CalComp

Trident Disk Drives Models T-25, T-50 and T-80 OEM Reference Manual

TRIDENT DISK DRIVES
 Models T-25, T-50 and T-80 OEM Reference Manual

California Computer Products, Inc 2411 W. La Palma, Anaheim, CA 92801

PREFACE

This document describes CalComp's Trident Disk Drives. The information contained in this document is intended as a reference for controller designers. Changes and updates to this information will be contained in errata sheets.
Section Page
1 INTRODUCTION 1
Purpose 1
Related Documents 1
General Description 1
Features 2
2 SPECIFICATIONS 3
Operational Specifications 3
Reliability 3
Mean Time Between Failures 3
Mean Time To Repair. 3
Preventive Maintenance Time 3
Service Life. 3
Power Loss 4
Data Integrity 4
Recoverable Errors 4
Non-Recoverable Read Error Rate 4
Positioning Errors 4
Media. 4
3 FORMAT REQUIREMENTS 5
General 5
Electronic Sectoring 5
Address Mark Sectoring 6
4 INTERFACE SIGNALS 7
Radial Cable. 7
Bussed Cable 8
Bus Interpretation 10
Set Cylinder Tag 10
Set Head Tag 10
Control Tag 10
5 INTERFACE DESCRIPTION 11
General 11
Power Sequencing 11
Positioning 11
Data Handling 11
Error Correction 11
Section Page
Device Check 11
Recovery Times 11
6 SIGNAL LEVELS 26
All Signals Except Data and Clock 26
Read/Write Data and Clock 26
Mating Connectors 26
Cable Length 26
7 CONTROLS AND INDICATORS 30
Front Panel. 30
Start 30
Read Only 30
Device Check 30
Ready 30
Rear Panel 30
AC Power 30
Internal 30
Degate Switch 30
Sector Count Selection 30
8 ENVIRONMENTAL
CHARACTERISTICS 31
General 31
Temperature 31
Humidity 31
Altitude 31
Vibration 31
Shock 31
Dust Control. 31
9 POWER REQUIREMENTS 32
AC Power 32
DC Power 32
Terminator Power 32
10
PHYSICAL CHARACTERISTICS 33
Table Top Mounting. 33
Rack Mounting 33

ILLUSTRATIONS

Figure Page
3-1 Sector Formats 5
3-2 Minimum Format Lengths 6
3-3 Track Preamble Format 6
4-1 Composite Sector/Index Signal 8
4-2 Read/Write Timing 8
5-1 Power Sequence 12
5-2 Seek Sequence 13
5-3 Track Initialization 14
5-4 Initializing for Electronic Sectoring 15
5-5 Initializing for Address Mark Sectoring 16
5-6 Write Using Electronic Sectoring 17
5-7 Write Using Electronic Sectoring (Format I) 18
5-8 Read Electronic Sectoring 19
5-9 Read Using Electronic Sectoring (Format I) 20
5-10 Write Using Address Marks 21
5-11 Write Using Address Mark Sectoring (Format II) 22
Figure Page
5-12 Write Using Address Mark Sectoring (Format III) 23
5-13 Read Using Address Marks 24
5-14 Read Using Address Mark Sectoring(Format II)25
6-1 Recommended Logic Driver/Receiver 26
6-2 Recommended Clock Receiver 27
6-3 Recommended Data Receiver/Driver 28
6-4 Signal Connector Locations. 29
6-5 Power Connection 29
6-6 Bussed Cable Pin Numbers 29
6-7 Radial Cable Pin Numbers 29
6-8 Cabling Diagram. 29
10-1 Outline Dimensions 33
Table Page
4-1 Bus Definitions 10

SECTION 1 INTRODUCTION

PURPOSE

This manual contains the information necessary to interface a TRIDENT disk drive to a controller and ultimately to a computer system. Unless otherwise noted, all information is applicable to all members of the TRIDENT family.

RELATED DOCUMENTS

Companion CalComp documents on TRIDENT disk drives available from CalComp include:

TRIDENT Theory of Operation Manual
TRIDENT Installation and Operation Manual
TRIDENT Maintenance Manual
TRIDENT Field Parts Catalog
T2000A Exerciser Technical Manual

GENERAL DESCRIPTION

The TRIDENT family of disk drives is a series of low cost, high density, modular disk storage units uniquely suited to the OEM's requirements. Using 3330 technology, they provide 25,50 or 80 megabytes of storage in a $10 \frac{1}{2} 2^{\prime \prime}$ high rack-mounted device.

Access time is a maximum of 6 ms track-to-track and 55 ms full stroke, with a data transfer rate of 806 or 1209 Kbytes per second.

TRIDENT contains many features which allow the systems designer to incorporate it into his system with a minimum of effort. Among these are a self-contained data separator, an attention interrupt, programmable sector length and a variable record length capability.

TRIDENT Disk Drive Family

TRIDENT offers you a third generation replacement for 2314 type drives, expansion capability for cartridge disks and a viable alternative for 3340 disk drives.

FEATURES

PROGRAMMED HEAD OFFSET allows marginal data to be recovered.

INTEGRAL VFO eliminates all analog circuit design from the controller and synchronizes data recovery circuits to data on the pack.

TRACK FOLLOWING SERVO provides a track alignment reference in the pack, not the drive.

JUMPER SELECTED SECTOR LENGTHS are variable in one or two byte increments.

DYNAMIC SPINDLE BRAKE allows pack changes in less than one minute.

CONTAMINATION CONTROL SYSTEM has enclosed filtered air system for shroud, heads, carriage and linear motor.

SYMMETRICAL CARRIAGE AND WAY allows stresses to pass through the center of mass, eliminating pitch, roll and yaw forces.

RIGID ONE-PIECE DECK PLATE eliminates instability and resonance problems.

CERAMIC VOICE COIL MOTOR reduces external magnetic field and resultant crosstalk problems.

MODULAR CONSTRUCTION so that all major subassemblies are removable as an entity.

INDUSTRY STANDARD SPINDLE INTERFACE allows pack procurement from multiple vendor sources.

DESIGNED FOR EXPANSION, all components were selected to allow for greater capacity.

ADDRESS MARK GENERATION AND DETECTION allows use of variable length records which reduces sector overhead.

SECTION 2 SPECIFICATIONS

OPERATIONAL SPECIFICATIONS

	T-25	T-50	T-80
Bytes per track	13,440	13,440	20,160
Tracks per cylinder	5	5	5
Bytes per cylinder	67,200	67,200	100,800
Number of cylinders	408	815	815
Bytes per pack	27.4M	54.7M	82.1M
Single track positioning time	6 ms	6 ms	6 ms
Average positioning time	30 ms	30 ms	30 ms
Maximum positioning time	55 ms	55 ms	55 ms
Rotational speed	3600 RPM	3600 RPM	3600 RPM
Average latency time	8.3 ms	8.3 ms	8.3 ms
Recording density	4040 BPI	4040 BPI	6060 BPI
Track density	185 TPI	370 TPI	370 TPI
I/O Transfer rate	806 KByte	806 KByte	1209 KByte
I/O Signal levels	DTL/TTL compatible		
Recording code	modified frequency modulation non return to zero		
Interface code (data)			
Positioning method	linear motor-track following servo		
Start time	20 seconds		

RELIABILITY

Mean Time Between Failures

MTBF is defined by the expression:
MTBF $=$ Operating Hours / No. of Equipment Failures
Operating hours relate to the total "AC Power On" hours less any maintenance time.' Equipment failures are defined as those failures requiring repairs, adjustments or replacements on an unscheduled basis, i.e., emergency maintenance required because of hardware failure or substandard performance. They exclude down-time or substandard performance due to operator error, adverse environment, power failure, controller failure, cable failure or other failures not caused by the drive.

TRIDENT's family of units has an expected useful life MTBF of 2500 hours, provided the proper preventive maintenance procedures are followed. To establish a meaningful MTBF, operating hours must be greater
than 2500 hours and includes all sites where the drives are used.

Mean Time To Repair

MTTR is defined as the time for an adequately trained and competent serviceman to diagnose and correct a malfunction. TRIDENT disk drives are designed so that the MTTR is expected to be less than 1.5 manhours.

Preventive Maintenance Time

Routine scheduled preventive maintenance does not exceed one-half man hour per 1000 hours, based on procedures recommended by CalComp and performed by suitably trained and competent maintenance personnel.

Service Life

TRIDENT drives are designed and constructed to provide a useful life of 5 years before a factory overhaul or replacement is required. This allows also
for repair or replacement of parts during the unit's lifetime.

Power Loss

Accidental loss of AC power does not result in any component failure. The drive will retract the heads from the disk pack to ensure that the recording surfaces are not damaged in the event of AC power loss.

DATA INTEGRITY

Errors attributed to operator mishandling of the data pack or errors in the pack which may be detected and flagged during initialization of the pack are not included in determining error rates.

Recoverable Errors

A recoverable error is one which may be corrected by no more than 3 attempts to read the record at zero offset and nominal strobe, and 2 attempts to read at each offset position with early, nominal and late strobes (19 reads). Any combination of Seek-Write,

Seek-Read, Seek-Restore is allowed without limitation of combination and duty cycle. Data patterns and track position do not affect Data Error Rate performance. The Recoverable Read Error Rate for TRIDENT is less than one error in 10^{10} bits.

Non-Recoverable Read Error Rate

A non-recoverable error is one which remains after the 19 attempts (described above) to read the record in which the error is located. The Non-Recoverable Data Error Rate for TRIDENT is less than one error in 10^{13} bits.

Positioning Errors

The Positioning Error Rate is less than one error in 10^{6} Seek executions.

MEDIA

Only media from an approved CalComp vendor may be used to determine reliability and integrity numbers. A list of approved vendors may be obtained from any CalComp office.

SECTION 3

FORMAT REQUIREMENTS

GENERAL

To ensure interchangeability between like disk drives and guarantee proper operation over the entire temperature range, any disk drive must have a preamble and postamble associated with each record. These overhead fields provide compensation for mechanical tolerance, amplifier switching times, VFO capture time and allow for synchronization patterns. The size of each of these fields is dependent upon the tolerances, the bit packing density, and the rotational speed of the drive.

TRIDENT offers the user a choice of formatting schemes. Either electronic sectoring or address mark sectoring may be used for fixed length records. Address mark sectoring must be used for variable length records.

ELECTRONIC SECTORING

Electronic sectoring derives the sector and index pulses from the dibits recorded on the servo track. The index pulse occurs once per revolution and is available on the IIDX line in the bussed cable. The number of sector pulses is variable from 1 to 4096. They are available on the ISECTOR line in the bussed cable. In addition, there is an ungated composite sector index pulse (ICOMPSECIDX) which may be used for Rotational Positioning Sensing if needed.

Figure 3-1, format I illustrates the component parts of this format. Figure 3-2 shows the minimum size of each area.

Figure 3-1. Sector Formats

The formula for the maximum number of sectors per track for a given sector size is as follows:

$$
n_{\max } \quad=\frac{\text { Track Length }}{L_{O H}+L_{I D}+L_{D}}
$$

where

$n_{\text {max }}$	$=$ maximum number of sectors
Track Length	$=13440$ for the T-25 and T-50
	$=20160$ for the T-80
$L_{O H}$	$=$ length of overhead field
$L_{I D}$	$=$ length of header field
L_{D}	$=$ length of data field

L_{OH} is 62 bytes for the T- 25 and T-50 and is 86 bytes for the T-80. LID is a system design parameter. It typically contains the cylinder, track and sector address, flags and a check character. L_{D} is also a system parameter and contains both the data field and check character field. Once LID and LD are decided upon, they are added to the appropriate LOH to determine the total byte count of each sector. This number is then strapped into the sector jumper plugs as outlined in the TRIDENT Installation and Operation Manual.

Field	Contents	T-25/T-50 Length (Bytes)	T-80Length (Bytes) Preamble
VFO	33	43	
Sync	Zero's	5	8
ID	One's	1	1
VFO Relock	Optional	Zero's	10
Sync	One's	1	Optional
Data \& Check	Optional	Optional	15
Postamble I	Zero's	12	1
Address Mark	Blank	3	Optional
Postamble II	Zero's	25	18
Pad	Zero's	1	3
			37
			1

Figure 3-2. Minimum Format Lengths

ADDRESS MARK SECTORING

Address Mark Sectoring derives its reference from special patterns recorded on the data track. Since the tolerances between the servo head and the data heads are eliminated, the overhead is reduced and the net system capacity increases.

TRIDENT contains the necessary logic to generate and detect address marks. An I/O command generates the address marks. Another I/O command causes the drive to search for address marks. When one is detected, the Address Mark Detected signal is generated.

Although the sector pulses from the servo surfaces are not used, it is often desirable to use the index marker to gain initial orientation. The index pulse is also a convenient means of denoting the end of a track in a multi-track read or write operation and can initiate the head advance signal to continue the operation.

When the index mark is used, it is necessary to write a track header record at the beginning of each track. This header record allows for the tolerance between the index pulse on the servo surface and the head on the data disk. It's format is shown in Figure 3-3.

Figure 3-3. Track Preamble Format

Address Mark sectoring is illustrated by Figure 3-1, format II.

The formula for the maximum number of sectors per track for a given record size using Address Marks is:

L_{OH} is 45 bytes for the T-25 and T-50 and is 65 bytes for the T-80. LID and LD are as previously stated.

If the system design is such that adjacent records are never processed consecutively, further economy can be achieved.

Format III in Figure 3-1 shows that the postamble necessary for the read amplifier recovery may be replaced with a two byte pad if it is not necessary to detect the next address mark. In this case, LOH is reduced to 22 bytes for the T-25 and T-50 and is 30 bytes for the T-80.

Some system applications call for the rewriting of the sector ID every time the data field is updated. If this is the case, the ID field can be considered as part of the data field and the VFO relock and second Sync fields may be eliminated. Formats IV, V, and VI illustrate this and are the respective analogs of Formats, I, II, and III.

SECTION 4 INTERFACE SIGNALS

RADIAL CABLE

Signal Name	Mnemonic	Input/Output	Description
Select	ISELECT/	1	A low level on this line selects this drive when the terminator is present and the drive is not degated.
Selected	ISELECTED/	0	When low, this signal indicates the drive is selected. It goes low within 200 ns of Select.
Sequence	ISEQUENCE/	1	A low level on this signal initiates the sequence cycle. If the START switch is on, this signal will control the spin motor. It should be removed at least one second before controller $D C$ is removed.
Attention	IATTN/	0	When low, the drive has an interrupt active. It will become active at the completion of a "First Seek", "Rezero", "Seek", "Seek Incomplete", or when an emergency retract occurs. Attention is reset by a read command.
DC Ground	none	-	This wire is the DC Ground Reference for the drive.
Composite Sector/ Index	ICOMPSECIDX/	0	This line transmits negative going pulses at both sector and index times. The sector pulses are $1.24 \pm .24 \mu$ s wide and the index pulses are 4 ± 1 $\mu \mathrm{s}$ wide. This signal is not gated with select. It is intended to be used as an input for rotational position sensing circuits. (See Figure 4-1).
Termination Power	ICNTLRP5	1	This line is used to terminate "SELECTED", "ATTENTION" and "COMPOSITE SECTOR/ INDEX" in each drive. It is also used to terminate the bussed interface in the last unit. The current required is 150 ma per drive plus 1.25 A for the bussed interface, worst case.
Data	R/W DATA	1/0	When writing, the NRZ write data is transmitted on this line. When reading, the NRZ read data is carried on this line.
Clock	R/W CLOCK	0	When writing, this line transmits the write clock which is used to strobe data from the controller. The data shall change only at the rising edge of the square wave (measured at the controller). When reading, this line carries the read clock. It also is a square wave. Data will change within 10 nsec of the falling edge of the clock (measured at the drive). (See Figure 4-2).

Figure 4-1. Composite Sector/Index Signal

Figure 4-2. Read/Write Timing

BUSSED CABLE

Signal Name
Bus $0 \rightarrow$ Bus $9 \quad$ IBUS $0 / \rightarrow$ IBUS 9/

End of Cylinder	IEOC/	0	This line when low indicates the contents of the head address register are greater than four.
Offset	IOFFSET/	0	This line when low indicates that the heads are offset.
Ready	IRDY/	0	This line is low when the heads are loaded and not moving.
Online	IONLINE/	0	This line is low when the heads are loaded.
Index	IIDX/	0	This line indicates the beginning of a track. It is a $4 \pm 1 \mu \mathrm{sec}$ low going pulse.
Read Only	IRDONLY/	0	This line when low indicates the read only switch is in the read only position. No write command will be executed. It changes state only when the drive is not selected.

Description

Seek Incomplete ISKINC/ O

Set Cylinder Tag ISETCYLTAG/

Set Head Tag

Control Tag

ISETHDTAG/

ICONTROLTAG/

0

This line goes low if the last motion command (seek, rezero, first seek) is not completed within $.7 \mathrm{sec} . \pm .2 \mathrm{sec}$. It is reset by a Rezero command or by manually restarting the drive.

When this line is low, the bus lines are decoded as the next cylinder address. The trailing edge of ISETCYLTAG is the command to move the heads to the new address. ISETCYLTAG must not be issued if the drive is not ready or offset is active. If a device check occurs when ISETCYLTAG is issued, a rezero must be issued to reset Device Check.

When this line is low, the data bus is interpreted as Head Address and/or Offset Command. It must not be issued if the drive is not ready. If an Offset Command is issued, the drive will be not ready for 2 ms at the trailing edge of ISETHDTAG.

When this line is low, control information is on the Bus. (See Table 4-1)

NOTE

The tag lines must be active for at least 800 ns. There shall only be one tag line active at any given time. 400 ns must separate tag signals.

Sector	ISECTOR/	O
Device Check	IDEVCK/	O

This line generates a $1.24 \pm .24 \mu$ s low going pulse at the beginning of each sector.

When low, this line indicates that at least one of the error conditions in the drive is active. All error conditions in the drive are latched for fault isolation. The error conditions are as follows:
a. SETCYLTAG, SETHDTAG or write and not ready.
b. An illegal cylinder address.
c. Offset active and SETCYLTAG.
d. Offset active and write.
e. Read only and write.
f. Writing and no write current or no transitions detected.
g. Write and the servo detects the heads are offtrack.
h. Write current and not writing.
i Reading or writing with no head selected or multiple heads selected.

This line is reset by the Device Check Reset command except for conditions b \& c. These conditions are reset only by a Rezero command.

NOTE

The preceding 9 output signals are gated with select and will be active within 200 ns of the leading edge of select.

Terminator In

Address Mark Detected

ITERIN/

IADDMKDET/

1

0

This line is low when all of the cables between this drive and the terminator are present and the terminator is present.

When an address mark is detected, a $17 \mu \mathrm{~s}$ low going pulse appears on this line.

BUS INTERPRETATION

The bus lines are interpreted according to Table 4-1.

Table 4-1. Bus Definitions

	SETCYLTAG	SETHEADTAG	CONTROLTAG
Bus 0	CAR512		Strobe late
Bus 1	CAR256		Strobe early
Bus 2	CAR128	OFFSET	Write
Bus 3	CAR064	OSFWD	Read
Bus 4	CAR032		ADDMK
Bus 5	CAR016	Reserved* $^{\text {Bus 6 }}$	CAR008
Bus 7	CAR004	Reserved*	HAR*R
Bus 8	CAR002	HAR	HAR 2
Bus 9	CAR001	HAR 1	RESEL

Set Cylinder Tag

Bus lines $0-9$ are defined as cylinder address. Bus 9 is the LSB

Set Head Tag

Bus lines 7-9 are defined as head address. Bus 9 is the LSB. Bus 2 is the offset command. It may be issued during a Read operation to recover marginal data. If Bus 3 is also active when Offset is commanded, Offset will be in the forward direction (toward the spindle). If Bus 3 is not active Offset will be in the reverse direction. Offset is reset by issuing this command with Bus 2 inactive or by a Rezero command.

Control Tag

Bus 9 Head Advance This bit will advance the head address by one.
Bus 8 Rezero This bit will reposition the heads to cylinder zero if the heads are loaded on the disk. Rezero will reset "seek incomplete" or the error condition caused by an illegal cylinder address or offset and SETCYLTAG. Rezero will also reset the head address register to "ZERO" and reset offset.
Bus 7 Head Select This bit turns on the head selection circuits. This bit must be on at least $20 \mu \mathrm{sec}$ before Read or Write is active.

Bus 6 Device Check This bit will reset all error condiReset

Bus 5 Reset Head Register
Bus 4 Address Mark reading, to enable the address mark detector or, when writing, to write an address mark.

Bus 3 Read

Bus 2 Write

Bus 1 Strobe early

Bus 0 Strobe late

This bit will turn on the read circuits and reset all interrupts.

This bit turns on the write circuits.

This bit will advance the data strobe.

This bit will retard the data strobe.

[^0]
SECTION 5 INTERFACE DESCRIPTION

GENERAL

The controller interface functions may be divided into five areas:

Power Sequencing
Positioning
Data Handling
Error Correction
Diagnostic Aids

POWER SEQUENCING

The Power On and Power Off sequences are illustrated in Figure 5-1. The SEQUENCE signal affords the controller the opportunity to control the sequencing of each drive in a multiple drive system. If the controller does not use this signal, the spindle should be controlled by the Start/Stop switch on the front panel rather than the system power switch. When the Power On sequence is complete, the heads are positioned at cylinder zero and any command may be given once the drive is ready. Power should not be removed until one second after the Sequence signal is removed or the front panel switch is placed in the Stop position. In the event of a power failure, writing is inhibited and the heads are retracted before the media slows down.

POSITIONING

The positioning logic moves the heads to the desired cylinder and selects the proper track. The sequence is illustrated in Figure 5-2. During the time that the actuator is moving, the READY signal goes false. At the end of a seek, READY becomes true and ATTENTION is set. ATTENTION is then reset by the next READ command.

If the seek is not finished in 700 ± 200 milliseconds, the Seek Incomplete flag is set. If an illegal cylinder address is given or the offset is active during a seek initialization, Device Check is set. If either of these conditions occur, a Rezero command must be given to clear the fault and re-establish a reference point.

DATA HANDLING

Before writing on a new pack, the pack must be formatted. A format from Section III must be selected and the sector size decided upon. Figures 5-3, 5-4, and $5-5$ illustrate this procedure. Figures 5-6 through 5-14 illustrate reading and writing using both electronic and address mark sectoring.

ERROR CORRECTION

Two methods for recovering temporary errors are provided. The heads may be positioned slightly off-track in either direction and the data may be strobed early or late. Once an error is detected, two additional attempts should be made to read the record at zero offset and nominal strobe. The strobe should then be varied at zero offset and at each offset position. Figure 5-8 illustrates this sequence and the number of repetitions at each point. If the error cannot be corrected by this procedure, it is considered a permanent error.

DEVICE CHECK

The following conditions are illegal and will set the device check flag:

> Set cylinder tag while not ready
> Set head tag while not ready
> Writing while not ready
> Writing with offset active
> Writing with Read Only active
> Writing and off track for any reason
> Writing and no heads or multiple heads selected
> Writing and no current transitions detected
> Writing and write current incorrect
> Write current and not writing
> Offset and set cylinder tag
> Illegal cylinder address

All but the last two are reset by Device check Reset. They are reset by Rezero only. Rezero also resets the first condition.

RECOVERY TIMES

a) Head select must be active at least $20 \mu \mathrm{~s}$ before read and 5μ s before write.
b) Switching between heads or switching from write to read, good.data will be present at the interface within $20 \mu \mathrm{sec}$.
c) Switching from not reading to reading, good data will be at the interface within 300 ns .
d) Switching from not writing or reading to writing, good data will be written within 300 ns .
e) "Head Select" bit must be active 30μ s before "Address Mark" bit.

Figure 5-1. Power Sequence,

Figure 5-2. Seek Sequence

Figure 5-3. Track Initialization

Figure 5-5. Initializing for Address Mark Sectoring

Figure 5-6. Write Using Electronic Sectoring

Figure 5-7. Write Using Electronic Sectoring (Format I)

Figure 5-8. Read Electronic Sectoring

Figure 5-9. Read Using Electronic Sectoring (Format I)

Figure 5-10. Write Using Address Marks

Figure 5-11. Write Using Address Mark Sectoring (Format II)

Figure 5-13. Read Using Address Marks

SECTION 6

SIGNAL LEVELS

ALL SIGNALS EXCEPT DATA AND CLOCK

Type	single ended
Wire	95 ohm impedance twisted pair
Termination	100 ohms to +5 V at both ends
High Level	$5 \pm 0.5 \mathrm{~V}$
Low Level	$0.2 \pm 0.2 \mathrm{~V}$
Rise and Fall Times	0-50nS (10\% - 90\% points)
Recommended Line Driver and Receiver	(see Figure 6-1)
READ/WRITE DATA AND CLOCK	
Type	differential
Wire	twisted coax with common shield
	90 ohm impedance to shield 180 ohm impedance to other conductor
Termination	91 ohms to ground at both ends
High Level	+1 土. 4 V
Low Level	$0 \pm .1 \mathrm{~V}$
Logical States	P line High; M line low logical 0
	P line low; M line high logical 1
Clock	
Receiver	See Figure 6-2
Data Driver/ Receiver	See Figure 6-3

Figure 6-1. Recommended Logic Driver/Receiver

MATING CONNECTORS

Bussed connector 12424-001
Radial connector 12433-001
Line Terminator 12421-001
CABLE LENGTH

Bussed cable	100 feet $\max (30 \mathrm{M})$
Radial cable	100 feet $\max (30 \mathrm{M})$

NOTES

1. ALL CONNECTIONS TO GROUND MUST BE MADE ON THE BOARD CONTAINING THE RECEIVER, INCL. SHIELD.
2. DECOUPLING CAPACITORS $(.047 \mu \mathrm{fd}$ OR GREATER, MUST BE CERAMIC) MUST BE ON THE BOARD PHYSICALLY NEAR THE RECEIVER.

OR

Figure 6-2. Recommended Clock Receiver
 RECEIVER, INCL. SHIELD.
2. DECOUPLING CAPACITORS $(.047 \mu \mathrm{fd}$ OR GREATER, MUST BE CERAMIC) MUST BE ON THE BOARD PHYSICALLY NEAR THE RECEIVER.

OR

Figure 6-3. Recommended Data Receiver/Driver

Figure 6-4. Signal Connector Locations

Figure 6-5. Power Connection

PIN	SIGNAL	PIN NO.	SIGNAL
01	SECTOR	21	GROUND
02	END OF CYLINDER	22	BUS 1
03	ADDMKDET	23	GROUND
04	OFFSET	24	BUS 2
05	TERMINATOR +5V	25	GROUND
06	INDEX	26	BUS 3
07	TERMINATOR +5V	27	GROUND
08	READY	28	BUS 4
09	GROUND	29	GROUND
10	RDONLY	30	BUS 5
11	GROUND	31	GROUND
12	DEVICE CHECK	32	BUS 6
13	GROUND	33	GROUND
14	ONLINE	34	BUS 7
15	GROUND	35	TERMINATOR IN
16	SEEK INCOMPLETE	36	BUS 8
17	GROUND	37	CONTROLTAG
18	SPARE	38	BUS 9
19	GROUND	39	SETCYLTAG
20	BUS 0	40	SETHDTAG

PIN NO.	SIGNAL	PIN NO.	SIGNAL
01	TERMINATOR +5 V	11	GROUND
02	TERMINATOR +5 V	12	SELECT
03	GROUND	13	GROUND
04	COMPSECIDX	14	R/W DATA P
05	GROUND	15	GROUND
06	ATTENTION	16	R/W DATAM
07	GROUND	17	GROUND
08	SELECTED	18	R/W CLOCK P
09	GROUND	19	GROUND
10	SEQUENCE	20	R/W CLOCK M

Figure 6-7. Radial Cable Pin Numbers

Figure 6-8. Cabling Diagram

Figure 6-6. Bussed Cable Pin Numbers

SECTION 7

CONTROLS AND INDICATORS

FRONT PANEL

Start

This toggle switch controls power to the spin motor only. All internal power supplies are energized even when this switch is off.

Read Only

This toggle switch is placed in the Read Only position to inhibit any writing on the pack. The inhibit is activated and released only when the drive is not selected.

Device Check

This indicator is lit whenever an internal failure or control error is detected. It is reset by the Device Check Reset I/O Command.

Ready

This indicator is off when the drive is not ready. It blinks during the power-up or power-down sequences and is on when the drive is ready to accept commands from the controller.

REAR PANEL

AC Power

This toggle switch controls power to the ent TRIDENT disk drive.

INTERNAL

Degate Switch

This toggle switch is PC card mounted. In the interfact position, the controller interface is enabled and the exerciser interface is disabled. In the opposite positior the controller is disabled and the exerciser is enabled If it is placed in the degate position prior to power-ur or power-down, transient signals do not disturb any other TRIDENT on the same controller bus. The monitoring capabilities of the exerciser are active in either position.

Sector Count Selection

Two IC sockets are wired to accept jumpers coded to select sector count information.

SECTION 8
 ENVIRONMENTAL CHARACTERISTICS

GENERAL

The disk pack and disk drive shall be subjected to the same environmental conditions for at least two hours before the disk pack shall be installed and used in the disk drive.

TEMPERATURE

Equipment $\quad 60^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}\left(15^{\circ} \mathrm{C}\right.$ to $\left.38^{\circ} \mathrm{C}\right)$ with Operational: a max. gradient of $20^{\circ} \mathrm{F}\left(11^{\circ} \mathrm{C}\right)$ per hour.
Equipment $\quad-40^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.65^{\circ} \mathrm{C}\right)$
Non-operational:
Temperature No condensation shall result. Cycling:

HUMIDITY

Equipment $\quad 10 \%$ to 80% R.H., with a wet bulb Operational: temp. limit of $75^{\circ} \mathrm{F}\left(24^{\circ} \mathrm{C}\right)$ provided there is no condensation.
Equipment $\quad 5 \%$ to 80% R.H., provided there is Non-operational: no condensation.

ALTITUDE

Equipment	$32 \mathrm{in} . \mathrm{Hg}$. to $24 \mathrm{in} . \mathrm{Hg} .(81 \mathrm{~cm}$ to
Operational:	$61 \mathrm{~cm})$
Equipment	From 1,000 feet below sea level to
Non-operational: 40,000 feet above sea level. (12	
	KM)

VIBRATION

Equipment	The equipment shall withstand a Operational: peak displacement of ± 0.006 in. $(.015 \mathrm{~cm})$ for the frequency range of
	5 Hz to 60 Hz and $\pm 1 \mathrm{~g}$ for the
	60 Hz to 500 Hz range.

SHOCK

The equipment in non-operational status shall not suffer damage or fail to operate according to specifications, when subjected to 18 impact shocks of $5 \mathrm{~g}(\pm 10 \%)$ consisting of 3 shocks along each direction of three mutually perpendicular axes. Each shock impulse shall be a half sine wave with a time duration of $11(\pm 1) \mathrm{msec}$.

DUST CONTROL

The disk drive is equipped with air filters to ensure the circulation of clean air through the disk drive. All air filtration and air moving mechanisms are completely within the assembly. The pack area is completely closed while the disk drive is operational except for designated air entrance and exit channels. Care should be taken to keep dust and dirt exposure via the service/pack area openings to a minimum.

SECTION 9

POWER REQUIREMENTS

AC POWER

Voltage	Frequency	Phasing	Run	Current (Amperes) Start
100-127 VAC	$60 \mathrm{~Hz} \pm 1 \%$	Line to Neutral	7.5	$24-30$
100-127 VAC	$50 \mathrm{~Hz} \pm 1 \%$	Line to Neutral	7.5	$24-30$
162-264 VAC	$60 \mathrm{~Hz} \pm 1 \%$	Line to Neutral	4.5	13
162-264 VAC	$50 \mathrm{~Hz} \pm 1 \%$	Line to Neutral	4.5	13
162-264 VAC	$60 \mathrm{~Hz} \pm 1 \%$	Line to Line	4.5	13
162-264 VAC	$50 \mathrm{~Hz} \pm 1 \%$	Line to Line	4.5	13
DC POWER				
Internally generated.				
TERMINATOR POWER				
$+5 V \pm 5 \%, 1.2 A$ maximum				

SECTION 10

PHYSICAL CHARACTERISTICS

TABLE TOP MOUNTING

Height	$103 / 8^{\prime \prime}(26 \mathrm{~cm})$
Width	$171 / 2^{\prime \prime}(44 \mathrm{~cm})$
Depth	$32^{\prime \prime}(81 \mathrm{~cm})$
Weight	200 pounds (91 kgms)

Figure 10-1. Outline Dimensions

DOMESTIC OFFICES

Northeast

470 Totten Pond Road
Waltham, Massachusetts 02154
(617) 890-1053

TWX: 910-591-1154

East

550 Old Country Road
Hicksville (LI), New York 11801
(516) 938-7258

TWX: 910-591-1154

Central

10800 Lyndale Avenue South
Suite 165
Bloomington, Minnesota 55420
(612) 888-0297

TWX: 910-591-1154

Texas

4255 LBJ Freeway
One Summers Square, Suite 240
Dallas, Texas 75234
(214) 387-0902

TWX: 910-591-1154

Southwest

2411 West La Palma Avenue
Anaheim, California 92801
(714) 821-2501

TWX: 910-591-1154
Northwest
599 North Mathilda Avenue
P.O. Box 8090

Sunnyvale, California 94086
(408) 735-1491

TWX: 910-591-1154

INTERNATIONAL OFFICES

CalComp S.A.

43 rue de la Breche-Aux-Loups
Paris (12e), France
Phone: 345-49-74
Telex: 68684
CaIComp GmbH
Dusseldorferstrasse 101
4000 Dusseldorf 11
Wesi Germany
Phone: 573076
Telex: 8584661
CalComp B.V.
Maalderij 21
P.O. Box 444

Amstelveen, The Netherlands
Phone: 020-411257
Telex: 16231
CalComp Ltd.
Cory House
The Ring
Bracknell, Berks RG12 1ER
England
Phone: Bracknell 50211
Telex: 848949
CaIComp S.p.A.
Via Farnese 1
20146 Milano, Italy
Phone: 487777
CalComp Pacific
Azabu Bldg.
3-5-27, Roppongi
Minato-ku, Tokyo 106
Japan
Phone: 03/585-7101
Telex: 78126242

OADOOMO

California Computer Products, Inc 2411 W. La Palma, Anaheim, CA 92801 Tel (714) 821-2011 Twx 910-591-1154

[^0]: * Reserved for compatibility with other models

