
----------------------..... -------.ia~~-....cu ~~~~~

I
_________ . _ _.._..__~

·. j
I
I

I
i
I
I
!

I
I
l
I

I· . I .

I
l

.
' -'

;,,

. >--.; ·. 1

- .>f•

,) -.....
l:c. :.\·,

PROPRIETARY NOTICE

The ideas and designs set forth in this document

are the property of Control Data Corporation end

are not to be disseminated, distributed, or otherwi•

conveyed to third penons without the exp,..
written permission of Control DIUI Corporation.

. - - .t

,.
-f·

·~·.'·

....
i.
'. -,

. .J

" ·1 ~

.t . I .
' e
~

)

REVISION RECORD
REVISION DESCRIPTION

A M::1.nu::1.J Release.

(12-20_--8..il

B Manual uociat._e_d to NOS 2. S_J.

_(() 8-04 . .all

_C _Manual_ JJ.D d a_t_e_d_ ..tJl NOS 2 . 2-t_2 •

.CU ~-fill

Publication No.

FH3025-1

"EVISION LETTERS I, 0, Q AND JC ARE NOT USED

NOS USAGE ..

CCOPYRIGHT CONTROL DATA CORPORATION
All R1~ts RtSCn~d

I

Address comments conc:~nung
this manual to:

CONTROL DATA CORPORATION
PS CYBER TraiMg
ETCSEM
1450 Energy Pn Or.
Sl Paul. MN 55108
or use Comment Shc~t in th~
back of this manu:al.

NOS USAGE

GENERAL COURSE DESCRIPTION

Course Tjt!e: Network Operating System (NOS) Usage

Course Number: FH3025

Course Length: 5 days

Qescrjptjon:

This course introduces the student to the Network Operating System (NOS).
After completion of this course, the student will be able to use permanent and
local files, create and execute jobs using the NOS Job Control Language, create and
execute procedure files, create user libraries and program libraries (PL), and be
able to describe the basic functions of the loader. The student will also know
where to obtain further information on all of the topics covered in the class.

Preregujsjtes: NOS CYBER 170 Introduction or equivalent

Student Materials:

NOS Usage Workshop Student Handout
NOS Version 2 Reference Set, Volumes 2-3
Update Reference Manual

- CYBER Loader User Guide

ii

NOS USAGE COURSE OUTLINE

I. NOS Introduction and Overview

A. CYBER Components
B. Software/Hardware Interface
C. Control Point Concept
D. Job Flow

II. Permanent File Concepts and Commands

111.

IV.

v.

VI.

A. Indirect Access Permanent Files
B. Direct Access Permanent Files
C. Permanent File Commands

FSE (Full Screen Editor)

Local File Commands

A. Status Files
a Returning Files
c. File Positioning
D. File Copying
E. File Content Reports

Job Control Language

Procedure Files

A. Passive Procedures
B. User Prologue Procedures (UPROC)
C. Menu-driven Procedures
D. Interactive Procedures
E. procedure File Execution Control Commands
F. Job Flow Control Language (CCL) Directives

iii

NOS USAGE COURSE OUTLINE (CONT)

VII. Library Generation and Maintenance

A. Local Library File Generation
B. Local Library File Maintenance
C. Declaring Global Libraries
D. Statusing and Inspecting Library Files

VIII. Source Progra·m Library Maintenance

A. Creating Source Program Library Files
B. Accessing Program Library Files
C. Modifying Program Libraries
D. Regenerating SQ~rce Records

tX. Magnetic Tapes

A. Creating Label/U nl abel ad tapes
B. Requesting tapes by Volume Serial Number
C. Accessing Mul!iple Allocatable Resources

X. Loader

A. Load Maps
B. Relocable Load Sequences
C Absolute Binary Files
D. Loader Commands

iv

NOS USAGE COURSE CHART ·

·HOUR DAV 1 DAV 2 DAV 3 DAV 4 DAV S

INTRODUCTION MENU 1
JOB LAB UPDATE

NOS LOCAL FLOW
FILE OVERVIEW

COMMAf':JDS
CONTROL

COMMANDS UPDATE 2
LAB

PERMANENT
INTERACTIVE
PROCEDURES

FILE LOCAL PASSIVE
3 CONCEPTS FILES PROCEDURES MAGNETIC

LAB UPROC TAPES

4 LUNCH LUNCH LUNCH LUNCH LUNCH

PERMANENT PASSIVE INTERACTIVE
5 FILE PROCEDURES PROCEDURES LOADER

LAB JOB LAB LAB .
CONTROL

COMMANDS
MENU-DRIVEN LOCAL/GLOBAL TAPE OR

6 FSE
PROCEDURES LIBRARY LOADER LAB

GENERATION (OPTIONAL)

JOB HELP
LIBRARY

7 FSE LAB CONTROL LAB
LAB REVIEW

LAB

v

I

[L~[N) (Q)fN)~

INTRODUCTION TO THE

NETWORK OPERA TING SYSTEM

1-0

LESSON ONE

INTRODUCTION TO TI-iE NETWORK OPERATING SYSTEM

Lesson Preview:

This lesson is intended to provide an overview of the Network· Operating
System (NOS) and the software/hardware interface.

Objectives:

After completing this lesson, the student will be able to:

Name the basic components of a Control Data CYBER series computer.

Have a basic understanding of the software/hardware interface.

Log in to NOS.

Describe the five stages of job flow through the system.

Projects:

Exercise 1.1 (Study Questions)

Exercise 1.2 {Def!nitions Review)

Exercise 1.3 (Login to NOS)

References:

Ne~ork Operating System Version 2 Reference Manual, Volume 2

1-1

CONSOLE
Used for operetor

messeges, network
control, end system

monitoring
•
~.,

TERMINALS, COMPUTER TERMINALS, LINE
DISKS end Performs the PRINTERS, DISKS end

INPUT TAPES "" computation end --""- OUTPUT TAPES -,. ..,.

Used for jobs and processing of Used for outgoing
...

incoming deta user data results end data
-.il~

~

DISKS and TAPES .
Used for f11 e
end program .

storage

Figure 1-1. Overview of a Computer System

1-2

SYSTEM HARDWARE DEFINITIONS

CENTRAL PROCESSING
UNIT (CPU}

CENTRAL MEMORY (CM)

EXTENDED WEM:>RY

Displays operator messages, accepts operator
commands, and controls network operations

Does arithmetic calculations and has access to
central memory and extended memory. User
programs execute in the CPU.

Used by user programs to contain executable code
and transfer instructions to and from the CPU. Each
CM word can contain up to four instructions or 60
bits of data.

Provides additional storage, fast data transfer
rate, and is an option to central memory for use in
data storage. '

Input/Output Unit (IOU} Contains multiple independent, generalized 110
computers called Peripheral Processors (PP).

Peripheral Processor
(PP)

CHANNELS

Can access channels, extended memory, and can
read and write central memory and it's own
memory.

Provides path for PPs to move data to and from
peripheral equipment.

pp

.-- CHANNEL/CABLE

EQUIPMENT

1-3

MTR
PPB'

·~DISK
i

DSD
PP1

CENTRAL PROCESSING
UNIT

CENTRAL
MEMORY

EXTENDED
MEMORY

PP2 . PP3 PIP
PP4

1MT
PPS PP6 PP7

DI/
2550

INTERACTIVE
LINES REMOTE

BATCH
LINES

DISK

0
CONSOLE
DISPLAY

Figure 1-2. Example Hardware Configuration

~

1-4

1MS
PP10 pp 11

)
CONSOLE

HOST
MAINFRAME

· NETWORK
1------t PROCESSING

UNIT (NPU)

INPUT OUTPUT . STORAGE

Figure 1-3. Example Single Host Arrangement

CONSOLE

HOST
MAINFRAME

LOOSELY
COUPLED
NETWORK

REMOTE
HOST

NETWORK
PROCESSING
UNIT (NPU)

Figure 1-4. Example Multi-host Arrangement

1-5

CENTRAL MEMORV

CENTRAL MEMORV
RESIDENT (CMR) -----------------CPU MONITOR -----------------SVSTEM SOFTWARE

DI RECTORIES/LI BRAR I ES

At CONTROL POINT 1
IAF SUBSVSTEM

At tONTROL POINT 2
NAM SUBSVSTEM

At CONTROL POINT 3
JOB A

At CONTROL POINT 4
JOB B

•
•
•
•
•
•

At CONTROL POINT n-3
T AF SUBSVSTEM

At CONTROL POINT n-2
MAG SUBSVSTEM

At CONTROL POINT n-1
RBF SUBSVSTEM

At CONTROL POINT n
SVSTEM's CONTROL POINT

Figure 1-5. Example Memory Allocation

1-E

)
Central Memory Resident
(CMR)

System Tables

Exchange Package

Control Point

Negative Field Length

Reference Address (RA)

Field Length (FL)

Job Communication Area

CPU Programs

Subsystems

SOFTWARE DEFINITIONS

CMR resides in the low end of central memory perma­
nently. The CPU monitor resides here, contains system
tables, values, exchange packages, pointers, libraries,
and performs executive and controlling functions during
execution of user's job.

An area in the beginning of Central Memory Resident
(CMR) which keeps track of various operating system
activities like Channel and equipment assignments, job
control information, user exchange. package and control

. point information and PP status.

Defines CPU register values for a CPU program. Kept in
CMR when job is not using the CPU.

A job in memory is said to be at a control point. Some
contr.ol points are reserved for system jobs.

Additional information about a user's job (e.g., local
file names).

Address of first word of a users' area in central
memory (CM). CPU uses this to keep track of where the
user's job is stored.

A contiguous amount of central memory occupied by an
executing job at a control point. Starts at RA and ends

. at the last word occupied .by the job. CPU hardware
prevents users from reading outside of Field Length.

Contains information about user's CPU programs,
including any outstanding system request, program
parameters and hardware error exit information.

Some reside in central memory (CM) at all times (CPU
monitor). Some reside on disk and are loaded in CM and
executed in CPU when needed.

Optional parts of the system.

1-7

CENTRAL MEMORV
I

I

CENTRAL CPA

I
I

I
I

I
CONTROL

' MEMORY ',

POINT AREA
EXCHANGE
PACKAGE,
RA, FL, ...

NEGATIVE
FIELD

LENGTH

RESIDENT
(CMR)

MEMORY FOR
CONTROL POINT 1

W&~~~~~-

MEMORY FOR
CONTROL POINT 3

MEMORY FOR
CONTROL POINT 4

MEMORY FOR
CONTROL POINT n-1

,

'

, , ,

, ,

... ..

..
.... '' /~

USER
PROGRAM

AREA

Figure 1-6. Control Point Concept

1-3

INTERACTIVE JOB FLOW

USER LOGS ON TO SYSTEM

I
USER ENTERS NOS COMMAND.CS)

I
USER CREATES A Fili (DATA OR PROGRAM)

USER ACTS ON THE FILE

APPLICATI/ RUNS PtGRAM ~PROCEDURE FILE

APPLICATI~ RUNS rOGRAM /PROCEDURE FILE

USER LOGS OFF SYSTEM

1-9

2550 LOG-IN PROCEDURE

1. Dial number.

2. When connected:

- Enter Security Character (Optional)
- Enter two carriage returns, then replace phone on cradle.

3. System responds FAMILY:
A D\/P, L}sfE.<'-1'Ju,v\ r~~)~,fF

- Enter family nartie J

4. System responds USERNANE:

- Enter username

5. System responds PASSWORD:

- Enter password

6. System responds PERSONAL IDENTIFIER: (Optional)

- Enter your identifier

7. System responds APPLICATION: (Optional)

- Enter IAF

8. System responds CHARGE: (Optional)

- Enter charge, charge number, project number

9. System responds with a "r prompt. NOS is ready for NOS commands such
as LIMITS which displays your username privileges.

NOTES:

1 . Enter BATCH if system responds with "READY".
2. System will respond "IDLE" if no command is in process.
3. Enter cntl-T to abort a command.

1-10

) CDCNET LOG-IN PROCEDURE

INTERACTIVE LOGIN PROCEDURE

1. Dial number.

2. When connected, enter two carriage returns, then replace phone on cradle.

3. The system will respond with a display similar to the following:

1200 bps ASCII, parity: even

Copyright Control Data Corporation 1985, 1986

DI System Name is 08002530009F, TDl_9F
Terminal Name is 43000, $CONSOLE_30009F _ 4300000000.
You may enter CDC.NET commands.

Enter CREATE_CONNECTION -----
or CREC ____ _

4. System responds:

CRECARH907
Connection $A created.

5. Continue with step 3 (and following) as specified under 2550 LOG-IN
PACCEDlFE

1-11

INTERACTIVE SESSION TERMINATION

• With phone disconnect

- LCX?OJT or
- BYE or
- oca:BfC

• Without phone disconnect

- HELLO or
- LOOIN

SWITCHING NETWORK APPLICATIONS

APPSW, application.

• Example:

/APPSW, TAF

• Terminal Verification.

/APPSW,TVF

Switch to Transaction Facility Application
without terminating the current session.

Switch to Facility.

JOB SEQUENCE NAME (JSN)

• Every job and queued file is assigned a unique four character name defined
by the system. The JSNs are the primary job identifiers for the system
and user.

1-12

REMOTE BATCH JOB FLOW

• There are five general phases of a Remote Batch Job's passage through the
system.

• Phases of Remote Batch job processing:

1. Entry into the system's Input queue.
2. Assignment of resources 8y the system.
3. Job execution without terminal involvement.
4. Termination of the job.
5. Queuing of the output for retrieval by the user.

• Activity Logs:

- Job Dayfile - contains a report of commands entered and significant
informative and error messages.

- System Dayfile - contains a system-wide report of significant
activities.

- Account file - contains system-wide billing .and statistical data.

1-13

T4F T

EXERCISE 1.1

STUDY QUESTIONS

1. Name two of the subsystem programs that NOS controls simultaneously,
in addition to its regular functions as an operating system.

IJ.F =

/..//.JV/ :.

2. Name the report maintained by NOS that details command processing and
accounting informatior1 about a ·specific job.

3. Place the letter identifying each of the following devices in the blank
next to its function.

a. Peripheral Processor·

b. Central Processing Unit

c. Central Memory

c.. Contains jobs being executed.

~ Transfers information
output equipment

13 Primary arithmetic device

for ·input/

4. Place the letter identifying each of the following items in the blank next
to its function.

a. Field Length

b. Control Point Area

c. Exchange Package

__ A data image in central memory
· that enables jobs to· setup registers

within the central processing unit.

__ Part of Central Memory Resident
that contains job name, field length,
reference address, and other
parameter values related to the user
program.

__ Part of central memory, allocated by
NOS, where a job resides while in
execution.

1-14

EXERCISE 1.1 (CONT)

5. Number the following events in the order in which they occur, if the
computer is to execute a job and then print its output.

The output goes through a peripheral processor for printing on the
terminals' screen.

___ A command is read from a terminal through a peripheral processor
and onto disk storage.

A command output on disk is determined to belong to the terminal.

___ The command's job is assigned a control point number and central
memory storage.

__ NOS determines the program needed for the command, central
memory space, and other characteristics.

__ The program alternately shares use of the central processor with
up to 34 other programs.

6. Number the following login parameters in the order in which they will be
requested.

__ IAF
User name --

-- Two carriage returns
Personai Identifier --
Family name
Password --

-- Charge number, project number

7. Name two ways in which a job may enter the system?

1-15

EXERCISE 1.2

DEFINITIONS REVIEW (Optional)

Define the following:

1. Central Processing Unit

2. Central Memory

3. Extended Memory

4. Peripheral Processor

5. Channel

6. Peripheral Equipment

7. Central Memory Resident

8. User Program's Load Address

9. Control Point Area

1 O. Job Communication Area

11 . Reference Address

12. Field Length

1-16

EXERCISE 1.3

LOG-IN TO NOS

LOGIN VALUES:

Security Character =

CDCNET Connection =

NOS Family =

NOS UserName =

Username Password =

Personal Identifier =

NAM Application =

Charge Number =

Project Number =

Try the following command sequence:

/LIMITS.
/TRMDEF,PG=Y,PL=25.
/LIMITS.
/Carriage/Return (RETURN or NEXT key)
/APPSW,TVF
/LOGOUT

1-17

[L~[MiJW@

PERMANENT FILE CONCEPTS

AND COMMANDS

2-0

LESSON TWO

PERMANENT FILE CONCEPTS AND COMMANDS

Lesson Preyjew:

In this lesson, you will be shown the difference between the two types of
permanent files in the system, when it is appropriate to use either, how to create
permanent_ files using various privacy and access mode parameters, how to access
permanent files under one's own or another's username, and how to purge permanent
files.

Objectjyes:

After completing this lesson, the student will be able to:

Correctly enter commands using the appropriate command syntax

Explain the concept of indirect access permanent files and use the
applicable commands (SAVE, GET, REPLACE, APPEND)

Explain the concept of direct access permanent files and use the
appropriate commands (DEFINE, ATTACH)

List, describe, and use other permanent file com~ands (CATLIST, PURGE)

Projects: Exercise 2.1 (Permanent File Commands)·

References:

NOS Reference Set Manual, Volume 2 and 3, Permanent File Sections

2-1

FILE CONCEPTS

• Local File - Any file assigned to a user is job while logged into a terminal

• Permanent File - A file on mass storage having a catalog entry

Direct

Indirect

What NOS ·calls a catalog entry would be called a directory entry . on most
other systems.

• To use a permanent file, you must make it local.

• The local and the permanent file names may be different.

• File names are 1-7 alphanumeric characters.

• File names should begin with a lett~r.

• All files in NOS are initially rewound.

• The local file designated on a PRIMARY command is always rewound
before each command.

2-2

INDIRECT ACCESS • PERMANENT FILES

PERMANENT
FILE

DEVICE

0_ SYSTEM

TEMPORARY
FILE

DEVICE

FILE A
COPY

Figure 2.1 Method of Indirect Access

The only time that the system knows there is any link between file A and its
copy is when the actual copy is performed. After the copy is complete, the system
has no idea that there was any connection between the original file and its copy.

SYSTEM
LOCAL
FILE

COPY OF
FILE A

Figure 2.2. After Copy Made

The inherent advantage here is that regardless of what is done to the content
of the local file, the permanent file remains unaltered and intact. One cannot
accidentally damage the contents of the permanent file during local file operations.

2-3

DIRECT ACCESS • PERMANENT FILES

PERMANENT
FILE

DEVICE

FILE B

.,_ __ -'1 SYSTEM :----0
I I

: LOCAL F.ILE NAME : ------------------

Figure 2-3. Method of Direct Access

No copy is made of the direct access permanent file. The permanent. file is
attached directly to the user's job and referenced by a local file name. At job
termination, the pointer between the local and the direct access permanent file is
removed, with the permanent file remaining in the same state it was at job
termination time. While the file is attached to the user's job, any alteration made
will be permanent, with no method of recovery of the original contents of the file.
Thus one must use backup techniques to avoid having to rebuild important areas of
the file.

PERMANENT FILE TYPE COMPARISONS

INDIRECT ACCESS

1 . Work with a copy of the
permanent file.

2. Created first and then made
permanent by SA VE.

3. Accessed by~-

DIRECT ACCESS

1. Work with the file itself.

2. Both created and made permanent
by DEFINE.

3. Accessed by ATTACH.

4. Space allocated by 'sector• 4. Space allocated by 'track' when
when not in use. l f P... V y)oJs not in use.

5. No 'write-interlock'. (pi11o cf 5. If one user has it attached i~:-write
mode, another user cannot attach it.

6. File cannot be empty.

· 7. Local file is created in write­
. mode by default.

8. GET gets a local file in
write-mode by default.

6. File can be empty.

7. Permanent file is created in write­
mode by default.

8. ATTACH opens a local file pointing
to the permanent file's space in
read-mode by default.

"'\fl
'rf\s;JtJ 1

Dc.awlf rv-&&Jl ffeldt 15 ~
.. ", ,41/i:.<A 'f ~Jt" -~ W1¥-.fe

Af~ R ?J~.d
Pvp.ett.
Pt1R6{;KL- (llfefil; od__

E
l"1 Jd

2-5

TERMINAL
ACTIVITY.

ACCESSING PERMANENT FILES

WORKING
STORAGE

A I

B

DIRECT

PERMANENT
FILES

A I

I B

c
• • •
E

. . Figure 2-4. Permanent File Comparison

2-E

ENTER FAMILY:
xxx
ENTER USERNAME:
vvv

VALIDATION
FILE

CATALOG
ENTRIES

FAMILV ------

IAPF

DAPF

FAMILY
DEVICES

VALIDATION
RECORD

MASTER
DEVICE

[DAPF]

SECONDARY
DEVICES

(OPTIONAL)
IAPF
DAPF

Indirect Access Permanent File
Direct Access Permanent File

Figure 2-5. Permanent File Ownership and Storage Elements

2-7

PERMANENT FILE CATEGORY TYPES

.1~
,. \

\

./J/
,.. IJ· • Private

. l~
t~

(CT =P; default)

J

Alternate users must be granted specific access permission via a
PERMIT command

- Originator may find out who accessed these files via CATLIST

• Semi-private (CT =SPRIV)

- Alternate users can access file without being PERMITIED

PERMIT command can be used to set explicit permission levels

- Originator may find out who accessed these files via CATLIST

• Public (CT =PU)

Alternate users can access file without being PERMITTED

PERMIT command cannot be used

"
- Originator cannot find out who accessed these files

• Examples:

/CA TLIST,FN= MYFILE, LO=FP.

for full permit list on file MYFILE (FN keyword is required)

/CHANGE,BIN1/AC=Y,CT =PU.

Public file BIN1 can be ·catlisted by anyone.

/CATLIST, UN=SMITH.

to catlist alternate user's permanent files

2-3

PERMANENT FILE SECURITY

(DIRECT AND INDIRECT ACCESS FILES)

PERMANENT FILES
SAVED UNDER UN=A

' ' ' ' '

, , , , , ,

' ' ' ' ,, , ' , , , ,

, , , , ,

' ' ' ' '

,

PERMANENT FILES
SAVED UNDER UN:B

, ,
'·

' ' ' ' '

Figure 2-6. Permanent File Security

Permanent file protection only on dotted line accesses. Anyone logging in on a
given user name may purge any file on that same user name regardless of access
privileges de!!~e<L!~LJn&..!!!~ · -
_.,.., ~-·---.......... ..¥-·-·-- --·-·'"

l)J fl{)

tfvw
~u

Therefore, never give anyone your username's password.
Do not use it as a file password. Do not permit others to
remote batch job job files and procedure files with USER
statements in them.

/

~·--· ··-···· ·-- ___ ______; 2-9

PERMISSION CATEGORY- PRIVATE

PERMANENT FILE
SAVED UNDER
USER NAME A

Figure 2-7. Accessing PRIVATE Files

User name A has access to the file, since the file was saved under their. user
name. User name A may execute, read, append or write on the file regardless of the
access privileges defined when the file was saved. Any user who may perform the
same operations on the file as User A is said to have ultimate privileges.

In this case, Users B and C have been given explicit permission to access the
file by User A. In order to accomplish this, User A used either PERMIT command or
control statement. Only users given explicit permission via the PERMIT command
are allowed access to a private permanent file. Even though they have explicit
permission, however, Users B and C must still know that the file is saved under
User name A and the file password, if any, which A has placed on the file in order
to actually access it.

) Vi~s
Examples:

USER A:

USERS:
USERC:

I :J-'i ,,..;- 4 I (;I

At/• /.}-·I
1 ·A.-· r ,;·.

/PERMIT,pfn,B=W,d=R.
/CHANGE,pfn/PW,AC=Y.
?Secret
/GET,pfn/PW=SECRET. ~·, J ~· A,
/GET,pfn/PW=SECRET. v ;/::. .. 1 ..

I
where user B,C get the file in write mode. Only user 8 allowed to
replace the file in user A's catalog of permanent files.

2-10

PERMISSION CATEGORIES· SEMIPRIVATE AND PUBLIC

PERMANENT FILE
SAVED UNDER
USER NAME A

Figure 2-8. Accessing Semiprivate or Public Files

Again, User name A has ultimate privileges since the file was created under
that user name. All others may access the file, provided they know the relevant
protection information, i.e., the user name that the file was created under and the
file password, if any. If the file is categorized as semiprivate, full bookkeeping as
to user names who have accessed the file, is recorded by NOS.

USER A: /CATLIST.
USER 8: /CATLIST,UN=A.

2-11

SVNT AX FOR COMMAND STATEMENTS

• Special characters: $ \ *

• Command

• Separator , (+ " - I

• Blanks ignored

• Parameter - Keyword or keyword=value

• Terminator .)

Example:

/SAVE(FILEL=PERM/CT =PUBLIC)

Permanent file PERM will be saved as a permanent version of the local
file FILEL. The slash indicates the end of the local=permanent file
name list. PUBLIC is the value for the keyword CT.

Use HELPME, command to learn formats
of NOS commands.

2-12

PERMANENT FILE COMMAND SUMMARY

rorvtv\AND DIRECT INDIRECT

APPEND x Add data at e·nd

ATTACH x Access

CATLIST x x Directory

CHANGE x x Rename

DEFINE x Create

GET x Access

PACKNAM x x Auxiliary packs

PERMIT x x

PURGALL x x Delete all

RJR3E x x Delete

REPLACE x Alter data

SAVE x Create

CID x Declare primary file

RECLAIM x x Dump/Load

Figure 2-9. Permanent File Commands

2-13

COMMONLY-USED COMMON PARAMETERS

CT - File Permit Category

P, PR, or PRIVATE
Sor SPRIV
PU or PUBLIC

No abort option; error handling

• Temporary error such as direct access file busy or requested auxiliary
device busy - job processing is suspended until error is corrected.

* Permanent error such as non-existent file or device - job processing
continues with next command.

PN - Pack name
.

1-7 character pack name of auxiliary device; used in conjunction with "R"
parameter which specifies device type.

PW - Password

1-7 character file password.

NOTE: NEVER USE YOUR USERNAME PASSWORD
AS A PERMANENT FILE PASSWORD.

AC - Y or N

Allow CATLIST (Y/N).

SS - Subsystem

Interactive subsystem to be associated with a file; default is null.

BASIC
BATCH - Recommended
EXECUTE
FORTRAN - ,+v...rt: 77

~~s ---..... ~~ Av.!>J 6&

2-ll~

COMMONL V-USED COMMON PARAMETERS {CONT)

UN - Username

Retrieve a permanent file from another user's catalog. To do this, you must
be validated by file creator (PERMIT command or CT parameter).

WB - Wait-if-busy

Wait for busy files or mounting of disk packs; will abort on other errors;
cannot use· with "NA" option.

Example: /ATTACH,FILE/M=W,WB.

XO - Expiration date

Expiration date for file password or file permit; format: YYMMDD
Must be authorized to use this parameter (see LIMITS).

XT - Expiration time
..

Lif ~ of file password or file permit in days
4095 or * - Infinite expiration date
0 - Expires immediately
Def a ult is site-defined
Must be authorized to use this parameter (see LIMITS).

Example: /PERMIT,DEMO,SALES=EIXT =10.
~

Allows username SALES to execute file DEMO for 1 O days.

2-15

0[N][Q)0fRl@:©lf ~00~

[F[][b@: ©©rMJ[M]~[N][Q)®

2-16

SAVE COMMAND

• Makes a copy of the specified local file on mass storage as an indirect access
permanent file.

• Permanent file cannot already exist.

• Can save more than one file with a single SAVE command.

• Local file cannot be empty (zero length).

• FORMAT:

SAV~,lfnt=pfn 1 , ... lfnn=pfnn/_params

Where:

I f n Name of local file to be saved

pf n Permanent file name if different than local file name

params Optional parameters

Common Parameters
CT File permit category
NA No abort option
FN Alternate pack name
PN Defines the file password

Command Specific Parameters
AC = Y or N (default unless changed by installation), indicates

whether alternate users can obtain information about
this file using the CATLIST command.

M= APPEND, A
EXECUTE,E

tv10DIFY,M ------- cl~ -e w{, '"' l /\cf-cype0•1~
NULL, N
READ, R
WRITE, w - fAC,-{. evrt:r~
Indicates the mode in whYch alternate users can access
the file.

2-17

SAVE COMMAND EXAMPLES

Examples:

\ /SAVE,JUSTONE.

l~ -----\JI /SAVE,THESE,FILES.

/SAVE,LOCAL=PERM/CT =PUBLIC,PW=MYPASS,M=READ,NA.

/SAVE, THIS= THAT,HERE= THERE,NOW= THEN. - --- . ---·
.,

/ENQUIRE,O=FILE6.
/SAVE,FILE6/PW.
?SECRET

Save ENQUIRE output.
SAVE prompts for password value si nee PW format
was used in place of PW=SECRET format.

2-V3

J REPLACE COMMAND

• Replace or create an indirect access permanent file on mass storage using a
local file.

• Can replace more than one file with a single REPLACE command.

• Local file cannot be empty (zero length).

• FORrv1AT:

Where:

If n ,, Name of local file to be saved

pf n Permanent file name if different than local file name

params Optional parameters

• Examples:

NA No abort option
PN Alternate pack name
PN Specifies an alternate user's file password when

replacing a file in an alternate user's catalog.
LN Alternate username

/REPLACE,WINTER.

/REPLACE,WINTEA=SUMMER,SPRING=FALL

/REPLACE,WINTER!UN=SEASONS,PW=WEA THEA..

File WINTER will be replaced in alternate user's catalog if SEASONS
gave this user WRITE mode permission and the permanent file SeA,~.Qr§-
exists there. - wt~~

2-1~

GET COMMAND

• Gets copy of an indirect access permanent file and makes it local.

• Can specify more than one file to retrieve at once.

• FORMAT:

Where:

If n Name of local file to be opened

pf n , Permanent file name if different than local file name

params Optional parameters

NA No abort option
PN Alternate pack name
PN File password
lN Alternate username
\\18 Wait-if-Busy option

• Example:

/GET,lWEETY,BUGS,WILEY.

/GET,BUGS=BUNNYIPW=CARROT,UN=DISNEY,PN=SAM,NA.

Permanent file from pack named SAM and owned by DISNEY will be
copied to local file BUGS. GET will wait for pack SAM to be mounted
(NA).

/ENQUIRE,F
/CATLIST
/GET, LFILE6=FILE6
/ENQUIRE,F

Check for FILES in catalog.

Note local file name and type.

2-21)

APPEND COMMAND

• Add specified local file(s) to the End-of-Information of an indirect access
permanent file.

• Get the permanent file to see the effect of APPEND.

• FORrMT:

APPEND,pfn,lfn1 , ... lfnn/params

Where:

pf n Permanent file name of indirect access file where appended
files will be written.

If n Local file name(s) of file(s) to be appended

params Optional parameters

NA No abort option
R..J Alternate pack name
PN .. File password
UN Alternate username (requires WRITE mode permission)
~ Wait-if-Busy option

• Examples: ~Of\ f"""l'rv'I... 4)/\,6{-- l""cd
/APPEND,PERM,ONE,TWO,THREE.

/APPEND,PERM,LOCAL 1,LOCAL21UN=OTHERU.

Note the order of file names: permanent file name
list of local file names.

/GET, PERM
/APPEND,PERM,PERM
/LENGTH, PERM
/GET,PERM
/LENGTH,PERM

Local file is not larger.

Permanent file is larger.

2-21

@O~~©lr ~©©~

[F[][b~ ©©WJ[M]~[N]@®

2-22

DEFINE COMMAND

• Creates an empty direct access permanent file

• Usually can be larger than indirect access permanent files

• Can also define an existing local file as a direct access file if .. the local file was
assigned to a mass storage device on which you can have a direct access
permanent file

• Can create several direct access files on a single define command

• FORfv1AT:

Where:

If n Name by which the permanent file space will be referenced .as a
local file

pf n Permanent file name if different than local file name

params Optional Parameters

Common Parameters

CT File permit category
NA No abort option
PN Alternate pack name
PN File password
\NB Wait-if-Busy option (e.g., pack not yet mounted)

2-23

DEFINE COMMAND (CONT.)

PARAMS (cont.)

Command Specific Parameters

AC Allow catlist, same as indirect access permanent files

M EXEa.JTE,E
MODIFY,M
NULL,N
READ,R
WRITE,W
Indicates the mode in which alternate users can access
the file.

S SIZE in disk sectors

• Examples:

/DEFINE,APPLE,ORANGEIM=W,AC= Y,CT =SPRIV.

Remember M=W is required to allow others to write on the file.

/DEFINE,LEMON=LIME/CT =SPRIV,M=NULL,AC=Y,PW=CITRUS.

File LIME is semiprivate but no one can use it unless explicitly permitted
~ with the PERMIT command.
f
'i "" /GET,FILE6
~I- /DEFINE,FILES/CT =PU,AC=Y
' /LENGTH,FILES

/COPYEl,FILE6,FILE8
/COPYEl,FILES
/REWIND.FILES
/COPYEl,FILES
/CATLIST
/ENQUIRE,F

See empty status

Forgot to rewind

Contents now seen
See permanent file names
See file names, positions, and types

2-2L~

ATTACH.COMMAND

• Assigns a direct access permanent file to a job

• Can assign more than one file with a single ATTACH comma~d

• FORMAT:

Where:

If n Name of local file

pf n . Permanent file name if different than local file name

params Optional Parameters

Common Parameters

NA No abort option
PN Alternate pack name
PN File password
LN Alternate username
'NB Wait-if-Busy option

Command Specific Parameters

M EXECUTE,E
MODIFY,M
Rx - Read and share with one user having M=x
READ,R - Share mode prevented
WRITE,W - Share mode prevented
Indicates the mode in which user, including the owner,
is accessing the file.

?Je/lll-
/f /er-=- f' t M ~;;:.

2-25

ATTACH COMMAND EXAMPLES

• Examples:.

/ATTACH,HULK,HOGAN/M=W,WB.

Attach will wait if file is in use.

/ATTACH,WEASEL=HEENANIPW=WRESLER,UN=AWA,NA,PN=O.

Assuming a PACKNAM (MYPACK) was issued, PN=O returns the user to
Family permanent files.

/ATTACH,NOTES/M=RA,UN=LIBRARY.

User can read NOTES while another user appends more notes to NOTES.
NOTES, we say, is attached in "share mode" by this user.

/CLEAR ~ (e(eCi5B /1cfvrt1. f.t41f .fiv{e-3
/ENQUIRE,F
/ATTACH,FILE8A=FILE8
/ENQUIRE,F Note "PM*" file type for FILESA denoting

FILESA points to direct access permanent
file and is opened in read (or execute only)
mode.

/WRITER(OPEN)
/DEFINE, OPEN/NA
/CATLIST,FN=OPEN

Will only work if OPEN was opened on a
device which this user can have direct
access files.

2-26


~~~~[N]~[fW [p{][L~ 

©©[M][M)~fNl[Q)® ~~~0:.0©~~0:.~ 

if© ®©m 0fNJ[Q)OfR1~©if ~[N][Q) .. 

[Q)O~~©if ~©©~~ [pl][l~® 

2-27 



CATLIST COMMAND 

• Lists information about your permanent files 

• Can list information about other's files if you are validated for any file 
access and Allow - Catlist (AC= Y) is granted by owner 

• FORMAT: 

CATLIST,params. 

Where: 

params Optional parameters 

FN = pf n List information for this permanent file 

LO= F Full list options 

FP File permissions defined for the permanent file specified 
on the FN parameter 

P Users permitted to access the private or semi-private 
file specified by the FN parame!er 

L = If n Local file to receive report (OUTPUT default) 

NA No abort option 

PN= pn Alternate packname 

UN= un Alternate username 

Wait-if-Busy option (e.g., Pack not mounted) 

2-28 



CATLIST COMMAND EXAMPLES 

Examples: 

/CATLIST. Gives names of all of your permanent ·files. 

/CATLIST,LO=F. Gives full list options on all your permanent files. Owner 
sees password values. 

/CATLIST,LO=FP,FN=APPLIC. 

1. For PRIVATE and SEMI-PRIVATE files only. 

2. Specifies who has been granted access with a PERMIT; specified by an 
* 

3. Gives list of alternate users accessing files. Includes number of 
accesses. date and time of last access. 

4. Filename is required. 

5. You must be the file's owner. 

/CATLIST,LO=F,FN=XYZ. 

/CATLIST,LO=F ,UN=SMS25. 

/CATLIST,FN=FILE6,LO=F. 

Password values are included in the listing 
since these are your files. Gives full list 
options on only your file 'XYZ. 

Gives full list options on all files in SMS25's 
catalog that YOU MAY ACCESS and that have 
AC=Y set. Will N 0 I list passwords 
associated with the files. 

2-29 



CHANGE COMMAND 

• Change permanent file characteristics 

• FORMAT: 

CHANGE, nfn1 =Ofn1 , .•• ,nfnn=ofnn/params 

Where: 

nfn New permanent file name 

of n Old permanent file name 

params Optional Parameters 

Common Parameters 

CT File permit category 
NA No abort option 
PN Alternate pack name 
FW File password (PW=O to remove) 
WB Wait-if-Busy option 
X> Expiration date of password (yymmdd) 
XT Expiration time of password in days (0-4095, *) 

Command Specific Parameters 

AC = Y or N, Allow CATLIST. 

M = APPEND,A 
EXECUTE,E 
WODIFY,M 
NULL,N 
READ,R 
WRITE,W 
Indicates the mode in which alternate users can 
access the file. 

2-30 



CHANGE COMMAND EXAMPLES 

• Examples: 

/CHANGE, NOW=BEFORE, NEW=PREV/AC=Y. 

NOTE: Format is newname=old name. 

/CHANGE,NEWFILE=OLDFILEIPW=NEWPASS,CT =PRIVATE,M=READ, 
XD=860615. 

Note that the format of XD date is YYMMDD. 

/CHANGE,APPLICS,APPLICB/PW. 
? 0 

PW without value causes a read from INPUT (terminal). A value of zero 
wm remove any existing file password security. 

/CATLIST,FN=FILE1 ,LO=F 
/CHANGE,NEWNAME=FILE11PW=NEWPASS 
/CHANGE,NEWNAME/CT =SPRIV,M=NULL 
/CA TLIST,LO=F ,FN=FILE1 /NA.ERROR 
/CATLIST,LO=F,FN=NEWNAME 
/PERMIT,NEWNAME,ASE1230=RIXT =*. 
/CATLIST,FN=NEWNAME,LO=FP. 

2-31 



PACKNAM COMMAND 

• All subsequent permanent file commands in the job are directed to the 
specified auxiliary pack unless PN=O is specified on the command. 

• Use of auxiliary packs allows file sharing across f am iii es. 

• FORMAT: 

PAC KNAM,PN=packname, R=n. 
PACKNAM,packname, R=n. 
PACKNAM. 

Where: 

PN 1-7 character identifier of auxiliary pack 

R Device type of auxiliary pack 

• Examples: 

/PACKNAM,PN=AUXPACK. 

/GET,DOCLIST. 

/PACKNAM. 

/GET,DOCLIST. 

Installation-defined device type is the 
default. 

DOCLIST on AUXPACK is used. 

Clears the effect of the previous PACKNAM 
command; returns to family system devices. 

DOCLIST on family device is used. 

/REPLACE,DOCLIST/PN=AUXPACK. 
Local file DOCLIST is saved as indirect file 
DOCLIST on the auxiliary pack AUXPACK. 

2-32 



PERMIT COMMAND 

• Allows another user to access private files in your permanent file catalog 

• Can also change the mode in which another user can access a semiprivate file 

• FORMAT: 
~ 

PERMIT,pfn,username1 =m1 , ... ,usernamen=mn/params 

Where: 

pfn Permanent File Name (one name only) 

username Username of user who is being permitted to use the file 
(Note that format does not include UN=) 

m Mode in which alternate user may access the file (Note 
that format does not include M=) 

params Optional parameters 

PN Packname 
NA No abort option 
WB Wait-if-Busy option 
:>O Expiration date 
XT Expiration time 

2-33 



PERMIT COMMAND EXAMPLES 

• Examples: . 1 u1 I '/1 - I l 
/PERMIT,TEST1,T6SDEH=WRITE,T05TMF=NUL'f.11.D=890215,NA. 

Permission for user TOSTMF has been revoked. 

/PERMIT,TEST2,TOSJEB=READ/PN=ACTPACK,WB. 

Will wait for pack to be mounted. 

/PERMIT,FILE8,ASE1230=W/NA. 
/PERMIT,FILE6,ASE 1230=E/NA. 

/CATLIST,FN=FILE6,LO=P. 

To see permitted users. 

/CATLIST,FN=FILES,LO=FP. 

To see full permits. 

2-34 



\ 

) 

• 

• 

• 

• 

PURGE COMMAND 

Removes files from the permanent file device 

Indirect file access permanent file space is released immediately 

Direct access permanent file space is released immediately if not attached 
by any user. Else DAPF space is released when the attach count goes to zero. 

FORMAT: 

PURGE,pfn1 , ..• ,pfn0 /params. 

Where: 

pf n Permanent file name to be removed 

params Optional parameters 

NA No abort option 
PN Alternate pack name 
FW File password 
LN Alternate username 
WB Wait-if-Busy options (e.g. Pack not mounted) 

2-35 



PURGE COMMAND EXAMPLES 

• Examples: 

/PURGE,JUSTONE/NA. 

Continue to next command unconditionally (NA). 

/PURGE, TWO, THREE,FOURIPN=AL TPACK,WB. 

/PURGE,FIVE/UN=OTHUSER,PW=LIVER. 

Will work if user has WRITE mode permission. 

/CATLIST Shows file FILE6,FILE8 
/ATTACH,FILE8/M=W 
/GET, FILES 
/PURGE,FILE6,FILE8 
/ENQUIRE,F 
/CATLIST 
/DEFINE,FILES. Note missing files. Will this DEFINE work? 

2-36 



PURGALL COMMAND 

•· Purges all permanent files in your catalog that satisfy certain criteria 

• The TY parameter is required if no other candidate criteria is specified. 

• FORMAT: 

PURGALL,AD=ad,AF,CD=cd,CT =Ct,DN=dn,MD=md,NA,PN=packname, 
R=r,TM=tm,TY=ty,WB. 

Where: 

Common Parameters 

CT File permit category 
NA No abort option 
PN Alternate packname 
R Device type of alternate pack 
WB Wait-if-Busy option 

Command Specific Parameters 

AD Access Date; purge all files accessed before this date 

AF Purge all files after the date specified on AD, MD, or CD 
parameter 

CD Creation Date; purge all files created before this date 

ON Device Number assigned to a device at system initialization 
(intended for usage by site personnel) 

MD Modification Date; purge all files modified before this date 

TM Time modified; purge all files modified before this time 

6' File type: I or lndir, D or Direct, A or All 

2-37 



PURGALL COMMAND EXAMPLES 

• Examples: 

/PURGALL, TY= ALL Purge all files. 

/PURGALL, 1Y =D,MD=850601, TM= 120000. 

Purge all direct access files modified before 
12:00 noon on June 1, 1985. 

/PURGALL, CD=850630,AF, PN=altpack, WB. 
Purge all files created after (AF specif ed) 
June 30, 1985 on auxiliary pack AL TPACK. 
Wait until the pack is available or until all 
files are no longer busy to perform the purge. 

2-38 



RECLAIM COMMAND 

• Allows users to manage backups of their permanent files on a dump file. 

• The dump file can· reside on a labeled tape or be a direct access file itself. 

• RECLAIM activity history is saved on a direct access database named RECLDB by 
default. The VSNs of dump tapes are maintained in the database. 

• FORtv1AT: 

RECLAIM, DB=pfn, l=lf n,PW=pw ,UN=un,NV ,Z. 

Where: 

pf n Name of RECLAIM dump file {default RECLDB). 

f =ifn Name of local file containing RECLAIM directives {default is 
· 1NPUT unless Z is specified). 

Z Directives appear as comments on RECLAIM command. 

L=lfn Report file name (default OUTPUT). 
. 

PW=pw Used when data base is owned by another user and you are 
UN=un permitted in write mode (M=W). 

NV New volume· (or permanent file) is to be used as the dump file. 

2-39 



COMPACT 

DELETE 

END/QUIT 

LIST 

LOAD 

RESET 

SET 

RECLAIM DIRECTIVES 

Rewrites a dump file using only the active files in the database. 

Creates local file copies of all dumped files meeting specified 
criteria. 

Disables all files in the database that meet the specified 
. criteria. Space is not released. 

Dumps specified files to tape or mass storage. 

Terminates current RECLAIM session. 

Lists RECLAIM database information about specified dumped 
files. 

Loads specified files into you permanent file catalog. 

Deletes on tape Volume Serial Number {VSN) from the database. 

Reactivates all files previously disabled by the DELETE 
directive. 

Redefines RECLAIM defaults for any directive option. 

RECLAIM COMMAND 

• See RECLAIM command in NOS Reference Set, Volume 3 for RECLAIM directive 
options. Note that candidate selections in general, increase qualification 
restrictions. The EX option reverses candidate selection criteria. 

2-·40 



RECLAIM EXAMPLES 

• Examples: 

/DEFINE, TAP~ 

/RECLAIM,NV,E¢=NO,Z./DUMP,DT =MS. 

Dump all files to direct access dump file TAPE (DF default). Current 
contents of TAPE will be evicted. 

/CLEAR. 
/ATTACH,TAPE/M=W. 
/RECLAIM,Z./LOAD,PF=NEWLIB. 

Reloads latest backup of NEWLIB if it does not yet exist. 

/RECLAIM,Z./LOAD,RP=Y,PF=NEWLIB. 

Same, but an existing NEWLIB will be replaced. 

/RECLAIM,Z./LIST,UN=O,TY=A. 

Backup file listing for all files (default) and all users whose files are 
dumped on TAPE. 

2-41 



lL©©~lL [A][L~ 

©©~!MJ~[N][OO 

2-42 



LOCAL FILE COMMANDS 

• The following local file commands are being introduced here to assist in this 
lesson's permanent file exercises. 

- CLEAR . . 
CATALOG/ f r&~n 12E_ . j_L'.··>· / .,_ 

ENQUIRE F I .-/ I;:? C-.:--;( ( I ( d'.:_.-J 
- ) --· I_... ' 

SETFS - ;· --- / 
. \ AltC ~-r.rvfv.s 

2-~3 



CLEAR COMMAND 

• Releases all local files except those specified. 

• Files will no longer be local. 

• FORMAT: 

CLEAR. Clears all local files 

CLEAR,• ,lfn1 , .. lfnn. Clears all files except those specified. 

• Examples: 

/CLEAR. 

Alternate commands are "RETURN,*." and "UNLOAD,*." 

/CLEAR,*,EXCEP1,EXCEP2. 

SETFS COMMAND 

• Set No-Auto-Drop (NAO) status for one or more focal files so that CLEAR 
does not release them. 

• FORMAT: 

SETFS( lfn1 , .. lfnn/FS=fs) 

Where 

.f s NAO for No-Auto-Drop or AD for Auto-Drop. 

• Example: 

/SETFS(OUTPUT,INPUT/FS=NAD) 

OUTPUT and INPUT would have to be explicitly returned or unloaded. 

2-44 



CATALOG COMMAND 

• Lists information about each record in a local file. 

• FORMAT: 

CATALOG,lf n,params. 

Where: 

If n Name of local file to be cataloged 

params Optional parameters 

L=list 

N=n 
R 
u 
T 

Local file to contain output from the 
catalog 
Number of files to catalog 
Rewinds lfn before and after catalog 
Lists all records within a user library 
Lists contents of deadstart decks on the file 
(for system analysts). 

• Examples: 

ftL{S 
.---~---· 

/CATALOO,SEARS. 

/CATALOG,PENNEYS,L=ORDER,R,U,N. 

Rewind PENNEYS and list information including the contents of records 
in any user library (ULIB), of all files (EOFs) in the file. Remember the 
anagram 'RUN' for this useful format. 

2-45 



ENQUIRE COMMAND 

• Provides information about your jobs in the system. 

• FORMAT: 

ENQUIRE 
ENQUIRE,options. 
ENQUIRE,0P=options,FN=lfn1 ,0=1fn2. 
ENQUIRE,JSN=jsn,0=1fn2 
ENQUIRE,UJN=ujn,0=1fn2. 

Where OP= 

options 

A Gives listings of B,D,F,J,L,R,U options (default) 

B Indication and priority information 
Username 
Family 
Subsystem 
CPU priority 

D Resources demanded (via RESOURC command) and resources 
assigned 

.. 
F Status of files assigned to your job 

Filenames 
File lengths in PRUs 
File type 
Status of files, e.g., EOR, EOI, BOI 

J Control register contents 
Error flag field 
Pending commands 

L Loader information such as Map option and global library file 
Ii st 

2-46 



ENQUIRE COMMAND (CONT) 

options (cont) 

R Resources used 
CPU time 
MS (Mass Storage) activity 
MT (Magnetic Tape) activity 
PF (Permanent File) activity 

-
S Accumulated SRUs (System Resource Units), derived from CP 

(Central Processor) time, . 1/0 (Input/Output) activity, memory 
usage 

T Accumulated CPU time 

U Resources available for use 
Commands (no limit) 
Mass Storage 

UJN User Job Name; 1-line report of· each job with specified UJN 
such as: 

- Job Sequence Number (JSN) 
- Job status - rolled out, executing, queue 

~ 

JSN Detailed report of job with specified JSN. 
Depending upon job, could list: 

- J~b. dayfile (up to 1 O line·s) 
- Succeeding commands 
/ENQUIRE,JSN. Produces a 1-line report on each job 

originating from or destined for your 
user name. 

FN = file Status of local file specified 

0 = ofile File on which to write output from ENQUIRE; OUTPUT is 
def a ult file 

2-l~7 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

EXERCISE 2.1 

PERMANENT FILE COMMANDS 

___ Create an Indirect Access permanent file with a password using the 
SAVE command. 

___ Create an Indirect Access permanent file using the REPLACE 
command. 

___ Create a Direct Access permanent file using the DEFINE command. 

___ Issue an ENQUIRE, F. 

This command will list all local files. The files created in #1, 2, and 
3 will appear in the output. 

___ Issue a CLEAR and an ENQUIRE, F. 

The files created in #1, 2, and 3 will no longer be local files, nor 
will any other files which may have been local to your terminal. 

___ Issue a CATLIST, LO=F. 

All of your permanent files and their attributes will be listed at 
your terminal. 

___ Issue the commands necessary to make several of your permanent 
files local to your terminal (GET and ATTACH), and issue an ENQUIRE, 
F. 

The filenames used on the GET and ATTACH commands will appear as 
local files. 

2-48 



EXERCISE 2.1 (CONT) 

8. Issue the PERMIT command to allow several other usernames with 
access to your permanent files using different permission for each 
username (M=READ, M=WRITE, M=EXECUTE, etc.) 

___ Issue a CATLIST, LO=FP, FN=fn. 

Permissions granted using the PERMIT command will be displayed. 

9. GET an indirect access file and CATALOG the local file copy, noting 
the file length in PRUs. Make several other files local and APPEND 
them to the indirect access file previously CATALOGed. 

___ GET and CATALOG (CATALOG,lfn,R,N.) after the APPEND. Not.e the 
change in length (PRUs). 

1 0. CHANGE some of your permanent files' characteristics, e.g., mode 
(READ, WRITE), password. Issue a CATLIST, LO=F. 

The file characteristics just changed will be output to the terminal. 

11. PURGE some of the files you no longer need and issue a CATLIST. 

The files will no longer appear in your catalog listing. 

12. Use RECLAIM to make a backup of your permanent file on a direct 
access RECLAIM database. Use RECLAIM to list the contents of this 
database. 

2-49 





/ 

\. 

lb~lNlm~~~ 

FULL SCREEN EDITORS 

3-0 





Lesson Preview: 

LESSON THREE 
FULL SCREEN EDITOR (FSE) 

This lesson introduces the student the NOS Full Screen Editor. 

Objectives: 

After completing of this lesson, the student will be able to: 

- Create , modify, and save· a file using FSE 

- Modify a fil~ using the appropriate commands and save the changes (make 
the changes permanent) 

- Request on-line HELP for individual FSE directives 

Projects: 

- Exercise 3.1 - FSE 

References: 

- NOS Full Screen Editor User's Guide 

3-1 



GETTING STARTED 

1. Log on 

2. Set up terminal in screen mode, e.g., 

/SCREEN, 721 T. For a 721 terminal with type ahead allowed. 

3. Set up terminal in ASCII or NORMAL (upper case only) mode, e.g., 

/CSET,ASCll. or 
/CSET,NORMAL. 

4. Initiate FSE by entering 

/FSE,lf n.' to create or to edit a local file or 
/FSE,lfn,G. to make the direct or indirect permanent file lfn a local 

file 

5. QUIT (or Q) is the FSE end directive. 

6. Enter FSE without parameters to resume FSE where you left off. 

"°lE: If SCREEN mode is not initiated, FSE 
will respond with its name and a "??" prompt. 
This is the line mode of FSE. 

3-2 



FSE DIRECTIVES • GENERAL 

1. Enter directives: 

8 In screen mode 

?? In line mode 

2. Abbreviate with first or first three characters 

3. Spaces or commas required between numbers, but not between words. 

Examples: 

LONG VERSION COMPACT VERSION 

COPY20T050 C20T50 

MOVE 20 50 TO 100 M20.50T100 

LOCATE ALL WORD/XVAR/ LAW/XVAR/ 

4. Usually parameters may be specified in any order. 

·Examples: LAW/XVAR/ 
LA/XVAR/W 
L/XVAR/AW 

5. You may use ; to string directives together on a single line. 

Example: UThis/; DeleteW; OW; VIEW 

6. Directives usually default to Pointer (cursor) at last line changed unless 
overridden by directive parameters. 

3-3 



NOS FSE COMMAND EXPANDED 

• Order-independent parameters 

FN = lfn 

OP = character set and/or get file 

QISPLAY 
NORrv1AL 
ASCII 
ASCII.a, 
~ET 

Upper Case Only; use for NOS commands and 
most compiler input. 
Example: OP= GA 

NOTE: Does GET/ATTACH in Write mode. 

I = Input dir~ctive file. Def a ult is INPUT 

O = Output listing file. Default is OUTPUT 

IP = Enables user to change default procedure library from "FSEPROC". 
So, on subsequent -PROC.NAME(FILE), if you do not specify file, 
you get "FSEPROC". 

. directive(s) NOTE: Some sites have added FSE command 
procedures which have disabled this ability 
to supply default directives on the FSE 
command. 

• Examples: 

/FSE,FN=NEWFILE,0P=GA.SP2 
/FSE,NEWFILE,l=FSEDIRS.SL 
/FSE,NEWFILE,IP=721 PROC.SPO 

3-4 



SCREEN MODE FSE KEYS 

1.8 Puts cursor at the directives line (Home line) 

2. To exit FSE: 

B.8 QR 

Edited files remain local. Exception: Direct 
Access files in which changes are permanent 

Makes everything permanent. 

3. Arrow keys for cursor positioning: 

NOTE: On most terminals, these keys are repeating. 

4. Most corrections can be made by typing over the data in the work area of 
the screen and using function keys as marked on the keys themselves or 
on prompt line at the bottom of the screen (terminal dependent). 

Enter 8 SET PROMPT 2 to see all key definitions. 

5. Inserting characters: 

A B (f]o 

L Position to C end press ( INSRT) key 

A BOC D 

L Cursor positioned here 

Note: On some terminals the INSERT key acts as a toggle key (insert mode 
ON/OFF). 

3-5 



6. Deleting characters: 

A~C D 

L Posit 1 on C. and press ( DLETE) 

: Result 

7. Insert lines: (shift) Cit) ( INSRT) 

Delete lines: (shift) Cit) ( DLETE) 

Note that the top description on prompt lines ref er to shifted function key 
actions. 

8. Page forward and backward: 

9. Moving lines (copy and delete): 

A. Place cursor on first line to be moved and ( MARK ) 

B. Place cursor on last line and (MARK) 

· C. Place cursor on the line which you want lines inserted before 

and8 

3-6 



1 O. Copying lines: 

Same as "MOVING", except instead of 8 
11. Moving/Copying characters: 

12. 

Same as moving and copying lines, except mJ ( MRKCHR) 

instead of (MARK) 

Reverses all changes since last 
function key press 

or 

Cancels MARK directive without reversing changes 

13. On line help: 

A. FSE creates local file "FSEHELP" 

B. ~ Splits screen with "FSEHELP" on bottom 

c 8 To revert 

14. Create "MUL Tl-RECORD/FILE" files: 

A. (EOR) in column number 1 

B. (EOF) in column number 1 

C. Simply delete line to delete EOR or EOF. Use CATALOG command to see 
impact of (EOR) and (EOF). 

3-7 



OTHER TERMINAL DEPENDENT "KEYS" 

3. if (CLEAR) 

0 

Backspaces a single space and erases previous 
character 

Default tabs: 1, 7, 72. 
See .5..EI directive to change the default settings. 

Clears screen. 

Repaints screen. 

Puts current line at screen top. 

Puts current line at screen bottom. 

Stops in-progress search for replacement on 721 
terminals. 

Use SET PROMPT 2 and GET 
STATUS to see your current 
terminal key definitions. 

3-'3 



OTHER 721 "PROGRAMMABLE" FUNCTION KEYS 

1. 8 Inserts 22 blank lines in front of cursor. 

2. if 8 Deletes all blank lines until first non-blank line. 

3. (FIRST) Put cursor at first line in a file. 

4. if (LAST) Put cursor at last line in a file. 

5. (LOCATE ) Prompts for text to locate. 

if ( LOCNXT) Go to next occurrence of "LOCATE" text. 

6. (BO COL) Default screen width. 

if (mcoL) 
On other 80 . column terminals, use the SET VIEW OFFSET directive. 
Example: SVO 80. 

7. (MIDDLE) Moves line cursor is at to screen middle. 

Move cursor to end of current line. 

3-~ 



9.~ 

10. 8 
11. (oNECPV) 

12. (PARA) 

Splits line. The character which the cursor is on goes to 
beginning of next line. 

Takes line below cursor and adds it to line cursor is at. 

Same as except marks are cancelled 
after the copy. 

A. Reformats lines you marked with (MARK) to conform with 

margins set via SET WORD FILE directive. 

B. Like the .FILL directive. 

C. If no lines marked, ref or mats entire paragraph. 

13. (cENTE~ 

A. Centers line between first and last columns as set by SET WORQ 
EJ.LJ.. 

B. Like the .CENTER directive. 

14. Function key 16 is currently undefined. Feel free to define Function Keys 
to meet your needs (see SET KEY directive). 

3-:!.0 



FSE ALTER DIRECTIVE 

ALTER : Enables user to change lines 

1 . Without parameters: 

Can enter "MODIFY CHARACTER" and text to change "CURRENT 
LINE." Like "XEDlr MODIFY. 

2. Format: (parameters) 

f.ND direction string range QUI ET 

3. END : Adds string at EOL. 

, 
Ex: A E/ABC/ Adds ABC at End of Line. 

4. Direction; A "COMMON PARAMETER" 

Specifies direction and number times directive is to be executed 

Ex: A P 2/#/ Alters (deletes) previous two 
occurrences. 

5. String : Specifies text or modification character to change line(s}. 
See example above. "COMMON PARAMETER" 

6. Range : Another "COMMON PARAMETER" specifies lines to be altered. 

Ex: A A/A #/ Inserts one blank before each line. 

7. QUIET : Do not display results of AL TEA 

Ex: AAOI" #/ Same as above, but no veto option. 

3-11 



FSE BACK AND COPY DIRECTIVES 

.6,ACK: Returns user to a file you already edited during the current editing 
session. 

FSE remembers last seven files edited. Pressing the 8 
function key or entering .6.ACK directive can return user to a11 seven. See . 
also FSE's FSE directive. 

QOPY: .Copy lines from one location to another, either within a file or between 
two files. 

FORMAT,PARAMETERS: Range (F1) TO line {F2) .QUIET 

Ex: Ql0Q~(FILEA) 
Copies lines 1 O through 50 from current file to file Fl-LE.A at 
line 20. 

3-12 



FSE DELETE DIRECTIVE 

.DELETE : Deletes one or more lines. 

1. Without parameters : The current line is deleted. 

2. Format, parameters: 

Range .6.LANK ~ORD lN tab QUIET 

3. Range: 

Ex: Q ~0 ~~ 
Q_;_J Delete current line and insert text 

with prompting. 

4. BLANK: Deletes all blank lines from "current" to first non-plank 
line. 

5. WORD: Deletes words, blanks or individual special characters 
within a line without deleting the whole line. 

6. lN tab : Deletes a specific "TAB" field. 

Ex: DIN 1 

and TAB FIELD 
1 
2 
3 
4 

COLUMNS (default) 
1-4 
5-19 

20-39 
40-EOL 

Chen: Columns 1-4 ·deleted. ~ 

3-13 



FSE's FSE DIRECTIVE 

fSE : Specifies a different file to edit. 

1 . Parameter format: 

file charset ~ET READ .S.PLIT 

2. File : Filename required 

3. Charset : DISPLAY is default 

4. ~Er: 

Ex; EG ALPHA 

5. BEAD: Uses local or attached direct access files. No GET or 
ATTACH is done. 

6 . .S.PLIT: 

A. SET specifi~s how many lines in lower half of screen. 

B. Can have only two parts on a split and the new file will always be 
in the lower half. 

3-14 



FSE GET AND HELP DIRECTIVE 

,GET: Either displays status of the files you are editing and activate function 
key definitions or lists the column numbers (with an on-screen ruler). 

PARAMETER FORMAT: STATUS ALIGN 
One or the other parameter is required. 

Ex: ;:\. ~ to see how function keys can be defined using the SET KEY 
~ directive. 

~ to place a column ruler on the "current" line. Use the SET · 
'\] SCREEN directive to remove ruler. 

HELP : Displays the FSE "HELP" file. 

1. Without parameters 
Screen is split. 

Cursor positioned at first line of "HELP" file. 

2. PARAMETER FORMAT: Directive 

3. Directive : Specifies a legal FSE directive. 

Ex: H REPLACE 

c='I f})1-( 
4. Press ~ o~ to exit. 

/. )( 
V)<!J y 

3-15 



FSE INSERT DIRECTIVE 

INSERT : Inserts text 

1. Without parameters: 

A. SCREEN: 
<·-- Insert what? 
The user inserts one line only in response to the above prompt. 
Insertion .all.fil "current line." 

. 8. LINE: 

?? 1 
327 ABC D 
33? \X y z 
34? <Cr> 
?? 

2. PARAMETER FORMAT: 

line# fREVIOUS string 6.LANK WORD 

3. Line: 

Ex: 16 /\\ABC/ Inserts text \\ABC after the sixtt 
line. 

Note: No matter what user does with "line", user can insert one 
line only in screen mode, except for 13,LANK and :iiOR D. 

4. f.REVIOUS : User wants insertion before rather than after. 

5. 6,LANK: In screen mode, inserts blanks after current line. Screer 
all blanks except for first and last line. 

6. WORD: Inserts 30 blank characters at current cursor position 
.E.REVIOUS WORD gives 30 blanks before curren-
character. 

3-16 



LOCATE FSE DIRECTIVE 

10CATE : Locates a specified character string. 

1. Without parameters : The last character string specified is used. 
Otherwise user is prompted for one: 

2. PARAMETER FORMAT: 

lYORD direction string range lN tab J.+f.PER QUI ET 

3. WORD : Looks for a "word" as opposed to a "string." "Word" = a string 
contained in alph_a-numeric (.D.Qil) characters 2!. blanks. 

In line mode, positions to line; in screen mode, positions to screen. 

4. Direction A "COMMON PARAMETER". Indicates number of lines, 
not number of strings, located. 

Ex: L N 2/ABC/ 

5. String: 

Ex: LCTh e/ .. In i g ht./ 

6. Range: 

Ex: L NEXT 2IThe/EIRST · 

7. lN tab : 

Ex: L A/Abe/IN 
and TAB columns = 1, 5, 20 and 40. 
Then: Locate all occurrences of 'Abe' in column numbers 20-39. 

8. UPPER: 

Ex: L U/THe/ Will find: THE, THe, The, ThE, tHE, tHe, thE, 
the 

3-17 



FSE MOVE DIRECTIVE 

~VE: Moves text from one place to another within a file or between two files. 

1. Without pa~ameters : Nothing happens 

2. PARAMETER FORMAT : 

Ex: 

Ex: 

range {file1) IO line (file2) Q.U I ET 

M 20 50 T LAST(FILEY) 

Adds lines 20 through 50 from current file to end of file FILEY. 
FILEY will be created if not yet local. 

SETX 
MMTOX 

Moves marked text to the line number previously saved in X. 

3-13 



FSE PRINT/POSITION DIRECTIVE 

.ERINT: Either prints (displays) a range of lines and moves pointer (LINE MOLE.' 
2!.. just positions cursor (SCREEN MODE). 

1. Without parameters : 

2. PARAMETER FOR~T: 

range .QUIET 

Ex: 

SCRE~N EDITTNG: 

fl. 
EE 
E.1 
flra. 
fB.3 
P10 15 

LINE EDITING: 

Ex: 

flra. 
fB.3 
P10 15 

Current line printed or cursor goes to 'lim· 
beginning 

SL Leave SCREEN mode 
PA Print all lines (after enabling printer) 
SS Return to SCREEN mode (after disabling printer) 

3-19 



FSE QUIT DIRECTIVE 

QUIT : Exits FSE gr an FSE procedure 

1. Always check that files were made permanent (shown in·· FSE's exit status 
messages). 

2. Parameter format 

REPLACE QUIET UNDO PROC/nos command 

3. REPLACE : Cannot be used with UNDO. 

4. PRCC: Used only in FSE procs. Instructs FSE to stop processing current 
precedure without exiting FSE. Enter FSE, FSEPROC to see your 
default FSE procedure file from username LIBRARY and example 
FSE procedures. The first one, named STARTUP, is run each time 
you start up FSE. Change and replace it if you wish your own 
version under your own username. 

5. /nos command: 

" 
Ex: QR/ESE A handy way to save what you are doing and return 

immediately to FSE. 

6. UNDO :Cancels an entire FSE session. 

Ex: Ql.NX) You cannot abbreviate UNDO herel 

3-20 



FSE REPLACE DIRECTIVE 

BEPLACE: Replaces one text string with another. 

1. Without parameters : Replace last strings specified. Or, you are 
prompted for intended text. 

2. PARAMETER FORMAT: 

YY.ORD direction str1 str2 range lN tab .U.PPER QUI ET 

3. .W,ORD : Word = str1 contained within non-a.Jphanumerics or blanks 

Ex : R W/Topic/subject/ 

4. Direction : A "common parameter". Using a number greater than 
"one" with liEXT, REPEAT and PREVIOUS, sp~cifies 

number of lines, run number of occurrences. 

Ex: A N /abc/xyz/ or R N 1 /abc/xyz/ 
R N2/abc/xyz/ 

Note: "Direction" is a part of "range's" definition. 

5. !N tab : Replaces text appearing only in certain tab fields. 

6 .. U.PPER : Capitalization is ignored. 

3-21 



FSE SET DIRECTIVE 

SET : Sets various FSE and file parameters. 

1 . Without parameters : Not allowed. 

2. PARAMETER FORMAT: keyword 

3. ANNOUNCE/string/ : Enables user to display "string", usually from 
within an FSE procedure. 

4. ~HAR character : Sets ."soft tab" character. GET STATUS displays it. 
\=def. 

5. flLENAM file: 

6. l:iEADER value : 

7. INCREMENT number : 

8. K.EY number £HIFT string .L.ABEL string : Redefines a programmable 
function key to execute the directives specified via "string." 

Ex: S Kl S L;.;.,' L ~/ 

/ L 
Legal Label to be put 

FSE on the key. 
directives 

Ex: 

SKSS\080/FSE\UQREP/ 

9. J.INE: Useful for printing file ("??" appears as prompt) 

1 O . .SCREEN: Useful to repaint screen and must be first command after FSE 
screen mode recovery to resume where you left off. 

3-22 



FSE SET KEYWORDS (CONT) 

11. MARK range WORD: Sets 1 or 2 temporary markers to be used with 
another directive. 

Ex: SM = (MARK) 

SW/= 1f (HRKCH~ 
Ex: SM 510 

CMT50 

12. NUMBER value : Instructs FSE to treat file as sequenced or 
unsequenced. 

A. AUTO : Treat as if unsequenced. In line mode, numbers ru:.e. general, 
but 1lQ1 part of file. 

B. .6.ASIC : Treat as if sequential and sequential lines. 

C. EORTRAN: Like BASIC, except extra space not generated. Not 
recommended. 

D. ~: 

1 3. E.ROMPT value : SP2 recommended. 

14. IAB col1, .. , col20 : When in screen mode, hard tab in column number 1 
is also used, allowing use of 

15. UNDO value: YES or NO ( n (I. ) 

3-23 



FSE SET KEYWORDS (CONT) 

16. VIEW value : Enables user to change screen format. 

A. .QOLUMN num : Specifies number of columns displayed. 

B. EDIT num : Specifies right column to be edited. 

C. LINE num : Specifies number of lines displayed. 

D. QFFSET num : Changes leftmost column displayed. Def a ult is S VO 1 . 

E ~PUT num: 

F. WARN num: 

1 7. WORD value : 

A. Q.HAR char : 

SV081 is useful on 80 column terminals. 

Defines character attribute as alphanumeric or 
punctuator. It reverses current setting. See Reference 
Manual for commands this affects. 

B. EILL margin1, margin2, margin3 : Sets margins other than defaults (1, 
65,5) for use with . CE NIER and B.l.J.. 

18. X line WORD 
Y line WORD 
Z line WORD 

Sets X, Y, or Z value to current or specified line (or word) 
value. Like r::::::J "MARK" except permanent. 

~ 
Ex: 

a Put cursor on character. 
b. SETXW 
c. Put cursor on second character. 
d. SEJYW 
e. Put cursor where you want string to go. 
f. COPYXY 

3-24 



FSE TEACH/UNDO DIRECTIVES 

IEACH : Provides a practice file upon which you may try some FSE operations. 
If user uses CDC721, a tutorial is also provided. 

8 to return. 

Ex: FSE, NOTHING.ITEACH 

NOTE: To set up !each files for terminals other than the 721, establish a 
file named Vterminal {terminal same as SCREEN) under User name 
LIBRARY . 

.UNDO: Removes all "marks" and reverses all changes to previous <Cr> or function 
key. 

3-25 



FSE VIEW DIRECTIVE 

VIEW : Allows viewing a group of lines. ESPECIALLY USEFUL IN LINE MODE. 

1. Without parameters: 

LINE : Displays current, 4 preceeding, and 4 succeeding lines 

SCREEN : Centers current line vertically on screen. 

2. PARAMETER FORMAT 

line direction ~CREEN l:::f.OME 

3. Line : "Common parameter." specifies which line(s) you want to view. 

4. Direction : "Common parameter". Part of "line." Specifies the 

5. ,SCREEN: 

Ex: YliS 

direction you want to view. NEXT and PREVIOUS only! 

With screen editing only. Enables user to view next or 
previous screen. 

Same as (FWD) key. 

3-26 



FSE DOT DIRECTIVE 

. (dot) : Performs word processing functions. 

1. Format : .parameter 

2. QENTER: Centers current line horizontally between preset margins. 

Ex: SET WORD FILL 5 50 10 
,CENTER 

This centers current line within columns 5 and 50. 

3. FILL: 

Ex: S W E 5 50 10 r::::J 
£UJ. Q.! ~ 

Adjusts entire paragraph to margins 5 and 50, plus indents first 
line to 10. 

4. QELETE: Deletes current character and closes up line. Will not take 
characters from next line. 

5. END: Moves cursor to EOL. Same as ( ENDLIN-) 

6. INSERT : Inserts 1 blank before curse(. 

7. !NSERT/strjng : Inserts "string" before cursor. 

8. J.OIN : Takes line below cursor and adds it to current line. Same as 

~= d ~ 
9. S.PLIT : Splits line. The character cursor is at goes to beginning of 

next line. Same as (SPLIT} 
Ex: ~ 

1 o. .e.os number : Moves cursor to column number of current line. 

Ex: .P7 Moves cursor to column 7. 

3-27 



EXERCISE 3.1 

FULL SCREEN EDITOR 

1. Enter FSE using any file name and type "teach" from the home position. 
This will put you into a lesson that will guide you through an FSE session 
using the various keys and commands. 

It should take approximately 45 minutes to an hour to complete. If you 
finish early, continue on. 

2. Define a function key, such as shift-FS, to be the directive QRQ/FSE. Use 
GET STATUS to see current Function Key definitions. Caution - format is 
SET KEY n SHIFTED etc. 

3. Define a Function Key to use SET VIEW OFFSET to switch between column 
1 and column 81. 

4. Save these definitions and the SP2 directive in the FSE STARTUP 
procedure in your own FSEPROC file. Restart FSE to try it out. Remember 
to save the customized file FSEPROC under your 

4 

username. 

5. Try out several FSEPROC procedures; such as CUT, PASTE, UPPER, and 
LONER. 

3-28 



r 

\. 

lb~[N] IF@lUJ~ 

LOCAL FILE COMMANDS 

4-0 





Lesson Preview: 

LESSON FOUR 
LOCAL FILE COMtv1ANDS 

This lesson acquaints the student with the NOS local file commands and 
demonstrates their use. 

Objectives: 

After completing this lesson, the student will be able to: 

List information about a local file before and after specific events. 

Re tease space assigned to local files. 

Use the file positioning statements, REWIND, SKIPF, SKIPFB, SKIPR, BKSP, 
and SKIPEI to get to a desired position in a file. 

Use the 1\le copy utilities, COPY and COPY (BR, BF, CR, CF, El, and SBF) to 
· copy portions or all of one file to another. 

Use the VERIFY command and the verify parameter on the COPY command 
to certify the results of copying. 

Projects: Exercise 4 .. 1 (Local File Commands) 

References: 

NOS Version 1 Reference Manual, Volumes 2 and 3, Local File Command. 

l:.-· l 



LOCAL FILE POSITIONING 

This lesson concerns file structure, positions, and content of local files. 

File content is unimportant when using some commands, but is important 
with others. These differences will be examined in this lesson. 

A file, as defined in Lesson 2, is a collection of information and can be 
manipulated by the local file commands. Files are more efficiently processed on 
disk because of the higher transfer rate of disk over tape. Where possible, tape 
files should be considered to be archival and not be physically positioned, but 
rather, a disk copy can be used for sorts and searches. 

Beginning-of-information (801), end-of-record (EOR), end-of-file (EOF) and 
end-of-information (EOI) are the lowest data organizational level at which the 
commands and compiled programs work. 

When is a file at 801? Always, in the case of a empty file (only an entry in 
the job's File Name Table). After a REWIND ... and in many cases, because of a 
rewind parameter of a command, such as, "CATALOG,EFFILE,R." 

When is a file at EOI? The empty file is one example. Another case is when a 
file has specifically been positioned to EOI by means of COPYEI, SKIPEI, or as the 
result of some move on the file's current position pointer. 

* 

Any other position on a file requires programmer knowledge of the file 
structure. It is crucial therefore, to understand the effect of each command on the 
file's position. 

l.i.-2 



LOCAL FILE COMMANDS 

The ENQUIRE,F command lists names and attributes (length, position, etc.) of 
local files. 

The CLEAR, UNLOAD, and RETURN commands allow clearing of file space. 

The CATALOG,SCOPY and TDUMP commands, give a report about what is in a 
file and how it is organized. This is useful when a detailed· analysis of the file is 
required and no other documentation about the file exists. 

The various, skip, and backspace (BKSP) commands can be used once the file 
structure and content are known, to position the file exactly to where a read or a 
write are to be performed. 

The copy commands, duplicates logical records and files or entire phys.ical 
files, depending on the particular command used and the parameters selected. File 
position is affected by the copies. 

The VERIFY command provides a means to guarantee that information ·was 
duplicated accurately. 

You have already been introduced to several local file commands (CATALOG, 
CLEAR, and ENQUIRE) in Lesson 2 - Permanent File Concepts and Commands and to 
the local/permanent file editor (FSE} in Lesson 3 - Full Screen Editor. 

4-3 



MASS STORAGE FILE STRUCTURE 

When NOS stores a file, it automatically converts the file to a structure that 
will conform to the physical characteristics of the storage medium. The logical 
file and record marks are converted to physical 801, EOR, EOF, and EOI indicators. 
The basis of all physical file structure is the Physical Record Unit {PRU), the 
minimum amount of data that can be read or written in a single read/write access. 

-
On a disk, tracks exist for recording information. A sector is the part of a 

track containing enough space to record 64 words or one PRU. 

PRU size - 64 CM words (up to 640 characters of data) 

801 - PRU 1 or random address 1 of the disk 

EOR - PRU of less than 64 words with a link to the next PRU 

EOF - Zero-length PRU with special link to next PRU 

EOI - Zero-length PRU with no forward link 

Zero-length PRU - No data in the sector 
. 

Short PRU Less than 64 words of data in the sector 

Full PRU - 64 words of data in ttie sector 

Logical Record - Zero or more full PRU's terminated by a Short or 
Zero-length PRU. 

4-4 



EXAMPLES OF MASS STORAGE FILE STRUCTURE 

FILE 1 - TWO RECORD FILE 

LINK 
64 

LINK 
64 

• Note tMt en EOF 1s not required es the lest PRU of e me. 

FILE 2 - THREE RECORD FILE 

LINK 
64 

FILE 3 - MULTI-FILE FILE 

LINK 
64 

• 

LINK 
64 

4-5 

LINK 
64 

• 

(INK 
64 



RETURN COMMAND 

• Release local files assigned to a job. 

• Returns tape unit to system if RESOURCE limits are involved. 

FORMAT: 

RETURN,lfn1 ,lfn2, ... ,lfnn. 

RETURN,*,lfn1 ,lfn2. 
RETURN,*. 

Examples: 

/AETURN,TO,THE,FUTURE. 
/ENQUIRE,F 
/RETURN,* ,BUT,THESE. 
/ENQUIRE,F Files with No-Auto-Drop (NAO) and files BUT 

and THESE remain. Files INPUT and OUTPUT 
remain only because IAF reassigned them. 

UNLOAD COMMAND 

• Same as RETURN for local files. 

• Unloads tape but tape unit resource remains with job. 
~ 

FORMAT: 

UNLOAD,lfn1 ,lfn2, ... ,lfnn. 

UNLOAD,*,lfn1 ,lfn2. 
UNLOAD,*. 

Examples: 

/UNLOAD,THESE,FILES. 
/UNLOAD,*,BUT,NOT,THESE. 

4.-6 



TDUMP COMMAND 

• Lists a local file in octal and/or alphanumeric format 

FOAfv1AT: 

TDUMP,params. 

Where params = 

I = If n 1 Local file to be listed 

L = lfn2 Local file to contain output (default=OUTPUT) 

A Alphanumeric dump only 

A = rcount Number of records in the file to be listed 

F = fcount Number of files in a multi-file to be listed 

N = lines Number of lines to be listed 

~ No rewind; do not rewind lfn1 before the TDUMP 

Examples: 

/TDUMP,I= TAPE1. 
alphanumeric. 

/TDUMP,l=BINARY,L=LIST,A=2,NR. 

/GET,BINS,TEX!°~~ 
/TDUMP,l=BIN~=LIST2. 
/TDUMP,I= TEXT,A. 

4-;7 

Dumps in both octal and 



REWIND COMMAND 

• Rewinds files (local files, including tape files) 

• Positions files at Beginning-Of-Information (801) 

FORMAT: 

REWIND, file1 ,file2, file3, .. , filen. 

REWIND,*. 

REWIND,* ,file1 ,file2, .. , filen. 

Examples: 

/ENQUIRE,F To see file positions. 
/REWIND,DOG,CAT,PAT. Rewind these three files. 
/ENQUIRE,F 
/REWIND,*,NOTME,ORME. Rewind all files but NOTME and ORME. 
/ENQUIRE,F 
/REWIND,*. Rewind all files. 
/ENQUIRE,F 

4-3 



SKIP COMMANDS 

• SKIPEl,lfn. 

- Positions file at End-Of-Information {EOI). 

• SKIPF,lfn,n. 

- Skip forward n number of files (EOFs). 

• SKIPFB,lfn,n. 

- Skip backwards n number of files {EOFs). 

• SKIPR,lfn,n. 

- Skip forward n number of logical records (EORs). End of files 
(EOFs) are treated as EORs. 

• SKIP, label. 

- Not a file positioning command. 

• Examples: 

/SKIPE I, FILE2 
/COPY,F2 
/SKIPFB,FILE2 
/COPY,FILE2 
/REWIND,FILE2 
/SKIPR,FILE2 
/COPY,FILE2 
/REWIND,* 

No output 

Copy last file (or EOF) 

Copy all by first record (or EOF) 



BKSP COMMAND 

• Backspace specified number of logical records (EORs) on a local file. 

• Will be stopped by Beginning or Information. 

FORrv1AT: 

BKSP,lfn,n. 

Example: 

/BKSP,ZIGGY,3. If ZIGGY has three records and an EOF was 
positioned at EOI, ZIGGY will be positioned 
between first and second record since the 
EOF is counted as one record. 

4-10 



COPY COMMAND 

• Copies data from one local file to another (files not rewound). 

• Will stop at double consecutive EOF. 

• See also COPYEI command. 

FORMAT: 

COPY,lfn1 ,lfn2,v. 

Examples: 

/COPY,CAT,RAT,V. Copies CAT to RAT with verify. 
/REWIND,*. 
/COPY,MASTER,OLDMSTR. 
/REWIND,*. 
NERIFY,MASTER,OLDMSTR. Will not compare successfully if MASTER had ': 

two consecutive imbedded EOFs. 

SCOPY COMMAND 

• Useful to see EOR/EOF structure along with data in a text/data file. 

Example: 

/ATTACH,HELPLIB/UN=LIBRARY. 
/SCOPY,HELPLIB. Note that the interactive LIST command 

actually is performed by SCOPY. 

FCOPY COMMAND 

• Generalized file copy, with conversion, routine. 

• See NOS Reference Set, Volume 3, for parameters and examples of 
converting a NOS IAF ASCII file to 8-bit ASCII for printing on Printer 
Support Utility (PSU) line printers. 

4r•ll 



COPYB~COPYCFCOMMAND 

· • Copies file(s) of a multifile local file to another local file. 

• On tapes, copies in coded (COPYCF) or Binary (COPYBF) mode. 

FOR"'1AT: 

/COPYBF,lfn1 ,lfn2,n. 

Where n=number of files to copy 

Example: 

/COPYBF,BIGFILE,SMALLER,6. 

4-12 

Copies 6 files (or to EOI). 



COPYBR COMMAND 

• Copies specified number of records from one local file to another 

FORMAT: 

COPYBR,lfn1 ,lfn2,n. 

Example: 

/REWIND,BIGREC. 
/COPYBR,BIGREC,MISCREC, 10. . Note that EOFs are treated as EORs. 

COPYCR COMMAND 

• Has first and last column options. 

FORMAT: 

COPYCR, If n 1, lfn2, n, fc, le. 

Example: 

/DAYFILE,DAYF. 
/REWIND,DAYF. 
/COPYCR,DAYF,COMMAND,99, 11,80. 
/FSE,COMMAND. An easy way to build NOS command 

files for Remote Batch jobs and 
procedure files. 

4-13 



COPVEI COMMAND 

• Copies one file to another until End-Of-Information (EOI) is reached. 

• Recommended for random files (last record is type OPLD in CATALOG or 
ITEMIZE listing). 

FORMAT: 

COPYEl,lfn1 ,lfn2. 

Examples: 

/COPYEl,ME,YOU. Copies file ME to file YOU. 

/WRITEF(TEXT,2). Writes two EOFs. 
/WRITER(TEST). Write one EOR. 
/REWIND,*. 
/COPY(TEST,NOEOR). Stops at two consecutive EOFs. 
/REWIND,*. 
/COPYBF(TEST,LARGER,99). 
/REWIND,*. 
/COPYEl(TEST,TESTEI). 
/REWIND,*. 
/ENQUIRE,F. And compare sizes. 

l~-14 



COPYSBF COMMAND 

• Copy shifted binary file. 

• Printer carriage "tape" control characters are added to lines of the file. 

• A top-of-form will be inserted before each logical record (EOR). 

• Used to prepare local text files to be routed to .printer or printed at 
terminal after the EFFECT,OFF command has been issued~ 

• Very important if first character of line image otherwise would contain 
data. For example, one (1) will cause top-of-form; zero (O) will cause 
double spacing. 

FORrvtAT: 

COPYSBF,lfn1 ,lfn2,n. 

Example: 

/COPYSBF,TEXT,PRINT,2. Copies two files from TEXT to PRINT. 
/ROUTE,PRINT,TID=C,DC=PR. " 

/EFFECT(OFF). 
/COPYSBF,LISTING. Allows COPYSBF to control paging/spacing. 

l~-15 



PACK COMMAND 

• Removes all end of record (EOR) and end of file (EOF) marks from the 
specified local file. 

• Copies file as one record to another file. 

• Caution; do not PACK procedure and binary files. 

FORMAT: 

PACK,file1 ,file2,x. 

Where: 

file1 = File to be packed 

file2 = File on which to write packed data 

x =- Any alphanumeric character string, 1-7 characters, which 
indicated file1 should not be rewound before pack 

Example: 

/LENGTH, ITUP. 
/PACK,ITUP. 
/LENGTH,ITUP. 
/PACK,TEST,ONEREC. 

/ENQUIRE,F. 

Packs ITUP onto itself. 

The three record file from COPYEI example is 
reduced to one record on file ONEREC. 

l~-lE 



WRITE COMMANDS 

WRITEF,lfn,n. 

- Writes n ·number of filemarks (EOFs) on a local file. 

WRITER,lfn,n. 

- Writes n number of empty records (EORs) on a local file. 

WRITEN,lfn1 ,lfn2. 

- Removes sequence numbers from lines in a sequenced text file. 

Example: 

/BASIC 
/NEW,TEST 
/TEXT 
00100 enter lines 
00200 of text 
00300 -BREAK­
JWRITEN,TEST,TESTOUT . 
/LIST . 
/LIST,F= TESTOUT 
/BATCH 

4-17 



VERIFY COMMAND 

• Compares data on one local file to another. 

• See NOS Reference Set, Volume 3, for compatible formats on tape files. 

FORMAT: 

VERIFY,lfn1 ,lfn2,params. 

Example: 

/GET/PEAS=FROZEN,CARROTS=FROZEN. Assume files on FROZEN contain 
different data. 

NERIFY,PEAS,CARROTS,N,R. Verifies all records of files PEAS and 
CARROTS. Files rewound before and after. 

/SKIPF,PEAS. 
NERIFY,PEAS,CARROTS. 

/SKIPEl,PEAS. 
/SKIPEl,CARROTS. 
NERIFY,PEAS,CARROTS,N. 

Verifies records in "current" file only. 
Will this verify successfully? 

Will this verify successfully? What did we 
forget to do here? 

4-18 



EXERCISE· 4.1 
LOCAL FILE COMMANDS 

1. Get FILE under username . This file contains a FORTRAN 
source program. CATALOG the file to see the file structure. 

2. Compile the program, 

FTNS,l= __ ,B=BINS,L=LIST. 

CATALOG and TDUMP on the binaries created (BINS). Is there any 
difference between the catalog of the source (done above) and the 
binaries (in BINS)? If so, what is/are the difference(s)? 

3. Use FSE to create a file "GIVEN" which has the following file structure: 

4. 

EOR EOF EOR EOR EDF EOI 

Record 1 Record 2 Record 1 Record 2 Record 3 Record 1 

"--- v ./ '-...._ v ___/~ 

FILE 1 FILE 2 FILE 3 

Use CATALOG and SCOPY to see this structure. 

Use the copy and positioning utilities to create a file "BUILT" with the 
following structures: 

"BUILT" 
EOF EOF EOI 

I I I I 
F2R1 D F1R1 F2R1 F3R1 F1R1 F1R2 F2R3 F2R2 

' )' Jl ) 
v v v 

FILE 1 FILE 2 FILE 3 

Where FmRn is record n of file m in the file "GIVEN" of exercise step 3 
- above. 

Hint: Disassemble file and build new one. 

4-19 



EXERCISE 4.1 (CONT) 

5. Verify the records in the source file of step three against corresponding 
records in File 3 of step four's "BUILT" file. Is the result what you 
expected? 

6. Combine "BUILT" file into one logical record. 

7. Unload all local files except the files of step three through six. Check 
that the FORTRAN source and binary files were returned. 

8. Use the COPYCR example to inspect, edit, and save your command sequence 
of this exercise as the file "JOBDECK." 

4-20 



lb~©lNJ~ 

JOB CONTROL LANGUAGE 

5-0 





LESSON FIVE 
JOB CONTROL LANGUAGE 

Lesson Preview: 

In this lesson, the student will learn how to structure a job by the use of JOB 
Control statements. This includes the identification of a job and the specification 
of needed resources by means of the following statements: 

CHARGE 
COvTvENT 
DAYFILE 
ma:> 
ENTER 
HELP 
H~ 

Objectives: 

JOBCARD 
LIMITS 
NOTE 
PASSWOR 
fEX) 

RENArvE 
ROJTE 

CX?ET 
SET JOB 
SUBMIT 
USER 

After. completing this lesson, the student will be able to: 

Use the JOBCARD, USER, and CHARGE statements to gain access to the 
system. 

Use the LIMITS statement to receive a report of allowable resources for 
an account number. 

- Use the PASSWOR statement to change the password on the USER 
statement. 

Use the DAYFILE, COMMENT, and* statements. 

Use the interactive help procedure to obtain information on the NOS 
commands. 

Define the NOS queues, send jobs to the queues, and manipulate queued 
files. 

5-1 



Projects: Exercise 5.1 (Job Control Commands) 

References: 

NOS Reference Set, Volume 2. 

NOS Reference Set, Volume 3, Section 7. 

5-2 



COMMAND SYNTAX 

1. Separators: 

+ - ,. I • ( 

2. Terminators: 

. ) 

3. Embedded blanks are ignored. 

4. Filenames are 1-7 alphanumeric characters. 

5. Filenames SHOULD begin with a letter. 

· 6. NOS expects all commands to be NORMAL (6-bit) upper-case characters. 

EXAtv1Pl.E: 

/FSE,JOBDECK,NG. 
/GET,JOBDECK/NA. 
/CSET,NORMAL 
/FSE,JOBDECK 

is same as 

an editing session involving NOS command files. 

5-3 



COMMENT COMMAND 

• Places comment in system dayfile and job dayfile. 

FOR~T: 

COMMENT.comments entered here 

*comments entered here 

Exampres: 

! 

/COMMENT. TI1ERE ARE COMMENTS WllH ONE FORrv1AT 

rTHIS IS ANOTHER WAY TO WRITE COMMENTS 

5-l+ 



DA YFILE COMMAND 

• Dayfile is a chronological activity log created during job execution which 
contains job history and accounting information. 

• A terminal session's dayfile is discarded at LOGOUT. 

• A remote batch job's dayfile is appended to the job's OUTPUT file for 
printing. 

• System writes job's dayfile to OUTPUT or file specified on statement. 

FORrvtAT: 

DAYFILE. 

DAYFILE, L=lf n, FR=string, OP=ip,PD=pd,PL=pl, l=infile. 
- or-

DAYFILE,lf n,stri ng ,op, pd ,pl,infile. 

Where: 

I 1 n Local file on which to write dayfile 

string String to search for in dayfile 

op Search option 

T Time field 
M Message field (default) 
I Incremental dayfile listing {default) 
F Full dayfile listing 

pd Print density 

p1 Page length 

infile File containing · previous dayfile; default is current 
dayfile 

5-5 



DAYFILE EXAMPLES 

Examples: 

/DAYFILE. 

/DAYFILE,OP=F,L=LIST. 

/DAYFILE,L=DFILE,FR=ERROR,OP=M. 

/*DAYFILE START 

/DAYFILE,FR=*. 

5-~ 

Incremental dayfile listed (from last 
dayfile). 

Full dayfile written to file LIST. 

File DFILE will begin with last 
message beginning with "ERROR" or 
fun dayfile if not found. 

List dayfile beginning with the last 
message beginning with an asterisk. 



ENTER COMMAND 

• Ability to enter series of commands on one line. 

• Basically allows a one line procedure command list. 

• The character after the ENTER commands terminator will be the command 
separator (any separator which is not used in the commands themselves.) 

FOR~T: 

ENTER. /command 1 /command 2/ .. .!command n 

Example: 

JENTER./GET,PRINT./COPYSBF,PRINT,PRINTME./ROUTE,PRINTME,DC=PR. 
/FTN PROC 
/ENTER./NOEXIT./LGO./DMP ./DMD(0,3000) 
/GET, COMPILE, SOURCE. 
IF SE, SOURCE 

Under FSE: 
SK6S\QRQ/ENTER./COMPILEJFSE.\L\QRPROC\ 

Shift-F6. 

5-7 



EXPLAIN/HELP COMMANDS 

• Generates a menu of online help features 

• Prompts for a selection 

FORMAT: 

HELP or EXPLAIN 

Example: 

/SCREEN,PCCONN. 
/HELP. 
/EXPLAIN 

Personal Computer using the CDC Connect Software. 

5-~ 



HELPME COMMAND 

• Gives brief description of command 

• Lists command format and all valid parameters 

• HELPME is an interactive procedure which prompts for parameters~ 

--> l?~t~s~ ~CR> airr~, ~i~~w~l dur:tng d.1a~ogu.e tc get · more information abo:..:: 
con"!rnaJmd parameters 

/LINE 
/HELPME,COPY 
/SCREEN, 72230T 

Format of command with all parameters 

Briel description of command 

Copy fiom this file? <ffn1 > <Cr> or cntl-T to quit 

<C.r> for aU other parameters Will default 

/HELPME,SCREEN 

5-~ 



REDO COMMAND 

• Allows modification and reentry of a previously entered command. 

• Only modify parts of the command; don't have to reenter entire line. 

• Editing conventions are the same as FSE's AL TEA directive (See NOS REDO 
in Reference Set, Volume 3). 

• Useful to see what system saw when "INVALID COMMAND" is issued. Just 
type A. 

FORMAT: 

REDO.string/GO 

Where: 

string 

00 

Examples: 

Initial characters of command to be modified and 
reentered; up to 10 characters. Use $ delimiters if 
non-alphanumeric characters ara required. 

Reenter command withotJt modifications 

/REDO,DAYFILE/GO. Resubmits last command beginning with DAY. 
/CATLIST. 
/RIGO Resubmits last command (CATLIST). 
/ATTACH,OPL=NOSOPUUN=LIBRARX 
/ R Allows easy correction of LIBAARX to LIBRARY and 

resubmission. 

5-10 



LIMITS COMMAND 

• Lists user's validation limits. 

• Shows user index - important if permanent files are reloaded by the 
installation. 

FORW.T: 

LIMITS. 

UMITS, L=lf n. (default is OUTPUT) 

5-11 



NOTE COMMAND 

• Creates file containing, lines of data on same line as command. 

• Format is like ENTER (and BLOCK) commands. 

• See also BLOCK (letters) and Security Header (SEC HOR) if you have· listing 
for mat needs. 

F0Rrv1AT: 

NOTE,lf n,N R./LINE 1 /LIN E2 

Where: 

If n Local file name (default is OUTPUT) 

~ No rewind of lfn before or after command execution 

Example: 

/NOTE,.NR.JWHAT A GROOVY JOBI 

/NOTEJANY PRECEEDING OUTPUT IS EVICTED 

5-12 



PASSWOR COMMAND 

• Allows user to change password. 

• Changes batch or interactive password based on origin of job in which it 
appears. 

FOA1v1AT: 

P ASSWOR, oldpassword, n ewpassword. 

Example: 

/PASSWOR,WAS,ISNOW. 

/PASSWOR. 

? oldvalue 

? newvalue 

System will read password values 
from INPUT. 

5-13 



RENAME COMMAND 

• Changes name of local file. 

• Note the nf n=of n format. 

FORMAT: 

Example: 

/GET, WHITE, YELLOW 
/RENAME,RED=WHITE,81.ACK=YELLOW. 
/ENQUIRE,F 



NOS QUEUE RELATED COMMANDS 

• ACUTE 

• JOB 

• USER/CHARGE 

• SUBMIT 

• SETJOB 

• ENQUIRE, UJN (Lesson 2) 

• CGET 

• DR:P 

5-15 



ROUTE COMMAND 

• Queues a local file to any queue. 

• File will no longer be local. 

• If "SECURITY VIOLATION" results, check dayfile and either JOBCARD or 
USER statement is in error .. Continued security errors can result in your 
user name being invalidated automatically. 

FORMAT: 

ROUTE,lfn,DC=dc,AEP=rep,UJN=ujn,TID=C,UN=un,DO=lid. 

Where: 

de= IN 

de= WT 

Must have correct JOB CARD or it remains local. 

File lfn does not execute, instead it goes to terminal 
wait queue, must retrieve it with QGET. 

de = LP or PR File lfn goes directly to be printed on a printer. 

de = ~ File If n goes to input queue, no dayfile or OUTPUT file 
is generated unless overridden by a ROUTE or SET JOB 
statement in the job. 

de = 10 File lfn goes to Input queue, at end of job the OUTPUT 
queued file goes to· terminal in wait queue, must 

· retrieve it with QGET. 

REP= rep Repetitions of routed file (does not apply to files printed 
at IAF terminals). 

UJN = uj n User job name associated with routed file. 

TIO= C Route OUTPUT file to BATCHIO (BIO) sybsystem's printer 
at the central site (C). 

LN = un User to receive queued files. Default is current user. 

CD = Ii d Mainframe destination for queued output files. 

5-lf. 



ROUTE EXAMPLES 

Examples: Assume permanent file JOB contains: 

MYJOB,T=100. 
USER,un,pw,family. 
ENCUIRE. 

!G ET,JOB 1 =JOB,JOB2=J08,JOB3=JOB. 

/ROUTE,JOB1 ,DC=IN,UJN= TRY1. 

/OGET,UJN= TRY1. 

/ROUlE, TRY1 ,UN=MYBUDDY,DC=WT. 

/AOUTE,JOB2,DC=N0. 

/ROUTE,JOB3,DC=WT. 

/FSE,LIST,A 
/ROUTE, LIST, DC=PR, IC=ASCll, TID=C. 

JOB 1 sent to be executed and output 
will return to user. 

Retrieves output of JOB 1. 

Either this user or user MYBUDDY can 
QGET (or DROP) TRY1. 

JOB2 runs and no output is returned. 
Perhaps data was saved in a file. 

JOB3 is queued directly as output in 
the terminal wait queue. 

Print an upper/lower (6/12 bit) ASCII 
me on a 8-bit ASGll line printer. 
Appendix A in NOS Reference Set. 
Volume 3, contains NOS supported 
character sets. 

5-17 



JOB CARD 

• First card of job deck 

• Specifies user job name 

FORMAT: 

JOBCARD. 

JOBCARD,px. 

Where px = 

Example: 

Job processing parameters (see Vol. 3, Section 7) 

- 1-7 alphanumeric characters 

- First character must be alphabetic 

- Can specify job processing parameters, e.g., job 
priority 

JOB1 ,T =100. Remember terminators! 

JOB2,P5. 

5-1!3 



USER CARD 

• Required card; must be after job card. 

• Note that family name is specified last. 

FORtv1AT: 

USER, username ,password, family. 

Example: 

USER,TOSUSER,KITIY,KMF. 

CHARGE CARD .. 

• Required if username is set up to use charge and project numbers and no 
default is defined for the user name. 

• If required, NOS will prompt user with "CHARGE REQUIRED" . 

. 
• Dynamic updating and enforcing of usage against charge and project 

limits is an option supported by NOS through a utility called PROFILE. 
Each charge number can be assigned a maste~ username which is 
responsible for maintaining the charge and project number usage profiles. 

FOR~T: 

CHARGE,chargenumber,projectnumber. 

CHARGE,CHARGE001,PROJECT0e6. 
CHARGE,*. Displays current charge and project 

numbers. 

5-19 



SUBMIT COMMAND 

• Places a job file into the input queue as a separate job. 

• Caution: Errors in file (e.g., different Batch passwords) could cause 
SECURITY errors. 

• Allows reformatting of job file. 

• Each record on the job file is a separate job. 

FOR~T: 

SUBMIT, If n,q,NR,RB=un. 

Where: 

If n Local file name of file to be submitted to INPUT queue. 

q Disposition of job output after file If n executes. Values can be 
BC, TO, or NO. Default is Local Batch at the central site (BC). 

tfl No rewind before job submission. 

un A destination Remote Batch (or IAF) username. 

5··20 



SUBMIT EXAMPLES 

· Example: 

/GET,SKEEZIX. 
/SUBMIT,SKEEZIX, TO. 
/ENQUIRE,UJN. 

Where job file SKEEZIX file format is: 

/JOB 
/NOSEa· 
MYJOB,T=100,P=4. 
/USER 
/CHARGE 
SET JOB (DC= TO) 
EOOUIRE,F. 
CATLIST. 

/EOR 
data record if required. 

/ENQUIRE,UJN. 
/QGET,UJN=SKEEZIX. 

NOTE: Slash here denotes SUBMIT directives. 

Note: No values and 
no period. 

5-21 



SET JOB COMMAND 

• Change some of the current job's attributes. 

F0Rtv1AT: 

SET JOB,ujn,dc,op. 

SET JOB,UJN=ujn,DC=dc,OP=op. 

Where: 

UJN Changes default UJN to newly specified ujn 

CC Disposition for output upon job termination 

lO Output goes to wait queue 
f\D No output 
a= Default output processing 

a> Job processing options for detached jobs 

SJ (default) Stays suspended until .,recovered or timeout 
T J System terminates job. 

Examples: 

/SET JOB,JOBID1. 

/SET JOB,JOBID2,DC=WT. 

/SET JOB,JSN=AABX,OP= T J. 

/SET JOB(DC= TO). 

5-22 



QGET COMMAND 

• Makes a queued file local to your terminal. 

FORMAT: 

QGET, jsn,q,ujn,lfn. 

QGET,JSN=jsn,DC=q,UJN=ujn,FN=lfn. 

Where: 

JSN Job sequence name of queued file 

UJN User jobname of queued file 

C:C Queue where desired file resides (user ENQUIRE,UJN to 
determine this) 

WT {def a ult) 
FU 
PL 
Fft 

FN If n Local filename to contain queued file 

JSN Def a ult if specified 

WN Def a ult if specified 

Example: 

/ENOUIRE,UJN. 
/OGET,AAAB. Note that the filename of the local file here 
/ENQUIRE,F. will be AAAB. 
/ENQUIRE,UJN. 
/QGET,JSN=BAAD,WN=SHEEP,DC=WT,FN=WOLF. 

5-23 



DROP COMMAND 

• Drop executing remote batch jobs. 

• Drop queued remote batch INPUT/OUTPUT queued files. 

FORf\MT: 

DROP,JSN=jsn, DC=q, UJN=ujn, OP= A. 

- or-

DROP,jsn,q,ujn,R. 

Where: 

j s n Job Sequence Number (JSN) of jo~ to be dropped 

q Disposition Code {DC) of job to be dropped (e.g., based on 
ENQUIRE, UJN) 

u j n User Job Name (UJN) of job to be dropped 

CP=A Drop specified executing jobs without Error EXIT processing 

Examples: 

/ENOUIRE,UJN. 
/DROP,AAAB. Since JSN is specified, DC=ALL is assumed. 
/ENOUIRE,UJN. 
/DROP,,PR. Drop all print for all JSN's. 
/ENOUIRE,UJN. 
DROP,UJN=MYJOB,DC=WT. Drop MYJOB out of terminal wait (for QGET) 
/ENQUIRE,UJN. queue. 

5-24 



2. 

3. 

4. 

5. 

EXERCISE 5.1 

JOB CONTROL COMMANDS 

___ Using FSE, create a job file which issues a dayfile to a local file 
(DAYFILE,L=FILE.) and uses both variations of the COMMENT command. 

Save the file. ---

___ SUBMIT the job file created in #1 to the input queue and have output 
go to the wait queue (SUBMIT,lfn,TO.) 

___ Issue an ENQUIRE,F. The file you submitted will still appear as a 
local file. 

___ ROUTE the file created in #1 to the wait queue. (ROUTE,lfn,DC=wt) 

___ Issue the ENQUIRE,F command again. The file just routed to the wait 
queue is no longer a local file. 

___ Issue an ENQUIRE,UJN to display both the job sequence name (JSN) 
and the user job name (UJN) of your jobs in the queues. 

___ Issue a SET JOB command to change the user job name. 

___ ROUTE another. job to the wait queue and issue an ENQUIRE,UJN. The 
last job routed will have the newly specified UJN. 

___ Issue a QGET command to make one of the files in the wait queue 
local to your terminal. 

___ Issue an ENQUIRE,F to see that the formerly queued file is now local. 

--- Issue an ENQUIRE, JSN to see that the file made local with the QGET 
command is no longer in the wait queue. 

5-25 



6. 

7. 

8. 

EXERCISE 5.1 (CONT) 

___ Drop all remaining jobs in the wait queue. 

___ Issue an ENQUIRE,JSN. Only one job will appear. It will have 
"executing" status - that is your terminal. 

___ Issue a DAYFILE command and have the output go to a local file. 
(DAYFILE,L=FILE1 .) 

___ Enter: HELPME,RENAME. Enter the required parameters to rename the 
local file just created with the DAYFILE statement. 

___ Enter several commands on a single line to issue a DAYFILE, LIMITS,, 
and ENQUIRE (using the ENTER./ command). 

5-26 



r 

(L@:~[N) ®[}~ 

FLOW CONTROL COMMANDS 

AND 

PROCEDURE- FILES 

f-"' 





LESSON SIX 

FLOW CONTROL COMMANDS AND PROCEDURE FILES 

Lesson Preview: 

In this lesson, the student will learn how to structure a job by the use of 
flow control commands and how to write and use procedure files. 

Objectives: 

After completing this lesson, the student will be able to: 

State the rules of syntax governing formation of jobs using CYBER Control 
Language (CCL) now simply referred to as Flow Control Commands. 

Generate and save procedure files 

- Call procedure files 

- Generate and save a user prologue (UPROC) 

- Alter execution of a procedure through flow control statements 

Projects: 

Exercise 6.1 (Flow Control Commands/Procedure Files) 
Exercise 6.2 (Procedure HELP) 
Exercise 6.3 (Menu-driven Procedures) 
Exercise 6.4 (Interactive Procedures) 

References: -· 

NOS Version 2 Reference Manual, Volume 3, Section 4 

6-1 



FLOW CONTROL COMMAND SYNTAX 

• Comma or left parenthesis separates name and first parameter 

• Commas separate consecutive parameters 

• Period or right parenthesis terminates statement 

• Right parenthesis ending an expression within a statement cannot also 
serve as the statement terminator 

• Parenthesis can nest expressions within expressions; they do not imply 
multiplication 

• Comments can follow statement terminator 

A Flow Control command can be over 80 characters. It can extend over more 
than one line if each line to be continued contains no more than 80 characters and 
ends with a separator. 

f·-2 



COMMAND SYNTAX EXAMPLES 

1. Statement Expression Lebel 
Name _L String 

~ / 
WHILE,R 1.L T.R2,FINISH. 

2. Statement Function Label 
Name fu: String 

Tk-;FILE(TEST,Lf2J),~. 

3. Statement Function 

Na~e /• 
.. 

... , ... 

DISPLAY (FILE(T APE 1,BOI )) 

6-3 



FLOW CONTROL COMMAND EXPRESSIONS 

• Consist of operators and operands. 

• Any character string that begins with a numeric cannot subsequently 
contain non-numeric characters, except for an optional B or D post-radix. 

• Alphanumeric strings must begin with an alphabetic character. 

Example: 

Operator 
_/ 

IF/3.EQ.~BEL 1. 

Alphanumeric Constant 
string 

6-4 



EXPRESSION OPERATOR TYPES 

• Used to relate operands in expressions. 

• Three types of Operators 

- Arithmetic 

Relational 

- Logical 

• Three types of Operands 

- Numeric and string constants 

- Symbolic names 

- Functions 

6-5 



ARITHMETIC OPERATIONS 

• The following are the 

OPERATOR 

+ 

* 

I 

* * 

Leading -

Leading+ 

Examples: 

SET(R1 =R2*2+1) 

SET(R1 =(R2+1 )+(R3+1 )) 

DISPLAY, 5** 3. 

arithmetic operators: 

OPERATION 

Addition 

Subtraction 

Multiplication 

Division 

Exponentiation 

Negation 

Ignored 

6-6 



RELATIONAL OPERATORS 

A relational operator produces a value of 1 if the relationship is true, and o 
if it is false. The following are the relational operators (either form may be used). 

OPERATOR 

= .EO. 

.NE. 

< .LT. 

> .GT. 

.LE. 

.GE. 

Examples: 

DISPLAY,R1. 
IF,R1 .NE.1 O,DO THIS. 
*R1 IS NOT EQUAL TO 10. 
ELSE, DO THIS. 
*R1 IS EQUAL TO 10. 
ENDIF, DO THIS. 

OPERATION 

Equal to 

Not equal to 

Less than 

Greater than 

Less than or equal to 

Greater than or equal to 

6-7 



LOGICAL OPERATORS 

When an expression contains a logical operator, the system evaluates the full 
60 bits of each operand and produces a 60 bit result. Each bit of the first operand 
is compared to the corresponding bit of the second operand. If the comparison is 
true, the corresponding bit in the result is set to 1. If the comparison is false, the 
corresponding bit in the result is set to 0. 

OPERATOR OPERATION 

.EQV. Equivalence 

.00. Inclusive OR 

.AND. And 

.XCR Exclusive OR 

.NOT. Complt::ment 

Examples: 

DISPLAY, 10108.XOR.11 OOB. 

DISPLAY,10108.EOV.11008. 

6-8 



ORDER OF EVALUATION OF OPERATORS 

• The order in which operators in an expression are evaluated is: 

1. Exponentiation 

2. Multiplication, Division 

3. Addition, Subtraction, Negation 

4. Relations 

5. Complement 

6. AND 

7. Inclusive OR 

8. Exclusive OR, Equivalence 

• Operators of equal order are evaluated from left to right. 

6-9 



EXPRESSION OPERAND TYPES 

1. Operands can be numeric and literal string constants: 

EXPRESSION 

DISPLAY( 17508) or DISPLAV($A$) 

~/ 
OPERAND 

2. Operands can be NOS defined symbolic names: 

EXPRESSION 
SET,R1 = R2 + 1. 

\ I 
OPERAND 

· 3. Operands can be NOS defined functions: 

I FE,F I LE(ALPHA,PM) ,LABEL6. 

~ 
OPERAND 

6-1() 



CONST ANT OPERANDS 

1. A constant is a string of 1 to 1 O characters that NOS processes as an 
integer. 

2. If first character is O to 9, all characters in the string must be numbers, 
except for a B or D optional post-radix. 

3. If an operand must start with an alphabetic and is not a defined Job 
Control Symbolic Name or function it must be written as the special kind 
of constant known as literal. 

4. UTERAL: A string of 1 to 10 characters delimited by "$". For example, 
$ A LITERAL$. 

5. Literals are interpreted as right-justified display code with binary zero 
fill, and processed as an integer. 

6. If a literaJ is to be stored in Job Control register, it may be truncated. 
For example, SET(R1=$AVERYLONG1$). 

6-11 



SYMBOLIC NAME OPERANDS 

• A string of characters predefined by NOS and having an assigned value. 

• The value assigned is specified by the installation, NOS, or the user. 

• With a few exceptions, all symbolic names have an initial value of 0. -

Example: 

IFE,EF::CPE,JUMP1. 

lFE,OT =lAO,JUMP. 

6-12 



FUNCTION OPERANDS 

• Used as expressions or operands within expressions in CCL statements 

• There are 3 functions (prior to NOS 2. 5.1): 

1 . FILE(LFN,EXP) 

2. FILE(LFN,DT(MT)) 

3. NUM(R1) 

NUM($1978$) 

Determines if a file has a specified 
attribute. 

DT determines device type on which a file 
resides. This example determines if LFN is 
assigned to 7-track magnetic tape. 

Determines if string is numeric. 

If string contains special characters, it must 
be delimited by dollar signs and will always 
be evaluated as non-numeric. 

• NOS 2.5.1 added a number of string functions to this set of file functions. 

STA {exp, first, last) 

STR B(nu mexp, first, I ast) 

STRD(numexp,first,last) 

Produces a left-justified literal string. 
~ 

Produces a literal containing the octal value 
of "nu~exp". 

Produces a literal containing the decimal 
value of "numexp." 

• In STR/STRB/STRD, use positive values to count from left (use negative 
values to count f ram right). 

LEN(string) Produces the character length of a literal 
(after $ delimiters are removed). 

6-13 



BEGIN 

DISPLAY 

ELSE 

ENDIF 

EXIT 

IF (or IFE) 

NO EXIT 

ONEXfT 

REVERT 

SET 

SKIP 

WHILE 

EXECUTION CONTROL COMMANDS 

DESCRIPTION 

Initiates processing of a procedure 

Evaluates an expression and displays the result in the 
dayf ile of the job 

Terminates skipping initiated by a false expression 
within an IF command or initiates skipping to a matching 
ENDIFcommand 

Terminates skipping initiated by a matching IF, SKIP, or 
ELSE command 

Establishes the end of the loop 

Controls the command flow in the event of errors 

Conditionally skips one or more commands 

Disables EXIT error processing 

Enables EXIT error processing 

Returns processing fro_m a procedure to the command 
record of procedure that called it 

Assigns values to user changeable NOS symbolic names 

Skips to the first matching ENDIF command 

Establishes the beginning of a loop. If the associated 
expression is true, the loop is processed; if it is false, 
the loop is not processed 

E-14 



DISPLAY/SET 

DISPLAY STATEMENT 

• Evaluates an expression and sends result to dayfile 

• Largest decimal value which can be displayed is 10 decimal (12 octal 
digits. 

• Largest octal value which can be displayed is 20 octal (16 decimal) 
digits. 

FORMAT: 

DISPLAY (value or expression) 

Example: 

DISPLAY(DATE) 

SET STATEMENT 

• Assigns a value to a control register, error flag, dayfile-skipped-flag, or 
changes the current time-sharing subsystem. 

FORMAT: 

SET(SYM=EXP) 

Examples: 

SET(R1 = 7) 
SET(R3 = R1 + R2 - 1) 
SET(SS = BASIC) 

6-15 



EXIT/NOEXIT 

EXIT STATEMENT 

• Indicates position in the current command record where processing will 
resume if an error is encountered. 

• Indicates where to terminate normal command processing if an error is 
not encountered. 

FORMAT: 

EXIT. 

Example: 

EXIT. 
DAYFILE,OP=F. 
*PROBLEMS OCCURRED. 

NOEXIT STATEMENT 

• Suppresses EXIT command processing. 

• If an error occurs, processing continues with the next command instead of 
the command following the EXIT command. 

FORMAT: 

NOEXfT. 

6-lE 



ONEXIT STATEMENT 

• Reverses effect of a NO EXIT command. 

• If an error occurs in processing the commands following ONEXIT, control 
transfers to .the command following the next EXIT command. 

FORr.AAT: 

ONEXIT. 

Example: 

NOEXJT. 
GET,F1LE. 
ROUTE,FllE,DC=PR. 
NOTE .. NRJFILE ROUTED 
ONEXJT. 

NOEXIT. } 
GET,MlSSING. 
ONEXJT. 

Is equivalent to GET.MISSING/NA. 

6-17 



IF/SKIP 

IF STATEMENT 

• Alternate form is IFE ("if expression"). 

• Conditionally initiates skipping of succeeding statements. 

• Use to control flow, determine error, avoid errors, and recover from 
errors. 

• If condition is true, next statement is processed. 

• If condition false, skipping initiated until matching ELSE or ENDIF. 

FORMATS: 

1. IF,expression,label. 
2. IF,expression.command. 

SKIP STATEMENT 

• Initiates unconditional skipping of succeeding control statements. 

• Equivalent to an if statement with an exp.ression which is never true. 

• Only an ENDIF terminates skipping initiated by a SKIP. 

FORMAT: 

SKIP ,label. 

Example: 

PURGE,JOHNNY. 
SKIP.CAT. 
EXIT. 
* PURGE DID NOT WORK 
ENDIF,CAT. 

6-lR 



ELSE/ENDIF 

ELSE STATEMENT 

• Performs either 

- Terminate skipping initiated by false IF, or 
- Initiates skipping from ELSE to ENDIF. This happens for a true IF 

command. 

• Neither SKIP nor ELSE terminates skipping initiated by another SKIP or 
ELSE. 

FORr.MT: 

ELSE, label. 

ENDIF STATEMENT 

• Terminates skipping initiated by SKIP, IF, or ELSE. 

• Label string on ENDIF must match. 

FOR~T: 

ENDIF,label. 

Example: 

IF,FILE(FTNBIN,.NOT.LO),COMPILE. 
GET,FTNIN/NA. 
FTN5,l=FTNIN,B=FTNBIN,L=0. 
RE11JRN,FTNIN. 
ENDIF,COMPILE. 
•stNGLE LINE IF. 
IF ,FILE(FTNDATA,.NOT.LO). GET,FTNDAT AINA 
IF, FILE(FTNDATA.NOT.LO).A TT ACH,FTNDAT A. 

6-1~ 



PROCEDURE 

• 
• 
• 

IF ,condi t 1 on,SAME. 
• 
• 
• 

(commends) 

• • 
• 

ENDIF,SAME. 

• • 
• 

(commends) 

IF-ENDIF PROCESSING 

PROCESSING IF 
CONDITION IS TRUE 

• • 
• 

IF ,Condit i on,SAME. 
• • 
• 

(commonds) 

• Process • 
• 611 

ENDIF,SAME. commends. 

• 
• 
• 

(commends) 

6-20 

PROCESSING IF 
CONDITION IS FALSE 

• 
• 
• 

IF ,Condit j on,SAME. 

Skips to motching 
ENDIF. 

ENDIF,SAME. Continues 

• proces-

• sing 
• ofter 

(commends) 
ENDIF. 



PROCEDURE 

• 
• • 

IF ,condition, MATCH. 
• 
• • 

(commends) 
• 
• 
• 

ELSE,MATCH. 
• 
• 
• 

(commends) 
• • • 

ENDIF,MATCH. 

• 
• • 

(commends) 

IF-ELSE-ENDIF PROCESSING 

PROCESSING IF 
CONDITION IS TRUE 

• 
• 
• 

IF,condi tion,MATCH. 
• • • 

(commends) 
• 
• 
• 

EL SE,MATCH. 

Skips to motchi ng 
END IF. 

ENDIF,MATCH1 Continu~s 
• process1ng 
: 6fter 

(commends) ENDIF. 

6-21 

PROCESSING IF 
CONDITION IS FALSE 

• 
• 
• 

IF ,condi ti on,MATCH. 

Skips to metching 
ELSE . 

ELSE,MATCH. 
• • Continues • 

(commends) processing 
• ef ter 
• ELSE . • 

END IF ,MATCH. 

(commLds,J 



WHILE/ENDW STATEMENTS 

• Bracket a group of control statements into a loop that can be repeatedly 
processed. 

• Loop is repeated as long as expression in WHILE is true. 

FORrviAT: 

WHILE, expression, I abel. 
ENDW,label. 

Example: 

*EMULATE REP=13 FOR AN IAF TERMINAL 
SET,R1=0. 
SET,R2=14. 
WHILE,R2.GT.R1 ,LOOP. 
SET,R2=R2-1. Original plus 13 copies. 
REWIND,DATA. 
COPYSBF,DATA,USTING. 
DISPL.AY,R2. for debugging 
ENDW,LOOP. 
ROUTE,USTING,UN=MYBUDDY,DC=PR. 

6-22 



Gt:Jei$ 

fr.i-aitlk 
to 
st~rt 
Qif 

lDfJ;~~ 

REPEATING COMMANDS 

• • • 
(commends) 

6-23 

PROCfESSING WH~ILE 
EXPR:SSION ns FALSE ~ 

. I •• 
WHILE_,~>(.~ressi1!Hn.,LOOP. 

Sk\ps to matching ENDW. 

ENDW:LOOPJ Processes 
• commends 

( • ofter ENDW. 
commends 



6-24 



PROCEDURE 

Definition: 

"A user-defined set of instructions that is referenced by 
name. The instructions consist of procedure directives 

and system commands.• 

PROCEDURE FLOW 

• Procedures can be nested. 

• Control reverts to next command. 

• Error exit is honored on REVERT,ABORT . 

. PROC,MAIN. 

• • 
• 

BEG I N,,ONE. 

• • 
. • 

REVERT. 

.PROC,ONE. . 
• 
: <.PROC,TWO . 

• BEG I N,,TWO. • 
• • 
: . . REVERT.ABORT. 

EXIT. 
REVERT. 

E-25 



BEGIN STATEMENT 

• Inserts a procedure into a control statement record or into another 
procedure 

• Analogous to FORTRAN "CALL" statement 

FOR~TS: 

BEGIN,PNAME,PFILE,P1 ,P2, ... ,Pn. 
-PNAME,PFILE,P1 ,P2, ... Pn. (interactive jobs only) 
PFILE,P1 ,P2, ... ,Pn. 
PNAME,P1 ,P2, ... ,Pn. 

- See BEGIN statement in the NOS Reference Set, Volume 3, for PNAME 
and PFILE def au Its under each of these formats. 

Parameter formats: 

KEY'M:fl) 

~():: 

KEYV\ORD=VALUE 
KEY'NORD--SYMBOL+ 
KEY'NOAD=SYtv180L+B 
KEY'NOAD=:SYMBOL+D 

BEGIN substitutes the value 
of the symbolic narl)e. 

Given: file COMPILE containing: 

.PROC,PASSIVE,IN,OUT,BINS. 
*BEGIN PASSIVE,IN,OUT,BINS. 
FTNS,l=IN,L=OUT,B=BINS. 
REVERT,NOLIST. 
EXIT. 
DAYFILE(FR=*) 
REVERT.ABORT. 

Example: 

/BEGIN,PASSIVE,COMPILE,SOURCE,LIST,LGO. 

6-26 



INTERACTIVE BEGIN STATEMENT 

• Same as preceeding {passive) BEGIN formats except: 

- Additional formats 

BEGIN,PNAME,PFILE? 
PNAME? 
-PNAME,PFILE? 

- Additional parameter formats: 

KEYVVORD? 
? 

MENU BEGIN STATEMENT 

• Procedure call same as Interactive BEGIN. 

• Additional parameter formats are 

OMITTED 
? 
CHOICE? 
CHOICE 

6-27 



REVERT STATEMENT 

• Terminates procedure processing. Returns to calling procedure or job 
level. 

FORrviATS: 

REVERT. 
REVERT,ABORT. 
REVERT,NOLIST. 
REVERT,EX. NOS command statement. .. 

• NOS always appends this sequence to a procedure at BEGIN time: 

REVERT.CCL 
EXIT.CCL 
REVERT,ABORT.CCL 

6-28 



USER PROCEDURES 
(PROLOGUES) 

• Definition: 

A procedure the system executes immediately after a user logs in. The 
user can define his/her own prologue to do such items as set terminal 
characteristics. execute commands, and call other procedures. 

• Usage: 

System will cause prologue to execute 

Will execute each time user's name is validated in any mode 
(Interactive login or submitted bate~ jobs) 

If prologue fails, NOS will not issue the RECOVER command 
automatically. 

Prologue procedure name can be seen by using the LIMITS command. 

6-29 



SETTING UP A USER PROLOGUE PROCEDURE 

• Create a procedure file with the desired commands. 

• Pretest the procedure. 

• Save the procedure as a permanent file. 

• Inform the system of the prologue using command: 

UPROC,FN=pfile 

- or-

UPROC,pfile 

Where: 

pfile Permanent file containing the prologue 

• View definition of prologue using LIMITS.· 

• If necessary, clear with UPROC. 

6-30 



PROCEDURE PARAMETERS 

• Definition: 

A value that folf ows the procedure name that alters the behavior of 
the procedure 

• Usage 

File names 

- Variable constants checked for flow control 

- Parameters on system commands 

6-31 



BEGIN/.PROC COMPARISON 

BEGIN Commend Procedure Heed er Directf ve 

pneme, .PROC,pneme* I, f ___________________ t 

keywrd 1 :volue1, keywrd 1"description1"=(checklist 1), t _______________ t 

keywrd 2=ve 1ue2, keywrd 2"descri pt ion 2"=(checklf st 1), t _______________ t 

• • 
• • 
• • 

keywrdn=Velue 1 keywrdn "descriptionn .. =(check11st2 ). t _______________ t 

€-32 



PROCEDURE PARAMETER SUBSTITUTION 

• Order dependent 

- Compares parameters on the BEGIN and PROC commands in the order 
they appear; then substitutes in procedure 

Ignores all excess on the BEGIN command 

Example: 

.PROC,START,IN=IN,OUT=OUT,LFN=MINE. (procedure header) 

BEGIN,START ... YOURS. 

The default is used for IN and OUT while YOURS is substituted 
for MINE 

• Order Independent 

- Parameter comparison is based on keyword matching. 

- NOS switches. to independent order when: 

+ BEGIN contains a KEYWORD= or KEYWORD=VALUE format 
+ Procedure header contains KEYWORD=DEFAULT1/DEFAUL T2 
+ A slash (or reverse slash) separator is encountered in the 

user's BEGIN command (or in the PAOC parameter list). 

- Matching always begins in order dependent mode 

- You cannot switch back from order independent mode to order 
dependent mode. 

6-33 



INTERACTIVE PROCEDURES 

Definition: 

A mode of processing by a procedure in which the user enters a 
response to parameter prompts which cause parameter substitution 
prior to procedure execution. 

INTERACTIVE PROCEDURE STRUCTURE 

Procedure header 

Formatting section 

Help section 

Procedure Body 

Contains either pname *I for Interactive or pname 
*M for Menu type. 

(optional) 

NOS Command section 

Data section (optional, generates local file) 

6-3l: 



OPTIONAL INTERACTIVE PROCEDURE DIRECTIVES 

• These DOT directives are interpreted at BEGIN time and not seen by NOS. 

• DOT directives are listed inside the back cover of NOS Reference Set, 
Volume 3. 

DIRECTIVE TYPE DIRECTIVE 

Formatting .CORRECT, prompt. 

.ENTER.prompt. 

.Fn,label. 

.NOCLR,message. 

.NOTE, message. 

.PAGE.label. 

. PROMPT, text. 

Example: 

FUNCTION 

Specifies the prompt to follow an 
incorrect parameter entry 

Specifies the prompt to appear before a 
parameter entry is made 

Specifies a label for programmable 
function key Fn 

Inhibits the automatic clearing .of the 
screen while the procedure executes 

Specifies a message to appear on the 
screen while the procedure executes 

Specifies the string to preceed the page 
number on the screen for procedures that 
require continuation screens. 

Specifies the text for the general 
information on how to proceed. 

• PROMPT, Select by Number or enter ? for help . 

~-35 



Branching 

File 

Comment 

PROCEDURE DIRECTIVES {CONT) 

.IF,label. 

. ELSE,label. 

.ENDIF,label. 

.EX.command. 

.DATA,lfn. 

.EOFor .EOP 

.EORor .EOS 

. • comments 

Allows conditional expansion of the 
procedure body 

Terminates skipping initiated by a 
matching. . IF initiates skipping until a 
matching .ENDIF is found 

Terminates skipping initiated by a 
matching .IF or .ELSE 

Submits a single command to the system 
for immediate execution 

Creates a local data file 

Used to insert an End-Of-File mark in a 
data file created by the procedure 

Use to insert an End-Of-Record mark in a 
data file created by the procedure 

· Identifies comments in the procedure . 
These will not be dayfiled since NOS will 
not see them. 

6-36 



HELP DIRECTIVES 

• Used to denote information about the procedure or its parameters. 

• Accessed later at BEGIN time by typing A "?" or by pressing HELP key 
during prompting sequence. 

FORMATS: 

. HELP. 

. HELP,,NOLIST. 

. HELP ,keyword. 

. HELP,keyword,NOLIST. 

Supplies general help information . 

Suppresses NOS supplied help information . 

Supplies help on a specific procedure call 
Keyword (or menu item on menu procedures) . 

END HELP DIRECTIVE 

• Occurs once. 

• Terminate help section. 

FORMAT: 

.ENDHELP. 

6-37 



USING HELP DIRECTIVES 

RESULT 

PROCEDURE INTERACTIVE MENU 
CALL PROCEDURE(* I) PRCCEDLRE 

pname The system prompts The system displays the 
for parameters. menu and prompts for a 

a selection. 

pname? The system provides The system provides any 
. HELP text about the about the procedure itself, 
the procedure itself displays the menu, and prompts 
and then prompts for for a selection. 
parameters. 

pname,? SAME AS pname?. You get an error message 
followed by the menu and a 
prompt for a selection. 

pname,keyword? The system provides SAME AS pname,?. 
any .HELP text for the 
parameter associated 
with keyword and then 
prompts for parameters. 

pname,choice? Not applicable. The system provides any .HELP 
text -for that menu selection, 
displays the menu, and prompts 
for a selection. 

6-38 



) PARAMETER SUBSTITUTION/CONCATENATION 

• Applies to both command and data sections of procedure body. 

# - Graphics pound sign 

- Inhibits substitution 

- Underscore 

- Concatenation of two parts after parameter substitution 

€-39 



MENU-DRIVEN PROCEDURES 

Definition: 

A procedure constructed so that when called by the user, 
displays several selections as to what the procedure 
can do and acts based on user selection from the menu. 

FORMAT: 

.PROC,pname*M"title",OPTION= 
( 1 "first selection" 

,2"second selection" 
,N"Nth selection") 

.ck 

Where: ck Is an optional one to ten character comment keyword. 

Example: 

.PROC,UNEM*M"FILE ROUTING OPTIONS",OPTION• 
(1"PRINT A FILE" 
, 2"PUNCH A FILE" 
,3 "PLOT A FILE") 

*BEGIN UNEM,#OPTION-OPTION. 
IF,OPTION.E0.1.MYPRINT. 
IF,OPTION.E0.2.MYPUNCH. 
IF,OPTION.E0.3.MYPLOT. 
REVERT,NClJST. 
EXIT. 
DAYFILE,FR•*. 
REVERT ,ABORT. 

6-40 

REVERT,EX.BEGIN,UNEM_OPTION. 



INTERACTIVE PROCEDURE PARAMETER· PROMPTING FORMAT 

• Provides validation of values passed at BEGIN time. 

• Allows default values. 

• Allows multiple keywords . 

. PROC,pname*l"title",p1 ,p2, ... ,pn.ck. 

Where: 

pname One to seven character procedure name 

title Zero to forty character title to the procedure 

pi Optional keywords to a maximum of fifty. Format is 
keyword=(valid checklist patterns) 

.ck. One to ten character comment keyword (optional) 

6··41 



PARAMETER CHECKLIST PATTERNS 

CHECKLIST PATTERN PARAMETER REQUIREMENT 

*A Can be any string of 1 to 40 characters 

*F Can be a file name 

*K Can be the keyword itself 

*N or *D Can be omitted from the procedure call 

*Sn(set) Can contain n or fewer elements from the specified set 

string Can be the specified string 

• Each checklist pattern has the following three formats and each format 
specifies a different substitution scheme 

PATIERN=VALUE 

PATIERN= 

PATIERN 

Substitutes value for the keyword. 

Substitutes an empty (null) string for the keyword. 

Substitutes the key word itself (in effect, no 
substitution). 

6-42 



INTERACTIVE PROCEDURE EXAMPLE 

• Procedure which will compile a FORTRAN program 

• Use the user-specified files for input and output or use the default names 
provided in the procedure header · 

~ .PROC,RUNF*l"Compile from Input File" 
,IN"-lnput file"=(*F,*N=INFILE) 
,OUT"-Output file"=(*F, *N=OUTFILE) 

FTN5,l=IN,L=OUT,GO. 
~ *BEGIN RUNF,#IN=IN,#OUT =OUT. 

REVERT,NOLIST. 
EXIT. 
DAYFILE,FA=*. 
REVERT,ABORT. 

• Since all keywords have default values defined (*N), this procedure will 
not prompt for any keyword values unless called with an invalid file name 
(e.g., greater than seven characters). 

6-l~ 3 



EXERCISE 6.1 
FLOW CONTROL COMMANDS AND PROCEDURE FILES 

. * Remember to test all procedures twice. 

1. Type in some Flow Control statements with variations on the syntax. 
Type some statements in with errors. What message(s) appear? 

2. Obtain values for the symbolic names that are set by the system. 

3. Set registers to different values and display them to make sure the new 
values are there. 

4. Write a simple procedure file(s) using all Flow Control Commands (e.g., IF, 
ENDIF,EXIT.) and type into the system. Execute the procedure(s). 

5. Using FORTRAN program, (see next page) under username 
write a procedure file to get that file. Execute the binaries. Be 

sure to save this procedure file - you will be using it later. 

6. Write a User Procedure to put your terminal into Screen mode and put a 
message to the screen when the procedure has finished execution. 

* Make use of exit error processing in all procedures. 

* Remember to save all files and procedures you create! I I I I 

6-4/J 



SAMPLE FORTRAN PROGRAM 

PROGRAM DEHFfNS 
CHARACTER LAST*10,FIRST*10 
REAL RATE, GROSS, NET, HOURS, FTAX 
REALFRATE 
FRATE=0.30 
PRINT*,'ENTER LAST NAME, FIRST NAME - BOTH IN SINGLE QUOTES' 
READ*,LAST,FIRST 
PRINT*,'ENTER PAYRATE, HOURS WORKED - NO QUOTES' 
READ*,RATE,HOURS 
GROSS= HOURS* RATE 
FT AX = GROSS * FAA TE 
NET= GROSS- FTAX 
PRINT*,'INDIVIDUAL PAYROLL STATISTICS' 
PRINT*,' ' 
PRINT* ,'EMPLOYEE NAME: 
PRINT*,'PAYRATE: 
PRINT*,'HOURS WORKED: 
PRINT*,'GAOSS PAY: 
PRINT*,'FEDERAL TAXES: 
PRINT*,'NET PAY: 
PRINT*,' ' 

',FIRST,LAST 
',RATE 
',HOURS 
', INT(GROSS*100+0.5)/100.00 
', INT(FT AX*100+0.5)/100.00 

', INT(NET*100+0.5)/100.00 

PRINT*,'END OF INDIVIDUAL PAYROLL' 
STOP 
8\[) 

6-45 



EXERCISE 6.2 
PROCEDURE HELP 

Create an interactive procedure file that has three parameters. Write a help 
section that contains help for the procedure and for each individual 
parameter. 

Hint: You will be building on this procedure and will later use this help 
section in a interactive procedure that will have three parameters for 
the execution of an FTNS program. The parameters will be "IN" for the 
input file, "OUT" for output file, and "BIN" for the file to contain the 
binaries. 

Practice obtaining help on the procedure itself and on permissible parameter 
values. 

6-46 



EXERCISE 6.3 
MENU-DRIVEN PROCEDURES 

You've been so innovative so far, just create a menu-driven procedure to call 
procedures from those that you've worked on so far or from the HELPLIB file 
under username LIBRARY. It can be as simple or as complicated as you wish. 
Be sure to try out help options with MENU procedures. 

* It is a good practice to check that a new or revised procedure returns all 
unnecessary local files after it completes. 

6-47 



EXERCISE 6.4 
INTERACTIVE PROCEDURES 

Expand upon previous help procedure file. Have three parameters in the .PROC 
LINE: "IN" to prompt for the input file, "OUT" to prompt for the file to contain 
the output, and "BIN" to prompt for the file on which to place the binaries 
from the FTNS compile. Have the statements necessary to both compile and 
execute the FTNS source program (DEHFTNS). 

Use different checklist patterns when creating this procedure so that you 
become. familiar with how substitution occurs. 

6-1:8 



[b~[N]i/ 

INTRODUCTION TO LIBRARIES 

7-0 

, ______ ...,, 





Lesson Preview: 

LESSON 7 
INTRODUCTION TO LIBRARY GENERATION 

This lesson is intended to provide an introduction to b~n-~~y_ li_~-r~ry creatio_n. 

Objectjves: 

After completing this lesson, the student will: 

Have a basic understanding of binary library creation. 

Be able to set up a simple job to create a user library file. 

Declare the user library file to be a global library file. 

Projects: Exercise 7.1 

References: 

NOS Version 2 Reference Manual, Volume . 3, Section 15 (LIBGEN 
statement) 

7-1 



The applicable meaning of the term LIBRARY must be determined from its 
context. 

USER NAME LIBRARY - Username LIBRARY is a reserved username defined at 
system installation. This username can contain both text and programs, which is 
easily accessible by authorized users from a centralized location. Files stored 
under username LIBRARY need not be libraries themselves. 

PROGRAM LIBRARIES - A program library is a collection of compressed 
source deck images stored in M9Qt~;l or UPDATE format. Program Libraries can be 
recognized by the OPUUPL type records contained within them. 

USER LIBRARIES - User libraries are files which are searched by CYBER 
loader to satisfy external references within a program it is loading. ~----~~c_9_Q~~i_n 
compiled or as~embl~d _Jo.utirie~!?· User libraries can be recognized in a file by the 
tJCia- typa-·racord ·which defines them. 

GLOBAL LIBRARIES - A Global library is a set of user library formatted files .. 
This library is searched: 

1. By NOS for a program name, or procedure name that matches the command 
name, or 

2. By CYBER loader to satisfy external references within a program it is 
loading. Global, in this context, implies that t~e user library files do not 

have to be specified "local" to each CPU program load sequence. 

In this lesson, "LIBRARY" will refer to USER or GLOBAL libraries only. 

7-2 



) 

USER LIBRARIES 

A USER LIBRARY is a file containing records that are accessed individually. 
Library records can be of several types, including: 

User library directory (first record) 
/ 

Multiple entry point overlay 
CYBER loader capsule 
Overlay / 
Procedure file · 
Relocatable user program · 

ULIB 
ABS 
CAP 
OVL 
~ 
REL 
TEXT 
OPlD 

Source or data (column 1-7 of first line is nonblank) 
Old program library directory (last record) 

Record types can be determined by using CATALOG. 

Two types of files are allowed: 

- ~~-q~~ntjal (Library file input); slower access 
Random (User Library format) 

When a command is encountered by NOS, the search order is: 

1 . If command is prefixed by a ~' go to step 5. 
~, 

2. Search the user's local files or Global Library Set for a matching 
file name. 

3. Search Indirect access and Direct Access permanent files of the user 
if BEGIN. 

4. Search Indirect access and Direct access permanent files of user name 
LIBRARY if BEGIN. 

5. Search the central library directory for a matching program name. 

6. If three character name and user is permitted to call PP programs as 
commands, search PP program names. 

7-3 



7-4 



) 
LIBGEN COMMAND 

• Creates user library of routines for use with NOS and the CYBER Loader. 

FORMAT: 

LIBGEN,params. 

Where params are any of the following in any order: 

F=lfn1 

P=lf n2 

N=lfn3 

NX=n 

Example: 

Name of file containing records ·to be placed on -user 
library file lfn2. Default file name is LGO. 

Name of the file on which the user library is to be 
written. Default file name is ULIB. 

Name of the user library being generated, this name 
becomes the name of the ULIB and OPLD records. 
Default is lfn3=1fn2. 

If n is nonzero, no cross references are given. 
Decks are not cross-linked in the ULIB directory 
(avoid duplicate entry points on loads). Default is 
NX=0. 

/LJBGEN,F=RECORDS~P=USERLIB,N=LIBNAME. 

This statement will create a new user library called USERLIB from the 
records contained on file RECORDS. The library name in ULIB record 
will be LIBNAME. 

/ULIB? 

Calls a NOS procedure to aid in using LIBGEN. 

/CATALOG,LIBNAME,R,U,N. 

To see user library contents. 

7-5 



[Q)~©~~O~@ ~ 

@lb©®~lL lLO®~~W 

7-6 



LIBRARY COMMAND 

• Specifies a global library set for your current job or session. 

• To execute a procedure or program from a global library file, you need 
only to specify a procedure name or entry point name. 

• A ZZZZZLD local file will be opened to allow random access into the 
current global library set. 

FORMAT: 

LIBRARY. To clear the current set of library files. 

LIBRARY, lfn1 , ... ,lfnn/directive. 

Where: 

lfn 

directives 

Local file.name or system library containing the user 
library. Up to 24 files can be referenced in your global 
Ii brary set. 

A Add specified files to the· current global library set 

D Deletes the spec~fied files from the current global 
library set 

R Replace the global library set with the specified 
library set (default). 

7-7 



LIBRARY EXAMPLES 

Examples: 

/LIBRARY,LIB1,LIB2/A. 

Add files LIB 1 and LIB2 to the current global library set. 

/LIBRARY. 

Clear the current global library set. 

/ENQUIRE,L 

See the current global library set. 

7-3 



7-9 



LIBEDIT COMMAND 

• Generates a file with records copied from one or more other files 

FORMAT: 

LIBEDIT,params. 

Where params 

P=lfn 

N=lfn 

I = lfn 

B=lfn 

optional parameters: 

Edit old file user library lfn - default is OLD 

Write new user library file here, default is NEW 

Input directives here - default is INPUT, 1=0 means 
no directives 

User records from this file for insertions and 
replacements 

U Call LIBGEN to create new user library file 

L=lf n List output here - OUTPUT is default 

LO=listopt Where listop can include ~the following: 

C List directives 
E List errors 
M List modifications 
N List records written to new file 
F Full listing 
Z Directives appear on command line with a 
separator scheme like ENTER, NOTE, and BLOCK 
commands. 

7-1'1 



LIBEDIT EXAMPLES 

Example: 

/LIBEDIT,P=USERLIB,1=0,N=NEWLIB,B=NEWRECS,L=LIST,U,LO=F. 

Old user library, USERLIB, will be used as input to LIBEDIT. The new 
library created (U) will be placed on NEWLIB. No input directives _ie 
needed, but insertion records will be read from file, NEWRECS. LIST 
will contain a full listing from this run. 

/ULIB? 

Calls a NOS procedure to aid you in updating user library files. 

7-11 



7-12 



) ADD DIRECTIVE 

• Inserts records before a 0-length record 

FORMAT: 

Where: 

gid has the form: type/name 
name 
type/* 
• 
gid-gid 
0 

(default type) 
(*=all) 
(all of default types) 
(gid=any of above) 
(0 length record) 

DELETE DIRECTIVE 

• Suppresses copying of the specified records from the old file to the new 
f i I e 

FORMAT: 

7-13 



INSERT or AFTER DIRECTIVE 

• Copy the specified records or groups or records from current replacement 
file after copying specified old file record onto the new file 

FORMAT: 

REPLACE DIRECTIVE 

• Replaces old file records with replacement file records 

FORMAT: 

7-14 



\ 

) 
LIBEDIT DIRECTIVE EXAMPLE 

Example: 

Using LIBEDIT to create a library. 

LIBEDIT doesn't create libraries. The U parameter calls LIBGEN which 
creates the library. 

,I ' 

/LIBEDIT,P=0,N= TESTLl,B=PROCFIL,U. 

ENTER DIRECTIVES -

? . *BUILD,LIBR Names directory to be built. 

? *8,*,PROC/* 

? CIR only to end input. 

RECORDS WRITTEN ON FILE TESTLI 

lYPE FILE 

INSERTED 
INSERTED 
INSERTED 
INSERTED 
INSERTED 
INSERTED 
INSERTED 
INSERTED 

CREATE 
CRESAVE 
CTFILE 
CZFILE 
IWFILE 
FDUWP 
[M 

~ 

LIBRARY GENERATION COMPLETE. 

/SAVE,TESTLI 
iLJBRARY,TESTLI 
/CRESAVE 

CMF ALREADY PERMANENT. 

7-15 

PROCFIL 
PROCFIL 
PROCFIL 
PROCFIL 
PROCFIL 
PROCFIL 
PROCFIL 
PROCFIL 

DATE cavtENr 



GTR COMMAND 

• Get the Record (GTR) copies of records from a library on a specified local 
file. 

FORMAT: 

GTR,lfn1 ,lfn2,d,NR,S,NA. directives 

Where: 

If n 1 File which is searched for requested records. 

If n 2 File where requested records are written. 

d Write new random access directory (OPLD). 

n r No rewind option. 

s Search lfn 1 sequentially for requested records. 

NA No abort option. 

directives Specifies record or group of records to be retrieved. 

Example: 

/CATALOG,MYLIB,R,U,N. 
/GTR,MYLIB,LOCLIB.RELJBIN 

/CATALOG,LOCLIB,R,U,N. 
/ULIB? 

7-16 

Get the relocatable (REL) record BIN 
from a library called MYLIB and make 
a copy of it on a local file called 
LOCLIB. 

Can be used in place of GTR to extract 
records from a user library file. 



EXERCISE 7.1 

1. Access the source program library containing MAIN, SUB1, and SUB2, 
extract and compile these programs and execute them twice. 

2. (Required) Access the same library but only extract SUB1 and SUB2, 
compile them, and use the NOS ULIB procedure to create a user library of 
these two subroutines and make a permanent fil~ of this user library. 

3. Use the NOS ULIB procedure to create another user library which contains 
SUB1, SUB2 and several procedure files, and make it a permanent file and 
add it to your global library set. 

4. CATALOG your user library file. 

5. Review ENQUIRE,L output. 

6. Where would be a good place to set up your global library set? 

Using FSE, add the necessary command(s) there. 

Logout and log back in. Did it work? How do you know? 

7. (Optional) Using GTR, get a record from the library created in #2, change 
the record name and LIBEDIT, this record back into the library - catalog it. 

7-17 





I 

) 

SOURCE PROGRAM LIBRARY 
MAINTENANCE 

8-0 

'~-----" 





LESSON 8 
SOURCE PROGRAM LIBRARY rv1AINTENANCE 

Lesson preyjew: 

The purpose of a source-program library and how it is created, used, and 
maintained is discussed in this lesson. Also, UPDATE, the utility librarian, is 
exercised in its various call parameters and source-file directives. 

Objectjves: 

After completing this lesson, the student will be able to: 

List the main advantages of a source level library. 

Use the UPDATE utility, control parameters, and directives to create, 
access, modify, and regenerate a source program library. 

Projects: Exercise 8.1 

References: 

- UPDATE Reference Manual (Pub. number 60449900) 

8-1 



PURPOSE AND OVERVIEW OF A SOURCE PROGRAM LIBRARY 

· In 4 he section on permanent files, one of the projects involved is working 
with a file containing a source program. With a single program of .this size, 
editing and storing the file poses no special problems. However, maintaining a 
massive program with many subroutines, eg., Product Set code, generates two 
major concerns. 

- The first one is the lack of efficient editing ability on a line-by-line basis, 
and the other is the large gaps (blank columns) in most free format coding 
languages. These get stored and take up a great deal of space. 

The source program librarian, UPDATE, provides a means of overcoming these 
two limitations as its basic function as well as other extended functions. 

The program libr~ry is essentially a group of randomly organized logical 
records, each of which contains compressed line images of a deck. Continuing the 
example of the simple FORTRAN program we have been using, the first card (today, 
a line in a text file), "PROGRAM MAIN (OUTPUT)", would be the first element of a 
deck, logically named, "MAIN". 

A program library must be created, used, and maintained. Figure 8.1 shows 
the main components and phases of this process. The important files are the 
program library file and the file on which extracted program~ are placed for 
assembly or compilation. " 

The program library file when it is first created is named new program 
library (NEWPL). When it is used subsequentfy to extract programs from, it is 
referred to as an old program library (OLDPL). 

The file of extracted routines is called the COMPILE file. 

The program library can contain any symbolic data, and could more 
appropriately be referred to as a source program and data library. 

8-2 



I 

I 
PROGRAM LIBRARY· OVERVIEW, ACCESS AND EXECUTION 

CREATE 
PROGRAM LIBRARY 

ACCESS A 
PROGRAM LIBRARY 

TRANSLATE AND 
EXECUTE PROGRAMS 

DECKS 
AND 

DIREC­
TIVES 

c ::: 
:jPROGRAM1 

UPDATE 
NEW PL OLD PL 

UPDATE .... 1 

1LIBRARV 
.... """' 

~ 2/ I 
I 

I 
(DIRECTIVES) 

THIS IS USUALLY A 
PERMANENT FILE 

c ~ 

!--+ COMPILEl 
FILE 

....... ~ 

TRANSLATE ~~~ EXECUTE 
-+ PROGRAM --+ LGO --+ PROGRAM 

3 4 

1. The PROGRAM LIBRARY is initiated at some point as line 
images. 

2. The PROGRAM LIBRARY is saved as a permanent file, in 
random organization for processing efficiency. 

3. When programs are required, directives extract decks and 
.write them on a compile file. 

4. The compile file is assembled or compiled into load 
modules which can be loaded and executed. 

Figure 8-1. 

8-3 



CREATION OF A SOURCE PROGRAM LIBRARY 

DECKS 

*DECK SUB 1 
(DECK CARD) 

(DECK) 
UPDATE 

DIRECTIVE 

TEXT 

*DECK MAIN PROGRAM MAIN 

(DECK CARD) 
(DECK) 

DIRECTIVE 

Figure 8-2. Create a Source Program Library 

Figure 8.2 shows the elements which are involved in the creation of a source 
program library. No changes are required for the program decks MAIN and SUB1 
except that the deck name is added as a card (today, a line) in front of each deck. In 
earlier examples, the FORTRAN programs were on a file as one logical record. This 
provides the convenience of making only one compiler call. 

The decks in the current example are one logical record. This is generally 
true of genuine subroutines. Each deck is therefore kept and referenced as a 
random record and written with or without modification to the file from which the 
compiler can use them. This compile file can be formatted by directives to contain 
any grouping of logical records or files. 

8-4 



.PROC,CREATPL 
CCMA:Nr. 
CCMA:Nr. 
CCMA:Nr. 
DEFINE,PL 
UPDATE,N=PL, 

THIS PROC PLACES THE FTN PROGRAM MAIN 
AND SUBROUTINE SUB1 AS SEPARATE DECKS 
ONTO A PROGRAM LIBRARY FILE WHICH IS 
THEN CATALOGED AS A PERMANENT FILE. 
RESERVE PERMANENT FILE SPACE. 

l=UPDIR. THIS IS A NORMAL TYPE UPDATE. 
SAVE (PL=MAINSUB) . 

. DATA,UPDIR. 
*DECK MAIN 

PROGRAM MAIN 

~ 

*DECK SUB1 
SUBROUTINE SUB1 

~ 

(EOR) 

These FORTRAN programs could be compiled and executed from the INPUT file 
by the addition of BKSP{INPUT} and FTNS{GO} since FORTRAN considers an • in 
column 1 to be a comment card. 

The statistics and report from the UPDATE run are listed on the file OUTPUT. 

8-5 



UPDATE RUN TYPES 

• Creation run (UPDATE detects automatically} 

Input to update creation run 

+ Directives 
+ Text 

Output from update creation run 

+ Compile file 
+ New program library (NPL} 
+ List file 
+ Source file 

• Correction run 

Input to update correction run 

+ Directives 
+ Old program library (OPL} 
+ Source 
+ Text 

Output from update correction run 

• Copy run 

+ Compile file 
+ New program library (NPL} 
+ List file 
+ Source file 

Convert a program library from random or sequential access format 
to the opposite format. 

Used when program libraries are transferred to/from tape. 

8-6 



UPDATE MODES 

1. F - FULL UPDATE 

All. decks on old program library are written to new program library, 
compile file, and source file. 

2. Q - QUICK UPDATE 

~ decks mentioned on compile directives are written to the new 
program library, compile file, and source file. 

3. NORMAL- SELECTIVE UPDATE 

Only decks mentioned on compile directives or decks modified are 
written to the compile file. 

8-7 



UPDATE CONTROL STATEMENT 

• Utility called by this statement 

• Parameters specify options and files for the run 

FORMAT: 

UPDATE(params) 

Where: 

params optional parameters 

C Compile file name (default COMPILE) 

Input stream file name (default INPUT) 

N New program library file name (default NEWPL) 

P Old program library file name (default OLDPL) 

S Source file name (default SOURCE) 

D 80 columns of data to be written to compile file 

F Full UPDATE mode 

Q Quick UPDATE mode 

0 List file name (default OUTPUT) 

L List Options 

8-8 



\ 
) UPDATE CONTROL STATEMENT EXAMPLES 

Examples: 

UPDA TE,l=DIRTEXT,C=0,N=NEWPL,5=SOURCE,F. 

This is a creation run. The directives and text are on file DIRTEXT, no 
compile file will be generated, the PL created will be named NEWPL, the file 
to which the source will be written will be named SOURCE. Full update mode 
is requested. 

UPDATE,P=OLDPL,l=DIRTEXT,N=NEWPL,D,C=COMPILE,Q. 

This is a correction run. The directives and text are on file DIRTEXT 
and NEWPL will contain the new program library. This is an update run using 
quick mode, so only decks mentioned on Compile directives are written on 
file COMPILE in 80 column format. No source file is generated. 

8-9 



UPDATE DIRECTIVES 

• Identify decks 

• Control input file 

• Must begin with the master control character (* by default) 

• Can specify comments 

FORMAT: 

*keyword params 

Where: 

keyword 

para ms 

Update directive 

Parameters identifying decks, cards, lines, or files 

3-10 



) 
CALL DIRECTIVE 

• Causes a common deck (COMDECK) to be written onto the compile file 

FORMAT: 

*CALL comdeck 

COMDECK DIRECTIVE 

• Establishes a common deck that can be called from other decks 

FORMAT: 

*COMDECK deck,NOPROP 

Where NOPROP determines whether any changes are· propagated throughout 
the Program Library. 

8-11 



COMPILE DIRECTIVE 

• Indicates which decks are written to the compile file 

FORMAT: 

*COMPILE deck1 ,deck2, ... ,deckn 

DECK DIRECTIVE 

• Establishes a deck on the program library 

• Must be a unique name 

FORMAT: 

*DECK deckname 

8-12 



) IDENT DIRECTIVE 

• Names set of corrections being made 

• Lines added in the correction set are sequenced within the name specified 

FORMAT: 

*IDENT idname,B=num,K=ident,U=ident 

Where 

num The beginning line sequence to be used. 

ident A correction identifier which must be known (K) or 
undefined (U) in order for this identifier to activate. 

DELETE DIRECTIVE 

• Deactivates a line image or group of line images 

• Optionally inserts text and directives 

FORMAT: 

*DELETE line 

8-13 



INSERT DIRECTIVE 

• Inserts text line images or compile file directives in the PL after the line 
specified 

• Use BEFORE directive (same format) to insert before a line. 

FORMAT: 

*INSERT line 

YANK DIRECTIVE 

· • Temporary reversal of the impact of a correction set. 

FORMAT: 

*YANK ident 

PURGE DIRECTIVE 

• Permanent removal of a correction set. 

FORMAT: 

*PURGE ident 

8-14 



ACCESSING PROGRAMS FROM A PROGRAM LIBRARY 

.PRCC,ACESPL. 
CCM'JENT. 
CCM'JENT. 
GET(OLDPL=PL) 
UPDATE(Q),l=UPDIR. 
FTNS(l=COMPILE) 
LOO . 
. DATA,UPDIR. 
*IDENT ACCESS 
*COMPILE MAIN,SUB1 
(EOR) 

THIS PROC AITACHES A PROGRAM LIBRARY FROM 
PERMANENT FILES, EXTRACTS PROGRAMS 
MAIN AND SUB1. 

THIS IS A QUICK TYPE UPDATE. 

With a quick UPDATE, the routines to be extracted from the source program 
library are specified on the *COMPILE directive card. 

With only the two programs, Main and Sub1 on the library, an UPDATE(F),1=0, 
and no *COMPILE card will produce the same result: Program Main and Sub1 are in 

· source image form on a file whose name is COMPILE. The full UPDATE places all 
decks from the program library onto the Compile file. 

8-15 



MODIFYING PROGRAMS ON A PROGRAM LIBRARY 

.PROC,CORPGLB. 
COMMENT. 
COMMENT. 
COMMENT. 
GET(OLDPL=PL) 
UPDATE,l=UPDIR. 
FTNS,l=COMPILE. 
LOO. 
.DATA,UPDIR. 
*IDENT ~1 

*INSERT MAIN.3 

TI-ilS PROC ACCESSES A PROGRAM LIBRARY, 
MAKES CORRECTIONS TO PROGRAM MAIN AND 
SUB1, AND PU\CES lHE CORRECTED DECKS ONTO 
TI-iE COMPILE FILE. 

CARD{S} TO BE INSERTED 
*DELETE SUB1.4 
*BEFORE MAIN.5 

CARD{S} TO BE INSERTED 
(EOR) 

Since each deck had a modification, both decks will be written to the 
Compile file in this, the normal UPDATE. In the case where it is desired to have 
decks written to the Compile file and which are not being modified, these decks 
will require specification with a *COMPILE directive. 

There are two additional steps that could be performed by this UPDATE: 
- The creation of a new program library which has the correction set 

added to it. 
- The creation of a Source file which could bf1 subsequently input to an 

original create-type UPDATE. 

The advantage of the first addition, all new program library with corrections 
posted on them prevents the problem of having to deal with correction sets. 

The Source file is not of any advantage in the uncluttered, early stages of a 
source program library, but is useful to simplify identifiers at later, more complex 
stages. 

The parameters on the UPDATE card to accomplish both of these are: 

UPDATE{N,S,l=UPDIR} 

the rest of the job is the same, except that now it would be logical to save the 
NEWPL and purge the OLDPL 

8-16 



RESCIND PROGRAM LIBRARY MODIFICATIONS 
REGRESS TO EARLIER STATE 

.PROC, RESCIND. 
CCMvENT. 
CCMvENT. 
GET(OLDPL=PL 10) 
UPDATE,l=UPDIR. 
FTNS,l,GO . 
. DATA,UPDIR. 
*IDENT 
*YANK 
(EOR) 

THIS PROC REMOVES THE EFFECT OF A 
CORRECTION SET BY USE OF A YANK 
DIRECTIVE. 

A NORMAL UPDATE IS NEEDED. 

NEGATE 
COR1 

The OLD PL still has the changes defined by correction set identifier COR 1. 

If an S parameter were added to the UPDATE card, the resulting Source file 
could be put through· an original create to obtain a program library that is an exact 
duplicate of the previous procedure (CREATPL) result. 

. If an N parameter named a NEWPL on the UPDATE statement, the new library· 
would have the correction set COR1 flagged as inactive. A *PURGE directive, 
instead of the *YANK would make the rescinding irreversi

1

ble. 

8-17 



ADD DECKS TO PROGRAM LIBRARY 

.PROC,ADDECK 
COWlvENT. 

THIS PROC PLACES TWO NEW DECKS ON TO A 
NEW PROGRAM LIBRARY, IN ADDITION TO THE 
DECKS FOUND ON THE OLD PROGRAM LIBRARY. COWlvENT. 

GET(OLDPL=PL23) 
UPDATE{N,C=O,l=UPDIR} 
SAVE(NEWPL=PL45} 
.DATA,UPDIR. 
*IDENT COR2 
*INSERT MAIN.n 

{Change{s} Main to make CALLs to Sub2 and Sub3} 
*ADD FILE SUBS 
.DATA,SUBS. 
*COMDECK SUB2 

SUBROUTINE SUB2 

EM) 

*COl'AJECK SU83 
SUBROUTINE SU83 

(EOR) 

8-lC 



EXERCISE 8.1 

Given on the next page: 

1. A FORTRAN program deck with some statements in error and some 
missing statements. 

2. Data that is input to the program. 

3. The missing statements and corrections for the program. 

PROBLEM: Set up a procedure file to do the following: 

1. Call UPDATE to place the program on a permanent file in program library 
format as deck AVEPROG (place data in a separate deck named AVEDATA). 
and compile the program. 

2. Call UPDATE a second time in the procedure to replace the error lines 
with the corrected ones and ins~rt the mis.sing lines. Use your procedure 
from Lesson 6 to compile the program to be sure you have made the 
changes correctly. Using the supplied data values as input to the 
corrected program, compile and execute it. 

3. Delete the program library's permanent file from the system and make 
sure the delete actually took place. 

8-19 



PROGRAM AVE {DATA,OUTPUT) 
DIMENSHUN X{10) 
SU~. 

DO 101=1,10 1. Program in error 
1 1 SU~SUM +X{I) . 

AVG=SUN/10. 
PRINT 10,AVG 

1 FORMAT {1 H1 ,"THE ANSWER IS",F10.3) 
STOP 
8'D 

1. 2. 3. 
4. 5. 

7.,8.,9., 10. 

DIMENSION X(10) 
SUM=O 
READ *,X 

10 SUM=SUM+X(I) 
AVG=SUM/10. 
PRINT 1,AVG 

2. Data 

3. Corrections 

8-20 



r 

[L~©~@ 

MAGNETIC TAPES 

9-0 

r#flllm ___ _,. 

.) 





Lesson Preyjew: 

LESSON 9 
NON-ALLOCATABLE RESOURCES- MAGNETIC TAPE 

In this lesson, you will learn how to request one or more magnetic tapes and 
auxiliary disk packs. The various types of tapes available under NOS are examined, 
and examples of actual requests for tapes and packs are given. 

Obj ectjyes: 

After completing this lesson, the student will be able to: 

Describe the NOS tape and auxiliary disk pack commands and their 
operation 

- Create and access magnetic tapes 

- Access files on auxiliary disk packs 

Projects: Exercise 9.1 (Magnetic Tape Review) 

References: 

NOS Version 2 Reference Manual, Volume 3, Section 12 and Appendix G 

9-1 



RESOURCE MANAGEMENT 

Resources other than use of the central processing unit, central memory and 
mass storage by the job can also consist of magnetic tapes and auxiliary disk 
packs. Magnetic tapes are requested by means of an ASSIGN, REQUEST, LABEL, or 
VSN command statements. Auxiliary disk packs are requested by means of the PN 
parameter on a permanent file control statement. 

The number of resources a user may access are stated in the user validation 
file. For any number of resources greater than one, a RESOURC control statement 
must be issued by the job, stating the qualities and maximum quantities required at 
any point in the job. This enables the system to utilize deadlock prevention 
routines which roll out jobs that have a potential . of exceeding the number of 
available units. 

There are techniques for requesting magnetic tapes either automatically or 
manually. We suggest that automatic assignment procedures be used whenever 
possible, since it enhances the overall efficiency of the system. 

9-2 



\ 
) AUTOMATIC TAPE ASSIGNMENT 

NOS processes tape requests as follows: 

1. Whenever a tape is mounted, NOS checks for labels. If the tape was 
labeled, NOS keeps a record of the one to six character Volume Serial 
Number (VSN) read from the VOL 1 label and the equipment on which the 
tape is mounted. 

2. When a request is made for tape assignment, NOS compares the VSN 
associated with the file with the VSNs read from mounted tapes. 

If a match is found, NOS automatically assigns the tape to the requesting 
job, provided a deadlock would not occur. If the tape is not mounted, NOS 
rolls out the job until a tape with the required VSN is mounted. 

For a mounted, unlabeled tape, the operator enters a VSN command 
specifying the required VSN. NOS is then able to automatically assign the 
tape. · 

3. If no VSN was supplied when the request is made, NOS directs the 
operator to assign an available unit. 

4. For an ASSIGN card, the method of assignment depends on the nn 
parameter. If nn is a device type (MT or NT), tbe operator must assign an 
available unit. If nn is the EST ordinal of a tape unit, NOS automatically 
assigns the specified unit. Specifying an EST ordinal is not normally 
advised nor permitted. 

RESOURC CONTROL STATEMENT AND DEADLOCK PREVENTION 

The discussion of the RESOURC control statement in section 7 of the NOS 
Reference Manual, Volume 3 can be studied to understand resource control from a 
system viewpoint and how it is used by the programmer making a request for more 
than one non-allocatable device. 

9-3 



MAGNETIC TAPE RECORDING MODES 

• The recording mode of a tape refers to the physical manner in which the 
tape is written. You may write information on magnetic tapes in either 
binary or coded mode. 

Binary mode 

+ Binary mode operations copy files with no character set 
conversion 

+ Any tape format can be used 

Coded mode 

+ Coded mode operations involve data conversion from 
NOS-supported character sets to external character sets 

+ Applicable largely to S and L tape formats 

9-4 



TAPE DATA FORMAT TYPES 

• Use F=format on tape request commands to specify tape data format. 

• Foreign (F=F) 

• Internal (F=I) (NOS default) 

• Long block stranger (F=L) 

• Stranger (F=S) 

• System Internal (F=SI) (NOS/BE default) 

Of the five types of tape available, the F=I (Internal) format is the def a ult 
tape data for NOS. The tape being written in this format is assumed to be read in 
the same format. The other tape formats are provided for compatibility with tapes 
created by other operating systems. 

The tape formats are discussed in Section 2 of the NOS Reference Manual, 
yolume 3, and can be referred to for details of each format. The data formats 
differ in PRU (block) size and in File mark indicators. 

9-5 



LABELED TAPES AND VSN 

The VSN is the main field in providing a labeled tape library capability to an 
installation. The VSN field is either recorded physically on a VOL 1 header label or 
assigned logically by the operator to an unlabeled tape. In any case, the VSN is the 
physical number that tells the tape librarian which reel is required for mounting 
onto a tape unit. 

The VSN field in the VOL 1 header label does not have to be the same as the 
number for operator's visual identification. It is not unusual for a tape to contain 
dissimilarities between internal (VOL 1) and external (visible) VSNs. There is no 
confusion, because the VSN command allows equating two or more internal/ 
external numbers. 

The use of a labeled (or unlabeled) tape is most easily done by use of the 
LABEL control statement. There are other, more elaborate methods of creating 
labels which involve using macros and setting fields in the File Environment Tables 
in a program. 

The label formats of the ANSI standard labels are in Appendix G of the NOS 
Reference Manual, Volume 3. 

• Label types 

- ANSI standard labels 

+ Required ANSI label information 

- VOL1 (contains VSN of this volume) 
- HDR1 
- EOF1 
- EOV1 (contains VSN of next volume if known from VSN 

list at time EOV1 is written) 

Non-standard labels 

• To list the labels on a tape, use the LISTLB command. 

9-6 



RESOURC COMMAND 

· • Allows use of more than one auxiliary pack or one tape concurrently. 

• See also UNLOAD and RETURN in lesson 4. 

FORMAT: 

RESOURC,nt=u. 

Where: 

nt Resource type (see Vol. 3, Section 7) 

u Number of units a job will use concurrently 

Examples: 

/RESOURC, GE=3. 

/RESOURC, OW= 2. 

9-7 



ASSIGN COMMAND 

• Names tape unit or device type (MT or NT). 

• Assigns local file to specified unit. 

• Normally used only from system console jobs. 

FORMAT: 

ASSIGN,NN,LFN,VSN=vsn,D=den ,F=format,LB=lb,PO=p1 ,p2, ... ,pn. 

Example: 

I ASSIGN,NT,TAPE1, VSN=EMS1 O,D=GE, F=l,LB=KL,PO=W. 

A 6250 cpi (D=GE) 9 track tape (NT) will be mounted for the user. Its VSN 
~s EMS10. It will be mounted with write ring in (PO=W) and its label 
(LB=KL) will be read (W not specified). The local file name for the tape 
will be TAPE1. 

/ASSIGN,MS,OUTPUT 

Output will not appear at terminal. 

9-3 



BLANK COMMAND 

• Writes ANSI standard labels after load point of a tape. 

• Normally done only be site personnel. 

FORfv1AT: 

BLANK, VSN=vsn, MT or NT, D=den, OWN ER=user, F A=f a, OF A=of a, V A=va, U. 

Example: 

/BLANK~VSN=0,NT,D=PE. 

VSN COMMAND 

• Associates a file name with one or more volumes of tape 

• Alternative to listing VSN's on ASSIGN, REQUEST, or LABEL commands. 

FORMAT: 

VSN,lfn1 =vsn1 ,lfn2=vsn2, ... ,lfnx=vsnx. 

Example: 

NSN,LOCAL 1 =VSNA,LOCAL2= VSNB,LOCAL3=VSNC. 

Tapes with external VSNs LOCAL 1, LOCAL2, and LOCAL3 are later mounted 
and NOS accepts them even though their VOL 1 label contain VSNA, VSNB, 
VSNC, respectively. 

NSN,DUMP=DAY=MON= TIJE=WED= THU=FRl=SAT =SUN. 

Any tape with a VSN of DAY through SUN will satisfy the request (later). 
The operator will only see the first VSN(DAY). 

9-9 



LABEL COMMAND 

• Associates local file name with a magnetic tape. 

• Advantage over ASSIGN/REQUEST is that label status errors are reported 
separately from data format errors. 

• Can rewrite and verify tape labels. 

• Tapes can be unlabeled (LB=KU). 

FORMAT: 

LABEL,lfn,VSN=vsn,MT or NT,D=den,F=format,LB=lb,FA=fa,W or R, 
PO=P1 ,p2, ... ,pn. 

Example: 

/LABEL,MYT APE, VSN=0,NT,D=GE,F=Sl,LB=KU,FA=A. 

REQUEST COMMAND 

• Associates a local file name with a magnetic tape 

• Request appears at the console 

• Performs the same function as LABEL except that label status is not checked 
until a later read/write is first issued. 

FORMAT: 

REQUEST,lfn,VSN=vsn,MT or NT,D=den,F=format,LB=lb,PO=p1 ,p2, ... pn. 

Example: 

/REQUEST,TAPE1,NT,F=l,LB=Kl,PO=R. 

9-10 



LISTLB COMMAND 

• Lists labels of an ANSI-labeled tape file. 

• Especially useful for multifiled labeled tapes. 

FORMAT: 

LISTLB,lf n, LO=ltype, L=OUt. 

Example: 

/LISTLB, T APELBL, LO=A, L=LIST. 

Also see tapes chapter in Volume 2 of NOS Reference Set for good 
examples of multifile labeled tape creation and usage. 

TCOPY COMMAND 

• A useful command to convert from one tape data format to another. 

FORMAT: 

See NOS Reference Set, Volume 3. 

TDUMP COMMAND 

• A usef~I command to see data format of a tape file. 

Example: 

/TDUMP,I= TAPE1. 

9-11 



EXERCISE 9.1 
MAGNETIC TAPE REVIEW 

1. (true/false) All users have access to magnetic tapes. 

2 (true/false) A RESOURC control card is required if more than one tape is 
to be used simultaneously by one job. 

3. (true/false) A tape must be Blank labeled to write a VOL 1 label on it. 

4. (true/false) A redundant request for a tape (one which is already 
assigned to the job) is ignored. 

5. (true/false) Though it is valid to create multiple sets on both labeled 
and unlabeled tapes, only labeled tapes can be positioned automatically to a 
given file. 

6. (true/false) A LABEL statement for an already mounted tape will provide 
automatic assignment if the VSN is specified for the file. 

7. (true/false) Any tape user can issue an ASSIGN statement. 

8. (true/false) Any tape user can write unlabeled tapes. 

9. (true/false) Any tape user can write labeled tapes. , 

10. (true/false) Blank labels are ANSI labels with most fields reset to default 
values. 



~-----."" 

lb~~[NJ ~!@ 

LOADER 

10-0 





Lesson Preyjew: 

LESSON 10 
LOADER 

In this lesson, the student will learn how programs get loaded into core, how 
external references are satisfied, how libraries are used, how absolu_tes can be 
created, and how field length is controlled. 

Objectjves: 

After completing this le$SOn, the student will be able to: 

Describe the basic function of the loader 

Describe the loader commands 

Describe the types of loads that can be done 

projects: Review Loader Map: NOS Reference Set, Volume 2. 

References: 

- CYBER Loader User Guide (supplied) 

- CYBER Loader Reference Manual (60429800) 

111-1 



DEFINITION 

• A loader is a program which: 

1. Brings together various blocks of code (called relocatable binaries 
or common blocks). 

2. Organizes them according to some priority. 

3. Connects the blocks together by patching in addresses to external 
references. 

• The results of this process is one continuous block of code called 
absolute binary (or core image). 

10-2 



) 
GLOBAL vs LOCAL LIBRARIES 

GLOBAL library sets are defined by a LIBRARY card. The set is limited to 
two users and two system libraries, one user and 13 system or no user and 24 
system libraries. No limit exists for a local library set. It is defined by LDSET 
(LIB= ). 

The GLOBAL library set remains in effect until redefined by another LIBRARY 
card. To empty the Global Library Set, use LIBRARY. LIBRARY may not appear in a 
load sequence. 

Example: 

JOB. 
USER ( , ) 
ATTACH,LIB1. 
ATTACH,LIB2. 
LIBRARY (LIB2) 
LIBRARY (LIB1 ,LIB2) 
LIBRARY. 

The Global Library = LIB 2 
The Global Library = LIB 1, LIB 2 
The Global Library· is empty. 

The Local Library Set remains in effect only until the end of the Load 
Sequence and affects only those routines loaded after the definition of the library. 
LDSET(LIB= ) commands within a load sequence add to the LOCAL library set; they 
do not redefine it. 

10-3 



Example: 

.PROC,LOCAL 
ATTACH, LIB1. 
ATTACH, LIB2. 
GET(LGO) 
LDSET(LIB=LIB1) 
LOAD(LGO) 
LOAD(BIN) 
EXECUTE. 
LOAD(LGO) 
LDSET(LIB=LIB1) 
LOAD (BINA) 

LDSET(LIB=LIB2) 
LOAD(BINB) 

f'lXn 

Local Library = LIB1 

Ends first load sequence 
No Local Library Set; LIB1 will not be 
searched for Externals from LGO. 
The Loader will search LIB1 for Externals 
from BINA. 
Local Library = LIB1, LIB2 
The Loader will search LIB 1 , LI 82 for 
Externals from BINB. 
Ends second load sequence. 

10-l&. 



EXTERNAL REFERENCE 

· An External Reference is a reference to a symbol not defined in the program 
which makes the reference. For FORTRAN, an external reference is constructed 
whenever the programmer uses a CALL statement. For COBOL users, an external 
reference is constructed whenever the programmer uses a CALL or ENTER 
statement. For COMPASS, an external reference is set up whenever the programmer 
uses an EXT statement or the equivalent. For each external reference, the LOADER 
will attempt to find a program that defines that symbol as an mTRY POINT. ... 

""---- ----------~--------------------------------~----
Example: FORTRAN Source file (SORTER) 

PROGRAM MAIN 
+ 
+ 
+ 
CALL SORTALL 
+ 
+ 
+ 
+ 
+ 
+ 
STOP 
8'l) 

The FORTRAN Compiler sets up an external 
reference to SORTALL. The Loader will look 
for and find the entry point SORTALL in 
subroutine SORTALL and will link the two 
together. 

SUBROUTINE SORTALL The FORTRAN compiler sets up an Entry Point 
+ called SORTALL. 
+ 
+ Question: What is an Entry Point? 

10-5 



SATISFYING EXTERNALS· PRIORITY 

1. Local file, i.e., the binaries loaded through direct load calls: 

Example: 

LOAD (BINONE) These binaries are the LOCAL FILE. 
LOAD (BINTWO) 

2. GLOBAL Library Set (defined by LIBRARY (library 1, ... )). 

3. Local Library Set (defined by LDSET (LIB=library 1, ... )). 

4. Def a ult Library Set 

Example: 

.PROC,PRIORITY. 
ATTACH,LIBONE. 
ATTACH,LIBTWO. 
ATTACH,LIBTHR. 
A TT ACH,LIBFOUR. 
ATTACH, BIN A. 
ATTACH, BIN B. 
ATTACH, BIN C. 
ATTACH, BIN D. 
LDSET (LIB=LIBONE) 
BIN A. 
LIBRARY (LIBTWO) 
LDSET (LIB=LIBONE) 
BIN B. 

Contains routines A, B, C, D, E, F, G. 
Contains routines A, B, C, D, E, F, G. 
Contains routines A, B, C, D, E, F, G. 
Contains routines A, 8, C, D, E, F, G. 
Calls A. 
Calls B. 
Calls C. 
Calls D. 

LIBRARY (LIBTHR,LIBFOUR) 
BINC. 
LIBRARY. 
LOAD(BINA) 
SATISFY (LIBFOUR) 
LOAD( Bl NB) 
LDSET(LIB=LIBONE) 
LOAD(BINC) 
LOAD(BIND) 
EXEaJTE. 

Question: How are Externals satisfied during each load sequence? 

10-6 



) EXTERNALS WHICH CALL EXTERNALS 

• Suppose a programmer has three libraries: 

LIB1 Contains A, B, C, D, E, ONE, TWO, JANE, BETTY 

LIB2 Contains ONE, TWO, THREE, FOUR, FIVE, JANE, BETTY 

LIB3 Contains JANE, BETTY, MARY, A, B 

• Suppose: 

A calls JANE, FOUR, and MARY 

ONE calls TWO, E and B 

MARY calls B, D and ONE 

• Assume the following procedure file: 

.PROC,EXTEAN. 
ATTACH, Ll81 ,Ll82,LIB3. 
FTN5,l=BELOW. 
LDSET (LIB=LIB1/LIB2/LIB3) 
LOO . 
. DATA, BELOW. 

PROGRAM MAIN (OUTPUT) 

CALLA 

e..n 
(EOR) 

Question: From which libraries are the above routines satisfied? 

10-7 



COMMON BLOCKS 

A program or subroutine can also make a reference to data within a Common 
Block. A COMMON BLOCK is a grouping of data that can be referenced by more than 
one routine. 

COMMON BLOCKS are divided into two types: 

BLANK COMMON - This is a block of data that is placed at the very end of a 
user's field length. The first word of this block is equated with the 
last word of all executable code, plus one. It cannot be preset with 
any data. FORTRAN programmers define Blank Common with a 
COMMON A(50) statement. 

LABELED COMMON - An example of Labeled Common in FORTRAN is: 

COMMON/ ABC/ A(50). 

Labeled Common Blocks are placed in front of the first routine which 
defines them. Once defined by one routine, they cannot be redefined to 
a larger or smaller size by another routine. Data in these blocks can 
be Preset using LDSET (PRESET =Option). 

Example: 

DATA A/50*0.0/ 

COBOL allows a programmer to define one label common block called 
CCOMMON. He does this by defining a COMMON-STORAGE SECTION. 

10-C 



) COMMON BLOCK EXAMPLE 

Example: COMMON BLOCKS USED BY FORTRAN AND COBOL 

FORTRAN FILE 
. DATA,MAIN. 
PROGRAM MAIN 

COMMON/CCOMMON/DATA(3) 

COMMON/A/A (5) 

CALL= SORT ALL 
C=DATA(1) 

STOP 
8'D 

. DATA,SORTALL 
SUBROUTINE SORTALL 
COMMON/CCCOMMON/DATA (3) 
COMMON/A/A (5) 
COMMON/SORTALL/SORT (5) 

DATA (1) = 5.0 

RETURN 
8'D 

COBCl.. 
.DATA, MAIN . 
IDENTIFICATION DIVISION 
PROGRAM-ID. MAIN. 

COMMON-STORAGE SECTION. 
77 DATA-1 PICTURE IS 9999V99 USAGE IS COMP-1. 
77 DATA-2 PICTURE IS 9999V99 USAGE IS COMP-1. 
77 DATA-3 PICTURE IS 9999V99 USAGE IS COMP-1. 

PROCEDURE DIVISION. 
INIT SECTION. 
IN IT-PARA. 

ENTER SORT ALL. 
MOVE DATA-1 TO C. 

STOP RUN . 

10-9 



ABSOLUTE BINARY 

An ABSOLUTE BINARY is a collection of one or more relocatable blocks, 
organized according to some priority scheme, where references to externals have 
been "satisfied" wherever possible. EXTERNAL REFERENCES are SATISFIED whenever 
the loader can find an ENTRY point name to match the EXTERNAL REFERENCE name. 
Otherwise, EXTERNAL REFERENCES are UNSATISFIED. 

Example: Unsatisfied External 

FTNS(l=MAIN,B=BINMAIN) 
SAVE,BINMAIN. 
BINMAIN. When loading BINMAIN, the LOADER will detect that 

there is an external reference to SORT ALL. It will 
look for SORTALL in BINMAIN and in the system 
library. Since SORTALL is not in either place, the 
external reference remains unsatisfied. 

Example: Satisfied Externals 

FTNS, l=SORTALL, B=BINSORT. 
SAVE,BINSORT. 
GET,BINMAIN. 
LOAD(BINSORl) 
BIN MAIN. 

Question: Would this sequence work? If not, how would you fix it? 

GET,BINMAIN. 
GET,BINSORT. 
BIN MAIN. 

BINMAIN calls SORTALL 
BINSORT contains SORTALL 

10-10 



) 
LOAD PRIORITY • LOADER MAP 

• Blocks are loaded according to the following priority scheme: 

1. Labeled Common blocks in the order that they are defined. 
2. Program blocks. 
3. Blank Common. 

• A LOADER MAP tells a programmer how the LOADER organized the blocks 
which were presented to it. 

Example: 

PROGRAM MAIN 
COMMON/DATA/DATA(S) 
COMMONA(6) 

SUBROUTINE SORTALL 
COMMON/DATA/DATA(4) 
COMMON B(5),C(2) 
COMMON/SORTAWSORT(S) · 

RETIJRN 
EN) 

RESULTANT LOADER MAP: 

BLOCK: 

/DATA/ 
MAIN 
/SORTALU 
SORTALL 

I I 

ADDRESS: 

111 
116 
216 
223 
323 

LENGTH: 

5 
100 
5 
100 
7 

FWA OF THE LOAD 111 
LWAOFTHE LOAD 332 

10-11 



LOADER SEQUENCE 

There are several words reserved for usage by the loader: LOAD, LIBLOAD, 
SLOAD, CAPSULE, EXECUTE, NOGO, SATISFY, LDSET, SEGLOAD. Once a loader word is 
used in a job control sequence, the remaining job control cards must be loader 
commands until the loader sequence is terminated by a NOGO, EXECUTE, or program 
name call. 

QUESTION: Are the following load sequences valid? If not, correct them. 

a. 

c. 

JOB. 
USER( , ) 
GET,BINMAIN. 
LOAD(BINMAIN) 
GET,BINSORT. 
LOAD(BINSORT) 
EXECUTE. 

JOB. 
USER( , ) 
GET,BINMAIN. 
GET,BINSORT. 
LOAD(BINMAIN) 
LOAD(BINSORT) 
ABS(ABSMAIN) 
ABSMAIN. 

b. 

d. 

JOB. 
USER( , ) 
ATIACH,BINMAIN. 
BINMAIN. 
EXECUTE. 

JOB. 
USER( , ) 
ATIACH,BINMAIN. 
ATIACH,BINMAIN. 
BIN MAIN. 
LOAD(BINMAIN) 
EXECUTE. 
LOAD(BINSORT) 
LOAD(BINMAIN) 
EXECUTE(BINMAIN) 

10-12 



' I 
) 

RELOCATABLE BINARY 

Routines MAIN and SORTALL are separate logical entities or blocks. They are 
called PROGRAM BLOCKS or RELOCATABLE BINARIES. After they are assembled, they 
can be saved as separate binary code entities. Each block of relocatable binary 
contains a short table at the beginning of the block which contains the name of the 
routine and a list of one or more entry points to that block. Also included are the 
addresses of all the instructions in the binary code which make external 
references. The LOADER can then find these instructions and insert addresses of 
appropriate entry points. This is called Satisfying Externals. · 

If any externals other than a weak external (used by capsules) remains 
unsatisfied, a non-fatal error results. Any address field containing an unsatisfied 
external is filled with addr + 4000008 , where addr is the address of the reference. 

This will cause an OUT OF RANGE reference during execution. 

Example: SAVING AND USING RELOCATABLE BINARIES ON PERMANENT FILES 

J081. 
USER ( , ) 
FTNS, B=BINMAIN. 
SAVE, BINMAIN. 
FTNS, B=BINSORT. 
SAVE, BINSORT. 

JOB2. 
USER ( , ) 
.GET,BINMAIN,BINSORT. 
LOAD,BINMAIN,BINSORT. 
EXECUTE. 

Saves on compile time. 

10-13 



ALTERNATE ENTRY POINT EXAMPLE 

Example: SPECIFYING AN ENTRY POINT- RELOCATABLE BINARY 

.PROC,ENTER 
FTN5,l=MYPROGS. 
LOAD,LGO. 
EXECUlE,Q\JE. 
LOAD,LGO. 
EXECUTE, LOO. 
LOO . 
. DATA,MYPROGS. 

PRCGAAMCNE 

8'.J) 

PROORAM T'NO 

PROORAM TI-iREE 

EN) 

SUBROUTINE A 

QUESTION: Where does EXECUTION begin with simple LGO? 

Example: SPECIFYING AN ENTRY POINT - ABSOLUTE BINARY 

.PROC,ABSBIN. 
FTN5,l=MYPROGS,L=LIST. 
LOAD (LGO) 
NOGO (ABS,ONE,TWO,TiiREE) 
LOAD (ABS) 
EXECUTE, ONE. 
LOAD (ABS) 
EXECUTE, T'NO. 
ABS. 

Same Programs as above Example 

QUESTION: Where does Execution begin with a simple ABS? 

10-lla. 



\ 

) 

10-15 



EXECUTE COMMAND 

• Causes completion of the LOAD sequence 

• Execution of the loaded programs occurs immediately 

• Can optionally specify entry points 

• Can optionally specify execution parameters to be passed to the loaded 
program 

FORMAT: 

EXECUTE (entry point,parameter 1,parameter 2 ... ) 

It is possible to pass information to a binary program through EXECUTE 
parameters. e.g., EXECUTE,ONE,TAPE1 ,TAPE2. 

These parameters are stored in the job's field length at locations RA+2, RA+3 
up through RA+53. In the example, before program one begins to execute, the word 
TAPE 1 in display code would be placed at RA+2 and TAPE2 would be placed in RA+3. 
Both words would be left justified, zero filled with a special code in the lower six 
bits of the word to indicate what the separator is, i.e., a comma, equal sign, period. 

The program can make use of this information. f=ORTRAN programs make 
special use of this information. Parameters passed in this fashion redefine files 
called by the FORTRAN program. 

10-16 



) EXECUTE COMMAND EXAMPLE 

Example: 

.PROC,FORlRAN. 
NOEXIT. 
GET,TAPE1 ,TAPE2,TAPE3. 
GET,FILEA,FILEB. 
FTNS, l=#DAT A .. 
LOAD(LGO) 
EXECUTE,,INPUT,OUTPUT,FILEA. 
LGO,INPUT,OUTFILE,FILEB. 
REWIND,OUTFILE. 
COPY,OUTFILE,OUTPUT. 
LOO. QUESTION: What happens at each execution? 
.DATA 

PROGRAM ONE(TAPE1 ,TAPE2,TAPE3) 
READ (1,000) 
READ (3,3000) 
WRITE (2,2000) 
STOP 
8'D 

(EOR) Ensure no blank lines after last FORTRAN "END" 
statement. 

10-17 



COPYL COMMAND 

COPYL is used to update a sequential binary file. It is very helpful in 
reducing compile time when developing routines that contain several subroutines 
and user libraries are not being used. 

Example: 

.PROC,NOULJB. 
GET,OLDBIN,IN. 
FTNS(l=IN). 
COPYL,OLDBIN,LGO,NEWBIN. 
NEWBIN. 

Example: 

.PROC,UPDATER. 
GET,OLDPL 
UPDATE. 
FTNS (I) 
GET,OLDBIN. 
COPYL,OLDBIN,LGO,NEW. 
NEW. 
REPLACE(NEW=OLDBIN) 

OLDBIN contains subroutines A, B, C, D. LGO 
contains subroutine C. NEWBIN contains 
A,B,D from OLDBIN and C from LGO. 

OLDPL contains program main, subroutines A, 
8, C, D. Default Update. Only subroutine C 
was changed and compiled. 

Only subroutine C is on LGO. 
Test to see if subroutine C and other routines 
are still working. • 

10-13 



'\ 

'i 
I 

LDSET COMMAND 

• Provides user control of a variety of load operations (e.g., MAP,PRESET) 

• Apply for current (local) load sequence only 

Besides a GLOBAL library set, the Common Loader also recognizes a LOCAL 
library set. The local library is defined by an LDSET (LIB= ) card. It is defined 
only for the load sequence. It will be searched first. 

Example: 

.PROC,LOADSET. 
ATTACH,LIBSUB1. 
ATTACH,LIBSUB2. 
FTNS. 

LDSET(LIB=LIBSUB1} 
LOO. 
LDSET(LIB=LIBSUB2) 
LOO. 
LOO. 

Contains routines A, B, C, D, E. 
Contains routines A, B, C, G, H, I. 
Program calls A and B. 
Routines A, B, C are slightly different on each 
library. 
Only LIBSUB 1 is searched. 

Only LIBSUB2 is searched. 

External references to A and B are left unsatisfied. 

10-19 



LIBLOAD COMMAND 

• Specifies that the loader is to load one or more programs from a 
particular library 

FORMAT: 

LIBLOAD(filename,entry point1 ,entry point 2 ... ) -

Example: 

.PROC,LOADAB,I. 
FTNS(#l=I). 
GET, LIBFILE. 
LIBLOAD(LIBFILE,A,8) 
LOO. 

PROGRAM ONE (Which calls A and 8) LIBFILE is a 
library file created by the user on a previous run. 

End of the load sequence. 

10-20 



) LIBRARY COMMAND 

• Specifies a set of global libraries to be searched for externals and name 
call statements 

FORMAT: 

LIBRARY(filename 1, filename 2) 

Example: 

.PROC,GLOBAL 
GET,ONE,l'NO. 
ATTACH ,LIBFIL 1. 
ATTACH, LIBFIL2. 
LIBRARY(LIBFIL 1,LIBFIL2) 
FTN5,1=0NE. 
LOO. 

REWIND,*. 
FTNS,I= TWO. 
LOO. 

LIBFIL1 contains routines A,. B_,._.c, D, E, F. 
LIBFIL 2 contains routines G, H,· I, -·J! _ K, L, M. 

Program One (which calls A, F, G, L). 
The loader will search LIBFIL 1 and LIBFIL2 to 
satisfy the externals. A and F will be loaded 
from LJBFIL 1 and G and L will be loaded from 
LIBFIL2. 

Note that LIBRARY will still be available to 
this load sequence. 

l<J-21 



LOAD COMMAND 

• Specifies files containing object programs to be loaded 

FORMAT: 

Example: 

.PROC,LOADLFN,FTNIN,COBIN. 
FTNSl=FTNIN. This produces three logical records on the 
COBOLS,l=COBIN. file LGO. 
LOAD (LGO) The entire file is loaded. 
EXECUTE. 
BKSP (LG0,2) 
LOAD (LGO/NR) Only the COBOL routine is loaded and 
EXECUTE. executed. 

10-22 



MODE COMMAND 

• Defines error conditions that cause the system to exit from normal 
processing. 

• System sets appropriate error flag, exits from normal processing, and 
performs the necessary error processing when specified error occurs. 

• If an error occurs that was not selected, the system ignores Hie error and 
continues normal processing. . ~·,; .: 

• Should not be needed for a fully debugged program. 

FORMAT: 

MODE,m,n. 

Where: 

m CPU error exit mode 0-17 8• 

n Included for compatibility with earlier versions of NOS; 
ignored on Version 2.x. 

10-23 



· .: S.ATISFY COMMAND 

• Causes External . References to be satisfied from specified library files 
for all routines loaded up to that point. 

FORMAT: 

SATISFY (library 1, library 2, ... ) 

Example: 
r· (· ::· . ; 

.. PROC.~SATED. 
ATTACH, Bl NONE. 
ATTACH, BIN1WO. 
ATTACH, LIBFIL1. 
ATTACH, LIBFIL2. 
LOAD (BINONE) 
SATISFY (LIBFIL2) 
*TRY AGAIN. 
LOAD (BIN1WO) 
SATISFY (LIBFIL 1) 
EXEClJTE. 

Calls routines A and B. 
Calls routines C and D. 
Contains routines A, B, C, D. 
Contains slightly different routines A, B, C, D. 

QUESTION: From which libraries are routines A, 
8, C, D loaded? 

10-24 



. SLOAD COMM.AND 

• Specifies selected programs to be·· ie>aaed <from· a local file 
~~; ~:. ' *·• · .. "~ -~·.; . :, 

FORMAT: 

SLOAD(filename, module name 1, module .. name 2 ... ) 

Example: 

.PRCC,SELECT. 
FTN5,l=IN. 
SLOAD(LGO,ONE,A,B) 
EXEClJfE. 
SLOAD(LGO,THREE,C,B) 
EXEClJfE. 
.DATA, IN. 

PROOAAM O'JE 
PAOOAAMTNO 
PROGRAM lHREE 
SUBROUTINE A 
SUBROUTINE B 
SUBROUTINE C 

.:.' ·~·~.: ~. • 1 _.:·. 

This will produce six rec~I9~;;>Q~,...b~O . 
. . -· '. •';o\, ...... !'\~), I 

. ·., ""' 

10-25 




