
NOS 2.3

FEATURE NOTES

SMD130712

..

NOS 2.3 Feature Notes

SECTION
Chapter

INTRODUCTION
1 • Introduction

CYBER SUPERMINI - 810/830

CONTENTS

2. Cyber Supermini Overview
3. 834 Disk Subsystem
4. 639 Magnetic Tape Subsystem
5. CC634B Console
6. Printer Support Utility (PSU)
7. Supermini Procedures

SCREEN MANAGEMENT ENHANCEMENTS
8. Screen Management Enhancements

NP/QTF, PTF
9. NP/QTF, PTF

NETWORK PRODUCTS ENHANCEMENTS
10. Network Products X.25 Enhancements
11. 3270 TIP Standardization
12. Miscellaneous Network Products

Usability Enhancements

800 SERIES ENHANCEMENTS
13. Fault Tolerant Mainframe Error Processing
14. UEM Checkpoint

ALTERNATE PP/CRITICAL ERROR LOG
15. Alternate PP/Critical Error Log

380-170 (NAO) CODE CONVERSION
16. 380-170 (NAO) Code Conv~rsion

UCOPY for Control Data CONNECT
17. UCOPY for Control Data CONNECT

·i

PAGE

3
7

13
17
53
57

65

99

123
129

131

135
145

149

151

'

157

ii NOS 2.3 Feature Notes

END USER ENHANCEMENTS
18. Human Interface Improvements 163
19. NOS Procedure and Flow Control Command

Enhancements 165
20. BLOCK Command 167
21. CLASS Command Enhancements 169
22. EFFECT Command 173
23. ERRMSG Command 175
24. FCOPY Command Enhancements 177
25. Get Reprieve Information 179
26. RECLAIM Command Enhancements 183
27. REDO Command 187
28. SHOW Command 189
29. COBOL Version 5.3 Enhancement 191
30. Data Catalog Version 2.0 Enhancements 193
31. Fortran 5, Changes to GETPARM 195

OPERATOR/ANALYST ENHANCEMENTS
32. IAF Abort Processing Enhancements 199
33. Operator Notification of Insufficient Resources 201
34. Installation Defined System Events 203
35. Indirect Access Permanent File

Processing Enhancements 205
36. ACPD/CPD Enhancements 207
37. Disk Error Transparency 211
38. FLAW Command Enhancements 213

ADMINISTRATION ENHANCEMENTS
39. Alternate Catlist Security 215
40. Terminal 1/0 at Logoff 219
41. Default Charge Processing 223
42. Permanent File Catalog -

Charge and Project Number 227
43. Password Randomization 231
44. Restrict User to Default Charge ~33
45. Security Violation Tracking 237
46. /CHARGE for SUBMIT 239

(

NOS 2.3 Featu~e Notes
Introduction

CHAPTER 1

INTRODUCTION

NOS 2.3.contains many new features and enhancements to the
existing NOS 2 features. These new features and
enhancements represent Control Data's continuous drive for
excellence in this product. The spectrum of new features
range from support of the Cyber Supermini and its new
peripheral hardware to enhancements for programmers and end
users of the computer system. The Tailored Release Process
that was introduced at NOS 2.2 Level 605 has been expanded
to support additional software product options, and, for the
Cyber Supermini m9del 810-1, a fully configured system.
Enhancements have also been made to the NOS Site manuals.
The three manuals, Installation Handbook, Operator/Analyst
Handbook, and System Maintenance Reference Manual, have been
reorganized into four manuals which document the four
different tasks associated with a NOS system. They are the
Installation, Operations, Analysis, and Administration
Handbooks.

The Central Software Support organization of Control Data
has put together this document to describe the new features
in NOS 2.3. Many of the following chapters contain specific
information about the design of the new features and
examples of their usage.

2 NOS 2.3 Feature Notes
Cyber Supermini Overview

(This page left intentionally blank.)

NOS 2.3 Feature Notes
Cyber Supermini Overview

CHAPTER 2

CYBER SUPERMINI OVERVIEW

3

The Cyber 180 Supermini series consists of the Model 810 and
the Model 830. Operating system support for these
mainframes is being introduced with the NOS 2.3 release.

The introduction of the tailored release of NOS at 2.2 L605
allows for a quick installation of the NOS operating system.
An additional enhancement to this process includes
procedures specifically designed for the Supermini customer.
These procedures have been written to help in the initial
setup of operating procedures such as user validation,
permanent file backup, etc.

The following chapters cover the peripheral support and
features added to NOS 2.3 for the Supermini system •

• 834 Disk Subsystem

• 639 Magnetic Tape Subsystem

• CC634B Console

• Printer Support Utility (PSU)

Supermini Procedures-

4 NOS 2.3 Feature Notes
Cyber Supermini Overview

2.1 Model 810

The Model 810 is a compact, air-cooled, microcoded, single
central processor with 2M bytes of central memory, 10 PPs
and 8 external 1/0 channels. CIP Level 02 supports this
mainframe.

Field upgradeable options include a processor performance
upgrade to the equivalence of a Model 830, central memory
expansion to 16M bytes, 10 additional PPs and l or 2 channel
increments (for a maximum total of 16 channels.) Operating
power may be 50, 60 or 400 Hertz with a battery backup
option available to ride through up to a 3·second loss of
power (at which point NOS will checkpoint and step the
system) •

The 1/0 channels are of two types: Cyber 12-bit channels and
16-bit Integrated Controller Interface (ICI) channels. The
basic IOU configuration consists of 2 ICI channels and 6
Cyber channels. Each of the 2 channel increments add 3
Cyber channels and 1 ICI channel. The ICI channels
interface to the low cost peripherals; the 834-11 disk
subsystem and the 639-1 magnetic tape subsystem. The IOU
also interfaces to the time of day/date clock and the
RS232-C direct communication ports for the console and
remote maintenance (two port multiplexor).

2.2 Model 830

The Model 830 has about 1.6 times the power of the Model 810
and, with the dual CPU option, the power increases to about
2.9 times that of the 810. The Model 830 has the same basic
hardware features as the 810, but has an additional field
upgradeable option of a second CPU.

2.3 Peripherals

The Cyber 180 Superminis have their own set of peripherals
offering maximum performance and m1n1mum space and power
requirements at a low cost. These peripherals are:

(

NOS 2.3 Feature Notes
Cyber Supermini Overview

• 834 Disk Subsystem

• 639 Magnetic Tape Subsystem

• 533/536 Line Printers supported through
software

• CC634B Console

the

• 553/556 Remote Print Station supported through RBF.

2.4 Model 810-1

5

PSU

The Cyber 180 Model 810 has been specially packaged with
selected peri~herals to make up the 810-1 Hardware Package.
This package includes:

• Cyber 180 Model 810 Central Processor with 10 PPs, 2M
bytes CM, 6 Cyber channels and 2 ICI channels •

• CC634B Console

• 1 834-11 Disk Subsystem with 7255-1 disk adapter •

• 1 639-1 Magnetic Tape Subsystem with 7221-1 tape
adapter •

• 1 65K NPU for communications.

6 NOS 2.3 Feature Notes
834 Disk Subsystem

(This page left intentionally blank.)

I

\

NOS 2.3 Feature Notes
834 Disk Subsystem

CHAPTER 3

834 DISK SUBSYSTEM

3. 1 Introduction

7

The 834 Disk Subsystem is a disk subsystem which is
functionally similar to the 844 and 885 disk subsystems
(7155 controller). The formatted capacity for use by NOS is
70 percent that of a double density 844(41/44) disk or
260,4800 PRUs. This is equivalent to 167 megabytes (6-bit
bytes), 125 megabytes (8-bit bytes), or 16,700,000 60-bit
words. The 834 disk supports full tracking only. 834
support was added at NOS 2.2 L605 and was available on the
CYBER 170-815/825. At NOS 2.3 L617 the NOS utilities and
drivers were extended to support the 834 subsystem on the
CYBER 180-810/830. The 834 Disk Subsystem consists of three
functional units:

• 834 Disk - An 8-inch drive with nonremovable storage
media.

Control Module (CM) The intelligent element that
drives up to four 834 disks and which can interface
with up to two 7255 adapters.

8 NOS 2.3 Feature Notes
834 Disk Subsystem

. 7255 Adapter - The logical element between the channel
and up to eight control modules which transforms
control module functions to make them functionally.
similar to the 7155 controller protocol.

A mainframe can support a maximum physical configuration of
eight 834 disks and eight control modules. One or two
cabinets are added to one end of the mainframe with up to 4
834 disks and 4 control modules in each. Express Deadstart
Dump (EDD) is able to dump 7255 adapter peripheral microcode
(controlware) only. Control module controlware cannot be
dumped.

3.1. l Multimainframe Support

At NOS 2.3 L617 multimainframe via shared RMS support was
added for the 834 Disk Subsystem. A second mainframe must
be physically positioned contiguous with the 834 cabinet(s)
of the first mainframe. The second machine cannot add
additional 834 cabinets on its opposite side. Running in
multimainframe mode therefore does not allow an increase in
the number of 834 drives or control modules which can be
su·ppor ted. When shared RMS is used, the two mainframes
share at the control module level. Sharing at the 7255
adapter or drive level is not possible. It is strongly
advised-that if 834 equipment is to be used in shared RMS
mode, then the subsystem should be cabled with one control
module per shared device to maximize throughput.

3.2 External Modifications

3.2.l EQPDECK

Two new equipment mnemonics are defined as follows:

DD - 834 Disk
CM - Control Module

NOS 2.3 Feature Notes
834 Disk Subsystem

9

The unit number that NOS associates with an 834 disk is
generated as follows:

unit number= (control module equipment number)*lOB
+(834 unit number)

For example, if the control module equipment number is equal
to 7, and the 834 unit number is equal to 2, then the unit
number associated with this 834 disk is 72.

The 834 disk is defined in the EQPDECK with the following EQ
command:

EQord=DD,ST=st,UN=unl/ .•• /unx,AP=ap.

Channels used to access the 834 device are specified by the
CM EST entry. The EST entry for the control module is used
to specify channels to be used to access drives, to specify
peripheral microcode. load/no load options for the control
module, and when granting a customer engineer access to the
control module for maintenance purposes (because more than
one control module may be on a channel). The CW parameter
on the EQ command specifies the load/no load opt.ion. If the
load option is desired, cc=CM, and if the no load option is
desired, cc~NCM. The control module is defined in the
EQPDECK with the following EQ command:

EQord=CM,EQ=eq,CH=Cl/C2,CW=cc.

An LBC EQPDECK entry identifies the type of peripheral
microcode to be installed in the 7255 adapter. For 834
disks, this entry defines a 7255 adapter for these channels
and determines whether or not this peripheral microcode is
to be loaded. If the LBC entry is not specified, the system
will examine ··the mnemonics of the device in the EQPDECK
entry and cause the default version of peripheral microcode
to be installed. Use the LBC entry to override the defaults
with the following format:

LBC,ID,cl,c2, ••• ,cn. (7255 peripheral microcode loaded)
or

LBC,Nl,cl,c2, ••• ,cn. (no 7255 peripheral microcode
loaded)

Refer to the NOS 2 Analysis Handbook for a more detailed
description of these EQPDECK commands.

10 NOS 2.3 Feature Notes
834 Disk Subsystem

3.2.2 IPRDECK

Two commands, ENABLE,SPINDOWN and DISABLE,SPINDOWN have been
added to the IPRDECK. If spindown is enabled, a CHECKPOINT
SYSTEM command will spin down all 834 devices. If spindown
·is disabled, a CHECKPOINT SYSTEM command will not affect 834
devices. Spindown is enabled by default.

For a more detailed description of these IPRDECK commands,
refer to the NOS 2 Analyst Handbook.

3.2.3 DSD Commands

The SPINUP and SPINDOWN DSD commands have been added to
enable a Customer Engineer to spin up and down an 834 drive
from the console. In order to spin up an 834 drive, it must
be powered on. SPINDOWN will also be used by an operator to
spin down a drive in emergency situations. The only
requirements are that the console be UNLOCKED and at least
one channel must be active to the drive in order to use
these commands. The format of the commands is:

SPINUP,ord.
SPINDOWN,ord.

Other DSD commands are available to control the 834 Disk
Subsystem. These include the DOWN,ch and UP,ch commands,
the ON,ord and OFF,ord commands, and the MOUNT,ord command.
ON,ord and MOUNT,ord will automatically spin up 834 disk
drives. The AUTO and MAINTENANCE commands will also spin up
all 834 disk drives which are ON in the EST.

3.2.4 LOADBC

The LOADBC command, which allows the peripheral microcode to
be loaded, has been enhanced to allow peripheral microcode
to be loaded to a control module. The format of the command
is:

LOADBC,EQ=ord,F=lfn.

NOS 2.3 Feature Notes
834 Disk Subsystem

11

The LOADBC command can also be used to load peripheral
microcode to the 7255 adapter as follows:

LOADBC,C=ch,F=lfnl,D=lfn2.

Refer to the NOS 2 Analyst Handbook for further information
about the LOADBC command.

12 NOS 2.3 Feature Notes
639 Magnetic Tape Subsystem

(This page left intentionally blank.)

NOS 2.3 Feature Notes 13
639 Magnetic Tape Subsystem

CHAPTER 4

639 MAGNETIC TAPE SUBSYSTEM

· 4. 1 Introduction

The 639 magnetic tape debuts in NOS 2.3. This hardware
subsystem performs the same magnetic tape processing as
other tape hardware. It can be used as a NOS deadstart
device and is supported in a configuration as the only tape
equipment. In fact, the 639 is supported like other tape
hardware in a manner that is transparent to the user., The
639 tape unit is recommended for use primarily as a
permanent file backup device, not for high volume tape
operations.

The 639 keystone tape drive is a 9-track unit with 1600 CPI
(PE) and 6250 CPI (GE) recording densities. There is no
7-track support. It operates at 75 IPS in streaming mode,
and 25 IPS in start/stop mode. The unit switches
automatically between streaming and start/stop modes as
required based on the host's ability to maintain the data
rate.

14 NOS 2.3 Feature Notes
639 Magnetic Tape Subsystem

4.2 Changes and Differences

The 639 magnetic tape is supported only on CYBER 180 models
810 and 830 mainframes. NOS issues an "INCORRECT ENTRY. 11

error message during deadstart processing if the EQ entry is
made on a mainframe model which does not support 639
hardware.

The 639 EQ entry formats are as follows:

The EQ entry for one unit is:

EQest=NT,ST=status,UN=un,EQ=eq,CH=ch,TF=IST.

The 639 EQ entry for two units is:

EQestl=NT,ST=status,UN=unl,EQ=eq,CH=chl,TF=IST.
EQest2=NT,ST=status,UN=un2,EQ=eq,CH=ch2,TF~IST.

NT, NT-1 and MT are all valid and equivalent entries for the
EQ parameter. Each 639 device must be connected to an
individual Internal Channel Interface (ICI) channel. Up to
two 639 drives per mainframe are supported. IST indicates
the availability of 639 tape unit hardware feature.

639 has no GE read reverse. For 639 GE, the read reverse
operation in lMT overlays is replaced with backspace, or if
the data is required, with a backspace, a forward read, and
another backspace.

Previously, reel swapping for multivolume file sets among
ATS and Federal Standard Channel (FSC) drives was only
supported on devices connected to the same channel. Reel
swapping can now be performed on any IST, ATS, and FSC
drives, as long as they can handle the requested density.

The NS (noise size) parameter is no longer supported for PE
and GE tape requests. If the NS parameter is specified on
the LABEL, REQUEST, or ASSIGN control statements for tape
formats other than I or SI, noise size requests are ignored
and the "NOISE SIZE IGNORED FOR PE/GCR. 11 message is issued.

The 11 NS 11 specification is added to the COPY and TCOPY
commands to allow noise blocks on a tape to be copied or
ignored.

,(

NOS 2.3 Feature Notes
639 Magnetic Tape Subsystem

The new order-dependent format for the copy command is:

COPY(lfnl, lfn2,x,c,tc,copycnt,bsize,charcnt,erlimit,
po, lfn3,nsc)

The new order-independent format is:

COPY(l=lfnl,O=lfn2,V=x,M=c,TC=tc,N=copycnt,BS=bsize,
CC=charcnt,EL=erlimit,PO=po,L=lfn3,NS=nsc)

15

Noise blocks are sensed only when processing S to S or L, L
to L, or F to F tape copies. Any block containing fewer
than nsc characters is considered noise and discarded. A
maximum value of NS=41 is allowed. If NS=O is specified,
the default of 18 characters is used.

The new order-dependent format for the TCOPY command is:

TCOPY(lfnl, lfn2,format,tc,copycnt,charcnt,erlimit,po,
lfn3,nsc)

The new order-independent format is:

TCOPY(l=lfnl,O=lfn2,F=format,TC=tc,N=copycnt,CC=charcnt,
EL=erlimit,PO=po,L=lfn3,NS=nsc)

Noise blocks are sensed only when processing S format tape
for E or B format conversion. Any block containing fewer
than nsc characters is considered noise and discarded. A
maximum value of NS=41 is allowed. If NS=O is specified,
the default of 18 characters is used.

When using COPY or TCOPY with noise size specified, a double
buffering copy scheme is used rather than a single buffer
scheme. This causes the copying to be slower.

4.3 Conclusion

The usability of IST tape units remains the same as ATS or
MTS tape units. User CIO interface and labeling remain
compatible. There is no impact on existing user interface
to the tape subsystems except the NS parameter
specifications.

16 NOS 2.3 Feature Notes
CC634B Console

{This page left intentionally blank.)

NOS 2.3 Feature Notes
CC634B Console

5.1 Overview

17

CHAPTER 5

CC634B CONSOLE

NOS has been enhanced to support the CDC 721-21 Viking
terminal as a local primary console. This new console is
CDC product number 18002-2 and consists of 2 parts; the
721-21 terminal (CC634B) with version 4.0 controlware, and
the RS232 cable (AV117A). This chapter refers to the new
console as the CC634B Console. A local console is one that
is located within about 50 feet of the mainframe, connected
via a direct cable connection, and a primary console is the
one that deadstarts the system. The CC634B console is
supported through the 2-port mux of a Cyber 180-810 or 830
on channel 15. For acceptable usability and performance of
the CC634B console the baud rate must be set to 19.2K.

Both DSD and DIS have had major changes to their displays.
This affects not only CC634B but also CC545 (the pre-NOS 2.3
standard console) console operators.

This chapter will cover the different aspects of the CC634B
console and its support in the following order.

18 NOS 2.3 feature Notes
CC634B Console

Section 5.2 - General changes in the deadstart, OS and
display areas.

Section 5.3 - CC634B console keys.

Section 5.4 - Display generator/CC634B communication
overview •

• Section 5.5 - CC634B peripheral microcode.

Section 5.6 and 5.7 - Appendix covering the internals
of the System Console Driver (SCD) and the 2 port mux
access protocol.

5.2 General Changes

5.2.1 CC634B Console vs. CC545 Console

Several differences between the CC634B and the CC545
consoles are:

• The CC634B console does not have the special power
requirements that a CC545 console has, making it
suitable for office environments •

• Each console has its own screen size. Reference Figure
3 for a description of the CC634B console screen
format •

• The refresh rate of the first 27 lines for the CC634B
console is about once per second as opposed to the
40-50 times per second on the CC545. The bottom 3
lines for the error message and the keyboard input are
more responsive than the rest of the display •

• Cursor movement appears on the CC634B keyboard entry
line.

NOS 2.3 Feature Notes
CC634B Console

19

• Only small characters are supported on the CC634B
console.

026 is not currently supported on the CC634B console •

• The game programs; ADC, BAT, DOG, WRM, CHO and EYE can
not be run on the CC634B console.

5.2.2 Deadstart

The CC634B console needs to be set up initially for use as a
console. The initialization procedure can be found in
appendix of the CIP Handbook (pub #60457180, revision B).
Once it is set up, future initializations are performed by
pressing the RESET button on the console. The port option
switch on the mainframe for port O must be set to 11 05
ENABLED" or "DS & PWR ENABLED" to allow deadstarting from
that port.

Deadstart is initiated on a CC634B console by the following
sequence:

CONTROL-G
System responds: OPERATOR ACCESS ENABLED
CONTROL-R

CTI determines the
deadstart and passes
system.

5.2.3 Displays

type of console that is performing the
this information to the operating

Many changes have been made to the DIS and DSD displays· at
NOS 2.3 for both console types. These changes were
implemented to improve usability of the displays and to
accommodate the screen size of the CC634B console. Major
changes to these displays include:

1. The DSD W,C di~_play contains the channel status
which was removed from the right screen header.

20 NOS 2.3 Feature Notes
CC634B Console

2. The DSD W,R display contains system resource
information such as the next JSN, the JSN in the
CPU, available resources and table addresses.

3. The DSD W,Q display contains the system queues
which had formerly been found in the W-display.

4. The contents of the old DSD B-display have been
split into 2 new displays: B,A and 8,0. The B,O

.display (default B-display) contains the
information primarily intended for use by an
operator, such as the JSN and status message of
each control point. The B,A display is intended
for an analyst's use and contains all of the old
B-display information except the messages.

5. The DSD E,F display contains family status
information, in particular the indirect and direct
access file masks (formerly in the E,C display) and
the family job count and direct access files
attached count (formerly in the E,M display).

6. The DIS B-display has been split into two displays:
a new B-display and a J-display. The new B-display
contains the breakpoint address and exchange
package and can only be brought up on the left
screen. Incrementing and decrementing the
breakpoint address is accomplished with the+ and -
characters. The J-display contains the job status
information and the current message and command
buffers~ The J-display is the DIS right screen
default display.

7. When displaying data using the DIS T, U or
V-displays on a CC634B console, the data will be
checked for the presence of Y-coordinates outside
the range of 7702 to 7062. Any Y-coordinates
outside of this range will be changed to 7702, the
six~h line of the display. This will prevent data
from being written in the header or trailer areas.

8. The SUBSYST L-display and the MODVAL, PROFILE, FLAW
and INITIALIZE K-displays have been reformatted to
use 23 lines for their displays with the last two
lines containing the error message line and the
keyboard input line.

NOS 2.3 Feature Notes
CC634B Console

21

9. The K and L-display interface with a CPU program
does not allow the CPU program to attract an
operator's attention on a CC634B through
intensification, inverse video, blinking, etc. A
site written K-display may need to be changed if it
was attempting to flash a message to the CC634B
operator.

10. Site written K and L-displays may need to be
rewritten for the CC634B console. These displays
are now restricted to use ·the display portion
between Y-coordinates 7714 and 7062. This will be
enforced by DSD when run on a CC634B console. If a
K or L-display generator tries to write outside
this area, the Y-coordinate will be changed to 7714
when output to the display.

11. Another common problem in running Kand L-displays
on the CC634B console is long lines. The old DSL
macro and other Kand L-display macros blank fill
the last word of a 1 ine. A long line typically
fills 7 words and this causes the line to wrap
around .and blank out the beginning characters of
the line on a CC634B. The new DSL macro solves
this problem by zero filling a 1 ine. The CC634B
controlware treats a zero as a skip character. So,
recompilation using the new version of the DSL
macro may be all that is required to get site
written K and L-displays working on a CC634B
console.

12. The MODVAL K-displays have been changed to include
forward and backward paging on both left and right
screens through the use of the +, -, (, and) keys.

5.2.4 CMR

The RCLP word (1438) has also been defined as SCDP. Bytes 2
and 3 of this word contain the first word address (FWA) of
the SCDPT (SCD Parameter Table).

The SCDPT is a 4 CM word table that contains parameters
required for SCD to support the CC634B console. This table
is defined in the section on SCD.

22 NOS 2.3 Feature Notes
CC634B Console

The SCD CM buffer allocated immediately after the SCDPT is
used to store non-priority output. The size of th~ buffer
is determined by the COMSMSC symbol, SCDCL, with a default
size of 14008. This buffer is only allocated when using a
CC634B console.

The EST entry for the system console has been modified to
include, in bits 35-24, the terminal type of the console
(O-CC545, l-CC634B), and i.n bits 2-0, the port number for
the console. The EQPDECK does not need a console entry as
the EST entry is set up with information passed from CTI to
NOS.

5.2.5 Common Deck Changes

Many changes have been made to the common decks. The
changes include:

1. COMCDCM is a new common deck that contains the
following macros used by Kand L-displays. It has
been added to PSSTEXT •

• CSTATUS (console status) provides a user with
program information regarding the type of
console.

• DSDOUT has been moved from COMCMAC and
contains an optional parameter (I) to indicate
that the specified address is an indirect
address.

KOL (K-display line) is a new macro that
replaces the DSL macro for K-displays. It
generates a display line containing the X and
Y-coordinates for the CC545 and also generates
a remote block that contains CC634B console
Y-coordinates to be used in the display
buffer •

• PAGT (create page table) can be used to create
the page table which contains the FWA of each
page of the K or L-display •

• CONSOLE, DSDINP and DSL have also been moved
from COMCMAC to COMCDCM.

NOS 2.3 Feature Notes
CC634B Console

23

2. COMCDCP is a new common deck that
following subroutines used by K
generators.

contains the
and L-display

PRK {preset K-d i sp 1 ay) is ca 11 ed to preset the
display buffers.

PGD {page di sp 1 ay) is ca 11 ed to process paging
commands for K and L-displays.

3. COMCFLD has a new entry point called FLB {format
L-display buffer). It performs the same function
as FLO, but changes the Y-coordinate increment from
100 to 150 for the CC545 console. This increment
change provides better spacing of the 1 ines on the
CC545 for displays in which the number of lines has
been decreased to accommodate the CC634B console.

4. COMDSYS routine SYS has had its exit conditions
changed to leave channel 10 active with the right
screen and small characters selected.

5. COMCMAC has had macros CONSOLE, DSDINP, DSDOUT and
DSL removed. These macros have been added to
COMCDCM. All programs using these macros must be
modified to call the new common deck if they are
reassembled using a 2.3 OPL, or else use PSSTEXT.

5.2.6 LIBDECK Change

It is no longer necessary to specify (in the LIBDECK) the CM
residency of DSD overlays which must be CM resident. All
overlays in the range of 9CA - 9C9 are automatically made CM
resident by SYSEDIT.

24 NOS 2.3 Feature Notes
CC634B Console

5.3 CC634B Console Keys

Paging control keys for DSD are:

+ Page left screen forward. If it is at the
last page, it displays the first page.

Page left screen backward one page or back to
the first page depending on the current
display. If it is at the first page, no
change is made.

Page right screen forward as above.

) Page right screen backward as above.

The HELP key presents a menu of the special keys for a
CC634B console.

The Control-G and Control-R are used in the deadstart
sequence. A Control-I causes SCD to reload the controlware
augmentation package and reinitialize the CC634B console. A
Control-I will not cause any harm to NOS. These are the
only control keys in use for the CC634B console.

Keys that are deactivated on the CC634B console include the
following. The bell will sound when these keys are entered.

:/; CR/DEL DATA
II I I INSRT STOP
}/{ DLETE SETUP
II\ CLEAR BACK
]/[LF/ESC LAB
-;' TERM/ANS COPY
F6 thru Fl2 SHIFT LOCK EDIT

The shift key only works for the shifted characters: * (
and+. This makes the following characters unavailable on a
CC634B console.

@ # $ % & ? < >

The Fl through F5 keys control the screen display on the
CC634B console. An operator can select which portion of the

NOS 2.3 Feature Notes
CC634B Console

25

hidden screen buffer will be displayed by pressing the
appropriate function key. Reference Figure 3 for a detailed
description of the CC634B console screens.

Fl - Toggle upper or lower left screen display. *
F2 Select left screen display only.
line by 64 character display left
column mode •

This is a 30
justified in Bo

• F3 - Select dual screen display. Two displays of 30
lines by 64 characters in 132 column mode with 4 blanks
separating the displays.

F4 - Select right screen display only. This is a 30
line by 64 character display in left justified Bo
column mode .

• F5 - Toggle upper or lower right screen display. *
* The Fl and F5 keys provide a way to toggle between the
upper and lower pages for the appropriate screen. This
allows viewing of the larger CC545 console displays which
have not been modified to conform to the· CC634B console
screen size, such as ·unmodified site written K and L
displays.

If a printer is configured on the CC634B console, the PRINT
key causes all data from the top of page to end of page to
be printed as it appears on the screen.

5.4 Display Generator/CC634B Communication Overview

A general diagram of the communication between the CC634B,
SCD and DSD/DIS is:

pp pp

PORT 0 CH-15 CH 10
: CC634B :--------: 2 PORT :-------: SCD :-------: DSD/ :

MUX : ·DIS :

26 NOS 2.3 Feature Notes
CC634B Console

DSD/DIS pass octal function codes and display coded data to
SCD over channel 10. This information is analyzed by SCD to
determine if it is data or a function code. Data is
converted by SCD to ASCII and sent on to the console via
channel 15 and the 2 port mux. Octal function codes cause
SCD to send the appropriate hex function code to the CC634B
console controlware via channel 15 and the 2 port mux. The
augmented controlware package in the CC634B console
processes the hex function codes and data for the CC634B
console.

Information coming from the CC634B console to DSD/DIS is
handled in a similar fashion. The section on the CC634B
controlware and the SCD appendix explain this communication
in further detail.

5.5 CC634B Peripheral Microcode (Controlware)

An augmented CC634B console peripheral microcode
(controlware) package has been developed for NOS 2.3. This
enhanced controlware package will make the CC634B behave in
a manner similar to the CC545 console. The controlware is
driven by data sent via the two port mux by SCD, the driver
for the CC634B console. SCD is a dedicated PP and is
released in binary format on the CIP tape. The augmented
controlware is part of the SCD record on the CIP tape.

The CC634B console is driven by the controlware which
processes the functions and data stream received from the
host in addition to operator keyboard entries. Host
loadable controlware (i.e., the controlware augmentation
package) modifies the CC634B resident and adds or enhances
the capabilities defined in the following sections.

The data stream from SCD to the CC634B console consists of
display character codes, display coordinate codes and
function codes. The data stream from the CC634B console to
SCD consists of keyboard character codes and X-on/X-off
codes.

NOS 2.3 Feature Notes
CC634B Console

5.5.1 Character Codes

Keyboard Character Codes

27

Figure 1 identifies the character and display codes received
from the CC545 keyboard along with the characters from a
CC634B keyboard. Lower case CC634B characters are folded
into upper case characters by the controlware.

CC634B Displ CC545
Char. Code Char.

CC634B Displ CC545
Char. Code Char.

A
B·
c
D
E
F
G
H
I
J
K
L
M
N
0
p

Q
R
s
T
u
v
w
x
y
z

01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32

A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p
Q
R
s
T
u
v
w
x
y
z

0 33
1 34
2 35
3 36
4 37
5 40
6 41
7 42
8 43
9 44
DOWN 45
+ 45
UP 46

46
F 15 47
* 47
I 50
FWD 51
(51

BKW 52
) . 52
I<-- <1> 53
ERASE 53
= 54
-->I c2> 55

56
57

NEXT 60
<-- (3) 61
(SP) 62

(1) This is the forward tab key.
(2) This is the backward tab key.
(3) This is the backspace key.

FIGURE 1

0
1
2
3
4
5
6
7
8
9
+
+

*
* I
(
(
)
)
LB
LB
=
RB

CR
BS
SP

28 NOS 2.3 Feature Notes
CC634B Console

Display Character Codes

The character displayed on a CC634B console for each display
code is identified below.

Char. Displ Char. Displ
Displ 'd Code Di spl 1 d Code
------- -------

00 0 33
A 01 1 34
B 02 2 35
c 03 3 36
D 04 4 37
E 05 5 40
F 06 6 41
G 07 7 42
H 10 8 43
I 11 9 44
J 12 + 45
K 13 46
L 14)'(47
M 15 I 50
N 16 (51
0 17) 52
p 20 Space 53
Q 21 = 54
R 22 Space 55
s 23 56
T 24 57
u 25
v 26
w 27
x 30
y 31
z 32

* A 00 code wi 11 result in the
display character position
being skipped.

FIGURE 2

NOS 2.3 Feature Notes
CC634B Console

5.5.2 Display Coordinate Codes

29

The CC634B console controlware augmentation supports two
types of screens, a visible screen ·and a hidden screen
buffer (reference Figure 3). All data is entered in one of
the selected screen lines based upon the current X and
Y-coordinate. Subsequent characters increment the
X-coordinate automatically, one unit per character, across
the line. At the right edge the X-coordinate is reset to
the left edge and the Y-coordinate is unchanged.

The hidden screen buffer serves as an interface between SCD
and the visible display console screen. This buffer, which
is 20 1 ines larger than the CC634B console visible screen,
provides a facility through which existing (unmodified)
CC545 display screens can be supported. Each character to
be displayed requires one byte for a character display code
and one byte for a display attribute code. Therefore, the
hidden screen buffer contains a total of 13,200 bytes ((2
bytes/character) (50 1 i nes) (132 characters/1 i ne)) • The
Command Line (10) and OS Error Msg Line .(lC) on the visible
screen are both 80 characters in length. The Cntrlwr Msg
1 ine (lB), which is 64 characters in length, appears at the
bottom of both the left and right screen.

30

CC634B
CONSOLE
VISIBLE
SCREEN

CC634B
CONSOLE
HIDDEN
SCREEN
BUFFER

00

Left
Screen
Header

NOS 2.3 Feature Notes
CC634B Console·

3F 40

Right
Screen
Header

7F

:0
: l
:2
:3

·---------------------------------· . .
:4

(23 Lines) (23 Lines)

:lA
·---------------------------------· . .
: Cntrlwr Msg : Cntrlwr Msg :lB
: OS Error Msg Line (80 char) :lC
: Command Line (80 char) :10

6000

7764: Left
7752: Screen
7740: Header
7726:

6777 6000

Right
Screen
Header

6777

:0
: l
:2
:3

:---------------------------------:
7714:

7360:

L.S. Body
Upper Page
(23 Lines)

R.S. Body
Upper Page
(23 Lines)

:4

:lA
·---------------------------------· . .

7346:

7024:
7012:

00

L.S. Body
Lower Page
(23 Lines)

3F 40

R.S. Body
Lower Page
(23 Lines)

7F

:lB

:30
:31

Note: The 4 digit octal numbers represent CC545 positioning.

FIGURE 3

(

NOS 2.3 Feature Notes
CC634B Conso 1 e .

APPENDIX TO CC634B CONSOLE

5.6 System Console Driver (SCD)

The general functions of SCD are:

• Receive function codes from channel 10 •

• Receive display screen coordinates for
output characters •

31

subsequent

. Receive display coded data from channel 10, convert it
to ASCII and send it to the console •

• Monitor and honor RDF and MOD requests for access to
the two port mux •

• Send keyboard data when requested by the display
generator.

32 NOS 2.3 Feature Notes
CC6348 Console

5.6.1 CTI - SCD Initialization Interface

Upon determining that the primary console is a CC6348
console, CTI performs the following steps ~efore initiating
NOS:

1. Store the CC6348 console controlware augmentation
package and SCD in the CM buffer reserved in El at
CTI 1 s request. This controlware is read from the
Common Disk Area on the system disk.

2. Identify the PP which contains the SCD program.
This information is included with the response for
the "Send Di sp 1 ay Conso 1 e· I dent if i cation Data 11

function. The SCD PP must be other than 0, 1, 2,
10 or the PP on the deadstart channel. The PP into
which SCD is loaded must be designated as logically
11 0FF 11 in the Hardware Descriptor Table (HDT) by
CTI. The Fault Status Mask (FSM) bit will be set
for this PP when CTI initializes the FSM register
in the IOU.

3. Load a bootstrap program within the first 308 words
of the SCD PP which enables it to load the SCD
program from a CM buffer and then return itself to
the deadstart load state.

4. Load the default parameters into words 30, 31, 32
and 338 of the SCD PP.

5. Activate the SCD bootstrap program and wait for SCD
to enter its deadstart load state. The bootstrap
reads the first CM word in the SCD package to
obtain the information it requires for loading SCD.
This CM word is located through the parameters in
words 30-32 initialized above. The format of the
first CM word is as follows.

0 16 32

PP Load : PP Base Program Length : Reserved
Address : (number of 64 bit words):

63

.. .

The bootstrap loads the base program, starting at
the load address, into itself before entering a
deadstart load state.

NOS 2.3 Feature Notes
CC634B Console

33

6. Ensure that channel 10 does not have a "selected"
CC545 by .issuing a de-select function code.

The default parameters specified by CTI are as follows:

. SCD Words 30, 31 and 32 (48 bits)

These words contain the PP R-register value and· the CM
word offset from this value, which is used to locate
the SCD package in central memory. This package
contains the SCD image and the CC634B controlware
augmentation.

- Word 30:

- Word 31:

- Word 32:

CM word offset used to locate the first
word of the SCD package.

The least significant 10 bits in this
are the most significant 10 bits of
R-register.

The least significant 12 bits in this
are the least significant 12 bits of
R-register.

·• SCD Word 33 (16 bits)

CM

word
the

word
the

This word contains the primary console definition in
the following format:

48

:xxxxasst:ttcccppp:

xx xx = Reserved
a = Active primary console flag
SS = System state driving primary console

1 = DSD
ttt = Terminal type

l = CC634B
CCC = OS/SCD Protocol

0 = Controlware not required
1 = CC545

PPP = Port number of primary console

34 NOS 2.3 Feature Notes
CC634B Console

5.6.2 OS - SCD Initialization Interface

Since the SCD PP is left in the deadstart load state, it can
be reclaimed as a pool PP in the same manner that other PPs
are assigned as pool PPs. NOS ensures that the CC545 on
channel 10 (if configured) is de-selected prior to
activating SCD.

5.6.2.1 SCD Parameters Obtained Via 1/0 Channel

To function as the console driver, SCD must be initialized
by NOS passing it the appropriate parameters. The initial
set of parameters are passed via the output of 3 PP words
prior to activating SCD through a DCN of its associated
channel.

When SCD is activated, if parameter words 2 and 3 are zero,
the default parameters passed by CTI are used by SCD to
support the primary console •

• Parameter Word 1 (16 bits)

This word contains the FWA-1 of SCD's initialization
routine. The value is 778 .

• Parameter Words 2 and 3 (32 bits)

These words contain the first word address of the SCD
Parameter Table which is used by SCD to access
additional parameters.

48 63

: 1st word : - Upper 12 SCDPT address bits

: 2nd word : - Lower 12 SCDPT address bits

If these two words are zero when passed to SCD, the
location of the table (SCDPT) can be defined by issuing
the select SCD initialization function.

(

NOS 2.3 Feature Notes
CC634B Console

35

5.6.2.2 SCD Parameters Obtained Via Central Memory

The SCD Parameter Table (SCDPT) contains parameters required
for SCD to support the CC634B console and it identifies SCD
operational changes in the post deadstart timeframe. The
SCDPT is built in central memory and located by SCD through
the contents of deadstart parameter words 2 and 3 or by
receipt of the select SCD initialization function.

The SCDPT contains four CM
designated as "Reserved"
when the SCDPT is built
following format:

words. All parameter fields
are initialized to binary zeroes
by NOS. This table has the

59 56 47 31 15 0

:SCDPT Sta-:Primary Con.:Reserved :
:Reserved:tus Byte :Definition :for CDC

2 :1/0 Interface
:CM Address :Reserved for CDC

3
:Reserved for CDC

4 :Rese-:Buffer
: 2:rved :Length :SCD Buffer FWA

WORD 1 (Console Definition Word)

Bits 59-48: Reserved

• Bits 47-32: 11 sxxxxxxxxxxxllll 11

s =When set it denotes a change in one or more
of the definition words used in this table to
support the primary console.
NOTE: The convention for using this bit is:

The display generator builds new SCDPT
which includes changed parameters.
The change is denoted by the S bit being
set.
The display generator issues the select SCD
initialization function.
SCD clears the bit upon completing its
initialization.

x-x = Reserved.

NOS 2.3 Feature Notes
CC634B Console

1111 =Length of SCDPT expressed in number of CM
words, = 4 .

• Bits 31-16: Primary Console Definition Byte
11 xxxxasstttcccppp 11

xxxx = Reserved
a = Active primary console flag
ss = l (Values 0, 2 and 3 are reserved)
ttt =Terminal type

0 =Not available for terminal assignment
l = CC634B
2-7 = Reserved

ccc = OS/SCD protocol
O = Controlware not required
l = CC545
2-7 = Reserved

ppp =Port number for primary console

• Bits 15-0: Reserved.

WORD 2 (Primary Console Interface Definition)

Bits 59-32: 1/0 Interface CM Address
• CM word address of zero = 1/0 Channel 10
• Non-zero CM word address = Undefined

• Bits 31-0: Reserved.

WORD 3 (Reserved)

WORD 4 (Supportive SCD Definition Word)

• Bits 59-57: Code ID for Supportive Word
0 = No entry in this word
l = Reserved
2 = SCD's CM Buffer for Primary Console
3-7 = Reserved

SCD's CM Buffer For Primaiy Console Definition Word
(Code ID = 2) :

• Bits 56-48: Reserved

NOS 2.3 Feature Notes
CC634B Console

37

• Bits 47-32: Number of CM words in buffer (0 means
no buffer available)

• Bits 31-0: CM FWA of buffer used by SCD while
transferring non-priority display
information to the primary console.

5.6.3 SCD - Channel 10 Interface

When SCD operates in its active console driver state its
main loop consists of checking for the following:

Is 11 Ful l 11 status present on channel 10?

• Is "Input Ready 11 status present in 2 port mux?

• Is priority output operation in progress?

• Does the SCD CM buffer (if defined) contain information
for the CC634B console?

When SCD senses channel 10 11 Full 11
, it performs an input of

one channel word (16 bits), which is either a function or
data, and leaves the channel in an 11 Active11 state. (The
display generator function codes are defined in detail in
section 5.6.5.)

When SCD senses "Input Ready" in the 2 port mux it inputs·
the character code and retains it until receipt of a select
keyboard input (160400) function from the display generator.
If SCD does not receive this function before additional
keyboard characters are input by SCD, the succeeding
characters will be discarded.

If SCD is processing a priority output operation, it
suspends the transfer of any remaining information in its CM
buffer to the CC634B console until the priority operation is
complete. The priority output consists of SCD transmitting
display information directly (bypassing its CM buffer) to
the 2 port mux. This means that the display generator's
output transfer rate is governed by the 2 port mux.

SCD stores non-priority output information from the display
generator into the buffer concurrent with its removal of

NOS 2.3 Feature Notes
CC631+B Console

information from the buffer for transmission to the 2 port
mux. Expediting the display generator's output operation in
this manner enables it to be more responsive in its
processing of keyboard input. If "Full" status is not
present when SCD senses for it, it continues processing the
remainder of its control loop.

Two controlware functions are available from SCD to handle
priority output. These functions are used by several of the
screen and keyboard input function codes described later •.
While doing priority output, take caution in using screen
manipulating functions (such as 010020, 01001+0, 010060 or
OlOlOO functions) because the status of the SCD CM buffer
may be unknown •

. Activate Priority Output Display Parameters

Rece~pt of this function directs the controlware to
save the non-priority output display parameters and
activate the priority parameters. These parameters
control current attribute and position coordinate
information which is used to support a priority output
mode of operation. This means that all data and
attribute information received during line selection is
directed as follows:

DSD SCD Screen Area CC631+B CC631+B
Y-Coord Y-Coord (Line #) Screen Y-Coord

--------- ------- ------------ ------- -------
7761+-7726 00-03 Header (1-1+) Hidden 00-03
7711+-7360 01+-lA Body Upper Hidden 01+-lA

Page (1-23)
731+6-7021+ lB-30 Body Lower Hidden 18-30

Pg (21+-1+5)
7012 31 OS Error Msg Visible lC
7000 32 Command Line Visible lD

• Activate Non-Priority Output Display Parameters

Receipt of this function directs the controlware to
save the priority output display parameters and
activate the non-priority parameters. The activated
parameters contain current attribute and position
coordinate information which is used to support a
non-priority role of operation. This means that all
data and attribute information received during line
selection is directed as follows:

NOS 2.3 Feature Notes
CC634B Console

DSD
Y-Coord

7764-7726
7714-7360

7346-7012

7000

SCD
Y-Coord

00-03
04-lA

18-31

32

Screen Area
(Line #)

Header (1-4)
Body Upper

Page (1-23)
Body Lower

Pg (24-46)
Command Line

CC634B
Screen

Hidden
Hidden

Hidden

N/A

39

CC634B
Y-Coord

00-03
04-lA

lB-31

N/A

All position information received by the controlware
during selection of SCD Y-coordinate address 32 is
discarded in this mode of operation. Data and
attribute information received will be placed in the
last valid line number.

5.6.3. 1 Keyboard Input Operation

This operation is initiated by issuing the select keyboard
input (160400) function. SCD responds with a 11 00 11 code to
the display driver if no character was entered or with a
non-zero code if a character was entered.

Receipt of this function denotes completion of the previous
11 l6xxxx 11 function processing for the di sp 1 ay generator. If
SCD was processing the transfer of non-priority output from
its CM buffer at the time this function was received, SCD
does not respond prior to its buffer being emptied unless a
non-zero keyboard code was received from the CC634B console.
Therefore, when a 1100 11 code is returned following a
non-priority output, it signifies that the entire transfer
to the hidden screen has been accomplished and there is no
input character available.

5.6.3.2 Display Operation

Initiation of a display operation requires the display
generator to issue one of the four 11 16xxxx11 output
functions. The SCD display operation is defined as the
transfer, to the CC634B console, of a 11 channel 10
information received between an output function and the next

40 NOS 2.3 Feature Notes
CC634B Console

11 l6xxxx 11 function. The channel 10 information consists of
display coordinates, character codes "17xxxx" functions and
110lxxxx 11 functions. If this information (excluding "17xxxx"
functions) was received by SCD prior to receipt of a select
output function, it would be discarded (i.e., processed as a
no-op) •

A typical display sequence for the display
consists of the following:

• Select initialize hidden screen (010020)

• Transfer contents of first screen

• Select keyboard input (160400)

• Transfer contents of second screen

• Select transfer of hidden to visible (010060)

• Select keyboard input

• Repeat sequence.

5.6.4 Channel 10 Access Control

generator

SCD recognizes information on the display channel only if it
has not been requested to set the channel flag and terminate
its 1/0 on the channel. The following protocol describes
how to trigger SCD to change its operational state.

1 • In it i a 11 y the channel 10 channel flag is cl ear and
the channel is inactive.

2. The display generator (DSD for example) reserves
and activates the channel and then proceeds to
perform 1/0 operations with SCD.

3. When the display generator wants SCD to leave the
channel, it issues the "set channel 1 O channe 1
flag" function code (170040).

4. When SCD processes the function code, it sets the
flag and suspends 1/0 operations on channel 10

NOS 2.3 Feature Notes
CC634B Console

41

until it senses the channel flag returning to a
clear state.

5. The display generator (after the function was
accepted) goes on to do whatever was desired.

6. When the display is wanted again, the display
generator clears the channel flag to reconnect the
driver.

The ability to switch SCD on and off the channel is needed
to allow switching of generator programs and use of the
display channel to load programs from a helper PP (such as
when lDL loads display overlays).

5.6.5 Channel 10 Function Codes

SCD analyzes each 16 bit word received from channel 10 to
determine if it is function or data. SCD considers any
channel word containing a non-zero value in the most
significant four bits to be a function code, not data.
lnval id bit positions are ignored by SCD.

Common deck, COMDMAC, contains symbol definitions for the
function codes documented below and macros for use by system
console display drivers.

All function codes from channel 10 are in octal.

5.6.5. l Screen, Keyboard Input and Clear Function Codes

16 Bit COMO MAC 12 Bit Function
Function Symbol Function Description
Code Code
-------- ------- --------- ---------------------------
160000 SLSF 7000*2,'c*4 Select left screen, 64 char
160100 SLPF 7004*2**4 Select left screen, 64

char, priority output
162000 SRSF 7100*2**4 Select right screen, 64

char.
162100 SRPF 7104*2**4 Select right screen, 64

char, priority output

42 NOS 2.3 Feature Notes
CC634B Console

160400
170020
170040
010000
010020

SKIF
SSIF
SDCF
EELF
CHSF

7020,'t2**4
7401 *2*,'t4
7402*2*-lc4
0400,'t 2)°t)'t4
040 l *2*,'t4

Select keyboard input
Select SCD initialization
Set channel 10 channel flag
Erase to end of line
Initialize hidden screen
and display parameters.
When this function is
issued, it applies to both
the left and right screens.
Initialize display page
selection

010040 RTPF

010060 THVF 0403*2**4

010100 THCF 0404*2**4

• Select Left Screen (160000)

Transfer hidden to visible
screen. When this function
is issued, it applies to
both the left and right
screens.
Transfer hidden to visible
and initialize hidden
screen and display para­
meters. When this function
is issued, it applies to
both the left and right
screens •

This function directs SCD to accept 110lxxxx 11 functions
and data for the left screen in the hidden screen
buffer until a different 11 l6xxxx11 select function is
r.ece ived.

The CM buffer is used to store information from channel
10 at SCD's maximum input rate while it concurrently
transmits to the 2 port mux. The transmission of
information from the CM buffer is suspended during the
time required for SCD to perform a priority output
(160100 or 162100) •

• Select Left Screen, Priority Output (160100)

This function directs SCD to accept 11 0lxxxx11 functions
and data for the following screen areas until receipt
of a different 11 l6xxxx 11 select function:

NOS 2.3 Feature Notes
CC634B Console

43

The first 49 lines of the left screen in the
hidden screen buffer •

• The last two lines of the visible screen.

The CM buffer is not used to support execution of this
function •

• Select Right Screen (162000)

This function directs SCD to accept 11 0lxxxx 11 functions
and data for the right screen in the hidden screen
buffer until a different 11 16xxxx 11 select function is
received.

The CM buffer is used to store information from channel
10 at SCD's maximum input rate while it concurrently
transmits to the 2 port mux. The transmission of
information from the CM buffer is suspended during the
time required for SCD to perform a priority output
(160100 or 162100) •

• Select Right Screen, Priority Output (162100)

This function directs SCD to accept 11 0lxxxx 11 functions
and data for the following screen areas until receipt
of a different 11 16xxxx11 select function •

• The first 49 lines of the right screen in the
hidden screen buffer •

• The last two lines of the visible screen.

The CM buffer is not used to support execution of this
function •

• Select Keyboard Input (160400)

This function directs SCD to return a keyboard keycode
in a word output to channel 10 in the format defined
below. This function must be followed by another
16xxxx function.

44

48 56 57 58 63

:000000000: d :cccccc:

NOS 2.3 Feature Notes
CC634B Console

cccccc = Keyboard character in display code
d = Display refresh request

The "Display Refresh Request" bit indicates that SCD
has detected one of the followi·ng conditions which
requires that the host refresh the display •

• Loss and re-acquisition of "Carrier-On" status .

• A Control-I, Fl, F2, F3, F4, F5 or HELP keyboard
character was selected by the operator.

By convention, no response
function unless one of the
present:

is returned for this
following_ conditions is

• The code to be returned is non-zero
character, was entered) •

(i.e.,

The code to be returned is zero and the CM buffer
is either not defined or empty (i.e., no character
was entered and all previous output operations
have been completed) •

• Select SCD Initialization (170020)

This function directs SCD to accept the next two
channe 1 words for 'use in determining what parameters
must be reinitialized. These words define the first
word address of the SCD Parameter Table which is used
by SCD to reinitialize itself.

48 63

I 1st word I - Upper 12 SC DPT address bits I I

I 2nd word I - Lower 12 SCDPT address bits I I

Once the location of the SCDPT is known to SCD it
examines the first word in the table to determine what
must be reinitialized.

NOS 2.3 Feature Notes
CC634B Console

• Set Channel 10 Channel Flag (170040)

45

This function directs SCD to set the channel flag for
channel 10 and then to wait until the channel flag is
cleared before ·continuing to transmit or receive data
across channel 10 •

• Erase to End of Line (010000)

This function directs the controlware in the CC634B
console to erase all characters from and including the
current X-coordinate to the end of the selected line.
A code of 20 { 16) is entered into the erased character
positions and all attribute bytes associated with these
character.s are rein it i a 1 i zed.

If this function is received immediately after receipt
of a 11 00 11 display code, the controlware will also
backspace one character position and erase from that
point up to and including the last character position
on that 1 ine. In addition, if that 1 ine was the
Command Line, the cursor will be positioned at the
character position from which the erase was initiated •

• Initialize Hidden Screen
(010020)

and Display Parameters

Initialization consists of the controlware setting the
display character fields to a 20(16) in the hidden
screen buffer and setting the priority and non-priority
display parameters to their default value •

• Initialize Display Page Selection (010040)

Receipt of this function directs the controlware to
initialize the page selection status for the currently
selected left or right screen in the hidden screen
buffer to its default state (i.e., display upper page) •

• Transfer Hidden to Visible Screen (010060)

This function directs the controlw~re to move the
display characters and their associated attributes from
the selected hidden screen {left, dual .or right) to the

46 NOS 2.3 Feature Notes
CC634B Console

visible screen. When transferring from the hidden
screen to lines in the visible screen with
Y-coordinates of 11 03 11 and 11 lA 11

, the controlware sets
the underscore attribute for each character in these
l i nes. · .

• Transfer Hidden to Visible and Initialize Hidden Screen
and Display Parameters (010100)

This function directs the controlware to perform
functions "transfer hidden screen to visible screen"
and "initialize hidden screen and display parameters"
in consecutive order •

. 5.6.5.2 Terminal Attribute Function Codes

Highlighted fields (blinking, intensified) may be displayed
using the underscore, bl ink, reduced intensity and inverse
video capabilities of the terminal. These attributes may be
used singly or in combination.

16 Bit COMDMAC
Function Symbol
Code
-------- -------
010140 BIPF

010160 E ITF

010200 BUSF
010220 EUSF
010240 BBLF
010260 EBLF
010300 BRIF

010320 ERIF
010340 BIVF

010360 E IVF

12 Bit
Function
Code

0406*2**4

0407*2*,'c4

0410*2**4
0411*2**4
04 l 2,'c2*>'c4
0413*2**4
0414*2**4

0415*2*>'c4
0416*2**4

0417*2**4

Function
Description

Start inverse and under­
score fields one character
position before next data
byte
End inverse and underscore
fields at next character
position
Start underscore field
End underscore field
Start bl ink field
End blink field
Start
field

reduced intensity

End reduced intensity field
Start inverse and under­
score fields
End inverse and underscore
fields

NOS 2.3 Feature Notes
CC6348 Console

47

These function codes direct SCD to insert the appropriate
select/de-select hex function code for these attributes in
the output data stream for the CC6348 console. It is
acceptable to issue an 11 end 11 function before a "start"
function. It is also acceptable to issue these functions
either immediately before or after a coordinate code. These
functions should be viewed as a bracket (e.g. all screen
areas written into between a "start" and 11 end 11 attribute
function has that attribute selected).

5.6.5.3 State Verification Function Code

A special function code (expressed in octal values)

010400 - no-op (0420 * 2**4)

can be used by a display generator to verify that SCD is in
the correct state to accept functions and data for display
on a CC6348 console. The channel status changing from
"Full" to 11 Empty11 after issuing this function denotes that
SCD is in this state.

5.6.6 Channel 10 Data Stream To SCD

The data stream consists of display characters and X and
Y-coordinates. This information is packed in the right most
12 bits of each channel word. Display codes in the range
008 to 578 (see Figure 2) comprise the total character set
sent to SCD. The 008 code is treated as a 11 skip current
character position" function and will not necessarily result
in the same visual effect seen on a CC545.

These display codes are converted by SCD to their upper case
ASCII equivalents prior to transmitting them to the CC6348
console.

Coordinate addressing within ·the CC6348 console hidden
screen buffer is compatible with the addressing of a CC545
screen. That is, X-coordinates in the range of 60008 to
67778 are converted by SCD to their CC6348 equivalent
coordinate which is as follows:

48

Left Screen
X-Coordinates

CC634B CC545

00 6000
01 6010

3F 6770

Right Screen
X-Coordinates

CC634B CC545

40 6000
41 6010

7F 6770

NOS 2.3 Feature Notes
CC6348 Console

This corresponds to 64 character positions in each screen,
using the standard eight-unit increment. Since the CC634B
console does not have finer than character unit addressing,
X-coordinates are forced into their left equivalent if they
fall between character positions.

The Y-coordinates are in the range 70008 to 77778. This
corresponds to 51 lines using the standard 128 unit
increment. Y-coordinates not corresponding to units of 128
are forced to the next (numerically) lower display 1 ine.
SCD converts these Y-coordinates to their CC634B console
equivalent coordinate which is as follows;

Left Screen
Y-Coordinates

CC634B

0
1

31
32 *

CC545

7764
7752

7012
7000

Right Screen
Y-Coordinates

CC634B

0
1

31
32 *

CC545

7764
7752

7012
7000

* Command Line (Priority output only)

NOS 2.3 Feature Notes
CC634B Console

5.7 Two Port Mux Access Protocol

49

The diagram below illustrates how the following protocol
conventions would be used when a PP program communicates
through a port in the two port mux:

I Acquire Port Access I
I
I

----------------• I
I Prepare For 1/0 Operl

I Acquire Mux Access

I Perform Incremental
I I /0 Operation
I (Transfer One Byte)

I Release Mux Access

I \
I \

No _I Port \
\ Requested I

\ I
\ I

Yes

I Release Port Access I

Common deck, COMPTMA, has been created which defines
routines used to communicate with the two port mux. This
deck should be referenced to obtain definitive information
regarding use of the protocol defined below.

The following IOU flag and status bits are used to
coordinate access to ports 0 and 1 on the two port mux:

50

• Channel 17 Channel Flag

• Channel 15 Channel Flag

. Four maintenance register
Test-Mode register (AO) :

Bit 60 - Port 1 Requested
Bit 61 - Port O Requested
Bit 62 - Port 1 Reserved
Bit 63 - Port 0 Reserved

NOS 2.3 Feature Notes
CC634B Console

status bits in the IOU

The convention established to coordinate access to the two
ports uses these flags and status bits in the following
manner.

5.7.1 Acquire Port Access

Test and set channel 17 flag (this instruction is used
to prioritize multiple access requests) •

• Set the "Port Reserved" status bit for the desired
port.

If this bit was already set, the port is currently in
use and the requesting PP must wait for this bit to
clear. To signal the using PP, the requesti~g PP sets
the "Port Requested" status bit for the same port. The
requesting PP then clears the channel 17 flag and loops
in a sequence waiting for "Port Reserved" status- to
clear •

• Clear channel 17 flag.

The code sequence for acquiring port access consists of the
following steps:

NOS 2.3 Feature Notes
CC634B Console

/acquire_port_access/
loop

interlock 17
read test_mode_register
if not port_reserved then

exit /acquire_port_access/
if not port_requested then

set port_requested
write test_mode_register

clear_interlock 17
delay

loopend
set port_reserved
write test_mode_register
clear_interlock 17

51

NOTE: Only those PP programs required to monitor "Port
Requested" status (e.g. MOD) must relinquish control of
their port when requested. If the requesting PP can be
returned to the OS, it enters a three minute delay loop
waiting for "Port Reserved" to clear before dropping from
execution. Requesting PPs which cannot be returned to the
OS enter an infinite loop waiting for port access.

5.7.2 Acquire Mux Access

• Test and set channel 17 flag (prioritize multiple
requests) •

• Test and set channel 15 flag.

If already set, channel 15 is currently in use and the
requesting PP must wait for this flag to clear. This
requires the requesting PP to clear the channel 17 flag
and attempt the sequence again •

• Clear channel 17 flag.

52 NOS 2.3 Feature Notes
CC634B Console

5.7.3 Release Mux Access

• Clear channel 15 flag.

5.7.4 Release Port Access

• Test and set channel 17 flag (prioritize multiple
requests) •

• Clear the "Port Reserved" and the "Port Requested"
status bits for the port to be released •

• Clear channel 17 flag.

All programs using the two port mux must adopt the
convention of acquiring and releasing their access in a
manner which maximizes its availability for all users.

NOS 2.3 Feature Notes 53
Printer Support Utility (PSU)

CHAPTER 6

PRINTER SUPPORT UTILITY (PSU)

6. 1 Printer Support Utility

Printer Support Utility (PSU) is a NAM application that
drives low cost line printers on CYBER 180-810/830 systems.
PSU supports up to two CDC 533 or 536 printers connected via
RS232 ASYNC ports to the 2551 Network Processing Unit.

The printer is equipped with either a 96-character band or a
64-character band. The 96-character band printer prints the
ASCII characters in upper and lower case. The 64-Character
band printer prints in upper case only, and is slightly
faster than the 96-character band printer.

If there is only one printer or there are two printers with
the same character band, then the printers are ready to be
used as soon as the system is installed. If there is one
96-character printer and one 64 charater printer, then the
operator must enter the forms code command to define the
96-character printer. Users should specify FC=AS to select
96-character printer. Routing to a 64-character printer is
the default for FC.

NOTE PSU is not included in the release material when NAM
is ordered. PSU must be licensed and ordered separately.

54 NOS 2.3 Feature Notes
Printer Support Utility (PSU)

6.2 Network Configuration for CDC 533/536 Printers

SUPER MINI 810/830

CYBER CHANNEL

2551 (NPU)

I CLA I I
12561 I I
I I I

·--1--1--1-
1 I
I I
I I
I I
I I ASYNC 1 i ne
I I ---1 , ___ _

CDC 533 CDC 536

NOS 2.3 Feature Notes 55
Printer Support Utility (PSU)

6.3 Installation Requirement

Since PSU is a Network application, there are several
installation requirements to make PSU work. The following
is a list of file and common deck changes that are required.
On the release system, the SYSGEN utility will build a
default system with all the required files and common deck
changes. The build procedure is documented in the
Installation Handbook. If there are any changes to the
default system configuration, the changes will be in items
of the following list.

1. NDL statements in NCF -

linel: LINE,PORT=portl,LTYPE=A2,TIPTYPE=ASYNC,LSPEED=9600.
devicel: TERMDEV,TC=M33,AUTOCON,HN=hostnode,LK=YES,OC=YES,

PA=O,PW=O.

line2: LINE,PORT=port2,LTYPE=A2,TIPTYPE=ASYNC,LSPEED=9600.
device2: TERMDEV,TC=M33,AUTOCON,HN=hostnode,LK=YES,OC=YES,

PA=O,PW=O.

2. NDL statements in LCF -

devicel: USER,MFAM=fam,MUSER=PRINTOl,MAPPL=PSU.
device2: USER,MFAM=fam,MUSER=PRINT02,MAPPL=PSU.

3. Application definition in common deck COMTNAP -

Application PSU is specified in COMTNAP using the same
validation bit as RBF.

4. Job record and job template in NAMSTRT file -

Procedure file and job template are needed in NAMSTRT.

5. SYSTEM Validation file -

User names PRINTOl and PRINT02 are validated to use PSU.

56 NOS 2.3 Feature Notes
Printer Support Utility (PSU)

6.4 Printer Support Utility Commands

To use the Printer Support Utility, the operator must
communicate with PSU by using the K display.

enter K,jsn at the
The JSN for PSU can

Enter K.command for
the PSU commands are

Operations Handbook.
commands and a brief

To initiate the communication with PSU,
console, where jsn is the JSN for PSU.
be obtained from NAM status K-display.
the PSU commands. The details of
documented in the CYBER Supermini
Following is a list of the PSU
description.

1. K.FORM,pn,AS.

2. K.MAXIMUM,pn,nn.

3. K.SELECT~pn,jsn.

4. K.RERUN,pn.

5. K.STOP,pn.

6. K.BKSPRU,pn,nn.

7. K.CONTINU,pn.

8. K.REPEAT,pn,nn.

9. K.SKIPRU,pn,nn.

- Define a printer

- Ignore lengthy listings

- Move a job up in sequence

- Reprint a file

- Stop the printing

- Backspace a file

- Resume printing after an
interruption.

Make multiple copies

- Skip sections of a file

10. K.DISABLE,pn,BANNER. - Eliminate banner pages

11. K.ENABLE,pn,BANNER. - Permit banner pages

12. K.END,pn. - Drop a file

NOS 2.3 Feature Notes
Supermini Procedures

CHAPTER 7

SUPERMINI PROCEDURES

7. 1 Introduction

57

CDC has found that after NOS has been installed at a site,
there is still work that must be done before people at the
site can begin to use the system. Most notably, users must
be validated and a strategy for permanent file, queued file,
and dayfile maintenance must be set up.

The current·NOS utilities are powerful and flexible, but
complicated, and require some study before they can be
implemented. To simplify this process, CDC has developed a
set of procedures that use the more complex utilities with
pre-determined default values. These procedures require a
m1n1mum of training to use, all use the same format, and
require few parameters. They are automatically installed
during NOS installation.

When a site elects to use the procedures,
assumptions made during the writing of
These assumptions are as follows:

it accepts the
the procedures.

1. The CHARGE command is not used by the site.

2. The site uses the system default service classes.

58 NOS 2.3 Feature Notes
Supermini Procedures;

3. A few sets of validation directives (called user types)
can define the majority of users.

4. Only the default family is used
validation.

for

5. The dayfile resides on the default family.

the user

Later in this chapter we will discuss how to create or
modify a validation user type and the procedures that are
documented here.

7.2 Location of Procedure Code

The source code for these procedures resides on the NOS PL
delivered with NOS 2.3. During installation of NOS, this
source code is compiled. The system procedure named MS and
two procedure files (ZZZPIFL and ZZPPIFL) are created. MS
is placed on the dea~start file wh11e the procedure files
reside on user name SYSTEMX.

You can obtain a listing of the procedures. and the default
MODVAL input files from the NOS PL by using the following
procedure:

ATTACH,nospl_name/UN=LIBRARY.
MODIFY,P=nospl~name,L=LIST,C=O,LO=DEMCATS,Z./*EDIT SUPERM

You can use this listing to determine if you want to use the
default validations, modify the default validations, create
new validation types, or modify any of the procedures to use
parameters not used in the supplied versions.

7.3 Initiation of Procedures

The system procedure MS is used to initiate all the
procedures documented here. The procedures designed to be
initiated from the system display console are initiated
using the following command:

X.MS(procname,pl,p2, ••• ,pn)

NOS 2.3 Feature Notes
Supermini Procedures

59

where procname is the name of the procedure· and pl, p2,
etc., .are the parameters to the procedure.

The procedures designed to be initiated from a terminal use
the following command:

SCREEN,model
MS(procname)

where model is the terminal model type and procname is the
name of the procedure. The procedure then prompts you for
any parameters it requires.

7.4 Procedure Descriptions

The procedures provided by CDC are listed below. The
procedures are grouped by functional area. For complete
information on the use of the procedures and any parameters,
refer to the CYBER Supermini Operations Handbook
(publication number 60459850).

Unless otherwise mentioned, you must run these procedures
from the system display console. In those cases where you
may run or are required to run the procedure from a
terminal, you must use a terminal supported by the NOS full
screen utilities.

PROCEDURE DESCRIPTION

MS(BLANKST) Blank labels a set of tapes. You specify the
number of tapes in the set. These tapes are
used for dumps of the permanent files, queued
files, and dayfiles.

MS(DUMPLOG) Dumps the permanent files ACCOUNT, DAYFILE,
ERRLOG, and MAINLOG (created by the MS(ENDLOG)
procedure) to tape. Each tape is written with
a density of GE. A parameter optionally allows
'the purging of the files after being dumped.

MS(ENDLOG) Appends a copy of the current active system
logs to permanent files with the names ACCOUNT,
DAYFILE, ERRLOG, and MAINLOG, depending on
which dayfile is being ended. A new system

60 NOS 2.3 Feature Notes
Supermini Procedures

dayfile is created to receive subsequent
dayfile messages.

MS(FINDJSN) Prints all entries for the specified JSN found
in the current active system dayfile. You can
run this procedure from either the system
console or from a terminal. When you run it
from a terminal, the procedure scans the
permanent file DAYFILE for entries rather than
the active system dayfile.

MS(LOADLOG) Loads the permanent files ACCOUNT, DAYFILE,
ERRLOG, and MAINLOG back onto disk from the
tape created by the procedure MS(DUMPLOG). You
must run this procedure from a terminal.

MS(PURGLOG) Purges the permanent files with the names
ACCOUNT, DAYFILE, ERRLOG, and MAINLOG on user
name SYSTEMX.

MS(DUMPALL) Dumps all permanent files to a
The set of tapes must be
labeled.

set of tapes.
previously blank

MS(DUMPMOD) Dumps permanent files modified since the last
full dump of permanent files.

MS(DUMPOLD) Dumps permanent files that have not been read,
executed, or written after the date specified
as a parameter.

MS(LOADF) Loads permanent files from tapes created by the
procedures MS(DUMPALL), MS(DUMPMOD), and
MS(DUMPOLD). These tapes were blank labeled
using the procedure MS(BLANKST) and were
recorded with a density of GE.

MS(DUMPQUE) Dumps all queued files to a tape. After the
queued files are dumped, they are purged from
the system.

MS(LOADQUE) Loads the queued files onto the system from the
tape created by the procedure MS(DUMPQUE).

MS(VALUSER) Creates, deletes, qr modifies the validation
for a single user (when parameters are
specified) or accesses the file created by the
procedure MS(WRITEIV) and submits the directive
file to MODVAL.

NOS 2.3 Feature Notes
Supermini Procedures

61

MS{WRITEIV) Writes a validation input file used by the
procedure MS{VALUSER). You must run this
procedure from a terminal. WRITEIV is used to
validate many users with one of the user types
previously defined {either by CDC or the site).

7.5 Differences Between NOLIMIT and LIMITED User Types

A user, to which you have assigned the default NOLIMIT user
type, can request and use all resources available to the
system. The system administrator {user type SYSADM), the
Control Data Central Hardware Support {user type CDCCHS),
and the Control Data Central Software Support (user type
CDCCSS) users are NOLIMIT users with additional special
privileges.

A user, to which you have assigned the default LIMITED user
type, is limited in the following ways:

• An individual direct access file is limited to 20,480
PRUs.

An individual indirect access file is limited to 192
PRUs •

. The total mass storage allocatable per job is limited
to 66,048 PRUs.

The total size of all indirect access files is 1 imited
to 4096 PRUs •

• The maximum central memory available is limited to
203,700 octal words (67,520 decimal words) •

• The maximum number of detached jobs is limited to 3.

The maximum number of deferred batch jobs is limited to
8.

If you feel these limits need modification, refer to the
following section for information on modifying these values.

62 NOS 2.3 Feature Notes
Supermini Procedures

7.6 Creating or Modifying User Validation Types

There are five user types supplied by CDC for use with these
procedures. They are; CDCCHS for CDC hardware support
personnel, CDCCSS for CDC software support personnel, SYSADM
for the system administrator, NOLIMIT for a user with high
resource requirements, and LIMITED for a user· with low
resource requirements. These five types are names of text
records on ZZZPFIL. Each of these text records is a
collection of MODVAL input directives. If you wish to
create a new user validation type using an existing type as
a base or modify the limits of any of the supplied types,
use the following process:

1. Log into the system using a terminal that is supported
by the NOS full screen utilities under the user name
INSTALL.

2. Enter the following command to establish screen mode:

SCREEN,model.

where model is the terminal model supported by the NOS
full screen utilities.

3. Attach the file containing the user validation type
record with the following command:

ATTACH,ZZZPIFL/M=W,UN=SYSTEMX.

4. Extract the text record of the user validation type you
are using as a base (NOLIMIT in this example) with the
following command:

GTR,ZZPIFL,lfn.TEXT/NOLIMIT

where lfn is a local file name of your choosing.

5. Begin editing the local file with the
command:

FSE, lfn.

following

During the editing session, if you make no change to
the seven-character first line of the file, you will
only modify the default values of the user validation
type. If you change the first line of the file, you

NOS 2.3 Feature Notes
Supermini Procedures

will have defined a new user type with the type name
specified in the first line of the file. If you have
created a new user type, you must have an end-of-record
mark as the last 1 ine of the file. In FSE you indicate
an end-of-record with the following string placed
left-justified after the last line of the file:

(EOR)

6. Exit the editing session when changes are complete by
pressing the appropriate function key, or by going to
the home line and entering the following command:

Q

7. Edit your new or modified text record back into the
file ZZZPIFL and generate a new file (NPL in this
example) by entering the following command:

LIBEDIT,ZZZPIFL,N=NPL,B=lfn, l=O.

where lfn is the local file you edited in step 5.

8. Copy and verify the new ZZZPIFL onto the old procedure
file with the following command:

COPYEl,NPL,ZZZPIFL,V.

9. Return the new file ZZZPIFL with the following command:

RETURN,ZZZPIFL.

You can now run the procedures with the new or modified
validation available. You should save a copy of ZZZPIFL
after it was modified because if you re-install NOS, the
changes will revert to the default values supplied with the
release. You would then have to repeat the above process to
reestablish the modified values.

64 NOS 2.3 Feature Notes
Supermini Procedures

1~1 Modifying a Procedure File

If you wish to modify a procedure file rather than a user
validation type, you would use the exact same process as
outlined above, except that you would specify the following
command in place of the GTR command in step 4:

GTR,ZZZPIFL,lfn.PROC/procname

NOS 2.3 Feature Notes 65
Screen Management Enhancements

CHAPTER 8

SCREEN MANAGEMENT ENHANCEMENTS

First of all, the term Screen Management needs some
clarification. It is the generic name given to the
collection of Control Data's full-screen products which were
introduced at NOS 2.2. Screen Management encompasses the
Full Screen Editor (FSE), Screen Management Facility
Subsystem (SMF) and the Screen Format Products. FSE can be
run in single user mode whereby each user has their own
copy, or via SMF where many users utilize a single copy.
The Screen Format Products provide full-screen input and
output capabilities for NOS procedures and for COBOLS,
FORTRAN5 and PASCAL 1.1 programs. NOS 2.} adds support of
PASCAL 1.1 for all features previously supported for COBOLS
and FORTRAN5. See the NOS 2 Screen Formatting Reference
Manual, publication number 60460430, for further
information. Even though the different entities of Screen
Management may share some common routines, they are
different utilities.

At NOS 2.2 L596, the Full Screen Editor included system
defined support for five different terminals. They were:

CDC VIKING 721
CDC VIKING 722

DEC VTlOO
ZENITH Zl9/H19

66 NOS 2.3 Feature Notes
Screen Management Enhancements

Also at L596, the only terminal which could utilize the
Screen Format Products was the CDC VIKING 721.

At L602, three additional terminals were added to the list
of supported terminals for FSE. They included:

LEAR SIEGLER ADM3A
LEAR SIEGLER ADM5
TEKTRONIX 4115

Support for all other terminals for use with FSE involved
the site in making modifications to routine VIRTERM (See NOS
2.2 Feature Note - NOS FSE Support of Additional Terminals).

This leads us to the changes made at NOS 2.3 L617.

First, FSE now allows direct cursor positioning via the
touch panel on the CDC 721, if a touch panel is installed.

Second, FSE will support type-ahead. This allows the user
to send commands to FSE before it responds to previous
commands, in case the system is slow in responding. Caution
should be used since the terminal screen may not reflect the
data on the file as it really exists and therefore this
feature should only be used by an experienced analyst. This
feature is activated by a parameter within the TDUIN file.

It is now possible to interface almost any terminal which
uses the asynchronous communication protocol in character
mode to work with all products within Screen Management.
This is accomplished by describing your terminals'
attributes to one of the screen formating utilities called
TDU (Terminal Definition Utility). The following pages will
further describe TDU and illustrate its use in adding
support for the TELEVIDEO 920C terminal.

TDU is an interactive procedure which accepts the users'
terminal definition file (an ASCII file called TDUIN) and
produces a loadable capsule which is placed in a file called
TERMLIB. TERMLIB can exist as a local file, a permanent
file in the users' catalog, or, if you want other users to
access it, a permanent file in the LIBRARY catalog. A
default TERMLIB is provided as part of the NOS installation
and contains capsules for the same terminals supported at
NOS 2.2 L602. The site has the option to add all its
terminal definitio·ns to the file in the LIBRARY catalog or
each user can build their own version and keep it in their
own permanent file catalog. This enables a user to override
what the system default is.

NOS 2.3 Feature Notes 67
Screen Management Enhancements

The NOS SCREEN command has been enhanced to search for a
file named TERMLIB, first as a local file, then as a
permanent file in the user catalog, and then as the
installation file under user name LIBRARY. Once a terminal
name match is found, the terminal definition capsule is
copied from the appropiate TERMLIB to a local file called
ZZZZTRM. This file will be accessed by all products under
Screen Management. Because of this enhancement, the "SET
SCREEN TERMINAL MODEL" command within FSE has been changed.
The "SET SCREEN" can be used only to repaint the screen, not
change terminal model. If this is needed, exit FSE, execute
the NOS SCREEN command supplying the new terminal model,
then re-enter FSE.

What follows are the steps in using TDU to define the
TELEVIDEO 920C for NOS Screen Management.

Our first step is to place our terminal in ASCII mode since
the TDUIN file must be an ASCII file. We perform this with
the NOS command:

ASC 11.

We retrieve from file TDUFILE under user name LIBRARY, the
record called TDUIN. This is a skeleton of the file needed
as input by TDU. It contains all the necessary definitions
needed by Screen Management. Our job will be to fill in the
blanks for each definition. Execute the following to obtain
the TDUIN file.

ATTACH,TDUFILE/UN=LIBRARY.
GTR,TDUFILE,TDUIN.TDUIN

Now we use an editor to modify the TDUIN file. You will
need the hardware reference manual describing your
terminal •s attributes in order to answer some of the
questions. What follows is the TDUIN file for the TELEVIDEO
920C. Descriptions of each parameter, along with comments
on what we have already talked about, are included within
the file. Capital letters have been used in the file for
documentation purposes only.

68 NOS 2.3 Feature Notes
Screen Management Enhancements

*********** BEGIN THE TDUIN FILE FOR 92oc *************

PLACE YOUR TERMINAL NAME IN THE LINE BELOW FOR DOCUMENTATION

TERMINAL DEFINITION FILE FOR T920C TERMINAL I

The terminal definition utility (TDU) allows user definition
of most character mode asynchronous type terminals for use
with all NOS full screen products. A detailed description
of TDU can be found in the NOS Screen Formatting Reference
Manua 1.

There should be a collection of system defined terminal
definition files (as· seperate records) on file TDUFILE,
UN=LIBRARY that may assist you (and perhaps already define
your terminal or one that is very similar to it). The
record names and the terminals that they define should
include:

TDUIN
TDU721

TDU722
TDUVTlO
TDUT415
TDUZ19
TDUADM3
TDUADM5
TDUVKX3

TDU721T

TDU722T
TDUVTlT
TDUT41T
TDUZ19T
TDUAD3T
TDUADST
TDUVK3T

TEMPLATE FILE
CDC 721 (Viking X with Version 4
firmware)
CDC 722
DEC VTlOO
TEKTRONIX T4115
ZENITH Zl9/Z29
LEAR SIEGLER ADM3A
LEAR SIEGLER ADM5
CDC 721 (Viking X) with Version 3.0
firmware.
CDC 721 (Viking X) with type ahead,
touch panel, and automatic tabbing
(for screen formatting)

CDC 722 with type ahead
DEC VTlOO with type ahead
TEKTRONIX T4115 with type ahead
iENITH Zl9/Z29 with type ahead
LEAR SIEGLER ADM3A with type ahead
LEAR SIEGLER ADM5 with type ahead
CDC 721 (Viking X) with Version 3.0
firmware and type ahead.

A collection of terminal definition files for other
terminals will also be made available through ~entral

Software Support for a variety of popular terminals and
micro computers.

NOS 2.3 Feature Notes 69
Screen Management Enhancements

This file (TDUIN) is the input file that you wi 11 fi 11 with
the specific terminal dependent data that you should find in
the hardware reference manual for your terminal. When the
sequences, capabilities and attributes of your terminal have
been filled in you will then compile your terminal
definition by using the system command TDU. This will
produce a file named TERMLIB which contains an encapsulated
copy of the information needed by NOS screen formatting
products to utilize your terminal. The command
SCREEN,xxxxxx (xxxxxx being the value you specified for the
model_name statement) will then enable you to interact with
all NOS full screen facilities.

Note that if your have removed this file from TDUFILE where
it was one of a number of records that are each a terminal
definition file, you will need to delete the first line
(TDUIN) which is the record name and not part of the actual
file.

A number of capabilities are required for your terminal to
function in screen mode. These are a clear_page_stay or a
clear_page_home, a cursor_home, and the ability to directly
position the cursor on the screen. At least a subset
(Fl-F6) of the application keys and a CDC standard STOP
function key (a good choice is CTL/T) should also be
defined. An erase_end_of_l ine capability is not required
but will provide considerably better performance for all
full screen products.

Any line surrounded by quotation marks is a comment line and
will be ignored when compiling your terminal capsule. This
is a way in which you can add your own comments to this file
as you proceed to fill in the requested information. Those
lines that are not surrounded by quotation marks in this
file are the input directives to TDU for which you will fill
in the correct values for your terminal.

TDU allows you to define variables for commonly used
character strings and recognizes ASCII mnemonics (such as
rs, ack). Both your variables and the mnemonics can be used
anywhere in this file.

Here are some examples to assist you in your definitions:

VARIABLES

set_ l i ne_mode
set_ l i ne_mode
set_ l i ne_mode

= ()
= (rs ack)
= (14 (8))

Empty sequence.
ASCII mnemonics.
(8) indicates an octal
value.

70 NOS 2.3 Feature Notes
Screen Management Enhancements

set_line_mode = (14(16)) (16) indicates a
hexadecimal value.

set_line_mode = (14) Any nonsubscripted number
is decimal.

blank_character = (' ') Blank character (see line
drawing).

start_underline = (rs 1=1
) ASCII mnemonic and

·character.
stop_underline = (rs 111

') Use of apostrophe.

Another use of the TDU capability to define variables can be
used to make default function key sequences for FSE (which
are also defined in TDUIN) more readable.

Here is an example for a terminal with a set of six (Fl-F6)
keys:

VARIABLES FOR FULL SCREEN EDITOR FUNCTION KEY DEFINITIONS

kl = ('SKl/SM/L/ MARK/;SKSl/SMW/L/MRKCHR/')
k2 = ('SK2/MMTP/L/ MOVE/;SKS2/CMTP/L/ COPY/')
k3 = ('SK3/IBP/L/ INSB/;SKS3/DB/L/ DELB/')
k4 = ('SK4/PF/L/ FIRST/;SKS4/VL/L/ ·LAST/')
k5 = ('SK5/U/L/ UNDO/')
k6 = ('SK6/Q/L/ QUIT/')
~

FOR THE T920C, WE WILL DEFINE 11 VARIABLES WHICH DEFINE THE
FUNCTION KEYS USED IN THE FSE FUNCTION KEY DEFINITION
SECTlpN.

Kl = ('SKl/VNS/L/ FWD/')
KlS = ('SKSl/VPS/L/ BKW/')
K2 = ('SK2/VN/L/LINEUP/')
K2S = ('SKS2/VP/L/LINEDN/')
K3 = ('SK3/.l/L/ INSC/')
K3S = ('SKS3/.D/L/ DELC/')
K4 = ('SK4/IBP1/L/ INSL/')
K4S = ('SKS4/D;PN/L/ DELL/')
K5 = ('SK5/SM/L/ MARK/')
K5S = ('SKS5/U/L/ UNDO/')
K6 = ('SK6/MMTP/L/ MOVE/')
K6S = ('SKS6/CMTP/L/ COPY/')
K7 = ('SK7/H/L/ HELP/')
K7S = ('SK7S/SVOO/L/ LEFT/')
KS = ('SK8/Q/L/ QUIT/')
K8S = ('SK8S/SVO&&C;.P+20/L/ RIGHT/')
K9 = (

1SK9/.E/L/ENDLIN/ 1
)

K9S = {'SK9S/.C/L/CENTER/')

NOS 2.3 Feature Notes 71
Screen Management Enhancements

KlO = ('SKlO/.J/L/ JOIN/')
KlOS = (1 SKlOS/.S/L/SPLIT/ 1

)

Kll = (1 SKll/V/L/MIDDLE/ 1
)

KllS = ('SKllS/.F/L/ PARA/')

There are several basic types of statements that you will
encounter in this file:

o VALUE STATEMENTS

model_name
has_protect

value = 'myown'
value = TRUE

Where VALUE is TRUE, FALSE, an alphabetic string or a
number.

o TYPE STATEMENTS

type = ansi cursor cursor_pos_encoding
char_past_last_position type = wrap_adjacent_next

Where TYPE is one of a predefi~ed list of choices that will
be listed preceding the statement.

o IN STATEMENTS

fl
help

in
in

= (rs 71 (16))
= (rs 5C(l6))

Where IN is the sequence that comes upline from the terminal
when a specific function is performed or key is pressed.

0 OUT STATEMENTS

cursor_pos_begin out = (stx)
be 11 nak out = (be 1) -

Where OUT is the sequence sent down line to the terminal to
perform a certain function.

0 INOUT STATEMENTS

erase_page_home inout = (ff)
tab_f orward inout = (ht)

Where INOUT is the identical sequence sent up and down line
for a certain function.

..

72 NOS 2.3 Feature Notes
Screen Management Enhancements

It should be noted that you may break any INOUT statement
1 i ke

tab_f orward i nout = (ht)

into a matched pair of statements like

tab_f orward
tab_forward

in
out

= (ht)
= (ht)

You will need to do this if your terminal needs· a different
sequence downline to the terminal to perform a certain
function than is sent upline when that function is
performed. If in our example your terminal recognized ht
(from the host) as a signal to perform a tab forward but
sent vt (to the host) to indicate that the tab forward key
had been pressed, then the single tab_forward inout = ()
statement would be split into:

tab_f orward in = (vt) [in from the
terminal]

tab_forward out = (ht) [out to the
terminal]

Any statement that is IN or OUT only sh.ou 1 d be left as is.

The file from this point on is arranged by functional groups
and contains comments for each directive that should ·assist
you in filling in the correct sequences for your· terminal.

MODEL NAME AND COMMUNICATION TYPE

model_name - A one to six character alphanumeric name for
your terminal. Lower case letters are translated to upper
case. The value specified here will be the name used on the
SCREEN command.

ENTER YOUR MODEL NAME BELOW, AS IN T920C.

model_name value = 'T920C 1

Communication type is asynch as only asynchronous terminals
are presently supported.

communications type = .asynch

END OF INFORMATION SPECIFICATION

I

\,

NOS 2.3 Feature Notes 73
Screen Management Enhancements

This defines the end of information sequence which is a zero
byte.

THIS SHOULD NOT NEED CHANGING.

end_of_information in = (0)

CURSOR POSITIONING INFORMATION

The way in which your terminal
will determine your choice
cursor_pos_column_first. The
positioning is:

encodes cursor positioning
for cursor_pos_encoding and
general format for cursor

Let x
Let y
Let a
Let b
Let c
And Bias

-------------->
-------------->
-------------->
-------------->
-------------->
-------------->

represent the column coordinate.
represent the row coordinate.
represent cursor_pos_begin.
represent cursor_pos_second.
represent cursor_pos_third.
is the integer value added to
the row or column for cursor
positioning. You should be able
to find the value for bias in
the hardware reference manual
for your term i na 1 (of ten
20 (16)) •

Then cursor_pos_encoding will be one of three type:

ansi_cursor ---->Those terminals which are ANSI standard
and use decimalized cursor coordinates.
Format is:

a (X + bias) b (Y + bias) c
a (Y + bias) b (X + bias) c

the order of X and Y for your terminal
determines the value for
cursor_pos_column_first.

cdc721_cursor ----> The Control Data 721 (Vfking X)
terminal. Format is:

a (X + bi as) (Y + bi as)
(if X is less than 81)

a b (X + bi as -80) (Y + bi as)
(if X greater than 80)

binary_cursor ---->Those terminals which use direct
coordinate positioning.
Format is:

a (X + bias) b (Y + bias) c

74 NOS 2.3 Feature Notes
Screen Management Enhancements

a (Y +bias) b (X +bias) c
the order of X and Y for your terminal
determines the value for
cursor_pos_column_first.

SINCE THE T920C USES DIRECT CURSOR ADDRESSING WE HAVE CHOSEN
BINARY_CURSOR.

THE BIAS FOUND IN THE HARDWARE REFERENCE MANUAL WAS 32
DECIMAL OR 20(16).

cursor_pos_encoding bias = 32 type =
binary_cursor

Cursor_pos_column_first has a value of TRUE if your terminal
sends the X {or column) coordinate followed by the Y {or
row) coordinate and has a value of FALSE if the reverse is
true.

THE T920C ISSUES THE Y {OR ROW) FIRST.

THE FORMAT FOR CURSOR ADDRESSING IS AS FOLLOWS

ESC=YX{Y = 1-24, X = 1-80)

FOR EXAMPLE, ESC=%@ SAYS Y=6 AND X=33 WHICH PLACES THE
CURSOR AT LINE 6 AND COLUMN 33.

cursor_pos_column_first value= FALSE

Cursor_pos_column_length and row_length apply only to ANSI
type cursor position {these are zero for both other types)
and are non-zero only if your terminal sends a fixed number
of decimalized bytes for the column and row coordinates {as
opposed to a variable number which is the usual case).

cursor_pos_column_length value= (0)
cursor_pos_row_length value= (0)

Cursor_pos_begin, second and third are the sequences sent
before the first coordinate, in between coordinates and
after the last coordinate when positioning the cursor (a b
and c in the formats shown above). At least a
cursor_pos_begin should be supplied for your terminal though
second and third are often an empty sequence and can be left
alone.

NOS 2.3 Feature Notes 75
Screen Management Enhancements

AS SEEN IN THE FORMULA ABOVE, THE ESC= PRECEEDS THE Y AND X
COORDINATES. THERE ARE NO SEQUENCES BETWEEN THE Y AND X
COORDINATES. I HAVE REPRESENTED THIS WITH 18(16) 3D(l6).

cursor_pos_begin
cursor_pos_second
cursor_pos_third

out
out
out

= (18(16) 3D(l6))
= ()
= ()

CURSOR MOVEMENT INFORMATION

Cursor_home, up, down, left and right are the sequences sent
both downline to the terminal and via cursor keys, sent
upl ine from the terminal, to move the cursor to the home
position or a single column or row up, down, left, or right.
Since this is both an upline and downline sequence the INOUT
keyword is used.

THE FOLLOWING SEQUENCES WERE FOUND IN THE T920C REFERENCE
MANUAL AND REPRESENT THE CURSOR KEYS

cursor_home inout = 1 E (16)
cursor_up inout = OB (16)
cursor_down inout = OA (16)
cursor_left inout = 08 (16)
cursor _right· inout = oc (16)

CURSOR BEHAVIOR (for cursor movement keys)

Move_past_right, left, top and bottom describe what happens
when the cursor on your terminal is urged to move past the
right, left, top and bottom of the screen by a cursor
movement key (not by cursor movement caused by character
input or a seperate backspace key your terminal may have in
addition to a cursor left key, these behaviors may be
different from those for cu~sor positioning keys and will be
defined in the next section). The possible types are:

wrap_adjacent_next ----> The cursor wraps to the other end
of the screen on the adjacent row
(next row cursor_right or previous
row for cursor_left).

wrap_same_next .----> The cursor wraps to the other

sere l l_next
stop_next
home_next

end of the screen still in the
same row or column.

---->The terminal scrolls.
----> The cursor stops
----> The cursor homes.

76 NOS 2.3 Feature Notes
Screen Management Enhancements

CURSOR BEHAVIOR CAN BEST BE FOUND BY EXPERIMENTING WITH YOUR
TERMINAL. TRY MOVING THE CURSOR (WITH THE CURSOR KEYS) FOR
THE RESULTS.

move_past_right
move_past_left
move_past_top
move_past_bottom

type = WRAP_ADJACENT_NEXT
type = WRAP_ADJACENT_NEXT
type = WRAP_SAME_NEXT
type = WRAP_SAME_NEXT

CURSOR BEHAVIO~ (for character keys)

Char_past_right, left and last_postion describe what ha"ppens
when the cursor on your terminal is urged to move past the
right, left and end of the screen by character input or a
separate backspace key your terminal has in addition to (or
in place of} a cursor left key. The possible behaviors are
the same as those for cursor positioning keys.

wrap_adjacent_next ----> The cursor wraps to the other end
of the screen on the adjacent row
(next row cursor_right or previous
row for cursor_left}.

wrap_same_next ----> The cursor wraps to the other
end of the screen still in the
same row or column.

scroll_next ---->The terminal scrolls.
stop_next ----> The cursor stops
home_next ----> The cursor homes.;

AGAIN, THE WAY TO FIND OUT WHAT TO USE IS BY EXPERIMENTATION

char_past_right
char_past_left
char_past_last_position

TERMINAL ATTRIBUTES

type = WRAP_ADJACENT_NEXT
type = WRAP_ADJACENT_NEXT
type = WRAP_ADJACENT_NEXT

These describe various attributes and capabilites of your
terminal that should be either TRUE or FALSE.

BE AWARE THAT YOUR TERMINAL MAY HAVE ATTRIBUTES LIKE INVERSE
VIDEO, BLINKING, PROTECT MODE, UNDERLINE, ETC. BUT IF THE
TERMINAL HARDWARE UTILIZES A CHARACTER POSITION TO STORE THE
ATTRIBUTE (WHICH MEANS THAT A CHARACTER CANNOT EXIST IN THAT
POSITION), THEN YOU MAY NOT USE YOUR TERMINAL ATTRIBUTES,
SINCE SCREEN MANAGEMENT WILL NOT HANDLE THIS. THIS IS THE
CASE WITH THE T920C.

NOS 2.3 Feature Notes 77
Screen Management Enhancements

Automatic_tabbing is TRUE if your terminal supports tabbing
from one completed filled unprotected input field to the
next without requiring that a tab key is pressed.

automatic_tabbing value = FALSE

Clears_when_change_size is TRUE if your terminal has more
than one screen size and changing screen sizes causes the
screen to be cleared.

THE T920C ONLY HAS ONE SCREEN SIZE.

clears_when_change_size value = FALSE

Function_key_leaves_mark is TRUE if pressing a function key
on your terminal leaves a visible mark or character on the
screen or if function keys for your terminal will be
supported by an escape or control sequence that will require
a character to complete. The full screen editor will then
know to rewrite the line on the screen that has been
overwritten by the mark or character(s).

THE T920C HAS 11 FUNCTION KEYS AND DOES NOT LEAVE A VISIBLE
MARK OR CHARACTER ON THE SCREEN WHEN THEY ARE DEPRESSED.

function_key_leaves_mark value = FALSE

Has_hidden is TRUE if your terminal supports a hidden
attribute that allows a field to be defined as input only
such that typed characters are not displayed on the screen.

has_hidden value = FALSE

Has_protect is TRUE if the terminal hardware supports a
protected field attribute so that users can only enter data
within specified areas on the screen.

has_protect value = FALSE

Home_at_top is TRUE if the cursor goes to the top of the
screen when the home key is pressed or FALSE if it goes to
the bottom.

THE T920C HAS THE CURSOR HOME POSITION AT THE TOP OF THE
SCREEN.

home_at_top value = TRUE

78 NOS 2.3 Feature Notes
Screen Management Enhancements

Multiple_sizes is true if your terminal has more than one
screen size that can be set by a sequence sent downline to
the terminal.

AN EXAMPLE OF THIS WOULD BE THE coc721. THE T920C ONLY HAS
ONE SCREEN SIZE.

multiple_sizes value = FALSE

Tabs_to_home is TRUE if when tabbing forward from the last
unprotected field on the screen (or backward from the first)
the cursor moves to the home position and will move to the
field when the tab key is pressed again. Set FALSE if your
terminal can tab directly from the last unprotected field to
the first (and vice versa) or if your terminal does not
support a protect attribute.

tabs_to_home value = TRUE

Tabs_to_tab_stops is TRUE if your terminal supports hardware
tabbing to tab stops, FALSE otherwise.

THE T920C SUPPORTS TABBING FORWARD AND BACKWARD.

tabs_to_tab_stops value = TRUE

Tabs_to_unprotected is TRUE if your
tabbing from one unprotected field
previous). Set to FALSE if the terminal
protect or protected tabbing.

terminal supports
to the next (or
does not support

tabs_to_unprotected value = FALSE

Type_ahead is TRUE if you wish to run the full screen editor
·in type ahead mode, FALSE if you do not. This has no effect
on screen formatting applications. Type ahead means that
you do not have to wait for the system response to each
carriage return (next key) but may continue to type. Care
should be exercised not to abuse this capability since it is
possible to produce a screen that does not reflect the
actual file contents. If you fear this is the case do a
clear page or a SET SCREEN (SS) command to 'tell FSE to
repaint the screen. In addition typed ahead control t-s
(STOP keys) can not presently be handled by FSE so you
should avoid using procedures unless-you are sure they will
end and not loop continuously.

NOS 2.3 Feature Notes 79
Screen Management Enhancements

I CHOSE NOT TO ENABLE THIS FEATURE SINCE DID NOT WANT
INEXPERIENCED USERS TO GET CONFUSED BY TYPING AHEAD AND
SEEING THE TERMINAL SCREEN IN A CONDITION WHICH IS CONTRARY
TO WHAT THE ACTUAL FILE LOOKS LIKE.

type_ahead value = FALSE

SCREEN SIZES

These sequences are those necessary to set the terminal to a
specific number of lines and columns if the terminal has
more than one screen size that can be downline configured.
If the terminal does have more than one size, specify them
in ascending order (giving columns preference over lines) by
duplicating the entire set_size rows = yy columns = xx out =
(sequence) statement. A maximum of four sizes and a minimum
of one are to be specified.

Rows is the integer number of rows (lines) on the screen for
a specific screen size.

Columns is the integer number of columns (characters per
line) for a specified screen size.

Out is the sequence to be sent to the terminal to set a
screen size (it may be an empty sequence for a terminal with
only one size but the rows and columns should still be
entered) •

THE T920C SUPPORTS ONLY ONE TERMINAL SIZE, 24 X 80.

set_size rows = 24 columns = 80 out = 0

SCREEN AND LINE MODE TRANSITION

Screen_init is the sequence that will be sent to the
terminal when a SCREEN,TERMINAL_NAME command (or a SCREEN.
command when a SCREEN,TERMINAL NAME or LINE,TERMINAL NAME
identifying the terminal has-previously been executed) is
executed. This is useful for a terminal that requires a
large amount of reconfiguration, some of which does not
affect line mode dialogs and thus does not have to be done
at each entrance to a full screen application (see
set_screen_mode) •

THERE IS NO TERMINAL PRE-CONDITIONING WHICH IS NECESSARY FOR
THE T920C. THIS IS USEFUL FOR TERMINALS LIKE THE TEKTRONIX
4115 WHICH NEED A LARGE AMOUNT OF SETUP IN ORDER FOR THE
TERMINAL TO FUNCTION WITH SCREEN MANAGEMENT.

So

screen_init

NOS 2.3 Feature Notes
Screen Management Enhancements

out = ()

Line_init is the sequence that will be sent to the terminal
when a LINE,TERMINAL_NAME command (or a LINE. command when
a SCREEN,TERMINAL_NAME or LINE,TERMINAL_NAME identifying the
terminal has previously been executed) is executed.

line_init out = ()

Set_screen_mode is the sequence that will be sent when the
terminal enters the full screen editor or a screen
formatting application. This is where page mode should be
set, tabs perhaps cleared and so on to configure for running
in screen mode.

WE SUPPLIED NO INFORMATION IN THE SCREEN_INIT DEFINITION
SINCE THE T920C DOES NOT NEED ANY MAJOR PRE-CONDITIONING.
HOWEVER, WE ARE CONCERNED ABOUT TABS WHICH MAY HAVE BEEN SET
VIA SOME OTHER APPLICATION, ETC. THEREFORE WE WILL CLEAR
ALL TA~S WHICH ARE SET IN THE TERMINAL BY THE SEQUENCE

ESC 3

WE WILL DO THIS UPON ENTRY/EXIT OF ANY SCREEN APPLICATION
NEW TABS WILL BE SETUP VIA YOUR FSEPROC FILE OR VIA FSE
FUNCTION KEY DEFINITIONS WHICH ARE DESCRIBED LATER WITHIN
THIS FILE.

. set screen_mode out = (lB (16) 33 (16))

Set_line_mode is the sequence that will be sent when the
terminal exits the full screen editor or a screen formatting
application. This is where roll (or line) should be set and
what was done by the set_screen_mode sequence reversed.

set_ l i ne_mode out = (lB (16) 33 (16))

TERMINAL CAPABILITIES

These define what capabilities such as local insert and
delete line or character your terminal provides.

Backspace allows you to define a key that.sends a different
(from the cursor left key) sequence upline from the terminal
to move the cursor one character position to the left. This
is of particular use if the behavior for the backspace key
(which will be treated as a character movement key, not a

NOS 2~3 Feature Notes 81
Screen Management Enhancements

cursor movement key and hence is bound by the CHARACTER
MOVEMENT BEHAVIOR descriptions) differs from the CURSOR
MOVEMENT BEHAVIOR for the cursor_left key (as described in
the CURSOR MOVEMENT BEHAVIOR section of this file). This is
an input only sequence so the IN keyword is used here.

SINCE THE T920C USES THE SAME SEQUENCE FOR CURSOR LEFT KEY
AND BACKSPACE KEY, NO DEFINITION IS NEEDED HERE.

backspace in = ()

Delete_char is the sequence for local delete character for
your terminal. In order for this to function correctly, the
key that does the local (that is on the screen) delete
character must send a sequence upline to make the full
screen product aware that the screen has changed. This is
true for all terminal capabilities.

THE ESC W SEQUENCE IS USED BY THE T920C TO DELETE A
CHARACTER.

delete_char inout = (18 (16) 57 (16))

Delete_l ine_bol and delete_line_stay are provided so that
full screen applications are aware of the cursor position
after a delete line function has been performed. If your
terminal has a local delete line function then one (and only
one) of delete_l ine_bol or delete_l ine_stay should be filled
with the correct terminal sequence. Delete_l ine_bol if the
cursor moves to the leftmost position when a 1 ine is
deleted, delete_line_stay if the cursor stays in the column
it was in when the delete line f~nction was performed.

THE ESC R SEQUENCE IS USED BY THE T920C TO DELETE A LINE.
THE CURSOR DOES NOT MOVE TO THE BEGINNING OF THE LINE AFTER
THE DELETE TAKES PLACE.

delete_line_bol
delete_line_stay

i nout = ()
inout = (1B(16) 52(16))

Erase_char is the sequence for an erase character function.

erase_ char i nout = ()

Erase_end_of_line is the sequence for an erase from the
current cursor position to the end of that line. This is
not a required terminal capability but will provide much
better performance for all full screen products.

82 NOS 2.3 Feature Notes
Screen Management Enhancements

THE ESC T SEQUENCE IS USED BY THE T920C TO ERASE FROM CURSOR
TO END OF LI NE.

erase_end_of_line inout = (1B(l6) 54(16))

Erase_f ield_bof is reserved for future use.

erase_f ield_bof i nout = ()

Erase_f ield_stay is reserved for future use.

erase_f ield_stay inout = ()

_ Erase_line_bol and erase_line_stay are provided so that full
screen applications are aware of the cursor position after
an erase line function has been performed. If your terminal
has a local erase line function then one (and only one) of
erase_l ine_bol or erase_line_stay should be filled with the
correct terminal sequence. Erase_line_bol if the cursor
moves to the leftmost position when a line is erased,
erase_l ine_stay if the cursor stays in the column it was in
when the erase line function was performed.

THE T920C HAS THIS FEATURE IN THE FORM OF THE ABOVE DEFINED
ERASE_END_OF_LINE. IF THE CURSOR IS POSITIONED AT THE FIRST
COLUMN IT ESSENTIALLY PERFORMS AN ERASE LINE. SINCE WE
ALREADY HAVE THIS DEFINED IN ONE PLACE IT IS UNNECESSARY AND
ILLEGAL TO DEFINE IT AGAIN.

erase_l i ne_bo 1
erase_l i ne_stay

inout = ()
inout = ()

Erase_page_home and erase_page_stay are provided so that
full screen applications are aware of the cursor position
after an erase page function has been performed. If your
terminal has a local erase page function (that sends a
sequence upline) then one (and only one) of erase_page_home
or erase_page_stay should be filled with the correct
terminal sequence. Erase_page~home if the cursor moves to
the home position when the screen is cleared,
erase_page_stay if the cursor stays where it was when the
erase page function was performed.

THE CTL/Z SEQUENCE IS USED BY THE T920C TO ERASE THE PAGE
AND THE CURSOR ALWAYS GOES TO THE HOME POSITION.

erase_page_home
erase_page_stay

i nou t = 1 A (1 6)
inout = ()

NOS 2.3 Feature Notes 83
Screen Management Enhancements

lnsert_char is the sequence for local insert character for
your terminal. In order for this to function correctly the
key that does the local {that is on the screen) insert
character must send a sequence upl ine to make the full
screen product aware that the screen has changed. This is
true for all terminal capabilities.

THE ESC Q SPACE SEQUENCE IS USED BY THE T920C TO INSERT A
CHARACTER.

insert_char inout = {1B{16) 51 {16) 20(16),)

lnsert_line_bol and insert_line_stay are provided so that
full screen applications are aware of the cursor position
after an insert line function has been performed. If your
terminal has a local insert line function {that sends a
sequence upl ine) then one {and only one) of insert_line_bol
or insert_line_stay should be filled with the correct
terminal sequence. lnsert_line_bol if the cursor moves to
the leftmost position when 1 a line is inserted,
insert_line_stay if the cursor stays in the column it was in
when the insert line function was performed.

THE ESC E SEQUENCE IS USED BY THE T920C TO INSERT A LINE AND
THE CURSOR ALWAYS GOES BACK TO THE BEGINNING OF THE LINE
AFTER THE INSERT.

insert_ l i ne_bo 1
insert_) ine_stay

inout = {1B(16) 45(16))
i neut = {)

Erase_unprotected is reserved for future use.

erase_unprotected i neut = {)

Erase_end_of_page is reserved for future use.

erase_end_of _page i neut = {)

Erase_end_of_f ield is reserved for future use.

erase_end_of_f ield inout = {)

lnsert_mode_begin is the sequence
Characters are inserted, shifting
rather than overstriking them.

insert_mode_begin inout = {)

to enter insert mode.
other characters right

84 NOS 2.3 Feature Notes
Screen Management Enhancements

lnsert_mode_end is the sequence to exit insert mode.
Characters will now overstrike rather than insert.

insert_mode_end i neut = ()

lnsert_mode_toggle will switch between insert and overstike
mode.

insert_mode_toggle inout = ()

· Tab_backward is the sequence sent (and received) when
tabbing from a tab stop or unprotected field to the previous
tab stop or unprotected field.

THE ESC I SEQUENCE IS USED BY THE T920C TERMINAL TO TAB
BACKWARDS.

tab_backward inout = (1B(l6) 49(16))

Tab_clear is the sequence to clear the tab stop at the
current cursor position.

THE ESC 2 SEQUENCE IS USED BY THE T920C TO CLEAR A TAB AT
THE CURSOR POSITION.

tab_clear inout = (1B(l6) 32(16))

Tab_clear_all is the sequence to clear all tab stops.

THE ESC 3 SEQUENCE IS USED BY THE T920C TO CLEAR ALL TABS.

tab_c 1 ear _a 11 i neut = (lB (16) 33 (16))

Tab_forward is the sequence sent (and received) when tabbing
from a tab stop or unprotected field to the next tab stop or
unprotected field.

THE T920C USES THE CONTROL CODE 09(16) TO TAB FORWARD.

tab_f orward i neut = 09 (16)

Tab_set is the sequence to set a tab stop at the current
cursor position.

THE ESC 1 SEQUENCE IS USED BY THE T920C TO SET A TAB WHERE
THE CURSOR IS POSITIONED.

tab_set inout = (1B(l6) 31 (16))

NOS 2.3 Feature Notes 85
Screen Management Enhancements

MISCELLANEOUS TERMINAL SEQUENCES

Bell_nak is the sequence to ring the bell on your terminal.

MOST TERMINALS USE THE 07 CONTROL CODE FOR THE BELL.

be l l_nak out = 07 (16)

Bell_ack is reserved for future use.

bell_ack out = ()

Display_begin is reserved for future use.

display_begin out = ()

Display_end is reserved for future use.

display_end out = ()

Field_scroll_down is reserved for future use.

field_scroll_down out = ()

Field_scroll_set is reserved for future use.

field_scroll_set out = ()

Field_scroll_up is reserved for future use.

field_scroll_up out = ()

Output_begin is the sequence that will be sent before each
stream of output is sent downline to the terminal. This
should include the sequence to disable protect if the
terminal supports it as well as the sequence to exit insert
mode if the terminal has an insert mode.

output_begin out = ()

Output_end is the sequence that will be sent after each
stream of output (and therefore before the next request for
input) is sent downline to the terminal. This should
include the sequence to enable protect if the terminal
supports protect.

output_ end out = ()

86 NOS 2.3 Feature Notes
Screen Management Enhancements

Print_begin is reserved for future use.

print_begin out = ()

Print_end is reserved for future use.

print_end out = ()

Print_page is reserved for future use.

print_page out = ()

Protect_all is the sequence that will set the protect bit
for all character positions on the screen. For some
terminals that have protect this will be an empty string (an
example is a terminal that uses a clear screen to protected
character positions sequence to accomplish this function).

protect_all out = ()

Reset is reserved for future use.

reset out = ()

Return is reserved for future use.

return out = ()

PROGRAMMABLE FUNCTION KEY INPUT INFORMATION

All full screen products use programmable function keys so
that a user can tell the full screen product what they want
to do next. Programmable function keys in the full screen
editor allow a frequently used command to be reduced to
pressing the correct function key (or required sequence of
keys) for the terminal in use.

This section allows you to define what input sequences will
be sent upline by your terminal to be recognized as
programmable function keys. These should be entered for at
least Fl - F6 and should be defined for all of the keys if
possible.

Procedures run in screen mode will require only Fl - F6 to
execute correctly but local screen formatting application
programs that use programmable function keys to drive menus
or to terminate form type input may require that more
programmable functions keys than just Fl - F6 be defined in
this f i 1 e.

NOS 2.3 Feature Notes 87
Screen Management Enhancements

Escape or control sequences such as ESC - l for Fl can be a
good way to define programmable function keys but take care
not to use sequences that conflict with terminal hardware
sequences. These are input only sequences so the IN keyword
is used here.

THE T920C HAS 11 FUNCTION KEYS. THE CONTROL SEQUENCES WERE
GIVEN IN THE HARDWARE REFERENCE MANUAL AS FOLLOWS:

Fl SAYS FUNCTION KEY 1 {UNSHIFTED)

Fl_S SAYS FUNCTION KEY 1 {SHIFTED)

f 1 n = (01 {16) 40 {16))
f2 n = {01 {16) 41 {16))
f3 n = {01 {16) 42 {16))
f4 n = (01 (16) 43 (16))
f5 n = {01 (16) 44 (16))
f6 n = (01 (16) 45 (16))
f7 n = {01 (16) 46 {16))
f8 n = (01 {16) 47 (16))
f9 n = (01 (16) 48 (16))
f 10 n = {01 {16) 49 06))
f 11 n = {01 {16) 4A {16))
fl2 n = ()
fl3 n = {)
f 14 n = ()
f 15 n = ()
fl6 n = {)
f l_s n = (01 (16) 60 (16))
f2_s n = (01 {16) 61 (16))
f3_s n = {01 (16) 62 (16))
f4_s n = {01 {16) 63 (16))
f5 s n = {01 (16) 64 (16))
f6=s n = (01 {16) 65 {16))
f7 s n = (01 (16) 66 (16))
f8=s n = (01 {16) 67 (16))
f9_s n = (01 (16) 68 (16))
flO_s n = ·co1(16) 69(16))
fl l_s n = (01 (16) 6A {16))
fl 2_s n = ()
fl3 s n = {)
fl 4=s n = {)
f 15 s n = {)
f 16=s n = ()

CDC STANDARD FUNCTION KEY INPUT INFORMATION

88 NOS 2.3 Feature Notes
Screen Management Enhancements

All full screen products use.what are called CDC standard
function keys. These are keys that have the same meaning to
a particular full screen product regardless of the terminal
in use. Each of these keys also corresponds to a physical
key on the CDC 721 (Viking X) terminal.

The next section allows you to define what input sequences
the terminal you wish to use will send upline to be
recognized as CDC standard function keys. This capability
will make- all full screen products more usable to the end
user but is not required when using the Full Screen Editor
or procedures in screen mode.

Local screen formatting applications that have been written
to use CDC standard function keys (rather than programmable
function keys described in the previous section) to drive
menus or to terminate form type input may require that at
least some CDC standard function keys be defined in this
file.

Escape or control sequences such as ESC - F for Forward can
be a good way to define CDC standard function keys but take
care not to use sequences that conflict with terminal
hardware sequences. These are input only sequences so the
IN keyword is used here.

SINCE MOST OF THE ESCAPE AND CONTROL SEQUENCES ARE USED BY
THE TERMINAL TO PERFORM ITS NORMAL FUNCTIONS, IT LEFT LITTLE
TO USE FOR TH IS TYPE OF FUNCTION KEY. I WI LL AT LEAST ·
DEFINE THE STOP (CTL/T) AND STOP_S (CTL/P) WHICH WILL ENABLE
THE USER TO SEND THE STOP/ABORT SIGNAL TO THE FULL SCREEN
MANAGEMENT APPLICATION.

back n = ()
back_s n = ()
help n = .()
help_s. n = ()
stop n = 14 { 16)
stop_s n = 10 { 16)
down n = ()
down_s n = ()
up n = ()
up_s n = ()
fwd n = ()
f wd_s n = ()
bkw n = ()

' bkw_s n = ()
edit n = ()
edit_s n = ()

NOS 2.3 Feature Notes
Screen Management Enhancements

data
data_s

in = ()
in = ()

TERMINAL VIDEO ATTRIBUTES

89

These attributes are used mainly by screen formatting
applications to define various types of fields (though
protect_begin and end as well as inverse_begin and end or
alternate_begin and end where they are available are used by
F SE) •

Define the attributes sequences below as described in the
hardware reference manual for your terminal. The only
restriction is that attributes that require an actual
character position on the screen can not be used. If your
terminal has a protect mode that uses a video attribute such
as alternate video (either bright or dim) then you will want
to place these sequences in the protect_begin and
protect_end statements. These sequences are output only
hence the OUT keyword is used here.

REMEMBER THAT THE T920C USES A CHARACTER
ON/OFF AN ATTRIBUTE. THEREFORE WE
ATTRIBUTES.

POSITION TO
CANNOT DEFINE

TURN
ANY

Alt_begin is the sequence to cause subsequent characters
sent downline to be displayed in an alternate intensity
(which may be bright or dim on your terminal).

alt_begin out = ()

Alt_end is the sequence to cause subsequent characters sent
downline to be in normal intensity.

alt_end out = ()

Blink_begin is the sequence to cause subsequent characters
sent downline to be displayed with a blinking attribute.

blink_begin out = ()

Blink_end is the sequence to
sent downline not to be
attribute.

cause subsequent characters
displayed with the blinking

b 1 i nk_end out = ()

90 NOS 2.3 Feature Notes
Screen Management Enhancements

Hidden_begin is the sequence to set the hidden attribute for
subsequent characters so that data typed in this area can
not be seen on the screen (also called a guarded attribute).

hidden_begin out = 0

Hidden_end is the sequence to return to visible characters.

hidden_end out = 0

lnverse_begin is the sequence to cause subsequent characters
to be displayed in inverse video.

inverse_begin out = 0

lnverse_end is the sequence to return to normal video.

inverse_end out = 0

Protect_begin is the sequence to cause subsequent characters
sent downline to the terminal to be protected, which means
data can not be typed in these character positions on the
screen.

protect_begin out= 0

Protect_end is the sequence to return to unprotected mode.

protect_ end

Underline_begin
characters sent
attribute.

out = 0

is the sequence to cause subsequent
downline to be displayed with an underline

underl ine_begin out = 0

Underline_end is the sequence to cause subsequent characters
sent downline to no longer be underlined.

underline_end out= 0

LOGICAL ATTRIBUTE SPECIFICATIONS

Logical attributes are used mainly by screen formatting
applications to define various types of fields. Procedures
run in screen mode, for example, define all input variables
for a procedure as logical type INPUT TEXT, which assures
that they are underlined for those terminals that have that

NOS 2.3 Feature Notes 91
Screen Management Enhancements

capability or that any blanks in the variables are replaced
with hypen characters on the screen to make them easily
recognizable. You may define the logical attributes below
as any combination of physical attributes by using the
sequences to turn them on and off, or use any other
displayable type function (except an attribute that will
require an actual character po~ition on the screen) that
your terminal supports, such as RED_ON for error_begin and
RED_OFF for error_end.

ERROR

error_begin
error_end

INPUT TEXT

out = ()
out = ()

If your terminal supports protect by use of a video
attribute such as alternate intensity for unprotected areas
of the screen, you should define input_text_begin and end
accordingly so that screen formatting applications display
the input fields correctly as unprotected areas.

input_text_begin
input_text_end

ITALIC

out = ()
out = ()

If your terminal supports an alternate character set then
here is a place that you can make use of it with screen
formatting applications.

ital ic_begin
italic_end

MESSAGE

out = ()
out = ()

Attributes displayed here will be used when printing help
and error messages on the first 1 ine of the screen when a
screen formatting application is running. Use any physical
attributes that you wish but remember that if your terminal
.has a video attribute based protect capability this area
should be protected data.

message_begin
message_ end

OUTPUT TEXT

out = ()
out = ()

92 NOS 2.3 Feature Notes
Screen Management Enhancements

For output only data, so
attribute based protect
protected data.

if your terminal
capability, this

output_text_begin
output_text_end

TITLE

title_begin
title_end

out = ()
out = ()

out = ()
out = ()

LINE DRAWING CHARACTER SPECIFICATION

has a video
area should be

Line drawing character sets that your terminal supports
should be specified here for use with the box drawing
capability found in NOS screen formatting. There are three
line weights, fine, medium, and bold, each with a sequence
to enable and disable that weight and with eleven characters
that represent the corners, edges and intersections for the
corresponding line drawing character set.

If your terminal has the capability of actual line drawing,
then place the sequences to turn the line drawing on and off
in the ld_fine_begin, ld_f ine_end and so on for up to three
types of line drawing sets (you may specify the same
sequences for all three or for any two if your terminal does
not have three line drawing sets). If your terminal has no
line drawing then the use of a hyphen character for a
horizontal character, a colon or like· character for a
vertical line, and asterisks for all corners and
intersections is suggested. In this case the ld_f ine_begin,
ld_f ine_end sequences would be blank though you could use a
terminal attribute such as alternate intensity.

Also for a bold line drawing character set you can define
a 11 characters as b 1 anks (' 1

) and use i nverse_on and
inverse_off as the ld_bold_begin and ld_bold_end sequences.

SINCE WE CANNOT USE ANY OF THE T920C ATTRIBUTES I SUGGEST
THAT WE USE THE - CHARACTER FOR DRAWING HORIZONTAL LINES,
THE I CHARACTER FOR DRAWING VERTICAL LINES AND THE *
CHARACTER FOR INTERSECTION POINTS AND BOX CORNERS.

NOS 2.3 Feature Notes
Screen Management Enhancements

Fine Line Drawing Begin and End Sequences.

ld_f ine_begin
ld_f ine_end

out = 0
out = ()

Horizontal and Vertical Characters.

ld_f ine_horizontal
ld_f ine_vertical

Box Corner Characters.

ld_f ine_upper_left
ld_f ine_upper_right
ld_f ine_lower_left
ld_f ine_lower_right

Intersection Characters.

ld_f ine_up_t
ld_f ine_down_t
ld_f ine_left_t
ld_f ine_right_t
ld_f ine_cross

out = (1
-

1
)

out = (1 I')

out = ('*')
out = (1*1

)

out = ('*')
out = ('*')

out = (I* I)
out = (I* I)
out = (I* I)
out = (I* I)
out = (I* I)

Medium Line Drawing Begin and End Sequences.

ld_medium_begin
ld_medium_end

out = ()
out = ()

Horizontal and Vertical ·Characters.

ld_medium_horizontal
ld_medium_vertical

Box Corner Characters.

ld_medium_upper_left
ld_medium_upper_right
ld_medium_lower_left
ld_medium_lower_right

Intersection Characters.

ld_medium_up_t
ld_medium_down_t
ld_medium_left_t
ld_medium_right_t
ld_medium_cross

out = (1
-

1
)

out = (1 I')

out = (1*1
)

out = (1*1
)

out = (1*1
)

out = ('*')

out = (I* I)
out = (I* I)
out = (I* I)
out = (I* I)
out = (I* I)

93

94 NOS 2.3 Feature Notes
Screen Management Enhancements

Bold Line Drawing Begin and End Sequences.

ld_bold_begin
ld_bold_end

out = ()
out = ()

Horizontal and Vertical Characters.

ld_bold_horizontal
ld_bold_vertical

Box Corner Characters.

ld_bold_upper_left
ld_bold_upper_right
ld_bold_lower_left
ld_bold_lower_right

Intersection Characters.

ld_bold_up_t
ld_bold_down_t
ld_bold_left_t
ld_bold_right_t
ld_bold_cross

out = ('-')
out = (' I')

out = (I* I)
out = (I)'CI)
out = (I* I)
out = (I)'c I)

out = (I* I)
out = (I* I)
out = (I* I)
out = (I)'c I)

out = (I* I)

DEFAULT KEY DEFINITIONS FOR THE FULL SCREEN EDITOR

Here is where the default function key sequences that will
be used by the full screen editor are defined. Using the
variables defined earlier (see VARIABLES FOR FULL SCREEN
EDITOR FUNCTION KEY DEFINITONS around line fifty) the six
function keys our example terminal has are defined.

The keyword here is APPLICATION STRING (the three dots
indicates a line continuation to TDU) and the name used is
FSEKEYS which will be recognized by FSE. The out sequence
is just the previously defined variable strings separated by
semi-colons to make a correct FSE command •. In addition to
default function key sequences, here is a good place to put
a SET TAB command if your terminal has predefined hardware
tabs. Simply define a variable as was done with kl through
k6 as sl = ('st 7 11 14 24 34 44 54 64 1

) and include it in
one of the out sequences below.

REMEMBER THAT WE PRE-DEFINED THE Kl THRU Kll KEYS AT THE
BEGINNING OF THIS TDUIN FILE. NOW WE WILL JUST USE THEM
WITHIN THE APPLICATION STRINGS.

NOS 2.3 Feature Notes 95
Screen Management Enhancements

application_string •••
name=('FSEKEYS') •••
out= (Kl 1

;
1 K2 1

; ' K3 1
;

1 K4 I • I

' K5 1
;

1 K6 I • I

'
K7 I; I KB 1

;
1

K9)
application_string •••
name=('FSEKEYS') •••
out= (K 1 O 1

;
1 K 11 1

; ' K 1 S
K6S)

application_string •••
name=(1 FSEKEYS 1

) •••

I • I

'
K2S I • I

' K3S I • I

'

out= (K7S ' ; 1 K8S 1
;

1 K9S 1
;

1 K 1 OS 1
;

1 K 11 S)

K4S I • I

' K5S I • I

'

Now that you have completed your TDUIN file you need to
execute the TDU command. It should compile this file and
produce a local file called TERMLIB (or add the capsule for
this terminal to a file called TERMLIB, such as the one from
UN=LIBRARY, that is already local). Replace this file and
then whenever the SCREEN,model_name command is executed you
will see a local file called ZZZZTRM that will allow you to
interact with all NOS full screen products.

ADD YOUR TERMINAL NAME BELOW FOR DOCUMENTATION.

END OF TERMINAL DEFINITION FILE FOR T920C TERMINAL.

********** END OF TDUIN FILE FOR T920C ************

Now that we have the TDUIN file built, we can execute the
TDU procedure to compile our TDUIN file, fix any errors, and
try it out with FSE ·and Screen Formatting. The TDU
procedure follows •

• PROC,TDU*l"Terminal Definition Utility",
I 'Terminal definition file (TDUIN) '=(*F,*N=TDUIN),
L'Error listing file (OUTPUT) '=(*F,*N=OUTPUT),.
LIB 1 Library file (TERML I B) 1 = (*F, *N=TERML I B) •

• HELP.
TDU - Terminal Definition Utility.

The TDU procedure compiles into capsule format a user­
defined terminal definition file, inserting the new
capsule into a local user library •
• HELP,I.
The name of the user-defined t~rminal definition file
(def au 1 t is TDU IN) •
• HELP,L.
The name of the listing file (default is 1 ist) •
• HELP, LIB.

96 NOS 2.3 Feature Notes
Screen Management Enhancements

The name of the library (default is TERMLIB) •
• ENDHELP •
• IF E (.NOT.FI LE (I , AS) , NO INPUT)
REVERT. NO INPUT FILE I. .
• END IF (NO INPUT)
REWIND,ZZZZZTL,ZZZZZTB,ZZZZZTA,LIB.
RETURN,ZZZZZTC.
TDUEX,1,ZZZZZTC,L.
IF(.NOT.FILE(ZZZZZTC,AS) ,TDUERRS)
REVERT. COMPILATION FAILED.
END IF (TDUERRS)
COMPASS,#l=ZZZZZTC,#L=ZZZZZTL,B=ZZZZZTB.
LOAD,ZZZZZTB.
NOGO,ZZZZZTA •
• IF (FI LE (LI B,AS) ,REPLACE)

ULIB,R,ZZZZZTA,LIB •
• ELSE (REPLACE)

ULIB,C,ZZZZZTA,LIB •
• END IF (REPLACE)
RETURN,ZZZZZTB,ZZZZZTA,ZZZZZTC.
REWIND,LIB.
REVERT. I -->LIB.
EXIT.
REVERT. COMPILATION FAILED.

To execute TDU, execute:

BEGIN, , TDU.

When complete, try the screen command to identify your new
terminal • If this succeeds, try F SE. If there are any
errors, fix .them and rerun TDU. Repeat this process until
there are no errors and the screen management products work
for you~ terminal.

A set of TDUIN files will be maintained by Central Software
Support. At present the following terminal definitions are
available.

CDC 721
CDC 722
CDC 752
LEAR SIEGLER ADM3A
LEAR SIEGLER ADM5

DEC VTlOO
TEKTRONIX 4115
TELEVIDEO 920C
ZENITH Zl9/Hl9

NOS 2.3 Feature Notes 97
Screen Management Enhancements

If you would like to donate a TDUIN file for a particular
terminal, we would be happy to be the focal point for
distribution. Contact us at the address below either to
donate a particular TDUIN file or if you need one.

Control Data Corporation
Central Software Support
ARH213
4201 North Lexington
St. Paul, Mn. 55112
Toll Free (from within U.S.) - (800)-328-9567
Or (612) -482-3074
Or CDC Controlnet 235-3074

98 NOS 2.3 Feature Notes
NP/QTF, PTF

(This page left intentionally blank.)

NOS 2.3 Feature Notes
NP/QTF, PTF

9.1 NP/QTF, PTF

99

CHAPTER 9

NP/QTF, PTF

The applications PTF (Permanent file Transfer Facility) and
QTF (Queue file Transfer Facility) have been enhanced to
interface to the NAM subsystem. This will allow these
applications to transfer files on NAM supported networks as
well as RHF (Loosely Coupled) netw~rks. These networks may
coexist and the user interface is identical.

This chapter addresses the NAM interface to these
applications. Although the names of these applications are
the same as those that use RHF (Loosely Coupled Network),
they are a seperate product.

9.2 General Overview

The PTF and QTF applications each contain two parts, the
11 initiator 11 and the 11 server 11

• During file transfer, the
initiator executes in the mainframe where the transfer
request started and the server executes in the other
mainframe. In a configuration with both NAM and RHF there
will be two variants of each application. There is a QTF

100 NOS 2.3 Feature Notes
NP/QTF, PTF

server/initiator pair for RHF and a QTF server/initiator
pair for NAM. There is a PTF server for both NAM and RHF
but in order to maintain a single user interface, the PTF
initiator (MFLINK) will dynamically determine which network
to use.

9.3 Compati~ility

9.3.1 User Compatibi 1 i ty

This version of PTF and QTF is end user upward and downward
compatible with earlier versions. This means the user's job
or procedure will function properly without any changes.

9.3.1.1 LISTLID Utility

The LISTLID utility will allow the end user to obtain a
listing of the LID (Logical Identifier) table. LIDs with
the NLIST attribute cannot be listed by the end user. The
format of the LISTLID command is:

LISTLID(pl,p2, ••• pn)

where pl through pn are the parameters as follows:

LID=xxx

L=lfn

PID=yyy

Print the attribute of PIDs in which LID
xxx exists, is enabled and listing is
allowed. If the LID keyword is omitted,
the default is to 1 ist al 1 1 istable LI Os.

Output is written on f i 1 e 1 fn. If the L
parameter is omitted, the default is file
OUTPUT.

List the attributes
yyy. If yyy is
1 isted.

of LIDs under PIO
omitted, all LIDs are

NOS 2.3 Feature Notes
NP/QTF, PTF

101

The following lists various formats of the LISTLID command
and the type of the output received.

LISTLID.

List all LIDs in the LID table.

LISTLID,LID=xxx.

List all xxx LIDs in the LID table.

LISTLID,LID=xxx,PID=yyy.

List LID xxx found under PIO yyy.

LISTLID,LID=xxx,PID.

List all xxx LID entries.

LISTLID,PID.

List all PIDs and all LIDs in the LID
table.

LISTLID,PID=yyy.

List all LIDs found under PIO yyy.

9.3.2 System Compatibility

9.3.2.1 IPRDECK Changes

Extensive change~ have been made in the way that the system
manages LIDs. At previous levels, the LIDs were defined in
the IPRDECK. LIDs are now defined using a LID configuration
file for each mainframe. The format of this file is
described below. All LID entries in the IPRDECK must be
deleted.

102 NOS 2.3 Feature Notes
NP/QTF, PTF

9.3.2.2 CMRDECK Changes

Space must be allocated for the LID table. This was done at
previous levels by using the 11 LIDT=n 11 entry in the CMRDECK.
The value of 11 n11 was the number of LIDs defined for this
mainframe. Space is now allocated by using the 11 LDT=nnnn 11

CMRDECK entry. Where 11 nnnn 11 is the number of words to
allocate for the LID table. The value of 11 nnnn 11 is
calculated .by the formula:

nnnn=(3 + LID)*PID +

PIO total number of PIDs in all networks

LID number of LIDs per PIO

The old 11 LIDT11 entry must be deleted from existing CMRDECKs.

9.3.3 Operator Compatibility

9 • 3 • 3 • l QTF I n i t i at i on

QTF will be brought up automatically by the NAM subsystem.
In case of QTF failure the operator may bring up QTF through
a DSD command. Since there are two versions of the QTF
application, operators will have to specify which version to
execute when they begin QTF. ·The format of the QTF command
is:

X. QTF (p 1)

pl 11 RHF 11 or "NAM" depending
interface is desired.

on which

NOS 2.3 Feature Notes
NP/QTF, PTF

103

9.3.3.2 LIDOU Utility

During system operation LIDs and LID attributes may be added
or deleted from the LID table by using the LIDOU utility.
Modified LID tables are retained across all recovery
deadstarts (levels 1, 2 and 3). Level 0 deadstarts will
return to the LID configuration defined in the configuration
file. The following is a list of the LIDOU directives:

Where:

END

OUT

HELP

BACK

+

terminate LIDOU

route a listing of the LID
table

list available directives

back to original display

page L display forward

page L display backward

pid,PA=xxz set (all applicable) attributes

pid,NT=yyy,NA=z enable/disable network status

pid,MF=aaaaaaa set mainframe description

pid,LD=bbb,LA=ccccz add or set attributes for LID

pid,LD=bbb,DELETE delete LID

pid physical identifier

bbb LID

xx v - validate or N - no 1 i st

2 E - enable or D - disable

yyy RHF, NAM, SSF or ALL

aaaaaaa 1 to 7 character mainframe description

104 NOS 2.3 Feature Notes
NP/QTF, PTF

cc cc S-store and forward, B-loopback,
V-validate or N-nolist

9.3.3.3 RHF K Display

The RHF ID display has been removed. The information that
was obtained from this display is now available from the
LIDOU utility~ The other RHF displays are unchanged.

9.4 LID Configuration File

The LID ~onfiguration file is an indirect access file stored
under user name SYSTEMX (user index 3777778). The file name
must be of the form 11 LIDCMid 11 where id is the mainframe
machine ID. The LIDCMid file defines the PIO/LID
relationship and the attributes associated with them. The
LID configuration file directives are similar to the RHF
configuration fi~e directives. These directives are
documented in the NOS Analysis Handbook.

A new CPU program 11 CLDT11 is called by CMS at deadstart to
generate the LID table from the LIDCMid file. The operator
may also enter X.CLDT at the console to build/rebuild the
LID table if a change has been made to the LIDCMid fi·le.
This program needs system origin privileges and can only be
executed when NAM and RHF are idle.

9.5 Format

The first line of the configuration file is the to 7
character name of this configuration file. The remainder of
the file describes the PIDs and their associated LIDs.

PIO Definition

NPID, PID=pid, ENABLED=yes/no, MFTYPE=b,
AT=NVALID/VALID/NLIST/LIST, NETDIS=SSF/RHF/NAM.

NOS 2.3 Feature Notes
NP/QTF, PTF

105

PIO

ENABLED

MF TYPE

AT

NETO IS

A unique 3 alphanumeric character
physical identifier of the mainframe.
The host PIO must be of the form 11 Mid 11

,

where 11 id 11 is the manframe machine id.
This is a required parameter.

Indicates whether the mainframe
identified by this PIO is available.
Default is YES if not specified.

Any l to 7 character string indicating
the mainfram~ type. You may use any
string meaningful to your site. This is
a required parameter.

Defines attributes for this PIO. Specify
either NVALID or VALID and either NLIST
or LIST. Default attributes are NVALID
and LIST.

VALID indicates that USER
pre-validation is required.
when validation is the same
mainframes.

command
Use this

on a 11

NVALID indicates that USER command
pre-validation is not required.

LIST - indicates that this PIO will be
available for display to the end user
through _the LISTLID utility.

NLIST - indicates that this PIO will not
display with LISTLID.

Indicates which network accesses to the
mainframe indicated by the PIO are
disabled. Default is that all accesses
are enabled. NETDIS may not be specified
for the host PIO. Val id accesses are:

SSF - Scope Station Facility.

RHF - Remote Host Facility.

NAM - Network Access Methods.

106 NOS 2.3 Feature Notes
NP/QTF, PTF

LID Definition

NLID, LID=lid, ENABLED=yes/no,
AT=LOOPB/STOREF/LIST/NLIST/VALID/NVALID.

LID A 3 character logical identifier for the
mainframe identified by the last PIO
definition. The LID may be the same as
the last PID. This parameter is
required.

ENABLED

AT

Indicates whether the mainframe
identified by lid is available. Default
is YES if not specified.

Indicates the attributes associated with
this LID. The attribute of LOOPB is
valid only for LIDs defined for the Host
mainframe. Either STOREF of LOOPB may be
specified but not both.

LOOPS - indicates loop back capability
for RHF testing or for accessing other
files from different user/familes when
secondary user commands are disabled.

STOREF - indicates that the queued file
store and forward capability exists for
this mainframe. Queued files may pass
through this machine and into the
network.

VALID indicates that USER command
pre-validation is required and can only
be specified if the STOREF option is
specified.

NVALID - USER command pre-validation is
not required.

LIST - indicates that this LID should be
available to the end user through the
LISTLID utility.

NLIST - indicates that this LID should
not be available to the end user through
the LISTLID utility.

NOS 2.3 Feature Notes
NP/QTF, PTF

107

Comments may be placed anywhere in the file after the first
line. A comment is any 1 ine which begins with an asterisk
in the first column.

9.6 Examples

The following examples show two simple networks, one for 2
mainframes and the other for 3.

108 NOS 2.3 Feature Notes
NP/QTF, PTF

9.6. l Example l

The first is a two mainframe configuration allowing queued
and permanent file transfers between each machine.

NETWORK CONFIGURATION

MAINFRAME MAINFRAME 2

MID=Ol
MFl

------ LIP ------ I
I I I TRUNK I I I
l----INPUll·········INPU21-----I
I I I I I I
I I I I I I
I ------ ------ I I I

NPU CONFIGURATION

LIP
LOGLINK LL3

NPUl
NODE l TRUNK TRNKl

LOGLINK:
Lll COUPLER

NODE 3

NPU2

LOGLINK LL5

:LOGLINK
.: LL4

MID=02
MF2

. :

NODE 2 --+----------+----
LOGLINK: --+-----------

LL2
------ COUPLER

------------------ NODE 4

(

NOS 2.3 Feature Notes
NP/QTF, PTF

9.6.l.l CMRDECK Entries

109

The following entries should be added to the CMRDECK for
each mainframe.

9.6.1. 1.1 Mainframe 1

MI D=O 1 .
LDT=l5.

9.6.1.1.2 Mainframe 2

MID=02.
LDT=l5.

9.6.1.2 LIDCMid Files

The following files need to be created and saved as indirect
access files on user name SYSTEMX (Ul=377777B).

9.6.1.2.1 Mainframe 1

LIDCMOl

* * Define the PIO for MOl and force
* va 1 i dati-on.

NPID, PID=MOl, MFTYPE=MFl, AT=VALID, NETDIS=RHF/SSF.
NL ID, LI D=MO 1 •

* *Define M02 as a linked mainframe.

NPID, PID=M02, MFTYPE=MF2, NETDIS=RHF/SSF.
NLID, LID=M02.

110 NOS 2.3 Feature Notes
NP/QTF, PTF

9.6.1.2.2 Mainframe 2

LIDCM02

* * Define the PIO for M02 and force
*validation.

* NPID, PID=M02, MFTYPE=MF2, AT=VALID, NETDIS=RHF/SSF.
NLID, LID=M02.

* *Define MOl as a linked mainframe.

* NPID, PID=MOl, MFTYPE=MFl, NETDIS=RHF/SSF.
NLID, LID=MOl.

9.6.1.3 NOL

The fo1lowing NOL is an example to highlight the entries
needed for PTF and QTF. These entries should be added to
the site NOL as needed. NOL is fully documented in the NOL
REFERENCE MANUAL (60480000) •

EXAMPl: NFILE.

* Define the trunk connecting NPUl to NPU2.

TRNKl: TRUNK, Nl=NPUl, N2=NPU2, Pl=l, P2=1.

* Define NPUl

NPUl: NPU, NODE=l, VARIANT=xxx.

* xxx is the CCP variant for NPUl

SUPLINK, LLNAME=LLl.
CPLRl: COUPLER, NODE=3, HNAME=MOl, LOC=PRIMARY.

*Define the logical links for NPUl.

LLl: LOGLINK, NCNAME=NPUl.
LL4: LOGLINK, NCNAME=CPLR2.
LL5: LOGLINK, NCNAME=NPU2.

NOS 2.3 Feature Notes
NP/QTF, PTF

*Define the lines and terminals for NPUl here.

* Define NPU2

NPU2: NPU, NODE=2, VARIANT=yyy.

* yyy is the CCP variant for NPU2

SUPLINK, LLNAME=LL2.
CPLR2: COUPLER, NODE=4, HNAME=M02, LOC=PRIMARY.

*Define the logical links for NPU2

LL2: LOGLINK, NCNAME=NPU2.
LL3: LOGLINK, NCNAME=NPUl.

*Define the lines and terminals for NPU2 here.

* End of network division.

* Start the local divisions for each mainframe.

MOlLOC: LPILE.

*Define applications.

*put existing applications here

** NP/QTF, PTF applications.
QTF :APPL, MXCOPYS=4, PRU, NETXFR.
QTFS :APPL, MXCOPYS=4, RS, PRU, NETXFR.
PTF :APPL, MXCOPYS=4, PRU, NETXFR.
PTFS :APPL, MXCOPYS=4, RS, PRU, NETXFR.

* INCALL/OUTCALL STATEMENTS FOR QTF/PTF

l l l

INCALL, UNAME=NETOPS, ANAME=QTFS, DBL=7, ABL=7.
OUTCALL, NAMEl=QTFS, PID=M02, SNODE=3, DNODE=4, DBL=7,
ABL=7.

INCALL, UNAME=NETOPS, ANAME=PTFS, DBL=7, ABL=7.
OUTCALL, NAMEl=PTFS, PID=M02, SNODE=3, DNODE=4, DBL=7,
ABL=7.

* User statements for MOl next.

*End of MOl local file.

112

M02LOC: LF I LE.

*Define applications.

*put existing applications here

** NP/QTF, PTF applications.

NOS 2.3 Feature Notes
NP/QTF, PTF

QTF :APPL, MXtOPYS=4, PRU, NETXFR.
QTFS :APPL, MXCOPYS=4, RS, PRU, NETXFR.
PTF :APPL, MXCOPYS=4, PRU, NETXFR.
PTFS :APPL, MXCOPYS=4, RS, PRU, NETXFR.

* INCALL/OUTCALL STATEMENTS FOR QTF/PTF

INCALL, UNAME=NETOPS, ANAME=QTFS, DBL=7, ABL=7.
OUTCALL, NAMEl=QTFS, PID=MOl, SNODE=4, DNOD£=3,
DBL=7,ABL=7.

INCALL, UNAME=NETOPS, ANAME=PTFS, DBL=7, ABL=7.
OUTCALL, NAMEl=PTFS, PID=MOl, SNODE=4, DNODE=3,
DBL=7,ABL=7.

* User statements for M02 next.

*End of M02 local file.

* End of NDL
END.

After executing NDLP, there will be three local files,
EXAMPl, MOlLOC and M02LOC. EXAMPl is the network
configuration file and should be placed on both mainframes.
MOlLOC and M02LOC are the local configuration file and
should be placed on their respective mainframes. Be sure to
use the file names referenced in the NAMSTRT file for these
file names. The default permanent file names are NCFFILE
for the network file and LCFFILE for the local file.

9.6.1.4 Example Jobs

Suppose a user is logged into MOl and needs a file that
resides on M02. The commands needed to transfer ·the file
are:

NOS 2.3 Feature Notes
NP/QTF, PTF

MFLINK,LFN,ST=M02.
*USER,usernam,passwor. for M02
*GET(PFN) or ATTACH whichever is appropriate
*(CR)

113

MFLINK prompts the user with the*· When the file transfer
is complete, the local file LFN will contain the permanent
file PFN.

Again assume that the user is logged into MOl and now wants
to execute a job on M02. The following job will perform a
catlist on M02 and return the output to MOl.

JOB,ST=M02.
USER,usernam,passwor.
CATLIST.

114 NOS 2. 3 F ea tu re Notes
NP/QTF, PTF

9.6.2 Example 2

The second example adds a third mainframe and NPU to the
network. There is no direct connection between MOl and M03
so M02 will have to act as a store and forward link between
these two machines. Note that permanent file transfers can
not be performed directly through a store and forward link.
This type of transfer may be done by sending a job from MOl
to M02 that does a permanent file transfer from M03 to M02
then from M02 to MOl.

NETWORK CONFIGURATION
MAINFRAME 1 MAINFRAME 2

MID=Ol
MFl

I ------ LIP ------
1 I I TRUNK I I I

1----1NPU1 I ••••••••• I NPu21-----1
I I I I I I
I I I I I I
I ------ -- --- I I • I

MID=02
MF2

LI p
TRUNK

MAINFRAME 3

I
I

I I I
I I I

INPU31-----1
I I I
I I I
------ I

NPU CONFIGURATION
(ADD IT I ON OF NPU3)

LIP

I

LOGLINK LL7
NPU2

NODE 2 TRUNK ·TRNK2

LOGLINK: LOGLINK LL9
LL2 COUPLER -------------­

------1 NODE 4 1---

NPU3

:LOGLINK
LllO

MID=03
MF3

. ..

NP.DE 5 --+----------+----
LOGLINK:

LL6
--+-----------

COUPLER
NODE 6 1---

NOS 2.3 Feature Notes
NP/QTF, PTF

9.6.2.l CMRDECK Entries

115

The following entries should be added to the CMRDECK for
each mainframe.

9.6.2.1.1 Mainframe l

MI D=O l.
LDT=2 l.

9.6.2.1.2 Mainframe 2

MID=02.
LDT=23.

9.6.2.1.3 Mainframe 3

MID=03.
LDT=l5.

9.6.2.2 LIDCMid Files

The following files need to be created and saved as indirect
access files on user name SYSTEMX (Ul=377777B).

116 NOS 2.3 Feature Notes

9.6.2.2.1 Mainframe l

LIDCMOl

* * Define the PIO for MOl and force
*validation.

*

NP/QTF, PTF

NPID, PID=MOl, MFTYPE=MFl, AT=VALID, NETDIS=RHF/SSF.
NLI D, LI D=MOl • .,,
*Define M02 as a linked mainframe.

* NPID, PID=M02, MFTYPE=MF2, NETDIS=RHF/SSF.
NLID, LID=M02.
NLID, LID=M03, AT=S.

9.6.2.2.2 Mainframe 2

LIDCM02

* * Define the PIO for M02 and force
*validation.

\

NPID, PID=M02, MFTYPE=MF2, AT=VALID, NETDIS=RHF/SSF.
NLID, LID=M02 • .,,
* Define the store and forward LIDs

* NLID, LID=MOl, AT=S.
NLID, LID=M03, AT=S.

*Define MOl as a linked machine.

* NPID, PID=MOl, MFTYPE=MFl, NETDIS=RHF/SSF.
NLI D, LI D=MO l •

* *Define M03 as a linked machine.

* NPID, PID=M03, MFTYPE=MF3, NETDIS=RHF/SSF.
NLID, LID=M03.

NOS 2.3 Feature Notes
NP/QTF, PTF

9.6.2.2.3 Mainframe 3

LIDCM03

* * Define the PIO for M03 and force
*validation.

* NPID, PID=M03, MFTYPE=MF3, AT=VALID, NETDIS=RHF/SSF.
NLID, LID=M03.

* *Define M02 as a linked mainframe.

NPID, PID=M02, MFTYPE=MF2, NETDIS=RHF/SSF.
NLID, LID=M02.
NLID, LID=MOl, AT=S.

9.6.2.3 NOL

117

The following NOL is an example to highlight the entries
needed for PTF and QTF. These entries should be added to
the site NOL as needed.

EXAMP2: NFILE.

* Define the trunks connecting NPUl to NPU2
* and connecting NPU2 to NPU3.

TRNKl: TRUNK, Nl=NPUl, N2=NPU2, Pl=l, P2=1.
TRNK2: TRUNK, Nl=NPU2, N2=NPU3, Pl=2, P2=1.

* Define NPUl

NPUl: NPU, NOOE=l, VARIANT=xxx.

* xxx is the CCP variant for NPUl

SUPLINK, LLNAME=LLl.
CPLRl: COUPLER, NODE=3, HNAME=MOl, LOC=PRIMARY.

*Define. the logical links for NPUl

LLl: LOGLINK, NCNAME=NPUl.
LL4: LOGLINK, NCNAME=CPLR2.
LL5: LOGLINK, NCNAME=NPU2.

...

118 NOS 2.3 Feature Notes
NP/QTF, PTF

*Define the lines and terminals for NPUl here

* Define NPU2

NPU2: NPU, NODE=2, VARIANT=yyy.

* yyy is the CCP variant for NPU2

SUPLINK, LLNAME=LL2.
CPLR2: COUPLER, NODE=4, HNAME=M02, LOC=PRIMARY.

*Define the logical links for NPU2

LL2: LOGLINK, NCNAME=NPU2.
LL3: LOGLINK, NCNAME=NPUl.
LL9: LOGLINK, NCNAME=NPU3.
LLlO:LOGLINK, NCNAME=CPLR3.

*Define the lines and terminals for NPU2 here

* Define NPU3

NPU3: NPU, NODE=5, VARIANT=zzz.

* zzz is the CCP variant for NPU3

SUPLINK, LLNAME=LL6.
CPLR3: COUPLER, NODE=6, HNAME=M03, LOC=PRIMARY.

*Define the logical links for NPU3

LL7: LOGLINK, NCNAME=NPU2.
LL6: LOGLINK, NCNAME=NPU3.

*Define the lines and terminals for NPU3 here

* End of network division.

* Start the local divisions for each mainframe.

MOlLOC: LFILE.

*Define applications.

*put existing application here

** NP/QTF, PTF applications.
QTF :APPL, MXCOPYS=4, PRU, NETXFR.
QTFS :APPL, MXCOPYS=4, RS, PRU, NETXFR.

NOS 2.3 Feature Notes
NP/QTF, PTF

PTF :APPL, MXCOPYS=4, PRU, NETXFR.
PTFS :APPL, MXCOPYS=4, RS, PRU, NETXFR.

* INCALL/OUTCALL STATEMENTS FOR QTF/PTF

119

INCALL, UNAME=NETOPS, ANAME=QTFS, DBL=7, ABL=7.
OUTCALL, NAMEl=QTFS, PID=M02, SNODE=3, DNODE=4, DBL=7,
ABL=7.

INCALL, UNAME=NETOPS, ANAME=PTFS, DBL=7, ABL=7.
OUTCALL, NAMEl=PTFS, PID=M02, SNODE=3, DNODE=4, DBL=7,
ABL=7.

* User statements for MOl next.

*End of MOl local file.

M02LOC: LFILE.

*Define applications.

*put existing application here

** NP/QTF, PTF applications.
QTF :APPL, MXCOPYS=4, PRU, NETXFR.
QTFS :APPL, MXCOPYS=4, RS, PRU, NETXFR.
PTF :APPL, MXCOPYS=4, PRU, NETXFR.
PTFS :APPL, MXCOPYS=4, RS, PRU, NETXFR.

* INCALL/OUTCALL STATEMENTS FOR QTF/PTF

INCALL, UNAME=NETOPS, ANAME=QTFS, DBL=], ABL=7·
OUTCALL, NAMEl=QTFS, PID=MOl, SNODE=4, DNODE=3,
DBL=7,ABL=7.
OUTCALL, NAMEl=QTFS, PID=M03, SNODE=4, DNODE=6,
DBL=7,ABL=7.

INCALL, UNAME=NETOPS, ANAME=PTFS, DBL=7, ABL=7.
OUTCALL, NAMEl=PTFS, PID=MOl, SNODE=4, DNODE=3,
DBL=7,ABL=7.
OUTCALL, NAMEl=PTFS, PID=M03, SNODE=4, DNODE=6,
DBL=7,ABL=7.

* User statements for M02 next.

*End of.M02 local file.

120

M03LOC: LFILE.

*Define applications.

*put existing application here

** NP/QTF, PTF applications.

NOS 2.3 Feature Notes
NP/QTF, PTF

QTF :APPL, MXCOPYS=4, PRU, NETXFR.
QTFS :APPL, MXCOPYS=4, RS, PRU, NETXFR.
PTF :APPL, MXCOPYS=4, PRU, NETXFR.
PTFS :APPL, MXCOPYS=4, RS, PRU, NETXFR.

* INCALL/OUTCALL STATEMENTS FOR QTF/PTF

INCALL, UNAME=NETOPS, ANAME=QTFS, DBL=], ABL=7.
OUTCALL, NAMEl=QTFS, PID=M02, SNODE=6, DNODE=4,
DBL=7,ABL=7.

INCALL, UNAME=NETOPS, ANAME=PTFS, DBL=], ABL=7.
OUTCALL, NAMEl=PTFS, PID=M02, SNODE=6, DNODE=4,
DBL=7,ABL=7.

* User statements for M03 next.

*End of M03 local file.

* End of NOL
END.

After executing NDLP, there will be four local files,
EXAMP2, MOlLOC, M02LOC and M03LOC. EXAMP2 is the network
configuration file and should be placed on both mainframes.
MOlLOC, M02LOC and M03LOC are the local configuration file
and should be placed on their respective mainframes. Be
sure to use the file names referenced in the NAMSTRT file
for these file names. The default permanent file names are
NCFFILE for the network file and LCFFILE for the local file.

9.6.2.4 Example Jobs

Suppose 'a user is logged into MOl and needs a file that
resides on M03. The following job will transfer a file from
M03 to MOl:

(

NOS 2.3 Feature Notes
NP/QTF, PTF

JOB,ST=M02.
USER,usernam,passwor. for M02
MFLINK(DUMMY,ST=M03)
*USER,usernam,passwor. for M03
*GET(PFN) or ATTACH whichever is appropriate
MFLINK(DUMMY,ST=MOl)
*USER,usernam,passwor. for MOl
*PURGE (PFN/NA)
*SAVE(PFN) or DEFINE whichever is appropriate

121

The * is required and must be the first character of the
MF LINK commands.

Again assume that the user is logged into MOl and now wants
to execute a job on M03. The following job will perform a
catlist on M03 and return the output to MOl.

JOB,ST=M03.
USER,usernam,passwor. for M03
CATLIST.

122 NOS 2.3 Feature Notes
Network Products X.25 Enhancements

(This page left intentionally blank.)

NOS 2.3 Feature Notes 123
Network Products X.25 Enhancements

CHAPTER 10

NETWORK PRODUCTS X.25 ENHANCEMENTS

10. 1 Network Products X.25 Enhancements for NOS 2.3

The following enhancements to Network Products'
x.25 public data networks are included in
release.

support of
the NOS 2.3

1. PAD parameters may be set at network configuration
time.

2. Features have been added to the X.25 terminal
interface to increase its similarity to the
asynchronous terminal interface, including keyboard
input mode support and partial packet handling.

3. The network operator may dynamically manage
Switched Virtual Circuits (SVCs).

4. 1980 CCITT standard is supported, including fast
select facility, D-bit confirmation, one-way
logical channel outgoing facility, and additional
facility codes.

5. CDSN, UNINET, and Cl20 are supported as public data
networks under Network Products.

124 NOS 2.3 Feature Notes
Network Products X.25 Enhancements

6. Applications are allowed to supply their own
OUTCALL block on application to application (A-A)
connections, thus facilitating establishment of
such connections to foreign hosts over x.25
networks.

7. Improved link control features have been added.

10.2 Description of New X.25 Features

10.2.1 Setting PAD Parameters via NDL

x.3 PAD parameters can be set by specifying them on the
TERMDEV or TERMINAL statement in the Network Definition
Language (NOL) configuration file.

If the site does not specify any PAD parameters, the
Communications Control Program (CCP) will set the
recommended parameters it set at the previous ·release. If
the site specifies any PAD parameters, the site is
responsible for specifying all .references that must be set,
including the separator between CCITT and National
parameters (i.e. CCP will not set any by default).

CCP will send the parameters to the PAD when it receives a
call request packet.

10.2.2 Terminal Interface Enhancements

Two features in the 2.3 release help to make terminals
connected via the x.25 Terminal Interface Program (TIP)
function in a manner more compatible with terminals
connected via the ASYNC TIP.

1. Keyboard or block input mode. At the previous
release, the x.25 TIP supported only block mode
input. Now both block and keyboard input modes are
supported. The TIP sets the data forwarding signal

NOS 2.3 Feature Notes 125
Network Products X.25 Enhancements

PAD parameter, if necessary, according to the
selected end-of-line, end-of-block, or transparent
delimiter character.

As with the ASYNC TIP, the
input mode unless changed
terminal user or program.

default is keyboard
in the NOL or by the

2. More (M) bit not required. CCP has relaxed its
requirement that the M bit be set in a partial
packet, thus supporting data forwarding on idle
timer. CCP now checks the last character in the
packet as well as the M bit. If the last character
is not an end-of-line (or end-of-block or
transparent delimiter, as appropriate), the packet
is treated as if the M bit were set.

l0.2.3 SVC Management and Accounting

New parameters on the TERMINAL and TERMDEV NOL statements
allow the site to specify minimum and maximum numbers of
switched virtual circuits to be used for terminal (PAD) and
for A-A connections. The network operator is then able to
status, enable, and disable SVCs via host operator (HOP) I
NPU operator (NOP) commands.

Two additional fields in the line statistics message can
help the site determine if the parameters need to be
adjusted. These fields contain the number of PAD and A-A
call requests that have been rejected due to insufficient
enabled circuits.

10.2.4 1980 CCITT Standards

Features of the 1980 CCITT standards which were not already
supported by Network Products have been added.

). D-bit confirmation. If a received data packet has
the D-bit set, CCP will send out the receive ready
(RR) packet for it even if the receiving wi.ndow is
not closed. (Formerly CCP sent RR packets only

126

2.

NOS 2.3 Feature Notes
Network Products X.25 Enhancements

when the rece1v1ng window was closed.) CCP does
not generate data packets with the D-bit set.

One-way logical channels. A new parameter on the
LINE statement in the NOL a 11 ows the site to
restrict outgoing calls, for A-A connections, to
certain logical channels. If this parameter is
included, CCP wi 11 initiate ca 11 s only on a
particular range of channels.

3. Fast select. To support the fast select facility,
Network Products now handles 128 octets of call
user data in outgoing and incoming A-A calls. The
call user data can be supplied on the NOL OUTCALL
statement or by the application.

4. Additional facilities. The INCALL statement has
new keywords for reverse charge acceptance and flow
control negotiation. The ·site· can also use the
FACn parameters to specify other facility codes,
requiring no action, which should be allowed to
appear on an incoming A-A call request.

10.2.5 Additional X.25 Network Types Supported

New legal values for the PSN parameter on the x.25 LINE
statement are

and

CDSN
UNI NET
Cl20

(Cybernet's Control Data Shared Network),
(of United Telecom),
(for NOS to CYBER 120 terminal access or
file transfers over a direct x.25 trunk).

CCP uses the declared PSN to send the correct clear, reset,
and restart packets and to set up the default x.3 PAD
parameters.

I,\

10.2.6 Application Supplied OUTCALL Parameters

A privileged network application is permitted to supply its
own OUTCALL block parameters in the application connection
request. Thus the application can have more control over

NOS 2.3 Feature Notes 127
Network Products X.25 Enhancements

and correspondingly more flexibility with its outgoing call
requests, and reduce its dependency on the NOL.

The Network Validation Facility {NVF) merges the information
from the application with the addressing information in the
NDL to choose a matching, accessible connection path.

10.2.7 Improved X.25 Link Control

1. CCP will detect link level failures, and will
attempt to reset the link if it continues to
receive no response to polls. If that is
unsuccessful, it will notify the network operator.

2. CCP clears the virtual circuit if two minutes
elapse without a host connection, to bring x.25
disconnect processing into conformity with that for
all other dial-up lines.

128 NOS 2.3 Feature Notes
3270 TIP Standardization

(This page left intentionally blank.)

NOS 2.3 Feature Notes
3270 TIP Standardization

CHAPTER 11

3270 TIP STANDARDIZATION

129

With the NOS 2.3 release the 3270 TIP is supported as a
standard product. It is essentially the same TIP that has
previously been sold by Professional Services under Product
Number 720-0018. If you used the Professional Services TIP
then you MUST rebuild your NOL before you can use the
standardized version.

There are a few minor variations between the two TIPS. The
standardized TIP supports WAIT •• I REPEAT.. input
regulation and the Secure Login I Trusted Path feature.

The 3270 TIP supports up to 32 multi-dropped clusters of up
to 32 devices on each dedicated or dial-up line. There can
be a maximum of 32 devices per controller but no more than 8
1 ine printers associated with any owning console. The 3270
TIP does not support the contention protocol, sometimes
refered to as the dial-feature.

3270 terminals cannot be auto-recognized. You must declare
a TIPTYPE of 3270 and a Terminal Class of 3270 in the NOL.
Line type may be Sl, S2 or s3. There is no STIP and the
only Character Set supported is EBCDIC.

NOTE The 3270 TIP is not included in the release material
when CCP is ordered. The 3270 TIP must be licensed and
ordered separately.

130 NOS 2.3 Feature Notes
Miscellaneous Network Products Usability Enhancements

(This page left intentionally blank.)

(

(

(

)

NOS 2.3 Feature Notes 131
Miscellaneous Network Products Usability Enhancements

CHAPTER 12

MISCELLANEOUS NETWORK PRODUCTS USABILITY ENHANCEMENTS

12.l Miscellaneous Network Products Usability Enhancements

AUTOLOG Parameter Removed

The AUTOLOG parameter is no longer an option of the DEVICE
statement in the Network Definition Language, and will be
flagged as illegal. Previously, CCP used the AUTOLOG flag
in the connection request to signal NVF to read the
auto-login information in the LCF (Local Configuration
File). NVF now gets all pertinent auto-login data from the
LCF for each connection request.

NAM K-Display

The NAM K-Display includes a self-documenting HELP command,
and comprises both left and right screens.

Immediate Disconnect

Dial-up lines may be disconnected immediately, or timed out
after two minutes as with the current default. This option
can be selected using the IMDISC (IMmediate DISConnect)
parameter on the LINE statement in the Network Definition
Language.

132 NOS 2.3 Feature Notes
· Miscellaneous Network Products Usability Enhancements

Terminal Name on Host Availability Display

The Host Availability Display now includes entries showing
the node number of the NPU to which the terminal is
connected, and the symbolic name of the terminal as defined
in the Network Configuration File via the Network Definition
Language.

Single Terminal Command for Host Disconnect/Connect

A single command is available which allows a user at a
terminal to terminate an existing connection to one host,
then establish a new connection to another. It can be
issued in either of two formats: %HC<cr> or %HC=hostname<cr>
where% is the TIP control character, and <er> is a carriage
return. The shorter version establishes the connection with
the currently selected host.

Changing Service Class of RBF Job

A new parameter on the RBF CHANGE statement (SC=xx, where xx
is the mnemonic for the selected service class) may be
specified to change the service class of a job in the input
or the execution queue. If the SC parameter is used, then
the queue type, the PRI parameter, and the REP parameter are
not allowed on the CHANGE command.

Generating SAM-P Cassette on an NPU

The System Autostart Module Dump routine (SAM-D), used in
g.enerating SAM-P cassettes for remote NPU loading, may now
be generated using a local NPU equipped with a cassette
controller and tape unit.

QTRM Application Wait Time

An application using the QTRM
Manager) interface may specify
seconds.

(Queued Terminal Record
a wait time of up to 4095

(

NOS 2.3 Feature Notes 133
Miscellaneous Network Products Usability Enhancements

Application Auto-Restart, Multiple Copies

A network application can now be restarted when a connection
request has been made to that application. Another new
feature is that more than one copy of a given application
can be connected to the network at the same time. See the
RS and MXCOPYS parameters for the APPL statement in the
Network Definition Language Reference Manual for details.

Ignore-Parity Option, Transparent Input Delimiter

For transparent input on asynchronous or x.25 type 1 ines, it
is sometimes desireable to ignore the parity bit when
checking for the transparent input delimiter character. A
new option on the TIP command for parity select (PA=I)
causes the TIP to ignore the parity bit, so that only the
low-order 7 bits are examined when checking for the
transparent input delimiter character. No-parity (PA=N)
differs from Ignore-parity in that No-parity causes the TIP
to examine all 8 bits of input. data for the delimiter
character.

134 NOS 2.3 Feature Notes
Fault Tolerant Mainframe Error Processing

(This page .left intentionally blank.)

NOS 2.3 Feature Notes 135
Fault Tolerant Mainframe Error Processing

CHAPTER 13

FAUL~ TOLERANT MAINFRAME ERROR PROCESSING

13.1 Introduction

When the c170-7xx product line was initially introduced, a
philosophy was established within the operating system for
handling processor related mainframe errors. This
philosophy was based on the premise that the majority of
errors would be 'hard' failures. On the basis of. field
experience, it has been discovered that a significant
percentage of mainframe related interrupts are associated
with transient/intermittent errors. In addition, current
c170-8xx field experience exhibits an even greater
percentage of these errors. In this environment, every
error, hard or intermittent, which interrupts the processor
will result in termination of the operating system.

Experience has also indicated that valuable resources such
as PPs, disk space, and CPU time are being consumed for
logging, analyzing, and reporting recovered processor
errors.

The fault toler?nt philosophy that this feature provides
enables CDC systems to provide an operational environment
that minimizes unscheduled interrupts as well as lessening
the overhead involved in logging, analyzing, and reporting
corrected and non-fatal uncorrected errors. This fault

136 NOS 2.3 Feature Notes
Fault Tolerant Mainframe Error Processing

tolerant philosophy is only used on c170-8xx (excluding the
865/875) and Cl80-8xx mainframes.

Throughout this chapter the term Cl80 refers to both
Cl70-8xx (excluding 865/875) and Cl80-8xx mainframes.

13.2 Terminology

13.2.l Detected Uncorrected Error (DUE)

These shall include but not be limited to the following
mal(unctions •

• Parity error(s) on transmissions to/from central memory
from/to the processor(s).

(

• Non-correctable central memory data parity errors
(SECDED) on central memory accesses •

• Other model-dependent conditions.

13.2.2 Process Not Damaged (PND)

Uncorrectable errors were detected at a point in the
execution of an instruction whereby no process was yet
damaged (i.e., the 'point of no return' with this
instruction has not been passed).

NOS 2.3 Feature Notes 137
Fault Tolerant Mainframe Error Processing

13.3 Technical Solution

13.3.1 Corrected Processor Errors

A new central memory word, CECL, has been defined in CMR to
hold the corrected processor and single bit CM and LCME
(CYBER 176) error counters. Each time a corrected processor
error is encountered, the corresponding processor error
counter in this word will be incremented.

NOS will log the first 'n' corrected processor errors
encountered each hour to the Binary Maintenance Log (BML).
The actual number is controlled by the assembly constant,
CPTL, in COMSMSC. The released value is 208 per processor.
At the top of each hour the total number of corrected
processor errors will also be logged in the BML before
clearing the error counters.

13.3.2 Uncorrected Processor Errors

Recovery from uncorrected processor errors can be performed
by the hardware, Environment Interface (El) or NOS/VE, and
NOS.

The hardware will automatically retry a processor
instruction once that failed because of a DUE/PND error.

When NOS is running in 'stand alone' state the Environment
Interface (El) will retry a processor instruction that
failed because of a DUE/PND error after the hardware retry
attempt has failed. NOS/VE is responsible for this when NOS
is running in dual state. A maximum number of eight
attempts will be made by El or NOS/VE.

Uncorrected processor errors are logged in a similar fashion
as corrected processor errors. Word CECL is updated, and at
the top of each hour the count of uncorrected processor
errors will be logged to the BML. The assembly constant,
UPTL, in COMSMSC is the threshold 1 imit for reporting
uncorrected processor errors. Also, the console operator
will be notified if more than a total of 108 (released value
for UPTL) uncorrected processor er~ors occur per hour.

138 NOS 2.3 Feature Notes
Fault Tolerant Mainframe Error Processing

If all hardware and El or NOS/VE retry attempts have failed,
or the error was not a DUE/PND error, NOS will regain
control of the user job by the setting of an error mode 20B.
At this point, the job cannot continue, but will b~ rerun,
if possible. Before rerunning the job, NOS will check the
integrity of memory associated with the job to ensure there
are no double bit memory errors. Since rewriting a word
will clear a transient double-bit error, the job's field
length and any assigned Unified Extended Memory {UEM) is
first zeroed out and then the entire field length including
negative field length (NFL) and assigned UEM is re-read to
verify there are no double ~it memory errors.

To prevent the job from being rerun indefinitely, NOS will
allow the job to be rerun only a predetermined number of
times. This is controlled by the assembly constant, HRTL,
which is defined in COMSMSC. The released value is 2. If
this job rerun limit is exceeded, the job will then be
terminated. Interactive jobs will not be rerun, but will
only have the current job step terminated.

13.4 Design Overview

13.4.1 Error Processing

During deadstart, routine SET will now always build the
Environment Interface Control Block {EICB) table for all
ClBO environments. Previously this table was only reserved
in CMR when NOS/VE was enabled. Word O {DSCM) of this table
is used by El (or NOS/VE) to pass information concerning
error states in the hardware to NOS.

MTR can call lMB for maintenance register processing and/or
'top of the hour' processing if the inhibit lMB call flag
has not been set. lMB processes all maintenance register
errors on the ClBO hardware. Maintenance register
processing of single bit SECDED errors on mainframes with
status/control registers is processed by MTR. If an error
of this type has been detected, the respective counter in
CECL is incremented.

NOS 2.3 Feature Notes 139
Fault Tolerant Mainframe Error Processing

Processing of memory and processor errors in 1M8 for Cl80
mainframes will only checkpoint and step the system when
absolute word zero is set non-zero (as when CPUMTR modes
out). The appropriate counter in word CECL is updated, but
no logging is done to the 8ML, and the maintenance registers
are left unaltered. All other conditions are counted in CMR
word CECL, logged to the 8ML, and cleared.

Since the hardware maintenance registers report uncorrected
error status for each DUE, it is necessary for El to inform
NOS when this status is associated with a retry attempt.
The following error codes are returned by El in word DSCM of
the EIC8. The values marked by asterisks (***) indicate the
error code returned when the retry count is exhausted.

418 = Cyber 170 State DUE

428 = Cyber 170 State DUE/PND (***)

448 = Cyber 180 State DUE

458 = Cyber 180 State DUE/PND (***)

618 = Cyber 170 State DUE/PND

• 658 = Cyber 180 State DUE/PND

A DUE or a DUE/PND with retry count exhausted will be
considered as uncor~ected processor errors by NOS and
counted (in byte 0 of CECL), and logged as such. A total of
the DUE/PND errors in which the retry was successful is kept
in byte l and 2 (depending upon which CPU had the error) of
CECL. 1M8 conforms to the following rules concerning word
CECL •

• Word CECL is written to the 8ML, if any of the five
bytes are non-zero, at 'top of the hour' processing by
1M8. CECL is then zeroed out •

• All five bytes of CECL can only be incremented to
77778 •

• Logging of the corrected processor errors continues
until the corresponding byte for that CPU exceeds the
value CPTL (Corrected Processor Threshold Limit).

140 NOS 2.3 Feature Notes
Fault Tolerant Mainframe Error Processing

• On each uncorrected processor error per hour in which
the count in byte 0 of CECL exceeds UPTL, the operator
is notified via the 'ERRLOG ALERT' message. The
message 'UNCORRECTED PROCESSOR ERROR THRESHOLD
EXCEEDED' is placed in the system ERRLOG. The operator
should inform the Customer Engineer and the Hardware
Performance Analyzer (HPA) should be used to process
the BML'.

13.4.2 Job Processing

The Environment Interface (El) will set error exit mode 208
whenever DUE or DUE/PND with retry unsuccessful has
occurred. All other Cyber 170 state valid condition bits in
the Monitor Condition Register (MCR) and User Condition
Register (UCR) when set, will cause an error exit 670.
After the exchange to monitor mode, CPUMTR will set the PEET
error code in the Control Point Area (CPA), if either of the
above exit modes is present, and call lAJ for job
advancement.

1AJ/3AL was modified so that when processing a Parity Error
(PEET) error flag set on a user job on a Cl80, CPUMTR
function VF LM is ca 11 ed to zero out the j ob'1 s field 1 ength
and read/test the job's entire field length including its
LIEM field length. If no double-bit error, is encountered,
byte HRSS in the system sector is incremented and, if the
result is not more than HRTL, the job is rerun (if not in
'no-rerun' status) using the new job termination code, HRJT
(COMSMSC) •

If the value in HRSS exceeds HRTL, then the new job abort
code, HRIE (COMSDSP), is set into the JASS system sector
byte and the job is rerun. 1AJ/3AA (begin job) wa~ changed
to detect this new job abort code and will abort the job
with the dayfile message, HARDWARE RERUN THRESHOLD EXCEEDED.

Also, each time lAJ reruns a job due to a recovered hardware
error, no output will be queued for the job, and the
following account dayfile message will be issued •

• AERR, HW.
~

However, if a double-bit error is encountered by tPUMTR when
reading the job's entire field length~ lAJ will freeze the

NOS 2.3 Feature Notes 14 1
Fault Tolerant Mainframe Error Processing

job's field length, unconditionally terminate the job with
the PEET error code still set, and drop from the PP. lMB
will soon be checkpointing and stepping the system for a
deadstart, since CPUMTR received a mode error (i.e., word 0
of CMR is non-zero).

In addition, lAJ now issues the message, PROCESSOR STATE
ERROR, when processsing an exit mode 678.

13.5 User Impact

13.5.1 Data Corruption

The user can regain control from a processor detected error
through REPRIEVE (error class 001) or EREXIT processing but
there is a chance that the data in the exchange package or
within the job's field length has been corrupted. In this
situation the user's program must be written in such a way
that the corrupted data is not propagated into a data base
or f i 1 e.

13.5.2 Rerun Processing

The system automatically attempts to rerun a job if it has
been aborted because of a processor error. User jobs which
should not be automatically rerun should issue the NORERUN
command at the appropriate point of execution.

142 NOS 2.3 Feature Notes
Fault Tolerant Mainframe Error Processing

13.6 Message Changes

13.6.1 System Dayfile

In addition to the dayfile messages already mentioned, the
follow'ing have been expanded to contain the CPU number to
which they are referring •

• CPUn POWER FAILURE

. CPUn FATAL ERROR

• CPUn SHUTDOWN IMMINENT

Where 'n' is either 0 or 1.

13.6.2 Binary Maintenance Log

The following changes were made to the uncorrected processor
BML messages (message ID's of 2328, 2338, and 2348) that are
currently issued by 1M8 •

• Symptom codes 1108, 1118, and 1128 are no longer used.
These are replaced by the codes returned by El or
NOS/VE (biased by 1008) in the respective fields in
word DSCM of the EIC8 •

• The retry field (bits 42-47 of word 3 of the 8ML
message) is used to indicate how many software retry
attempts El or NOS/VE initiated. This infomation is in
word DSCM of the EIC8. 1M8 was modified to set the
retry field to a value of 778 if the number of retries
is greater than 778 •

• The recovered/not recovered flag (bit 36 of word 3 of
the BML message) is set for symptom codes 1618 and
1648. This flag is clear for symptom codes 1418, 1428,
1448, and 1458.

(

NOS 2.3 Feature Notes 143
Fault Tolerant Mainframe Error Processing

• The CPU element number (0 or l) is set into bits 18-23
of word 3 of these BML messages to identify which
processor is at fault.

A new BML message is issued by lMB at the top of the hour
whenever any of the following events have occurred during
the past hour •

• Single bit CM error

Single bit LCME error (CYBER 176)

• Corrected processor error

• Uncorrected processor error

Word 3 of this BML message is a copy of word CECL from CMR
at the end of the hour when this message is issued to the
BML.

144 NOS 2.3 Feature Notes
LIEM Checkpoint

(This page left intentionally blank.)

(

NOS 2.3 Feature Notes
LIEM Checkpoint

14.l Introduction

145

CHAPTER 14

LIEM CHECKPOINT

Prior to NOS 2.3, the DSD command, CHECK POINT SYSTEM, saved
all system critical information on mass storage except that
which was resident in Unified Extended Memory (LIEM).

LIEM may co~tain rollout files, user file data, and alternate
system libraries. Because LIEM is part of central memory,
and may be destroyed subsequent to a system checkpoint, it
must be included in the system checkpoint file to be
restored by a level 1 or 2 deadstart.

Since checkpointing LIEM can result in much more time
required to checkpoint the system, and more mass storage
space to save the checkpoint file, the checkpoint processor
was modified to execute the system checkpoint expeditiously
and save the checkpoint file only on specified devices.

To decrease checkpoint execution time, the checkpoint
processor now terminates or rolls out all control point jobs
concurrently. A new EQPDECK entry, SCKP, specifies the
devices on which the checkpoint file is to reside.

CheckpQinting of LIEM involves reading all non-user LIEM
tracks and writing to the checkpoint file only the sectors

146 NOS 2.3 Feature Notes
UEM Checkpoint

containing system data. The UEM checkpoint data is written
to the end of the system checkpoint file. User data in UEM
is not checkpointed since it is assumed that this portion of
UEM was saved when the user jobs were rolled out.

If both external extended memory and UEM are defined (as
possible on 865/875), UEM will not be checkpointed since
system data is stored in external extended memory, and the
user data in UEM has been previously rolled out.

The new EQPDECK entry, SCKP, is documented in the NOS
Analysis Handbook. All new and changed error messages are
documented in Appendix A of the NOS Operations Handbook.

14.2 Design Overview

14.2. 1 Level 0 Deadstart

The EQPDECK entry SCKP is processed during
deadstart by routine SET to define the devices
system checkpoint file will reside. It will be
all other levels of deadstart. If no SCKP
successfully processed, a default device will be

a level O
on which the

ignored on
entries are
defined.

SET defines checkpoint devices by setting byte 3 of the DULL
MST word to 37778. The upper bit in this byte serves as a
flag to indicate that a valid checkpoint file exists on this
device.

REC calls lCK to preallocate the checkpoint file on each
checkpoint device. lCK will first clear the upper bit of
the checkpoint file pointer in the SLA (sector of local
areas) for all mass storage devices and then determine the
number of sectors to reserve for the maximum size of the
checkpoint file by the following formula.

(CMR +total UEM - user UEM + l/2*(RPL+RCL+PLD))/100B

If the sectors can be successfully reserved via the RTCM
function, lCK will store the first track number ·in the
checkpoint file pointer (upper bit cleared) in DULL of the
MST, and save this pointer in the sector of local areas.

NOS 2.3 Feature Notes
UEM Checkpoint

147

Otherwise, an appropriate message will be displayed and the
deadstart will be aborted.

Both SET and DSD mass storage status displays have been
modified to include the checkpoint file device status. A
'G' in the status field on these displays indicates that the
device has been defined as a checkpoint file device.

14.2.2 System Checkpoint

The system checkpoint involves first rolling out user jobs
and terminating (or rolling) subsystems, then checkpointing
mass storage devices, and finally writing the checkpoint
file. All the above processes are done by PP routine lCK.

lCK has been changed to terminate selected subsystems
without waiting for each to terminate before terminating the
next. Each subsystem will be given a maximum interval in
which to complete clean-up and termination. If not complete
within that time, the subsystem will be rolled out to
complete termination at deadstart time. The maximum
interval is·the assembly constant, MXTT, which is defined in
COMSMSC. Its released value is 100 seconds.

After initiating the rollout of non-subsystem jobs,
subsystems are rolled/terminated. Before checkpointing mass
storage devices, all subsytems and jobs must have completed
termination or have been rolled out.

lCK will then checkpoint all mass storage devices before
writing the system checkpoint file to the specified mass
storage device(s). The STBM monitor function is used to set
the 'valid checkpoint flag' in DULL of the MST. Then all CM
and UEM resident system information is written to the
device. This will continue until either no devices remain
or time has run out (abnormal environmental condition short
warning).

148 NOS 2.3 Feature Notes
UEM Checkpoint

14.2.3 Level l or 2 Deadstart

A new overlay, 4DK, has been added to RMS to provide for UEM
recovery processing.

On level l or 2 recovery deadstarts, 4DK will search the EST
for the first checkpoint device that has the upper bit set
in the checkpoint file pointer byte in word DULL of the MST
and will restore UEM. If all devices have been processed
without successfully restoring UEM, RMS will hang with an
appropriate error message.

After UEM has been recovered, 4DK will restore the LIEM MST
and TRT from the LIEM label track on the checkpoint file.

NOS 2.3 Feature Notes 149
Alternate PP/Critical Error Log

CHAPTER 15

ALTERNATE PP/CRITICAL ERROR LOG

15.1 Background

Previous to NOS 2.3, the CTI (Common Test and
Initialization) portion of CIP handed off data concerning
the hardware configuration and environment to NOS by leaving
tables and flags set in PP zero. This was done so that when
the PP program SET ·was loaded into that PP, it could
interpret that data and preset the operating system
accordingly. Since both SET and the CIP tables resided in a
single PP, the size of the CIP tables (and the amount of
information in them) was limited.

With the release of CIP level 2, CTI has been enhanced to
generate a great deal more data than it previously handed

·off to NOS. This enhancement to CTI causes it to dump
maintenance registers to the Critical Error Log (CEL) if a
hardware error is discovered during the deadstart process.
A flag is set to alert the operating system that the data in
the CEL must be logged to the Binary Maintenance Log (BML).
Since not enough space was available in PP zero for SET, the
CEL, and CIP tables, a new interface between CIP and NOS
needed to be developed.

150 NOS 2.3 Feature Notes
Alternate PP/Critical Error Log

15.2 The Solution

CIP level 2 provides a PP, other than zero, which holds the
handoff data and provides this data to other PPs. Although
the previous data is still passed thru PP zero, this will be
eliminated at some time in the future. The Critical Error
Log is located on the deadstart disk. An 1/0 channel is
used to pass commands to and data from the alternate PP.

SET locates the alternate PP and requests from it
needed to preset the operating system. If this
in a PP critical to deadstart (such as 1 or 2) it
to some other available PP. Finally, if Critical
information is available, it is written to the BML
when deadstart has almost completed.

any data
PP resides

is moved
Error Log
by REC,.

With this solution, the format of the System Attribute Block
in low core is changed. The CESAB macro in CETEXT is
expanded to return either the new or old format. Also, NOS
will not allow turning off PPs at deadstart time, and the
PPU= CMRDECK entry is removed to prevent this. Failing PPs
may still be turned off by using CIP.

The Alternate PP appears to be in the deadstart state, so
the operating system can load PP resident into it at any
time. Additional information is planned to be passed thru
the alternate PP in the future.

/

NOS 2.3 Feature Notes 151
380-170 (NAO) Code Conversion

CHAPTER 16

380-170 (NAO) CODE CONVERSION

16.1 Introduction

The Remote Host Facility (RHF) communicating on the Loosely
Coupled Network (LCN) allows users to transfer files between
homogeneous and heterogeneous mainframes. File transfers
between heterogeneous mainframes may require character
conversion to/from a local mainframe character set from/to a
common network character set. NOS V2 and NOS/BE currently
do this code conversion in the 170 CPU at the application
level. Doing the code conversion in the 170 CPU is a burden
on the CPU and has a direct impact on response time for
other users. To alleviate the burden on the 170 CPU a
decision was made to put the code conversion in the 170 NAO.

16.2 Advantages

Off-loads the 170 code conversion from the mainframe to
the NAO.

152 NOS 2.3 Feature Notes
380-170 (NAO) Code Conversion

• Performance transfer rate equivalent to 170-730 CPU
code conversion.

CPU utilization is cut drastically in a code conversion
transfer.

Binary transfers when code conversion are not being
performed are activated in the NAO •

• Configuration option to select CPU or
conversion •

• Runs on existing NAOs •

• Selectable at NAO level.

NAO code

16.3 Constraints

• Requires 96K bytes of NAO memory (380-32 memory option
for the 380-170 NAO) •

• Supported with NOS/BE 1.5 L604 and NOS 2.3 •

• Supported with QMOO controlware (MG401) •

• Supported with CML 161 •

• Not selectable at user level.

16.4 User Application Interface Changes

• The NETUXFR interface has a new input parameter •

. The NETXFR reply codes have been modified •

• The RHF file transfer FET has been modified.

See the RHF Access Method Reference Manual documentation
changes section for further information.

NOS 2.3 Feature Notes 153
380-170 (NAO) Code Conversion

16.5 Enabling Code Conversion In The NAO

The code conversion feature is enabled in the NAO by NOR
(RHF PP driver) executing an Initialize NAO function on the
local NAD. The Initialize NAO function is issued any time a
local NAO changes from an off-state to an on-state in RHF's
local NAO Table (all NAD 1 s are in an off-state when RHF
first comes up).

The number of paths and the number of buffers are given to
RHF in the RHF configuration file (RCFILE), which is read by
RHF at start-up time. To enter the convert mode parameters
the RCFGEN LNAO macro has two new parameters (CMPATHS and
CMBUFFS) • The LNAO macro format:

laddr LNAO

Parameter

laddr

ch

n

status

CH=ch,MAXNORS=n,OEOICATE=status,CMPATHS=paths,
CMBUFFS=buffers

Description

Symbolic address referenced in a
preceding PATH statement. This
parameter is required and must
begin in column one or two.

Channe 1 (octal) that NAO is on.

Maximum number of NAO drivers
(NORs) that may be assigned at
one ti me to this NAO. (l to 3)
Default is 3.

Indicates whether the driver
will always hold the NAO channel
reservation between consecutive
blocks of one 1/0 request.
Values may be YES or NO.
Default is YES. YES should
always be specified unless some
Non-CDC drive~ requires high
performance acc~ss to the NAO
channel .

154

paths

buffers

NOS 2.3 Feature Notes
380-170 (NAO) Code Conversion

Maximum number of convert mode
paths (0 to 63). Default is O.
If the number of convert mode
paths to allow equals zero RHF
assumes that code conversion
should not be enabled in the
corresponding local NAO.

Maximum number of convert mode
buffers (0 to 63). Default is
o.

The number of convert mode paths is directly related to the
number of convert mode buffers, and the number of convert
mode buffers is directly related to the number of buffers in
the NAO.

The minimum number of type 1 buffers that the NAO requires
for normal activity is two. The minimum number of buffers
required for code conversion to run is two. Buffers
reserved by the NAO for code conversion cannot be used by
the NAO for normal activities and vice-versa. Each path
reserved for code conversion must have 1.5 code conversion
buffers reserved (rounded up) •

The software relies on the NAO to determine the actual
number of paths and buffers reserved for code conversion.
The algorithm used by the NAO is:

Buffers Reserved = the smaller of (buffers requested)
or (total buffers -2)

Paths Reserved = the smaller of (paths requested) or
(buffers reserved * 2/3)

The code conversion parameters should be adjusted according
to the average number of concurrently active connections
doing code conversion and the average size of the files
being converted. The following table gives some suggested
values for the code conversion parameters. In this table
the term "average connection count" implies four converting
connections. The term "average file size" is a file
approximately 500 PRUs long.

NOS 2.3 Feature Notes
380-170 (NAO) Code Conversion

Less than average
connections,
average file size

64K BYTE
NAO

N
0
T

Less than average R

96K BYTE
NAO

2 paths
3 buffers

155

128K BYTE
NAO

2 paths
3 buffers

connections, E 2 paths 2 paths
large file sizes C 5 .buffers 5 buffers
------------------------0-----------------------------------
Aver age M
connections, M 4 paths 5 paths
Average file sizes: E 6 buffers 8 buffers
------------------------N--------------------------------~--
G rea ter than aver-: D
age connections, E
average file sizes: D

Greater than aver-:
age connections,
large file sizes

6 paths
9 buffers

5 paths
9 buffers

7 paths
11 buffers

6 paths
13 buffers

The local NAO Table entries, which are created by RCFGEN and
maintained in RHF's field length, are modified to contain
convert mode initialization parameters and current convert
mode status. The LNAD entry format:

59 47 41 35 29 23 17 l 1 0

: : : : : : : : : :MAX : LNAD : : :
A:B:C:D:E:F:G:H:O:NB:NP:NAP:NDR's : ORD :CHANNEL:EST ORD:O:

Reserved :Queue: Connect
:Count: Count

:Assgnd:
: NDRs :

NAO Q Address

156

A = Dedicated Channel

B = NAO Status Queued

C = EST off

D = Status taken

E = NAO EST previously off

NOS 2.3 Feature Notes
380-170 (NAO) Code Conversion

F = NAO controlware not loaded

G = NAO configuration error

H = NAO conversion on

NB = Number of Type 1 buffers to reserve for code
conversion

NP = Number of Paths to be allowed concurrently in
code conversion mode

NAP = Number of available convert mode paths

NOS 2.3 Feature Notes 157
UCOPY For Control Data CONNECT

CHAPTER 17

UCOPY FOR CONTROL DATA CONNECT

17.1 Background

RMF, the Remote Micro Facility, has been available since
1982 for interfacing micros with CYBERs. RMF is available
for a variety of micros, either from CDC or from customers.
By itself, RMF provides simple terminal capabilities to a
micro. When used with the CYBER resident program UCOPY, it
allows files to be transferred, with error correction,
between a micro and a CYBER.

Control Data has another micro product, called Control Data
CONNECT, which is similar to RMF. It is more user friendly
than RMF, and uses a slightly different file transfer
protocol. Control Data CONNECT (herein referred to as
CONNECT) was originally a CYBERNET product.

UCOPY is the command and the name of, the CYBER program used
by RMF and CONNECT to do error correcting file transfers.
Even though RMF and CONNECT use the same UCOPY command, the
UCOPY used by RMF is distinct {and incompatible) with the
UCOPY used by CONNECT {i.e. there are two separate programs
with the same name). Both versions of UCOPY may be run on
the same machine. UCOPY for RMF usually resides on the
system {deadstart file). UCOPY for CONNECT resides under
user name LIBRARY, and is automatically acquired when a file
transfer is initiated.

158 NOS 2.3 Feature Notes
UCOPY For Control Data CONNECT

To summarize, RMF and CONNECT refer to programs which run on
a micro. UCOPY is a program which runs on a CYBER. There
are two different versions of UCOPY - one which supports RMF
and one which supports CONNECT.

17.2 NOS 2.3

With the release of NOS 2.3, CONNECT replaces RMF as the
standard CDC product. RMF will remain available and
supported, but will have no new features added.

UCOPY is released as a standard part of NOS 2.3 and supports
only CONNECT. UCOPY for RMF is available as it has been in
the past and still requires a separate license (product
number T200-002). If you already have the RMF version of
UCOPY, it wi 11 sti 11 run. It wi 11 not conflict with the
version of UCOPY released with NOS 2.3 because the latter is
installed as a permanent file on user name LIBRARY, rather
than being installed on the deadstart file.

CONNECT, the micro program, must be ordered separately.
Currently, CONNECT is available only as an imbedded function
in the Micro IPF Version 2 application. The communications
section of Micro IPF uses a module of CONNECT to communicate
with a CYBER host, using UCOPY as released with NOS v2.3.
Currently Micro IPF Version 2 is available for the CDC 110,
IBM* PC, Zenith* z-150, and the Zenith* Z-100. Stand alone
versions of Control Data CONNECT will be available in the
near future. Separate Software Availability Bulletins
(SABs) will be distributed for them.

UCOPY for CONNECT is released in binary only. It is
installed as public direct access file UCOPYV2 under user
name LIBRARY. The procedure file cont'aining procedures used
by Control Data CONNECT is installed on public indirect
access file RMUGET under user name LIBRARY. These
procedures are used to see if a file is local, create a
permanent file, submit a file directly from the micro, etc.
This UCOPY requires a NOS 2.1, level 580 or later system.

The differences in the protocol used by CONNECT and RMF are:

1. RMF turns the CYBER prompt off, and an end of block
is indicated by an ASCII ETB (27 octal) followed by
three Cyclic Redundancy Check (CRC) characters and
a carriage return.

NOS 2.3 Feature Notes 159
UCOPY For Control Data CONNECT

CONNECT leaves the CYBER prompt on. An end of
block sent from CYBER to micro is indicated by an
ETB and three CRC characters, followed by a
carriage return, line feed, question mark, and a
space. A block sent from micro to CYBER is
terminated in the same manner as with RMF.

The advantage of CONNECT (over RMF) is that it can
be sure of working without typeahead support (e.g.
through the Remote Diagnostic Facility (RDF) using
the two port mux) as it waits for the question mark
prompt from the CYBER. RMF Version 2 relies on
typeahead.

If your version of RMF ignores all characters after
the CRC characters, this difference will not cause
any problems.

2. RMF uses an ASC I I EQT (04) as the
end-of-transmission block indicator.

CONNECT uses an ASCII BELL (07).

Some public data networks may discard an EQT, but
will pass a BELL. This incompatibility will cause
an RMF used with a Control Data CONNECT version of
UCOPY to abort after the last data block has been
sent (on the end-of-transmission b 1 eek) •

3. RMF retries a block transfer three times before
aborting.

CONNECT retries 25 times.

4. There is an additional parameter on CONNECT 1 s UCOPY
command - micro type. This parameter is not used
in the release of UCOPY at NOS 2.3. In the future
this parameter will be used to distinguish between
an RMF and a CONNECT protocol transfer.

5. Only UCOPY is needed on the CYBER to support RMF.

CONNECT also requires a procedure file, RMUGET,
which resides on user name LIBRARY.

6. RMF provides only minimal terminal support.
CONNECT provides terminal emulation. This allows
the use of full screen mode, including the NOS Full
Screen Edi tor (FSE) •

160 NOS 2.3 Feature Notes
UCOPY For Control Data CONNECT

Thus, for most versions, the only change needed to make RMF
work with the version of UCOPY released with NOS 2.3 is to
have it recognize (and send) an ASCII BELL as the
end-of-transmission block indicator..

The user interface differences on the micro end are far more
significant. Here the two bear little resemblance. CONNECT
is more user friendly than RMF:

1. CONNECT makes sure a file exist~ before trying to
transfer it from CYBER to micro. RMF will attempt
to transfer an empty file.

2. CONNECT attempts to GET or ATTACH the file to be
sent to the micro if the file is not local. RMF
requires the file to be local.

3. When transferring from micro to CYBER; the file may
be made local or permanent. If the transfer will
destroy an already existing file, the user is
warned and given an opportunity to change their
mind. RMF creates only local files, and destroys
any existing local file of the sam~ name without
warning.

4. CONNECT uses ESC X to get back to the menu, rather
than the CTRL-Q of RMF (which conflicts with CTRL-S
CTRL-Q flow control).

5. CONNECT allows you to SUBMIT a file from the micro
directly to the CYBER input queue.

6. CONNECT provides an automatic directives capability
similar to that of RMF, but easier to use. Instead
of the complex command syntax used by RMF, the user
simply enters the commands as they would do
normally. This allows a user to build a directive
file to transfer one or more commonly used files
with one command. It does not provide RMF's
capability of auto-dialing or of sending
interactive commands to the host.

(

NOS 2.3 Feature Notes 161
UCOPY For Control Data CONNECT

17.3 Future Plans

In a future release of NOS, a new version of UCOPY, ·called
PFTF, will be released which supports both CONNECT and RMF,
as well as adding support for XMODEM (Christensen) protocol.
PFTF will have the entry points UCOPY and XMODEM. It will
be released as a standard part of NOS Version 2, and will
replace all previous versions of UCOPY. PFTF may reside on
the deadstart file, or may be run as a global library. PFTF
will be completely upward compatible with existing RMF and
CONNECT software.

Control Data CONNECT will continue to. be enhanced to add
additional functionality and user interface improvements.
It will also be supported on additional microcomputers as
appropriate for CYBER customers.

* IBM is a registered .trademark of International Business
Mach i n es , I n c •

* ZENITH is a registered trademark of ZENITH corportion.

162 NOS 2.3 Feature Notes
Human Interface Improvements

(This page left intentionally blank.)

NOS 2.3 Feature Notes 163
Human Interface Improvements

CHAPTER 18

HUMAN INTERFACE IMPROVEMENTS

18.l Description

This feature changes operating system generated error
messages to be more accurate and user friendly. The major
emphasis· is to change user error messages and corresponding
documentation. Two of the options for the ENABLE and
DISABLE IPRDECK and DSD commands have also been changed for
consistency. The majority of changes include the following:

• The use of COMMAND instead of CONTROL
STATEMENT.

e •. g. "ROUTE COMMAND ERROR. 11

CARD

• The more general term EXTENDED MEMORY replaces ECS.

e.g. "EXTENDED MEMORY NOT AVAILABLE. 11

or

. INCORRECT or UNKNOWN replaces ILLEGAL and INVALID when
appropriat_e.

~.g. "INCORRECT MACHINE ID. 11

"UNKNOWN DEVICE TYPE-- LFN= filename."

164 NOS 2.3 Feature Notes
Human Interface Improvements

• MONITOR REQUEST replaces RA+l.

e.g. "MON I TOR REQUEST CALL WI TH INCORRECT FUN CT I ON CODE •11

. USER replaces ACCOUNT and
ACCOUNT/USER NUMBER.

USER NAME replaces

e.g. "USER NAME REQUIRED FOR *TT,'(OPTION. 11

18.2 Compatibility

Many error messages have been reworded. Also, the following
options for the ENABLE and DISABLE IPRDECK entries and DSD
commands have been changed:

• SECONDARY USER COMMANDS replaces SECONDARY USER CARDS •

• USER EXTENDED MEMORY replaces USER ECS.

18.3 Affected Documents

Pub. No. Ti t l e

60459380
60459300
60459310
60459370
60459390
60459500
60459680

604,59690

Network Terminal Users Instant
NOS Vers on 2 Analysis Handbook
NOS Vers on 2 Operations Handbook
NOS Vers on 2 System Programmer's Instant
NOS Vers on 2 Diagnostic Index
TAF Vers on 1 Reference Manual
NOS Vers on 2 Reference Set, Volume 3,
System Commands
Nos· Version 2 Reference Set, Volume 4,
Program Interface

NOS 2.3 Feature Notes 165
NOS Procedure and Flow Control Command Enhancements

CHAPTER 19

NOS PROCEDURE AND FLOW CONTROL COMMAND ENHANCEMENTS

Section 4, NOS Procedures, of the NOS Reference Set Volume 3
contains major revisions to clarify procedure concepts and
usage. Also, the title of section 6 has been changed from
Execution Control Commands to Flow Control Commands.

19.1 Search User Name LIBRARY for NOS Procedures

CCL has been enhanced to. automatically search user name
LIBRARY for the file containing the procedure if the file is
not local or in the user's permanent file catalog. The
system first searches for an indirect access file, then for
a direct access file.

19.2 New Symbolic Names

The following symbolic names have been added for Flow
Control Commands:

PL Page length. Default=60 lines, min=l6, max=255·
PS Same as PL •.

PW Page width. Default=136 characters, min=40, max=255.

PD Page density. Default=6 lines per inch, 6 or 8
allowed.

166 NOS 2.3 Feature Notes
NOS Procedure and Flow Control Command Enhancements

MON
TUE
WED
THU
FRI
SAT
SUN

Value=l
Value=2
Value=3
Value=4
Value=5
Value=6
Value=7

Symbolic names with fixed values that can
be compared with the symbol WEEKDAY.

FAMILY Current family name, set by the system.

SLE An error flag (EF) value for a service limit error.

SC2 Symbolic name designating the SCOPE 2
System. It can be compared with the host
system (SYS) value within an expression.

Operating
operating

The page setting symbols were actually implemented in NOS
2.2 L596, but not documented, Their use was described in the
NOS 2.2 L596 feature notes, SMD 130581.

19.3 Compatibility

The numerical value returned for the symbolic name WEEKDAY
has been changed to l through 7 for Monday through Sunday.
It was O through 6 for Saturday through Friday.

TJE has been deleted as a possible error flag (EF) value
since NOS error processing never sets EF to TJE. However,
an error will now occur if TJE is referenced in a NOS
procedure.

19.4 Affected Document

Pub. No. Title

60459690 NOS Version 2 Reference Set, Volume 3,
System Commands

NOS 2.3 Feature Notes
BLOCK Command

20.1 Description

167

CHAPTER 20

BLOCK COMMAND

·The BLOCK command enables users to add one or more lines of
block letters to a file. Each block letter is 10 columns by
10 lines. The large block letters provide easier
identification of output listings. Users can add additional
banner pages providing information such as PHONE, NAME, SEND
TO, HOLD FOR, etc. This information can help provide more
positive identification and distribution instructions.

BLOCK command parameters specify whether or not to rewind
the file before writing the block character lines and the
carriage control character to be inserted before the first
line. The default is no rewind and top of form. The file
will be overwritten by the block character 1 ines if it is
rewound.

Each block character line can be either a string of up to
ten characters, or one of the following special values:
DATE(current date), TIME(current time), USER(current user
name}, UJN(user job name), or JSNUob sequence name). Any
character can be used to delimit the block character lines.
Consecutive delimiters generate blank lines. Following is
an example BLOCK command, using* as a delimiter:

BLOCK,BLOCKF.*MYJOB*DATE

168 NOS 2.3 Feature Notes
BLOCK Command

The string MYJOB will be centered on the first block
character line of file BLOCKF. The current date will occupy
eight block character (yy/mm/dd) positions on the second
block character line. ·

Block character example:

MM MM
MMMM MMMM
MM MMMM MM
MM MM MM
MM MM MM
MM MM
MM MM
MM MM
MM MM
MM MM

yy yy
yy yy

yy yy
YYYY

yy
yy
yy
yy
yy
yy

20.2 Common Decks

JJJJJJJJ
JJJJJJJJ

JJ
JJ
JJ
JJ

JJ JJ
JJ JJ
JJJJJJJ
JJJJJ

00000000
0000000000
00 000
00 0 00
00 0 00
00 0 00
00 0 00
000 00
0000000000

00000000

BBBBBBBBB
BBBBBBBBBB
BB BB
BB BB
BBBBBBBBB
BBBBBBBBB
BB BB
BB BB
BBBBBBBBBB
BBBBBBBBB

Two sizes of block characters are defined in common deck
COMTBAN, 10 columns by 10 lines and 12 columns by 16 lines.
Common deck COMCBAN calls COMTBAN and generates the block
characters. COMCBAN selects the small characters if the
symbol SMCH$ is defined. SMCH$ is defined in deck NOTE for
the BLOCK command. PP programs can only use the large
characters (12 co 1 umns by 16 1 i nes) •

20.3 Affected Document

Pub. No. Title

60459680 NOS Version 2 Reference Set, Volume 3,
System Commands

(

\

(

(

NOS 2.3 Feature Notes
CLASS Command Enhancements

CHAPTER 21

CLASS COMMAND ENHANCEMENTS

21.l Description

169

Previously, the CLASS command could change the service class
of your current job only. A JSN parameter has been added to
allow you to change the service class {sc) of any job you
have submitted for execution. You cannot change the class
of an interactive job connected to another terminal.
Format:

CLASS,SC=sc,JSN=jsn. or CLASS,sc,,,,jsn.

The following message will be issued to both
dayfile and the account dayfile indicating
service class of the job:

ABSC,sc.

the user's
the initial

170 NOS 2.3 Feature Notes
CLASS Command f nhancements

Also, the available service classes/priority display is
modified to include input files. Example:

/class
AVAILABLE SERVICE CLASSES

---RELATIVE PRIORITY--~

CLASS INPUT FILES EXECUTING JOBS OUTPUT FILES
DI * ****** ***********
10 * ******* ***********
TS *********** *********** *********** CURRENT

ENTER CLASS: di
CLASS COMPLETE

I

21.2 New Error and Dayfile Messages

1. Inclusion of the OT, L, or OP parameters with the
JSN parameter will issue:

SC ONLY PARAMETER VALID WITH JSN.

2. Excluding the SC parameter with the JSN parameter
will issue:

SERVICE CLASS REQUIRED WITH JSN.

3. Entering 11 CLASS,SC=sc,JSN=jsn. 11
, when the number of

jobs with the specified class (sc) is already at
the service limit wi 11 issue:

SERVICE CLASS FijLL.

4. A successful 11 CLASS,SC=sc,JSN=jsn. 11 command for a
job other than your current j~b will cause the
following message to be issued to the dayfile of
the job whose class was changed:

CLASS CHANGED EXTERNALLY.

5. Specifying an undefined service class will issue:

UNDEFINED SERVICE CLASS.

NOS 2.3 Feature Notes
CLASS Command Enhancements

171

6. Specifying a service class that is incorrect for
the user or the origin type of the job specified by'
the JSN parameter will issue:

INCORRECT SERVICE CLASS.

7. Specifying a JSN that is not in the system or does
not belong to the calling job will issue:

JSN NOT FOUND.

8. Specifying a JSN for an on-line job connected to
another terminal will issue:

CANNOT CHANGE CLASS OF ON-LINE JOB.

21.3 GETUSC Macro Change

The GETUSC macro is changed to return the lower bound
priority for input files. This is returned in bits 35-24 of
the return word. This field in the returned parameter word
was previously zero.

172 NOS 2.3 Feature Notes
CLASS Command Enhancements

21.4 QAC Call Changes

The following changes have been made to the prefix portion
of the QAC parameter block:

Error code= 20. Incorrect service class. The service
class selected on an ALTER function is not valid for the
user or not valid for the origin type of the specified job.

Error code= 21. Service class full. The service class
selected on an ALTER function is at the service limit.

Error code= 22. QAC cannot alter the service class of an
on 1 i ne job.

The following changes have been made to the alter portion of
the QAC parameter block:

Bit 19 of the alter flags is used to indicate a service
class change.

Bits 6-11 of word 158 are used for the requested service
class.

21.5 Affected Documents

Pub. No. Title

60459680 NOS Version 2 Reference Set, Volume 3,

System Commands
60459690 NOS Version 2 Reference Set, Volume 4,

Program Interface
60459840 NOS Version 2 Administration Handbook

NOS 2.3 Feature Notes
EFFECT Command

22. l Description

173

CHAPTER 22

EFFECT COMMAND

The EFFECT command enables or disables the output format
effectors supplied by IAF. Format effectors cause
predefined formatting operations such as space 2 lines
before output, position to start of current line before
output, space l line after output, etc. They do not appear
on the output device and are not included in page width
calculations. The allowable format effectors are documented
in the Network Access Method Reference Manual, pub. no.
60499500.

The default for this command is EFFECT,ON (IAF supplies the
effectors). EFFECT,OFF enables user supplied format
effectors. The first character of every output line is
processed as the format effector under EFFECT,OFF. This
command has no effect on multiplexor terminals.

Control bytes 0001, 0002, 0003, 0005, 0013, 0014, and 0015
should not be used with EFFECT,OFF because they include
format specifications to be supplied by IAF. Consequently,
these control bytes conflict with EFFECT,OFF and can cause
unpredictable results.

174 NOS 2.3 Feature Notes
EFFECT Command

22.2 Affected Documents

Pub. No. Title

60459680 NOS Version 2 Reference Set, Volume 3,

System Commands
60459690 NOS Version 2 Reference Set, Volume 4,

Program Interface

NOS 2.3 Feature Notes
ERRMSG. Command

23.1 Description·

175

CHAPTER 23

ERRMSG COMMAND

The ERRMSG command enables or disables the display of error
generated by commands executed within a NOS

ERRMSG,OFF disables the display of error
the terminal. The messages are still listed in

messages
procedure.
messages at
the dayfile.
displayed).
batch job.

ERRMSG,ON is the default (error messages are
This command has no effect when issued from a

The ERRMSG command must be executed from within a procedure.
The error message off status remains in effect until an
ERRMSG,ON command is issued, or until your job returns to
interactive command status. The error message off status is
not affected by procedure nesting levels such as REVERT or
other BEGIN commands.

176 NOS 2. 3 F ea tu re Notes
ERRMSG Command

23.2 Affected Documents

Pub. No. Ti t 1 e

60459370
60459670

60459680

60459690

NOS Version 2 System Programmer's Instant
NOS Version 2 Reference Set, Volume 2,
Guide to System Usage
NOS Version 2 Reference Set, Volume 3,
System Commands
Nos· Version 2 Reference Set, Volume 4,
Program Interface

NOS 2.3 Feature Notes
FCOPY Command Enhancements

CHAPTER 24

FCOPY COMMAND ENHANCEMENTS

24.1 Description

177

FCOPY is enhanced to read and write stranger format (F=S)
tapes containing 8-bit characters, either ASCII or EBCDIC.
This is specified by the new code set options ASCFL and
EBCFL for the PC and NC parameters. Data on the tape is
organized into blocks of fixed length records (lines).
Parameters FL and LB have been added to allow the user to
specify the record and maximum block lengths.

The code set ASCI 188 has also been added for other files.
It specifies the full 8-bit ASCII code in 8-bit bytes.

Parameters PL and NL have also been added to support
additional line terminators. The line terminators that can
be specified are zero byte (default for most code sets),
carriage return, form feed, line feed, unit separator
(default for the ASCI 188 code set), record separator,
carriage return and line feed, line feed and carraige
return, or an octal character value.

178 NOS 2. 3 F ea tu re Notes
FCOPY Command Enhancements.

24.2 Compatibility

The NOS 2.3 release of FCOPY is fully upward compatible with
the NOS 2.2 release.

24.3 Affected Document

Pub. No.

60459680

Title
J

NOS Version 2 Reference Set, Volume 3,
System Commands

NOS 2.3 Feature Notes
Get Reprieve Information

CHAPTER 25

GET REPRIEVE INFORMATION

25.1 Description

179

This feature allows a user program to get the existing
·reprieve conditions. This enables secondary applications

(those called by other applications) to establish their own
reprieve conditions. The new user callable function RRI
(1348) is added to CPM. The new macro GETRI calls RRI to
return the control point type, extended reprieve block or
exit address, and error mask from the contents of control
point word EECW. GETRI returns a parameter value of zero if
a reprieve condition is not set. If a reprieve condition is
in effect, GETRI returns its type.

180 NOS 2.3 Feature Notes
Get Reprieve Information

25.2 Example Application

Secondary applications often need to establish their own
reprieve conditions in order to perform appropriate error
processing. However, any reprieve conditions which may have
been set by the calling application are overwritten when the
secondary application establishes its own reprieve
conditions. The reprieve conditions for the secondary
application may be inappropriate for the calling application
and/or reprieve processing code may be overlayed by the
caller when control is returned. Therefore, the calling
application must save its reprieve conditions and disable
reprieve before calling the secondary application, and
restore its reprieve conditions when control is returned.
The example below illustrates this use of GETRI.

GETRI is used by the Information Processing Family (IPF) and
other applications. The IPF initial processing state,
including RECOVR and the extended reprieve parameter block,
is overlaid by secondary states within the application field

. length. Prior to NOS 2.3, IPF had to determine the reprieve
conditions of the previous state by using the absolute
address of the reprieve stack within RECOVR.

25.3 Affected Documents

Pub. No. Title

60459370
60459690

NOS Version 2 System Programmer's Instant
NOS Version 2 Reference Set, Volume 4,
Program Interface

(
~

NOS 2.3 Feature Notes
Get Reprieve Information

25.4 GETRI Example

IDENT GETRIEX
SST FOR PPTEXT/NOSTEXT SYMBOLS
SYSCOM Bl

RRC SUBR

181

* RRC RESTORES REPRIEVE CONDITION FROM GETRI INFO.
* IT ASSUMES A REPRIEVE IS NOT IN PROGRESS.

SBl 1 Bl=l
SAl RPVINFO OLD REPRIEVE STATUS FROM GETRI
ZR Xl,RRCX IF NO CONDITION SET
MXO 5
BX6 -XO*Xl MASK OUT FLAG BITS
NG Xl,RRC2 IF REPRIEVE TYPE IS *EREXIT*
LX 1 l
MXO 0
NG Xl,RRCl IF NORMAL REPRIEVE

* X6=EXTENDED REPRIEVE PARAMETER BLOCK ADDRESS
SA3 X6 EXTENDED REPRIEVE PROCESSING
MXO 12
LXO 24
BX7 XO*X3 X7=PARAMETER BLOCK LENGTH
SX2 Bl+Bl
BX7 X7+X2 STORE *SETUP* FUNCTION CODE
SA7 A3 IN PARAMETER BLOCK
SX2 Bl SET EXTENDED REPRIEVE BIT
LX2 18
BX6 X6+X2 FOR RA+l RPV CALL

RRCl SXl 3RRPV FORM RA+l REQUEST
LX 1 42
SX2 Bl SET RECALL BIT
LX2 40
BX l X l+X2
BX6 X6+Xl RA+l RPV CALL FORMAT
RJ =XSYS= POST RPV REQUEST
ZR XO,RRCX IF NORMAL REPRIEVE

, BX7 X3 l ST WORD OF PARAMETER BLOCK
* RESTORE OLD LENGTH & FUNCTION IN PARAMETER BLOCK

SA7 A3
EQ RRCX

RRC2 SXl Xl ISOLATE REPRIEVE ADDRESS
EREXIT Xl ISSUE ERROR EXIT TYPE REPRIEVE
EQ RRCX

RPVINFO BSS 1 GETRI REPRIEVE INFO

182

GETRIEX

LBLl

'le

APPCALL

*
CLRPV

SBl l
GETRI RPVINFO
SAl RPVINFO
ZR Xl,APPCALL
NG Xl,APPCALL
LXl 1
PL Xl,LBLl
SYSTEM RPV,R
EQ APP CALL
LXl l
PL Xl,APPCALL

NOS 2.3 Feature Notes
Get Reprieve Information

Bl=l

IF NO REPRIEVE CONDITION SET
IF *EREXIT* ENABLED

IF NOT NORMAL REPRIEVE
CLEAR NORMAL REPRIEVE

IF NOT EXTENDED REPRIEVE
CLEAR EXTENDED REPRIEVE
SYSTEM RPV,R,CLRPV,1

LOAD & CALL APPLICATION

RJ RRC RESTORE REPRIEVE CONDITION

PARAMETER BLOCK TO CLEAR EXT REPRIEVE
. VFD 48/25,12/2

BSSZ 25
END GETRIEX

NOS 2.3 Feature Notes
RECLAIM Command Enhancements

CHAPTER 26

RECLAIM COMMAND ENHANCEMENTS

183

The RECLAIM utility released at NOS 2.2 L602 enables NOS
users to easily provide magnetic tape or disk backup for
permanent files, and maintain greater control over the size
of their permanent file disk space. It is not intended for
system operation permanent file backup. Operations should
use PFDUMP/PFLOAD, which preserves file history information
such as file creation date, last date modified, and last
date accessed. RECLAIM sets these values to the date and
time of loading.

The NOS 2.3 release includes enhancements to allow a wider
range of file manipulation capabilities. These enhancements
are designed to address the needs of the systems oriented
user, without affecting the current capabilities directed at
the business and production oriented user. The systems
oriented user tends to have more need for file transferring
capabilities and less for strictly archival/backup
capabilities.

26. l Current Capability Summary

RECLAIM minimizes the amount of user activity needed to dump
or load files. For example, by specifying a single dump
option ·on a RECLAIM control command, all files in a user's
catalog can be dumped to magnetic tape. The dumped files
can then be reloaded to the same or a different user name as
permanent files or as local files. All fil~s are reloaded

184 NOS 2.3 Feature Notes
RECLAIM Command Enhancements

with the same permissions, modes, categories, etc., as they
had when dumped. The. creation, access and modification
dates, however, will reflect the load date.

Information about dumped files (e.g., when dumped, on what
tape) is maintained in a direct access database in a user's
catalog. A single database may contain dump information
about files for more than one user, if two or more users
agree to maintain a common database.

RECLAIM can be used by both batch and interactive users.

26.2 New Features

The following file manipulation capabilites are supported by
RECLAIM, in addition to exi~ting permanent file archival
capabilities:

A new RECLAIM parameter (NV) specifies that a dump is
to be written at end-of-information (EOI), regardless
of what precedes the EOI. At least one valid RECLAIM
dump must precede the EOI if NV is omitted •

• Dump of local files as well as permanent files. This
is provided by the new option:

FN=filename

The FN option functions exactly the same as the PF
option with one exception; when used with a DUMP
directive RECLAIM first checks for a local file by the
specified name. If one is found, the local file is
dumped. A dummy PFC constructed for this purpose will
indicate a private file with no permits. The TY option
can be used to specify whether local files are to be
dumped, and hence loaded, as direct access or· indirect
access files. The default is direct access (D) •

• Dump to and load from a local or permanent mass storage
file. This is provided by the new options CF and CN
for the COMPACT directive, and OF and DN for the DUMP
directive.

NOS 2.3 Feature Notes
RECLAIM Command Enhancements

185

Optionally load over an existing permanent file via the
new RP option for the COPY and LOAD directives •

• Dump or load files without maintaining a RECLAIM
database, via the RECLAIM parameter DB=O. The database
has one four word record for each file dumped and one
four word record for each reel dumped.

Exception processing - select all files except those
matching selection criteria, via the EX option used
with several directives •

• Files are now dumped in the sequence specified by the
user via the PF or FN option. If a file is listed more
than once, multiple copies will be dumped in the order
listed. If the PF and FN options are omitted, files
are dumped in the sequence in which they are found in
the user's permanent file catalog •

• Diagnostic information indicates when a file specified
in selection criteria was not found and processed.

The default for the maximum number of files processed
(NF option) is now unlimited for all directives with
one exception; the limit is still 4095 for the dump
directive •

• Dump tape format remains compatible with PFDUMP •

• Elimination of unnecessary dump and load tape
repositioning and manipulation. For example, a file
load from a multi-reel dump will only process those
reels actually containing the files to be loaded. This
requires specification of a RECLAIM database via the DB
parameter. The multi-reel load improvement .is
implemented using a new tape keyword on the. FILINFO
macro. NOS 2.2 dumps can not make use of this feature
since the database does not contain the required reel
information. Also, there is no capability to convert
old databases. However, dumps to new reels of an old
dump set will take advantage of this feature.

186 NOS 2.3 Feature Notes
RECLAIM Command Enhancements

26.3 Compatibility

RECLAIM now dumps files in the sequence specified by the
user. Formerly, the files were always dumped in the
sequence in which they were found in the user's permanent
file catalog.

26.4 Affected Document

Pub. No. Title

60459680 NOS Version 2 Reference Set, Volume 3,
System Commands

NOS 2.3 Feature Notes
REDO Command

27. 1 Description

187

CHAPTER 27

REDO COMMAND

The NOS 2.2 R command is now available as REDO or R. It
allows you to modify and reenter a previously entered
command without retyping the entire command. The system
prints the characters OLD: , followed by the command to be
modified. On the following line, the system prints the
characters MOD: , as a prompt for you to enter modifications
to the 1 ine. When you enter a carriage return, the system
prints the characters NEW: followed by the modified
command and executes the modified command.

27.2 Affected Document

Pub. No. Title

60459680 NOS Version 2 Reference Set, Volume 3,
System Commands

188 NOS 2.3 Feature Notes
SHOW Command

(This page left intentionally blank.)

(
\

(

NOS 2.3 Feature Notes
SHOW Command

28. l Description

189

CHAPTER 28

SHOW COMMAND

The SHOW command calls an interactive procedure to display a
screen formatting panel. SHOW is used for testing; it
enables a user to display a ·panel without writing a program
that calls the panel. Format:

SHOW, panel name.

Panelname specifies the name of a compiled
1 i brary PANELi B or in a g l oba 1 1 i brary set.
command is an interactive procedure, you
information by entering SHOW? •

28.2 Affected Document

Pub. No. Title

panel in user
Since the SHOW
can get he-l p

60459680 NOS Version 2 Reference Set, Volume 3,
System Commands

60460430 NOS Version 2 Screen Formatting Reference Manual

190 NOS 2.3 Feature Notes·
COBOL Version 5.3 Enhancement

(This page left intentionally blank.)

(
\
'

NOS 2.3 Feature Notes 191
COBOL Version 5.3 Enhancement

CHAPTER 29

COBOL VERSION 5.3 ENHANCEMENT

29.1 New Feature

The external data feature provides another method of sharing
data between COBOL programs. Specification of the external
clause in a record description entry in Working Storage
makes the contents of the item described by the entry
available to all COBOL subprograms which describe the same
item with an external clause.

29.2 Incompatibilities

This feature does not introduce any incompatibilities. The
word "EXTERNAL" is already reserved as part of the external
file feature.

192 NOS 2.3 Feature Notes
Data Catalogue Version 2.0 Enhancements

(This page left intentionally blank.)

(

(

(

NOS 2.3 Feature Notes 193
Data Catalogue Version 2.0 Enhancements

CHAPTER 30

DATA CATALOGUE VERSION 2.0 ENHANCEMENTS

30.l New Features

Data Catalogue can now read the source code for DMS-170
databases, and generate the $UPDATE directives to add the
information to the catalogue. Source for the schemas,
subschemas, and for the master directory can be processed.
FILE control statements which are used in creation of the
schema are also processed.

Reports generated by Data Catalogue have been updated to
reflect the DMS-170 usage of items in the catalogue.

30.2 Incompatibilities

The format of the catalogue has changed in Version 2.0, and
existing catalogues are not directly readable. There is a
technique for converting to the new format of the catalogue,
and t~is is discussed under "Migration", below.

194 NOS 2.3 Feature Notes
Data Catalogue Version 2.0 Enhancements

30.3 Migration of an Existing Catalogue

The migration of an existing catalogue is accomplished in
four steps:

1. Use $COPY HIERARCHIES of the existing Data
Catalogue to convert the contents of the existing.
catalogue into directives for $UPDATE. Call this
file TARGET.

2. Use the new Data Catalogue to initialize a new
catalogue.

3. Use $UTILITY MI.GRATE of the new Data Catalogue to
convert the contents of the TARGET file into the
format and content required for the $UPDATE of the
new version of Data Catalogue. Call this file
NEWTARG.

4. Use $UPDATE of the new Data Catalogue to read
NEWTARG and create a new catalogue with all the
information from the old catalogue.

(

) NOS 2.3 Feature Notes 195
Data Catalogue Version 2.0 Enhancements

CHAPTER 31

FORTRAN 5, CHANGES TO GETPARM

31. 1 New Features

NOS 2.3 introduces some changes in GETPARM, the routine
called to access user parameters from the command line
(e.g., LGO,Pl,P2). The changes have two main effects:

1. GETPARM can now handle continuations of command
lines.

2. GETPARM can now handle values delimited by dollar
signs.

Details of how to use these features are included below, as
well as some examples and cautions.

31.2 Continuation Lines with GETPARM

GETPARM has
immediately
command line
simplicity,
two periods,

been changed to interpret a period which
follows the command terminator to mean the
is continued on the next command line. For
this special terminator will be referred to as
although it could also be a right parenthesis

196 NOS 2.3 Feature Notes
Data Catalogue Version 2.0 Enhancements

followed by a period. The two periods are syntactically
seen as a comma. For example,

LGO,Pl,P2,P3 ••
P4,P5,P6.

is then seen (through the eyes of GETPARM) as:

LGO,Pl,P2,P3,P4,P5,P6.

Similarly,

LGO,Pl,P2,P3, ••
P4,P5= ••
P6,P7.

is interpreted as:

LGO,Pl,P2,P3,,P4,P5=,P6,P7.

Also remember that the terminator of a command line is not
simply the last non-blank character. The following example
shows a mistake of this kind:

LGO,Pl,P2)P3,P4 ••

In this example, there is no continuation of the command
line. A right parenthesis was used to make the terminator
more obvious.

There is no limit to the number of continuation lines that
GETPARM can read.

If command line continuations are used- interactively,
GETPARM will read each continuation line from the terminal,
using as a prompt.

There are two known anomalies of the continuation
processing, and they are both addressed by PSR FL5A668. The
symptoms are listed below so you can be aware of this
behavior.

1. When interactively entering continuation lines, and
at the 1

••
1 prompt, a valid continuation line must

-be entered. If a carriage return only is entered
at this point, the job step is aborted with:

(

(

NOS 2.3 Feature Notes 197
Data Catalogue Version 2.0 Enhancements

FORMAT ERROR ON CONTROL CARD

2. Be careful that there are some parameters on the
command line before the two periods. For example,

LGO ••

gets aborted with the message

FORMAT ERROR ON CONTROL CARD

31.3 Delimited Parameter Values

GETPARM will now also properly accept parameters which have
embedded special characters. Values of this sort must be
de l i mi ted by do 11 ar signs (1 $ 1) • For example,

LGO,Pl,P2=$ABC.DEF$,P3=$XYZ$$123$.

is now correctly interpreted as having the following values:

P2 - ABC.DEF
P3 - XYZ$123

31.4 Caveats •••

This new interpretation of continuations of command lines
means that some command lines will now be interpreted
differently by GETPARM than before. The following are of
the cases which could cause problems or confusion.

1. Do not enter a terminator at the end of a command
line entered at the Loader interactive prompt:
'LDR>?'. The Loader unconditionally appends a
period to the end of the line for you. If you
enter one, you may unknowingly make it look as if
there should be a continuation of the command line.

198 NOS 2.3 Feature Notes
Data Catalogue Version 2.0 Enhancements

2. Do not enter a terminator at the end of a command
line entered with the OS directive of Query Update.
The OS directive u.ncond it i ona 11 y appends a period
to the command line entered (the OS directive
issues a command line to the operating system).

When in doubt, use DAYFILE to see what command lines were
actually passed to the operating system (and from there to
GETPARM). This can help spot the other cases of redundant
periods being added by intermediate routines.

NOS 2.3 Feature Notes 199
IAF Abort Processing Enhancements

CHAPTER 32

IAF ABORT PROCESSING ENHANCEMENTS

Enhancements have been made to IAF to assure that registers
used by system macros, the lTA and lTO requests, and the
exchange package are retained in the dump after abnormal
termination. The following information is saved before
abort processing takes place:

1. The name of the calling routine.
2. The contents of registers Xl, X2, and Al used by

the system macros.
3. The last lTA and lTO requests issued.
4. The exchange package.

These features have been added to make dump analysis and
debugging easier.

Included in these changes, sense switch 2 has been added to
mean "DO NOT ATTEMPT A RELOAD AFTER AN ABORT" when the
switch is set to 1on 1

• Termination processing will check to
see if switch 2 is set and, if so, IAF will terminate on the
abort, active users will be logged off (with the messages
11 I AF TERM I NAT ED" and 11 ABORT") and the dump and dayf i 1 e w i 11
print immediately. If switch 2 is not set, the message
"RECOVERY COMPLETE" is displayed and the recovery flag is
set.

- 200 NOS 2.3 Feature Notes
Operator Notification of lnsuff icient Resources

(This page left intentionally blank.)

(

(

(

NOS 2.3 Feature Notes 201
Operator Notification of Insufficient Resources

CHAPTER 33

OPERATOR NOTIFICATION OF INSUFFICIENT RESOURCES

Prior to NOS 2.3, a job requiring an 'OFF' equipment to
satisfy its resource demands was rolled out until such
equipment became available. Resources already assigned to
the job remained assigned to it until it finished with them
thus depleting the resources available to other jobs and
raising the possibility of a scheduling deadlock.

This feature has been added to inform the system operator
whenever a job's resource demands require the use of one or
more 'OFF' nonallocatable equipment and allow the operator
to identify the job needing the equipment and intervene.

NOS will inform the operator via the equipment preview (E,P)
display when a job requests a temporarily unavailable
equipment and allow the operator to terminate the job with
the appropriate diagnostic message or to allow the job to
remain waiting for the resource to become available.

The DSC E,P display has been
before the packname/vsn is
requires an 'OFF' equipment.
the changed E,P display:

E,P. RESOURCE REQUESTS.

changed so that the blank
changed to '*' when the job

The following is an example of

JSN EQ PN/VSN USERNAM RING LAB STATUS LEVEL

ABCD MT VSNnnn USER123 IN

AAAN ~E *TESTl USER456 YES

MT060
RING CONFLICT

LVL2

LVLO

202 NOS 2.3 Feature Notes
Installation Defined System Events

(This page left intentionally blank.)

(

(

NOS 2.3 Feature Notes 203
Installation Defined System Events

CHAPTER 34

INSTALLATION DEFINED SYSTEM EVENTS

Installations may now provide user callable, system
functions without requiring site modifications to NOS. This
feature has been added to provide an adequate inter-control
point scheduling interface for installation provided pseudo
subsystems.

An installation may define up to eight system events. When
a user program (non SYOT) enters one of the reserved system
events, an installation designed pseudo-subsystem, which is
ordinarily rolled out, is then scheduled.

An example of an installation provided, user callable system
function implemented with a pseudo subsystem is a utility
called to attach a permanent file when the permanent file
may be archived on tape. If the permanent file is not disk
resident, the utility enters the system event which then
requests the pseudo subsystem to retrieve the permanent
file. The user called utility waits for an archive
retrieval completion by attempting attaches of the permanent
file on disk. The pseudo subsystem searches the tape
library directory for the file, copies the requested file
from the tape library to disk, and makes the file permanent.

The DSD rollout (R) display has been changed to display the
new i nsta 11 at ion defined event ·codes (I 0 through 17) in the
status field. The mnemonic for installation defined events
is I IE I •

204

)

NOS 2.3 Feature Notes
Indirect Access Permanent File Processing Enhancement

(This page left intentionally blank.)

(

NOS 2.3 Feature Notes 205
Indirect Access Permanent File Processing Enhancement

CHAPTER 35

INDIRECT ACCESS PERMANENT FILE PROCESSING ENHANCEMENT

Prior to NOS 2.3, when performing a copy operation (GET,
OLD, SAVE, REPLACE, or APPEND) on an indirect access file,
PFM performed the copy by repeatedly reading the next 8
sectors from one file into a buffer in the PP and then
writing them to the other file. On a non-buffered device
this procedure led to losing one disk revolution every eight
sectors; on a buffered device, a transfer rate of less than
20% of the possible full· speed of transfer was maintained.
PFM remained in the PP for the entire operation, and it may
have kept the same disk channel reserved for the entire
operation.

While this procedure was adequate for small files, there may
have been a serious impact on total system performance when
large indirect access files were used.

For NOS 2.3, if a file to be transferred is over a certain
threshold value (defined in COMSPFM and has a released value
of 6 PRUs), PFM calls a CPU program (CPUPFM) which performs
the transfer via CIO calls. CPUPFM will not be called if
the caller is a subsystem or if the caller is a DMP=
program. The entry point to CPUPFM is CPF (Copy Permanent
Fi 1 e) •

PFM communicates with CPUPFM through SPCW in the control
point area, through the DMP= parameter block (DMPN) in NFL,
and through four special files. The SPCW request to CPUPFM
has the following format:

206 NOS 2. 3 F ea tu re Notes
Indirect Access Permanent File Processing Enhancement

18/3LCPF,2/l, 1/1,21/0,18/FC

where FC is the CPUPFM function code
FC = O copy from permanent file to local file
FC = 1 copy from local file to permanent file

CPUPFM returns the following status in SPCW on termination:

24/0,4/1,8/EC,24/0

where 1 indicates this was CPUPFM not RESEX, and EC is the
error code of the error encountered (if any).

PFM writes the following parameter block into NFL when
calling CPUPFM:

36/0,24/LF
36/0,24/APLF
60/PFID
60/PFID
60/PFID
60/PFID

where LF = length of the local or permanent file; APLF =
length of the original file (for APPEND) - if non-zero this
file is copied before copying the local file; PFID =
permanent file id (device number, track, sector and entry
ordinal of the PFC; formatted as a PFM special request
block) of the PFC entry for the original file on an APPEND.

PFM creates four files when calling CPUPFM:

PFM*LFN (local file FNT)
PFM*PFN (permanent file FNT)
PFM*APF (APPEND original file name)
PFM*ILK (catalog track interlock FNT)

CPUPFM calls a new common deck COMCCPF to do the actual
copy.

NOS 2.3 Feature Notes
ACPD/CPD Enhancements

CHAPTER 36

ACPD/CPD ENHANCEMENTS

Performance tools enhancements in this area include:

1) The ability to select an ACPD report interval by
CPD sample file record count.

2) Changes in the collection and reporting of
secondary rollout activity.

3) Changes to the CMR statistical data area.
4) Deletion of certain account dayfile messages.

207

An IC parameter has been added to the ACPD command to allow
the specification of the number of CPD sample file records
per report interval. This allows the selection of report
intervals of less than one minute. Using both the IC and IN
parameters on the ACPD command generates an error and
results in the message "IN AND IC PARAMETER ~ONFLICT 11 •

The system now collects the number of rollouts to secondary
rollout devices and the number of sectors rolled out to
secondary devices. These accumulators and the total
rollouts and sectors rolled out accumulators reside in the
new statistical data area. All of the accumulators will be
updated by the RTCM CPUMTR function.

A 11 of the i terns in the stat i st i cal data area (SDAL) in CMR
which really are statistical data have been moved to the
extended statistical data area which has been renamed the
statistical data area. The tag SDXP has been removed and

\

208 NOS 2.3 Feature Notes
ACPD/CPD Enhancements

rep 1 aced by the tag SOAP as the pointer to this ar.ea. New
tags have been defined for those words in the old
statistical data area. which contain non-statistical
information. The remaining words have been freed up for use
by the site or applications. The following is the format of
the new statistical data area:

WORD TAG

0 JSOS

JSlS

2 JS2S

3 JS3S

4 JS4S

5 MTRS

6 CMMS

7 EMMS

BITS

59-36
35-0

59-48
47-24
23-0

59-48
47-24

DESCRIPTION

·EJT scans
Scheduled jobs

Reserved
Jobs preempted
Jobs scheduled

Reserved
Jobs scheduled without
service constraints

23-0 EJT scans with
insufficient CM to
schedule job

59-48
47-24

Reserved
EJT scans with insuf­
ficient EM to schedule
job

23-0 EJT scans with no control
point available to
schedule job

59-48
47-24

Reserved
Rel.louts for resource
1 imits

23-0 Count of time slices

59-48
47-36

35-24
23-12
11-0

59-0

59-0

Reserved
Count of clock updates
missed
Worst case MTR MXN time
Worst case MTR cycle time
Current MTR cycle time

CM storage moves

EM storage moves

NOS 2.3 Feature Notes
ACPD/CPD Enhancements

10 CBNS

1 l PRXS

12 ROTS

13 SOTS

14 ROSS

15 sass

Note that the count
maintained in the
statistical data area

59-0

59-0

59-0

59-0

59-0

59-0

of missed
MTR input
(word 5) .

No. of times CPUMTR
communication buffer
was not available

PP priority exchanges

Number of rollouts

Rollouts to secondary
rollout devices

Sectors rolled out

209

Sectors rolled out to
secondary·rollout devices

clock updates which was
register is now in the

The following account dayfile messages will no longer be
issued by SFM each time one of the system dayfiles is
accessed: SDCA, SDCI, SDCM, SDMR, SDMS, SDNF, SDPX, SDSF,
SOTO and SOTS. The data reported in these messages is
available from both ACPD and PROBE.

210 NOS 2.3 Feature Notes
Disk Error Transparency

(This page left intentionally blank.)

NOS 2.3 Feature Notes
Disk Error Transparency

CHAPTER 37

DISK ERROR TRANSPARENCY

211

NOS maintains an error log (ERRLOG) which contains both
recovered and unrecovered error messages for hardware
errors. Originally this information was intended for the
system operator and as input to HPA. With its
implementation, the binary maintenance log (BML) was to
contain the hardware error messages which were to be input
to HPA. The ERRLOG was to continue to contain messages for
system operator notification.

Many messages being issued to the ERRLOG that should be
logged to the BML, could create the mistaken impression of
serious disk problems. Also, since all retries are logged,
the ERRLOG might become very large requiring excessive disk
spac~ and affect the performance of HPA which reads the
entire ERRLOG.

Disk error transparency as a feature, addresses the
migration of error messages of 844, 885-11/12, FSC and 834
disks from the ERRLOG to the BML. The following changes in
manner of reporting normal and reserve errors has been
implemented:

1. Error retries will not be logged.
2. Recovered errors will only be logged in the BML.
3. Unrecovered errors will be logged in the BML, the

job dayfile, the system dayfile and the ERRLOG.

212 NOS 2.3 Feature Notes
Disk Error Transparency

If the number of errors for a device exceeds defined limits
within a one hour period (either recovered or unrecovered
errors) an ERRLOG ALERT message will be posted in the
A,OPERATOR display. The operator will be directed to look
in the ERRLOG for information on the potentially failing
device.

The limits are defined in COMSMSP and can be set
individually for each type of mass storage -device. The
released values for all device types are: for unrecoverd
errors, one and for recovered errors, fifty.

NOS 2.3 Feature Notes
FLAW Command Enhancements

CHAPTER 38

FLAW COMMAND ENHANCEMENTS

213

To relieve the analyst from having to convert the physical
address to the logical address before using either FLAW or
the APRDECK to flaw tracks on a disk, the flaw utilities
have been changed to allow specification of both physical
and logical disk addresses. The following new commands
replace the RTK, STK and TTK commands used in the FLAW
utility and in the APRDECK:

SLF - Set Logical track Flaw
CLF - Clear Logical track Flaw
SPF - Set Physical track Flaw
CPF - Clear Physical track Flaw
CAF - Clear All Flaws

The following applies to the physical flawing commands:

1. They will work with any mass storage device.
2. Use of address ranges for extended memory is

st i 11 va 1 id.
3. Specification of a particular cylinder, track

and sector for rotating mass storage devices
is va 1 id.

A table with all of the relevant information needed when
flawing tracks can be found in the Analysis Handbook (pub.
60459300) either under the section on the FLAW utility, or
the section on the APRDECK.

214 NOS 2.3 Feature Notes
Alternate CATLIST Security

(This page left intentionally blank.)

(

NOS 2.3 Feature Notes
Alternate CATLIST Security

CHAPTER 39

ALTERNATE CATLIST SECURITY

39.1 Feature Overview

215

This feature introduces a user-specified file permission
which defines whether alternate users may obtain information
about the file using CATLIST. This feature enables the file
owner to keep file names and other information private, even
though the files are accessible.

The CHANGE, DEFINE, and SAVE commands and macros are
modified to process a new parameter, AC, which specifies the
file's alternate CATLIST permission. AC=Y/AC=N specify that
the file may/may not be CATLISTed by alternate users,
respectively. A file will not appear in a CATLIST of an
alternate user name if alternate CATLIST permission is not
granted for the file. Alternative CATLIST permission may be
specified for public, semi-private, and private files.
Files that were defined before the feature is installed will
be non-CATLISTable by default.

The CATLIST command is modified to display the alternate
CATLIST permission for each file when a full 1 ist (LO=F) is
requested.

The PF utilities display the alternate CATLIST permlssion
for each file when LO=T is requested.

216

39.2 MACRO Modifications

NOS 2.3 Feature Notes
Alternate CATLIST Security

CHANGE, DEFINE, and SAVE Macro Modifications

The alternate CATLIST parameter is added. Other parameters
remain unchanged.

ac Alternate CATLIST permission. Specifies whether
alternate users may obtain information about the file
using CATLIST.

Mnemonic

ACNO
ACYS

m

N
y

CATLIST Macro Modifications

Value

l
2

Description

no.
yes.

The CATLIST macro will return the alternate CATLIST
permission in the permanent file catalog entry buffer.

39.3 Other Changes

PF Utilities Modifications

The PF utilities PFATC, PFCAT, PFCOPY, PFDUMP, and PFLOAD
will display the alternate CATLIST attribute for each file
1 isted when the LO=T option is specified.

(

NOS 2.3 Feature Notes
Alternate CATLIST Security

217

Permanent File Catalog Entry Modifications

The alternate CATLIST permission field, FCAP, has been added
to the PFC·.

Word Tag Bits

6 FCAP 47

PFM Call Block (FET) Modifications

Description

Alternate CATLIST
Permission.
O =File not

CATLISTable by
alternate users.

=File CATLISTable
by alternate
users.

The alternate CATLIST parameter, CFAP, has been added to the
PFM FET.

Word Tag Bits

17 CFAP 47-46

Description

Alternate CATLIST
Parameter.
00 = No change.
01 = Clear alternate

CATLIST
permitted.

10 = Set alternate
CATLI ST
permitted. ·

218 NOS 2.3 Feature Notes
Terminal 1/0 at Legoff

(This page left intentionally blank.)

(
\

NOS 2.3 Feature Notes
Terminal 1/0 at Legoff

CHAPTER 40

TERMINAL 1/0 AT LOGOFF

40. l Feature Overview

219

This feature introduces a new set of account file messages
that display the combined total of terminal characters input
and output at the end of each account block and at the end
of a job. A message indicating the combined input/output
characters is also displayed on a user's terminal at logout.

IAF maintains a combined count of characters input and
characters output. This accumulator will have a maximum
value of 16777215. This accumulator will be displayed on
the user's terminal at logoff and in the user dayfile and
the account file at the end of each account block, and at
end of job. If the combined accumulator overflows, an
overflow message will be displayed in the account file. The
current UDCI, UDCO, UECI and UECO messages will continue to
exist, but the UECI and UECO messages are no longer issued
at the time that IAF detaches or terminates a job. Instead,
these messages are output at the end of job as is done for
all other resource usage accumulators.

220 NOS 2.3 Feature Notes
Terminal 1/0 at Logoff

40.2 Characters Transferred Terminal Message at Logout

The following message is displayed on the terminal just
after the SRU message.

CHARACTERS=xxxxx.xxxxCHS.

xxxxx.xxx is the combined input/output character count
divided by 1000.

40.3 New Account File and User Dayfile Messages

Three new account file messages have been added:

UDCT, xxxxxx.xxxKCHS.

to the account file and to the user
an account block and will display the
and output by the job up to the

This message is issued
dayfile at the end of
total characters input
current time minus
input/output accumulator

UECT, xxxxxx.xxxKCHS.

any overflows of the combined
which may have occurred.

This message is issued to the account dayfile and to the
user dayfile at end of job and will display the total.
characters input and output for the enilre job minus any
overflows of the combined input/output accumulator which may
have occurred.

UCCT, 16777.215KCHS.

This message is issued to the account file whenever the
combined input/output accumulator overflows. When this
message is issued the value 16777215 will be subtracted from
the total input/output accumulator. Note that the combined
input/output total is not cleared because of the way this
count is maintained in the IAF terminal table. This message
is not issued to the user dayfile because the job is
typically under IAF control when this overflow occurs.

(

NOS 2.3 Feature Notes
Terminal 1/0 at Logoff

221

40.4 Changes to Existing Account and User Dayfile Messages

The current UDCI, UDCO, UECI, and UECO messages have been
retained but have a slightly different meaning. Currently,
the UECI and UECO messages are issued whenever an online
interactive job is either detached or terminated by IAF.
The character counts are not recovered if a detached
interactive job is later recovered by a user. This means
that the UDCI and UDCO messages represent the character
counts only for the time since login or the last recovery
and not for the entire account block ·which can span several
detaches and recoveries. If the account block ends while
the job is not online, the messages are not displayed at
all. Likewise, the UECI and UECO messages do not represent
the entire job, but only the time from login or recovery to
detach or termination.

This feature causes the input and output accumulators to be
retained on a termination or detach and to be r~covered on
detached job recovery. Therefore, the UCCI and UDCO
messages will represent the total input and output counts
for the entire account block (minus any overflows which may
have occurred) whether the job is onl ine or not. The UECI
and UECO messages will be issued at the end of job,
consistent with other resource accumulators, and will
represent the input and output counts for the entire job
minus any overflows which may have occurred.

222 NOS 2.3 Feature Notes
Default CHARGE Processing

(This page left intentionally blank.)

NOS 2.3 Feature Notes
Default CHARGE Processing

CHAPTER 41

DEFAULT CHARGE PROCESSING

41. 1 Feature Overview

223

This feature provides for a more consistent method of
processing default charge information, as well as making the
CHARGE/PROJECT number available to the System Account File
and Negative Field Length.

41.2 USER and CHARGE Command Processing

The syntax of both commands will remain the same; however,
their functions have been altered as follows:

1. USER command processing will continue to look
forward to the next command in the command stream for a
CHARGE command as it does now. The following occurs
when:

A. Charge is required:

a. If a CHARGE command is not found, the
default charge/project is validated. If found
valid, the system, project, and/or user

224 NOS 2.3 Feature Notes
D~fault CHARGE Processing

prologue(s) are initiated. (For interactive
users, the file INPUT is read if a default
charge and/or project does not. exist, or if
the default charge is found invalid.)

Whenever the charge and/or project is found
invalid, the job will be aborted.

b. If a CHARGE command is found in the
command stream, CHARGE processing is
initiated. In this case, CHARGE processing
will initiate the system, project, and/or user
prologue(s) after validating the specified
charge and project.

B. Charge is not required.

a. If a CHARGE command is not found in the
command stream, the default charge will riot be
examined and processing will immediately
initiate the sys tern and/ or user pro 1 ogue (s) if
they exist.

b. If a CHARGE command is found, the
charge/project will be validated. If found
valid, CHARGE processing will initiate the
system, project and/or user prologue(s). If
found invalid, . the system and/or user
prologue(s) will be init1ated and the illegal
CHARGE command will be reissued to the CHARGE
processor, causing the job to abort.

2. The CHARGE(*) command will cause the default charge
and project to be validated if a charge and/or project
are present in the user's va 1 i dat ion f i 1 e entry. If
both the charge and project fields are blank and charge
is not required, it will be treated as a no-op and
processing will continue. If the default charge and/or
project are found invalid, and charge is required, the
user will be aborted. If charge is not required, the
user will not be aborted, and processing will continue
with the next command after issuing the "INVALID DEFAULT
CHARGE" message.

3. A new account file message (ABIC) will be issued
after every primary USER account file message (ABLIN).
This new message specifies the default charge/project
fields associated with the user. If both fields are

NOS 2.3 Feature Notes
Default CHARGE Processing

225

zero, no message is issued. This message is issued
regardless of whether or not the user has "charge
required" set. This is issued before the prologue file
is initiated.

Batch Processing

ABUN, username, familyname, terminalname.
ABIC, charge, project.

Terminal Processing

ABAP, Cl, username, familyname, terminalname.
ABAP, C2, application
ABIC, charge, project, terminalname.

41.3 Negative Field Length (NFL) Additions

The charge/project a user is currently running under is
saved in a three word block in the NFL. The tags for this
block are CHGN and PRJN respectively and are located between
word SCVN and word SHCN. The charge/project is no longer
written in the input file system sector.

41.4 GETCN Macro

GETCN is a user callable macro which issues the Get
Charge/Project Number function call.

The GETCN macro returns a four word block containing the
current charge/ project number combination beginning at the
specified address. Word four, bit 59, is clear if this is a
nonvalidated charge/project number. This bit will be set if
this is a validated charge/project.

226

Macro format:

Location Operation

GETCN

NOS 2.3 Feature Notes
Default CHARGE Processing

Variable

addr

addr Address of the reply block.

The following information is returned to the four word reply
block beginning at location addr:

59 0

addr+O Charge number·

+l Project number

+2 Project number (cont.)

+3 Bit 59 indicates validated or nonvalidated

(

NOS 2.3 Feature Notes 227
Permanent File Catalog - Charge and Project Number

CHAPTER 42

PERMANENT FILE CATALOG - CHARGE AND PROJECT NUMBER

42.l Feature Overview

Previously, there was no record of the charge/project number
under which a file was created. This feature stores the
charge/project numbers in the Permanent File Catalog (PFC).
This feature places the charge and project numbers that a
user is executing under into a permanent file's catalog
entry when that file is defined or saved and when the
parameter CP is used in the CHARGE command.

The system's CATLIST routine has been changed so that when a
user reqtiests a full CATLIST (LO=F), the charge and project
number is placed on the fourth line of its description.

An additional line has been added to the reports given by
PFCAT. This line contains the charge/project numbers.

42.2 CHANGE Command Changes

The CHANGE command has a new parameter, CP. This parameter
is used to notify the PFM change function to replace the

. \1

228 NOS 2.3 Feature Notes
Permanent File Catalog - Charge and Project Number

current charge and project numbers in the catalog entry with
the charge and project numbers the user is currently
executing under. The CP parameter has also been added to
the system macro CHANGE. The format of the CHANGE command
f 011 ows:

CHANGE,nfn=ofn, ••• ,nfn=ofn/CP

42.3 Format of Permanent File Catalog (PFC) Entry

The format of the 16 Word PFC has been changed. The words
128 - 148, which were unused, now contain the charge number
(128) and the project number (138 - 148) •

Word 128
Word 138

Word 148

42.4 CHANGE Macro

60/charge number
60/project number

(first 10 characters)
60/project number

(second 10 characters)

The CHANGE macro has a new parameter value for the Special
Request (SR) field, the value is CP. This value is used to
notify the PFM change function to replace the current charge
and project numbers in the PFC entry with the charge and
project numbers the user is currently executing under.

NOTE: The new parameter CP and the existing parameter CE
cannot both appear on the CHANGE command.

An example of the use of the ·CP parameter in a macro call
f 011 ows:

CHANGE FET,MYFILE,,,,PU,,,,CP

(

NOS 2.3 Feature Notes 229
Permanent File Catalog - Charge and Project Number

42.5 CATLIST Output Format Changes

The CATLIST command output now contains the current charge
and project number of the file, when LO=F is specified. The
command and macro CATLIST will not return the charge/project
numbers for an alternate CATLIST unless the caller has SSJ=
privileges.

42.6 Permanent File Utilities Output Format Changes

The PFATC, PFCAT, PFCOPY, PFDUMP, and PFLOAD routines output
now has the charge and project numbers of the file.

230 NOS 2.3 Feature Notes
Password Randomization

(This page left intentionally blank.)

NOS 2.3 Feature Notes
Password Randomization

CHAPTER 43

231

PASSWORD RANDOMIZATION

43.1 Feature Overview

This feature introduces a user validation permission which
defines whether the user's login password will be
randomized. This feature enables an installation to
guarantee that the user's password is changed to a new value
when the PASSWOR command is executed.

The number of random characters to be appended to the end of
passwords is defined in COMSACC and has the label PWRC. The
PWRC constant can be a number between 2 and 5, and has a
released value of 2.

The MODVAL command is modified to
validation parameter, COPR
randomization), which specifies
randomization is required.

process a
(override

whether

new user
password
password

test if password
COPR is bit 23 of the

The PASSWOR command is modified to
randomization is required (COPR=O).
access control word (AAWC), and is
password randomization is required,
specify all but the last PWRC

set by default. If
the user is permitted to
characters of the new

232 NOS 2.3 Feature Notes
Password Randomization

password. The system will provide PWRC random alphanumeric
characters, which must be entered as the last characters of
the new password. The length of the new password, including
the random characters, must be greater than or equal to the
minimum required password length and less than or equal to
seven characters.

43.2 MODVAL Command Modification

A new MODVAL conversion option, CV=D, is used when
converting a pre-NOS 2.3 user validation file to NOS 2.3.
The option is only valid on a creation run and will validate
a 11 newly created users for 11 overr i de" password
randomization.

43.3 LIMITS Command Modification

The following message will appear in the LIMITS output as a
valid user permission if COPR is set:

DEFINE NON-RANDOMIZED LOGIN PASSWORD

43.4 PASSWOR Modification

TDe PASSWOR command may only be entered from an interactive
job if password randomization is required, and may be used
to change either the interactive or batch password. If
password randomization is not required, the batch password
may only be changed from a batch, remote batch, or system
origin job, and the interactive password may only be changed
from an interactive job. Users will not be permitted to
enter a password expiration date without specifying the old
and new passwords, regardless of whether randomization is
,required.

/
\

NOS 2.3 Feature Notes 233
Restrict User to Default Charge

CHAPTER 44

RESTRICT USER TV DEFAULT CHARGE

44.l Feature Overview

This feature provides the capability to guarantee that given
user names will execute specified protected project
prologues.

A new access permission, CNRD (charge not restricted to
default), has been defined in the user validation file.
When CNRD is set (default condition), the user may use any
valid charge/project number when issuing a CHARGE control
command. When CNRD is clear, the user may only use the
default charge/project number defined in the user validation
file when issuing a CHARGE control command. If CNRD is
clear and no default charge/project is defined, the user may
use any valid charge/project number. CNRD is bit 22 of the
access control word (AACW).

The associated project prologue is not executed when a
secondary USER command is entered. Therefore, users will
not be permitted to enter a secondary USER command which is
restricted to default charge.

If the primary user is restricted to default charge and the
secondary user is not, the secondary USER command will be
permitted and will be restricted to the primary user's
default charge.

234

44.2 MODVAL

44.2.1 LIMITS Command Output

NOS 2.3 Feature Notes
Restrict User to Default Charge

The following message will appear in the LIMITS command
output as a valid user permission if CNRD is set:

NOT RESTRICTED TO DEFAULT CHARGE/PROJECT NUMBER

44.2.2 MODVAL Conversion Option CV=C.

This option. is used when converting a pre-NOS 2.3 user
validation file 'to NOS 2.3. The option is only valid on a
creation run (OP=C) from source and will validate all users
for "charge not restricted to defaul t 11 (CNRD is set) •

44.3 CHARGE

The CHARGE control command will abort and issue the message:

CHARGE RESTRICTED TO DEFAULT

to the system and user dayfiles if the user is not validated
for "charge not restricted to default" (CNRD) and requests a
charge/project number other than the default.

!
\

NOS 2.3 Feature Notes 235
Restrict User to Default Charge

44.4 USER

The USER control command will abort and issue the message:

INCORRECT USER COMMAND

to the system and user dayfiles if a secondary USER command
is entered which is not validated for "charge not restricted
to default."

..

236 NOS 2.3 Feature Notes
Security Violation Tracking

(This page left intentional.ly blank.)

) 238 NOS 2.3 Feature Notes
/CHARGE for SUBMIT

(This page left intentionally blank.)

NOS 2.3 Feature Notes
Security Violation Tracking

CHAPTER 45

SECURITY VIOLATION TRACKING

237

Previously, if a user's security count was zero or infinite,
the SISC message was not issued to the accounting dayfile.
With this feature, the SISC message will be issued,
regardless of the security count value.

(

NOS 2.3 Feature Notes
/CHARGE for SUBMIT

CHAPTER 46

/CHARGE FOR SUBMIT

239

This feature implements a /CHARGE formatting directive for
use with the SUBMIT command.

/CHARGE inserts a CHARGE command identical to the one
currently in effect for the submitting job. If no charge is
in effect, nothing is added to the submit file during
reformatting.

