CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

DATE: February 26, 1982
TITLE: BASIC Version 3 Reference Manual

PUBLICATION NO.: 19983900

-REVISION: H

'REASON FOR CHANGE:

Revised at PSR level 552 to reflect BASIC 3.5, which supports NOS Version 2, and to clarify use of the RESTORF

statement with the SET statement, use of a carriage return as a delimiter, and use of format 2 of the PRINT ang
PRINT USING statements when files are comnected to the terminal.

PR : This revision also includes a new appendix or
N— in-frne,gditing commands, two new compile time diagnostics, and miscellaneous changes.
/
INSTRUCTIONS:
™~ . - =
) @ ' " This revision supersedes all previous editions.

"__/-. 7

S

Y

&’

@ CONTROL DATA
CORPORATION

- e s

T TR N N A k

19983900

BASIC

" VERSION 3

REFERENCE MANUAL

CDC® OPERATING SYSTEMS:

NOS 1
NOS 2
NOS/BE 1

APPEND

CALL
CHAIN
CLOSE

DATA
DEF
DELIMIT
DIM

FILE
FNEND
FOR

GOSUB
GOTO

Mathematical

SQR

Error and Interrupt Processing

ASL
ESL
ESM
NXL

19983900 H

INDEX TO BASIC STATEMENTS AND FUNCTIONS

6-3
6-5

7-4 |

7-25 |

5-11

7-12 ||

3-3

3-5

7-3
5-13
4-3

6-1

5-2
5-2
5-2
5-2
5-2
5-2
5-2
5-2
5-2
5-2
5-2
5-2
5-2
5-2
5-2
5-2
5-2

4-8
4-8
4-9
4-9

STATEMENTS

IF

IF END

IF GOTO ELSE
IF MORE

IF THEN ELSE
image

INPUT

JUMP

LET

MARGIN

MAT assignment
MAT INPUT

MAT PRINT

MAT PRINT USING
MAT READ

MAT WRITE

NEXT
NODATA

FUNCTIONS

String

ASC
CHR$
LEN
LPAD$
LTRM$
LWRC$
ORD
POS
RPAD$
RPTS
RTRM$
STR$
UPRC$
VAL

System

CLK$

DAT$

USR$

4-2
7-5
4-3
7-5
4-3
7-17
7-10

5-4
5-4
5-5

5-6
5-6
5-7

5-7
5-7
5-8
5-8
5-9
5-9
5-9
5-9

5-4
5-4
5-4
5-4
5-4

ON ATTENTION
ON ERROR

ON GOSUB

ON GOTO
OPTION

PRINT
PRINT USING

RANDOMIZE
READ

REM

REM LIST
REM TRACE
RESTORE
RETURN

SET
SETDIGITS
STOP

WRITE

Matrix Manipulation

CON
DET
IDN
INV
TRN
ZER

Input/Output

LoC
LOF
TAB

4-5
4-6 |
6-2
4-2
32 1

7-13
7-15

5-3
7-26 |
3-4
12-4 ||
9-1
7-4
6-2

7-8
7-24 @k
3-4 o

7-7 1

8-5
8-5 |
8-5
8-5
8-5
8-5

2

7-9
7-9
7-15

.9

oy

D

He

2=

@ CONTROL DATA
CORPORATION

19983900

BASIC
VERSION 3
REFERENCE MANUAL

D)

CDC® OPERATING SYSTEMS:

NOS 1
NOS 2
NOS/BE 1

REVISION RECORD

5

Revision
A (06/23/75)
B (11/05/75)

C (02/15/76)

D (05/23/78)

E (11/10/78)

F (07/20/79)

G (10/31/80)

H (02/26/82)

REVISION LETTERS I, O, Q, AND X ARE NOT USED

Description
Original printing.

Includes corrections to revision A and user information pertaining to the Network
Operating System/Batch Environment (NOS/BE Version 1.0).

Includes minor-editorial changes to revision B, plus modifications for the following new
features: CHAIN Statement, user number function, file number O, trace option, comments
at end of source lines, positioning beyond bad input items, and improved field length
management.

Revised to include new features upgrading the products to BASIC Versionm 3.2, PSR
level 472, These consist of the IF...THEN...ELSE statement and the capability to handle
large strings.

Revised to include new features upgrading the product to BASIC Version 3.3, PSR
level 485. These consist of the RPT function and the ON ATTENTION statement.

Revised to reflect BASIC 3.4. The changes and additions include substring addressing;
CYBER Interactive Debug facility; eight new string functions (LPAD$, LTRM$, LWRC$, ORD,
POS, RPADS, RTRM$, and UPRC$); alphabetic characters in file name must be uppercase; CALL
statement limitation with IF...THEN...ELSE; operating system terminology; and
miscellaneous changes. This printing obsoletes all previous editioms.

Revised to conform to the American National Standard for Minimal BASIC (ANSI). Changes
and additions include new statements OPTION and RANDOMIZE; subscript and index rounding;
FOR...NEXT control variable value; handling of unquoted strings; new RND and DET function
forms; default array base 0 (zero); formatting of large integers; new TAB features; ASCII
default collating sequence; print comma spacing control; redimensioning result matrices;
reading numeric data as string data; INPUT validation; other miscellaneous changes; and

appendixes explaining guidelines for a possible CDC merge to ANSI standard BASIC and the
difference between BASIC 3.4 (last revision) and BASIC 3.5 (this revision). Released at
PSR level 528. This printing obsoletes all previous editionms.

Revised at PSR level 552 to reflect BASIC 3.5, which supports NOS Version 2, and to
clarify use of the RESTORE statement with the SET statement, use of a carriage return as
a delimiter, and use of format 2 of the PRINT and PRINT USING statements when files are
connected to the terminal. This revision also includes a new appendix on in-line editing
commands, two new compile time diagnostics, and miscellaneous changes. This printing
obsoletes all previous editions.

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

© COPYRIGHT CONTROL DATA CORPORATION 215 MOFFETT PARK DRIVE
1975, 1976, 1978, 1979, 1980, 1982 SUNNYVALE, CALIFORNIA 94086

Al11 Rights Reserved
Printed in the United States of America

ii

or use Comment Sheet in the back of this manual

19983900 H

2 J

J I

04

AL

R

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

(2]

)

Front Cover
Inside Front Cover
Title Page

ii

iit/iv

v

vi

vii thru xit
xiii

1-1 thru 1-17
2-1 thru 2-8
3-1 thru 3-5
4-1 thru 4-9
5-1 thru 5-14
6~1 thru 6-6
7-1 thru 7-26
8-1 thru 8-13
9-1 thru 9-7
10-1 thru 10-6
11-1 thru 11-5
12-1 thru 12-11
A-1 thru A-4
B-1 thru B-5
B-6

B-7

B-8 thru B-l11
B-12

C-1

Cc-2

D-1 thru D-5
E-1

E-2

F-1

F-2

G-1

H-1 thru H-3
I-1 thru I-3
Index-1 thru -4
Comment Sheet
Mailer

Summary Card - Front
Summary Card - Back
Inside Back Cover
Back Cover

19983900 H

I CTEEEE NN NN ENNE ORI ENEEm O RN RO EEmmE R R E) @

iii/iv

(X%

-
o

PREFACE

This manual describes the BASIC Version 3.5 language
which operates under control of the following
operating systems:

NOS 1 and NOS 2 for the CONTROL DATA® CYBER 170
Series; CYBER 70 Models 71, 72, 73, and 74; and
6000 Series Computer Systems

NOS/BE 1 for the CDC® CYBER 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000
Series Computer Systems

Any reference to NOS refers to either the NOS 1 or
NOS 2 operating system. In all instances where the
two operating systems differ, NOS 1 or NOS 2 is
specified.

CDC offers guidelines for the use of the software
described in this manual. These guidelines appear
in appendix E. Before using the software described
in this manual, the reader 1is strongly urged to
review the content of this appendix. The guide-
lines recommend use of this software in a manner
that reduces the effort required to migrate appli-
cation programs to future hardware or software
systems.

BASIC 3 1is an extension of the original BASIC
language which was designed and implemented at the

Dartmouth College Computation Center. Although
BASIC is normally used interactively from a remote

terminal, BASIC programs can be compiled and exe-
cuted as batch programs. The CDC CYBER Interac-
tive Debug (CID) facility can be used in interactive
mode to debug a BASIC program.

BASIC is an all-purpose programming language that
includes features which render it well-suited for
scientific, business, and educational applicationms.
BASIC provides a small but powerful set of easy-to-
learn statements that are similar to English and
written in free format. Some of the more important
features provided by BASIC are:

Numeric and character string manipulation
Array definition and redimensioning

Access to trigonometric, matrix, and string
functions

Facility for writing multiple-line and multiple-
argument user-defined functions

Facility for
subroutines

calling BASIC and non-BASIC

Facility to chain to other BASIC programs

19983900 H

Matrix I/0 for 1- and 2-dimensional numeric and
string arrays

Output format determination, including various
commercial formats

Manipulation of coded and binary files, includ-
ing random access for binary files

Error detection and processing during program
execution

Facility to trace program flow

Facility to debug a program (CYBER Interactive
Debug)

This document is intended to describe these and
other BASIC features to both the nonprogrammer and
the experienced programmer. The information in
this manual is provided in three major parts:

Section 1 is a primer or introduction to the
BASIC language directed at the nonprogrammer.
Appendix H contains sample BASIC programs.

Sections 2 through 12 include reference infor-
mation that expands on section 1 information
and is directed at the experienced programmer.
Appendixes A through D and I support and
summarize information in these sections.

Appendix E contains general feature use guide-
lines to ensure ease of migration to future
hardware or software systems and appendix F
contains an overview of the differences between
this version of BASIC (BASIC 3.5) and the pre-
vious version (BASIC 3.4). Appendix G summa-
rizes those features that are described in the
American National Standard for Minimal BASIC as
implementation-defined.

You can find additional pertinent information in
the Control Data Corporation manuals. The NOS
Manual Abstracts and the NOS/BE Manual Abstracts
are pocket-sized manuals containing brief descrip-
tions of the contents and intended audience of all
NOS and NOS/BE manuals and all the product set
manuals of these two systems. The abstracts manuals
can be useful in determining which manuals are of
greatest interest to a particular user. The Soft-
ware Publications Release History serves as a guide
in determining which revision level of software
documentation corresponds to the Programming System
Report (PSR) level of installed site software.

The manuals are listed alphabetically in groupings
that indicate relative importance to the readers of
this manual.

o vi

The

following manuals are of primary interest:

Publication
Publication Number NOS 1 NOS 2 NOS/BE
Network Products Interactive Facility
Version 1 Reference Manual 60455260 X
Network Products Interactive Facility
Version 1 User’s Guide 60455250 X
NOS Version 1 Reference Manual,
Volume 1 of 2 60435400 X
NOS Version 2 Reference Set,
Volume 3 of 4, System Commands 60459680 X
NOS/BE Version 1 Reference Manual 60493800 X

following manuals are of secondary interest:

Publication
Publication Number NOS 1 NOS 2 NOS/BE
CYBER Interactive Debug
Version 1 Reference Manual 60481400 X X X
CYBER Loader Version 1 Reference Manual 60429800 X X
INTERCOM Version 5 Reference Manual 60455010 X
NOS Time-Sharing Version 1 User’s Guide 60436400 X
NOS Time-Sharing Version 1
User’s Reference Manual 60435500 X
NOS Version 1 Manual Abstracts 84000420 X
NOS Version 2 Manual Abstracts 60485500 X
NOS/BE Version 1 Manual Abstracts 84000470 X
Software Publications Release History 60481000 X X
Text Editor Reference Manual "~ 60436100 X X
XEDIT Version 3 Reference Manual 60455730 X X

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

19983900 H

I J

)

@

A)

I3

.3

“p

e

CONTENTS

NOTATIONS
1. BASIC PRIMER

Programming and Languages
Statement of the Problem
l Analysis of Statements
REM Statement
LET Statement
PRINT Statement
IF, GOTO, and END Statements
Break-Even Program and Output
Expressions in BASIC
Arithmetic Expressions
Relational Expressions
Defining and Reading Data
DATA and READ Statements
Looping in BASIC
IF and GOTO Statements
I FOR and NEXT Statements
Lists and Tables
Terminal Input and Output (I/0)
Using BASIC Under NOS and NOS/BE
NOS
Login, Execution, and Logoff
Procedures for the Interactive
Facility
Login, Execution, and Logoff
Procedures for the Time-Sharing
System
Sample Terminal Session
l NOS/BE
Sample Terminal Session

2. ELEMENTS OF THE BASIC LANGUAGE

BASIC Language Structure
Character Set
Statement Structure
| Program Structure
Constants
Numeric Constants
Integer Constants
Decimal Constants
Exponential Constants
String Constants
Variables
Simple Variables
Numeric
String
| Subscripted Variables
Substring Addressing
I Expressions
Arithmetic Expressions
Rules for Writing Arithmetic
Expressions
Arithmetic Expression Evaluation
] String Expressions
Concatenation
Relational Expressions
Simple Relational Expressions
Compound Relational Expressions

19983900 H

xiii

—
|
—

D—‘O—‘n—-l—'i—-b—‘l—‘t—-i—"—-h‘—'i—‘b—‘l—r—hﬂb—b—‘)—-'—‘
OV UUEERESEPR,PLVWWLWNENNN -

oo

—
|
—
o

1-12
1-12
1-14
1-16

N
[}
—

NNNNNNNNII\INNNNNNNNN
LVNEPFTLWLWWLWWLWWLWNNORNRNDN P -

~Noooo Lt n

3. FUNDAMENTAL STATEMENTS

Value Assignment
LET Statement
OPTION Statement and DIM Statement
OPTION Statement
OPTION BASE n
OPTION COLLATE
DIM Statement
Program Comments
REM Statement
Tail Comments
Program Termination
STOP Statement
END Statement

4. BASIC FLOW CONTROL STATEMENTS

Test and Branch Statements

GOTO Statement

ON GOTO Statement

IF Statement

IF...THEN...ELSE Statement
Looping

FOR...NEXT Statements
Error and Interrupt Processing

ON ATTENTION Statement

ON ERROR Statement

JUMP Statement

ASL Function

ESL Function

ESM Function

NXL Function

5. BASIC FUNCTIONS

Referencing a Function
Mathematical Functions
Random Number Generation
RND Function
RANDOMIZE Statement
System Functions
String Functions
ASC Function
CHR$ Function
LEN Function
LPAD$ Function
LTRM$ Function
LWRC$ Function
ORD Function
POS Function
RPAD$ Function
RPT$ Function
RTRM$ Function
STR$ Function
UPRC$ Function
VAL Function

w
!
—

VS PSP PFLWLUNDNDNOND = -~

~
]
—

bb#bbbfbbbbbbb

&
[} [}
WVWWOOOASTUVNULNWWLWWENN -~ -~

wv
[}
—

1 DL L
WWOWOWWOWRERARNNNOTOUMESTTWWLN -~

MMUlU‘UlklﬂU!LﬂUlU'ILﬂU'

wwvmut i
T

U1Ulkln (V.V}

vii

Error And Interrupt Processing

Matrix Functions

1/0 Functions

User-Defined Functions
Single-Line Function Using DEF
Multiple-Line Functions Using DEF...FNEND

6. SUBROUTINES, SUBPROGRAMS, AND CHAINING

BASIC Subroutines

GOSUB Statement

ON GOSUB Statement

RETURN Statement
External Subprograms

CALL Statement

Writing External Subprograms
Program Chaining

CHAIN Statement

CHAIN Processing

7. 1/0 STATEMENTS AND FUNCTIONS

BASIC Files and File I/0 Statements
File Access Methods
Permanent File Access
FILE Statement
CLOSE Statement
File Control Statements
RESTORE Statement
NODATA Statement
IF END Statement
IF MORE Statement
APPEND Statement -
Binary 1/0 Statements and Functions
WRITE Statement
READ Statement
SET Statement
LOC Function
LOF Function
Display Format I/0 Statements and Functions
INPUT Statement ‘
Terminal Input
File Input
DELIMIT Statement
DELIMIT Not in Effect (Normal Case)
DELIMIT in Effect
PRINT Statement
Default Print Formats
Numeric Formats
String Formats
Print Zoning
TAB Function
PRINT USING Statement
Image
Format Fields
Order Restrictions
Special Cases
MARGIN Statement
SETDIGITS Statement
Internal Data Table I/0
DATA Statement
READ Statement

8. MATRIX OPERATIONS

Matrix Definition and Declaration
Array Boundaries
Array Declaration
Redimensioning

@ viii

5-9

5-10
5-10
5-10
5-11
5-13

6-1
6-1
6-2
6-2
6-3
6-3
6-5
6-5
6-5
6-6

7-3
7-4
7-4
7-4
7-4
7-5
7-5
7-6
7-6
7-7
77
7-8
7-9
7-9
7-9
7-10
7-10
7-10
7-12
7-12
7-12
7-13
7-13
7-13
7-13
7-14
7-15
7-15
7-17
7-18
7-20
7-22
7-24
7-24
7-24
7-25
7-26

8-1
8-1
8-2
8-2

Matrix Arithmetic
Matrix Assignment
Matrix Addition
Matrix Subtraction
Matrix Multiplication
Matrix Scalar Multiplication
Matrix Functions
Matrix CON Function
Matrix IDN Function
Matrix ZER Function
Matrix INV Function
Matrix TRN Function
Matrix DET Function
Matrix I/0
MAT WRITE Statement
MAT READ Statement
MAT INPUT Statement
MAT PRINT Statement
MAT PRINT USING Statement

9. DEBUGGING

BASIC Debug Features
Inserting PRINT Statements
Conditional Trace Statement
Unconditional Trace Parameter

CYBER Interactive Debug
Entering and Exiting the CID Environment
Executing Under CID Control

Referencing BASIC Line Numbers and Variables
Variables
Line Numbers

Resuming Program Execution
GO Command
GOTO Command
STEP Command

Setting and Clearing Breakpoints and Traps
SET BREAKPOINT Command

CLEAR BREAKPOINT Command 4
SET TRAP Command 9-5
CLEAR TRAP Command 9-5
Default Traps 9-6
Displaying Program Values 9-6
PRINT Command for CID 9-6
MAT PRINT Command for CID 9-6
LIST VALUES Command 9-6
Changing and Testing Program Values 9-7
LET Command for CID 9-7
IF Command for CID 9-7
Other Commands and Features 9-7
10. TERMINAL OPERATION UNDER NOS 10-1
Entering a Program 10-1
BASIC Subsystem 10-1
BATCH Subsystem 10-1
Using Data Files 10~-1
Renumbering BASIC Lines 10-4
11. TERMINAL OPERATION UNDER NOS/BE 11-1
Entering a Program 11-1
Interactive BASIC Terminal Session 11-1
Using the BASIC Command Interactively 11-1
Using Data Files 11-4
Renumbering BASIC Lines 11-5
19983900 H

8-2
8-2
8-3
8-3
8-4
8-4
8-5
8-5
8-6
8-6
8-7
8-8
8-8
8-8
8-9
8-9
8-10
8-11
8-12

o
]
—

PPPPREIEEL e ey
S HFLLWLWWLWWLWWLWNDNDN - -

(%4

AR

gt

S

D)

12.

BATCH OPERATIONS

Deck Structure

BASIC Control Statement

REM LIST Statement

Batch Processing From a Terminal

NOS
NOS/BE

APPENDIXES

A Character Sets

B Diagnostics

C Glossary

D NOS File Handling

E Future System Migration Guidelines

F Differences Between BASIC 3.5 and

BASIC 3.4

G Implementation-Defined Features

H Sample BASIC Programs

I In-Line Editing Commands

INDEX

FIGURES

1-1 Break-Even Program

1-2 REM Statement Lines

1-3 LET Statement Lines (Constants)

1-4 LET Statement Lines (Formulas)

1-5 PRINT Statement Lines

1-6 IF, GOTO, and END Statement Lines

1-7 Break-Even Program and Output

1-8 LET Statement Value Assignment

1-9 Break-Even Program With READ and DATA
Statements

1-10 Break-Even Program With IF and GOTO
Statements

1-11 Break-Even Program With FOR and NEXT
Statements

1-12 Break-Even Program With DIM Statements

1-13 Array V

1-14 Placing Data Into Arrays

1-15 PRINT Statements for Array Elements

1-16 Break-Even Program With DIM Statements
Output

1-17 Break-Even Program With INPUT Statement

1-18 Break-Even Program With INPUT Statement
Interactive Input/Output

1-19 NOS Login Examples

1-20 Sample Timesharing Login

1-21 IAF System

1-22 OLD Command Accesses Permanent File
Under NOS

1-23 Editing a Program Under NOS

1-24 BASIC Program Under NOS/BE

1-25 Retrieval and Execution Example

2-1 Numeric and String Subscripted Variables

2-2 Substring Addressing Format

2-3 String Concatenation Format

2-4 Format for Simple Relational Expressions

2-5 Evaluating Simple Relational Expressions

2-6 Format for Compound Relational
Expressions

3-1 LET Statement Format

3-2 LET Statement Examples .

3-3 Substring Addressing Using LET Statement

3-4 OPTION Statement Formats

3-5 DIM Statement Format

3-6 DIM Statement Examples

19983900 H

12-1

12-1
12-1
12-4
12-9
12-9
12-9

A-1
B-1
C-1
D-1
E-1

F-1
G-1
H-1
I-1

v-.—-;—-r-‘-n—-’-»—-)-
SFLWWWDNDNDDND -

—
[}
(%]

—
]
(=)}

1-7
1-8

1-8

1-12
1-12
1-13

1-14
1-15
1-16
1-17

3-7
3-8
3-9
3-10
4-1
4-2
4-3
bty
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20

4-21
4-22
4-23
4-24
5-1
5-2
5-3
5-4
5-5
5-6
5-7

5-8

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28

5-29

5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37

5-38
6-1

6-2
6-3

REM Statement Format

REM Statement Examples

STOP Statement Format

END Statement Format

GOTO Statement Format

Infinite Loop

ON GOTO Statement Format

Example of ON GOTO and GOTO Statements

IF Statement Format

IF Statement Examples

Nested IF...THEN Statement Example

IF...THEN...ELSE Statement Format

IF...THEN...ELSE Statement Examples

FOR...NEXT Statement Formats

Loop With Specified STEP Value

Control Variable Value Changed

Loop Exit Effect on Control Variable

FOR...NEXT Statement Examples

FOR...NEXT Loops -

ON ATTENTION Statement Formats

ON ATTENTION Statement Example

ON ERROR Statement Formats

JUMP Statement Format

Example Using ON ERROR, JUMP, ESL, ESM,
and NXL

ASL Function Format

ESL Function Format

ESM Function Format

NXL Function Format

Function Reference Format

ABS and SQR Functions Example

RND Function Format

RND Function Example

RANDOMIZE Statement Format

RANDOMIZE Statement Example

Program Using System Functions CLK$,
DATS$, and TIM

ASC Function Format

CHR$ Function Format

CHR$ Function Example
LEN Function Format

LEN Function Example

LPADS Function Format

LPAD$ Function Example

LTRM$ Function Format

LTRM$ Function Example

LWRC$ Function Format

LWRC$ Function Example

ORD Function Format

ORD Function Example

POS Function Format

POS Function Example

RPAD$ Function Format

RPAD$ Function Example

RPT$ Function Format

RPT$ Function Examples

RTRM$ Function Format

RTRM$ Function Example

STR$ Function Format

STR$ Function Example

UPRC$ Function Format

UPRC$ Function Example

VAL Function Format

VAL Function Examples

Single-Line Function Using DEF

Single-Line Function Example Using DEF

Multiple-Line Function Format With
DEF. . .FNEND

Multiple-Line Function Examples Using
DEF...FNEND

BASIC Subroutine and RETURN Statement

GOSUB Statement Format

Nested Subroutines

3-4
3-4
3-5
3-5
4-1
4-1
4=2
4-2
4-2
4-2
4-2
4-3
4-3
4=4

4-4
4-5

4-5
4-5
4-7
4-7
4-7

4-8
4-8
4-9
4-9
4-9
5-1
5~-1
5-2
5-3
5-3
5-3

5-4
5-4
5-5
5-6
5-6
5-6
5-6
5-6

5-7
5-7

5-7
5-7
5-7
5-8
5-8
5-8
5-8
5-9
5-9
5-9
5-9
5-10
5-10
5-10
5-10
5-10
5-11
5-12

5-13

5-14
6-1
6-1
6-2

ix @

6-4

6-5

6-6

6-7

6-8

6-9

6~10
6-11
7-1

7-2

7-3

7-4

7-5

7-6

7-1

7-8

7-9

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
7-40
7-41
7-42
7-43
1-44
7-45
7-46
7-47
7-48
7-49
7-50
7-51
7-52
7-53
7-54
7-55
7-56
8-1

8-2

8-3

8-4

8-5

8-6

ON GOSUB Statement Format

ON GOSUB Statement Example

RETURN Statement Format

CALL Statement Format

BASIC Program Call to FORTRAN Subprogram
CHAIN Statement Format

Keywords for Optional Values

CHAIN Processing Example

FILE Statement Format

FILE Statement Examples

CLOSE Statement Format -

CLOSE Statement Example

RESTORE Statement Format

RESTORE Statement Example

NODATA Statement Format
End-of-Information Processing

IF END Statement Format

IF END Statement Example

IF MORE Statement Format

IF MORE Statement Example

APPEND Statement Format

APPEND Statement Example

WRITE Statement Format

WRITE Statement Example

READ Statement Format

READ Statement Example

SET Statement Format

SET Statement Example

LOC Function Format

LOF Function Format

Example of LOC and LOF Functions
INPUT Statement Format

INPUT Statement Example

DELIMIT Statement Format

PRINT Statement Format

PRINT Statement Example

Program Example of Numeric Formats
String Formats Using the PRINT Statement
Use of Semicolon With Numeric Data
Use of Semicolon With String Data
Print Zoning Examples

TAB Function Format

TAB Function Examples

PRINT USING Statement Formats

The Image for a PRINT USING Statement
Image Statement Format

Image With PRINT USING Statement
Delimiters in Image

Delimiters in Image Reused

Format Field Types

Sign and Edit Option Examples

Fields of Image Statement Identified
Field Character in Literal
Correction of Field Character Use
Special Cases for Format Fields
MARGIN Statement Formats

MARGIN Statement Example

Program Example Using MARGIN Statement
SETDIGITS Statement Format

SETDIGITS Statement Example

DATA Statement Format

DATA Statement Examples

READ Statement Format

READ Statement Example

Array A(2,4) With OPTION BASE 0
Array (2,4) With OPTION BASE 1
Formats for Redimensioning Specifiers
Redimensioning Example Using MAT READ
Matrix Assignment Statement Format
Matrix Assignment Example

6-2
6-3
6-3
6-3
6-4
6-5
6-6
6-6
7-3
7-4
7-4
7-4
7-4
7-4

7-5
7-5
7-5
7-6
7-6
7-6
7-7
7-7
7-7
7-7
7-8
7-8
7-9
7-9
7-9
7-9
7-10
7-11
7-12
7-13
7-13
7-14
7-15
7-15
7-15
7-16
7-16
7-17
7-17
7-17
7-17
7-18
7-18
7-18
7-20
7-21
7-22
7-22
7-22
7-23
7-24
7-24
7-24
7-24
7-25
7-25
7-25
7-26
7-26
8-1
8-1
8-2
8-2
8-2
8-3

8-7

8-8

8-9

8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33
8-34
8-35
9-1

9-2

9-3

9-4

9-5

9-6

9-7

9-8

9-9

9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24
9-25
9-26
9-27
10-1
10-2
10-3

10-4
10-5
10-6
11-1
11-2
11-3
11-4
11-5
12-1
12-2

Matrix Addition Format

Matrix Addition Example

Matrix Subtraction Format
Matrix Subtraction Example
Matrix Multiplication Format
Matrix Multiplication Example
Scalar Multiplication Format
Scalar Multiplication Example
Matrix CON Function Format
Matrix CON Function Example
Matrix IDN Function Format
Matrix IDN Function Example
Matrix ZER Function Format
Matrix ZER Function Example
Matrix INV Function Format
Matrix INV Function Example
Matrix TRN Function Format
Matrix TRN Function Example
Matrix DET Function Format
Matrix DET Function Example
MAT WRITE Statement Format

MAT WRITE Statement Example
MAT READ Statement Format

MAT READ Statement Example
MAT INPUT Statement Format

MAT INPUT Statement Example
MAT PRINT Statement Formats
MAT PRINT USING Statement Formats
MAT PRINT USING Statement Example
REM TRACE Statement Formats
REM TRACE,ALL Example

REM TRACE Statement Example
Variables Examples

Line Number Referencing Format
GO Command Format

GOTO Command for CID Format
STEP Command Format

STEP Message Format

SET BREAKPOINT Command Format
SET BREAKPOINT Examples
Breakpoint Message Format
CLEAR BREAKPOINT Command Format
CLEAR BREAKPOINT Examples

SET TRAP Command Format

Trap Message Format

SET TRAP Command Examples
CLEAR TRAP Command Format
CLEAR TRAP Examples

PRINT Command for CID Format
PRINT Command for CID Examples
MAT PRINT Command for CID Format
MAT PRINT Command for CID Examples
LIST VALUES Command

LET Command for CID Format
LET Command for CID Examples
IF Command for CID Format
BASIC Subsystem Under NOS

OLD Command Under NOS

Program Executed Interactively Under

BATCH Subsystem
Using Data Files Under NOS
RESEQ Command Format
RESEQ Command Example
Interactive BASIC Terminal Session

BASIC Command Parameters Under NOS/BE

Using Data Files Under NOS/BE
BRESEQ Command Format

BRESEQ Command Example

Job Structure Under NOS

Job Structure Under NOS/BE

8-3
8-3
8-4
8-4
8-4
8-4
8-4
8-5
8-5
8-6
8-6
8-6
8-6
8-7
8-7
8-7
8-8
8-8
8-8
8-8
8-9
8-9
8-9
8-10
8-10
8-11
8-11
8-12
8-12
9-1
9-2
9-2
9-3
9-3
9-3
9-3
9-4
9-4
9-4
9-4
9-4
9-4
9-5
9-5
9-5
9-5
9-5
9-5
9-6
9-6
9-6
9-6
9-7
9-7
9-7
9-7
10-2
10-3

10-3
10-4
10-5
10-6
11-2
11-4
11-4
11-5
11-5
12-1
12-1

19983900 H

et

)

D)

12-3
12-4

12-5
12-6
12-7

12-8
12-9

BASIC Compile and Execute Job Under NOS

BASIC Compile and Execute Job Under
NOS/BE

BASIC Compile to Binary File, Load,
and Execute Job Under NOS

BASIC Compile to Binary File, Load,
and Execute Job Under NOS/BE

REM LIST Statement Format

REM LIST Statement Example

Batch Processing From a Terminal
Under NOS

12-10 Batch Processing From a Terminal

Under NOS/BE

12-11 Printing a Batch Job

TABLES

1-1

Arithmetic Operators

1-2 Relational Operators

2-1 BASIC Character Set

2-2 Arithmetic Expression Operator
Hierarchy

2-3 Expression Evaluations

2-4 Relational Expression Operators

2-5 Logical Operator Hierarchy

2-6 NOT (UNARY) Operator Evaluations

2-7 AND Operator Evaluations

2-8 OR (INCLUSIVE) Operator Evaluations

3-1 Value Assignment

19983900 H

12-2
12-2
12-3

12-3
12-4
12-9

12-10

12-10
12-11

2-5
2-6
2-7
2-7
2-8
2-8
2-8
3-1

3-2
3-3
3-4
4-1
4-2
4-3

5-1
5-2
5-3
5-4

5-5
5-6
5-7
6-1

7-1
7-2
7-3
7-4
7-5
7-6
8-1
8-2
8-3
12-1
12-2
12-3
12-4

OPTION and DIM Statements

REM Statement and Tail Comment

END and STOP Statements

Test and Branch Statements

Looping Statements

Error and Interrupt Processing
(Statements ‘and Functions)

Mathematical Functions

Predefined System Functions

String Functions .

Error and Interrupt Processing
Functions

Matrix Functions

I/0 Functions

User-Defined Functions

Subroutine, Subprogram, and Chaining
Statements

I/0 Statements and Functions

I1/0 Statements and Related Type of 1/0

Sequential Access Versus Random Access

Standard Numeric Output Formats

Types of Fields

Sign and Edit Options

Matrix Arithmetic Statements

Matrix Functions

Matrix I/0 Statements

Compiler Listable Output Parameters

Compiler Input Parameters

Compiler Binary Output Parameters

Program Execution Parameters

3-2
3-4
3-5
4-1
44

46
5-2
5-4
5-5

5-10
5-11
5-11
5-11

6-2
7-1
7-2
7-3
7-14
7-19
7-19
8-3
8-5
8-9
12-5
12-6
12-7
12-8

xi/xii @

(3N

)

Certain notations are used throughout this manual.
The notations and their meanings are:

UPPERCASE

Lowercase

19983900 H

Horizontal ellipses indicate repe-
tition.

Vertical ellipsis indicate program
lines not shown.

Uppercase text in examples of
terminal dialog indicates termi-
nal output. Uppercase words in
statement and command formats
must appear exactly as shown.

Lowercase text 1in examples of
terminal dialog 1indicates user
input. Lowercase words in state-
ment and command formats indicate
values or options supplied by the
user.

A Delta indicates a space (blank).

C@ Carriage return denotes the trans-
mission key on the keyboard.

Shading Shading indicates ' Control Data
extensions to - the language de~
‘scribed in the American National
~ Standard x3.60-~1978, BASIC. Lan-
guage and- -processing features
that are in the standard, but are
_ implementation-defined, are not
shade‘d-.‘«s“ \ 34 Tk, v‘ s .} e

Examples of actual terminal sessions appearing in
this manual were produced on a class 1l terminal.
The format of these terminal sessions might dif-
fer slightly from the formats appearing at your
terminal.

xiii @

20

I J

N

BASIC PRIMER 1

Modern digital computers are designed for a wide
range of applications. However, all digital comput-
ers have certain common characteristics; they all
perform tasks specified by a set of instructionms.

A set of sequential instructions designed to solve
a specific problem is called a program. A program
can perform a simple task, such as adding or sub-
tracting two numbers, or printing a single letter
or digit. However, a program usually performs a
more complicated task. A program for a complete
scientific computation could require a few thousand
computer instructions.

Computer programs process or manipulate information
called data. A program can be used to perform
calculations by using data, and to print out the
results. Most programs permit new data to be input
each time the program is used. The three phases of
program operation are input, computation, and out-
put. The process of a program performing tasks in
a computer is called program execution, or running
a program.

PROGRAMMING AND LANGUAGES

Computers can execute thousands and even millions
of computer instructions each second; therefore,
computer instructions must be structured in a form

suited to the computer’s architecture. Writing a
program by using computer instructions in the form

used directly by the computer (machine instructions)
is tedious and time-consuming. In order to sim-
plify writing programs, computer specialists have
developed several high-level, easy-to-use, program—
ming languages and associated compilers and trans-
lators to convert these high-level languages to

‘machine instructions. BASIC, the beginner’s all-

purpose symbolic instruction code, is one such
high-level language. BASIC was originally developed
by professors John G. Kemeny and Thomas E. Kurtz at
Dartmouth College.

This section describes the process of writing and
executing a BASIC program by solving a sample prob-
lem. The BASIC statements used in solving the
problem are explained. This section is intended
for nonprogrammers. This section provides the
information necessary to write BASIC programs and
understand the more detailed descriptions of the
BASIC language provided in the sections that follow
this section.

STATEMENT OF THE PROBLEM

The following general description outlines a manu-
facturing system problem that is to be solved by
using BASIC. In this problem, F represents fixed
costs per year associated with production, C repre-
sents variable costs incurred per unit, and V rep-
resents the annual volume of production (and sales)
in units. The total cost incurred per year is

19983900 H

T =F + C*V. If the revenue per unit made (and
sold) is R per unit, then the total annual revenue
is Rl = R*V. The profit obtained on an annual
basis is the difference between Rl and T, if that
result 1s positive. A loss occurs if Rl - T is
negative. The break-even point is reached when the
volume is sufficient to make Rl = T.

For example, a company operates with fixed costs of
$1 million per year, variable costs of $10 per
unit, and a revenue of $30 per unit of production.
Using this data, answer the following questions:

l. What is the break-even point?

2. If the predicted sales are 25000 units, what is
the expected profit or loss?

3. What is the expected profit or loss for sales
of 50000, 75000, and 100000 units?

The BASIC program in figure 1-1 answers questions 1
and 2 of the problem. The solution to -question 3
is provided later in this sectionm.

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F

004 REM VARIABLE COST PER UNIT C

005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM

012 REM

013 REM ASSIGN VALUES TO F, C, R, V

020 LET F=1000000

030 LET C=10

040 LET R=30

050 LET v=25000

060 REM

070 REM COMPUTE BREAK-EVEN POINT

080 LET V1=F/(R-C)

090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
100 REM :

110 REM COMPUTE TOTAL COST

120 LET T=F+CV

130 REM

140 REM COMPUTE TOTAL REVENUE

150 LET R1=R*V

160 REM

170 REM COMPUTE PROFIT/LOSS

180 LET P=R1-T

200 IF V>V1 THEN 230

210 PRINT "LOSS = $";-P,"VOLUME =";V;"UNITS"
220 GOTO 240

230 PRINT "PROFIT=$";P,"VOLUME=";V;"UNITS"
240 END

Figure 1-1. Break-Even Program

1-1

ANALYSIS OF STATEMENTS

Each line of a BASIC program is called a statement;

each statement must begin with a line number. Line

numbers normally indicate the sequence in which the

computer is to execute the statements. The follow-

ing statements are used in the break-even program
shown in figure 1-1.

REM Statement

Figure 1-2 shows a segment of the break-even pro-
gram that contains the REM statement. The REM
statement allows the user to insert remarks. These
remarks increase readability and comprehension in a
program; they have no effect on the program during
execution. A maximum of . characters can be
included in a REM statement.

013 REM ASSIGN VALUES TO F, C, R, V
020 LET F=1000000

030 LET =10

040 LET R=30

050 LET v=25000

001 REM THIS IS A BREAK-EVEN PROGRAM

002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F

004 REM VARIABLE COST PER UNIT c

005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v

007 REM BREAK-EVEN POINT (VOLUME) V1

008 REM TOTAL COST T

009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM
012 REM

Figure 1-2. REM Statement Lines

Figure 1-2 shows the use of the REM statement to
identify the type of program, the variables used,
and the variable identifiers. These identifiers
are used later in program computations.

LET Statement

The LET statement specifies that the variable
(quantity that can vary during execution of the
program) to the left of the equals sign be set to a
value (the value is the formula or expression to
the right of the equals sign).

Examples:

Constant Value Assignment - Statements 20
through 50 of the program in figure 1-3 assign
values to variables F, C, R, and V, which are
used later in computing the break-even point.
The values for F, C, and R represent dollars
and the value for V represents units.

Formula Value Assignment — In the program in
figure 1-4, statements 120, 150, and 180 com-
pute total cost, total revenue, and profit or
loss, respectively, and assign these values to
variables T, Rl, and P. The symbol * specifies
multiplication. The value of the variable or
expression to the right of the equals sign
becomes the value of the variable to the left
of the equals sign. BASIC conforms to the
normal algebraic rules for order of arithmetic
computation. (See Arithmetic Expressions in
this section.)

1-2

Figure 1-3. LET Statement Lines (Constants)

110 REM COMPUTE TOTAL COST
120 LET T=F+C*V

130 REM

140 REM COMPUTE TOTAL REVENUE
150 LET R1=R*V

160 REM

170 REM COMPUTE PROFIT/LOSS
180 LET P=R1-T

Figure 1-4. LET Statement Lines (Formulas)

Statement 120 directs the computer to multiply V
(25000) by C (10) and add the product (250000) to F
(1000000) equaling a sum of 1250000. This sum is
assigned to the variable T.

In computing total revenue, the volume (V) is mul-
tiplied by the revenue per unit (R) (25000 * 30),
and the product (750000) is assigned to Rl.

To determine profit or loss, the total cost (T) is
subtracted from the total revenue (R1): (750000 -
1250000) and the remainder (-~500000) is assigned
to P.

PRINT Statement

The PRINT statement can be used to: print out a
value; print a message; print a combination of a
value and a message; and print a blank line. BASIC
normally separates an output line into five print
zones, each 15 characters long. Spacing is con-
trolled with commas and semicolons embedded in the
PRINT statement. The comma is used to space over
to the next print zone (insert blank spaces between
items); the semicolon permits items to be printed
with no additional blanks between them. When
printing headings or labels, enclose the heading or
label in quotes in the PRINT statement. To priant a
blank line, simply use the PRINT statement without
specifying what to print.

Statement 080 in figure 1-5 illustrates the assign-
ment of a value to a variable by using the LET
statement. Statement 090 illustrates the use of
the PRINT statement to print an identifying label
and the derived value.

19983900 H

J

o

g

‘v

I

)

070 REM COMPUTE BREAK-EVEN POINT

080 LET V1=F/(R-C)

090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
100 REM

Figure 1-5. PRINT Statement Lines

Statement 080 directs the computer to subtract C
from R (30-10) and, by using the remainder (20) as
a divisor, divide F (1000000) by 20. The quotient
(50000) is then assigned to the variable V1. (The
symbol / indicates divide.) Statement 090 directs
the computer to print the value of V1 and the BREAK-
EVEN POINT identifying label. The unit of measure
for V1 is labeled VOLUME UNITS. When executed,
this PRINT statement in figure 1-5 produces:

BREAK-EVEN POINT= 50000 VOLUME UNITS

IF, GOTO, and END Statements

In the sample program (figure 1-1), if sales volume
V is greater than the break-even volume, a profit

is earned. If the sales volume is less than the
break-even volume, a loss is incurred.

The IF statement at line number 200 in figure 1-6
directs the program execution to the statement at
line number 230, if the condition V is greater than

Vl is met. The IF statement directs execution to
the statement at line number 210, if the condition

is not met. Line 200 illustrates how execution
sequence by line number can be altered.

200 IF V>V1 THEN 230

210 PRINT "LOSS = $";-P,"VOLUME =";V;"UNITS"
220 GOTO 240

230 PRINT "PROFIT=$";P,"VOLUME=";V;"UNITS"
240 END

Figure 1-6. IF, GOTO, and END
Statement Lines

The IF statement (line 200) selects the print label
PROFIT or LOSS to be printed with the values asso-
ciated with variables P and V.

In figure 1-6, the PRINT statement at line number
210 is executed because V = 25000 and V1 = 50000.
After executing the PRINT statement, the computer
executes statement 220. Statement 220 is a GOTO
statement that directs the computer to continue
execution at statement 240.

The END statement directs the computer to stop

executing the BASIC program. Its corresponding
line number must be the highest in the program.

19983900 H

BREAK-EVEN PROGRAM AND OUTPUT

Figure 1-7 shows the break-even program and the
output that answers questions 1 and 2. After the
program is entered into the computer, the BASIC
compiler is directed to compile and execute the
program.

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F

004 REM VARIABLE COST PER UNIT c

005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM

012 REM

013 REM ASSIGN VALUES TO F, C, R, V

020 LET F=1000000

030 LET ¢=10

040 LET R=30

050 LET v=25000

060 REM

070 REM COMPUTE BREAK-EVEN POINT

080 LET V1=F/(R-C)

090 PRINT “BREAK-EVEN POINT=";V1;"VOLUME UNITS"
100 REM

110 REM COMPUTE TOTAL COST

120 LET T=F+C*V

130 REM

140 REM COMPUTE TOTAL REVENUE

150 LET R1=R#V

160 REM

170 REM COMPUTE PROFIT/LOSS

180 LET P=R1-T

200 IF V>V1 THEN 230

210 PRINT "LOSS = $";-P,"VOLUME =";V;"UNITS"
220 GOTO 240

230 PRINT "PROFIT=8$";P,"VOLUME=";V;"UNITS"
240 END

After the program is entered into the computer,
the BASIC compiler is directed to compile and
execute the program. Below is the output after
program execution.

BREAK-EVEN POINT= 50000 VOLUME UNITS
LOSS = $ 500000 VOLUME = 25000 UNITS

Figure 1-7. Break-Even Program and Output

EXPRESSIONS IN BASIC

An expression can be simple, that is, consisting of
one term (A); or complex, that is, consisting of
two or more terms connected by operators (A+B-C).
Expressions evaluate to a single value, which can
be used later in computation, or can be used in
determining program execution sequence. (See line
number 200.) There are three types of expressionms
in BASIC: arithmetic, relational, and string.
Arithmetic and relational expressions are discussed
in the following paragraphs and in section 2;
string expressions are discussed in section 2 of
this manual.

1-3

ARITHMETIC EXPRESSIONS

Arithmetic expressions are formed from numeric
variables, numeric constants, function references,
and arithmetic operators. The arithmetic operators
allowed for BASIC are shown in table 1-l.

TABLE 1-1. ARITHMETIC OPERATORS

Symbo1 Meaning

Exponentiation (¢ on

some teletypewriters)

TABLE 1-2. RELATIONAL OPERATORS

Symbol Meaning

/ Division

* Multiplication

+ Addition

- Subtraction
NOTE

The circumflex (A) is the preferred character
symbol for exponentiation. See Future System
Migration Guidelines, appendix E.

In the sample break-even program, operators (+, -,
* and /) are used in line numbers 080, 120, 150,
and 180. The exponentiation operator raises a num-
ber to a specified power. For example, 2**3 means
2 raised to the third power, or 23.

The arithmetic operators have a hierarchy for
evaluation: exponentiation; multiplication and
division; addition and subtraction. Evaluation
proceeds from left to right through an expression.
The hierarchy is altered by the use of parenthe-
ses. When using parentheses in BASIC, the rules
of algebra apply. For example, 2*3+2 = 8 and
2*(342) = 10.

Within a number in BASIC, commas cannot be used
to separate decimal groupings. For example, ten
million is writtemn 10000000, not 10,000,000.

A numeric variable (such as F, C, R, or V in the
sample program) is named with a single alphabetic
character or an alphabetic character followed by a
digit. The detailed rules for using numbers and
variables are included in section 2.

BASIC provides several mathematical functions that
can be requested within an arithmetic expression
such as SIN (sine), COS (cosine), and SQR (square
root), Functions are described in section 5.

RELATIONAL EXPRESSIONS

Relational expressions ' are formed by combining
variables and/or constants dinto arithmetic ex-
pressions that are compared by using relational
operators. Relational expressions are used in IF
statements to compare two values. Table 1-2 illus-
trates the relational operators.

= Equal to

Not equal to

> Greater than

Greater than or equal to
Less than

Less than or equal to

An example of the use of the relational operator
can be found in line number 200 of the sample break-
even program. For more details and the rules for
using relational operators, see section 2.

DEFINING AND READING DATA

An efficient method of assigning values to variables
is through the use of the READ and DATA statements.

DATA AND READ STATEMENTS

In the break-even program, values are assigned
to variables by using LET statements as shown in
figure 1-8.

013 REM ASSIGN VALUES TO F, C, R, V
020 LET F=1000000

030 LET C=10

040 LET R=30

050 LET v=25000

060 REM

Figure 1-8. LET Statement Value Assignment

Statements at line numbers 020 through 050 can be
replaced with the following:

035 DATA 1000000,10,30,25000
037 READ F,C,R,V

The DATA statement creates a block of data that is
internal to the program. Within the DATA state-
ment, values must be separated by commas. In the
above program, the DATA statement precedes the READ
statement; however, this is not required. The DATA
statement can be placed anywhere in the program.
The READ statement is used to access the values
contained in the internal data block. The vari-
ables in the READ statement are assigned values

19983900 H

k)

(-7

a

J be changed for added or different data.

sequentially from the data block; for example, F =
1000000, C = 10, R = 30, and V = 25000. This method
is more efficient from the programmer’s standpoint
because only the associated DATA statements need to
Figure 1-9
illustrates the use of the READ and DATA statements
in the break-even program.

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT c
005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM

012 REM

013 REM ASSIGN VALUES TO F, C, R, V
035 DATA 1000000,10,30,25000

037 READ F,C,R,V

060 REM

070 REM COMPUTE BREAK-EVEN POINT

080 LET Vi=F/(R-C)

090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
100 REM

110 REM COMPUTE TOTAL COST

120 LET T=F+C#V

130 REM

140 REM COMPUTE TOTAL REVENUE

150 LET R1=R*V

160 REM

170 REM COMPUTE PROFIT/LOSS

180 LET P=R1-T

200 IF V>V1 THEN 230

210 PRINT "LOSS = $";-P,"VOLUME =";V;"UNITS"
220 GOTO 240

230 PRINT "PROFIT=$";P,"VOLUME=";V;"UNITS"
240 END

When executed, this program produces:

BREAK-EVEN POINT= 50000 VOLUME UNITS
Loss = $ 500000 VOLUME = 25000 UNITS

Figure 1-9. Break-Even Program With
READ and DATA Statements

LOOPING IN BASIC

We are frequently interested in solving a problem
in which a specified sequence of statements is exe-
cuted a number of times. Each time the sequence is
executed, a variable is assigned a different value.
In programming, this is done by using a technique
called looping. The following statements provide
two methods for looping:

IF and GOTO statements

FOR and NEXT statements

19983900 H

IF AND GOTO STATEMENTS

In the original problem, question 3 requests the
profit or loss for sales of values 50000, 75000,
and 100000 units. To solve questions 1 and 2 of
the problem for these four values, a loop is in-
serted using the IF statement (line number 104 in
figure 1-10) and the GOTO statement (line number
236).

In figure 1-10, V is assigned the initial value of
25000 (line number 102). The statement of line
number 104 then compares V to 100000. If V is
greater than 100000, control is transferred to line
number 240 and the loop ends. If V is not greater
than 100000, line numbers 110 through 236 are exe-
cuted in the normal sequence. The statement at
line 235 increments V by 25000, and the statement
at line 236 transfers control back to line 104.
The statement at line number 104 compares the new
value of V to 100000 to determine whether or not to
execute the loop again. Looping continues until V
is greater than 100000.

For each value of V, the values of T, Rl, and P are
computed, and LOSS or PROFIT is printed depending
on the value of V; this completes the execution of
the loop in the break-even program.

During the first pass through the loop, V equals
25000; during the second pass, V equals 50000; dur-
ing the third pass, V equals 75000; and during the
fourth pass, V equals 100000, The printed output

from the program shows the break-even point and the 1l

profit or loss for the four volume levels.

FOR AND NEXT STATEMENTS

The sample program in figure 1-11 shows a loopl

created by using the FOR statement (line number
101) and the NEXT statement (line number 235).

The FOR statement establishes the first value of V
(25000), the final allowable value of V (100000),
and the step value of (25000). Statements between
the FOR statement and the NEXT statement are repeat-
edly executed until V is greater than the final
allowable value. The value of V is incremented by
the step value each time the NEXT statement is exe-
cuted. Output from the program is identical to the
output produced when the IF and GOTO statements
controlled the loop.

LISTS AND TABLES

For some problems, it is desirable to present data
or the solution in the form of a list or table;
such lists and tables are called arrays. An array
is an ordered collection of items (data elements)
arranged in a multidimensional structure. A 1-
dimensional array, or list, is called a vector and
a 2-dimensional array, or table, is called a matrix.
These terms have been borrowed from mathematical
terminology because vectors and matrices in BASIC
obey other _special properties expected by mathe-

o "

1-5

LooP

u—

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT c
005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM

012 REM

013 REM ASSIGN VALUES TO F, C, R

035 DATA 1000000,10,30

037 READ F,C,R

060 REM

070 REM COMPUTE BREAK-EVEN POINT

080 LET V1=F/(R-C) _
090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
100 REM

102 LET V = 25000

104 IF V>100000 THEN 240

110 REM COMPUTE TOTAL COST

120 LET T=F+C*V

130 REM

140 REM COMPUTE TOTAL REVENUE

150 LET R1=R#V

160 REM

170 REM COMPUTE PROFIT/LOSS

180 LET P=R1-T

200 IF V>V1 THEN 230

210 PRINT "LOSS = $";-P,"VOLUME =";V;"UNITS"
220 GOTO 235

230 PRINT "PROFIT=$";P,"VOLUME=";V;"UNITS"
235 LET V = V + 25000

236 GOTO 104

240 END

When executed, this program produces:

BREAK-EVEN POINT= 50000 VOLUME UNITS

LOSs = $ 500000 VOLUME = 25000 UNITS
LOSS = $ 0 VOLUME = 50000 UNITS

PROFIT=$ 500000 VOLUME= 75000 UNITS
PROFIT=$ 1.00000E+6 VOLUME= 100000 UNITS

Figure 1-10.

Break-Even Program With IF and GOTO Statements

Variables are used to name arrays. The individual
elements of an array, identified by the use of sub-
scripts, are called subscripted variables. The
subscripts, one for each dimension of the array,
are position indicators that locate elements within
the array. Subscripts are separated by commas and
enclosed by parentheses. The first matrix sub-
script designates a row; the second matrix sub-
script designates a column. Numbering of the
elements begins with zero; the first element in the
first row and the first column has subscripts (0,0).

Example:

In the following matrix, the element designated
by A(1,2) is circled.

—
[
w
'S

In the break-even program, where the profit or loss
for four different sales volumes is computed, the
values V, P, T, and Rl can be organized in array
form, with each array containing four elements.
For each volume (V), an associated revenue (R1),
cost (T), and profit (P) are computed.

19983900 H

J J

(ot

{’ 001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F

@@MN 004 REM VARIABLE COST PER UNIT C
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1

g 010 REM PROFIT/LOSS P
011 REM
012 REM
013 REM ASSIGN VALUES TO F, C, R, V
3 035 DATA 1000000,10,30,25000
037 READ F,C,R,V
060 REM
070 REM COMPUTE BREAK-EVEN POINT
080 LET Vi=F/(R-C)
090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
100 REM
—> 101 FOR V = 25000 TO 100000 STEP 25000

110 REM COMPUTE TOTAL COST
120 LET T=F+C*V
130 REM

@MMM 140 REM COMPUTE TOTAL REVENUE

. 150 LET R1=R*V

) 160 REM
170 REM COMPUTE PROFIT/LOSS
180 LET P=R1-T
200 IF V>V1 THEN 230
210 PRINT "LOSS = $";-P,"VOLUME =";V,;"UNITS"
220 GOTO 235
230 PRINT "PROFIT=$";P,"VOLUME=";V;"UNITS"

—»= 235 NEXT V

240 END

@MMM When executed, this program produces:
BREAK-EVEN POINT= 50000 VOLUME UNITS
LOSS = $ 500000 VOLUME = 25000 UNITS
LOSS = $ 0 VOLUME = 50000 UNITS
PROFIT=$ 500000 VOLUME= 75000 UNITS
PROFIT=$ 1.00000E+6 VOLUME= 100000 UNITS

Figure 1-11.

] In the sample program (figure 1-12), the DIM state-
ment is used to specify each array as containing
four elements (line numbers 039, 040, 041, and
042); however, the use of this statement is not
required. To specify an array of up to eleven
elements, only the selected variable name and asso-
ciated subscripts are required. The advantage of
using DIM in this situation is the comnservation of
space because the use of a variable and subscript
results in an automatic allocation of space for
eleven array elements by BASIC. If the array is to

I contain more than eleven elements, the DIM state-
ment is required. See section 3 for additional
information pertaining to the DIM statement.

~

L")

“ I The DIM statement in line number 039 of figure 1-12
reserves space for an array named V. The amount of
space reserved is determined by the bound speci-
fier; the bound for array V is 3. This means that
the largest subscript for array V is 3 and that

-
-

19983900 H

Break-Even Program With FOR and NEXT Statements

array V has four elements: V(0), V(l), V(2), and
V(3) because a count of the elements begins with
zero (0). (See figure 1-13.) Arrays P, T, and Rl
in figure 1-12 are also four-element arrays. A
count of the elements can also begin with 1. See
the OPTION statement described in this manual.

Figure 1-14 shows the method used for placing data
into the array. The variable I is used to ini-
tialize the volume array V. The variable I is set
to the value of zero, and is incremented within the
FOR loop (line number 102) by 25000 for each incre-
ment of J. The variable J is a subscript used to
address the individual elements of array V; when
J is zero, the first element is addressed. The
statement at line 103 places the current value of I
into the array V at the location identified by the
current value of J. J is also used as a subscript
for addressing the elements of arrays P, T, and RI.

001 REM THIS IS A BREAK-EVEN PROGRAM

002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F

004 REM VARIABLE COST PER UNIT c

005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM

012 REM

013 REM ASSIGN VALUES TO F, C, R

035 DATA 1000000,10,30

037 READ F,C,R

038 REM DEFINE ARRAYS FOR V, P, T, R1

039 DIM V(3)

040 DIM P(3)

041 DIM T(3)

042 DIM R1(3)

060 REM

070 REM COMPUTE BREAK-EVEN POINT

080 LET V1=F/(R-C)

090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
095 REM INITIALIZE ARRAY V, COMPUTE P,T,R1

096 LET I =0

101 FOR J =0 T0 3
102 LET I = I + 25000
103 LET VW) =1

130 REM

B | 140 REM comPuTE TOTAL cosT

141 LET TW) = F + € * V(W) .

160 REM COMPUTE TOTAL REVENUE

161 LET R1GJ) = R * V(J)

170 REM COMPUTE PROFIT/LOSS

| 181 LeT PCO) = RIC) - T

183 NEXT J

201 PRINT " VOLUME",V(D),V(1),V(2),V(3)
202 PRINT " REVENUE",R1(0),R1(1),R1(2),R1(3)
203 PRINT " COST",T(0),T(1),T(2).T(3)
204 PRINT " PROFIT",P(0),P(1),P(2),P(3)

240 END
| Figure 1-12. Break-Even Program With
DIM Statements
element 0 element 1 element 2 element 3
Figure 1-13. Array V

After completing the loop between line numbers 101
and 183 (figure 1-14), all of the arrays contain
the results of the computation. The PRINT state-
ments in lines 201, 202, 203, and 204 (figure 1-15)
print the individual elements of each array. The
program output displays the contents of each array
as shown in figure 1-16.

095 REM INITIALIZE ARRAY V, COMPUTE P,T,R1

096 LET I =0

101 FORJ =0T0 3
102 LET I = I + 25000
103 LET V() =1

130 REM

140 REM COMPUTE TOTAL COST
141 LET TW) = F + C * V(J)
160 REM COMPUTE TOTAL REVENUE
161 LET R1(J) =R * V(J)

170 REM COMPUTE PROFIT/LOSS
181 LET P(J) = R1W) - TW)
183 NEXT J

Figure 1-14. Placing Data Into Arrays

201 PRINT " VOLUME",V(0),V(1),V(2),V(3)

202 PRINT " REVENUE",R1(0),R1(1),R1(2),R1(3)
203 PRINT " COST",T(0),T(1),T(2),T(3)

204 PRINT " PROFIT",P(D),P(1),P(2),P(3)

240 END

Figure 1-15. PRINT Statements for
Array Elements

TERMINAL INPUT AND
OUTPUT (1/0)

Sometimes it 1is desirable to enter data while a
program is executing. For example, if the break-
even problem is generalized to permit several
different products with different fixed costs,
variable costs, and revenue per unit, the program
can be modified to request the values for these
variables while the program is executing.

The INPUT statement is used in a BASIC program when
entering data from the terminal keyboard. When the
INPUT statement is executed, a displayed ? asks for
data. Execution stops until the requested data is
entered. Data entered through the terminal key-
board is assigned sequentially to variables listed
as INPUT statement arguments.

If more than one item is requested by one INPUT
statement, the exact number of items requested must
be entered and the items must be separated by
commas. If not enough data or too much data is
entered, diagnostics are issued by BASIC. The
specified action must be taken before execution can
resume. :

BREAK-EVEN POINT= 50000 VOLUME UNITS

VOLUME 25000 50000 75000 100000

REVENUE 750000 1.50000€E+6 2.25000E+6 3.00000€+6
COST 1.25000E+6 1.50000E+6 1.75000E+6 2.00000E+6
PROFIT -500000 0 500000 1.00000€E+6

Figure 1-16.

Break-Even Program With DIM Statements Output

19983900 H

JJ

(A

te

3D

N,

)

Figure 1-17 1illustrates the break-even program
using the INPUT statement. The values of variables
F, C, and R are to be input. The PRINT statement
at line number 0l5 prints a message on the terminal
indicating the values and the sequence of the values
to be input. The output of this statement is fol-
lowed by the question mark and the result of the
INPUT statement line 036 is shown in figure 1-18.

Note that only two values were entered and that the
NOT ENOUGH DATA diagnostic was issued; the data was
then reentered.

The program output is shown in figure 1-18. Reve-
nue, cost, and profit were computed on the basis of
data entered at the terminal. Refer to section 7
and appendix D for more information pertaining to

input and output.

001 REM THIS IS A BREAK-EVEN PROGRAM

002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F

004 REM VARIABLE COST PER UNIT c
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R
010 REM PROFIT/LOSS P
011 REM

012 REM

013 REM ASSIGN VALUES T0 F, C, R

-

036 INPUT F,C,R

038 REM DEFINE ARRAYS FOR V, P, T, R1

039 DIM V(3)

040 DIM P(3)

041 DIM T(3)

042 DIM R1(3)

060 REM

070 REM COMPUTE BREAK-EVEN POINT

080 LET V1=F/(R-C)

090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
095 REM INITIALIZE ARRAY V, COMPUTE P,T,R1

096 LET 1 =0

101 FOR J =0 T0 3
102 LET I =1 + 25000
103 LET V({J) =1

130 REM

140 REM COMPUTE TOTAL COST
141 LET TW) =F + C * VWJ)
160 REM COMPUTE TOTAL REVENUE
161 LET R1(J) =R * VQJ)

170 REM COMPUTE PROFIT/LOSS

181 LET P(J) = R1W) - TW)
183 NEXT J

201 PRINT " VOLUME", V(D) ,V(1),V(2),V(3)

202 PRINT ' REVENUE",R1(0),R1(1),R1(2),R1(3)
203 PRINT " COST",T(D),T(1),T(2),T<(3)

204 PRINT " PROFIT",P(D),P(1),P(2),P(3)

240 END

015 PRINT "INPUT:FIXED COSTS VARIABLE COSTS REVENUE PER UNIT"

Figure 1-17. Break-Even Program With INPUT Statement

INPUT:FIXED COSTS VARIABLE COSTS REVENUE PER UNIT
? 1000000,10

NOT ENOUGH DATA, REENTER OR TYPE IN MORE AT 36

? 1000000,10,30

BREAK-EVEN POINT= 50000 VOLUME UNITS

VOLUME 25000 50000 75000 100000

REVENUE 750000 1.50000€E+6 2.25000E+6 3.00000€+6
COST 1.25000E+6 1.50000E+6 1.75000E+6 2.00000E+6
PROFIT -500000 0 500000 1.00000€+6

Figure 1-18. Break-Even Program With INPUT Statement Interactive Input/Output

19983900 H

1-9 @

USING BASIC UNDER NOS
AND NOS/BE

The previous paragraphs describe BASIC statements
and the organization of these statements into a
BASIC program. The following paragraphs describe
the procedures for entering a program into a com-
puter and for executing that program.

BASIC is primarily a terminal-oriented language;
however, programs in card deck form can be entered
and executed (batch mode). The following para-
graphs describe the method for entering and exe-
cuting BASIC programs interactively through use of
a teletypewriter (TTY) or cathode ray tube (CRT)

] terminal. See section 12 for a description of
BASIC program card deck structures and batch mode
operations.

BASIC runs under bcth the NOS and NOS/BE operating
systems. Its usage under NOS is described in the

I following paragraphs; its usage under NOS/BE 1is
described later in this section. See sections 10
and 11 for more detailed information.

1f operating from a terminal, the program must be
written into a file, as shown in the examples that
follow, and must be executed from the file. To
correct a line, reenter the line number, followed
by the corrected line. To delete a line under NOS,
enter the line number and press the transmission
(carriage return) key. To delete a line under
NOS/BE, enter DELETE, the line number, and press
the transmission (carriage return) key. New lines
can be added freely.

NOS

BASIC programs can be run from a time-sharing termi-

nal under NOS through Interactive Facility (IAF) or

the Time-Sharing System. Login procedures for IAF

and the Time-Sharing System differ. The procedures
I are described in the following paragraphs.

To initiate the login procedure, establish physical
connection between the terminal and the computer.
The method used to establish this connection varies
depending on the type of terminal being used and
the type of coupling between the terminal and the
computer. Connection methods for IAF are described
in the Network Products Interactive Facility ref-

I erence manual (NOS 1 sites) and Volume 3 of the
NOS 2 reference set (NOS 2 sites). Connection
methods for the Time-Sharing System are described
in the NOS Time-Sharing User’s reference manual.

| Login, Execution, and Logoff Procedures
for the Interactive Facility

The login procedure for the Interactive Facility
(IAF) begins with the system printing the following
three lines at the terminal. The second line of
this message is dependent on the installation.

yy/mm/dd. hh.mm.ss termname
CDC NOS
FAMILY:

When this occurs, perform the following steps:

1. Enter the family name on the same line. 1If
the family name is the default family for the
system, press the carriage return. Certain
installations do not request a family name.

The system responds:
USER NAME:

2. Enter the user name on the same line. The
user name consists of alphanumeric characters
assigned by the installatiom.

The system responds:
PASSWORD:

3. Enter the password. The password must consist
of up to seven alphanumeric characters. To
provide a greater measure of security, over-

typing is done on hardcopy terminals.

If the family name, user name, and password
are not acceptable, the system responds:

IMPROPER LOGIN, TRY AGAIN.
FAMILY:

If the family name, user name, and password
are acceptable, the system responds:

termname - APPLICATION:
The termname on this line is the same as that
on the first line of the login sequence and
can be disregarded.
4, Select the Interactive Facility by entering:
IAF

Under NOS 1, if validation is given to access
the Interactive Facility, the system responds:

TERMINAL: nn, NAMIAF
RECOVER/CHARGE :

or
TERMINAL: nn, NAMIAF
RECOVER/SYSTEM:

where nn is the terminal number. Remember this
number because it can be used for recovery.

Under NOS 2, if validation is given to access
the Interactive Facility, the system responds:

JSN: zzzz, NAMIAF
CHARGE NUMBER:
? RYERZTTARR
or
JSN: zzzz, NAMIAF

READY.

where 2zzzz is the job sequence name. Remember
this name because it can be used for recovery.

19983900 H

I J

we

[

=

5.

6.

7.

If RECOVER/SYSTEM (NOS 1) or READY (NOS 2) is
printed, the login procedure is complete; any
valid command can be entered.

If, under NOS 1, RECOVER/CHARGE is printed,
type CHARGE followed by the assigned charge
number and project number on the same line:
CHARGE ,chargeno,projectno
The system responds by printing:
READY.
The login procedure is now complete.
If, under NOS 2, CHARGE NUMBER is printed,
type the assigned charge number in the area
that has been blacked out. The system will

respond: .

PROJECT NUMBER:
? NSRS R RASR YR RK

Type in the assigned project number in the
area that has been blacked out.

If the charge number and project number are
valid, the system responds by printing:

READY.
The login procedure is now complete.
Enter the desired subsystem by typing:

BASIC
Because all interactive programs run under
NOS reside as files, the system queries the
applicable file type by responding:

OLD, NEW, OR LIB FILE:

Submit the appropriate file status: 1fn is

the local file name.
OLD,1lfn

Indicates the file previously created and
available.

NEW,1lfn

Indicates a new file.
LIB,1fn

Indicates a4 file from the system library.
The file name consists of up to seven alpha-
numeric characters. If an OLD or LIB file

does not exist, the system responds:

1fn NOT FOUND, AT nnnnn.

If the file name entered contains
characters, the system responds:

illegal

ERROR IN ARGUMENT

Correct the file name.

19983900 H

10.

If the file name entered contains too many
characters, the system responds:

ILLEGAL PARAMETER
Correct the file name.

After the system finds the specified file, it
responds:

READY.

The example in figure 1-19 illustrates a sample
login for both NOS 1 and NOS 2.

Enter the new BASIC program. Each line must
begin with a 1- through 5-digit 1line number,
and end with a carriage return. BASIC state-
ments need not be typed in correct order; the
BASIC subsystem automatically sequences the
statements according to line number. The NOS
edit facility, XEDIT, can be used to enter a
new BASIC program or change an existing file.
See the XEDIT reference manual for use of this
facility.

To execute the program, type:
RUN

This command initiates compilation and execu-
tion of the BASIC program. 1f there are com-
pilation or execution errors, the appropriate
error messages will be displayed.

When a run is completed, the following optioms
are available:

Continue processing (build and execute new
programs; modify existing program and re-
run; or rerun the same program).

or
Terminate the terminal session with the
following command:

BYE

All files not saved (see appendix D, Indirect Access
Permanent Files) are released.

Under NOS 1, the following is printed:

AXXXXXXK 1.OG OFF hh.mm.ss.

KKXKXXX SRU S.S8S UNTS

XXXXXXX Indicates the user name,

S.SSS Iadicates the total number of system

resource units used under this charge
and project number.

Under NOS 2, the following is printed:

UN=xxXXXXX LOG OFF hh.mm.ss.
JSN=zzzz SRU S.5S8 UNILTS.
XXXXXXX Indicates the user name.

zz22z Tndicates the job sequence name.
S.SSS Indicates the total number of system

resource units used under this charge
and project number.

1-11 @

NOS 1 Login:

82/01/08. 10.50.14. T128

CbC NOS 1

FAMILY:

USER NAME: xxxxxxx

PASSWORD: xxxx -

T128 = APPLICATION: iaf

TERMINAL: 61, NAMIAF

RECOVER/ CHARGE: charge,xXxxX,XXXXXXX
CHARGE , XXXX , XXXXXXX «

/basic

OLD, NEW, OR LIB FILE: new,exé4

READY.

NOS 2 Login:

82/01/08. 10.42.16. T143A
CbC NOS 2
FAMILY:
USER NAME: xxxxxxx
PASSWORD: xxxx
T143A - APPLICATION: iaf
JSN: AADI, NAMIAF

CHARGE NUMBER:
7 XEOHRDNEO

PROJECT NUMBER:

OLD, NEW, OR LIB FILE: new,ex4

READY.

Figure 1-19. NOS Login Examples

Login, Execution, and Logoff Procedures
for the Time-Sharing System

The 1login sequence for the Time-Sharing System
begins with the system printing the following three
lines at the terminal. The second line of this
message is dependent on the installation.

yy/mm/dd. hh.mm.ss.
CDC TIME-SHARING SYSTEM NOS
FAMILY:

When this occurs, perform the following steps:

1. Enter the family name on the same line. If
the family name is the default family for the
system, press the carriage return. If your
installation does not use family names, a
family name is not requested.

The system requests:
USER NUMBER:
2. Enter the user number on the same line. The

user number consists of up to seven alphanu-
meric characters assigned by the installation.

® 1-12

The system requests:

PASSWORD:

3. Enter the password. The password must con-
sist of up to seven alphanumeric characters.
To provide a greater measure of security,
type the password in the area the system has
blacked out. If a password is not needed,
enter a carrlage return.

If the family name, user number, and password
are not acceptable, the system responds:

IMPROPER LOGIN, TRY AGAIN.
FAMILY:

If the family name, user number, and password
are acceptable, the system responds:

TERMINAL: nnn,TTY

RECOVER/CHARGE:
or

TERMINAL: nnn,TTY

RECOVER/SYSTEM:

The nnn indicates the particular terminal
number being wused. (These responses are
installation-dependent.)

4-6. These steps are the same as steps 5 through
7 of the previous description of Login,
Execution, and Logoff Procedures for the
Interactive Facility.

The example in figure 1-20 illustrates a
sample login.

7-9. These steps are the same as steps 8 through
10 of the previous description of Login,
Execution, and Logoff Procedures for the
Interactive Facility.

81/07/31. 13.19.28.
TIME SHARING SYSTEM
FAMILY:

USER NUMBER:xXXXXXX
PASSWORD

XXXX

TERMINAL: 60,TTY

RECOVER/SYSTEM: basic
OLD,NEW,0R LIB FILE: new,ex4

READY.

Figure 1-20. Sample Timesharing Login

Sample Terminal Session

The sample program in figure 1-21 was run at a ter-
minal under the NOS 2 IAF System. Responses entered
at the terminal are in lowercase letters. Press
the transmission (carriage return) key after typing
in each response.

19983900 H

2 J

JJ

G

BER

3

/basic —=
OLD, NEW, OR LIB FILE: new,ex4 -<—m————

READY.

100 print "type a number"

110 input x

120 let f=1

130 for i=1 to x

140 let f=f*i

150 print "factorial ";x,"is ";f
160 goto 110

170 end

list —=

100 PRINT "TYPE A NUMBER"

110 INPUT X

120 LET F=1

130 FOR I=1 TO X

140 LET F=F+1

150 PRINT "FACTORIAL ";X,"IS ";F
160 GOTO 110

170 END

READY.
alter,160,/110/100/ ==

160 GOTO 100

READY.
run

FOR WITHOUT NEXT AT 130 —=
BASIC COMPILATION ERRORS

RUN COMPLETE.
145 next i
115 if x=0 then 170 | —=
run J

TYPE A NUMBER
23

FACTORIAL 3 IS 6
TYPE A NUMBER

20

RUN COMPLETE. -
List —-

100 PRINT "TYPE A NUMBER"
110 INPUT X
115 IF X=0 THEN 170
120 LET F=1
130 FOR I=1 TO X
140 LET F=F+I
145 NEXT I
150 PRINT "FACTORIAL ";X,"IS ";F
160 60TO 100
- 170 END

READY.

save,ex4 =

READY.

Requests BASIC subsystem.
Creates new file EX4.

Enters BASIC program.

Lists BASIC program.

Changes statement 160 to correct error.

Compiles and executes program.

BASIC issues diagnostic.

Correct program and rerun.

Program requests input and prints output.

Lists BASIC program.

Makes file EX4 permanent.

Figure 1-21.

19983900 H

IAF System

1-13 @

In figure 1-21, the program is saved as a file
named EX4. The program in this file is stored as
an indirect access permanent file which can 1later
be accessed by use of the OLD command (as shown
in figure 1-22), At this time, add, delete, or
change program statements as shown in figure 1-23,
(See appendix I for an explanation of the editing
commands used in figure 1-23.)

In figure 1-23, the REPLACE command replaces the
old version of EX4 with the updated version. If
logoff of the system had occurred before replacing
EX4, the corrected version would have been lost
while the old version of EX4 remained intact.

For a detailed description of the NOS commands used
in figure 1-21, as well as other available NOS
commands, see the IAF reference manual (NOS 1
sites), Volume 3 of the NOS 2 reference set (NOS 2
sites), or the NOS Time-Sharing User’s reference
manual.

NOS/BE

To access a central computer from a terminal,
establish physical connection with the computer
system. The method of establishing the connection
between the terminal and the central site computer
varies depending on the type of terminal equipment
and the connection provided by the telephone com-
pany. See the INTERCOM Version 5 reference manual,
When connected to the terminal, the system responds:

CONTROL DATA INTERCOM 5.n

DATE mm/dd/yy
TIME hh.mm. ss
PLEASE LOGIN

When this occurs, perform the following steps:
1. Log in to the system by entering:
LOGIN
The system responds:

ENTER USER NAME-

2. Enter the user name followed by a carriage
return. The user name can be any combination
of up to ten letters or digits and must not be
followed by a period.

When the user name has been entered at a TTY
terminal, the system responds:

FREREIXERS ENTER PASSWORD-

At a 200 User Terminal (200 UT) or any display
terminal, the system responds:

ENTER PASSWORD-

3. Enter the password followed by a carriage
return. A password is any combination of up to
ten letters or digits that must not terminate
with a period. On a teletypewriter (TTY) list-
ing, the system preserves privacy by allowing
the password to be entered over ten character
spaces that have been blacked-out by over-
printing.

When the user name and password are accepted,
the time logged in and the user id (a 2-
character user code), followed by the equipment
number (multiplexer equipment status table
ordinal) and the port number logged in, are
displayed at the terminal, as shown below:

LOGGED IN AT 17.47.26
WITH USER-ID AB
EQUIP/PORT 52/03

19/07/79

4, After a successful login the system responds:
COMMAND-
Enter the text edit mode by typing
EDITOR

The system indicates text edit mode by display-
ing two consecutive periods.

old,ex4 —=

READY.
list =

100 PRINT "TYPE A NUMBER"

110 INPUT X

115 IF X=0 THEN 170

120 LET F=1

130 FOR I=1 TO X

140 LET F=F*I

145 NEXT I

150 PRINT "FACTORIAL ";X,"IS ";F
160 GOTO 100

170 END

READY.

Makes a copy of file EX4 accessible.

Lists BASIC program on file EX4.

Figure 1-22.

® 1-14

OLD Command Accesses Permanent File Under NOS

19983900 H

I J

D J

3

I

list —=

100 PRINT "TYPE A NUMBER"

110 INPUT X

115 IF X=0 THEN 170

120 LET F=1

130 FOR I=1 TO X

140 LET F=FxI

145 NEXT I

150 PRINT "FACTORIAL ";X,"IS ";F
160 GOTO 100

170 END

READY. T
alter,100,/type/please input

100 PRINT "PLEASE INPUT A NUMBER"

READY.
delete,150

150 PRINT "FACTORIAL ";X,"IS ";F

READY.
150 print f;" is the factorial of ";x

list —=

-«————— Make changes to program.

100 PRINT "PLEASE INPUT A NUMBER"

110 INPUT X

115 IF X=0 THEN 170

120 LET F=1

130 FOR I=1 TO X

140 LET F=F*I

145 NEXT 1

150 PRINT F;" IS THE FACTORIAL OF ";X
160 GOTO 100

170 END

READY.

run -

PLEASE INPUT A NUMBER
74
24 IS THE FACTORIAL OF 4

PLEASE INPUT A NUMBER
20
RUN COMPLETE.

replace,ext ———

READY.

bye =

Lists BASIC program.

Lists corrected version.

Compiles and executes program.

Program requests input and prints output.

Replaces old version of file EX4 with corrected version.

Log off NOS.

Figure 1-23.

5. Once in text edit mode, enter the command

FORMAT, BASIC

When this command 1s entered after the two
periods, a format specification is automati-
cally established at the terminal that permits
lines to be entered in BASIC language format.
The comma is optional.

19983900 H

Editing a Program Under NOS

6. Enter the BASIC program statements (line number
followed by BASIC statement).

After the first line, the two period prompts
are not given; continue inserting statements.
Each line must begin with a 1- through 5-digit
line number and end with a carriage return.
BASIC statements need not be typed in correct
order because the EDITOR automatically sequences
them according to line number.

1-15 ®

7.

Once the entire program is entered, compile and
execute the program by typing:

RUN,BASIC

After the program compiles and executes, the
appropriate error messages are displayed if
program errors occur. The comma is optional.

When the run completes, select one of the
following options:

Continue processing (build and execute new

programs; modify and rerun existing pro-

grams; or rerun the same program).
or .
Terminate the terminal session by entering
the BYE or BYE BYE command. When the BYE
or BYE BYE command is entered, the system
is returned to command mode from EDITOR
mode. The BYE command does not save the
EDIT file. (See the INTERCOM Version 5
reference manual.)

The system responds with:
COMMAND-

At this time, enter the LOGOUT command to
release any local files created under EDITOR.

Only files that are permanent are retained
after logout. Disassociation from NOS/BE
occurs until a subsequent LOGIN command is
entered. NOS/BE displays the date and time
logged out. LOGOUT is not allowed when oper-
ating under control of the EDITOR. (Leave
EDITOR via the END or BYE command.)

For example if the command LOGOUT is entered,
the system responds:

CPA 6.377 SEC. 6.377 ADJ.
CPB .000 SEC. .000 ADJ.
SYS TIME 7.774
CONNECT TIME 0 HRS. 19 MIN.

10/21/79 LOGGED OUT AT 08.43.09.

Logout time is given in hours, minutes, seconds
(24-hour clock); CP time is given in seconds.
Disconnect the terminal from NOS/BE by turning
it off, or by hanging up the data set receiver.

Sample Terminal Session

After logging in, create and execute BASIC pro-
grams. The sample BASIC program in figure 1-24
illustrates how to run a BASIC program under NOS/BE.
The program was entered at a TTY terminal. After
typing each response, press the carriage return key.

20
30
40
50
60
70
80

10
20
25
30
40
50
55
60
70
80

COMMAND- editor —=e
..format ,basic =
.10 print "type a number";

run,basic —e—

FOR WITHOUT NEXT AT 40 -
BASIC COMPILATION ERRORS
.+55 next i -

25 if x=0 then 80

run,basic =

FACTORIAL 3 IS 6
TYPE A NUMBER ?0
.o list,all, sup —=

TYPE A NUMBER 73]

..Save,basprog =

..store, basprog,jones =

CT Ib= JONES PFN=BASPROG:

CT CY= 001 SN=PFQSET 00000064 WORDS.:
.aNd ==

input x
let =1
for i=1 to x

let f=fxi ~=—————— Enter BASIC program.

print "factorial ";x,"is ";f
goto 110
end

PRINT "TYPE A NUMBER";

INPUT X

IF X=0 THEN 80

LET F=1

FOR I=1 TO X

LET F=F*I

NEXT I

PRINT "FACTORIAL ";X;" IS";F
G0TO 10

END

Enter EDITOR.
Request BASIC program format.

Combﬂe and execute the program.

BASIC issues diagnostic.

Correct errors.
Rerun program.

Program requests input and prints output.

List program; sup suppresses additional line number prefixes.

Make edit file a local file named BASPROG.
Make local file BASPROG permanent.

. Exit EDITOR.

® 1-16

Figure 1-24. BASIC Program Under NOS/BE

19983900 H

o

)

Using the SAVE command to save file BASPROG allows
the file to be reserved for later use during the
terminal session (for example, before logging out).
To save the file permanently, it must be stored as
a permanent file using the STORE command. (Some
accounting information might be necessary before
saving a file with STORE. Check site procedures.)
To retrieve and execute this program later, the
command sequence in figure 1-25 must follow the
user login sequence.

The FETCH command retrieves the file previously
made permanent and tells EDITOR that BASPROG is
to be the edit file. The commas are optional.
The RUN command compiles and executes the program.

19983900 H

COMMAND-fetch basprog
COMMAND-editor
..format ,basic
..edit,basprog
.«run,basic

Figure 1-25. Retrieval and Execution Example

For a more detailed description of INTERCOM EDITOR
commands used in this example, as well as other
available commands, see the section on Terminal
Operation under NOS/BE and the INTERCOM Version 5
reference manual.

1-17 @

JJ

20

ELEMENTS OF THE BASIC LANGUAGE 2

This section describes the BASIC language structure,
and explains the elements of the language. The
language elements include: numeric data consisting
of integer, decimal and exponential constants;
string data consisting of alphanumeric text with or
without quotation marks; variables representing
values that are not fixed; and operators of the
language, expressions, and function references.

BASIC LANGUAGE STRUCTURE

A BASIC program 1is comprised of statements that
define the type of operations performed and the
types of data manipulated by the program. The
statement lines are written by wusing characters
from the BASIC character set. The following para-
graphs define the BASIC character set, the structure
of a BASIC statement, and the structure of a BASIC
program.

CHARACTER SET

The characters listed in table 2-1 can be used to
form BASIC statements. Any character available to
the operating system can be used in data and string
constants. See appendix A for a description of all
available characters.

STATEMENT STRUCTURE

A BASIC statement can be in the form of an exe-
cutable statement that specifies a program action
(LET X=10) or a nonexecutable statement that pro-
vides information necessary for program execu-
tion (DATA 1,3,5). All BASIC statements have the
following common characteristics:

Each statement begins with a line number. Line
numbering must range from 1 to |

Each statement must be completed on a single
line. Statement continuation onto another line
is not allowed.

Generally, blanks within a BASIC statement have
no meaning. However, there are specific in-
stances in which blanks are significant, such
as in strings. Blanks should only be used to
separate elements of the BASIC language; for
example, they should not be embedded within
line numbers, keywords, constants, or variable
names. See Future System Migration Guide-
lines, appendix E.

A BASIC statement, including blanks, line num-

bers, and tail comments, can be 'a maximum of

50: characters.

character statement limit.

19983900 H

TABLE 2-1. BASIC CHARACTER SET

Symbol Description
A thru Z Letters (uppercase)
+ Plus
- Minus
* Asterisk
/ Slash
(Left parenthesis
) Right parenthesis
$ Dollar
= Equal

Colon

' Apostrophe
0 thru 9 Numerals
A Blank'

’ Comma
. Period
" Quote
A CircumflexTT
< Less than
> Greater than

' ? Question mark

H Semicolon

Number

TRefer to appendix E for recommendations
tions for the use of blanks.

TTUp arrow ($) on some terminals.

PROGRAM STRUCTURE

A BASIC program is a group of statement 1lines
arranged according to the following general rules:

Program statements must be in line number order
when the program is compiled. If entering
program lines in the BASIC subsystem under NOS
or using the EDITOR command FORMAT,BASIC under l

2-1

NOS/BE, the program statements need not be
entered in line number order because they are
automatically sorted. See the Interactive
Facility reference manual (NOS 1 sites), Vol-
ume 3 of the NOS 2 reference set (NOS 2 sites),
or the INTERCOM Version 5 reference manual for
information about sorting line numbers before
execution.

Executable and nonexecutable statements can be
intermixed. 1In the following "example, a non-
executable statement is the DATA statement at
line number 110, and an executable statement is
the IF statement at line number 100. These
executable and nonexecutable statements are
explained in more detail later in this manual,

100 IF A=B THEN 110
110 DATA 10,20,30
120 READ C,D,E

130 END

An END statement must have the highest 1line
number in the source program.

Although BASIC programs can be compiled and exe-
cuted as batch programs, BASIC is normally used
interactively from a remote terminal.

CONSTANTS

A constant is a fixed, unchanging value. In BASIC,
there are numeric and string constants.

NUMERIC CONSTANTS
In BAS.IC there are thfee types of numeric constants:

Integer
Decimal
Exponential

Although each of the numeric constant types has
specific rules that govern its use, the following
rules apply to all three constant types:

A comma cannot be used to delimit placement
over the one-hundredth place, such as thousands
and millioms.

When a numeric constant is not signed ex-
plicitly by a negative or positive sign, the
constant is assumed to be positive.

Any number of digits can appear in a numeric
constant; a maximum of 14-digit accuracy is
used in computation. The CYBER 170 Model 176
uses a method different from other CYBER models
when rounding the results of division. The
difference 1s in the 15th digit of accuracy,

° but can become apparent when several divides
and multiplies are done in succession (as in
the case when matrix inversion is followed by
matrix multiplication).

Whether integer, decimal, or exponential, the

absolute value of a constant must be in the
range 3.13152 times 107294 to 1.26501 times

2-2

10322, To compile a program containing con-
stants with values above this range results in
the diagnostic ILLEGAL NUMBER. Constants with
values below this range are treated as zeros.

Integer Constants

An integer constant is a whole number written
without a decimal point.

Examples:
-49

+123456789
25000
0

Decimal Constants

" A decimal constant is any whole number, fraction,

or mixed number written with a decimal point.

Leading zeros to the left of the decimal point and

trailing zeros to the right of the decimal point
are ignored; the decimal point can appear anywhere
in the number.

Examples:

-4.08

50.5
1.91632614
147.2
.0000001
+3025.098

Exponential Constants

The representation of very large or very small
numbers is simplified by wusing exponential con-
stants. For example, to write ten billion in its
full form requires 11 digits (10000000000); however,
terllo billion can also be represented as 1.0 times
1010,

In BASIC, this exponential form 1is expressed by
1.0E10. The 1.0 is the significand and the 10
is the exponent. The E means times ten to the
power of.

Similarly, a small number, such as .00000000923,
can be represented as 9.23 times 10~9. In BASIC,
this notation can be expressed by 9.23E-9.

To use exponential constants in a BASIC program,
the following rules must be observed:

A number, the significand, must precede the E.
The significand can be any valid integer or
decimal constant.

The exponent (number that follows the E) is an
integer constant with a positive or negative
sign. If a sign 1s absent, a positive sign is
assumed. If the exponent is too large to be
represented in the computer, a diagnostic 1is
issued.

Decimal points are not permitted in the
exponent.

19983900 H

J J

o’

)

)

Examples:

-2.517E130
7E+20
4.91872634E-18

STRING CONSTANTS

A string is a collection of alphabetic, numeric,
and special characters. In BASIC, these characters
are usually set off by quotes from the rest of
the program; this is called quoted text. Strings
that are not set off with quotes, called unquoted
strings, are permitted, but they can only be used
in DATA statements or as input data.

Rules:

A string enclosed in quotes consists of all
characters between quotes, including blanks.

£ na ¢ \ing depends on the
mode: normal or ASCII. In normal mode, the
maximum length is 131070 /characters, in ASCII
_mode, the maximum length :i :
1131070 characters, depending on the number of
escape code characters in the string. See
appendix A.

A zero-length string, also called a null string,
is represented by a pair of quotes ("").

Any character can be used in quoted strings.

. - - pair
" An embedded quote uses two

pairs:

Examples:

"PART 25"
"THIS IS A TEST"
"An'""embedded""quote"

The outside quotation marks are not part of the
string constant. See DATA statement under I/0
Statements and Functions, section 7, for an example
of unquoted strings.

VARIABLES

Variables represent values that are not fixed.
Values can be assigned to variables and later
changed by other statements or conditions during
execution of the BASIC program. Variables can
represent numeric or string data and can be simple
or subscripted.

SIMPLE VARIABLES

Simple variables can be either numeric or string.
These two types of simple variables are described
in the following paragraphs.

19983900 H

Numeric

A simple numeric variable represents a numeric
value. It is named by a single alphabetic charac-
ter or a single alphabetic character and a numeric
character. Variable names must not exceed two

characters in length. Examples of simple numeric
variables are:

Examples of invalid numeric variable identifiers
are:

B23
49
G*
AA
The following rules apply to numeric variables:

Numeric variables represent only numeric data.

Numeric variables are preset to zero before the
program executes.

The absolute value of a numeric variable must
be in the range of 3.13152 times 10294 to
1.26501 times 10322

If a value smaller than the minimum is assigned,
the variable is set to zero.

If a value greater than the maximum is assigned,
a fatal diagnostic is issued.

String

String variables represent alphanumetic text and
are named with a 2- or

sign (§). For example:

Y$

Al$
B9$
Y3$

The value represented by a string variable is a
string of characters. Internally, each character
is represented by one or two 6-bit numeric codes.
(See appendix A.) Each character has a code value
that represents a position in the collating se-
quence. The characters at the beginning of the
alphabet have code values that are less than the
characters at the end of the alphabet. For exam-
ple, if A$ and B$ represent strings ABC and XYZ,
respectively, then A$ has a value less than B§.

2-3

The string represented by a string variable can
contain from 0 through 131070; 6-bit characters or
from O through £5536 12-bit escape code (ASCII)
characters. The maximum for a string containing
both 6- and 12-bit characters (the usual case when
operating in ASCII mode) lies somewhere between
65535 and 131070 characters depending upon the
number of 12-bit escape code characters.

§"~l

The memory space allocated to each string is deter-
mined by the length of the string. The minimum is
one computer word; the maximum is 13108 computer
words. The one-word minimum space is allocated by
the BASIC compiler for every string variable men-
tioned in the program. The remaining words are
allocated and de-allocated dynamically at execution
time.

~ SUBSCRIPTED VARIABLES

scripted vatiables :
&2 S

Subscripted variables represent one value in an
array of values. There are two types of sub-
numeric

ollowed by a subscript 1ist; Vstring

3 aria
subsctipted variables are formed by a simple string

variable followed by a subscript 1list. A subscript
list consists of one to three numeric expressions
bounded by parentheses. (See figure 2~1.) Rules
for the values of subscripted variables are the
same as for simple variables.

NUMERIC SUBSCRIPTED VARIABLES

A(0)

B2(3)

B(5,10)
A(B2(3))
X{1,N+M,A(3))

STRING SUBSCRIPTED VARIABLES

B$(4)
L$(1,4+3)
C$(1,3+3A(1)

Figure 2-1. Numeric and String
Subscripted Variables

Rules for subscripted variables are listed below:

BASIC permits 1l-, 2- =
In BASIC, array dime ns
implicitly by using subscripted variables.

Unless an array has been explicitly defined by
a DIM statement, as described in section 3, the
first subscripted variable that references an
element in an array automatically defines the
array as containing 11 elements (0 through 10)
in each dimension. Thus, a 1l-dimensional
array has 11 elements; a 2-dimensional array
has 11 times 11 (or 121) elements, and a 3-
dimensional array has 11 times 11 times 11 (or
1331) elements.

A subscript value greater than 10 requires a
DIM statement. If a maximum subscript value of
less than 10 is desired, a DIM statement can be
used. (See section 3.)

Subscripted variables with one subscript refer
to elements in 1-dimensional arrays; sub-
scripted variables with two subscripts refer to
2-dimensional arrays; subscripted variables
with three subscripts refer to 3-dimensional
arrays.

A subscript can be any arithmetic expression.
The subscript used is the value of the expres-
sion rounded to an integer.

The lower limit on subscripts is zero. How- J
ever, this limit can be changed to one by using
OPTION BASE 1. (See OPTION statement in sec-
tion 3.) OPTION BASE 1 instructs the system
to start array subscripting with element 1,
rather than the default element 0. Thus, when
OPTION BASE 1 is in effect, automatically-
defined 1l-dimensional arrays contain 10 ele-
ments (1 through 10), automatically-defined
2-dimensional arrays contain 100 elements, and
automatically-defined 3-dimensional arrays
contain 1000 elements.

Once an array is defined in a BASIC program,
the number of array dimensions cannot be
changed. For example, T(5) and T(2,3) cannot

be used in the same program. However, the
number of elements within a particular dimen-

sion can be changed if the total number of
elements in the resulting array is less than or
equal to the total number of elements in the
original array. For example, array T(2,3)
could be redefined as T(3,2).

19983900 H

J J

"

D)

the],ength of: the string, ‘then “the sub-
d. :

h ‘null string immediately

EXPRESSIONS

An expression is usually formed from a series of
operands and operations; however, a single constant
or variable can also be considered an expression.
In BASIC, there are three types of expressions:
arithmetic, string, and relational. The value of
an arithmetic expression is numeric; a relational
expression 1is either true or false; and a string
expression is a string of characters.

ARITHMETIC EXPRESSIONS

Arithmetic expressions consist of a series of
numeric operands and operators. Operators can be
any arithmetic operator listed in table 2-2; oper-
ands can be any numeric constant, simple or sub-
scripted variable, numeric function reference, or
any expression enclosed in parentheses. A function
reference is a notation for activating a predefined
algorithm. If arguments are required by the func-
tion, the arguments are evaluated and passed to the
function. The function then calculates and returns
a result based on the arguments. The returned value
is used in place of the function reference. BASIC
provides several built-in functions and allows you
to write your own functions. See BASIC Functions
in section 5.

19983900 H

TABLE 2-2. ARITHMETIC EXPRESSION
OPERATOR HIERARCHY

Hierarchy | Operator Definition
1 Aor ** | Exponentiation (Note: ¢ on
some teletypewriters)
2 * and / | Multiplication and division
3 + and - | Unary + and -
4 + and - | Addition and subtraction

Rules for Writing Arithmetic Expressions

In the formation of arithmetic expressiomns, certain
rules must be followed:

Only numeric operands and numeric operators can
be used.

Two arithmetic operators cannot appear side by
side; for example, X++Y is not allowed. If a
minus sign is used to indicate a negative value
in an expression, parentheses must be used to
separate the negative sign and associated oper-
and from the remainder of the expression. For

example:
Correct A*(-B)
Incorrect A*-B

Operators cannot be implied; for example,

(X+1) (Y+2) is not allowed. The correct form
is (X+1) * (Y+2).

The following are examples of valid arithmetic
expressions:

A+B*C/DAE

AL(3,T+4)A 2.6-G3/2Z

A+B**C

A+SIN(X) (SIN is a built-in functiom)
=3.14*%RN2

Arithmetic Expression Evaulation

The rules for the evaluation of arithmetic expres-
sions are as follows:

Expressions within parentheses are evaluated
first.

Operations of higher precedence are performed
before those of lower precedence. Precedence
is determined by the hierarchy illustrated in
table 2-2 from highest (1) to lowest (4).

2-5

Operations of equal priority or precedence are
performed in order from left to right.

Table 2-3 illustrates some examples of arithmetic
expression evaluation.

TABLE 2-3. EXPRESSION EVALUATIONS

Expressions Evaluation Steps
A+B*C/DANE 1. D~NE = a

2. B*C =D

3. b/a=c

4. A+c = d (final value)
A+(B-C)*3 1. B-C=a

2. a*3 =b

3. A+b = ¢ (final value)
-27N2 1. 22 =a

2. -a = -4 (final value)
(-2)~2 1. =2=a

2. an2 = 4 (final value)

STRING EXPRESSIONS

String expressions consist of a series of string
operands and operators. There is only one string
operator - available, string concatenation (+).
String operands can be one of the following:

A string constant

The following are examples of string expressions:

"TEST1"
B$(1)+D$
BS(1:4)

RELATIONAL EXPRESSIONS

There are two types of relational expressions:

simple and compound. Simple relational expressions
are formed by connecting two numeric or string
expressions with a relational operator. Compound
relational expressions are formed by connecting
two simple relational expressions with a logical
operator.

Simple Relational Expressions

The format of a simple relational expression is
shown in figure 2-4. The relational expression
operators that can be used to connect numeric or
string expressions are shown in table 2-4.

] 2-6

eq op ey
eq, €9 Indicates numeric or string constants,
variables or expressions.
op Indicates relational operator.
Figure 2-4. Format for Simple

Relational Expressions
The rules for writing simple relational expressions
are as follows:

Comparison of a string to numeric expressions
is not allowed.

Only one relational operator is allowed in an
expression.

Relational expressions can be used only in IF
statements (section 4).

19983900 H

2D

o

AR

@MWM
{ﬁuw\

TABLE 2-4. RELATIONAL EXPRESSION OPERATORS

Operator Definition

Equal to
Not equal to

Greater than

Less than

Greater than or equal to

AV AV A

u
o
S

n
A

Less than or equal to

I'rhe rule for evaluating simple numeric relational
expressions is as follows:

The two arithmetic expressions are evaluated
and then their resultant values are compared
algebraically to yield a true or false value.
If A =2 and B = 3, the expressions in figure
2-5 are evaluated as shown.

Relational Expression Value

A=8B False

i | A<>8B True
A>B False

A<B True

A>=8B False

A<=8B True

A*A+3<B*2 False

When strings are equal in length, the first
pair of corresponding characters that are not
equal determines the greater string. For
example, ABXY is greater than ABCZ because the
numeric code for X is greater than the numeric
code for C.

When strings are unequal in length, but corre-
sponding characters that can be compared are
equal, the longer string is always considered
greater. For example, ABX is greater than AB.

When strings are unequal in length, but one of
the corresponding characters that can be com-
pared vwhen scanning from left-to-right is
greater, the string with the first character of
greater value is the greater string. For
example, X7 is greater than X6543, and X76 is
greater than X75123.

Compound Relational Expressions

A compound relational expression is a sequence of
simple relational expressions separated by logical
operators. A compound relational expression evalu-
ates to TRUE or FALSE. The format for the compound
relational expression is shown in figure 2-6. The
logical operator hierarchy is shown in table 2-5.

rpopry

r1r2 Simple relational expression or com-
pound relational expression.

op Logical operator (AND, OR, unary

NOT).

Figure 2-5. Evaluating Simple
Relational Expressions

lThe rules for evaluating simple string relational

expressions are as follows:

Strings are compared char
left-to-right order. :BASI

ASCII is the default collating sequence used for
all string comparisons in BASIC. OPTION COLLATE
can be used to change the collating sequence to
a collating sequence that is native to the char-

acter set being used. See the OPTION state-
ment, and appendix A (describes the various
character sets supported by BASIC).

Strings are equal if they have the same length
and contain the same characters (including
blanks) in the same order. Blanks are important
vwhen they are used in strings.

19983900 H

Figure 2-6. Format for Compound
Relational Expressions

TABLE 2-5. LOGICAL OPERATOR HIERARCHY

Hierarchy | Operator Definition
1 NOT Logical negation
2 AND Logical multiplication or
logical intersection
3 OR Logical addition or union
(inclusive or)

The rules for evaluating compound relational ex-
pressions are as follows:

Expressions within parentheses are evaluated
first.

Operators of higher precedence (hierarchy) are
performed before those of 1lower precedence.
The hierarchy and definition of the logical
operators are provided in table 2-5.

NOT is a unary operator and can appear to the left
of any operand; however, it cannot appear as the
only operator between two operands.

NOT can appear between the other logical operators
(AND, OR) and an operand (for example, ry AND NOT
rp; ri OR NOT r2).

NOT (A>B AND C=D)

Evaluates to NOT false, so the expression l
is true.

In the truth table 2-6, the NOT (unary) operator is
evaluated. The NOTp is the opposite of p. In the
following examples, A=1 and B=2; - thus, TRUE is
printed for the first example, and FALSE is printed
for the second example.

I=J OR NOT J>1

Evaluates to false OR true, so the expres-
sion is true.

2%I=J~N2 AND IJ

Evaluates to true AND false, so the expres-—

IF ACB THEN PRINT "TRUE" ELSE PRINT "FALSE"
sion is false.

IF NOT A<B THEN PRINT "TRUE" ELSE PRINT "FALSE"
In the first example, it is true that A is less

than B; in the second example, it is false that A
is not less than B (A is less than B).

TABLE 2-7. AND OPERATOR EVALUATIONS

I J

(%8

q
l TABLE 2-6. NOT (UNARY) OPERATCR EVALUATIONS FALSE TRUE
p
p NOTp
FALSE FALSE FALSE
FALSE TRUE TRUE FALSE TRUE
TRUE FALSE
TABLE 2-8. OR (INCLUSIVE)
The logical operators AND, OR are defined in truth OPERATOR EVALUATIONS
tables 2-7 and 2-8.
In the examples below, which illustrate the use of q
NOT, AND, and OR, if A=5, B=4, C=2, D=1, I=8, and FALSE TRUE
J=4, the results are as follows: p
NOT A>B AND C=D FALSE FALSE TRUE
Evaluates to false AND false, so the ex-— TRUE TRUE TRUE
pression is false.

2-8 19983900 H

D J

FUNDAMENTAL STATEMENTS 3

S S o e L S S

This section describes the statements that are used
for the following purposes:

Perform value assignment during program execu-
tion.

Choose the lower boundary of an array.

Choose the collating sequence to be used for
string and function comparisons.

Define and allocate storage for arrays.
Terminate execution of a program.
Insert explanatory remarks into a program.

The tables in each category of statements summarize
the effect and usage of each statement.

VALUE ASSIGNMENT

The value of a variable can be assigned with the
LET statement. For numeric variables, the present
value is replaced by a new value. For string vari-
ables, the complete present value or a specified
substring of the value can be replaced by a new
value.

LET STATEMENT

The LET statement assigns a value to one or more
variables during execution of a BASIC program. The
effect and usage of the LET statement is shown in
table 3-1. The format of the LET statment is shown
in figure 3-1. The use of the word LET is optional
in the LET statement.

TABLE 3-1. VALUE ASSIGNMENT
Statement Effect Usage
LET Assigns a numeric LET B = 3+2

or string value
to one or more
variables speci-
fied in the LET
statement line.

LET AT=A2=X+Y
C(4) = 20

When the LET statement contains a single variable
(v or sv) on the left-hand side of the equals
sign, the value of the expression ne or se on the
right-hand side of the equals sign is assigned to
the variable. When the LET statement contains a
series of equalities, each variable is assigned the
value of the expression. Subscript expressions are
evaluated prior to the assignment of the value, and
all expressions are evaluated according to the
rule of operator precedence. (See table 2-2 in
section 2.) For examples, see figure 3-2.

19983900 H

1. LET nv=ne (or) nv=ne
(or)
LET sv=se (or} sv=se
2. LET nvy=nvp=nvj...=nv =ne
{or) nvq=nvo=nvs...=nv =ne
(or)
LET svq=svp=svg . . . =sv,=se
(or) ‘svq=svy=sv3 . . . =sv,=se
nv Indicates a numeric variable (simple or subscripted).
The string variables can also have a substring
descriptor.
sv Indicates a string variable (simple or subscripted).

ne Indicates a numeric expression of any complexity.

se Indicates a string expression of any complexity.

Figure 3-1. LET Statement Format

10 LET A1=X+Y

20 LET A2=A3=A4=X+Y
25 LET I=2+1

30 LET Z2(I)=1=6

35 LET Z(I)=4

40 LET B$="TEST"

Figure 3-2. LET Statement Examples

In figure 3-2, the LET statement at line number 10 I
assigns the value of the expression X+Y to the
variable Al. The LET statement at line number 20
assigns the same expression value to each of the
variables A2, A3, and A4. The LET statement at
line number 25 assigns the value 3 to variable I.
The LET statement in line number 30 simultaneously
assigns the value 6 to variable I and Z(3). (The
subscript is evaluated before any assignments
occur; therefore, the value of I in 2Z(I) is 3.)
The LET statement in line number 35 assigns the
value 4 to Z(6). The LET statement in line number
40 assigns the character string TEST to the string
variable BS.

Substring addressing can be used anywhere that
string variables are used. Use the LET and the
INPUT statements to replace, delete, extract, or
insert substrings into or from a simple or sub-
scripted string variable. Any length string (up to

3-1

the 1limits) can be inserted into a string by using
a substring descriptor. A substring can be re-
placed by assigning a new value to that particular
part of the string. A substring can be deleted by
assigning a null value to it. The value of the
original string can be lengthened or shortened with
these insertion, deletion, and replacement opera-
tions. A variable containing a null string can be
assigned a value by extracting a substring value
from one string and inserting it into the null
string. Figure 3-3 shows several examples of
substring addressing; all the examples assume an
original string variable value of ABCDEF.

The following examples of substring addressing use an original
string value of ABCDEF.

20 LET A$(2:5)="XXXX" Value XXXX replaces BCDE;
value of string A$ becomes
° AXXXXF.

215 LET C$(3:5)="" Null value replaces CDE;
value of string C$ becomes

ABF.

110 LET B$(4)(2:0)="MM" Value MM replaces the null
string before B; value of
subscripted string variable
B$(4) becomes AMMBCDEF.

30 LET 2$(1:3)=2%$(4:6) Value DEF replaces the

first three characters of

string Z$; value of Z$
becomes DEFDEF.

10 LET B$=A$(2:4) AS$ is the original string

value of ABCDEF; B$

contains the null value; B$
is assigned the extracted
value BCD.

Figure 3-3. Substring Addressing
Using LET Statement

OPTION STATEMENT AND
DIM STATEMENT

To choose a particular collating sequence for
comparing strings and computing values, and to

OPTION statement.
for 1-, 2-, or 3-dimensional arrays that are not
the default size, use the DIM statement. See table
3-2 for a summary of the effects and usage of the
OPTION and DIM statements.

OPTION STATEMENT

Use the OPTION statement for two distinct pur-
poses: to explicitly declare the lower boundary
(or origin) of all arrays being used in the program

to base 0 or to base 1, and to choose the collating
sequence to be used in the program for comparing

strings and for computing values of the CHR$ and
ORD functions. If the OPTION statement is encoun-
tered during normal program execution, control
passes to the next statement, with no effect on the
program.

OPTION BASE n

The OPTION BASE n statement explicitly sets the ori-
gin of all arrays to either 0 or 1. OPTION BASE n
can appear only once in a program, and it must
precede any DIM statement or any reference to an
array. If OPTION BASE n is not specified, the
lower boundary of all arrays is assumed to be
base 0. The default for array subscripting starts
with element 0.

In the following example, BASE n is declared as 1.
Since the example specifies that subscripting starts
with element 1, the DIM statement defines A as a 3
by 4 (or 12 element) array, and B as a 2 by 13 (or
26 element) array.

100 OPTION BASE 1
110 DIM A(3,4),B(2,13)

Using OPTION BASE O (the default) in the above
example would cause the array A to be dimensioned
as a 4 by 5 (or 20 element) array, and B to be
dimensioned as a 3 by 14 (or 42 element) array.
Other examples of using OPTION BASE n are shown
under Matrix Statements in section 8. Figure 3-4

To declare and allocate storage l

D J

(&

I declare the base (origin) of all arrays, use the shows the possible formats for OPTION BASE n.

TABLE 3-2. OPTION AND DIM STATEMENTS

Statement Effect Usage

OPTION Can set the lower boundary of all OPTION BASE 1
arrays being used by the program
to base 0 or to base 1. ‘Also, OPTION COLLATE NATIVE
this statement can se]ectfthe.“

3 to be used OPTION COLLATE STANDARD
for str1ng comparison. and for
value computat1on of th CHR$
ORD functions. = s
DIM Defines and allocates storage for DIM A(4,4), B(15)

1-, 2-, and 3-dimensional arrays.

3-2 19983900 H

J J

1. OPTION BASE n

‘OPTION COLLATE STANDARD
3. OPTION BASE n, COLLATE NATIVE
{or). i
OPTION BASE n, COLLATE STANDARD

(or)

n Indicates the origin to be set; it can be
either 0 or 1.

Note

You should not use OPTION COLLATE NATIVE
in normal mode. See Future System Migration
Guidelines, appendix E.

display code. However, because of the antici-
pated changes in BASIC, it is recommended that
OPTION COLLATE NATIVE not be used in normal mode.
See the Future System Migration Guidelines, appen-
dix E. BASIC treats display character codes in the
same way as ASCII character codes. That is, the
smaller the display character code, the earlier the
character appears 1in the collating sequence.
Table A-2 in appendix A provides a list of char-
acters and their corresponding display character
codes.

The COLLATE option can be used only once in a pro-
gram. If the statement is not specified, OPTION
COLLATE STANDARD is assumed by default.

DIM STATEMENT

The DIM statement explicitly defines one or more
arrays and allocates storage space for the named
arrays. The format for the DIM statement is shown
in figure 3-5.

Figure 3-4. OPTION Statement Formats

OPTION COLLATE

The OPTION COLLATE NATIVE and OPTION COLLATE
STANDARD determine the collating sequence used by a
program for comparing strings and for computing
values of the CHR$ and ORD functions. Figure 3-4
shows the formats for these two choices.

OPTION COLLATE STANDARD is the default collating
sequence; it specifies that the ASCII collating
sequence is to be used by the program for comparing
strings and computing values of the CHR$ and ORD
functions. Every character in the BASIC character
set (as shown under BASIC Language Structure) is
assigned an ASCII character code; the smaller the
ASCII character code, the earlier the character
appears in the collating sequence. This ordering
is important in string comparison operations be-
cause BASIC compares characters according to their
assigned numeric codes in the applicable character
set. For example, A is less than B because the
ASCII (or BASIC decimal) code is 65 for A and 66
for B. Table A-1 in appendix A provides a list of
characters and their corresponding ASCII character
codes.

OPTION COLLATE NATIVE instructs BASIC to select the
collating sequence native to the character set
being used by the program. The character set used
by a program is determined by the AS parameter of
the BASIC control statement. (See Batch Opera-
tions, section 12.) As shown in appendix A, the
native character sets supported by BASIC can be
classified as the ASCII character set or as the
normal character set. The native collating se-—
quence for ASCII character sets (described in
appendix A as NOS ASCII 128-character set, NOS/BE
ASCII 128-character set, and the Extended Character
Set) is the same as for the standard collating
sequence. The native collating sequence used for
normal character sets (described in appendix A as
CDC 63-character set, CDC 64-character set, ASCII
63-character set, and ASCII 64-character set) is

19983900 H

DIM myq(ncq, . . ., ncg), . .., mylneq, ..., neg)

mq - m, Indicates numeric or string matrix
identifier.

ncq - ncg Indicates one-to-three unsigned integers,
separated by commas, that represent the

maximum value of each subscript.

Figure 3-5. DIM Statement Format

Arrays require a DIM statement when a subscript
value greater than 10 is needed. To save space,
use the DIM statement to dimension an array with an
upper subscript 1limit of less than 10. An array
not previously defined by the DIM statement is im-
plicitly declared to have one dimension (10) when
an element is referenced by an array variable with
one subscript; two dimensions (10,10) when the ele-
ment is referenced by an array variable with two
subscripts; and three dimensions (10,10,10) when
the element is referenced by an array variable with
three subscripts. In all cases, the maximum sub-
script for each dimension in implicitly declared
arrays is 10.

Use DIM statements anywhere in a program, but
define an array prior to usage of that array. See
Future System Migration Guidelines, appendix E.
However, an array variable cannot be declared in a
DIM statement more than once in the same program.
An array can be redimensioned when a matrix state-
ment is executed. (See Redimensioning and Matrix
Operations, section 8.) DIM is not executable;
the program is not affected if DIM is encountered
during normal program execution.

Arrays passed as arguments to the INV function are
limited to 100 times 100 elements. (See INV func-
tion, section 8.) 1In all other cases, the number
of dimensioned array elements is limited only by
the amount of available memory. Figure 3-6
illustrates use of the DIM statement to define
arrays and to reserve space for each of the
declared array elements. The examples presented in
figure 3-6 assume that subscripting begins with
element 0.

e 100 DIM X$(5,5), B3(1,2), X1(50)
This statement reserves space for:

X$ A two-dimensional string array with
6 times 6, or 36 elements.

B3 A two-dimensional numeric array with
6 elements.

X1 A one-dimensional numeric array with
51 elements.

e 50 DIM G2(5,6,7), A0(9,2), P$(2,3)
This statement reserves space for:

G2 A three-dimensional numeric array with
6 times 7 times 8, or 336 elements.

A0 A two-dimensional numeric array with
10 times 3, or 30 elements.

P$ A two-dimensional string array with
12 elements.

NOTE

Each element of a numeric array requires one
computer word. Each element of a string array
requires 1 + n computer words where n is a
function of the number of 6-bit characters
currently assigned to the string. If the number
of characters is zero, n=0. If the number of
characters is nonzero, n=INT ((number of 6-bit
characters +11) /10) + 1.

Figure 3-6. DIM Statement Examples

PROGRAM COMMENTS

Program comments in a BASIC program are indicated
by using the REM statement or: by appending state-
ments with tail comments. Table 3-3 summarizes the
effects and usage of the REM statement and the tail
comment .

REM STATEMENT

The REM statement is used to insert explanatory
remarks or comments into a program. REM is a non-
executable statement and, therefore, has no effect
on program execution. The format of the REM state-
ment appears in figure 3-7.

examples of the REM statement.

If control reaches, or is transferred to, a REM
statement, the next executable statement following
the REM statement is executed. In the following
example, if A is equal to 10, control is trans-
ferred to the REM statement and the next executable
statement becomes 40.

10 IF A=10 GOTO 30

20 PRINT "A=AVERAGE"

30 REM TEST FOR SECOND AVERAGE
40 IF B=20 PRINT "B=AVERAGE2"

3-4

Figure 3-8 shows some

TABLE 3-3. REM STATEMENT AND TAIL COMMENT

Statement Effect Usage

REM Adds comments
to a program
‘Without

affecting
execution.

REM SOLVE FOR Y

REM chy . . . ch,,

chq . .. ch, Anycomment or explanatory character
string within the 150-character total
statement length limitation; comments
can be continued on additional REM
statements.

Figure 3-7. REM Statement Format

100 REM M EQUALS MASS IN GRAMS
110 REM V EQUALS VELOCITY IN CM/SEC.

120 REM T EQUALS KINETIC ENERGY

Figure 3-8. REM Statement Examples

"'TAIL COMMENTS

An alternate form of a comment is the tail comment.
‘A tail comment can be added to the end of any" BASIC
statement, except DATA and image, by -adding 'an'
apostrophe (G) before the coxmnent. For example. :

100 LET F = 1000 ‘F IS FIXED COSTS

PROGRAM TERMINATION

To terminate a program, use either the END state-

ment or the STOP statement. Table 3-4 shows the
purpose of these two statements.

STOP STATEMENT

The STOP statement can be used anywhere in a BASIC
program to cause an immediate exit from the pro-
gram. When the STOP statement is encountered,
program execution terminates at that particular
point, and control is returned to the operating
system. Figure 3-9 shows the format of the STOP
statement.

19983900 H

2 J

J I

&

)

TABLE 3-4. END AND STOP STATEMENTS

Statement Purpose
STOP Terminates program
execution.
END Marks physical end

of a source program
and terminates
execution.

STOP

Figure 3-9. STOP Statement Format

The STOP statement 1is equivalent to an uncondi-
tional GOTO statement that specifies the line
number of an END statement.

In the following example, the STOP statement causes
program execution to terminate if Al is less than
zero; if Al is greater than or equal to zero, pro-
gram execution continues until the END statement is
encountered.

19983900 H

100 IF Al1<O0 GOTO 120

110 IF Al1>=0 GOTO 130

120 STOP

130 PRINT "VALUE IS SUFFICIENT."

999 END

END STATEMENT

The END statement signals the end of a BASIC pro-
gram; if control reaches the END statement during
program execution, the program terminates as if a
STOP statement had been executed. If used, the END
statement must be the last statement in the pro-
gram. The format of the END statement appears in
figure 3-10.

The END statement is optional, but it should be
used in programs because future versions of BASIC
might require its use. See the Future System
Migration Guidelines, appendix E.

END

Figure 3-10. END Statement Format

w

BASIC FLOW CONTROL STATEMENTS 41

S S S S N

This section describes control statements of the Since the GOTO statement wunconditionally causes
language that are used to change the sequence of control to be transferred to the specified line
execution of statements, to test and branch on a number, care must be taken that this does not set
condition, to perform loops, and to monitor and up an infinite loop.

control errors and interrupts.
For example, consider the program in figure 4-2. |
When this program is executed, it cycles continu-
ously through 1lines 10, 20, and 30, and never

TEST AND BRANCH STATEMENTS reaches the END statement at line 40. It can be
terminated only by interrupting the program. (See
Testing and branching to certain points in a program the NOS Interactive Facility reference manual
is accomplished with the GOTO, the ON GOTO, the IF, (NOS 1 sites), Volume 3 of the NOS 2 reference set
and the IF LSE statements. Table 4-1 (NOS 2 sites), or the INTERCOM Version 5 reference I
defines the test and branch statements and their manual.) Inserting an IF statement before the GOTO
effects in a program. Further details of these (25 IF X=100 GOTO 40) provides an exit. When the
statements follow table 4-1. value of X equals 100, the IF statement branches to
line 40 and automatically terminates the program.
W’* The IF statement is described later in this section. [
\
GOTO STATEMENT GOTO In

The GOTO statement unconditionally transfers . .
control from one point in the program to another, In Indicates line number.
thereby interrupting the normal sequence of in-
structions. The format for this statement is shown

in figure 4-1. Figure 4-1. GOTO Statement Format
GOTO specifies that the statement at the referenced 10 LET X=X+1
line number is to be executed next. Normal sequen- 20 INPUT X
@;“E' ‘ tial execution continues from that point. If a 30 GOTO 10
GOTO statement references a nonexecutable state- 40 END
ment, such as a DIM statement, execution continues

with the first executable statement that follows
the referenced nonexecutable statement. Figure 4-2. Infinite Loop |

TABLE 4-1. TEST AND BRANCH STATEMENTS

Statement Effect Usage
@‘ GOTO Unconditionally transfers GOTO 50
. control to a specified state-
ment.
ON GOTO Transfers control to one of ON A/3 GOTO 50,60

a group of statements depen-
ding on the integer value
specified in the ON GOTO
statement.

IF) Tests a relationship or a IF A=20 THEN 80
group of relationships. If
the test is true, control
moves to a referenced pro-
gram statement; otherwise,
control falls through to the
next executable statement.

_An extension of t
statement that .
an action for both tv
false conditions.

iw” e
19983900 H

ON GOTO STATEMENT

The ON GOTO statement provides for conditional
branching depending on the value of an expression.
The expression is evaluated and rounded to an in-
teger value. Then control is transferred to 1nj
if ne is equal to 1; to lny if ne is equal to 2;
and so forth. If the value of the expression is

negative, zero, or greater than the number of line’

numbers specified, an execution diagnostic ON
IEXPRESSION OUT OF RANGE is issued. Figure 4-3
illustrates the formats for the ON GOTO state-
ment. The second format should not be used because
it might not be .supported in future versions of
BASIC. See the Future System Migration Guidelines,
appendix E.

r Indicates simple or compound relational
expression.

In Indicates line number.

stm Indicates executable BASIC statement.

Figure 4-5. IF Statement Format

1. ON ne GOTO Inq, Ing, Ing, . . ., In,

or

ne Indicates numeric expression.

In Indicates line number.

Figure 4-3. ON GOTO Statement Format

In figure 4-4, SGN(A) can have the value -1, 0, or
1. The expression SGN(A)+2 can have the value 1,
2, or 3, and control transfers to statements 100,
110, or 120, respectively. If, for example, A has
the value 2.5, then SGN(A)+2 has the value 3, and
the order of statement execution is 95, 120, 130,
and the next logical statements.

20 IF 2*1 >= J A 2-1 THEN 165

Assuming | = 8 and J = 4, the value 16 is compared to the
value 15; the evaluation is true, the next statement executed
is at line number 165.

15 IF | =J OR NOT J < | THEN 140

Assuming | = 8 and J = 4, the relation | = J is false. The
relation J < | is true; however, NOT J < | is false. The
compound relational expression evaluates to false (false or
false is false) and the branch to statement 140 is not made.

25 IF A<>O0THEN LETB =0

This statement causes B to be set to 0 if A is not equal
to 0. The next statement in sequence is then executed.
If A = 0 the next statement in sequence is executed but
the LET B = 0 is not.

095 ON SGN(A)+2 GOTO 100,110,120
100 LET A=A*A

105 GOTO 130

110 LET A=A+B

115 GOTO 130

120 LET A=A*B A 2

130 LET B=A+1

Figure 4-4. Example of ON GOTO and
GOTO Statements

IF STATEMENT

The IF statement tests conditions and controls the
sequence of operations. The formats for the IF
statement are shown in figure 4-5. If the rela-
tional expression r is true, the program transfers
control to the statement at line number 1n, if
format 1 is used, and executes statement stm, if
format 2 is used. Do not use the format GOTO be-
cause it might not be supported in future versions
of BASIC. See the Future System Migration Guide-
lines, appendix E. If the relation r is false, the
next sequential statement is executed. Examples of
f§ simple IF...THEN clauses are shown in figure 4-6.

Figure 4-6. IF Statement Examples

The stm parameter can contain any executable state-
ment other than a FOR or a NEXT statement. The
nonexecutable statements OPTION, DATA, DEF, DIM,
END, FNEND, image, and REM are not allowed in the
stm parameter.

Multiple IF...THEN clauses can be embedded within a
single IF statement to perform various kinds of

conditional tests, as shown in figure 4-7. The || -

maximum number of IF...THEN clauses is governed
only by the 150 character line width limitatiom.

The IF statement in figure 4-7 contains two |

IF...THEN clauses to test for a zero value in each
of the numeric variables A and B. If both A and B
are zero, C is assigned the value 1l4. If neither A
nor B is zero, C is not assigned the value 14,

When the IF statement contains multiple IF...THEN
clauses, the clauses are tested consecutively,
beginning with the first clause.

030 iF A=0 THEN IF B=0 THEN LET C=14

Figure 4-7. Nested IF...THEN
Statement Example

19983900 H

g, dependiﬂs

: be any‘ executable

The stateme_n;s

They cannot “be
PTI! '». DATA DEF,

5.

6.

IF A<O THEN 150 ELSE 160

IF A$="STOP" OR AS$="END" THEN STOP
ELSE 100

IF X=0 THEN LET Y=0 ELSE LET Y=Y/X

IF A=0 THEN IF B=0 THEN PRINT 1
ELSE PRINT 2 ELSE PRINT 3

IF A=0 THEN IF B=0 THEN PRINT 1
ELSE PRINT 2

IF A=0 THEN GOSUB 500 ELSE IF B=0
THEN GOSUB 600 ELSE LET B=3

19983900 H

Figure 4-9. IF...THEN...ELSE
Statement Examples

: to stop wheu the
either STOP or -END;
'line 100 when A$

is no ELSE clau
imple - IF.. THEN.

LOOPING

Looping, the repetitive execution of the same
statement or statements, can be efficiently con-
trolled in BASIC with the FOR and NEXT statements.
Table 4-2 summarizes these looping statements and
their effect in a program.

FOR... NEXT STATEMENTS

The FOR statement initiates repeated looping
through the statements that physically follow the
FOR statement, up to and including a corresponding
NEXT statement. The FOR statement must appear as
the first statement of the loop, and the NEXT
statement must be the last statement of the loop.
The format of the FOR...NEXT statements is illus-
trated in figure 4-10.

4-3@

TABLE 4-2. LOOPING STATEMENTS
Statement Effect Usage
FOR " Marks the beginning of a loop and in- FOR I=1 TO 10
itiates its execution.
NEXT Marks the end of the FOR loop; tests for NEXT 1
end-of-loop condition and reexecutes or
terminates depending on the results.

1. FOR snv = neq TO nep STEP neg
(or)

2. -‘FOR snv = neq TO ney

NEXT snv

snv Indicates simple numeric variable
(called the control variable; it must
be identical in both statements).

neq Indicates any arithmetic expression
(called the initial value).

ne; - Indicates any arithmetic expression
(called the final value).

neg Indicates any arithmetic expression

(called the step value).

Figure 4-10." FOR...NEXT Statement Formats

When the FOR statement is executed, the expressions
are evaluated and their values are saved as ini-
tial, step, and final values of the loop. The con-
trol variable is assigned the initial value and, if
it does not surpass the final value, the statements
between the FOR and NEXT statements are executed.
When the NEXT statement is encountered, the value
of the control variable 1is adjusted by the step
value. A comparison is made between the value of
the adjusted control variable and the specified
final value: if the control value has not sur-
passed the final value, looping continues at the
statement following the FOR; if it has, the loop is
complete and execution continues with the statement
following NEXT. The statements between the FOR and
NEXT statements are never executed if the initial
value is beyond the final value.

The STEP value can be positive or negative. For a
positive STEP value, the initial value must be less
than the final value upon entrance to the 1loop.
Similarly, for a negative STEP value, the initial
value must be . greater than the final value. If
either condition is not met, the loop does not exe-
cute, and control branches to the statement follow-
ing the NEXT statement. Figure 4-11 illustrates a
loop with a specified STEP value of +2. Execution
of the loop in figure 4-11 causes the values 1, 3,
5, 7, 9, and 11 to be printed. Statements 20
through 30 are repeated six times, once for each
value assigned to X.

4-4

010 FOR X=1 TO 11 STEP 2
020 PRINT X

030 NEXT X

040 END

Figure 4-11. Loop With Specified STEP Value

The initial, final, and STEP expressions are
evaluated only once (upon entrance into the loop).
These values do not change during execution of the
loop, even if the program changes the value of the
variables within the expressions. The value of the
control variable, however, can be changed by state-
ments within the loop; its last value is always
adjusted by the STEP value and is used in compari-
son to the final value, as shown in figure 4-12.
Execution of the loop in figure 4-12 causes the
values 2, 4, 6, 8, and 10 to be printed. Even
though the FOR statement specifies that the control
variable X be incremented by an implicit STEP value
of +1 until it exceeds 10, the LET statement adds 1
to X, thereby causing the control variable to be
incremented by 2 for each pass through the loop.
Thus, the value of the control variable can be

_changed by statements within the loop.

010 FOR X=1 TO 10
020 LET X=X+1

030 PRINT X

040 NEXT X

050 END

Figure 4-12. Control Variable Value Changed

After a loop has repeated itself the specified
number of times, the final wvalue of the control
variable is the first value not used. That is,
upon normally exiting from a loop, the control
variable assumes its final value plus an additional
STEP value (+1 when a STEP value is not speci-
fied). Using a control statement, such as GOTO, to
prematurely terminate a loop causes the control
variable to retain the value it has when the con-
trol statement is executed. Figure 4-13 shows the
effect that a normal exit from a loop has on the
control variable. The X in line number 120 assumes
the value of 1, 3, 5, 7, 9, and 11, and the X in
line number 140 assumes the value 13.

19983900 H

2 J

JJ

[

W

)

3

110 FOR X=1 TO 11 STEP 2
120 PRINT X

130 NEXT X

140 PRINT X

150 END

Fiﬁure 4-13. Loop Exit Effect
on Control Variable

Loops can be nested (loops specified within loops)
to a maximum depth of 10, but the loops must not
intersect each other. Examples of correct and
incorrect looping are shown later in this section.

A loop can contain a GOTO statement or other state-
ments that transfer control outside the range of
the loop. In this case, the loop terminates prema-
turely, and the control variable retains its latest
value. Do not transfer control into a FOR...NEXT
loop. See Future System Migration Guidelines,
appendix E. '

Figure 4-14 shows the effect of the FOR statement
on control variables. The loop initiated in line
number 112 did not execute because the initial
value is not greater than the final value, and the
step value is negative. Figure 4-15 shows examples
of correct and incorrect looping.

Statement Values
110 FOR X =2to 4 2,345
111 FOR G = 6 TO 3 STEP -1 6,5,4, 3, 2

112 FOR X =5 TO 10 STEP -1 5

Figure 4-14. FOR...NEXT Statement Examples

Correct: Incorrect:
rF?RX... F(?RX...
—FO.RY... . FO.RY...
FO.R zZ... - NE'XT X
NE'XT z NE'XT Y
FOR Q
NE.XT Q
—NE.XT Y
—NéXT X

Figure 4-15. FOR...NEXT Loops

19983900 H

ERROR | ‘N% INTERRUPT

4~59

® 46

19983900 H

[\

I

D)

100 ON ATTENTION GOTO 900

200 ;RINT "ENTER NEXT ORDER NUMBER OR 0"
210 INPUT N
220 IF N=0 GOTO 500 '0 MEANS END OF ORDERS

300 ;RINT "ENTER NEXT ITEM NUMBER OR 0"

310 INPUT I

320 IF 1=0 GOTO 400 '0 MEANS END OF ITEMS

330 PRINT "ENTER QUANTITY"

340 INPUT @

900 z=ASL(0) 'Z IS LINE NUMBER AT WHICH TO CONTINUE

910 ON ATTENTION GOTO 910 'RESET SO INTERRUPT WILL NOT CHANGE Z
920 PRINT "INTERRUPTED AT LINE";Z;", LAST ORDER ";N;", LAST ITEM";I
930 PRINT “TYPE STOP, NEXT ORDER, NEXT ITEM, OR CONTINUE"

940 INPUT 73

950 IF Z$="STOP" THEN STOP

960 ON ATTENTION GOTO 900 'RE-ENABLE AT ORIGINAL LINE NUMBER
970 IF Z$="NEXT ORDER" THEN GOTO 200

980 IF Z$="NEXT ITEM" THEN GOTO 300

990 IF Z$="CONTINUE" THEN JUMP Z

995 GOTO 910 . 'INVALID RESPONSE. REPEAT QUESTION
999 END

ENTER NEXT ITEM NUMBER OR 0

? 443

ENTER QUANTITY

? ATTN

INTERRUPTED AT LINE 340 , LAST ORDER 6087 , LAST ITEM 443
TYPE STOP, NEXT ORDER, NEXT ITEM, OR CONTINUE
? NEXT ITEM

ENTER NEXT ITEM NUMBER OR O

? 4b4

ENTER QUANTITY

7?2

TThe key that initiates an interrupt varies with the operating system
and the terminal mode. Consult the appropriate reference manual for
this information.

Figure 4-17. ON ATTENTION Statement Example

1.

 ‘ '3.

19983900 H

 fi§u;eﬂ4418. 16@}ERQO§4Stéiement.bemats

ON ERROR GOTO In | JUMP ne | _
2. ON ERROR THEN in " ~ ne lIndicates numeric constant, variable, ’
T R L i e X s . or expression.
ON ERROR :
Indicates line number . _ Figure-4-19. JUMP Stafement Format

100 ON ERROR GOTO 160

110 PRINT "READ ERROR WILL BE PROCESSED BY PROGRAM"
120 READ X1,X2,X3

130 PRINT "VALUES READ WERE ";X1;",";X2;",AND";X3
140 STOP

150 REM ERROR PROCESSING ROUTINE

160 LET X=ESL(X)

170 LET Y=ESM(X)

180 IF X=120 THEN 210

190 PRINT "ERROR NOT IN STATEMENT 120"

200 STOP

210 PRINT "ERROR NUMBER #";Y;"DETECTED AT LINE #";X
220 JUMP NXL(X)

230 DATA 2.0,3.0,"STRING"

240 END

produces:

READ ERROR WILL BE PROCESSED BY PROGRAM
ERROR NUMBER # 126 DETECTED AT LINE # 120
VALUES READ WERE 2 , 3 ,AND 0

Figure 4-20. Example Using ON ERROR, JUMP, ESL, ESM, and NXL

® 4-8

J I

19983900 H

Q@

B

lndu:ates a dummy varlable

”

x lndwates a dummy

: , F\igur'e“ _4-22.' ESL thctiori Format

"since the most recent:‘
3 atement. Thus,, when
tion’ “value should “be
! N ERROR statement.

‘=ESL(x) , A is assigned‘
atement that caused the
xample of the ESL

'alué of b-’l‘ if "ait‘,
red since’ the ‘most
statement. : Thus,

19983900 H

;NXI. FUNCTION

Fi gure 4-23 .

ESM Funcfio

4-9 @

200

2

I

BASIC FUNCTIONS 3

A function is a predefined algorithm. A function
returns a value to the point of reference each time
the function is invoked from an executing program.

Two kinds of functions are provided with BASIC:
the predefined functions of the language, called
built-in functions; and the functions that can be
written by using the DEF and FNEND statements,
called user-defined functions. The built-in func-
tions are in the form of subset programs written to
perform specific kinds of tasks.

The built-in functions and user-defined functions
are classified as follows:

Built-in functions:

Mathematical functions

System functions

String functions

Matrix functions

Error and interrupt processing functions
1/0 functions

Uset—definedvfunctions:

Single-line functions
Multiple-line functions

Although all of the built-in functions are defined
in this section, some of the functions are described
in more detail in other sections of this wmanual.
The seven tables 1in this section identify the
built-in functions and indicate their functional
classification. See the Summary Card at the end of
this manual for a complete alphabetical listing of
the built-in functions. (See the table of contents
for specific section references.) The user-defined
functions are described at the end of this section.

REFERENCING A FUNCTION

Built-in and user-defined functions are referenced
by specifying a function name followed by asso-
ciated function parameters in parentheses. If no
parameters are used in the function definition, no
parameters are needed in the function reference.
The form for a function reference 1is shown 1in
figure 5-1.

function name (eq.ep, . . . 2p)

e Indicates numeric or string expression;
parameter is gptional.

Figure 5-1. Function Reference Format

19983900 H

The number and type of parameters (e) passed with a
function reference must exactly correspond to the
number and type of parameters expected by the func-
tion; for example, a string must be passed where a
string 1is expected and a number must be passed
where -a number is expected. A diagnostic is issued
if the type and number of parameters contained in
the function reference do not correspond to those

“ expected in the definition.

Built-in function parameters that are integer
quantities use the value of the numeric expression
rounded to an integer. User-defined functions can-
not specify that a parameter is an integer. With
user-defined functions, all numeric values are real
numbers and the function either truncates or rounds
values to integers, depending upon the written
statement. Function reference parameters are eval-
uated and the values of the - parameters are passed
to the function. The function is then evaluated
and the result is returned to the point of the
function reference.

MATHEMATICAL FUNCTIONS

Table 5-1 is an alphabetical list of the standard
mathematical functions that can be referenced by a
BASIC program. In this table, the function argu-
ment ne can be a numeric expression of any com-
plexity and can include other function references.

.ffﬁdré 5-2 shows an example of the ABS and the SQR

mathematical functions. The absolute value of =71
is multiplied by the square root of 520.

10 LET C=ABS (-71)

20 PRINT C

30 LET D=SQR(520)

40 PRINT D

50 LET T=C*D .

60 PRINT "ABS(-71)#SQR(520)=";T
70 END

produces:

[4]
22.8035
ABS (-71)*SQR(520)= 1619.05

Figure 5-2. ABS and SQR Functions Example

RANDOM NUMBER GENERATION

The generation of pseudo random numbers is con-
trolled by the RND function and by the RANDOMIZE
statement. The RANDOMIZE statemeant overrides the
predefined sequence of numbers generated by RND.

TABLE 5-1. MATHEMATICAL FUNCTIONS

Function Déscription
ABS(ne) Finds the absolute value of ne.
ATN(ne) Finds the arctangent of ne in the principal value range (-7 /2) to (+m/2).
C0S(ne) Finds the cosine of ne; the angle ne is expressed in radians.

EXP(ne)
INT(ne)

Example:

INT(5.95)

LOG(ne)

RND or RND(ne)

over the range of 0 to 1.

SGN(ne)

SIN(ne)

SQR(ne)
TAN(ne)

Finds the value of.e to the power of ne.
" Finds the largest integer not greater than ne.

= 5 and INT(-5.95) = -6.

Interrogates the sign of ne and returns a value of 1 if ne is positive;
0 if ne is 0; or -1 if ne is negative.

Finds the sine of ne; the angle ne is expressed in radians.
Finds the square root of ne; ne must be > 0.

Finds the tdngent of ne; the angle ne is expressed in radians.

Returns -a pseudo random number from the set of numbers uniformly distributed
See the description and examples in this section.

RND FUNCTION

The RND function returns a pseudo random number
from the set of numbers uniformly distributed over
"the range of 0 to 1. The formats for the RND func-
tion are shown in figure 5-3. Do not use the second
format because it might not. be supported in future
versions of BASIC. (See Future System Migration
Guidelines, appendix E.)

RND is equivalent to RND(0) in that it returns a
value in the established sequence of- pseudo random
numbers uniformly distributed over the range of 0
to 1. Random numbers are returned in the same
sequence each time the program containing RND is
executed unless the RANDOMIZE statement is used
to override the predefined sequence. RANDOMIZE
affects RND(O). RND(ne) affects RND, if ne>0. The
RANDOMIZE statement and its effect on random number
generation is discussed in more detail later in
this section. .

5-2

RND

Figure 5-3. RND Function Format

An example of the RND function is shown in
figure 5-4. The program was executed twice. The
RND function twice returned the same set of pseudo
random numbers. An example later in this section
shows this same program with the RANDOMIZE state-
ment that ensures that a different sequence of
pseudo random numbers is generated each time the
program is executed.

19983900 H

D)

€

(4

™

100 FOR T=1 T0 3
110 L=RND

120 E=RND

130 I=RND

140 PRINT L,E,I
150 NEXT T

160 END

produces:

.580114 .950513
.29762 <4537
.275736 -305651

.786371
6.26194E-3
.689101

produces:

.580114 +950513
«29762 4537
.275736 .305651

-786371
6.26194E-3
.689101

Figure 5-4. RND Function Example

The value of ne in RND(ne) affects random number
generation as follows:

ne>0 A random number sequence is initialized
based on the value of ne, and the first
number in the sequence 1is returned.
Each reference to RND with ne equal to
a particular positive constant value
initializes the sequence at the same
starting point and returns the same
value. Therefore, the same number or
the same sequence of numbers can be
returned each time RND is referenced
and/or each time the program is run if
the ne>0 arguments are used. If ne)0,
RND(ne) can affect RND without the
argument.

ne=0 The next number in the established
sequence of pseudo random numbers is
returned. If the sequence was not
previously established by an ne>0 RND
reference, a standard constant is used
. to initiate the sequence. The same
sequence of random numbers is returned
when using RND(0) references each time
the program is run unless you initial-
ize the sequence with a different posi-
tive (>0) value each time the program
executes. This can be done by using a
first reference, such as RND(CLK(0)).
CLK(0) returns the time-of-day. 1f
ne=0, RANDOMIZE affects RND(ne).

ne<0 The first reference initializes a random
number sequence based on the current
time of day, and returns the first value
in that sequence. Subsequent refer-
ences with ne<0 return the next number
in the sequence. A program that uses
ne<0 returns a different value on each

19983900 H

reference and a different sequence each
time it is run. The sequence initial-
ized by ne<0 is separate from the se-
quence controlled by ne>0, and ne=0
references to RND sequences.

RANDOMIZE STATEMENT

The RANDOMIZE statement causes a new initial or
seed value to be placed in the random number gen-
erator each time a program containing the RND func-
tion is run. The placement of this new value in
the random number generator overrides the prede-
fined sequence of pseudo random numbers generated
by the RND function; therefore, the RND function
returns a different sequence of values each time
the program is executed. Figure 5-5 shows the
format for the RANDOMIZE statement.

RANDOMIZE

Figure 5-5. RANDOMIZE Statement Format

Figure 5-6 shows an example using RANDOMIZE to
control random number generation. This program was
executed twice. The RANDOMIZE statement causes RND
to return a different sequence of values, unlike
the example shown for the RND function that does
not use RANDOMIZE (figure 5-3).

090 RANDOMIZE
100 FOR T=1 TO0 3
110 L=RND

120 E=RND

130 I=RND

140 PRINT L,E,I
150 NEXT T

160 END

produces:

-34368 -310629
- 993254 «237534
481367 .900958

.590422
-876869
.320888

produces:

.463818 .82842
.882296 .96833
.630496 41131

977286
6.09989€-2
«654263

Figure 5-6. RANDOMIZE Statement Example

5-3

10 LET X=TIM(1)

20 PRINT "CLK$ TIME OF";CLK$;"=";CLK(1);"IN CLK(X) TIME"
30 PRINT DATS

40 LET Y=TIM(2)

50 PRINT "TOTAL ELAPSED TIME IS";Y-X

60 END

produces:

CLK$ TIME OF 12.40.43.= 12.6786 IN CLK(X) TIME
81/06/22.
TOTAL ELAPSED TIME IS .001

Figure 5-7. Program Using System Functions CLK$, DAT$, and TIM

e argument

5-4

rg

on appears in
ne 1is evaluated and

19983900 H

J

J

i~

{1

3

| B LPAD$(se ne){

;~KuPRC$(se) h’:

TABLE 5-3.°

STRING: FUNCTIONS .

5 Description

:tlnstead

f~LIRM$1Se) .
CLWRCS(se)

ORD(se), -
e e ~collating sequence being used.

‘ POS(se] seg,ne)
POS(se] sez) ‘
RPAD$(se ne)

STR$(ne) or

;STR$(ne se) ‘spec1f1cat1on.

"‘Returns the ASCII code 1n dec1ma1 of the character 1n 1ts argument.

-Returns the xharacter with the decimal code (ord1nal pos1t1on in the collat1ng se-
~quenee7 ‘that corresponds to ne. : 7

;J Pads strianse'outlto ne'characters by adding spaces on the left_of’string se.

ims strung se of a]l lead1ng space characters.

5Returns a str1ng con515t1ng ‘of the se str1ng va]ue with all uppercase letters
replaced by their lowercase equivalents.

vReturns the dec1ma1 code (ord1na1 position) of a character in str1ng se in the .

’_:Returns the pos1tion of str1ng se2 w1th1n str1ng sej.
*’w1th character ne. . If ne is omitted, 1 is assumed.

wlPads strlng se to ne characters by lnsertlng blanks on the r1ght of strlng se.
~f RPT$(s& ne) ,f f'”vLReturns the str1ng created by repeating the se string ne tlmes.
RTRM3(se) ~:Tr1ms strlng e of an tra111ng space characters.

Converts numer1c va]ue to str1ng representatlon. " If present, se represents an4image

i Returns str1ng se with all lowercase 1etters rep]aced by their uppercase equlvalents.

'Canerts str1ng se to 1ts numer1c value.

use,oRD

The position search'beginSf’

‘tSee ﬁuture System Migration Guidelines, appendix:E.‘

‘being. used by your 'system,

CH RS(na)

'n_e. " Indicates numeric constant; vanable, or
B expressnon.

;rigufep5—9;7“guns?run¢:idn§rormat'

CER$"1ewgvalid for all characters in the current

‘collating sequence, including nonprinting. charac-

ters, 1If the standard ASCII collating sequence is
in effect, CHR$. character values exist for argument

‘values 0 through 127; 1if the nonstandard display

code collating sequence 1is in effect, CHR$ charac-

.ter values exist for argument values 0 through 63,

or . 1 through 63, depending on the character set
(See appendix A.)
OPTION COLLATE . controls the collating sequence
being used ~and 1is described in: -the section on

'Fundamental BASIC Statements. A fatal error re-

sults if CHR$ argument values are outside the valid
range of characters represented in_ the collating
sequence.

19983900 H

This function returns the same result whether ‘used

in ASCII or" ‘normal mode if the standard ASCIL col-

lating sequence is in effect. The function returns
different values 1if the nonstandard collating se-
quence is in effect. The mode of the program is
controlled by the AS (ASCII) parameter in the BASIC
control statement and by the mode of the terminal
in the BASIC subsystem under NOS. (See Batch Oper-
ations, - section 12, and appendix A.) In normal
mode, 12-bit escape code characters do not exist.
However, if the standard collating sequence is in
effect, CHR$ returns a 12-bit escape code character
for argument values of 0 through 31 and for values
of 96 through 127, which are treated as two normal

6-bit characters when manipulated or printed. An

example of = the CHR$: function is shown in
figure 5-10.

LEN FUNCTION

The LEN. function returns the current length, in
characters, of the string specified by the argument
in this function. Figure 5-11 shows the format for
the LEN function, and figure 5-12 shows an example
of how to use this function to return the length of
che string S$.

5-5

10 REM 98 IS THE ASCII CODE FOR LOWERCASE B
15 OPTION COLLATE STANDARD

20 LET B$=CHR$(98)

30 PRINT BS;" IS"'LEN(B$)‘"CHARACTER(S)"
40 END

In ASCII mode, produces:
b IS 1 CHARACTER(S)

In normal mode, produces:
"B IS 2 CHARACTER(S)

10 REM 98 IS THE ASCII CODE FOR LOWERCASE B
15 OPTION COLLATE NATIVE

20 LET B$=CHR$(98)

30 PRINT BS;" IS";LEN(B$);"CHARACTER(S)"

40 END

In ASCII mode produces:
b IS 1 CHARACTER(S)
In normal mode, produces:

ILLEGAL CHRS ARG AT 20
BASIC EXECUTION ERROR

Figure 5-10. CHR$ Function Example

100 LET $$="543"
110 LET A=LEN(S$)
120 PRINT A

130 END

produces:

Figure 5-12. LEN Function Example

® 5-6

”‘"‘Ans UNCTION

100 LET AS="1234"
110 LET B$=LPADS(AS,6)
120 PRINT "0";BS;"5"
130 END

produces:

0AA12345

Figure 5-14. LPAD$ Function Example

19983900 H

2 J

D
Aﬁ§5

[N

C‘f 100 LET BS="AA12345"
105 PRINT "8";BS;"5"
110 PRINT "8";LTRM$(BS$);"5"
@‘ 120 END
produces:
4 8AA123455
8123455
- Figure 5-16. LTRMS$ Function Example

100 PRINT "PROGRAM FOR ORD FUNCTION"
105 LET A3="a"
110 LET A=O0RD(AS)
115 PRINT "CHARACTER ";AS$;" HAS ORDINAL OF ";A
120 PRINT ORD("LCA™)
he 130 PRINT ORD("'S')
ue of string AS.: 140 PRINT ORD("BS")
: shown below the‘ " 150 END

produces:

PROGRAM FOR ORD FUNCTION
CHARACTER a HAS ORDINAL OF 97
97

53

8

Figure 5-20. ORD Function Example

100 LET AS="FILE A"
110 PRINT AS$
120 LET B3$=LWRC$(A$)

. 130 PRINT BS$
(5‘ 140 END

produces:

FILE A
file a

"§tring constant, v
: represants ‘the str ng

Figure 5-18. LWRC$ Function Example

String constant, van
) . " fepresents theAstrmg to be found
‘ORD FUNCTION - - : e
s . n e e e & Numenc consmnt “'varlable or expresslo H

' <'~,ﬂ,l§;xgur§' 5-21. POS . F@é.tién; Format Srs

D)

19983900 H 5-7 @

RPADS(se,ne)

;,s;e - AA stnng constant, vanable, or expressno
o represents the strmg ‘to be paddad with space

o A‘numenc constant, va ble or expressi
that mdlcates

100 LET A$="D"

110 PRINT "ABC";AS$;"EF"

120 PRINT "ABC";RPADS(AS,2);"EF"
130 END

produces:

ABCDEF
ABCDAEF

Figure 5-24. RPAD$ Function Example

10 PRINT "POS FUNCTION PROGRAM"

20 PRINT

30 LET AS$="OUTSTANDING"

40 LET A=POS(AS,"AN",2)

50 PRINT "THE POSITION OF 'AN' STARTING WITH CHARACTER POSITION 2 IS ";A
60 PRINT POS(AS,"ST")

70 PRINT POS(AS,"AN",15)

80 PRINT POS(AS,"T")

90 END

produces:

POS FUNCTION PROGRAM

THE POSITION OF 'AN' STARTING WITH CHARACTER POSITION 2 IS 6
4
0
3

@ 5-8

Figure 5-22. POS Function Example

19983900 H

J J

N
ﬁﬁiﬁ

"~

)

D)

‘Statemen s and Functions, section 7, for a complete
-discussion of format images.) If se is absent, as
~shown in format 2 of figure 5-29, the string is
formatted according to the .standard rules for

"standard’ ru.
"illusr,ira_‘ es’

LI the repetition argument ne ‘18 ‘gredter than zero;’
the fnnction returns a string consisting of ne

8 of ‘the characters in string se. If ne
“null ‘string is returned. ~If ne 1is less

in' the image stat:ement:. (See I1/0

‘numeri¢ output except no preceding or 'trailing
~blanks are included. (See I/0 Statements and

igection 7, for a complete discussion of
ules for -numeric output.) Figure 5-30
two examples of the STR$ function.

Functions,

‘-'ubkc':sf?,i‘:uNcnoN

The UPRC$ function returns ‘the. original wtring with

“all 'its lowercase letters replaced by the _uppercase
fequivalents. ‘The UPRG$ function is only useful in
'ASCII mode, *In mormal ‘mode, the UPRC$ function re-
turns - the»' original string in its same form because

no. lowercase lettets 1n ‘the normal char-

'ostic ILLEGAL RP'.l'$ ARGUHENT isi

2, or

- 10 LET A$="1A345AA"

20 PRINT AS;"ABC"
. 30 PRINT RTRMS (AS);"ABC"
- 40 END

| produces:

1A4345AAABC
1A345A8C

Figure 5-28. RTRM$ Function Example

: ékpies&'idn’.’

Indicates stnng expremon (lmage -
‘ -speclftcatlon)

, -ERROR ‘AIND INTERRUPT

, 2 ' The ‘format ‘for the UPRCS function ‘is
‘kfshown in figure 5-31, ~Figure 5-32 illustrates an
example of this function (all of the letters change’

Figure 5-29. STRS$ Function Format

VAL FUNCTION

‘The VAL function converts a string ‘containing
nu.mbers to a numeric value. The VAL function 1is
{the inverse of the ‘STR$ function. The format of
‘the VAL function is indicated in figure 5-33. The
string must be written in the form of ~a ‘numeric
‘constant.. Examples of this function are’ illus:rated
in figure 5-34.

P w()(: SSING

.f'l‘able 5-—4 'summarizes the functions used in 'error
~and intetrupt processing. ‘deta
ire in sectiom 4. -

10 LET A$ = RPT$(*",132)
20 IF B$ = RPT$('A’,80) THEN 90

05 LET C$ = RPT$(“ABC",2)

A$ is assigned the string consisting of 132 asterisks (*).

Control is transferred to statement 90 if B$ consists
of 80 blanks.

C$ is assigned the string ABCABC.

Figure 5-26. RPT$ Function Examples

19983900 H

5-9 @

TABLE 5-4. ERROR AND INTERRUPT PROCESSING FUNCTIONS

J J

10 LET B$ = STR$(A(1,6)) Assuming A(1,6) = 1234, execution of this statement
assigns the string 1234 to B$.

20 LET A$=STRS$(I,“PRICE = $###.##) Assuming | = 203.23476, execution of this statement
assigns the string PRICE = $203.23 to AS.

Figure 5-30. STR$ Function Example

1/O FUNCTIONS

10 LET AS=UPRCS$("Department 4'")

20 PRINT AS Table 5-6 briefly describes the functions used in
30 END I/0 operations. Further details of these functions
are described in the section I/0 Statements and
od < Functions.
produces:

DEPARTMENT 4

USER-DEFINED FUNCTIONS

Figure 5-32. UPRC$ Function Example BASIC, in addition to providing built-in functioms y
"~ of the language, also permits you to define your own

functions. User-defined functions can be written

either as single- or multiple-line functions. When

these functions are referenced, they return a value

based upon the parameters passed by the function

reference and the function definition. User-defined

functions are referenced the same as built-in

functions. See Referencing a Function.

110 LET B9 = VAL(B$(1)) Assuming that B$(1) contains a string 1234, then the numeric value
1234 is assigned to B9.

100 LET X4 = 2*C4 + VAL("123.7") i .
Similarly for these two examples, numeric values are extracted and used

090 LET IF VAL(D$(1.J))< 24 THEN 291 for arithmetic purposes or for comparison with a numeric constant.

Figure 5-34. VAL Function Examples

J)

@ 5-10 19983900 H

[

Bl

- TABLE 5-5.

MATRIX FUNCTIONS .

- Description

IDN(neq)
IDN(nel,nez)

;Returns an 1dent1ty matrix. (ones along the d:agonal
in the remaining areas).
‘with n'x n elements ‘where n =
- ;of -array IDN 1f no ne is specif1ed.

fReturns~a matr1x of Mo
L ooneix ney or the dimensijon o the array to whlch CON is.
: ass1gned. . . :

‘Returns ‘the t?anspose of ma rixvm;m

ZerOSﬂng
The result is a square matrxx v
nej. = nep or n = dlmenSIOH

with dinensions of ne]:x nez,g‘f

TABLE 5-6. I/0 FUNCTIONS

Function Description

TAB(ne) Returns a string of blanks, which
results in moving the print mecha-
nism to print position ne. TAB can
on]{ be used with the PRINT state-
ment.

The DEF and FNEND statements are provided to write
user-defined functions. To write a single-line
function, only the DEF statement is used. To write
a multiple-line function, the function definition
must begin with the DEF statement and end with the
FNEND statement. Any BASIC statement, except END
and another DEF statement, can be located between
the DEF and FNEND statements. Table 5-7 summarizes
the effect and usage of the DEF and FNEND state-
ments.

TABLE 5-7. USER-DEFINED FUNCTIONS
Statement Effect Usage
DEF Defines a DEF FNA(X) = A+B+C
function.

19983900 H

SINGLE-LINE FUNCTIONS USING DEF

The DEF statement is used to write a single-line
user-defined function. A single-line function is a
complete definition on one statement line. It can
be in the form of a numeric function or a string
function, and it can contain parameters (up to 20
parameters are allowed). The format for a single-
line function appears in figure 5-35.

1. DEF FNa=ne

,sv20) = ne

2. DEF FNa (svq,svp, . . .

a Any alphabetic character that uniquely
identifies the function.
ne Indicates numeric expression:
se Indicates string expression.
sVq . . . SVpq Indicates simple variable numeric or
string.
NOTE

Form<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>