
An object module is the unit of object code corresponding to a 
compilation unit. A load module is a unit of object code stored in an 
object library. 

Nested File 

File defined within a keyed file. A nested file is recognized and used 
by the keyed-file interface; it is not recognized or used by the 
NOS/VE file system. When created, a key~d file contains one nested 
file, named $MAI.K_FILE. 

Nonembedded Key 

A primary-key value that is not part of the record data. Contrast with 
Embedded Key. 

Nonnumeric Literal 

A literal bounded by quotation marks. A nonnumeric literal can 
include any character in the computer character set. 

Null Suppression 

Alternate-key attribute indicating that records with null alternate-key 
values are not included in the alternate index. 

Revision G Glossary A-11 



Numeric Literal Padding 

Numeric Literal 

A literal composed of one or more numeric characters. A numeric 
literal can contain a decimal point, an algebraic sign, or both. A 
decimal point must not be the rightmost character; an algebraic sign 
must be the leftmost character. 

0 

Object Library 

A library of modules that the system can load and execute as needed. 

Operand 

An entity to which an operation is applied. 

Operator 

The symbol that represents the action to be performed in an 
operation. 

Overflow Block 

Unit of space in a direct-access file used to store records whose home 
blocks are full. See also Home Block. 

Owncode Procedure 

A load module that Sort/Merge calls at a given point in its processing. 
An owncode procedure is called only if specified by an owncode 
procedure parameter on the SORT or MERGE command. 

p 

Packed Decimal 

A numeric data format where each digit is represented by four bits, 
with two digits per standard 8-bit bytes. 

Padding 

Space deliberately left unused. Keyed-file blocks may be padded to 
allow easy insertion of records after creation of the file. 

A-12 SCL Advanced File Management Usage Revision G 



Parameter Primary Key 

Parameter 

A value list optionally preceded by and equivalenced to a parameter 
name. For example: 

parameter name = value list 

or 

value list 

Parameter List 

A series of parameters separated by spaces or commas. 

Parameter Name 

A name that uniquely identifies a parameter. 

Partition 

A unit of data on a sequential or byte-addressable file delimited by 
end-of-partition separators or the beginning-of-information or 
end-of-information. 

Path 

Identifies a file. It may include the family name, user name, 
subcatalog name or names, file name, and cycle number. 

Permanent File 

A file preserved by NOSNE across job executions and system 
deadstarts. A permanent file has an entry in a permanent catalog. See 
File. 

Piece 

One of the fields of a concatenated alternate key. 

Position-Dependent Parameter 

A parameter that must appear in a specified location, relative to other 
parameters. Contrast with Position-Independent Parameter. 

Position-Independent Parameter 

A parameter that consists of a parameter name followed by a value 
list. Contrast with Position-Dependent Parameter. 

Primary Key 

The required key in a keyed file. Primary-key values must be unique 
in the file. See also Alternate Key. 

Revision H Glossary A-13 



Procedure Record 

Procedure 

A subroutine that passes values through its parameters; invoked when 
the name of the procedure is referenced in a CALL, ENTER, or 
subroutine calling statement. 

Program Library List 

The list of object libraries searched for modules during program 
loading. A program library list search is required to load a collation 
table module or an owncode procedure module. 

R 

Radix 

Specifies the base of a number. NOSNE recognizes binary, octal, 
decimal, and hexadecimal number bases. A radix enclosed in 
parentheses must follow a nondecimal number. The following numbers 
can be used to represent the radix: 

2 Binary number base 

8 Octal number base 

10 Decimal number base 

16 Hexadecimal number base 

Random Access 

The process of reading or writing a record directly without reading or 
writing the preceding records. Only disk files can be read or written 
randomly. Contrast with Sequential Access. 

Real State 

The CYBER 180 state executing the NOS or NOS/BE operating 
system. Contrast with Virtual State. 

Record 

A set of related data processed as a unit when reading or writing a 
file. 

A-14 SCL Advanced File Management Usage Revision H 



Recovery Repeating Groups 

Recovery 

Actions. taken after damage occurs to alleviate the effects of the 
damage. Keyed-file recovery actions include reloading a backup copy 
and restoring the copy with an update recovery log. 

Repeating Groups 

An alternate-key attribute indicating that each data record can 
contain more than one value for the alternate key. 

Revision H Glossary A-14.1 

I 



This page intentionally left blank. 

A-14.2 SCL Advanced File Management Usage Revision H 



Result Array Sign 

Result Array e An array in which sort or merge statistics are returned. 

Rewind 

Operation that positions a file at its beginning-of-information. 

e Ring 

e 

The level of hardware protection given a file or segment. A file is 
protected from unauthorized access by tasks executing in higher rings. 

Ring Attribute 

A file attribute whose value consists of three ring numbers referenced 
as rl, r2, and r3. The ring numbers define four ring brackets for the 
file as follows: 

s 

Read bracket is 1 through r2. 

Write bracket is 1 through rl. 

Execute bracket is rl through r2. 

Call bracket is r2+1 through r3. 

Sequential Access 

The processing of records in order (physical or logical). Contrast with 
Random Access. 

Sequential File Organization 

A file organization in which records can only be processed in physical 
order. Records are always read in the order that they were written to 
the file. 

Sign 

Indicates whether a number is positive or negative. It can be denoted 
by the following characters: -+ Positive number 

Negative number 

space Positive number 

Revision G Glossary A-15 



Signed Numeric Data Structural Properties 

Signed Numeric Data 

Integer data stored internally in ASCII code; sorted according to 
numeric order and sign of the integer the ASCII code represents. 

Sort 

The process of arranging records in a specified order. 

Sort Key 

A field of information within each record in a sort or merge input file 
that is used to determine the order in which records are written to 
the output file. 

Sort Order 

Ordering of data according to key fields, either ascending or 
descending. 

Source Item 

The description of the input field referenced in an FMU CREATE_ 
OUTPUT_RECORD directive assignment statement or boolean 
relation. It can be a literal, field descriptor, or specific keyword. 

Source Library 

A collection of text units on a file generated and manipulated by the 
Source Code Utility (SCU). 

Sparse-Key Control 

An alternate-key attribute that allows only certain records to be 
included in the alternate index. Inclusion or exclusion of a record is 
determined by the character at the sparse-key control position of the 
record. 

Statistics 

Counts maintained for a keyed file. Each type of file access is counted 
as well as the number of records in the file. 

Status Variable 

An SCL variable of kind status that contains the completion status of 
a command. 

Structural Properties 

Characteristics of a keyed-file structure. The values of the 
characteristics change as the structure changes. 

A-16 SCL Advanced File Management Usage Revision G 



Sum Fields Update Recovery Log 

Sum Fields 

A record field containing a numeric value which is added to the 
numeric value from the corresponding field of another record when the 
records are summed. The sum of the two values is stored in the new 
record that is created by the summing. See also Summing. 

Summing 

The process of combining two records having identical key values. The 
result of the process is a new record containing the original values of 
the key fields, the summed values of the sum fields, and data from 
one of the original records in apy other record fields. See also Sum 
Fields. 

System Command Language (SCL) 

The block-structured interpretive language that provides the interface 
to the features and capabilities of NOSNE. All commands and 
statements are interpreted by SCL before being processed by the 
system. 

T 

e Task 

The instance of execution of a program. 

u 

U Record Type 

Records for which the record structure is undefined. 

Uncollated Key 

The key type that orders key values byte-by-byte according to the 
default ASCII collating sequence. Contrast with Collated Key. 

Update Recovery Log 

Log on which each backup or update operation to a keyed file is 
recorded so that, if the file is damaged, a backup file copy can be 
reloaded and updated using the information on the log. 

Revision H Glossary A-17 



V Record Type Virtual State 

v 

V Record Type 

Variable-sized records; system default record type. Each V-type record 
has a record header. The header contains the record length and the 
length of the preceding record. 

Variable 

Represents a data value. 

SCL defines the following kinds of variables: 

string boolean 

integer status 

Variable-Length Key 

An alternate key whose values can vary in length up to the maximum 
key length defined for the key. A variable-length key can be defined 
as a single value in a record or as a sequence of values separated by 
one or more delimiter characters. 

Virtual State 

The CYBER 180 state executing the NOSNE operating system. 
Contrast with Real State. 

A-18 SCL Advanced File Management Usage Revision H 



Related Manuals B 

This appendix lists other Control Data manuals containing information 
related to the information given in this manual. 

A complete list of NOSNE manuals is given in the NOSNE System 
Usage manual. If your site has installed the online manuals, you can 
find an abstract for each NOSNE manual in the online System 
Information manual. To access the manual, enter the following 
NOSNE command: 

explain 

Ordering Printed Manuals 

To order a printed Control Data manual, send a completed order form 
to: 

Control Data Corporation 
Literature and Distribution Services 
308 North Dale Street 
St. Paul, Minnesota 55103 

To get an order form or more information about ordering Control 
Data manuals, write to the above address or call (612) 292-2101. If 
you are a Control Data employee, call (612) 292-2100. 

Revision J Related Manuals B-1 

Ii· 



Accessing Online Manuals 

Accessing Online Manuals 

To access an online manual, log in to NOSNE and supply the online 
title (listed in the following table) on the MANUAL parameter of an 
EXPLAIN command. For example, to see the NOSNE Advanced File 
Management Usage manual, enter: explain, manual=afm 

Table B-1. Related Manuals 

Publication 
Manual Title Number Online Title 

Advanced File Management: 

SCL for NOSNE Advanced File 60486412 AFM_T 
Management Tutorial 

SCL for NOSNE Advanced File 60486419 
Management Summary 

NOS/VE Manuals: 

Introduction to NOSNE Tutorial 60464012 

N OSNE System Usage 60464014 

NOSNE Source Code 60464313 
Management Usage 

NOSNE Object Code Management 60464413 
Usage 

NOSNE Commands and 60464018 SCL 
Functions 

NOSNE Diagnostic Messages 60464613 MESSAGES 

NOSNE User Validation 60464513 

(Continued) 

B-2 SCL Advanced File Management Usage Revision J 

e 



Table B-1. Related Manuals (Continued) 

Manual Title 

Full Screen Editor for NOSNE e Tutorial/Usage 

CYBER Online Text for NOS/VE 
Usage 

Migration Manuals: 

Migration from NOS to NOS/VE 
Usage 

Migration from NOS to NOSNE 
Standalone Usage 

Migration from NOS/BE to 
NOS/VE Usage 

Migration from NOS/BE to 
NOS/VE Standalone Usage 

Migration from IBM to NOS/VE 
Usage 

Migration from VAXNMS to 
NOS/VE Usage 

Other Related Manuals: 

COBOL for NOS/VE Usage 

Publication 
Number 

60464015 

60488403 

60489503 

60489504 

60489505 

60489506 

60489507 

60489508 

60486013 

CYBIL for NOS/VE Keyed-File 60464117 
and Sort/Merge Interfaces Usage 

FORTRAN for NOS/VE Language 60485913 
Definition Usage 

FORTRAN for NOS/VE Quick 
Reference 

Revision J 

Accessing Online Manuals 

Online Title 

CONTEXT 

MIGRATE_NOS 

MIGRATE_ 
NOSBE 

MIGRATE_IBM 

MIGRATE_ VAX 

COBOL 

FORTRAN 

Related Manuals B-3 





e ASCII Character Set c 
Table C-1 lists the ASCII character set, the only character set used by 
NOSNE. 

e NOSNE supports the American National Standards Institute (ANSI) 
ASCII character set (ANSI X3.4-1977). Although the ASCII character 
set contains 256 character codes, only the first 128 codes are used; the 
second 128 codes are unassigned. NOSNE represents each 7-bit ASCII 
code in an 8-bit byte. The 7 bits are right-justified in each byte. For 
ASCII characters, the eighth or leftmost bit is always zero. 

Table C-1. ASCII Character Set 

ASCII 
ASCII Code ASCII 
Code Hexa- Code Graphic or 
Decimal decimal Octal Mnemonic Name or Meaning 

000 00 000 NUL Null 
001 01 001 SOH Start of heading 
002 02 002 STX Start of text 

e 003 03 003 ETX End of text 

004 04 004 EOT End of transmission 
005 05 005 ENQ Enquiry 
006 06 006 ACK Acknowledge 
007 07 007 BEL Bell 

008 08 010 BS Backspace 
009 09 011 HT Horizontal tabulation 
010 OA 012 LF Line feed 
011 OB 013 VT Vertical tabulation 

012 oc 014 FF Form feed 
013 OD 015 CR Carriage return 
014 OE 016 so Shift out 
015 OF 017 SI Shift in 

e 016 10 020 DLE Data link escape 
017 11 021 DCl Device control 1 
018 12 022 DC2 Device control 2 
019 13 023 DC3 Device control 3 

e (Continued) 

Revision J ASCII Character Set C-1 



ASCII Character Set 

Table C-1. ASCII Character Set (Continued) 

ASCII 
ASCII Code ASCII 
Code Hexa- Code Graphic or 
Decimal decimal Octal Mnemonic Name or Meaning 

020 14 024 DC4 Device control 4 
021 15 025 NAK Negative acknowledge 
022 16 026 SYN Synchronous idle 
023 17 027 ETB End of transmission 

block 

024 18 030 CAN Cancel 
025 19 031 EM End of medium 
026 lA 032 SUB Substitute 
027 lB 033 ESC Escape 

028 lC 034 FS File separator 
029 lD 035 GS Group separator 
030 lE 036 RS Record separator 
031 lF 037 us Unit separator 

032 20 040 SP Space 
033 21 041 Exclamation point 
034 22 042 II Quotation marks 
035 23 043 # Number sign 

036 24 044 $ Dollar sign 
037 25 045 % Percent sign 
038 26 046 & Ampersand 
039 27 047 Apostrophe 

040 28 050 ( Opening parenthesis 
041 29 051 ) Closing parenthesis 
042 2A 052 * Asterisk 
043 2B 053 + Plus 

044 2C 054 Comma 
045 2D 055 Hyphen 
046 2E 056 Period e 047 2F 057 I Slant 

(Continued) 

e 
C-2 SCL Advanced File Management Usage Revision J 



ASCII Character Set 

e Table C-1. ASCII Character Set (Continued) 

ASCII 
ASCII Code ASCII 
Code Hexa- Code Graphic or 

e Decimal decimal Octal Mnemonic Name or Meaning 

048 30 060 0 Zero 
049 31 061 1 One 
050 32 062 2 Two 
051 33 063 3 Three 

052 34 064 4 Four 
053 35 065 5 Five 
054 36 066 6 Six 
055 37 067 7 Seven 

056 38 070 8 Eight 
057 39 071 9 Nine 
058 3A 072 Colon 
059 3B 073 Semicolon 

060 3C 074 < Less than e 061 3D 075 Equals 
062 3E 076 > Greater than 
063 3F 077 ? Question mark 

064 40 100 @ Commercial at 
065 41 101 A Uppercase A 
066 42 102 B Uppercase B 
067 43 103 c Uppercase C 

068 44 104 D Uppercase D 
069 45 105 E Uppercase E 
070 46 106 F Uppercase F 
071 47 107 G Uppercase G 

072 48 110 H Uppercase H 
073 49 111 I Uppercase I 
074 4A 112 J Uppercase J e 075 4B 113 K Uppercase K 

(Continued) 

Revision J ASCII Character Set C-3 



ASCII Character Set 

Table C-1. ASCII Character Set (Continued) 

ASCII 
ASCII Code ASCII 
Code Hexa- Code Graphic or 
Decimal decimal Octal Mnemonic Name or Meaning 

076 4C 114 L Uppercase L 
077 4D 115 M Uppercase M 
078 4E 116 N Uppercase N 
079 4F 117 0 Uppercase 0 

080 50 120 p Uppercase P 
081 51 121 Q Uppercase Q 
082 52 122 R Uppercase R 
083 53 123 s Uppercase S 

084 54 124 T Uppercase T 
085 55 125 u Uppercase U 
086 56 126 v Uppercase V 
087 57 127 w Uppercase W 

088 58 130 x Uppercase X 
089 59 131 y Uppercase Y 
090 5A 132 z Uppercase Z 
091 5B 133 [ Opening bracket 

092 5C 134 \ Reverse slant 
093 5D 135 ] Closing bracket 
094 5E 136 Circumflex 
095 5F 137 Underline 

096 60 140 Grave accent 
097 61 141 a Lowercase a 
098 62 142 b Lowercase b 
099 63 143 c Lowercase c 

100 64 144 d Lowercase d 
101 65 145 e Lowercase e 
102 66 146 f Lowercase f 
103 67 147 g Lowercase g e (Continued) 

C-4 SCL Advanced File Management Usage Revision J 



ASCII Character Set 

e Table C-1. ASCII Character Set (Continued) 

ASCII 
ASCII Code ASCII 
Code Hexa- Code Graphic or 

e Decimal decimal Octal Mnemonic Name or Meaning 

68 h Lowercase h 104 150 
105 69 151 i Lowercase i 
106 6A 152 j Lowercase j 
107 6B 153 k Lowercase k 

108 6C 154 Lowercase l 
109 6D 155 m Lowercase m 
110 6E 156 n Lowercase n 
111 6F 157 0 Lowercase o 

112 70 160 p Lowercase p 
113 71 161 q Lowercase q 
114 72 162 r Lowercase r 
115 73 163 s Lowercase s 

116 74 164 t Lowercase t e 117 75 165 u Lowercase u 
118 76 166 v Lowercase v 
119 77 167 w Lowercase w 

120 78 170 x Lowercase x 
121 79 171 y Lowercase y 
122 7A 172 z Lowercase z 
123 7B 173 { Opening brace 

124 7C 174 I Vertical line 
125 7D 175 } Closing brace 
126 7E 176 Tilde 
127 7F 177 DEL Delete 

Revision J ASCII Character Set C-5 





Table C-1. ASCII Character Set (Continued) 

ASCII Code 

e Graphic 
Hexa- or Name or Meaning 

Decimal decimal Octal Mnemonic 

112 70 160 p Lowercase p 
113 71 161 q Lowercase q 
114 72 162 r Lowercase r 
115 73 163 s Lowercase s 

116 74 164 t Lowercase t 
117 75 165 u Lowercase u 
118 76 166 v Lowercase v 
119 77 167 w Lowercase w 

120 78 170 x Lowercase x 
121 79 171 y Lowercase y 

e 122 7A 172 z Lowercase z 
123 7B 173 { Opening brace 

124 7C 174 I Vertical line 
125 7D 175 } Closing brace 
126 7E 176 Tilde 
127 7F 177 DEL Delete 

Revision G ASCII Character Set C-7 





e Predecessor Product Comparison 

This appendix lists the major differences between the NOSNE file 
management tools described in this manual and the products that 
performed similar functions on the NOS and NOS/BE operating 
systems. 

NOSNE Sort/Merge and Sort/Merge 5 
Differences 

This section lists the major differences between NOSNE Sort/Merge 
and the Sort/Merge Version 5 that executes under NOS or NOS/BE. 

D 

NOSNE Sort/Merge is compatible only with Sort/Merge Version 5; it 
does not attempt compatibility with any other Sort/Merge version. 

NOSNE Sort/Merge can only access NOSNE disk files. 

The File Management Utility (FMU) can convert NOS files into 
equivalent NOSNE files. This utility converts the differences in byte 
size, collating sequence, record type, and block type. 

Table D-1 compares Sort/Merge 5 with NOSNE Sort/Merge. 

Revision J Predecessor Product Comparison D-1 



NOS/VE Sort/Merge and SorUMerge 5 Differences 

i Table D-1. Sort/Merge 5 to NOSNE Sort/Merge Conversion 

Subject NOS Sort/Merge 5 NOS/VE Sort/Merge 

Byte Size 

Character 
Codes 

Character 
Sets 

Collating 
Sequences 

!j! Direct 
Processing 

6-bit byte 

Character data is 
internally represented 
in 6-bit display codes. 
character codes. 

Supports both the 63-
and 64-character sets. 

Five predefined collating 
sequences: ASCil6, 
COBOL6, DISPLAY, 
EBCDIC6, and INTBCD. 
ASCII6 is assumed if a 
sequence is not 
specified. A user-defined 
collating sequence has 
64 positions. The 
collating sequences for 
Sort/Merge 5 and 
NOSNE can have the 
same names but may 
have different collating 
sequences. 

Sort/Merge reads and 
writes directly (instead 
of through CYBER 
Record Manager) if so 
specified by the FASTIO 
parameter or the 
SM5FAST procedure. 

D-2 SCL Advanced File ·Management Usage 

8-bit byte 

Character data is 
internally represented in 
8-bit ASCII 

Supports only the 
256-character ASCII set. 

Six predefined collating 
sequences: ASCII, ASCII6, 
COBOL6, DISPLAY, 
EBCDIC, and EBCDIC6. 
ASCII is assumed if a 
sequence is not specified. 
Under NOSNE a 
user-defined collating 
sequence has 256 positions. 
(NOSNE Sort/Merge can 
use the SEQR parameter 
to fill the rest). 

NOSNE Sort/Merge does 
not support this option (all 
records are read and 
written through the access 
method). 

(Continued) 

Revision J 



NOSNE Sort/Merge and Sort/Merge 5 Differences 

Table D-1. Sort/Merge 5 to NOS/VE Sort/Merge Conversion 
(Continued) 

Subject 

Error File 

Error 
Messages 

Estimated 
Number of 
Records 

Exception 
File 
Processing 

File 
Attributes 

Revision J 

NOS Sort/Merge 5 

The default error file is 
the listing file. 

Sort/lVlerge 5 error 
numbers and message 
text do not follow 
NOSNE error message 
conventions. 

The Sort/Merge 5 error 
messages are listed in 
the Sort/Merge 5 
Reference Manual. 

Value used as specified 
on the ENR parameter. 

Does not perform 
exception file 
processing. 

The NOS default file 
attributes are valid for 
a sort or merge. 

NOS/VE Sort/Merge 

The default error file is 
$ERRORS. 

NOSNE Sort/Merge error 
numbers and message text 
follow N OSNE error 
message conventions. 

The NOS/VE Sort/lVlerge 
error messages are listed 
in the NOSNE Diagnostic 
Messages manual. 

Value can be specified on 
the ENR parameter, but 
the value is not used. 

Performs exception file 
processing if an exception 
file is specified for the sort 
or merge. 

The NOS/VE default value 
for the minimum record 
length attribute could 
cause a fatal error if no 
key field was specified for 
the sort or merge. 

(Continued) 

Predecessor Product Comparison D-3 



NOS/VE Sort/Merge and Sort/Merge 5 Differences 

!!i Table D-1. Sort/Merge 5 to NOS/VE Sort/Merge Conversion 
i:: (Continued) 

1:: Subject I :1~purnnon 
I 
m Interactive 
!:! Prompting 

I Lis&g File 

II 
1:: 

j~~ 

::: Messages 

j:: Owncode 
i:: Procedures 

NOS Sort/Merge 5 

Files are rewound 
before and after use, 
depending on the type 
of file or unless a FILE 
control statement 
parameter specifies 
otherwise. 

Parameters can be 
entered in response to 
an interactive dialogue. 

Does not provide a 
parameter to specify the 
name of the listing file. 

The default listing file 
is file OUTPUT. 

Under SortlMerge 5, 
messages were written 
to the dayfile. 

The file containing the 
compiled owncode 
routines is specified by 
the OWNF parameter. 

D-4 SCL Advanced File Management Usage 

NOS/VE Sort/Merge 

Files are not rewound by 
Sort/ Merge. The open 
position of a NOSNE file 
is determined by the value 
of its open_position 
attribute. 

Interactive prompting is 
not currently implemented. 

Provides the LIST 
parameter to specify the 
listing file. 

The default listing file is 
file $LIST. 

Under NOSNE Sort/Merge, 
messages are written to 
the list and error files. 

Any owncode procedures 
specified for a sort or 
merge must be accessible 
from an object library in 
the current object library 
list. 

Owncode procedure names 
must be specified using 
uppercase letters only 
unless Cl 70_ 
COMPATIBLE= TRUE is 
specified. 

(Continued) 

Revision J 



NOSNE Sort/Merge and Sort/Merge 5 Differences 

e Table D-1. Sort/Merge 5 to NOS/VE Sort/Merge Conversion 
(Continued) 

Subject NOS Sort/Merge 5 NOS/VE Sort/Merge 

Parameter Parameter names do not The full form of the e Names follow the SCL NOSNE Sort/Merge 
parameter name parameter names follow 
convention. the SCL parameter name 

convention. An abbreviated 
form is also available that 
matches the NOS 
Sort/Merge 5 parameter 
names. 

Parameter The parameter positions The parameter positions 
Positional are as listed in the are as listed in chapter 3 
Order Sort/Merge 5 Reference of this manual; the 

Manual; the parameter parameter order differs 
order differs from from NOS. 
NOSNE. 

Parameters Not available for The parameters LIST_ e for NOS/VE Sort/Merge 5. OPTIONS, LOAD_ 
Only COLLATING_ TABLE, and 

RESULT_ARRAY. 
(NOSNE only) 

Retain The parameter values The parameter values YES 
Parameter YES and NO can be and NO cannot be 

abbreviated as Y and abbreviated. 
N, respectively. 

Signed Twenty overpunches are Thirty-four overpunches 
Overpunches defined. are defined. 

Sort The sort command The sort command begins 
Command begins with the word with the word SORT 
Format SORT5 followed by a followed by a space or a 

period. comma. e (Continued) 

Revision J Predecessor Product Comparison D-5 



NOSNE Sort/Merge and Sort/Merge 5 Differences 

Table D-1. Sort!Merge 5 to NOS/VE Sort!Merge Conversion 
(Continued) 

Subject 

Status 
Parameter 

Zero 
Comparison 

NOS Sort!Merge 5 

The STATUS parameter 
specifies a variable that 
is set to a value 
representing the highest 
level of error. 

Negative zero is ordered 
before positive zero. 

D-6 SCL Advanced File Management Usage 

NOS/VE Sort!Merge 

The NOSNE status 
parameter specifies a 
status variable in which 
the completion status of 
the command or procedure 
is returned. 

Positive and negative zero 
are ordered equally. 

Revision J 



• 

Keyed-File Utilities Comparison 

Keyed-File Utilities Comparison 

This section compares the utilities provided by the CYBER Record 
Manager Advanced Access Methods (CRM AAM) with the NOSNE 
keyed-file utilities . 

FLBLOK Utility 

The FLBLOK utility suggests an appropriate block size for a keyed 
file. Using the estimates provided by the FLBLOK control statement 
parameters, the utility can make a better block size selection than the 
CRM open routines that do not have that information. 

NOS/VE does not require a separate utility to suggest a block size 
because the estimates (such as the average record length) are specified 
as file attribute values and are therefore available to the open 
procedures. 

MIPGEN Utility 

The MIPGEN utility defines and deletes alternate keys. It uses a 
directive file as input. 

The CREATE_ALTERNATE_INDEXES command utility defines and 
deletes alternate keys for NOS/VE keyed files. It uses subcommands 
as input. 

MIPDIS Utility 

The MIPDIS utility disassociates index and data files. 

NOS/VE stores indexes and data in the same file so there is no need 
for a utility to disassociate associated files. 

Key Analysis Utility 

The key analysis is used to analyze a hashing routine for use with a 
direct-access file. 

NOS/VE does not currently support a key analysis utility for its 
direct-access file organization. 

Revision G Predecessor Product Comparison D-7 



FORM and FMU Comparison 

CREATE Utility 

The CREATE utility can be called from a program to create a direct 
access file. 

You can create a NOSNE direct-access file from within a program or 
by using the SCL commands SET_FILE_ATTRIBUTES and COPY_ 
KEYED_FILE. 

FORM and FMU Comparison 
This section shows similarities and differences between FMC on 
NOSNE and FORM on NOS. 

Table D-2 shows the directive counterparts between FMU and FORM. 

Table D-3 compares the syntax and capabilities of the directives 
CREATE_OUTPUT_RECORD (of FMU) and REF (of FORM). 

Table D-4 gives comparisons of other directive elements, primarily 
relating to the CREATE_OUTPUT_RECORD (CREOR) and REF 
directives. 

Table D-5 compares the handling of keys for keyed files. 

D-8 SCL Advanced File Management Usage ReYision G 



FORM and FMU Comparison 

Table D-2. Counterparts of the FMU and FORM Directives 

e Function FMU FORM 

Specifying the SET_INPUT_ATTRIBUTES INP 
input file (SETFA) 

e Specifying the SET_ OUTPUT_ATTRIBUTES OUT 
output file (SETO A) 

Converting an IBM See Migration from IBM to CON 
file NOSNE manual 

Selecting records Not supported in this release QAL 

Reformatting a file CREATE_OUTPUT_RECORD REF 
(CREOR) 

Sequence SET_ SEQUENCE_ SEQ 
numbering a file ATTRIBUTES (SETSA) 

Format printing SET_PRINT_ATTRIBUTES PAG 

Specifying Ability to use subroutines not XEQ 

e subroutines supported in this release 

Revision G Predecessor Product Comparison D-9 



FORM and FMU Comparison 

Table D-3. Comparison of CREOR and REF Directives 

Function 

Data 
reformatting 

Iterative 
capability 

Conditional 
processing 

Nested 
conditional 

Branching 

FMU CREOR FORM Comments 
REF 

Assignment Reformat Similar 
statement item 

FOR n(simple-re- Similar capability 
statement that format) 
allows n(reformat--
statements to string) 
be processed 
in a loop 

IF statement 
and relational 
expression 

Nested IFs 
are allowed 

Selector 
expression 

Seven 
nesting 
levels with 
selector 
expressions 

IF with Limited to 
ELSEIF allows two 
n + 2 branches 

Similar; FORM has 
advantage with 
expressions, including 
compound relational 
expressions. 

FMU has added 
strength with no upper 
limit on nesting. 

FMc can test on same 
data field for many 
cases and branch out. 

Stopping STOP Q Similar 
record statement specifica tio-
reformatting n 

D·lO SCL Advanced File Management Usage Revision G 



FORM and FMU Comparison 

Table D-4. Functional FMU and FORM Comparisons 

e Function FMU FORM Comments 

Data Field descriptors Item Similar; FMU 
descriptors descriptors descriptors allow 

e for field length 
in terms of 
trailing position. 

If byte index Pointer moves to Pointer 
is omitted in next field; applies to moves to 
the data source and next field; 
descriptors destination items applies to 
when source and 
reformatting destination 

items 

Search $INPUT_ STRING_ Search Similar; $ISP is 
features; can POS function descriptors in function 
be used to format. 
locate string 
when 

e reformatting 
data of 
variable 
length hand 
position 

Nested $ISP can be nested None FMU has added 
searching strength. 

Referencing $CISP function None 
pointer after 
search 

Pointer Intrinsic Functions; None FMU has added 
referencing See chapter 4 strength. 
functions 

e Reference Intrinsic Function + + n for FMU has added 
forward or n current strength. 
backward position 
from current 
position 

e 
Revision G Predecessor Product Comparison D·ll 



FORM and FMU Comparison 

Function FMU FORM Comments 

Data Field descriptors Item Similar; FMU e 
descriptors descriptors descriptors allow 

for field length 
in terms of 
trailing position. e 

Duplicating DUPLICATE_ Equating 
directive SPECIFICATION (or logical file 
specifications DS) parameter on names 

most directives 

Conditional Boolean functions 
testing: 

For existence $IN_RECORD None 
of field 

For validity $VALID_DATA None 
of field 
content 

Disposition RECORD_PRESET_ BGD Similar. 
of fields not VALUE parameter of parameter 
referenced the CREOR directive of the OUT 
during directive 
reformatting 

File No parameter; REW 
rewinding handled by other parameter 

means of the INP 
and OUT 
directives 

D-12 SCL Advanced File Management Usage Revision G 



FORM and FMU Comparison 

Table D-5. Handling Keys for Indexed Sequential Files 

Function 

Insert input 
key into 
output 
record 

Save actual 
key for 
different 
output file 

Designate 
key in output 
record 

Revision G 

FMU 

KEY used as source 
item in assignment 
statement 

Actual key files not 
supported in this 
release 

KEY used as 
destination item in 
assignment 
statement 

FORM 

KEY 
source 
item used 
in 
reformat 
item 

KEYA 
source 
item used 
with 
reformat 
item 

KEY 
parameter 
in OUT 
directive 

Comments 

Similar. 

KEY CFMU) 
receives the 
input key or 
field, whereas 
KEY (FORM) 
designates only 
the postion and 
type of field in 
the output 
record for 
nonembedded 
keys. 

Predecessor Product Comparison D-13 





• 
Collation Tables E 

This appendix describes how to use a collation table to specify how a 
key is ordered. 

The collation table can be one of the NOSNE predefined collation 
tables (listed at the end of this appendix) or a user-defined collation 
table. 

The key to be ordered can be one of the following: 

• A sort key. You can associate a key type name with the collation 
table using the Sort/Merge parameter LOAD_COLLATING_TABLE 
described in chapter 2. The key type can then be used in a key 
field definition. 

• The primary key of a keyed file. You specify the collation-table 
name as the value of the COLLATE_ TABLE_NAME file attribute 
when creating the file (as described in chapter 6). 

• An alternate key of a keyed file. You specify the collation-table 
name as the value of the COLLATE_ TABLE_NAME attribute of 
the alternate-key definition (as described in chapter 7). 

Revision G Collation Tables E-1 



Using NOSNE Predefined Collation Tables 

Using NOSNE Predefined Collation Tables 
To use one of the NOSNE predefined collation tables listed at the end 
of this appendix, you specify the name of the predefined collation 
table as the collation-table name. Unlike user-defined collation table 
modules, use of NOSNE predefined collation tables does not require 
the addition of an object library to the program-library list. 

Sort/Merge Example: 

To use the predefined collation table OSV$EBCDIC to define the 
key type MY_KEY_ TYPE, you would specify this Sort/Merge 
parameter: 

load_collating_table=(my_key_type,osv$ebcdic) 

Then, to define the first 10 bytes of the record as a key field to be 
. sorted in ascending order using the key type, you would specify 

this Sort/Merge parameter: 

key=((1,10,,my_key_type,a)) 

Keyed-File Example: 

To use the predefined collation table OSV$EBCDIC to order the 
primary key of a new keyed file, you specify the key type as 
collated and the collate-table name as OSV$EBCDIC as follows: 

/set_fi le_attribute file=new_keyed_file 
.. /file_organization=indexed_seouential 
.. /maximum_record_length=100 .. 
.. /key_length=10 minimum_record 1ength=10 .. 
.. /key_type=collated collate_table_name=osv$ebcdic 

FMU Example: 

To use the predefined collation table OSV$EBCDIC to evaluate 
relational expressions when FM"C formats records for an output 
file, specify the CONDITION_COLLATING_SEQUENCE 
parameter on the SET_OUTPUT_ATTRIBUTES directive for the 
output file. 

For example: 

set_output_attributes file=output_file_1 
condition_collating_seouence=ebcdic 

E-2 SCL Advanced File Management Usage Revision G 



Using User-Defined Collation Tables 

Notice that the directive specifies EBCDIC, instead of 
OSV$EBCDIC. The FMU keywords for the predefined NOSNE 
collation tables do not use the OSV$ prefix. 

Using User-Defined Collation Tables 

e YOU can use any Collation table stored in an object-library file if you 
have permission to read the file. To use the collation table, you 
perform these steps: 

1. Add the object library to your program-library list using a SET_ 
PROGRAM_ATTRIBUTES command, such as: 

set_program_attribute add_library=$user.object_library 

2. Specify the collation-table name. (The name must be in the 
entry-point list of the object library as displayed by a DISPLAY_ 
OBJECT_LIBRARY command.) 

The process of storing a collation table in an object library is 
described in the Creating a Collation Table section. 

For the purposes of these examples, assume another user has given 
you permission to read an object library file named 
.WIZARD.OBJECT_LIBRARY containing a collation table. The entry 
point for the collation table is named CASE_INSENSITIVE. 

Sort/Merge Example: 

To use the CASE_INSENSITIVE collation table: 

1. Add the object library to your program-library list before 
entering the SORT or MERGE command: 

/set_program_attribute add_library=.wizard.object_library 

On the SORT or MERGE command, specify the collation table 
as a key type and use the key type in a key-field definition: 

Revision G 

/sort from=unsorted_file to=sorted_file .. 
. . /load_collating_table=(my_key_type,case_insensitive) 
.. /key=((1 .. 24,my_key_type,d)) 

Collation Tables E-3 



Creating a Collation Table 

2. Keyed-File Example: 

To use the CASE_INSENSITIVE collation table to order a new e 
alternate key of a keyed file: 

a. Add the object library to your program-library list before 
entering the CREATE_ALTERNATE_t.NDEXES command: 

;set_program_attrioute aOd_liOrary=.w1zarO.DbJect_liOrary 

b. Begin a CREATE_ALTERNATE_INDEXES utility session. 
On the CREATE_KEY_DEFINITION subcommand, specify 
the collated key type and the collation-table name: 

creai/Create_key_aef1n1t1on key_name=alternate_key_l 
creai. ./key_posit1on=O 1<ey_length=2~ key_type=collated. 
crea1 .. ;co11ate_taole_name=case_insens1t1ve 

Creating a Collation Table 

Besides using collation tables created by others, you can also create 
your own collation tables. The process of using your collation tables 
was described previously under Using User-Defined Collation Tables. 

Creating your own collation table involves these steps: 

1. Writing a source code module to initialize the collation table. 
2. Compiling the source code module to create the object module. 
3. Storing the object module in an object library. 

Writing a Module to Initialize a Collation Table 

A module to initialize a collation table must perform these steps: 

1. Declare a 256-integer array. 
2. Store an integer (0 through 255) in each element of the array. 

The values stored in the array are the collating weights. The collating 
weight in an array element is the collating weight assigned to the 
ASCII character corresponding to that element. 

E-4 SCL Advanced File Management Usage ReYision G 



Creating a Collation Table 

How a Collation Table Works 

To determine the correct values with which to initialize the collation 
table, you must understand how a collation table works. 

As shown in figure E-1, each element in the collation table 
corresponds to an 8-bit character code. The first 128 elements 
correspond to the 128 characters in the ASCII character set (as listed 
in appendix B). For example, the element 0 in the table corresponds 
to the NUL character (character code 00 decimal). Element 65 
corresponds to the A character (character code 65 decimal). 

Figure E-2 shows how a collation table is initialized for the default 
ASCII collating sequence. As you can see, the element rank matches 
the element contents. For example, the element for character NUL 
(character code 00) contains 0. The element for character A (character 
code 65) contains 65. 

Now, suppose we change two values in the initialized collation table 
in figure E-2. We change the A element to contain 66 (B) and the B 
element to contain 65 (A). This collating sequence would order all B 
characters as A characters and all A characters as B characters. A 
sort using the collating sequence would sort all B characters before all 
A characters. 

Revision G Collation Tables E-5 



Creating a Collation Table 

ASCll ASCll 
Graphic or Character 
Mnemonic Code 

NUL R 00 
SOH 01 

• 
• 
• 

A 

~ 
65 

B 66 
c 67 
D 68 

• 
• 
• 

Unassigned tj 254 
Unassigned 255 

Figure E-1. Uninitialized Collation Table 

Or, suppose we change the initialized collation table so that the A 
element contains 65 (A) and the B element also contains 65 (A). This 
collating sequence would order all A characters as A characters and 
all B characters as A characters. A sort using the collating sequence 
would intermix A and B characters. 

NOTE 

Be careful when choosing the collating sequence to order the primary 
key of a keyed file. A collating sequence that assigns equal values to 
different characters reduces the possible unique key values. 

If the key values are collated equally, the values are no longer unique 
in the file. For example, if B is collated as A, the key value B is a e 
duplicate of key value A. 

E-6 SCL Advanced File Management Usage Revision G 



Default 
Collating Sequence 

ASCII 
Graphic or 
Mnemonic 

NUL 
SOH 

ASCII 
Character 

Code 

fOol 00 
[Oil OJ 

• 
• 
• 

A~ 65 __..A 

~ ~ :; . 
Unassigned 

Unassigned 

• 
• 
• 

254 

255 

Collated 
A as B 
Bas A 

Creating a Collation Table 

65 ___..... A 
66 B 

Collated 
A as A 
Bas A 

µ.w 65 

~66 

Figure E-2. Collation Table Initialized to the Default ASCII 
Collating Sequence 

CYBIL Collation Table Initialization Examples 

A CYBIL module to initialize a collation table declares a 256-element 
array variable and assigns a value to each element. 

NOTE 

The array variable must be assigned the XDCL attribute so that the 
name is an entry point to the module. A module can define more than 
one collation table by declaring and initializing more than one XDCL 
array variable. 

Revision G Collation Tables E-? 



Creating a Collation Table 

Figure E-3 shows a CYBIL module named MV_MODULE that 
initializes an XDCL variable named CASE_INSENSITIVE. It assigns 
the collating weight for the space character (32) to all elements except 
the elements corresponding to letters. Each lowercase letter is to be 
ordered the same as the corresponding uppercase letter (a the same as 
A, b the same as B, and so forth). 

MODULE my_module; 

VAR 
case_1nsens1t1ve: [STATIC,READ,XDCL) ARRAY [CHAR) OF 0 .. 255 := 

[ {Collating weights for the f1rst 65 non-letter characters } 
REP 65 OF 32, 

Collating weights for the uppercase letters} 
{A} 65, {B} 66, {C} 67, {D} 68, {E} 69, {F} 70, {G} 71, 
{H} 72, {I} 73, {J} 74, {K} 75, {L} 76, {M} 77, {N} 78, 
{0} 79, {P} 80, {Q} 81, {R} 82, {S} 83, {T} 84, {U} 85, 
{V} 86, {W} 87, {X} 88, {Y} 89, {Z} 90, 

Collating weights for the next 6 non-letter characters } 
REP 6 OF 32, 

{ Collating weights for the lowercase letters } 

{a} 65, {b} 66, {c} 67, {d} 68, {e} 69, {f} 70, {g} 71. 
{h} 72, { 1} 73, {j} 74, {k} 75, {I} 76, {m} 77, {n} 78, 
{o} 79, {p} 80, {Q} 81, {r} 82, {s} 83, {t} 84, {u} 85, 
{v} 86, {w} 87, {x} 88, {y} 89, {Z} 90, 

{Collating weights for the last 133 non-letter characters} 
REP 133 OF 32 ); 

MODEND; 

Figure E-3. CASE_INSENSITIVE Collating Sequence 
Initialization Module 

E-8 SCL Advanced File Management Usage Revision G 



Creating a Collation Table 

Sort/Merge Example: 

If Sort/Merge used the collation table from figure E-3, it would 
sort characters as follows: 

Unordered: 10] garbageGARBAGEgarbage9815] J 

Ordered: 10]9815]JaaAAaabBbeEeggGGggrRr 

Keyed-File Example: 

If a keyed file used the collation table from figure E-3, all 
nonalphabetic key values would be duplicates. Uppercase and 
lowercase letters would be collated the same, so the key value 
ABCD would be a duplicate of the key value abed. 

Storing a Module in an Object Library 

Source module compilation writes an object module on an object file. ;~ 
You then use the NOSNE command utility CREATE_OBJECT_ !ii 

~~E~~~ ~B~~~~-~~B~~~~ li~;i~;[y ~~n:~~;~:e!h~n ~~~~iei~~~: ,:i_l,1_, 

NOSNE Object Code Management Usage manual.) 

e For this example, assume that you have written a CYBIL module 
(such as the one in figure E-3) to initialize a collation table and that 
your source text is on file $USER.SOURCE. The following commands 
compile the program and then store the module on file 
$USER.COLLATION _LIBRARY. 

• 

/cybil input=$user.source binary_object=object_file 
.. /list=list_file 
/create_object_library 
COL/add_module library=object_file 
COL/generate_library library=$user.collation_library 
COL/Quit 

Revision J Collation Tables E-9 



NOSNE Predefined Collation Table Listings 

NOSNE Predefined Collation Table Listings 

The collating sequences of the predefined collation tables are listed in 
tables E-1 through E-11. 

Several of the predefined collation tables have two variants, FOLDED 
and STRICT. The variants FOLDED and STRICT indicate two 
different mappings of the characters not in the 63 or 64 characters of 
the original CYBER 170 collating sequence. 

• A strict mapping maps all characters not in the original 64- or 
63-character set to the space character. 

• A folded mapping maps some of these characters to the space 
character, but not others. (For the exact mapping, see the collating 
sequence in the table.) 

The predefined collation tables are for these collating sequences: 

Collating Sequence 

CYBER 170 FTN5 default 

CYBER 170 COBOL5 default 

CYBER 170 63-character 
display code 

CYBER 170 64-character 
display code 

Full EBCDIC 

Predefined Collation Table 

OSV$ASCil6_FOLDED and 
OSV$ASCil6_STRICT 

OSV$COBOL6_FOLDED and 
OSV$COBOL6_STRICT 

OSV$DISPLAY63_FOLDED and 
OSV$DISPLAY63_ STRICT 

OSV$DISPLAY64_FOLDED and 
OSV$DISPLAY64_ STRICT 

OSV$EBCDIC 

EBCDIC 6-bit subset supported by 
CYBER 170 COBOL5 and SORT5 
OSV$EBCDIC_FOLDED and 
OSV$EBCDIC_STRICT 

E-10 SCL Advanced File Management Usage Revision J 

• 



e 

NOSNE Predefined Collation Table Listings 

Sort/Merge uses predefined collation tables for its predefined collating 
sequences as follows: 

Key Type Predefined Collation Table 

ASCII6 OSV$ASCII6_FOLDED 

COBOL6 OSV$COBOL6_FOLDED 

DISPLAY OSV$DISPLAY64_FOLDED 

EBCDIC OSV$EBCDIC 

EBCDIC6 OSV$EBCDIC6_FOLDED 

The Sort/Merge key type ASCII uses the default ASCII collating 
sequence; that is, it orders the ASCII character set as it is listed in 
appendix C. 

Revision G Collation Tables E-11 



NOSNE Predefined Collation Table Listings 

Table E-1. OSV$ASCII6_FOLDED Collating Sequence 

The ASCII codes not listed in this table (ASCII codes 0 through IF 
and 7F through FF hexadecimal) are ordered as equal to the space 
(ASCII code 20 hexadecimal). 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 21 Exclamation point 
02 22 " Quotation marks 
03 23 # Number sign 

04 24 $ Dollar sign 
05 25 % Percent sign 
06 26 & Ampersand 
07 27 Apostrophe 

08 28 Opening parenthesis 
09 29 Closing parenthesis 
10 2A * Asterisk 
11 2B + Plus 

12 2C Comma 
13 2D Hyphen 
14 2E Period 
15 2F I Slant 

16 30 0 Zero 
17 31 1 One 
18 32 2 Two 
19 33 3 Three 

20 34 4 Four 
21 35 5 Five 
22 36 6 Six 
23 37 7 Seven 

(Continued! 

E-12 SCL Advanced File Management Usage ReYision G 

e 



NOSNE Predefined Collation Table Listings 

Table E-1. OSV$ASCII6_FOLDED Collating Sequence 

e (Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 

e Position decimal) Mnemonic Name or Meaning 

24 38 8 Eight 
25 39 9 Nine 
26 3A Colon 
27 3B Semicolon 

28 3C < Less than 
29 3D = Equals 
30 3E > Greater than 
31 3F ? Question mark 

32 40,60 @: Commercial at, grave accent 
33 41,61 A,a Uppercase A, lowercase a 
34 42,62 B,b Uppercase B, lowercase b 
35 43,63 C,c Uppercase C, lowercase c 

e 36 44,64 D,d Uppercase D, lowercase d 
37 45,65 E,e Uppercase E, lowercase e 
38 46,66 F,f Uppercase F, lowercase f 
39 47,67 G,g Uppercase G, lowercase g 

40 48,68 H,h Uppercase H, lowercase h 
41 49,69 l,i Uppercase I, lowercase i 
42 4A,6A J,j Uppercase J, lowercase j 
43 4B,6B K,k Uppercase K, lowercase k 

44 4C,6C L,l Uppercase L, lowercase l 
45 4D,6D M,m Uppercase M, lowercase m 
46 4E,6E N,n Uppercase N, lowercase n 
47 4F,6F O,o Uppercase 0, lowercase o 

48 50,70 P,p Uppercase P, lowercase p 
49 51,71 Q,q Uppercase Q, lowercase q 

e 50 52,72 R,r Uppercase R, lowercase r 
51 53,73 S,s Uppercase S, lowercase s 

(Continued) 

Revision G Collation Tables E-13 



NOSNE Predefined Collation Table Listings 

Table E-1. OSV$ASCII6_FOLDED Collating Sequence 
(Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

52 54,74 T,t Uppercase T, lowercase t 
53 55,75 U,u Uppercase U, lowercase u 
54 56,76 V,v Uppercase V, lowercase v 
55 57,77 W,w Uppercase W, lowercase w 

56 58,78 X,x Uppercase X, lowercase x 
57 59,79 Y,y Uppercase Y, lowercase y 
58 5A,7A Z,z Uppercase Z, lowercase z 
59 5B,7B [, { Opening bracket, opening brace 

60 5C,7C \,I Reverse slant, vertical line 
61 5D,7D ],} Closing bracket, closing brace 
62 5E,7E Circumflex, tilde 
63 5F Underline 

E-14 SCL Advanced File Management Usage Revision G 



NOSNE Predefined Collation Table Listings 

Table E-2. OSV$ASCII6_STRICT Collating Sequence 

e The ASCII codes not listed in this table (ASCII codes 0 through lF 
and 60 through FF hexadecimal) are ordered as equal to the space 
(ASCII code 20 hexadecimal). 

e ASCII 
Collating Code Graphic 
Sequence (Hexa· or 
Position decimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 21 Exclamation point 
02 22 " Quotation marks 
03 23 # Number sign 

04 24 $ Dollar sign 
05 25 % Percent sign 
06 26 & Ampersand 
07 27 Apostrophe 

08 28 Opening parenthesis 
09 29 Closing parenthesis e 10 2A * Asterisk 
11 2B + Plus 

12 2C Comma 
13 2D Hyphen 
14 2E Period 
15 2F Slant 

16 30 0 Zero 
17 31 1 One 
18 32 2 Two 
19 33 3 Three 

20 34 4 Four 
21 35 5 Five 
22 36 6 Six 

e 23 37 7 Seven 

(Continued) 

Revision G Collation Tables E-15 



NOSNE Predefined Collation Table Listings 

Table E-2. OSV$ASCII6_STRICT Collating Sequence (Continued) 

ASCII e 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

24 38 8 Eight 
25 39 9 Nine 
26 3A Colon 
27 3B Semicolon 

28 3C < Less than 
29 3D Equals 
30 3E > Greater than 
31 3F ? Question mark 

32 40 @ Commercial at 
33 41 A Uppercase A 
34 42 B Uppercase B 
35 43 c Uppercase C 

36 44 D Uppercase D 
37 45 E Uppercase E 
38 46 F Uppercase F 
39 47 G Uppercase G 

40 48 H Uppercase H 
41 49 I Uppercase I 
42 4A J Uppercase J 
43 4B K Uppercase K 

44 4C L Uppercase L 
45 4D M Uppercase M 
46 4E N Uppercase K 
47 4F 0 Uppercase 0 

48 50 p Uppercase P 
49 51 Q Uppercase Q 
50 52 R Uppercase R 
51 53 s Uppercase S e (Continued) 

E-16 SCL Advanced File Management Usage ReYision G 



NOSNE Predefined Collation Table Listings 

Table E-2. OSV$ASCII6_STRICT Collating Sequence (Continued) 

e ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

-- 52 54 T Uppercase T 
53 55 u Uppercase U 
54 56 v Uppercase V 
55 57 w Uppercase W 

56 58 x Uppercase X 
57 59 y Uppercase Y 
58 5A z Uppercase Z 
59 5B [ Opening bracket 

60 5C \ Reverse slant 
61 5D ] Closing bracket 
62 5E Circumflex 
63 5F Underline 

Revision G Collation Tables E-17 



NOS/VE Predefined Collation Table Listings 

Table E-3. OSV$COBOL6_FOLDED Collating Sequence 

Any ASCII codes not listed in this table (ASCII codes 0 through lF 
and 7F through FF hexadecimal) are ordered as equal to the space 
(ASCII code 20 hexadecimal). 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 40,60 @: Commercial at, grave accent 
02 25 % Percent sign 
03 5B,7B [,{ Opening bracket, opening brace 

04 SF Underline 
05 23 # Number sign 
06 26 & Ampersand 
07 27 Apostrophe 

08 3F ? Question mark 
09 3E > Greater than 
10 5C,7C \,I Reverse slant, vertical line 
11 5E,7E Circumflex, tilde 

12 ZE Period 
13 29 Closing parenthesis 
14 3B Semicolon 
15 2B + Plus 

16 24 $ Dollar sign 
17 2A * Asterisk 
18 2D Hyphen 
19 2F I Slant 

20 2C Comma 
21 28 Opening parenthesis 
22 3D Equals 
23 22 " Quotation marks e (Continuedi 

E-18 SCL Adva_nced File Management Usage Revision G 



NOSNE Predefined Collation Table Listings 

Table E-3. OSV$COBOL6_FOLDED Collating Sequence 

e (Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 

e Position decimal) Mnemonic Name or Meaning 

3C Less than 24 < 
25 41,61 A,a Uppercase A, lowercase a 
26 42,62 B,b Uppercase B, lowercase b 
27 43,63 C,c Uppercase C, lowercase c 

28 44,64 D,d Uppercase D, lowercase d 
29 45,65 E,e Uppercase E, lowercase e 
30 46,66 F,f Uppercase F, lowercase f 
31 47,67 G,g Uppercase G, lowercase g 

32 48,68 H,h Uppercase H, lowercase h 
33 49,69 I,i Uppercase I, lowercase i 
34 21 ! Exclamation point 
35 4A,6A J,j Uppercase J, lowercase j 

e 36 4B,6B K,k Uppercase K, lowercase k 
37 4C,6C L,l Uppercase L, lowercase 1 
38 4D,6D M,m Uppercase M, lowercase m 
39 4E,6E N,n Uppercase N, lowercase n 

40 4F,6F O,o Uppercase 0, lowercase o 
41 50,70 P,p Uppercase P, lowercase p 
42 51,71 Q,q Uppercase Q, lowercase q 
43 52,72 R,r Uppercase R, lowercase r 

44 5D,7D ],} Closing bracket, closing brace 
45 53,73 S,s Uppercase S, lowercase s 
46 54,74 T,t Uppercase T, lowercase t 
47 55,75 U,u Uppercase U, lowercase u 

48 56,76 V,v Uppercase V, lowercase v 
49 57,77 W,w Uppercase W, lowercase w 

e 50 58,78 X,x Uppercase X, lowercase x 
51 59,79 Y,y Uppercase Y, lowercase y 

(Continued) 

Revision G Collation Tables E-19 



NOS/VE Predefined Collation Table Listings 

Table E-3. OSV$COBOL6_FOLDED Collating Sequence 
(Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

52 5A,7A Z,z Uppercase Z, lowercase z 
53 3A Colon 
54 30 0 Zero 
55 31 1 One 

56 32 2 Two 
57 33 3 Three 
58 34 4 Four 
59 35 5 Five 

60 36 6 Six 
61 37 7 Seven 
62 38 8 Eight 
63 39 9 Nine 

E-20 SCL Advanced File Management Usage Revision G 



NOSNE Predefined Collation Table Listings 

Table E-4. OSV$COBOL6_STRICT Collating Sequence 

e 
The ASCII codes not listed in this table (ASCII codes 0 through lF 
and 60 through FF hexadecimal) are ordered as equal to the space 
(ASCII code 20 hexadecimal). 

e ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 40 @ Commercial at 
02 25 % Percent sign 
03 5B [ Opening bracket 

04 5F Underline 
05 23 # Kumber sign 
06 26 & Ampersand 
07 27 Apostrophe 

08 3F ? Question mark 

e 09 3E > Greater than 
10 5C \ Reverse slant 
11 5E Circumflex 

12 2E Period 
13 29 Closing parenthesis 
14 3B Semicolon 
15 2B + Plus 

16 24 $ Dollar sign 
17 2A '* Asterisk 
18 2D Hyphen 
19 2F I Slant 

20 2C Comma 
21 28 Opening parenthesis 
22 3D Equals 

e 23 22 " Quotation marks 

(Continued) 

Revision G Collation Tables E-21 



NOSNE Predefined Collation Table Listings 

Table E-4. OSV$COBOL6_STRICT Collating Sequence 
(Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

24 3C < Less than 
25 41 A Uppercase A 
26 42 B Uppercase B 
27 43 c Uppercase C 

28 44 D Uppercase D 
29 45 E Uppercase E 
30 46 F Uppercase F 
31 47 G Uppercase G 

32 48 H Uppercase H 
33 49 I Uppercase I 
34 21 Exclamation point 
35 4A J Uppercase J 

36 4B K Uppercase K 
37 4C L Uppercase L 
38 4D M Uppercase M 
39 4E N Uppercase N 

40 4F 0 Uppercase 0 
41 50 p Uppercase P 
42 51 Q Uppercase Q 
43 52 R Uppercase R 

44 5D ] Closing bracket 
45 53 s Uppercase S 
46 54 T Uppercase T 
47 55 u Uppercase U 

48 56 v Uppercase V 
49 57 w Uppercase W 
50 58 x Uppercase X e 51 59 y Uppercase Y 

(Continued) 

E-22 SCL Advanced File Management Usage Revision G 



NOS/VE Predefined Collation Table Listings 

Table E-4. OSV$COBOL6_STRICT Collating Sequence 

e (Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 

e Position decimal) Mnemonic Name or Meaning 

52 5A z Uppercase Z 
53 3A Colon 
54 30 0 Zero 
55 31 1 One 

56 32 2 Two 
57 33 3 Three 
58 34 4 Four 
59 35 5 Five 

60 36 6 Six 
61 37 7 Seven 
62 38 8 Eight 
63 39 9 Nine 

e 

Revision G Collation Tables E-23 



NOSNE Predefined Collation Table Listings 

Table E-5. OSV$DISPLAY63_FOLDED Collating Sequence 

e 
The ASCII codes not listed in this table (ASCII codes 0 through IF, 
25, and 7F through FF hexadecimal) are ordered as equal to the space 
(ASCII code 20 hexadecimal). 

ASCII e 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

00 41,61 A,a Uppercase A, lowercase a 
01 42,62 B,b Uppercase B, lowercase b 
02 43,63 C,c Uppercase C, lowercase c 
03 44,64 D,d Uppercase D, lowercase d 

04 45,65 E,e Uppercase E, lowercase e 
05 46,66 F,f Uppercase F, lowercase f 
06 47,67 G,g Uppercase G, lowercase g 
07 48,68 H,h Uppercase H, lowercase h 

08 49,69 I,i Uppercase I, lowercase i 
09 4A,6A J,j Uppercase J, lowercase j 
10 4B,6B K,k Uppercase K, lowercase k 
11 4C,6C L,l Uppercase L, lowercase I 

12 4D,6D M,m Uppercase M, lowercase m 
13 4E,6E N,n Uppercase I\, lowercase n 
14 4F,6F O,o Uppercase 0, lowercase o 
15 50,70 P,p Uppercase P, lowercase p 

16 51,71 Q,q Uppercase Q, lowercase q 
17 52,72 R,r Uppercase R, lowercase r 
18 53,73 S,s Uppercase S, lowercase s 
19 54,74 T,t Uppercase T, lowercase t 

20 55,75 U,u Uppercase U, lowercase u 
21 56,76 V,v Uppercase V, lowercase v 
22 57,77 W,w Uppercase W, lowercase w 
23 58,78 X,x UEpercase X, lowercase x e 

(Continued> 

E-24 SCL Advanced File Management Usage Revision G 



NOSNE Predefined Collation Table Listings 

Table E-5. OSV$DISPLAY63_FOLDED Collating Sequence e (Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 

e Position decimal) Mnemonic Name or Meaning 

24 59,79 Y,y Uppercase Y, lowercase y 
25 5A,7A Z,z Uppercase Z, lowercase z 
26 30 0 Zero 
27 31 1 One 

28 32 2 Two 
29 33 3 Three 
30 34 4 Four 
31 35 5 Five 

32 36 6 Six 
33 37 7 Seven 
34 38 8 Eight 
35 39 9 Nine 

e 36 2B + Plus 
37 2D Hyphen 
38 2A * Asterisk 
39 2F I Slant 

40 28 ( Opening parenthesis 
41 29 ) Closing parenthesis 
42 24 $ Dollar sign 
43 3D = Equals 

44 20 SP Space 
45 2C Comma 
46 2E Period 
47 23 # Number sign 

48 5B,7B [,{ Opening bracket, opening brace 
49 5D,7D ],} Closing bracket, closing brace e 50 3A Colon 
51 22 II Quotation marks 

(Continued) 

Revision G Collation Tables E-25 



NOSNE Predefined Collation Table Listings 

Table E-5. OSV$DISPLAY63_FOLDED Collating Sequence 
(Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

52 5F Underline 
53 21 Exclamation point 
54 26 & Ampersand 
55 27 Apostrophe 

56 3F ? Question mark 
57 3C < Less than 
58 3E > Greater than 
59 40,60 @,' Commercial at, grave accent 

60 5C,7C \,I Reverse slant, vertical line 
61 5E,7E Circumflex, tilde 
62 3B Semicolon 

E-26 SCL Advanced File Management Usage Revision G 



NOS/VE Predefined Collation Table Listings 

Table E-6. OSV$DISPLAY63 _STRICT Collating Sequence 

e The ASCII codes not listed in this table (ASCII codes 0 through lF, 
25, and 60 through FF hexadecimal) are ordered as equal to the space 
(ASCII code 20 hexadecimal). 

e ASCII 
Collating Code Graphic 
Sequence (Hexa· or 
Position decimal) Mnemonic Name or Meaning 

00 41 A Uppercase A 
01 42 B Uppercase B 
02 43 c Uppercase C 
03 44 D Uppercase D 

04 45 E Uppercase E 
05 46 F Uppercase F 
06 47 G Uppercase G 
07 48 H Uppercase H 

08 49 I Uppercase I 

e 09 4A J Uppercase J 
10 4B K Uppercase K 
11 4C L Uppercase L 

12 4D M Uppercase M 
13 4E N Uppercase N 
14 4F 0 Uppercase 0 
15 50 p Uppercase P 

16 51 Q Uppercase Q 
17 52 R Uppercase R 
18 53 s Uppercase S 
19 54 T Uppercase T 

20 55 u Uppercase U 
21 56 v Uppercase V 
22 57 w Uppercase W 

e 23 58 x Uppercase X 

(Continued) 

Revision G Collation Tables E-27 



NOSNE Predefined Collation Table Listings 

Table E-6. OSV$DISPLAY63_STRICT Collating Sequence 
(Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

24 59 y Uppercase Y 
25 5A z Uppercase Z 
26 30 0 Zero 
27 31 1 One 

28 32 2 Two 
29 33 3 Three 
30 34 4 Four 
31 35 5 Five 

32 36 6 Six 
33 37 7 Seven 
34 38 8 Eight 
35 39 9 Nine 

36 2B + Plus 
37 2D Hyphen 
38 2A * Asterisk 
39 2F I Slant 

40 28 ( Opening parenthesis 
41 29 ) Closing parenthesis 
42 24 $ Dollar sign 
43 3D = Equals 

44 20 SP Space 
45 2C Comma 
46 2E Period 
47 23 # Number sign 

48 5B [ Opening bracket 
49 5D ] Closing bracket 
50 3A Colon e 51 22 " Quotation marks 

(Continued) 

E-28 SCL Advanced File Management Usage Revision G 



NOSNE Predefined Collation Table Listings 

Table E-6. OSV$DISPLAY63 _STRICT Collating Sequence 

e (Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 

e Position decimal) Mnemonic Name or Meaning 

52 5F Underline 
53 21 Exclamation point 
54 26 & Ampersand 
55 27 Apostrophe 

56 3F ? Question mark 
57 3C < Less than 
58 3E > Greater than 
59 40 @ Commercial at 

60 5C \ Reverse slant 
61 5E Circumflex 
62 3B Semicolon 

Revision G Collation Tables E-29 



NOS/VE Predefined Collation Table Listings 

Table E-7. OSV$DISPLAY64 _FOLDED Collating Sequence 

The ASCII codes not listed in this table (ASCII codes 0 through lF 
and 60 through FF hexadecimal) are ordered as equal to the space 
(ASCII code 20 hexadecimal). 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

00 3A Colon 
01 41,61 A,a Uppercase A, lowercase a 
02 42,62 B,b Uppercase B, lowercase b 
03 43,63 C,c Uppercase C, lowercase c 

04 44,64 D,d Uppercase D, lowercase d 
05 45,65 E,e Uppercase E, lowercase e 
06 46,66 F,f Uppercase F, lowercase f 
07 47,67 G,g Uppercase G, lowercase g 

08 48,68 H,h Uppercase H, lowercase h 
09 49,69 I,i Uppercase I, lowercase i 
10 4A,6A J,j Uppercase J, lowercase j 
11 4B,6B K,k Uppercase K, lowercase k 

12 4C,6C L,l Uppercase L, lowercase I 
13 4D,6D M,m Uppercase M, lowercase m 
14 4E,6E N,n Uppercase N, lowercase n 
15 4F,6F O,o Uppercase 0, lowercase o 

16 50,70 P,p Uppercase P, lowercase p 
17 51,71 Q,q Uppercase Q, lowercase q 
18 52,72 R,r Uppercase R, lowercase r 
19 53,73 S,s Uppercase S, lowercase s 

20 54,74 T,t Uppercase T, lowercase t 
21 55,75 U,u Uppercase U, lowercase u 
22 56,76 V,v Uppercase V, lowercase v 
23 57,77 W,w UEpercase W, lowercase w e (Continued) 

E-30 SCL Advanced File Management Usage Revision G 



NOS/VE Predefined Collation Table Listings 

Table E-7. OSV$DISPLAY64_FOLDED Collating Sequence 

e (Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 

e Position decimal) Mnemonic Name or Meaning 

24 58,78 X,x Uppercase X, lowercase x 
25 59,79 Y,y Uppercase Y, lowercase y 
26 5A,7A Z,z Uppercase Z, lowercase z 
27 30 0 Zero 

28 31 1 One 
29 32 2 Two 
30 33 3 Three 
31 34 4 Four 

32 35 5 Five 
33 36 6 Six 
34 37 7 Seven 
35 38 8 Eight 

e 36 39 9 Nine 
37 2B + Plus 
38 2D Hyphen 
39 2A * Asterisk 

40 2F I Slant 
41 28 ( Opening parenthesis 
42 29 ) Closing parenthesis 
43 24 $ Dollar sign 

44 3D = Equals 
45 20 SP Space 
46 2C Comma 
47 2E Period 

48 23 # Number sign 
49 5B,7B [,{ Opening bracket, opening brace 

e 50 5D,7D ],} Closing bracket, closing brace 
51 25 % Percent sign 

(Continued) 

Revision G Collation Tables E-31 



NOSNE Predefined Collation Table Listings 

Table E-7. OSV$DISPLAY64_FOLDED Collating Sequence 
(Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa· or 
Position decimal) Mnemonic Name or Meaning 

52 22 II Quotation marks 
53 5F Underline 
54 21 Exclamation point 
55 26 & Ampersand 

56 27 Apostrophe 
57 3F ? Question mark 
58 3C < Less than 
59 3E > Greater than 

60 40,60 @,' Commercial at, grave accent 
61 5C,7C \,J Reverse slant, vertical line 
62 5E,7E Circumflex, tilde 
63 3B Semicolon 

E-32 SCL Advanced File Management Usage Revision G 



NOS/VE Predefined Collation Table Listings 

Table E-8. OSV$DISPLAY64_STRICT Collating Sequence 

e 
The ASCII codes not listed in this table (ASCII codes 0 through lF 
and 60 through FF hexadecimal) are ordered as equal to the space 
(ASCII code 20 hexadecimal) . 

• ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

00 3A Colon 
01 41 A Uppercase A 
02 42 B Uppercase B 
03 43 c Uppercase C 

04 44 D Uppercase D 
05 45 E Uppercase E 
06 46 F Uppercase F 
07 47 G Uppercase G 

08 48 H Uppercase H 

e 09 49 I Uppercase I 
10 4A J Uppercase J 
11 4B K Uppercase K 

12 4C L Uppercase L 
13 4D M Uppercase M 
14 4E N Uppercase N 
15 4F 0 Uppercase 0 

16 50 p Uppercase P 
17 51 Q Uppercase Q 
18 52 R Uppercase R 
19 53 s Uppercase S 

20 54 T Uppercase T 
21 55 u Uppercase U 
22 56 v Uppercase V • 23 57 w UEpercase W 

(Continued) 

Revision G Collation Tables E-33 



NOSNE Predefined Collation Table Listings 

Table E-8. OSV$DISPLAY64 _STRICT Cellating Sequence 
(Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

24 58 x Uppercase X 
25 59 y Uppercase Y 
26 5A z Uppercase Z 
27 30 0 Zero 

28 31 1 One 
29 32 2 Two 
30 33 3 Three 
31 34 4 Four 

32 35 5 Five 
33 36 6 Six 
34 37 7 Seven 
35 38 8 Eight 

36 39 9 Nine 
37 2B + Plus 
38 2D Hyphen 
39 2A * Asterisk 

40 2F I Slant 
41 28 ( Opening parenthesis 
42 29 ) Closing parenthesis 
43 24 $ Dollar sign 

44 3D = Equals 
45 20 SP Space 
46 2C Comma 
47 2E Period 

48 23 # Number sign 
49 5B [ Opening bracket 
50 5D ] Closing bracket e 51 25 % Percent sign 

(Continued) 

E-34 SCL Advanced File Management Usage Revision G 



NOSNE Predefined Collation Table Listings 

Table E-8. OSV$DISPLAY64 _STRICT Collating Sequence 

e (Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 

e Position decimal) Mnemonic Name or Meaning 

52 22 " Quotation marks 
53 5F Underline 
54 21 Exclamation point 
55 26 & Ampersand 

56 27 Apostrophe 
57 3F ? Question mark 
58 3C < Less than 
59 3E > Greater than 

60 40 @ Commercial at 
61 5C \ Reverse slant 
62 5E Circumflex 
63 3B Semicolon 

e 

Revision G Collation Tables E-35 



NOSNE Predefined Collation Table Listings 

Table E-9. OSV$EBCDIC Collating Sequence 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

000 00 NUL Null 
001 01 SOH Start of heading 
002 02 STX Start of text 
003 03 ETX End of text 

004 9C Unassigned 
005 09 HT Horizontal tabulation 
006 86 Unassigned 
007 7F DEL Delete 

008 97 Unassigned 
009 SD Unassigned 
010 BE Unassigned 
011 OB VT Vertical tabulation 

012 oc FF Form feed 
013 OD CR Carriage return 
014 OE so Shift out 
015 OF SI Shift in 

OI6 IO DLE Data link escape 
OI7 11 DCI Device control I 
OIS 12 DC2 Device control 2 
OI9 I3 DC3 Device control 3 

020 9D Unassigned 
02I 85 Unassigned 
022 08 BS Backspace 
023 87 Unassigned 

024 I8 CAN Cancel 
025 I9 EM End of medium 
026 92 Unassigned 
027 BF Unassigned 

028 IC FS File separator 
029 ID GS Group separator 
030 lE RS Record separator 
031 lF us Uryit separator e (Continued) 

E-36 SCL Advanced File Management Usage Revision G 



NOS/VE Predefined Collation Table Listings 

Table E-9. OSV$EBCDIC Collating Sequence (Continued) 

e ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

e 032 80 Unassigned 
033 81 Unassigned 
034 82 Unassigned 
035 83 Unassigned 

036 84 Unassigned 
037 OA LF Line feed 
038 17 ETB End of transmission block 
039 lB ESC Escape 

040 88 Unassigned 
041 89 Unassigned 
042 BA Unassigned 
043 BB Unassigned 

044 SC Unassigned 

e 045 05 ENQ Enquiry 
046 06 ACK Acknowledge 
047 07 BEL Bell 

048 90 Unassigned 
049 91 Unassigned 
050 16 SYN Synchronous idle 
051 93 Unassigned 

052 94 Unassigned 
053 95 Unassigned 
054 96 Unassigned 
055 04 EOT End of transmission 

056 98 Unassigned 
057 99 Unassigned 
058 9A Unassigned 

e 059 9B Unassigned 

060 14 DC4 Device control 4 
061 15 NAK Negative acknowledge 
062 9E Unassigned 

e 063 IA SUB Substitute 

(Continued) 

Revision G Collation Tables E-37 



NOSNE Predefined Collation Table Listings 

Table E-9. OSV$EBCDIC Collating Sequence (Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

064 20 SP Space 
065 AO Unassigned 
066 Al Unassigned 
067 A2 Unassigned 

068 A3 Unassigned 
069 A4 Unassigned 
070 A5 Unassigned 
071 A6 Unassigned 

072 A7 Unassigned 
073 AS Unassigned 
074 5B Opening bracket 
075 2E Period 

076 3C < Less than 
077 28 ( Opening parenthesis 
078 2B + Plus 
079 21 Exclamation point 

080 26 & Ampersand 
081 A9 Unassigned 
082 AA Unassigned 
083 AB Unassigned 

084 AC Unassigned 
085 AD Unassigned 
086 AE Unassigned 
087 AF Unassigned 

088 BO Unassigned 
089 Bl Unassigned 
090 5D ] Closing bracket 
091 24 $ Dollar sign 

092 2A * Asterisk 
093 29 Closing parenthesis 
094 3B Semicolon 
095 5E Circumflex e (Continued) 

E-38 SCL Advanced File Management Usage Revision G 



NOSNE Predefined Collation Table Listings 

Table E-9. OSV$EBCDIC Collating Sequence (Continued) 

e ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

e 096 2D Hyphen 
097 2F I Slant 
098 B2 Unassigned 
099 B3 Unassigned 

100 B4 Unassigned 
101 B5 Unassigned 
102 B6 Unassigned 
103 B7 Unassigned 

104 BB Unassigned 
105 B9 Unassigned 
106 7C Vertical line 
107 2C Comma 

108 25 % Percent sign 

e 109 5F Underline 
110 3E > Greater than 
111 3F ? Question mark 

112 BA Unassigned 
113 BB Unassigned 
114 BC Unassigned 
115 BD Unassigned 

116 BE Unassigned 
117 BF Unassigned 
118 co Unassigned 
119 Cl Unassigned 

120 C2 Unassigned 
121 60 Grave accent 
122 3A Colon e 123 23 # Number sign 

124 40 @ Commercial at 
125 27 Apostrophe 
126 3D = Equals 

e 127 22 " Quotation marks 

(Continued) 

Revision G Collation Tables E-39 



NOS/VE Predefined Collation Table Listings 

Table E-9. OSV$EBCDIC Collating Sequence (Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

128 C3 Unassigned 
129 61 a Lowercase a 
130 62 b Lowercase b 
131 63 c Lowercase c 

132 64 d Lowercase d 
133 65 e Lowercase e 
134 66 f Lowercase f 
135 67 g Lowercase g 

136 68 h Lowercase h 
137 69 i Lowercase i 
138 C4 Unassigned 
139 C5 Unassigned 

140 C6 Unassigned 
141 C7 Unassigned 
142 cs Unassigned 
143 C9 Unassigned 

144 CA Unassigned 
145 6A j Lowercase j 
146 6B k Lowercase k 
147 6C l Lowercase l 

148 6D m Lowercase m 
149 6E n Lowercase n 
150 6F 0 Lowercase o 
151 70 p Lowercase p 

152 71 q Lowercase q 
153 72 r Lowercase r 
154 CB Unassigned 
155 cc Unassigned 

156 CD Unassigned 
157 CE Unassigned 
158 CF Unassigned 
159 DO Unassigned e (Continued) 

E-40 SCL Advanced File Management Usage Revision G 



NOSNE Predefined Collation Table Listings 

Table E-9. • OSV$EBCDIC Collating Sequence (Continued) 

e ASCII 
Collating Code Graphic 
Sequence (Hex a- or 
Position decimal) Mnemonic Name or Meaning 

e 160 DI Unassigned 
161 7E Unassigned 
162 73 s Lowercase s 
163 74 t Lowercase t 

164 75 u Lowercase u 
165 76 v Lowercase v 
166 77 w Lowercase w 
167 78 x Lowercase x 

168 79 y Lowercase y 
169 7A z Lowercase z 
170 D2 Unassigned 
171 D3 Unassigned 

172 D4 Unassigned 

e 173 D5 Unassigned 
174 D6 Unassigned 
175 D7 Unassigned 

176 D8 Unassigned 
177 D9 Unassigned 
178 DA Unassigned 
179 DB Unassigned 

180 DC Unassigned 
181 DD Unassigned 
182 DE Unassigned 
183 DF Unassigned 

184 EO Unassigned 
185 El Unassigned 
186 E2 Unassigned 

e 187 E3 Unassigned 

188 E4 Unassigned 
189 E5 Unassigned 
190 E6 Unassigned 

e 191 E7 Unassigned 

(Continued) 

Revision G Collation Tables E-41 



NOSNE Predefined Collation Table Listings 

Table E-9. OSV$EBCDIC Collating Sequence (Continued) 

ASCII 
Collating Code 
Sequence (Hex a-
Position decimal) 

192 7B 
193 41 
194 42 
195 43 

196 44 
197 45 
198 46 
199 47 

200 48 
201 49 
202 E8 
203 E9 

204 EA 
205 EB 
206 EC 
207 ED 

208 7D 
209 4A 
210 4B 
211 4C 

212 4D 
213 4E 
214 4F 
215 50 

216 51 
217 52 
218 EE 
219 EF 

220 FO 
221 Fl 
222 F2 
223 F3 

Graphic 
or 
Mnemonic Name or Meaning 

{ Opening brace 
A Uppercase A 
B Uppercase B 
C Uppercase C 

D Uppercase D 
E Uppercase E 
F Uppercase F 
G Uppercase G 

H Uppercase H 
I Uppercase I 

Unassigned 
Unassigned 

} 
J 
K 
L 

M 
N 
0 
p 

Q 
R 

Unassigned 
Unassigned 
Unassigned 
Unassigned 

Closing brace 
Uppercase J 
Uppercase K 
Uppercase L 

Uppercase M 
Uppercase J\ 
Uppercase 0 
Uppercase P 

Uppercase Q 
Uppercase R 
Unassigned 
Unassigned 

Unassigned 
Unassigned 
Unassigned 
Unassigned 

E-42 SCL Advanced File Management Usage 

(Continued) 

Revision G 



NOSNE Predefined Collation Table Listings 

Table E-9. OSV$EBCDIC Collating Sequence (Continued) 

e ASCII 
Collating Code Graphic 
Sequence (Hexa· or 
Position decimal) Mnemonic Name or Meaning 

e 224 5C \ Reverse slant 
225 9F Unassigned 
226 53 s Uppercase S 
227 54 T Uppercase T 

228 55 u Uppercase U 
229 56 v Uppercase V 
230 57 w Uppercase W 
231 58 x Uppercase X 

232 59 y Uppercase Y 
233 5A z Uppercase Z 
234 F4 Unassigned 
235 F5 Unassigned 

236 F6 Unassigned 

e 237 F7 Unassigned 
238 F8 Unassigned 
239 F9 Unassigned 

240 30 0 Zero 
241 31 1 One 
242 32 2 Two 
243 33 3 Three 

244 34 4 Four 
245 35 5 Five 
246 36 6 Six 
247 37 7 Seven 

248 38 8 Eight 
249 39 9 Nine 
250 FA Unassigned 

e 251 FB Unassigned 

252 FC Unassigned 
253 FD Unassigned 
254 FE Unassigned 

e 255 FF Unassigned 

Revision G Collation Tables E-43 



NOS/VE Predefined Collation Table Listings 

Table E-10. OSV$EBCDIC6_FOLDED Collating Sequence 

The ASCII codes not listed here (ASCII codes 0 through lF and 7F 
through FF hexadecimal) are ordered as equal to the space (ASCII 
code 20 hexadecimal). 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 2E Period 
02 3C < Less than 
03 28 ( Opening parenthesis 

04 2B + Plus 
05 21 Exclamation point 
06 26 & Ampersand 
07 24 $ Dollar sign 

08 2A * Asterisk 
09 29 Closing parenthesis 
10 3B Semicolon 
11 5E,7E Circumflex, tilde 

12 2D Hyphen 
13 2F I Slant 
14 2C Comma 
15 25 % Percent sign 

16 5F Underline 
17 3E > Greater than 
18 3F ? Question mark 
19 3A Colon 

20 23 # Number sign 
21 40,60 @: Commercial at, grave accent 
22 27 Apostrophe 
23 3D Equals e (Continued) 

E-44 SCL Advanced File Management Usage Revision G 



NOSNE Predefined C.Ollation Table Listings 

Table E-10. OSV$EBCDIC6_FOLDED Collating Sequence 

e (Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 

e Position decimal) Mnemonic Name or Meaning 

24 22 " Quotation marks 
25 5B,7B [,{ Opening bracket, opening brace 
26 41,61 A,a Uppercase A, lowercase a 
27 42,62 B,b Uppercase B, lowercase b 

28 43,63 C,c Uppercase C, lowercase c 
29 44,64 D,d Uppercase D, lowercase d 
30 45,65 E,e Uppercase E, lowercase e 
31 46,66 F,f Uppercase F, lowercase f 

32 47,67 G,g Uppercase G, lowercase g 
33 48,68 H,h Uppercase H, lowercase h 
34 49,69 l,i Uppercase I, lowercase i 
35 5D,7D ],} Closing bracket, closing brace 

e 36 4A,6A J,j Uppercase J, lowercase j 
37 4B,6B K,k Uppercase K, lowercase k 
38 4C,6C L,l Uppercase L, lowercase 1 
39 4D,6D M,m Uppercase M, lowercase m 

40 4E,6E N,n Uppercase K, lowercase n 
41 4F,6F O,o Uppercase 0, lowercase o 
42 50,70 P,p Uppercase P, lowercase p 
43 51,71 Q,q Uppercase Q, lowercase q 

44 52,72 R,r Uppercase R, lowercase r 
45 5C,7C \,I Reverse slant, vertical line 
46 53,73 S,s Uppercase S, lowercase s 
47 54,74 T,t Uppercase T, lowercase t 

48 55,75 U,u Uppercase U, lowercase u 
49 56,76 V,v Uppercase V, lowercase v 

e 50 57,77 W,w Uppercase W, lowercase w 
51 58,78 X,x Uppercase X, lowercase x 

(Continued) 

Revision G Collation Tables E-45 



NOSNE Predefined Collation Table Listings 

Table E-10. OSV$EBCDIC6_FOLDED Collating Sequence 
(Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

52 59,79 Y,y Uppercase Y, lowercase y 
53 5A,7A Z,z Uppercase Z, lowercase z 
54 30 0 Zero 
55 31 1 One 

56 32 2 Two 
57 33 3 Three 
58 34 4 Four 
59 35 5 Five 

60 36 6 Six 
61 37 7 Seven 
62 38 8 Eight 
63 39 9 Nine 

E-46 SCL Advanced File Management Usage Revision G 



NOSNE Predefined Collation Table Listings 

Table E-11. OSV$EBCDIC6_STRICT Collating Sequence 

e 
The ASCII codes not listed here (ASCII codes 0 through IF and 60 
through FF hexadecimal) are ordered as equal to the space (ASCII 
code 20 hexadecimal). 

e ASCII 
Collating Code Graphic 
Sequence (Hexa- or 
Position decimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 2E Period 
02 3C < Less than 
03 28 ( Opening parenthesis 

04 2B + Plus 
05 21 Exclamation point 
06 26 & Ampersand 
07 24 $ Dollar sign 

08 2A * Asterisk 

e 09 29 Closing parenthesis 
10 3B Semicolon 
11 5E Circumflex 

12 2D Hyphen 
13 2F Slant 
14 2C Comma 
15 25 % Percent sign 

16 5F Underline 
17 3E > Greater than 
18 3F ? Question mark 
19 3A Colon 

20 23 # Number sign 
21 40 @ Commercial at 
22 27 Apostrophe 

e 23 3D Equals 

(Continued) 

Revision G Collation Tables E-4 7 



NOSNE Predefined Collation Table Listings 

Table E-11. OSV$EBCDIC6_STRICT Collating Sequence 
(Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa· or 
Position decimal) Mnemonic Name or Meaning 

24 22 II Quotation marks 
25 5B [ Opening bracket 
26 41 A Uppercase A 
27 42 B Uppercase B 

28 43 c Uppercase C 
29 44 D Uppercase D 
30 45 E Uppercase E 
31 46 F Uppercase F 

32 47 G Uppercase G 
33 48 H Uppercase H 
34 49 I Uppercase I 
35 5D ] Closing bracket 

36 4A J Uppercase J 
37 4B K Uppercase K 
38 4C L Uppercase L 
39 4D M Uppercase M 

40 4E N Uppercase N 
41 4F 0 Uppercase 0 
42 50 p Uppercase P 
43 51 Q Uppercase Q 

44 52 R Uppercase R 
45 5C \ Reverse slant 
46 53 s Uppercase S 
47 54 T Uppercase T 

48 55 u Uppercase U 
49 56 v Uppercase V 
50 57 w Uppercase W e 51 58 x Uppercase X 

(Continued) 

E-48 SCL Advanced File Management Usage Revision G 



NOSNE Predefined Collation Table Listings 

Table E-11. OSV$EBCDIC6_STRICT Collating Sequence 

e (Continued) 

ASCII 
Collating Code Graphic 
Sequence (Hexa- or 

e Position decimal) Mnemonic N arne or Meaning 

52 59 y Uppercase y 

53 5A z Uppercase z 
54 30 0 Zero 
55 31 1 One 

56 32 2 Two 
57 33 3 Three 
58 34 4 Four 
59 35 5 Five 

60 36 6 Six 
61 37 7 Seven 
62 38 8 Eight 
63 39 9 Nine 

e 

Revision G Collation Tables E-49 



• 



FMU Conversion Rules, Storage 
9 Requirements, and Syntax Diagrams F 

This appendix provides supplemental FMU information as follows: 

e • The rules FMU follows when converting one data type to another. 

• The storage requirements for computational items. 

• Statement syntax diagrams. 

Revision G FMU Conversion Rules, Storage Requirements, and Syntax Diagrams F-1 



FMU Rules, Requirements, and Diagrams 

Data Type Conversion Between NOSN~ Files e 
FMU can convert any data type to any other data type. For example, 
it can convert data of type A (ASCII data) to data of type I (integer 
data) and vice versa. 

The following matrix gives additional specific information on how e 
FMU transforms one data type to another data type. The letter at the 
intersection of two data types refers to one of the rules listed after 
the matrix. A blank matrix entry indicates no additional information 
is given. 

Output 
Input A B F G H I J L N p Q u y z 

A a b c d e c e f g h h h h h 

B ; j k 

F l l l m l l l n n 

G 0 p q 0 p 0 p r q p p p p p 

H s m 

I s m 

J t u 

L v u u u u u u u u u u u 

N w w w )( y w y z w y y y y y 

p t u 

Q t u 

u t u 

y t u A 

z t u A 

F·2 SCL Advanced File Management Usage Revision G 



a. 

b. 

FMU Rules, Requirements, and Diagrams 

The source field is copied to the destination field, from left to 
right. If the source field is longer than the destination field, the 
source is truncated. If the source field is shorter than the 
destination field, the destination field is blank filled on the right. 

The source is converted to F, if necessary, then to Z[,38], and 
finally, to the destination data type. 

The acceptable formats for numeric type A data are the same as 
those described for literals. Blanks are ignored. 

The floating-point conversion support is limited to values up 
through 9.9 x 10**34 (where ** represents exponentiation). 

c. The acceptable formats for numeric type A data are the same as 
those described for literals. Blanks are ignored. 

d. The source is converted to F, and then to the destination data 
type. 

f. 

The acceptable formats for numeric type A data is the same as 
those described concerning literals. Blanks are ignored. 

The trailing or leading sign combined Hollerith support is 
limited to values up through 37 digits. 

The acceptable formats for numeric type A data are the same as 
those described concerning literals. Blanks are ignored. 

The floating-point conversion support is limited to values up 
through 9.9 x 10**34 (where ** represents exponentiation). 

If the leftmost, nonblank character in the source field is T or t, 
the destination field is converted to the binary representation of 
TRUE. If the leftmost, nonblank character in the source field is 
F or f, the destination field is converted to the binary 
representation of FALSE. If the leftmost, nonblank character in 
the source field is a period (.), then the next character must be 
as previously specified. 

The source is converted to integer (I) format, and then to the 
destination data type. 

The acceptable formats for numeric type A data are the same as 
those described concerning literals. Blanks are ignored. 

Revision G FMU Conversion Rules, Storage Requirements, and Syntax Diagrams F·3 



FMU Rules, Requirements, and Diagrams 

h. 

i 

The acceptable formats for numeric type A data are the same as 
those described concerning literals. Blanks are ignored. 

The floating-point conversion support is limited to values up 
through 9.9 x 10**34 (where ** represents exponentiation). 

The converted source is right-justified in the destination field, 
with zero fill to the left. 

The numeric value of the B field is delivered to the destination 
A field as a base 10 number representation. 

j. The source is converted to F, and then to the destination data 
type. 

This conversion goes through a Z[,38) intermediate value 
transformation. 

k. The source is converted to I, and then to the destination data 
type. 

This conversion goes through a Z[,38) intermediate value 
transformation. 

1. The floating-point conversion support is limited to values up 
through 9.9 x 10**34 (where ** represents exponentiation). 

This conversion goes through a Z[,38) intermediate value 
transformation. 

m. The integer value 0 is taken as FALSE, and nonzero as TRt:E. 

n. The floating-point conversion support is limited to values up 
through 9.9 x 10**34 (where ** represents exponentiation). 

o. The source is converted to F, and then to the destination data 
type. 

Blanks are ignored. 

p. The source is converted to F, if necessary, then to the Z[,38), 
and finally, to the destination data type. 

Blanks are ignored. 

The floating-point conversion support is limited to values up 
through 9.9 x 10**34 (where 0 represents exponentiation). 

F-4 SCL Advanced File Management Usage Re\'ision G 



q. 

er. 

t. 

u. 

v. 

FMU Rules, Requirements, and Diagrams 

Blanks are ignored. 

The integer value 0 is taken as FALSE, and nonzero as TRUE. 

Blanks are ignored. 

The source is converted to F, and then to the destination data 
type. 

The source is converted to F, and then to the destination data 
type. 

When converting to L, the integer value 0 is taken as FALSE, 
and nonzero as TRUE. When converting from L, the integer 
values 0 and 1 are used. 

Either the word TRUE or FALSE is entered left-justified, 
blank-filled, in the destination field, as appropriate. 

Rightmost truncation occurs if the desination field is too short 
for the value. 

Blanks are ignored. 

The source is converted to F, and then to the destination data 
type. 

Blanks are ignored. 

y. The source is converted to I, and then to the destination data 
type. 

Blanks are ignored. 

z. The integer value 0 is taken as FALSE, and nonzero as TRUE. 

Blanks are ignored. 

A. The source is converted to I, and then to the destination data 
type. 

Revision G FMU Conversion Rules, Storage Requirements, and Syntax Diagrams F ·5 



Storage Requirements for Computational Items 

Storage Requirements for Computational 
Items 

Table F-1 lists the NOSNE storage requirements for computational 
items. 

Table F-1. Storage Requirements for Computational Items 

Unsigned Items 

A 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Legend: 

Column A 
Column B 
Column C 
Column D 
Column E 
Column F 
Column G 

B 

4 
7 
10 
14 
17 
20 
24 
27 
30 
34 
37 
40 
44 
47 
50 
54 
57 
60 

Signed Items 

c D E 

8 1 5 
8 1 8 
16 2 11 
16 2 15 
24 3 18 
24 3 21 
24 3 25 
32 4 26 
32 4 31 
40 5 35 
40 5 38 
40 5 41 
48 6 45 
48 6 48 
56 7 51 
56 7 55 
64 8 58 
64 8 61 

Digits in PICTURE Clause 
Bits Required 
Bits Rounded 
Bytes Required 
Bits + 1 Required 
Bits + 1 Rounded 
Bytes Required 

F 

8 
8 
16 
16 
24 
24 
32 
32 
32 
40 
40 
48 
48 
48 
56 
56 
64 
64 

F-6 SCL Advanced File Management Usage 

G 

1 
1 
2 
2 
3 
3 
4 
4 
4 
5 
5 
6 
6 
6 
7 
7 
8 
8 

Re\·ision G 

e 

e 



Storage Requirements for Computational Items 

Calculating Storage Requirements 

The following equation can be used to determine the storage 
requirements for NOSNE COMP items: 

bytes CEILING( INT( LOG2(n) + 2 ) /bits ) 

bytes Number of bytes 

CEILING (N) Mathematical function that returns the smallest 
integer greater than or equal to N. 

INT (N) 

LOG2 (N) 

n 

bits 

e Examples 

Mathematical function which truncates N to an 
integer. 

Logarithm to the base 2 function. LOG2 is found by 
the equation LOG2(N) = LN(N)!LN(2), where LN is 
the natural log function. 

Largest number representable in the field. 

Number of bits per byte. 

• In a NOSNE COBOL program, a field defined as: 

PIC 59(8) 

has a storage requirement of 4 bytes: 

CEILING( INT(LOG2(99999999) + 2) /8) 4 

Revision J FMU Conversion Rules, Storage Requirements, and Syntax Diagrams F-7 



FMU Statement Syntax Diagrams 

FMU Statement Syntax Diagrams 

The syntax diagrams in this appendix can be used for a quick 
reference. They primarily apply to the CREATE_ OUTPUT_RECORD 
(CREOR) statement-list syntax. To use these diagrams, remember the 
following notational rules: 

Rounded boxes enclose actual syntax elements (keywords, literal 
values, and delimiters). Keyword abbreviations have been used. 
The following are examples: 

@ 0 © 

Rectangles enclose names of syntax diagram sections. For example: 

ltield descriptors! jboolean express;onl 

Arrows connecting the boxes show legal syntax of statements. For 
example: 

assignment statement 

--.---------------.-~ .. I source-item~ 
~destination-item~ 

The diagram tells you that an assignment statement can either be 
a source-item alone or a source-item preceded by a destination-item 
and the '='. (Blanks can be inserted wherever there is a line.) 

The following diagram shows the FMU directives and the general 
~ syntax. For full descriptions of the directives, refer to chapter 11. The 

main set of diagrams in this appendix show the CREATE_OUTPUT_ 
RECORD directive statement-list syntax. 

F-8 SCL Advanced File Management Usage Revision J 



FMU Statement Syntu Diagrams 

parameters 

parameters 

parameters 

parameters 

CREOR 

statement-list 

statement list 

statement separator 

.. 
<eol> denotes end-of-line. 

Revision G FMU Conversion Rules, Storage Requirements, and Synta:i Diagrams F-9 



FMU Statement Syntax Diagrams 

statement 

{assignment statement} 

__,.- block/bLockend statement} 

~{eye Le statement} 

~{exit statement} 

~{ for/forend statementJ 

___.,[if /elseif/eLse/ifend statement} 

~·[ Loop/ Loopend statement} 

JL repeat/until statement} 

--{ whi Le/whi lend statementJ 

-_...fSTOP l_ 

assignment statement 

block/blockend statement 

statement 
list 

F-10 SCL Advanced File Management Usage 

...... 

.... 

~ 

~ 

...... 
~ 

~ 

~ 

..... 

RRYision G 



cycle statement 

exit statement 

FMU Statement Syntax Diagrams 

logical 
expression 

logical 
expression 

Revision G FMU Conversion Rules, Storage Requirements, and Syntax Diagrams F,11 



FMU Statement Syntax Diagrams 

for/f orend statement 

variable name--~ 

unsigned integer 
or field descriptor 

unsigned 
integer 

unsigned 
integer 

...._ ___ ...._ _____ _.__~statement t-----1~ statement 
separator list 

label 

"----..... ~statement separator--~ 

variable name: alphabetic character followed by zero or more 
alphanumeric characters. 

unsigned integer: one or more numeric digits (0 through 9). 

F ·12 SCL Advanced File Management Usage Revision G 



if/elseif/elserllend statement 

1--..... -1 logic•l 
rxprnsi 

logical 

logical 
upress ion 

loop/loopend statement 

statement 
separator 

statement 
list 

FMU Statement Syntair: Diagrams 

sute111ent 
se~r•tor 

suternent 
sep;ir•tor 

statement 
list 

sutement 
list 

sute111ent 
list 

st•ternent 
nparator 

statement 
sep;ir•tor 

Revision G FMU Conversion Rules, Storage Requirements, and Syntax Diagrams F-13 



FMU Statement Syntax Diagrams 

repeat/until statement 

statement 
list 

while/whilend statement 

logical expression 

boolean 
expression 

logical operator 

logical 
expression 

statement 
list 

logical operator 

F-1' SCL Ath-anced File Management Usage 

logical 
expression 

boolean 
expression 

Revision G 



• 

FMU Statement Syntax Diagrams 

boolean expression 

boolean expression 

relational----~ source item 
operator 

boolean function t------------------J 

relational operator 

boolean function 

source-item 

l-----1~ fie ld 
descriptor 

field descriptor 1----...-----1~ 

literalt 1-------1 

tcharacter string enclosed in apostrophes. 

.. 

Revision G FMU Conversion Rules, Storage Requirements, and Syntax Diagrams F-15 



FMU Statement Syntax Diagrams 

destination-item 

it±@ dmdowl f 
L@ 

field descriptor 

position 

<SP> denotes a blank space. 

data type 

F-16 SCL Advanced File Management Usage 

.. 

trail­
pos 

length 

ReYision G 



FMU Statement Syntax Diagrams 

position 

bit-pos 

trail-pos 

--•~lpositionj • 

byte-pos 

bit-pos 

unsigned integer 1---...---------------...... -~ 

byte-pos intrinsic 
function 

unsigned integer 

field descriptor..._-----------------' 

---.-+.i unsigned integer 1-------...----1~ 

bit-pos intrinsic function 

Revision G FMU Conversion Rules, Storage Requirements, and Syntax Diagrams F-17 



FMU Statement Synta:r. Diagrams 

length 

--.---.i unsigned integer-----------------

byte-length intrinsic functioni..---

bit-length intrinsic functioni-----.1~ 

field descriptor 1---------_.. 

byte-pos intrinsic function 

$ISP-function 

~literal-------------~ 

$ISP-optional-parameters 

F-18 SCL Advanced File Management Usage 

SISP­
optional­
parameters 

default 

Revision G 



FMU Statement Syntax Diagrams 

unsigned i------­
i nteger 

bit·pos intrinsic function 

byte length intrinsic function 

bit length intrinsic function 

Revision G FMU Conversion Rules, Storage Requirements, and Syntax Diagrams F·l9 



• 



FMU Error Messages G 

This appendix describes the messages returned by FMU processing. It 
first describes FMU error processing in general and then lists the 
messages FMU can write to the listing file. 

About FMU Diagnostics 

FMU issues three types of error diagnostics: compilation, execution, 
and system. The FMU system diagnostics are listed in the NOSNE 
Diagnostic Messages manual (the FM messages, status codes 630000 
through 639999). 

Compilation diagnostics are produced when FMU reads the directive 
file and finds error conditions. The diagnostics are written to the list 
file. You can correlate them with the directive source listing, which 
also appears on the list file. 

Execution diagnostics occur after the directives have been read. 
Execution diagnostics are written to the list file after the compilation 
diagnostics are written. These can be checked against the directive 
source listing. 

System diagnostics are produced when an error is detected by a 
system routine used by FMU. 

Error Message Communication 

If any diagnostics are issued to the list file, the following status 
message is returned: 

'Error details are on the LIST file.' 

The list file is the file specified in the LIST (L) parameter of the 
FMU command. If you do not specify a file, $LIST is assumed. In 
batch mode, $LIST is associated with the OUTPUT file, which is 
printed. In interactive mode, $LIST is connected to the $NULL file 
and so, the messages sent to $LIST are discarded. 

When an error occurs, the diagnostic is issued to the list file with the 
appropriate source line and column so that you can correlate the 
diagnostic list with the source listing produced during compilation. If 
no directives file was given, source line 0 and column 0 are used. 

Revision J FMU Error Messages G-1 



About FMU Diagnostics 

Error Handling 

Usually, FMU terminates processing if a compilation error occurs 
during the directive syntax check. 

The ERROR_DISPOSITION parameter on the FMU command 
determines whether FMU processing aborts if processing of an output 
file aborts. The ERROR_DISPOSITION parameter on the SET_ 
OUTPUT_ATTRIBUTES directive for each output file determines 
whether generation of the output file aborts if an error occurs during 
output record formatting. 

The CONVERSION_ERROR_DISPOSITION parameter on the SET_ 
OUTPUT_ATTRIBUTES directive determines whether recovery is 
attempted if a source field contains unrecognizable data. If the 
CONVERSION_ERROR_DISPOSITION parameter specifies 
RECOVER, a data error during assignment causes a default value to 
be used for the source field value; no diagnostic message is issued. 
The default value used depends on the data type of the source item as 
follows: 

Source Item 

Data type A 
Data type L 
All other data types 

Default Value 

Spaces 
Logical false (.FALSE.) 
Numeric zero in the appropriate format 

If the CONVERSION_ERROR_DISPOSITION parameter on the SET_ 
OUTPUT_ATTRIBUTES directive specifies ABORT (the default value), 
a data error during assignment discards the current output record. If 
an output file error occurs other than during assignment, the current 
output record is discarded regardless of the CONVERSION _ERROR_ 
DISPOSITION parameter specification. 

Discarded records are written to the exception records file if one is 
specified by the EXCEPTION _RECORDS_FILE parameter of the 
SET_OUTPUT_ATTRIBUTES directive. 

G·2 SCL Advanced File Management Usage Revision J 



• 

About FMU Diagnostics 

Diagnostic Templates 

The diagnostics consist of a basic template on which the whole 
diagnostic is built. Messages specific to an error condition are inserted 
or appended to the templates to give the full message. 

In the diagnostics listed in this manual, these messages are indicated 
by text enclosed in braces ({text}). Inserts, however, are not limited to 
those places. At times when insertion spaces in the template are 
filled, inserts might be concatenated to the end of the diagnostic being 
built. 

Special conditions can produce a hierarchical diagnostic. For example, 
if one of the system routines that FMU calls fails, then the returned 
status is expanded and returned to the template: 

'Abnormal status detected:' 

This text might be appended to yet another template which further 
defines the error condition. 

Error Severities 

These are the severities of errors that are shown on the source 
listing: 

Nonstandard (NS) 

Trivial if ERROR_DISPOSITION=NO_ABORT and fatal if 
ERROR_DISPOSITION=ABORT, for the ERROR_DISPOSITION 
specification given on the SET_OUTPUT_ATTRIBUTES directive. 

Dependent (D) 

Usage is product or machine dependent. 

Trivial (T) 

Error is not major; processing continues. 

Warning (W) 

Problem is uncorrected; error is ignored. User is warned . 

Fatal (F) 

Error causes processing to stop. 

Catastrophic (C) 

Internal product or system error; processing stops. 

Revision G FMU Error Messages G-3 



Messages Listing 

Messages Listing 
The rest of this appendix lists messages that FMU can write to the 
listing file. The messages are listed in alphabetical order. 

Messages that begin with an insertion item (such as a file name) are 
placed at the end of the messages listing. e 
A BLOCK/BLOCKEND block cannot be cycled. 

Description The label on the CYCLE statement matches the label 
on a BLOCK statement. 

User Action Correct the label or remove the CYCLE statement. 

A buffer cannot be acquired. 

Description FMU could not acquire another segment. 

User Action Either use fewer output files or ask site personnel for 
help. 

A character appears more than once in the collating sequence 
specification. 

Description An ASCII character has been specified more than once 
in the collating sequence specification. 

User Action Check the collating sequence specification for duplicate 
characters. In particular, check that no ranges overlap. 

G-4 SCL Advanced File Management Usage Revision G 



Messages Listing 

A collating sequence specification must contain at least one 
character. 

Description An empty collating sequence was specified. (The 
enclosing parentheses contained no values.) 

User Action Specify values for at least one step in the enclosing 
parentheses. To assign all characters to the same 
position in the collating sequence, specify a range that 
includes all characters (0 .. 255). 

A collating sequence sublist must contain at least one character. 

Description A set of enclosing parentheses within the collating 
sequence specification contains no values. 

User Action Each position specified must contain at least one 
character. Remove the extra pair of parentheses or 
specify at least one character in the parentheses. 

A directive was specified more than once per rtle. 

Description More than one directive of the same type (such as 
SET_OUTPUT_ATTRIBUTES) specified the same file. 

User Action Remove one of the duplicate directives or change the 
name specified by one of the FILE parameters, 
whichever is appropriate. 

Revision G FMU Error Messages G·5 



Messages Listing 

A duplicate of the specified CREATE_OUTPUT_RECORD 
statement list cannot be used for this file, as this file has no 
keys defined and yet the specified statement list uses KEY. 

Description The CREATE_OUTPUT_RECORD directive specifies 
the DUPLICATE_SPECIFICATION parameter. The 
CREATE_OUTPUT_RECORD specification to be 
duplicated specifies the word KEY, referencing the 
primary key of a record. However, the file to use the 
duplicated specification does not have a primary key 
defined by its file attributes and so the duplicated 
statement list cannot be used. 

User Action First, check whether the correct file name is specified 
on the DUPLICATE_SPECIFICATION parameter. 1\iext, 
check whether a primary key should be defined for the 
output file. (If so, use the SET_FILE_ATTRIBCTES 
command to specify the KEY_POSITION and KEY_ 
LENGTH attribute values.) If necessary, remove the 
DUPLICATE_SPECIFICATION parameter and explicitly 
specify the output record formatting for the file. 

A label is not permitted on this statement. 

Description A label is permitted only on a structured statement 
(BLOCK, FOR, IF, LOOP, REPEAT, or WHILE). 

User Action Remove the label. 

G-6 SCL Advanced File Management Usage Revision G 



Messages Listing 

A literal that starts or ends a range must contain only one 
character. 

Description A string specifying the lower or upper bound of a range 
contains more than one character. 

User Action Check that the correct range is being specified. The 
character beginning and ending the range should be 
enclosed in apostrophes ('A' .. 'Z') or specified as its 
integer code (65 .. 90). 

A negative number cannot be moved to an unassigned binary 
field. 

Description An input record provided a negative value as the value 
to be assigned to a field of type B. If ERROR_ 
DISPOSITION= NO_ABORT is specified for the file, 
this error is nonfatal; otherwise, it is a fatal error. 

User Action Review the CREATE_OUTPUT_RECORD directive for 
the file to ensure that the correct data formatting has 
been specified. If appropriate, change the data type 
from B to a data type that allows negative values. e Abnormal STATUS detected : {abnormal status message} 

Description FMU returned an abnormal completion status as 
described in the message. 

User Action Determine the reason for the failure using the specific 
information in the message. 

An ASCII ordinal must be between 0 and 255, inclusive. 

Description 

User Action 

Revision G 

The collating sequence specification contains a number 
that is not an ASCII character code (0 through 255 
decimal). 

Correct the number that is out of range. Each 
character can be represented by its graphic enclosed in 
apostrophes or by its ordinal within the ASCII 
character set (decimal integer). 

FMU Error Messages G-7 



Messages Listing 

An unrecognized character was detected. 

Description A non-ASCII character is not valid in the directive file. e 
User Action Check that the correct file was specified on the 

DIRECTIVES parameter. If the file specification is 
correct, correct the character at the specified line and 
column. 

An unrecognized CONVERSION _ERROR_DISPOSITION of 
{keyword} was detected. Acceptable values are ABORT or 
RECOVER. 

Description The value specified for the CONVERSION _ERROR_ 
DISPOSITION parameter is incorrect. 

User Action Specify ABORT or A (the default value) or RECOVER 
or R. ABORT specifies that a data error terminates 
reformatting of the output record and discards the 
record; RECOVER specifies that the default values be 
used for invalid data and reformatting continues. 

An unrecognized ERROR_DISPOSITION of {keyword} was 
detected. Acceptable values are ABORT or NO _ABORT. 

Description The value specified for the ERROR_DISPOSITlO!\ 
parameter is incorrect. 

User Action Specify ABORT or A (the default value) or NO_ABORT 
or KA. 

An unrecognized file unit type was detected. Acceptable options 
are RECORDS or PARTITIONS. 

Description The second value in the value set for the MAXIMC~1-
FILE_ UNITS (MFU) parameter must be either 
RECORDS (R) or PARTITIONS (P). RECORDS specifies 
that the first value in the value set is the maximum 
number of records; PARTITIONS specifies that the first 
value is the maximum number of partitions. 

User Action Correct the value set for the MAXIMUM_FILE_C!\ITS e 
parameter. 

G-8 SCL Advanced File Management Usage Revision G 



Messages Listing 

An unrecognized MACHINE_FORMAT of {keyword} was 
detected. Acceptable values are C170, C180, C7600, IBM, VAX, or 
VAXG. 

Description The value specified for the MACHINE_FORMAT (or 
MF) parameter is incorrect. 

e User Action For the input file, specify the machine on which the 
file was written. For the output file, specify the 
machine on which the file will be used. 

An unrecognized PARTITION _DISPOSITION was detected. 
Acceptable values are INCLUDE_PARTITIONS or EXCLUDE_ 
PARTITIONS. 

Description The value specified for the PARTITION_DISPOSITION 
(or PD) parameter is incorrect. 

User Action Specify whether partition boundaries are to be included 
(IP) (the default value) or excluded (EP) for the output 
file. 

An unrecognized RECORD_PRESET_ VALUE of {keyword} was 
detected. Acceptable values are NO_PRESET, CHARACTER_ 
BLANKS, CHARACTER_ZEROES, BINARY_ZEROES, or 
INPUT_RECORD. 

Description The value specified for the RECORD_PRESET_ VALUE 
(RPV) parameter on a CREATE_OUTPUT_RECORD 
directive is incorrect. 

User Action Specify a valid value or omit the parameter. (The 
default value is NO_PRESET.) 

An unrecognized skip direction was detected. Acceptable values 
are FORWARDS or BACKWARDS. 

Description The value specified as the skip direction in the 
STARTING_FILE_POSITION (or SFP) value set is 
incorrect. 

e User Action Specify the third value in the value set as FORWARD 
(F) (the default value) or BACKWARD (B). 

Revision G FMU Error Messages G-9 



Messages Listing 

An unrecognized PRINT_ FORMAT of {value} was detected. 
Acceptable values are 1, 2, 3, or DUMP. 

Description The value specified for the PRINT_FORMAT (or PF) 
parameter is incorrect. 

User Action Specify the line spacing as 1, 2, or 3 or specify dump 
format (DUMP). The default value is 1. 

Attributes to define the key were not provided for file {name}. 

Description The CREATE_ OUTPUT RECORD directive for the file 
referenced a KEY field but the attributes that define 
the key were not set for the file. 

User Action For a new NOSNE output file, enter a SET_FILE_ 
ATTRIBUTES command for the file before the FMC 
command. The SET_FILE_ATTRIBUTES command 
must specify at least the file name, the file 
organization, the maximum record length, and the key 
position and length. 

Conflicting file usage -- file {file name} is used both as 
{parameter} and {parameter}. 

Description The same file was specified for two different purposes 
in the FMU run. 

User Action Check that the correct file names were specified. 
Change one or both file names so that different files 
are used. 

CYCLE must be used inside a LOOP, FOR, WHILE, or REPEAT 
block. 

Description The CYCLE statement is not in a statement list that 
repeats. 

User Action Check the logic of the CREATE_OC"TPC"T_RECORD 
statement list. If appropriate, remove the CYCLE 
statement. 

G-10 SCL Advanced File Management Usage Revision G 



Messages Listing 

Directive file line cannot be acquired. 

e Description FMU cannot get the next line from the directive file. 

User Action Check that the correct directives file was specified. Ask 
for help from site personnel if necessary. 

e Division by zero attempted. 

Description Evaluation of an arithmetic expression would require 
division by a zero value, which is undefined. If the 
divisor is a field descriptor, this error occurs when the 
value in the specified field is zero. 

User Action Change the arithmetic expression so that it does not 
attempt a division by zero. Do not specify a field that 
could contain a zero value as the divisor in an 
expression. 

DUPLICATE SPECIFICATION and FILE parameters specify 
same name. 

Description The file specified on the FILE (or F) parameter of the 
directive is the same as the file specified on the 
DUPLICATE_SPECIFICATION CDS) parameter of the 
same directive. 

User Action Correct the file name on the F or DS parameter, or 
omit the DS parameter and specify the other 
parameters explicitly on the directive. 

Duplicate {name} parameter in {name} directive. 

Description A directive cannot have duplicate parameters. 

User Action Remove the redundant or conflicting parameters. 

Exception record file {file name} cannot be opened. 

Description 

User Action 

Revision G 

FMU could not open and write to the file specified as 
the exception record file. 

Check that the correct file is specified on the 
EXCEPTIO:K_RECORDS_FILE parameter. The file 
name should be in the $LOCAL catalog. Attaching a 
permanent file puts its name in the $LOCAL catalog. 

FMU Error Messages G-11 



Messages Listing 

EXIT must be used inside a BLOCK, LOOP, FOR, WHILE, or 
REPEAT block. 

Description The EXIT statement is not in the statement list of a 
structured statement. 

User Action Check the logic of the CREATE_OUTPUT_RECORD A 
statement list. If appropriate, remove the EXIT W 
statement. 

Field length of SEQUENCE_FIELD parameter is zero or not an 
integer constant. 

Description The second value in the field descriptor specified for 
the SEQUENCE_FIELD (or SF) parameter must be a 
nonzero integer constant. 

User Action Correct the descriptor for the sequence field. 

Field length too big for data type. Maximum length is {number}. 

Description The length specified in the field descriptor exceeds the 
maximum length for the data type for the machine 
format of the file. 

User Action Correct the length or data type of the field descriptor 

Field position of SEQUENCE_FIELD parameter is not integer 
constant. 

Description The first value in the field descriptor specified for the 
SEQUENCE_FIELD (or SF) parameter must be an 
integer constant. 

User Action Correct the field descriptor. 

File attributes for {file} cannot be acquired. 

Description FMU cannot acquire the file attribute values of the 
file. 

User Action Check that the correct file was specified. If necessary, 
ask site personnel for help. 

G-12 SCL Advanced File Management Usage Revision G 



Messages Listing 

File {name} cannot be located to duplicate its specification. 

Description The file specified by the DUPLICATE_SPECIFICATION 
(or DS) parameter is not specified by the FILE (or F) 
parameter of a preceding SET_OUTPUT_ATTRIBUTES 
directive. 

User Action Check that the correct file names were specified on the 
DS parameter and on the preceding SET_OUTPUT_ 
ATTRIBUTES directives. Then, either move the SET_ 
OUTPUT_ATTRIBUTES directive for the file before 
this directive or change this directive so that it omits 
the DS parameter and explicitly specifies the other 
parameter values. 

File {name} cannot be opened. 

Description FMU cannot open the file. 

User Action Check that the correct file was specified. If necessary, 
ask site personnel for help. 

File does not have a collation table. 

Description The CONDITIOI\_COLLATING_SEQUENCE parameter 
specifies that the collation table stored with the input 
file (INPUT_FILE) or output file COUTPUT_FILE) is 
to be used. However, no collation table is stored with 
the file because it is not an indexed-sequential file with 
a collated primary key. 

User Action Check that the correct file was specified as the input 
file or output file. Specify a collation table on the 
CONDITIO:K_COLLATING_SEQUENCE parameter. 

File {file name} has already been specified as an exception 
record file. 

Description 

User Action 

Revision G 

The file has already been specified as the exception 
records file for another output file. (It was specified as 
the value for the EXCEPTION _RECORDS_FILE 
parameter on another SET_OUTPUT_ATTRIBUTES 
directive.) 

Check that the correct file name was specified. Specify 
another file on one of the EXCEPTION _RECORDS_ 
FILE parameters. 

FMU Error Messages G-13 



Messages Listing 

File {file name} has been prematurely closed. 

Description 

User Action 

The file has been closed because FMC found an error 
and the ERROR_DISPOSITIO:t'\ specification is ABORT 
(the default). 

See the other diagnostics for the reason for the file 
closing. 

File {name} is not defined in a SET_OUTPUT_ATTRIBUTES 
directive. 

Description The file name specified on the directive is not specified 
on the FILE (or F) parameter of a preceding SET_ 
OUTPUT_ATTRIBUTES directive. 

User Action Supply or relocate the SETOA directive for the file. 

FILE parameter is missing from {directive name} directive. 

Description The required FILE (or F) parameter is missing from 
the directive. 

User Action Add the FILE parameter specifying the file name. 

FMU malfunction: 

Description FMU has detected an error in its own processing. 

User Action Follow site-defined procedures for reporting software 
problems. 

FOR loop step value cannot be zero. 

Description The FOR statement specifies a step value of 0. The 
FOR statement increment can be a positive or negative 
integer, but it cannot be zero. The default value is 1. 

User Action Correct or remove the step value. 

G-14 SCL Advanced File Management Usage Revision G 



Messages Listing 

Found a DUPLICATE_SPECIFICATION parameter duplicating e an unspecified directive. 

Description 

User Action 

The DUPLICATE_SPECIFICATION cannot be used if 
the directive has not been already defined for the 
specified file. 

Specify the directive before duplicating its specification. 

Found DUPLICATE SPECIFICATION parameter coexisting with 
parameters other than FILE. 

Description If the DUPLICATE_SPECIFICATION (DS) parameter is 
specified on a directive, the only other parameter that 
can also be specified on the directive is the FILE 
parameter. Specification of any additional parameters is 
invalid. 

User Action Remove either the DS parameter or .the parameters 
other than the DS and FILE parameters. 

Found {item} in {language element} where expecting {item}. 

Description A syntax error in a language element of the directive 
file was detected. 

User Action Correct language element. Minimum requirement is to 
supply one of the expected items in place of the found 
item. More might be required, however, because this 
error causes FMU to skip all characters out to the next 
semicolon or end-of-line. 

Found length specification of one for output field of data type Y, 
Z, or G. 

Description The length specification for data types Y, Z, and G 
must be greater than one byte. 

User Action Make length specification greater than one. 

Revision G FMU Error Messages G-15 



Messages Listing 

Found MACHINE_FORMAT of file specified by DUPLICATE_ 
SPECIFICATION parameter to be different from MACHINE_ A 
FORMAT of file specified by FILE parameter. W' 

Description The MACHINE_FORMAT parameter value for the file 
specified by the DUPLICATE_SPECIFICATION (or DS) 
parameter must be the same as for the file specified by a 
the FILE (or F) parameter. W' 

User Action Specify the same MACHINE_FORMAT value for both 
files. 

Found more than two values in MAXIMUM_FILE_UNITS 
parameter. 

Description The value set for the MAXIMUM_FILE_ UNITS (or 
MFU) parameter can contain only two values: the unit 
type and the number of units. 

User Action Correct the MFU value set. 

Given file attributes of INTERNAL_ CODE = {option}, data type 
{type} is not valid for {file name} file. Acceptable values are 
{types}. 

Description The internal code file attribute indicates that the 
specified data type is invalid. If not explicitly specified, 
the internal code is derived from the MACHINE_ 
FORMAT specification for the file. The internal code for 
Cl 70 MACHINE_ FORMAT is D64, which disallows use 
of the P (packed decimal) data type. 

User Action Change the data type to one of the acceptable types. 

In order to use SET_PRINT_ATTRIBUTES for this file, the 
maximum record length must be at least {number}. 

Description 

User Action 

To format a file for printing, FMU requires that the 
maximum record length attribute of the file be at least 
the value specified in the message. FMU determines 
the value in the message using the value of the page 
width attribute. 

Either remove the SET_PRINT_ATTRIBUTES directive 
specifying the file so FMU does not format the file for 
printing or increase the maximum record length value 
to the value specified in the message. 

G-16 SCL Advanced File Management Usage Revision G 



Messages Listing 

$1NPUT_STRING_POS cannot be used on a Cl70 file containing 
ASCII data. 

Description 

User Action 

The string search function, $INPUT_STRING_POS 
($ISP) cannot be used when the file is a NOS or 
NOS/BE ASCII (uppercase and lowercase) text file. 

Remove the $INPUT_STRING_POS function. 

$INPUT_STRING_POS could not find the specified search 
string. 

Description The string search function, $INPUT_STRING_POS 
($ISP) did not find the specified string in the search. 

User Action Check that the correct values are specified for the 
function. If appropriate, specify a default value to be 
used when the string is not found in an input record. 

Insufficient room in the destination field for the final 12-bit 6/12 
ASCII character. 

Description The destination field specified on the assignment 
statement is too short for the converted data. 

User Action Lengthen the destination field. 

Integer constant is too large. 

Description A specified integer constant is greater than 232 - 1. 

User Action Ensure that the constant ends with a valid delimiter 
such as a space. Decrease the constant if necessary. 

Integer value is outside permissible range of {number} to 
{number} for this context. 

Description Integer value is either too large or too small. 

User Action Correct the integer value. 

e INTERNAL CODE attribute value invalid for Cl70 file. 

Description The IC attribute value is invalid. 

User Action Correct the IC attribute value. 

Revision G FMU Error Messages G-17 



Messages Listing 

INTERNAL_CODE attribute value invalid for C180 file. 

Description The INTERNAL_CODE (or IC) attribute value is 
invalid. 

User Action Specify ASCII as the INTERNAL_CODE file attribute 
value. 

Length is bad for data type {type}. Acceptable values are 
{values}. 

Description The length specified in the field descriptor is invalid 
for the indicated data type. 

User Action Either correct the data type or the length. 

Literal exceeds {number} characters. 

Description The literal is longer than the maximum length for a 
literal of that data type. 

User Action Check length of literal or change data types to 
accommodate the literal. 

Literal is not terminated by an apostrophe. 

Description A literal must be terminated by an apostrophe. 

User Action Terminate the literal with an apostrophe, and check for 
proper line continuation where appropriate. Or, check 
whether an apostrophe is to be embedded in the literal. 

MAXIMUM_RECORD_LENGTH for {file name} exceeds 
{number} characters. 

Description FMU cannot handle records this large. 

User Action Decrease the MAXIMUM_RECORD_LENGTH (or 
MAXRL) attribute value for the file. 

Name exceeds {number} characters. 

Description A name specified on a directive is too long. 

User Action Shorten the name. 

G·l8 SCL Advanced File Management Usage Revision G 



Messages Listing 

No directives were found in the DIRECTIVES file. 

Description The FMU command specified a directives file, but the 
file contains no FMU directives. 

Cser Action Correct the file, or specify the correct DIRECTIVES file 
name. 

No keys for the indexed_sequential output file were defined. 

Description A file was designated as an indexed-sequential file, but 
no key was defined. This error is fatal. 

Cser Action Check that a primary key is defined by the NOS/VE 
SET_FILE_ATTRIBUTE command or the NOS or 
NOS/BE FILE command. 

No records were read from the input file. 

Description 

User Action 

FMC did not read any records from the input file. 

Check that the input file is local. (For NOSNE files, 
this means the file must be in the $LOCAL catalog; an 
ATTACH_FILE command enters a permanent file name 
in the $LOCAL catalog.) 

Next, check that the file is not positioned at its end 
when FMU reads it. To ensure that the file is at its 
beginning, rewind the file before the FMU command. 

Finally, check whether the file is empty. 

No SET_OUTPUT_ATTRIBUTES directive was specified in the 
DIRECTIVES file. 

Description The SET_OUTPUT_ATTRIBUTES directive is required 
when a directive file is used. This error is fatal. 

User Action Specify the SETOA directive for the output file. 

Null literal detected. 

Description 

User Action 

Revision G 

A literal contained no characters. 

Place characters in the literal. To specify a literal 
containing only an apostrophe, specify "". To specify a 
literal containing only a space, specify ' '. 

FMU Error Messages G-19 



Messages Listing 

Position of sequence field is outside range of l to {number}. 

Description 

User Action 

The position of the sequence field must be within tl>:e 
maximum record length of the file. 

Increase the MAXIMUM_RECORD_LENGTH (or MRL) 
attribute value or decrease the sequence field position 
value. 

Presence of DUPLICATE_SPECIFICATION parameter in 
directive conflicts with presence of statement list. 

Description When the DUPLICATE_SPECIFICATION (or DS) 
parameter is specified by the CREATE_OUTPUT_ 
RECORD directive, only the FILE parameter and the 
terminator CREATE_OUTPUT_RECORD_END (or 
CREOREND) are permitted. 

User Action Specify only the allowed parameters and terminator, or 
remove the DS parameter. 

PRINT_ TITLE literal exceeds {number} characters. 

Description The PRINT_ TITLE literal exceeds the maximum 
number of characters allowed. 

User Action Shorten the print title. 

Redefinition of SET_INPUT_ATTRIBUTES directive detected. 

Description The SET_INPUT_ATTRIBUTES can be used only once 
in the directive file. 

User Action Specify only one SETIA directive. 

SEQUENCE_FIELD parameter absent from SET_SEQUENCE_ 
ATTRIBUTES directive. 

Description The SEQUENCE_FIELD parameter is required on this 
directive. 

User Action Specify a sequence field descriptor on the directive. e 

G-20 SCL Advanced File Management Usage Revision G 



Messages Listing 

SEQUENCE_NUMBER_INCREMENT parameter value is zero. 

Description The value specified by the SEQUENCE_NUMBER_ 
INCREMENT parameter must be greater than zero. 

User Action Correct the SNI value. 

e SET_PRINT_ATTRIBUTES directive cannot be used on a C170 
file containing ASCII data. 

Description A CYBER 170 ASCII file (uppercase and lowercase 
text) cannot be formatted for printing. 

User Action Check that the correct file name is specified. If so, 
remove the SET_PRINT_ATTRIBUTES directive. 

SET_PRINT_ATTRIBUTES directive specified for file with 
record type not V. 

Description 

User Action 

A file specified on a SET_PRINT_ATTRIBUTES 
(SETPA) directive must have CDC variable (V) records 
as its RECORD_ TYPE (RT) attribute value. 

Check that the correct file is specified on the directive. 
Specify the V record type for the file before it is 
created. 

SET _PRINT _ATTRIBUTES directive specified for non·sequential 
file. 

Description The SET_PRINT_ATTRIBlITES directive specifies a 
file to be formatted for printing. A file to be printed 
must have sequential file organization. 

User Action Check that the correct file name was specified on the 
directive. Change the SET_FILE_ATTRIBUTES 
command for the file so that it specifies sequential file 
organization. If changing the file organization is not 
appropriate, delete the SET_PRINT_ATTRIBlITES 
directive for the file. 

Revision G FMU Error Messages G-21 



Messages Listing 

Specified INPUT file cannot be located. 

Description No file having the name specified on the FILE 
parameter exists in the $LOCAL file catalog. 

User Action Attach the file before executing the FMU command. 

Statement list absent from the CREATE_OUTPUT_RECORD 
directive. 

Description FMU could not find a statement list in the CREOR 
directive. 

User Action Specify the DUPLICATE_SPECIFICATIOK (or DS) 
parameter, or add a statement list to the CREOR 
directive. The statements must precede the CREATE_ 
OUTPUT_RECORD_END (or CREOREND) terminator 
for the directive. 

The bit offset part of the field's position is out of range. 

Description The bit index is not within the permissible range. The 
range is 1 through 8 for a NOSNE file and 1 through 
6 for a NOS or NOS/BE file. 

User Action Check data conversion operations. 

The conversion cannot proceed as specified · possibly a field 
width problem or unsupported conversion requested. 

Description The transformation could not proceed for some reason. 

User Action Examine field widths or the desired conversion. 

G-22 SCL Advanced File Management Usage Revision G 



Messages Listing 

The Cl 70 file {file name} cannot be accessed because FMU is not 
running withL11 the CREATE_INTERSTATE_CONNECTION 
utility. 

Description To access a file on the NOS or NOS/BE side of the 
system, FMU must be executed in a CREATE_ 
INTERSTATE_ CONNECTION (CREIC) utility session. 
The CREATE_INTERSTATE_CONNECTION command 
must precede the FMU command. 

User Action Add a CREATE_INTERSTATE_CONNECTION 
command before the FMC command and a QUIT 
command after the FMU command. 

The destination field was too small to contain the converted 
source. 

Description The output field was too small for the value. This error 
is trivial if ERROR_ DISPOSITION= NO_ABORT is 
specified; otherwise, the error is fatal. 

User Action Check the data values. Enlarge the length of the 
destination field if necessary. 

The field exceeds input record bounds. The input record's length 
is {length}. 

Description The field exceeds the length of the input record as 
defined by the maximum record length attribute 
specified by the SET_FILE_ATTRIBl.JTE or the NOS 
or NOS/BE FILE command. This error is trivial if 
ERROR_DISPOSITIO.K = NO_ABORT is specified; 
otherwise, the error is fatal. 

User Action Correct the length on the field descriptor. 

Revision G FMU Error Messages G-23 



Messages Listing 

The field's length is not compatible with the data type specified. 
The length specified is {number}. 

Description Certain data types have restrictions on the lengths that 
the field can have. This error is trivial if ERROR_ 
DISPOSITION=NO_ABORT is specified; otherwise, the 
error is fatal. 

User Action Change the data type or length. 

The field's position is out of range. 

Description The field position is outside of the range specified for 
the field. This error is trivial if ERROR_ 
DISPOSITION=NO_ABORT is specified; otherwise, the 
error is fatal. 

User Action Check the assignment statements. 

The label does not match the one specified at the beginning of 
the block. 

Description The trailing label does not match the preceding label 
on the statement. 

User Action Either remove the trailing label or correct it to match 
the label at the beginning of the structured statement. 

The record associated with the input file record [number {record 
number} <or> key {key value}] on FILE {file name}, was 
discarded. 

Description An error was found in record processing, and the record 
was discarded. The record number appears in the insert 
for a sequential file; the key value appears for a keyed 
file. This error is trivial if ERROR_ 
DISPOSITION= NO_ABORT is specified; otherwise, the 
error is fatal. 

User Action Examine other error messages on the listing for the 
run. 

G-24 SCL Advanced File Management Usage Revision G 



Messages Listing 

The sequence number for FILE {file name} had to be 
reinitialized at the SEQUENCE_NUMBER_PRESET value. 

Description The sequence number value became too large upon 
incrementing. Sequencing continued, beginning with the 
SEQUENCE_NUMBER_PRESET value. This error is 
trivial if ERROR_DISPOSITION=NO_ABORT is 
specified; otherwise, the error is fatal. 

User Action Define a larger sequence field. 

The SEQUENCE_NUMBER_PRESET value for FILE {file name} 
will not fit into the SEQUENCE_FIELD. 

Description The value specified as the initial sequence number is 
too large for the sequence field. This error is fatal. 

User Action Decrease the initial sequence number or increase the 
sequence field length. 

The source field contains data which is incompatible with the 
data type specified. 

Description The type of data in the input field is not compatible 
with the specified data type. This error is trivial if 
ERROR_DISPOSITION=NO_ABORT is specified; 
otherwise, the error is fatal. 

User Action Change either the data type or the position and length 
of the field. 

The source is indefmite. 

Description The value of the input data is indefinite. This error is 
trivial if ERROR_DISPOSITION=NO_ABORT is 
specified; otherwise, the error is fatal. 

User Action Determine whether the field descriptor was correctly 
specified. 

Revision G FMU Error Messages G-25 



Messages Listing 

The source is infinite. 

Description The input value is infinite. This error is trivial if 
ERROR_ DISPOSITION= NO_ABORT is specified; 
otherwise, the error is fatal. 

User Action Determine whether the field descriptor was correctly 
specified. 

The source is not representable as a floating point number 
because of an exponent overflow which occurred during data 
conversion. 

Description This is fatal if ED=A and trivial if ED=NA. 

User Action Determine whether the field descriptor was correctly 
specified. 

The source is not representable as a floating point number 
because of an exponent underflow which occurred during data 
conversion. 

Description This is fatal if ED=A and trivial if ED=NA. 

User Action Determine whether the field descriptor was correctly 
specified. 

The specified label is not defined. 

Description The specified label does not match any label that 
begins a structured statement in this CREATE_ 
OUTPUT_RECORD statement list. 

User Action Either correct the specified label or add the label to the 
appropriate structured statement. 

G-26 SCL Advanced File Management Usage Revision G 



• 

Messages Listing 

This directive is not preceded by a SET _INPUT _ATTRIBUTES 
directive. 

Description The SET_INPUT_ATTRIBUTES (or SETIA) directive 
must precede the other directives. 

User Action Place the SET_INPUT_ATTRIBUTES directive before 
the other directives. 

Trailing position is specified in SETSA field descriptor. 

Description The sequence field descriptor on the SET_ 
SEQUENCE_ATTRIBUTES directive can specify only 
the position and length of the sequence field. 

User Action Correct the field descriptor. 

Trailing position of field precedes starting position of field. 

Description This is not permitted. 

User Action Correct trailing or starting position. 

Unexpected end of directives encountered. 

Description The last directive in the file is incomplete. 

User Action Append the missing text. 

Unexpected {identifier} ignored. 

Description FMU ignored the item because it did not belong in this 
context. 

User Action Check the statement; if appropriate, remove the ignored 
item. 

Revision G FMU Error Messages G-27 



Messages Listing 

Unknown identifier - {identifier}. 

Description FMU does not recognize the value. 

User Action Correct the identifier. 

Variable {name} is already being used in outer FOR loop . 

Description A nested FOR statement cannot specify the same name 
as a FOR statement in which it is nested. 

User Action Change the name on the inner or outer FOR loop. 

{item} {item} on FILE {file name} has a length of {number}, 
exceeding the MAXIMUM_RECORD_LENGTH of {number}. 

Description The specified item has a length greater than the 
MAXIMUM_RECORD_LENGTH (MAXRL) attribute of 
the file. 

User Action Shorten the specified length so that it is within the 
maximum record length. 

{Error} was detected in literal transformation. 

Description The format of the literal does not agree with the 
operand that describes it. 

User Action Correct literal or change operand. 

G-28 SCL Advanced File Management Usage Revision G 

• 

• 







A data type 

Index 

A 
A data type 13-7 
AAM 

Glossary definition A-1 
Utilities comparison D-7 

Abandoning alternate-key 
requests 

CANCEL_ KEY_ 
DEFINITIONS 
subcommand 7-14 

QUIT subcommand 7-35 
ADD_PIECE subcommand 7-24 
ADD_RECORDS 

subcommand 8-19 
Adding records 

To a keyed file 6-17 
To a merge 3-5 
To a sort 3-3 

ADDR (see ADD_RECORDS 
subcommand) 

Administer_ Recovery_ Log 
Command 9-37 
Ring constraints 9-26 
Tasks 9-27 
Utility 9-26 

Advanced Access Methods A-1 
Altered_Not_Closed flag 6-7 
Altering sort key 

characters 2-13 
Alternate index 

Description 5-17 
Glossary definition A-1 

Alternate key 
Concepts 5-16 
Creation 7-2 
Definition 5-18 
Deletion 7-2 
Display 7-4 
Example 7-5 
Glossary definition A-1 

ALTERNATE KEY 
DEFINITION 8-3S 

AND logical operator 12-2 
APPLY_ KEY_ DEFINITIONS 

subcommand 7-10 

BOTH 

Applying alternate key 
requests 7-10 

Arithmetic expressions 13-32 
ARL attribute 6-32 
Ascending sort order A-1 
ASCII 

Glossary definition A-1 
Keyword 8-38 

ASCil6_FOLDED collating 
sequence E-12 

ASCil6_STRICT collating 
sequence E-14 

Assignment statement 12-4 
Attributes (see keyed-file 

attributes) 
AVERAGE_RECORD_LENGTH 

attribute 6-32 

B 
B data type 13-7 
Backup copy 

Glossary definition A-2 
BACKUP_LOG 

subcommand 9-38 
Backups of keyed files 9-3 
BACL subcommand 9-38 
BAM A-2 
Basic Access Methods A-2 
Beginning-of-information A-2 
BINARY_BITS numeric data 

format 1-8 
BINARY numeric data 

format 1-8 
Bit A-2 
Bit index A-2 
Block A-2 
BLOCK/BLOCKEND 

statement 12-8 
Block header table 6-13 
Block numbers 6-12 
Boolean 

Expressions 13-26 
Fields 13-31 
Functions 13-29 

BOTH 8-38 

Revision J NOS/VE Advanced File Management Usage Index-I 



Byte 

Byte A-2 
Byte-addressable file 

organization A-2 
Byte index A-2 

c 
Calculating FMU data storage 

requirements F -7 
CANCEL_ KEY_ DEFINITIONS 

subcommand 7-14 
CANCEL_ LOG_ CHANGES 

subcommand 9-39 
Canceling alternate key 

requests 7-14 
CANLC subcommand 9-39 
CHAAI (see CREATE 

ALTERNATE_ INDEXES) 
CHAKF (see CHANGED_ 

KEYED_FILE command 
utility) 

CHANGE_ALTERNATE 
INDEXES (see CREATE 
ALTERNATE_INDEXES) 

CHANGE_KEYED_FILE 
command utility 8-17 

Character A-2.1 
Character Sets C-1 
$CIBP function 13-15 
$CIP function 13-15 
$CISP function 13-21 
CLEAR_PROBLEM_JOURNAL 

subcommand 9-40 
CLEPJ subcommand 9-40 
Close request A-3 
COBOL data types 13-6 
COBOL6_FOLDED collating 

sequence E-16 
COBOL6_STRICT collating 

sequence E-19 
$COBP function 13-16 
COLLATE_TABLE_NAME 

Attribute 6-30 
Parameter 8-28 

Collated key 
Alternate key 5-18 
Glossary definition A-3 
Primary key 5-10 
Type 8-27 

COMPRESSION_PROCEDURE_NAME 

Collating sequence 
Definition 

For a collated key E-4 
For FMU use 11-18 
For Sort/Merge 2-8 

Glossary definition A-3 
Listings 

Other E-10 
Selection 

For a collated alternate 
key 7-17 

For a collated primary 
key 6-30 

For FMU use 11-17 
COLLATING_ SEQUENCE_ 

ALTER parameter 2-13 
COLLATING_ SEQUENCE_ 

NAME parameter 2-9 
COLLATING_ SEQUENCE_ 

REMAINDER parameter 2-12 
COLLATING_ SEQUENCE_ 

STEP parameter 2-10 
Collation table 

Creation E-3 
Glossary definition A-3 
Loading for Sort/Merge 2-31 
Specification for FMU 11-17 
Use E-1 

Collation weight A-3 
COMBINE_RECORDS 

subcommand 8-21 
Command 

Definition A-3 
List A-3 
Merge A-3 
Processing 8-2 
Sort A-3 

Command list A-3 
Command merge A-3 
Command sort A-3 
Command utility 

Glossary definition A-3 
Use 7-1 

Comment submission 9 
Compression procedure 

name 5-29 
COMPRESSION _PROCEDURE_ 

NAME 
Attribute 6-33 
Parameter 8-28 

lndex-2 NOS/VE Advanced File Management Usage Revision J 



Compression processing attribute 

Compression processing 
attribute 6-33 

COMR (see COMBINE_ 
RECORDS subcommand) 

Concatenated key 
description 5-22 

Glossary definition A-4 
CONDITION_ COLLATING_ 

SEQUENCE parameter 11-17 
CONFIGURE_LOG_BACKUP 

subcommand 9-41 
CONFIGURE_LOG_ 

RESIDENCE 
subcommand 9-46 

Configuring a log 9-32 
CONLB subcommand 9-41 
CONLR subcommand 9-46 
Content addressing 5-2 
Control_ t entry during 

application 7-12 
Conventions 8 
CONVERSION _ERROR_ 

DISPOSITION 
parameter 11-17 

$COP function 13-15 
copies 
Copy byte-by-byte 6-22 
COPY_KEYED_FILE 

command 6-17 
Copying a file 

COPY_KEYED_FILE 6-17 
Correction processing during 

application 7-12 
COUNT parameter 

DELETE_RECORDS 
subcommand 8-32 

DISPLAY_ RECORDS 
subcommand 8-38 

EXTRACT_RECORDS 
subcommand 8-41 

CREA! (see CREATE_ 
ALTERNATE_INDEXES) 

CREATE_ALTERNATE_ 
INDEXES 

Command 7-7 
Subutility 8-23 
Utility 7-1 

CREATE_KEY_DEFINITION 
subcommand 7-16 

C170_COMPATIBLE parameter 

CREATE_KEYED_FILE 
command example 8-11 

CREATE_KEYED_FILE 
command utility 8-14 

CREATE_NESTED_FILE 
subcommand 8-26 

CREATE_ OUTPUT_ RECORD 
Directive 11-25 
Statements 12-1 

CREATE utility , D-8 
Creating 

Alternate keys 
Description 7-2 
Example 7-7 

Keyed files 
Description 6-26 

Creating a log 9-27 
Creating an indexed-sequential 

file 15-7 
Creating and changing 

Keyed-files 8-1 
CREKF (see CREATE_KEYED_ 

FILE command utility) 
CRENF (see CREATE_ 

NESTED_FILE subcommand) 
CREOR (see CREATE_ 

OUTPUT_RECORD) 
CSA parameter 2-13 
CSN parameter 2-9 
CSR parameter 2-12 
CSS parameter 2-10 
CTN attribute 6-30 
$CURRENT_INPUT_BIT_POS 

function 13-15 
$CURRENT_INPUT_POS 

function 13-15 
$CURRENT_INPUT_STRING_ 

POS function 13-21 
$CURRENT_OUTPUT_BIT_ 

POS function 13-16 
$CURRENT_OUTPUT_POS 

function 13-15 
CYBER 170 product 

comparison D-1 
CYBIL programming 

language 5-10 
Cycle reference A-4 
CYCLE statement 12-9 
C170_COMPATIBLE 

parameter 2-7 

Revision J NOSNE Advanced File Management Usage Index-3 



DA file organization 

D 
DA file organization 6-27 
Data alignment 12-7 
Data block 

Description 5-3 
Glossary definition A-4 

Data-block split 
Description 5-5 
Glossary definition A-4 

Data compression definition A-4 
DATA_PADDING attribute 6-32 

Attribute 6-32 
Parameter 8-28 

Data type 
Conversion rules F-2 
Descriptions 13-5 
Storage requirements F-6 

Default value A-4 
Defining keyed-file 

attributes 6-27 
DELETE_KEY_DEFINITION 

subcommand 7-29 
DELETE_LOG_CONTROL_ 
FILE subcommand 9-86 

DELETE_ LOG 
subcommand 9-51 

DELETE_NESTED_FILE 
subcommand 8-31 

DELETE_RECORDS 
subcommand 8-32 

DELETE_REPOSITORIES 
subcommand 9-87 

Deleting 
Alternate keys 7-3 
Records from a sort or 

merge 3-6 
DELL subcommand 9-51 
DELNF (see DELETE_ 

NESTED_FILE subcommand) 
DELR (see DELETE_RECORDS 

subcommand) 
Descending sort order A-4 
Destination item 

Description 12-4 
Glossary definition A-4 

Detailed exception 
information 2-28 

DF parameter 2-15 
Diagnostics (see Messages) 

DISPLAY_ OPTIONS parameter 

DIR parameter 
FMU 11-2 
Sort/Merge 2-15 

DIRECT_ACCESS 8-27 
Direct-access file 

Attributes 6-27 
Comparison with 

indexed-sequential 5-11 
Glossary definition A-4 
Hashing procedure 5-12 
Ideal characteristics 5-13 
Organization 5-11 
Primary key 5-15 
Structure 5-12 

Directive 
Format 

FMU 11-7 
Sort/Merge 2-15 

Glossary definition A-5 
Directive file 

Glossary definition A-5 
Use 

FMU 11-4 
Sort/Merge 2-3 

DIRECTIVES_ FILE 
parameter 2-15 

DIRECTIVES parameter 
FMU 11-2 
Sort/Merge 2-15 

DISLC subcommand 9-53 
DISNF (see DISPLAY_ 

NESTED_FILE subcommand) 
DISPJ subcommand 9-55 
Display code A-5 
DISPLAY_ KEY_ DEFINITIONS 

subcommand 7-30 
DISPLAY_KEYED_FILE 
command 6-11 

DISPLAY_KEYED_FILE_ 
PROPERTIES command 6-3 

DISPLAY_LOG_ 
CONFIGURATION 
subcommand 9-53 

DISPLAY_NESTED_FILE 
subcommand 8-35 

DISPLAY_ OPTIONS 
parameter 

DISPLAY_NESTED_FILE 
subcommand 8-35 

Index-4 NOS/VE Advanced File Management Usage Revision J 



DISPLAY_PROBLEM_JOURNAL subcommand 

DISPLAY_RECORDS 
subcommand 8-38 

DISPLAY_PROBLEM_ 
JOURNAL subcommand 9-55 

DISPLAY_RECORDS 
subcommand 8-37 

Alternate keys 7-4 
DISPLAY63_FOLDED collating 

sequence E-21 
DISPLAY63_STRICT collating 

sequence E-23 
DISPLAY64_FOLDED collating 

sequence E-25 
DISPLAY64_STRICT collating 

sequence E-27 
DP attribute 6-32 
Dual state operations A-5 
Duplicate key value A-5 
Duplicate key value control 

Alternate-key attribute 5-20 
Glossary definition A-5 

DUPLICATE_SPECIFICATION 
parameter 11-8 

Duplicating a keyed file 6-17 
DYNAMIC_HOME_BLOCK_ 

SPACE parameter 8-29 

E 
E parameter 2-16 
EBCDIC 

Collating sequence E-29 
Glossary definition A-5 

EBCDIC6_FOLDED collating 
sequence E-36 

EBCDIC6_STRICT collating 
sequence E-38 

EL parameter 2-17 
ELSE statement 12-15 
ELSEIF statement 12-15 
Embedded key 

Attribute 6-29 
Copying 

COPY_KEYED_FILE 6-20 
FMU 14-1 

Glossary definition A-5 
EMBEDDED_KEY 

File attribute 2-23 
Parameter 8-27 

$ERRORS file 

ENABLE_LOG 
subcommand 9-87 

End-of-information A-5 
End-of-partition A-6 -
ENR parameter 2-19 
EOP A-6 
Equal sort key processing 

Owncode 5 procedure 3-9 
RETAIN _ORIGINAL_ ORDER 

parameter 2-40 
SUM parameter 2-42 

ERC attribute 6-32 
ERF parameter 2-20 
Error file 2-16 
Error handling 

APPLY_KEY_ 
DEFINITIONS 7-11 

FMU G-2 
Sort/Merge 2-16 

ERROR_ LEVEL 
parameter 2-17 

ERROR_LIMIT attribute 6-33 
ERROR_LIMIT parameter 

ADD_RECORDS 
subcommand 8-19 

APPLY_ KEY_ DEFINITIONS 
processing 7-10 

COMBINE_RECORDS 
subcommand 8-21 

EXTRACT_RECORDS 
subcommand 8-41 

REPLACE_RECORDS 
subcommand 8-47 

Error messages (see Messages) 
ERROR parameter 2-16 
Error severity 

FMU G-3 
Sort/Merge 2-17 

$ERRORS file 
COPY_KEYED_FILE 

command 6-18 
ESTIMATED_NUMBER_ 

RECORDS parameter 2-19· 
ESTIMATED_RECORD_ 

COUNT parameter 6-32 
Evicting keyed-file data 6-19 
Examples 
MESSAGE_CONTROL 

processing attribute 6-34 

Revision J NOS/VE Advanced File Management Usage Index-5 



EXC parameter 

Sort/Merge 
Collating sequence 

definition 4-12 
Directive file use 4-6 
Merge 4-5 
Owncode procedure 4-8 
Performance 

considerations 1-18 
Sort on multiple keys 4-4 
Sort on one key 4-2 
Summing 4-10 

EXC parameter 2-20 
Exception records file 

FMU 11-17 
Glossary definition A-6 
Sort/Merge 2-20 

~XCEPTION _RECORDS_FILE 
parameter 

FMU 11-17 
Sort/Merge 2-20 

EXIT statement 12-11 
EXTR subcommand (see 

EXTRACT_RECORDS 
subcommand) 

EXTRACT_ RECORDS 
subcommand 8-40 

F 
F 

Data type 13-8 
Record type A-6 
SortlMerge parameter 2-22 

Failures, system 9-1 
Field A-6 
Field descriptor 

Format 13-1 
Glossary definition A-6 

File A-6 
File attribute 

Glossary definition A-6 
(see also Keyed-file 

attributes) 
File configuration table 6-13 
File cycle A-6.1 
FILE_LIMIT attribute 6-30 
File organization 

Attribute 6-27 
Glossary definition A-6.1 

FILE_ ORGANIZATION 
parameter 8-27 

File position A-6.1 
File reference 

Glossary definition A-7 
File structure attributes 

Description 6-30 
For direct-access files 

only 6-33 

Graphic 

For indexed-sequential files 
only 6-32 

First-in, first-out order 5-19 
FIXED record type 8-28 
FLBLOK utility D-7 
Floating point number A-7 
Floating sign format 1-11 
Flush request A-7 
FMU 

Collating sequence 
selection 11-17 

Command format 11-2 
Comparison with FORM D-8 
Data type 

Conversion rules F-2 
Descriptions 13-5 
Storage requirements F-6 

Directives 11-5 
Error messages G-4 
Error processing G-1 
Examples 15-1 
File description 11-1 
Performance 

considerations 10-2 
Reserved words 12-13 
Syntax diagrams F -8 

FOR/FOREND statement 12-12 
FORCED_ WRITE 

attribute 6-34 
FORM/FMU comparison D-5 
FORTRAN data types 13-6 
FROM parameter 2-22 
FW attribute 6-34 

G 
G data type 13-9 
Graphic A-7 

Index.fl NOS/VE Advanced File Management Usage Revision J 



H data type 

H 
H data type 13-9 
Hashing 5-15 
Hashing procedure 

Description 5-15 
Glossary definition A-8 

HASHING_PROCEDURE_ 
NAME 

Attribute 6-33 
Parameter 8-29 

HEL subcommand (see HELP 
subcommand) 

HELP subcommand 8-44 
For Administer_Recovery_ 

Log utility 9-57 
For Recovery_ Keyed_ File 

utility 9-22 
For Restore_log utility 9-90 

HEX keyword 
DISPLAY_ OPTIONS 

parameter 8-38 
VETO parameter 8-33 

Home block 
Count 8-29 
Description 5-14 
Glossary definition A-8 

Home block count 
attribute 6-33 

HPN attribute 6-33 

I 
I data type 13-10 
IF statement 12-15 
$IFBP function 13-17 
$1FL function 13-19 
$IFLB function 13-19 
$1FP function 13~16 
IHBC attribute 6-33 
IL attribute 6-32 
In Case of Trouble 10 
Index block 

Description 5-3 
Glossary definition A-8 

Index-block split 
Description 5-7 
Glossary definition A-8 

Index level 
Attribute 6-32 
Concept 5-7 

INPlJT paraI11eter 

Glossary definition A-8 
Index-level overflow 

Description 5-7 
Glossary definition A-8 

INDEX_PADDING 
Attribute 6-32 
Parameter 8-28 

Index record 
Description 5-3 
Glossary definition A-8 

INDEXED_SEQUENTIAL 8-27 
Indexed-sequential file (see also 

Keyed-file) 
Organization 

Description 5-2 
Glossary definition A-8 

Primary Key 5-15 
Structure 5-3 

INITIAL_HOME_BLOCK_ 
COUNT 

Attribute 6-33 
Parameter 8-29 

$INPUT_FIELD_BIT_POS 
function 13-17 

$INPUT_FIELD_LENGTH_ 
BITS function 13-19 

$1NPUT_FIELD_LENGTH 
function 13-19 

$INPUT_FIELD_POS 
function 13-16 

Input file 
COPY_KEYED_FILE 6-18 
CREATE_ALTERNATE_ 

INDEXES 7-7 
DISPLAY_ KEYED_ 

FILE 6-11 
FMU 11-13 
Sort/Merge 2-22 

INPUT parameter 
ADD_RECORD 

subcommand 8-19 
CHANGE_KEYED_FILE 

command utility 8-17 
COMBINE_RECORDS 

subcommand 8-21 
REPLACE_RECORDS 

subcommand 8-47 

Revision J NOSNE Advanced File Management Usage lndex-7 



$1NPUT_RECORD _LENGTH_BITS function 

$INPUT_RECORD_LENGTH_ 
BITS function 13-19 

$INPUT_RECORD_LENGTH 
function 13-19 

$INPUT_STRING_POS 
function 13-21 

$INPUT_ TRAILING_BIT_POS 
function 13-16 

$INPUT_ TRAILING_POS 
function 13-17 

Integer A-9 
INTEGER_BITS numeric data 
format 1-8 

Integer key 
Definition A-9 
Type 8-27 

INTEGER numeric data 
format 1-8 

International characters 11-11 
Intrinsic functions 13-14 
Introducing FMU 10-1 
Invalid 

Sort records 1-17 
IP attribute 6-32 
$IRL function 13-19 
$IRLB function 13-19 
IS file organization 6-27 
$ISP function 13-21 
$ITBP function 13-17 
$ITP function 13-17 

J 
J data type 13-10 
Job A-9 

K 
K parameter 2-24 
Key A-9 
Key analysis utility D-7 
Key conversion 

Using FMU assignment 
statements 14-1 

Using FMU command 
copy 14-1 

Key definitions 8-24 

Key field definition 
Alternate key 5-18 
Primary key 6-29 
Sort/Merge 2-24 

KP attribute 

KEY field reference 14-3 
KEY_ LENGTH 

Attribute 6-29 
Parameter 8-26 

Key list A-9 
KEY parameter 2-24 
KEY_POSITION 

Attribute 6-29 
Parameter 8-26 

Key type 
Glossary definition A-9 
Keyed-file attribute 6-29 
Primary 8-27 
Sort/Merge 1-6 

KEY_ TYPE parameter 8-27 
Keyed-file 

Attributes 6-27 
Copying 6-17 
Creation 

Description 6-26 
Example 
Using COPY_KEYED_ 

FILE 6-34 
Displays 6-2 
Example 

Creation 6-37 
Interface 5-29 
Organization 

Description 5-2 
Glossary definition A-9 

Re-creation 6-39 
Record reformatting 14-1 
Recovery 9-1 
Utilities 6-1 

Keyed file reformatting 14-1 
Keyed record conversion 14-1 
KEYS parameter 

DELETE_RECORDS 
subcommand 8-32 

DISPLAY_RECORDS 
subcommand 8-37 

EXTRACT_ RECORDS 
subcommand 8-40 

Keyword A-10 
KL attribute 6-29 
KP attribute 6-29 

Index-8 NOS/VE Advanced File Management Usage Revision J 



KT attribute 

KT attribute 6-29 

L 
L 

FMU data type 13-11 
Sort/Merge parameter 2-26 

Labels 12-2 
LCT parameter 2-31 
Length function 13-19 
LET attribute 6-34 
LIST_ OPTIONS parameter 2-28 
LIST parameter 2-26 
Listing file messages 2-26 
Literal 

Description 11-11 
Glossary definition A-10 

LO attribute 6-36 
LO parameter 2-28 
LOAD_COLLATING_ TABLE 

parameter 2-31 
Loading a Sort/Merge collation 

table 2-31 
Loading factor 5-14 
LOADING_FACTOR 

parameter 8-29 
Local file A-10 
Local file name A-10 
Local path A-10 
Lock A-10 
LOCK_EXPIRATION _TIME 
attribute 6-34 

Log 
Configuring 

Backup files 9-34 
Estimating repository 

size 9-34 
Log_ temporarily _full 

status 9-35 
Repositories 9-32 
Repository size limits 9-33 

Creating 9-27 
Glossary definition A-10 
Modifying 9-31 
Restoring 9-70 
Update recovery 9-6 

LOG_RESIDENCE 
attribute 6-35 

MERGE command 

Log_ temporarily _full 
status 9-35 

LOGGING_OPTIONS 
attribute 6-36 

Logical data 11-12 
Logical expression 12-2 
Logical operators 12-2 
Login A-10 
Logout A-10 
LOOP statement 12-17 
LOWER_ TO_ UPPER collating 

sequence 11-19 
LR attribute 6-35 
LTU collating sequence 11-19 

M 
$MAIN_FILE 5-29 
Major sort key A-10.1 
Manual 

Audience 7 
Comments 9 
Conventions 8 
History 2 
Organization 7 

MANUAL parameter 8-44 
Map of the keyed-file 

structure 6-13 
Mass storage A-11 
$MAX_ OUTPUT_ TRAILING_ 

BIT_POS 13-17 
$MAX_ OUTPUT_ TRAILING_ 

POS 13-17 
MAXBL attribute 6-31 
MAXIMUM_BLOCK_LENGTH 

attribute 6-31 
Maximum precision of data 

types 13-7 
MAXIMUM_ RECORD_ 

LENGTH 
Attribute 6-28 
Parameter 8-26 

MAXRL attribute 6-28 
MC attribute 6-34 
Media A-11 
Memory writes 9-4 
Merge A-11 
MERGE command 2-1 

Revision J NOSNE Advanced File Management Usage Inde:x-9 



Merge input order verification 

Merge input order 
verification 2-51 

MESSAGE_ CONTROL 
attribute 6-34 

Messages listing 
FMU G-1 
Keyed-file utilities and 

Sort/Merge (see the 
Diagnostics Messages for 

NOSNE manual) 
MINIMUM_ RECORD_ 

LENGTH 
Attribute 6-28 
Parameter 8-27 

Minor sort key A-11 
MINRL attribute 6-28 
MIPDIS utility D-7 
MIPGEN utility D-7 
Modifying a log 9-31 
Module A-11 
$MOTBP 13-17 
$MOTP 13-17 

N 
N data type 13-12 
NAME parameter 

CREATE_NESTED_FILE 
subcommand 8-26 

DELETE_NESTED_FILE 
subcommand 8-31 

DISPLAY_NESTED_FILE 
subcommand 8-35 

SELECT_NESTED_FILE 
subcommand 8-49 

Nested field descriptors 13-4 
Nested file 

Defining a 5-29 
Description 5-29 
Glossary definition A-11 
Merging records 6-22 
NO 8-33 

Nonembedded key 
Attribute 6-29 
Copying 

COPY_KEYED_FILE 6-20 
FMU 14-1 

Glossary definition A-11 
Nonnumeric literal A-11 

OSV$DISPLAY63_FOLDED collating sequence 

NOSNE predefined collation 
table 

Listings E-10 
Use E-2 

NOT logical operator 12-2 
Null suppression 

Description 5-20 
Glossary definition A-11 

Null values 5-20 
Numeric data formats 1-7 
NUMERIC_FS numeric data 
format 1-9 

Numeric literal 
Glossary definition A-12 

NUMERIC_LO numeric data 
format 1-9 

NUMERIC_LS numeric data 
format 1-10 

NUMERIC_NS numeric data 
format 1-10 

NUMERIC_ TO numeric data 
format 1-10 

NUMERIC_ TS numeric data 
format 1-10 

0 
Object library A-12 
OD parameter 2-33 
OFL parameter 2-34 
OMIT_ DUPLICATES 

parameter 2-33 
OMRL parameter 2-35 
Operand A-12 
Operator A-12 
OPn parameter 2-37 
OR logical operator 12-2 
$0RL function 13-20 
$0RLB function 13-20 
OSV$ASCil6_FOLDED collating 

sequence E-12 
OSV$ASCil6_STRICT collating A 

sequence E-14 W 
OSV$COBOL6_FOLDED 

collating sequence E-16 
OSV$COBOL6_STRICT collating 

sequence E-19 A 
OSV$DISPLAY63_FOLDED W 

collating sequence E-21 

Index-10 NOS/VE Advanced File Management Usage Revision J 



OSV$DISPLAY63_STRICT collating sequence 

OSV$DISPLAY63_STRICT 
collating sequence E-23 

OSV$DISPLAY64_FOLDED 
collating sequence E-25 

OSV$DISPLAY64_STRICT 
collating sequence E-27 

OSV$EBCDIC collating 
sequence E-29 

OSV$EBCDIC6_FOLDED 
collating sequence E-36 

OSV$EBCDIC6_ STRICT 
collating sequence E-38 

$0TBP 13-18 
$OTP 13-18 
Output file 

DISPLAY_KEYED_ 
FILE 6-11 

FMU 11-15 
Sort/Merge 2-48 
TO parameter 2-48 

OUTPUT parameter 
CHANGE_KEYED_FILE 

command utility 8-17 
CREATE_KEYED_FILE 

command utility 8-14 
DISPLAY_NESTED_FILE 

subcommand 8-35 
DISPLAY_RECORDS 

subcommand 8-37 
EXTRACT_RECORDS 

subcommand 8-40 
$0UTPUT_RECORD_ 

LENGTH_BITS function 13-20 
$0UTPUT_RECORD_LENGTH 

function 13-20 
$OUTPUT_ TRAILING_BIT_ 

POS 13-18 
$OUTPUT_ TRAILING_ 

POS 13-18 
Overflow block A-12 
Overpunched sign format 1-12 
OWNCODE_FIXED_LENGTH 

parameter 2-34 
OWNCODE_MAXIMUM_ 

RECORD_LENGTH 
parameter 2-35 

Owncode procedure 
Glossary definition A-12 
Name 2-37 
Parameters 3-2 

Position pointers 

Processing 3-1 
Specificaton 3-1 

OWNCODE_PROCEDURE_n 
parameter 2-37 

Owncode 1 procedure 
Processing 3-3 
Specification 2-37 

Owncode 2 procedure 
Processing 3-5 
Specification 2-37 

Owncode 3 procedure 
Processing 3-6 
Specification 2-37 

Owncode 4 procedure 
Processing 3-8 
Specification 2-37 

Owncode 5 procedure 
Processing 3-9 
Specification 2-37 

OWNFL parameter 2-34 
OWNMRL parameter 2-35 
OWN n parameter 2-37 

p 

P data type 13-12 
Packed decimal A-12 
PACKED_NS numeric data 

format 1-11 
PACKED numeric data 

format 1-11 
Padding A-12 
Parameter A-13 
Parameter list A-13 
Parameter name A-13 
Partition A-13 
Path A-13 
Performance considerations 1-18 
Permanent file A-13 
Piece 

Description 5-22 
Glossary definition A-13 

Position-dependent 
parameter A-13 

Position functions 13-15 
Position-independent 

parameter A-13 
Position pointers 12-6 

Revision J NOSNE Advanced File Management Usage Index-11 



Positional Sort/Merge parameter specification 

Positional Sort/Merge parameter 
specification 2-1 

Predecessor product 
comparison D-1 

Predefined collation table 
Use E-2 

Predefined collation tables E-10 
Preserving alternate-key 

definitions 6-17 
Primary key 

Attributes 6-29 
Direct-access file 5-15 
Glossary definition A-13 
Indexed-sequential file 5-15 

Procedure A-14 
Processing attributes 6-33 
Product comparison D-1 
Program library list 

Definition A-14 
Reloading the collation 

table 6-22 
Properties of keyed files 6-3 
Protecting your keyed files 

Backup copies 9-2 
Memory writes 9-4 
Partial update 9-4 
Update logs 9-6 

Q 
Q data type 13-13 
QUI (see QUIT subcommand) 
QUIT keyword 8-33 
QUIT subcommand 

For Administer _Recovery_ 
Log utility 9-59 

For CREATE_ALTERNATE_ 
INDEXES 7-35 

For CREATE_KEY_ 
DEFINITION 7-28 

For Create_Keyed_File 
utility 8-46 

For Recovery_ Keyed_ File 
utility 9-24 

For Restore_log utility 9-92 

Relational expressions 

R 
RA parameter 2-39 
Radix A-14 
Random access A-14 
Rasp configuration table 6-13 
Rasp list table 6-13 
Re-creating keyed files 

Description 6-39 
Example 6-39 

REAL numeric data 
format 1-11 

Real state A-14 
Reca owncode parameter 3-2 
Reeb owncode parameter 3-2 
RECFM subcommand 9-14 
Reckf 

Command 9-11 
Utility 9-10 

Record A-14 
Record attributes 6-28 
Record length 

Keyed file 6-28 
Sort/Merge 1-14 

RECORD_LIMIT attribute 6-30 A 
RECORD_ TYPE W 

Attribute 6-28 
Parameter 8-28 

RECORDS_ PER_ BLOCK 
Attribute 6-32 
Parameter 8-29 

RECOVER_FILE_MEDIA 
subcommand 9-14 

Recover_ Keyed_ File 
Command 9-11 
Utility 9-10 

Recovery 
Attributes 6-34 
Description 9-6 
From a file media failure 9-8 
From a processing failure 9-8 
Glossary definition A-14.l 
Logs 9-6, 70 
Of keyed files 9-8 e 

Recovery log attributes 6-35, 36 
Reformatting data 

Considerations 12-5 
Example 15-1 ,a 

Related manuals B-1 W 
Relational expressions 12-3 

lndex-12 NOSNE Advanced File Management Usage Revision J 



Relational operators 

Relational operators 12-3 
Remainder collation step 2-12 
REPEAT statement 12-18 
Repeating groups 

Description 5-23 
Glossary definition A-14.1 

REPLACE_ RECORDS 
subcommand 8-47 

Replacing Occurrences of a 
string 15-5 

Repositories 
Estimating size 9-34 
Size limits 9-33 

RESA parameter 2-39 
Reserved words 12-13 
RESL command 9-76 
RESLCF subcommand 9-82 
Restore_ log 

Tasks 9-72 
Utility 9-70 

RESTORE_LOG Command 9-76 
RESTORE_LOG_CONTROL_ 

FILE subcommand 9-82 
RESTORE_REPOSITORIES 

subcommand 9-77 
Restoring 

Damaged logs 9-70, 72 
Keyed files 9-8 

Result array 
Format 2-39 
Glossary definition A-15 
Specification 2-39 

RESULT_ARRAY 
parameter 2-39 

RET parameter 2-40 
RETAIN_ ORIGINAL_ ORDER 

parameter 2-40 
RETAIN parameter 2-40 
Return_code owncode 

parameter 3-2 
Rewind A-15 
Ring A-15 
Ring attribute A-15 
RING_ATTRIBUTES 

attribute 6-19 
RL attribute 6-30 
Rla owncode parameter 3-2 
Rlb owncode parameter 3-2 
ROO parameter 2-40 
RPB attribute 6-32 

Signed numeric sort keys 

RT attribute 6-28 
Ruined flag 6-7 

s 
S parameter 2-42 
SCL 

Glossary Definition A-17 
Manual set B-2 
Utility use 7-1 

Segment control table 6-13 
SELECTED_NESTED_FILE 

subcommand 8-49 
SEQA parameter 2-13 
SEQN parameter 2-9 
SEQR parameter 2-12 
SEQS parameter 2-10 
Sequential access A-15 
Sequential file 

organization A-15 
SET_INPUT_ATTRIBUTES 

directive 11-13 
SET_LOG_BACKUP _ 

ACCOUNT subcommand 9-61 
SET_ OUTPUT_ATTRIBUTES 

directive 11-15 
SET_ PERFORMANCE_ OPTION 

subcommand 9-65 
SET_PRINT_ATTRIBUTES 

directive 11-23 
SET_SEQUENCE_ATTRIBUTES 

directive 11-21 
SET_ VERIFICATION_LEVEL 

subcommand 9-67 
SETIA directive 11-13 
SETLBA subcommand 9-61 
SETOA directive 11-15 
SETPA directive 11-23 
SETPO subcommand 9-65 
SETSA directive 11-21 
Setting keyed-file 

attributes 6-28 
SETVL subcommand 9-67 
Short sort records 1-15 
Sign A-15 
Sign overpunch 

representation 1-13 
Signed numeric data A-16 
Signed numeric sort keys 1-13 

Revision J NOSNE Advanced File Management Usage Index-13 



SOLVER 

SOLVER 9 
Sort A-16 
SORT command 2-1 
Sort key 

Description 1-3 
Glossary definition A-16 

Sort/Merge 
Command format 2-1 
Description 1-1 
Directive format 2-15 
Error severities 2-17 
Examples 

Collating sequence 
definition 4-12 

Directive file use 4-6 
Merge 4-5 
Owncode procedure 4-8 
Sort on multiples keys 4-4 
Sort on one key 4-2 
Summing 4-10 

Input files 2-22 
Sort on multiple keys 4-4 
Summing 4-10 

Invalid records 1-17 
Listing file messages 2-26 
Parameter positions 2-1 
Product comparison D-2 
Record length 1-14 
Statistics 2-41 

Sort/Merge 5 comparison D-2 
Sort order 

Description 1-12 
Glossary definition A-16 

SORT parameter 
ADD_RECORDS 

subcommand 8-19 
COMBINE_RECORDS 

subcommand 8-21 
REPLACE_RECORDS 

subcommand 8-4 7 
Source item 

Description 12-4 
Glossary definition A-16 

Source library A-16 
Sparse-key control 

Description 5-21 
Glossary definition A-16 

Starting position 13-2 

Sum field 

Statistics 
DISPLAY_KEYED_FILE_ 

PROPERTIES 6-9 
Glossary definition A-16 
Sort/Merge 2-41 

STATUS parameter 
ADD_RECORDS 

subcommand 8-19 
CHANGE_KEYED_FILE 

command utility 8-17 
COMBINE_RECORDS 

subcommand 8-21 
CREATE_ALTERNATE_ 

INDEXES subutility 8-23 
CREATE_KEYED_FILE 

command utility 8-14 
CREATE_NESTED_FILE 

subcommand 8-29 
DELETE_NESTED_FILE 

subcommand 8-31 
DELETE_RECORDS 

subcommand 8-33 
DISPLAY_NESTED_FILE 

subcommand 8-36 
DISPLAY_RECORDS 

subcommand 8-38 
EXTRACT_RECORDS 

subcommand 8-41 
HELP subcommand 8-41 
REPLACE_RECORDS 

subcommand 8-47 
SELECT_NESTED_FILE 

subcommand 8-49 
Sort/Merge 2-41 

Status variable A-16 
STOP statement 12-19 
Storage requirements F -6 
String search functions 13-21 
Structural properties 

DISPLAY_KEYED_FILE_ 
PROPERTIES 6-3 

Glossary definition A-16 
Structure attributes 6-30 
Structured statements 12-2 
Subcommand summary 8-3 
SUBJECT parameter 8-44 
Submitting comments 9 
Sum field 

Glossary definition A-17 
Specification 2-42 

lndex-14 NOSNE Advanced File Management Usage Revision J 



SUM parameter 

SUM parameter 2-42 
Summing 

Glossary definition A-17 
Specification 2-42 

Syntax diagrams F-8 
$SYSTEM.AAM.SHARED_ 

RECOVERY_LOG 6-35 
System Command Language (see 

SCL) 
System failures 9-1 
System hashing procedure 5-15 
$SYSTEM.MANUALS.AFM 8-44 

T 
T parameter 2-48 
Task A-17 
Termination_ break entry during 

application 7-12 
TO parameter 2-48 
Trailing position 13-3 
Tutorial 7 

u 
U data type 13-13 
U record type A-17 
Uncollated key 

Glossary definition A-17 
Type 8-27 

UNDEFINED record type 8-27 
UNTIL statement 12-18 
Update recovery log 

Configuring 9-32 
Creating 9-27 
Description 9-6 
Glossary definition A-17 
Modifying 9-31 

UPPER_ TO_LOWER collating 
sequence 11-19 

Usage manual 7 
USE_LOG subcommand 9-69 
USEL subcommand 9-69 
User-defined collating 

sequences 
FMU 11-19 
Sort/Merge 2-8 

User-defined collation tables 
Creation E-4 
Use E-3 

Utility use 7-1 

YES 

UTL collating sequence 11-19 

v 
V record type A-18 
VALIDATE_LOG 

subcommand 9-80 
Validating sort data 1-17 
Value step specification 2-11 
Variable A-18 
Variable-length alternate 

key 5-25 
Variable-length key A-18 
VARIABLE record type 8-28 
VER parameter 2-51 
VERIFY_MERGE_INPUT_ 

ORDER parameter 2-51 
VERIFY parameter 2-51 
VETO parameter 8-33 
Virtual state A-18 
VMIO parameter 2-51 
VOID_LOG_FOR_RESTORED_ 

FILE subcommand 9-20 
VOILFRF subcommand 9-20 

w 
WHEN clause 

CYCLE statement 12-9 
EXIT statement 12-11 

WHILE statement 12-20 

x 
XOR logical operator 12-2 

y 

Y data type 13-14 
YES 8-33 

Revision J NOSNE Advanced File Management Usage Index-15 



Z data type 

z 
Z data type 13-14 
ZERO_ LENGTH_ RECORDS 

parameter 2-52 
Zero-length sort records 1-16 

Index-16 NOS/VE Advanced File Management Usage 

Zero-length sort records 

Revision J 



Comments (continued from other side) 

>lease fold on dotted line; 
:eal edges with tape only. -------------

BUSINESS REPLY MAIL 
First-Class Mail Permit No. 8241 Minneapolis, MN 

POSTAGE WILL BE PAID BY ADDRESSEE 

CONTROL DATA 
Technology & Publications Division 
SVL104 
P.O. Box 3492 
Sunnyvale, CA 94088-3492 

11.1 ... 1 •• 111 ••• 1 •• 1.1 •• 1 ... 11 •• 1 •• 11.1 •••• 1.1 •• 11.1 

NO POSTAGE 
NECESSARY 
IF MAILED 

FOLD 

IN THE 
UNITED STATES 



NOS/VE Advanced File Management Usage 60486413 J 

We value your comments on this manual. While writing it, we made some assumptions 
about who would use it and how it would be used. Your comments will help us 
improve this manual. Please take a few minutes to reply. 

Who are you? How do you use this manual? 

D Manager D As an overview 
D Systems analyst or programmer 

D Applications programmer 
D To learn the product or system 

D For comprehensive, reference 
D Operator D For quick look-up 

D Other_~~~~~~~~~~~-

What programming languages do you use? -------------------

How do you like this manual? Check those questions that apply. 

Yes Somewhat No 
D D D Is the manual easy to read (print size, page layout, and so on)? 

D D D Is it easy to understand? 

D D 0 Does it tell you what you need to know about the topic? 

D D D Is the order of topics logical? 

D D D Are there enough examples? 

D D D Are the examples helpful? (0 Too simple? D Too complex?} 

D D 0 ls the technical information accurate? 

D D D Can you easily find what you want? 

D D D Do the illustrations help you? 

Comments? If applicable, note page and paragraph. Use other side if needed. 

Would you like a reply? D Yes D No 

From: 

Name Company 

Address ate 

Phone 

Please send program listing and output if applicable to your comment. 


