
ETA10 Instruction Set
Reference Manual

ET A 1 O Computer System

PUB-1264

ErASYSTEMS
A Control Data Company

ETA Systems, Incorporated
1450 Energy Park Drive

St. Paul, MN 55108

ETAlO Instruction Set
Ref ere nee Manual

ETAlO Computer System

PUB-1264
Rev. A
March, 1989

ETA Systems, Inc. Instruction Set Reference Manual

The items listed below are referenced in this document and are names, products, or trademarks
associated with the following companies:

ET A is a trademark of ET A Systems, Incorporated.

Disclaimer:

ET A TM Systems, Incorporated reserves the right to make changes in specifications and other
information contained in this publication without prior notice, and the reader should consult ET A
Systems to determine whether any such changes have been made. (At non-U.S. installations, the
reader should consult the local marketing representative.) This manual may not be reproduced and is
intended for the exclusive use of ET A Systems' customers.

The terms and conditions governing the sale of ET A Systems hardware products and the licensing and
use of ET A Systems software consist solely of those set forth in the written contracts between ET A
Systems and its customers. No statement contained in this publication, including statements regarding
capacity. suitability for use, or performance of products, shall he considered a warranty by ET A
Systems for any purpose or give rise to any liability of ET A Systems.

In no event will ETA Systems be liable for any incidental, indirect, special, or consequential damages
(including lost profits) arising out of or relating to this publication or the information contained in it,
even if ETA Systems has been advised, knew, or should have known of the possibility of such
damages.

The copyright laws prohibit the copying of this manual without the written consent of ET A Systems.
Copying, under the law, includes translating into another language or format.

Prepared by: ETA Systems, Incorporated
Technical Communication Dept.
1450 Energy Park Drive
St. Paul, MN 55108

© 1989 by ETA Systems, Incorporated.
All rights reserved.

ii PUB-1264 Rev. A

Revision Record

Documents that are complete and approved for release carry an
alphabetic code. The first release is identified as revision A, the
second as revision B, and so on.

Document Date
Revision

Rev. A March 1989

Changes in This Revision
Revision A is the first release of this manual.

PUB-1264 Rev. A iii

Revision Record Instruction Set Reference ,\fanual

iv PUB-1264 Rn·. :\

Table of Contents

About This Document . xv

Purpose ... xv
Intended Audience . xv
How This Document Is Arranged . xv
How to Use This Document xvii
Conventions Used in This Document xvii

Introduction . Chapter 1

Introduction to the ETAlO Hardware 1-2

Operations Performed by ETAlO Instructions 1-2

ETAlO Instruction Formats 1-3

ETAlO Instruction Functions and Operands 1-3

Introduction to the ETAlO Instruction Set . Chapter 2

Hardware for Machine Instructions 2-2
Central Processing Units 2-2
Input/Output Units and the Service Unit 2-3
Memories .. 2-3

Instruction Operations 2-4
Scalar and Vector Operations 2-4
Memory Transfer 2-4
Monitor Operations 2-5
Accessing Special Purpose Registers 2-5
Bit and Byte Operations 2-5
Branching and Indexing 2-5
Floating-Point Arithmetic 2-5

Machine Instruction Formats 2-6
Instruction Function Field 2-12
Instruction Subfunctions 2-12

Subfunctions For Vector Operations 2-14
Control Vectors . 2-14
Destination Vector and Control Vector Offsets 2-15

PUB-1264 Rev. A v

Table of Contents fnsrruction Set Reference :\Ianual

Introduction to the ETAlO Instruction Set . Continued

Broadcast Operands 2-15
Sign Control 2-15

ETAlO Instruction Descriptions . Chapter 3

Instruction Description Formats 3-2
00 .. 3-3
03 .. 3-3
04 .. 3-4
05 .. 3-6
06 .. 3-6
07 .. 3-7
08 .. 3-8
09 .. 3-9
OA .. 3-10
oc .. 3-11
OD .. 3-11
OE .. 3-12
OF .. 3-14
10 .. 3-16
11 .. 3-17
12 .. 3-18
13 .. 3-18
14 .. 3-19
15 .. 3-20
16 .. 3-22
17 .. 3-24
18 .. 3-24
19 .. 3-25
lA .. 3-25
lB .. 3-26
lC .. 3-27
lD .. 3-27
lE .. 3-28
lF .. 3-28
20 .. 3-29
21 .. 3-30
22 .. 3-31
23 .. 3-32
24 .. 3-33
25 .. 3-34

vi PUB-1264 Rev. A

Instruction Set Ref ere nee Manual Table of Conrents

ETAlO Instruction Descriptions . Continued

26 .. 3-35
27 .. 3-36
28 .. 3-37
29 .. 3-37
2A .. 3-38
2B .. 3-38
2C .. 3-39
2D .. 3-39
2E .. 3-40
2F .. 3-41
30 .. 3-42
31 .. 3-43
32 .. 3-44
33 .. 3-46
34 .. 3-48
35 .. 3-49
36 .. 3-50
37 .. 3-52
38 .. 3-52
39 .. 3-53
3A .. 3-53
3B .. 3-54
3C .. 3-54
3D .. 3-55
3E .. 3-55
3F .. 3-56
40 .. 3-56
41 .. 3-57
42 .. 3-57
44 .. 3-58
45 .. 3-58
46 .. 3-59
48 .. 3-59
49 .. 3-60
4B .. 3-60
4C .. 3-61
4D .. 3-61
4E .. 3-62
4F .. 3-62
50 .. 3-63
51 .. 3-64
52 .. 3-65

PUB-1264 Rev. A vii

Table of Contents Instruction Set Reference A1anual

ETAlO Instruction Descriptions . Continued

S3 .. 3-66
S4 .. 3-67
SS .. 3-68
S6 .. 3-69
S7 .. 3-71
S8 .. 3-72
S9 .. 3-72
SA .. 3-73
SB .. 3-73
SC .. 3-74
SD .. 3-7S
SE .. 3-76
SF .. 3-76
60 .. 3-77
61 .. 3-77
62 .. 3-78
63 .. 3-78
64 .. 3-79
6S .. 3-79
66 .. 3-80
67 .. 3-80
68 .. 3-81
69 .. 3-81
6B .. 3-82
6C .. 3-82
6D .. 3-83
6E .. 3-83
6F .. 3-84
70 .. 3-85
71 .. 3-86
72 .. 3-87
73 .. 3-88
74 .. 3-89
7S .. 3-90
76 .. 3-91
77 .. 3-92
78 .. 3-93
79 .. 3-93
7A .. 3-94
7B .. 3-94
7C .. 3-95
7D .. 3-96

viii PUB-1264 Rei'. A

Instruction Set Reference Manual Table of Conrents

ETAlO Instruction Descriptions . Continued

7E .. 3-97
7F .. 3-97
80 .. 3-98
81 .. 3-99
S2 .. 3-100
S3 .. 3-101
S4 0 ••••••••••••••••••••••••••••••• 3-102
SS 0 •••••••••••••••• 3-103
S6 0 ••••••••••••• 0 ••• 3-104
S7 0 •••••• 0 •••• 0. 0 •••••••••••••••••••••••• 3-105
SS 0 •••••••••••••• 0 •••• 0. 0 ••••••••••••••• 3-106
S9 0 •••••••••••••••••• 3-107
SA .. 3-lOS
SB .. 3-109
8C .. 3-110
SF .. 3-111
90 0 •••••••••••••••••• 3-112
91 .. 3-113
92 0 • 0 0 •••••••••• 3-114
93 0 ••• 3-115
94 0 ••• 3-116
95 0 •••••••••••••••• 3-118
96 .. 3-120
97 0 ••• 0 ••••••• 0 0 ••••••• 0 ••• 3-121
9S 0 ••• 3-122
99 0 •••• 0 ••••••••••• 0 •••••••••••••••••••• 3-123
9A .. 3-124
9B .. 3-125
9C .. 3-126
9D .. 3-128
AO .. 3-130
Al .. 3-132
A2 .. 3-134
A4 .. 3-136
AS .. 3-138
A6 .. 3-140
AS .. 3-142
A9 .. 3-144
AB ... 3-146
AC ... 3-148
AF ... 3-150
BO .. 3-152

PUB-1264 Rev. A I:-._

Table of Contents Instruction Set Reference ;\fcznual

ETAlO Instruction Descriptions . Continued

Bl .. 3-154
B2 .. 3-156
B3 .. 3-158
B4 .. 3-160
BS .. 3-162
BO .. 3-164
Bl .. 3-166
B2 .. 3-168
B3 .. 3-170
B4 .. 3-172
BS .. 3-174
BO .. 3-176
Bl .. 3-177
B2 .. 3-178
B3 .. 3-179
B4 .. 3-180
BS .. 3-181
BO .. 3 -182
Bl .. 3-183
B2 .. 3-184
B3 .. 3-185
B4 .. 3-186
BS .. 3-187
B6 .. 3-188
B7 .. 3-189
BS .. 3-191
BA ... 3-192
BB .. 3-193
BC .. 3-194
BD ... 3-195
BE .. 3-196
BF .. 3-196
co .. 3-197
Cl .. 3-198
C2 .. 3-199
C3 .. 3-200
C4 .. 3-201
cs .. 3-202
C6 .. 3-203
C7 .. 3-204
cs .. 3-205
C9 .. 3-206

x PUB-1264 Rel'. A

Instruction Set Reference Manual Table of Conients

ETAlO Instruction Descriptions . Continued

CA ... 3-207
CB .. 3-208
cc ... 3-209
CD ... 3-210
CE ... 3-210
CF .. 3-211
DO .. 3-212
Dl .. 3-213
D4 .. 3-214
DS .. 3-215
D8 .. 3-216
D9 .. 3-218
DA ... 3-220
DB ... 3-221
DC ... 3-222
DF ... 3-223
FO .. 3-224
Fl .. 3-225
F2 .. 3-226
F3 .. 3-227
F4 .. 3-228
FS .. 3-229
F6 .. 3-230
F7 .. 3-231
F8 , 3-232
FA ... 3-233
FB .. 3-235
FC .. 3-237
FD ... 3-238
FE .. 3-239
FF .. 3-239

Appendix A: Instructions by Function Code . A-1

Appendix B: Instructions By Mnemonic . B-1

Appendix C: Instructions With Sign Control . C-1

Appendix D: Instructions With Broadcasting . D-1

PUB-1264 Rev. A xi

Table of Contents Instruction Set Reference Manual

Appendix E: Instruction Termination Rules . E-1

Appendix F: Floating-Point Operations . F-1

Floating-Point Format F-1
Two's Complement Notation F-2
Floating-Point Arithmetic F-4

Right Normalization F-5
Floating-Point Addition F-6
Floating-Point Subtraction F-8
Floating-Point Multiplication F-1 O
Floating-Point Division F-12

Normalized Upper Results F-14
Double-Precision Results F-15
Floating-Point Square Root Operations F-16
Significant Results , F-17
Floating-Point Comparison Rules F-18

Indefinite Operand(s) F-18
Machine Zero Operand(s), Not Indefinite F-18
Operand(s) Not Indefinite or Machine Zero F-19

Appendix G: The Data Flag Register . G-1

Data Flag Register Format G-1
Data Flags G-2
The Mask Field G-2
Product Field Bits G-2
Data Flag Branch Enable Bit G-2

Causing a Data Flag Branch G-3
Data Flag Register Bit Assignments G-4
Free Data Flags G-5
Instructions Affecting Data Flag Register Bits G-6

Appendix H: Addressing Vector Operands H-1

Addressing Vector Source Operands H-1
Source Operand Offsets H-1
Addressing Vector Result Operands H-2
Result Operand Offsets H-2

Appendix I: Illegal Instructions . I-1

Type One Illegal Instructions 1-1

Type Two Illegal Instructions I-1

xii PUB-1264 Rev. A

Instruction Set Ref ere nee Manual Table of Contents

Glossary . Glossary-1

Referenced Documents List Ref.Doc.-1

Index . Index

List of Figures

Figure
2-1.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
F-1.
F-2.
F-3.

F-4.
F-5.

F-6.
F-7.
G-1.

Title Page
Components of an ETAlO central processing unit (CPU) 2-2
Structure of Register R for the #04 Instruction 3-5
Structure of Register R for the #08 Instruction 3-8
Register T after an #OE instruction 3-12
Structure of Register R for the #OF instruction 3-1 S
Bit Compress Operations. 3-19
Bit Merge Operations. . .. 3-20
Bit Mask Operations ... 3-22
A 32-Bit Floating-Point Number's Format F-1
A 64-Bit Floating-Point Number's Format. F-2
Floating-Point Result Format for Add, Subtract, and
Multiply Operations .. F-4
Floating-Point Addition .. F-7
To perform floating point subtraction,
complement the subtrahend, then add. F-9
Floating-Point Multiplication. F-11
Floating-Point Division .. F-13
Data Flag Register Format. G-1

List of Tables

Table Title Page
2-1. Instruction Qualifiers. . .. 2-13
2-2. Qualifiers and valid G-bit settings for vector operations. 2-14
3-1. Vector instructions that can be used in a Link operation. 3-69
3-2. Valid Combinations for Linked Vector Instructions. 3-70
3-3. Logical Operations on vector A and B elements 3-128
3-4. Logical Functions on X and Y to Produce Order Vector Z 3-130
3-5. Results of the logical operations performed by the source vectors 3-131
3-6. Logical Functions on X and Y to Produce Order Vector Z 3-132
3-7. Results of the logical operations performed by the source vectors. 3-13 3
3-8. Logical Functions on X and Y to Produce Order Vector Z 3-134
3-9. Results of the logical operations performed by the source vectors 3-135
3-10. Logical Functions on X and Y to Produce Order Vector Z 3-136
3-11. Results of the logical operations performed by the source vectors 3-13 7
3-12. Logical Functions on X and Y to Produce Order Vector Z 3-138
3-13. Results of the logical operations performed by the source vectors 3-139
3-14. Logical Functions on X and Y to Produce Order Vector Z 3-140

PUB-1264 Rev. A XIII

Table of Contents Instruction Sci Reference Manual

Table

3-15.
3-16.
3-17.
3-18.
3-19.
3-20.
3-21.
3-22.
3-23.
3-24.
3-25.
A-1.
B-1.
C-1.
D-1.
E-1.
G-1.
G-3.
G-4.
I-1.

xiv

Title Page
Results of the logical operations performed by the source vectors 3-141
Logical Functions on X and Y to Produce Order Vector Z 3-142
Results of the logical operations performed by the source vectors 3-14 3
Logical Functions on X and Y to Produce Order Vector Z 3-144
Results of the logical operations performed by the source vectors 3-145
Logical Functions on X and Y to Produce Order Vector Z 3-146
Results of the logical operations performed by the source vectors. 3-14 7
Logical Functions on X and Y to Produce Order Vector Z 3-148
Results of the logical operations performed by the source vectors 3-149
Logical Functions on X and Y to Produce Order Vector Z. 3-15 0
Results of the logical operations performed by the source vectors 3-151
Instructions by Function Code A-1
Instructions by Mnemonic B-1
Instructions for which sign control is valid. C-1
Instructions Allowing Broadcasting D-1
Instruction Terminating Conditions E-1
Data Flag Bit Settings .. G-4
Definitions For Free Data Flag Bits 53-55 G-6
Data Flag Bits set by function codes. G-7
The Domain Package's Illegal Instruction Mask I-2

PUB-1264 Rev. A

About This Document ...

Purpose
This document is a reference manual for the ETAlO instruction set. It
is not intended for use as a guide for assembly language
programmers. (Refer to the Referenced Documents List for the title
of manuals that contain assembly language information.) The manual
is designed to provide quick access to reference information about
each instruction's format and function.

Refer to PUB-1005, ETAJO System Reference Manual, for detailed
information about ETA10 operations.

Intended Audience
The manual's audience includes:

• Programmers in higher-level languages such as FORTRAN, C, and
CYBIL, who may be reading assembler output from programs

• Programmers who may be writing QS calls in FORTRAN programs

• Site analysts

• On-site engineers

How This Document Is Arranged
There are 3 chapters and 9 appendices in this document.

Chapter 1, Introduction, covers the manual's contents, summarizing
the information presented in each chapter.

Chapter 2, Introduction to the ETAlO Instructions, gives an overview
of the ET Al 0 hardware, and summarizes the types of operations the
machine can perform. The thirteen instruction formats are laid out,
with an explanation of designator meanings for each format.
Instruction subfunctions are also described.

Chapter 3, Instruction Descriptions, lists each instruction in
hexadecimal function code order. The description covers the

PUB-1264 Rev. A xv

About This Document ... Instruction Set Reference Manual

xvi

instruction's function, valid qualifiers and G-bit settings, with an
explanation of the operations performed. See Appendix B for a
listing of the instructions in mnemonic order.

Appendix A, Instructions by Function Code, contains each instruction
organized by function code, with its mnemonic, format type, the G-bit
settings, and a brief definition of its operation.

Appendix B, Instructions by Mnemonic, contains each instruction
organized by its mnemonic, function code, format type, the G-bit
settings, and a brief definition of its operation.

Appendix C, Instructions Using Sign Control, is a table of
instructions for which sign control is valid. The list is organized by
function code. The sign control G-bits valid for each instruction are
included in the list.

Appendix D, Instructions Allowing Broadcasting, lists, by function
code, those instructions that can have broadcast A or B operands. The
entry for each instruction includes whether A, B, or both can be
broadcast.

Appendix E, Instruction Terminating Conditions, lists the terminating
conditions for instructions, depending on their operands.

Appendix F, Floating-Point Operations, discusses how floating-point
arithmetic is performed on the ETA10.

Appendix G, Data Flag Register Bit Settings, describes the function
and format of the data flag register, with the meanings of bit settings
that cause branching.

Appendix H, Vector Operands, explains how designators on vector
instructions refer to registers that address source and destination
vectors, and may specify offsets.

Appendix I, Illegal Instructions, describes which instructions are
illegal and the consequences of issuing illegal instructions.

The Glossary provides definitions of important terms found in this
manual.

PUB-1264 Rev. A

Instruction Set Reference Manual About This Document ...

How to Use This Document
The information provided in this manual assumes that the reader is
familiar with the information in PUB-1005, ETAIO System Reference
Manual.

For an overview of topics presented in this manual, read chapter one.
Read chapter two for details about instruction formats and designator
meanings, and for information about instruction subfunctions,
particularly for instructions that use sign control.

To find information about how a specific instruction operates, refer to
the instruction's description in chapter three.

See the appendices for tables summarizing certain instruction
characteristics, and for subjects referred to in the instruction
descriptions, such as floating-point operations.

Conventions Used in This Document
Numbers that are represented in hexadecimal format in the text have
a pound sign (#) as prefix.

The mnemonics used throughout this manual are those of the ET A
System V assembler, "as".

PUB-1264 Rev. A xvii

About This Document ... Instruction Set Reference Manual

xviii PUB-1264 Rev. A

Chapter

Introduction

In This Chapter ...
Chapter one introduces topics about the ETA 10 and its instruction set
that are covered in chapters two and three and the appendices of this
manual. This chapter contains the following sections:

• Introduction to the ETAlO Hardware

• Operations Performed by ETAlO Instructions

• ETAlO Instruction Formats

• ETAlO Instruction Functions and Operands

PUB-1264 Rev. A 1-1

Introduction Instruction Set Reference Manual

Introduction to the ETAlO Hardware
The ETAlO is a multi-processor system consisting of Central
Processor Units (CPU), lrtput-Output Units (IOU), the Service Unit,
and a hierarchical memory.

IOUs are processors responsible for data movement through the
system. The Service Unit allows operators to interact with the ETAlO,
monitoring and controlling its functions.

CPUs interpret and execute instructions in the system. Each CPU has
scalar and vector processors, 256 general purpose registers, and its
own central processor (CP) memory.

The hierarchical memory system consists of three memories: shared
memory (SM), the communication buffer (CB), and CP memory
(CPM). Shared memory is a large auxiliary storage area for CP
memory data, accessible from each CPU. Each CPU has its own CP
memory, holding machine instructions and data. The communication
buffer, a fast memory used for high-speed synchronization messages
and semaphore operations, is accessible from each CPU.

The section "Hardware For Machine Instructions" in chapter 2 briefly
describes the system components.

Operations Performed by ETAlO Instructions

1-2

There are 216 hardware instructions performing:

• Scalar and vector operations

• Memory transfers

• Monitor operations

• Access to special purpose registers

• Bit and byte manipulation

• Branching and indexing

• Floating-point arithmetic.

The section "Instruction Operations" in chapter 2 expands on these
topics.

PUB-1264 Rev. A

Instruction Set Reference Manual Introduction

ETAlO Instruction Formats
Instructions are 32 or 64 bits long. There are 13 instruction formats,
six of which are 64-bit instructions. The other seven formats are 32
bits long.

Each instruction word is divided into fields, bit groups that have
instruction designators defining the function and operands. Each
designator field is usually 8 bits long; some formats have designators
that are longer.

The instruction formats and designator descriptions are laid out in the
chapter 2 sections "Machine Instruction Formats" and "Instruction
Designators".

ETAlO Instruction Functions and Operands
All instructions have a function code, a number from #00 through
#FF, that describes the operation performed. An instruction performs
its function on operands. The number, format, and meaning of
instruction operands depend on each instruction format.

Many instructions have an 8-bit subfunction field that further defines
the function. For example, instructions performing vector operations
have a subfunction field describing: operand size, whether a control
vector acts on zeros or ones, the offset applied to the output field,
whether operands are broadcast, and what sign control is valid.

"Instruction Command Field" in chapter 2 provides details about the
function and subfunction fields.

PUB-1264 Rev. A 1-3

Introduction Instruction Set Reference Manuol

1-4 PUB-1264 Re\'. A

Chapter

Introduction to the ETAlO Instruction set

In This Chapter . . .
Chapter two introduces the instruction set in terms of:

• Hardware for Machine Instructions

• Instruction Operations

• Machine Instruction Formats

• Instruction Designators

• Instruction Function Field

• Instruction Subfunctions

PUB-1264 Rev. A 2-l

Introduction to the Instruction Set Instruction Set Reference Manual

Hardware for Machine Instructions

2-2

The ETAlO is a multiprocessor computer system, all processors
having access to a large shared memory. All peripheral and network
connections are through UO units into shared memory. The
components of an ETAlO central processing unit (CPU) are shown in
figure 2-1, and introduced in the following sections. Refer to
PUB-1005, ETAJO System Reference Manual, for a more detailed
discussion of the ETAlO components.

to maintenance
interface on
all CPU
components

A

Figure 2-1. Components of an ETA10 central processing unit (CPU).

Central Processing Units

A central processor unit (CPU) is the functional unit that interprets
and executes instructions in the system. Each CPU has a central
processor that operates independently, with its own scalar and
double-pipelined vector processors, 256 general purpose 64-bit
registers, and CP memory.

Each CPU is directly connected to shared memory and communication
buffer ports for data transfers, and to the communication buff er for
communication with other system processors. Maintenance Interface
logic on each component allows the Service Unit to perform diagnostic
and maintenance functions on each CPU.

A CPU runs in Job or Monitor mode. Modes change when the #09
exchange instruction executes. Some operating characteristics change,
depending on the new mode. In Monitor mode, memory is physically
addressed, register #03 points to the next branch instruction, and a
#09 exchange to Job mode instruction is the last instruction executed.
Job mode addresses memory virtually, the Invisible Package holds the
next branch instruction, and any instruction can be the last executed
before an exchange to Monitor mode occurs.

PUB-1264 Rev. A

Instruction Set Reference Manual Introduction to the Instruction Set

Input/Output Units and the Service Unit

An Input/Output Unit (IOU) is a specialized multi-processor,
bus-connected computer system that contains a set of channel
processors, 2 SIO lines, a data pipe controller, and global memory.
IOUs are responsible for all data movement through the system to
peripherals (including networks). They provide a means to attach
peripheral devices and networks. A super-cooled ETAlO supports up
to 18 IOUs.

The Service Unit (SU) provides access for operator display and
control, system reconfiguration, and maintenance functions.

Memories

The ETAlO's hierarchical memory system consists of CP memory,
shared memory, and the communication buff er.

Each CPU has its own CP memory that holds machine instructions
and data. CP memory is accessible by its central processor and the
service unit, and under direction of the CPU, data can be transferred
between CP memory and shared memory.

CP memory can be addressed two ways, virtually and physically.
Virtual storage is divided into regions with contiguous address called
'pages.' Each page is identified by a unique virtual page address, and
is associated with a unique physical page address while in CP
memory.

Shared memory provides large bulk auxiliary storage for CP memory
data. In super-cooled systems, access is via the shared memory
interface (SMI) that supports up to 8 high-speed CPU ports, and 20
low-speed ports for IOU and SU connections. Data is transferred in
blocks in half-word or full-word transfer units, ranging from a
half-word to 64K words.

The communication buffer (CB) offers fast auxiliary storage, and is
used to transmit high-speed synchronization messages and signals
among the system components. In a super-cooled sytem, it can be
divided into halves. Each half has its own interface that connects CB
to 10 ports supporting up to 8 CPUs and the system's IOUs.
Base/Limit/Access Pairs (BLAPs) denote the lowest numbered (base)
and highest numbered (limit) CB address accessible by a CPU, and
the operations that the CPU can perform on a range of CB addresses
(access rights). The BLAPs are defined in domains in the CPU. Each
domain has a set of 4 BLAPs, and can permit access to up to 4
ranges of CB memory at once.

PUB-1264 Rev. A 2-3

Introduction to the Instruction Set Instruction Set Reference lvfanual

Instruction Operations
The ETAlO's 216 instructions are model-independent. Instructions #Ox
through #7x are 32-bits long, and instructions #8x through #Fx are
64-bits long. The CPU's register file has registers that are available to
the instructions as a source of operands, and as a destination for the
result. Instructions perform a variety of operations; the main ones are
summarized in this section.

Scalar and Vector Operations

Designators in scalar instructions point to registers that are sources
and destinations. Registers contain the source operands and results.

The emphasis of the ETAlO is on vector operations. Vector
instructions process vectors that stream data from source to
destination locations in CP memory. Instruction designators point to
registers that describe the sources and destinations; the sources and
destinations are usually vectors, not single quantities. Vector
instructions address vector operands and control how results are
stored. Qualifiers modify the instruction's function.

Memory Tran sf er

2-4

All central processors can access the communication buff er to
synchronize and coordinate system-wide programs. Instructions
perform word and half word transfers between CB and the register
file, semaphore post and wait operations, conditional word/half-word
swap from CB to the register file, and conditional test and set with
word/half word load from CB to register file.

Shared memory instructions manage data transfer between CP
memory and shared memory by setting up a queue of information to
transfer. Instructions build Transfer Request Blocks (TRBs) describing
the type of transfer, set up an input queue in CP memory, and place
TRBs awaiting execution in the input queue. The hardware reads
TRBs off the input queue, and transfers the data until the queue is
exhausted. After a TRB is read from CP memory, it may be placed in
a completion queue residing in CP memory.

Shared memory instructions check for the transfer's completion status,
and can also stop and restart VO between TRBs to allow the input
queue to be adjusted.

PUB-1264 Rev. A

Instruction Set Reference Manual fntroduction to the lnscr11c1ion Set

Monitor Operations

Instructions are available to perform privileged monitor operations
unavailable in Job mode. These instructions function in Monitor mode
only. Their operations include address translation, loading and storing
associative registers, loading keys, and loading the Monitor Interval
Timer.

Accessing Special Purpose Registers

Access to special purpose registers such as the Real-Time Clock, the
Job Interval Timer, the Monitor Interval Timer, and the Breakpoint
Register is possible using instructions. An important special purpose
register is the Data Flag Register, which provides for status
conditions, and causes an automatic branch to a special routine upon
encountering certain operands, results, or conditions.

Bit and Byte Operations

Data can be manipulated by instructions at the bit and byte level.
Bvtes can be moved. loaded. and stored. Bit stre8ms mav hf' ., , , - - - - - --- ------- ----,; --
compressed, merged, masked, counted, and logically processed.

Branching and Indexing

Execution can proceed elsewhere in a program unconditionally or
based on the result of a comparison. Single bit, 24- or 48-bit integer,
32- or 64-bit integer, 32- or 64-bit floating-point operands can be
compared.

Special branching occurs when the #09 Exit Force Instruction passes
control between Monitor and Job mode programs. The #36 (Branch or
Forward Domain Change), and #17 (Backward Domain Change)
instructions go between different domains of a job program.

Indexing is applied to addressing to load and store instructions,
branch instructions, and string instructions.

Floating-Point Arithmetic

Instructions perform floating-point arithmetic on 32- or 64-bit
floating-point numbers, returning upper, lower, normalized, and
significant results. Numbers may also be compared according to
floating-point comparison rules. Several instructions produce
double-precision results. Appendix F explains floating-point arithmetic
in detail.

PUB-1264 Rev. A ') -
~-)

Introduction to the Instruction Set Instruction Set Reference Manual

Machine Instruction Formats

F G

Format #1

The ETAlO instructions have thirteen formats, numbered #1 through
#D. Six formats are 64 bits long, and seven are 32 bits long. Each
format is divided into bit groups that have assigned instruction
designators. The thirteen formats are described below, with their
designators labeled by letters (F, G, X, A etc.). Shaded areas are
unused. The meaning of each designator is listed. All fields are 8
bits long unless otherwise specified.

x A y B z c

F Function code of instruction.

G An 8-bit designator that specifies certain subfunction conditions. Subfunctions
include length of operands (32- or 64-bit), normal or broadcast source vectors,
and so on. The number of bits used in the G designator varies with
instructions.

X Specifies a register that contains the offset or index for vector or string source
field A.

A Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

Y Specifies a register that contains the offset or index for vector or string field
B.

B Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

Z Specifies a register that contains the base address for the order vector used to
control the result vector in field C.

C Specifies a register that contains the field length and base address for storing
the result vector or string field. C+ 1 specifies a register containing the off set
for C and Z vector fields. If the C+l designator is used, the C designator
must specify an even-numbered register.

2-6 PUB-I264 Rev. A

Instruction Set Reference Manual Introduction to the Instruction Set

F G x A y B z c

Format #2

F Function code of instruction.

G An 8-bit designator that specifies certain subfunction conditions. Subfunctions
include length of operands (32- or 64-bit), normal or broadcast source vectors,
and so on. Number of bits used in the G designator varies with instructions.

X Specifies a register that contains length and base address for order vector
corresponding to source sparse vector field A.

A Specifies register containing the base address for a source sparse vector field.

Y Specifies a register that contains the length and base address for the order
vector corresponding to source sparse vector field B.

B Specifies register containing the base address for a source sparse vector field.

Z Specifies a register that contains the length and base address for the order
vector corresponding to result sparse vector field C.

C Specifies a register that contains the field length and base address for storing
the result vector or string field.

F G x A y B z c

Format #3

F Function code of instruction.

G An 8-bit designator that specifies certain subfunction conditions. Subfunctions
include length of operands (32- or 64-bit), normal or broadcast source vectors,
and so on. The number of bits used in the G designator varies with
instructions. For some format 3 instructions, the G designator is used as an
immediate byte 18.

X Specifies a register that contains the offset or index for vector or string source
field A.

A Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

Y Specifies a register that contains the offset or index for vector or string field
B.

B Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

Z Specifies a register that contains the index for result field C.

C Specifies a register that contains the field length and base address for storing
the result vector or string field.

PUB-1264 Rev. A 2-7

Introduction to the Instruction Set Instruction Set Reference Afonual

F R s T

Format #4

F Function code of instruction.

R Specifies a register containing an operand for use in an arithmetic operation.

S Specifies a register containing an operand for use in an arithmetic operation.

T Specifies a destination register for the transfer of the arithmetic results.

F R (48 bits)

Format #5

F Function code of instruction.

R Specifies a destination register for the transfer of an operand or operand sum.

I 48-bit index used to form the branch address in a #B6 branch instruction. In
#BE and #BF index instructions, I is a 48-bit operand.

F R (16bits)

Format #6

F Function code of instruction.

R Specifies a destination register for the transfer of an operand or operand sum.

I A 16-bit operand.

F R* S*

Format #7

F

*

2-8

Function code of instruction.

Described where used.

T*

PUB-1264 Rev. A

Instruction Set Reference Manual Introduction to the Instruction Set

F R s T

Format #8

F Function code of instruction.

R Specifies registers and branching conditions given in the individual instruction
descriptions.

S Specifies registers and branching conditions given in the individual instruction
descriptions.

T Specifies a register that contains the base address and, in some cases, the field
length of the corresponding result field or branch address.

F R s· T*

Format #9

Function code of instruction. F

R Specifies registers and branching conditions given in the individual instruction
descriptions .

• Described where used.

F R T

Format #A

F Function code of instruction.

R Specifies registers and branching conditions given in the individual instruction
descriptions.

T Specifies a register containing the old state of a register, DFB register, and so
on; in an index, branch, or inter-register transfer operation.

PUB-1264 Rev. A

Introduction to the Instruction Set Instruction Set Reference A1anual

F R T
6 bits

Format #8

F Function code of instruction.

R Specifies registers and branching conditions given in the individual instruction
descriptions.

I In the #33 branch instruction, the 6-bit I is the number of the DFB object bits
used in the branching operation.

T Specifies a register containing the old state of a register, DFB register, and so
on; in an index, branch, or inter-register transfer operation.

F G x A y B z c

Format #C

F Function code of instruction.

G An 8-bit designator that specifies certain subfunction conditions. Subfunctions
include iength of operands (32- or 64-bit), normal or broadcast source vectors,
and so on. The number of bits used in the G designator varies with
instructions.

X Specifies a full word or half word register that contains an operand, the length
and type of which is determined by G field bits.

A Specifies a full word or half word register, the length and type of which is
determined by G field bits.

Y Specifies one of the following: a register that contains an index used to form
the branch address; part of the half word item count in a relative branch; or a
destination register for storing a one if the condition is met, and zero
otherwise.

B Specifies a register that contains the branch base address in the rightmost 48
bits, or must be set to zero, depending on G bit 2.

Z Contains a two's complement or unsigned integer that determines whether the
condition is met.

C Specifies a full word or half word register that contains the sum of (A) + (X)
for indexed branch instructions, but must be set to zero for compare
floating-point instructions.

2-10 PUB-1264 Rei'. A

Instruction Set Reference Manual Introduction to the lns1ruc1ion Set

F G x· A* B* c·

Format #0

F

G

•

Function code of instruction.

An 8-bit designator that specifies certain subfunction conditions. Subfunctions
include length of operands (32- or 64-bit), normal or broadcast source vectors,
and so on. The number of bits used in the G designator varies with
instructions.

Described where used .

PUB-1264 Rev. A 2-l l

Introduction to the Instruction Set Instruction Set Reference Manual

Instruction Function Field
Each instruction has a function and most have operands. All
instructions have a function field, the first byte in the instruction. The
function value ranges from #00 through #FF. #00 through #7F are
32-bit instructions, and #80 through #FF are 64-bit instructions. The
function defines the operation that the instruction performs.

The instruction performs its. function on operands, and the operands'
number, format, and meaning depend on the instruction. In the
instruction word, operands are generally defined by 8-bit designators
that are translated into register numbers, address offsets and bases,
and immediate data.

Instruction Subfunctions

2-12

Many machine instructions have a subfunction field (referred to as the
"G-field"), which further defines the instruction's function. Bits 0-7
in the G field ('G-bits' 0-7) are set to determine the subfunction. Bit
setting meanings may vary, depending on the instruction. (Note that
in some instructions, #56 for example, the R-field contains
subfunctions and uses 'G-bits. ')

Table 2-1 lists the qualifier mnemonics used with the instructions in
this manual, their hexadecimal values, and the qualifier's meaning.
Note that the hexadecimal values listed in the table must be added
when more than one qualifier is specified for an instruction.

For the convenience of program developers, the qualifier associated
with each of the G-bits is also included in the table. The description
for each instruction in this manual refers to G-bit usage by means of
these qualifiers. The absence of a qualifier in an instruction
description means that the corresponding G-bit must be a zero; the
presence of a qualifier means that the corresponding G-bit must be a
one.

The first digit of the value is the hexadecimal value of G-bits 0-3,
the second digit is the hexadecimal value of G-bits 4-7. For
example, qualifier rel has a hexadecimal values of 0 and 4. The bit
settings are then 00000100.

Table 2-2 lists the G-bit definitions associated with most vector
instructions.

PUB-1264 Rev. A

Instruction Set Reference Manual Introduction to the Instruction Set

Table 2-1. Instruction Qualifiers.

Qualifier #Value G-bits Set Meaning

a 10 3 Broadcast A operand
b 08 4 Broadcast B operand
br 40 1 Unconditional branch
brb 06 5 & 6 Relative branch backward
brf 04 5 Relative branch forward

bro 80 0 Branch on one
brz co 0 & 1 Branch on zero
c 02 6 Complement A operand
caO 00 none CB address base, limit, access select 0
cal 01 7 CB address base, limit, access select 1

ca2 02 6 CB address base, limit, access select 2
ca3 03 6 & 7 CB address base, limit, access select 3
fia 04 5 Use fixed increment A
fwc 10 3 Full word boolean compare (64 bits)
grp 02 6 Transmit elements in groups

ivg 60 1 & 2 Implication vector generation
h 80 0 Half word operand
lh 20 2 Start at last hit
ma 04 5 Magnitude of A operand
mb 01 7 Magnitude of B operand

n 06 5 & 6 Negative A operand
neq 01 7 Search for inequality
0 20 2 Offset destination and control vector
paO 00 none CB process word address base, limit, access select 0
pal 01 7 CB process word address base, limit, access select 1

pa2 02 6 CB process word address base, limit, access select 2
pa3 03 6 & 7 CB process word address base, limit, access select 3
ra 10 3 First operation's result replaces A input to second operator
rb 08 4 First operation's result replaces B input to second operator
rel 04 5 Relative branch (forward or backward)

rf 01 7 Source/destination resides in the register file
rvg 20 2 Reverse vector generation
saO 00 none CB semaphore address base, limit, access select 0
sal 10 3 CB semaphore address base, limit, access select 1
sa2 20 2 CB semaphore address base, limit, access select 2

sa3 30 2 & 3 CB semaphore address base, limit, access select 3
sb 01 7 Skip B on each A stored
SC 20 2 Set condition
so 20 2 Set bit to one
sz 30 2 & 3 Clear bit to zero

t 10 3 Toggle bit
usi 08 4 Use 48-bit unsigned integers
xvg 40 1 Exclusive OR vector generation
z 40 1 Control vector on zeros

PUB-1264 Rev. A 2-13

Introduction to the Instruction Set Instruction Set Reference Manual

Subfunctions For Vector Operations

2-14

Vector instructions all have an 8-bit G-field. The G-field bit settings
for a particular instruction affect its operand size, how the control
vector operates, whether operands are broadcast, and if there is any
sign control. Table 2-2 shows only the qualifiers used with vector
instructions, the G-bits set by each qualifier, and the meaning.
Explanations of the different subfunctions follow the table. Refer to
table 2-1 for a complete list of instruction qualifiers.

Table 2-2. Qualifiers and valid G-bit settings for vector operations.

Qualifier G-bit State Meaning

h 0 0 Operands are 64 bits long (word)
1 Operands are 32 bits long (half word)

z 1 0 Control vector operates on binary ones
1 Control vector operates on binary zeros

0 2 0 No offset for destination field and control vector
1 Offset for destination field and control vector

a 3 0 Vector A is the source operand
1 Broadcast repeated constant in register A

b 4 0 Vector B is the source operand
1 Broadcast repeated constant in register B

ma,mb, 5,6,7 0 Sign control
c,n

Control Vectors

The Z designator specifies a register containing the control vector's
base address. A control vector is a bit vector. Each bit is associated
with storing a result in the corresponding element of the destination
vector. If a control vector is specified in an instruction (non-zero Z
designator), the z qualifier can be used to set bit 1 of the G-field. z
determines whether a zero or one control vector bit allows a result to
be stored. Data flag bits are set only for operands that are stored. If z
is specified, the result is stored if the corresponding bit in the control
vector is zero. Otherwise, the result is stored if the control vector bit
is set to one. A Z designator of zero causes all result elements to be
stored in the destination field without regard to the z qualifier. The
control vector uses the same length used by the destination field.

PUB-1264 Rev. A

Instruction Set Reference Manual Introduction to the Instruction Set

Destination Vector and Control Vector Offsets

The C designator specifies a register containing the destination
vector's field length and base address. If the o qualifier is specified
(setting G-bit 2), register C+l contains an offset into the destination.
The same offset applies to the control vector. The format of register
C+l IS:

32-bit extended sign offset

0 15 16 47 48 63

If an offset is specified, C must be specified as an even number. The
off set is added to the base address to get the destination and control
vector starting addresses (it is a bit offset for the control vector). The
offset is an item count. Before being added to the base address, the
offset is multiplied by a factor adjusting for the size of the operands.
It is shifted left six places for 64-bit operands, and five places for
32-bit operands. The offset is subtracted from the field length
specified for the destination field. A C designator of zero has no
destination field. Note that offsets also apply to input vectors, refer
to Appendix H.

Broadcast Operands

Qualifiers a and b control the setting of G-bits 3 and 4 that define
broadcasts for the A and B source operand streams. If G-bits 3 and 4
are not set, vectors A and B from CPU memory are the sources. If
they are set, the A or B source field is a constant obtained from the
respective register, a repeated operand that is broadcast for the length
of the operation. The constant becomes each element of the A or B
vector stream. If the h qualifier is set to define 32-bit operands, the
source operand registers are 32-bit registers. Some instructions do not
permit the use of one or both of the a and b qualifiers.

Registers A and B contain the field length and base address of the
two source operand streams when broadcast is not specified.
Registers X and Y, respectively, contain the offsets. The offsets
modify the field length and base address of the source fields just as
described for the destination field. A non-broadcast source field that
is shorter than the destination field is extended with operands (as
described in Appendix E).

Sign Control

On some vector operations, G-bits 5, 6, and 7 are used to define sign
control for input operands. Four qualifiers - c, ma, mb, and n -
control the state of the three G bits. If no qualifiers are set, vector A
and B stream operands are used in the normal way.

PUB-1264 Rev. A 2-15

Introduction to the Instruction Set Instruction Set Reference Manual

2-16

The c qualifier sets G-bit 6 to complement the coefficients of the A
stream operands before they are used. The ma qualifier sets G-bit 5 to
use the magnitude of the coefficients of A stream operands. mb sets
G-bit 7 to use the magnitude of the coefficients of B stream operands.
The n qualifier may be used only if neither ma nor mb is specified. n
sets bits 5 and 6 to use the negative form of A operands; all positive
coefficients of the A stream operands are complemented before being
used. Negative operands are not changed.

Appendix C lists the instructions for which sign control is valid.

PUB-1264 Rev. A

Chapter

ETAlO Instruction Descriptions

In This Chapter . ..
The ET Al 0 instruction descriptions are listed in hexadecimal order of
the function code. They include the instruction format, G-bit settings
and qualifier mnemonics, as well as a short description of the
operation.

PUB-1264 Rev. A 3-1

ETA JO Instruction Descriptions Instruction Set Reference Manual

Instruction Description Formats

3-2

The instruction descriptions in this chapter occupy one-half, one, or
two pages. Instruction are arranged by their numeric function code,
#00 through #FF.

The description includes the instruction's:

• Length (half word or full word).

• Format (#1 through #D).

• Subfunction and qualifiers, if applicable. In the example below, all
subfunction bits in the G-field may be set. The valid qualifiers are
h,z,o,a,b,ma,c,n, and mb.

Subfunction: hzoabsss
Qualifiers: h,z,o,a,b,sss=[ma,c,(n=ma+c),mb]

• Instruction word layout, showing the designators (F,G,A,B, and so
on). Shading indicates unused areas. (Unused areas of an
instruction must always be cleared to zero.)

• Operations performed. A brief discussion of how the instruction
functions, with any resulting data flag bit settings. (Some string
and vector macro instructions that return a result to the register file,
and the Data Flag Register, do not alter the location in register file
nor the Data Flag Register if the instruction is a no-op.)

Hexadecimal numbers are prefixed by a pound sign (#).

For information about instruction operations mentioned in the
descriptions, refer to chapter two and the appendices of this manual.
Refer to PUB-1005, ETAJO System Reference Manual, for information
about such topics as Job and Monitor mode, domain changes, virtual
and physical addressing, and so on.

PUB-1264 Rev. A

Instruction Set Reference Manual ETA JO Instruction Descriptions

Half Word, Format #7
Subfunction: None

00

Idle

The #00 instruction is used in Monitor mode. The idle is terminated when
an interrupt occurs. When this happens, the instruction branches to the
absolute half word address in register #03. The Trace Register is entered
with this instruction's address when the branch occurs.

Half Word, Format #7
Subfunction: None

This instruction is a no-op.

PUB-1264 Rev. A

03

No Operation

3-3

ETAJO instruction Descriptions Instruction Set Reference iHanua/

04

Breakpoint On Address
Half Word, Format #4
Subfunction: None

3-4

The #04 instruction transfers to the breakpoint register the contents of the
64-bit register designated as R. The breakpoint register is a maintenance
and programming debugging aid.

The breakpoint function compares addresses of specified categories of
requests with the address in the breakpoint register. In Job mode, virtual
addresses are compared; in Monitor mode, absolute addresses. Breakpoint
compares are disabled for the absolute addressing of CP memory by
exchanges, domain changes, space table searches, and shared memory
transfers.

When an instruction writes or reads a CP memory address matching the
breakpoint address, (for the current domain only, in Job mode), bit 47 of
the data flag register is set, indicating that a condition that can cause
automatic branching has occurred. The data flag register can be set to cause
a branch to a special routine provided for support of debugging operations,
for example, a routine to trap the current program address.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJ 0 Instruction Descriptions

Figure 1-1 shows the contents of register R for the breakpoint instruction.

Breakpoint Address

0 16 58 61 62 63

Figure 1-1. Structure of Register R for the #04 Instruction.

Bits 16-58 of register R hold the breakpoint address, the CP memory
address which initiates the breakpoint function. Bits 61 and 62 can be set to
specify the breakpoint function. Usage bit 61 specifies the breakpoint
function for CP memory write instructions, and usage bit 62 specifies the
breakpoint function for CP memory read instructions. Either or both bits 61
and 62 may be set. Bits 0-15, 59-60, and 63 are unused and must be
cleared to zero.

In Job mode, the breakpoint address is saved in the breakpoint register, and
stored in the current invisible package for mode or domain changes. Since a
Job to Monitor mode change clears the breakpoint register, and Monitor
mode has no invisible package saved, the monitor program must reload the
breakpoint register if the breakpoint function is needed.

PUB-1264 Rev. A 3-5

ETAJO Instruction Descriptions Instruction Set Reference :\1anuo/

05

Void Stack and Branch
Half Word, Format #4
Subfunction: None

The #05 instruction voids the instruction stack, and branches to the address
contained in register T.

Note: An #05 instruction should follow immediately after an
instruction that stores modified code. This ensures that
the code executed is the modified code.

06

Fault Test
Half Word, Format #9
Subfunction: None

3-6

The #06 instruction is used to complement the checkword bits on the Scalar
Write bus so that the Read SECDED circuitry may be checked out. It is also
used to disable the error correction circuitry on all read buses; this permits
data to pass through the SECDED hardware without correction.

The #06 instruction's function is determined by bits set in the R designator.
R-bit 0 is set to disable error correction on all Read buses, and R-bits 1-7
set to complement the seven checkword bits accompanying each 32-bit
operand. When testing completes, the effect must be reversed by executing
the instruction with the R designator cleared to zero.

These bits must be cleared to zero with the #06 instruction before any
Monitor to Job Exchange Operation. If they are not cleared, the correction
network could produce invalid data on the Read, and write invalid data into
memory.

PUB-1264 Rel'. :\

Instruction Set Reference Manual ETA.JO Instruction Descriptions

Half Word, Format #7
Subfunction: None

07

Select Serial/Parallel Execution Mode

The #07 instruction uses the R designator bit 7 to select the execution mode
for CPU instructions that follow #07's execution. There are two instruction
execution modes; serial, selected by setting R-bit 7 to one, and parallel,
selected by setting R-bit 7 to zero.

In serial mode, no overlap or parallel operation of separate parts of
different instructions occurs. Each instruction voids the instruction stack, is
reread from memory, and completes with results properly stored, before the
next instruction begins execution. A single instruction's execution time is
unaffected by the choice of serial mode.

Parallel execution mode allows all overlap and parallel operations of
separate parts of different instructions to the full extent of the machine
capability. This is the normal mode after Master Clear, unless the CPU is in
Force Execution mode. In this case, the instruction executes as a no-op.

Force Execution mode is selected or unselected by the service unit (SU).
There are two bits in the maintenance unit input register of the CPU, set by
the SU, which force the CPU to ignore the #07 instruction and allow the SU
to select serial or parallel mode.

The execution mode remains in effect until a #07 instruction is executed
with the other mode selected. The execution mode is unaffected by
exchanges and domain changes. The #07 instruction can be executed in
either Job or Monitor mode. Bit 03 of the Domain Package Illegal
Instruction Mask must be cleared for execution in Job mode.

PUB-1264 Rev. A 3-7

ETAJO Instruction Descriptions Instruction Set Reference ,\fanua/

08

Transmit External Interrupt
Half Word, Format #4
Subfunction: None

3-8

The #08 instruction transmits an external interrupt to destinations selected
by control bits in register R. Control bits are assigned to selected Central
Processing Units (CPU), Input-Output Units (IOU), and the Service Unit
(SU). The instruction is legal in both Job and Monitor mode. Bit 4 of the
Domain Package Illegal Instruction Mask must be cleared for execution in
Job mode.

Register R's structure is shown in figure 1-2. Bits 08-15, 26-31, and 42-62
are unassigned and must be cleared to zero.

IOUs

0 7 16 26 32 42 63

Figure 1-2. Structure of Register R for the #08 Instruction.

• Bits 0-7 are assigned to up to eight CPUs, numbered from 0 to 7.
Interrupts are transmitted to CPUs 0 to 7 by setting bits from 0 to 7 in
register R. The actual numbering of CPUs in a system is not necessarily
sequential, and does not necessarily begin with 0. Only bits corresponding
to CPUs configured in the system are assigned.

• Bits 16-25 and bits 32-41 are assigned to up to 18 IOUs, numbered from
0 to 8 and 10 to 18. Interrupts are transmitted to IOUs by setting bits in
the assigned ranges of the R register. Bit 16 selects the service unit acting
as an IOU, bit 17 selects IOU-0, up to bit 25, which selects IOU-08. Bit 32
selects the service unit acting as an IOU, bit 33 selects IOU-10, up to bit
41, which selects IOU-18. The numbering of IOU's is not necessarily
sequential, and does not necessarily begin with zero. Only bits
corresponding to IOUs configured in the system are assigned.

• Bit 63 is assigned to the Service Unit.

PUB-1264 Rei'. :\

Instruction Set Reference Manual ETAJO Instruction Descriptions

Half Word, Format #4
Subfunction: None

09

Exit Force

The #09 instruction transfers control from Monitor mode to Job mode, and
from Job mode to Monitor mode. This transfer is called an exchange.

Exchange from Monitor Mode to Job Mode

The Monitor mode register file is stored at address zero in CP memory
while the Job register file is loaded from the Job Register File package, and
the process status registers are loaded from the Job invisible package.
Execution of Job mode instructions begins at the program address in the
invisible package. Register T contains the Job invisible package base
address, an absolute bit address aligned on a 64-word boundary. Register S
contains the exchange's job register file base address, an absolute bit
address aligned on a 64-word boundary. If designator S is zero, or if the
contents of Monitor's register S are absolute address zero, the Job Register
File is the Monitor's Register File. The #09 instruction is undefined if S's
contents are between zero and #4000, if there is overlap of CP memory
space for the invisible Package or the Job Register File, or if there is overlap
of the job's virtual storage space in CP memory, the job's invisible package,
and Monitor's register File package.

Exchange from Job Mode to Monitor Mode

This instruction sets bit 62 of the interrupt register to cause an interrupt,
and thus the exchange. The exchange from Job to Monitor mode is
performed as for any other interrupt. The exchange stores the job register
file and the invisible package at the addresses provided by the Monitor
mode to Job mode exchange #09, and loads the Monitor register file.
Execution of Monitor mode instructions begins at the absolute bit address in
Monitor's register #03.

PUB-1264 Rev. A 3-9

ETAJO Instruction Descriptions Instruction Set Reference Afonua/

OA

Transmit (R) to Monitor Interval Timer
Half Word, Format #4
Subfunction: None

3-10

The #OA instruction is valid only in Monitor mode. It activates the Monitor
interval timer by loading it with a non-zero value from bits 32-63 of
register R. The left-most 32 bits of register R are ignored.

Once activated, the timer decrements at a 1-lvfHz rate until reaching zero,
unless it is first deactivated. When the timer decrements to zero, it causes
an interrupt by setting bit 60 of the interrupt register. The timer may be
deactivated before reaching zero by reloading it with all 32 bits cleared, or
by a master clear.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Half Word, Format #4
Subfunction: None

oc
Store Associative Registers

This instruction must be executed to update the first 16 entries in the page
table. In Monitor mode, the contents of the associative registers are stored
into absolute address #4000 and forward. The contents of the associative
registers are undefined after the #OC instruction executes. Two #OC
instructions without a #OD instruction between are undefined.

Half Word, Format #4
Subfunction: None

OD

Load Associative Registers

In Monitor mode, the contents of the associative registers are loaded from
absolute address #4000 and forward.

PUB-1264 Rev. A 3-11

ETAJO Instruction Descriptions Instruction Set Reference Manual

OE

Read Interrupt Register to (T)
Half Word, Format #4
Subfunction: None

3-12

The #OE instruction executes in Monitor mode only. It moves the contents
of the interrupt register (IR) into register T, and clears the interrupt register.

When the CPU receives an interrupt, an assigned bit in the interrupt
register, representing the source of the interrupt, is set. Assigned bits
remain set until an #OE instruction is executed. The interrupt register is
cleared as it is read. Figure 1-3 shows the contents of the interrupt register.

< Externai interrupts >
IO Us

0 7 16 26 32

Figure 1-3. Register T after an #OE instruction.

42 53

Internal --->
Interrupts

63

• Bits 0-41 represent external interrupts sent from sources outside the CPU
executing the instruction. These bit assignments reflect the system
configuration. Bits 08-15, 26-31, and 42-52 are always unassigned and
unused, and are always zero.

• Bits 53-62 represent internal interrupts sent from sources associated only
with the CPU executing the instruction.

• Bit 63 is the destination for an interrupt sent from the Service Unit.

Unassigned bits of the interrupt register are always zeros. All assigned bits
are cleared during a Master Clear.

PUB-1264 Rel'. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

External Interrupt Bit Assignments

• Bits 0-7, representing external interrupts, are assigned to up to eight
CPUs, numbered from 0 to 7. An interrupt received from a CPU is
recognized by setting the corresponding bit from 0 to 7 in the interrupt
register. CPU-0 is recognized as an interrupt source by setting bit 0,
CPU-1 is recognized by setting bit 1, and so on. CPU numbering is not
necessarily sequential, and does not necessarily begin with 0. Only bits
corresponding to CPUs configured in the system are assigned.

• Bits 16-41 represent external IOU interrupts. The system can be
configured with up to 18 IOUs, numbered from 0 to 8 and 10 to 18; two
bits in this range, 16 and 32, are reserved for the service unit acting as an
IOU. An interrupt received from an IOU is recognized by setting the
corresponding bit in the interrupt register. Bit 17 recognizes IOU-0 as an
interrupt source, bit 18 recognizes IOU-1, up to bit 25, which recognizes
IOU-8. Bit 33 recognizes IOU-10 as an interrupt source, bit 34 recognizes
IOU-11, up to bit 41, which recognizes IOU-18. The numbering of IOU's
is not necessarily sequential, and does not necessarily begin with zero.
Only bits corresponding to IOUs configured in the system are assigned.

Internal Interrupt Bit Assignments

• Bit 53 is set by a shared memory hardware failure.

• Bit 54 is set by completion of a shared memory transfer request block
(TRB).

• Bit 55 is set by an #FA-#FF instruction that is locked out of the
Communication Buffer by an Access Lockout Code.

• Bit 56 is set by a #FA-#FF instruction that cannot access the
communication buffer because of a base/limit addressing error.

• Bit 57 is set by a communication buffer hardware failure.

• Bit 58 is set by the execution of a type one illegal instruction.

• Bit 59 is set by the execution of a type two illegal instruction.

• Bit 60 is set when the Monitor interval timer decrements to zero.

• Bit 61 is set by an access interrupt.

• Bit 62 is set by the #09 instruction executed in Job mode.

PUB-1264 Rev. A 3-13

ETAJO Instruction Descriptions Instruction Set Reference lvfanual

OF

Load Keys from (R), Translate Address (S) to (T)

Half Word, Format #4
Subfunction: None

3-14

F R s T

The #OF instruction is executed in Monitor mode only. Register R contains
four keys that are loaded into the virtual address key registers. The virtual
address in the right-most 48 bits of register S is translated into an absolute
bit address, using the four keys just loaded and the Associative Words of
the Page Table. This absolute bit address is stored in the right-most 48 bits
of register T. The left-most 16 bits of register S are transmitted to the
corresponding position in register T.

If no address translation is possible before reaching the end of the Page
Table, the right-most 48 bits of register Tare cleared. The Associative Word
used to make the translation is left in the top Associative Register
(register #00).

The Page Table is dynamically pushed down if necessary when searching
for the Associative Word used to make the translation. The instruction uses
the Page Table as contained in the Associative Registers and the Space
Table in memory.

PUB-1264 Rei•. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

If the Associative Registers were not loaded by a #OD instruction, the
operation is undefined. The 3-bit size, alteration and reference code in the
associative word is not changed by this instruction. Register R's contents are
described in figure 1-4.

Small page selector bits Large page selector bits

Key 2

48 ~IL I Key 3

4 15 1720 31 3336 47 49 52 63

Figure 1-4. Structure of Register R for the #OF instruction.

• Bits 0 and 16 select the Job mode small page size. A small page size of
1K, 2K, or 8K is selected by setting bits 0 and 16 to 00, 10, or 11. The 01
combination is undefined.

• Bits 32 and 48 select the Job mode large page size. A large page size of
64K or 256K is selected by setting bits 32 and 48 to 00 or 01; the 10 and
11 combinations are undefined and not allowed.

• Bit 32 must be zero.

• Bits 1-3, 17-19, 33-35, and 49-51 are not used, and must be zero.

PUB-1264 Rev. A 3-15

ETAJ 0 Instruction Descriptions Instruction Set Reference Manuo/

10

Convert BCD to Binary, Fixed Length
Half Word, Format #A
Subfunction: None

F R

The #10 instruction converts the Binary Coded Decimal (BCD) number in
register R to a signed two's complement binary number and places the
result into the right-most 48 bits of register T. Bits 0-15 of register T are
cleared to zero.

BCD representation can accommodate a signed 15-digit integer in one 64-bit
word. The word is treated as sixteen 4-bit fields, with the right-most field
(bits 60-63) used for the sign code. The fifteen remaining fields each
contain one hexadecimal digit with a decimal value of nine or less. A BCD
number is invalid if it has hexadecimal digits with decimal values of ten or
larger in any of these fields. If the input value is not a valid BCD number,
the results are undefined.

The sign code field must contain a hexadecimal digit with a decimal value
of ten or larger. The sign of the BCD number is positive when the sign code
is an even digit, or #F; the sign is negative when the sign code is an odd
digit, except for #F.

The conversion is undefined for binary results greater than (+2 47 -1) or less
than (-2 47). The largest decimal number that may be converted is
±140, 737,488,355,327.

Data Flag Bit Settings:

Data Flag Bit 39: Input number is outside range.

3-16 PUB-1264 Re\' . . \

Instruction Set Reference Manual ETAJO Instruction Descriptions

Half Word, Format #A
Subfunction: None

11

Convert Binary to BCD, Fixed Length

The #11 instruction converts the right-most 48 bits of register R, interpreted
as a two's complement binary number, to a Binary Coded Decimal (BCD)
number, and places the result into 64-bit register T.

BCD representation can accommodate a signed 15-digit integer in one 64-bit
word. The word is treated as sixteen 4-bit fields, with the right-most field
(bits 60-63) used for the sign code. The fifteen remaining fields each
contain one decimal digit with a value of nine or less.

The sign code field must contain a hexadecimal digit with a decimal value
of ten or larger. The sign of the BCD number is positive when the sign code
is an even digit, or #F; the sign is negative when the sign code is an odd
digit, except for #F.

In Job mode, the sign code generated is determined by the ASCII/EBCDIC
bit in the Job Invisible Package. ASCII sign codes are #A and #B for plus
and minus; corresponding EBCDIC sign codes are #C and #D. In Monitor
mode, only ASCII codes are generated.

PUB-1264 Rev. A 3-17

ETAJ 0 Instruction Descriptions Instruction Set Reference .\!anuu/

12

Load Byte from CP Memory
Half Word, Format #7
Subfunction: None

F R s T

(T) per (S), (R)

The #12 instruction loads a byte from the CP memory address specified by
the sum of registers R and S, where R is the base address and S is an item
count in bytes. The item count is shifted left three places before being
added to the address in R.

The object byte is loaded into bits 56-63 of register T. The other bits of
register T are cleared.

13

Store Byte to CP Memory
Half Word, Format #7
Subfunction: None

3-18

F R s T

(T) per (S), (R)

The #13 instruction stores a byte into the CP memory address specified by
the sum of registers R and S, where R is the base address and S is an item
count in bytes. The item count is shifted left three places before being
added to the address in R.

The object byte is taken from bits 56-63 of register T and put in CP
memory. The other bits of register T are ignored.

PUB-1264 Rel'. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Half Word, Format #7
Subfunction: None

F

14

Bit Compress

R s T

The #14 instruction compresses the bit field R, as specified by length S, into
bit field T. The operation is performed from left to right. The left-most 16
bits of register R specify the number of bits to transfer at one time as a
segment. Field R's base address is in the right-most 48 bits of register R.

The left-most 16 bits of register S specify the number of bits to skip in the R
field between transferred bit segments. The remaining bits of register S are
unused.

Register T contains the length and base address of the destination field. The
left-most 16 bits are the field length; the destination's base address is in the
right-most 48 bits. The destination's length need not be an integer multiple
of the segment length. The field is filled with whatever portion of the last
segment is needed.

The operation moves the left-most segment of R-field bits to the destination,
then skips a number of bits in the R field equal to the S length. The next R
segment is moved, S length bits skipped, and the pattern repeated until the
destination is filled, as shown in figure 1-5.

RI Rl

length R

length S

R2

length S

I I
length R

R3

Figure 1-5. Bit Compress Operations.

• • •

The instruction is treated as a no-op if a zero field length is specified for
source R or destination T.

PUB-1264 Rev. A 3-19

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

15

Bit Merge
Half Word, Format #7
Subfunction: None

3-20

F R s T

The Bit Merge instruction merges the bit fields R and S into the destination
field T. The left-most bits (equal to the R segment length) of the R field,
followed by the left-most bits (equal to the S segment length) of the S field,
are moved to the left-most R & S bits of the destination field. These are
followed by the next bit segments from R and S, repeating the pattern until
the destination field is filled, shown in figure 1-6.

RI/ !ti / jiU >I • • •
length R length R

• • •
length S length S

Figure 1-6. Bit Merge Operations.

The T field's length need not be an integer multiple of any segment length.
The de~tination field is filled with whatever portion of the last segment is
needed.

PUB-1264 Rev. A

Instruction Set Ref ere nee Manual ETAIO fnstruction Descriptions

The left-most 16 bits of register R specify the number of bits to transfer
from R at one time as a segment. The base address is in the right-most 48
bits of register R.

The left-most 16 bits of register S specify the number of bits to transfer
from S at one time as a segment. The right-most 48 bits of register S
contain the base address. If the S base address is zero, a zero filled S field
is used.

Register T contains the destination's length and base address. The left-most
16 bits is the field length; the base address is in the right-most 48 bits.

The instruction is treated as a no-op if a zero field length is specified for R,
S, or T.

PUB-1264 Rev. A 3-21

ETAJO Instruction Descriptions Instruction Set Reference Manual

16

Bit Mask
Half Word, Format #7
Subfunction: None

3-22

F R s T

The #16 instruction masks the bit fields Rand S into field T, working from
left to right. The operation moves a segment of bits (bi ts 0-15 of the R
register specify the segment length) from the R field to the T field. Next it
moves to T a segment of bits (bits 0-15 of the S register specify the
segment length) from the S field, starting at the S base address plus the R
field length. The next segment is moved to T from the R field, starting at
the R base address plus the R and S segment lengths.

This pattern of selecting bits equal to the R segment length and skipping
bits equal to the S segment length in the R source field, then selecting
S-length bits and skipping R-length bits in the S source field, is repeated
until the destination field is filled, as shown in figure 1-7. The shaded areas
are not moved to T.

RI Rl

length R

length R

length S
-:-:-:-:-:-:-:-:-.·.·.·:·:··· 1 ······ 1

••••••••••••••••••••••••••••••••••

length S

Sl

R2

length R

length R

R2

Figure 1-7. Bit Mask Operations.

length S

I I • • •

length S

• • •

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descripiions

The T field's length need not be an integer multiple of any segment length.
The field is filled with whatever portion of the last segment is needed.

The left-most 16 bits of register R specify the number of bits of the R field
to move (and the S field to skip); the base address of the R field is in the
right-most 48 bits. The left-most 16 bits of register S specify the number of
the S field bits to move (and R field bits to skip); the right-most 48 bits
contain the S field's base address. If the base address in bits 16-63 of
register S is zero, a zero filled S source field is used.

Register T contains the destination's length in the left-most 16 bits, and the
base address in the right-most 48 bits.

The 16 instruction is treated as a no-op if the field length specified for R, S,
or T is zero.

PUB-1264 Rev. A 3-23

ETAJ 0 Instruction Descriptions Instruction Set Reference ,\,fanual

17

Backward Domain Change
Half Word, Format #7
Subfunction: None

The #17 instruction is defined only in Job mode. It is the last instruction
coded for execution in a domain type subroutine. It returns control to the
calling program in the domain specified by the stacked domain package at
the top of the stacked domain package stack. The number of backward
domain changes must not exceed the number of forward domain changes
for a program. A forward domain change must always precede the
corresponding backward domain change. Refer to the #36 instruction
description and PUB-1005, ETAJO System Reference Manual.

18

Shared Memory Transfer
Half Word, Format #7
Subfunction: None

3-24

CQTA to (T), (S) to CQTA

The #18 instruction clears register T and transfers the contents of the
Completion Queue Tail Address (CQTA) register to bits 32-63 of register
T. Bits 32-63 of register S are then transferred to the CQTA register.

If register S is the same as register T, a swap operation occurs between bits
32-63 of register S or T and the CQTA register.

PUB-I 264 Rev. A

Instruction Set Reference Manual ETA 10 Instruction Descriptions

Half Word, Format #7
Subfunction: None

19

Shared Memory: Start 1/0

(S) to IQHA, (T) TO IQTA, Start Transfer

The #19 instruction transfers bits 32-63 of register S to the Input Queue
Head Address (IQHA) register, and transfers bits 32-63 of register T to the
Input Queue Tail Address (IQTA) register. It also sets the Input Queue
Valid Flag (IQVF).

If S and T specify the same register, or if bits 32-57 of register S equal bits
32-57 of register T, one Transfer Request Block (TRB) will be executed.
Bits 58-63 of registers S and T are ignored for the address compare
operation.

Half Word, Format #7
Subfunction: None

lA

Shared Memory: Stop 1/0

IQHA to (S), IQVF and IQTA to (T)

The #lA instruction clears registers S and T, then transfers the contents of
the Input Queue Head Address (IQHA) register to bits 32-63 of register S.
Next, it transfers the Input Queue Valid Flag (IQVF) to bit 0, and the
contents of the Input Queue Tail Address (IQTA) register to bits 32-63 of
register T. The Input Queue Valid Flag is then cleared.

Results are undefined if S and T specify the same register.

PUB-1264 Rev. A 3-25

ETAJ 0 Instruction Descriptions Instruction Set Reference .Hanua!

lB

Shared Memory: Test 1/0
Half Word, Format #7
Subfunction: None

3-26

IQVF, Transfer Busy Flag, Fatal Error Status and TRBSA to T

The #1B instruction clears register T, then transfers the Input Queue Valid
Flag (IQVF) to bit 0, the "transfer busy" flag to bit 1, the fatal error status
to bits 2-9, and the contents of the Transfer Request Block Store Address
(TRBSA) register to bits 32-63 of register T.

If the "transfer busy" flag is clear and the "termination with fatal error" bit
is set, the IQVF bit and all fatai error status bits are cleared. The fatai error
status bits are not valid until the transfer busy flag has dropped from one to
zero. The fatal error status bits are:

• Bit 2: Termination with fatal error.

• Bit 3: CP memory ,to shared memory address parity error.

• Bit 4: CP memory to shared memory data parity error.

• Bit 5: Shared memory double SECDED error.

• Bit 6: Shared memory boundary error. Bit 6 is set if any single transfer
attempts to reference both halves of shared memory.

• Bit 7: Shared memory to CP memory data parity error.

• Bit 8: CP Memory double SECDED error.

• Bit 9: CP Memory double SECDED error occurred while fetching this
TRB. Bit 9, if set, will block all write enables to Shared memory or CP
memory during the data transfer and during the store TRB operation. It
will also block any updating of the COTA register.

Bit 2 is set for any fatal error, and cleared if there is no fatal error. Bits
3-9 are set for a fatal error, and cleared for no fatal error.

PUB-1264 Rel'. :\

Instruction Set Reference Manual ETAJO lnstruction Descriptions

lC

Form Repeated Bit Mask with Leading Zeros
Half Word, Format #7
Subfunction: None

F R s T

The #lC instruction forms a repeated mask in field T, consisting of a string
of zeros followed by a string of ones. The left-most 16 bits of register R
specify the length in bits of the string of zeros. The left-most 16 bits of
register S specify the length in bits of the repeated mask (the string of zeros
plus the string of ones). Field T's length in bits and starting address are
located in the left-most 16 bits and the right-most 48 bits of register T,
respectively.

If length R exceeds length S, the instruction is undefined. If the lengths are
the same, a string of zeros is formed. If length R is zero, a string of ones is
formed. If length S is zero, the instruction performs as a no-op. The
instruction terminates when the T field is filled.

lD

Form Repeated Bit Mask with Leading Ones
Half Word, Format #7
Subfunction: None

F R s T

The #lD instruction forms a repeated mask in field T, consisting of a string
of ones followed by a string of zeros. The left-most 16 bits of regi~ter R
specify the length in bits of the string of ones. The left-most 16 bits of
register S specify the length in bits of the repeated mask (the string of ones
plus the string of zeros). Field T's length in bits and starting address are
located in the left-most 16 bits and the right-most 48 bits of register T,
respectively. The instruction terminates when the T field is filled.

If length R exceeds length S, the instruction is undefined. If the lengths are
the same, a string of ones is formed. If length R is zero, a string of zeros is
formed. If length S is zero, the instruction performs as a no-op.

PUB-1264 Rev. A 3-27

ETAJO Instruction Descriptions Instruction Set Reference Manual

lE

Count Leading Equals
Half Word, Format #7
Subfunction: None

F R s T

The #lE instruction scans the bits in field R from left to right, until
encountering a bit that is not equal to the left-most bit. The operation starts
with the bit to the immediate right of the left-most bit of the field. The count
of equal bits is stored in the right-most bits of register T. Register T is
cleared before the count is stored. The left-most 16 bits of register R specify
the length in bits of the field, and the right-most 48 bits specify the field's
base address. Register S contains an index in bits that is added to the base
address to form the R field's starting bit address.

The instruction terminates either when it encounters a bit unequai to the
left-most field bit, or when the entire field has been scanned. In the latter
case, the count stored is the field length minus one. Data Flag bit 53 is
cleared when #lE is initiated, and set to one if the left-most bit was a one.

lF

Count Ones in Field R, Count to (T)
Half Word, Format #7
Subfunction: None

3-28

F R s T

The #lF instruction scans bits in field R from left to right, counting the
number of binary ones. The count is stored in the right-most bits of register
T. Register T is cleared before the count is stored.

The left-most 16 bits of register R specify the length in bits of field R, and
the right-most 48 bits hold the field's base address. Register ~ contains an
index in bits that is added to the base address to form the R field's starting
bit address. The instruction terminates when the entire field has been
scanned.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descrip1ions

Half Word, Format #8
Subfunction: None

20

Branch if Equal (32-Bit)

F R s T

(R) EQ (S)

The #20 instruction compares the 32-bit floating-point operands in registers
R and S, then conditionally branches to the address in register T. Refer to
floating point comparison rules in Appendix F.

The S operand is subtracted from the R operand, and compared according
to floating-point comparison rules. If the operands are equal, the next
instruction is read from the address in register T. If the comparison fails,
the next instruction is read from the next sequential program address.

Data flag branch conditions:

Data flag bit 46: Set if either or both operands are indefinite.

PUB-1264 Rev. A 3-29

ETAJO Instruction Descriptions Instruction Set Reference Manual

21

Branch if Not Equal
Half Word, Format #8
Subfunction: None

F R s T

(R) NE (S) (32-Bit FP)

The #21 instruction compares the 32-bit floating-point operands in registers
Rand S, then conditionally branches to the address in register T. Refer to
floating point comparison rules in Appendix F.

The S operand is subtracted from the R operand, and compared according
to floating-point comparison rules. If the operands are equal, the next
instruction is read from the address in register T. If the comparison fails,
the next instruction is read from the next sequential program address.

Data flag branch conditions:

Data flag bit 46: Set if either or both operands are indefinite.

3-30 PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

22

Branch if Greater or Equal (32-Bit FP)
Half Word, Format #8
Subfunction: None

F R s T

(R) GE (S)

The #22 instruction compares the 32-bit floating-point operands in registers
R and S, then conditionally branches to the address in register T. Refer to
floating point comparison rules in Appendix F.

The S operand is subtracted from the R operand, and compared according
to floating-point comparison rules. If R is greater than or equal to S, the
next instruction is read from the address in register T. If the comparison
fails, the next instruction is read from the next sequential program address.

Data flag branch conditions:

Data flag bit 46: Set if either or both operands are indefinite.

PUB-1264 Rev. A 3-31

ETAJO Instruction Descriptions Instruction Set Reference Manual

23

Branch if Less (32-Bit FP)
Half Word, Format #8
Subfunction: None

F R s T

(R) LT (S)

The #23 instruction compares the 32-bit floating-point operands in registers
R and S, then conditionally branches to the address in register T. Refer to
floating point comparison rules in Appendix F.

The S operand is subtracted from the R operand, and compared according
to floating-point comparison rules. If R is less than S, the next instruction is
read from the address in register T. If the comparison fails, the next
instruction is read from the next sequential program address.

Data flag branch conditions:

Data flag bit 46: Set if either or both operands are indefinite.

3-32 PUB-1264 Rei•. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

24

Branch if Equal (64-Bit FP)
Half Word, Format #8
Subfunction: None

F R s T

(R) EQ (S)

The #24 instruction compares the 64-bit floating-point operands in registers
R and S, then conditionally branches to the address in register T. Refer to
floating point comparison rules in Appendix F.

The S operand is subtracted from the R operand, and compared according
to floating-point comparison rules. If the operands are equal, the next
instruction is read from the address in register T. If the comparison fails,
the next instruction is read from the next sequential program address.

Data flag branch conditions:

Data flag bit 46: Set if either or both operands are indefinite.

PUB-1264 Rev. A 3-33

ETAJO Instruction Descriptions Instruction Set Reference Manual

25

Branch if Not Equal (64-Bit FP)
Half Word, Format #8
Subfunction: None

F R s T

(R) NE (S)

The #25 instruction compares the 64-bit floating-point operands in registers
R and S, then conditionally branches to the address in register T. Refer to
floating point comparison rules in Appendix F.

The S operand is subtracted from the R operand, and compared according
to floating-point comparison rules. If the operands are not equal, the next
instruction is read from the address in register T. If the comparison fails,
the next instruction is read from the next sequential program address.

Data flag branch conditions:

Data flag bit 46: Set if either or both operands are indefinite.

3-34 PUB-1264 Rev . .-\

Instruction Set Reference Manual ETAJO Instruction Descriptions

26

Branch if Greater or Equal (64-Bit FP)
Half Word, Format #8
Subfunction: None

F R s T

(R) GE (S)

The #26 instruction compares the 64-bit floating-point operands in registers
R and S, then conditionally branches to the address in register T. Refer to
floating point comparison rules in Appendix F.

The S operand is subtracted from the R operand, and compared according
to floating-point comparison rules. If R is greater than or equal to S, the
next instruction is read from the address in register T. If the comparison
fails, the next instruction is read from the next sequential program address.

Data flag branch conditions:

Data flag bit 46: Set if either or both operands are indefinite.

PUB-1264 Rev. A 3-35

ETAJ 0 Instruction Descriptions Instruction Set Reference Afonua!

27

Branch if Less (64-Bit FP)
Half Word, Format #8
Subfunction: None

F R s T

(R) LT (S)

The #27 instruction compares the 64-bit floating-point operands in registers
R and S, then conditionally branches to the address in register T. Refer to
floating point comparison rules in Appendix F.

The S operand is subtracted from the R operand, and compared according
to floating-point comparison rules. If R is less than S, the next instruction is
read from the address in register T. If the comparison fails, the next
instruction is read from the next sequential program address.

Data flag branch conditions:

Data flag bit 46: Set if either or both operands are indefinite.

3-36 PUB-1264 Rev. A

Instruction Set Ref ere nee Manual ETAJO instruction Descrip1ions

28

Scan for Equal Byte
Half Word, Format #7
Subfunction: None

F R s T

The #28 instruction scans the bytes in field T, indexed by S, from left to
right, looking for the first byte equal to byte R.

The right-most 48 bits of register S contains an index, which is an item
count in bytes, shifted left three places before being added to T's base
address. The scan stops at the first byte in the T field that equals byte R
(designator R). The index is incremented by the number of bytes scanned
before the byte was found. If no equal byte is found, the index is
incremented by the number of bytes in the T field. The updated index is
then written into register S.

The left-most 16 bits of register T contain the field's length in bytes, and the
right-most 48 bits contain the field's base address.

Data flag branch conditions:

Data flag bit 53: Set if no equal byte is found.

29

Transmit Instrumentation Counter to (T)

Half Word, Format #A
Subfunction: None

The #29 instruction transmits the contents of Instrumentation Counter 7 (a
CPU cycle counter) to the right-most 48 bits of register T. Bits 0-15 of
register T are cleared.

PUB-1264 Rev. A 3-37

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual .

2A

Enter Length of (R) with I (16 Bits)
Half Word, Format #6
Subfunction: None

F R I

The #2A instruction transfers the 16-bit immediate operand (I) to the
left-most 16 bits of register R. The right-most 48 bits of register R are
unchanged.

2B

Add to Length Field
Half Word, Format #4
Subfunction: None

3-38

F R s T

The #2B instruction adds bits 0-15 of the 64-bit register R to bits 48-63 of
the 64-bit register S. The result is stored in bits 0-15 of register T. Bits
16-63 of register R are moved to bits 16-63 of register T.

PUB-1264 Rei'. A

Instruction Set Reference Manual ETAJO Instruction Descrip1ions

Half Word, Format #4
Subfunction: None

2C

Logical Exclusive OR

F R s T

(R) Exel. OR (S) To (T)

The #2C instruction performs a bit-by-bit logical exclusive OR operation on
the 64-bit operands in registers Rand S. The result is stored in register T. If
designator R or S is zero, register #00 provides machine zero for the
operation. The results, based on bit settings in the R and S registers, are:

R ...s_ Exel. _..Q.R
0 0 0
0 1 1
1 0 1
1 1 0

Half Word, Format #4
Subfunction: None

2D

Logical AND

F R s T

(R) AND (S) To (T)

The #2D instruction performs a bit-by-bit logical AND operation on the
64-bit operands in registers R and S. The result is stored in register T. If
designator R or S is zero, register #00 provides machine zero for the
operation. The results, based on bit settings in the R and S registers, are:

R _S_ AND
0 0 0
0 1 0
1 0 0
1 1 1

PUB-1264 Rev. A 3-39

ETA 10 Instruction Descriptions Instruction Set Reference .\fonual

2E

Logical Inclusive OR
Half Word, Format #4
Subfunction: None

3-40

F R s T

(R) OR (S) To (T)

The #2E instruction performs a bit-by-bit logical inclusive OR operation on
the 64-bit operands in registers Rand S. The result is stored in register T. If
designator R or S is zero, register #00 provides machine zero for the
operation. The results, based on bit settings in the R and S registers, are:

g I ~ I Incl~ OR

~ I ~ I ~

PUB-1264 Rev. A

Instruction Set Reference Manual ETA 10 Instruction Descriptions

2F

Register Bit Branch and Alter
Half Word, Format #9
Subfunction: bbooOaaO
Qualifiers: bb =[br,bro,brz] ,oo=[t,so,sz] ,aa=[brb,brf)

F G s T

The #2F instruction examines bit 63 (the object bit) in register T, and,
depending on the specified branch (bb) and bit modification (oo) qualifiers,
branches to the address in the right-most 48 bits of register S, if aa is not
specified. The operation may also change the value of the object bit.

If no bb qualifier is specified, then G-bits 0 and 1 are clear and there is no
branch. If the qualifier is br (G-bit 1), an unconditional branch occurs. The
bro qualifier (G-bit 0) causes a branch if the object bit is one. If the
qualifier is brz (G-bits 0 and 1), a branch occurs if the object bit is zero.

After the branch decision is made, the object bit is altered if an oo qualifier
(G-bits 2 and 3) is specified. The t qualifier (G-bit 3) toggles the object
bit's state. The object bit is set to one if the qualifier is so (G-bit 2), and
cleared to zero if the qualifier is sz (G-bits 2 and 3).

If a branch is to take place, the instruction determines the branch address
depending on the specified aa qualifier (G-bits 5 and 6). If no qualifier is
specified, the address in register S is branched to.

The brf and brb qualifiers indicate that a relative branch will be taken to an
address formed from a half word item count in the S designator and the
program address register. The type of relative branch (forward or
backward) depends on the specified qualifier.

If brf is specified, a forward branch occurs to the address formed by shifting
the item count in register S left 5 places, and adding it to the program
address register. brb specifies a backward branch to the address formed by
shifting the item count in register S left 5 places and subtracting it from the
program address register.

PUB-1264 Rev. A 3--11

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

30

Shift Operand
Half Word, Format #7
Subfunction: None

3-42

F R s T

(R) per S to (T)

The #30 instruction shifts the 64-bit operand in register R, and stores the
result in the destination register T. Designator S specifies the type and
amount of the shift. If the shift count is between #0 and #3F, the operand in
register R is shifted left end-around for the number of specified places
before being stored. If the shift count is between #FF and #Cl, the operand
in register R is shifted right, with sign extension. Bit zero of the operand is
considered to be the sign bit of the shifted operand. The number of right
shifts equals the two's complement of the S designator; for example, if the
shift count is #FE, the operand is shifted right two places. If the shift count
is greater than #3F or less than #Cl, results are undefined. If the R
designator is zero, register #00 provides a machine zero value.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAIO Instruction Descriptions

Half Word, Format #7
Subfunction: None

31

Increase (R) and Branch

F R s T

(R) NE Zero

The #31 instruction increments the right-most 48 bits of register R by one,
and branches according to the result. The left-most 16 bits of register Rare
unchanged. Arithmetic overflow is ignored. If the result is 48 zeros, the next
sequential instruction is executed. Otherwise, control branches to S + T,
where register S contains an item count of half words, and register T
contains the base address. If register R is the same as S or T, the resulting
branch address is undefined.

PUB-1264 Rev. A 3-43

ETAJ 0 Instruction Descriptions Instruction Set Reference ,\1anua!

32

Bit Branch and Alter
Half Word, Format #9
Subfunction: bbooOaaO
Qualifiers: bb=[br,bro,brz] ,oo=[t,so,sz) ,aa= [brb,brf)

3-44

F I· G s T

The #32 instruction reads the word from memory from the address in
register S and examines the object bit. Depending on the specified branch
(bb) and bit modification (oo) qualifiers, it then branches to the address per
the aa qualifier. The operation may also change the value of the object bit.

If no bb qualifier is specified, then G-bits 0 and 1 are clear and there is no
branch. If the qualifier is br (G-bit 1), an unconditional branch occurs. The
bro qualifier (G-bit 0) causes a branch if the object bit is one. If the
qualifier is brz (G-bits 0 and 1), a branch occurs if the object bit is zero.

After the branch decision is made, the object bit is altered if an oo qualifier
(G-bits 2 and 3) is specified. The t qualifier (G-bit 3) toggles the object
bit's state. The object bit is set to one if the qualifier is so (G-bit 2), and
cleared to zero if the qualifier is sz (G-bits 2 and 3).

PUB-1264 Rel'. :\

Instruction Set Reference Manual ETA 10 Instruction Descriprions

If a branch is to take place, the instruction determines the branch address
depending on the specified aa qualifier (G-bits 5 and 6). If no qualifier is
specified, the address in register T is branched to.

The brf and brb qualifiers indicate that a relative branch will be taken to an
address formed from the T designator taken as a half word item count and
the program address register. The type of relative branch (forward or
backward) depends on the specified qualifier.

PUB-1264 Rev. A 3-.\5

ETAJ 0 Instruction Descriptions Instruction Set Reference .\fanua/

33

Data Flag Register Bit Branch and Alter
Half Word, Format #B
Subfunction: bbooOaaO
Qualifiers: b b=[br,bro,brz] ,oo=[t,so,sz] ,aa=[brb,brf]

3-46

F T

The #33 instruction examines the object bit in the Data Flag Register
specified by I, a 6-bit designator containing the number of a bit (between
#00 and #3F). Depending on the specified branch (bb) and bit modification
(oo) qualifiers, it then branches to the address per the aa qualifier. The
operation may also change the value of the object bit in the Data Flag
Register.

If no bb qualifier is specified, then G-bits 0 and 1 are clear and there is no
branch. If the qualifier is br (G-bit 1), an unconditional branch occurs. The
bro qualifier (G-bit 0) causes a branch if the object bit is one. If the
qualifier is brz (G-bits 0 and 1), a branch occurs if the object bit is zero.

After the branch decision is made, the object bit is altered if an oo qualifier
(G-bits 2 and 3) is specified. The t qualifier (G-bit 3) toggles the object
bit's state. The object bit is set to one if the qualifier is so (G-bit 2), and
cleared to zero if the qualifier is sz (G-bits 2 and 3).

If a branch is to take place, the instruction determines the branch address
depending on the specified aa qualifier (G-bits 5 and 6). If no qualifier is
specified, the address in register T is branched to.

PUB-1264 Rei·. A

Instruction Set Reference Manual ETAIO Instruction Descriptions

The brf and brb qualifiers indicate that a relative branch will be taken to an
address formed from the T designator, taken as a half word item count,· and
the program address register. The type of relative branch (forward or
backward) depends on the specified qualifier.

The #33 instruction may begin executing without waiting until the machine
has completed all operations (for example, a scalar divide's data flags may
not have reached the Data Flag Register). Data Flag bits may be set on any
minor cycle during or after execution. Any Data Flag bits set after the
object bit is examined will not affect the instruction's operation, but will be
retained in the Data Flag Register for follow-on sampling.

Instructions that set Data Flag bits 53, 54, and 55 will always set these bits
prior to execution of this instruction.

PUB-1264 Rev. A 3-47

ETAJ 0 Instruction Descriptions Instruction Set Reference .\lanual

34

Shift Operand
Half Word, Format #4
Subfunction: None

3-48

F R s T

(R) per (S) to (I)

The #34 instruction shifts the 64-bit operand in register R according to a
count in register S. The result is stored in the destination register T. If the
shift count is between #0 and #3F, the operand in register R is shifted left
end-around for the number of specified places before being stored.

If the shift count is between #FF and #Cl, the operand in register R is
shifted right, with sign extension. Bit zero of the operand is considered to be
the sign bit of the shifted operand.

The number of right shifts equals the two's complement of the rightmost
byte; for example, if the shift count is #FE, the operand is shifted right two
places. If the shift count is greater than #3F or less than #Cl, there are
undefined results.

If the R designator is zero, register #00 provides a machine zero value.

PUB-1264 Rev. A

Instruction Set Ref ere nee Manual

35

Decrease (R) and Branch
Half Word, Format #7
Subfunction: None

F R s T

(R) NE Zero

ETAIO Instruction Descriprions

The #35 instruction decrements the right-most 48 bits of register R by one,
and branches according to the result. The left-most 16 bits of register R are
unchanged, and arithmetic overflow is ignored.

If the result is 48 zeros, the next sequential instruction is executed.
Otherwise, a branch occurs to S + T, where register S contains an item
count of half words, and register T contains the base address. If register R
is the same as S or T, the resulting branch address is undefined.

PUB-1264 Rev. A

ETA 10 Instruction Descriptions Instruction Set Reference ,\fanua/

36

Branch or Forward Domain Change
Half Word, Format #7
Subfunction: None

3-50

F R s T

The #36 instruction performs one of two operations, a branch to a
subroutine, or a forward domain change (in Job mode only). The operation
performed depends on the R and T designators and bit 0 of register T.

Branch Opera ti on
If bit 0 of register T is zero, or if designators R and T are equal, control
branches to a subroutine within the current domain. The branch operation is
undefined when registers R and S are the same, unless register #00 is
designated.

The instruction stores the address of the next sequential instruction (the
current program address P, plus 32) in register R, then branches to S + T,
where register S contains an index of half words and register T contains the
base address. The index is left-shifted 5 bits for use in computing the next
instruction's address. Bits 0-15 of R are forced to zero, and bits 59-63 are
undefined.

If the R and T designators are the same, a relative branch occurs to the
address (S + P + 32), where register S contains an index of half words.

If register #00 is designated as S, or if register S is loaded with a zero value,
the current program address, plus 32, is stored in register R, and execution
continues with the next sequential instruction.

PUB-I 264 Rel'. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Forward Domain Change Operation

If bit 0 of register T is 1, and the R and T designators are not equal, a
forward domain change occurs. (The loader generates a forward domain
change (in Job mode only) when a process's permissions must be changed
to execute a specified subroutine.)

Part of the invisible package information for the current domain is saved in
the domain package and the stacked domain package. Control is then
transferred to the next domain. When execution in the next domain is
complete, the #17 backward domain change instruction is used to return
control to the calling domain ..

Each defined domain has its own domain package. When a forward domain
change instruction executes, a stacked domain package is added to the
stacked domain package stack for the current domain, and the
instrumentation counters are saved in the current domain package. When
the corresponding backward domain change instruction executes, the
stacked domain package is loaded and deleted from the stack. The
instrumentation counters from the domain package are also loaded.

The R and S designators are not defined for a forward domain change.

PUB-1264 Rev. A 3-51

37

Transmit Job Interval Timer to ('I)

Half Word, Format #A
Subfunction: None

The #37 instruction transmits the contents of the Job Interval Timer into bits
32-63 of register T. Bits 0-31 of register Tare cleared to zero. The timer is
not deactivated. The instruction is undefined in Monitor mode.

38

Transmit (R) Bits 0-15 to (T) Bits 0-15
Half Word, Format #A
Subfunction: None

3-52

The #38 instruction replaces the left-most 16 bits of register T with the
left-most 16 bits of register R.

PUB-1264 Rev. A

Instruction Set Reference Manual ETA 10 f nst ruction Descrip1 ions

Half Word, Format #A
Subfunction: None

39

Transmit Real Time Clock to (T)

The #39 instruction transmits the contents of the Real-Time Clock to bits 16
through 63 of register T. Bits 0 through 15 are cleared.

Half Word, Format #A
Subfunction: None

3A

Transmit (R) to Job Interval Timer

When executed in Job mode, this instruction transmits bits 32 through 63 of
register R to the Job Interval Timer. In Monitor mode, the instruction
performs as a no-op.

PUB-1264 Rev. A 3-53

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

3B

Data Flag Register Load/Store
Half Word, Format #A
Subfunction: None

The #3B instruction transfers register R's contents to the Data Flag Register,
and moves the original contents of the Data Flag Register to register T. The
transfer to and from the Data Flag Register only occurs when all
outstanding operations (except the job interval timer and breakpoint)
affecting the data flags are complete. If a Data Flag Branch condition
occurs during this time, no branch is taken, but the condition is stored in
register T. If the R and T designators are the same, data flag packages will
be swapped.

If the new Data Flag Register contents meet the appropriate conditions, a
Data Flag Branch results.

3C

Half Word Index Multiply
Half Word, Format #4
Subfunction: None

3-54

F R s T

(R) * (S) to (T)

The right-most 24 bits of registers R and S contain signed, two's
complement integers. Their product is formed and stored into the right-most
24 bits of register T. The left-most 8 bits of register T are cleared to zero.

The result is undefined if the product exceeds z23_1 or is less than -2 23 .

PUB-1264 Re\' . . \

Instruction Set Reference Manual ETAJO Instruction Descriptions

Half Word, Format #4
Subfunction: None

F

3D

Index Multiply

R s T

(R) * (S) to (T)

The right-most 48 bits of registers R and S contain signed, two's
complement integers. Their product is formed and stored into the right-most
48 bits of register T. The left-most 16 bits of register T are cleared to zero.

The result is undefined if the product exceeds 247 -1 or is less than -2 47 .

Half Word, Format #6
Subfunction: None

3E

Enter (R) with I (16 Bits)

F R I

The #3E instruction clears register Rand transfers the right-most 16 bits of
this instruction (the immediate operand) to the right-most 48 bits of register
R. The sign of the 16-bit immediate operand is extended through bit 16 of
R.

PUB-1264 Rev. A 3-55

ETAJO Instruction Descriptions Instruction Set Reference Manual

3F

Increase (R) by I (16 Bits)
Half Word, Format #6
Subfunction: None

F R I

The #3F instruction replaces the right-most 48 bits of register R by the sum
of those bits and the immediate operand (the right-most 16 bits of this
instruction). The sign of the 16-bit immediate operand is extended through
bit 16 for the addition. Arithmetic overflow is ignored.

40

Add; Upper Result (32 Bits)
Half Word, Format #4
Subfunction: None

F R s T

(R) + (S) to (T)

The #40 instruction performs floating-point addition of the contents of the
32-bit registers R and S, returning the upper result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-56

Exponent overflow.
Result is machine zero
Result is indefinite

PUB-1264 Rev. A

Instruction Set Reference Manual ETAIO Instruction Descriptions

Half Word, Format #4
Subfunction: None

41

Add; Lower Result (32 Bits)

F R s T

(R) + (S) to (T)

The #41 instruction performs floating-point addition of the contents of the
32-bit registers R and S, returning the lower result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

Exponent overflow.
Result is machine zero
Result is indefinite

42

Add; Normalized Result (32 Bits)
Half Word, Format #4
Subfunction: None

F R s T

(R) + (S) to (T)

The #42 instruction performs floating-point addition of the contents of the
32-bit registers R and S, returning the normalized upper result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Exponent overflow.
Result is machine zero
Result is indefinite

3-57

ETAJ 0 Instruction Descriptions Instruction Set Reference i'danua/

Half Word, Format #4
Subfunction: None

44

Subtract; Upper Result (32 Bits)

F R s T

(R) - (S) to (T)

The #44 instruction performs floating-point subtraction of the contents of
the 32-bit registers R and S, returning the upper result in register T.

Data flag branch conditions:

Half Word, Format #4
Subfunction: None

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

Exponent overflow.
Result is machine zero
Result is indefinite

45

Subtract; Lower Result (32 Bits)

F R s T

(R) - (S) to (T)

The #45 instruction performs floating-point subtraction of the contents of
the 32-bit registers R and S, returning the lower result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-58

Exponent overflow.
Result is machine zero
Result is indefinite

PUB-1264 Rel'. A

Instruction Set Reference Manual ETAJO Instruction Descrip1ions

Half Word, Format #4
Subfunction: None

46

Subtract; Normalized Result (32 Bits)

F R s T

(R) - (S) to (T)

The #46 instruction performs floating-point subtraction of the contents of
the 32-bit registers R and S, returning the normalized upper result in
register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

Exponent overflow.
Result is machine zero
Result is indefinite

48

Multiply; Upper Result (32 Bits)
Half Word, Format #4
Subfunction: None

F R s T

(R) * (S) to (1)

The #48 instruction performs floating-point multiplication of the contents of
the 32-bit registers R and S, returning the upper result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Exponent overflow.
Result is machine zero
Result is indefinite

3-59

ETAJO Instruction Descriptions Instruction Set Reference Manual

Half Word, Format #4
Subfunction: None

49

Multiply; Lower Result (32 Bits)

F R s T

(R) * (S) to (T)

The #49 instruction performs floating-point multiplication of the contents of
the 32-bit registers R and S, returning the lower result in register T.

Data flag branch conditions:

Half Word, Format #4
Subfunction: None

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

Exponent overflow.
Result is machine zero
Result is indefinite

4B

Multiply; Significant Result (32 Bits)

F R s T

(R) * (S) to (T)

The #4B instruction performs floating-point multiplication of the contents of
the 32-bit registers R and S, returning the significant result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-60

Exponent overflow.
Result is machine zero
Result is indefinite

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO instruction Descriptions

Half Word, Format #4
Subfunction: None

4C

Divide; Upper Result (32 Bits)

F R s T

(R) I (S) to (I)

The #4C instruction performs floating-point division of the contents of the
32-bit registers R and S, returning the upper result in register T.

Data flag branch conditions:

Data flag bit 41:
Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

Floating-point divide fault
Exponent overflow
Result is machine zero
Result is indefinite

4D

Half Word Enter R with I (16 Bits)
Half Word, Format #6
Subfunction: None

F R I

The #4D instruction clears register R and moves the 16-bit immediate
operand I to the right-most 24 bits of 32-bit register R. The sign of the
16-bit operand is extended through bit 8 of R.

PUB-1264 Rev. A 3-61

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

4E

Half Word Increase R by I (16 Bits)
Half Word, Format #6
Subfunction: None

F R I

The #4E instruction adds the 16-bit immediate operand I to the right-most
24 bits of register R. I's sign is extended left through bit 8 before the
addition. Arithmetic overflow is ignored.

4F

Divide; Significant Result (32 Bits)
Half Word, Format #4
Subfunction: None

F R s T

(R) I (S) to ('I)

The #4F instruction performs a floating-point divide significant operation on
32-bit register R's contents by the contents of 32-bit register S. The
significant part of the floating-point result is stored in 32-bit register T.

Data flag branch conditions:

Data flag bit 41:
Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-62

Floating-point divide fault.
Exponent overflow.
Result is machine zero.
Result is indefinite.

PUB-1264 Rev. A

Instruction Set Reference Manual ETA 10 Instruction Descriprions

so

Truncate (32 Bits)
Half Word, Format #A
Subfunction: None

(R) to (T)

The #50 instruction transmits to 32-bit register T the nearest integer whose
magnitude is less than or equal to the 32-bit floating-point operand in 32-bit
register R. The integer is an unnormalized, 32-bit floating-point number
with a positive exponent.

If R's exponent is positive, the operand is moved directly to T. If R's
exponent is negative, the operation shifts the magnitude of the coefficient
right, end-off, and increases the exponent by one for each bit position
shifted, until the exponent is zero. As the coefficient is shifted, zeros are
extended on the left, regardless of the sign bit value. For positive
coefficients, the shifted coefficient with zero exponent is moved into 32-bit
register T. For negative coefficients, the two's complement of the shifted
coefficient, with zero exponent, is moved.

If machine zero is the operand value, 32 zeros are returned as the result.

Data flag branch conditions:

Data flag bit 46: Result is indefinite.

PUB-1264 Rev. A 3-63

ETAJO Instruction Descriptions Instruction Set Reference :\'lanua!

51

Floor (32 Bits)
Half Word, Format #A
Subfunction: None

(R) to (T)

The #51 instruction transmits to register T the nearest integer less than or
equal to the 32-bit floating-point operand in 32-bit register R. The integer is
an unnormalized, 32-bit floating-point number with a positive exponent.

If R's exponent is positive, the operand is moved directly to T. If R's
exponent is negative, the operation shifts the coefficient right, end-off, and
increases the exponent by one for each bit position shifted, until the
exponent is zero. As the coefficient is shifted, sign bits are extended on the
left. The shifted coefficient with zero exponent is moved into 32-bit register
T.

If machine zero is the operand value, 32 zeros are returned as the result.

Data flag branch conditions:

Data flag bit 46: Result is indefinite.

3-64 PUB-1264 Rev. A

Instruction Set Reference Manual ETAI 0 Instruction Descriptions

52

Ceiling (32 Bits)
Half Word, Format #A
Subfunction: None

(R) to (T)

The #52 instruction transmits to 32-bit register T the nearest integer greater
than or equal to the 32-bit floating-point operand in 32-bit register R. The
integer is an unnormalized, 32-bit floating-point number with a positive
exponent.

If R's exponent is pos1t1ve, the operand is moved directly to T. If R's
exponent is negative, the operation shifts the two's complement of the
coefficient right, end-off, and increases the exponent by one for each bit
position shifted, until the exponent is zero. As the coefficient is shifted, sign
bits are extended on the left. The two's complement of the shifted
coefficient with zero exponent is moved into 32-bit register T.

If machine zero is the operand value, 32 zeros are returned as the result.

Data flag branch conditions:

Data flag bit 46: Result is indefinite.

PUB-1264 Rev. A 3-fi5

ETAJ 0 Instruction Descriptions Instruction Set Reference 1\!fanual

53

Significant Square Root (32 Bits)
Half Word, Format #A
Subfunction: None

(R) to ('I)

The #53 instruction loads the square root of the 32-bit floating-point number
in 32-bit register R into 32-bit register T.

Data flag branch conditions:

Data flag bit 43:
Data flag bit 45:
Data flag bit 46:

3-66

Result is machine zero.
Square root result is imaginary.
Indefinite result.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descrip1ions

Half Word, Format #4
Subfunction: None

54

Adjust Significance (32 Bits)

F R s T

(R) per (S) to (T)

The #54 instruction adjusts the significance of the floating-point operand in
32-bit register R and transmits the adjusted result to 32-bit register T.

The right-most 24 bits of 32-bit register S contain a signed, two's
complement integer. The absolute value of this integer is a shift count. If
the shift count is positive, the operand's coefficient is shifted left the
number of places specified by the shift count, or by the number of shifts
needed to normalize the coefficient, whichever is smaller. The exponent of
the operand is reduced by one for each place actually shifted. If the shift
count is negative, the operation shifts the operand's coefficient to the right
the number of specified places and increases the operand's exponent by one
for each place shifted.

If R is indefinite, the result is indefinite, and data flag 46 is set. If R is
machine zero, the result is machine zero, and data flag 43 is set. The
instruction is undefined if the absolute value of the shift count is greater
than 23, decimal.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Exponent overflow.
Result is machine zero.
Result is indefinite.

3-67

ETAI 0 Instruction Descriptions lnstrnction Set Reference J!anua/

55

Adjust Exponent (32 Bits)
Half Word, Format #4
Subfunction: None

F R s T

(R) per (S) to (T)

The #55 instruction moves the adjusted operand from 32-bit register R to
32-bit register T. The result's exponent is set equal to the exponent of the
operand in 32-bit register S. The result's coefficient is formed by shifting
the coefficient of the operand in R. If the R coefficient is zero, the exponent
from S is copied to T with an all-zero coefficient.

The shift count used is the difference between the exponents in 32-bit
registers R and S. If the R exponent is greater than the S exponent, a left
shift is performed. A right shift occurs if the R exponent is less than S's
exponent.

If the left shift count exceeds the number of places required for
normalization, the result is set to indefinite, and data flag bit 42 is set. If
either or both of the operands are machine zero or indefinite, the result is
set to indefinite, data flag bit 46 is set, and data flag bit 42 is clear.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 46:

3-68

Excessive shift count; result is set to indefinite.
One or both operands are indefinite or machine
zero; result is set to indefinite.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Half Word, Format #7
Subfunction: OOOiiOOO
Qualifiers: i= [ra,rb]

56

Select Link

The #56 instruction combines the two vector operations that follow it into
one single operation, by chaining output from the first vector instruction
(instr I) to one of the inputs for the second vector instruction (instr2). Except
when the R designator is zero, the #56 instruction must be immediately
followed by the two vector instructions to be linked, otherwise the
instruction is undefined. Table 1-1 lists the vector instructions that can be
used in a link operation. The #56 instruction is undefined if instr 1 and instr2
belong to the same unit.

Table 1-1. Vector instructions that can be used in a Link operation.

Unit Instr! O_Q_code Instr2 Op~ode

1 BA BA

2 90 90

3 BB,B9,BB B8,89,8B

4 80,81,82,83,84,BS, 80,81,82,83,84,85
B6,87,90,91,92 86,87,90,91,92

C4,C5,C6,C7

Qualifiers ra and rb (Bits 3 and 4 of the R field) define the input to the
second vector instruction, instr2. The ra qualifier specifies that instr l's

.result will be the A input vector to instr2, and rb specifies that it will be the
B input vector to instr2.

The linked instructions must observe certain conventions for their G-bit
settings. The h qualifier must be the same in both instructions. However,
each instruction can specify its own sign control qualifiers. For instr 1, the z
and o qualifiers, and Z and C operands are ignored, but for instr2, they
specify the output vector. Data Flag bit results are the same as if both
instructions ran as separate instructions.

PUB-1264 Rev. A 3-69

ETAJO Instruction Descriptions Instruction Set Reference Manual

Between the two linked instructions there can be two input vectors (A and
B) and at least one broadcast value, or one input vector and two broadcast
values. The ra and rb qualifiers for the #56 instruction, and the a and b
qualifiers on the linked vector instructions, determine the input vectors and
broadcast values that can be selected. Valid combinations are listed in table
1-2.

R-bits 0-2 and 5-7 are undefined and must be cleared to zero.

Table 1-2: Valid Combinations for Linked Vector Instructions.

Qua I- lnstr1 lnstr2 lnstr1 lnstr2
ifiers qual. qua I. Input A Input B Input A Input B

ra none b vector A1 vector B1 instr 1 output broadcast B2
rb none a vector Al vector Bl broadcast A2 instr 1 output
ra b none vector Al broadcast B 1 instrl output vector B2
rb a none broadcast Al vector B1 vector A2 instr 1 output
ra a b broadcast A 1 vector B 1 instrl output broadcast B2
rb a a broadcast A 1 vector Bl broadcast A2 instr 1 output
ra b b vector A1 broadcast B 1 instr 1 output broadcast B2
rb b a vector A1 broadcast B 1 broadcast A2 instr1 output

ra&rb none none vector Al vector 81 instr 1 output instr i output
ra&rb a none broadcast A 1 vector Bl instr 1 output instr 1 output
ra&rb b none vector Al broadcast B 1 instr 1 output instrl output

none No linking takes place. lnstr1 and lnstr2 are separate operations.

. 3-70 PUB-1264 Rev. :\

Instruction Set Reference Manual ETAJO Instruction Descriptions

Half Word, Format #7
Subfunction: None

57

Read Domain Registers

Special Register per R to 64-Bit (T)

The #57 instruction reads the domain register specified by the R designator,
and transmits its value to an area in register T. The specified register
quantity definitions correspond to the R designator value:

R Designatotj Source Register T Bits
Value

00 Stack Index 48-60
02 Previous Domain Package Number 52-58
03 Current Domain Package Number 52-58

The unspecified bits of register T are zeros for the defined values of R.

In Job mode, an undefined value in the R designator produces undefined
results in register T. In Monitor mode, the instruction will always produce
undefined results in register T.

PUB-1264 Rev. A 3-71

ETA 10 Instruction Descriptions Instruction Set Reference ;\fanua/

Half Word, Format #A
Subfunction: None

58

Transmit Operand (32 Bits)

(R) to (T)

The #58 instruction transmits the 32-bit operand in 32-bit register R to
32-bit register T.

Half Word, Format #A
Subfunction: None

59

Transmit Absolute (32 Bits)

F R

Absolute (R) to (T)

The #59 instruction transmits the absolute value of the 32-bit floating-point
number in 32-bit register R to 32-bit register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-72

Exponent overflow.
Result is machine zero.
Indefinite result.

PUB-1264 Re1'. ,\

Instruction Set Reference Manual ETAJO Instruction Descriprions

Half Word, Format #A
Subfunction: None

SA

Transmit Exponent (32 Bits)

Exponent (R) to (1)

The #SA instruction transmits the exponent from the left-most 8 bits of
32-bit register R to the right-most 8 bits of 32-bit register T. The
exponent's sign is extended through bit 8 of register T. The left-most 8 bits
of register T are cleared to zero.

Half Word, Format #4
Subfunction: None

F

SB

Pack (32 Bits)

R s T

(R), (S) to (T)

The #SB instruction transmits a 32-bit floating-point number to 32-bit
register T. The number's exponent is obtained from the right-most 8 bits of
32-bit register R, and its coefficient from the right-most 24 bits of 32-bit
register S.

PUB-1264 Rev. A 3-73

ETAJ 0 Instruction Descriptions Instruction Set Reference 1\fanual

SC

Extend
Half Word, Format #A
Subfunction: None

32-Bit (R) to 64-Bit (T)

The #5C instruction extends a 32-bit floating-point number in 32-bit register
R into a 64-bit floating-point number, and stores it in 64-bit register T.

The value of the resulting 16-bit exponent is 24 less than that of the
source's exponent. The coefficient is obtained by transmitting the right-most
24 bits of register R into bits 16-39 of register T. The right-most bits of
register T are cleared to zero,

If register R is indefinite, register T is indefinite, and data flag 46 is set. If
register R is machine zero, register T is machine zero, and data flag 43 is
set.

Data flag branch conditions:

Data flag bit 43:
Data flag bit 46:

3-74

Result machine zero.
Indefinite result.

PUB-I 264 Rev. A

Instruction Set Reference Manual ETAJ 0 instruction Descriptions

Half Word, Format #A
Subfunction: None

SD

Index Extend

32-Bit (R) to 64-Bit (T)

The #SD instruction extends a 32-bit floating-point number in 32-bit
register R into a 64-bit floating-point number, and stores it in 64-bit register
T.

The resulting 16-bit exponent is the same value as the source's exponent.
The coefficient is obtained by moving the right-most 24 bits of register R to
bits 40-63 of register T. Bits 16-39 of register T are set to the sign of the
source coefficient.

If register R is indefinite, register T is indefinite, and data flag 46 is set. If
register R is machine zero, register T is machine zero, and data flag 43 is
set.

Data flag branch conditions:

Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Result machine zero.
Indefinite result.

3-75

ETAJ 0 Instruction Descriptions Instruction Set Reference ,\lanua/

SE

Load; Halfword
Half Word, Format #7
Subfunction: None

F R s T

(T) per (S), (R)

The #SE instruction loads the contents of the 32-bit register T from the CP
memory address formed by adding the contents of the 64-bit registers R and
S. Register R contains the absolute base address, and register S contains an
item count in half words that is left-shifted S bits before the addition. Any
overflow from this addition is ignored.

SF

Store; Halfword
Half Word, Format #7
Subfunction: None

3-76

F R s T

(T) per (S), (R)

The #SF instruction stores the contents of the 32-bit register T into the CP at
the memory address formed by adding the contents of the 64-bit registers R
and S. Register R contains the absolute base address, and register S
contains an item count in half words that is left-shifted S bits before the
addition. Any overflow from this addition is ignored.

PUB-1264 Re\'. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Half Word, Format #4
Subfunction: None

60

Add; Upper Result (64 Bits)

F R s T

(R) + (S) to (1)

The #60 instruction performs floating-point addition on the contents of the
64-bit registers R and S, returning the upper result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

Exponent overflow.
Result is machine zero.
Indefinite result.

61

Add; Lower Result (64 Bits)
Half Word, Format #4
Subfunction: None

F R s T

(R) + (S) to (1)

The #61 instruction performs floating-point addition on the contents of the
64-bit registers R and S, returning the lower result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Exponent overflow.
Result is machine zero.
Indefinite result.

3-77

ETAJO Instruction Descriptions Instruction Set Reference Manual

62

Add; Normalized Result (64 Bits)
Half Word, Format #4
Subfunction: None

F R s T

(R) + (S) to (T)

The #62 instruction performs floating-point addition on the contents of the
64-bit registers Rand S, returning the normalized upper result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

Exponent overflow.
Result is machine zero.
Indefinite result.

63

Add Address
Half Word, Format #4
Subfunction: None

3-78

F R s T

(R) + (S) to (T)

The #63 instruction adds bits 16-63 of register R to bits 16-63 of register S,
storing the result in bits 16-63 of register T. Bits 16-63 are treated as
unsigned, positive integers._ Arithmetic overflow is ignored. Bits 0-15 of R
are transferred without modification to bits 0-15 of register T.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO instruction Descriptions

Half Word, Format #4
Subfunction: None

64

Subtract; Upper Result (64 Bits)

F R s T

(R) - (S) to (T)

The #64 instruction performs floating-point subtraction on the contents of
the 64-bit registers R and S, returning the upper result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

Exponent overflow.
Result is machine zero.
Indefinite result.

65

Subtract; Lower Result (64 Bits)
Half Word, Format #4
Subfunction: None

F R s T

(R) - (S) to (T)

The #65 instruction performs floating-point subtraction on the contents of
the 64-bit registers R and S, returning the lower result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Exponent overflow.
Result is machine zero.
Indefinite result.

3-79

ET Ai 0 instruction Descriptions instruction Set Reference Manual

66

Subtract; Normalized Result (64 Bits)
Half Word, Format #4
Subfunction: None

F R s T

(R) (S) to (T)

The #66 instruction performs floating-point subtraction on the contents of
the 64-bit registers R and S, returning the normalized upper result in
register T.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43: Result is machine zero.
Data flag bit 46: Indefinite result.

67

Subtract Address
Half Word, Format #4
Subfunction: None

3-80

F R s T

(R) - (S) to (T)

The #67 instruction subtracts bits 16-63 of register S from bits 16-63 of
register R, storing the result in bits 16-63 of register T. Bits 16-63 are
treated as 48-bit unsigned, positive integers. Arithmetic overflow is ignored.
Bits 0-15 of R are transferred without modification to bits 0-15 of
register T.

PUB-i 264 Rev . • \

Instruction Set Reference Manual ETA 10 Instruction Dcscrip1 ions

Half Word, Format #4
Subfunction: None

68

Multiply; Upper Result (64 Bits)

F R s T

(R) * (S) to (T)

The #68 instruction performs floating-point multiplication on the contents of
the 64-bit registers R and S, returning the upper result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

Exponent overflow.
Result is machine zero.
Indefinite result.

69

Multiply; Lower Result (64 Bits)
Half Word, Format #4
Subfunction: None

F R s T

(R) * (S) to (T)

The #69 instruction performs floating-point multiplication on the contents of
the 64-bit registers R and S, returning the lower result in register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Exponent overflow.
Result is machine zero.
Indefinite result.

3-81

ETAJO Instruction Descriptions Instruction Set Reference .Hanua/

Half Word, Format #4
Subfunction: None

6B

Multiply; Significant Result (64 Bits)

F R s T

(R) * (S) to (1)

The #6B instruction performs floating-point multiplication on the contents of
the 64-bit registers R and S, returning the significant result in register T.

Data flag branch conditions:

Half Word, Format #4
Subfunction: None

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

Exponent overflow.
Result is machine zero
Indefinite result.

6C

Divide; Upper Result (64 Bits)

F R s T

(R) I (S) to (1)

The #6C instruction performs floating-point division on the contents of the
64-bit registers R and S, returning the upper result in register T.

Data flag branch conditions:

Data flag bit 41:
Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-82

Floating-point divide fault
Exponent overflow.
Result is machine zero.
Indefinite result.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAIO Instruction Descriptions

Half Word, Format #4
Subfunction: None

6D

Insert Bits (64 Bits)

F R s T

(R) to (T) per (S)

The #6D instruction inserts the right-most bits of register R into register T.
Bits 10-15 of register S specify the number of right-most bits to insert. The
right-most 6 bits of S specify the beginning bit position in T of the inserted
bits. Bits 0-9 and 16-57 of S are undefined, and must be zero. If the R
designator is zero, register #00 provides machine zero.

The result is undefined if the number of inserted bits is zero, or if the
number of inserted bits pius the beginning bit position in T exceeds 64.

Half Word, Format #4
Subfunction: None

6E

Extract Bits (64 Bits)

F R s T

(R) to (1) per (S)

The #6E instruction extracts a specified number of bits from register R into
the right-most portion of register T. Register T is cleared before receiving
the bits. Bits 10-15 of register S specify the number of bits to extract from
register R. The right-most 6 bits of S specify the left-most bit position in R
of the extracted bits. Bits 0-9 and 16-57 of S are undefined, and must be
zero. If the R designator is zero, register #00 provides machine zero.

The result of this instruction is undefined if the number of extracted bits is
zero, or if the number of extracted bits plus the beginning bit position in R
exceeds 64.

PUB-I 264 Rev. A 3-83

ETAJO Instruction Descriptions Instruction Set Reference klanua!

6F

Divide; Significant Result (64 Bits)
Half Word, Format #4
Subfunction: None

F R s T

(R) I (S) to (T)

The #6F instruction performs a floating-point divide significant operation on
the contents of the· 64-bit registers R and S, returning the significant result
in register T.

Data flag branch conditions:

Data flag bit 41:
Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-84

Floating-point divide fault
Exponent overflow.
Result is machine zero.
Indefinite result.

PUB-1264 Rev. A

Instruction Set Reference Manual ETA 10 Inst met ion Descrip1 ions

70

Truncate (64 Bits)
Half Word, Format #A
Subfunction: None

(R) to (T)

The #70 instruction transmits to register T the nearest integer whose
magnitude is less than or equal to magnitude of the 64-bit floating-point
operand in register R. The integer is an unnormalized, 64-bit floating-point
number with a positive exponent.

If R's exponent is positive, the operand is moved directly to T. If R's
exponent is negative, the magnitude of the coefficient is shifted right;
end-off, and the exponent increased by one for each bit position shifted,
until the exponent is zero. As the coefficient is shifted, zeros are extended
on the left. If R's coefficient is positive, the shifted coefficient with zero
exponent is moved into register T. If the coefficient is negative, the two's
complement of the shifted coefficient, with zero exponent, is moved.

If machine zero is used as an operand, 64 zeros are returned as the result.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

PUB-1264 Rev. A 3-85

ETAJO Instruction Descriptions Instruction Set Reference ,\fanua/

71

Floor (64 Bits)
Half Word, Format #A
Subfunction: None

(R) to (T)

The #71 instruction transmits to register T the nearest integer less than or
equal to the 64-bit floating-point operand in register R. The integer is an
unnormalized, 64-bit floating-point number with a positive exponent.

If R's exponent is positive, the operand is moved directly to T. If R's
exponent is negative, the coefficient is shifted right, end-off, and the
exponent increased by one for each bit position shifted, until the exponent
is zero. As the coefficient is shifted, sign bits are extended on the left. The
shifted coefficient with zero exponent is moved into register T.

If machine zero is used as an operand, 64 zeros are returned as the result.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

3-86 PUB-1264 Rev. A

Instruction Set Reference Manual ETA 10 lnstruction Descriptions

72

Ceiling (64 Bits)
Half Word, Format #A
Subfunction: None

(R) to (1)

The #72 instruction transmits to register T the nearest integer greater than
or equal to the 64-bit floating-point operand in register R. The integer is an
unnormalized, 64-bit floating-point number with a positive exponent.

If R's exponent is positive, the operand is moved directly to T. If R's
exponent is negative, the two's complement of the coefficient is shifted
right, end-off, and the exponent increased by one for each bit position
shifted, until the exponent is zero. As the coefficient is shifted, sign bits are
extended on the left. The two's complement of the shifted coefficient with
zero exponent is moved into register T.

If machine zero is used as an operand, 64 zeros are returned as the result.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

PUB-1264 Rev. A 3-87

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

73

Significant Square Root (64 Bits)
Half Word, Format #A
Subfunction: None

(R) to (T)

The #73 instruction loads the square root of the 64-bit floating-point number
in register R into 64-bit register T.

Data flag branch conditions:

Data flag bit 43:
Data flag bit 45:
Data flag bit 46:

3-88

Result is machine zero.
Square root result is imaginary.
Indefinite result.

PUB-1264 Rev. ,\

Instruction Set Reference Manual ETAJO Instruction Descriptions

Half Word, Format #4
Subfunction: None

74

Adjust Significance (64 Bits)

F R s T

(R) per (S) to (T)

The #74 instruction adjusts the significance of the floating-point operand in
register R and transmits the result to register T.

The right-most 48 bits of register S contain a signed, two's complement
integer. The absolute value of this integer is a shift count. If the shift count
is positive, the operand's coefficient is shifted left the number of places
specified by the shift count, or by the number of shifts needed to normalize
the coefficient, whichever is smaller. In either case, the operand's exponent
is reduced by one for each place shifted. An all-zero coefficient is shifted
left the number of specified places.

If the shift count is negative, the operand's coefficient is shifted right the
number of specified places. The operand's exponent is increased by one for
each place shifted. The instruction is undefined if the absolute value of the
shift count is greater than 4 7 decimal.

If R is indefinite, the result is indefinite, and data flag 46 is set. If R is
machine zero, the result is machine zero, and data flag 43 is set.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Exponent overflow.
Result is machine zero.
Result is indefinite.

3-89

ETAJ 0 Instruction Descriptions Instruction Set Reference .\fanuu/

75

Adjust Exponent (64 Bits)
Half Word, Format #4
Subfunction: None

F R s T

(R) per (S) to (T)

The #75 instruction moves the adjusted operand from register R into
register T. The result's exponent is set equal to the exponent of the operand
in register S. The result is formed by shifting the coefficient of the operand
in R. If the R coefficient is zero, the exponent from S is copied to T with an
all-zero coefficient.

The shift count used is the difference between the exponents in registers R
and S. If the R exponent is greater than the S exponent, a left shift is
performed. A right shift occurs if the R exponent is less than the S
exponent.

If the left shift count exceeds that required to normalize the coefficient in
register R, the result is set to indefinite, and data flag bit 42 is set. If either
or both of the operands are machine zero or indefinite, the result is set to
indefinite, data flag bit 46 is set, and data flag bit 42 is clear.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 46:

3-90

Excessive shift count; result is set to indefinite.
One or both operands are indefinite or machine
zero; result is set to indefinite.

PUB-1264 Rel'. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Half Word, Format #A
Subfunction: None

76

Contract

64-Bit (R) to 32-Bit (T)

The #76 instruction contracts the 64-bit floating-point number in register R
into a 32-bit floating-point number. The 32-bit result is transmitted to
register T. The 24-bit result coefficient is copied from left-most 24 bits (bits
16-39) of the source coefficient in R. This has the effect of contracting to
minus one all negative source coefficients whose absolute values (neglecting
the exponent) were less than or equal to 224 •

The exponent of the operand from register R is increased by 24 as it is
moved to register T. The resultant exponent generated from different
values of input exponents is as follows:

Input Exponent Result Exponent
7FFF ... 7000 Result indefinite - Data Flag bit 46.
6FFF ... 0058
0057 ... FF78

Result indefinite - Data Flag bits 42 and 46.
Result exponent 24 larger than the input

FF77 ... 8000

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

exponent.
Result machine zero - Data Flag bit 43.

Exponent overflow.
Result is machine zero.
Result is indefinite.

3....:91

ETAJO Instruction Descriptions Instruction Set Reference .\fanua/

77

Rounded Contract
Half Word, Format #A
Subfunction: None

64-Bit (R) to 32-Bit (T)

The #77 instruction performs a rounded contract operation on the 64-bit
floating-point number in register R, and transmits the 32-bit result to 32-bit
register T. A positive one is added to the origin operand in bit position 40. If
overflow occurs, the exponent is increased by one, and the coefficient
shifted right one place. The left-most 24 bits of the 48-bit sum are
transmitted to the 24-bit coefficient part of register T. Each non-endcase
result element's 8-bit exponent is 24 (25 if overflow occurred) greater than
the corresponding source element's exponent.

If the input operand is between #FF77 and #8000, the result is machine
zero, even if the rounding operation would take it out of machine zero.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-92

Exponent overflow.
Result is machine zero.
Result is indefinite.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAIO Instruction Descrip1ions

Half Word, Format #A
Subfunction: None

78

Transmit Operand (64 Bits)

(R) to ('I)

The #78 instruction transmits the 64-bit operand in register R to register T.

79

Transmit Absolute (64 Bits)
Half Word, Format #A
Subfunction: None

(R) to (T)

The #79 instruction transmits the absolute value of the 64-bit floating-point
number in register R to register T.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Exponent overflow.
Result is machine zero.
Result is indefinite.

3-93

ETAJ 0 Instruction Descriptions instruction Set Reference Manual

7A

Transmit Exponent (64 Bits)
Half Word, Format #A
Subfunction: None

(R) to (T)

The #7 A instruction transmits the exponent from the left-most 16 bits of
register R to the right-most 16 bits of register T. The exponent's sign is
extended through bit 16 of register T. The left-most 16 bits of register Tare
cleared to zero.

7B

Pack (64 Bits)
Half Word, Format #4
Subfunction: None

3-94

F R s T

(R), (S) to (T)

The #7B instruction transmits a 64-bit floating-point number to register T.
The number's exponent is obtained from the right-most 16 bits of register
R, and its coefficient from the right-most 48 bits of register S.

PUB-1264 Re\'. .·\

Instruction Set Reference Manual ETAJO Instruction Descrip1ions

Half Word, Format #A
Subfunction: None

7C

Transmit Length (64 Bits)

(R) to (T)

The #7C instruction transmits the left-most 16 bits of register R to the
right-most 16 bits of register T. The left-most 48 bits of register T are
cleared to zero.

PUB-1264 Rev. A 3-95

ETAiO instruction Descriptions instruction Set Reference Manuu/

7D

Swap
Half Word, Format #7
Subfunction: None

3-96

F R s T

S ---> T and R ---> S

The #7D instruction moves part of the register file to CP memory at the
destination addressed by register T. The move begins with the 64-bit register
specified by the right-most 8 bits of register S. The operation then transmits
the source field R from CP memory to the register file, beginning at the
64-bit register specified by the right-most 8 bits of register S. Register S
must specify an even numbered register.

The left-most 16 bits of registers R and T specify the field length in words
for the source and destination fields respectively. Although the source and
destination field lengths may be different, each must be an even number. A
zero field length means that no transfer is to occur for that field. Any
transfer in or out of the register file that exceeds the register file's limits
causes the instruction to be undefined.

The right-most 48 bits of registers R and T specify the source and
destination base address respectively. The address must be a 64-bit word in
CP memory on an even word boundary.

Bits 57-63 in registers R and T are undefined, and must be zero.
Overlapping source and destination fields are allowed only if the base
addresses for both fields are equal. The operand registers R, S, and T can
be in the range of the registers being swapped.

This instruction is illegal if the attempt is to transfer a vector with an odd
starting address, or of odd length.

PUB-i 264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Half Word, Format #7
Subfunction: None

F

7E

Load Word

R s T

(T) per (S), (R)

The #7E instruction loads the contents of register T from the CP memory
address specified by R + S. Register S contains an item count in words that
is shifted left 6 places, then added to the base address in R. Overflow is
ignored.

Half Word, Format #7
Subfunction: None

F

7F

Store Word

R s T

(T) per (S), (R)

The #7F instruction stores the contents of register T into the CP memory
address specified by registers R + S. Register S contains an item count in
words that is shifted left 6 places, then added to the base address in R.
Overflow is ignored.

PUB-1264 Rev. A 3-97

ETAJO Instruction Descriptions Instruction Set Reference Manual

80

Add; Upper Result
Full Word, Format #1
Subfunction: hzoabsss
Qualifiers: h,z,o,a,b,sss= [ma,c, (n=ma+c) ,mb]

F G x A y B z c

A +B ---> C

The #80 instruction performs floating-point addition on the elements of
vectors A and B, storing the upper result in the corresponding elements of
vector C. Elements of vectors A, B, and C are 64 bits by default, or 32 bits
by declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for elements of vectors A
and B. The sign control feature is valid for this instruction. The qualifiers
that control the state of the sign control subfunction bits are discussed in
chapter 2.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-98

Exponent overflow.
A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev . . -\

Instruction Set Reference Manual ETAIO Instruction Descrip1ions

Full Word, Format #1
Subfunction: hzoabsss

81

Add; Lower Result

Qualifiers: h,z,o,a,b,sss=[ma,c, (n=ma+c) ,mb]

F G x A y B

A+ B ---> C

z c

The #81 instruction performs floating-point addition on the elements of
vectors A and B, storing the lower result in the corresponding elements of
vector C. Elements of vectors A, B, and C are 64 bits by default, or 32 bits
by declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for elements of vectors A
and B. The sign control feature is valid for this instruction. The qualifiers
that control the state of the sign control subfunction bits are discussed in
chapter 2.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-99

ETAIO Instruction Descriptions Instruction Set Reference Manual

82

Add; Normalized Result
Full Word, Format #1
Subfunction: hzoabsss
Qualifiers: h,z,o,a, b,sss= [ma,c, (n=ma+c) ,mb]

F G x A y B z c

A+ B ---> C

The #82 instruction performs floating-point addition on the elements of
vectors A and B, storing the normalized upper result in the corresponding
elements of vector C. Elements of vectors A, B, and C are 64 bits by
default, or 32 bits by declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation. The z qualifier causes the control vector to operate on zero
bits instead of ones. If the Z designator is zero, there is no control vector,
all results are stored, and the z qualifier is invalid. The qualifier o specifies
an offset for result vector C and control vector Z. The offset is found in
register (C+l). Register C must be even if o is declared, otherwise
references to registers designated by C and (C+l) are undefined. Qualifiers
a and b indicate that registers A and B contain constants that are broadcast
as the common value for elements of vectors A and B. The sign control
feature is valid for this instruction. The qualifiers that control the state of
the sign control subfunction bits are discussed in chapter 2.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-100

Exponent overflow.
A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A

Full Word, Format #1
Subfunction: OzoabOOO
Qualifiers: z,o,a,b

F G x

83

Add Address

A y B z c

A+ B ---> C

The #83 instruction adds bits 16-63 of elements of vector B to bits 16-63 of
elements of vector A. The results are stored in bits 16-63 of each vector C
element. Results are treated as 48-bit, positive, unsigned integers.
Arithmetic overflow is ignored. The left-most 16 bits of each element of
vector A are transferred without modification to the left-most 16 bits of the
corresponding element of vector C.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation. The z qualifier causes the control vector to operate on zero
bits instead of ones. If the Z designator is zero, there is no control vector,
all results are stored, and the z qualifier is invalid. The qualifier o specifies
an offset for result vector C and control vector Z. The offset is found in
register (C+l). Register C must be even if o is declared, otherwise
references to registers designated by C and (C+l) are undefined. Qualifiers
a and b indicate that registers A and B contain constants that are broadcast
as the common value for elements of vectors A and B.

PUB-1264 Rev. A 3-101

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

84

Subtract; Upper Result
Full Word, Format #1
Subfunction: hzoabsss
Qualifiers: h,z,o,a,b,sss= [ma,c, (n=ma+c) ,mb]

F G x A y B z c

A - B ---> C

The #84 instruction performs floating-point subtraction of the elements of
vectors A and B. To subtract, the coefficient part of vector B is
complemented as in two's complement arithmetic, and the result added to
vector A. The upper result is stored in the corresponding element of vector
C. Elements of vectors A, B, and C are 64 bits by default, or 32 bits by
declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for elements of vectors A
and B. The sign control feature is valid for this instruction. The qualifiers
that control the state of the sign control subfunction bits are discussed in
chapter 2.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-102

Exponent overflow.
A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A

Instruction Set Reference Manual ETA JO Instruction Descriptions

Full Word, Format #1
Subfunction: hzoabsss

85

Subtract; Lower Result

Qualifiers: h,z,o,a,b,sss= [ma,c, (n=ma+c) ,mb]

F G x A y B

A - B ---> C

z c

The #85 instruction performs floating-point subtraction of the elements of
vectors A and B. To subtract, the coefficient part of vector B is
complemented as in two's complement arithmetic, and the result added to
vector A. The lower result is stored in the corresponding element of vector
C. Elements of vectors A, B, and C are 64 bits by default, or 32 bits by
declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o

is declared, otherwise references to registers designated by C and (C+ 1) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for elements of vectors A
and B. The sign control feature is valid for this instruction. The qualifiers
that control the state of the sign control subfunction bits are discussed in
chapter 2.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-103

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

86

Subtract; Normalized Result
Full Word, Format #1
Subfunction: hzoabsss
Qualifiers : h,z,o,a,b,sss=[ma,c, (n=ma+c) ,mb]

F G x A y B z c

A - B ---> C

The #86 instruction performs floating-point subtraction of the elements of
vectors A and B. To subtract, the coefficient part of vector B is
complemented as in two's complement arithmetic, and the result added to
vector A. The normalized upper result is stored in the corresponding
element of vector C. Elements of vectors A, B, and Care 64 bits by default,
or 32 bits by declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+ 1) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for elements of vectors A
and B. The sign control feature is valid for this instruction. The qualifiers
that control the state of the sign control subfunction bits are discussed in
chapter 2.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-104

Exponent overflow.
A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. :\

Instruction Set Reference Manual ETAIO Instruction Descrip1ions

Full Word, Format #1
Subfunction: OzoabOOO
Qualifiers: z,o,a,b

F G x

87

Subtract Address

A y B z c

A - B ---> C

The #87 instruction subtracts bits 16-63 of elements of vector B from bits
16-63 of elements of vector A. Vector B is complemented as in two's
complement arithmetic, and the result added to vector A. The results are
stored in bits 16-63 of each vector C element. Bits 16-63 are treated as
positive, unsigned integers. Arithmetic overflow is ignored. The left-most 16
bits of each element of vector A are transferred without modification to the
left-most 16 bits of the corresponding vector C element.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation. The z qualifier causes the control vector to operate on zero
bits instead of ones. If the Z designator is zero, there is no control vector,
all results are stored, and the z qualifier is invalid. The qualifier o specifies
an offset for result vector C and control vector Z. The off set is found in
register (C+l). Register C must be even if o is declared, otherwise
references to registers designated by C and (C+l) are undefined. Qualifiers
a and b indicate that registers A and B contain constants that are broadcast
as the common value for elements of vectors A and B.

PUB-1264 Rev. A 3-105

ETAJO Instruction Descriptions Instruction Set Reference Manual

88

Multiply; Upper Result
Full Word, Format #1
Subfunction: hzoabsss
Qualifiers : h,z,o,a,b,sss=[ma,c, (n=ma+c) ,mb]

F G x A y B z c

A* B ---> C

The #88 instruction performs floating-point multiplication of vector A's
elements by those of vector B. The upper part of the result is stored in the
corresponding element of vector C. Elements of vectors A, B, and C are 64
bits by default, or 32 bits by declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C eiement, controlling which eiements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for elements of vectors A
and B. The sign control feature is valid for this instruction. The qualifiers
that control the state of the sign control subfunction bits are discussed in
chapter 2.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-106

Exponent overflow.
A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Full Word, Format #1
Subfunction: hzoabsss

89

Multiply; Lower Result

Qualifiers : h,z,o,a,b,sss=[ma,c, (n=ma+c) ,mb]

F G x A y B

A* B ---> C

z c

The #89 instruction performs floating-point multiplication of vector A's
elements by those of vector B. The lower part of the result is stored in the
corresponding element of vector C. Elements of vectors A, B, and C are 64
bits by default, or 32 bits by declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an off set for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for elements of vectors A
and B. The sign control feature is valid for this instruction. The qualifiers
that control the state of the sign control subfunction bits are discussed in
chapter 2.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-107

ETAJO Instruction Descriptions Instruction Set Reference Manual

8A

Shift Element
Full Word, Format #1
Subfunction: OzoabOOO
Qualifiers: z,o,a,b

3-108

F G x A y B z c

A per B ---> C

The #BA instruction shifts each 64-bit element of vector A left or right, as
specified by the corresponding element of vector B. The result is stored in
the corresponding element of vector C. The 8-bit signed integer in the
right-most byte of the vector B element specifies the shift count. For
positive integers between #00 to #3F, the vector A element is shifted left
end-around for the specified number of places. For negative integers
between #FF and #Cl, the element is shifted right with sign bit extension.
Bit 0 in each vector A operand is the sign bit for the extension. The number
of right shifts performed is the two's complement of the right-most bytes of
the operands in vector B. If the absolute value of the shift count is greater
than #3F or less than #Cl, the results are undefined. The left-most 7 bytes
of vector B elements are ignored.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation. The z qualifier causes the control vector to operate on zero
bits instead of ones. If the Z designator is zero, there is no control vector,
all results are stored, and the z qualifier is invalid. The qualifier o specifies
an offset for result vector C and control vector Z. The offset is found in
register (C+l). Register C must be even if o is declared, otherwise
references to registers designated by C and (C+l) are undefined. Qualifiers
a and b indicate that registers A and B contain constants that are broadcast
as the common value for elements of vectors A and B.

PUB-1264 Rel'. :\

Instruction Set Reference Manual ETAJO Instruction Descriptions

Full Word, Format #1
Subfunction: hzoabsss

SB

Multiply; Significant Result

Qualifiers: h,z,o,a,b,sss=[ma,c, (n=ma+c) ,mb]

F G x A y B

A* B ---> C

z c

The #8B instruction performs floating-point multiplication of elements of
vector A by those of vector B. The significant part of the floating-point
result is stored in the corresponding element of vector C. Elements of
vectors A, B, and C are 64 bits by default, or 32 bits by declaring the h
qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for elements of vectors A
and B. The sign control feature is valid for this instruction. The qualifiers
that control the state of the sign control subfunction bits are discussed in
chapter 2.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-109

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

SC

Divide; Upper Result
Full Word, Format #1
Subfunction: hzoabsss
Qualifiers : h,z,o,a,b,sss=[ma,c, (n=ma+c) ,mb]

F G x A y B z c

A I B ---> C

The #SC instruction performs floating-point division of vector A's elements
by corresponding elements of vector B. The upper part of the result is
stored in the corresponding element of vector C. Elements of vectors A, B,
and C are 64 bits by default, or 32 bits by declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for elements of vectors A
and B. The sign control feature is valid for this instruction. The qualifiers
that control the state of the sign control subfunction bits are discussed in
chapter 2.

Data flag branch conditions:

Data flag bit 41:
Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-110

Floating-point divide fault.
Exponent overflow.
A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAIO Instruction Descriptions

Full Word, Format #1
Subfunction: hzoabsss

SF

Divide; Significant Result

Qualifiers : h,z,o,a,b,sss= [ma,c, (n=ma+c) ,mb]

F G x A y B

A I B ---> C

z c

The #SF instruction performs floating-point division of vector A's elements
by corresponding elements of vector B. The significant part of the
floating-point result is stored in the corresponding element of vector C.
Elements of vectors A, B, and C are 64 bits by default, or 32 bits by
declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for elements of vectors A
and B. The sign control feature is valid for this instruction. The qualifiers
that control the state of the sign control subfunction bits are discussed in
chapter 2.

Data flag branch conditions:

Data flag bit 41:
Data flag bit 42:

Floating-point divide fault.
Exponent overflow.

Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-111

ETAIO Instruction Descriptions Instruction Set Reference Jlanuo/

90

Truncate
Full Word, Format #1
Subfunction: hzoaOOOO
Qualifiers: h,z,o,a

F G x A c

A---> C

The #90 instruction transmits to vector C the nearest integer whose
magnitude is less than or equal to the magnitude of the corresponding
floating-point element of source vector A. This integer is an unnormalized
floating-point number with a positive exponent. If machine zero is the
operand value, the result element is all-zero. All elements are 32 or 64-bit
floating-point operands, depending on the h qualifier.

If the vector A element's exponent is positive, the element is moved directly
to vector C. If the exponent is negative, the magnitude of the coefficient is
shifted right end-off, and the exponent increased by one for each bit
position shifted, until the exponent is zero. As the coefficient is shifted,
zeros are extended on the left. For positive coefficients, the shifted
coefficient with zero exponent is moved into the vector C element. For
negative coefficients, the two's complement of the shifted coefficient, with
zero exponent, is moved.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bit 46). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+ 1). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifier a indicates that register A contains a constant that is
broadcast as the common value for elements of vector A.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

3-112 PUB-1264 Re\'. :\

Instruction Set Reference Manual ETA 10 Instruction Dcscrip1 ions

Full Word, Format #1
Subfunction: hzoaOOOO
Qualifiers: h,z,o,a

F G x

91

Floor

c

A---> C

The #91 instruction transmits to vector C the nearest integer less than or
equal to the corresponding floating-point element of source vector A. This
integer is an unnormalized floating-point number with a positive exponent.
If machine zero is the operand value, the resulting element is all-zero. All
elements are 32 or 64-bit floating-point operands, depending on the h

qualifier.

If the vector A element's exponent is positive, the element is moved directly
to vector C. If the exponent is negative, the operation shifts the coefficient
right end-off, and increases the exponent by one for each bit position
shifted, until the exponent is zero. As the coefficient is shifted, sign bits are
extended on the left. The shifted coefficient with zero exponent is moved
into the vector C element.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bit 46). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+ 1) are
undefined. Qualifier a indicates that register A contains a constant that is
broadcast as the common value for elements of vector A.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

PUB-1264 Rev. A 3-1 13

ETAJ 0 Instruction Descriptions Instruction Set Reference klanua!

92

Ceiling
Full Word, Format #1
Subfunction: hzoaOOOO
Qualifiers: h,z,o,a

F G x c

A---> C

The #92 instruction transmits to vector C the nearest integer greater than or
equal to the corresponding floating-point element of source vector A. The
integer is an unnormalized floating-point number with a positive exponent.
If machine zero is the operand value, the resulting element is all-zero. All
elements are 32 or 64-bit floating-point operands, depending on the h
qualifier.

If the vector A element's exponent is positive, the element is moved directly
to vector C. If the exponent is negative, the two's complement of the
coefficient is shifted right end-off, and the exponent increased by one for
each bit position shifted, until the exponent is zero. As the coefficient is
shifted, sign bits are extended on the left. The two's complement of the
shifted coefficient, with zero exponent, is moved to the vector C element.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bit 46). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifier a indicates that register A contains a constant that is
broadcast as the common value for elements of vector A.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

3-114 PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Full Word, Format #1
Subfunction: hzoaOssO
Qualifiers : h,z,o,a,ss=[ma,c]

F G

93

Significant Square Root

x c

A---> C

The #93 instruction forms the square root of each element of vector A, and
moves it into the corresponding element of result vector C. Elements of
vectors A and C are 64 bits by default, or 32 bits by declaring the h
qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifier a indicates that register A contains a constant that is
broadcast as the common value for elements of vector A. The sign control
feature is valid for this instruction. The effect of the three qualifiers that
control the state of subfunction bits 5 and 6, used for sign control, is
discussed in chapter 2.

Data flag branch conditions:

Data flag bit 43:
Data flag bit 45:

A result element in vector C is machine zero.
Square root result is imaginary.

Data flag bit 46:

PUB-1264 Rev. A

A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

3-115

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

94

Adjust Significance
Full Word, Format #1
Subfunction: hzoabOOO
Qualifiers: h,z,o,a,b

3-116

F G x A y B z c

A per B ---> C

The #94 instruction adjusts the significance of the floating-point elements
from vector A, and transmits the results to the corresponding elements of
vector C. The instruction operates on 64-bit words, unless the h qualifier is
specified. Elements of vector B contain signed two's complement integers in
the right-most 48 (24 if the h qualifier is specified) bits. The absolute values
of these integers are shift counts. The result is undefined if the absolute
value of the shift count is greater than 4 7 (23 if the h qualifier is specified).

If the shift count is positive, the vector A element's coefficient is shifted left
the number of places specified by the shift count, or by the number of shifts
needed to normalize the coefficient, whichever is smaller. In either case, the
element's exponent is reduced by one for each place shifted. An all-zero
coefficient is shifted left the number of specified positions. If the shift count
is negative, the element's coefficient is shifted right the number of places
specified by the shift count. The element's exponent is increased by one for
each place shifted.

Register Z may specify a control vector, each bit. of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+ 1) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for elements of vectors A
and B.

PUB-1264 Rer . . \

Instruction Set Reference Manual ETAJO Instruction Descriptions

If a vector A element is indefinite, the resulting vector C element is
indefinite, and data flag 46 is set. If a vector A element is machine zero, the
resulting vector C element is machine zero, and data flag 43 is set.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Exponent overflow.
A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

~-117

ETAJ 0 Instruction Descriptions Instruction Set Reference .\fanua!

95

Adjust Exponent
Full Word, Format #1
Subfunction: hzoabOOO
Qualifiers: h,z,o,a,b

3-118

F G x A y B z c

A per B ---> C

The #95 instruction transmits adjusted elements from vector A to vector C.
The exponent of a result element is set equal to the exponent of the
associated vector B element. Result elements' coefficients are formed by
shifting the coefficients of the vector A elements. The instruction operates
on 64-bit words, uniess the h qualifier is specified.

The shift count used is the difference between the exponents of associated
elements from A and B. If a vector A element's exponent is greater than
that of an element of vector B, the shift is to the left; a right shift is
performed if the exponent is less. For vector A element coefficients that are
zero, the vector B exponent is copied to vector C with an all-zero
coefficient. If a left shift exceeds the number of places required for
normalization, the result is set to indefinite, and data flag bit 42 set. If

either or both operands are indefinite or machine zero, the result is
indefinite. Data flag 46 is set and 42 is not set in this case.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for elements of vectors A
and B.

PUB-1264 Rei·. A

Instruction Set Reference Manual

Data flag branch conditions:

Data flag bit 42:
Data flag bit 46:

PUB-1264 Rev. A

ETAIO Instruction Descriptions

Exponent overflow.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

3-119

ETAJ 0 Instruction Descriptions Instruction Set Reference Afanual

96

Contract
Full Word, Format #1
Subfunction: OzoaOOOO
Qualifiers: z,o,a

F G x c

64-Bit A ---> 32-Bit C

The #96 instruction forms each 32-bit floating-point element of result vector
C by contracting the corresponding 64-bit floating-point vector A element.
Each non-endcase 8-bit result element's exponent is 24 greater than its
source element's exponent. Each 24-bit result's coefficient is copied from
the source coefficient's left-most 24 bits (bits 16-39). This has the effect of
contracting to minus one all negative source coefficients whose absolute
values (neglecting the exponent) were less than or equal to 2 24 .

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifier a indicates that register A contains a constant that is
broadcast as the common value for elements of vector A.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-120

Exponent overflow.
A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Full Word, Format #1
Subfunction: OzoaOOOO
Qualifiers: z,o,a

F G

97

Rounded Contract

x c

64-Bit A ---> 32-Bit C

The #97 instruction forms each 32-bit floating-point element of result vector
C by performing a rounded contract operation on the corresponding 64-bit
floating-point vector A element. A positive one is added to bit 40 of the
origin operand. If overflow occurs, the exponent is increased by one, and
the coefficient shifted right one place. This sum's left-most 24 bits are
transmitted to the 24-bit coefficient part of result element C Each
non-endcase result element's 8-bit exponent is 24 (25 if overflow occurred)
greater than the corresponding source element's exponent.

If the input operand is between #FF77 and #8000, the result is machine
zero, even if the rounding operation would take it out of machine zero.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifier a indicates that register A contains a constant that is
broadcast as the common value for elements of vector A.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-121

ETAJO Instruction Descriptions Instruction Set Reference .\!anual

98

Transmit Element
Full Word, Format #1
Subfunction: hzoaOOOO
Qualifiers: h, z,o,a

3-122 -

F G x c

A---> C

The #98 instruction transmits the source vector A to result vector C. All
elements are 32 or 64-bit floating-point operands, depending on the h

qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation. The z qualifier causes the control vector to operate on zero
bits instead of ones. If the Z designator is zero, there is no control vector,
all results are stored, and the z qualifier is invalid. The qualifier o specifies
an offset for result vector C and control vector Z. The off set is found in
register (C+l). Register C must be even if o is declared, otherwise
references to registers designated by C and (C+l) are undefined. Qualifier a

indicates that register A contains a constant that is broadcast as the
common value for elements of vector A.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO lnstruc£ion Dcscrip1ions

Full Word, Format #1
Subfunction: hzoaOOOO
Qualifiers: h,z,o,a

F G x

99

Move Absolute

c

A---> C

The #99 instruction moves the absolute value of each vector A floating-point
element to the corresponding floating-point element in vector C. All
elements are 32 or 64-bit floating-point operands, depending on the h
qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifier a indicates that register A contains a constant that is
broadcast as the common value for elements of vector A.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-123

ETAJO Instruction Descriptions Instruction Set Reference Manual

9A

Move Exponent
Full Word, Format #1
Subfunction: hzoaOOOO
Qualifiers: h,z,o,a

3-124

F G x A z c

A---> C

The #9A instruction forms vector C elements by storing exponents from the
input vector A into the right-most portion of the coefficients of vector C
elements. The exponent's sign is extended left to the coefficient sign bit
position. Each vector C element's exponent portion is cleared to zero. All
elements are 32 or 64-bit operands, depending on the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation. The z qualifier causes the control vector to operate on zero
bits instead of ones. If the Z designator is zero, there is no control vector,
all results are stored, and the z qualifier is invalid. The qualifier o specifies
an offset for result vector C and control vector Z. The off set is found in
register (C+l). Register C must be even if o is declared, otherwise
references to registers designated by C and (C+l) are undefined. Qualifier a
indicates that register A contains a constant that is broadcast as the
common value for elements of vector A.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Full Word, Format #1
Subfunction:hzoabOOO
Qualifiers: h,z,o,a,b

F G x

9B

Pack

A y B z c

A, B ---> C

The #9B instruction transmits to each result vector C element a 64 or 32-bit
floating-point number produced as follows. The right-most 16 or 8 bit
positions of each vector A element (as an exponent) are moved to the
left-most 16 or 8 bit positions of result vector C, and the right-most 48 or 24
bits of each vector B element (the coefficient) are moved to the right-most
48 or 24 bits of result vector C. Elements of vectors A, B and C are 64 bits
by default, or 32 bits by declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation. The z qualifier causes the control vector to operate on zero
bits instead of ones. If the Z designator is zero, there is no control vector,
all results are stored, and the z qualifier is invalid. The qualifier o specifies
an offset for result vector C and control vector Z. The offset is found in
register (C+l). Register C must be even if o is declared, otherwise
references to registers designated by C and (C+l) are undefined. Qualifiers
a and b indicate that registers A and B contain constants that are broadcast
as the common value for elements of vectors A and B.

PUB-1264 Rev. A 3-125

ETAIO Instruction Descriptions Instruction Set Reference Manual

9C

Extend
Full Word, Format #1
Subfunction:OzoaOOOO
Qualifiers: z,o,a

3-126

F G x c

32-Bit A ---> 64-Bit C

The #9C instruction forms result vector C by extending 32-bit floating-point
operands of vector A into 64-bit floating-point operands. The value of each
resulting 16-bit exponent is 24 less than that of the corresponding source
element's exponent. Each result coefficient is obtained by transmitting the
right-most 24 bits of the corresponding source element into bits 16-39 of
each result element. The right-most 24 bits of each resuit are cleared to
zero.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid: The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+l) are
undefined. Qualifier a indicates that 32-bit register A contains a constant
that is broadcast as the common value for elements of vector A. If an
element of vector A is indefinite, the corresponding vector C element is set
to indefinite, and data flag 46 set. If a vector A element is machine zero,
machine zero is stored in the corresponding vector C element, and data flag
43 set.

PUB-1264 Rev. ,\

Instruction Set Reference Manual

Data flag branch conditions:

Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

ETAIO Instruction Descriptions

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

3-127

ETAJ 0 Instruction Descriptions Instruction Set Reference .\Ianual

9D

Logical Operation
Full Word, Format #1
Subfunction: hzoabnnn
Qualifiers: h,z,o,a,b, nnn=[000,001,010,011, 100, 101, 110, 111]

3-128

F G x I A ·I y I B z

A, B ---> C

The #9D instruction performs a bit-by-bit logical operation between
elements of vectors A and B. The result is transmitted to vector C.
Elements of vectors A, B and C are 64 bits by default, or 32 bits by
declaring the h qualifier. The logical operation performed depends on bits
5, 6, and 7 in the G field. The valid bit settings for each operation are:

000: Exclusive OR
001: AND
010: OR
011: NOT AND (stroke)
100: NOT OR (pierce)
101: OR NOT (implication)
110: AND NOT (inhibit)
111: Exclusive OR NOT (equivalence)

Table 1-1 describes the effect of each logical operation, depending on the
bit settings in elements of A and B.

Table 1-1. Logical Operations on vector A and B elements.

Source Exel. NOT NOT OR AND Exel.OR
AB OR AND OR AND OR NOT NOT NOT

0 0 0 0 0 1 1 1 0 1
0 1 1 0 1 1 0 0 0 0 -

1 0 1 0 1 1 0 1 1 0
1 1 0 1 1 0 0 1 0 1

PUB-1264 Rer. :\

Instruction Set Reference Manual ETAJO Instruction Descriptions

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation. The z qualifier causes the control vector to operate on zero
bits instead of ones. If the Z designator is zero, there is no control vector,
all results are stored, and the z qualifier is invalid. The qualifier o specifies
an offset for result vector C and control vector Z. The offset is found in
register (C+l). Register C must be even if o is declared, otherwise
references to registers designated by C and (C+l) are undefined. Qualifiers
a and b indicate that registers A and B contain constants that are broadcast
as the common value for elements of vectors A and B.

PUB-1264 Rev. A 3-129

ETAJ 0 Instruction Descriptions Instruction Set Reference :\!anuo/

AO

Add; Upper Result
Full Word, Format #1
Subfunction: hllabsss
Qualifiers: h,ll=[rvg,xvg,ivg] ,a,b,sss=[ma,c, (n=ma+c) ,mb]

3-130

F G x A y B z c

A+ B ---> C

The #AO instruction performs floating-point addition on elements of sparse
vectors A and B. The upper result is stored in the corresponding element of
sparse vector C. Elements may be 64 bits by default, or 32 bits by declaring
the h qualifier.

An element is read from sparse vector A whenever a one bit is encountered
in the order vector X. When a one bit occurs in order vector Y, an element
is read from vector B. If there is a zero bit in the order vector, machine zero
is used as the associated A or B element.

Order vector Z is the result of a bit-by-bit logical function performed on
order vectors X and Y, as specified by the selected rvg, ivg, or xvg qualifier.
Table 1-2 shows the logical function for each qualifier.

Table 1-2. Logical Functions on X and Y to Produce Order Vector Z.

G-Bits Qualifier Logical Function Performed
1 2

0 0 None Logical OR of X, Y
0 1 rvg Logical AND of X, Y
1 0 xvg Logical Exclusive OR of X, Y
1 1 ivg Logical OR NOT of X, Y

PUB-1264 Rev. A

Instruction Set Reference Manual ETAlO Instruction Dcscrip1i,Jns

The sparse vector C receives non-zero values corresponding to each one bit
in the order vector Z, as defined in table 1-3.

Table 1-3. Results of the logical operations performed by the source vectors.

Source Results

G Bit 1 = 0 G Bit 1 = 0 G Bit 1 = 1 G Bit 1 = 1
Order Sparse Data G Bit 2 = 0 G Bit 2 = 1 G Bit 2 = 0 G Bit 2 = 1
Vector Vector Element OR AND Exclusive OR lm_plication

x

0

0

1

1

y A B z c z c z c z c

0 MZ MZ 0 N 0 N 0 N 1 MZ

1 MZ B 1 +B 0 N 1 +B 0 N

0 A MZ 1 A 0 N 1 A 1 A

1 A B 1 A+B 1 A+B 0 N 1 A+B

Notes:

A A stream operand
B B stream operand
N No result produced
MZ Machine zero

For each one bit in order vector Z, an output element of vector C is
generated. Vector C's length is moved to bits 0-15 of register C.

Qualifiers a and b indicate that registers A and B contain constants which
are broadcast as the common value for an· element of vector A and B.
Either qualifier or both may be used. The sign control feature is valid for
this instruction. The effect of the qualifiers which control the state of
subfunction bits used for sign control are discussed in chapter 2.

Data flags are set only for output elements of vector C.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-1) I

ETAJ 0 Instruction Descriptions Instruction Ser Reference :\Ianual

Al

Add; Lower Result
Full Word, Format #1
Subfunction: hllabsss
Qualifiers : h,11=[rvg,xvg,ivg] ,a,b,sss= [ma,c, (n=ma+c) ,mb]

3-132

F G x A y B z c

A+ B ---> C

The #Al instruction performs floating-point addition on elements of sparse
vectors A and B. The lower result is stored in the corresponding element of
sparse vector C. Elements are 64 bits by default, or 32 bits by declaring the
h qualifier.

An element is read from sparse vector A whenever a one bit is encountered
in the order vector X. When a one bit occurs in order vector Y, an element
is read from vector B. If there is a zero bit in the order vector, machine zero
is used as the associated A or B element.

Order vector Z is the result of a bit-by-bit logical function performed on
order vectors X and Y, as specified by the selected rvg, ivg, or xvg qualifier.
Table 1-4 shows the logical function for each qualifier.

Table 1-4. Logical Functions on X and Y to Produce Order Vector Z.

G-Bits Qualifier Logical Function Performed
1 2

0 0 None Logical OR of X,Y
0 1 rvg Logical AND of X,Y
1 0 xvg Logical Exclusive OR of X,Y
1 1 ivg Logical OR NOT of X,Y

PUB-1264 Rel'. A

Instruction Set Reference Manual ETA/0 Jns1ruc1ion De

The sparse vector C receives non-zero values corresponding to each one bit
in the order vector Z, as defined in table 1-5.

Table 1-5. Results of the logical operations performed by the source vectors.

Source Results

G Bit 1 = 0 G Bit 1 = 0 G Bit 1 = 1 G Bit 1 = 1
Order Sparse Data G Bit 2 = 0 G Bit 2 = 1 G Bit 2 = 0 G Bit 2 = I
Vector Vector Element OR AND Exclusive OR Im_Q)ication

x

0

0

1

1

y A B z c z c z c z c

0 MZ MZ 0 N 0 N 0 N 1 MZ

1 MZ B 1 +B 0 N 1 +B 0 N

0 A MZ 1 A 0 N 1 A 1 A

1 A B 1 A+B 1 A+B 0 N 1 A+B

Notes:

A A stream operand
B B stream operand
N No result produced
MZ Machine zero

For each one bit in order vector Z, an output element of vector C is
generated. Vector C's length is moved to bits 0-15 of register C.

Qualifiers a and b indicate that registers A and B contain constants which
are broadcast as the common value for an element of vector A and B.
Either qualifier or both may be used. The sign control feature is valid for
this instruction. The effect of the qualifiers which control the state of
subfunction bits used for sign control are discussed in chapter 2.

Data flags are set only for output elements of vector C.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-133

ETAJO Instruction Descriptions Instruction Set Reference .\fonunl

A2

Add; Normalized Result
Full Word, Format #1
Subfunction: hllabsss
Qualifiers : h,11= [rvg,xvg,ivg],a,b,sss= [ma,c, (n=ma+c) ,mb]

3-134

F G x A y B z c

A+ B ---> C

The #A2 instruction performs floating-point addition on elements of sparse
vectors A and B. The normalized result is stored in the corresponding
element of sparse vector C. Elements are 64 bits by default, or 32 bits by
declaring the h qualifier.

An element is read from sparse vector A whenever a one bit is encountered
in the order vector X. When a one bit occurs in order vector Y, an element
is read from vector B. If there is a zero bit in the order vector, machine zero
is used as the associated A or B element.

Order vector Z is the result of a bit-by-bit logical function performed on
order vectors X and Y, as specified by the selected rvg, ivg, or xvg qualifier.
Table 1-6 shows the logical function for each qualifier.

Table 1-6. Logical Functions on X and Y to Produce Order Vector Z.

G-Bits Qualifier Logical Function Performed
1 2

0 0 None Logical OR of X,Y
0 1 rvg Logical AND of X, Y
1 0 xvg Logical Exclusive OR of X, Y
1 1 ivg Logical OR NOT of X,Y

PUB-1264 Rev. A

Instruction Set Reference Manual ETA 10 Instruction Descriptions

The sparse vector C receives non-zero values corresponding to each one bit
in the order vector Z, as defined in table 1-7.

Table 1-7. Results of the logical operations performed by the source vectors.

Source Results

G Bit 1 = 0 G Bit 1 = 0 G Bit 1 = 1 G Bit 1 = 1
Order Sparse Data G Bit 2 = 0 G Bit 2 = 1 G Bit 2 = 0 G Bit 2 = 1
Vector Vector Element OR AND Exclusive OR Im_glication

x

0

0

1

1

y A B z c z c z c z c

0 MZ MZ 0 N 0 N 0 N 1 MZ

1 MZ B 1 +B 0 N 1 +B 0 N

0 A MZ 1 A 0 N 1 A 1 A

1 A B 1 A+B 1 A+B 0 N 1 A+B

Notes:

A A stream operand
B B stream operand
N No result produced
MZ Machine zero

For each one bit in order vector Z, an output element of vector C is
generated. Vector C's length is moved to bits 0-15 of register C.

Qualifiers a and b indicate that registers A and B contain constants which
are broadcast as the common value for an element of vector A and B.
Either qualifier or both may be used. The sign control feature is valid for
this instruction. The effect of the qualifiers which control the state of
subfunction bits used for sign control are discussed in chapter 2.

Data flags are set only for output elements of vector C.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-135

ETA 10 Instruction Descriptions Instruction Set Reference ,\fanua/

A4

Subtract; Upper Result
Full Word, Format #1
Subfunction: hllabsss
Qualifiers : h,ll=[rvg,xvg,ivg],a,b,sss=[ma,c, (n=ma+c) ,mb]

3-136

F G x I A y B z c

A - B ---> C

The #A4 instruction performs floating-point subtraction on elements of
sparse vectors A and B. The upper result is stored in the corresponding
element of sparse vector C. Elements are 64 bits by default, or 32 bits by
declaring the h qualifier.

An element is read from sparse vector A whenever a one bit is encountered
in the order vector X. When a one bit occurs in order vector Y, an element
is read from vector B. If there is a zero bit in the order vector, machine zero
is used as the associated A or B element.

Order vector Z is the result of a bit-by-bit logical function performed on
order vectors X and Y, as specified by the selected rvg, ivg, or xvg qualifier.
Table 1-8 shows the logical function for each qualifier.

Table 1-8. Logical Functions on X and Y to Produce Order Vector Z.

G-Bits Qualifier Logical Function Performed
1 2

0 0 None Logical OR of X, Y
0 1 rvg Logical AND of X, Y
1 0 xvg Logical Exclusive OR of X,Y
1 1 ivg Logical OR NOT of X, Y

PUB-1264 Re1· . . \

Instruction Set Reference Manual ETAJO Instruction Descriptions

The sparse vector C receives non-zero values corresponding to each one bit
in the order vector Z, as defined in table 1-9.

Table 1-9. Results of the logical operations performed by the source vectors.

Source Results

G Bit 1 = 0 G Bit 1 = 0 G Bit 1 = 1 G Bit 1 = 1
Order Sparse Data G Bit 2 = 0 G Bit 2 = 1 G Bit 2 = 0 G Bit 2 = 1
Vector Vector Element OR AND Exclusive OR ImJ2.!ication

x

0

0

1

1

y A B z c z c z c z c

0 MZ MZ 0 N 0 N 0 N 1 MZ

1 MZ B 1 +B 0 N 1 +B 0 N

0 A MZ 1 A 0 N 1 A 1 A

1 A B 1 A+B 1 A+B 0 N 1 A+B

Notes:

A A stream operand
B B stream operand
N No result produced
MZ Machine zero

For each one bit in order vector Z, an output element of vector C is
generated. Vector C's length is moved to bits 0-15 of register C.

Qualifiers a and b indicate that registers A and B contain constants which
are broadcast as the common value for an element of vector A and B.
Either qualifier or both may be used. The sign control feature is valid for
this instruction. The effect of the qualifiers which control the state of .
subfunction bits used for sign control are discussed in chapter 2.

Data flags are set only for output elements of vector C.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-137

ETAJO Instruction Descriptions Instruction Set Reference .\fanual

AS

Subtract; Lower Result
Full Word, Format #1
Subfunction: hllabsss
Qualifiers : h,ll= [rvg,xvg,ivg] ,a,b,sss= [ma,c, (n=ma+c) ,mb]

3-138

F G x A y B z c

A - B ---> C

The #AS instruction performs floating-point subtraction on elements of
sparse vectors A and B. The lower result is stored in the corresponding
element of sparse vector C. Elements are 64 bits by default, or 32 bits by
declaring the h qualifier.

An eiement is read from sparse vector A whenever a one bit is encountered
in the order vector X. When a one bit occurs in order vector Y, an element
is read from vector B. If there is a zero bit in the order vector, machine zero
is used as the associated A or B element.

Order vector Z is the result of a bit-by-bit logical function performed on
order vectors X and Y, as specified by the selected rvg, ivg, or xvg qualifier.
Table 1-10 shows the logical function for each qualifier.

Table 1-10. Logical Functions on X and Y to Produce Order Vector Z.

G-Bits Qualifier Logical Function Performed
1 2

0 0 None Logical OR of X,Y
0 1 rvg Logical AND of X,Y
1 0 xvg Logical Exclusive OR of X, Y
1 1 ivg Logical OR NOT of X,Y

PUB-1264 Re\'. A

Instruction Set Reference Manual ETA I 0 Instruction Descriprions

The sparse vector C receives non-zero values corresponding to each one bit
in the order vector Z, as defined in table 1-11.

Table 1-11. Results of the logical operations performed by the source vectors.

Source Results

G Bit 1 = 0 G Bit 1 = 0 G Bit 1 = 1 G Bit 1 = 1
Order Sparse Data G Bit 2 = 0 G Bit 2 = 1 G Bit 2 = 0 G Bit 2 = 1
Vector Vector Element OR AND Exclusive OR Im12Iication

x

0

0

1

1

y A B z c z c z c z c

0 MZ MZ 0 N 0 N 0 N 1 MZ

1 MZ B 1 +B 0 N 1 +B 0 N

0 A MZ 1 A 0 N 1 A 1 A

1 A B 1 A+B 1 A+B 0 N 1 A+B

Notes:

A A stream operand
B B stream operand
N No result produced
MZ Machine zero

For each one bit in order vector Z, an output element of vector C is
generated. Vector C's length is moved to bits 0-15 of register C.

Qualifiers a and b indicate that registers A and B contain constants which
are broadcast as the common value for an element of vector A and B.
Either qualifier or both may be used. The sign control feature is valid for
this instruction. The effect of the qualifiers which control the state of
subfunction bits used for sign control are discussed in chapter 2.

Data flags are set only for output elements of vector C.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-139

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

A6

Subtract; Normalized Result
Full Word, Format #1
Subfunction: hllabsss
Qualifiers : h,ll=[rvg,xvg,ivg],a,b,sss=[ma,c, (n=ma+c) ,mb]

3-140

F G x A y B z c

A - B ---> C

The #A6 instruction performs floating-point subtraction on elements of
sparse vectors A and B. The normalized result is stored in the
corresponding element of sparse vector C. Elements are 64 bits by default,
or 32 bits by declaring the h qualifier.

An element is read from sparse vector A whenever a one bit is encountered
in the order vector X. When a one bit occurs in order vector Y, an element
is read from vector B. If there is a zero bit in the order vector, machine zero
is used as the associated A or B element.

Order vector Z is the result of a bit-by-bit logical function performed on
order vectors X and Y, as specified by the selected rvg, ivg, or xvg qualifier.
Table 1-12 shows the logical function for each qualifier.

Table 1-12. Logical Functions on X and Y to Produce Order Vector Z.

G-Bits Qualifier Logical Function Performed
1 2

0 0 None Logical OR of X, Y
0 1 rvg Logical AND of X,Y
1 0 xvg Logical Exclusive OR of X, Y
1 1 ivg Logical OR NOT of X,Y

PUB-1264 Rev. A.

Instruction Set Reference Manual ETAJO Instruction Descriptions

The sparse vector C receives non-zero values corresponding to each one bit
in the order vector Z, as defined in table 1-13.

Table 1-13. Results of the logical operations performed by the source vectors.

Source Results

G Bit 1 = 0 G Bit 1 = 0 G Bit 1 = 1 G Bit 1 = 1
Order Sparse Data G Bit 2 = 0 G Bit 2 = 1 G Bit 2 = 0 G Bit 2 = 1
Vector Vector Element OR AND Exclusive OR Im_Qlication

x

0

0

1

1

y A B z c z c z c z c

0 MZ MZ 0 N 0 N 0 N 1 MZ

1 MZ B 1 +B 0 N 1 +B 0 N

0 A MZ 1 A 0 N 1 A 1 A

1 A B 1 A+B 1 A+B 0 N 1 A+B

Notes:

A A stream operand
B B stream operand
N No result produced
MZ Machine zero

For each one bit in order vector Z, an output element of vector C is
generated. Vector C's length is moved to bits 0-15 of register C.

Qualifiers a and b indicate that registers A and B contain constants which
are broadcast as the common value for an element of vector A and B.
Either qualifier or both may be used. The sign control feature is valid for
this instruction. The effect of the qualifiers which control the state of
subfunction bits used for sign control are discussed in chapter 2.

Data flags are set only for output elements of vector C.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-141

ETAJO Instruction Descriptions Instruction Set Reference .Hanual

AS

Multiply; Upper Result
Full Word, Format #1
Subfunction: hllabsss
Qualifiers : h,ll=[rvg,xvg,ivg] ,a,b,sss=[ma,c, (n=ma+c) ,mb]

3-142

F G x A y B z c

A* B ---> C

The #A8 instruction performs floating-point multiplication on elements of
sparse vectors A and B. The upper result is stored in the corresponding
element of sparse vector C. Elements are 64 bits by default, or 32 bits by
declaring the h qualifier.

An element is read from sparse vector A whenever a one bit is encountered
in the order vector X. When a one bit occurs in order vector Y, an element
is read from vector B. If there is a zero bit in the order vector, normalized
one is used as the associated A or B element.

Order vector Z is the result of a bit-by-bit logical function performed on
order vectors X and Y, as specified by the selected rvg, ivg, or xvg qualifier.
Table 1-14 shows the logical function for each qualifier.

Table 1-14. Logical Functions on X and Y to Produce Order Vector Z.

G-Bits Qualifier Logical Function Performed
1 2

0 0 None Logical AND of X, Y
0 1 rvg Logical OR of X, Y
1 0 xvg Logical Exclusive OR of X, Y
1 1 ivg Logical OR NOT of X, Y

PUB-1264 Rev. :-\

Instruction Set Reference Manual ETAJO Instruction Descriptions

The sparse vector C receives non-zero values corresponding to each one bit
in the order vector Z, as defined in table 1-15.

Table 1-15. Results of the logical operations performed by the source vectors.

Source Results

G Bit 1 = 0 G Bit 1 = 0 G Bit 1 = 1 G Bit 1 = 1
Order Sparse Data G Bit 2 = 0 G Bit 2 = 1 G Bit 2 = 0 G Bit 2 = 1
Vector Vector Element OR AND Exclusive OR Im.£.!ication

x

0

0

1

1

y A B z c z c z c z c

0 MZ MZ 0 N 0 N 0 N 1 MZ

1 MZ B 1 +B 0 N 1 +B 0 N

0 A MZ 1 A 0 N 1 A 1 A

1 A B 1 A+B 1 A+B 0 N 1 A+B

Notes:

A A stream operand
B B stream operand
N No result produced
MZ Machine zero

For each one bit in order vector Z, an output element of vector C is
generated. Vector C's length is moved to bits 0-15 of register C.

Qualifiers a and b indicate that registers A and B contain constants which
are broadcast as the common value for an element of vector A and B.
Either qualifier or both may be used. The sign control feature is valid for
this instruction. The effect of the qualifiers which control the state of
subfunction bits used for sign control are discussed in chapter 2.

Data flags are set only for output elements of vector C.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-143

ETAJ 0 Instruction Descriptions Instruction Set Reference 1'vfanual

A9

Multiply; Lower Result
Full Word, Format #1
Subfunction: hllabsss
Qualifiers : h,ll=[rvg,xvg,ivg] ,a,b,sss=[ma,c, (n=ma+c) ,mb]

3-144

F G x A y B z c

A* B ---> C

The #A9 instruction performs floating-point multiplication on elements of
sparse vectors A and B. The lower result is stored in the corresponding
element of sparse vector C. Elements are 64 bits by default, or 32 bits by
declaring the h qualifier.

An element is read from sparse vector A whenever a one bit is encountered
in the order vector X. When a one bit occurs in order vector Y, an element
is read from vector B. If there is a zero bit in the order vector, normalized
one is used as the associated A or B element.

Order vector Z is the result of a bit-by-bit logical function performed on
order vectors X and Y, as specified by the selected rvg, ivg, or xvg qualifier.
Table 1-16 shows the logical function for each qualifier.

Table 1-16. Logical Functions on X and Y to Produce Order Vector Z.

G-Bits Qualifier Logical Function Performed
1 2

0 0 None Logical AND of X, Y
0 1 rvg Logical OR of X, Y
1 0 xvg Logical Exclusive OR of X, Y
1 1 ivg Logical OR NOT of X, Y

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

The sparse vector C receives non-zero values corresponding to each one bit
in the order vector Z, as defined in table 1-1 7.

Table 1-17. Results of the logical operations performed by the source vectors.

Source Results

G Bit 1 = 0 G Bit 1 = 0 G Bit 1 = 1 G Bit 1 = 1
Order Sparse Data G Bit 2 = 0 G Bit 2 = 1 G Bit 2 = 0 G Bit 2 = 1
Vector Vector Element OR AND Exclusive OR Im_Qlication

x

0

0

1

1

y A B z c z c z c z c

0 MZ MZ 0 N 0 N 0 N 1 MZ

1 MZ B 1 +B 0 N 1 +B 0 N

0 A MZ 1 A 0 N 1 A 1 A

1 A B 1 A+B 1 A+B 0 N 1 A+B

Notes:

A A stream operand
B B stream operand
N No result produced
MZ Machine zero

For each one bit in order vector Z, an output element of vector C is
generated. Vector C's length is moved to bits 0-15 of register C.

Qualifiers a and b indicate that registers A and B contain constants which
are broadcast as the common value for an element of vector A and B. ·
Either qualifier or both may be used. The sign control feature is valid for
this instruction. The effect of the qualifiers which control the state of
subfunction bits used for sign control are discussed in chapter 2.

Data flags are set only for output elements of vector C.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-145

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

AB

Multiply; Significant Result
Full Word, Format #1
Subfunction: hllabsss
Qualifiers : h,ll=[rvg,xvg,ivg] ,a,b,sss=[ma,c, (n=ma+c) ,mb]

3-146

F G x I A y B z c

A* B ---> C

The #AB instruction performs floating-point multiplication on elements of
sparse vectors A and B. The significant result is stored in the corresponding
element of sparse vector C. Elements are 64 bits by default, or 32 bits by
declaring the h qualifier.

An element is read from sparse vector A whenever a one bit is encountered
in the order vector X. When a one bit occurs in order vector Y, an element
is read from vector B. If there is a zero bit in the order vector, normalized
one is used as the associated A or B element.

Order vector Z is the result of a bit-by-bit logical function performed on
order vectors X and Y, as specified by the selected rvg, ivg, or xvg qualifier.
Table 1-18 shows the logical function for each qualifier.

Table 1-18. Logical Functions on X and Y to Produce Order Vector Z.

G-Bits Qualifier Logical Function Performed
1 2

0 0 None Logical AND of X,Y
0 1 rvg Logical OR of X,Y
1 0 xvg Logical Exclusive OR of X, Y
1 1 ivg Logical OR NOT of X, Y

PUB-1264 Rei·. :\

Instruction Set Reference Manual ETAJO instruction Descriptions

The sparse vector C receives non-zero values corresponding to each 011e bit
in the order vector Z, as defined in table 1-19.

Table 1-19. Results of the logical operations performed by the source vectors.

Source Results

G Bit 1 = 0 G Bit 1 = 0 G Bit 1 = 1 G Bit 1 = 1
Order Sparse Data G Bit 2 = 0 G Bit 2 = 1 G Bit 2 = 0 G Bit 2 = 1
Vector Vector Element OR AND Exclusive OR ImEication

x

0

0

1

1

y A B z c z c z c z c

0 MZ MZ 0 N 0 N 0 N 1 MZ

1 MZ B 1 +B 0 N 1 +B 0 N

0 A MZ 1 A 0 N 1 A 1 A

1 A B 1 A+B 1 A+B 0 N 1 A+B

Notes:

A A stream operand
B B stream operand
N No result produced
MZ Machine zero

For each one bit in order vector Z, an output element of vector C is
generated. Vector C's length is moved to bits 0-15 of register C.

Qualifiers a and b indicate that registers A and B contain constants which
are broadcast as the common value for an element of vector A and B.
Either qualifier or both may be used. The sign control feature is valid for
this instruction. The effect of the qualifiers which control the state of
subfunction bits used for sign control are discussed in chapter 2.

Data flags are set only for output elements of vector C.

Data flag branch conditions:

Data flag bit 42: Exponent overflow.
Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-147

ETA JO Instruction Descriptions Instruction Set Reference Manual

AC

Divide; Upper Result
Full Word, Format #1
Subfunction: hllabsss
Qualifiers : h,ll=[rvg,xvg,ivg] ,a,b,sss=[ma,c, (n=ma+c) ,mb]

3-148

F G x A y B z c

A I B ---> C

The #AC instruction performs floating-point division on elements of sparse
vectors A and B. The upper result is stored in the corresponding element of
sparse vector C. Elements are 64 bits by default, or 32 bits by declaring the
h qualifier.

An element is read from sparse vector A whenever a one bit is encountered
in the order vector X. When a one bit occurs in order vector Y, an element
is read from vector B. If there is a zero bit in the order vector, normalized
one is used as the associated A or B element.

Order vector Z is the result of a bit-by-bit logical function performed on
order vectors X and Y, as specified by the selected rvg, ivg, or xvg qualifier.
Table 1-20 shows the logical function for each qualifier.

Table 1-20. Logical Functions on X and Y to Produce Order Vector Z.

G-Bits Qualifier Logical Function Performed
1 2

0 0 None Logical AND of X,Y
0 1 rvg Logical OR of X, Y
1 0 xvg Logical Exclusive OR of X, Y
1 1 ivg Logical OR NOT of X,Y

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriprions

The sparse vector C receives non-zero values corresponding to each one bit
in the order vector Z, as defined in table 1-21.

Table 1-21. Results of the logical operations performed by the source vectors.

Source Results

G Bit 1 = 0 G Bit 1 = 0 G Bit 1 = 1 G Bit 1 = 1
Order Sparse Data G Bit 2 = 0 G Bit 2 = 1 G Bit 2 = 0 G Bit 2 = 1
Vector Vector Element OR AND Exclusive OR Im_Qlication

x

0

0

1

1

y A B z c z c z c z c

0 MZ MZ 0 N 0 N 0 N 1 MZ

1 MZ B 1 +B 0 N 1 +B 0 N

0 A MZ 1 A 0 N 1 A 1 A

1 A B 1 A+B 1 A+B 0 N 1 A+B

Notes:

A A stream operand
B B stream operand
N No result produced
MZ Machine zero

For each one bit in order vector Z, an output element of vector C is
generated. Vector C's length is moved to bits 0-15 of register C.

Qualifiers a and b indicate that registers A and B contain constants which
are broadcast as the common value for an element of vector A and B.
Either qualifier or both may be used. The sign control feature is valid for
this instruction. The effect of the qualifiers which control the state of
sub function bits used for sign control are discussed in chapter 2.

Data flags are set only for output elements of vector C.

Data flag branch conditions:

Data flag bit 41:
Data flag bit 42:

Floating-point divide fault.
Exponent overflow.

Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result ~lement of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-1-ICJ

ETA 10 Instruction Descriptions instruction Set Reference ,\fanua!

AF

Divide; Significant Result
Full Word, Format #1
Subfunction: hllabsss
Qualifiers: h,ll=[rvg,xvg,ivg] ,a,b,sss=[ma,c, (n=ma+c) ,mb]

3-150

F G x A y B z c

A I B ---> C

The #AF instruction performs floating-point division on elements of sparse
vectors A and B. The significant result is stored in the corresponding
element of sparse vector C. Elements are 64 bits by default, or 32 bits by
declaring the h qualifier.

An element is read from sparse vector A whenever a one bit is encountered
in the order vector X. When a one bit occurs in order vector Y, an element
is read from vector B. If there is a zero bit in the order vector, normalized
one is used as the associated A or B element.

Order vector Z is the result of a bit-by-bit logical function performed on
order vectors X and Y, as specified by the selected rvg, ivg, or xvg qualifier.
Table 1-22 shows the logical function for each qualifier.

Table 1-22. Logical Functions on X and Y to Produce Order Vector Z.

G-Bits Qualifier Logical Function Performed
1 2

0 0 None Logical AND of X,Y
0 1 rvg Logical OR of X,Y
1 0 xvg Logical Exclusive OR of X, Y
1 1 ivg Logical OR NOT of X, Y

PUB-1264 Rei·. A

Instruction Set Reference Manual ETAIO Instruction Descriptions

The sparse vector C receives non-zero values corresponding to each one bit
in the order vector Z, as defined in table 1-23.

Table 1-23. Results of the logical operations performed by the source vectors.

Source Results

G Bit 1 = 0 G Bit 1 = 0 G Bit 1 = 1 G Bit 1 = 1
Order Sparse Data G Bit 2 = 0 G Bit 2 = 1 G Bit 2 = 0 G Bit 2 = 1
Vector Vector Element OR AND Exclusive OR Im_QJication

x

0

0

1

1

y A B z c z c z c z c

0 MZ MZ 0 N 0 N 0 N 1 MZ

1 MZ B 1 +B 0 N 1 +B 0 N

0 A MZ 1 A 0 N 1 A 1 A

1 A B 1 A+B 1 A+B 0 N 1 A+B

Notes:

A A stream operand
B B stream operand
N No result produced
MZ Machine zero

For each one bit in order vector Z, an output element of vector C is
generated. Vector C's length is moved to bits 0-15 of register C.

Qualifiers a and b indicate that registers A and B contain constants which
are broadcast as the common value for an element of vector A and B.
Either qualifier or both may be used. The sign control feature is valid for
this instruction. The effect of the qualifiers which control the state of
subfunction bits used for sign control are discussed in chapter 2.

Data flags are set only for output elements of vector C.

Data flag branch conditions:

Data flag bit 41:
Data flag bit 42:

Floating-point divide fault.
Exponent overflow.

Data flag bit 43:
Data flag bit 46:

A result element in vector C is machine zero.
A result element of vector C is set to indefinite
due to an input element being indefinite or
exponent overflow.

PUB-1264 Rev. A 3-151

ETA 10 Instruction Descriptions Instruction Set Reference Manual

BO

Compare Integers, Branch if Equal
Full Word, Format #C
Subfunction: hOOfubbO
Qualifiers: h, f=[fwc] ,u=[usi] ,bb=[brf,brb,rel]

3-152

F G x A y B z c

(A) + (X) EQ (Z)

The #BO instruction executes as a Compare Integer and Branch operation
when bits 1 and 2 in the G designator are zero. The two operands from
register A and X are added, their sum compared to the integer in register Z,
the sum of A and X are then transmitted to register C, and a branch taken
according to the compare result.

If the h qualifier is specified, the A, X, C, and Z operands are 32-bit
registers, otherwise they are 64-bit registers.

If the h qualifier is not specified, the integers in the right-most 48 bits of
registers A and X are added, and any overflow ignored. Register C is loaded
with the 48-bit result. If register #00 is specified as register A or X, machine
zero is supplied. The left-most 16 bits of register A are transmitted to the
left-most 16 bits of register C. Register C's contents are:

Left-most 16
bits from A

0 1516

Sum of right-most 48 bits of A and X

63

If the h qualifier specifies 32-bit operands, the integers in the right-most 24
bits of registers A and X are added, and any overflow ignored. Register C is
loaded with the 24-bit result. If register #00 is specified as register A or X,
machine zero is supplied. The left-most 8 bits of register A are transmitted
to the left-most 8 bits of register C.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Register C's contents are:

Left-most 8
bits from A

0

Sum of right-most 24 bits of A and X

78 31

The result is compared to register Z's contents according to the jwc and usi
qualifiers. (If register #00 'is specified for register Z, all zeros are supplied
for the comparison).

If fwc is specified, 64 bits of the result stored to register C are compared to
64 bits previously read from register Z, otherwise the addition result is
compared to the right-most 48 (or 24) bits of register Z. If usi is specified,
the compared integers are interpreted as unsigned numbers. If not, the
integers are interpreted as signed, two's complement numbers.

If the comparison is not met, execution continues at the next sequential
instruction.

If the comparison is met, the instruction branches according to the specified
qualifiers brf and brb. If no qualifier is specified, control branches to an
address formed by adding the half word item count in 64-bit register Y,
shifted left 5 places, to the base address in 64-bit register B. Otherwise, a
relative branch forwards or backwards occurs.

The relative branch address is formed by taking the two 8-bit designators Y
and B together as a 16-bit quantity, treated as a half word item count. This
quantity is left-shifted 5 places and added to (if brf is specified) or
subtracted from (if brb is specified) the instruction's program address.

The instruction is undefined if both h and jwc are specified, or if both
qualifiers brf and brb are specified together.

PUB-1264 Rev. A 3-153

Bl

Compare Integers, Branch if Not Equal
Full Word, Format #C
Subfunction: hOOfubbO
Qualifiers : h,f=[fwc],u=[usi],bb=[brf,brb,rel]

3-154

F G x A y B z c

(A) + (X) NE (Z)

The #Bl instruction executes as a Compare Integer and Branch operation
when bits 1 and 2 in the G designator are zero. The two operands from A
and X are added, their sum compared to the integer in Z, the sum of A and
X are then transmitted to register C, and a branch taken according to the
result.

If the h qualifier is specified, the A, X, C, and Z operands are 32-bit
registers, otherwise they are 64-bit registers.

If the h qualifier is not specified, the integers in the right-most 48 bits of
registers A and X are added, and any overflow ignored. Register C is loaded
with the 48-bit result. If register #00 is specified as register A or X, machine
zero is supplied. The left-most 16 bits of register A are transmitted to the
left-most 16 bits of register C. Register C's contents are:

Left-most 16
bits from A

0 1516

Sum of right-most 48 bits of A and X

63

If the h qualifier specifies 32-bit operands, the integers in the right-most 24
bits of registers A and X are added, and any overflow ignored. Register C is
loaded with the 24-bit result. If register #00 is specified as register A or X,
machine zero is supplied. The left-most 8 bits of register A are transmitted
to the left-most 8 bits of register C.

PUB-1264 Rer. .\

Instruction Set Reference Manual ETAJO Instruction Descriptions

Register C's contents are:

Left-most 8
bits from A

0

Sum of right-most 24 bits of A and X

7 8 31

The result is compared to register Z's contents according to the five and usi
qualifiers. (If register #00 is specified for register Z, all zeros are supplied
for the comparison).

If five is specified, 64 bits of the result stored to register C are compared to
64 bits previously read from register Z, otherwise the addition result is
compared to the right-most 48 (or 24) bits of register Z. If usi is specified,
the compared integers are interpreted as unsigned numbers. If not, the
integers are interpreted as signed, two's complement numbers.

If the comparison is not met, execution continues at the next sequential
instruction.

If the comparison is met; the instruction branches according to the specified
qualifiers rel, brf, and brb. If no qualifier is specified, control branches to an
address formed by adding the half word item count in 64-bit register Y,
shifted left 5 places, to the base address in 64-bit register B. Otherwise, a
relative branch forwards or backwards occurs.

The relative branch address is formed by taking the two 8-bit designators Y
and B together as a 16-bit quantity, treated as a half word item count. This
quantity is left-shifted 5 places and added to (if brf is specified) or
subtracted from (if brb is specified) the instruction's program address.

The instruction is undefined if both h and five are specified, if the qualifiers
brf and brb are specified together.

PUB-1264 Rev. A 3-155

ETA J 0 Instruction Descriptions Instruction Set Reference ,\fanual

B2

Compare Integers, Branch if Greater or Equal
Full Word, Format #C
Subfunction: hOOOubbO
Qualifiers: h, u=[usi] ,bb=[brf,brb,rel]

3-156

F G x A y B z c

(A) + (X) GE (Z)

The #B2 instruction executes as a Compare Integer and Branch operation
when bits 1 and 2 in the G designator are zero. The two operands from A
and X are added, their sum compared to the integer in Z, the sum of A and
X are then transmitted to register C, and a branch taken according to the
result.

If the h qualifier is specified, the A, X, C, and Z operands are 32-bit
registers, otherwise they are 64-bit registers.

If the h qualifier is not specified, the integers in the right-most 48 bits of
registers A and X are added, and any overflow ignored. Register C is loaded
with the 48-bit result. If register #00 is specified as register A or X, machine
zero is supplied. The left-most 16 bits of register A are transmitted to the
left-most 16 bits of register C. Register C's contents are:

Left-most 16
bits from A

0 1516

Sum of right-most 48 bits of A and X

63

If the h qualifier specifies 32-bit operands, the integers in the right-most 24
bits of registers A and X are added, and any overflow ignored. Register C is
loaded with the 24-bit result. If register #00 is specified as register A or X,
machine zero is supplied. The left-most 8 bits of register A are transmitted
to the left-most 8 bits of register C.

PUB-1264 Rei· . . \

Instruction Set Reference Manual ETAJO Instruction Descriptions

Register C's contents are:

Left-most 8
bits from A

0

Sum of right-most 24 bits of A and X

7 8 31

The result is compared to register Z's contents according to the usi qualifier.
(If register #00 is specified for register Z, all zeros are supplied for the
comparison).

The addition result is compared to the right-most 48 (or 24) bits of register
Z. If usi is specified, the compared integers are interpreted as unsigned
numbers. If not, the integers are interpreted as signed, two's complement
numbers.

If the comparison is not met, execution continues at the next sequential
instruction.

If the comparison is met, the instruction branches according to the specified
qualifiers brf and brb. If no qualifier is specified, control branches to an
address formed by adding the half word item count in 64-bit register Y,
shifted left 5 places, to the base address in 64-bit register B. Otherwise, a
relative branch forwards or backwards occurs.

The relative branch address is formed by taking the two 8-bit designators Y
and B together as a 16-bit quantity, treated as a half word item count. This
quantity is left-shifted 5 places and added to (if brf is specified) or
subtracted from (if brb is specified) the instruction's program address.

The instruction is undefined if the qualifiers brf and brb are specified
together.

PUB-1264 Rev. A 3-157

ETAJO Instruction Descriptions Instruction Set Reference Manual

B3

Compare Integers, Branch if Less
Full Word, Format #C
Subfunction: hOOOubbO
Qualifiers: h, u= [usi] , bb= [brf, brb, rel]

3-158

F G x A y B z c

(A) + (X) LT (Z)

The #B3 instruction executes as a Compare Integer and Branch operation
when bits 1 and 2 in the G designator are zero. The two operands from A
and X are added, their sum compared to the integer in Z, the sum of A and
X are then transmitted to register C, and a branch taken according to the
result.

If the h qualifier is specified, the A, X, C, and Z operands are 32-bit
registers, otherwise they are 64-bit registers.

If the h qualifier is not specified, the integers in the right-most 48 bits of
registers A and X are added, and any overflow ignored. Register C is loaded
with the 48-bit result. If register #00 is specified as register A or X, machine
zero is supplied. The left-most 16 bits of register A are transmitted to the
left-most 16 bits of register C. Register C's contents are:

Left-most 16
bits from A

0 1516

Sum of right-most 48 bits of A and X

63

If the h qualifier specifies 32-bit operands, the integers in the right-most 24
bits of registers A and X are added, and any overflow ignored. Register C is
loaded with the 24-bit result. If register #00 is specified as register A or X,
machine zero is supplied. The left-most 8 bits of register A are transmitted
to the left-most 8 bits of register C.

PUB-1264 Rev. A

Instruction Set Reference Manual ETA 10 Inst ruction Descriptions

Register C's contents are:

Left-most 8
bits from A

0

Sum of right-most 24 bits of A and X

7 8 31

The result is compared to register Z's contents according to the usi qualifier.
(If register #00 is specified for register Z, all zeros are supplied for the
comparison).

The addition result is compared to the right-most 48 (or 24) bits of register
Z. If usi is specified, the compared integers are interpreted as unsigned
numbers. If not, the integers are interpreted as signed, two's complement
numbers.

If the comparison is not met, execution continues at the next sequential
instruction.

If the comparison is met, the instruction branches according to the specified
qualifiers brf and brb. If no qualifier is specified, control branches to an
address formed by adding the half word item count in 64-bit register Y,
shifted left 5 places, to the base address in 64-bit register B. Otherwise, a
relative branch forwards or backwards occurs.

The relative branch address is formed by taking the two 8-bit designators Y
and B together as a 16-bit quantity, treated as a half word item count. This
quantity is left-shifted 5 places and added to (if brf is specified) or
subtracted from (if brb is specified) the instruction's program address.

The instruction is undefined if the qualifiers brf and brb are specified
together.

PUB-1264 Rev. A 3- l 5 9

ETAIO Instruction Descriptions Instruction Set Reference A1anua!

B4

Compare Integers, Branch if Less or Equal
Full Word, Format #C
Subfunction: hOOOubbO
Qualifiers: h,u= [usi] ,bb=[brf,brb,rel]

3-160

F G x A y B z c

(A) + (X) LE (Z)

The #B4 instruction executes as a Compare Integer and Branch operation
when bits 1 and 2 in the G designator are zero. The two operands from A
and X are added, their sum compared to the integer in Z, the sum of A and
X are then transmitted to register C, and a branch taken according to the
result.

If the h qualifier is specified, the A, X, C, and Z operands are 32-bit
registers, otherwise they are 64-bit registers.

If the h qualifier is not specified, the integers in the right-most 48 bits of
registers A and X are added, and any overflow ignored. Register C is loaded
with the 48-bit result. If register #00 is specified as register A or X, machine
zero is supplied. The left-most 16 bits of register A are transmitted to the
left-most 16 bits of register C. Register C's contents are:

Left-most 16
bits from A

0 1516

Sum of right-most 48 bits of A and X

63

If the h qualifier specifies 32-bit operands, the integers in the right-most 24
bits of registers A and X are added, and any overflow ignored. Register C is
loaded with the 24-bit result. If register #00 is specified as register A or X,
machine zero is supplied. The left-most 8 bits of register A are transmitted
to the left-most 8 bits of register C.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Register C's contents are:

Left-most 8
bits from A

0

Sum of right-most 24 bits of A and X

7 8 31

The result is compared to register Z's contents according to the usi qualifier.
(If register #00 is specified for register Z, all zeros are supplied for the
comparison).

The addition result is compared to the right-most 48 (or 24) bits of register
z. If usi is specified, the compared integers are interpreted as unsigned
numbers. If not, the integers are interpreted as signed, two's complement
numbers.

If the comparison is not met, execution continues at the next sequential
instruction.

If the comparison is met, the instruction branches according to the specified
qualifiers brf and brb. If no qualifier is specified, control branches to an
address formed by adding the half word item count in 64-bit register Y,
shifted left 5 places, to the base address in 64-bit register B. Otherwise, a
relative branch forwards or backwards occurs.

The relative branch address is formed by taking the two 8-bit designators Y
and B together as a 16-bit quantity, treated as a half word item count. This
quantity is left-shifted 5 places and added to (if brf is specified) or
subtracted from (if brb is specified) the instruction's program address.

The instruction is undefined if the qualifiers brf and brb are specified
together.

PUB-1264 Rev. A 3-1 f> I

ETAIO Instruction Descriptions Instruction Set Reference ;\fanuof

BS

Compare Integers, Branch if Greater
Full Word, Format #C
Subfunction: hOOOubbO
Qualifiers : h,u=[usi] ,bb=[brf,brb,rel]

3-162

F G x A y B z c

(A) + (X) GT (Z)

The #BS instruction executes as a Compare Integer and Branch operation
when bits 1 and 2 in the G designator are zero. The two operands from A
and X are added, their sum compared to the integer in Z, the sum of A and
X are transmitted to register C, and a branch taken according to the result.

If the h qualifier is specified, the A, X, C, and Z operands are 32-bit
registers, otherwise they are 64-bit registers.

If the h qualifier is not specified, the integers in the right-most 48 bits of
registers A and X are added, and any overflow ignored. Register C is loaded
with the 48-bit result. If register #00 is specified as register A or X, machine
zero is supplied. The left-most 16 bits of register A are transmitted to the
left-most 16 bits of register C. Register C's contents are:

Left-most 16
bits from A

0 1516

Sum of right-most 48 bits of A and X

63

If the h qualifier specifies 32-bit operands, the integers in the right-most 24
bits of registers A and X are added, and any overflow ignored. Register C is
loaded with the 24-bit result. If register #00 is specified as register A or X,
machine zero is supplied. The left-most 8 bits of register A are transmitted
to the left-most 8 bits of register C.

PUB-1264 Rel'. :\

Instruction Set Reference Manual ETAJO Instruction Descriprions

Register C's contents are:

Left-most 8
bits from A

0

Sum of right-most 24 bits of A and X

7 8 31

The result is compared to register Z's contents according to the usi qualifier.
(If register #00 is specified for register Z, all zeros are supplied for the
comparison).

The addition result is compared to the right-most 48 (or 24) bits of register
Z. If usi is specified, the compared integers are interpretea as unsigned
numbers. If not, the integers are interpreted as signed, two's complement
numbers.

If the comparison is not met, execution continues at the next sequential
instruction.

If the comparison is met, the instruction branches according to the specified
qualifiers brf and brb. If no qualifier is specified; control branches to an
address formed by adding the half word item count in 64-bit register Y,
shifted left 5 places, to the base address in 64-bit register B. Otherwise, a
relative branch forwards or backwards occurs.

The relative branch address is formed by taking the two 8-bit designators Y
and B together as a 16-bit quantity, treated as a half word item count. This
quantity is left-shifted 5 places and added to (if brf is specified) or
subtracted from (if brb is specified) the instruction's program address.

The instruction is undefined if the qualifiers brf and brb are specified
together.

PUB-1264 Rev. A 3-163

ETAJO Instruction Descriptions Instruction Set Reference Manual

BO

Compare Integers, Set Condition if Equal
Full Word, Format #C
Subfunction: hOcfuOOO
Qualifiers: h,c= [sc], f= [fwc], u= [usi]

3-164

F G x A c

(A) + (X) EQ (Z)

The #BO instruction executes as a Compare Integer and Set Condition
operation only when bit 1 of the G designator is zero, and the sc qualifier
sets bit 2 to one. The two operands from A and X are added, the sum
compared to the integer in Z, the sum of A and X are transmitted to
register C, and a condition code set in the register designated by Y,
according to the result.

If the h qualifier is specified, the A, X, Y, C, and Z operands are 32-bit
registers, otherwise they are 64-bit registers.

If the h qualifier is not specified, the integers in the right-most 48 bits of
registers A and X are added, and any overflow ignored. Register C is loaded
with the 48-bit result. If register #00 is specified as register A or X, machine
zero is supplied. The left-most 16 bits of register A are transmitted to the
left-most 16 bits of register C. Register C's contents are:

Left-most 16
bits from A

0 1516

Sum of right-most 48 bits of A and X

63

If the h qualifier specifies 32-bit operands, the integers in the right-most 24
bits of registers A and X are added, and any overflow ignored. Register C is
loaded with the 24-bit result. If register #00 is specified as register A or X,
machine zero is supplied. The left-most 8 bits of register A are transmitted
to the left-most 8 bits of register C.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Register C's contents are:

Left-most 8
bits from A

0

Sum of right-most 24 bits of A and X

7 8 31

The result is compared to the register Z's contents according to the jwc and
usi qualifiers. (If register #00 is specified for register Z, all zeros are
supplied for the comparison).

If jwc is specified, 64 bits of the result stored to register C are compared to
64 bits previously read from register Z, otherwise the addition result is
compared to the right-most 48 (or 24) bits of register Z. If usi is specified,
the compared integers are interpreted as unsigned numbers. If not, the
integers are interpreted as signed, two's complement numbers.

If the comparison is met, the condition code is set by loading register Y with
the 64-bit (32 if h was specified) value 000 ... 001. If the comparison failed,
register Y is set to a condition code of 000 ... 000. Execution continues at
the next sequential instruction.

The instruction is undefined if both h and jwc are specified, or if the C
designator is equal to the Z designator.

PUB-I 264 Rev. A 3-165

ETAJ 0 Instruction Descriptions Instruction Set Reference Afonual

Bl

Compare Integers, Set Condition if Not Equal
Full Word, Format #C
Subfunction: hOcfuOOO
Qualifiers: h,c=[sc] ,f= [fwc] ,u= [usi]

3-166

F G x A c

(A) + (X) NE (Z)

The #Bl instruction executes as a Compare Integer and Set Condition
operation only when bit 1 of the G designator is zero, and the sc qualifier
sets bit 2 to one. The two operands from A and X are added, the sum
compared to the integer in Z, the sum of A and X are transmitted to
register ·C, and a condition code set in the register designated by Y,
according to the result.

If the h qualifier is specified, the A, X, Y, C, and Z operands are 32-bit
registers, otherwise they are 64-bit registers.

If the h qualifier is not specified, the integers in the right-most 48 bits of
registers A and X are added, and any overflow ignored. Register C is loaded
with the 48-bit result. If register #00 is specified as register A or X, machine
zero is supplied. The left-most 16 bits of register A are transmitted to the
left-most 16 bits of register C. Register C's contents are:

Left-most 16
bits from A

0 1516

Sum of right-most 48 bits of A and X

63

If the h qualifier specifies 32-bit operands, the integers in the right-most 24
bits of registers A and X are added, and any overflow ignored. Register C is
loaded with the 24-bit result. If register #00 is specified as register A or X,
machine zero is supplied. The left-most 8 bits of register A are transmitted
to the left-most 8 bits of register C.

PUB-1264 Rei· . . I

Instruction Set Reference Manual ETAJO Instruction Descriptions

Register C's contents are:

Left-most 8
bits from A

0

Sum of right-most 24 bits of A and X

7 8 31

The result is compared to the register Z's contents according to the fwc and
usi qualifiers. (If register #00 is specified for register Z, all zeros are
supplied for the comparison).

If fwc is specified, 64 bits of the result stored to register C are compared to
64 bits previously read from register Z, otherwise the addition result is
compared to the right-most 48 (or 24) bits of register Z. If usi is specified,
the compared integers are interpreted as unsigned numbers. If not, the
integers are interpreted as signed, two's complement numbers.

If the comparison is met, the condition code is set by loading register Y with
the 64-bit (32 if h was specified) value 000 ... 001. If the comparison failed,
register Y is set to a condition code of 000 ... 000. Execution continues at
the next sequential instruction.

The instruction is undefined if both h and fwc are specified, or if the C
designator is equal to the Z designator.

PUB-1264 Rev. A 3-167

ETAJO Instruction Descriptions Instruction Set Reference .\Ianua!

B2

Compare Integers, Set Condition if Greater or Equal
Full Word, Format #C
Subfunction: hOcOuOOO
Qualifiers: h,c=[sc],u=[usi]

3-168

F G x A c

(A) + (X) GE (Z)

The #B2 instruction executes as a Compare Integer and Set Condition
operation only when bit 1 of the G designator is zero, and the sc qualifier
sets bit 2 to one. The two operands from A and X are added, the sum
compared to the integer in Z, the sum of A and X are transmitted to
register C, and a condition code set in the register designated by Y,
according to the result.

If the h qualifier is specified, the A, X, Y, C, and Z operands are 32-bit
registers, otherwise they are 64-bit registers.

If the h qualifier is not specified, the integers in the right-most 48 bits of
registers A and X are added, and any overflow ignored. Register C is loaded
with the 48-bit result. If register #00 is specified as register A or X, machine
zero is supplied. The left-most 16 bits of register A are transmitted to the
left-most 16 bits of register C. Register C's contents are:

Left-most 16
bits from A

0 1516

Sum of right-most 48 bits of A and X

63

If the h qualifier specifies 32-bit operands, the integers in the right-most 24
bits of registers A and X are added, and any overflow ignored. Register C is
loaded with the 24-bit result. If register #00 is specified as register A or X,
machine zero is supplied. The left-most 8 bits of register A are transmitted
to the left-most 8 bits of register C.

PUB-1264 Rel'. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Register C's contents are:

Left-most 8
bits from A

0

Sum of right-most 24 bits of A and X

7 8 31

The result is compared to the register Z's contents according to the usi
qualifier. (If register #00 is specified for register Z, all zeros are supplied
for the comparison).

The addition result is compared to the right-most 48 (or 24) bits of register
Z. If usi is specified, the compared integers are interpreted as unsigned
numbers. If not, the integers are interpreted as signed, two's complement
numbers.

If the comparison is met, the condition code is set by loading register Y with
the 64-bit (32 if h was specified) value 000 ... 001. If the comparison failed,
register Y is set to a condition code of 000 ... 000. Execution continues at
the next sequential instruction.

The instruction is undefined if the C designator is equal to the Z designator.

PUB-1264 Rev. A 3-169

ETAJO Instruction Descriptions Instruction Set Reference Manual

B3

Compare Integers, Set Condition if Less
Full Word, Format #C
Subfunction: hOcOuOOO
Qualifiers: h,c=[sc], u=[usi]

3-170

F G x A c

(A) + (X) LT (Z)

The #B3 instruction executes as a Compare Integer and Set Condition
operation only when bit 1 of the G designator is zero, and the sc qualifier
sets bit 2 to one. The two operands from A and X are added, the sum
compared to the integer in Z, the sum of A and X are transmitted to
register C, and a condition code set in the register designated by Y,
according to the result.

If the h qualifier is specified, the A, X, Y, C, and Z operands are 32-bit
registers, otherwise they are 64-bit registers.

If the h qualifier is not specified, the integers in the right-most 48 bits of
registers A and X are added, and any overflow ignored. Register C is loaded
with the 48-bit result. If register #00 is specified as register A or X, machine
zero is supplied. The left-most 16 bits of register A are transmitted to the
left-most 16 bits of register C. Register C's contents are:

Left-most 16
bits from A

0 1516

Sum of right-most 48 bits of A and X

63

If the h qualifier specifies 32-bit operands, the integers in the right-most 24
bits of registers A and X are added, and any overflow ignored. Register C is
loaded with the 24-bit result. If register #00 is specified as register A or X,
machine zero is supplied. The left-most 8 bits of register A are transmitted
to the left-most 8 bits of register C.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAlO Instruction Descriprions

Register C's contents are:

Left-most 8
bits from A

0

Sum of right-most 24 bits of A and X

7 8 31

The result is compared to the register Z's contents according to the ust
qualifier. (If register #00 is specified for register Z, all zeros are supplied
for the comparison).

The addition result is compared to the right-most 48 (or 24) bits of register
Z. If usi is specified, the compared integers are interpreted as unsigned
numbers. If not, the integers are interpreted as signed, two's complement
numbers.

If the comparison is met, the condition code is set by loading register Y with
the 64-bit (32 if h was specified) value 000 ... 001. If the comparison failed,
register Y is set to a condition code of 000 ... 000. Execution continues at
the next sequential instruction.

The instruction is undefined if the C designator is equal to the Z designator.

PUB-! 264 Rev. A 3-171

ETAJO Instruction Descriptions lnstrnction Set Reference Manual

B4

Compare Integers, Set Condition if Less or Equal
Full Word, Format #C
Subfunction: hOcOuOOO
Qualifiers: h,c=[sc], u=[usi]

3-172

F G x A c

(A) + (X) LE (Z)

The #B4 instruction executes as a Compare Integer and Set Condition
operation only when bit 1 of the G designator is zero, and the sc qualifier
sets bit 2 to one. The two operands from A and X are added, the sum
compared to the integer in Z, the sum of A and X are transmitted to
register C, and a condition code set in the register designated by Y,
according to the result.

If the h qualifier is specified, the A, X, Y, C, and Z operands are 32-bit
registers, otherwise they are 64-bit registers.

If the h qualifier is not specified, the integers in the right-most 48 bits of
registers A and X are added, and any overflow ignored. Register C is loaded
with the 48-bit result. If register #00 is specified as register A or X, machine
zero is supplied. The left-most 16 bits of register A are transmitted to the
left-most 16 bits of register C. Register C's contents are:

Left-most 16
bits from A

0 1516

Sum of right-most 48 bits of A and X

63

If the h qualifier specifies 32-bit operands, the integers in the right-most 24
bits of registers A and X are added, and any overflow ignored. Register C is
loaded with the 24-bit result. If register #00 is specified as register A or X,
machine zero is supplied. The left-most 8 bits of register A are transmitted
to the left-most 8 bits of register C.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO fnstruction Descrip1ions

Register C's contents are:

Left-most 8
bits from A

0

Sum of right-most 24 bits of A and X

7 8 31

The result is compared to the register Z's contents according to the usi
qualifier. (If register #00 is specified for register Z, all zeros are supplied
for the comparison).

The addition result is compared to the right-most 48 (or 24) bits of register
Z. If usi is specified, the compared integers are interpreted as unsigned
numbers. If not, the integers are interpreted as signed, two's complement
numbers.

If the comparison is met, the condition code is set by loading register Y with
the 64-bit (32 if h was specified) value 000 ... 001. If the comparison failed,
register Y is set to a condition code of 000 ... 000. Execution continues at
the next sequential instruction.

The instruction is undefined if the C designator is equal to the Z designator.

PUB-1264 Rev. A 3-173

ETAJO Instruction Descriptions Instruction Set Reference 1HanLLal

BS

Compare Integers, Set Condition if Greater
Full Word, Format #C
Subfunction: hOcOuOOO
Qualifiers: h,c=[sc],u=[usi]

3-174

F G x A c

(A) + (X) GT (Z)

The #BS instruction executes as a Compare Integer and Set Condition
operation only when bit 1 of the G designator is zero, and the sc qualifier
sets bit 2 to one. The two operands from A and X are added, the sum
compared to the integer in Z, the sum of A and X are transmitted to
register C, and a condition code set in the register designated by Y,
according to the result.

If the h qualifier is specified, the A, X, Y, C, and Z operands are 32-bit
registers, otherwise they are 64-bit registers.

If the h qualifier is not specified, the integers in the right-most 48 bits of
registers A and X are added, and any overflow ignored. Register C is loaded
with the 48-bit result. If register #00 is specified as register A or X, machine
zero is supplied. The left-most 16 bits of register A are transmitted to the
left-most 16 bits of register C. Register C's contents are:

Left-most 16
bits from A

0 1516

Sum of right-most 48 bits of A and X

63

If the h qualifier specifies 32-bit operands, the integers in the right-most 24
bits of registers A and X are added, and any overflow ignored. Register C is
loaded with the 24-bit result. If register #00 is specified as register A or X,
machine zero is supplied. The left-most 8 bits of register A are transmitted
to the left-most 8 bits of register C.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAIO Instruction Descriptions

Register C's contents are:

Left-most 8
bits from A

0

Sum of right-most 24 bits of A and X

7 8 31

The result is compared to the register Z's contents according to the usi
qualifier. (If register #00 is specified for register Z, all zeros are supplied
for the comparison).

The addition result is compared to the right-most 48 (or 24) bits of register
Z. If usi is specified, the compared integers are interpreted as unsigned
numbers. If not, the integers are interpreted as signed, two's complement
numbers.

If the comparison is met, the condition code is set by loading register Y with
the 64-bit (32 if h was specified) value 000 ... 001. If the comparison failed,
register Y is set to a condition code of 000 ... 000. Execution continues at
the next sequential instruction.

The instruction is undefined if the C designator is equal to the Z designator.

PUB-1264 Rev. A 3-175

ETAJ 0 Instruction Descriptions Instruction Set Reference Alanua/

BO

Compare Floating-Point, Branch if Equal
Full Word, Format #C
Subfunction: hlOOObbO
Qualifiers: h, bb= [brf,brb,rel]

F G x A y

(A) EQ (X)

The #BO instruction performs a Compare Floating-Point and Branch
operation only when bit 1 of the G designator is one and bit 2 is zero. The
two floating-point operands from registers A and X are compared according
to the floating-point rules discussed in appendix F. If the comparison is not
met, execution continues at the next sequential instruction.

If the h qualifier is specified, the A and X operands are 32-bit registers,
otherwise they are 64-bit registers.

If the comparison is met, the instruction branches according to the specified
qualifiers brf and brb. If no qualifier is specified, control branches to an
address formed by adding the half word item count in 64-bit register Y,
shifted left 5 places, to the base address in 64-bit register B. Otherwise, a
relative branch forwards or backwards occurs.

The relative branch address is formed by taking the two 8-bit designators Y
and B together as a 16-bit quantity, treated as a half word item count. This
quantity is left-shifted 5 places and added to (if brf is specified) or
subtracted from (if brb is specified) the instruction's program address.

The instruction is undefined if the qualifiers brf and brb are specified
together.

Data flag branch conditions:

Data flag bit 46: Result is indefinite

3-176 PUB-1264 Rei· . . ·\

Instruction Set Reference Manual ETAJO Instruction Descriptions

Bl

Compare Floating-Point, Branch if Not Equal
Full Word, Format #C
Subfunction: hlOOObbO
Qualifiers: h, bb= [brf, brb,rel]

F G x A y

(A) NE (X)

The #Bl instruction performs a Compare Floating-Point and Branch
operation only when bit 1 of the G designator is one and bit 2 is zero. The
two floating-point operands from registers A and X are compared according
to the floating-point rules discussed in appendix F. If the comparison is not
met, execution continues at the next sequential instruction.

If the h qualifier is specified, the A and X operands are 32-bit registers,
otherwise they are 64-bit registers.

If the comparison is met, the instruction branches according to the specified
qualifiers brf and brb. If no qualifier is specified, control branches to an
address formed by adding the half word item count in 64-bit register Y,
shifted left 5 places, to the base address in 64-bit register B. Otherwise, a
relative branch forwards or backwards occurs.

The relative branch address is formed by taking the two 8-bit designators Y
and B together as a 16-bit quantity, treated as a half word item count. This
quantity is left-shifted 5 places and added to (if brf is specified) or
subtracted from (if brb is specified) the instruction's program address.

The instruction is undefined if the qualifiers brf and brb are all specified
together.

Data flag branch conditions:

Data flag bit 46: Result is indefinite

PUB-1264 Rev. A 3-177

ETAJO Instruction Descriptions Instruction Set Reference ,\lanuol

B2

Compare Floating-Point, Branch if Greater or Equal
Full Word, Format #C
Subfunction: h1000bb0
Qualifiers: h, bb=[brf,brb,rel]

F G x A y

(A) GE (X)

The #B2 instruction performs a Compare Floating-Point and Branch
operation only when bit 1 of the G designator is one and bit 2 is zero. The
two floating-point operands from registers A and X are compared according
to the floating-point rules discussed in appendix F. If the comparison is not
met, execution continues at the next sequential instruction.

If the h qualifier is specified, the A and X operands are 32-bit registers,
otherwise they are 64-bit registers.

If the comparison is met, the instruction branches according to the specified
qualifiers brf and brb. If no qualifier is specified, control branches to an
address formed by adding the half word item count in 64-bit register Y,
shifted left 5 places, to the base address in 64-bit register B. Otherwise, a
relative branch forwards or backwards occurs.

The relative branch address is formed by taking the two 8-bit designators Y
and B together as a 16-bit quantity, treated as a half word item count. This
quantity is left-shifted 5 places and added to (if brf is specified) or
subtracted from (if brb is specified) the instruction's program address.

The instruction is undefined if the qualifiers brf and brb are all specified
together.

Data flag branch conditions:

Data flag bit 46: Result is indefinite

3-178 PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

B3

Compare Floating-Point, Branch if Less Than
Full Word, Format #C
Subfunction: h1000bb0
Qualifiers: h, bb=[brf,brb,rel]

F G x A y

(A) LT (X)

The #B3 instruction performs a Compare Floating-Point and Branch
operation only when bit 1 of the G designator is one and bit 2 is zero. The
two floating-point operands from registers A and X are compared according
to the floating-point rules discussed in appendix F. If the comparison is not
met, execution continues at the next sequential instruction.

If the h qualifier is specified, the A and X operands are 32-bit registers,
otherwise they are 64-bit registers.

If the comparison is met, the instruction branches according to the specified
qualifiers brf and brb. If no qualifier is specified, control branches to an
address formed by adding the half word item count in 64-bit register Y,
shifted left 5 places, to the base address in 64-bit register B. Otherwise, a
relative branch forwards or backwards occurs.

The relative branch address is formed by taking the two 8-bit designators Y
and B together as a 16-bit quantity, treated as a half word item count. This
quantity is left-shifted 5 places and added to (if brf is specified) or
subtracted from (if brb is specified) the instruction's program address.

The instruction is undefined if the qualifiers brf and brb are all specified
together.

Data flag branch conditions:

Data flag bit 46: Result is indefinite

PUB-1264 Rev. A 3-179

ETAJO Instruction Descriptions Instruction Set Reference Manual

B4

Compare Floating-Point, Branch if Less or Equal
Full Word, Format #C
Subfunction: h1000bb0
Qualifiers: h, bb=[brf,brb,rel]

F G x A y

(A) LE (X)

The #B4 instruction performs a Compare Floating-Point and Branch
operation only when bit 1 of the G designator is one and bit 2 is zero. The
two floating-point operands from registers A and X are compared according
to the floating-point rules discussed in appendix F. If the comparison is not
met, execution continues at the next sequential instruction.

If the h qualifier is specified, the A and X operands are 32-bit registers,
otherwise they are 64-bit registers.

If the comparison is met, the instruction branches according to the specified
qualifiers brf and brb. If no qualifier is specified, control branches to an
address formed by adding the half word item count in 64-bit register Y,
shifted left 5 places, to the base address in 64-bit register B. Otherwise, a
relative branch forwards or backwards occurs.

The relative branch address is formed by taking the two 8-bit designators Y
and B together as a 16-bit quantity, treated as a half word item count. This
quantity is left-shifted 5 places and added to (if brf is specified) or
subtracted from (if brb is specified) the instruction's program address.

The instruction is undefined if the qualifiers brf and brb are all specified
together.

Data flag branch conditions:

Data flag bit 46: Result is indefinite

3-180 PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

BS

Compare Floating-Point, Branch if Greater
Full Word, Format #C
Subfunction: h1000bb0
Qualifiers: h, bb=[brf,brb,rel]

F G x A y

(A) GT (X)

The #BS instruction performs a Compare Floating-Point and Branch
operation only when bit 1 of the G designator is one and bit 2 is zero. The
two floating-point operands from registers A and X are compared according
to the floating-point rules discussed in appendix F. If the comparison is not
met, execution continues at the next sequential instruction.

If the h qualifier is specified, the A and X operands are 32-bit registers,
otherwise they are 64-bit registers.

If the comparison is met, the instruction branches according to the specified
qualifiers brf and brb. If no qualifier is specified, control branches to an
address formed by adding the half word item count in 64-bit register Y,
shifted left 5 places, to the base address in 64-bit register B. Otherwise, a
relative branch forwards or backwards occurs.

The relative branch address is formed by taking the two 8-bit designators Y
and B together as a 16-bit quantity, treated as a half word item count. This
quantity is left-shifted 5 places and added to (if brf is specified) or
subtracted from (if brb is specified) the instruction's program address.

The instruction is undefined if the qualifiers brf and brb are all specified
together.

Data flag branch conditions:

Data flag bit 46: Result is indefinite

PUB-1264 Rev. A 3-181

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

BO

Compare Floating-Point, Set Condition if Equal
Full Word, Format #C
Subfunction: hlcOOOOO
Qualifiers: h, c=[sc]

F G x A

(A) EQ (X)

The #BO instruction executes as a Compare Floating-Point and Set
Condition operation only when bit 1 of the G designator is zero, and the sc
qualifier sets bit 2 to one. The instruction compares two floating-point
numbers in registers A and X according to the floating-point comparison
rules explained in appendix F. A condition code is set in the register
designated by Y, according to the result. If the h qualifier is specified, the
operands are 32-bit registers, otherwise they are 64-bit registers.

If the comparison is met, register Y is loaded with the 64-bit (32 if h was
specified) condition code 000 ... 001. If the comparison fails, register Y is
set to a condition code of 000 ... 000. Execution continues at the next
sequential instruction.

Data flag branch conditions:

Data flag bit 46: Result is indefinite

3-182 PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Bl

Compare Floating-Point, Set Condition if Not Equal
Full Word, Format #C
Subfunction: hlcOOOOO
Qualifiers: h, c=[sc]

F G x A

(A) NE (X)

The #Bl instruction executes as a Compare Floating-Poi,nt and Set
Condition operation only when bit 1 of the G designator is zero, and the sc
qualifier sets bit 2 to one. The instruction compares two floating-point
numbers in registers A and X according to the floating-point comparison
rules explained in appendix F. A condition code is set in the register
designated by Y, according to the result, If the h qualifier is specified, the
operands are 32-bit registers, otherwise they are 64-bit registers.

If the comparison is met, register Y is loaded with the 64-bit (32 if h was
specified) condition code 000 ... 001. If the comparison fails, register Y is
set to a condition code of 000 . . . 000. Execution continues at the next
sequential instruction.

Data flag branch conditions:

Data flag bit 46: Result is indefinite

PUB-1264 Rev. A 3-183

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

B2

Compare Floating-Point, Set Condition if Greater or Equal
Full Word, Format #C
Subfunction: hlcOOOOO
Qualifiers: h, c= [sc]

F G x A

(A) GE (X)

The #B2 instruction executes as a Compare Floating-Point and Set
Condition operation only when bit 1 of the G designator is zero, and the sc
qualifier sets bit 2 to one. The instruction compares two floating-point
numbers in registers A and X according to the floating-point comparison
rules explained in appendix F. A condition code is set in the register
designated by Y, according to the result. If the h qualifier is specified, the
operands are 32-bit registers, otherwise they are 64-bit registers.

If the comparison is met, register Y is loaded with the 64-bit (32 if h was
specified) condition code 000 ... 001. If the comparison fails, register Y is
set to a condition code of 000 . .. 000. Execution continues at the next
sequential instruction.

Data flag branch conditions:

Data flag bit 46: Result is indefinite

3-184 PUB-1264 Rei· . . \

Instruction Set Reference Manual ETAJO lns1ruc1ion Descnjirions

B3

Compare Floating-Point, Set Condition if Less Than
Full Word, Format #C
Subfunction: hlcOOOOO
Qualifiers: h, c=[sc]

F G x A

(A) LT (X)

The #B3 instruction executes as a Compare Floating-Point and Set
Condition operation only when bit 1 of the G designator is zero, and the sc
qualifier sets bit 2 to one. The instruction compares two floating-point
numbers in registers A and X according to the floating-point comparison
rules explained in appendix F. A condition code is set in the register
designated by Y, according to the result. If the h qualifier is specified; the
operands are 32-bit registers, otherwise they are 64-bit registers.

If the comparison is met, register Y is loaded with the 64-bit (32 if h was
specified) condition code 000 ... 001. If the comparison fails, register Y is
set to a condition code of 000 ... 000. Execution continues at the next
sequential instruction.

Data flag branch conditions:

Data flag bit 46: Result is indefinite

PUB-1264 Rev. A 3-185

ETAJ 0 Instruction Descriptions Instruction Set Reference .\f11n11(1/

B4

Compare Floating-Point, Set Condition if Less or Equal
Full Word, Format #C
Subfunction: h1c00000
Qualifiers: h, c= [sc]

F G x A

(A) LE (X)

The #B4 instruction executes as a Compare Floating-Point and Set
Condition operation only when bit 1 of the G designator is zero, and the sc
qualifier sets bit 2 to one. The instruction compares two floating-point
numbers in registers A and X according to the floating-point comparison
rules explained in appendix F. A condition code is set in the register
designated by Y, according to the result. If the h qualifier is specified, the
operands are 32-bit registers, otherwise they are 64-bit registers.

If the comparison is met, register Y is loaded with the 64-bit (32 if h was
specified) condition code 000 ... 001. If the comparison fails, register Y is
set to a condition code of 000 ... 000. Execution continues at the next
sequential instruction.

Data flag branch conditions:

Data flag bit 46: Result is indefinite

3-186 PUB-1264 Rev.,\

Instruction Set Reference Manual ETAJO Instruction Descriptions

BS

Compare Floating-Point, Set Condition if Greater
Full Word, Format #C
Subfunction: h1c00000
Qualifiers: h, c=[sc]

F G x A

(A) GT (X)

The #BS instruction executes as a Compare Floating-Point and Set
Condition operation only when bit 1 of the G designator is zero, and the sc
qualifier sets bit 2 to one. The instruction compares two floating-point
numbers in registers A and X according to the floating-point comparison
rules explained in appendix F. A condition code is set in the register
designated by Y, according to the result. If the h qualifier is specified, the
operands are 32-bit registers, otherwise they are 64-bit registers.

If the comparison is met, register Y is loaded with the 64-bit (32 if h was
specified) condition code 000 ... 001. If the comparison fails, register Y is
set to a condition code of 000 ... 000. Execution continues at the next
sequential instruction.

Data flag branch conditions:

Data flag bit 46: Result is indefinite

PUB-1264 Rev. A 3-187

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

B6

Branch to Immediate Address
Full Word, Format #5
Subfunction: None

3-188

F R I

(R) + I (48 Bits)

#B6 performs an unconditional branch. The right-most 48 bits of register R
contain an item count of half words, and I is a 48-bit base address. An
address is formed by adding the item count, shifted left 5 places, to the
base address. Overflow is ignored. If the R designator is zero, the item
count to be added is all zeros.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Dcscriprions

Full Word, Format #1
Subfunction: hOOObfgr
Qualifiers: h, b,f=(fia],g=[grp].r=[rf]

F G x

B7

Scatter

A :~~1 •... ~.··········~·;················.•.(.. , :;:=-:.:::::··.-:=: -
B c

B ---> Indexed C

The #B7 instruction scatters groups of elements from contiguous vector B
into elements of vector C. Elements of vectors B and C are 64 bits by
default, or 32 bits by declaring the h qualifier. Elements of index vector A
are 64 bits.

The locations of vector C element groups are specified by item counts
contained in the right-most 48 bits of each vector A element. The first group
of vector B elements is transmitted to vector C, beginning at the address
formed by adding the first item count from vector A to the base address in
register C. The item count is left-shifted six places (five if h is specified)
before the addition. The next group begins at the address formed by adding
the second item count from vector A to vector C's base address, and so on,
until vector A is exhausted.

Qualifier b indicates that register B contains a constant that is broadcast as
the common value for any elements of vector B.

If the fia qualifier is specified, vector A is generated by using a fixed
increment value specified by the right-most 48 bits of register A. The X
designator must be zero. Vector C is addressed as C, C+A, C+2A, ... ,
C+((N-l)A), where N is a field length specified by the left-most 16 bits of
register A. The fixed increment value is shifted left six (or five) places
before being added to vector C's base address.

If grp is specified, a group of elements is transmitted from vector B to
vector C for each element of vector A, otherwise a single element is
transmitted. The length of the group is specified in the left-most 16 bits of
register C. If these bits are zero, the instruction performs as a no-op.

PUB-1264 Rev. A 3-lSY

ETAJ 0 Instruction Descriptions Instruction Set Reference .\Innual

3-190

Qualifier rf indicates that all elements of vector B reside in the 256 registers
of the register file (address #0-#3FCD). #B7 is undefined if rf is specified,
but all vector B addresses are not in the register file.

The instruction is undefined if b is specified with grp, or if grp is specified
with rf

PUB-1264 Rer. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Full Word, Format #1
Subfunction: hzoOOOOO
Qualifiers: h,z,o

F G x

BS

Transmit Reverse

c

A---> C

#BB transmits vector A's elements to vector C, in reverse order. The last
element of vector A is the first vector C element, the next-to-last element of
A is the second element in vector C, and so on until vector C is exhausted.

Operands are 64 bits long by default, or 32 bits by declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation. The z qualifier causes the control vector to operate on zero
bits instead of ones. If the Z designator is zero, there is no control vector,
all results are stored, and the z qualifier is invalid. The qualifier o specifies
an offset for result vector C and control vector Z. The offset is found in
register (C+l). Register C must be even if o is declared, otherwise
references to registers designated by C and (C+l) are undefined.

PUB-1264 Rev. A 3-191

ETAJ 0 Instruction Descriptions Instruction Set Reference Manllal

BA

Gather
Full Word, Format #1
Subfunction: hOOOOfgr
Qualifiers : h,f=[fia],g=[grp],r=[rf]

3-192

F G x

Indexed B ---> C

The #BA instruction gathers elements from vector B and transmits them
into elements of contiguous vector C. The right-most 48 bits of each
element in vector A contains an item count specifying the location of each
vector B element. Elements of vectors B and C are 64 bits by default, or 32
bits by declaring the h qualifier. Vector A elements are always 64 bits long.

The first group of vector B elements comes from an address in vector B
formed by adding the first item count from vector A to the base address in
register B. The item count is left-shifted six places (five if h is specified)
before the addition. The elements are stored in vector C, in consecutive
order. The operation continues until vector A is exhausted.

If the fia qualifier is specified, vector A is generated by using a fixed
increment value specified by the right-most 48 bits of register A. The X
designator must be zero. Vector B is addressed as: B, B+A, B+2A, ... ,
B+((N-l)A), where N is a field length specified by the left-most 16 bits of
register A. The fixed increment value is shifted left six places (five if h is
specified) before being added to vector B's base address.

If grp is specified, a group of elements is transmitted from vector B to
vector C for each element of vector A, otherwise a single element is
transmitted. All groups contain the same number of elements. The length of
the group is specified in the left-most 16 bits of register B. If these bits are
zero, the instruction performs as a no-op.

Qualifier rf indicates that all elements of vector B reside in the 25 6 registers
of the register file (address #0-#3FCD). The instruction is undefined if rf is
specified, but all vector B addresses are not in the register file. It is also
undefined if grp and rf are specified together.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Full Word, Format #2
Subfunction: hOOabOOO
Qualifiers: h,a,b

F

BB

Mask

c

A, B ---> C Per Z

This instruction merges elements of vectors A and B to form result vector
C, as directed by the order vector Z. When a binary one is encountered in
order vector Z, the next vector A element is transmitted to result vector C,
and an element of vector B is skipped. When a binary zero is encountered in
vector Z, the next vector B element is inserted into vector C, and an
element of A skipped. Vector C's length is transmitted to bits 0-15 of
register C. The #BB instruction terminates when order vector Z is
exhausted.

Operands are 64 bits by default, 32 bits if the h qualifier is specified.

Qualifiers a and b indicate that registers A and B contain constants which
are broadcast as a common value for an element of vector A and B. Either
qualifier, or both, may be used.

PUB-1264 Rev. A 3-193

ETAJ 0 Instruction Descriptions Instruction Set Reference i'v!anua!

BC

Compress
Full Word, Format #2
Subfunction: hzOOOOOO
Qualifiers: h,z

3-194

F c

A---> C Per Z

The #BC instruction forms the sparse data vector C by compressing vector
A as directed by the order vector Z. Vector C contains elements of vector A
corresponding to positions of binary ones (zeros if the z qualifier was
specified) in the order vector Z. The length of vector C is stored into bits
0-15 of register C. Operands are 64 bits by default, 32 if the h qualifier is
specified.

The instruction terminates when the order vector Z is exhausted.

PUB-1264 Rev . . \

Instruction Set Reference Manual ETAJO Instruction Descriprions

Full Word, Format #2
Subfunction: hOOabOOs
Qualifiers: h,a,b,s= [sb]

F

BD

Merge

A B ---> C Per Z
'

z c

The #BD instruction merges elements of vectors A and B as directed by the
order vector Z. When the order vector Z contains a one in a given bit
position, the next vector A element is inserted into vector C. If the vector Z
bit is a zero, the next vector B element is inserted instead. No elements of
vectors A or B are skipped.

If the sb qualifier is specified, for each vector A operand stored, the
corresponding vector B element is skipped. However, a vector A element is
not skipped when a vector B element is stored. The final length of vector C
is stored in bits 0-15 of register C.

Operands are 64 bits by default, 32 bits if the h qualifier is specified.
Qualifiers a and b indicate that registers A and B contain constants that are
broadcast as the common value for any elements of vectors A and B.

The instruction terminates when the order vector Z is exhausted.

PUB-1264 Rev. A 3-195

ETA 10 Instruction Descriptions

Full Word, Format #5
Subfunction: None

F R

Instruction Set Reference Manual

BE

Enter (R) With I (48 Bits)

I

The #BE instruction transfers the 48-bit immediate operand I to the
right-most 48 bits of register R, and places zeros in the upper 16 bits.

BF

Increase (R) By I (48 Bits)
Full Word, Format #5
Subfunction: None

3-196

F R I

The #BF instruction sums the right-most bits of register R and the 48-bit
immediate operand, storing the result in the right-most 48 bits of register R.
Arithmetic overflow is ignored. The upper 16 bits are unchanged.

PUB-1264 Rel'. A

Instruction Set Reference Manual ETAJO Instruction Descriprions

co
Select Equal; A= B, Item Count to (C)

Full Word, Format #1
Subfunction: hzOabOOO
Qualifiers: h,z,a,b

F G x A y B z c

This instruction compares each vector A element with its associated vector
B element until A is equal to B, or until the shorter of the two vectors is
exhausted. The comparison is performed according to the floating-point
rules discussed in Appendix F.

Operands are 64 bits by default, 32 bits if the h qualifier is specified.
Qualifiers a and b indicate that registers A and B contain constants that are
broadcast as the common value for any elements of vectors A and B. If a or
b is specified, the instructions terminate when the non-broadcast field
terminates. The instruction is undefined if a and b are specified together.

If used, the control vector Z indicates which pairs of elements to compare.
The z qualifier means that a zero bit in the control vector enables, and a one
bit disables, the comparison for the corresponding A and B element.

An item count is sfored in the right-most 48 bits of the cleared register C.
The item count includes all pairs of elements encountered, not just those
compared. If the comparison is met, the item count is the number of pairs
of elements encountered up to, but not including, the pair meeting the
condition. If vectors A and B are exhausted before a permissive control
vector element is encountered, the item count equals the shorter vector's
length (determined after the offset adjustment).

If the C designator is zero, results are undefined.

Data flag branch conditions:

Data flag bit 3 7:
Data flag bit 46:

PUB-1264 Rev. A

The select condition was not met.
Indefinite result.

3-197

ETAJ 0 Instruction Descriptions Instruction Set Reference 1Hanua!

Cl

Select Not Equal; A NEB, Item Count to (C)
Full Word, Format #1
Subfunction: hzOabOOO
Qualifiers: h,z,a,b

F G x A y B z c

This instruction compares each vector A element with its associated vector
B element until A is not equal to B, or until the shorter of the two vectors is
exhausted. The comparison is performed according to the floating-point
rules discussed in Appendix F.

Operands are 64 bits by default, 32 bits if the h qualifier is specified.
Qualifiers a and b indicate that registers A and B contain constants that are
broadcast as the common value for any elements of vectors A and B. If a or
b is specified, the instructions terminate when the non-broadcast field
terminates. The instruction is undefined if a and b are specified together.

If used, the control vector Z indicates which pairs of elements to compare.
The z qualifier means that a zero bit in the control vector enables, and a one
bit disables, the comparison for the corresponding A and B element.

An item count is stored in the right-most 48 bits of the cleared register C.
The item count includes all pairs of elements encountered, not just those
compared. If the comparison is met, the item count is the number of pairs
of elements encountered up to, but not including, the pair meeting the
condition. If vectors A and B are exhausted before a permissive control
vector element is encountered, the item count equals the shorter vector's
length (determined after the offset adjustment).

If the C designator is zero, results are undefined.

Data flag branch conditions:

Data flag bit 37:
Data flag bit 46:

3-198

The select condition was not met.
Indefinite result.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAIO Instruction Descriptions

C2

Select Greater or Equal; A GE B, Item Count to (C)
Full Word, Format #1
Subfunction: hzOabOOO
Qualifiers: h,z,a,b

F G x ·A y B z c

This instruction compares each vector A element with its associated vector
B element until A is greater than or equal to B, or until the shorter of the
two vectors is exhausted. The comparison is performed according to the
floating-point rules discussed in Appendix F.

Operands are 64 bits by default, 32 bits if the h qualifier is specified.
Qualifiers a and b indicate that registers A and B contain constants that are
broadcast as the common value for any elements of vectors A and B. If a or
b is specified, the instructions terminate when the non-broadcast field
terminates. The instruction is undefined if a and b are specified together.

If used, the control vector Z indicates which pairs of elements to compare.
The z qualifier means that a zero bit in the control vector enables, and a one
bit disables, the comparison for the corresponding A and B element.

An item count is stored in the right-most 48 bits of the cleared register C.
The item count includes all pairs of elements encountered, not just those
compared. If the comparison is met, the item count is the number of pairs
of elements encountered up to, but not including, the pair meeting the
condition. If vectors A and B are exhausted before a permissive control
vector element is encountered, the item count equals the shorter vector's
length (determined after the off set adjustment).

If the C designator is zero, results are undefined.

Data flag branch conditions:

Data flag bit 37:
Data flag bit 46:

PUB-1264 Rev. A

The select condition was not met.
Indefinite result.

3-199

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

C3

Select Less; A LT B, Item Count to (C)
Full Word, Format #1
Subfunction: hzOabOOO
Qualifiers: h,z,a,b

F G x A y B z c

This instruction compares each vector A element with its associated vector
B element until A is less than B, or until the shorter of the two vectors is
exhausted. The comparison is performed according to the floating-point
rules discussed in Appendix F.

Operands are 64 bits by default, 32 bits if the h qualifier is specified.
Qualifiers a and b indicate that registers A and B contain constants that are
broadcast as the common value for any elements of vectors A and B. If a or
b is specified, the instructions terminate when the non-broadcast field
terminates. The instruction is undefined if a and b are specified together.

If used, the control vector Z indicates which pairs of elements to compare.
The z qualifier means that a zero bit in the control vector enables, and a one
bit disables, the comparison for the corresponding A and B element.

An item count is stored in the right-most 48 bits of the cleared register C.
The item count includes all pairs of elements encountered, not just those
compared. If the comparison is met, the item count is the number of pairs
of elements encountered up to, but not including, the pair meeting the
condition. If vectors A and B are exhausted before a permissive control
vector element is encountered, the item count equals the shorter vector's
length (determined after the offset adjustment).

If the C designator is zero, results are undefined.

Data flag branch conditions:

Data flag bit 37:
Data flag bit 46:

3-200

The select condition was not met.
Indefinite result.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAIO Instruction Descriprions

Full Word, Format #1
Subfunction: hOOabOOO
Qualifiers: h,a,b

F G

C4

Compare; Equal

x A y B

A EQ B Order Vector ---> Z

The #C4 instruction compares successive elements of vector A to successive
elements of vector B according to floating-point comparison rules (described
in Appendix F). If the comparison is met, the corresponding bit of order
vector Z is set, otherwise it is cleared to zero. The instruction terminates
when vector Z is filled. Elements of vectors A and B may be 64 bits by
default, or 32 bits by declaring the h qualifier.

Qualifiers a and b indicate that registers A and B contain constants that are
broadcast as the common value for any elements of vector A and B. Either
a, b, or both may be used.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

PUB-1264 Rev. A 3-20l

ETAJO Instruction Descriptions Instruction Set Reference ,\Ianua!

cs
Compare; Not Equal

Full Word, Format #1
Subfunction: hOOabOOO
Qualifiers: h,a,b

F G x A y B

A NE B Order Vector ---> Z

The #CS instruction compares successive elements of vector A to successive
elements of vector B according to floating-point comparison rules (described
in Appendix F). If the comparison is met, the corresponding bit of order
vector Z is set, otherwise it is cleared to zero. The instruction terminates
when vector Z is filled. Elements of vectors A and B may be 64 bits by
default, or 32 bits by declaring the h qualifier.

Qualifiers a and b indicate that registers A and B contain constants that are
broadcast as the common value for any elements of vector A and B. Either
a, b, or both may be used.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

3-202 PUB-1264 Rev. A

Instruction Set Reference Manual ETAIO Instruction Descriptions

Full Word, Format #1
Subfunction: hOOabOOO
Qualifiers: h,a,b

F

C6

Compare; Greater Than or Equal

G x A y B

A GE B Order Vector ---> Z

The #C6 instruction compares successive elements of vector A to successive
elements of vector B according to floating-point comparison rules (described
in Appendix F). If the comparison is met, the corresponding bit of order
vector Z is set, otherwise it is cleared to zero. The instruction terminates
when vector Z is filled. Elements of vectors A and B may be 64 bits by
default, or 32 bits by declaring the h qualifier.

Qualifiers a and b indicate that registers A and B contain constants that are
broadcast as the common value for any elements of vector A and B. Either
a, b, or both may be used.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

PUB-1264 Rev. A 3-203

C7

Compare; Less
Full Word, Format #1
Subfunction: hOOabOOO
Qualifiers: h,a,b

F G x .A y B

A LT B Order Vector ---> Z

The #C7 instruction compares successive elements of vector A to successive
elements of vector B according to floating-point comparison rules (described
in Appendix F). If the comparison is met, the corresponding bit of order
vector Z is set, otherwise it is cleared to zero. The instruction terminates
when vector Z is filled. Elements of vectors A and B may be 64 bits by
default, or 32 bits by declaring the h qualifier,

Qualifiers a and b indicate that registers A and B contain constants that are
broadcast as the common value for any elements of vector A and B. Either
a, b, or both may be used.

The X and Y designators contain offsets for vectors A and B. When a
constant is broadcast for either vector, that vector has no length, and the
offset is ignored.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

3-204 PUB-1264 Rev . .-\

Instruction Set Reference Manual ETAJO Instruction Descriptions

Full Word, Format #1
Subfunction: hz!OOOOO
Qualifiers: h,z,l=[lh]

F G

cs
Search for Equality

A z c

Search EQ; Index List ---> C

The #C8 instruction performs a search and compare operation for each
element of vector A against successive elements of vector B, according to
floating-point comparison rules (described in Appendix F). Each search
iteration for a vector A element begins with the first element of the B field
and terminates when the comparison is met, or when vector B is exhausted.
After each search iteration; the element in vector C is cleared, then loaded
with the index of the vector B element that caused the search to terminate
(or the B field length). The resulting index is a 64-bit word with the index in
the right-most 48 bits, and the left-most 16 bits cleared to zero. This index,
shifted and added to the address of the first element in vector B will form
the address of the vector B element that met the comparison. (A compare
on the first element of vector B results in an index of zero.) The instruction
terminates when vector A is exhausted.

If the lh qualifier is specified, each successive search starts at the location
of the last successful hit in vector B (or end of B field if no hit). If lh is not
specified, the search starts at the beginning of vector B for each vector A
element.

Elements of vectors A and B are 64 bits by default, or 32 bits by declaring
the h qualifier. Register Z may specify a control vector, each bit of which is
associated with a single vector C element, that controls which elements will
store results from this operation (and set data flag bit 46). The z qualifier
causes the control vector to operate on zero bits instead of ones. If the Z
designator is zero, there is no control vector, all results are stored, and the z
qualifier is invalid.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

PUB-1264 Rev. A 3-205

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

C9

Search for Inequality
Full Word, Format #1
Subfunction: hzlOOOOO
Qualifiers: h,z,l= [lh]

F z c

Search NE; Index List ---> C

The #C9 instruction performs a search and compare operation for each
element of vector A against successive elements of vector B, according to
floating-point comparison rules (described in Appendix F). Each search
iteration for a vector A element begins with the first element of the B field
and terminates when the comparison is met, or when vector B is exhausted.
After each search iteration, the element in vector C is cleared, then loaded
with the index of the vector B element that caused the search to terminate
(or the B field length). The resulting index is a 64-bit word with the index in
the right-most 48 bits, and the left-most 16 bits cleared to zero. This index,
shifted and added to the address of the first element in vector B will form
the address of the vector B element that met the comparison. (A compare
on the first element of vector B results in an index of zero.) The instruction
terminates when vector A is exhausted.

If the lh qualifier is specified, each successive search starts at the location
of the last successful hit in vector B (or end of B field if no hit). If th is not
specified, the search starts at the beginning of vector B for each vector A
element.

Elements of vectors A and B are 64 bits by default, or 32 bits by declaring
the h qualifier. Register Z may specify a control vector, each bit of which is
associated with a single vector C element, that controls which elements will
store results from this operation (and set data flag bit 46). The z qualifier
causes the control vector to operate on zero bits instead of ones. If the Z
designator is zero, there is no control vector, all results are stored, and the z
qualifier is invalid.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

3-206 PUB-1264 Rev. A

Instruction Set Reference Manual ETA l 0 Instruction Descrip1ions

Full Word, Format #1
Subfunction: hzlOOOOO
Qualifiers: h,z,l=[lh]

F

CA

Search for Greater

Search GE; Index List---> C

z c

The #CA instruction performs a search and compare operation for each
element of vector A against successive elements of vector B, according to
floating-point comparison rules (described in Appendix F). Each search
iteration for a vector A element begins with the first element of the B field
and terminates when the comparison is met, or when vector B is exhausted.
After each search iteration, the element in vector C is cleared, then loaded
with the index of the vector B element that caused the search to terminate
(or the B field length). The resulting index is a 64-bit word with the index in
the right-most 48 bits, and the left-most 16 bits cleared to zero. This index,
shifted and added to the address of the first element in vector B will form
the address of the vector B element that met the comparison. (A compare
on the first element of vector B results in an index of zero.) The instruction
terminates when vector A is exhausted.

If the lh qualifier is specified, each successive search starts at the location
of the last successful hit in vector B (or end of B field if no hit). If lh is not
specified, the search starts at the beginning of vector B for each vector A
element.

Elements of vectors A and B are 64 bits by default, or 32 bits by declaring
the h qualifier. Register Z may specify a control vector, each bit of which is
associated with a single vector C element, that controls which elements will
store results from this operation (and set data flag bit 46). The z qualifier
causes the control vector to operate on zero bits instead of ones. If the Z
designator is zero, there is no control vector, all results are stored, and the z
qualifier is invalid.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

PUB-1264 Rev. A 3-20""'

ETAJ 0 Instruction Descriptions Instruction Set Reference ,\/anual

CB

Search for Less
Full Word, Format #1
Subfunction: hzlOOOOO
Qualifiers: h,z,l=[lh]

F z c

Search LT; Index List ---> C

The #CB instruction performs a search and compare operation for each
element of vector A against successive elements of vector B, according to
floating-point comparison rules (described in Appendix F). Each search
iteration for a vector A element begins with the first element of the B field
and terminates when the comparison is met, or when vector B is exhausted.
After each search iteration, the element in vector C is cleared, then loaded
with the index of the vector B element that caused the search to terminate
(or the B field length). The resulting index is a 64-bit word with the index in
the right-most 48 bits, and the left-most 16 bits cleared to zero. This index,
shifted and added to the address of the first element in vector B will form
the address of the vector B element that met the comparison. (A compare
on the first element of vector B results in an index of zero.) The instruction
terminates when vector A is exhausted.

If the lh qualifier is specified, each successive search starts at the location
of the last successful hit in vector B (or end of B field if no hit). If lh is not
specified, the search starts at the beginning of vector B for each vector A
element.

Elements of vectors A and B are 64 bits by default, or 32 bits by declaring
the h qualifier. Register Z may specify a control vector, each bit of which is
associated with a single vector C element, that controls which elements will
store results from this operation (and set data flag bit 46). The z qualifier
causes the control vector to operate on zero bits instead of ones. If the Z
designator is zero, there is no control vector, all results are stored, and the z
qualifier is invalid.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

3-208 PUB-1264 Rel'. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Full Word, Format #D
Subfunction: OOOOOOOn
Qualifiers: n=[neq]

F G

cc
Masked Binary Compare

x

A EQ/NE (B) per (C)

The #CC instruction searches field A for a match with the contents of the
64-bit register specified by designator B. Each element of field A is logically
ANDed with the 64-bit register C contents, then compared to the logical
AND of registers B and C, until a match is found. Register C contains the
mask word; a zero bit on the C word causes a compare EQ on that bit
position.

The match is made when A equals B, unless the neq qualifier is specified. In
this case, the match is made on inequality.

Register X is the index into field A. X is incremented by one for each word
search that does not find a match. When a match is found, the index
provides a means of locating the word in field A that matches register B's
contents.

Data flag branch conditions:

Data flag bit 37: Set if no match was made.

PUB-1264 Rev. A 3-209

ETAJO Instruction Descriptions Instruction Set Reference .. \Ianunl

CD

Half Word Enter (R) by I (24 Bits)
Full Word, Format #5
Subfunction: None

F R 1
-:;: .-:·:·· ,.;.;.· .·:-. .·X" ,.;.;.· .· .. ·:/ ,.;:;:·· .. ;:/ .. ;:;:·",/·' ..)'.'.;)'''_..:';:·· .· •. ·.,·.···.·· .. ·' · · .. · ..•.•. ·.1 ·.•.· •. _ .. · •...• · •.• ·.·. : ... :;::·:·.;:;::::: .. >:::=:·.:.;:;:: ;.·_.;:;::·· .. ;:;::··.::::::-.:;::::=::::;:::·.: . .::::=·.:::;:::·· ::::

...... ·.·.·.· . . ·:.:··.-:;::

.

· .. =.·.··.·.·.·.·.·.'.·.·.· .. ·.·.··.··.'·,'·,'.·.·.·,=.,=.·, .. · ·.·._·.·.·,'.·.· .. ·.· .. ·.·.····.'·,'·,·,·.·.·,,· ... ·.·.··.'•···.=.·.· .. ·,,··,·.··._ .. =·.· r·: r·: ... s:·: ... ::::=·.· r·.· ;:::·: ... t .. ·:;::: ·:Y:·.;:/·::::?'.;:;'.<.::/.'./!:;._:.;:/'./?.:.::::
I

This instruction transfers the 24-bit immediate operand to the right-most 24
bits of 32-bit register R, and places zeros in the upper 8 bits of R.

CE

Half Word Increase (R) by I (24 Bits)
Full Word, Format #5
Subfunction: None

3-210

F R I

This instruction sums the right-most bits of the 32-bit register R and the
24-bit immediate operand, storing the result in the right-most 24 bits of
register R. Arithmetic overflow is ignored.

PUB-1264 Rev. A

Instruction Set Reference Manual ETA 10 Instruction Dcscrip1 ions

CF

Arithmetic Compress
Full Word, Format #1
Subfunction: hOOObsss
Qualifiers: h,b,sss= [ma,c, (n=ma+c) ,mb]

F G x A y B

A---> C per B

z c

Arithmetic compress performs a floating-point comparison of elements of
vectors A and B, forming the sparse data vector C and associated sparse
order vector Z. Elements of vectors A, Band Care 64 bits by default, or 32
bits by declaring the h qualifier. Each vector A element that is greater than
or equal to the corresponding element of vector B becomes a vector C
element, and the corresponding bit of vector Z is set to one. When vector
B's length is exhausted, it is extended with machine zero for the
comparison,

The operation terminates when vector A is exhausted. The number of
operations performed (the bit length of order vector Z) is stored in bits
0-15 of register Z, and the number of operands copied into sparse data
vector C is stored into bits 0-15 of register C. If Z and C are the same, Z
and C results are undefined.

If a vector A element is less than the associated element of vector B, no
element is stored (or skipped) in vector C. The assodated order vector Z bit
is cleared to zero.

Qualifier b indicates that register B contains the B source field constant that
is broadcast as the common value for any elements of vector B.

The qualifiers that control the state of the sign control subfunction bits are
discussed in chapter 2. Although sign control qualifiers may specify
operations on elements of vectors A and B before the comparison, if an
element of A is stored in vector C, it is the original element.

Data flag branch conditions:

Data flag bit 46: Indefinite result.

PUB-1264 Rev. A 3-211

ETAJO Instruction Descriptions instruction Set Referet1ce ,\fnnua!

DO

Average
Full Word, Format #1
Subfunction: hzoabOOO
Qualifiers: h,z,o,a,b

F G x ·A y B z c

(A(N) + B(N))/2 ---> C(N)

#DO forms the normalized average of elements in vectors A and B by
summing corresponding A and B elements, and dividing the result by two.
The result becomes the corresponding element in vector C. Division is
accomplished by reducing the sum's exponent by one.

Elements of vectors A, B, and C are 64 bits by default, or 32 bits by
declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zero bits instead of ones. If the Z designator is zero,
there is no control vector, all results are stored, and the z qualifier is
invalid. The qualifier o specifies an offset for result vector C and control
vector Z. The offset is found in register (C+l). Register C must be even if o
is declared, otherwise references to registers designated by C and (C+ 1) are
undefined. Qualifiers a and b indicate that registers A and B contain
constants that are broadcast as the common value for any elements of
vectors A and B.

Data flag branch conditions:

Data flag bit 43:
Data flag bit 46:

3-212

Result is machine zero.
Indefinite result.

PUB-I 264 Rel' . . ·\

Instruction Set Reference Manual ETAJO lnstruction Dcscrip11ons

Full Word, Format #1
Subfunction: hzoOOOOO
Qualifiers: h,z,o

F G

Dl

Adjacent Mean

x c

(A(N+l) + A(N))/2 ---> C(N)

The #Dl instruction performs a normalized addition of the nth and nth+ 1
elements of vector A, and divides the result by two. The final result is
stored in the nth element of vector C. Division is accomplished by
subtracting one from the sum's exponent.

Elements of vectors A and C are 64 bits by default, or 32 bits by declaring
the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zeros instead of ones. If the Z designator is zero, there
is no control vector, all results are stored, and the z qualifier is invalid. The
qualifier o specifies an offset for result vector C and control vector Z. The
offset is found in register (C+l). Register C must be even if o is declared,
otherwise references to registers C and (C+l) are undefined.

Data flag branch conditions:

Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Result is machine zero.
Indefinite result.

3-213

ETAJ 0 Instruction Descriptions Instruction Set Reference .\lonua/

D4

Average Difference
Full Word, Format #1
Subfunction: hzoabOOO
Qualifiers: h,z,o,a,b

F G x A y B z c

(A(N)-B(N))/2 ---> C(N)

The #D4 instruction takes the normalized difference of the nth elements of
vectors A and B, and divides it by two. The result becomes the
corresponding vector C element. Division is accomplished by subtracting
one from the difference's exponent.

Elements of vectors A, B, and C are 64 bits by default, or 32 bits by
declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zeros instead of ones. If the Z designator is zero, there
is no control vector, all results are stored, and the z qualifier is invalid. The
qualifier o specifies an offset for result vector C and control vector Z. The
offset is found in register (C+l). Register C must be even if o is declared,
otherwise references to registers C and (C+l) are undefined.

Qualifiers a and b indicate that registers A and B contain constants that are
broadcast as the common value for any elements of vectors A and B.

Data flag branch conditions:

Data flag bit 43:
Data flag bit 46:

3-214

Result is machine zero.
Indefinite result.

PUB-1264 Rel'. A

Instruction Set Reference Manual ETAIO Instruction Descriprions

Full Word, Format #1
Subfunction: hzoOOOOO
Qualifiers: h,z,o

F G

DS

Delta

x c

(A(N+l)-A(N)) ---> C(N)

The #DS instruction subtracts the nth element of vector A from the nth+ 1
element of vector A, and stores the final result in the nth element of vector
C. Normalized floating-point arithmetic is used in the subtraction.

Elements of vectors A and C are 64 bits by default, or 32 bits by declaring
the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will store results from
this operation (and set data flag bits). The z qualifier causes the control
vector to operate on zeros instead of ones. If the Z designator is zero, there
is no control vector, all results are stored, and the z qualifier is invalid. The
qualifier o specifies an offset for result vector C and control vector Z. The
offset is found in register (C+l). Register C must be even if o is declared,
otherwise references to registers C and (C+l) are undefined.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Exponent overflow.
Result is machine zero.
Indefinite result.

3-215

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

D8

Maximum of Vector A
Full Word, Format #1
Subfunction: hzOOOsOO
Qualifiers: h,z,s=[ma]

3-216

F G x A B z c

Maximum of A to (C), Item Count to (B)

The #D8 instruction searches and compares successive elements of vector A
for the maximum element, and moves that maximum element to register C.
The number of elements up to, but not including, the located element, is
stored as an item count in the right-most 48 bits of the cleared register B. If
more than one element meets the comparison, data flag 54 is set, and the
item count and element stored is for the first such element. The instruction
terminates when vector A is exhausted. If the h qualifier is specified, the A
operands and register C are 32 bits long, otherwise the default length of 64
bits applies.

Register Z may specify a control vector, each bit of which is associated with
a single vector A element, controlling the elements that are examined for
this operation (and setting data flag bits). The z qualifier causes a vector A
element to be examined on binary zeros in the control vector, instead of
binary ones. No control vector offset or length is defined. A zero Z
designator causes all elements to be included, and the z qualifier is ignored.
If the control vector has no permissive elements, no vector A elements are
examined, and C's contents are undefined. The item count in register B is
equal to vector A's length minus its offset.

Sign control is valid using the ma qualifier, which compares the magnitude
of vector A's elements. The unaltered element, as read from vector A, is
stored in vector C.

If the Band C designators are the same, results in Band Care undefined. If
an indefinite element is encountered, data flag 46 is set, and register C set
to indefinite. The contents of register Band data flag 54 are then undefined.

PUB-1264 Rev. A

Instruction Set Reference Manual

Data flag branch conditions:

Data flag bit 46:
Data flag bit 54:

PUB-1264 Rev. A

ETAJO lnstrucrion Descrip1ions

Indefinite result.
More than one quantity met the criteria for
maximum.

3-217

ETAJ 0 Instruction Descriptions Instruction Set Reference ,\lanua!

D9

Minimum of Vector A
Full Word, Format #1
Subfunction: hzOOOsOO
Qualifiers: h,z,s=[ma]

3-218

F G x z c

Minimum of A to (C), Item Count to (B)

The #D9 instruction searches and compares successive elements of vector A
for the minimum element, and moves the minimum element to register C.
The number of elements up to, but not including, the located element, is
stored as an item count in the right-most 48 bits of the cleared register B. If
more than one element meets the comparison, data flag 54 is set, and the
item count and element stored is for the first such element. The instruction
terminates when vector A is exhausted. If the h qualifier is specified, the A
operands and register C are 32 bits long, otherwise the default length of 64
bits applies.

Register Z may specify a control vector, each bit of which is associated with
a single vector A element, controlling the elements that are examined for
this operation (and the setting of data flag bits). The z qualifier causes a
vector A element to be examined on binary zeros in the control vector,
instead of binary ones. No control vector offset or length is defined. A zero
Z designator causes all elements to be included, and the z qualifier is
ignored. If the control vector has no permissive elements, no vector A
elements are examined, and C's contents are undefined. The item count in
register B is equal to vector A's length minus its offset.

Sign control is valid using the ma qualifier, which compares the magnitude
of vector A's elements. The unaltered element, as read from vector A, is
stored in vector C.

If the B and C designators are the same, results in B and C are undefined. If
an indefinite element is encountered, data flag 46 is set, and register C set
to indefinite. The contents of register B and data flag 54 are then undefined.

PUB-1264 Re'" A

Instruction Set Reference Manual

Data flag branch conditions:

Data flag bit 46:
Data flag bit 54:

PUB-1264 Rev. A

ETAIO Instruction Descrip1ions

Indefinite result.
More than one quantity met the criteria for
minimum.

3-219

ETAJ 0 Instruction Descriptions Instruction Set Reference Afanual

DA

Sum Vector A Elements
Full Word, Format #1
Subfunction: hzOOOOOO
Qualifiers: h,z

F G x c

(AO+ Al +A2+ ... +An) to (C) and (C+ 1)

This instruction sums all the elements in vector A, performing a
double-precision floating-point operation without normalization. The upper
result is stored in the register designated as C, and the lower result in C+ 1.
Registers C and C+l are 64 bits by default, 32 bits if the h qualifier is
specified. Register C must be even. If register C is an odd number, or zero,
results are undefined. The instruction terminates when vector A is
exhausted. The final result may depend on the order of the input operands.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, controlling which elements will be summed in
this operation. The z qualifier causes the control vector to operate on zeros
instead of ones. No control vector offset or length is defined. If the control
vector has no permissive elements, no vector A elements are examined, the
result is machine zero, and data flag 43 is set. A zero Z designator causes
all elements to be included, and the z qualifier is ignored.

Data flag 43 is determined by the final result only. It is set if the lower
result is machine zero, regardless of the upper result. If the upper result is
indefinite, the lower result is undefined. Data flags 42 and 46 will be set
normally, as required on any of the add operations.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-220

Exponent overflow.
The lower result is machine zero.
Indefinite result.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Full Word, Format #1
Subfunction: hzOOOOOO
Qualifiers: h,z

F G

DB

Product of Vector A Elements

x c

(AO* Al* A2* A3 ... *An) to (C)

The #DB instruction forms the significant product of successive
floating-point elements in vector A, storing the result in register C. Register
C is 64 bits long, or 32 bits, if the h qualifier is specified. The number of
significant bits in the partial product is adjusted after each multiplication.
The instruction terminates when vector A is exhausted. The final result may
depend on the order of the input operands.

Register Z may specify a control vector, each bit of which is associated with
a single vector A element, controlling which elements will be multiplied for
this operation. Multiplication of a vector A element and a partial product
takes place only when the corresponding control vector bit is enabled as
specified by the z qualifier. If the control vector contains no permissive
elements, the result is a normalized one. A zero Z designator causes all
elements to be included, and the z qualifier is ignored.

If the C designator is zero, the result is undefined.

Data flags 43 and 46 are determined only by the final result. Data flag 42 is
set if any multiplication operation overflows.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Exponent overflow.
The result is machine zero.
Indefinite result.

3-221

ETAJ 0 Instruction Descriptions Instruction Set Reference Afanua/

DC

Dot Product of Vectors A and B
Full Word, Format #1
Subfunction: hzOabOOO
Qualifiers: h,z,a,b

F G x A y B z c

Dot Product to (C) and (C+l)

The #DC instruction multiplies vector A by vector B and forms the sum of
the products, using double-precision, unnormalized arithmetic. The upper
and lower results are stored in registers C and C+l respectively. The
instruction terminates when the shorter source vector is exhausted. The
final result may depend on the order of the input operands.

Elements of vectors A, B, and C are 64 bits by default; or 32 bits by
declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector A and B element, controlling which elements will be
included in this operation. The z qualifier causes the control vector to
operate on zeros instead of ones. If register Z is zero, there is no control
vector, all elements are included, and the z qualifier is invalid. If the
control vector has no permissive elements, the result is machine zero, and
data flag 43 is set.

Qualifiers a and b indicate that registers A and B contain constants that are
broadcast as the common value for any elements of vectors A and B. If both
a and b qualifiers are specified, the instruction is undefined.

Data flags 43 and 46 are determined only by the final upper and lower
results. If the upper result is indefinite, the lower result is undefined. Data
flag 43 is set if the lower result is machine zero, regardless of the upper
result. Data flag 42 is set if any multiplication or addition operation
overflows.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

3-222

Exponent overflow.
The result is machine zero.
Indefinite result.

PUB-1264 Rev. :\

Instruction Set Reference Manual ETAJO Instruction Descriptions

Full Word, Format #1
Subfunction: hzoOOOOO
Qualifiers: h,z,o

F

DF

Interval

(A) per (B) ---> C

z c

This instruction forms a result vector C whose initial element is the constant
from register A. Each succeeding vector C element exceeds the preceding
element by the constant in register B. The second element equals the first
element of C, plus the contents of B, and so on. Arithmetic is
unnormalized.

Elements of registers A and B and vector C are 64 bits by default, or 32 bits
by declaring the h qualifier.

Register Z may specify a control vector, each bit of which is associated with
a single vector C element, that controls which elements will store results
form this operation (and set data flag bits).

The z qualifier causes the control vector to operate on zeros instead of ones.
If the Z designator is zero, there is no control vector, all results are stored,
and the z qualifier is invalid.

For each non-permissive bit in the control vector Z, the addition operation
is performed, but the result is not stored in vector C. If the result of this
addition is indefinite, data flag 46 is not set until a permissive bit is
encountered in the control vector, so a result can be stored. Similarly, data
flag bits 42 or 43 are set on the next permitted store, although the step that
caused the flag to be set was not stored.

If the A designator is zero, then #8000 ... 0 is supplied for the value of A.

Data flag branch conditions:

Data flag bit 42:
Data flag bit 43:
Data flag bit 46:

PUB-1264 Rev. A

Exponent overflow.
The result is machine zero.
Indefinite result.

3-223

ET Al 0 Instruction Descriptions Instruction Set Reference .\lunuul

FO

Logical Exclusive OR
Full Word, Format #3
Subfunction: none

A y B z c

A Exel. OR B ---> C

The #FO instruction performs a bit-by-bit logical exclusive OR function on
binary fields A and B. The result is stored in field C. The operation's
results, based on bit settings of A and B, are listed below.

Source Result
AB c

0 0 0
0 1 1
1 0 1
1 1 0

The binary fields A, B, and C are strings of bits. The operation proceeds
from left to right, terminating when the C field is exhausted. Item counts
are bit counts.

If fields A and B are shorter than field C, they are extended automatically
with binary zeros. Registers X, Y, and Z contain bit indexes that are added
to the A, B, and C addresses, respectively.

Data Flag Branch Conditions:

3-224

Data flag bit 53 - Result field all zeros
Data flag bit 54 - Result field mixed
Data flag bit 55 - Result field all ones

PUB-1264 Rev. A

Instruction Set Reference Manual ETAIO Instruction Descriptions

Full Word, Format #3
Subfunction: none

Fl

Logical AND

A y

A AND B ---> C

B z c

The #Fl instruction performs a bit-by-bit logical AND function on binary
fields A and B. The result is stored in field C. The operation's results, based
on bit settings of A and B, are listed below.

Source Result
AB c
0 0 0
0 1 0
1 0 0
1 1 1

The binary fields A, B, and C are strings of bits. The operation proceeds
from left to right, terminating when the C field is exhausted. Item counts
are bit counts.

If fields A and B are shorter than field C, they are extended automatically
with binary zeros. Registers X, Y, and Z contain bit indexes that are added
to the A, B, and C addresses, respectively.

Data Flag Branch Conditions:

PUB-1264 Rev. A

Data flag bit 53 - Result field all zeros
Data flag bit 54 - Result field mixed
Data flag bit 5 5 - Result field all ones

3-225

ETAJO Instruction Descriptions Instruction Set Reference ,\fanua!

F2

Logical Inclusive OR
Full Word, Format #3
Subfunction: none

A y B z c

A ORB---> C

The #FZ instruction performs a bit-by-bit logical inclusive OR function on
binary fields A and B. The result is stored in field C. The operation's
results, based on bit settings of A and B, are listed below.

Source Result
AB c

0 0 0
0 1 1
1 0 1
1 1 1

The binary fields A, B, and C are strings of bits. The operation proceeds
from left to right, terminating when the C field is exhausted. Item counts
are bit counts.

If fields A and B are shorter than field C, they are extended automatically
with binary zeros. Registers X, Y, and Z contain bit indexes that are added
to the A, B, and C addresses, respectively.

Data Flag Branch Conditions:

3-226

Data flag bit 53 - Result field all zeros
Data flag bit 54 - Result field mixed
Data flag bit 55 - Result field all ones

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

Full Word, Format #3
Subfunction: none

F

F3

Logical NOT AND

x A y B

NOT of A AND B ---> C

z c

The #F3 instruction performs a bit-by-bit logical NOT AND function on
binary fields A and B. The result is stored in field C. The operation's
results, based on bit settings of A and B, are listed below.

Source Result
AB c

0 0 1
0 1 1
1 0 1
1 1 0

The binary fields A, B, and C are strings of bits. The operation proceeds
from left to right, terminating when the C field is exhausted. Item counts
are bit counts.

If fields A and B are shorter than field C, they are extended automatically
with binary zeros. Registers X, Y, and Z contain bit indexes that are added
to the A, B, and C addresses, respectively.

Data Flag Branch Conditions:

PUB-1264 Rev. A

Data flag bit 53 - Result field all zeros
Data flag bit 54 - Result field mixed
Data flag bit 55 - Result field all ones

3-227

ETA 10 Instruction Descriptions Instruction Set Reference Manual

F4

Logical NOT OR
Full Word, Format #3
Subfunction: none

A y B z c

NOT of A ORB·---> C

The #F4 instruction performs a bit-by-bit logical NOT OR function on
binary fields A and B. The result is stored in field C. The operation's
results, based on bit settings of A and B, are listed below.

Source Result
AB c

0 0 1
0 1 0
1 0 0
1 1 0

The binary fields A, B, and C are strings of bits. The operation proceeds
from left to right, terminating when the C field is exhausted. Item counts
are bit counts.

If fields A and B are shorter than field C, they are extended automatically
with binary zeros. Registers X, Y, and Z contain bit indexes that are added
to the A, B, and C addresses, respectively.

Data Flag Branch Conditions:

3-228

Data flag bit 53 - Result field all zeros
Data flag bit 54 - Result field mixed
Data flag bit 55 - Result field all ones

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descrip1ions

Full Word, Format #3
Subfunction: none

FS

Logical OR NOT

A y B

A OR NOT B ---> C

z c

The #F5 instruction performs a bit-by-bit logical OR NOT function on
binary fields A and B. The result is stored in field C. The operation's
results, based on bit settings of A and B, are listed below.

Source Result
AB c
0 0 1
0 1 0
1 0 1
1 1 1

The binary fields A, B, and C are strings of bits. The operation proceeds
from left to right, terminating when the C field is exhausted. Item counts
are bit counts.

If fields A and B are shorter than field C, they are extended automatically
with binary zeros. Registers X, Y, and Z contain bit indexes that are added
to the A, B, and C addresses, respectively.

Data Flag Branch Conditions:

PUB-1264 Rev. A

Data flag bit 53 - Result field all zeros
Data flag bit 54 - Result field mixed
Data flag bit 55 - Result field all ones

3-229

ETAJ 0 Instruction Descriptions Instruction Set Reference .\fnnuol

F6

Logical AND NOT
Full Word, Format #3
Subfunction: none

A y B z c

A AND NOT B ---> C

The #F6 instruction performs a bit-by-bit logical AND NOT function on
binary fields A and B. The result is stored in field C. The operation's
results, based on bit settings of A and B, are listed below.

Source Result
AB c

0 0 0
0 1 0
1 0 1
1 1 0

The binary fields A, B, and C are strings of bits. The operation proceeds
from left to right, terminating when the C field is exhausted. Item counts
are bit counts.

If fields A and B are shorter than field C, they are extended automatically
with binary zeros. Registers X, Y, and Z contain bit indexes that are added
to the A, B, and C addresses, respectively.

Data Flag Branch Conditions:

3-230

Data flag bit 53 - Result field all zeros
Data flag bit 54 - Result field mixed
Data flag bit 55 - Result field all ones

PUB-1264 Re\' . . ·\

Instruction Set Reference Manual ETAJ 0 Instruction Descriptions

Full Word, Format #3
Subfunction: none

F7

Logical Exclusive OR NOT

A y B

A Exel. OR NOT B ---> C

z c

The #F7 instruction performs a bit-by-bit logical exclusive OR NOT function
on binary fields A and B. The result is stored in field C. The operation's
results, based on bit settings of A and B, are listed below.

Source Result
AB c

0 0 1
0 1 0
1 0 0
1 1 1

The binary fields A, B, and C are strings of bits. The operation proceeds
from left to right, terminating when the C field is exhausted. Item counts
are bit counts.

If fields A and B are shorter than field C, they are extended automatically
with binary zeros. Registers X, Y, and Z contain bit indexes that are added
to the A, B, and C addresses, respectively.

Data Flag Branch Conditions:

PUB-1264 Rev. A

Data flag bit 53 - Result field all zeros
Data flag bit 54 - Result field mixed
Data flag bit 55 - Result field all ones

3-231

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

FS

Move Bytes Left
Full Word, Format #3
Subfunction: none

3-232

z c

A---> C

The #F8 instruction moves source field A to the result field C. The bytes in
the field are considered from left to right, meaning that the most significant
byte of the source field is moved to the most significant byte position of the
result field.

If the source field is shorter than the destination field, the destination field
is filled in with the repeated byte found in the B designator. If the source
field is longer than the destination field, the operation ends when the
destination field is exhausted.

The 48-bit indexes in registers X and Z are left-shifted three bits before
being added to the base addresses in registers A and C respectively.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAIO Instruction Descriprions

FA

Post Semaphore
Full Word, Format #D
Subfunction: OOssOOOO
Qualifiers: ss= [saO,sa 1,sa2,sa3]

F G

The #FA instruction removes a process word from the process queue.
Depending on the wait count, bits 0-31 of the process word are returned to
bits 0-31 of register C. The wait count is always returned to bits 32-63 of
register C. The instruction branches to the CPU branch address in register B
if the wait count is equal to or less than -1.

If the wait count is greater than or equal to zero, the following is performed.

1. Calculate the semaphore address by adding the relative bit
address (in register X) to the semaphore's base/limit/access
selected by the specified saO, sal, sa2, or sa3 qualifier.

2. Read the two-word semaphore from the communication
buffer (CB), examine the wait count bits (0-31), and
increment the count by one.

3. Store the semaphore back into CB. Load bits 32-63 of
register C with the non-updated wait count. Bits 0-31 of
register C are zeros.

4. Continue execution at the next sequential instruction.

If the wait count is equal to (-1), the following is performed.

1. Same as for wait count greater than or equal to zero.

2. Same as for wait count greater than or equal to zero.

3. Remove a process word from the queue 'by reading up the
process word located by the Q-head address from CB. Load
register C bits 32-63 with the non-updated wait count. Bits
0-31 of register C contains the process word.

4. Store the semaphore back into CB. The new wait count is
equal to zero, indicating that the queue is now empty.

5. Branch to the CPU address contained in register B.

PUB-I 264 Rev. A 3-233

ETA 10 Instruction Descriptions Instruction Set Reference Manual

3-234

If the wait count is less than -1, the following is performed.

1. Same as for wait count greater than or equal to zero.

2. Same as for wait count greater than or equal to zero.

3. Remove a process word from the queue by reading up the
process word located by the Q-head address from CB. Load
register C bits 32-63 with the non-updated wait count. Bits
0-31 of register C contains the process word.

4. Update the Q-head address with the next process link
address from the process word. Store the semaphore back
in CB.

5. Branch to the CPU address contained in register B.

PUB-1264 Re\' . . ·\

Instruction Set Reference Manual ETAJO Instruction Descrip1ions

FB

Wait on Semaphore
Full Word, Format #D
Subfunction: OOssOOpp
Qualifiers: ss= [saO,sa 1,sa2,sa3] ,pp= [pa0,pa1,pa2,pa3]

F G x

The #FB instruction adds a process word to a process queue, depending on
the wait count of the semaphore. The instruction will branch if the wait
count is equal to or less than zero. The non-updated wait count is returned
to register C.

If the wait count is greater than zero, the following steps are performed.

1. Calculate the semaphore address by adding the relative bit
address (in register X) to the semaphore's base/limit/access
selected by the specified saO, sal, sa2, or sa3 qualifier.

2. Calculate the new process word address by adding the
relative bit address (in register A) to the process word's
base/limit/access selected by the specified paO, pal, pa2, or
pa3 qualifier.

Note: This address is sent to the same communication
buffer side as in step 1. If the process word address
is in the other side, the instruction is undefined. The
semaphore may use the process word address from
the wrong CB and the instruction may complete with
no error indicated.

3. Read the two-word semaphore from CB, examine the wait
count bits (0-31), and decrement the wait count by one.

4. Store the semaphore back into CB.

5. Load register C bits 32-63 with the non-updated wait count.
Bits 0-31 are zeros.

6. Continue execution at the next sequential instruction.

PUB-1264 Rev. A 3-235

ETAJO Instruction Descriptions Instruction Set Reference Aianual

3-236

If the wait count is equal to zero, the following steps are performed.

1. Same as for wait count greater than zero.

2. Same as for wait count greater than zero.

3. Same as for wait count greater than zero.

4. Initialize the process queue by inserting the new process
word address (calculated in step 2) into the Q-head and
Q-tail address fields of the semaphore. Store back into CB.

5. Load bits 32-63 of register C with the non-updated wait
count. Bits 0-31 are zeros.

6. Branch to the CPU address contained in register B.

If the wait count is less than zero, the following steps are performed.

1. Same as for wait count greater than zero.

2. Same as for wait count greater than zero.

3. Same as for wait count greater than zero.

4. Add the new process word to the end of the process queue.
This is done by storing the new process word address
(calculated in step 2) into the next process link field of the
process word located by the Q-tail address of the
semaphore.

5. Update the Q-tail address in the semaphore with the new
process address in register A before storing it back into CB.

6. Load register C bits 32-63 with the non-updated wait count.
Bits 0-31 are zeros.

7. Branch to the CPU address contained in register B.

PUB-1264 Rev. A

Instruction Set Reference Manual ETAJO Instruction Descriptions

FC

Bit Branch and Swap
Full Word, Format #D
Subfunction: hOOOOOcc
Qualifiers: h, cc=[caO, cal, ca2, ca3]

F G x

The #FC instruction performs the following:

1. Calculate the bit branch and swap's bit address by adding
the relative bit address (in register X) to the
base/limit/access selected by the specified caO, cal, ca2, or
ca3 qualifier.

2. Send register A's contents to the communication buffer
(CB).

3. Read from CB the word or halfword (if the h qualifier is
specified) at the address calculated in step 1. Examine the
object bit specified by this bit address.

If the object bit is one, execute step 4. If the object bit is zero, execute steps
5, 6, and 7.

4. Branch to the CP address in register B. Clear register C to
zeros. Execution of the #FC is now complete.

5. Load into register C the word or half word (if the h
qualifier is specified) read in step 3.

6. Store register A's contents into the bit branch and swap's
bit address calculated in step 1.

7. Continue execution at the next sequential instruction.

If registers A and C are the same, the #FC will execute as above. Upon a
second execution, the results may differ because register A has been
modified to all zeros.

If the h qualifier is not specified, registers A and C are 64 bits. If the h

qualifier is specified, registers A and C are 32 bits.

PUB-1264 Rev. A 3-237

ETAJ 0 Instruction Descriptions Instruction Set Reference Manual

FD

Bit Branch and Load/Store
Full Word, Format #D
Subfunction: hOOOOOcc
Qualifiers: h, cc=[caO, cal, ca2, ca3]

3-238

F G x

The #FD instruction performs the following:

1. Calculate the bit branch and load/store's bit address by
adding the relative bit address (in register X) to the
base/limit/access selected by the specified caO, cal, ca2, or
ca3 qualifier.

2. Send register A's contents to the communication buffer
(CB).

3. Read from CB the word (halfword if the h qualifier is
specified) at the address calculated in step 1. Examine the
object bit specified by this bit address.

If the object bit is one, execute step 4. If the object bit is zero, execute steps
5, 6, and 7.

4. Branch to the CP address in register B. Clear register C to
zeros. Execution of the #FD is now complete

5. Store the word (or half word) from register A into the bit
address calculated in step 1.

6. Load into register C the word (or halfword) from the
address in step 5 offset by 64 bits (32 if h was specified).
This is the next sequential word (or half word).

7. Continue execution at the next sequential instruction.

If registers A and C are the same, the #FD executes as described above.
Upon a second execution, the results may differ because register A has
been modified to all zeros.

If the h qualifier is not specified, registers A and C are 64 bits. If the h
qualifier is specified, registers A and C are 32 bits.

PUB-1264 Rei· . . \

Instruction Set Reference Manual ETAJO Instruction Descrip1ions

Full Word, Format #D
Subfunction: hOOOOOcc
Qualifiers: h,cc=[caO, cal, ca2, ca3]

F G

FE

Load Register

(C) per (X)

The #FE instruction loads register C with the contents of the CB address
calculated by adding the relative bit address (in register X) to the
base/limit/access selected by the qualifier caO, cal, ca2, or ca3.

If the h qualifier is specified, register C is 32 bits. If the h qualifier is not
specified, register C is 64 bits.

Full Word, Format #D
Subfunction: hOOOOOcc
Qualifiers: h, cc=[caO, cal, ca2, ca3]

F G

FF

Store Register

(C) per (X)

The #FF instruction stores register C into the CB address calculated by
adding the relative bit address (in register X) to the base/limit/access
selected by the qualifier caO, cal, ca2, or ca3.

If the h qualifier is specified, register C is 32 bits. If the h qualifier is not
specified, register C is 64 bits.

PUB-1264 Rev. A 3-239

ETAJO Instruction Descriptions Instruction Set Reference Manual

3-240 PUB-1264 Rev. A

Appendix A: Instructions by Function Code

Table A-1. Instructions by Function Code (page 1 of 6).

Function Format Mnemonic G-bits Operation

00 4 idle -------- Idle
03 4 nop -------- No Operation
04 7 bk pt -------- Breakpoint on Address
05 4 vsb -------- Void Stack and Branch
06 4 fault -------- Fault Test
07 4 setmod -------- Select Serial/Parallel Execution Mode
08 4 setint -------- Transmit External Interrupt
09 4 exit -------- Exit Force
09 4 exitf -------- Exit Force
OA 4 mtime -------- Transmit (R) To Monitor Interval Timer
oc 4 stoar -------- Store Associative Registers
OD 4 lodar -------- Load Associative Registers
OE 4 rd int -------- Read Interrupt Register to (T)
OF 4 lodkey -------- Load Keys from (R), Translate Address (S) to (T)
10 A dtob -------- Convert BCD to Binary, Fixed Length
11 A btod -------- Convert Binary to BCD, Fixed Length
12 7 lode -------- Load Byte from CP memory; (T) Per (S), (R)
13 7 stoc -------- Store Byte to CP memory; (T) Per (S), (R)
14 7 cpsb -------- Bit Compress
15 7 mrgb -------- Bit Merge
16 7 mas kb -------- Bit Mask
17 7 exdom -------- Backward Domain Change
18 7 swcqta -------- Shared Memory; CQTA to (T), (S) to CQTA
19 7 strtio -------- Shared Memory; (S) to IQHA, (T) to !QT A
1A 7 stopio -------- Shared Memory; IQHA to (S), IQVF, IQTA to (T)
1B 7 testio -------- Shared Memory; IQVF, Transfer Busy, Fatal Error
1C 7 maskz -------- Form Repeated Bit Mask with Leading Zeros
1D 7 masko -------- Form Repeated Mask with Leading Ones
1E 7 enteq -------- Count Leading Equals
1F 7 en to -------- Count Ones in Field R, Count to (T)
20 8 bheq -------- Branch if (R) Equal (S) (32-Bit)
21 8 bhne -------- Branch if (R) Not Equal (S) (32-Bit)
22 8 bhge -------- Branch if (R) Greater or Equal (S) (32-Bit)
23 8 bhlt -------- Branch if (R) Less Than (S) (32-Bit)
24 8 beq -------- Branch if (R) Equal (S) (64-Bit)
25 8 bne -------- Branch if (R) Not Equal (S) (64-Bit)
26 8 bge -------- Branch if (R) Greater or Equal (S) (64-Bit)
27 8 bit -------- Branch if (R) Less Than (S) (64-Bit)
28 7 scnleq -------- Scan for Equal Byte

PUB-1264 Rev. A ,'\-I

Appendix A: Instructions By Code lnstrucrion Set Reference Alanua!

Table A-2. Instructions by Function Code (page 2 of 6).

Function Format Mnemonic G-bits Operation

29 7 tfc -------- Transmit Instrumentation Counter to (T)
2A 6 el en -------- Enter Length of (R) with I (16 Bits)
2B 4 addlen -------- Add to Length Field
2C 4 rxor -------- Logical Exclusive OR (R), (S) to (T)
2D 4 rand -------- Logical AND (R), (S) to (T)
2E 4 rior -------- Logical Inclusive OR (R), (S) to (T)
2F 9 barb -------- Register Bit Branch and Alter
30 7 shifti -------- Shift Operand; (R) per S to (T)
31 7 ibnz -------- Increase (R) and Branch if (R) NE 0
32 9 bab -------- Bit Branch and Alter
33 B badf -------- Data Flag Register Bit Branch and Alter
34 4 shift -------- Shift (R) per S to (T)
3S 7 dbnz -------- Decrease (R) and Branch if (R) NE 0
36 7 bsave -------- Branch or Forward Domain Change
37 A rjtime -------- Transmit Job Interval Timer to (T)
38 A Ito I -------- Transmit (R) Bits 0-15 to (T) Bits 0-15
39 A clock -------- Transmit Real Time Clock to (T)
3A A wjtime -------- Transmit (R) to Job Interval Timer
3B A Isdfr -------- Data Flag Register Load/Store
3C 4 mpyxh -------- Half-Word Index Multiply (R) * (S) to (T)
3D 4 mpyx -------- Index Multiply (R) • (S) to (T)
3E 6 es -------- Enter (R) with I (16 Bits)
3F 6 is -------- Increase (R) By I (16 Bits)
40 4 add uh -------- Add; Upper result (R) + (S) to (T) (32 Bits)
41 4 addlh -------- Add; Lower result (R) + (S) to (T) (32 Bits)
42 4 addnh -------- Add; Normalized result (R) + (S) to (T) (32 Bits)
44 4 subuh -------- Subtract; Upper result (R) - (S) to (T) (32 Bits)
4S 4 sublh -------- Subtract; Lower result (R) - (S) to (T) (32 Bits)
46 4 subnh -------- Subtract; Normalized result (R) - (S) to (T) (32 Bits)
48 4 mpyuh -------- Multiply; Upper result (R) • (S) to (T) (32 Bits)
49 4 mpylh -------- Multiply; Lower result (R) * (S) to (T) (32 Bits)
4B 4 mpysh -------- Multiply; Significant result (R) * (S) to (T) (32 Bits)
4C 4 divuh -------- Divide; Upper result (R) I (S) to (T) (32 Bits)
4D 6 esh -------- Half-Word Enter (R) with I (16 Bits)
4E 6 ish -------- Half-Word Increase (R) By I (16 Bits)
4F 4 divsh -------- Divide; Significant result (R) I (S) to (T) (32 Bits)
so A truh -------- Truncate; (R) to (T) (32 Bits)
51 A flrh -------- Floor; (R) to (T) (32 Bits)
S2 A clgh -------- Ceiling; (R) to (T) (32 Bits)
S3 A sqrth -------- Significant Square Root; (R) to (T) (32 Bits)
54 4 adj sh -------- Adjust Significance; (R) per (S) to (T) (32 Bits)
SS 4 adj eh -------- Adjust Exponent; (R) per (S) to (T) (32 Bits)
S6 7 linkv -------- Select Link
S7 7 rddom -------- Read Domain Registers; Special Register per R to (T)
S8 A rtorh -------- Transmit Operand; (R) to (T) (32 Bits)
S9 A absh -------- Transmit Absolute; (R) to (T) (32 Bits)
SA A exph -------- Transmit Exponent; (R) to (T) (32 Bits)
SB 4 packh -------- Pack; (R), (S) to (T) (32 Bits)
SC A ex th -------- Extend; 32-Bit (R) to 64-Bit (T)

A-2 PUB-1264 Rev. A

Instruction Set Reference Manual Appendix A: Instructions By Code

Table A-3. Instructions by Function Code (page 3 of 6).

Function Format Mnemonic G-bits Operation

SD A extxh -------- Index Extend; 32-Bit (R) to 64-Bit (T)
SE 7 lodh -------- Load; (T) per (S), (R) (Halfword)
SF 7 stoh -------- Store; (T) per (S), (R) (Halfword)
60 4 ad du -------- Add; Upper result (R) + (S) to (T) (64 Bits)
61 4 add I -------- Add; Lower result (R) + (S) to (T) (64 Bits)
62 4 addn -------- Add; Normalized result (R) + (S) to (T) (64 Bits)
63 4 addx -------- Add Address; (R) + (S) to (T)
64 4 subu -------- Subtract; Upper result (R) - (S) to (T) (64 Bits)
6S 4 subl -------- Subtract; Lower result (R) - (S) to (T) (64 Bits)
66 4 subn -------- Subtract; Normalized result (R) - (S) to (T) (64 Bits)
67 4 subx -------- Subtract Address; (R) - (S) to (T)
6B 4 mpyu -------- Multiply; Upper result (R) • (S) to (T) (64 Bits)
69 4 mpyl -------- Multiply; Lower result (R) • (S) to (T) (64 Bits)
6B 4 mpys -------- Multiply; Significant result (R) • (S) to (T) (64 Bits)
6C 4 di vu -------- Divide; Upper result (R) I (S) to (T) (64 Bits)
60 4 insb -------- Insert Bits; (R) to (T) per (S)
6E 4 extb -------- Extract Bits; (R) to (T) per (S)
6F 4 divs -------- Divide; Significant result (R) I (S) to (T) (64 Bits)
70 A tru -------- Truncate; (R) to (T) (64 Bits)
71 A fir -------- Floor; (R) to (T) (64 Bits)
'7"1 , ... A elg -------- Ceiling; (R) to (T) (64 Bits)
73 A sqrt -------- Significant Square Root; (R) to (T) (64 Bits)
74 4 adjs -------- Adjust Significance; (R) per (S) to (T) (64 Bits)
7S 4 adje -------- Adjust Exponent; (R) per (S) to (T) (64 Bits)
76 A con -------- Contract; 64-Bit (R) to 32-Bit (T)
77 A rcon -------- Rounded Contract; 64-Bit (R) to 32-Bit (T)
1B A rtor -------- Transmit; (R) to (T) (64 Bits)
79 A abs -------- Absolute; (R) to (T) (64 Bits)
7A A exp -------- Exponent; (R) to (T) (64 Bits)
7B 4 pack -------- Pack; (R), (S) to (T) (64 Bits)
7C A ltor -------- Length; (R) to (T) (64 Bits)
70 4 rgap -------- Swap; S ---> T and R ---> S
7E 7 lod -------- Load; (T) per (S), (R) (Word)
7F 7 sto -------- Store; (T) per (S), (R) (Word)
BO 1 adduv hzoabsss Add; Upper result A + B ---> C
B1 1 add Iv hzoabsss Add; Lower result A + B ---> C
B2 1 addnv hzoabsss Add; Normalized result A + B ---> C
B3 1 addxv OzoabOOO Add Address; A + B ---> C
B4 1 subuv hzoabsss Subtract; Upper result A - B ---> C
BS 1 sublv hzoabsss Subtract; Lower result A - B ---> C
B6 1 subnv hzoabsss Subtract; Normalized result A - B ---> C
B7 1 sub xv OzoabOOO Subtract Address; A - B ---> C
BB 1 mpyuv hzoabsss Multiply; Upper result A * B ---> C
B9 1 mpylv hzoabsss Multiply; Lower result A • B ---> C
8A 1 shiftv OzoabOOO Shift; A per B ---> C
8B 1 mpysv hzoabsss Multiply; Significant result A • B ---> C
BC 1 divuv hzoabsss Divide; Upper result A I B ---> C
BF 1 divsv hzoabsss Divide; Significant result A I B ---> C
90 1 truv hzoaOOOO Truncate; A ---> C

PUB-1264 Rev. A A-3

Appendix A: Instructions By Code Instruction Set Reference Manual

Table A-4. Instructions by Function Code (page 4 of 6).

Function Format Mnemonic G-bits Operation

91 1 flrv hzoaOOOO Floor: A ---> C
92 1 clgv hzoaOOOO Ceiling: A ---> C
93 1 sqrtv hzoaOssO Significant Square Root; A ---> C
94 1 adjsv hzoabOOO Adjust Significance; A per B ---> C
95 1 adjev hzoabOOO Adjust Exponent; A per B ---> C
96 1 conv OzoaOOOO Contract; 64-Bit A ---> 32-Bit C
97 1 rconv OzoaOOOO Rounded Contract; 64-Bit A ---> 32-Bit C
98 1 vtov hzoaOOOO Transmit Element; A ---> C
99 1 absv hzoaOOOO Move Absolute; A ---> C
9A 1 expv hzoaOOOO Move Exponent; A ---> C
9B 1 packv hzoabOOO Pack; A, B ---> C
9C 1 extv OzoaOOOO Extend; 32-Bit A ---> 64-Bit C
9D 1 andnv hzoabnnn Logical AND NOT; A, B, ---> C
9D 1 andv hzoabnnn Logical AND; A, B, ---> C
9D 1 iorv hzoabnnn Logical Inclusive OR; A, B, ---> C
9D 1 nandv hzoabnnn Logical NOT AND; A, B, ---> C
9D 1 norv hzoabnnn Logical NOT OR; A, B, ---> C
9D 1 ornv hzoabnnn Logical OR NOT; A, B, ---> C
9D 1 xornv hzoabnnn Logical Exclusive OR NOT; A, B, ---> C
9D 1 xorv hzoabnnn Logical Exclusive OR; A, B, ---> C
AO " add us hllabsss Add; Upper result A + B ~~~> C "'
Al 2 add ls hllabsss Add; Lower result A + B ---> C
A2 2 addns hllabsss Add N; A+ B ---> C
A4 2 sub us hllabsss Subtract; Upper result A - B ---> C
AS 2 sub ls hllabsss Subtract; Lower result A - B ---> C
A6 2 subns hllabsss Subtract N; A - B ---> C
A8 2 mpyus hllabsss Multiply; Upper result A * B ---> C
A9 2 mpyls hllabsss Multiply; Lower result A * B ---> C
AB 2 mpyss hllabsss Multiply; Significant result A * B ---> C
AC 2 divus hllabsss Divide; Upper result A I B ---> C
AF 2 divss hllabsss Divide; Significant result A I B ---> C
BO c cfpeq hlcOOOOO Compare F.P., Set Condition if (A) EQ (X)
BO c cfpeq hlOOObbO Compare F.P., Branch if (A) EQ (X)
BO c ibxeq hOcfuOOO Compare Integers, Set Condition if (A)+(X) EQ (Z)
BO c ibxeq hOOfubbO Compare Integers, Branch if (A) EQ (Z)
Bl c cfpne hlcOOOOO Compare F.P., Set Condition if (A) NE (X)
Bl c cfpne hlOOObbO Compare F.P., Branch if (A) NE (X)
Bl c ibxne hOcfuOOO Compare Integers, Set Condition if (A)+(X) NE (Z)
Bl c ibxne hOOfubbO Compare Integers, Branch if (A)+(X) NE (Z)
B2 c cfpge hlcOOOOO Compare F.P., Set Condition if (A) GE (X)
B2 c cfpge hlOOObbO Compare F.P., Branch if (A) GE (X)
B2 c ibxge hOcOuOOO Compare Integers, Set Condition if (A)+(X) GE (Z)
B2 c ibxge hOOOubbO Compare Integers, Branch if (A)+(X) GE (Z)
B3 c cfplt hlcOOOOO Compare F.P., Set Condition if (A) LT (X)
B3 c cf pit hlOOObbO Compare F.P., Branch if (A) LT (X)
B3 c ibxlt hOcOuOOO Compare Integers, Set Condition if (A)+(X) LT (Z)
B3 c ibxlt hOOOubbO Compare Integers, Branch if (A)+(X) LT (Z)
B4 c cfple hlcOOOOO Compare F.P., Set Condition if (A) LE (X)
B4 c cfple hlOOObbO Compare F.P., Branch if (A) LE (X)

A-4 PUB-1264 Rev. A

Instruction Set Reference Manual Appendix A: lnstruc1ions By Cocle

Table A-S. Instructions by Function Code (page S of 6).

Function Format Mnemonic G-bits Operation

B4 c ibxle hOcOuOOO Compare Integers, Set Condition if (A)+ (X) LE (Z)
B4 c ibxle hOOOubbO Compare Integers, Branch if (A)+(X) LE (Z)
BS c cfpgt hlcOOOOO Compare F.P., Set Condition if (A) GT (X)
BS c cfpgt hlOOObbO Compare F.P., Branch if (A) GT (X)
BS c ibxgt hOcOuOOO Compare Integers, Set Condition if (A)+(X) GT (Z)
BS c ibxgt hOOOubbO Compare Integers, Branch if (A)+(X) GT (Z)
B6 s bim -------- Branch to Immediate Address; (R) + I (4S Bits)
B7 1 vtovx hOOObfgr Scatter ---> Indexed C
BS 1 vrevv hzoOOOOO Transmit Reverse; A ---> C
BA 1 vxtov hOOOOfgr Gather ---> C
BB 2 maskv hOOabOOO Mask; A, B ---> C per Z
BC 2 cpsv hzOOOOOO Compress; A ---> C per Z
BD 2 mrgv hOOabOOs Merge; A, B ---> C per Z
BE s ex -------- Enter (R) with I (4S Bits)
BF s ix -------- Increase (R) By I (4S Bits)
co 1 seleq hzOabOOO Select Equal; A EQ B, Item Count to (C)
Cl 1 seine hzOabOOO Select Not Equal; A NE B, Item Count to (C)
C2 1 selge hzOabOOO Select Greater or Equal; A GE B, Item Count to (C)
C3 1 sellt hzOabOOO Select Less; A LT B, Item Count to (C)
C4 1 cmpeq hOOabOOO Compare Equal; A EQ B Order Vector ---> Z
cs 1 cmpne hOOabOOO Compare Not Equal; A NE B Order Vector ---> Z
C6 1 cmpge hOOabOOO Compare GE; A GE B Order Vector ---> Z
C7 1 cm pit hOOabOOO Compare Less; A LT B Order Vector ---> Z
cs 1 srcheq hzlOOOOO Search for Equality; Index List ---> C
C9 1 srchne hzlOOOOO Search for Inequality; Index List ---> C
CA 1 srchge hzlOOOOO Search for Greater or Equal; Index List ---> C
CB 1 srchlt hzlOOOOO Search for Less; Index List ---> C
cc D mcmpw OOOOOOOn Masked Binary Compare; A EQ/NE (B) per (C)
CD s exh -------- Half-Word Enter (R) By I (24 Bits)
CE s ixh -------- Half-Word Increase (R) By I (24 Bits)
CF 1 acps hOOObsss Arithmetic Compress; A ---> C per B
CF 1 aricps hOOObsss Arithmetic Compress; A ---> C per B
CF 1 arithcps hOOObsss Arithmetic Compress; A ---> C per B
DO 1 avg hzoabOOO Average; (A(N) + B(N))/2 ---> C(N)
Dl 1 adj mean hzoOOOOO Adjacent Mean; (A(N+l) - A(N))/2 ---> C(N)
D4 1 avgd hzoabOOO Average Difference; (A(N) - B(N))/2 ---> C(N)
DS 1 delta hzoOOOOO Delta; (A(N+l)-A(N)) ---> C(N)
DB 1 max hzOOOsOO Maximum of Vector A to (C), Item Count to (B)
D9 1 min hzOOOsOO Minimum of Vector A to (C), Item Count to (B)
DA 1 sum hzOOOOOO Sum; (AO+Al+A2+ ... +n) To (C) and (C+l)
DB 1 product hzOOOOOO Product; (AO*Al*A2*A3 ... *An) To (C)
DC 1 dotv hzOabOOO Dot Product to (C) and (C+ 1)
DF 1 interval hzoOOOOO Interval; (A) per (B) ---> C
DF 1 intrval hzoOOOOO Interval; (A) per (B) ---> C
DF 1 intval hzoOOOOO Interval; (A) per (B) ---> C
FO 3 xor -------- Logical Exclusive OR; A, B ---> C
Fl 3 and -------- Logical AND; A, B ---> C
F2 3 ior -------- Logical Inclusive OR; A,B ---> C
F3 3 nand -------- Logical NOT AND; A,B ---> C

PUB-I 264 Rev. A A-5

Appendix A: Instructions By Code Instruction Set Reference Manual

Table A-6. Instructions by Function Code (page 6 of 6).

Function Format Mnemonic G-bits Operation

F4 3 nor -------- Logical NOT OR; A,B ---> C
FS 3 orn -------- Logical Exclusive OR NOT; A,B ---> C
F6 3 andn -------- Logical AND NOT; A,B ---> C
F7 3 xorn -------- Logical Exclusive OR NOT; A,B ---> C
FB 3 movl -------- Move Bytes Left; A ---> C
FA D post OOssOOOO Post Semaphore
FB D wait OOssOOpp Wait on Semaphore
FC D bbswap hOOOOOcc Bit Branch and Swap
FD D bbldst hOOOOOcc Bit Branch and Load/Store
FE D cblod hOOOOOcc Load Register; (C) per (X)
FF D cbsto hOOOOOcc Store Register; (C) per (X)

A-6 PUB-1264 Rev. A

Appendix B: Instructions by Mnemonic

Table B-1. Instructions by Mnemonic (page 1 of 6).

Mnemonic Format Function G-bits Operation

abs A 79 -------- Absolute; (R) to (T)
absh A 59 -------- Transmit Absolute; (R) to (T)
absv 1 99 hzoaOOOO Move Absolute; A ---> C
a cps 1 CF hOOObsss Arithmetic Compress; A ---> C per B
addl 4 61 -------- Add; Lower result (R) + (S) to (T) (64 Bits)
add I en 4 2B -------- Add to Length Field
addlh 4 41 -------- Add; Lower result (R) + (S) to (T) (32 Bits)
add ls 2 Al hllabsss Add; Lower result A + B ---> C
addlv 1 81 hzoabsss Add; Lower result A + B ---> C
addn 4 62 -------- Add; Normalized result (R) + (S) to (T) (64 Bits)
addnh 4 42 -------- Add; Normalized result (R) + (S) to (T) (32 Bits)
addns 2 A2 hllabsss Add; Normalized result A + B ---> C
addnv 1 82 hzoabsss Add; Normalized result A + B ---> C
addu 4 60 -------- Add; Upper result (R) + (S) to (T) (64 Bits)
add uh 4 40 -------- Add; Upper result (R) + (S) to (T) (32 Bits)
add us 2 AO hllabsss Add; Upper result A + B ---> C
adduv 1 80 hzoabsss Add; Upper result A + B ---> C
addx 4 63 -------- Add Address; (R) + (S) to (T)
addxv 1 83 OzoabOOO Add Address; A + B ---> C
adje 4 75 -------- Adjust Exponent; (R) per (S) to (T)
adj eh 4 55 -------- Adjust Exponent; (R) per (S) to (T)
adjev 1 95 hzoabOOO Adjust Exponent; A per B ---> C
adj mean 1 Dl hzoOOOOO Adjacent Mean; (A(N+l) - A(N))/2 ---> C(N)
adjs 4 74 -------- Adjust Significance; (R) per (S) to (T)
adj sh 4 54 -------- Adjust Significance; (R) per (S) to (T)
adjsv 1 94 hzoabOOO Adjust Significance; A per B ---> C
and 3 Fl -------- Logical AND; A, B ---> C
andn 3 F6 -------- Logical AND NOT; A,B ---> C
andnv 1 9D hzoabnnn Logical AND NOT; A, B, ---> C
andv 1 9D hzoabnnn Logical AND; A, B, ---> C
aricps 1 CF hOOObsss Arithmetic Compress; A ---> C per B
arithcps 1 CF hOOObsss Arithmetic Compress; A ---> C per B
avg 1 DO hzoabOOO Average; (A(N) + B(N))/2 ---> C(N)
avgd 1 D4 hzoabOOO Average Difference; (A(N) - B(N))/2 ---> C(N)
bah 9 32 -------- Bit Branch and Alter
badf B 33 -------- Data Flag Register Bit Branch and Alter
barb 9 2F -------- Register Bit Branch and Alter
bbldst D FD hOOOOOcc Bit Branch and Load/Store
bbswap D FC hOOOOOcc Bit Branch and Swap
beq 8 24 -------- Branch if (R) Equal (S) (64-Bit)

PUB-1264 Rev. A B-1

Appendix B: Instructions By Mnemonic Instruction Set Reference Manual

Table B-2. Instructions by Mnemonic (page 2 of 6).

Mnemonic Format Function G-bits Operation

bge 8 26 -------- Branch if (R) Greater or equal (S) (64-Bit)
bheq 8 20 -------- Branch if (R) Equal (S) (32-Bit)
bhge 8 22 -------- Branch if (R) Greater or Equal (S) (32-Bit)
bhlt 8 23 -------- Branch if (R) Less Than (S) (32-Bit)
bhne 8 21 -------- Branch if (R) Not Equal (S) (32-Bit)
bim s B6 -------- Branch to Immediate Address; (R) + I (48 Bits)
bk pt 7 04 ---------! Breakpoint on Address
bit 8 27 Branch if (R) Less Than (S) (64-Bit)
bne 8 2S -------- Branch if (R) Not Equal (S) (64-Bit)
bsave 7 36 -------- Branch or Forward Domain Change
btod A 11 -------- Convert Binary to BCD, Fixed Length
cblod D FE hOOOOOcc Load Register; (C) per (X)
cbsto D FF hOOOOOcc Store Register; (C) per (X)
cfpeq c BO hlcOOOOO Compare F.P., Set Condition if (A) EQ (X)
cfpeq c BO hlOOObbO Compare F.P., Branch if (A) EQ (X)
cfpge c B2 hlcOOOOO Compare F.P., Set Condition if (A) GE (X)
cfpge c B2 hlOOObbO Compare F.P., Branch if (A) GE (X)
cfpgt c BS hlcOOOOO Compare F.P., Set Condition if (A) GT (X)
cfpgt c BS hlOOObbO Compare F.P., Branch if (A) GT (X)
cfple c B4 hlcOOOOO Compare F.P., Set Condition if (A) LE (X)
cfple c B4 hlOOObbO Compare F.P., Branch if (A) LE (X)
cf pit c B3 hlcOOOOO Compare F.P., Set Condition if (A) LT (X)
cf pit c B3 hlOOObbO Compare F.P., Branch if (A) LT (X)
cfpne c Bl hlcOOOOO Compare F.P., Set Condition if (A) NE (X)
cfpne c Bl hlOOObbO Compare F.P., Branch if (A) NE (X)
clg A 72 -------- Ceiling; (R) to (T)
clgh A 52 -------- Ceiling; (R) to (T)
clgv 1 92 hzoaOOOO Ceiling: A ---> C
clock A 39 -------- Transmit Real Time Clock to (T)
cmpeq 1 C4 hOOabOOO Compare Equal; A = B Order Vector ---> Z
cmpge 1 C6 hOOabOOO Compare GE; A GE B Order Vector ---> Z
cm pit 1 C7 hOOabOOO Compare Less; A LT B Order Vector ---> Z
cmpne 1 cs hOOabOOO Compare Not Equal; A NE B Order Vector ---> Z
con A 76 -------- Contract; 64-Bit (R) to 32-Bit (T)
conv 1 96 OzoaOOOO Contract; 64-Bit A ---> 32-Bit C
cpsb 7 14 -------- Bit Compress
cpsv 2 BC hzOOOOOO Compress; A ---> C Per Z
dbnz 7 3S -------- Decrease (R) and Branch if (R) NE 0
delta 1 DS hzoOOOOO Delta; (A(N+l)-A(N)) ---> C(N)
divs 4 6F -------- Divide; Significant result (R) I (S) to (T) (64 Bits)
divsh 4 4F -------- Divide; Significant result (R) I (S) to (T) (32 Bits)
divss 2 AF hllabsss Divide; Significant result A I B ---> C
divsv 1 SF hzoabsss Divide; Significant result A I B ---> C
di vu 4 6C -------- Divide; Upper result (R) I (S) to (T) (64 Bits)
divuh 4 4C -------- Divide; Upper result (R) I (S) to (T) (32 Bits)
divus 2 AC hllabsss Divide; Upper result A I B ---> C
divuv 1 8C hzoabsss Divide; Upper result A I B ---> C

B-2 PUB-1264 Rev. r\

Instruction Set Reference Manual Appendix B: Instructions By Mnemonic

Table B-3. Instructions by Mnemonic (page 3 of 6).

Mnemonic Format Function G-bits Operation

dotv 1 DC hzOabOOO Dot Product to (C) and (C+l)
dtob A 10 -------- Convert BCD to Binary, Fixed Length
el en 6 2A -------- Enter Length of (R) With I (16 Bits)
enteq 7 1E -------- Count Leading Equals
en to 7 lF -------- Count Ones in Field R, Count to (T)
es 6 3E -------- Enter (R) With I (16 Bits)
esh 6 4D -------- Half-Word Enter (R) With I (16 Bits)
ex s BE -------- Enter (R) With I (48 Bits)
exdom 7 17 -------- Backward Domain Change
exh s CD -------- Half-Word Enter (R) By I (24 Bits)
exit 4 09 -------- Exit Force
exitf 4 09 -------- Exit Force
exp A 7A -------- Exponent; (R) to (T)
exph A SA -------- Transmit Exponent; (R) to (T)
expv 1 9A hzoaOOOO Move Exponent; A ---> C
extb 4 6E -------- Extract Bits; (R) to (T) per (S)
ex th A SC Extend; 32-Bit (R) to '64-Bit (T)
extv 1 9C OzoaOOOO Extend; 32-Bit A ---> 64-Bit C
extxh A SD -------- Index Extend; 32-Bit (R) to 64-Bit (T)
fault 4 06 -------- Fault Test
fir A 71 -------- Floor; (R) to (T)
flrh A Sl -------- Floor; (R) to (T)
flrv 1 91 hzoaOOOO Floor: A ---> C
ibnz 7 31 -------- Increase (R) and Branch if (R) NE 0
ibxeq c BO hOcOuOOO Compare Integers, Set Condition if (A)+(X) EQ (Z)
ibxeq c BO hOOOubbO Compare Integers, Branch if (A)+(X) EQ (Z)
ibxge c B2 hOcOuOOO Compare Integers, Set Condition if (A)+(X) GE (Z)
ibxge c B2 hOOOubbO Compare Integers, Branch if (A)+(X) GE (Z)
ibxgt c BS hOcOuOOO Compare Integers, Set Condition if (A)+(X) GT (Z)
ibxgt c BS hOOOubbO Compare Integers, Branch if (A)+(X) GT (Z)
ibxle c B4 hOcOuOOO Compare Integers, Set Condition if (A)+(X) LE (Z)
ibxle c B4 hOOOubbO Compare Integers, Branch if (A)+(X) LE (Z)
ibxlt c B3 hOcOuOOO Compare Integers, Set Condition if (A)+(X) LT (Z)
ibxlt c B3 hOOOubbO Compare Integers, Branch if (A)+ (X) LT (Z)
ibxne c Bl hOcfuOOO Compare Integers, Set Condition if (A)+(X) NE (Z)
ibxne c Bl hOOfubbO Compare Integers, Branch if (A)+(X) NE (Z)
idle 4 00 -------- Idle
insb 4 6D -------- Insert Bits; (R) to (T) per (S)
interval 1 DF hzoOOOOO Interval; (A) per (B) ---> C
intrval 1 DF hzoOOOOO Interval; (A) per (B) ---> C
intval 1 DF hzoOOOOO Interval; (A) per (B) ---> C
ior 3 F2 -------- Logical Inclusive OR; A,B ---> C
iorv 1 9D hzoabnnn Logical Inclusive OR; A, B, ---> C
is 6 3F -------- Increase (R) By I (16 Bits)
ish 6 4E -------- Half-Word Increase (R) By I (16 Bits)
ix s BF -------- Increase (R) By I (48 Bits)
ixh 5 CE -------- Half-Word Increase (R) By I (24 Bits)
linkv 7 56 -------- Select Link
lod 7 7E -------- Load; (T) per (S), (R)

PUB-1264 Rev. A B-3

Appendix B: Instructions By Mnemonic Instruction Set Reference Manual

Table B-4. Instructions by Mnemonic (page 4 of 6).

Mnemonic Format Function G-bits Operation

lodar 4 OD -------- Load Associative Registers
lode 7 12 -------- Load Byte; (T) Per (S), (R)
lodh 7 SE -------- Load; (T) Per (S), (R)
lodkey 4 OF -------- Load Keys from (R), Translate Address (S) to (T)
lsdfr A 3B -------- Data Flag Register Load/Store
Ito I A 38 -------- Transmit (R) Bits 0-1 S to (T) Bits 0-15
I tor A 7C -------- Length; (R) to (T)
maskb 7 16 -------- Bit Mask
masko 7 lD -------- Form Repeated Mask With Leading Ones
maskv 2 BB hOOabOOO Mask; A, B ---> C Per Z
maskz 7 lC -------- Form Repeated Bit Mask With Leading Zeros
max 1 DB hzOOOsOO Maximum of Vector A to (C), Item Count to (B)
mcmpw D cc OOOOOOOn Masked Binary Compare; A EQ/NE (B) Per (C)
min 1 D9 hzOOOsOO Minimum of Vector A to (C), Item Count to (B)
movl 3 FS -------- Move Bytes Left; A ---> C
mpyl 4 69 -------- Multiply; Lower result (R) * (S) to (T) (64 Bits)
mpylh 4 49 -------- Multiply; Lower result (R) * (S) to (T) (32 Bits)
mpyls 2 A9 hllabsss Multiply; Lower result A * B ---> C
mpylv 1 89 hzoabsss Multiply; Lower result A • B ---> C
mpys 4 6B -------- Multiply; Significant result (R) * (S) to (T) (64 Bits)
mpysh 4 4B -------- Multiply; Significant result (R) * (S) to (T) (32 Bits)
mpyss 2 AB hllabsss Multiply; Significant result A • B ---> C
mpysv 1 SB hzoabsss Multiply; Significant result A * B ---> C
mpyu 4 68 -------- Mul~iply; Upper result (R) * (S) to (T) (64 Bits)
mpyuh 4 48 -------- Multiply; Upper result (R) * (S) to (T) (32 Bits)
mpyus 2 AS hllabsss Multiply; Upper result A * B ---> C
mpyuv 1 88 hzoabsss Multiply; Upper result A * B ---> C
mpyx 4 3D -------- Index Multiply (R) • (S) to (T)
mpyxh 4 3C -------- Half-Word Index Multiply (R) * (S) to (T)
mrgb 7 1S -------- Bit Merge
mrgv 2 BD hOOabOOs Merge; A, B ---> C Per Z
mtime 4 OA -------- Transmit (R) To Monitor Interval Timer
nand 3 F3 -------- Logical NOT AND; A, B ---> C
nandv 1 9D hzoabnnn Logical NOT AND; A, B, ---> C
nop 4 03 -------- No Operation
nor 3 F4 -------- Logical NOT OR; A,B ---> C
norv 1 9D hzoabnnn Logical NOT OR; A, B, ---> C
orn 3 FS -------- Logical OR NOT; A,B ---> C
ornv 1 9D hzoabnnn Logical OR NOT; A, B, ---> C
pack 4 7B -------- Pack; (R), (S) to (T)
packh 4 SB -------- Pack; (R), (S) to (T)
packv 1 9B hzoabOOO Pack; A, B ---> C
post D FA OOssOOOO Post Semaphore
product 1 DB hzOOOOOO Product; (AO* Al* A2 * A3 ... *An) To (C)
rand 4 2D -------- Logical AND (R), (S) to (T)
rcon A 77 -------- Rounded Contract; 64-Bit (R) to 32-Bit (T)
rconv 1 97 OzoaOOOO Rounded Contract; 64-Bit A ---> 32-Bit C
rddom 7 57 -------- Read Domain Registers; Special Register Per R to (T)
rd int 4 OE -------- Read Interrupt Register

B-4 PUB-1264 Rev. A

Instruction Set Reference Manual Appendix B: Instructions By ,\lnem,mic

Table B-S. Instructions by Mnemonic (page S of 6).

Mnemonic Format Function

rgap 4 7D
rior 4 2E
rjtime A 37
rtor A 78
rtorh A S8
rxor 4 2C
scnleq 7 28
seleq 1 CO
selge 1 C2
sellt 1 C3
seine 1 C1
setint 4 08
setmod 4 07
shift 4 34
shifti 7 30
shiftv 1 8A
sqrt A 73
sqrth A S3
sqrtv 1 93
srcheq 1 C8
srchge 1 CA
srchlt 1 CB
srchne 1 C9
sto 7 7F
stoar 4 OC
stoc 7 13
stoh 7 SF
stopio 7 lA
strtio 7 19
sub! 4 6S
sublh 4 4S
sub ls 2 AS
sublv 1 8S
subn 4 66
subnh 4 46
subns 2 A6
subnv 1 86
subu 4 64
subuh 4 44
sub us 2 A4
subuv 1 84
subx 4 67
subxv 1 87
sum 1 DA
swcqta 7 18
testio 7 1B
tfc 7 29
tru A 70
truh A SO
truv 1 90

PUB-1264 Rev. A

G-bits

hzOabOOO
hzOabOOO
hzOabOOO
hzOabOOO

OzoabOOO

hzoaOssO
hz!OOOOO
hz!OOOOO
hz!OOOOO
hzlOOOOO

hllabsss
hzoabsss

hllabsss
hzoabsss

hllabsss
hzoabsss

OzoabOOO
hzOOOOOO

hzoaOOOO

Operation

Swap; S ---> T and R ---> S
Logical Inclusive OR (R), (S) to (T)
Transmit Job Interval Timer to (T)
Transmit; (R) to (T)
Transmit Operand; (R) to (T)
Logical Exclusive OR (R), (S) to (T)
Scan for Equal Byte
Select Equal; A EQ B, Item Count to (C)
Select Greater or Equal; A GE B, Item Count to (C)
Select Less; A LT B, Item Count to (C)
Select Not Equal; A NE B, Item Count to (C)
Transmit External Interrupt
Serial/Parallel Execution Mode Select
Shift (R) Per (S) to (T)
Shift Operands (R) Per S to (T)
Shift; A Per B ---> C
Significant Square Root; (R) to (T) (64 Bits)
Significant Square Root; (R) to (T)
Significant Square Root; A ---> C
Search for Equality; Index List ---> C
Search for Greater or Equal; Index List ---> C
Search for Less; Index list ---> C
Search for Not Equal; Index List ---> C
Store; (T) Per (S), (R)
Store Associative Registers
Store Byte; (T) Per (S), (R)
Store; (T) Per (S), (R)
Shared Memory; IQHA to (S), IQVF, IQT A to (T)
Shared Memory; (S) to IQHA, (T) to IQT A
Subtract; Lower result (R) - (S) to (T) (64 Bits)
Subtract; Lower result (R) - (S) to (T) (32 Bits)
Subtract; Lower result A - B ---> C
Subtract; Lower result A - B ---> C
Subtract; Normalized result (R) - (S) to (T) (64 Bits)
Subtract; Normalized result (R) - (S) to (T) (32 Bits)
Subtract; Normalized result A - B ---> C
Subtract; Normalized result A - B ---> C
Subtract; Upper result (R) - (S) to (T) (64 Bits)
Subtract; Upper result (R) - (S) to (T) (32 Bits)
Subtract; Upper result A - B ---> C
Subtract; Upper result A - B ---> C
Subtract Address; (R) - (S) to (T)
Subtract Address; A - B ---> C
Sum; (AO+A1+A2+ ... +n) To (C) and (C+l)
Shared Memory; CQT A to (T), (S) to CQT A
Shared Memory; IQVF, Transfer Busy, Fatal Error
Transmit Instrumentation Counter to (T)
Truncate; (R) to (T)
Truncate; (R) to (T)
Truncate; A ---> C

B-5

Appendix B: Instructions By Mnemonic !nstrucrion Set Reference Mununl

Table B-6. Instructions by Mnemonic (page 6 of 6).

Mnemonic Format Function G-bits Operation

truh A 50 -------- Truncate; (R) to (T)
truv 1 90 hzoaOOOO Truncate; A ---> C
vrevv 1 B8 hzoOOOOO Transmit Reverse; A ---> C
vsb 4 05 -------- Void Stack and Branch
vtov 1 98 hzoaOOOO Transmit; A ---> C
vtovx 1 B7 hOOObfgr Scatter ---> Indexed C
vxtov 1 BA hOOOOfgr Gather ---> C
wait D FB OOssOOpp Wait on Semaphore
wjtime A 3A -------- Transmit (R) to Job Interval Timer
xor 3 FO -------- Logical Exclusive OR; A, B ---> C
xorn 3 F7 -------- Logical Exclusive OR NOT; A, B ---> C
xornv 1 9D hzoabnnn Logical Exclusive OR NOT; A, B, ---> C
xorv 1 9D hzoabnnn Logical Exclusive OR; A, B, ---> C

B-6 PUB-1264 Rel' . . ·\

Appendix C: Instructions With Sign Control

Table C-1 lists the instruction operation codes for which sign control
is valid. Each table entry shows the permitted values for G-bits 5, 6,
and 7 of an instruction word.

Table C-1. Instructions for which sign control is valid.

Operation Function G-Bits
code 5 6 7

BO,B1,B2 Vector Add 0, 1 0, 1 0, 1
B4,B5,B6 Vector Subtract 0, 1 0, 1 0, 1
BB.B9,BB Vector Multiply 0, 1 0, 1 0, 1
BC.BF Vector Divide 0, 1 0.1 0, 1
93 Vector Square Root 0, 1 0.1 0
AO,A1 ,A2 Sparse Vector Add 0, 1 0, 1 0, 1
A4,A5,A6 Sparse Vector Subtract 0, 1 0, 1 0, 1
AB,A9,AB Sparse Vector Multiply 0, 1 0.1 0, 1
AC.AF Sparse Vector Divide 0, 1 0, 1 0, 1
CF Arithmetic Compress 0, 1 0, 1 0, 1
OB Maximum of A -> C 0, 1 0 0
09 Minimum of A -> C 0, 1 0 0

PUB-1264 Rev. A C-1

Appendix G: Sign Control Instruction Set Ref ere nee Manual

C-2 PUB-1264 Rel'. A

Appendix D: Instructions With Broadcasting

Table D-1 lists instructions that allow broadcasting of their A or B
operands. Instructions are listed by their operation codes. Each table
entry indicates whether A, B, or both, can be broadcast.

Table D-1. Instructions Allowing Broadcasting.

Operation code Broadcast A Broadcast B

80.81,82,83,84. Yes Yes
85,86,87,88,89,
8A,88,8C,8F

90,91,92,93 Yes No

94,95 Yes Yes

96,97,98,99,9A Yes No

98 Yes Yes

9C Yes No

90 Yes Yes

AO,A1 ,A2,A4,A5 Yes Yes
A6,A8,A9,A8,AC
AF

87 No Yes

88,80 Yes Yes

CO,C1 ,C2,C3,C4, Yes Yes
C5,C6,C7

CF No Yes

00,04,0C Yes Yes

PUB-1264 Rev. A D-1

Appendix D: Broadcast Instructions instruction Set Reference Manual

D-2 PUB-1264 Rev. A

Appendix E: Instruction Termination Rules

The following tables list instructions (by operation code) with their terminating
conditions. There are different tables for instructions that have different fields. Some
abbreviations are used. They are:

• M-zero: Machine zero

• N-one: Normalized one

• I: Input

• 0: Output

Table E-1. Instruction Terminating Conditions (part 1 of 6).

Instruction A FIELD (INPUT) C FIELD (OUTPUT)
Code

A field Extension type Initial length zero C field exhausted Initial length zero
exhausted

F8 Extend A B designator byte Extend A Terminate No-op

Table E-2. Instruction Terminating Conditions (part 2 of 6).

Instruction A FIELD (INPUT) B FIELD (INPUT) C FIELD (OUTPUT)
Code(s)

A field Extension Initial B field Extension Initial c field Initial
exhausted Type length exhauste~ Type length exhausted length

zero zero zero

FO,F1 ,F2, Extend A Zero bits Extend A Extend B Zero bits Extend 8 Terminate No-op
F3,F4,F5,
F6,F7

Table E-3. Instruction Terminating Conditions (part 3 of 6).

Instruction A FIELD (INPUT) B FIELD (INPUT) C FIELD (OUTPUT)
Code(s)

A or X Extension A or X B or Y Extension B or Y C or Z field C or Z
field Type length exhausted Type length exhausted length
exhausted initially initially initially

zero zero zero

AO,A1 ,A2, NA NA NA NA NA NA NA NA
A4,A5,A6,
A8,A9,AB,

X FIELD (INPUT) Y FIELD (INPUT) Z FIELD (OUTPUT) AC,AF

Extend X Zero bits Extend X Extend Y Zero bits Extend Y Terminate l No-op

PUB-1264 Rev. A

J

I
I

I

j

Appendix E: Termination Rules Instruction Set Reference :\Ianua!

Table E-4. Instruction Terminating Conditions (part 4 of 6).

In st ruction A FIELD (INPUT) B FIELD (INPUT) C FIELD (OUTPUT)
Code(s)

A field Extension Initial B field Exten. Initial C field Initial Control
exhausted Type length exhausted Type length exhaustec length vector

zero zero zero

80,81,82, Extend A M-zero Extend A Extend B M-zero Extend B Terminate No-op Yes
83,84,85,
86,87,8A

88,89,88, Extend A N-one Extend A Extend B N-one Extend B Terminate No-op Yes
8C,8F

90,91,92, Extend A M-zero Extend A NA NA NA Terminate No-op Yes
93

94,95 Extend A M-zero Extend A Extend B M-zero Extend B Terminate No-op Yes

96,97,98, Extend A M-zero Extend A NA NA NA Terminate No-op Yes
99,9A

98,90 Extend A M-zero Extend A Extend B M-zero Extend B Terminate No-op Yes

9C Extend A M-zero Extend A NA NA NA Terminate No-op Yes

87 Terminate NA No-op NA NA NA NA NA•• No

88 Extend A M-zero Extend A NA NA NA Terminate No-op Yes (0)

BA Terminate NA No-op NA NA NA** NA. NA. No

CO,C1 ,C2, Terminate• NA No-op• Terminate• NA No-op NA NA Yes (I)
C3

00,04 Extend A M-zero Extend A Extend B M-zero Extend B Terminate No-op Yes (0)

D1 ,05 Extend A M-zero Extend A NA NA NA Terminate No-op Yes (0)

DA.DB Terminate NA No-op NA NA NA NA NA Yes (I)

DC Terminate NA No-op Terminate NA No-op NA NA Yes (I)

OF NA NA NA NA NA NA Terminate No-op Yes (0)

• These instructions may terminate even If the field length is not exhausted .
• • These multiple pass instructions no-op for a group length equal to zero . Each pass of a multipass instruction terminates

when this length equals zero.

E-2 PUB-1264 Rei·. :\

Instruction Set Reference Manual Appendix E: Tennina1ion Rules

Table E-5. Instruction Terminating Conditions (part 5 of 6).

lnstructlori R FIELD (INPUT) S FIELD (INPUT) T FIELD (OUTPUT)
Code(s)

R field Initial length S field Initial length T field exhausted Initial length
exhausted zero exhausted zero zero

14 Exit loop No-op Exit loop Zero A-bits Terminate No-op
skipped

15, 16 Exit loop No-op Exit loop No-op Terminate No-op

1C, 1D Exit loop String of all Exit loop No-op Terminate No-op
O's or 1's

1E Terminate• No-op NA NA NA NA

1F Terminate No-op NA NA NA NA

28 NA NA NA NA Terminate• No-op

70 Terminate data No data NA NA Terminate data No data
transfer to transfer to transfer to transfer to
register file register file register file register file

• These instructions may terminate even if the field length is not exhausted

Table E-6. Instruction Terminating Conditions (part 6 of 6).

Instruction A FIELD (INPUT) 8 FIELD (INPUT) Z FIELD (INPUT or OUTPUT)
Code(s)

A field Ext en- Initial B field Ext en- Initial Z field Initial Control
exh. sion length exhausted sion length exhausted length vector

Type zero Type zero zero

BB,BC,BD NA NA NA NA NA NA Term (I) No-op (I) No

C4,C5,C6 Extend M-zero Extend Extend M-zero Extend Term (0) No-op (0) No
C7

C8,C9,CA Term. NA No-op Exit NA Exit NA NA Yes
CB search search (0)

Iteration iteration

cc Term. NA No-op NA NA NA NA NA No

CF Term. NA No-op Extend M-zero Extend NA NA No

D8,D9 Term. NA No-op NA NA NA NA NA Yes
(I)

PUB-1264 Rev. A E-3

Appendix E: Termination Rules Instruction Set Reference Manual

E-4 PUB-1264 Rev. A

Appendix F: Floating-Point Operations

Arithmetic on the ETAlO uses two's complement, floating-point
procedures, allowing the computer to represent numbers with variable
radix points. The computer automatically places the radix point of a
result at the proper position following a computation. By shifting the
radix point and increasing or decreasing the exponent, the machine
can perform computations on widely varying quantities.

Floating-Point Format

Floating-point operations are performed on 32-bit and 64-bit operands.
Floating-point numbers are expressed in scientific notation; a
coefficient multiplied by an exponent (a number raised to a power),
or (2 x)•c, where c is the 24- or 48-bit signed coefficient, x is the 8-
or 16-bit signed exponent, and the base is 2. Both exponent and
coefficient are expressed as two's complement signed integers.

Figure F-1 shows a 32-bit floating-point number. Coefficients for
32-bit numbers range from -8,388,608 to +8,388,607 (#800000 to
#7FFFFF). Exponents range from -112 to +111 (#90 to #6F). The
exponent values from #8F to #70 fall into a special end-case range.
Exponent values of #8XXXXXXX (where X equals any hexidecimal
digit) represent machine zero. Exponent values of #7 XXXXXXX
(where X equals any hexidecimal digit) represent indefinite results.
The minimum and maximum 32-bit values are approximately
-2.177807E40 and 2.177807E40, with 7 or 8 digits of accuracy
depending on the size of the number.

Exponent sign bit

BIT 0

8-bit, signed
exponent

7

Coefficient sign bit

24-bit, signed coefficient

Exponent binary point

Figure F-1. A 32-Bit Floating-Point Number's Format.

PUB-1264 Rev. A

31

Coefficient binary point

F-1

Appendix F: Floating-Point Operations Instruction Set Reference ,\funua!

Figure F-2 shows a 64-bit floating-point number. Coefficients range
from -140,737,488,355,328 to +140,737,488,355,327 (#8000 0000 0000
to #7FFF FFFF FFFF), and exponents range from -28672 to +28671
(#9000 to #6FFF). Exponent values of #8XXXXXXXXXXXXXXX
(where X equals any hexidecimal digit) represent machine zero.
Exponent values of #7XXXXXXXXXXXXXXX (where X equals any
hexidecimal digit) represent indefinite results. The minimum and
maximum 64-bit values are approximately -9.53E8644 and
9.53E8644, with 14 or 15 digits of accuracy depending on the size of
the number.

Exponent sign bit Coefficient sign bit

16-bit,signed 48-bit, signed coefficient
exponent

IT 0 8 63

Exponent binary point Coefficient binary point

Figure F-2. A 64-Bit Floating-Point Number's Format.

Two's Complement Notation

F-2

In two's complement notation, the leftmost bit of the exponent and
the leftmost bit of the coefficient are sign bits (zero is a positive sign
bit and one is a negative sign bit). The remaining bits hold the
numbers themselves.

In two's complement notation, positive number have the same
representation they have in unsigned binary. For example, 410 is
equal to 0100; 910 is equal to 01001; and so on. Note, however, that
the sign bit must be 0 to indicate its positive value. If you place too
large a positive value in the exponent or coefficient field, it will be
interpreted as a negative number.

Negative number in two's complement notation are represented as a
complement of their positive values. Representation of a negative
value in two's complement notation is a simple two-step procedure.
First, all ones are replaced by zeros, and all zeros are replaced by
ones. Then, a one is added to the result. If a carry occurs from the
left-most bit, it is thrown away.

To find the two's complement of the number -296510:

Begin with the binary equivalent of +296510 = 0101110010101

Now, replace all ones by zeros and all zero by ones =

PUB-1264 K't'·

Instruction Set Reference Manual Appendix F: Floating-Point Opcrorions

1010001101010

Add one to the result = 1010001101011

And you find the two's complement notation of:
-296510 = 1010001101011.

Another way of understanding two's complement notation is to
understand that a number in two's complement notation is one more
than the corresponding one's complement notation for the same
number. For example, in two's complement, -1 is equal to #FFFFFF
(all ones), while in one's complement, -1 is #FFFFFE. Positive
numbers in two's complement are identical to the corresponding one's
complement notation for the same number.

For an n-bit number,
positive numbers (k),

o s k < 2n-1 using binary representation

negative numbers (k'),

- (2n-1) s k' < o represented by 2n - k, in binary
representation

For example: when n=4,

if k = +5, then it is represented by 0101
if k = -5, then it is represented by 1011.

So, if the binary representation is

n -1

the value is ao(- 2n-i) + L a;(2n-i-i)
i = I

Note that the sign bit (a0) has negative weight and all other bits have
positive weight.

PUB-1264 Rev. A F-3

Appendix F: Floating-Point Operations Instruction Set Reference ,\fanua!

Floating-Point Arithmetic

Floating point add, subtract, and multiply instructions generate a
result coefficient twice the length of the source operands' coefficients.
The left and right halves of this result are called the upper (left) and
lower (right) result. Figure A-3 shows their format.

The sign bit of the lower result's coefficient is not affected in a lower
operation. It remains zero in two's complement arithmetic; the other
bits of the lower coefficient receive no such special treatment.

A lower result is not meaningful alone, but must be used in
conjunction with its associated upper result. Data flags resulting from
the lower result pertain only to the lower result.

Upper exponent sign bit Lower exponent sign bit

0

Upper
exponent

7,8

Upper coefficient sign bit

Upper coefficient

Upper Result

31 0

Lower
exponent

7,8

Lower coefficient sign bit

Lower coefficient

31

Lower Result

Figure A-3. Floating-Point Result Formats for Add, Subtract, and Multiply Operations.

F-4 PUB-1264 Rev. A

Instruction Set Reference Manual Appendix F: Floating-Point Operations

Right Normalization

Right normalization is performed in the ETAlO when the result
coefficient overflows its register. When this happens, the entire result
is shifted right one place. The sign bit is extended, and the exponent
is increased by one.

Right normalization is performed when necessary, regardless of
whether the instruction specifies normalization. If right normalization
causes an exponent overflow, the result is set to indefinite and data
flag bit 42 is set.

PUB-1264 Rev. A F-5

Appendix F: Floating-Point Operations Instruction Set Reference Manual

F-6

Floating-Point Addition

Before addition takes place, both operands' coefficients are extended
to 94 bits for 64-bit operands and 46 bits for 32-bit operands (not
including a sign bit) by adding zeros to the right of the operands
binary point, see figure A-4.

The exponents of the two operands are then compared. The
coefficient of the operand with the smaller exponent is shifted right
one bit and its exponent increased by one, successively, until the
operand's exponents are equal. The shifted coefficient's sign is
extended from left to right during the shift. Negative coefficients
approach a minus one, and positive coefficients approach zero as they
are shifted.

The addition is a 94-bit (46 for 32-bit operands) conventional binary
addition. Right normalization takes place if necessary. The coefficient
for the upper result is the left-most 4 7 bits (23 bits for 32-bit
operands), excluding the sign bit. The coefficient for the lower result
is the right-most 4 7 bits (23 bits for 32-bit operands) of the 94-bit
(46-bit for 32-bit operands) result.

The exponent of the upper result is the larger of the source
exponents. If right normalization occurred, the value is increased by
one.

The lower result's exponent is 47 (23 for 32-bit operands) less than
the upper result's exponent for all cases except when:

• Right-normalization causes the upper result exponent to overflow.
The upper result is set to indefinite. In this case, the lower exponent
is #6FD1 (#59 in the 32-bit case).

• The upper result's exponent minus 47 (23 for 32-bit operands)
causes exponent overflow. In this case, the lower result is set to
machine zero.

• Either or both operands were indefinite. In this case, the upper and
lower results are indefinite.

PUB-1264 Rev. A

Instruction Set Reference Manual Appendix F: Floating-Point Operations

Operand 1
(#50 002000.)

Operand 2
(#4F 003FFF.)

FLOATING POINT ADDITION
Coefficient Sign Bit

s/ 31

lo:o 0 0 I 0 0 0 0 I 0 0 1 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I

ob o o o o o o o o 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Binary Point

1 . Extend Coefficients

2. Align Operand 2

•
~101jooo~j

Increased by one

3. Perform Addition

+

4. Result
o 7 a

Sign bit

Sign extended

Extension (23 bits)

0000 000 0000 0000 0000 0000 0000

Shifted to the
right by one
fl

00 0000 0001 1111 1111 1111 I 00 0000 0000 0000 0000 0000

Sign bit

0000 000 0000 000 0000 0000 0000 0000 0000

23-bit upper 23-bit lower

31

Operand 1

Operand 2

Operand 2
(aligned)

Operand 1

Operand 2
(aligned)

lo:oo0Jooo0Joo11 i1111 J1111 J1111 J upper

0 7 B 31

1001 jo: 1ooI0000 I 0000 J 0000 I 0000 I ooooi

#50 - #17 = #39

57

Figure A-4. Floating-Point Addition.

PUB-1264 Rev. A

Lower

F-7

Appendix F: Floating-Point Operations Instruction Set Reference Manual

F-8

Floating-Point Subtraction

Floating-point subtraction is performed by complementing the
coefficient of the subtrahend, and then performing a floating-point
addition, refer to figures A-4 and A-5.

The complement is a 48-bit (24-bit for 32-bit operands) two's
complement operation is performed before the operands are extended
to 94 bits (46 bits for 32-bit operands).

Note: 1. The complement of a coefficient of #8000 0000 0000
(#80000 for 32-bit operands) is #4000 0000 0000 (#40000 for
32-bit operands). One is also added to the exponent.

2. A subtract operation is not always commutative. For
example, it is not true that A-B = -(B-A) when:

• The exponents of A and B are not equal.

• '1' bits exist in any of the right-most bit positions of the
coefficient that will be shifted off to the right during
alignment of the smaller exponent.

PUB-1264 Rev. A

Instruction Set Reference Manual

Operand
(Subtrahend)

To Complement:

Replace 0' s with 1 's
and 1 's with O's

Add 1

Exponent Sign Bit

a 7

Appendix F: Floating-Point Operations

Coefficient Sign Bit

31

1111 1111 1111

Binary Point

e 31

11;111i1111I11 oo loooo loooo iooooj

8 31

11:111 I 1111I11 oo loooo loooo !ooo 1 I

Figure A-5. To perform floating point subtraction, complement the subtrahend, then add.

PUB-1264 Rev. A F-9

Appendix F: Floating-Point Operations Instruction Set Reference Manual

F-10

Floating-Point Multiplication

When two 64-bit floating-point numbers are multiplied, the 47 least
significant product bits that are generated are placed in the lower
result, and the higher order 4 7 bits in the upper result. For 32-bit
operands, only 23 bits go into the upper and lower result. See figure
A-6.

The sign bit of the lower result is always cleared to zero, and the
exponent of the lower result is the sum of the two source operands'
exponents, except as listed below.

The sign of the upper result's coefficient follows the normal rules of
algebra. The upper result's exponent is the sum of the two source
exponents plus 47 (23), except as listed below.

Exceptions:

• The sum of the source operands' exponents, plus 4 7 (23 for 32-bit
operands) if upper result, exceeds #6FFF (#6F for 32-bit operands).
The result exponent is set to indefinite.

• The sum of the source operand's exponents (plus 47 (23 for 32-bit
operands) if upper result) is less than #9000 (#90 for 32-bit
operands). The result exponent is set to machine zero.

• Either or both operands are indefinite. The result exponent is set to
indefinite.

• Neither operand is indefinite, but either or both are machine zero.
The result exponent is set to machine zero.

Except for the calculation of significance, if either operand has a
coefficient of #8000 0000 0000 (#800000 for 32-bit operands), and an
exponent of x, the operand is treated as if its coefficient were #COOO
0000 0000 (#COOOOO for 32-bit operands), and its exponent were x+l.

PUB-1264 Rev. A

Instruction Set Reference Manual Appendix F: Floating-Point Operations

FLOATING POINT MULTIPLICATION

Coefficient Sign Bit

e/ 31

Operand 1
(F4 001128.)

Operand 2
(F8 OOOACD.) o:o 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1

Binary Point

1. Perform Multiplication

1:111 01 oo §ooiooooiooo 1!0001 !001 0!10001 Operand 1

2. Results

x

=

0 7

#-14+#17=
-20 + 23 = +3

0

Operand 2

§ooiooooiooooiooooiooooiooo 1 I 0011!1001 !01ooi11o1iooooi100 o I #000001394008

Upper Lower

31

io:o 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 1 I Upper
(#03 000001.)

7 31

Lower 10010100110100001000
(#EC 394008.)

-#C + -#8 = -#14

Cleared to zero

Figure A-6. Floating-Point Multiplication.

PUB-1264 Rev. A F-11

Appendix F: Floating-Point Operations Instruction Set Reference :\fanual

F-12

Floating-Point Division

The division operation, figure A-7, divides the pre-normalized
coefficient of the divisor into the dividend's coefficient. A 48-bit
(24-bit for 32-bit operands) quotient is generated as the upper result.

Except for the calculation of significance, if either operand has a
coefficient of #8000 0000 0000 (#800000 for 32-bit operands), the
operand is treated as if its coefficient were #COOO 0000 0000
(#COOOOO for 32-bit operands), and its exponent increased by one.

When the divide hardware normalizes the divisor's coefficient, the
number of places shifted to the left is added to the quotient's
exponent according to the following equation.

Exponent of Quotient =

(dividend's exponent) - (divisor's exponent) - (constant - N)

Where constant is 46 (22 for 32-bit operands), and N is the number
of places shifted left to pre-normalize the divisor.

The quotient's right-most bit is neither rounded nor adjusted, and the
remainder is not retained. The sign of the quotient's coefficient
follows the normal rules of algebra.

PUB-1264 Re\'. A

Instruction Set Reference Manual Appendix F: Floating-Point Operations

FLOATING POINT DIVISION

Exponent Sign Bit

a/ 1

Operand 1 011000 0000
(Dividend)
(#00 001000.)

Operand 2
(Divisor)
(#00 000010.)

Divisor
(pre-normalized)

Quotient
(#FC 001000.)

7

Coefficient Sign Bit

a/ 31

!o;o 0 0 I 0 0 0 0 I 0 0 0 1 i 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I

I
OiOOO DODO 0000 ODDO ODO 1 0000

I 1-------- - ---------
1 Shift to normalize divisor = 18

I 31

o: 100 0000 0000 0000 0000 0000

!o;o 0 0 I 0 0 0 0 I 0 0 0 1 ! 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I

Exponent of quotient = 0 - 0 -22 + 18
= -4

Figure A-7. Floating-Point Division.

PUB-1264 Rev. A

Binary Point

F-13

Appendix F: Floating-Point Operations Instruction Set Reference .\!onual

Normalized Upper Results

F-14

The normalized add and subtract instructions (i.e., #42 and #46)
generate an intermediate result that is identical to the final result of
the Add U and Subtract U instructions (for example #40 and #44),
except that an operand with a coefficient of all zeros is treated as
machine zero.

A floating-point number is normalized by left-shifting the coefficient
until the sign bit does not equal the next bit to the right. (This implies
that the coefficient has been shifted to the left as far as possible.)

During the shift, zeros are attached to the right end of the coefficient,
and the exponent is reduced by one for each left shift. If reducing
the exponent by one causes exponent underflow, the result of the
normalization operation is defined as machine zero.

Note: Normalization of an all-zero coefficient results in machine zero.

PUB-1264 Rev. A

Instruction Set Reference Manual Appendix F: Floating-Point Operations

Double-Precision Results

Some instructions (such as #DA and #DC) produce double-precision
results. A double-precision floating-point add operation is nothing
more than a floating-point add that produces an upper and lower
result simultaneously and retains both results for the next
floating-point operation. The partial result consists of 94 coefficient
bits plus sign information (for 64-bit operands), and 46 bits plus sign
information (for 32-bit operands).

Dot Product instructions add both the upper and lower results of the
multiply instructions to the partial results of add operations, as
described above.

PUB-/ 264 Rev. A F-15

Appendix F: Floating-Point Operations fnstruction Set Reference Manual

Floating-Point Square Root Operations

F-16

The ET Al 0 performs floating-point square root operations in the
following steps:

1. Determine and record the significance of the input operand's
coefficient.

2. If the significance is negative, complement the input operand to
its positive form.

3. If the exponent of the input operand is odd, reduce it by one, and
multiply the coefficient obtained in step 2 by two. If the
exponent is even, do not modify it.

4. Obtain the coefficient's square root from step 3. Attach enough
zeros to the right end of the coefficient to produce 48 (24 for
32-bit operations) result bits.

5. If the original input operand was negative, complement the result
coefficient. If the original input operand was positive, do not
modify the result.

6. Form the result exponent by dividing the exponent (obtained in
step 3) by two, and subtracting 23 (11 for 32-bit operands).

7. Adjust the result coefficient to produce a coefficient with the
same significance as the input operand, using the significance
count obtained in step 1. Adjust the result's exponent to
compensate for the result coefficient's change in magnitude.

An input operand with a zero coefficient produces a result with an
all-zero coefficient, whose exponent has been effectively divided by
two by being right-shifted one place, with sign extension. If the input
operand is negative, data flag bit 45 is set. If it is indefinite or
machine zero, the result is indefinite or machine zero respectively,
and data flag bit 45 is not set.

Except for the calculmion of significance, if either operand has a
coefficient of #8000 0000 0000 (#800000 for 32-bit operands), the
operand is treated as if its coefficient were #COOO 0000 0000
(#COOOOO for 32-bit operands), and its exponent is increased by one.

PUB-1264 Rev. A

Instruction Set Reference Manual Appendix F: Floating-Point Opera1ions

Significant Results

Certain multiply, divide, and square root instructions generate
significant results for the product or quotient.

A floating-point number's significant bit count equals the number of
bit positions in the coefficient (excluding the sign bit), minus the left
shift count necessary to normalize that number. An all-zero or all-one
coefficient has a significant bit count of zero.

Note: A positive non-zero coefficient that is an exact power of two
has a significant bit count that is one greater than its negative
form. An input operand's significance is determined from the
operand as originally read from a register or central memory
before performing any operation such as sign control, handling
a coefficient of #8000 0000 0000 (#800000 for 32-bit
operations), or performing a left shift for odd exponents m a
square root operation.

Significant arithmetic determines which source operand has the
smaller significant bit count, and records the count. After the
arithmetic operation, the result's significant bit count is determined
after any sign correction takes place. The significant bit counts of the
input and the result are compared

If the result's significant bit count is less than the input's significant
bit count, the result coefficient is left shifted (with zeros shifted in) by
the difference, and the exponent reduced accordingly.

If the significant bit counts are equal, the coefficient is not shifted,
nor is the exponent adjusted.

If the result's significant bit count exceeds the input's, the result
coefficient is right-shifted (end-off with sign extension) and the
exponent increased accordingly.

Note: For a multiply operation, the entire 95-bit result (47-bit for
32-bit multiply) is shifted as required.

Exponent overflow, exponent underflow, and divide fault cause forced
results as usual. Adjusting for significance can cause exponent
overflow or underflow, or can take a result out of exponent overflow
or underflow.

PUB-1264 Rev. A F-17

Appendix F: Floating-Point Operations Instruction Set Reference Manual

Floating-Point Comparison Rules

F-18

Some instructions compare two floating-point operands (r and s) for:

• Equality (r = s)

• Non-equality (r not = s)

• Greater than or equal (r > or = s)

• Less than (r < s)

Certain floating-point comparison rules apply, depending on the
operands.

Indefinite Operand (s)

If one of the operands is indefinite, the comparison is not met,
because by definition an indefinite number is not greater than, less
than, equal to, or not equal to, any other operand.

If both operands are indefinite, the (r = s) and (r > or = s) conditions
are met, because an indefinite number is defined as being equal to
another indefinite number.

Machine Zero Operand(s), Not Indefinite

An operand that is not indefinite, not machine zero, and has a
positive, non-zero coefficient, is greater than machine zero.

An operand that is not indefinite, not machine zero, and has a
negative coefficient, is less than machine zero.

Machine zero is equal to itself and to any number with an exponent
that is not indefinite and has an all-zero coefficient.

PUB-1264 Rei·. A

Instruction Set Reference Manual Appendix F: Floating-Point Opcrorions

Operand(s) Not Indefinite or Machine Zero

Operands are unequal if their coefficients have unlike signs. The
operand with the positive coefficient is the greater.

If the operands' coefficients have like signs, a floating-point subtract
Upper operation (r - s) is performed on them to compare the two
operands.

• If the upper 48 bits (24 for 32-bit operations) of the result
coefficient are all zeros, then r = s.

• If the upper 48 bits (24 for 32-bit operations) of the result
coefficient are not all zeros, then r not = s.

• If the result coefficient is positive, then r > or = s.

• If the result coefficient is negative, then r < s.

There is no guarantee that if r = s, s = r under the following
conditions (these conditions can exist only if the operands are not
normalized):

- The operands have unequal exponents.

- '1' bits exist in any of the rightmost bit positions of the
coefficient. They will be shifted off the right during alignment of
the smaller exponent.

The following example shows how r - s is not equal to s - r.

Assume Operand r= #0100 0000 0000 1001 and
Operand s= #0104 0000 0000 0100

PUB-1264 Rev. A

Complement s: #0104 FFFF FFFF FFOO
and align r: #0104 0000 0000 0100 1

Add rands: #0104 0000 0000 0000 1

Since the upper 48 bits of the result's coefficient are zeros, r = s.
However, if the operands are interchanged, the result is different.

~ #0104 0000 0000 0100
~ #0100 0000 0000 1001

Complements: #0100 FFFF FFFFEFFF
and align r: #0104 FFFF FFFFFEFF F

Adds and r: #0104 FFFF FFFFFFFF F

Since the upper 48 bits of the result coefficient are not all zeros,
the operands s and r are not equal.

F-19

Appendix F: Floating-Point Operations Instrllction Set Reference ,\fanua!

F-20 PUB-1264 Rev. A

Appendix G: The Data Flag Register

The data flag register provides an automatic branch to a special
routine for certain operands, results, or conditions, without incurring
the penalty of explicit program checking for those conditions. If a
condition previously selected to cause an automatic branch occurs
during an instruction, the address of the next instruction that would
have been executed is stored in the address portion of register 01,
and a branch made to the address in register 02. Zero, one, or more
instructions may be executed before an automatic branch actually
occurs.

The data flag register is located in word 4 of the Invisible Package,
Domain Package, and the Stacked Domain Package.

Data Flag Register Format
Figure G-1 shows the data flag register. Bits 0-2, 16-18,
32-34, and 48-50 are undefined. Any attempt to sample, set, or clear
these bits is meaningless, and the result of any instruction trying to do
so is undefined. Fields in the data flag register are explained in the
following sections.

Product field Mask field Data flags Free flags

0 3 16 19 32 35 48 51 63

Figure G-1. Data Flag Register Format.

PUB-1264 Rev. A G-1

Appendix G: Data Flag Register Instruction Set Reference .\fnnuu/

Data Flags

Data flags in bits 35-4 7 indicate conditions that have occurred. For
example, bit 37 is set at the end of a #CC instruction (Masked Binary
Compare) if no match is found. Another #CC instruction that finds a
match will not clear bit 47. The only instructions that will clear the
data flag bits are #33 (Data Flag Register Bit Branch and Alter) and
#3B (Data Flag Register Load/Store). A Job to Monitor exchange also
clears the data flag register.

If a control vector is used in a vector operation, the current control
vector bit must be permissive in order to set any of data flag bits
41-46. If a divide fault occurs, but the control vector bit for the result
element is not permissive, the divide fault data flag is not set.

The Mask Field

Each data flag is associated with a mask bit that selects the conditions
for which a programmer wants an automatic data flag branch.

The associated mask bit need not be set in order to set a data flag
bit. The mask function simply enables a particular data flag to cause
a bit to be set in the product field. The order in which a mask bit and
its associated data flag bit are set is immaterial, as the result is the
same; their associated product bit is set.

Product Field Bits

Each product bit is the dynamic logical product of a data flag bit and
its associated mask bit. A data flag branch may occur when at least
one bit is set in the product field.

Data Flag Branch Enable Bit

G-2

Bit 52, the data flag branch enable bit, must be set for a branch to
occur. The hardware clears bit 52 automatically when a branch takes
place. Bit 52 must be reset with a #33 (Data Flag Register Bit Branch
and Alter) or a #3B (Data Flag Register Load/Store) instruction.

PUB-1264 Rev . .:\

Instruction Set Reference Manual Appendix C: Data Flag Rcgis1er

Causing a Data Flag Branch
If a mask field bit and its associated masked data flag bit are set, the
associated product field bit is also set. Bit 51 in the free flag field
also becomes a one, since it is the dynamic inclusive OR of bits 3-15
of the product field.

If bits 51 and 52 are set, an automatic data flag branch (DFB) occurs
after termination of the instruction that caused the DFB. The next
instruction's bit address is loaded into the right-most 48 bits of
register 01, and control branches to the bit address in the right-most
48 bits of register 02. Bit 52 is automatically cleared. The left-most 16
bits of register 01 are cleared to zero. The address in register 01
points to an instruction that is zero or more instructions removed
from the instruction that caused the DFB.

Note: When bit 52 is cleared, DFBs are disabled. However, if bit 52
is reset before eliminating all the DFB conditions, another DFB
will occur which will change the return address in register 01,
and the machine may enter a tight loop. To prevent this
situation for all cases except those involving the Job Interval
Timer, bit 51 should be tested for a zero before setting bit 52.

PUB-1264 Rev. A

When using the Job Interval Timer, bit 36 is set asynchronously
with respect to instruction execution, once the Job Interval
Timer is loaded. The timer may set bit 36 after the check of
bit 51 and before the branch to the contents of register 01. One
way to handle this is to examine register 01 's contents upon
entering the data flag branch routine. If register 01 indicates
that the branch occurred outside the DFB routine, then register
01 can be copied to a temporary location. If the branch
occurred within the temporary location, register 01 would not
be copied to the temporary location. At the conclusion of the
DFB routine, a branch would always be taken to the contents
of the temporary location.

A simpler method is to combine the setting of bit 52 and the
branch to the address in register 01 into a single 33 instruction
(Data Flag Register Bit Branch and Alter), whose instruction
word is 33603401.

G-3

Appendix G: Data Flag Register !nstruction Set Reference ,\fanua/

G-4

Data Flag Register Bit Assignments

Tables G-1 and G-2 list the data flag register product bit, mask bit,
and data flag bit settings and their meanings.

Table G-1. Data Flag Bit Settings (page 1 of 2).

Product Mask Data Flag Meaning
Bit Bit Bit

3 19 35 Soft interrupt. Monitor software can set bit 35
of a job's data flag branch register while the
register is stored in the Job Invisible Package.
After exchanging back to Job mode, if bit 35
and its corresponding mask bit (bit 19) are set,
a normal Data Flag branch occurs.

4 20 36 Job Interval Timer.

5 21 37 Select condition not met. Valid for instructions
CO-C3, or if no match found on CC instruction.

6 22 38 Unused.

7 23 39 The binary result exceeds the range for the 10
instruction.

8 24 40 Bit 40 is the inclusive OR of bits 37, 38, and
39. Bit 24 masks bit 40. Bit 8 is the logical
product of bits 24 and 40.

9 25 41 Floating-point divide fault. The divisor has an
all-zero coefficient, or is machine zero. If the
divisor and/or the dividend is indefinite, there is
no divide fault. If a divisor causes a divide
fault, the quotient is set to indefinite. However,
"exponent overflow" and "result machine zero"
data faults are not set.

10 26 42 Exponent overflow. The result's exponent
exceeds #6FFF (#6F for 32-bit arithmetic).
Results are checked for exponent overflow after
the exponent is adjusted for normalization or
significance. In the adjust exponent
instructions, this data flag is set if a left shift
exceeds the number of places required for
normalization.
Exponent overflow causes an indefinite result,
therefore the indefinite flag is always set on
exponent overflow. The exponent overflow data
flag is not set when either source operand is
indefinite, or when the divisor on a divide
instruction causes a divide fault.

PUB-1264 Rev. A

Instruction Set Reference Manual Appendix G: Data Flag Register

Table G-2. Data Flag Bit Settings (page 2 of 2).

Product Mask Data Flag Meaning
Bit Bit Bit

11 27 43 Result machine zero. A result's exponent is less
than #9000 (#90 for 32-bit arithmetic). Result
machine zero may be caused by exponent
underflow, or by a machine zero input operand.
A divide instruction whose divisor causes a
divide fault does not set the result machine zero
data flag bit.

12 28 44 Bit 44 is the inclusive OR of bits 41, 42, and
43. Bit 28 masks bit 44. Bit 12 is the logical
product of bits 28 and 44.

13 29 45 A square root instruction has a negative source
operand. The square root of the operand's
absolute value is formed and its complement
stored as the result.

14 30 46 An indefinite result was formed, or either or
a floating-point compare operation had
indefinite operand (s). An indefinite result may
occur when one or both operands of a floating-
point arithmetic operation are indefinite, or
when a divide fault or exponent overflow occurs.

15 31 47 A breakpoint occurred.

Free Data Flags

Bit 51 is the dynamic inclusive OR of the product field. This bit is set
if any of bits 3 through 15 are set. Bit 51 cannot be cleared directly.

Bit 52 is the data flag branch enable bit. If bit 52 is a one and bit 51
becomes a one (or vice versa), a data flag branch occurs at the end
of the current instruction. Data flag branch execution automatically
clears bit 52.

Bits 53, 54, and 55 have no associated product or mask bits. They
are cleared by instructions that then may set any of them, unless the
instruction is a no-op. If pertinent, these bits must be sampled before
executing another instruction that would alter their previous state.
Setting these bits does not cause a data flag branch. Table G-3 lists
their meanings for different instructions.

PUB-1264 Rev. A G-5

Appendix G: Data Flag Register Instruction Set Reference .\!anua/

G-6

Table G-3. Definitions For Free Data Flag Bits 53-55.

Instruction Bit 53 Bit 54 Bit 55

FO-F7 Result field all zeros Result field mixed Result field all ones

1E Ones were counted Undefined Undefined

D8,D9 Undefined More than one Undefined
element met
criteria

28 Whole field was Undefined Undefined
scanned, no hit

Bits 56 through 63 have no associated product or mask bits. They
help software determine the operation that caused bits 41, 42, 43, 45,
and 46 to be set.
Bit 56 Unused.
Bit 57 Unused.
Bit 58 A scalar convert, divide, or square root operation set bits

39, 41, 42, 43, 45, and/or 46.
Bit 59 Vector pipes floating-point divide fault. Duplicate of bit 41.

caused by a vector.
Bit 60 Vector pipes exponent overflow. Duplicate of bit 42, caused

by a vector.
Bit 61 Vector pipes machine zero result. Duplicate of bit 43,

caused by a vector.
Bit 62 Vector pipes square root result imaginary. Duplicate of bit

45, caused by a vector.
Bit 63 Vector pipes indefinite result. Duplicate of bit 46, caused

by a vector.

Instructions Affecting Data Flag Register Bits

Table G-4 shows the data flag bits set by the instructions. An X
indicates that the change is dependent on the data processed. An A
indicates the data flag register is explicitly altered.

PUB-1264 Rel'. A

Instruction Set Reference Manual Appendix C: Data Flag Register

Table G-4. Data Flag Bits set by function codes. (Page 1 of 3)

Func
tion
Code

00
01
02
03 --
04
05
06
07 --
08
09
OA
OB
oc
OD
OE
OF
10
11
12
13

14
15
16
17

18
19
lA
1B --
lC
lD
lE
lF

20
21
22
23

24
25
26
27 --

Data Flag Bits

37 38 39 41 •· 42 43 45 46 47 53
54
55

x

~ x
29
2A
2B

PUB-1264 Rev. A

Func
tion
Code

2C
2D
2E
2F

30
31
32
33

34
35
36
37

38
39
3A
3B

3C
3D
3E
3F

Data Flag Bits

37 38 39 41 42 43 45 46 47 53
54
55

AAAAAAAAAA

A•. A· A A A A A A

40 x
41 x
42 x
43

44
45
46
47

48
49
4A
4B

4C
4D
4E
4F

50
51
52
53

54
55
56
57

·x x
x

x x

x
x
x

.x x ··•••·· x x x x

•x x x

x x x x

G-7

Appendix G: Data Flag Register Instruction Set Reference Afaniw!

Table G-4. Data Flag Bits set by function codes. (Page 2 of 3)

Data Flag Bits Data Flag Bits

Fune- 37 3S 39 41 42 43 4S 46 47 S3 Fune- 37 3S 39 41 42 43 4S 46 47 53
ti on S4 tion 54
Code

S5 Code 55

SS S4 x x x
S9 SS x x
SA S6 x x x
SB S7
- -·-- - - - -- - --

SC x x SS x x x
SD x x S9 x x x
SE SA
SF SB x x x
- --·- -- - ---

60 x x x SC x x x x
61 x x SD
62 x x x SE
63 SF x x x x

-·-- -- - -··-- --
64 x x x 90 x
6S x x 91 x
66 x x x 92 x
67 93 x x x

-·-- -- -- - - --
6S x x x 94 x x x
69 x x x 95 x x
6A 96 x x x
6B x. x x 97 x x x
- -··-- - - - -- - --

6C x x x x 9S
6D 99 x x x
6E 9A
6F x x x 9B

-- -- --
70 x 9C x x
71 x 9D
72 x 9E
73 x x x 9F

--- -- -- - --
74 x x x AO x x x
7S x x Al x x x
76 x x x A2 x x x
77 x x x A3 -- -- ---
7S A4 x x x
79 xx x AS x x x
7A A6 x x x
7B A7
- --

7C AS x x x
7D A9 x x x
7E AA
7F AB x x x
- --- --

80 AC x x x x
81 AD
82 AE
83 AF x x x x

G-8 PUB-1264 Rev. A

Instruction Set Reference Manual

Table G-4. Data Flag Bits set by function codes. (Page 3 of 3)

Data Flag Bits

Func
tion
Code

37 3S 39 41 42 43 4S 46 47 S3

BO
Bl
B2
B3

x
x
x
x

S4
SS

B4
BS
B6
B7

BS
B9
BA
BB

BC
BD
BE
BF

co
Cl
C2
C3

C4
cs
C6
C7

cs
C9
CA
CB

cc
CD
CE
CF

DO
Dl
D2
D3

x
x

x
x
x
x
x ..
x
x
x
x
x
x
x

x
x
x

D4 X
DS X
D6
D7

DS
D9
DA
DB

PUB-1264 Rev. A

x
x

Func
tion
Code

DC
DD
DE
DF

EO
El
E2
E3

E4
ES
E6
E7

E8
E9
EA
EB

EC
ED
EE
EF

FO
Fl
F2
F3

F4
FS
F6
F7

F8
F9
FA
FB

FC
FD
FE
FF

Appendix G: Data Flag Regisrer

Data Flag Bits

37 38 39 41 42 43 4S 46 47 53

x

x

54
SS

x
x
x
x
x
x
x
x

G-9

Appendix G: Data Flag Register Instruction Set Reference Manual

G-10 PUB-1264 Rev . .-\

Appendix H: Addressing Vector Operands

Vector instructions perform operations on ordered scalars. Instruction
designators point to registers describing sources and destinations. The
sources and destinations are in memory, and are vectors rather than
single quantities.

Addressing Vector Source Operands
The A and B instruction designators specify registers holding the base
address and field length of the source operand fields A and B, giving
the memory location of vector A and vector B. The format of the
source register is:

Source field
fen th

0 15 16

Source Operand Offsets

Source field base address

Designators X and Y specify registers that hold the offsets for the
source operand fields A and B respectively. If the offset is over 16
bits long, the instruction is undefined. Bits 0-15 of the register are
unused. The register's contents are:

, •.•••••..•.••.•...•...••.••••.•.••.••.•.•.••....•.••.••••••.••••. ,
0 15 16

32 sign bits for offset
16-bit
offset

63

63

A source vector's starting address is calculated by adding its base and
offset. Prior to the addition, the offset, an item count, is shifted to
the left five or six places to properly align it with the base address.
The portion of the vector that will be included in the A or B vector
stream for the instruction is calculated by subtracting the off set from
the source field length. The resulting vector length must be greater
than zero, and less than 216 . A negative result is treated as a zero
vector length.

PUB-1264 Rev. A H-1

Appendix H: Addressing Vector Operands Instruction Set Reference Manual

Addressing Vector Result Operands
The C instruction designator specifies the register holding the base
address and field length of the result operand field C, giving the
memory location of vector C. The format of the result register is:

Result field
fen th

0 15 16

Result field base address

63

Result Operand Off sets

H-2

If vector C has an offset (bit 2 of the G-field is set to one by the z
qualifier), the C+l register holds the offset. This offset also applies to
a control vector, if used. If an offset applies, C should be an even
numbered register, otherwise the instruction is undefined.

32 sign bits for offset

0 15 16

16-bit
offset

63

A result vector's starting address is calculated by adding its base and
shifted offset. The portion of the vector included in the C vector
stream for the instruction is calculated by subtracting the off set from
the result field length. The resulting vector length must be greater
than zero, and less than 2 16 . A negative result is treated as a zero
vector length. The control vector assumes the same length as the C
vector stream.

PUB-1264 Rel'. A

Appendix I: Illegal Instructions

There are two types of illegal instructions: Type One illegal
instructions and Type Two illegal instructions.

Type One Illegal Instructions

Type One illegal instructions include all unused function codes.

Instruction #7D becomes a Type One illegal instruction when its
operands cause it to attempt to transfer a vector with an odd starting
address (register file or CPM address) or an odd length.

Type One illegal instructions can occur in both Monitor and Job
mode. If the illegal instruction occurs in Job mode, it sets bit 58 of
the Interrupt Register (IR) to a one and then waits for an Interrupt
Exchange. The non-zero IR causes an exchange to Monitor mode
where execution starts at the address in Monitor's #03 register.

If the illegal instruction occurs in Monitor mode, it sets bit 58 of the
Interrupt Register (IR) to a one and then waits for a Master Clear
signal. There is no exchange, but execution begins at the address in
Monitor's #03 register after the Master Clear. Bit 58 in the IR is
supplied to the Maintenance Port as a CPU Status bit. The CPU
should be able to execute Stop and S-REG operations, but a Master
Clear may be needed to recover.

Type Two Illegal Instructions

Type Two illegal instructions include:

• Monitor mode instructions #00, #OA, and #OC through #OF that
attempt to execute in Job mode.

• Any instruction that has a function code corresponding to a bit set
to one in the Domain Package's Illegal Instruction Mask, (see Table
A-1). Possible Type Two illegal instructions include: #07 through
#09, #18 through #lB, #57, and #FA through #FF.

PUB-1264 Rev. A I-1

Appendix I: Illegal Instructions Instruction Set Reference Manual

1-2

Table A-1. The Domain Package's Illegal Instruction Mask.

Bit Assignment Function Code

0 Undefined, bit must be zero
1 Undefined, bit must be zero
2 Undefined, bit must be zero
3 07
4 08

5 09
6 Undefined, bit must be zero
7 Undefined, bit must be zero
8 Undefined, bit must be zero
9 Undefined, bit must be zero

10 18
11 19
12 1A
13 18
14 Undefined, bit must be zero

15 57
16 Undefined, bit must be zero
17 Undefined, bit must be zero
18 Undefined, bit must be zero
19 Undefined, bit must be zero

20 Undefined, bit must be zero
21 Undefined, bit must be zero
22 Undefined, bit must be zero
23 Undefined, bit must be zero
24 Undefined, bit must be zero

25 Undefined, bit must be zero
26 FA
27 FB
28 FC
29 FD

30 FE
31 FF

The Domain Package's Illegal Instruction Mask is a 32-bit number
that allows a particular instruction or group of instructions to be
selected as legal or illegal instructions for different Domain packages.
It is defined in the invisible package and the Domain package.
Instructions are legal if their corresponding bit is set to zero; they are
illegal if the bit is set to one. The Illegal Instruction Mask has no
effect in Monitor mode.

PUB-1264 Rev. A

Instruction Set Ref ere nee Manual Appendix !: I//egal !nstrucrions

In addition to the illegal instructions noted above, the #36 instruction
also becomes a Type Two illegal instruction under the following two
conditions:

• If its operands cause it to attempt a forward Domain change to a
new Domain Package that corresponds to a bit cleared to zero in
the Forward Domain Change Mask of the current Domain package.

• If its operands cause it to attempt a forward Domain change when
the current value in the Stack Index Register is not less than the
value in the Stack Limit Register.

Type Two illegal instructions can occur only in Job mode. When a
Type Two illegal instruction occurs, it sets bit 59 of the Interrupt
Register (IR) to a one and then waits for the non-zero lR to cause an
exchange to Monitor mode. Execution then begins at the address in
Monitor's #03 register.

PUB-1264 Rev. A J-3

Appendix I: Illegal Instructions Instruction Set Reference Manual

I-4 PUB-1264 Rel'. A

Glossary

BCD
BLAP

CB
CPU

CQTA

DFB

IOU
IQHA
IQTA
IQVF

SM
SU

TRB
TRBSA

Access
Interrupt

Associative
Registers

Associative
Word

Base/Limit
Access Pair
(BLAP)

Binary Coded
Decimal

PUB-1264 Rev. A

Binary Coded Decimal
Base/Limit/ Access Pair

Communication Buff er
Central Processing Unit

Completion Queue Tail Address

Data Flag Branch

Input-Output Unit
Input Queue Head Address
Input Queue Tail Address
Input Queue Valid Flag

Shared Memory
Service Unit

Transfer Request Block
Transfer Request Block Store Address

Any addressing of storage that is not in CP memory, or any
addressing that attempts an access in violation of the storage's
allowed access.

The set of 16 registers in the associative unit in which the space
table is rippled through and read until a match for the requested
virtual address is made. These registers perform the
virtual-to-physical translation of page addresses.

Contains the virtual and physical address of each page in central
processor memory; these words are read by the associative
registers to do virtual-to-physical address translation.

Two memory words that reside in the domain package and denote
the lowest communication buffer address the domain can access
(base), the highest address the domain can access (limit), and the
access rights the domain has to those addresses (access).

A number with 15 digits; there are four bits per digit, plus the
sign in the lower bits (60-63).

Glossary- I

Glossary

Breakpoint
Register

Broadcast
constant

Instruction Set Reference Manual

A maintenance and program debugging aid. Contains a breakpoint
address and function for CPU write operands and/or CPU read
operands. The breakpoint function compares addresses of specific
categories of requests with the breakpoint address.

A constant that becomes a source operand in vector operations.
Used for each element of the vector stream for the length of the
operation.

Central Processing The combination of central processor and CP memory that is a
Unit computational engine in the system.

Central Processor A scalar processor, vector processor, file registers and interfaces to
other system components.

Communication
buffer

Control Vector

CP memory

Memory accessible from all central processors in the system, used
for transmission of high-speed messages and signals among the
system components.

A bit vector. The setting of each control vector bit determines
whether a result element is stored in the corresponding output
vector field, and whether data flag bits are set.

A CPU's memory, accessible strictly from its associated central
processor (and so to shared memory), and from the Service Unit.

Data Flag Branch A 64-bit register containing data that enables programs to branch
Register to special routines when certain conditions or results occur.

Designator

Domain

Domain
change

Domain
Package

Glossary-2

A bit group that makes up a field in an instruction word format.
Usually 8 bits long. Each field is represented by a letter indicating
its type; for example, F is the function.

A CPU hardware feature used to define the CP memory access
keys, the CB base/limit access pairs, and domain change
information for controlling a process.

A generic name given to related operations that are the result of
executing the #36 and #17 instructions. Causes a branch from one
job code to another.

A package loaded by the forward domain change instruction (#17)
during a domain change.

PUB-1264 Rel'. A

Instruction Set Reference Manual Glossary

Double precision
Result

Exchange

Exchange to
Job Mode

· Exchange to
Monitor Mode

External
interrupt
Floating-point
number

Full Word

G-bit

Half Word

Invisible
package

Internal
interrupt
Interrupt
register

Instruction
Set

PUB-1264 Rev. A

The result produced by instructions such as #DA and #DC, that
perform a floating-point addition that produces an upper and lower
result simultaneously. Both results are retained for the next
floating-point operation.

A central processor switch between monitor mode and job mode;
exchanges are caused by a hardware interrupt or by an #09
instruction.

Puts the central processor into job mode to start a new process or
to resume execution of an interrupted process.

Puts the central processor into monitor mode to do cleanup
required by a completing process or to respond to an interrupt
received by the processor.

A 64- or 32-bit number containing an exponent and coefficient
expressed as two's complement, signed integers of the form
(2 x) * C, where C is a signed coefficient, x is the exponent, and the
base is two.

A 64-bit quantity in which the address of the left-most bit is a
multiple of 64. The lowest six bits of a full word address are set
to zero.

One of 8 bits in the G designator (subfunction field) of an
instruction word.

A 32-bit quantity in which the addres~ of the left-most bit is a
multiple of 32. The lowest five bits of a half word address are set
to zero.

A package that defines and saves many significant characteristics
controlling the instructions executed during an exchange.

Contains bits that, if set to one since the last #OE instruction was
executed, cause an exchange to monitor mode.

The ETA10 set has 256 function codes, 40 of which are unused; it
is model independent and vector-oriented. The set is compatible
with Control Data Corporation CYBER 205 instructions.

Glossary-3

Glossary

Item count

Job

Job Interval
Timer

Job Mode

Lower
result

Machine Zero

Monitor Interval
Timer

Monitor Mode

Normalized
result

Order Vector

Page

Page Fault

Page Table

Glossary-4

Instruction Set Reference Manual

A field length, offset, index, or shift count that specifies a number
of bits, bytes, half words, or full words.

A collection of commands that is scheduled, executed, and thought
of as a unit. May execute through batch or interactive sessions.
Also defined as a session; the basic unit of work on the ETAlO.

A 32-bit timer used by application programs to time execution
intervals.

The period in central processor operations during which the
processor fetches, executes, and returns results from instructions
contained in user programs.

The right half of a result coefficient generated by floating-point
addition, subtraction, and multiplication operations.

For 64-bit operands, the value of #8000 0000 0000 0000. For
32-bit operands, the value of #8000 0000.

A 32-bit timer set during an exchange to job mode that sends an
interrupt during a hang or endless loop (or similar condition) that
allows monitor to regain control of the processor.

The period in central processor operations during which monitor
software and other system processes perform system work; user
processes do not execute in monitor mode.

An operation that shifts a floating-point result's coefficient left one
bit and decreases the exponent by one until the sign bit and the
bit immediately to its right are different.

A bit vector. Used to determine the positional significance of
elements of a vector. Enables the original vector to be
regenerated.

An allocation unit of CP memory.

A page fault occurs when a process requests a page not currently
in central processor memory.

A table that contains the page table entries. The hardware uses a
copy of the page table to associate a virtual address with a
physical address.

PUB-1264 Rei· . .-\

Instruction Set Ref ere nee Manual Glossary

Physical
Addressing

Qualifier

Register File

Right
Normalization

Semaphore

Shared memory

Sign control

Significant
result

Sparse Vectors

Trace Register

PUB-1264 Rev. A

A addressing scheme that provides the means for a CPU's monitor
code to address all of CP memory with a 48-bit bit address. Any
physical address beyond the maximum CP memory address will
wrap around within CP memory.

A mnemonic coded on an instruction line; it controls the setting of
one or more G-bits in the instruction's subfunction field.

A set of 256 directly addressed, 64-bit general purpose registers in
the central processor. The lower 128 64-bit registers can also be
addressed as 256 32-bit registers. Scalar instructions reference its
registers as locations of source and result operands. Vector
instructions reference registers containing memory locations of
source and result operands.

An operation that shifts a floating-point result right one place with
sign extension, adding one to the exponent. Performed when a
result coefficient overflows its register.

A structure that provides facilities to synchronize and pass
information in the communication buffer between parallel
programs running on the ETAlO. Consists of two inter-related sets
of words in the communication buffer.

Memory accessible from all central processors in the system for
bi-directional transfers of information in blocks of arbitrary length
from any half word or full word storage unit.

An operation performed on the input operands of certain
instructions. The type of operation is determined by G-bits 5, 6,
and 7 in the instruction.

The number of bit positions in the coefficient excluding the sign
bit, minus the left shift count necessary to normalize that number
for floating-point operations.

Vectors with a great many zero or near-zero elements. Special
instructions reorder such vectors to minimize the storage and
calculation of (near) zero elements, while maintaining their
positional significance.

The 64-bit register 00. Its contents are swapped with the contents
of the appropriate CP memory location for register 00 during an
exchange operation.

Glossary-5

Glossary

Transfer Request
Block

Upper
result

Virtual
Addressing

Glossary-6

fnstruction Set Reference :\Ianual

A four-word block of information used in shared memory data
transfers, containing information about the transfer,

The left half of a result coefficient generated by floating-point
addition, subtraction, and multiplication operations.

An addressing scheme that provides the means for a CPU's job
code to address all of a job's storage, both inside and outside CP
memory, with a 48-bit address.

PUB-1264 Rev. A

Referenced Documents List

FROM ETA SYSTEMS:

Number

PUB-1005

PUB-1050

PUB-1257

PUB-1255

PUB-1267

PUB-1264 Rev. A

Title

ETA10 System Reference Manual: [EOS
Version 1]

CDC CYBER 200 Assembler Version 2 Reference
Manual (MET A book)

ET NSV Programmers Reference Manual
(for "as")

FORTRAN 77 Reference Manual

CYBIL Reference Manual

Ref.Doc.-1

Referenced Documents List Instruction Set Reference Manual

Ref.Doc.-2 PUB-1264 Rev. A

Index

A
A designator, with vector operands, H-1

Absolute, transmit
#S9 instruction, 3-72
#79 instruction, 3-9 3

Absolute value, move, instruction #99, 3-123

Add Address
#63 instruction, 3-78
#83 instruction, 3-101

Add to Length Field, #2B instruction, 3-38

Add; Lower Result
#41 instruction, 3-S7
#61 instruction, 3-77
#81 instruction, 3-99
#A1 instruction, 3-132

Add; Normalized Result
#42 instruction, 3-S7
#62 instruction, 3-78
#82 instruction, 3-100
#A2 instruction, 3-134

Add; Upper Result
#40 instruction, 3-S 6
#60 instruction, 3-77
#80 instruction, 3-98
#AO instruction, 3-130

Addition, floating-point, F-6

Address
add

instruction #63, 3-78
instruction #83, 3-101

branch to immediate, instruction #B6, 3-188
subtract, 3-80

instruction #87, 3-10S

Adjacent Mean, instruction #D1, 3-213

Adjust Exponent
#SS instruction, 3-68
#7S instruction, 3-90
#9S instruction, 3-118

Adjust Significance
#S4 instruction, 3-67
#74 instruction, 3-89
#94 instruction, 3-116

AND, logical, instruction #Fl, 3-22S

PUB-1264 Rev. A

AND logical operation, #9D instruction, 3-128

AND NOT, logical, instruction #F6, 3-230

AND NOT logical operation, #9D instruction,
3-128

Arithmetic Compress, instruction #CF, 3-211

Associative Registers
Load, #OD instruction, 3-11
Store, #OC instruction, 3-11

Average, instruction #DO, 3-212

Average Difference, instruction #D4, 3-214

a qualifier, 2-13, 2-14, 2-lS, 3-70, 3-98,
3-99, 3-100, 3-101, 3-102, 3-103, 3-104,
3-lOS, 3-106, 3-107, 3-108, 3-109,
3-110, 3-111, 3-112, 3-113, 3-114,
3-llS, 3-116, 3-118, 3-120, 3-121,
3-122, 3-123, 3-124, 3-12S, 3-126,
3-129, 3-131, 3-133, 3-13S, 3-137, 3-139,
3-141, 3-143, 3-14S, 3-147, 3-149,
3-15i, 3-193, 3-19S, 3-197, 3-201,
3-202, 3-203, 3-204, 3-212, 3-214, 3-222

8
B designator, with vector operands, H-1

Backward Domain Change, #17 instruction, 2-S,
3-24

Base/Limit/ Access Pair, 2-3

BCD to Binary conversion, #10 instruction,
3-16

Binary compare, masked, instruction #CC,
3-209

Binary to BCD conversion, #11 instruction,
3-17

Bit assignments, data flag register, G-4

Bit Branch and Alter
#32 instruction, 3-44
Data Flag Register, #33 instruction, 3-46
Register Bit Branch and Alter, #2F

instruction, 3-41

Bit Branch and Load/Store, instruction #FD,
3-238

Bit Branch and Swap, instruction #FC, 3-237

Bit Compress, #14 instruction, 3-19

Bit Mask, #16 instruction, 3-22

Index-I

Index

Bit Merge, #lS instruction, 3-20

Bit mask, form repeated
with leading ones, 3-27
with leading zeros, 3-27

BLAP. See Base/Limit/Access Pair

Branch
after decrement, instruction #3S, 3-49
after increment, instruction #31, 3-43

Branch and load/store, bit, instruction #FD,
3-238

Branch and swap, bit, instruction #FC, 3-237

Branch if Equal
#20 instruction, 3-29
#24 instruction, 3-33

Branch if equal
compare floating-point, instruction #BO,

3-176
compare integers, instruction #BO, 3-1S2

Branch if Greater or Equal
#22 instruction, 3-31
#26 instruction, 3-3S
compare integers, instruction #B2, 3-1S6

Branch if greater
compare floating-point, instruction #BS,

3-181
compare integers, instruction #BS, 3-162

Branch if greater or equal, compare
floating-point, instruction #B2, 3-178

Branch if Less
#23 instruction, 3-32
#27 instruction, 3-36

Branch if less, compare integers, instruction
#B3, 3-1S8

Branch if less or equal
compare floating-point, instruction #B4,

3-180
compare intergers, instruction #B4, 3-160

Branch if less than, compare floating-point,
instruction #B3, 3-179

Branch if Not Equal
#21 instruction, 3-30
#2S instruction, 3-34
compare integers, instruction Bl, 3-1S4

Branch if not equal, compare floating-point,
instruction #B 1, 3-177

Branch or Forward Domain Change, #36
instruction, 2-S, 3-SO

Branch to Immediate Address, instruction #B6,
3-188

Index-2

Instruction Set Reference Manual

Branching and indexing, 2-S

Breakpoint on Address, #04 instruction, 3-4

Breakpoint register, 3-4

Broadcast
instructions, D-1
with vector operations, 2- lS

b qualifier, 2-13, 2-14, 2-lS, 3-70, 3-98,
3-99, 3-100, 3-101, 3-102, 3-103, 3-104,
3-lOS, 3-106, 3-107, 3-108, 3-109,
3-110, 3-111, 3-116, 3-118, 3-125,
3-129, 3-131, 3-133, 3-13S, 3-137, 3-139,
3-141, 3-143, 3-145, 3-147, 3-149,
3-1S1, 3-189, 3-193, 3-19S, 3-197,
3-201, 3-202, 3-203, 3-204, 3-211,
3-212, 3-214, 3-222

br qualifier, 2-13, 3-41, 3-4 4, 3-4 6

brb qualifier, 2-13, 3-41

brf qualifier, 2-13, 3-41

bro qualifier, 2-13, 3-41, 3-44, 3-46

brz qualifier, 2-13, 3-41, 3-44, 3-46

c
C + 1 designator, 2-lS

C designator, 2-lS

Ceiling
#52 instruction, 3-6S
#72 instruction, 3-87
#92 instruction, 3-114

Central processing unit, 2-2

Communication buffer, 2-3

Compare, masked binary, instruction #CC,
3-209

Compare Floating-Point, Branch if Equal,
instruction #BO, 3-176

Compare Floating-Point, Branch if Greater,
instruction #BS, 3-18 l

Compare Floating-Point, Branch if Greater or
Equal, instruction #B2, 3-178

Compare Floating-Point, Branch if Less or
Equal, instruction #B4, 3-180

Compare Floating-Point, Branch if Less Than,
instruction #B3, 3-179

Compare Floating-Point, Branch if Not Equal,
instruction #B 1, 3-1 77

Compare Floating-Point, Set Condition if Equal,
instruction #BO, 3-182

Compare Floating-Point, Set Condition if
Greater or Equal, instruction #B2, 3-184

PUB-1264 Rev. A

Instruction Set Ref ere nee Manual

Compare Floating-Point, Set Condition if Less
or Equal, instruction #B4, 3-186

Compare Floating-Point, Set Condition if Less
Than, instruction #B3, 3-18S

Compare Floating-Point, Set Condition if Not
Equal, instruction #Bl, 3-18 3

Compare Floating-Point, Set Condtion if
Greater, instruction #BS, 3-187

Compare Integers, Branch if Equal, instruction
#BO, 3-1S2

Compare Integers, Branch if Greater, instruction
#BS, 3-162

Compare Integers, Branch if Less, instruction
#B3, 3-1S8

Compare Integers, Branch if Not Equal,
instruction #B 1, 3-15 4

Compare Integers, Set Condition if Equal,
instruction #BO, 3-164

Compare Integers, Set Condition if Greater,
instruction #BS, 3-17 4

Compare Integers, Set Condition if Greater or
Equal, instruction #B2, 3-168

Compare Integers, Set Condition if Less,
instruction #B3, 3-170

Compare Integers, Set Condition if Less or
Equal, instruction #B4, 3-172

Compare Integers, Set Condition if Not Equal,
instruction #Bl, 3-166

Compare Integers; Branch if Greater or Equal,
instruction #B2, 3-156

Compare Integers; Branch if Less or Equal,
instruction #B4, 3-160

Compare, Greater Than or Equal, instruction
#C6, 3-203

Compare; Equal, instruction #C4, 3-201

Compare; Less, instruction #C7, 3-204

Compare; Not Equal, instruction #CS, 3-202

Comparison rules, floating-point, F-18

Compress
arithmetic, instruction #CF, 3-211
instruction #BC, 3-194

Compress Bits, #14 instruction, 3-19

Contract
#76 instruction, 3-91
#96 instruction, 3-120
rounded

instruction #77, 3-92
instruction #97, 3-121

PUB-1264 Rev. A

Control vector, 2-14, 3-98, 3-99, 3-100,
3-101, 3-102, 3-103, 3-104, 3-lOS,
3-106, 3-107, 3-108, 3-109, 3-110,
3-111, 3-112, 3-113, 3-114, 3-llS,
3-116, 3-118, 3-120, 3-121, 3-122,
3-123, 3-124, 3-12S, 3-126, 3-129

Index

Convert BCD to Binary, #10 instruction, 3-16

Convert Binary to BCD, #11 instruction, 3-17

Count Leading Equals, #lE instruction, 3-28

Count Leading Ones, #lF instruction, 3-28

CP Memory
load byte instruction, 3-18
store byte instruction, 3-18

CP memory, 2-3

CPU. See Central processing unit

CPU cycle counter. See Instrumentation counter

CPU instructions, execution mode, 3-7

c qualifier, 2-13, 2-14, 2-lS, 3-98, 3-99,
3-100, 3-102, 3-103, 3-104, 3-106,
3-107, 3-109, 3-110, 3-111, 3-llS,
3-131, 3-133, 3-135, 3-137, 3-139, 3-141,
3-143, 3-14S, 3-147, 3-149, 3-lS l, 3-211

ca 0 quaiifier, 2- i3

ca 1 qualifier, 2-13

ca2 qualifier, 2-13

ca3 qualifier, 2-13

D
Data Flag Bits, set by function codes, G-7

Data Flag Register
Data Flag Register Bit Branch and Alter, #33

instruction, 3-46
Load/Store, #3B instruction, 3-S4

Data flag branch, G-3

Data flag branch enable bit, in data flag register,
G-2

Data flag branch register
data flags, G-4, G-S
mask field, G-4, G-S
product field, G-4, G-S

Data flag register, G-1
bit assignments, G-4
data flag branch enable bit, G-2
data flags, G-2
format, G-1
free data flags, G-S
mask field, G-2
product field, G-2

lndex-3

Index

Data flags
in data flag branch register, G-4, G-S
in data flag register, G-2

Decrease (R) and Branch, #3S instruction, 3-49

Delta, instruction #DS, 3-21S

Designators, instruction, 2-6, 2-12

Difference, average, instruction #D4, 3-214

Divide; Significant Result
#4F instruction, 3-62
#6F instruction, 3-84
#8F instruction, 3-111
instruction #AF, 3-lSO

Divide; Upper Result
#4C instruction, 3-61
#6C instruction, 3-82
#8C instruction, 3-110
instruction #AC, 3-148

Division, floating-point, F-12

Domain Change
backward, #17 instruction, 3-24
Forward, #36 instruction, 3-SO

Domain registers, reading, #57 instruction, 3-71

Dot Products of Vectors A and B, instruction
#DC, 3-222

Double-precision result, floating-point, F-lS

data flag bits set by instructions, G-6

E
Enter (R) With I (48 Bits), instruction #BE,

3-196

Enter (R) with I, #3E instruction, 3-SS

Enter Length of (R) with (I), 3-38

Equal Byte, scan for, #28 instruction, 3-37

Equality, search for, instruction #C8, 3-20S

ETA10
hardware, 1-2, 2-2
instruction formats, 1-3
instruction functions, 1-3
instruction operands, 1-3
instruction operations, 1-2
memories, 2-3

Exchange
Job to Monitor Mode, #09 instruction, 3-9
Monitor to Job Mode, #09 instruction, 3-9

Exclusive OR, logical, instruction #FO, 3-224

Index-4

Instruction Set Reference Manllal

Exclusive OR logical operation, #90 instruction,
3-128

Exclusive OR NOT, logical, instruction #F7,
3-231

Exclusive OR NOT logical operation, #90
instruction, 3-12 8

Excusive OR, logical, instruction #2C, 3-39

Execution mode, instruction, 3-7

Exit Force, #09 instruction, 2-2, 2-S, 3-9

Exponent
adjust

instruction #SS, 3-68
instruction #9 S, 3-118

adjust (64 bits), instruction #7S, 3-90
move, instruction #9A, 3-124
transmit

#SA instruction, 3-73
#7A instruction, 3-94

Extend
#SC instruction, 3-74
#9C instruction, 3-126
index, instruction #SD, 3-7S

External interrupt, 3-13
transmit, 3-8

Extract Bits, #6E instruction, 3-83

F
Fault Test, #06 instruction, 3-6

Floating-point arithmetic, two's complement,
F-9

Floating-point compare, set conditon if greater,
instruction #BS, 3-187

Floating-point compare, brach if equal,
instruction #BO, 3-176

Floating-point compare, branch if greater,
instruction #BS, 3-181

Floating-point compare, branch if greater or
equal, instruction #B2, 3-178

Floating-point compare, branch if less or equal,
instruction #B4, 3-180

Floating-point compare, branch if less than,
instruction #B3, 3-179

Floating-point compare, branch if not equal,
instruction #B 1, 3-177

Floating-point compare, set condition if equal,
instruction #BO, 3-182

Floating-point compare, set condition if greater
or equal, instruction #B2, 3-184

PUB-1264 Rev. A

Instruction Set Reference Manual

Floating-point compare, set condition if less or
equal, instruction #B4, 3-186

Floating-point compare, set condition if less
than, instruction #B3, 3-18S

Floating-point compare, set condition if not
equal, instruction #Bl, 3-183

Floating-point
addition, 3-98, 3-99, 3-100, 3-130, 3-132,

3-134
division, 3-110, 3-111, 3-148, 3-1SO
multiplication, 3-106, 3-107, 3-109, 3-142,

3-144, 3-146
operations, 2-S
subtraction, 3-102, 3-103, 3-104, 3-136,

3-138, 3-140

Floating-point format
32-bit, F-1
64-bit, F-1

Floating-point operations, F-1
Addition, F-6
comparison rules, F-18
division, F-12
double-precision result, F-1S
lower result, F-4
Multiplication, F-10
normalization, F-S
Subtraction, F-8
significant result, F-17
square root, F-16
upper result, F-4

Floor
#S 1 instruction, 3-64
#71 instruction, 3-8 6
#91 instruction, 3-113

Formats for instructions, 2-6

Forward Domain Change, #36 instruction, 3-50

Free data flags, in data flag register, G-S

Function codes, setting Data Flag bits, G-7

fia qualifier, 2-13

fwc qualifier, 2-13

G
G-bit, 2-12, 2-14

sign control, C-1

G-field, 2-12, 2-14

Gather, instruction #BA, 3-192

Greater, search for, instruction #CA, 3-207

grp qualifier, 2-13

PUB-1264 Rev. A

Index

H
Half Word Enter (R) by I (24 Bits), instruction

#CD, 3-210

Half Word Enter (R) with I, #4D instruction,
3-61

Half Word Increase (R) by I, #4E instruction,
3-62

Half Word Increase (R) by I (24 Bits),
instruction #CE, 3-210

Half Word Index Multiply, #3C instruction,
3-S4

Halfword
load, instruction #SE, 3-76
store, instruction #SF, 3-76

h qualifier, 2-13, 2-14, 2-15, 3-69, 3-98,
3-99, 3-100, 3-102, 3-103, 3-104, 3-106,
3-107, 3-109, 3-110, 3-111, 3-112,
3-113, 3-114, 3-115, 3-116, 3-118,
3-122, 3-123, 3-124, 3-12S, 3-128,
3-130, 3-132, 3-134, 3-136, 3-138, 3-140,
3-142, 3-144, 3-146, 3-148, 3-150,
3-152, 3-154, 3-156, 3-158, 3-160,
3-162, 3-164, 3-166, 3-168, 3-170,
3-172, 3-174, 3-182, 3-183, 3-184,
3-185, 3-186, 3-187, 3-189, 3-191,
3-192, 3-193, 3-194, 3-19S, 3-197,
3-198, 3-199, 3-200, 3-201, 3-202,
3-203, 3-204, 3-205, 3-206, 3-207,
3-208, 3-211, 3-212, 3-213, 3-214,
3-215, 3-216, 3-218, 3-220, 3-221.
3-222, 3-223, 3-237, 3-238, 3-239

I
Idle, #00 instruction, 3-3

Illegal instruction mask, Domain Package, I-2

Inclusive OR, logical
instruction #2E, 3-40
instruction #F2, 3-226

Increase (R) and Branch, #31 instruction, 3-43

Increase (R) By I (48 Bits), instruction #BF,
3-196

Increase (R) by I, #3F instruction, 3-56

Index Extend, #SD instruction, 3-75

Index Multiply, #3D instruction, 3-55

Inequality, search for, instruction #C9, 3-206

Input Queue Valid flag, 3-26

Input/Output Unit, 2-3

Insert Bits, #6D instruction, 3-83

Index-5

Index

Instruction
broadcast, D-1
description format, 3-2
designators, 2-6, 2-12
floating-point operations, F-1
formats, 2-6
function, 2-12
function field, 2-12
offset, H-1
operations, 2-4
sorted by code, A-1
sorted by mnemonic, B-1
subfunction, 2-12
termination rules, E-1
with sign control, C-1

Instruction qualifiers, table, 2-13

Instructions, illegal, 1-1

Instructions affecting data flag register bits, G-6

Instrumentation Counter, transmit, #29
instruction, 3-37

Internal interrupt, 3-13

Interrupt
external, 3-13

transmit, 3-8
internal, 3-13

Interrupt Register, read, #OE instruction, 3-12

Interrupt register, 3-12

Interval, instruction #DF, 3-223

Interval timer, Monitor, 3-1 O

IOU. See Input/Output Unit

illegal instructions, 1-1

ivg qualifier, 2-13, 3-130, 3-132, 3-134,
3-136, 3-138, 3-140, 3-142, 3-144,
3-146, 3-148, 3-150

J
Job Interval Timer

transmit, instruction #37, 3-52
transmit to, instruction #3A, 3-53

Job mode, 2-2

Job to Monitor Mode exchange, #09 instruction,
3-9

K
Keys, loading, #OF instruction, 3-14

Index-6

Instruction Set Reference Manual

L
Leading Equals, count, # 1 E instruction, 3-28

Leading Ones, count, #lF instruction, 3-28

Length, transmit, #7C instruction, 3-9 5

Length Field, add to, #2B instruction, 3-38

Less, search for, instruction #CB, 3-208

Link, select, instruction #56, 3-69

Linked vector instructions, valid combinations,
3-70

Load
#SE instruction, 3-76
#7E instruction, 3-97

Load Associative Registers, #OD instruction,
3-11

Load Byte, #12 instruction, 3-18

Load Data Flag Register, #3B instruction, 3-54

Load Keys, #OF instruction, 3-14

Load Register, instruction #FE, 3-239

Load/Store, bit branch and, instruction #FD,
3-238

Logical AND
#2D instruction, 3-39
instruction #Fl, 3-225

Logical AND NOT, instruction #F6, 3-230

Logical Exclusive OR
#2C instruction, 3-39
instruction #FO, 3-224

Logical Exclusive OR NOT, instruction #F7,
3-231

Logical Inclusive OR
#2E instruction, 3-40
instruction #F2, 3-226

Logical NOT AND, instruction #F3, 3-227

Logical NOT OR, instruction #F4, 3-228

Logical Operation, #9D instruction, 3-128

Logical OR NOT, instruction #FS, 3-229

Lower result
add

instruction #41, 3-57
instruction #61, 3-77
instruction # 81, 3-9 9
instruction #Al, 3-132

multiply
instruction #49, 3-60
instruction #69, 3-81
instruction #89, 3-107

PUB-1264 Rev. A

Instruction Set Reference Manual

instruction A9, 3-144
subtract

instruction #45, 3-58
instruction #65, 3-79
instruction #85, 3-103
instruction #AS, 3-138

lh qualifier, 2-13

M
Mask, instruction #BB, 3-193

Mask Bits, #16 instruction, 3-22

Mask field
in data flag branch register, G-4, G-5
in data flag register, G-2

Masked Binary Compare, instruction #CC,
3-209

Maximum of Vector A, instruction #DA, 3-216

Memory operations, 2-4

Memory transfer, shared memory, instruction
#18, 3-24

Merge, instruction #BD, 3-195

Merge Bits, #15 instruction, 3-20

Minimum of Vector A, instruction #D9, 3-218

Mode
Job, 2-2
Monitor, 2-2, 2-5

Monitor mode, 2-2, 2-5

Monitor to Job Mode exchange, #09 instruction,
3-9

Move Absolute, #99 instruction, 3-123

Move Bytes Left, instruction #F8, 3-232

Move Exponent, #9A instruction, 3-124

Multiplication, floating-point, F-10

Multiply
half word index, instruction #3C, 3-54
Index, instruction #3D, 3-55

Multiply; Lower Result
#49 instruction, 3-60
#69 instruction, 3-81
#89 instruction, 3-107
instruction A9, 3-144

Multiply; Significant Result
#4B instruction, 3-60
#6B instruction, 3-82
#SB instruction, 3-109
instruction #AB, 3-146

PUB-1264 Rev. A

Multiply; Upper Result
#48 instruction, 3-59
#68 instruction, 3-81
#88 instruction, 3-106
instruction #A8, 3-142

Index

ma qualifier, 2-13, 2-14, 2-15, 3-98, 3-99,
3-100, 3-102, 3-103, 3-104, 3-106,
3-107, 3-109, 3-110, 3-111, 3-115,
3-131, 3-133, 3-135, 3-137, 3-139, 3-141,
3-143, 3-145, 3-147, 3-149, 3-151,
3-211, 3-216, 3-218

mb qualifier, 2-13, 2-14, 2-15, 3-98, 3-99,
3-100, 3-102, 3-103, 3-104, 3-106,
3-107, 3-109, 3-110, 3-111, 3-131, 3-133,
3-135, 3-137, 3-139, 3-141, 3-143, 3-145,
3-147, 3-149, 3-151, 3-211

N
NOT AND, logical, instruction #F3, 3-227

NOT AND logical operation, #9D instruction,
3-128

NOT OR, logical, instruction #F4, 3-228

NOT OR logical operation, #9D in:;Lruclion,
3-128

No Operation, #03 instruction, 3-3

Normalization, floating-point, F-5

Normalized result
add

instruction #42, 3-57
instruction #62, 3-78
instruction #82, 3-100
instruction #A2, 3-134

subtract
instruction #66, 3-80
instruction #86, 3-104
instruction A6, 3-140

Normalized upper results, F-14

n qualifier, 2-13, 2-14, 2-15, 3-98, 3-99,
3-100, 3-102, 3-103, 3-104, 3-106,
3-107, 3-109, 3-110, 3-111, 3-131, 3-133,
3-135, 3-137, 3-139, 3-141, 3-143, 3-145,
3-147, 3-149, 3-151, 3-211

neq qualifier, 2-13

0
Offset

with vector operands, H-1
with vector operations, 2-15

One's complement number, F-2

Index-7

Index

Operand
shift

#30 instruction, 3-42
#34 instruction, 3-48

transmit
#58 instruction, 3-72
#78 instruction, 3-93

OR logical operation, #9D instruction, 3-128

OR NOT, logical, instruction #FS, 3-229

OR NOT logical operation, #9D instruction,
3-128

Order vector, 3-130, 3-132, 3-134, 3-136,
3-138, 3-140, 3-142, 3-144, 3-146,
3-148, 3-150, 3-193, 3-194, 3-195.
3-201, 3-202, 3-203, 3-204, 3-211

o qualifier, 2-13, 2-14, 2-15, 3-69, 3-98,
3-99, 3-100, 3-101, 3-102, 3-103, 3-104,
3-105, 3-106, 3-107, 3-108, 3-109,
3-110, 3-111, 3-112, 3-113, 3-114,
3-115, 3-116, 3-118, 3-120, 3-121.
3-122, 3-123, 3-124, 3-125, 3-126,
3-191, 3-212, 3-213, 3-214, 3-215

p

Pack
#SB instruction, 3-73
#7B instruction, 3-94
#9B instruction, 3-125

Post Semaphore, instruction #FA, 3-233

Product field
in data flag branch register, G-4, G-5
in data flag register, G-2

Product of Vector A Elements, instruction #DB,
3-221

paO qualifier, 2-13

pal qualifier, 2-13

pa2 qualifier, 2-13

pa3 qualifier, 2-13

R
Read Domain Registers, #57 instruction, 3-71

Read Interrupt Register, #OE instruction, 3-12

Real Time Clock, transmit, instruction #39,
3-53

Index-8

Instruction Set Ref ere nee AtanLtal

Register
load, instruction FE, 3-239
store, instruction #FF, 3-239

Register Bit Branch and Alter, #2F instruction,
3-41

Register R, structure for #0 F instruction, 3-15

Repeated Bit Mask
with leading ones, #lD instruction, 3-27
with leading zeros, #lC instruction, 3-27

Result formats, floating-point arithmetic, F-4

Rounded Contract
#77 instruction, 3-92
#97 .instruction, 3-121

ra qualifier, 2-13, 3-69

rb qualifier, 2-13, 3-69

rel qualifier, 2-13

rf qualifier, 2-13

rvg qualifier, 2-13, 3-130, 3-132, 3-134,
3-136, 3-138, 3-140, 3-142, 3-144,
3-146, 3-148, 3-150

s
Scalar operations, 2-4

Scan for Equal Byte, #28 instruction, 3-37

Scatter, instruction #87, 3-189

SECDED circuitry, fault test instruction, 3-6

Search for Equality, instruction #CS, 3-205

Search for Greater, instruction #CA, 3-207

Search for Inequality, instruction #C9, 3-206

Search for Less, instruction #CB, 3-208

Select Equal; A=B, Item Count to (C),
instruction #CO, 3-197

Select Greater or Equal; A GE B, Item Count
to (C), instruction #C2, 3-199

Select Less; A LT B, Item Count to (C),
instruction #C3, 3-200

Select Link, #5 6 instruction, 3-69

Select Not Equal; A NE B, Item Count to (C),
instruction #C 1, 3-19 8

Select Serial/Parallel Execution Mode, #07
instruction, 3-7

Semaphore
post, instruction #FA, 3-233
wait on, instruction #FB, 3-235

PUB-1264 Rev. A

Instruction Set Reference Manual

Service Unit, 2-3

Set condition if equal
compare floating-point, instruction #BO,

3-1S2
compare integers, instruction #BO, 3-164

Set condition if greater
compare floating-point, instruction #BS,

3-1S7
compare integers, instruction #BS, 3-174

Set condition if greater or equal
compare floating-point, instruction #B2,

3-1S4
compare integers, instruction #B2, 3-16S

Set condition if less, compare integer,
instruction #B3, 3-170

Set condition if less or equal, compare integers,
instruction #B4, 3-172

Set condition if less than, compare
floating-point, instruction #B3, 3-1SS

Set condition if not equal
compare floating-point, instruction #B 1,

3-1S3
compare integers, instruction #Bl, 3-166

Set condtion if less or equal, compare
floating-point, instruction #B4, 3-1S6

Shared memory, 2-3
Start 1/0, #19 instruction, 3-2S
Stop 1/0, #1A instruction, 3-2S
Test 1/0, #1B instruction, 3-26

Shared memory transfer, #1S instruction, 3-24

Shift Element, #SA instruction, 3-10S

Shift Operand
#30 instruction, 3-42
#34 instruction, 3-4S

Sign control, 2-lS, 3-69, 3-9S, 3-99, 3-100,
3-102, 3-103, 3-104, 3-106, 3-107,
3-109, 3-110, 3-111, 3-11S, 3-131, 3-133,
3-13S, 3-137, 3-139, 3-141, 3-143, 3-14S,
3-147, 3-149, 3-1S1, 3-211, 3-216,
3-21S, C-1

Significance, adjust
instruction #S4, 3-67
instruction #74, 3-S9
instruction #94, 3-116

Significant result
divide

instruction #4F, 3-62
instruction #SF, 3-111
instruction #AF, 3-1S0

floating-point, F-17

PUB-1264 Rev. A

multiply
instruction #4B, 3-60
instruction #8B, 3-109
instruction #AB, 3-146

Significant results
divide, instruction #6F, 3-84
multiply, instruction #6B, 3-S2

Significant Square Root
#S3 instruction, 3-66
#73 instruction, 3-SS
#9 3 instruction, 3-11 S

Index

Sparse vector, 3-130, 3-132, 3-134, 3-136,
3-13S, 3-140, 3-142, 3-144, 3-146,
3-14S, 3-lSO, 3-194, 3-211

Special purpose registers, access to, 2-S

Square root
floating-point, F-16
significant

instruction #S3, 3-66
instruction #73, 3-S8
instruction #9 3, 3-115

Start l/O, Shared memory, # 19 instruction,
3-25

Stop 1/0, Shared memory, #lA instruction,
3-2S

Store
#SF instruction, 3-76
#7F instruction, 3-97

Store Associative Registers, #QC instruction,
3-11

Store Byte, #13 instruction, 3-lS

Store Data Flag Register, #3B instruction, 3-S4

Store register, instruction #FF, 3-239

Store/load, bit branch and, instruction #FD,
3-23S

Sub function
instruction, 2-12
with vector operations, 2-14

Subtract, normalized result, instruction #46,
3-S9

Subtract Address
#67 instruction, 3-SO
#S7 instruction, 3-lOS

Subtract; Lower Result
#4S instruction, 3-S S
#6S instruction, 3-79
#SS instruction, 3-103
instruction #AS, 3-13S

Subtract; Normalized Result
#46 instruction, 3-S9

Index-9

Index

#66 instruction, 3-80
#86 instruction, 3-104
instruction #A6, 3-140

Subtract; Upper Result
#44 instruction, 3-58
#64 instruction, 3-79
#84 instruction, 3-102
instruction #A4, 3-136

Subtraction, floating-point, F-8

Sum Vector A Elements, instruction DA, 3-220

Swap, #70 instruction, 3-96

saO qualifier, 2-13

. sal qualifier, 2-13

sa2 qualifier, 2-13

sa3 qualifier, 2-13

sb qualifier, 2-13

sc qualifier, 2-13

so qualifier, 2-13, 3-41, 3-44, 3-46

sz qualifier, 2-13, 3-41, 3-44, 3-46

T
Termination rules for instructions, E-1

Test 1/0, Shared memory, #lB instruction, 3-26

TRB. See Transfer Request Block

Trace register, use by Idle instruction, 3-3

Transfer Request Block, 2-4

Transmit (R) to (T), #38 instruction, 3-52

Transmit (R) to Job Interval Timer, #3A
instruction, 3-53

Transmit (R) to Monitor Interval Timer, #OA
instruction, 3-10

Transmit Absolute
#59 instruction, 3-72
#79 instruction, 3-93

Transmit Element, #98 instruction, 3-122

Transmit Exponent
#SA instruction, 3-73
#7A instruction, 3-94

Transmit External Interrupt, #08 instruction,
3-8

Transmit Instrumentation Counter, #29
instruction, 3-37

Transmit Job Interval Timer to (T), #3 7
instruction, 3-52

Index-10

Instruction Set Reference Afanual

Transmit Length, #7C instruction, 3-95

Transmit Operand
#58 instruction, 3-72
#78 instruction, 3-93

Transmit Real-Time Clock to (T), #39
instruction, 3-53

Transmit Reverse, instruction #B8, 3-191

Truncate
#50 instruction, 3-63
#70 instruction, 3-85
#90 instruction, 3-112

Two's complement
conversion to, 3-16
convert from, to BCD, 3-17

Two's complement number, F-2

Type One illegal instructions, I-1

Type Two illegal instructions, I-1

t qualifier, 2-13, 3-41, 3-44, 3-46

u
Upper result

add
instruction #40, 3-56
instruction #60, 3-77
instruction #80, 3-98
instruction #AO, 3-130

divide, 3-110
instruction #4C, 3-61
instruction #6C, 3-82
instruction #AC, 3-148

multiply
instruction #48, 3-59
instruction #68, 3-81
instruction #88, 3-106
instruction #A8, 3-142

subtract
instruction #44, 3-58
instruction #64, 3-79
instruction #84, 3-102
instruction #A4, 3-136

usi qualifier, 2-13

v
Vector, shift element, instruction #8A, 3-108

Vector A
maximum of, instruction #D8, 3-216
minimum of, instruction #09, 3-218

Vector A elements
product of, instruction #DB, 3-221

PUB-1264 Rev. A

Instruction Set Reference Manual

sum, instruction #DA, 3-220

Vector instructions, used in link operation, 3-69

Vector offset, 2-15

Vector operands, addressing, H-1

Vector operations, 2-4
subfunction, 2-14

Vectors, logical operations, instruction #90,
3-128

Vectors A and B, dot products of, instruction
#DC, 3-222

Void Stack and Branch, #05 instruction, 3-6

w
Wait on Semaphore, instruction #FB, 3-235

Word
load, instruction #7E, 3-97

PUB-1264 Rev. A

store, instruction #7F, 3-97

x
xvg qualifier, 2-13, 3-130, 3-132, 3-134,

3-136, 3-138, 3-140, 3-142, 3-144,
3-146, 3-148, 3-150

z
Z designator, with control vector, 2-14

z qualifier, 2-13, 2-14, 3-69, 3-98, 3-99,
3-100, 3-101, 3-102, 3-103, 3-104,
3-105, 3-106, 3-107, 3-108, 3-109,
3-110, 3-111, 3-112, 3-113, 3-114,
3-115, 3-116, 3-118, 3-120, 3-121,
3-122, 3-123, 3-124, 3-125, 3-126,
3-129, 3-191, 3-194, 3-197, 3-198,
3-199, 3-200, 3-212, 3-213, 3-214,
3-215, 3-216, 3-218, 3-220, 3-221,
3-222, 3-223

Index

Index-I I

Index Instruction Set Reference A1anual

Index-12 PUB-1264 Rev. A

Reader Comment Sheet

Providing our readers with effective documentation is one of our most important goals. You can help
us improve our documentation by taking a few moments to review this ETA Systems publication. If
you fill out this comment sheet and include your name and address on the reverse side, we will send
you an ET A Systems pen to thank you for your help.

D D D
Yes Somewhat No

D D D
Yes Somewhat No

D D D
Yes Somewhat No

D D D
Yes Somewhat No

D D D
Yes Somewhat No

D D D
Yes Somewhat No

Is this publication easy to read and use?
Comments:

Does it tell you what you need to know?
Comments:

Is the organization of topics logical?
Comments:

Are there enough examples?
Comments:

Are the examples helpful?
Comments:

Are the illustrations effective?
Comments:

• Are there any errors in this publication? (Please list errors in the format shown below if possible.)

Page number Description of Error

PUB-1264 Rev. A

Reader Comment Sheet Instruction Set Reference Manual

Please include your name and address so we can send you an ETA Systems pen. If you would like a
reply to any questions about the document, check off the applicable box. Fold this sheet on the doLted
lines, seal it with tape, and send it to the address below. Thank you for your time and input.

Company:

Street Address:

City:

0 Yes, I would like a reply. 0 No, I don't want a reply.

Date:

Phone:

State: Zip/Country:

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 2294 ST. PAUL, MN

POST AGE WILL BE PAID BY ADDRESSEE

ETA SYSTEMS, INCORPORATED
TECHNICAL COMMUNICATION DEPT.
1450 ENERGY PARK DRIVE
ST. PAUL, MN 55108

fold 1

. fold 2

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

l1l1l11l1l1111llll111l11l111l1l11l1ll1l111l11l1l1l1I

