UNIX ™
for the
68000

VOLUME IIT |
Tutorials and Document Preparation

8/23/82 ' :;;:’_

Copyright 1981, Bell Telephone Laboratories, Incorporated.
Holders of a UNIX(tm) software license are permitted to copy
this document, or any portion of it, as necessary for
licensed use of the software, provided this copyriglit notice
and statement of permission are included.

VOLUME III
Tutorials and Document Preparatiphv

Table of Contents

Part 1: Getting to Know UNIX

1, UNIX Summary

2. The UNIX Time-Sharing System

3. UNIX for Beginners

4, Communicating with UNIX (a tutorial in 5 sessions)
5. UNIX Command Summary

Part 2: Editing

1. Edit: A Tutorial

2. A Tutorial Introduction to the UNIX Text Editor
3. Advanced Editing (ed).

4. Ex Reference Manual =- ex

5. An Introduction to Display Editing with VI

6. Ex Command Summary

7. Ex/Vi Reference Card

Part 3: Text Formatting and Document Preparation
1. Typing Documents on the UNIX System with the -ms Macro Package

2. A TROFF Tutorial
3. NROFF/TROFF User”s Manual

Part 4: Additional Formatting Programs and Macro Packages
1. Tbl - A Program to Format Tables.

2, EQN - typesetting mathematics.
3. -me Macro Package

7th Edition UNIX = Summary

September 6, 1978

Beil Laboratories
Murray Hill, New Jersey 07974

A. What's new: highlights of the 7th edition UNIX* System

Aimed at larger systems. Devices are addressable to 23! bytes. files to 230 bytes. 128K
memory (separate instruction and data space) is needed for some utilities.

Portability. Code of the operating system and most utilities has been extensively revised to
minimize its dependence on particular hardware.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object
level. A Fortran structurer, STRUCT, converts old. ugly Fortran into RATFOR, a structured
dialect usable with F77.

Shell. Compietely new SH program supports string variables. trap handling, structured pro-
gramming, user profiles, settable search path, multilevel file name generation. etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is
now highly compatible with TROFF. MS macro package provides canned commands for many
common formatting and layout situations. TBL provides an easy to learn language for prepar-
ing complicated tabular material. REFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED stream editor does multiple eciting functions in parallel on a data
stream of indefinite length. AWK report generator does free-field pattern selection and arith-
metic operations.

Program development. MAKE controis re-creation of compiicated software, arranging for
minimal recompilation.

Debugging. ADB does postmoriem and breakpoint debugging. handles separate instruction and
data spaces. floating point, etc.

C language. The language now supports definable data types. generalized initialization. biock
structure, long integers. unions, explicit type conversions. The LINT verifier does strong type
checking and detection of probable errors and portability probiems even across separately com-
piled functions.

Lexical analvzer generator. LEX converts specification of regular expressions and semantic
actions into a recognizing subroutine. Analogous to YACC.

Graphics. Simple graph-drawing utility, graphic subroutines. and generalized plotting filters
adapted to various devices are now standard.

Standard input-output package. Highiy efficient buffered stream [/0 is integrated with format-
ted input and cutput.

Other. The operating svstem and utilities have been enhanced and freed of restrictions in
many other ways too numerous to rejate.

+ UNIX is a Trademark of Bell Laboralories.

B. Hardware

The 7th edition UNIX operating system runs on a DEC PDP-11/45 or 11/70® with at least
the following equipment:

128K to 2M words of managed memory; parity not used.
disk: RP03, RP04, RP06, RKOS (more than | RKO0S) or equivalent.
console typewriter.
clock: KW11-L or KW11-P.
The following equipment is strongly recommended:
communications controller such as DL11 or DH11.
full duplex 96-character ASCII terminals.
9-track tape or extra disk for system backup.

The system is normally distributed on 9-track tape. The minimum memory and disk space
specified is enough to run and maintain UNIX. More will be needed to keep all source on line,
or to handle a large number of users, big data bases, diversified complements of devices, or
large programs. The resident code occupies 12-20K words depending on configuration; system
data occupies 10-28K words.

There is no commitment to provide 7th edition UNIX on PDP-11/34, 11/40 and 11/60
hardware.

C. Software

Most of the programs available as UNIX commands are listed. Source code and printed
manuals are distributed for all of the listed software except games. Almost all of the code is
written in C. Commands are self-contained and do not require extra setup information, unless
specifically noted as ‘‘interactive.”” Interactive programs can be made to run from a prepared
script simply by redirecting input. Most programs intended for interactive use (e.g., the editor)
allow for an escape to command level (the Shell). Most file processing commands can aiso go
from standard input to standard output (**filters’’). The piping facility of the Shell may be used
to connect such filters directly to the input or output of other programs.

1. Basic Software

This includes the time-sharing operating system with utilities, a machine language assem-
bler and a compiler for the programming language C—enough software to write and run new
applications and to maintain or modify UNIX itself.

1.1. Operating System

a UNIX The basic resident code on which everything else depends. Supports the system
calls, and maintains the file system. A general description of UNIX design phi-
losophy and system facilities appeared in the Communications of the ACM,
July, 1974. A more extensive survey is in the Bell System Technical Journal
for July-August 1978. Capabilities include:

O Reentrant code for user processes.

O Separate instruction and data spaces.

O*Group™ access permissions for cooperative projects, with overlapping
memberships.

O Alarm-clock timeouts.

*PDP is a Trademark of Digital Equipment Corporation.

O DEVICES

O BOOT
C MKCONF

-3.

O Timer-interrupt sampling and interprocess monitoring for debugging and
measurement.
O Multiplexed [/0 for machine-to-machine communication.

All 170 is logically synchronous. [/0 devices are simply files in the file system.

Normally, invisible buffering makes all physical record structure and device

characteristics transparent and exploits the hardware's ability to do overlapped

1/0. Unbuffered physical record I/0 is available for unusual applications.

Drivers for these devices are available: others can be easily written:

O Asynchronous interfaces: DH11, DL11. Support for most common ASCII
terminals.

O Synchronous interface: DP11.

O Automatic calling unit interface: DN11.

OLine printer: LP11.

O Magnetic tape: TU10 and TU16.

ODECtape: TC11.

O Fixed head disk: RS11, RS03 and RS04.

O Pack type disk: RP03, RP04, RP06; minimume-latency seek scheduling.

O Cartridge-type disk: RK0S, one or more physical devices per logical device.

O Null device.

O Physical memory of PDP-11, or mapped memory in resident system.

O Phototypesetter: Graphic Systems System/1 through DRI1IC.

Procedures to get UNIX started.

Tailor device-dependent system code to hardware configuration. As distributed.
UNIX can be brought up directly on any acceptable CPU with any acceptabie
disk, any sufficient amount of core, and either clock. Other changes, such as
optimal assignment of directories to devices, inclusion of floating point simula-
tor. or installation of device names in file system. can then be made at leisure.

1.2. User Access Control

C LOGIN

O PASSWD

O NEWGRP

Sign on as a new user.

O Verify password and establish user's individual and group (project) identity.
O Adapt to characteristics of terminal.

O Establish working directory.

O Announce presence of mail (from MAIL).

O Publish message of the day.

O Execute user-specified profile.

O Start command interpreter or other initial program.

Change a password.
O User can change his own password.
O Passwords are kept encrypted for security.

Change working group (project). Protects against unauthorized changes to pro-
jects.

1.3. Terminal Handling

O TABS
o STTY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deducible
from the input. these options are set automatically by LOGIN.

Q Half vs. full duplex.

O Carriage return+line feed vs. newline.

O Interpretation of tabs.

Q Parity.

O Mapping of upper case to lower.

O Raw vs. edited input.

Q Delays for tabs, newlines and carriage returns.

1.4. File Manipulation

g CAT

cCp

a PR

CLPR

a CMP
T TAIL

Q SPLIT

a DD

G SUM

Concatenate one or more files onto standard output. Particularly used for una-
dorned printing, for inserting data into a pipeline, and for buffering output that
comes in dribs and drabs. Works on any file regardless of contents.

Copy one file to another, or a set of files to a directory. Works on any file
regardless of contents.

Print files with title, date, and page number on every page.
O Multicolumn output.
QO Parallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.
Compare two files and report if different.

Print last » lines of input
O May print last n characters, or from » lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for edit-
ing (ED).

Physical file format translator, for exchanging data with foreign systems, espe-
cially IBM 370’s.

Sum the words of a file.

1.5. Manipulation of Directories and File Names

J RM

Z LN

Z MV

= CHMOD
2 CHOWN
CHGRP
0 MKDIR
RMDIR
CD
FIND

L}

L]

Ll

.

Remove a file. Only the name goes away if any other names are linked t0 the
file.

O Step through a directory deleting files interactively.

O Delete entire directory hierarchies.

*Link’" another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by files' owner.
Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.

O Criteria include:

name maiches a given pattern,

creation date in given range.

date of last use in given runge.

given permissions.

given owner,

given special file characteristics.

boolean cnmbinations of above.
O Any directory may be considered to be the root.
O Perform specified command on each file found.

1.6. Running of Programs

C SH The Shell, or command language interpreter.
O Supply arguments to and run any executable program.
O Redirect standard input. standard output. and standard error files.
O Pipes: simultaneous execution with output of one process connected to the
input of another.
O Compose compound commands using:
if ... then ... else,
case switches,
while loops.
for loops over lists,
break. continue and exit,
parentheses for grouping.
O Initiate background processes.
O Perform Shell programs, i.e.. command scripts with substitutable argumerits.
O Construct argument lists from all file names satisfying specified patterns.
O Take special action on traps and interrupts.
O User-settable search path for finding commands.
QO Executes user-settabie profile upon login.
O Optionally announces presence of mail as it arrives.
O Provides variables and parameters with default setting.

O TEST Tests for use in Shell conditionals.
O String comparison.
O File nature and accessibility.
O Booiean combinations of the above.

o EXPR String computations for calculating command arguments.
O Integer arithmetic
O Pattern matching

C WAIT Wait for termination of asynchronously running processes.

2 READ Read a line from terminal. for interactive Shell procedure.

0 ECHO Print remainder of command line. Useful for diagnostics or prompts in Shell
programs. or for inserting data into a pipeline.

0O SLEEP Suspend execution for a specified time.

Z NOHUP Run a command immune to hanging up the terminal.

3 NICE Run a command in fow (or high) priority.

C KILL
T CRON

C AT
O TEE

Terminate named processes.

Schedule regular actions at specified times.

QO Actions are arbitrary programs.

O Times are conjunctions of month, day of month, day of week, hour and
minute. Ranges are specifiable for each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and divert a copy into one or more files.

1.7. Status Inquiries

o LS

ad FILE

C DATE

C DF
2 DU
g QuoT
C WHO

ZPS

2 IOSTAT

S TTY
Z PWD

List the names of one, several. or all files in one or more directories.

O Alphabetic or temporal sorting, up or down.

OOptional information: size, owner, group, date last modified, date last
accessed, permissions. i-node number.

Try to determine what kind of information is in a file by consulting the file sys-
tem index and by reading the file itself.

Print today's date and time. Has considerable knowledge of calendric and horo-
logical peculiarities.
O May set UNIX's idea of date and time.

Report amount of free space on file system devices.
Print a summary of total space occupied by all files in a hierarchy.
Print summary of file space usage by user id.

Tell who's on the system. A
O List of presently logged in users, ports and times on.
O Optional history of all logins and logouts.

Report on active processes.

O List your own or everybody’s processes.

QO Tell what commands are being executed.

O Optional status information: state and scheduling info, priority, attached ter-
minal, what it’s waiting for. size.

Print statistics about system 1/0 activity.
Print name of your terminal.

Print name of your working directory.

1.8. Backup and Maintenance

Z MOUNT

Z UMOUNT

Z MKFS
~ MKNOD

Attach a device containing a file system to the tree of directories. Protects
against nonsense arrangements.

Remove the file sysiem contained on a device from the tree of directories.
Protects against removing a busy device.

Make a new file system on a device.

Make an i-node (file system entry) for a special file. Special files are physical
devices. virtual devices. physical memory, etc.

oTP
O TAR

O DUMP

C RESTOR
o Ssu

O DCHECK
O ICHECK
O NCHECK

C CLRI

C SYNC

Manage file archives on magnetic tape or DECtape. TAR is newer.
O Collect files into an archive.

O Update DECtape archive by date.

O Replace or delete DECtape files.

O Print table of contents.

O Retrieve from archive.

Dump the file system stored on a specified device, selectively by date, or
indiscriminately.

Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof.
Requires a password.

Check consistency of file system.

O Print gross statistics: number of files, number of directories, number of spe-
cial files, space used, space free. ‘

O Report duplicate use of space.

O Retrieve lost space.

O Report inaccessible files.

O Check consistency of directories.

O List names of all files.

Peremptorily expunge a file and its space from a file system. Used to repair
damaged file systems.

Force all outstanding I/O on the system to completion. Used to shut down
gracefully.

1.9. Accounting

The timing information on which the reports are based can be manually cleared or shut off

completely.
C AC

C SA

Publish cumulative connect time report.
O Connect time by user or by day.
O For all users or for selected users.

Publish Shell accounting report. Gives usage information on each command
executed.

O Number of times used.

O Total system time, user time and elapsed time.

O Optional averages and percentages.

O Sorting on various fieids.

1.10. Communication

= MAIL

Mail a message to one or more users. Also used to read and dispose of incom-
ing mail. The presence of mail is announced by LOGIN and optionaily by SH.
O Each message can be disposed of individually.

O Messages can be saved in files or forwarded.

-8-

O CALENDAR Automatic reminder service for events of today and tomorrow.

O WRITE
a WALL
T MESG
acu

c UucCPp

Establish direct terminal communication with another user.
Write to all users.
Inhibit receipt of messages from WRITE and WALL.

Call up another time-sharing system.

O Transparent interface to remote machine.

O File transmission.

O Take remote input from local file or put remote output into local file.
QO Remote system need not be UNIX.

UNIX to UNIX copy.

O Automatic queuing until line becomes available and remote machine is up.
O Copy between two remote machines.

O Differences, mail, etc., between two machines.

1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in sec-

tion 2.
O AR

a AS

= Library

Maintain archives and libraries. Combines several files into one for housekeep-
ing efficiency. '

QO Create new archive.

O Update archive by date.

QO Replace or delete files.

O Print table of contents.

O Retrieve from archive.

Assemblier. Similar to PAL-11, but different in detail.
QO Creates object program consisting of
code. possibly read-only,
initialized data or read-write code,
uninitialized data.
O Relocatable object code is directly executable without further transformation.
Q Object code normally includes a symbol table.
Q Multiple source files.
O Local labels.
Q Conditional assembly.
O *“Conditional jump’ instructions become branches or branches plus jumps
depending on distance.

The basic run-time library. These routines are used freely by all software.

QO Buffered character-by-character /0.

O Formatted input and output conversion (SCANF and PRINTF) for standard
input and output, files, in-memory conversion.

O Storage allocator.

O Time conversions.

QO Number conversions.

Q Password encryption.

O Quicksort.

O Random number generator.

O Mathematical function library, including trigonometric. functions and
inverses. 2x ‘onential. logarithm. square root, bessel functions.

Z ADB

Z LORDER

C NM

T SIZE
C STRIP

= TIME
= PROF

T MAKE

Interactive debugger.
C Postmortem dumping.
O Examination of arbitrary files. with no limit on size.
O Interactive breakpoint debugging with the debugger uas a separate process.
O Symbolic reference to local and global variables.
O Stack trace for C programs.
O Output formats:
1-. 2-, or 4-byte integers in octal. decimal. or hex
single and double floating point
character and string
disassembled machine instructions
O Parching.
O Searching for integer. character. or floating patterns.
O Handles separated instruction and data space.

Dump any file. Output options include any combination of octal or decimal by
words. octal by bytes, ASCII, opcodes. hexadecimal.
O Range of dumping is controllable.

Link edit. Combine relocatabie object files. Insert required routines from
specified libraries.

O Resulting code may be sharable.

O Resulting code may have separate instruction and data spaces.

Places object file names in proper order for loading, so that files depending on
others come after them.

Print the namelist (symbol table) of an object program. Provides control over
the styie and order of names that are printed.

Report the core requirements of one or more object files.

Remove the relocation and symbol table information from an object file to save
space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time-
sampling the execution of a program. Uses floating point.
O Subroutine cail frequency and average times for C programs.

Controls creation of large programs. Uses a control file specifying source file
dependencies to make new version: uses time last changed to deduce minimum
amount of work necessary.

O Knows about CC. YACC. LEX, etc.

1.12. UNIX Programmer's Manual

Z Manual

Machine-readabie version of the UNIX Programmer's Manual.
OSystem overview.

O All commands.

O All sysiem calls.

O All subroutines in C and assembler libraries.

C All devices and other special files.

O Formats of file system and kinds of files known to system software.
Z Boot and maintenance procedures.

a MAN

-10 -

Print specified manual section on your terminal.

1.13. Computer-Aided Instruction

Q LEARN

2. Languages

A program for interpreting CAI scripts, plus scripts for learning about UNIX by

using it.

O Scripts for basic files and commands, editor, advanced files and commands,
EQN, MS macros, C programming language.

2.1. The C Language

acc

C LINT

o CB
2.2. Fortran

c F77

C RATFOR

Compile and/or link edit programs in the C language. The UNIX operating sys-
tem, most of the subsystems and C itself are written in C. For a full descrip-
tion of C, read The C Programming Language, Brian W. Kernighan and Dennis
M. Ritchie, Prentice-Hall, 1978.

Q General purpose language designed for structured programming.

O Data types include character, integer, float, double, pointers to all types,
functions returning above types, arrays of all types, structures and unions of
all types.

O Operations intended to give machine-independent control of full machine
facility, including to-memory operations and pointer arithmetic.

QO Macro preprocessor for parameterized code and inclusion of standard files.

O All procedures recursive, with parameters by value.

QO Machine-independent pointer manipulation.

O Object code uses full addressing capability of the PDP-11.

O Runtime library gives access to all system facilities.

Q Definable data types.

Q Block structure

Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces..
Nonportable type conversions.
Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.
O Full cross-module checking of separately compiled programs.

A beautifier for C programs. Does proper indentation and placement of braces.

A full compiler for ANSI Standard Fortran 77.

QO Compatibie with C and supporting tools at object level.

Q Optional source compatibility with Fortran 66.

O Free format source.

Q Optional subscript-range checking, detection of uninitialized variables.

O All widths of arithmetic: 2- and 3-byte integer:; 4- and 8-byte real, 8- and 16-
byte complex.

Ratfor adds rational control structure a la C to Fortran.
O Compound statements.

-11-

O If-else, do, for, while, repeat-until, break, next statemnents.
O Symbolic constants.

O File insertion.

O Free format source

O Translation of relationals like >, > =,

Q Produces genuine Fortran to carry away.

O May be used with F77.

O STRUCT Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using
statement grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

O BAS An interactive interpreter, similar in style to BASIC. Interpret unnumbered
statements immediately, numbered statements upon ‘run’.
O Statements include:
comment,
dump,
for...next,
goto,
if...eise...f,
list,
print,
prompt,
return,
run,
save.
O All calculations double precision.
O Recursive function defining and calling.
O Builtin functions include log, exp, sin, cos, atn, int, sqr, abs, rnd.
O Escape to ED for complex program editing.

o DC Interactive programmable desk caiculator. Has named storage locations as well
as conventional stack for holding integers or programs.
O Unlimited precision decimal arithmetic.
O Appropriate treatment of decimal fractions.
O Arbitrary input and output radices, in particular binary, octal, decimal and
hexadecimal.
O Reverse Polish operators:
+ -°/
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

a BC A C-like interactive interface to the desk caiculator DC.
O All the capabilities of DC with a high-level syntax.
O Arrays and recursive functions.
O Immediate evaluation of expressions and evaluation of functions upon call.
O Arbitrary precision elementary functions: exp, sin, cos, atan.
O Go-to-less programming.

2.4. Macroprocessing

O M4

-12 -

A general purpose macroprocessor.

O Stream-oriented, recognizes macros anywhere in text.

O Syntax fits with functional syntax of most higher-level languages.
O Can evaluate integer arithmetic expressions.

2.5. Compiler-compilers

Q YACC

T LEX

An LR(1)-based compiler writing system. During execution of resulting
parsers, arbitrary C functions may be called to do code generation or semantic
actions.

O BNF syntax specifications.

Q Precedence relations.

Q Accepts formally ambiguous grammars with non-BNF resolution rules.

Generator of lexical analyzers. Arbitrary C functions may be called upon isola-
tion of each lexical token.

Q Full regular expression, plus left and right context dependence.

QO Resulting lexical analysers interface cleanly with YACC parsers.

3. Text Processing

3.1. Document Preparation

CED

O PTX
T SPELL

C LOOK
S TYPO
T CRYPT

Interactive context editor. Random access to all lines of a file.

QO Find lines by number or pattern. Patterns may include: specified characters,
don’t care characters, choices among characters, repetitions of these con-
structs, beginning of line, end of line.

O Add, delete, change, copy, move or join lines.

O Permute or split contents of a line.

O Replace one or all instances of a pattern within a line.

QO Combine or split files.

QO Escape to Shell (command language) during editing.

O Do any of above operations on every pattern-selected line in a given range.

QO Optional encryption for extra security.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word in a document against a word
list.

Q 25,000-word list includes proper names.

Q Handles common prefixes and suffixes.

C Collects words to help tailor local speiling lists.

Search for words in dictionary that begin with specified prefix.
Look for spelling errors by a statistical technique; not limited to English.
Encrypt and decrypt files for security.

3.2. Document Formatting

T ROFF

A typesetting program for terminals. Easy for nontechnical people to learn, and
good for simple documents. Input consists of data lines intermixed with con-
trol lines, such as

.sp 2 insert two lines of space

.ce center the next line
ROFF is deemed to be obsolete; it is intended only for casual use.

-13.-

O Justification of either or both margins.

O Automatic hyphenation.

O Generalized running heads and feet, with even-odd page capability, number-
ing, etc.

O Definable macros for frequently used control sequences (no substitutable
arguments).

O All 4 margins and page size dynamically adjustable.

O Hanging indents and one-line indents.

O Absolute and relative parameter settings.

O Optional legal-style numbering of output lines.

O Multiple file capability.

O Not usable as a filter.

O TROFF

O NROFF Advanced typesetting. TROFF drives a Graphic Systems phototypesetter;
NROFF drives ascii terminals of all types. This summary was typeset using
TROFF. TROFF and NROFF style is similar to ROFF, but they are capable of
much more elaborate feats of formatting, when appropriately programmed.
TROFF and NROFF accept the same input language.

C All ROFF capabilities available or definable.

O Compietely definable page format keyed to dynamically planted ‘‘interrupts”™
at specified lines.

C Maintains several separately definable typesetting environments (e.g., one for
body text, one for footnotes, and one for unusually elaborate headings).

O Arbitrary number of output pools can be combined at will.

O Macros with substitutable arguments, and macros invocable in mid-line.

Q Computation and printing of numerical quantities.

O Conditional execution of macros.

© Tabular layout facility. '

O Positions expressibie in inches, centimeters, ems, points, machine units or
arithmetic combinations thereof,

O Access to character-width computation for unusually difficuit layout prob-
lems. ‘

O Overstrikes. built-up brackets, horizontal and vertical line drawing.

O Dynamic relative or absolute positioning and size selection, globally or at the
character level.

O Can expioit the characteristics of the terminal being used, for approximating
special characters. reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character fonts (4 simultane-
ously) in 15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capabie of reverse line feed, or through
the postprocessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and
NROFF, although unskilled personne! can easily be trained to enter documents according to
canned formats such as those provided by MS, below. TROFF and EQN are essentially identi-
cal 1o NROFF and NEQN so it is usually possible to define interchangeabie formats to produce
approximate proof copy on terminals before actual typesetting. The preprocessors MS, TBL.
and REFER are fully compatibie with TROFF and NROFF.

— MS A standardized manuscript lavout package for use with NROFF/TROFF. This
document was formatted with MS.

C EQN

T NEQN

C TBL

T REFER

3 TC

T GREEK

c COL
= DEROFF
C CHECKEQ

- 14-

O Page numbers and draft dates.

QO Automatically numbered subheads.

O Footnotes.

O Single or double column.

O Paragraphing, display and indentation.
O Numbered equations.

A mathematical typesetting preprocessor for TROFF. Translates easily readable
formulas, either in-line or displayed, into detailed typesetting instructions. For-
mulas are written in a style like this:

sigma sup 2 "="1 over N sum from i=1 to N (x subi — x bar) sup 2

which produces:

1o Lo 22
T N;;(X' x)
O Automatic calculation of size changes for subscripts, sub-subscripts, etc.
QO Full vocabulary of Greek letters and special symbols, such as ‘gamma’,
‘GAMMA’, ‘integral’.
O Automatic calculation of large bracket sizes.
QO Vertical “‘piling’’ of formulae for matrices, conditional alternatives, etc.
QO Integrals, sums, etc., with arbitrarily complex limits.
Q Diacriticals: dots, double dots, hats, bars, etc.
O Easily learned by nonprogrammers and mathematical typists.

A version of EQN for NROFF; accepts the same input language. Prepares for-
mulas for display on any terminal that NROFF knows about, for example,
those based on Diablo printing mechanism.

O Same facilities as EQN within graphical capability of terminal.

A preprocessor for NROFF/TROFF that iranslates simple descriptions of table

layouts and contents into detailed typesetting instructions.

O Computes column widths.

QO Handles left- and right-justified columns, centered columns and decimal-point
alignment.

QO Places column titles.

Q Table entries can be text, which is adjusted to fit.

Q Can box all or parts of table.

Fills in bibliographic citations in a document from a data base (not supplied).
O References may be printed in any style, as they occur or collected at the end.
O May be numbered sequentially, by name of author, etc.

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for
checking TROFF page layout before typesetting.

Fancy printing on Diablo-mechanism terminals like DASI-300 and DASI-450,
and on Tektronix 4014,

C Gives half-line forward and reverse motions.

O Approximates Greek letters and other special characters by overstriking.

Canonicalize files with reverse line feeds for one-pass printing.
Remove all TROFF commands from input.

Check document for possible errors in EQN usage.

-15 -

4. Information Handling

O SORT

O TSORT
0 UNIQ

OTR

o DIFF

o COMM

O JOIN
O GREP

0 LOOK
o wC
O SED

0O AWK

Sort or merge ASCII files line-by-line. No limit on input size.
O Sort up or down.

O Sort lexicographically or on numeric key.

O Multiple keys located by delimiters or by character position.
Q May sort upper case together with lower into dictionary order.
O Optionally suppress duplicate data.

Topological sort = converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
O Publish lines that were originally unique, duplicated, or both.
O May give redundancy count for each line.

Do one-to-one character transiation according to an arbitrary code.
O May coalesce selected repeated characters.
O May delete seiected characters.

Report line changes, additions and deletions necessary to bring two files into
agreement.

O May produce an editor script to convert one file into another.

O A variant compares two new versions against one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows
lines present in first file only, present in both, and/or present in second oniy.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
O May print all lines that fail to match.

O May print count of hits.

© May print first hit in each file.

Binary search in sorted file for lines with specified prefix.
Count the lines, *‘words’™ (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editing operations
on each line of an input stream of unbounded length.

O Lines may be selected by address or range of addnsses

O Control flow and conditional testing.

© Multiple output streams.

O Multi-line capability.

Pattern scanning and processing language. Searches input for patterns, and per-

forms actions on each line of input that satisfies the pattern.

O Patterns include regular expressions, arithmetic and lexicographic conditions,
booiean combinations and ranges of these.

O Data treated as string or numeric as appropriate.

O Can break input into fields; fields are variables.

O Variables and arrays (with non-numeric subscripts).

O Full set of arithmetic operators and control flow.

O Multipie output streams to files and pipes.

O Output can be formatted as desired.

O Multi-line capabilities.

-16 -

S. Graphics

The programs in this section are predominantly intended for use with Tektronix 4014 storage
scopes.
QT GRAPH Prepares a graph of a set of input numbers.

QO Input scaled to fit standard plotting area.

O Abscissae may be supplied automaticaily.

QO Graph may be labeled.

QO Control over grid style, line style, graph orientation, etc.

O SPLINE Provides a smooth curve through a set of points intended for GRAPH.

O PLOT A set of filters for printing graphs produced by GRAPH and other programs on
various terminals. Filters provided for 4014, DASI terminals, Versatec
printer/plotter. ,

6. Novelties, Games, and Things That Didn’t Fit Anywhere Else
0 BACKGAMMON
A player of modest accomplishment.
a CHESS Plays good class D chess.
O CHECKERS Ditto, for checkers.

C BCD Converts ascii to card-image form.

a PPT Converts ascii to paper tape form.

C BJ A blackjack dealer.

g CUBIC An accomplished player of 4x4x4 tic-tac-toe.
a MAZE Constructs random mazes for you to solve.

0 MOO A fascinating number-guessing game.

5 CAL Print a calendar of specified month and year.

O BANNER Print output in huge letters.
O CHING The / Ching. Place your own interpretation on the output.

Z FORTUNE Presents a random fortune cookie on each invocation. Limited jar of cookies
included.

Z UNITS Convert amounts between different scales of measurement. Knows hundreds
of units. For example, how many km/sec is a parsec/megayear?

oTIT A tic-tac-toe program that learns. It never makes the same mistake twice.

C ARITHMETIC ‘
Speed and accuracy test for number facts.

O FACTOR Factor large integers.

= QUIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.

C WUMP Hunt the wumpus, thrilling search in a dangerous cave.

C REVERSI A two person board game, isomorphic to Othello®.

Z HANGMAN Word-guessing game. Uses the dictionary supplied with SPELL.

O FISH

-17-

Children’s card-guessing game.

The UNIX Time-Sharing System®

D. M. Ritchie and K. Thompson

ABSTRACT

UNIXT is a general-purpose, multi-user, interactive operating system for
the larger Digital Equipment Corporation PDP-11 and the Interdata 8/32 com-
puters. It offers a number of features seldom found even in larger operating
systems, including

i A hierarchical file system incorporating demountable volumes,
ii ~ Compatible file, device, and inter-process 1/0,

iii ~ The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of
the user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa
1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second ver-
sion ran on the unprotected PDP-11/20 computer. The third incorporated multiprogramming
and ran on the PDP-11/34, /40, /45, /60, and /70 computers; it is the one described in the pre-
viously published version of this paper, and is also the most widely used today. This paper
describes only the fourth, current system that runs on the PDP-11/70 and the Interdata 8/32
computers. In fact, the differences among the various systems is rather small; most of the revi-
sions made to the originally published version of this paper, aside from those concerned with
style, had to do with details of the implementation of the file system.

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have been
put into service. Most of them are engaged in applications such as computer science education,
the preparation and formatting of documents and other textual material, the collection and pro-
cessing of trouble data from various switching machines within the Bell System, and recording
and checking telephone service orders. Our own installation is used mainly for research in
operating systems, languages, computer networks, and other topics in computer science, and
also for document preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful
operating system for interactive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as $40,000, and less than two man-years were
spent on the main system software. We hope, however, that users find that the most important

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised ver-
sion of an articie that appeared in Communicauons of the acM, /7, No. 7 (July 1974), pp. 365-375. That arti-
cle was a revised version of a paper presented at the Fourth AcM Symposium on Operating Systems Princi-
ples. 1BM Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973.

tUNIX is a Trademark of Bell Laboratories.

.2.

characteristics of the system are its simplicity, elegance, and ease of use.
Besides the operating system proper. some major programs available under UNIX are

C compiler

Text editor based on QED!

Assembler, linking loader. symbolic debugger

Phototypesetting and equation setting programs?- 3

Dozens of languages inciuding Fortran 77, Basic. Snobol, APL, Algol 68. M6,
TMG. Pascal

There is a host of maintenance, utility. recreation and novelity programs, all written locally.
The UNIX user community, which numbers in the thousands, has contributed many more pro-
grams and languages. [t is worth noting that the system is totaily self-supporting. All UNIX
software is maintained on the system: likewise. this paper and all other documents in this issue
were generated and formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The poP-11/70 on which the Research UNIX system is installed is a 16-bit word (8-bit
byte) computer with 768K bytes of core memory: the system kernel occupies 90K bytes about
equally divided between code and data tables. This system. however, includes a very large
number of device drivers and enjoys a generous alloiment of space for [/Q buffers and system
tables: a minimal system capable of running the software mentioned above can require as little
as 96K byties of core altogether. There are even larger instailations; see the description of the
PWB/UNIX systems.® 3 for example. There are also much smaller, though somewhat restricted,
versions of the system.®

Our own PDP-11 has two 200-Mb moving-head disks for file system storage and swapping.
There are 20 variable-speed communications interfaces attached to 300- and 1200-baud data
sets. and an additional 12 communication lines hard-wired 10 9600-baud terminals and satellite
computers. There are also several 2400- and 4800-baud synchronous communication interfaces
used for machine-to-machine file transfer. Finally, there is a variety of misceilaneous devices
inciuding nine-track magnetic tape, a line printer. a voice synthesizer, a phototypesetter, a digi-
tal switching network. and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language.’ Early
versions of the operating system were written in assembly language, but during the summer of
1973, it was rewritten in C. The size of the new system was about one-third greater than that
of the old. Since the new sysiem not only became much easier to understand and to modify
but aiso included many functional improvements. including multiprogramming and the ability
10 share reentrant code among several user programs. we consider this increase in size quite
acceptable.

IT1. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view
of the user, there are three kinds of files: ordinary disk files. directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it. for example, symbolic or
binary (object) programs. No particular structuring is expected by the system. A file of text
consists simply of a string of characters. with lines demarcated by the newline character. Binary
programs are sequences of words as they will appear in core memory when the program staris
executing. A few user programs manipuiate files with more structure: for exampie. the assem-
bler generates. and the loader expects. an object file in a particular format. However. the struc-
wure of files is controiled by the programs :hat use them. not by the system.

3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and
thus induce a structure on the file system as a whole. Each user has a directory of his own
files; he may also create subdirectories to contain groups of files conveniently treated together.
A directory behaves exactly like an ordinary file except that it cannot be written on by
unprivileged programs, so that the system controls the contents of directories. However, any-
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root direc-
tory. All files in the system can be found by tracing a path through a chain of directories until
the desired file is reached. The starting point for such searches is often the root. Other sysiem
directories contain all the programs provided for general use; that is, all the commands As will
be seen, however, it is by no means necessary that a program reside in one of these directories
for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is
specified to the system, it may be in the form of a path name, which is a sequence of directory
names separated by slashes, ‘‘/’, and ending in a file name. If the sequence begins with a
slash, the search begins in the root directory. The name /alpha/beta/gamma causes the sys-
tem to search the root for directory alpha, then to search alpha for beta, finally to find gamma
in beta. gamma may be an ordinary file, a directory, or a special file. As a limiting case, the
name **/"° refers to the root itself.

A path name not starting with **/*° causes the system to begin the search in the user’s
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
alpha of the current directory. The simplest kind of name, for example, alpha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers
to the current directory.

The same non-directory file may appear in several directories under possibly different
names. This feature is called linking, a directory entry for a file is sometimes called a link. The
UNIX system differs from other sysiems in which linking is permitted in that all links to a file
have equal status. That is, a file does not exist within a particular directory; the directory entry
for a file consists merely of its name and a pointer to the information actually describing the
file. Thus a file exists independently of any directory entry, although in practice a file is made
to disappear along with the last link to it.

Each directory always has at least two entries. The name ““.”" in each directory refers to
the directory itself. Thus a program may read the current directory under the name *."’
without knowing its complete path name. The .:ame *“‘..”" by convention refers to the parent
of the directory in which it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted iree. Except for the
special entries **.” and ‘‘.."", each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure, and more important, to avoid the separation of portions
of the hierarchy. If arbitrary links to directories were permitted, it would be quite difficult to

detect when the last connection from the root to a directory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported
170 device is associated with at least one such file. Special files are read and written just like
ordinary disk files, but requests to read or write result in activation of the associated device.
An entry for each special file resides in directory /dev, although a link may be made to one of
these files just as it may 1o an ordinary file. Thus, for example, to write on a magnetic tape one
may write on the file /dev/mt. Special files exist for each communication line, each disk, each
tape drive, and for physical main memory. Of course, the active disks and the memory special
file are protected from indiscriminate access.

-4.

There is a threefold advantage in treating [/O devices this way: file and device [/O are as
similar as possible; file and device names have the same syntax and meaning. so that a program
expecting a file name as a parameter can be passed a device name: finaily, special files are sub-
ject to the same protection mechanism as regular files.

3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is not neces-
sary that the entire file system hierarchy reside on this device. There is a mount sysiem
request with two arguments: the name of an existing ordinary file, and the name of a special file
whose associated storage volume (e.g.. a disk pack) should have the structure of an indepen-
dent file system containing its own directory hierarchy. The effect of mount is to cause refer-
ences to the heretofore ordinary file to refer instead to the root directory of the file system on
the removable volume. In 2ffect. mount replaces a leaf of the hierarchy tree (the ordinary file)
by a whole new subtree (the hierarchy stored on the removabie volume). After the mount.
there is virtually no distinction between files on the removable voiume and those in the per-
manent file system. [n our installation, for example, the root directory resides on a small parti-
tion of one of our disk drives, while the other drive, which contains the user's files, is mounted
by the system initialization sequence. A mountable file system is generated by writing on its
corresponding special file. A utility program is availabie to create an empty file system, or one
may simply copy an existing file system.

There is only one exception to tie rule of identical treatment of files on different devices:
no link may exist between one file system hierarchy and another. This restriction is enforced
so as to avoid the elaborate bookkeeping that would otherwise be required to assure removal of
the links whenever the removabie volume is dismounted.

3.5 Protection

Although the access con:rol scheme is quite simple, it has some unusual features. Each
user of the system is assigned a unique user identification number. When a file is created, it is
marked with the user ID of its owner. Also given for new files is a set of ten protection bits.
Nine of these specify independently read. write. and execute permission for the owner of the
file. for other members of his group. and for all remaining users.

If the tenth bit is on. the system will temporarily change the user identification (hereafter,
user ID) of the current user to that of the creator of the file whenever the file is executed as a
program. This change in user ID is effective only during the execution of the program that calls
for it. The set-user-ID feature provides for privileged programs that may use files inaccessible
to other users. For example, a program may keep an accounting file that should neither be read
nor changed except by the program itself. If the set-user-ID bit is on for the program, it may
access the file although this access might be forbidden to other programs invoked by the given
program’s user. Since the actual user ID of the invoker of any program is always available, set-
user-ID programs may take any measures desired to satisfy themselves as to their invoker's
credentials. This mechanism is used to allow users to axecute the carefully written commands
that call privileged system entries. For exampie, there is a system entry invokabie only by the
“super-user’” (below) that creates an empty directory. As indicated above, directories are
2xpected to have entries for **.”" and **.."". The command which creates a directory is owned
by the super-user and has the set-user-iD bit set. After it checks its invoker's authorization to
create the specified directory, it creates it and makes the entries for **. " and **.."".

Because anyone may set the set-user-iD bit on one of his own files, this mechanism is
generally available without administrative intervention. For axample, this protection scheme
2asilv solves the MOO accounting problem posed by **Aleph-null.”"3

The system recognizes one particular user ID (that of the "“super-user’”) as exempt {rom
the usual constraints on file access: thus (for example). programs may be written to dump and
retoad :ne file system without unwanted interference from the protection system.

3.6 1/0 calls

The system calls to do 1/0 are designed to eliminate the differences between the various
devices and styles of access. There is no distinction between ‘‘random’’ and ‘‘sequential’’ 1/0,
nor is any logical record size imposed by the system. The size of an ordinary file is determined
bv the number of bytes written on it; no predetermination of the size of a file is necessary or
possibie.

To illustrate the essentials of 1/0, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly-
ing complexities. Each call to the system may potentially result in an error return, which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:
filep = open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag
argument indicates whether the file is to be read, written, or ‘‘updated,’” that is, read and writ-
ten simultaneously.

The returned value filep is called a file descripror. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; create
also opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possibie for
the contents of a file to become scrambled when two users write on it simultaneously, in prac-
tice difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannot prevent confusion when, for exampie, both
users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simultaneously in activities such as writing on the same file,
creating files in the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a partic-
ular byte in the file was the last byte written (or read), the next I/0 call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte to be read or written. If n bytes are read or written, the pointer
advances by n bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)
n = write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by filep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as I/0 errors or end of physi-
cal medium on special files; in a read, however, n may without error be less than count. If the
read pointer is so near the end of the file that reading count characters would cause reading
beyond the end, only sufficient bytes are transmitted to reach the end of the file; also,
typewriter-like terminals never return more than one line of input. When a read call returns
with n equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end-of-
file from a terminal by use of an escape sequence that depends on the device used.

-6-

Bytes written affect only those parts of a file implied by the position of the write pointer
and the count; no other part of the file is changed. If the last byte lies beyond the end of the
file, the file is made to grow as needed.

To do random (direct-access) I/0 it is only necessary to move the read or write pointer to
the appropriate location in the file.

location = Iseek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the
file. from the current position of the pointer, or from the end of the file, depending on base.
offset may be negative. For some devices (e.g., paper tape and terminals) seek calls are
ignored. The actual offset from the beginning of the file to which the pointer was moved is
returned in location.

There are several additional system entries having to do with [/O and with the file system
that will not be discussed. For example: close a file, get the status of a file, change the protec-
tion mode or the owner of a file, create a directory, make a link to an existing file, delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associ-
ated file and a pointer to the file itseif. This pointer is an integer called the i-number (for index
number) of the file. When the file is accessed, its i-number is used as an index into a system
table (the i-/ist) stored in a known part of the device on which the directory resides. The entry
found thereby (the file's i-node) contains the description of the file:

i the user and group-iD of its owner

ii its protection bits

iii ~ the physical disk or tape addresses for the file contents

iv its size '

v time of creation, last use, and last modification

vi the number of links to the file, that is. the number of times it appears in a directory
vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to turn the path name given by the user into an
i-number by searching the explicitly or implicitly named directories. Once a file is open, its
device, i-number, and read/write pointer are stored in a system table indexed by the file
descriptor returned by the open or create. Thus. during a subsequent call to read or write the
file. the descriptor may be easily related to the information necessary to access the file.

When a new file is created. an i-node is ailocated for it and a directory entry is made that
contains the name of the file and the i-node number. Making a link to an existing file involves
creating a directory entry with the new name, copving the i-number from the original file entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by
decrementing the link-count of the i-node specified by its directory entry and erasing the direc-
tory entry. If the link-count drops to 0. any disk blocks in the file are freed and the i-node is
de-allocated.

The space on all disks that contain a file system is divided into a number of 512-byte
blocks logically addressed from 0 up to a limit that depends on the device. There is space in
the i-node of each file for 13 device addresses. For nonspeciai files, the first 10 device
addresses point at the first 10 blocks of the file. If the file is larger than 10 blocks, the 11 dev-
ice address points to an indirect block containing up to 128 addresses of additional biocks in the
file. Still larger files use the tweifth device address of the i-node to point to a doubie-indirect
block naming 128 indirect blocks. each pointing to 128 blocks of the file. If required, the thir-
teenth device address is a triple-indirect block. Thus files may conceptually grow to
(110~=128-128°+128"-312] bytes. Once opened. bytes numbered below 5120 can be read
with a single disk access: bytes in the range 3120 to 70,636 require two accesses; bytes in the

-7-

range 70,656 to 8,459,264 require three accesses; bytes from there to the largest file
(1,082,201,088) require four accesses. In practice. a device cache mechanism (see below)
proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an 1/0 request is made to a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and
the first specifies an internal device name, which is interpreted as a pair of numbers represent-
ing, respectively, a device type and subdevice number. The device type indicates which system
routine will deal with I/0 on that device; the subdevice number selects, for example, a disk
drive attached to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount sysiem call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the
device name of the indicated special file. This table is searched for each i-number/device pair
that turns up while a path name is being scanned during an open or create; if a match is found,
the i-number is replaced by the i-number of the root directory and the device name is replaced
by the table value.

To the user, both reading and writing of files appear 10 be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a
write the user's workspace may be reused. In fact, the system maintains a rather complicated
buffering mechanism that reduces greatly the number of 1/0 operations required to access a
file. Suppose a write call is made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk block currently resides in main memory; if
not, it will be read in from the device. Then the affected byte is replaced in the buffer and an
entry is made in a list of blocks to be written. The return from the write call may then take
place, although the actual I/0O may not be completed until a later time. Conversely, if a single
byte is read, the system determines whether the secondary storage block in which the byte is
located is already in one of the system's buffers; if so, the byte can be returned immediately. If
not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file,
and asynchronously pre-reads the next block. This sxgmﬁcantly reduces the running time of
most programs while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from
the avoidance of sysiem overhead. If a program is used rarely or does no great volume of 170,
it may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organiz-
ing the file system has proved quite reliable and easy to deal with. To the system itself, one of
its strengths is the fact that each file has a short, unambiguous name related in a simple way to
the protection, addressing, and other information needed to access the file. It also permits a
quite simple and rapid aigorithm for checking the consistency of a file system, for example,
verification that the portions of each device containing useful information and those free to be
allocated are disjoint and together exhaust the space on the device. This algorithm is indepen-
dent of the directory hierarchy, because it need only scan the linearly organized i-list. At the
same time the notion of the i-list induces certain peculiarities not found in other file system
organizations. For example, there is the question of who is to be charged for the space a file
occupies, because all directory entries for. a file have equal status. Charging the owner of a file
is unfair in general, for one user may create a file, another may link to it, and the first user may
delete the file. The first user is still the owner of the file, but it should be charged to the
second user. The simplest reasonably fair algorithm seems to be to spread the charges equally
among users who have links to a file. Many installations avoid the issue by not charging any
fees at all.

V. PROCESSES AND IMAGES

An image is a computer execution environment. [t includes a memory image, general
register values, status of open files, current directory and the like. An image is the current
state of a pseudo-computer.

A process is the execution of an image. While the processor is executing on behaif of a
process, the image must reside in main memory; during the execution of other processes it
remains in main memory unless the appearance of an active, higher-priority process forces it to
be swapped out to the disk.

The user-memory part of an image is divided into three logical segments. The program
text segment begins at location 0 in the virtual address space. During execution, this segment
is write-protected and a single copy of it is shared among all processes executing the same pro-
gram. At the first hardware protection byte boundary above the program text segment in the
virtual address space begins a non-shared, writable data segment, the size of which may be
extended by a system cail. Starting at the highest address in the virtual address space is a stack
segment, which automatically grows downward as the stack pointer fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a new process can come
into existence only by use of the fork system call:

processid = fork ()

When fork is executed, the process splits into two independently executing processes. The two
processes have independent copies of the original . memory image, and share ail open files. The
new processes differ only in that one is considered the parent process: in the parent, the
returned processid actually identifies !he child process and is never 0, while in the child, the
returned value is always 0.

Because the values returned by fork in the parent and child process are distinguishable,
2ach process may determine whether it is the parent or child.

5.2 Pipes

Processes may communicate with related proéesses using the same system read and write
calls that are used for file-system [/O. The cail:

filep = pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel,
like other open files. is passed from parent to child process in the image by the fork call. A
read using a pipe file descriptor waits until another process writes using the file descriptor for
the same pipe. At this point, data are passed between the images of the two processes. Neither
process need know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2),

it is not a completely general mechanism. because the pipe must be set up by a common ances-
tor of the processes invoived.

5.3 Execution of programs
Another major system primitive is invoked by
execute (file. arg,, arg,, arg,))

which requests the system to read in and execute the program named by file, passing it string
arguments arg,. arg,. arg,. All the code and data in the process invoking execute is
replaced from the file. Hut open files. current directorv. ind inter-process relationships are
unaitered. Oniy if the call fails. for example because file could not be found or because its
axecute-permission bit was not set. does a return take place from the execute primitive: it

.9.

resembles a ‘‘jump’’ machine instruction rather than a subroutine call.

5.4 Process synchronization
Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then
wait returns the processid of the terminated process. An error return is taken if the calling
process has no descendants. Certain status from the child process is also available.

5.5 Termination
Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes may
also terminate as a result of various illegal actions or user-generated signals (Section VII
below).

V1. THE SHELL

For most users, communication with the system is carried on with the aid of a program
called the shell. The shell is a command-line interpreter: it reads lines typed by the user and
interprets them as requests to execute other programs. (The shell is described fully elsewhere,®
so this section will discuss only the theory of its operation.) In simplest form, a command line
consists of the command name followed by arguments to the command, all separated by spaces:

command arg, arg, ... arg,

The shell splits up the command name and the arguments into separate strings. Then a file
with name command is sought; command may be a path name including the *‘/’ character to
specify any file in the system. If command is found, it is brought into memory and executed.
The arguments collected by the shell are accessible to the command. When the command is
finished, the shell resumes its own execution, and indicates its readiness to accept another com-
mand by typing a prompt character.

If file command cannot be found, the shell generally prefixes a string such as /bin/ to
command and attempts again to find the file. Directory /bin contains commands intended to
be generally used. (The sequence of directories to be searched may be changed by user
request.)

6.1 Standard 1/0

The discussion of I/0 in Section III above seems to imply that every file used by a pro-
gram must be opened or created by the program in order to get a file descriptor for the file.
Programs executed by the shell, however, start off with three open files with file descriptors 0,
1, and 2. As such a program begins execution, file 1 is open for writing, and is best understood
as the standard output file. Except under circumstances indicated below, this file is the user’s
terminal. Thus programs that wish to write informative information ordinarily use file descrip-
tor 1. Conversely, file 0 starts off open for reading, and programs that wish to read messages
typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the
user’s terminal printer and keyboard. If one of the arguments to a command is prefixed by
*“>" file descriptor 1 will, for the duration of the command, refer to the file named after the
“>". For example:

.10 -

Is

ordinarily lists, on the typewriter, the names of the files in the current directory. The com-
mand:

Is >there

creates a file called there and places the listing there. Thus the argument > there means ‘‘place
output on there.”” On the other hand:

ed

ordinarily enters the editor, which takes requests from the user via his keyboard. The com-
mand

ed <script

interprets script as a file of editor commands: thus <script means *‘take input from script.”

Although the file name following ‘<"’ or **>"° appears to be an argument t0 the com-
mand, in fact it is interpreted compietely by the sheil and is not passed to the command at all.
Thus no special coding to handle [/O redirection is needed within each command: the com-
mand need merely use the standard file descriptors 0 and 1 where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream.
When an output-diversion request with **>"" is specified, file 2 remains attached to the termi-
nal, so that commands may produce diagnostic messages that do not silently end up in the out-
put file.

6.2 Filters

An extension of the standard 1/O notion is used to direct output from one command to
the input of anothet. A sequence of commands separated by vertical bars causes the shell to
execute all the commands simultaneously and to arrange that the standard output of each com-
mand be delivered to the standard input of the next command in the sequence. Thus in the
command line:

Is|pr =2]opr

Is lists the names of the files in the current directory; its output is passed to pr, which paginates
its input with dated headings. (The argument **=2"" requests double-column output.) Likewise,
the output from pr is input to opr; this command spools its input onto a file for off-line print-
ing.

This procedure could have been carried out more clumsily by:

Is >templ
pr =2 <templ >templ
opr <templ

followed by removal of the temporary files. In the absence of the ability to redirect output and
input, a still clumsier method would have been to require the Is command to accept user
requests (o paginate its output, to print in muilti-column format, and to arrange that its output
be delivered off-line. Actually it would be surprising, and in fact unwise for efficiency reasons,
to expect authors of commands such as 1s 10 provide such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with process-
ing) is called a filrer. Some filters that we have found useful perform character transliteration,
seiection of lines according to a pattern, sorting of the input. and encryption and decryption.

-11-

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not
be on different lines; instead they may be separated by semicolons:

Is; ed
will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by *‘&,’’ the shell will not
wait for the command to finish before prompting again; instead, it is ready immediately to
accept a new command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to output;, no matter how long the
assembly takes, the shell returns immediately. When the shell does not wait for the completion
of a command, the identification number of the process running that command is printed. This
identification may be used to wait for the completion of the command or to terminate it. The
‘“&' may be used several times in a line:

as source >output & Is >files &

does both the assembly and the listing in the background. In these examples, an output file
other than the terminal was provided; if this had not been done, the outputs of the various
commands would have been intermingled.

The shell also allows parentheses in the above operations. For example:
(date; Is) >x &

writes the current date and time followed by a list of the current directory onto the file x. The
shell also returns immediately for another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout contains
the lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output of
the assembler, ready to be executed. Thus if the three lines above were typed on the keyboard,
source would be assembied, the resulting program renamed testprog, and testprog executed.
When the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to con-
struct argument lists from a specified subset of the file names in a directory. It also provides
general conditional and looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understood. Most of the time, the
shell is waiting for the user to type a command. When the newline character ending the line is
typed, the shell’s read call returns. The shell analyzes the command line, putting the argu-
ments in a form appropriate for execute. Then fork is called. The child process, whose code of
course is still that of the shell, attempts to perform an execute with the appropriate arguments.
If successful, this will bring in and start execution of the program whose name was given.
Meanwhile, the other process resuiting from the fork, which is the parent process, waits for the

-12-

child process to die. When this happens, the shell knows the command is finished. so it types
its prompt and reads the keyboard to obtain another command.

Given this framework, the implementation of background processes is trivial, whenever a
command line contains “‘&,” the shell merely refrains from waiting for the process that it
created to execute the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and
output files. When a process is created by the fork primitive, it inherits not only the memory
image of its parent but also all the files currently open in its parent, including those with file
descriptors 0, 1, and 2. The shell, of course, uses these files 1o read command lines and to
write its prompts and diagnostics. and in the ordinary case its children—the command
programs—inherit them automaticailly. When an argument with **<™ or **>" is given, how-
ever, the offspring process, just before it performs execute, makes the standard [/O file descrip-
tor (0 or 1, respectively) refer to the named file. This is easy because, by agreement, the smal-
lest unused file descriptor is assigned when a new file is opened (or created): it is only neces-
sary to close file 0 (or 1) and open the named file. Because the process in which the command
program runs simply terminates when it is through. the association between a file specified after
<" or **>"" and file descriptor 0 or 1 is ended automatically when the process dies. There-
fore the sheil need not know the actual names of the files that are its own standard input and
output, because it need never reopen them.

Filters are straightforward extensions of standard /O redirection with pipes used instead
of files.

In ordinary circumstances. the main loop of the sheil never terminates. (The main loop
includes the branch of the return from fork belonging to the parent process. that is, the branch
that does a wait, then reads another command line.) The one thing that causes the shell to ter-
minate is discovering an end-of-file condition on its input file. Thus. when the shell is exe-
cuted as a command with a given input file. as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached: then the instance
of the shell invoked by sh will terminate. Because this sheil process is the child of another
instance of the shell, the wait executed in the latter will return, and another command may
then be processed.

6.6 Initialization

The instances of the shell to which users type commands are themselves children of
another process. The last step in the initialization of the system is the creation of a singie pro-
cess and the invocation (via execute) of a program called init. The role of init is to create one
process for each terminai channel. The various subinstances of init open the appropriate termi-
nals for input and output on files 0, 1, and 2. waiting, if necessary, for carrier to be 2stablished
on dial-up lines. Then a message is typed out requesting that the user log in. When the user
types a name or other identification, the appropriate instance of init wakes up. receives the
log-in line. and reads a password file. If the user’'s name is found. and if he is abie to supply
the correct password, init changes to the user’s default current directory. sets the process’'s user
ID to that of the person logging in. and performs an execute of the shell. At this point, the
shell is ready to receive commands and the logging-in protocol is complete.

Meanwhile, the mainstream path of init (the parent of all ithe subinstances of itself that
will later become shells) does a wait. If one of the chiid processes terminates. either because a
shell found an end of file or because a user typed an incorrect name or password, this path of
init simply recreates the defunct process. which in turn reopens the appropriate input and out-
put files and types another log-in message. Thus a user may log out simply by typing the end-
of-file sequence to the sheil.

-13-

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the
system, because it will invoke the execution of any program with appropriate protection mode.
Sometimes, however, a different interface to the system is desirable, and this feature is easily
arranged for.

Recall that after a user has successfully logged in by supplying a name and password, init
ordinarily invokes the shell to interpret command lines. The user’s entry in the password file
may contain the name of a program to be invoked after log-in instead of the shell. This pro-
gram is free to interpret the user’s messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might
specify that the editor ed is to be used instead of the shell. Thus when users of the editing sys-
tem log in, they are inside the editor and can begin work immediately; also, they can be
prevented from invoking programs not intended for their use. In practice, it has proved desir-
able to allow a temporary escape from the editor to execute the formatting program and other
utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illus-
trate a much more severely restricted environment. For each of these, an entry exists in the
password file specifying that the appropriate game-playing program is to be invoked instead of
the shell. People who log in as a player of one of these games find themselves limited to the
game and unable to investigate the (presumably more interesting) offerings of the UNIX system
as a whole.

VII. TRAPS

The pDP-11 hardware detects a number of program faults, such as references to non-
existent memory, unimplemented instructions, and odd addresses used where an even address
is required. Such faults cause the processor to trap to a system routine. Unless other arrange-
ments have been made, an illegal action causes the sysiem to terminate the process and to write
its image on file core in the current directory. A debugger can be used to determine the state
of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing
the ‘‘delete’ character. Unless special action has been taken, this signal simply causes the pro-
gram to cease execution without producing a core file. There is also a quit signal used to force
an image file 10 be produced. Thus programs that loop unexpectedly may be halted and the
remains inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from log-
ging the user out. The editor catches interrupts and returns to its command level. This is use-
ful for stopping long printouts without losing work in progress (the editor manipulates a copy of
the file it is editing). In sysiems without floating-point hardware, unimpiemented instructions
are caught and floating-point instructions are interpreted.

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was
not designed to meet any predefined objectives. The first version was written when one of us
(Thompson), dissatisfied with the available computer facilities, discovered a little-used PDP-7
and set out to create a more hospitable environment. This {(essentially personal) effort was
sufficiently successful to gain the interest of the other author and several colleagues, and later
to justify the acquisition of the PDP-11/20, specifically to support a text editing and formatting
system. When in turn the 11/20 was outgrown, the system had proved useful enough to per-
suade management 10 invest in the PDP-11/45, and later in the PDP-11/70 and Interdata 8/32
machines, upon which it developed to its present form. Our goals throughout the effort, when

-14-

articulated at all, have always been to build a comfortable relationship with the machine and to
explore ideas and inventions in operating systems and other software. We have not been faced
with the need to satisfy someone else’s requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to
write, test, and run programs. The most important expression of our desire for programming
convenience was that the system was arranged for interactive use, even though the original ver-
sion only supported one user. We believe that a properly designed interactive system is much
more productive and satisfying to use than a ‘‘batch’ system. Moreover, such a system is
rather easily adaptable to noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its
software. Given the partially antagonistic desires for reasonable efficiency and expressive
power, the size constraint has encouraged not only economy, but also a certain elegance of
design. This may be a thinly disguised version of the ‘*salvation through suffering’ philosophy.
but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itseif. This fact is
more important than it might seem. If designers of a system are forced to use that system,
they quickly become aware of its functional and superficial deficiencies and are strongly
motivated to correct them before it is too late. Because ail source programs were always avail-
able and easily modified on-line, we were willing to revise and rewrite the system and its
software when new ideas were invented, discovered. or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface o the file system, for example, is extremely convenient
from a programming standpoint. The lowest possibie interface level is designed to eliminate
distinctions between the various devices and files and between direct and sequential access. No
large ‘*access method'® routines are required (o insulate the programmer from the system calls;
in fact. all user programs either call the system directly or use a small library program, less than
a page long, that buffers a number of characters and reads or writes them all at once.

Another important aspect of programming convenience is that there are no ‘‘controi
biocks'™ with a complicated structure partially maintained by and depended on by the file system
or other system calls. Generally speaking, the contents of a program’s address space are the
property of the program, and we have tried to avoid placing restrictions on the data structures
within that address space.

Given the requirement that all programs should be usable with any file or device as input
or output, it is also desirabie to push device-dependent considerations into the operating system
itself. The only alternatives seem to be to load, with all programs, routines for dealing with
each device, which is expensive in space, or to depend on some means of dynamically linking
to the routine appropriate to 2ach device when it is actuaily needed, which is expensive either
in overhead or in hardware.

Likewise. the process-control scheme and the command interface have proved both con-
venient and efficient. Because the sheil operates as an ordinary, swappable user program, it
consumes no ‘‘wired-down’" space in the system proper, and it may be made as powerful as
desired at little cost. In particular, given the framework in which the sheil axecutes as a process
that spawns other processes (0 perform commands, the notions of [/O redirection. background
processes. command files. and user-seiectable system interfaces ail become essentially trivial to
implement.

Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation
of a carefully selected se: of fertile ideas. and especially in showing that they can be keys to the
implementation of 1 small vet powerful operating system.

-15-

The fork operation, essentially as we implemented it, was present in the GENIE time-
sharing system.!0 On a number of points we were influenced by Multics, which suggested the
particular form of the 1/0 system calls!! and both the name of the shell and its general func-
tions. The notion that the shell shouid create a process for each command was also suggested
to us by the early design of Multics, although in that system it was later dropped for efficiency
reasons. A similar scheme is used by TENEX. 12

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX operation.
Those of our users not involved in document preparation tend to use the system for program
development, especially language work. There are few important ‘‘applications’’ programs.

Overall, we have today:

125 user population

33 maximum simultaneous users
1,630 directories
28,300 files

301,700 512-byte secondary storage blocks used

There is a *‘background’ process that runs at the lowest possible priority; it is used to soak up
any idle CPU time. It has been used to produce a million-digit approximation to the constant e,
and other semi-infinite problems. Not counting this background work, we average daily:

13,500 commands
9.6 CPU hours

230 connect hours
. 62 different users
240 log-ins

X. ACKNOWLEDGMENTS

The contributors to UNIX are, in the traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys-
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D. Mcliroy, and J. F. Ossanna.

References

1. L. P. Deutsch and B. W. Lampson, ‘“‘An online editor,”” Comm. Assoc. Comp. Mach.
10(12) pp. 793-799, 803 (December 1967).

2. B. W. Kernighan and L. L. Cherry, ‘A System for Typesetting Mathematics,”” Comm.
Assoc. Comp. Mach. 18 pp. 151-157 (March 1975).

3. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, ‘“UNIX Time-Sharing System: Docu-
ment Preparation,” Bell Sys. Tech. J. 5§7(6) pp. 2115-2135 (1978).

4. T. A. Dolotta and J. R. Mashey, ‘‘An Introduction to the Programmer's Workbench,”
Proc. 2nd Int. Conf. on Software Engineering, pp. 164-168 (October 13-15, 1976).

5. T. A. Dolotta, R. C. Haight, and J. R. Mashey, ‘‘UNIX Time-Sharing System: The
Programmer’s Workbench,* Bell Sys. Tech. J. §7(6) pp. 2177-2200 (1978).

10.

11

12

-16-

H. Lycklama, “UNIX Time-Sharing System: UNIX on a Microprocessor,’” Bell Sys. Tech. J.
57(6) pp. 2087-2101 (1978).

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1978).

Aleph-null, “‘Computer Recreations,'* Software Practice and Experience 1(2) pp. 201-204
(April-June 1971).

S. R. Bourne, '*UNIX Time-Sharing System: The UNIX Shell,”* Beil Sys. Tech. J. §7(6) pp.
1971-1990 (1978).

L. P. Deutsch and B. W. Lampson, *‘sDS 930 time-sharing system preliminary reference
manual,’* Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeiey (April 1965).

R. J. Feiertag and E. I. Organick, ‘‘The Multics input-output system,’’ Proc. T/ird Sympo-
sium on Operating Systems Principles, pp. 35-41 (October 18-20, 1971).

D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, ‘‘TENEX, a Paged

Time Sharing System for the PDP-10,"" Comm. Assoc. Comp. Mach. 15(3) pp. 135-143
(March 1972).

UNX 1.3.2

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on the UNIXt operating
system. It includes:

e basics needed for day-to-day use of the system — typing commands,
correcting typing mistakes, logging in and out, mail, inter-terminal com-
munication, the file system, printing files, redirecting I/O. pipes, and the
shell.

o document preparation — a brief discussion of the major formatting pro-
grams and macro packages, hints on preparing documents, and capsule
descriptions of some supporting software.

e programming — using the editor, programming the shell, programming in
C, other languages and tools.

® an annotated bibliography.

Berkeley Notes

This is a standard Bell Laboratories document reproduced without any
local modification. Most of the information it contains applies to the UNIX sys-
tems on the Berkeley campus, but there are exceptions. This document gives a
good general overview of UNIX for people with some previous computer experi-
ence. Readers should also investigate sources of local information to learn
about Berkeley software, procedures, and policies. Good sources inciude the
online help command, the Berkeley edition of the UNiX Programmers’s Manual,
and other documents listed on the UNrx Documentation Guide which is available
from the Computing Services Library, 218 Evans Hall. Some differences
between this document and the Berkeley systems are worth noting:

e The recommended editor at Berkeley is ex (and its variants edir and vi).

® The specific pathnames used in the section ‘“‘What's in a Filename -
Continued'” (pp. 7-8) are not the same as those used on the Berkeley sys-
tems.

@ The default shell, or command line processor, at Berkeley is the C shell
(csh), not the standard Bell Laboratories shell (sh). The C shell does not
recognize .profile as the name of a login initialization file: instead, it looks
for a file called .login. It's treatment of simple commands is the same,
but the syntax is different for more complicated things, such as loops.
For more information about the C shell, refer to An /ntroduction to the C
Shell, by William Joy.

September 29, 1980

tUNIX is a Trademark of Bell Laboratories.

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

INTRODUCTION

From the user's point of view, the UNIX
operating system is easy to learn and use, and
presents few of the usual impediments to getting
the job done. [t is hard, however, for the
beginner to know where to start. and how to
make the best use of the facilities availabie. The
purpose of this introduction is to heip new users
get used to the main ideas of the UNIX system
and start making effective use of it quickly.

You should have a couple of other docu-
ments with you for easy reference as you read
this one. The most important is The UNIX
Programmer’'s Manual. it's often easier to tell you
to read about something in the manual than to
repeat its contents here. The other useful docu-
-ment is 4 Tutorial Introducton to the UNIX Text
Editor, which will tell you how to use the editor
to get text — programs, data, documents - into
the computer.

A word of warning: the UNIX system has
become quite popular, and there are several
major variants in widespread use. Of course
detwails also change with time. So although the
basic structure of UNIX and how to use it is com-
mon to all versions, there wiil certainly be a few
things which are different on your sysiem from
what is described here. We have tried to minim-
ize the probiem, but be aware of it. In cases of
doubt, this paper describes Version 7 UNIX.

This paper has five sections:

1. Getting Siarted: How to log in. how to type.
what to do about mistakes in typing, how to
log out. Some of this is dependent on which
system you log into (phone numbers, for
example) and what terminal you use. so this
section must necessarily be supplemented by
local information. .

2. Day-to-day Use: Things you need every day
to use the system effcctively: generally use-
ful commands: the filc system.

3. Document Preparation: Preparing manu-
scripts is one of the most common uses for
UNIX systems. This section contains advice,
but not extensive instructions on any of the
formatting tools.

4. Writing Programs: UNIX is an excellent sys-
tem for developing programs. This section
talks about some of the tools, but again is
not a tutorial in any of the programming
languages provided by the system.

5. A UNIX Reading Listt An annotated
bibliography of documents that new users
should be aware of.

I. GETTING STARTED

Logging In

You must have a UNIX login name, which
you can get from whoever administers your sys-
tem. You also need to know the phone number,
uniess your system uses permanently connected
terminals. The UNIX system is capable of deai-
ing with a wide variety of terminals: Terminet
300°s; Execuport, Tl and similar portables: video
(CRT) terminals like the HP2640, etc.: high-
priced graphics terminals like the Tektronix
4014: plotting terminals like those from GSI and
DASI: and even the venerable Teletype in its
various forms. But note: UNIX is strongly
oricnted towards devices with lower case. If your
terminal produces only upper case (e.g.. model
33 Teletype. some video and portable terminals),
life will be so difficuit that you should look for
another terminal.

Be sure 10 set the switches appropriately on
your device. Switches that might need to be
adjusted include the speed. upper/lower case
mode. full duplex. even parity, and any others
that local wisdom advises. Establish a connec-
tion using whatever magic is needed for your ter-
minal: this may involve dialing a telephone call
or merely flipping a switch. In either case. UNIX
should type *‘login:™ at you. If it types garbage,
you may be at the wrong speed. check the
switches. If that fails, push the ‘‘break™ or

“interrupt’” key a few times, slowly. If that fails
to produce a login message, consuit a guru.

When you get a login: message, type your
login name in lower case. Follow it by a
RETURN; the system will not do anything until
you type a RETURN. If a password is required,
you will be asked for it, and (if possible) printing
will be turned off while you type it. Don't forget
RETURN.

The culmination of your login efforts is a
‘‘prompt character,’” a single character that indi-
cates that the system is ready to accept com-
mands from you. The prompt character is usu-
ally a dollar sign $ or a percent sign %. (You
may also get a message of the day just before the
prompt character, or a notification that you have
mail.)

Typing Commands
Once you've seen the prompt character, you

can type commands, which are requests that the
system do something. Try typing

date

followed by RETURN. You should get back
something like

Mon Jan 16 14:17:10 EST 1978

Don't forget the RETURN after the command, or
nothing will happen. If you think you're being
ignored, type a RETURN; something should hap-
pen. RETURN won't be mentioned again, but
don't forget it = it has 10 be there at the end of
each line.

Another command you might try is whe,
which tells you everyone who is currently logged
in:

who

gives something like

mb tty0l Jan 16 09:11
ski tty0S Jan 16 09:33
gam ttyll Jan 16 13:07

The time is when the user logged in; *‘ttyxx’ is
the system's idea of what terminal the user is on.

If you make a mistake typing the command
name, and refer to a non-existent command, you
will be told. For exampie, if you type

whom
you will be toid
whom: not found

Of course, if you inadvertently type the name of
some other command, it will run, with more or
less mysterious results.

Strange Terminal Behavior

Sometimes you can get into a state where
your terminal acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed or a return to the left mar-
gin. You can often fix this by logging out and
logging back in. Or you can read the description
of the command stty in section I of the manual.
To get intelligent treatment of tab characters
(which are much used in UNIX) if your terminal
doesn’t have tabs, type the command

stty —tabs

and the system will convert each tab into the
right number of blanks for you. If your terminal
does have computer-settable tabs, the command
tabs will set the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it
before RETURN has been typed, there are two
ways o recover. The sharp-character # erases
the last character typed; in fact successive uses of
erase characters back to the beginning of the
line (but not beyond). So if you type badly, you

can correct as you go:

dd#atte# He

is the same as date.

The at-sign @ erases all of the characters
typed so far on the current input line, so if the
line is irretrievably fouled up, type an @ and
start the line over.

What if you must enter a sharp or at-sign as
part of the text? If you precede either # or @
by a backslash \, it loses its erase meaning. So
to enter a sharp or at-sign in something, type \#
or \@. The system will always echo a newline at
you after your at-sign, even i preceded by a
backslash. Don't worry — the at-sign has been
recorded.

To erase a backslash, you have to type two
sharps or two at-signs, as in \##. The backslash
is used extensively in UNIX to indicate that the
following character is in some way special.

Read-ahead

UNIX has full read-ahead, which means that
you can type as fast as you want, whenever you
want, even when some command is typing at
you. If you type during output, your input char-
acters will appear intermixed with the output
characters, but they will be stored away and
interpreted in the correct order. So you can type
several commands one after another without
waiting for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the
character “DEL' (perhaps called ‘‘delete’ or
“‘rubout’” on your terminal). The “‘interrupt™ or
“‘break’ key found on most terminals can also
be used. In a few programs, like the text editor,
DEL stops whatever the program is doing but
leaves you in that program. Hanging up the
phone will stop most programs.

Logging Out

The easiest way to log out is to hang up the
phone. You can also type

login

and let someone else use the terminal you were
on. It is usually not sufficient just to turn off the
terminal. Most UNIX systems do not use a
time-out mechanism, so you'll be there forever
unless you hang up.

Mail

When you log in, you may sometimes get
the message

You have mail.

UNIX provides a postal system so you can com-
municate with other users of the sysiem. To
read your mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first. After each message,
mail waits for you to say what to do with it. The
two basic responses are d, which deietes the mes-
sage, and RETURN, which does not (so it will
still be there the next time you read your mail-
box). Other responses are described in the
manual. (Earlier versions of mail do not process
one) message at a time, but are otherwise simi-
lar.

How do you send mail to someone eise?
Suppose it is to go to “‘joe’* (assuming ‘“‘joe"" is
someone's login name). The easiest way is this:

mail joe

now ype in the text of the letter

on as many lines as you like ...

After the last line of the letter

pe the character '‘control—d"’,

that 1s, hold down ‘‘control’’ and ype
a lener ““d"’.

And that's it. The *‘control-d’ sequence, often
called “EOF"" for end-of-file, is used throughout
the sysiem to mark the end of input from a ter-
minal, so you might as well get used to it.

For practice, send mail to yourself. (This
isn’t as strange as it might sound — mail to one-

self is‘a handy reminder mechanism.)

There are other ways to send mail — you
can send a previously prepared letter, and you
can mail 10 a number of people all at once. For
more details see mail(1). (The notation mail(l)
means the command mail in section 1 of the
UNIX Programmer's Manual)

Writing to other users

At some point, out of the blue wiil come a
message like

Message from joe tty07...

accompanied by a startling beep. It means that
Joe wants to talk to you, but unless you take
explicit action you won't be able to talk back. To
respond, type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will
appear on yours and vice versa. The path is
slow, rather like talking 10 the moon. (If you are
in the middle of something, you have to0 get to a
state where you can type a command. Normally,
whatever program you are running has to ter-
minate or be terminated. If you're editing, you
can escape temporarily from the editor — read
the editor tutorial.)

A protocol is needed {0 keep what you type
from getting garbled up with what Joe types.
Typically it's like this:

Joe types write smith and waits.

Smith types write joe and waits.

Joe now types his message (as many lines
as he likes). When he's ready for a reply,
he signals it by typing (o), which stands
for ‘‘over™.

Now Smith types a reply, also terminated
by (o).

This cycle repeats until someone gets
tired; he then signals his intent to quit
with (00), for *‘over and out"".

To terminate the conversation, each side
must type a ‘‘control-d’’ character alone
on a line. (**Delete™ also works.) When
the other person types his ‘‘controi-d’’,
you will get the message EOF on your
terminal.

If you write to someone who isn't logged in,
or who doesn’t want 10 be disturbed, you'll be
told. If the target is logged in but doesn't answer
after a decent interval, simply type ‘‘controi-d"".

On-line Manual

The UNIX Programmer’s Manual is typically
kept on-line. If you get stuck on something, and
can't find an expert to assist you, you can print
on your terminal some manual section that
might help. This is also useful for getting the
most up-io-date information on a command. To
print a manual section, type ‘‘man command-
name’’. Thus to read up on the who command,
type

man who
and, of course,
man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a pro-
gram called learm, which provides computer
aided instruction on the file system and basic
commands, the editor, docum nt preparation,
and even C programming. Try typing the com-
mand

learn

If learn exists on your system, it will tell you
what to do from there.

II. DAY.TO-DAY USE

Creating Files = The Editor

. If you have to type a paper or a letter or a

program, how do you get the information stored
in the machine? Most of these tasks are done
with the UNIX ‘‘text editor’” ed. Since ed is
thoroughly documented in ed(1) and explained
in A Tutorial [nroduction to the UNIX Text Editor,
we won't spend any time here describing how to
use it. All we want it for right now is t0 make
some files. (A file is just a collection of informa-
tion stored in the machine, a simplistic but ade-
quate definition.)

To create a file called junk with some text in
it, do the following:

ed junk (invokes the text editor)
a (command to **ed™, to add text)
now ype in

whatever text you want ...
. (signals the end of adding text)

The **.”" that signals the end of adding text must
be at the beginning of a line by itself. Don't for-
get it, for until it is typed, no other ed com-
mands will be recognized — everything you type
will be treated as text to be added.

At this point you can do various editing
operations on the text you typed in., such as

correcting spelling mistakes, rearranging para-
graphs and the like. Finally, you must write the
information you have typed into a file with the
editor command w:

w

ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per-
manently, so if you hang up and go home the
information is lost.t But after w the information
is there permanently; you can re-access it any
time by typing

ed junk

Type a q command to quit the editor. (If you try
to quit without writing, ed will print a ? to rem-
ind you. A second q gets you out regardless.)

Now create a second file called temp in the
same manner. You should now have two files,
junk and temp.

What files are out there?

The Is (for **list’") command lists the names
(not coatents) of any of the files that UNIX
knows about. If you type

Is

the response will be

junk

temp
which are indeed the two files just created. The
names are sorted into alphabetical order

automaticaily, but other variations are possible.
For example, the command

Is =t

causes the files to be listed in the order in which
they were last changed, most recent first. The
=1 option gives a ‘‘long’’ listing: .

1s =1

will produce something like

=rw=rw=rw— 1 bwk 41 Jul 22 2:56 junk
78 Jul 22 2:57 temp

=rw=rw=—rw— 1 bwk

The date and time are of the last change to the
file. The 41 and 78 are the number of characters
(which should agree with the numbers you got
from ed). bwk is the owner of the file, that is,
the person who created it. The =rw=rw=—rw—
tells who has permission to read and write the
file, in this case everyone.

t This is not strictly true = if you hang up while editing,
the dawa you were working on 1s saved n a file called
ed.hup, which you can continue with at your next session.

Options can be combined: Is =1t gives the
same thing as Is =1, but sorted into time order.
You can also name the files you're interested in,
and Is will list the information about them only.
More details can be found in 1s(1).

The use of optional arguments that begin
with a minus sign, like =t and =It, is a com-
mon convention for UNIX programs. In general,
if a program accepts such optional arguments,
they precede any filename arguments. It is also
vital that you separate the various arguments
with spaces: Is=—1 is not the same as Is =1

Printing Files

Now that you've got a file of text, how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than are needed.

One simple thing is to use the editor, since
printing is often done just before making
changes anyway. You can say

ed junk
1,5p

ed will reply with the count of the characters in
junk and then print all the lines in the file.
Afier you learn how to use the editor, you can
be selective about the parts you print.

There are times when it's not feasible to use
the editor for printing. For example, there is a
limit on how big a file ed can handle (several
thousand lines). Secondly, it will only print one
file at a time, and sometimes you want to print
several, one after another. So here are a couple
of alternatives.

First is cat, the simplest of all the printing
programs. cat simply prints on the terminal the
contents of all the files named in a list. Thus

cat junk
prints one file, and
cat junk temp

prints two. The files are simply concatenated
(hence the name “‘cat’’) onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints all the files named in a list.
The difference is that it produces headings with
date, time, page number and file name at the top
of each page, and extra lines to skip over the
fold in the paper. Thus,

pr junk temp

will print junk neatly, then skip to the top of a
new page and print temp neatly.

pr can also produce muliti-column output:

pr =3 junk

prints junk in 3-column format. You can use
any reasonable number in place of **3' and pr
will do its best. pr has other capabilities as well,
see pr(l).

It should be noted that pr is nora formatting
program in the sense of shuffling lines around
and justifying margins. The true formatters are
nroff and troff, which we will get to in the sec-
tion on document preparation.

There are aiso programs that print files on a
high-speed printer. Look in your manual under
opr and lpr. Which to use depends on what
equipment is attached to your machine.

Shuffling Files About

Now that you have some files in the file sys-
tem and some experience in printing them, you
can try bigger things. For example, you can
move a file from one place to another (which
amounts to giving it a new name), like this:

my junk precious

This means that what used to be *“‘junk’ is now
“‘precious”. If you do an Is command now, you
will get

precious
temp

Beware that if you move a file 10 another one
that already exists, the already existing contents
are lost forever.

If you want 10 make a copy of a file (that is.
to have two versions of something), you can use
the cp command:

cp precious templ

makes a duplicate copy of precious in templ.

Finally, when you get tired of creating and
moving files, there is a command to remove files
from the file system, called rm.

rm temp templ

will remove both of the files named.

You will get a warning message if one of the
named files wasn’t there, but otherwise rm, like
most UNIX commands, does its work silently.
There is no prompting or chatter, and error mes-
sages are occasionally curt. This terseness is
sometimes disconcerting to newcomers, but
experienced users find it desirable.

What's in a2 Filename

So far we have used filenaimes without ever
saying what's a legal name, so it's time for a
couple of rules. First, filen;mes are limited to
14 characters, which is enou;,h to be descriptive.

Second. although you can use almost any charac-

ter in a filename, common sense says you should
stick to ones that are visible. and that you shouid
probably avoid characters that might be used
with other meanings. We have already seen, for
example, that in the Is command. ls —t means
to list in time order. So if you had a file whose
name was —t, you would have a tough time list-
ing it by name. Besides the minus sign, there
are other characters which have special meaning.
To avoid pitfails, you would do well to use only
letters, numbers and the period until you're fam-
iliar with the situation.

On to some more positive suggestions. Sup-
pose you're typing a large document like a book.
Logically this divides into many small pieces, like
chapters and perhaps sections. Physically it must
be divided too, for ed will not handle really big
files. Thus you should type the document as a
number of files. You might have a separate file
for each chapter, called

chapl
chap2
etc...

Or, if each chapter were broken into several files,
you might have

chapl.l
chapl.2
chapl.3
chap2.1
chap2.2

You can now tell at a glance where a particular
file fits into the whole.

There are advantages 0 a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the
whole book? You could say

pr chapl.l chapl.2 chapl.3

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chap*

The * means ‘‘anything at all,’” so this translates
into ‘‘print all files whose names begin with
chap’’, listed in alphabetical order.

This shorthand notation is not a property of
the pr command, by the way. [t is system-wide,
a service of the program that interprets com-

mands (the ‘‘sheil.,”” sh(l)). Using that fact, .

you can see how to list the names of the files in
the book:

Is chap*
produces

chapl.1 \
chapl.2
chapl.3

oo

The * is not limited to the last position in a
filename - it can be anywhere and can occur
several times. Thus

rm *junk® *temp?®

removes ail files that contain junk or temp as
any part of their name. As a special case, * by
itself matches every filename, so

pr*
prints all your files (aiphabetical order), and
rm*
removes all filess. (You had better be very sure
that's what you wanted to say!)

The * is not the only pattern-matching
feature available. Suppose you want to print
only chapters | through 4 and 9. Then you can
say

pr chapl12349]*

The [...] means 10 match any of the characters
inside the brackets. A range of consecutive
letters or digits can be abbreviated, so you can
also do this with ’

pr chapil—49]*

Letters can also be used within brackets: [a=—z]
matches any character in the range a through z.

The ? pattern matches any single character,
so

s ?

lists all files which have single-character names,
and

Is =1 chap?.1

lists information about the first file of each
chapter (chapl.l, chap2.1, etc.).

Of these niceties, ® is certainly the most use-
ful, and you should get used to it. The others
are frills, but worth knowing.

If you should ever have to turn off the spe-
cial meaning of *, ?, etc.,, enclose the entire
argument in single quotes, as in

Is '’

We'll see some more ekamples of this shortly.

What's in a Filename, Continued

When you first made that file called junk,
how did the system know that there wasn't
another junk somewhere eise, especially since
the person in the next office is aiso reading this
tutorial? The answer is that generally each user
has a private direcrory, which contains only the
files that belong to him. When you log in, you
are *‘in"' your directory. Unless you take special
action, when you create a new file, it is made in
the directory that you are currently in; this is
most often your own directory, and thus the file
is unrelated to any other file of the same name
that might exist in someone eise's directory.

The set of all files is organized into a (usu-
ally big) tree, with your files located several
branches into the tree. [t is possibie for you to
*‘walk'' around this tree, and to find any file in
the system, by starting at the root of the tree and
walking along the proper set of branches. Con-
versely, you can start where you are and walk
toward the root.

Let's try the latter first. The basic tools is
the command pwd (*‘print working directory™),
which prints the name of the directory you are
currently in.

Although the details will vary according 10
the system you are on, if you give the command
pwd, it will print something like

/ustr/your-name

This says that you are currently in the directory
your-name, which is in turn in the directory
/usr, which is in turn in the root directory called
by convention just /. (Even il it's not called
/usr on your system, you will get something
analogous. Make the corresponding changes and
read on.)

If you now type
Is /usr/your-name

you should get exactly the same list of file names
as you get from a plain Is: with no arguments, Is
lists the contents of the current directory; given
the name of a directory, it lists the contents of
that directory.

Next, try
Is /usr

This should print a long series of names, among
which is your own login name your-name. On
many systems, usr is a directory that contains
the directories of all the normal users of the sys-
tem, like you.

The next step is to try
Is /

You should get a response something like this
(although again the details may be different):

bin
dev
etc
lib
tmp
usr

This is a collection of the basic directories of files
that the system knows about; we are at the root
of the tree.

Now try
cat /usr/your-name/junk

(if junk is still around in your directory). The
name

/usr/your-name/junk

is called the pathname of the file that you nor-
mally think of as ‘‘junk’’. *‘Pathname’ has an
obvious meaning: it represents the full name of
the path you have to follow from the root
through the tree of directories to get to a particu-
lar file. It is a universal rule in the UNIX system
that anywhere you can use an ordinary filename,
you can use a pathname.

Here is a picture which may make this
clearer:

(root)
i
/1A
bin eic usr dev tmp
/ I\ /\//\ /N TN
/
adam eve
/v mar<
/ junk

junk temp

Notice that Mary's junk is unrelated to Eve's.

This isn’t too exciting if all the files of
interest are in your own directory, but if you
work with someone else or on several projects
concurrently, it becomes handy indeed. For
example, your friends can print your book by
saying

pr /usr/your-name/chap*®

Similarly, you can find out what files your neigh-
bor has by saying

Is /usr/neighbor-name
or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’'t want you poking
around in his files, or vice versa, privacy can be

arranged. Each file and directory has read-write-
execute permissions for the owner, a group, and
averyone else, which can be set to control access.
See 1s(1) and chmod(1l) for details. As a matter
of observed fact, most users most of the ume
find openness of more benefit than privacy.

As a final experiment with pathnames, try
Is /bin /usr/bin

Do some of the names look familiar? When you
run a program, by typing its name after the
prompt character, the system simply looks for a
file of that name. It normally looks first in your
directory (where it typically doesn't find it), then
in /bin and finally in /ust/bin. There is nothing
magic about commands like cat or Is, except that
they have been coilected into a couple of places
to be easy to find and administer.

What if you work regularly with someone
else on common information in his directory?
You could just log in as your friend each time
you want to, but you can also say ‘‘l want to
work on his files instead of my own'. This is
done by changing the directory that you are
currently in:

cd /usr/your-{riend

(On some systems, cd is spelled chdir.) Now
when you use a filename in something like cat or
pr. it refers to the file in your friend's directory.
Changing directories doesn't affect any permis-
sions associated with a file = il you couldn't
access a file from your own directory, changing
to another directory won't alter that fact. Of
course, if you forget what directory you're in,
type

pwd
to find out.

[t is usually convenient to arrange your own
files so that all the files related to one thing are
in a directory separate from other projects. For
example, when you write your book, you might
want to keep all the text in a directory called
book. So make one with

mkdir book
then go to it with
cd book

then start typing chapters.
found in (presumably)

The book is now

/usr/your-name/book
To remove the directory book, type

rm book/*®
rmdir book

The first command removes all files from the
directory; the second removes the empty direc-
tory.

You can go up one level in the tree of files
by saying

cd ..
(X3 "

.."' is the name of the parent of whatever direc-
tory you are currently in. For compieteness, *."
is an alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far
produce output on the terminai, some, like the
editor, also take their input from the terminal. It
is universal in UNIX systems that the terminal
can be replaced by a file for either or both of
input and output. As one example,

Is

makes a list of files on your terminal. But if you
say

Is > filelist

a list of your files will be placed in the file filelist
(which will be created if it doesn't already exist,
or overwritten if it does). The symbol > means
‘‘put the output on the following file, rather than
on the terminal.’” Nothing is produced on the

‘terminal. As another example, you could com-

bine several files into one by capturing the out-
put of cat in a file:

cat f1 2 3 >temp

The symbol > > operates very much like >
does, except that it means ‘‘add o the end of.”
That is,

cat fl1 2 f3 > >temp

means to concatenate fl, f2 and f3 to the end of
whatever is already in temp, instead of overwrit-
ing the existing contents. As with >, if temp
doesn’t exist, it will be created for you.

In a similar way, the symbol < means to
take the input for a program from the f{ollowing
file, instead of from the terminal. Thus, you
could make up a script of commoniy used editing
commands and put them into a file called script.
Then you can run the script on a file by saying

ed file <script

As another example, you can use ed to prepare a
letter in file let, then send it to several people
with

mail adam eve mary joe <let

Pipes

One of the novel contributions of the UNIX
system is the idea of a pipe. A pipe is simply a
way to connect the output of one program to the
input of another program. so the two run as a
sequence of processes — a pipeline.

For example,
prfgh

will print the files f, g, and h, beginning each on
a new page. Suppose you want them run
together instead. You could say

cat fg h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly
what we want is to take the output of cat and
connect it to the input of pr. So let us use a
pipe:

catfghlpr

The vertical bar | means to take the output from
cat, which would normally have gone to the ter-
minal, and put it into pr to be neatly formatted.

There are many other examples of pipes.
For example,

Is|pr =3

prints a list of your files in three columns. The
program wc counts the number of lines, words
and characters in its input, and as we saw earlier,
who prints a list of currently-logged on people,
one per line. Thus

who | we

tells how many people are logged on. And of
course

Is | we

counts your files.

Any program that reads from the terminal
can read from a pipe instead; any program that
writes on the terminal can drive a pipe. You can
have as many elements in a pipeline as you wish.

Many UNIX programs are written so that
they will take their input from one or more files
if file arguments are given; if no arguments are
given they will read from the terminal, and thus
can be used in pipelines. pr is one example:

pr—=3abec

prints files &, b and ¢ in order in three columns.
But in

catabc|pr =3

pr prints the information coming down the pipe-
line, still in three columns.

The Shell

We have aiready mentioned once or twice
the mysterious ‘‘shell,”” which is in fact sh(l).
The shell is the program that interprets what you
type as commands and arguments. It also looks
afler translating ®, etc., into lists of filenames,
and <, >, and | into changes of input and out-
put streams.

The sheil has other capabilities too. For
example, you can run two programs with one
command line by separating the commands with
a semicolon; the shell recognizes the semicolon
and breaks the line into two commands. Thus

date; who

does both commands before returning with a
prompt character.

You can also have more than one program
running siwmultaneously if you wish. For example,
if you are doing something time-consuming, like
the editor script of an earlier section, and you
don’t want to wait around for the results before
starting something else, you can say

ed file <script &

The ampersand at the end of a command line
says ‘‘start this command running, then take
further commands from the terminal immedi-
ately,” that is, don't wait for it 10 complete.
Thus the script will begin, but you can do some-
thing else at the same time. Of course, to keep
the output from interfering with what you're
doing on the terminal, it would be better to say

ed file <script >script.out &
which saves the output lines in a file called
script.out.

When you initiate a command with &, the
system replies with a number called the process
number, which identifies the command in case
you later want to stop it. If you do, you can say

kill process-number

If you forget the process number, the command
ps will tell you about everything you have run-
ning. (If you are desperate, kill 0 will kill all
your processes.) And if you're curious about
other people, ps a will tell you about a/l pro-
grams that are currently running.

You can say
(command-1; command-2; command-3) &

to start three commands in the background, or
you can start a background pipeline with

command-1 | command-2 &

Just as you can tell the editor or some simi-

lar program to take its input from a file instead
of from the terminal, you can tell the shell to
read a file to get commands. (Why not? The
shell, after all, is just a program, albeit a clever
one.) For instance, suppose you want to set tabs
on your terminal, and find out the date and
who's on the system every time you log in.
Then you can put the three necessary commands
(tabs, date, who) into a file, let’s call it startup,
and then run it with

sh startup

This says to run the sheil with the file startup as
input. The effect is as if you had typed the con-
tents of startup on the terminal.

If this is to be a regular thing, you can elim-
inate the need to type sh: simply type, once only,
the command

chmod +x startup
and thereafter you need only say
startup

to run the sequence of commands. The
chmod(l) command marks the file executable;
the shell recognizes this and runs it as a
sequence of commands.

If you want startup to run automatically
every time you log in, create a file in your login
directory called .profile, and place in it the line
startup. When the shell first gains control when
you log in, it looks for the .profile file and does
whatever commands it finds in it. We'll get back
to the shell in the section on programming.

[II. DOCUMENT PREPARATION

UNIX systems are used extensively for docu-
ment preparation. There are two major format-
ting programs, that is, programs that produce a
text with justified right margins, automatic page
numbering and titling, automatic hyphenation,
and the like. nroff is designed to produce output
on terminals and line-printers. troff (pro-
nounced ‘‘tee-roff’") instead drives a photo-
typesetter, which produces very high quality out-
put on photographic paper. This paper was for-
matted with troff.

Formatting Packages

The basic idea of nroff and troff is that the
text to be formatted contains within it ‘‘format-
ting commands' that indicate in detail how the
formatted text is to look. For example, there
might be commands that specify how long lines
are, whether to use single or double spacing, and
what running titles to use on each page.

-10 -

Because nroff and troff are relatively hard to
learn to use effectively, several ‘‘packages’ of
canned formatting requests are available to let
you specily paragraphs, running titles, footnotes,
multi-column output, and so on, with little effort
and without having to learn nroff and troff.
These packages take a modest effort to learn, but
the rewards for using them are so great that it is
time well spent.

In this section, we will provide a hasty look
at the ‘‘manuscript” package known as —ms.
Formatting requests typically consist of a period
and two upper-case letters, such as .TL, which is
used to introduce a title, or .PP 0 begin a new
paragraph.

A document is typed so it looks something
like this:

.TL

title of document
AU

author name

SH

section heading

PP

paragraph ...

PP

another paragraph ...
SH

another section heading
PP

ete.

The lines that begin with a period are the for-
matting requests. For example, .PP calls for
starting a new paragraph. The precise meaning
of .PP depends on what output device is being
used (typesetter or terminal, for instance), and
on what publication the document will appear in.
For example, —ms normally assumes that a
paragraph is preceded by a space (one line in
nroff, 2 line in troff), and the first word is
indented. These rules can be changed if you
like, but they are changed by changing the
interpretation of .PP, not by re-typing the docu-
ment.

To actually produce a document in standard
format using —ms, use the command

troff —ms files ...
for the typesetter, and
nroff —ms files ...

for a2 terminal. The —ms argument tells troff
and nroff to use the manuscript package of for-
matting requests.

There are several similar packages; check
with a local expert to determine which ones are
in common use on your machine.

Supporting Tools

In addition to the basic formatters, there is a
host of supporting programs that help with docu-
ment preparation. The list in the next few para-
graphs is far from complete, so browse through
the manual and check with people around you
for other possibilities.

eqn and neqn let you integrate mathematics
into the text of a document, in an easy-to-learn
language that closely resembles the way you
would speak it aloud. For example, the eqn
input

sum from i=0 to n x sub i =" pi over 2

produces the output
n
Ix = r
100 2

The program tbl provides an analogous ser-
vice for preparing tabular material; it does all the
compulations necessary to align complicated
columns with elements of varying widths.

refer prepares bibliographic citations from a
data base, in whatever style is defined by the for-
matting package. It looks after all the details of
numbering references in sequence, filling in page
and volume numbers, getting the author's initials
and the journal name right, and so on.

spell and typo detect possible spelling mis-
takes in a document. spell works by comparing
the words in your document to a dictionary,
printing those that are not in the dictionary. It
knows enough about English spelling to detect
plurals and the like. so it does a very good job.
typo looks for words which are ‘‘unusual™, and
prints those. Spelling mistakes tend to be more
unusual, and thus show up early when the most
unusual words are printed first.

grep looks through a set of files for lines
that contain a particular text pattern (rather like
the editor’s context search does, but on a bunch
of files). For exampie,

grep ‘ing$’ chap*

will find all lines that end with the letters ing in
the files chap®. (It is almost always a good prac-
tice to put single quotes around the pattern
you're searching for, in case it contains charac-
ters like ® or $ that have a special meaning to the
shell.) grep is often useful for finding out in
which of a set of files the misspeiled words
detected by spell are actually located.

diff prints a list of the differences between
two files, so you can compare two versions of
something automatically (which certainly beats
proofreading by hand).

-11-

we counts the words, lines and characters in
a set of files. tr translates characters into other
characters, for exampie it will convert upper to
lower case and vice versa. This translates upper
into lower:

tr A=Z a=—z <input >output

sort sorts files in a variety of ways; cref
makes cross-references; ptx makes a permuted
index (keyword-in-context listing). sed provides
many of the editing facilities of ed, but can apply
them to arbitrarily long inputs. awk provides the
ability to do both pattern matching and numeric
computations, and to conveniently process fieids
within lines. These programs are for more
advanced users, and they are not limited to
document preparation. Put them on your list of
things to learn about.

Most of these programs are either indepen-
dently documented (like eqn and tbl), or are
sufficiently simple that the description in the
UNIX Programmer’'s Manual is adequate explana-
tion.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are
finally finished. Accordingly, you shouid do
whatever possible to make the job of changing
them casy.

First, when you do the purely mechanical
operations of typing, type so that subsequent
editing will be easy. Start each sentence on a
new line. Make lines short, and break lines at
natural places, such as after commas and semi-
colons, rathér than randomly. Since most people
change documents by rewriting phrases and
adding, deleting and rearranging sentences, these
precautions simplify any editing you have to do
later.

Keep the individual files of a document
down to modest size, perhaps ten to fifteen
thousand characters. Larger files edit more
slowly, and of course il you make a dumb mis-
take it's better to have clobbered a small file
than a big one. Split into files at natural boun-
daries in the document, for the same reasons
that you start each sentence on a new line.

The second aspect of making change easy is
1o not commit yourself to formatting details too
early. One of the advantages of formatung pack-
ages like =—ms is that they permit you to delay
decisions to the last possible moment. Indeed,
until a3 document is printed. it is not even
decided whether it will be typeset or put on a line
printer.

As a rule of thumb, for all but the most
trivial jobs, you should type a document in terms
of a set of requests like .PP, and then define
them appropriately, either by using one of the
canned packages (the better way) or by defining
your own nroff and troff commands. As long as
you have entered the text in some systematic
way, it can always be cleaned up and re-
formatied by a judicious combination of editing
commands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any
of the programming languages available but a
few words of advice are in order. One of the
reasons why the UNIX system is a productive
programming environment is that there is
already a rich set of tools available, and facilities
like pipes, [/0 redirection, and the capabilities of
the shell often make it possible to do a job by
pasting together programs that already exist
instead of writing from scratch.

The Shell

" The pipe mechanism lets you fabricate quite
complicated operations out of spare parts that
already exist. For example, the first draft of the
spell program was (roughly)

cat ... collect the files

|tr ... put each word on @ new line
[tr ... delete punctuation, etc.

I sort into dictionary order

| uniq discard duplicates

|comm prine words in text

but not n dictionary

More pieces have been added subsequently, but
this goes a long way for such a small effort.

The editor can be made to do things that
would normally require special programs on
other systems. For example, to list the first and
last lines of each of a set of files, such as a book,
you could laboriously type

But you can do the job much more easily. One
way is to type

Is chap® > temp

to get the list of filenames into a file. Then edit
this file 10 make the necessary series of editing

-12-

commands (using the global commands of ed).
and write it into script. Now the command

ed <script

will produce the same output as the laborious
hand typing. Alternately (and more easily), you
can use the fact that the shell will perform loops,
repeating a set of commands over and over again
for a set of arguments:

for i in chap®
do

ed $i <script
done

This sets the shell variable i to each file name in
turn, then does the command. You can type this
command at the terminal, or put it in a file for
later execution.

Programming the Shell

An option often overlooked by newcomers is
that the shell is itself a programming language,
with variables, control {low (if-else, while, for,
case), subroutines, and interrupt handling. Since
there are many building-block programs, you can
sometimes avoid writing a new program merely
by piecing together some of the building blocks
with shell command files.

We will not go into any details here; exam-
ples and rules can be found in An [nrroduction o
the UNIX Shell, by S. R. Bourne,

Programming in C

If you are undertaking anything substantial,
C is the only reasonable choice of programming
language: everything in the UNIX system is tuned
to it. The system itself is written in C, as are
most of the programs that run on it. [t is ailso a
easy language to use once you get started. C is
introduced and fully described in The C Program-
ming Language by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, 1978). Several sections
of the manual describe the system interfacss,
that is, how you do I/O and similar functicas.
Read UNIX Programmng for more complicated
things.

Most input and output in C is best handled
with the standard I/O library, which provides a
set of [/0 functions that exist in compatible
form on most machines that have C compilers.
In generai, it's wisest (o confine the system
interactions in a program to the facilities pro-
vided by this library.

C programs that don’t depend too much on
special features of UNIX (such as pipes) can be
moved to other computers that have C com-
pilers. The list of such machines grows daily; in
addition to the original PDP-11, it currently

includes at least Honeywell 6000, IBM 370,
Interdata 8/32, Data General Nova and Eclipse,
HP 2100, Harris /7, VAX 11/780, SEL 86, and
Zilog Z80. Calls to the standard [/O library will
work on.all of these machines.

There are a number of supporting programs
that go with C. lint checks C programs for
potential portability problems, and detects errors
such as mismatched argument types and unini-
tialized variables.

For larger programs (anything whose source
is on more than one file) make allows you to
specify the dependencies among the source files
and the processing steps needed to make a new
version; it then checks the times that the pieces
were last changed and does the minimal amount
of recompiling to create a consistent updated ver-
sion.

The debugger adb is useful for digging
through the dead bodies of C programs, but is
rather hard to learn to use effectively. The most
effective debugging tool is still careful thought,
coupled with judiciously placed print statements.

The C compiler provides a limited instru-
mentation service, so you can find out where
programs spend their time and what parts are
worth optimizing. Compile the routines with the
=p option; after the test run, use prof to print
an execution profile. The command time will
give you the gross run-time statistics of a pro-
gram, but they are not super accurate or repro-
ducible.

Other Languages

If you have to use Fortran, there are two
possibilities. You might consider Ratfor, which
gives you the decent control structures and free-
form input that characterize C, yet lets you write
code that is still portable to other environments.
Bear in mind that UNIX Fortran tends to produce
large and relatively slow-running programs.
Furthermore, supporting software like adb, prof,
etc., are all virtually useless with Fortran pro-
grams. There may.aiso be a Fortran 77 compiler
on your system. If so, this is a viable alternative
to Ratfor, and has the non-trivial advantage that
it is compatible with C and related programs.
(The Ratfor processor and C tools can be used
with Fortran 77 t00.)

If your application requires you to translate a
language into a set of actions or another
language, you are in effect building a compiler,
though probably a small one. In that case, you
shouid be using the yacc compiler-compiler,
which heips you develop a compiler quickly. The
lex lexical analyzer generator does the same job
for the simpler languages that can be expressed

- 13-

as regular expressions. It can be used by itself,
or as a front end to recognize inputs for a
yacc-based program. Both yacc and lex require
some sophistication to use, but the initial effort
of learning them can be repaid many times over
in programs that are easy to change later on.

Most UNIX systems also make available
other languages, such as Algol 68, APL, Basic,
Lisp, Pascal, and Snobol. Whether these are
useful depends largely on the local environment:
if someone cares about the language and has
worked on it, it may be in good shape. If not,
the odds are strong that it will be more trouble
than it’s worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, The UNIY
Programmer’s Manual, Bell Laboratories, 1978.
Lists commands, system routines and interfaces,
file formats, and some of the maintenance pro-
cedures. You can't live without this, although
you will probably only need to read section 1.

Documents for Use with the UNIX Time-sharing
System. Volume 2 of the Programmer’s Manual.
This contains more extensive descriptions of
msjor commands, and tutorials and reference
manuals. All of the papers listed below are in it,
as are descriptions of most of the programs men-
tioned above.

D. M. Ritchie and K. L. Thompson, *“The UNIX
Time-sharing System,”” CACM, July 1974. An
overview of the system, {or people interested in
operating systems. Worth reading by anyone
who programs. Contains a remarkabie number
of one-sentence observations on how to do
things right.

The Beil System Technical Journal (BSTJ) Spe-
cial Issue on UNIX, July/August, 1978, contains
many papers describing recent developments,
and some retrospective material.

The 2nd International Conference on Software
Engineering (October, 1976) contains several
papers describing the use of the Programmer's
Waorkbench (PWB) version of UNIX.

Document Preparation:

B. W. Kernighan, **A Tutorial Introduction to
the UNIX Text Editor’ and ‘*Advanced Editing
on UNIX,” Bell Laboratories, 1978. Beginners
need the introduction; the advanced material will
help you get the most out of the editor.

M. E. Lesk, “Typing Documents on UNIX," Bell
Laboratories, 1978. Describes the =ms macro
package, which isolates the novice from the
vagaries of nroff and troff, and takes care of

most formatting situations. [f this specific pack-
age isn’'t available on your system, something
similar probably is. The most likely alternative is
the PWB/UNIX macro package -—mm; see your
local guru if you use PWB/UNIX.

B. W. Kernighan and L. L. Cherry, ‘““A System
for Typesetting Mathematics,” Bell Laboratories
Computing Science Tech. Rep. 17.

M. E. Lesk, “Tbl = A Program to Format
Tables, Bell Laboratories CSTR 49, 1976.

J. F. Ossanna, Jr., “NROFF/TROFF User's
Manual,”” Bell Laboratories CSTR 54, 1976.
troff is the basic formatter used by —ms, eqn
and tbL The reference manual is indispensable
if you are going to write or maintain these or
similar programs. But start with:

B. W. Kermighan, ‘“A TROFF Tutorial,”” Bell
Laboratories, 1976. An attempt (o unravel the
intricacies of troff.

Programming:

B. W. Kernighan and D. M. Ritchie, The C Pro-
grammung Language, Prentice-Hall, 19738. Con-
tains a tutorial introduction, complete discussions
of all language features, and the reference
manual.

B. W. Kernighan and D. M. Ritchie, **UNIX Pro-
gramming,”” Bell Laboratories, 1978. Describes
how to interface with the system from C pro-
grams: I/0 calls, signals, processes.

S. R. Bourne, ‘‘An I[ntroduction to the UNIX
Shell,’” Bell Laboratories, 1978. An introduction
and reference manual for the Version 7 shell.
Mandatory reading if you intend to make
effective use of the programming power of this
shetl.

S. C. Johnson, ‘‘Yacc — Yet Another Compiler-
Compiler,”” Bell Laboratories CSTR 32, 1978.

M. E. Lesk, “*Lex — A Lexical Analyzer Gen-
erator,” Bell Laboratories CSTR 39, 1975.

S. C. Johnson, ‘‘Lint, a C Program Checker,”
Beil Laboratories CSTR 65, 1977.

S. [. Feldman, ““MAKE - A Program for Main-
taining Computer Programs,” Beil Laboratories
CSTR 57, 1977.

J. F. Maranzano and S. R. Bourne, ‘*A Tutorial
Introduction to ADB,”" Beil Laboratories CSTR
62, 1977. An introduction to a powerful but
complex debugging tool.

S. . Feidman and P. J. Weinberger, ‘*A Portable
Faortran 77 Compiler,”” Bell Laboratories, 1978
A fuil Fortran 77 for UNIX systems.

- 14 -

UNX 1.3.1
Communicating with UNIXt

Ricki Blau
Computing Services
University of California
Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the UNIX system assumes no
prior familiarity with computers. Its aim is to lead the beginning user through
the first few sessions with UNIX. It starts with the use of the terminal and the
login procedure, and later presents the fundamental system features and com-
mands. Introductions to the file system and command line interpreter are
given.

September 1981

TUNIX is a trademark of Bell Laboratories.

Session 1:

Session 2:

Session 3:

Session 4:

Session 3:

Index 23

.2.

Contents

Introduction 3

Your account 3

The terminal 3

The keyboard 3

The RETURN key 4

The control key 4
Connecting 4

Port selector terminals 3
Bussiplexer terminals 5
Directly-linked terminals §
Dial-up terminals 6
Logging in 6

Prompting 6

A summary 7

Interrupting command execution 7
Help 7

Logging out 8

Simple Commands 9

The shell 9

Making corrections 9
Changing the password 10
Sending mail 10
Receiving mail 11

Files 12

Files 12

Filenames 12

Listing the names of files 12
Reading a file 13

Copying files 13

Removing files 14

Moving files 14

To preserve and protect 14

Directories 15

The UNIX file structure 15
Pathnames 15

Creating a directory 16
Changing directories 16
Removing directories 17
More about pathnames 17

More Commands i9

Issuing commands 19

Type-ahead 19

Saving output on a file 19

Reading input from a file 19

The line printer 20

Connecting commands with pipe 20
The background 21

Characters with special meanings 21

-3.

Session 1: Introduction

UNIX is an interactive computer system — people and the system talk back and forth with
each other by means of a terminal connected to the computer. When users give instructions to
UNIX, they are communicating with a program, a set of instructions which has been given to
the computer telling it how to perform some task. UNIX is a collection of many programs, col-
lectively called the UNIX system, which monitors the use of the machinery and supervises all of
the programs that make up the system.

This is the first in a series of tutorials to introduce you to UNIX. Don’t hesitate to experi-
ment while you are becoming familiar with UNIX. An interactive system responds quickly to
instructions, informing you about the outcome of each task and asking for a new command as
soon as it is ready to receive one. If you enter a command which doesn’t work the way you
had expected, make a change and try again. Learning about the system by using it is the best
way to become familiar with UNIX.

Your account

On the Berkeley campus there are several nearly identical, but separate, computers on
which the UNIX systemn is available to University personnel and students. All of the UNIX sys-
tems are very much the same, but the computers aren’t completely interchangeable: so, each
computer is assigned a name to differentiate it from the other computers. Thus when we refer
to UNIX A, or UNIX E, we are referring to the system on a particular computer, in our exam-
ple, the A machine or the E machine.

Each account is assigned to one of the campus UNIX systems. To use your account, you
must make contact with the proper system. When you are given your account, by either the
Computing Services Accounting office or by the instructor of your class, you will be told the
name of the UNIX system you must use and how to access it.

Associated with your account are two pieces of identification. The login name is the name
by which your account is known.t Your password keeps unauthorized people from using your
account. Whenever you want to use UNIX, you will need to establish your identity by typing
both your login name and password.

The terminal

Entering information at a terminal is very much like typing on an electric typewriter. Ter-
minals display information either on paper (printing or hardcopy devices) or through light
displays on a tv screen (CRT terminals). Whether a terminal writes on paper or on a CRT
screen, it interacts with the computer in the same way, and you may switch from one device to
another at your convenience. Terminals vary in their characteristics from model to model, and
the labelling and placement of some keys does vary. When it is likely that devices may differ,
alternative suggestions will be given for using different terminals. It may be necessary to test a
few of the alternatives to find out which is appropriate for the equipment you are using.

The keyboard

Examine your terminal — most of the keys are the same as on a standard typewriter key-
board. Notice that there is always a key for the number one, *‘1’°. On a terminal the number
one (*‘1) and the lower-case letter “‘ell’’ (*‘I'’) are not interchangeable. When you type a
lower-case “I"” (ell) the computer always interprets it as the letter “I"" (ell) and never as the

t The login names for all of the students in a class usually start with the course number (and possibly the
section name) followed by a different pair of letters for each student.

-4.

number ‘1" (one). Another character that looks similar to these but is distinct from both is
the vertical bar ** |, which is the shift-\ on the keyboard. Similarly, the letter **O’’ and the
number ‘0" (zero) cannot be interchanged.

Also, a blank is actually a specific character to UNIX. When you press the space bar
(located at the bottom of the keyboard, just as on a typewriter) you are actually instructing
UNIX to perceive a blank space.

The RETURN key

Besides the normal typewriter keys, there are some special-purpose keys you will be using
frequently. The RETURN, marked “‘RETURN’’ or ‘‘RET", is usuaily located near the upper
right corner of the keyboard. As commands are typed on a terminal, they are read by UNIX
character-by-character as they are entered. The command is examined and executed only after
the RETURN key is pressed. This serves as a signal to the system that you have finished enter-
ing a line and that it is UNIX’s turn to handle the information it has received. In these lessons,
the symbol <c¢r> is written to indicate that the RETURN key shouid be pressed.

Suppose you wanted to eater a particularly lengthy command but found yourself at the
terminal’s right hand margin before you were done. By simply continuing to type, you may on
some terminals enter the command, even though it may be longer than one physical line.
These terminals will automatically advance to give you a fresh line to type on. When you are
ready for UNIX to respond to what you have typed, press RETURN. On many terminals, the
key that may be labelled either ‘‘NEW LINE' or “‘LINE FEED” can be used just as the
RETURN. If UNIX doesn’t respond when you think it should, try typing a RETURN or its
equivalent. If that doesn’t work you will need to examine your most recent commands or lines
of text to determine what UNIX thinks you are doing. If that doesn’t heip, you will need to
seek other advice.

The control key

The control key is similar in many ways to the shift key. Just as the shift key allows the
other keys to have a second meaning, the control key (usually marked ‘‘CTRL') gives many
keys a third meaning. To use the coatrol key, hold down CTRL while striking a second key.
The characters you type when you hold down CTRL and press another key are invisibie — they
have meanings to UNIX, but they don’t correspond to any character that can be printed or
displayed. Some of the control characters are used to give useful instructions to the terminal. -
These invisible characters are just as real to UNIX as any characters that can appear on the ter-
minal. If UNIX ever has trouble recognizing a command or a name that looks perfectly good on
the terminal, the problem may be due to invisible control characters that crept into a word
through your typing error.

Some programs show you where you have typed a control character by printing a
representation of the coatrol character in symbolic form. Most of these programs follow the
convention of printing a ‘“*’" to mean ‘‘control’’ followed by the letter that was typed. On
some terminals, the ‘""" appears as a *‘{’". For example, if a program prints that you have
typed ¢ At, it means that the character control-A appeared between the ‘‘c’’ and the *‘t”* . The
control-A would have been entered by your holding down the control key while typing an “*A’’,
and on many terminal keyboards can be generated if your finger hits between the CTRL and
“*A’ by accident. We will discuss some specific control characters when the time comes to use
them. Now we should be ready to make contact with UNIX.

Connecting

If your terminal is not already on, now’s the time to turn it on. On a typewriter terminal,
the ON—-OFF switch is usually clearly marked on the front of the device. On ADM terminals
(the model name of most of the public CRT terminais), there is a toggle switch on the back of
the device on the lower right hand corner; press the switch toward your right.

Port selector terminals

If your terminal has a small box attached with a red button on top, it is connected to the
port selector. You can request any of several UNIX systems by turning on the terminal and
pressing the red button once. The terminal will respond with

Request:

Type the name of the system you are to use. For this example, we use the Computer Facili-
ties and Operations (C F & O) system E:

Request:e (and press RETURN)

The terminal will skip a line, emit a beep, and then print a greeting inviting you to login. You
are now ready to login.

Bussiplexer terminals

The bussiplexer is a communications network that makes it possible for you to connect to
any of several C F & O UNIX systems. Use the same techniques as above to turn on the termi-
nal or to connect over dial-up terminals, as described below. If you don’t immediately receive
a login message, press RETURN. The login message will be similar to:

U.C. Bussiplexer (A+B+C+D+E+F+)

:login:
It lists the systems that are connected to the bussiplexer. A *‘+’° or *“—"" follows each name.

A “*+" indicates that the system is up (in service) and a ** ="' means that the system is down
(unavailable).

After the message of greeting appears, type your login name and press RETURN. Fre-
quently the characters you enter are slow to print or appear on the screen. Input is ignored for
a second or so after the message of greeting is printed. A good strategy is to type one character
and wait a few seconds for it to appear. If it doesn’t, try again. Once your first character
appears, you may type the rest of your login name, followed by a <cr>.

For most accounts the bussiplexer knows the system your account is on, and so it will
respond:

Connecting to Unix E

if E is the UNIX system your account is on. If the bussiplexer does not know which of the sys-
tems has your account, you will be asked to select one. Type a single letter for the system of
your choice (here, *‘e”" because our example account is on UNIX E) followed by a RETURN:

Select Host: e<cr>
Connecting to Unix E

Connected

After a few seconds, your UNIX system will ask for a password:
Password: (type your password and press RETURN)
You are now logged in.

Directly-linked terminals
Turn on your terminal and press the RETURN key. You are now ready to login.

Dial-up terminals
If your terminal connects with the computer over a telephone line, turn on the terminal,

dial the system access number, and, when you hear a high-pitched tone, place the receiver of
the telephone in the acoustic coupler. You are now ready to login.T

Logging in
The message inviting you to login is:

login:

Type your login name, which identifies you to UNIX, on the same line as the login message,
and press RETURN. If you make a mistake while typing your login name simply press the @
key, which tells UNIX to ignore the line you have typed so far and lets you begin again as
though you had typed nothing at ail. If the terminal you are using has both upper and lower
case, be sure you enter your login name in lower case. Otherwise UNIX assumes your termi-
nal has only upper case and will not recognize lower case letters you may type. UNIX types
‘“:login:”* and you reply with your login name, for example ‘‘sherlock’:

:login: sherlock (and press the RETURN key)
(In the examples, input you would type appears in ‘“‘boldface’” to distinguish it from the
responses from UNIX.)

UNIX will next respond with a request for a password as an additional precaution to
prevent unauthorized people from using your account. The password will not appear when you
type it, to prevent others from seeing it. The message is:

Password: (type your password and press RETURN)

As with typing your login name, if you think you have made a mistake you can type the @
character to tell UNIX to ignore what you have typed on the line so far, and to take what you
type next as your password. If any of the information you gave during the login sequence was
mistyped or incorrect, UNIX will respond with

Login incorrect.

‘login:
in which case you should start the login process anew. Once UNIX accepts the password, you
are logged into the system. UNIX will print the message of the day , such as

For latest news type ‘help news’

Erase set to control-H

The last line, ‘‘Erase set to control-H'’, indicates that you can correct typing errors in the line
you are typing by holding down the CTRL key and typing the ‘‘H'’ key. If you try typing
control-H, you will notice that the terminal backspaces in the line you are on. You can back-
space over your error, and then type what you want to be the rest of the line.

Prompting

The greeting message, which may consist of a few or many lines, will be followed by a
prompt from UNIX, the percent sign “‘%’’. The prompt is how UNIX indicates it is ready to
receive commands. After each command has been executed, UNIX responds with a new
prompt to let you know that it expects another command.

tIf your terminal prints two letters for every one you type, your terminal is set for “‘half duplex,’ which is
used when communicating with the [BM system. Set the duplex switch on your terminal and coupler to **full
dupiex.”” Also, some terminals and acoustic couplers have a '“local copy'” switch that you should set to "*out”
to prevent each character being printed twice.

A summary
Up to now, the exchange with UNIX should look something like this:

C F & O Version 7 Unix System — "E"

:login: sherlock < cr>
Password: < cr>

For latest news type ‘help news’
Erase set to control-H

%

Try typing help news, followed by RETURN, and the latest system announcements will
appear:

% help news<cr>
UNIX NEWS

and the rest of the news will follow. If you're working at a CRT terminal, only one screenful of
news will be sent to your terminal at a time. At the bottom of the page will be the instruction:

--More--[Press space to continue, Rubout to abort]

Pressing the space bar is the way to ask the help program for the next screenful of information
when you are ready to read it. If you press RETURN instead of the space bar, the system will
respond with a line of text and repeat the above message until you hit the space bar or the RUB
key.

Interrupting command execution

The key labelled either *‘RUB’" (for RUBOUT) or “DEL’ (for DELETE) is another special
purpose key. If you issue a command, and wish to stop its execution before it stops of its own
accord, press this key. On ADM terminals, you will have to shift in order to type ‘““‘RUB’’. On
some terminals the BREAK key will function as RUB (DELETE).

For the time being, stop the transmission of news to your terminal by pressing the RUB
key. Even though a typewriter terminal may not pause after a ‘‘page’’ of print, you can also
stop the transmission of the news by pressing RUB or its equivalent. When you have success-
fully stopped the printing of news, UNIX will respond with a new prompt (“%"*).

Sometimes it is desirable to slow down or temporarily interrupt transmission to your ter-
minal, even though you do not want to stop the execution of a command permanently. The
special character *‘control-S™, typed by holding down the CTRL key and then also pressing *‘S*’,
can be used to interrupt printing. Type control-S, and the screen will freeze; when you type
‘“‘control-Q’’, by holding down the CTRL key and pressing “‘Q’’, you will restart the transmis-
sion to your terminal. The control-S/control-Q sequence can aiso be used to pause and restart
at a printing terminal. If you’d like to see the rest of the announcements, ask for the news
again once the system is ready to receive new commands. Use control-S and controi-Q to see
some of the news a few lines at a time.

Help

The help command is set up to provide announcements and information about many
aspects of the system. To find out what sort of information is available, type help followed by
RETURN.

% help<cr>

.8-

When you type the command help, UNIX looks for a program named 4efp that has the
necessary instructions to send information to your terminal. If the command is mistyped, such
as happens when a key ‘‘bounces’” (repeats itseif):

% helppp<cr>

UNIX will look for a program called Aelppp. Mistype this command deliberately, and you will
see how UNIX responds. There is no program by the exact name heippp so the system tells
you:

% helppp< cr>

helppp: Command not found.
%

The message is followed by a new prompt, so you can start again and enter the command
correctly. You might want to try some of the commands described by 4elp

Logging out
When you decide to leave UNIX for the time being, you will have to log out. This is done
by typing the command
% logout
It is not sufficient simply to turn off the terminal; you will remain logged in until you type the
logout command.

[t is very important to remember to log off. If you should leave the terminal before log-
ging off, any unscrupulous or unwitting stranger who sits down at the terminal after you leave
could continue to use your account.

This is the end of the first session with UNIX.

-9- .

Session 2: Simple Commands

Login with UNIX as in the first session. Once you are connected to the system, UNIX will
print various messages and then signal its readiness to accept commands with the percent-sign
prompt (*%’"). (The examples will no longer show the RETURN key that must be typed at the
end of each line to let the system know that the line is complete.)

C F & O Version 7 Unix System — "E"

:login: sherlock
Password: (rype the password)
Last login: Wed Sep 10 09:41:29 on bx077

For latest news type ‘help news’

Erase set to control-H
%

To review, communicating with UNIX consists of your giving input to programs which tell the
computer machinery how to respond to commands. For instance, there is a program which
keeps track of the terminals which are connected to UNIX. If a terminal is turned on and no
one is using it, this program prints the ‘‘:login:’’ message. When a name and password are
given correctly, it lets the user onto the system. Once this process has been completed, another
program is called in to supervise the rest of the session with UNIX.

The shell

It is this second program, the ‘‘shell’’, that coordinates communication between your ter-
minal and UNIX. It reads commands and directs them, like a conductor in an orchestra, to
other programs that will actually execute the commands.

The prompt signal (“‘%’’) comes from the shell. If you should respond by typing date,
the systemn reads the letters and stores them in a temporary place. Once you indicate that the
command is finished by pressing RETURN, UNIX can respond:

% date
Wed Sep 24 09:55:14 PDT 1981
%

When you type date, the shell looks for a program called dare and directs it to execute. The
date program then executes its task, that of typing the date and time on the terminal.

Making corrections

As we found in Session 1, UNIX provides a convenient way to correct typing errors that
you notice while you are still typing a line. By holding the CTRL key and typing the ‘“‘H’" key,
the terminal responds by backspacing one space. We will represent control-H by *“*"H”". To
review, the following lines are equivalent:

% help news
% helppp H H news

and, recalling that a blank space is actually a character to a computer, so is
% helpp n"H H H news

Remember that ‘“"H’’ means that you hold the CTRL key as you would the SHIFT key, and
press the key labelled ‘“H™'. It is necessary to erase both the ‘‘n’’ and the blank preceding it
before erasing the extra ‘‘p’’, so three control-H characters were used.

Control-H can be used to erase all the way back to the beginning of a line. Suppose, how-
ever, that a mistake that you notice is so far behind your current position that it doesn’t seem

.10 -

worthwhile to try to salvage the line. Remember that the at-sign (‘“*@’") will erase the contents
of an entire line up to the **@"", if it is typed before the RETURN key is pressed, and you will
be given a fresh line. (If you are on a bussiplexer terminal, you wiil not advance to the next
line after hitting **@"°, but there is no other difference in the way the at-sign is handled.)

% hlep ne@
help news

Begin the line again immediately after the at-sign, and when the corrected line is complete,
press RETURN. Erasing letters or lines with ““"H’ or ‘@’ must be done before pressing
RETURN. Once you have pressed RETURN, whatever you typed, including any mistakes not
erased by **"H” or @', will be evaluated by the shell.

Changing the password

If the original password for your account was assigned randomly by your instructor or the
Computing Services Accounting office, one of the first things you should do is reset it to some-
thing you’ve chosen yourself.

% passwd sherlock

Use the above command, substituting your own login name for sherlock. You will first be
asked to type your current password, which will not appear on the screen. Remember to press
the RETURN key after the password. Next you will be asked twice to enter the new password.
The purpose of repeating the password is to minimize the chance of typing errors.

% passwd sherlock

Old password: (type your current password, followed by < cr>)
New password: (rype the new password, followed by < cr>)
Retype new password: (repeat the new password and the < cr>)

Longer passwords are harder to guess, and therefore protect your account more securely.
The passwd program will ask you to use a longer password if the one you first enter is too sim-
ple. It’s best to use passwords that are at least six characters long. Passwords may be as long -
as eight characters ana_may contain any characters but ““"H™” and ‘@,

If you should forget the password and are prevented {rom logging in, the problem can be
corrected. If you have a class account, contact the instructor or TA. Other users can submit a
request at the Accounting office, 239 Evans Hall, to have a new password entered for an
account.

Sending mail

You can use UNIX to send mail to any user whose login name you know. The format of
the command is the word mail followed by the login name of the user who is to receive mail.
Follow the command with a RETURN key, and then start writing your message, using the
RETURN key whenever you need a new line.

% mail sherlock ,

Whatever is typed on the lines following the

mail command will be reproduced as

mail in sherlock’s UNIX mail box.

Finish off the message by typing

a control-D on a line by itself.

% (a control-D was typed on this line, then the system typed back the ‘%"’)

Send some mail to yourself to see how it works. When you have typed the last line of the
mail. return to a new line and type a control-D. You will be informed about the presence of
mail the next time you login.

.11 -

Another command, trouble, works very much like mail It automatically sends a report
of trouble to the proper people, and can be used, for example, to report terminal maifunctions.
You can find out more about it by typing

% help trouble

Receiving mail
Log out after you finish sending mail, and then log back in. When you login again, there
will be a message for you:

You have mail.
% mail

Retrieve your mail with the command mail alone on a line followed by RETURN. The mail
command will print any messages waiting in your mail box. After each message, mail prints a
prompt of ‘7" to ask you what you want to do with the message. If you type a *‘d”’ (for
‘*delete”) followed by RETURN, the message will disappear. The command *‘s’* (for ‘‘save’)
asks mail to save a copy of the message in a file called mbox More pieces of mail may be
added to mbox even if others are already stored there. You can type ‘‘+'’ to go on to the next
message. With a **q”’, you can quit reading your mail. Any unread messages will be waiting
for you the next time you use the command mail to read your mail. If you need to be
reminded about the different mail commands, or if you’d like to find out about further com-
mands, you can type a ‘*?"" in response to mail’s prompt and receive a list of commands.

Save the mail you have sent to yourself to be retrieved in a later session. Although you
are only notified about mail upon login, the command mail may be used at any time during a
UNIX session to see any mail that may be waiting for you. There should no longer be any mail
for you, but type mail anyhow to see what happens. Finish the session by typing logout.

This is the end of the second session. There is a similar series, Edit: A Tutorial which
show how to use the text editor to create files of text. Before starting the next session of Com-
municating with UNIX you should be familiar with the material in the first two sessions of the
edit tutorial.

.12 -

Session 3: Files

By now you should be familiar with using the text editor to create files. It’s assumed that
you've already begun a tutorial that explains the use of the editor, such as Edit: 4 Tutorial
available from the Computing Services Library, 218 Evans Hall. We’'ll review a few terms
before elaborating on the UNIX file system.

Files

A file is a logical unit of data that is stored on a computer system. For example, the con-
tents of a file might consist of a program, the text of a paper, or the data for a program. Once
you have created a file, it is stored for you until you iastruct the system to remove it. You may
create a file during one UNIX session, log off, and return to use it at a later time. Files are
stored on a device cailed a disk, which looks like a stack of phonograph records. Each surface
is covered with a material similar to the coating on magnetic recording tape, on which the data
is written.

Files can contain anything you write and store in them, from one smalil number to the
text of a thesis. Keeping files organized is usually easiest when some logical unit of data, such
as a program or a chapter of a book, is stored in each file.

Filenames

Filenames serve the same purpose as the labels of manila folders in a file cabinet. They
are used to distinguish one set of data from another in communicating with the system. To
access the information in a file, you need only give its name to UNIX, and the system takes
care of locating it. Within certain limitations, you choose for a UNIX file whatever label you
care.to give it, ideally one which is descriptive of its contents. Names may be up to 14 charac-
ters long, but cannot contain imbedded blanks. If you wish to use two words without having to
run them together, separate them with another character, as in chaprer.one. A period is gen-
erally a good choice to use for separating characters. You'll probably aim for a balance where
filenames are long enough to be descriptive, but short enough to be typed easily and correctly.
Generally, you can avoid potential trouble by creating filenames with letters, numbers, and
periods (**."") only. Many of the other characters have special meanings for UNIX which might
confuse the interpretation of a name.

Within these limitations, there’s freedom to name files as you wish. Since filenames are
used to distinguish one file from another, no two files can have exactly the same name.

Listing the names of files

There may already be a few files associated with your account = the mail that was saved
at the end of the last session and probably some files that you've created while practicing with
the aditor. The first thing we’ll do in this session is to find out the names of those files. Login
with UNIX, and when the shell is ready to recsive instructions, type the list command,

% Is
Let’s say your files are rexr, notes and mbox, which has the mail you saved from the last ses-
sion. The response to the Is commaad would then look like

% Is

mbox notes text
%

-13-

Reading a file

There are a few ways to read again the mail you sent to yourself. If it was mailed and
saved successfully, one of the files named when you typed ls was mbox.

One way to read the file is to use the editor's printing commands:

% edit mbox
"mbox" 3 lines, 82 characters
:1,8p

Then to save your mail in a file called lerrer you could tell the editor

:w letter
"letter" [New file] 3 lines, 82 characters
-q
%
Note that Is shows that both mbox and lerrer now exist. There is no need to enter the
editor to read a file as long as you do not want to use it to make any changes. The command
more asks the shell to display a file. (The command 1,8p, to print all of the lines in a file, is

only used when you are working in the editor.) To request that UNIX display the mail you sent
to yourself, type

% more mbox

The form of the command is more followed by the names of one or more files. more displays a
screenful of text at a time on CRTs. If more than one filename is given, all of the files are
linked together and displayed a screenful at a time. Experiment with

% more mbox text
(Substitute the name of one of your other files if you have none named texz)

Copying files

There is a way to save the mail in some other file, say message, without using the editor.
This can be done by issuing to the shell the command cp (for *‘copy’’), which copies one file
onto another. The form of the command is cp filel file2 to copy file! onto file2. If the second
file already exists, anything that might already be in it is destroyed before the contents of the
first file are copied. Otherwise, a new file is created with the second name. Type the
commands

% cp mbox message

% Is
Note that the response from UNIX shows that both mbox and message now exist.
% Is
letter mbox message notes text
%

To verify that the files message and mbox contain the same text, you can type
% cmp message mbox

If there are any differences in the two files, cmp will print them. Since the files are identical,
cmp will print nothing.
By the way, cp can’t be used to copy a file onto itself. Try it to see what happens.

% cp message message

- 14 -

Removing files

There's no longer any need for the file mbox now that there’'s a copy of it in message.
Removing files is done with the command rm. Type

% rm mbox
% ls
The output from ls should look something like:
% Is
letter message notes text
%

Now mbox is gone from the list.

Moving files
The same result accomplished by the two commands

% cp mbox message
% rm mbox

could have been produced, aven more simply, by
% mv mbox message

The command mv namel name2 changes the name of the file namel to namel2. If the second
file named in the mv command already exists, it is removed before the first file is given its
name - just as with the cp command.

To preserve and protect
To remove the contents of message type this instruction to UNIX:

% rm message

But other commands could also destroy your files accidently. Suppose you aiready have
two different files, message and rexr. When UNIX is asked to write new text onto one of your
files, it first removes any text already stored there. For example, in response to the request

% cp text message
UNIX will substitute a copy of rext for the previous contents of message. The command
% mv text message

destroys whatever was originally in message and gives its name to the former contents of the
file rexr. You should use the s command to see the names you have already used before you
select a new name for a file.

This is the end of the third session with UNIX. The fourth session will continue with
more about UNIX files and their organization.

- 15 -
Session 4: Directories

The UNIX file structure

UNIX associates each file with the account of the person who created it as its ‘“‘owner””.
This allows different accounts to have files with the same name, because UNIX uses two pieces
of information to locate a file: the name of its owner’s account and the specific file name.

Files are organized into groups called directories. Directories are valuable because they
allow us to keep together such groups of related files as the files belonging to an individual
account, the accounts for all the students in a class, or the programs used for a specific project.
Each account has its own directory, called its home or login directory. The files which are
created by a user are located within that individual’s home directory. Once you login to UNIX,
you begin to work ‘‘in’’ your directory; that is, you use the files stored together for your
account. A filename is assumed by the system to refer to a file in the same directory as the one
you are working in. Thus, if you use the filename mbox in a command, UNIX associates the
filename with the directory name to locate your file mbox.

Directories may contain other directories as well as files of text. Within your home direc-
tory, you may wish to create more specialized directories, and each might contain files relating
to a separate project.

All files stored on the system are arranged into a hierarchy of directories. UNIX direc-
tories are organized in the form of an upside down tree. For each directory or file there is
exactly one other directory on the level above it, its ‘‘parent,”’ which contains that directory or
file. The parent directory may in turn belong to another directory. Eventually, all branches in
the tree trace back to one source, the ‘‘root’ of the tree. The root is symbolized by **/*’. The
UNIX file structure can be represented by a diagram such as this:

root (**/°°)

[|) |]
usr etc bin ea eb -
2|
vio,; c4-2 sherlock
letter text
|
c4-2caa c4-2cab
’ |
| |
text mbox letter

The root contains a number of major directories, such as erc and usr, which contain the pro-
grams that make up the UNIX system. Also located within root are the directories of users’
files. These directories may have names similar to ez or eh depending upon which UNIX sys-
tem you use (here, we are using the E system).

Pathnames
The command
% pwd

for ‘‘print working directory’’, gives you the full name of the directory you are working in.
The system’s response to this command will look something like /ea/sherlock or, perhaps

-16 -

feafc4-2/c4-2caa for a class account. The full name of a directory or file is called its ‘‘path-
name’’, since it traces the full ‘“path’’ from root to the file.

We can trace the path from root to the directory for the account sherfock, which has the
pathname /ea/sheriock. The /ea says that, starting from root, sherfock's account is in the group
of user accounts called ez Different levels of the file structure are separated by a slash (‘*/°*).
On the next level is the name of the account’s directory, sheriock. The pathnames for fles of
text are constructed in the same manner. For exampie, sheriock's file text has the pathname

/lea/sherlock/text
and the one belonging to ¢4-2caa has the pathname
lealcd-2/cd4-2caastext

Pathnames can be used wherever files names can be used. Find the pathname for your account
with the command pwd, and then use it to read one of your files. Use the entire pathname
given in response to pwd, followed by a ‘*/* and then the name of the file you want to read.
For instance if you were sherlock and wanted to read your file rexr:

% pwd

/ea/sherlock

% more /ea/sherlock/text
Assuming that your working directory is /ea/sherlock, the last command is the equivalent of
' % more text
If your account is c4-2caa, you could read your own file named rexz:

% pwd
/ea/c4-2/cd-2caa
% more /ea/cd-2/cd-2caa/text

Creating a directory

A group of files belonging to a user may be organized into a directory. When you are
writing a lengthy paper, each section might be a separate file in the directory paper. If, instead,
you are writing programs, you may wish to keep a program and a file of input for it together in
a directory. '

To create the directory paper, give the command
% mkdir paper
(Any valid filename may be used.)

Changing directories

When you want to work in the directory paper, use the command cd (‘‘change working
directory’’), followed by the directory’s name. If you haven’t yet created a directory, you
might do so now. Change to the new directory and have its pathname printed:

% mkdir paper

% cd paper

% pwd
/ea/sherlock/paper

You can always get back to your home directory by using the command
% cd
without a directory name.

-17- N

As long as you remain in the directory paper, any file name you give will be interpreted as
the name of a file in that directory. After you have changed to the new directory, try to read a
file in your home directory, such as rext.

% more text
text: No such file or directory

UNIX will Ainterpret the command more text as a request for the file rext in paper, your current
directory. Assuming that you have not yet created any files within paper, the system will not
find the file specified by your command.

To read texz, it is necessary to tell UNIX that the file is located in the parent of the direc-
tory you are working in. Two dots (*“.."’) are used to symbolize the parent of whichever is the
current directory. So the command

% more ../text

should cause the intended file to be printed.
Similarly, you can change back to the parent of your current directory by typing

% cd ..

Removing directories

The command to remove a directory is rmdir followed by the name of the directory you
wish to remove. A directory must be empty before rmdir will work. If any files remain in the
directory, you will instead be reminded of their existence:

% rmdir paper
rmdir: paper not empty

Should you forget that paper is a directory and try to use the command for ordinary files
% rm paper
UNIX will print a different message rather than remove the directory. Create a new directory
and try it. .
If you forget to change back to the parent directory before attempting to remove paper,
you might get a response like

% pwd

/ea/sherlock/paper

% rmdir paper

rmdir: paper non-existent
The message reminds you that UNIX was looking for a directory named paper within your
working directory, paper. That is, it tried to find a directory with a pathname like
/ea/sherlock/paper/paper and was unsuccessful.

More about pathnames

Suppose you are working in the directory /ea/sherlock. To refer to the file named par:3 in
your directory paper, you could type either

% more /ea/sherlock/paper/part3
or
% more paper/part3

You need to specify only that part of the pathname that follows the name of your current direc-
tory. Note that the name of a file within your directory starts with the first letter of its name,
without the *‘/’” separating the current directory from the filename in the full pathname.

- 18-

If you want to issue a command concerning a file that is not in your current directory, do
so by giving the file’s pathname. The Is command is a request to print the names of files
within the current directory, but a different directory can be specified by typing its name after
the command. For instance, to print the names of the files in the parent of your current direc-

tory, type)
% ls (X

The directory specified need not be one of your own. When you type
% ls /

UNIX will respond with a list of the files and subdirectories stored in the root directory. You
may ask to see a file which belongs to another user by specifying its name in a command such
as Is or more. When users have indicated that they do not want other peopile to have access to
their files, UNIX will inform you of this rather than execute your command.

This is the end of the fourth session with UNIX.

-19-

Session 5: More Commands

The shell’s role is to interpret commands and coordinate their execution, and it is able to
carry out its duties with flexibility. This session is an introduction to some of the shell’s capa-
bilities that can make your work with UNIX easier.

Issuing commands

In the previous sessions when you wanted to give a command, you typed its name on a
new line of input to the sheil. Should it be more convenient, two or more commands can be
typed on a single line if they are separated by a semi-colon (‘*;"*). Login, and when the shell is
ready to receive instructions type

% date; who

Your commands will be executed in sequence. After the date and time are printed as requested
when you typed date, the response to the command who will appear as a list of all the users
who are currently logged in.

Type-ahead

It is not necessary to wait for a new percent-sign prompt before starting to type a new
command. You can begin your next instruction while the last command is still being executed.
Although whatever you type will be mixed in with any output that might be sent to your termi-
nal, UNIX will read ahead and store your command correctly. Don’t forget to press RETURN.
Then, as soon as the system is ready to perform a new task, your command will be interpreted
and executed. Issue the command who again, and while the response is still being printed, give
a second command, perhaps ls, to experience this feature of UNIX.

Saving output on a file

The output from most UNIX programs normally appears on the terminal. Let's say, how-
ever, that we wanted to create a file named people that will contain a list of all the users who
are now logged in. The who command provides the necessary information, and it is possible to
redirect output to a file instead of sending it to a terminal. Type the command:

% who > people

(or substitute some other name if you aiready have a file called peopie).

The symbol ‘>’ followed by the name of a file tells the system to write the output to
that file rather than on the terminal. If you don’t yet have a file with the given name, it will be
created. If the file already exists, its contents will be replaced by the output produced in
response to your command.

Now suppose that we wanted to add the current date and time (that is, the output from
the command date) to the end of the file we just created. The symbol *‘>>"" followed by a
filename is used after the name of a command to indicate that the output is to be appended to
the end of that file. The file named after ‘‘> > will be created if it does not already exist. To
illustrate this, you can type

% date > > people
and use more to list the file people to read the result:

% more people

Reading input from a file

Many commands, for example mail. read information a person normally types at the ter-
minal. It is possible to have a command read this information from a file instead of the termi-
nal. The symbol **<" is typed just before the name of the file which is to provide input.

-20 -

To see how this works, you can send a short file to yourself as mail.

The file people, created in the previous example, can be used as input for the mail com-
mand. Send the contents of the file to your mailbox and then retrieve it by typing these
commands:

% mail < people
% mail

The line printer

Printed output may be obtained from the high speed line printer as well as from a printing
terminal. The command Ipr is used to request line printer output. When you want to print the
contents of one of your files, type its name after the command, as in:

% lpr people
Output will be found in Room B6 Evans Hall (box 62).
%

The system responds with a message indicating where you can find your output.

Connecting commands with pipe (|)

Commands may be connected so that the output from one program is used as input to the
next. The symbol **|** (the vertical bar, which is the shift-\ on the keyboard) placed between
two commands tells the shell to use the output from the first program as input to the second.
The first program’s output is neither printed at the terminal nor recorded in a permanent file —
it is used only as input for the execution of the command whose name appears after the ** | .

To illustrate how commands are connected, we can use the command diff that shows
differences between two files. The form of the command is

% diff filel file2

where the name of the chosen files are substituted for file/ and file2. The output of diff looks
something like a series of editor commands that describe how filel would have to be changed
to make it the same as file2. Diff lists the lines that would have to be added, deleted, or
changed. Lines reproduced from the first file are marked with ‘‘ <'*, and lines from the second
are shown with a **>"".

To get a feeling for diff, make a copy of your file people:

% cp people newpeople

(assuming you don't already have a file called newpeople). Next, use the editor to delete one
line from newpeople and to make a substitution in another line. Quit the editor and type the
command

% diff people newpeople
and you'll see which lines differ between the two files.
If you connect the commands diff and lpr:
% diff people newpeople | Ipr

the output from the diff command will not appear on your terminal, but will be given directly
to the lpr command as input. As a result, the output from the diff command will then be
printed for you on the line printer. The above example is the equivalent of this series of com-
mands:

.21 -

% diff people newpeople > differences
% lpr differences
% rm differences

‘

The name ‘‘pipe’ is used for a sequence of commands chained together with a ** | **.

The background

Some commands take a while to execute, so you might not always want to wait for one
task to be completed before starting the next. Instead, you can have UNIX execute two or
more tasks concurrently. Typing an ampersand (‘&™) at the end of a command tells the sys-
tem to return control to the terminal immediately after receiving the command. Your com-
mand will be run ‘‘in the background’, leaving you free to issue further instructions from the
terminal.

It's generally better to redirect to a file any output from a command that is executed in
the background. This prevents the output from being sent to the terminal while you are trying
to work on something else.

Give the system a command with a *‘&"’ and note its response:

% Is > myfiles &
13751
%

The identification number 13751 is the process number. UNIX assigns a unique process
number to each command that the system receives. Should you want to stop the execution of a
command before it is finished, you can type

% kill number

giving its process number for number. If you type the number correctly, yet the system replies
to the kill command with the message ‘‘No such process™, it is likely that the command has
already been completed or that you have mistyped the process number.

Characters with special meanings

Let’s say that you've stored sections of a paper in individual files with names such as
partl, part2, and part3. You now want to have the whole paper printed on the line printer. One
way to accomplish this would be to type

% lpr partl part2 part3 &
You could produce the same results with
% lpr part &

When the shell reads the asterisk (‘‘+’") it treats it as a substitute for any string of characters
that it might find in a file name. The command above prints all files having names starting with
part and ending with any sequence of characters. The question mark (‘‘?"") can be used in a
similar fashion to substitute for any single character.

Although you may not use ‘‘«'* or *‘?°" very often, it is good to be aware of their special
meanings in order to avoid situations where the shell's interpretation of your command is

different from what you intended. ‘‘«’* and **?"* shouid be used with caution. The command
m L]
will remove all the files from your current directory, which is probably not what you want.

The ‘““magic’’ characters shown below have special meanings for the UNIX command pro-
cessor; they should not be used in filenames. In addition, it is best to avoid the use of ** ="' as
the first character of a filename.

-22-

Either single (") or double (") quotes enclosing a special character indicates that it is to lose its
special significance. You could also precede a special character with a backslash (‘‘\'’) to have
it treated as an ordinary character. These conventions for the interpretation of special charac-
ters are applicable when you are working in the shell. The editor has its own set of rules for

interpreting special characters.
This is the end of the fifth session with UNIX.

account, 3
appending output to end of a file (>>), 19
background process (&), 21
bussiplexer, §
carriage return, 4
¢d command, 16
changing directory (cd), 16
changing password (passwd), 10
cmp command, 13
**‘Command not found’® message, 8
comparing files, 13
connecting to the system, 4-6
connecting commands (|). 20
control key, 4
control-D (end of input), 10
control-Q (restart output), 7
control-S (pause output), 7
copying files (cp), 13
correcting typing errors, 6, 9-10

line erase (@), 6, 10

single character erase (control-H), 6, 9
cp command, 13
date command, 9, 19
DEL (ete), 7
dialing up, 6
diff command, 20
directories, 15

changing (cd), 16

creating (mkdir), 16

home (login), 15

parent (..), 15, 17

removing (rmdir), 17

root, 15, 18

working, 15-16
edit, 11, 12, 13
erase character, 6, 9-10
filenames, 12
files, 12

groups (directories), 15

owner, 15

structure, 15
help command, 7-8

heip news, 7

help trouble, 11
interrupt(ing), 7

commands or programs (RUB or DEL), 7

output (control-S, control-Q), 7
keyboard, 3-4
killing a (background) process, 21
line printer command- (lpr), 20
listing names of files (Is), 12
listing contents of files (more), 13
logging in, 6

.23.
Index

logging out, 8
login name, 3, 6
logout, 8
lpr command, 20, 21
Is command, 12
magic characters, 21-22
mail, 10, 11
mbox (mailbox file), 11
mkdir command, 16
more command, 13
moving files (mv), 14
multiple commands on one line (;), 19
mv command, 14
news, 7
operating system, 3
parent directory (..), 15, 17
password, 3, 6, 10
changing with passwd, 10
pathnames (of file or directory), 15, 17
from root (/), 15, 18
from parent directory (..), 17
piping output to another command (|), 20-21
port selector, 5
process number, 21
prompt, UNIX (%), 6
pwd (print working directory) command, 15
reading files (more), 13
redirecting input/output, 19-20
input
from file (<), 19,20
from output of another file (|), 20
output
to the end of a file (>>), 19
to a file (>), 19, 20
to another command through a pipe ([), 20
removing directories, 17
removing files (rm), 14
renaming files (mv), 14
RETURN, 4
rm command, 14
rmdir command, 17
root directory (/), 15, 18
RUB(out), 7
shell, 9, 19
special characters, 21-22
telephone access, 6
terminal, 3-4
type-ahead, 19
UNIX, 3
w command (edit command), 13
who command, 19

-

TJNIX Command Summary

Computing Services
University of California
Library, 218 Evans Hall

Berkeley, California 94720

415-642-5205

UNX 1.4.2 October 1980

e Login ,

:login: type your login name on the same line, followed by a carriage return.

Select Host: bussiplexer only. Type a for UNIX A, b for UNIX B, etc., followed by a carriage retu

Password: printing is turned off as vou enter your password on the same line, followed by a
carriage return.

e Logout

logout logs you off the system. You can also logout by typing a control-d: depress the cont

key (CTRL) and type d simultaneously.

¢ General commands

mail

mail name

passwd /ogin-name

who

retrieves mail which has been sent to you, and prints one message at a time, prompt
with **7"" for disposition. Typing ? at this point prints a list of mail commands.

sends mail to another user. Here. name is the login name of the person to receive
mail. Then type your message starting on a new line. and end it with a control-d alo
on a line; depress control (CTRL) and type d simultaneously.

changes password. You are prompted once for your current password and twice for y
new one. Printing is turned off while the passwords are typed. New passwords may b
as long as eight characters, and can include any characters but *'#™ and *@"".

lists users who are currently logged in. Typing who am i limits the report to login
information for your terminal only.

e Online documentation

man command

help ropic

e Accounting
Pq

jobno

prints a writeup from the UNIX Programmer’s Manual for the command specified.

provides information about the system. Type help index for a list of available topics
and then help followed by the name of a listed topic for information on that subject.
help news prints the latest system news.

reports on disk storage quota (print quota): (number of blocks currently
used/maximum number of blocks allotted to the account). A block is 512 bytes. or
characters.

gives the account's job number (account number). which is used to file lineprinter
output and for accounting.

Type the commands that are printed here in beidface exactly as shown, and supply udditional information, if any. described

here tn walics.

UNIX 1s a trademark of Beil Laboratories.

-

Page 2 UNiX Command October 1980 Universuty of Califormia
Summary at Berkeley

e File manipulation

Is prints a list of the files in the current directory.

Is directory prints a list of the files in the specified directory.

cat filenamef(’s) prints the contents of the named file(s) on the terminal.

lpr filename(s) prints the contents of the named file(s) on the system lineprinter. Type help printer f

details on where to find output.
cp filel file2 copies filel onto file2. There will be two separate copies of the file. See warning below

cp file(s) directory makes a copy of the named file(s) in the given directory and gives it the same
filename(s) as the original file(s). See warning below.

rm filename(s) removes the named file(s).
mv oldname newname changes the name of a file from oldname to newname. See warning below.

mv file(s) directory moves file(s) to the specified directory. The original filename(s) is retained. See
warning below.

Warning: When using c¢p and mv. ensure that a file with a name the same as the ‘‘target’" filename does not
exist already. If it does. its contents will be destroyed before the command is executed.

¢ Directories
pwd gives the pathname of the current directory (print working directory).

mkdir name makes a new directory.

chdir directory-name changes to a different working directory.
or cd directory-name

rmdir directory-name removes the indicated directory. The directory must be empty.

e Special characters

The characters shown below have special meanings for the UNIX command processor; they should not be used
in filenames. For further information about how these characters are interpreted, see the UN/LY Programmer’s
Manual, under **csh(1).” In addition, it is best to avoid using **-"* as the first character of a filename.

0\ 7 & / { < > | ’ y
To interrupt and terminate execution of a command, press RUBOUT or DELETE. sometimes labeled RUB or

DEL. On an ADM terminal, hold down SHIFT while typing RUB. Type control-s to stall printing at the termi-
nal. and control-q subsequently to restart printing.

Type the commaunds that are printed here 1n boldface exactly us shown, und supply udditional information. 1f any, described
here 1n walics.

Edit: A Tutorial
Ricki Blau
James Joyce

Computing Services
University of California
Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editor edir assumes no
prior familiarity with computers or with text editing. Its aim is to lead the
beginning UNIX* user through the fundamental steps of writing and revising a
file of text. Edit, a version of the text editor ex, was designed to provide an
informative environment for new and casual users.

We welcome comments and suggestions about this tutorial and the UNIX
documentation in general.

September 1981 .

TUNIX is a trademark of Bell Laboratories.

UNX 3.3.1

.2.

Contents
Introduction 3

Session 1 4
Making contact with UNIX 4
Logging in 5
Asking for edit §
The ‘‘Command not found’’ message 6
A summary 6
Entering text 6
Messages from edit 6
Text input mode 7
Making corrections 7
Writing text to disk 8
Signing off 8

Session 2 9
Adding more text to the file 9
Interrupt 9
Making corrections 9
Listing what's in the buffer (p) 10
Finding things in the buffer 10
The current line 11
Numbering iines (nu) 11
Substitute command (s) 11
Another way to list what's in the buffer (z) 12
Saving the modified text 13

Session 3 14
Bringing text into the buffer (e) 14
Moving text in the buffer (m) 14
Copying lines (copy) 15
Deleting lines (d) 15
A word or two of caution 16
Undo (u) to the rescue 16
More about the dot (.) and buffer end (S) 17
Moving around in the buffer (+ and =) 17
Changing lines (c) 18

Session 4 19
Making commands global (g) 19
More about searching and substituting 20
Special characters 20
[ssuing UNIX commands from the editor 21
Filenames and file manipulation 21
The file (f) command 21
Reading additional files (r) 22
Writing parts of the buffer 22
Recovering files 22
Other recovery techniques 22
Further reading and other information 23
Using ex 23

Index 24

.3-

Introduction

Text editing using a terminal connected to a computer allows you to create, modify, and
print text easily. A text editor is a program that assists you as you create and modify text. The
text editor you will learn here is named edir. Creating text using edit is as easy as typing it on
an electric typewriter. Modifying text involves telling the text editor what you want to add,
change, or delete. You can review your text by typing a command to print the file contents as
they were entered by you. Another program, a text formatter, rearranges your text for you into
‘finished form.” This document does not discuss the use of a text formatter.

These lessons assume no prior familiarity with computers or with text editing. They con-
sist of a series of text editing sessions which lead you through the fundamental steps of creating
and revising text. After scanning each lesson and before beginning the next, you should prac-
tice the examples at a terminal to get a feeling for the actual process of text editing. If you set
aside some time for experimentation, you will soon becomne familiar with using the computer to
write and modify text. In addition to the actual use of the text editor, other features of UNIX
will be very important to your work. You can begin to learn about these other features by
reading ‘‘Communicating with UNIX'’ or one of the other tutorials that provide a general intro-
duction to the system. You will be ready to proceed with this lesson as soon as you are familiar
with (1) your terminal and its special keys, (2) the login procedure, (3) and the ways of
correcting typing errors. Let’s first define some terms:

program A set of instructions, given to the computer, describing the sequence of steps the
computer performs in order to accomplish a specific task. The tasks must be
specific, such as balancing your checkbook or editing your text. A general task,
such as working for world peace, is something we can do, but not something we
can write programs to do.

UNIX UNIX is a special type of program, called an operatixig system, that supervises the
machinery and all other programs comprising the total computer system.
edit edit is the name of the UNIX text editor you will be learning to use, and is a pro-

gram that aids you in writing or revising text. Edit was designed for beginning
users, and is a simplified version of an editor named ex.

file Each UNIX account is allotted space for the permanent storage of information,
such as programs, data or text. A file is a logical unit of data, for example, an
essay, a program, or a chapter from a book, which is stored on a computer system.
Once you create a file, it is kept until you instruct the system to remove it. You
may create a file during one UNIX session, end the session, and return to use it at
a later time. Files contain anything you choose to write and store in them. The
sizes of files vary to suit your needs; one file might hold only a single number, yet
another might contain a very long document or program. The only way to save
information from one session to the next is to store it in a file, which you will
learn in Session 1.

filename Filenames are used to distinguish one file from another, serving the same purpose
as the labels of manila folders in a file cabinet. In order to write or access infor-
mation in a file, you use the name of that file in a UNIX command, and the system
will automatically locate the file.

disk Files are stored on an input/output device called a disk, which looks something
like a stack of phonograph records. Each surface is coated with a material similar
to the coating on magnetic recording tape, and information is recorded on it.

buffer A temporary work space, made available to the user for the duration of a session
of text editing and used for creating and modifying the text file. We can think of
the buffer as a blackboard that is erased after each class, where each session with
the editor is a class.

-4.

Session 1

Making contact with UNIX

To use the editor you must first make contact with the computer by logging in to UNIX.
We'll quickly review the standard UNIX login procedure for the four ways you can make contact:
on a terminal connected to the port selector, on a terminal connected to the bussiplexer, on a
terminal that is directly linked to the computer, or over a telephone line where the computer
answers your call.

Port selector terminals

If your terminal has a small box attached with a red button on top, it is connected to the
port selector. You can request any of several UNIX systems by turning on the terminal and
pressing the red button once. The terminal will respond with

Request:

Type the name of the system you are to use. For this example, we use Computer Facilities and
Operations (CF+0) System E:

Request:e (and press RETURN)
The terminal will skip a line, emit a beep, and then print a greeting inviting you to login. You
are now ready to login.

Bussiplexer terminals

The bussiplexer is a communications network that makes it possible for you to connect to
any of several CF&0 UNIX systems. Turn on the terminal. If you don't immediately receive a
login message, press RETURN. The login message win be similar to:

U.C. Bussipiexer (A+B+C+D+E+F+)
:login:
Type your login name and press RETURN. For most accounts, the bussiplexer will
respond:
Connecting to Unix X

where X is the UNIX system that your account is on. If the bussiplexer does not know which of
the systems has your account, you will be asked to select one. Type a single letter for the sys-
temn of your choice (for instance, “‘e’’ if your account is on UNIX E) followed by a RETURN, as
in this example:

Select Host: e< cr>
Connecting to Unix E

Connected

After a few seconds, your UNIX system will ask for a password:
Password: (type your password and press RETURN)
You are now logged in.

Directly-linked terminals
Turn on your terminal and press the RETURN key. You are now ready to login.

Dial-up terminals
If your terminal connects with the computer over a telephone line, turn on the terminal,

dial the system access number, and, when you hear a high-pitched tone, place the receiver of
the telephone in the acoustic coupler. You are now ready to login.

Logging in
The message inviting you to login is:
:login:

Type your login name, which identifies you to UNIX, on the same line as the login message, and
press RETURN. If the terminal you are using has both upper and lower case, be sure you enter
your login name in lower case; otherwise UNIX assumes your terminal has only upper case and
will not recognize lower case letters you may type. UNIX types ‘‘:login:"’ and you reply with
your login name, for example ‘‘susan’’:

:login: susan (and press the RETURN key)

(In the examples, input you would type appears in bold face to distinguish it from the
responses from UNIX.)

UNIX will next respond with a request for a password as an additional precaution to
prevent unauthorized people from using your account. The password will not appear when you
type it, to prevent others from seeing it. The message is:

Password: (type your password and press RETURN)

If any of the information you gave during the login sequence was mistyped or incorrect, UNIX
will respond with

Login incorrect.

login:
in which case you should start the login process anew. Assuming that you have successfully
logged in, UNIX will print the message of the day and eventuaily will present you with a % at

the beginning of a fresh line. The % is the UNIX prompt symbol which tells you that UNIX is
ready to accept a command.

Asking for edit

You are ready to tell UNIX that you want to work with edit, the text editor. Now is a con-
venient time to choose a name for the file of text you are about to create. To begin your edit-
ing session, type edit followed by a space and then the filename you have selected; for exam-
ple, ‘“‘text’’. When you have completed the command, press the RETURN key and wait for
edit’s response:

% edit text (followed by a RETURN)
"text” No such file or directory

If you typed the command correctly, you will now be in communication with edit. Edit has set
aside a buffer for use as a temporary working space during your current editing session. It also
checked to see if the file you named, ‘‘text’’, already existed. It was unable to find such a file,
since *‘text” is a new file we are about to create. Edit confirms this with the line:

"text" No such file or directory

On the next line appears edit’s prompt **:"’, announcing that you are in command mode and edit

-6-

expects a command from you. You may now begin to create the new file.

The ‘““Command not found’’ message
If you misspelled edit by typing, say, ‘‘editor’’, your request would be handled as follows:

% editor
editor: Command not found
%

Your mistake in calling edit ‘“‘editor’® was treated by UNIX as a request for a program named
‘‘editor’’. Since there is no program named ‘‘editor'’, UNIX reported that the program was ‘‘not
found’’. A new % indicates that UNIX is ready for another command, and you may then enter
the correct command.

A summary

Your exchange with UNIX as you logged in and made contact with edit should look some-
thing like this:

:login: susan

Password:

... A Message of General Interest ...
% edit text

"text” No such file or directory

Entering text

You may now begin eatering text into the buffer. This is done by appending (or adding)
text to whatever is currently in the buffer. Since there is nothing in the buffer at the moment,
you are appending text to nothing; in effect, since you are adding text to nothing you are creat-
ing text. Most edit commands have two forms: a word that suggests what the command does,
and a shorter abbreviation of that word. Either form may be used. Many beginners find the
full command names easier to remember at first, but once you are familiar with editing you
may prefer to type the shorter abbreviations. The command to input text is ‘‘append”, and it
may be abbreviated “‘a’’. Type a;pend and press the RETURN key.

% edit text
: append

Messages from edit

If you make a mistake in entering a command and type something that edit does not
recognize, edit will respond with a message intended to help you diagnose your error. For
example, if you misspell the command to input text by typing, perhaps, ‘‘add’ instead of
‘‘append’’ or ‘*a’’, you will receive this message:

:add
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part
of your command confused edit. The message above means that edit was unable to recognize
your mistyped command and, therefore, did not execute it. Instead, a new ‘‘:*’ appeared to let
you know that edit is again ready to execute a command.

Text input mode

By giving the command ‘‘append’” (or using the abbreviation “‘a’’), you entered texr input
mode, also known as append mode. When you enter text input mode, edit stops sending you a
prompt. You will not receive any prompts or error messages while in text input mode. You
can enter pretty much anything you want on the lines. The lines are transmitted one by one to
the buffer and held there during the editing session. You may append as much text as you
want, and when you wish to stop entering text lines you should type a period as the only character on
the line and press the RETURN key. When you type the period and press RETURN, you signal that
you want to stop appending text, and edit responds by allowing you to exit text input mode and
reenter command mode. Edit will again prompt you for a command by printing **:"

Leaving append mode does not destroy the text in the buffer. You have to leave append
mode to do any of the other kinds of editing, such as changing, adding, or printing text. If you
type a period as the first character and type any other character on the same line, edit will
believe you want to remain in append mode and will not let you out. As this can be very frus-
trating, be sure to type only the period and the RETURN Kkey.

This is a good place to learn an important lesson about computers and text: a blank space
is a character as far as a computer is concerned. If you so much as type a period followed by a
blank (that is, type a period and then the space bar on the keyboard), you will remain in
append mode with the last line of text being:

Let's say that the lines of text you enter are (try to type exactly what you see, including
*‘thiss™):

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.

The last line is the period followed by a RETURN that gets you out of append mode.

Making corrections

If you have read a general introduction to UNIX, such as ‘‘Communicating with UNIX’’,
you will recall that it is possible to erase individual letters that you have typed. This is done by
typing the designated erase character as many times as there are characters you want to erase.

The usual erase character is the backspace (control-H), and you can correct typing errors
in the line you are typing by holding down the CTRL key and typing the “‘H™ key. If you try
typing control-H you will notice that the terminal backspaces in the line you are on. You can
backspace over your error, and then type what you want to be the rest of the line.

If you make a bad start in a line and would like to begin again, you can either backspace
to the beginning of the line or you can use the at-sign ‘@’ to erase everything on the line:

Text edtiing is strange, but@
Text editing is strange, but nice.

When you type the at-sign (@), you erase the entire line typed so far and are given a fresh line
to type on. You may immediately begin to retype the line. (If you are on a bussiplexer termi-
nal, you will not advance to the next line after typing ‘‘@’’, but there is no other difference in
the way the at-sign is handled.) This, unfortunately, does not help after you type the line and
press RETURN. To make corrections in lines that have been completed, it is necessary to use the
editing commands covered in the next session and those that follow.

Writing text to disk

You are now ready to edit the text. The simplest kind of editing is to write it to disk as a
file for safekeeping after the session is over. This is the only way to save information from one
session to the next, since the editor’s buffer is temporary and will last only until the end of the
editing session. Learning how to write a file to disk is second in importance only to entering
the text. To write the contents of the buffer to a disk file, use the command *‘write’” (or its
abbreviation *‘w’"): '

: write

Edit will copy the contents of the buffer to a disk file. If the file does not yet exist, a new file
will be created automatically and the presence of a ‘‘[New file]”” will be noted. The newly-
created file will be given the name specified when you entered the editor, in this case ‘‘text’’.
To confirm that the disk file has been successfully written, edit will repeat the filename and give
the number of lines and the total number of characters in the file. The buffer remains
unchanged by the ‘‘write”” command. All of the lines that were written to disk will still be in
the buffer, should you want to modify or add to them.

Edit must have a filename to use before it can write a file. If you forgot to indicate the
name of the file when you began the editing session, edit will print
No current filename

in response to your write command. If this happens, you can specify the filename in a new
write command:

: write text
After the ‘‘write”’ (or “‘w’’), type a space and then the name of the file.

Signing off

We have done enough for this first lesson on using the UNIX text editor, and are ready to
quit the session with edit. To do this we type ‘‘quit’” (or *‘q’’) and press RETURN:

: write

"text" (New file] 3 lines, 90 characters

: quit

%
The % is from UNIX to tell you that your session with edit is over and you may command UNIX
further. Since we want to end the entire session at the terminal, we also need to exit from
UNIX. [n response to the UNIX prompt of ‘“% '’ type the command

% logout

This will end your session with UNIX, and will ready the terminal for the next user. It is always
important to type logout at the end of a session to make absolutely sure no one could acciden-
tally stumble into your abandoned session and thus gain access to your files, tempting even the
most honest of souls.

This is the end of the first session on UNIX text editing.

.9.

Session 2

Login with UNIX as in the first session:

:login: susan (carriage return)
Password: (give password and carriage return)

... A Message of General Interest ...
%

When you indicate you want to edit, you can specify the name of the file you worked on last
time. This will start edit working, and it will fetch the contents of the file into the buffer, so
that you can resume editing the same file. When edit has copied the file into the buffer, it will
repeat its name and tell you the number of lines and characters it contains. Thus,

% edit text
"text" 3 lines, 90 characters

means you asked edit to fetch the file named ‘‘text” for editing, causing it to copy the 90 char-
acters of text into the buffer. Edit awaits your further instructions, and indicates this by its
prompt character, the colon (:). In this session, we will append more text to our file, print the
contents of the buffer, and learn to change the text of a line.

Adding more text to the file

If you want to add more to the end of your text you may do so by using the append com-
mand to enter text input mode. When ‘‘append’’ is the first command of your editing session,
the lines you enter are placed at the end of the buffer. Here we'll use the abbreviation for the
append command, “‘a’’:

‘a
This is text added in Session 2.
It doesn’t mean much here, but
it does illustrate the editor.

You may recall that once you enter append mode using the *“‘a” (or ‘“‘append’’) command, you
need to type a line containing only a period (.) to exit append mode.

Interrupt

Should you press the RUB key (sometimes labelled DELETE) while working with edit, it will
send this message to you: :

Interrupt

Any command that edit might be executing is terminated by rub or delete, causing edit to
prompt you for a new command. If you are appending text at the time, you will exit from
append mode and be expected to give another command. The line of text you were typing
when the append command was interrupted will not be entered into the buffer.

Making corrections

If while typing the line you hit an incorrect key, recall that you may delete the incorrect
character or cancel the entire line of input by erasing in the usual way. Refer either to the last
few pages of Session 1 or to ‘‘Communicating with UNIX" if you need to review the procedures
for making a correction. The most important idea to remember is that erasing a character or
cancelling a line must be done before you press the RETURN key.

-10-

Listing what'’s in the buffer (p)

Having appended text to what you wrote in Session 1, you might want to see all the lines
in the buffer. To print the contents of the buffer, type the command:

:1,%

The **1'"% stands for line 1 of the buffer, the **S" is a special symbol designating the last line of
the buffer, and *‘p’* (or print) is the command to print from line 1 to the end of the buffer.
The command *‘1,Sp"" gives you:

This is some sample text.

And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn’t mean much here, but
it does illustrate the editor.

Occasionally, you may accidentally type a character that can’t be printed, which can be done by
striking a key while the CTRL key is pressed. In printing lines, edit uses a special notation to
show the existence of non-printing characters. Suppose you had introduced the non-printing
character ‘‘control-A’" into the word ‘‘illustrate’’ by accidently pressing the CTRL key while typ-
ing "*a'’. This can happen on many terminals because the CTRL key and the ‘A’ key are
beside each other. If your finger presses between the two keys, control-A resuits. When asked
to print the contents of the buffer, edit would display

it does illustr” Ate the editor.

To represent the control-A, edit shows ‘““A’. The sequence ***"* followed by a capital letter
stands for the one character entered by holding down the CTRL key and typing the letter which
appears after the *“"**. We’ll soon discuss the commands that can be used to correct this typing
error.

In looking over the text we see that ‘‘this’™ is typed as ‘‘thiss’ in the second line, a deli-
berate error so we can learn to make corrections. Let’s correct the spelling.

Finding things in the buffer

In order to change something in the buffer we first need to find it. We can find ‘‘thiss’’
in the text we have entered by looking at a listing of the lines. Physically speaking, we search
the lines of text looking for ‘‘thiss’ and stop searching when we have found it. The way to tell
edit to search for something is to type it inside slash marks:

: /thiss/

By typing /thiss/ and pressing RETURN, you instruct edit to search for ‘‘thiss’’. If you ask edit
to look for a pattern of characters which it cannot find in the buffer, it will respond ‘‘Pattern
not found’’. When edit finds the characters ‘‘thiss’’, it will print the line of text for your
inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line it just printed, ready to make a change in the
line.

*The numeral “*one’" is the top left-most key, and should not be confused with the letter ""ei'".

-11-

The current line

Edit keeps track of the line in the buffer where it is located at all times during an editing
session. In general, the line that has been most recently printed, entered, or changed is the
current location in the buffer. The editor is prepared to make changes at the current location in -
the buffer, unless you direct it to another location.

In particular, when you bring a file into the buffer, you will be located at the last line in
the file, where the editor left off copying the lines from the file to the buffer. If your first edit-
ing command is ‘‘append’’, the lines you enter are added to the end of the file, after the
current line — the last line in the file.

You can refer to your current location in the buffer by the symbol period (.) usually

known by the name ‘‘dot’”. If you type ‘‘.”* and carriage return you will be instructing edit to
print the current line:

And thiss is some more text.

If you want to know the number of the current line, you can type .= and press RETURN,
and edit will respond with the line number: .

.
T =

2

If you type the number of any line and press RETURN, edit will position you at that line and
print its contents:

02

And thiss is some more text.

You should experiment with these commands to gain experience in using them to make
changes.

Numbering lines (nu)
The number (nu) command is similar to print, giving both the number and the text of
each printed line. To see the number and the text of the current line type
:nu
2 And thiss is some more text.
Note that the shortest abbreviation for the number command is *‘nu’ (and not “‘n"’, which is
used for a different command). You may specify a range of lines to be listed by the number

command in the same way that lines are specified for print. For example, 1,Snu lists all lines in
the buffer with their corresponding line numbers.

Substitute command (s)

Now that you have found the misspelled word, you can change it from ‘‘thiss’’ to ‘‘this’.
As far as edit is concerned, changing things is a matter of substituting one thing for another.
As a stood for append, so s stands for substiture. We will use the abbreviation ‘‘s’’ to reduce
the chance of mistyping the substitute command. This command will instruct edit to make the
change:

2s/thiss/this/

We first indicate the line to be changed, line 2, and then type an *‘s’ to indicate we want edit
to make a substitution. Inside the first set of slashes are the characters that we want to change,
followed by the characters to replace them, and then a closing slash mark. To summarize:

2s/ what is to be changed/ what to change it to/

If edit finds an exact match of the characters to be changed it will make the change only in the

-12-

first occurrence of the characters. I[f it does not find the characters to be changed, it will
respond:

Substitute pattern match failed

indicating that your instructions could not be carried out. When edit does find the characters
that you want to change, it will make the substitution and automatically print the changed line,
so that you can check that the correct substitution was made. In the example,

: 2s/thiss/this/
And this is some more text.

line 2 (and line 2 only) will be searched for the characters ‘‘thiss’’, and when the first exact
match is found, ‘‘thiss’’ will be changed to ‘‘this’’. Strictly speaking, it was not necessary
above to specify the number of the line to be changed. In

: ¢/thiss/this/

edit will assume that we mean to change the line where we are currently located (‘*.”"). In this
case, the command without a line number would have produced the same resuit because we
were already located at the line we wished to change.

For another illustration of the substitute command, let us choose the line:
Text editing is strange, but nice.

You can make this line a bit more positive by taking out the characters ‘‘strange, but '’ so the
line reads:

Text editing is nice.
A command that will first position edit at the desired line and then make the substitution is:

: /strange/s/strange, but //

What we have done here is combine our search with our substitution. Such combinations are
perfectly legal, and speed up editing quite a bit once you get used to them. That is, you do not
necessarily have to use line numbers to identify a line to edit. Instead, you may identify the
line you want to change by asking edit to search for a specified pattern of letters that occurs in
that line. The parts of the above command are:

/strange/ tells edit to find the characters ‘‘strange’’ in the text
s tells edit to make a substitution
/strange, but // substitutes nothing at all for the characters ‘‘strange, but "'

You should note the space after “‘but’ in ‘‘/strange, but /. If you do not indicate that
the space is to be taken out, your line will read:

Text editing is nice.

which looks a little funny because of the extra space between ‘‘is’” and ‘‘nice’’. Again, we real-
ize from this that a blank space is a real character to a computer, and in editing text we need to
be aware of spaces within a line just as we would be aware of an **a”" or a *‘4™,

Another way to list what’s in the buffer (2)

Although the print command is useful for looking at specific lines in the buffer, other
commands may be more convenient for viewing large sections of text. You can ask to see a
screen full of text at a time by using the command z. If you type

‘1z

edit will start with line | and continue printing lines, stopping either when the screen of your
terminal is full or when the last line in the buffer has been printed. If you want to read the

-13 -

next segment of text, type the command
1z
If no starting line number is given for the z command, printing will start at the ‘‘current’’ line,

in this case the last line printed. Viewing lines in the buffer one screen full at a time is known
as paging Paging can also be used to print a section of text on a hard-copy terminal.

Saving the modified text
This seems to be a good place to pause in our work, and so we should end the second ses-
sion. If you (in haste) type ‘‘q"" to quit the session your dialogue with edit will be:
'q
No.write since last change (:quit! overrides)

This is edit's warning that you have not written the modified contents of the buffer to disk.
You run the risk of losing the work you did during the editing session since you typed the latest
write command. Because in this lesson we have not written to disk at all, everything we have
done would have been lost if edit had obeyed the q command. If you did not want to save the
work done during this editing session, you would have to type *‘qQ!" or (‘‘quit!’’) to confirm
that you indeed wanted to end the session immediately, leaving the file as it was after the most
recent ‘‘write’’ command. However, since you want to save what you have edited, you need to
type:
W
"text" 6 lines, 171 characters

and then follow with the commands to quit and logout:
‘q
% logout
and hang up the phone or turn off the terminal when UNIX asks for a name. Terminals con-

nected to the port selector will stop after the logout command, and pressing keys on the key-
board will do nothing.

This is the end of the second session on UNIX text editing.

- 14 -

Session 3

Bringing text into the buffer (e)

Login to UNIX and make contact with edit. You should try to login without looking at the
notes, but if you must then by all means do.

Did you remember to give the name of the file you wanted to edit? That is, did you type
% edit text
or simply
% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named
“text’’ into the buffer. If you did forget to tell edit the name of your file, you can get it into
the buffer by typing:

;e text
"text” 6 lines, 171 characters

The command edit, which may be abbreviated e, tells edit that you want to erase anything that
might already be in the buffer and bring a copy of the file ‘“‘text’ into the buffer for editing.
You may also use the edit (¢) command to change files in the middle of an editing session, or
to give edit the name of a new file that you want to create. Because the edit command clears
the buffer, you will receive a warning if you try to edit a new file without having saved a copy
of the old file. This gives you a chance to write the contents of the buffer to disk before edit-
ing the next file.

Moving text in the buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means
of the move (m) command. The first two examples are for illustration only, though after you
have read this Session you are welcome to return to them for practice. The command

:2,4m$

directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for the move
command is that you specify the first line to be moved, the last line to be moved, the move
command ‘‘m’’, and the line after which the moved text is to be placed. So,

:1,3mé

would instruct edit to move lines | through 3 (inclusive) to a location after line 6 in the buffer.
To move only one line, say, line 4, to a location in the buffer after line 5, the command would
be “‘4m3°".

Let’s move some text using the command:

:5,Sml
2 lines moved
it does illustrate the editor.

After executing a command that moves more than one line of the buffer, edit teills how many
lines were affected by the move and prints the last moved line for your inspection. If you want
to see more than just the last line, you can then use the print (p), z, or number (nu) command
to view more text. The buffer should now contain:

-15-

This is some sample text.

It doesn’'t mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.

This is text added in Session 2.

You can restore the original order by typing:
:4,8Sm1
or, combining context searching and the move command:
:/And this is some/,/This is text/ m/This is some sample/

(Do not type both examples here!) The problem with combining context searching with the
move command is that your chance of making a typing error in such a long command is greater
than if you type line numbers. ’

Copying lines (copy)

The copy command is used to make a second copy of specified lines, leaving the original
lines where they were. Copy has the same format as the move command, for example:

:2,5copy $

makes a copy of lines 2 through 5, placing the added lines after the buffer’s end (S). Experi-
ment with the copy command so that you can become familiar with how it works. Note that
the shortest abbreviation for copy is co (and not the letter *‘c’’, which has another meaning).

Deleting lines (d)
Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number
followed by delete or d. This example deletes line 4, which is ‘‘This is text added in Session
2.” if you typed the commands suggested so far.

:4d
It doesn’t mean much here, but

Here “‘4” is the number of the line to be deleted, and ‘‘delete’ or *‘d’’ is the command to
delete the line. After executing the delete command, edit prints the line that has become the
current line (*.”’).

If you do not happen to know the line number you can search for the line and then delete
it using this sequence of commands:

: /added in Session 2./

This is text added in Session 2.

|

It doesn’t mean much here, but

The “‘/added in Session 2./" asks edit to locate and print the line containing the indicated text,
starting its search at the current line and moving line by line until it finds the text. Once you
are sure that you have correctly specified the line you want to delete, you can enter the delete
(d) command. In this case it is not necessary to specify a line number before the *“d’". If no
line number is given, edit deletes the current line (**.’"), that is, the line found by our search.
After the deletion, your buffer should contain:

-16 - .

This is some sample text.

And this is some more text.
Text editing is nice.

It doesn’t mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.

This is text added in Session 2.
It doesn’t mean much here, but

To delete both lines 2 and 3:

And this is some more text.
Text editing is nice.

you type

:2,3d
2 lines deleted

which specifies the range of lines from 2 to 3, and the operation on those lines — “d” for
delete. If you delete more than one line you will receive a message telling you the number of
lines deleted, as indicated in the example above.

The previous example assumes that you know the line numbers for the lines to be
deleted. If you do not you might combine the search command with the delete command:

:/And this is some/,/Text editing is nice./d

A word or two of caution

In using the search function to locate lines to be deleted you shouid be absolutely sure
the characters you give as the basis for the search will take edit to the line you want deleted.
Edit will search for the first occurrence of the characters starting from where you last edited —
that is, from the line you see printed if you type dot (.).

A search based on too few characters may resuit in the wrong lines being deleted, which
edit will do as easily as if you had meant it. For this reason, it is usually safer to specify the
search and then delete in two separate steps, at least until you become familiar enough with
using the editor that you understand how best to specify searches. For a beginner it is not a
bad idea to double-check each command before pressing RETURN to send the command on its
way.

Undo (u) to the rescue

The undo (u) command has the ability to reverse the effects of the last command that
changed the buffer. To undo the previous command, type ‘‘u” or ‘‘undo’. Undo can rescue
the contents of the buffer from many an unfortunate mistake. However, its powers are not
unlimited, so it is still wise to be reasonably careful about the commands you give.

It is possible to undo only commands which have the power to change the buffer — for
example, delete, append, move, copy, substitute, and even undo itseif. The commands write
(w) and edit (e), which interact with disk files, cannot be undone, nor can commands that do
not change the buffer, such as print. Most importantly, the only command that can be reversed
by undo is the last ‘‘undo-able’’ command you typed. You can use control-H and @ to change
commands while you are typing them, and undo to reverse the effect of the commands after
you have typed them and pressed RETURN.

To illustrate, let’s issue an undo command. Recall that the last buffer-changing command
we gave deleted the lines formerly numbered 2 and 3. Typing undo at this moment will
reverse the effects of the deletion, causing those two lines to be replaced in the buffer.

-17-

‘u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of
the line which is now *‘dot’’ (the current line).

More about the dot (.) and buffer end (§)

The function assumed by the symbol dot depends on its context. It can be used:

1. to exit from append mode; we type dot (and only a dot) on a line and press RETURN;

2. to refer to the line we are at in the buffer.
Dot can aiso be combined with the equal sign to get the number of the line currently being
edited:

6 v

If we type ‘‘.="" we are asking for the number of the line, and if we type ‘‘.”” we are asking for
the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the
buffer in commands such as print, copy, and move. The dollar sign as a command asks edit to
print the last line in the buffer. If the dollar sign is combined with the equal sign ($=) edit
will print the line number corresponding to the last line in the buffer.

. and “‘$”, then, represent line numbers. Whenever appropriate, these symbols can be
used in place of line numbers in commands. For example

.. 7|
instructs edit to delete all lines from the current line (.) to the end of the buffer.

Moving around in the buffer (+ and -)

When you are editing you often want to go back and re-read a previous line. You could
specify a context search for a line you want to read if you remember some of its text, but if you
simply want to see what was written a few, say 3, lines ago, you can type

-3p

This tells edit to move back to a position 3 lines before the current line (.) and print that line.
You can move forward in the buffer similarly:

+2p

instructs edit to print the line that is 2 ahead of your current position.

You may use ‘“‘+” and ‘“‘="’ in any command where edit accepts line numbers. Line
numbers specified with *‘+"* or *“—"" can be combined to print a range of lines. The command

: =1,+2copy$

makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied
lines will be placed after the last line in the buffer (3), and the original lines referred to by
“=1"" and ‘‘+2" remain where they are.

Try typing only *‘=""; you will move back one line just as if you had typed ‘“‘—1p’. Typ-
ing the command *‘+"* works similarly. You might also try typing a few plus or minus signs in
a row (such as “‘+++"") to see edit’s response. Typing RETURN alone on a line is the
equivalent of typing *‘+1p’"; it will move you one line ahead in the buffer and print that line.

If you are at the last line of the buffer and try to move further ahead, perhaps by typing a
““+°* or a carriage return alone on the line, edit will remind you that you are at the end of the
buffer: ‘

-18-

At end-of-file

Not that many lines in buffer

or

Similarly, if you try to move to a position before the first line, edit will print one of these mes-
sages:

Nonzero address required on this command
or

Negative address — first buffer line is 1

The number associated with a buffer line is the line's ‘‘address’’, in that it can be used to locate
the line.

Changing lines (¢)

You can also delete certain lines and insert new text in their place. This can be accom-
plished easily with the change (¢) command. The change command instructs adit to delete
specified lines and then switch to text input mode to accept the text that will replace them.
Let’s say you want to change the first two lines in the buffer:

This is some sample text.
And this is some more text.

to read
This text was created with the UNIX text editor.
To do so, you type:

:1,2¢
2 lines changed
This text was created with the UNIX text editor.

In the command 1,2¢c we specify that we want to change the range of lines beginning with 1 and
ending with 2 by giving line numbers as with the print command. These lines will be deleted.
After you type RETURN to end the change command, edit notifies you if more than one line wiil
be changed and places you in text input mode. Any text typed on the following lines will be
inserted into the position where lines were deleted by the change command. You will remain
in text input mode until you exit in the usual way, by typing a period alone on a line. Note
that the number of lines added to the buffer need not be the same as the aumber of lines
deleted.

This is the end of the third session on text editing with UNIX.

-19.-

Session 4

This lesson covers several topics, starting with commands that apply throughout the
buffer, characters with special meanings, and how to issue UNIX commands while in the editor.
The next topics deal with files: more on reading and writing, and methods of recovering files
lost in a crash. The final section suggests sources of further information.

Making commands global (g)

One disadvantage to the commands we have used for searching or substituting is that if
you have a number of instances of a word to change it appears that you have to type the com-
mand repeatedly, once for each time the change needs to be made. Edit, however, provides a
way to make commands apply to the entire contents of the buffer — the global (g) command.

To print all lines containing a certain sequence of characters (say, ‘‘text’’) the command
is:
1 g/text/p

The “‘g’" instructs edit to make a global search for all lines in the buffer containing the charac-
ters ‘‘text”. The *‘p”’ prints the lines found.

To issue a global command, start by typing a ‘g’ and then a search pattern identifying
the lines to be affected. Then, on the same line, type the command to be executed for the
identified lines. Gilobal substitutions are frequently useful. For example, to change ail
instances of the word ‘‘text’’ to the word ‘‘material’’ the command would be a combination of
the global search and the substitute command:

: g/text/s/text/material/g

Note the *‘g’" at the end of the global command, which instructs edit to change each and every
instance of ‘‘text’ to ‘‘material’’. If you do. not type the ‘‘g’’ at the end of the command only
the first instance of ‘‘text” in each line will be changed (the normal resuit of the substitute
command). The *‘g’’ at the end of the command is independent of the *‘g’ at the beginning.
You may give a command such as:

: Ss/text/material/g
to change every instance of ‘‘text’’ in line 5 alone. Further, neither command will change
“‘text’’ to ‘‘material’ if ‘‘Text' begins with a capital rather than a lower-case ¢
Edit does not automatically print the lines modified by a global command. If you want
the lines to be printed, type a ‘‘p’’ at the end of the global command:
: g/text/s/text/material/gp

You should be careful about using the global command in combination with any other — in
essence, be sure of what you are telling edit to do to the entire buffer. For example,

g/ /d
72 less lines in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your docu-
ment, since most lines have spaces between words and thus would be deleted. After executing
the global command, edit will print a warning if the command added or deleted more than one
line. Fortunately, the undo command can reverse the effects of a global command. You
should experiment with the global command on a small file of text to see what it can do for
you. ‘

-20 -

More about searching and substituting

In using slashes to identify a character string that we want to search for or change, we
have always specified the exact characters. There is a less tedious way (o repeat the same string
of characters. To change ‘‘text’” to ‘‘texts’” we may type either

: /text/s/text/texts/
as we have done in the past, or a somewhat abbreviated command:
: /text/s//texts/ ‘

In this example, the characters to be changed are not specified — there are no characters, not
even a space, between the two slash marks that indicate what is to be changed. This lack of
characters between the siashes is taken by the editor to mean ‘‘use the characters we last
searched for as the characters to be changed.”

Similarly, the last context search may be repeated by typing a pair of slashes with nothing
between them:

: /does/

It doesn’t mean much here, but

2]/

it does illustrate the editor.
(You should note that the search command found the characters ‘*does’’ in the word ‘‘doesn't”
in the first search request.) Because no characters are specified for the second search, the editor
scans the buffer for the next occurrence of the characters ‘‘does’’.

Edit normally searches forward through the buffer, wrapping around from the end of the
buffer to the beginning, until the specified character string is found. If you want to search in
the reverse direction, use question marks (?) instead of slashes to surround the characters you
are searching for. .

It is also possible to repeat the last substitution without having to retype the entire com-
mand. An ampersand (&) used as a command repeats the most recent substitute command,
using the same search and repiacement patterns. After aitering the current line by typing

: s/text/ texts/
you type

/text/&
or simply

/&

to make the same change on the next line in the buffer containing the characters ‘‘text’’.

Special characters

Two characters have special meanings when used in specifying searches: ‘S and **""".
*$™ is taken by the editor to mean ‘‘end of the line’’ and is used to identify strings that occur
at the end of a line.

: g/text.$/s//material./p

tells the editor to search for all lines ending in ‘‘text.”” (and nothing else, not even a blank
space), to change each final ‘‘text.” to ‘‘material.”’, and print the changed lines.

The symbol **“"’ indicates the beginning of a line. Thus,
:s/°/1./
instructs the editor to insert **1."”" and a space at the beginning of the current line.

-21.

The characters **$’" and ““**’ have special meanings only in the context of searching. At
other times, they are ordinary characters. If you ever need to search for a character that has a
special meaning, you must indicate that the character is to lose temporarily its special
significance by typing another special character, the backslash (\), before it.

:s/\S/dollar/

looks for the character *‘$™ in the current line and replaces it by the word ‘‘dollar’’. Were it
not for the backslash, the ‘‘S’" would have represented ‘‘the end of the line’’ in your search
rather than the character *‘$"". The backslash retains its special significance unless it is pre-
ceded by another backslash.

Issuing UNIX commands from the editor

After creating several files with the editor, you may want to delete files no longer useful
to you or ask for a list of your files. Removing and listing files are not functions of the editor,
and so they require the use of UNIX system commands (also referred to as ‘‘shell’ commands,
as ‘“‘shell” is the name of the program that processes UNIX commands). You do not need to
quit the editor to execute a UNIX command as long as you indicate that it is to be sent to the
shell for execution. To use the UNIX command rm to remove the file named *‘junk’’ type:

:!rm junk
1

The exclamation mark (!) indicates that the rest of the line is to be processed as a shell com-
mand. If the buffer contents have not been written since the last change, a warning will be
printed before the command is executed:

[No write since last changcj

The editor prints a *‘!”” when the command is completed. The tutorial ‘‘Communicating with
UNIX"" describes useful features of the system, of which the editor is only one part.

Filenames and file manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as
the current filename. Edit remembers as the current filename the name given when you entered
the editor. The current filename changes whenever the edit (e) command is used to specify a
new file. Once edit has recorded a current filename, it inserts that name into any command
where a filename has been omitted. If a write command does not specify a file, edit, as we
have seen, supplies the current filename. If you are editing a file named ‘‘draft3’* having 283
lines in it, you can have the editor write onto a different file by including its name in the write
command:

:w chapter3
"chapter3" [new file] 283 lines, 8698 characters

The current filename remembered by the editor will nor be changed as a result of the write com-
mand. Thus, if the next write command does not specify a name, edit will write onto the
current file (**draft3’") and not onto the file ‘‘chapter3’.

The file (f) command

To ask for the current filename, type file (or f). In response, the editor provides current
information about the buffer, including the filename, your current position, the number of lines
in the buffer, and the percent of the distance through the file your current location is.

. f .
*text” [Modified] line 3 of 4 --75%--
If the contents of the buffer have changed since the last time the file was written, the editor

<22 -

will tell you that the file has been ‘‘[Modified]’”. After you save the changes by writing onto a
disk file, the buffer will no longer be considered modified:
.4
"text" 4 lines, 88 characters
o f
"text" line 3 of 4 --75%--

Reading additional files (r)

The read (r) command allows you to add the contents of a file to the buffer at a specified
location, essentially copying new lines between two existing lines. To use it, specify the line
after which the new text will be placed, the read (r) command, and then the name of the file.
If you have a file named *‘example’’, the command

: $r example
*exampie” 18 lines, 473 characters

reads the file ‘‘example”” and adds it to the buffer after the last line. The current filename is
not changed by the read command.

Writing parts of the buffer

The write (w) command can write all or part of the buffer to a file you specify. We are
already familiar with writing the entire contents of the buffer to a disk file. To write only part
of the buffer onto a file, indicate the beginning and ending lines before the write command, for
example

: 45,Sw ending

Here all lines from 45 through the end of the buffer are written onto the file named ending.
The lines remain in the buffer as part of the document you are editing, and you may continue
to edit the entire buffer. Your original file is unaffected by your command to write part of the
buffer to another file. Edit still remembers whether you have saved changes to the buffer in
your original file or not.

Recovering files

Although it does not happen very often, there are times UNIX stops working because of
some maifunction. This situation is known as a crash Under most circumstances, edit’s crash
recovery feature is able to save work to within a few lines of changes before a crash (or an
accidental phone hang up). If you lose the contents of an editing buffer in a system crash, you
will normally receive mail when you login that gives the name of the recovered file. To recover
the file, enter the editor and type the command recover (rec), followed by the name of the lost
file. For example, to recover the buffer for an edit session involving the file ‘‘chap6’, the
command is:

: recover chapé

Recover is sometimes unable to save the entire buffer successfully, so always check the con-
tents of the saved buffer carefully before writing it back onto the original file. For best resulits,
write the buffer to a new file temporarily so you can examine it without risk to the original file.
Unfortunately, you cannot use the recover command to retrieve a file you removed using the
shell command rm.

Other recovery techniques

If something goes wrong when you are using the editor, it may be possibie to save your
work by using the command preserve (pre), which saves the buffer as if the system had
crashed. If you are writing a file and you get the message ‘*Quota exceeded'”, you have tried to

-23.

use more disk storage than is allotted to your account. Proceed with caution because it is likely
that only a part of the editor’s buffer is now present in the file you tried to write. In this case
you should use the shell escape from the editor (!) to remove some files you don't need and try
to write the file again. If this is not possible and vou cannot find someone to help you, enter
the command

: preserve
and wait for the reply,
File preserved.

If you do not receive this reply, seek help immediately. Do not simply leave the editor. If you
do, the buffer will be lost, and you may not be able to save your file. If the reply is ‘‘File
preserved.’* you can leave the editor (or logout) to remedy the situation. After a preserve, you
can use the recover command once the probiem has been corrected, or the —r option of the
edit command if you leave the editor and want to return.

If you make an undesirable change to the buffer and type a write command before discov-
ering your mistake, the modified version will replace any previous version of the file. Should
you ever lose a good version of a document in this way, do not panic and leave the editor. As
long as you stay in the editor, the contents of the buffer remain accessible. Depending on the
nature of the problem, it may be possible to restore the buffer to a more complete state with
the undo command. After fixing the damaged buffer, you can again write the file to disk.

Further reading and other information

Edit is an editor designed for beginning and casual users. It is actually a version of a
more powerful editor called ex. These lessons are intended to introduce you to the editor and
its more commonly-used commands. We have not covered all of the editor’s commands, but a
selection of commands that should be sufficient to accomplish most of your editing tasks. You
can find out more about the editor in the Ex Reference Manuai, which is applicable to both ex
and edit. The manual is available from the Computing Services Library, 218 Evans Hall. One
way to become familiar with the manual is to begin by reading the description of commands
that you already know.

Using ex

~ As you become more experienced with using the editor, you may still find that edit con-
tinues to meet your needs. However, should you become interested in using ex, it is easy to
switch. To begin an editing session with ex, use the name ex in your command instead of edit.

Edit commands work the same way in ex, but the editing environment is somewhat
different. You should be aware of a few differences that exist between the two versions of the
editor. In edit, only the characters ****, *‘$’*, and *‘\'’ have special meanings in searching the
buffer or indicating characters to be changed by a substitute command. Several additional char-
acters have special meanings in ex, as described in the Ex Reference Manual. Another feature
of the edit environment prevents users from accidently entering two alternative modes of edit-
ing, open and visual, in which the editor behaves quite differently from normal command
mode. If you are using ex and the editor behaves strangely, you may have accidently entered
open mode by typing ‘‘0"". Type the ESC key and then a *‘Q’’ to get out of open or visual mode
and back into the regular editor command mode. The document An Introduction to Display Edit-
ing with Vi provides a full discussion of visual mode.

addressing, seeline numbers
ampersand, 20
append mode, 6-7
append (a) command, 6, 7, 9
‘“At end of file” (message), 18
backslash (\), 21
buffer, 3
bussiplexer, 4
caret (%), 10, 20
change (c) command, 18
command mode, 5-6
**Command not found” (message), 6
context search, 10-12, 19-21
control characters (‘***’ notation), 10
control-H, 7
copy (co) command, 15
corrections, 7, 16
current filename, 21
current line (.), 11, 17
delete (d) command, 15-16
dial-up, 5
disk, 3
documentation, 3, 23
dollar (9), 10, 11, 17, 20-21
dot (.) 11,17
" edit (¢) command, §, 9, 14
editing commands:
append (a), 6, 7, 9
change (c), 18
copy (co), 1§
delete (d), 15-16
edit (text editor), 3, 5, 23
edit (e), 5,9, 14
file (f), 21-22
global (g), 19
move (m), 14-15
number (au), 11
preserve (pre), 22-23
print (p), 10
quit (q), 8, 13
read (r), 22
recover (rec), 22, 23
substitute (s), 11-12, 19, 20
undo (u), 16-17, 23
write (w), 8, 13, 21, 22
z, 12-13
! (shell escape), 21
S=,17
+, 17
-, 17
/7,12, 20

-24.

Index

29,20
L 11,17
.= 11,17
entering text, 3, 6-7
erasing
characters ("H), 7
lines (@), 7
error corrections, 7, 16
ex (text editor), 23
Ex Reference Manual, 23
exclamation (1), 21
file, 3
file (f) command, 21-22
file recovery, 22-23
filename, 3, 21
global (g) command, 19
input mode, 6-7
Interrupt (message), 9
line numbers, see also current line
dollar sign (8), 10, 11, 17
dot (.), 11,17
relative (+ and =), 17
list, 10
logging in, 4-6
logging out, 8
“Login incorrect’” (message), S
minus (=), 17
move (m) command, 14-15
**Negative address—first buffer line is 1*' (message.
**No current filename™ (message), 8
‘““No such file or directory’’ (message), 3, 6
*“No write since last change’’ (message), 21
non-printing characters, 10
**Nonzero address required’’ (message), 18
““Not an editor command’” (message), 6
*“Not that many lines in buffer’” (message), 18
number (nu) command, 11
password, 5
period (.), 11, 17
plus (+), 17
preserve (pre) command, 22-23
print (p) command, 10
program, 3
prompts
% (UNIX), §
: (edit), 5,6, 7
(append), 7
question (?), 20

quit (q) command, 8, 13

read (r) command, 22

recover (rec) command, 22, 23

recovery, see file recovery

references, 3, 23

remove (rm) command, 21, 22

reverse command effects (undo), 16-17, 23
searching, 10-12, 19-21

shell, 21

shell escape (!), 21

slash (/), 11-12, 20

special characters (%, S, \), 10, 11, 17, 20-21
substitute (s) command, 11-12, 19, 20
terminals, 4-5

text input mode, 7

" undo (u) command, 16-17, 23

UNIX, 3

write (w) command, 8, 13, 21, 22

z command, 12-13

-25.

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernghan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNIXt operating system is done with the text-
editor ed This memorandum is a tutorial guide to help beginners get started
with text editing.

Although it does not cover everything, it does discuss enough for most
users’ day-to-day needs. This inciudes printing, appending, changing, deleting.
moving and inserting entire lines of text; reading and writing files; context
searching and line addressing. the substitute command. the global commands.
and the use of special characters for advanced editing.

September 21, 1978

TUNIX is a Trudemark of Bell Laboratories.

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hiil, New Jersey 07974

Introduction

Ed is a “‘text editor’’, that is. an interactive
program for creating and modifying “text™,
using directions provided by a user at a (erminal
The text is often a document like this one. or a
program or perhaps data for a program.

This introduction is meant to simplify learn-
ing ed The recommended way (o learn ed is 0
read this document, simultaneously using ed to
follow the exampies, then (0 read the description
in section | of the UNIX Programmer’'s Manual, all
the while experimenting with ed. (Solicitation of
advice from experienced users is also useful.)

Do the exercises! They cover maierial not
completely discussed in the actual text. An
appendix summarizes the commands.

Disclaimer

This is an introduction and a tutorial. For
this reason., no atiempt is made to cover more
than a part of the facilities that e¢d offers
(although this fraction includes the most useful
and frequently used paris). When you have
mastered the Tutorial, try Advanced Edimng on
UNIX. Also, there is not enough space to explain
basic UNIX procedures. We will assume that you
know how 1o log on to UNIX. and that you have
at least a vague understanding of what a file is.
For more on that, read UNIX for Beginners.

You must aiso know what character 10 type
as the end-of-line on your particular terminal.
This character is the RETURN key on most tler-
minals. Throughout, we will refer (0 this charac-
ter, whatever it is. as RETURN.

Getting Started

We'll assume that you have logged in 10 your
system and it has just printed the prompt charac-
ter. usually either a S or a %. The easiest way to
get edis to type

ed (followed by a return)

You are now ready (0 g0 — ed is waiting for you
to tell it wnat to do.

Creating Text — the Append command **a2"

As vour first problem. suppose you want to
create some text starting from scrawch. Perhaps
you are typing the very first draft of a paper:
clearly it will have to start somewhere, and
undergo modifications later. This section will
show how 10 get some text in, just Lo get started.
Later we'll wik about how to change it.

When cd is first started. it is rather like work-
ing with a blank piece of paper — there is no
text or information present. This must be sup-
plied by the person using ed: it is usually done by
typing in the text, or by reading it into ed from a
file. We will surt by typing in some text, and
return shortly 10 how to read fles.

First a bit of terminology. In ed jargon. the
text being worked on is said (0 be “‘kept in a
buffer.” Think of the buffer as 2 work space. if
vou like. or simply as the information that you
are going (0 be aditing. In effect the buffer is
like the piece of paper. on which we will write
things. then change some ot them. and finally
file the whole thing away for another day.

The user tells e« what 10 do to his ext by
typing instructions called “‘commands.”” Most
commands consist of a single letier, which must
be typed in lower case. Each command is typed
on 4 separute line. (Sometimes the command is
preceded by information about what line or lines
of text are (0 be affected — we will discuss these
shortly.) £d4 mukes no response 10 most com-
mands — there is no prompting or typing of
messages like “‘ready’”. (This silence is preferred
by experienced users. but sometimes a hangup
for beginners.)

The first command is append. written as the
letier

a

all by uself. It meuns '"append (or add) tiext
lines to the buffer. us | vpe them in.”” Append-
ing is ratner ke writing tresh material on a piece
of paper.

So o enter hines of 'ext into the buffer. just
ivpe an a tollowed 9 4 RETURN. foilowed by

the lines of text you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a
line that contains only a period. The *'."" is used
10 tell ed that you have finished appending.
(Even experienced users forget that terminating
" sometimes. If ed seems to be ignoring you,
type an extra line with just **." on it. You may
then find you've added some garbage lines to
your text, which you'll have to take out later.)

After the append command has been done,
the buffer will contain the three lines

Now is the time
for all good men
to come to the aid of their party.

The **a"* and **.”" aren’t there, because they are
not text.

To add more text to what you already have,
just issue another a command, and continue typ-
ing.

Error Messages — **?"

If at any time you make an error in the com-
mands you type to ed, it will tell you by typing

?

This is about as cryptic as it can be, but with
practice, you can usually figure out how you
goofed.

Writing text out as a file = the Write command
.Q"'

It's likely that you'll want 10 save your text
for later use. To write out the contents of the
buffer onto a file, use the wrie command

followed by the filename you want to write on.
This will copy the buffer’s contents onto the
specified file (destroying any previous informa-
tion on the file). To save the text on a file
named junk, for example, type

w junk

Leave a space between w and the file name. £d
will respond by printing the number of characters
it wrote out. In this case, ed would respond with

68

(Remember that blanks and the return character
at the end of each line are included in the char-
acter count.) Writing a file just makes a copy of

the text — the buffer’'s contents are not dis-
turbed, so you can go on adding lines to it. This
is an imporwant point. £4 at all times works on a
copy of a file, not the file itself. No change in
the contents of a file takes place until you give a
w command. (Writing out the text onto a file
from time to time as it is being created is a good
idea, since if the system crashes or if you make
some horrible mistake, you will lose all the text
in the buffer but any text that was written onto a
file is relatively safe.)

Leaving ed — the Quit command *‘q"*

To terminate a session with ed, save the text
you're working on by writing it onto a file using
the w command, and then type the command

q

which stands for qur The system will respond
with the prompt character ($ or %). At this
point your buffer vanishes, with all its text,
which is why you want to write it out before
quitting.t

Exercise 1:
Enter edand create some text using

a
..o text. ..

Write it out using w. Then leave ed with the q
command, and print the file, to see that every-
thing worked. (To print a file, say

pr filename
or
cat filename
in response to the prompt character. Try both.)

Reading text from a file — the Edit command
the"

A common way to get text into the buffer is
to read it from a file in the file system. This is
what you do to edit text that you saved with the
w command in a previous session. The edir com-
mand e feiches the entire contents of a file into
the buffer. So if you had saved the three lines
“Now is the time™, etc., with a w command in
an earlier session, the ed command

e junk

would fetch the entire contents of the file junk
into the buffer, and respond

1 Actually. ed will pnnt ? if you try 10 quit without wnt-
ing. At that point, wnte if you want. if not. another q
will get you out regardiess.

68

which is the number of characters in junk.
anythung was aiready in the bufer, it is delered first.

If you use the e command to read a file into
the buffer, then you need not use a file name
after a subsequent w command: ed remembers
the last file name used in an ¢ command, and w
will write on this file. Thus a good way 1o
operate is

ed

e file

[editing session]
w

q

This way, you can simply say w from time to
ume. and be secure in the knowiedge that if you
got the file name right at the beginning, you are
writing into the proper file each time.

You can find out at any time what file name
ed is remembering by typing the /fi/e command f.
In this example, if you typed

f
ed would reply
junk

Reading text from a fille = the Read command
llr’.

Sometimes you want to read a flle into the
buffer without destroying anything that is aiready
there. This is done by the readcommand r. The
command

r junk

will read the file junk into the buffer: it adds it
to the end of whatever is aiready in the buffer.
So if you do a read after an edit:

e junk
r junk

the buffer will contain wo copies of the text (six
lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for ail good men
to come to the aid of their party.

Like the w and e commands. r prints the number
of characters read in. after the reading operation
is complete.

Generally speaking, r is much less used than

iy

Exercise 2:

Experiment with the ¢ command = try read-
ing and prinung various files. You may get an
error name. where name is the name of a file;
this means that the file doesn't exist. typically
because you spelled the file name wrong, or
perhaps that you are not allowed to read or write
it. Try alternately reading and appending to see
that they work similarly. Verify that

ed filename
is exactly equivalent to

ed
e filename

What does
f filename
do?

Printing the contents of the buffer = the Print
command *‘p"*

To print or list the contents of the buffer (or
parts of it) on the lerminal. use the print com-
mand

The way this is done is as follows. Specify the
lines where you want printing (0 begin and where
you want it (0 end. separated by a comma. and
followed by the letter p. Thus to print.the first
two lines of the buffer, for example,. (that is.
lines | through 2) say

1.2p
Ed will respond with

(starting line=1, ending line=2 p)

Now is the time
for all good men

Suppose you want (0 print a/l the lines in the
buffer. You could use 1.3p as above if you knew
there were exactly 3 lines in the buffer. But in
general. you don’t know how many there are. so
what do vou use for the ending line number? £d
provides a shorthand symbol for '‘line number
of last line in buffer” — the dollar sign §. Use it
this way:

1.Sp

This will print a/l the lines in the buffer (line | 10
last line.) [f you want to stop the printing before

‘it is finished. push the DEL or Delete key: ed will

type
?
and waut for the next command.

To print the /ast line of the buffer, you couid
use

$.5p
but ed lets you abbreviate this to
Sp
You can print any single line by typing the line
number followed by a p. Thus
Ip
produces the response
Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further:
you can print any single line by typing jusr the
line number — no need to type the letter p. So
if you say

S

ed will print the last line of the buffer.
You can also use $ in combinations like

$—-1,%p

which prints the last two lines of the buffer.
This helps when you want to see how far you got
in typing.

Exercise 3:

As before, create some text using the a com-
mand and experiment with the p command. You
will find, for example, that you can't print line 0
or a line beyond the end of the buffer, and that
attempts to print a buffer in reverse order by say-
ing

3,1p
don't work.

The current line = **Dot"” or **."”
Suppose your buffer still contains the six

lines as above, that you have just typed

1,3p
and ed has printed the three lines for you. Try
typing just

P (no line numbers)
This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is
the last (most recent) line that you have done
anything with. (You just printed it!) You can
repeat this p command without line numbers,
and it will continue to print line 3.

The reason is that ed maintains a record of
the last line that you did anything to (in this
case, line 3, which you just printed) so that it

can be used instead of an explicit line number.
This most recent line is referred to by the short-
hand symbol

(pronounced *‘dot’’).

Dot is a line number in the same way that $ is; it
means exactly ‘‘the current line'', or loosely,
‘‘the line you most recently did something to."””
You can use it in several ways — one possibility
is to say

“3p

This will print all the lines from (including) the
current line to the end of the buffer. In our
example these are lines 3 through 6.

Some commands change the value of dot,
while others do not. The p command sets dot to
the number of the last line printed; the last com-
mand will set both . and $ 10 6.

Dot is most useful when used in combina-
tions like this one:

.+l
This means *‘print the next line™ and is a handy

way to step siowly through a buffer. You can
aiso say

.1
which means ‘‘print the line before the current

line."" This enables you to go backwards if you
wish. Another useful one is something like

(or equivalently, .+1p)

{or .—~1p)

.~3,.~1p
which prints the previous three lines.

Don't forget that all of these change the
value of dot. You can find out what dot is at any
time by typing

Ed will respond by printing the value of dot.

Let’s summarize some things about the p
command and dot. Essentially p can be preceded
by 0, I, or 2 line numbers. If there is no line
number given, it prints the ‘‘current line™. the
line that dot refers to. If there is one line
number given (with or without the letter p). it
prints that line (and dot is set there); and if
there are two line numbers, it prints all the lines
in that range (and sets dot to the last line
printed.) If two line numbers are specified the
first can’t be bigger than the second (see Exer-
cise 2.)

Typing a single return will cause printing of
the next line — it's equivalent to .+1p. Try it
Try typing a = you will find that it’s equivalent
to .=~1p.

Deleting lines: the **d’° command

Suppose you want to get rid of the three
extra lines in the buffer. This is done by the
defere command

d

Except that d deletes lines instead of printing
them, its action is similar to that of p. The lines
to be deleted are specified for d exactly as they
are for p:

srarung line, ending line d
Thus the command
4,%d

deletes lines 4 through the end. There are now
three lines left, as you can check by using

1,8

And notice that $ now is line 3! Dot is set to the
next line after the last line deleted, unless the
last line deleted is the last line in the buffer. In
that case, dot is set to $

Exercise 4:

Experiment with s, e, r. w, p and d until.you
are sure that you know what they do. and until
vou understand how dot. $, and line numbers
are used.

If you are adventurous., (ry using line
numbers with a, r and w as well. You will find
that a will append lines afrer the line number that
you specify (rather than after dot); that r reads a
file in ayrer the line number you specify (not
necessarily at the end of the buffer): and that w
wiil write out exactly the lines you specify, not
necessarily the whole buffer. These variations
are sometimes handy. For instance you can
insert a file at the beginning of a buffer by saying

Or filename

and you can enter lines at the beginning of the
buffer by saying

Oa
.rext. ..

Notice that .w 1s very different from

Modifying text: the Substitute command **s’*

We are now ready (0 try one of the most
important of all commands — the substtute
command

s

This is the command that is used to change indi-
vidual words or letters within a line or group of
lines. It is what you use. for example, for
correcting spelling mistakes and typing errors.

Suppose that by a typing error, line | says
" Now is th time

~ the e has been left off rhe. You can use s to
fix this up as follows:

1s/th/the/

This says: *in line 1. substitute for the characters
th the characters rhe.”” To verify that it works (ed
will not print the result automatically) say

p
and get
Now is the time

which is what you wanted. Notice that dot must
have been set t0 the line where the substitution
took place, since the p command printed that
line. Dot is always set this way with the s com-
mand.

The general way to use the substitute com-
mand is

starnng-line, ending-line 3/ change thus/ 0 this/

Whatever string of characters is between the first
pair of slashes is replaced by whatever is between
the second pair. in a/ the lines between swarnng-
Iine and ending-line. Only the first occurrence on
each line is changed. however. If you want o
change everv occurrence, see Exercise 5. The
rules for line numbers are the same as those for
p. except that dot is set to the last line changed.
(But there is a trap for the unwary: if no substi-
tution took place, dot is nor changed. This
causes an error ? as a warning.)

Thus you can say
1,3s/speling/spelling/

and correct the first spelling mistake on each line
in the text. (This is useful for people who are
consistent misspellers!)

[f no line numbers are given, the s command
assumes we mean “‘make the substitution on line
dot”". so it changes things only on the current
line. This leads to the very common sequence

s/something/something eise/p

which makes some correction on the current
line. and theén prints it. t0 make sure it worked
out right. If it didn't. you can try again. (Notice
that there is a2 p on the same line as the s com-
mand. With few exceptions. p can follow any
command: no other multi-command lines are
legal.)

It’s also legal to say
s/... 1/

which means ‘‘change the first string of charac-
ters to “‘moriung’’, ie., remove them. This is
useful for deleting extra words in a line or
removing extra letters from words. For instance,
if you had

Nowxx is the time
you can say

s/xx//p
to get

Now is the time

Notice that // (two adjacent slashes) means *‘no
characters™, not a blank. There /s a difference!
(See below for another meaning of //.)

Exercise 5:

Experiment with the substitute command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example, do this:

a
the other side of the coin

s/the/on the/p
You will get
on the other side of the coin

A substitute command changes only the first
occurrence of the first string. You can change all
occurrences by adding a g (for *‘global™) to the s
command. like this:

s/.../.../gp

Try other characters instead of slashes to delimit
the two sets of characters in the s command —
anything should work except blanks or wbs.

(If you get funny results using any of the
characters

. 8 I e\ &
read the section on ‘‘Special Characters™.)

Context searching — **/ .../

With the substitute command mastered, you
can move on to another highly important jdea of
ed — context searching.

Suppose you have the original three line text
in the buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains
their so you can change it to the. Now with only
three lines in the buffer, it's pretty easy to keep
track of what line the word rher is on. But if the
buffer contained several hundred lines, and
you'd been making changes, deleting and rear-
ranging lines, and so on, you would no longer
really know what this line number would be.
Context searching is simply a method of specify-
ing the desired line, regardless of what its
number is, by specifying some context on it.

The way to say ‘‘search for a line that con-
tains this particular string of characters™ is to
type

/ sring of characers we want © find/
For exampie, the ed command
/their/

is a context search which is sufficient to find the
desired line — it will locate the next occurrence
of the characters between slashes (‘‘their™™). It
also sets dot to that line and prints the line for
verification:

to come to the aid of their party.

*‘Next occurrence’’ means that ed starts looking
for the string at line .41, searches to the end of
the buffer, then continues at line 1 and searches
to line dot. (That is, the search ‘‘wraps around"
from $ to 1.) It scans all the lines in the buffer
until it either finds the desired line or gets back
to dot again. If the given string of characters
can't be found in any line, ed types the error
message

?

Otherwise it prints the line it found.

You can do both the search for the desired
line and a substitution all at once, like this:

/their/s/their/the/p
which will yieid
to come to the aid of the party.

There were three parts to that last command:
context search for the desired line, make the
substitution, print the line.

The expression /their/ is a context search
expression. In their simplest form, all context
search expressions are like this — a string of
characters surrounded by slashes. Context
searches are interchangeable with line numbers,
so they can be used by themselves to find and
print a desired line, or as line numbers for some
other command, like s. They were used both
ways in the exampies above.

Suppose the buffer conuins the three tamiliar
lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers
/Now/+1
/good/
/party/ =1
are all context search expressions, and they all

refer ©0 the same line (line 2). To make a
change in line 2. you could say

/Now/ +1s/good/bad/
or

/good/s/good/bad/
or

/party/ — 1s/good/bad/

The choice is dictated only by convenience. You
could print all three lines by, for instance

/Now/,/party/p
or
/Now/,/Now/ +2p

or by any number of similur combinations. The
first one of these might be better if you don't
know how many lines are invoived. (Of course,
if there were only three lines in the buffer, you'd
use

1,80
but not if there were several hundred.)

The basic rule is: a context search expression
is rhe same as a line number, so it can be used
wherever a line number is needed.

Exercise 6:

Experiment with context searching. Try a
body of text with several occurrences of the
same string of characters, and scan through it
using the same context search.

Try using context searches as line numbers
for the substitute, print and delete commands.
(They can also be used with r, w. and a.)

Try context searching using ?text? instead
of /text/. This scans lines in the buffer in
reverse order rather than normal. This is some-
times useful if you go too far while looking for
some string of characters — it's an easy way (o
back up.

(If you get funny results with any of the
characters

L. S [e\ &
read (he section on “"Special Characters™.)

Ed provides a shorthand for repeating a con-
text search for the same string. For example.
the ed line number

/string/

will find the next occurrence of string. [t often
happens that this is not the desired line. so the
search must be repeaied. This can be done by
lyping merely

1/

This shorthand stands for ‘‘the most recently
used context search expression.’” [t can also be
used as the first string of the substitute com-
mand, as in

/stringl/s//string2/

which will find the next occurrence of stringl
and replace it by string2. This can save a lot of

lyping. Similarly

??

means ‘‘scan backwards for the same expres-
sion.’”
Change and Insert = ‘¢’ and *'I"*
This section discusses the c/ange command
¢

which is used t0 change or replace a group of
one or more lines, and the mserr command

i
which is used for inserting a group of one or
more lines.
*Change’", written as

[

is used to replace a number of lines with
different lines. which are typed in at the termi-
nal. For example, to change lines . +1 through $
to something eise, type

.+1,S¢
... vpe the lines of text vou want here . . .

The lines vou type between the ¢ command and
the . will ke the place of the original lines
between start line and end line. This is most
useful in replacing a line or several lines which

.have errors in them.

If only one line is specified in the ¢ com-
mand. then just that line is replaced. (You can
type 1n as many replacement lines as vou like.)
Notice the use of . 10 end the input — this
works 1ust like the . 1n the append command

and must appear by itself on a new line. If no
line number is given, line dot is replaced. The
value of dot is set to the last line you typed in.

**Insert’ is similar to append — for instance

/string/i
. .. ope the lines o be inserted here . . .

will insert the given text bdefore the next line that
contins *‘string”’. The text between i and . is
inserted before the specified line. If no line
number is specified dot is used. Dot is set 1o the
last line inserted.

Exercise 7:

**‘Change’ is rather like a combination of
delete followed by insert. Experiment to verify
that

swart, endd
i
.ext. ..

is almost the same as

start, end ¢
. lext.

These are not precisely the same if line $ gets
deleted. Check this out. What is dot?

Experiment with a and i, to see that they are
similar, but not the same. You will observe that

line-number a
.ext. ..

appends afrer the given line, while

line-rumber i
.. text. .

inserts before it. Observe that if no line number
is given, | inserts before line dot, while a
appends after line dot.

Moving text around: the *““m’’ command

The move command m is used for cutting
and pasting — it lets you move a group of lines
from one place to another in the buffer. Sup-
pose you want to put the first three lines of the
buffer at the end instead. You couid do it by
saying:

1,3w temp
$r temp
1,3d

(Do you see why?) but you can do it a lot easier
with the m command:

1,3m$
The general case is
start line, end line m after this line

Notice that there is a third line to be specified —
the place where the moved swfl gets put. Of
course the lines to be moved can be specified by
context searches; if you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.
you coulid reverse the two paragraphs like this:
/Second/,/end of second/m/First/ —1

Notice the —1: the moved text goes afer the line
mentioned. Dot gets set to the last line moved.

The global commands *‘'g"° and ‘‘v”’

The gibobal command g is used t0 execute one
or more ed commands on all those lines in the
buffer that maich some specified string. For
example

8/peling/p

prints all lines that contain peling. More use-
fully,

g/peling/s//pelling/gp

makes the substitution everywhere on the line,
then prints each corrected line. Compare this to

1,8s/peling/pelling/gp

which only prints the last line substituted.
Another subtle difference is that the g command
does not give a ? if peling is not found where
the s command will.

There may be several commands (including
a, ¢ I, r, w, but not g); in that case, every line
except the last must end with a backslash \:

g/xxx/.—1s/abc/def/B

.+2s/ghi/jkl/B

=2,.p
makes changes in the lines before and after each
line that contains xxx, then prints all three lines.

The v command is the same as g, except that
the commands are executed on every line that
does nor match the string following v:

v/ /d

deletes every line that does not contain a blank.

Special Charscters

You may have noticed that things just don't
work right when you used some characters like .,
o, §. and others in context searches and the sub-
stitute command. The reason is rather compiex,
although the cure is simple. Basicaily, ed treats
these characters as special, with special mean-
ings. For instance. /n a conext search or the first
string of the subsuruwe command only, . means
*‘any character,”” not a period. so

I/x.y/

means *‘a line with an x, any characrer, and a y,"”
not just **a line with an x, a period. anda y.” A
complete list of the special characters that can
cause trouble is the following:

RS B SRR

Warnming: The backslash character \ is special to
ed. For safety’s sake, avoid it where possible. If
you have to use one of the special characters in a
substitute command, you can turn off its magic
meaning temporarily by preceding it with the
backslash. Thus

s/\\\.*¢/backslash dot star/

will change \.« into **backsiash dot star™.

. Here is a hurried synopsis of the other special
characters. First. the circumflex ° signifies the
beginning of a line. Thus

/" string/
finds string only if it is at the beginning of a
line: it will find

string
but not

the string...

The dollar-sign § is just the opposite of the
circumflex; it means the end of a line:

/string$/

will only find an occurrence of string that is at
the end of some line. This implies. of course.
that

/"string$/

will find oniy a line that contains just string. and
/°.8/

finds a line containing exactly one character.

The character ., as we mentioned above.
matches anything.

/x.y/

matches any of

x+y
x=y
Xy
X.y

This is useful in conjunction with *, which is a
repetition character ae is a shorthand for “‘any
number of a's.”” so .* maiches any number of
anythings. This is used like this:

s/.o/swafl/
which changes an entire line, or
s/.e//

which deletes all characters in the line up 10 and
including the last comma. (Since .s finds the
longest possible maich, this goes up to the last
comma.)

| is used with | to form ‘‘character classes';
for example,

/(0123456789})/

maiches any single digit = any one of the char-
acters inside the braces will cause a match. This
can be abbreviated to [0=9|.

Finally. the & is another shorthand character
= it is used oniy on the right-hand part of a sub-
stitute command where it means ‘‘whatever was
maiched on the left-hand side™. It is used to
save lyping. Suppose the current line contained

Now is the time

and you wanted to put parentheses around it.
You could just retype the line, but this is tedi-
ous. Or you coulid say

s/°/(/
$/8/)/

using vour knowledge of ~ and $. But the easiest
way uses the &:

s/.«/(&)/

This says '*match the whole line, and replace it
by itseif surrounded by parentheses.”” The & can
be used several times in a line: consider using

/.o /&7 &Y/
to produce

Now is the time? Now is the time!!

You don’t have t0o match the whole line, of
course: if the buffer contains

the end of the world
vou could type
/world/s//& is at hand/

10 produce

the end of the world is at hand

Observe this expression carefully, for it illus-
trates how to take advantage of ed 1o save typing.
The string /world/ found the desired line; the
shorthand // found the same word in the line;
and the & saves you from typing it again.

The & is a special character only within the
replacement text of a substitute command, and
has no special meaning elsewhere. You can turn
off the special meaning of & by preceding it with
al\:

s/ampersand/\&/

will convert the word ‘‘ampersand’ into the
literal symbol & in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the
command name, perhaps preceded by one or two
line numbers, and, in the case of e, r, and w,
followed by a file name. Only one command is
allowed per line, but a p command may follow
any other command (except for e, r, w and q).

a: Append. that is, add lines to the buffer (at line
dot. uniess a different line is specified). Append-
ing continues until . is typed on a new line. Dot
is set to the last line appended.

c: Change the specified lines to the new text
which follows. The new lines are terminated by
a ., as with a. If no lines are specified, replace
line dot. Dot is set to last line changed.

d: Delete the lines specified. If none are
specified, delete line dot. Dot is set to the first
undeleted line, uniess $ is deleted, in which case
dot is set 10 S. t

e: Edit new file. Any previous contents of the
buffer are thrown away, so issue a w beforehand.

f: Print remembered filename. If a name follows
f the remembered name will be set to it.

¢: The command
g/---/commands

will execute the commands on those lines that
conwain ---, which can be any context search
expression.

i: Insert lines before specified line (or dot) until
a . is typed on a new line. Dot is set to last line
inserted.

m: Move lines specified to after the line named
after m. Dot is set to the last line moved.

p: Print specified lines. If none specified, print
line dot. A single line number is equivalent 1o
line-number p. A single return prints .+1, the

-10 -

next line.

q: Quit ed Wipes out all text in buffer if you
give it twice in a row without first giving a w
command.

r: Read a file into buffer (at end uniess specified
elsewhere.) Dot set 10 last line read.

s: The command
s/stringl/string2/

substitutes the characters stringl into string2 in
the specified lines. If no lines are specified,
make the substitution in line dot. Dot is set to
last line in which a substitution took place, which
means that if no substitution took place, dot is
not changed. s changes only the first occurrence
of stringl on a line; to change all of them, type
a g after the final slash.

v: The command

v/---/commands
executes commands on those lines that do not
contain =e-.
w: Write out buffer onto a file. Dot is not
changed.

.= Print value of dot. (= by itself prints the
value of $.)

!: The line
!command-line

causes command-line 10 be executed as a UNIX
command.

/-=-=-/: Context search. Search for next line
which conuins this string of characters. Print it.
Dot is set 0o the line where string was found.
Search starts at .41, wraps around from S to 1,
and continues to dot, if necessary.

?---=?: Context search in reverse direction.
Start search at .=—1, scan to 1, wrap around to §.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make
effective use of the UNIXT facilities for preparing and editing text. It provides
explanations and examples of

® special characters, line addressing and global commands in the editor ed;

e commands for ‘‘cut and paste’’ operations on files and parts of files,

including the mv, cp, cat and rm commands, and the r, w, m and t com-
mands of the editor;

® editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new users with any
background should find helpful hints on how to get their jobs done more easily.

August 4, 1978

tUNIX is a Trademark of Bell Laboratories.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Although UNIXT provides remarkably
effective tools for text editing, that by itself is no
guarantee that everyone will automaticaily make
the most effective use of them. In particular,
people who are not computer specialists = typ-
ists, secretaries, casual users - often use the
system less effectively than they might.

This document is intended as a sequei to A4
Tutorial Introduction 1o the UNIX Text Editor [1],
providing explanations and exampies of how to
edit with less effort. (You should also be fami-
liar with the material in UNIX For Beginners (2}.)
Further information on all commands discussed
here can be found in The UNIX Programmer’s
Manual (3].

Exampies are based on observations of
users and the difficuities they encounter. Topics
covered include special characters in searches
and substitute commands, line addressing, the
global commands, and line moving and copying.
There are aiso brief discussions of effective use
of related tools, like those for file manipuiation,
and those based on ed, like grep and sed.

A word of caution. There is only one way
to learn to use something, and that is to use it.
Reading a description is no substitute for trying
something. A paper like this qne should give
vou ideas about what to try, but untii you actu-
ally try something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people, so it is worthwhile
to know how to get the most out of ed for the
least effort.

The next few sections will discuss
shortcuts and labor-saving devices. Not ail of
these will be instantly useful to any one person,
of course, but a few will be, and the others
should give vou ideas to store away for future
use. And as always, until you try these things.

*UNIX is a Trademark of Beil Laboratores.

they will remain theoretical knowiedge, not
something you have confidence in.

The List command ‘I’

ed provides (wo commands for printing the
contents of the lines you're editing. Most peopie
are familiar with p, in combinations like

1,50
to print all the lines you're editing, or
s/abe/def/p

to change ‘abc’ to ‘def” on the current line. Less
familiar is the lisx command | (the letter /%),
which gives slightly more information than p. In
particular, | makes visible characters that are
normally invisible, such as tabs and backspaces.
If you list a line that contains some of these, |
will print each tab as 3 and each backspace as
<. This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adja-
cent to tabs, or inserts a backspace foilowed by a
space.

The | command aiso ‘folds’ long lines for
printing — any line that exceeds 72 characters is
printed on muluple lines: each printed line
except the last is terminated by a backslash \, so
you can tell it was folded. This is useful for
printing long lines on short terminals.

Occasionally the | command wiil print in a
line a string of numbers preceded by a backslash.
such as \07 or \16. These combinations are used
to make visible characters that normaily don't
print, like form feed or vertical tab or beil. Each
such combination is a single character. When
you see such characters, be wary — they may
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while you were typing; you aimost
never want them.

The Substitute Command ‘s’

Most of the next few sections will be taken
up with a discussion of the substitute command
s. Since this is the command for changing the

contents of individual lines, it probably has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin, recall the
meaning of a trailing g after a substitute com-
mand. With

s/this/that/
and
s/this/that/g

the first one replaces the first ‘this’ on the line
with ‘that’. If there is more than one ‘this’ on
the line, the second form with the trailing g
changes a// of them.

Either form of the s command can be fol-
lowed by p or 1 to ‘print’ or ‘list’ (as described in
the previous section) the contents of the line:

s/this/that/p
s/this/that/|
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be pre-
ceded by one or two ‘line numbers’ to specify
that the substitution is to take place on a group
of lines. Thus

1,Ss/mispell/misspell/

changes the firsr occurrence of ‘mispell’ to
‘misspell’ on every line of the file. But

1,8s/mispell/misspell/g

changes every occurrence in every line (and this
is more likely to be what you wanted in this par-
ticular case).

You should also notice that if you add a p
or | to the end of any of these substitute com-
mands, only the last line that got changed will be
printed, not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command ‘u’

Occasionally you will make a substitution
in a line, only to realize too late that it was a
ghastly mistake. The ‘undo’ command u lets
you ‘undo’ the last substitution: the last line that
was substituted can be restored to its previous
state by typing the command

The Metacharacter *.*

As you have undoubtedly noticed when
you use ed, certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu-
lar line. In the next several sections, we will talk
about these special characters, which are often
called ‘metacharacters’.

The first one is the period *.". On the left
side of a substitute command, or in a search with
*/.1°, . stands for any single character. Thus
the search

/x.y/

finds any line where ‘x’ and 'y’ occur separated
by a single character, as in

x+y
Xx=y
Xgoy
Xy

and so on. (We will use o to stand for a space
whenever we need to make it visible.)

Since ‘." matches a singie character, that
gives you a way to deal with funny characters’
printed by L Suppose you have a line that, when
printed with the | command, appears as

.. th\07is ...

and you want to get rid of the \07 (which
represents the bell character, by the way).

The most obvious solution is to try
s/\07//

but this will fail. (Try it.) The brute force solu-
tion, which most peopie would now take, is to
re-type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
question isn't too big, but for a very long line,
re-typing is a bore. This is where the metachar-
acter ‘.’ comes in handy. Since ‘\07' really
represents a single character, if we say

s/th.is/this/

the job is done. The ‘.’ matches the mysterious
character between the ‘h’ and the ‘i’, wharever it
is.

.

Bear in mind that since ‘.’ matches any
single character, the command

s/JdJ
converts the first character on a line into a *,’,
which very often is not what you intended.

As is true of many characters in ed, the ‘.’
has several meanings, depending on its context.
This line shows all three:

Sldd

The first *." is a line number, the number of the
line we are editing, which is called ‘line dot’.
{We will discuss line dot more in Section 3.) The
second °.' is a metacharacter that matches any

single character on that line. The third ‘.’ is the
only une that really is an honest literal period.
On the righr side of a substitution, *,’ is not spe-

cial. If vou apply this command to the line
Now is the time.

the resuit will be
0w is the time.

which is probably not what you intended.

The Backslash \’

Since a period means ‘any character’, the
question naturally arises of what to do when you
reaily want a period. For example, how do you
convert the line

Now is the time.
into
Now is the time?

The backsiash '\’ does the job. A backslash
turns off any special meaning that the next char-
acter might have: in particular, *\.' converts the
*.' from a ‘match anything’ into a period, so you
can use it to replace the period in

Now is the time.
like this:
s/\J?

The pair of characters ‘\.’ is considered by ed to
be a single real period.

The backslash can aiso be used when
searching for lines that contain a special charac-
ter. Suppose you are looking for a line that con-
tains

.PP

The search
/.PP/

isn’t adequate, for it will find a line like
THE APPLICATION OF ...

because the *." matches the letter ‘A’. But if you
say

vou will find only lines that contain *.PP°.

The backslash can also be used to tumn off
special meanings for characters other than ‘..
For example. consider finding a line that con-

tains a backslash. The search
\/

won't work, because the '\’ isn't a literal *\°, but
instead means that the second ‘/° no longer
delimits the search. But by preceding a backslash
with another one, you can search for a literal
backslash. Thus

A\Y

does work. Similarly, vou can search for a for-
ward slash */° with

v

The backslash turns off the meaning of the
immediately following */° so that it doesn't ter-
minate the /.../ construction prematurely.

As an exercise, before reading further,
find two substitute commands each of which will
convert the line

\x\.\y
into the line
\x\y

Here are several solutions: verify that each
works as advertised.

s/\J/
s/X.dIX/
s/ oylyl

A coupie of miscellaneous notes about
backslashes and special characters. First, you
can use any character to delimit the pieces of an
s command: there is nothing sacred about
slashes. (But you must use slashes for context
searching.) For instance, in a line that contains a
lot of slashes already, like

//exec //sys.fort.go // etc...

you could use a colon as the delimiter = to
delete ail the slashes, type

s/

Second, if # and @ are your character
erase and line kill characters, you have to type
\# and \@; this is true whether you're talking to
ed or any other program.

When you are adding text with aor ior ¢
backslash is not special, and you should only put
in one backslash for each one you reaily want.

The Dollar Sign 'S’

The next metacharacter, the ‘S’, stands for
‘the end of the line'. As its most obvious use,
suppose you have the line

Now is the

and you wish to add the word ‘time’ to the end.
Use the $ like this:

s/$/ otime/
to get
Now is the time

Notice that a space is needed before ‘time’ in the
substitute command, or you will get

Now is thetime
As another ‘example, replace the second

comma in the following line with a period
without altering the first:

Now is the time, for all good men,
The command needed is
s/.8/J

The § sign here provides context to make specific
which comma we mean. Without it, of course,
the s command would operate on the first
comma to produce

Now is the time. for all good men,

As another example, to convert

Now is the time.
into

Now is the time?
as we did earlier, we can use

s/.8/?/

Like *.', the ‘S’ has muitiple meanings
depending on context. In the line

Ss/8/8/

the first *S’ refers to the last line of the file, the
second refers to the end of that line, and the
third is a literal dollar sign, to be added to that
line.

The Circumflex **'

The circumflex (or hat or caret) *°* stands
for the beginning of the line. For exampie, sup-
pose you are looking for a line that begins with
‘the’. If you simply say

/the/

you will in all likelihood find several lines that
contain ‘the’ in the middle before arriving at the
one you want. But with

/"the/

you narrow the context, and thus arrive at the
desired one more easily.

The other use of ‘™' is of course to enable
you to insert something at the beginning of a
line:

s/*/ o/

places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line that contains only the characters

PP
you can use the command
/"\.PPS/

The Star s’

Suppose you have a line that looks like
this:

rext x y rext

where rex: stands for lots of text, and there are
some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and y by a single space.
The line is too long to retype, and there are too
many spaces to count. What now?

This is where the metacharacter ‘s’ comes
in handy. A character followed by a star stands
for as many consecutive occurrences of that
character as possible. To refer to all the spaces
at once, say

s/xney/xoy/
The construction ‘ce’ means ‘as many spaces as
possible’. Thus ‘xcey’ means ‘an x, as many
spaces as possible, thena y’.

The star can be used with any character,

not just space. If the original example was
instead

then all ‘=" signs can be replaced by a singie
space with the command

s/x—=sy/xoy/

Finally, suppose that the line was
'm x..........'....‘..y ’ex’

Can you see what trap lies in wait for the
unwary? If you blindly type

s/x.oy/xay/

what will happen? The answer, naturally, is that
it depends. If there are no other x’s or y’s on
the line, then everything works, but it's blind
luck, not good management. Remember that *.’
matches any single character? Then ‘.»' matches
as many single characters as possible, and unless

you're careful, it can eat up a lot more of the
line than you expected. If the line was, for
example, like this:

[6XT X [EXI Xeeeoeoesssssssasy [EXI Y l€XI

then saying
S/X.oy/Xc2y/
will take everything from the firsr ‘x’ to the /ast

‘y’, which. in this example, is undoubtedly more
than you wanted.

The solution. of course, is to turn off the
special meaning of ‘.’ with *\.":

s/x\.oy/xcy/
Now everything works, for ‘\." means ‘as many
periods as possible’.

There are times when the pattern ‘.
exactly what you want. For example, to change

)

Now is the time for all good men
into
Now is the time.
use ‘.’ to eat up everything after the ‘for’:
s/ =for.e/ J

There are a couple of additional pitfails
associated with ‘<’ that you shouid be aware of.
Most notable is the fact that ‘as many as possi-
ble’ means :ero or more. The fact that zero is a
legitimate possibility is sometimes rather surpris-
ing. For exampie, if our line contained

rext Xy rext X y rextr

and we said
s/Xzey/xzy/

the first ‘xy’ matches this pattern, for it consists
of an ‘'x’, zero spaces, and a ‘y’. The result is
that the substitute acts on the first ‘xy’, and does
not touch the later one that actually contains
some intervening spaces.

The way around this. if it matters, is to
specify a pattern like

/xzzey/
which says ‘an x. a space. then as many more

spaces as possible, then a y', in other words, one
or more spaces.

The other startling behavior of ‘<" is again
related to the fact that zero is a legitimate
number of occurrences of something followed by
a star. The command

s/xs/y/g

when applied to the line

abcdef
produces
yaybycydyey(y

which is almost certainly not what was intended.
The reason for this behavior is that zero is a
legai number of matches, and there are no x's at
the beginning of the line (so that gets converted
into a ‘y’). nor between the ‘a’ and the ‘b’ (so
that gets converted into a ‘y’), nor ... and so on.
Make sure you reaily want zero matches; if not,
in this case write

s/xxe/y/g

‘xxe’ is one or more x's.

The Brackets '{ |’

Suppose that you want to delete any
numbers that appear at the beginning of ail lines
of a file. You might first think of trying a series
of commands like

1.8s/°1¢//
1.88/°2¢//
1.8s/°3//

and so on, but this is clearly going to take for-
ever if the numbers are at all long. Uniess you
want to repeat the commands over and over until
finaily all numbers are gone, you must get all the
digits on one pass. This is the purpose of the
brackets (and].

The construction
[0123456789]

matches any single digit — the whole thing is
cailed a ‘character class’. With a character class,
the job is easy. The pattern ‘[0123456789]<
matches zero or more digits (an entire number),
so

1.8s/°[0123456789]<//

deletes ail digits from the beginning of ail lines.

Any characters can appear within a charac-
ter class, and just to confuse the issue there are
essentially no special characters inside the brack.
ets. even the backslash doesn't have a special
meaning. To search for special characters, for
example, you can say

7L\S)/
Within [...], the ‘[’ is not special. To get a ‘]’
into a character class. make it the first character.

It's a nuisance to have to speil out the
digits. so you can abbreviate them as (0-9];
similarly, [a—z] stands for the lower case letters.
and [A =Z] for upper case.

As a final frill on character classes, you can

specify a class that means ‘none of the following
characters’. This is done by beginning the ciass
with a **":

[*0-9]
stands for ‘any character excepr a digit’. Thus

you might find the first line that doesn't begin
with a tab or space by a search like

/°["(space) (tab)]/
Within a character class, the circumflex has

a special meaning only if it occurs at the begin-
ning. Just to convince yourself, verify that

171"V
finds a line that doesn't begin with a circumflex.

The Ampersand ‘&’
The ampersand ‘&’ is used primarily to
save typing. Suppose you have the line
Now is the time
and you want to make it
Now is the best time
Of course you can always say
s/the/the best/

but it seems silly to have to repeat the ‘the’.
The ‘&’ is used to eliminate the repetition. On
the right side of a substitute, the ampersand
means ‘whatever was just matched’, so you can
say

s/the/& best/

and the ‘&’ will stand for ‘the’. Of course this
isn't much of a saving if the thing matched is
just ‘the’, but if it is something truly long or
awful, or if it is something like ‘.»' which
matches a lot of text, you can save some tedious
typing. There is also much less chance of mak-
ing a typing error in the replacement text. For
example, to parenthesize a line, regardless of its
length,

s/ .o/ (&)/

The ampersand can occur more than once
on the right side:

s/the/& best and & worst/
makes

Now is the best and the worst time
and

s/ /&7 &Y/

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, naturally the
backslash is used to turn off the special meaning:

s/ampersand/\&/

converts the word into the symbol. Notice that
‘&’ is not special on the left side of a substitute,
only on the right side.

Substituting Newlines

ed provides a facility for splitting a single
line into two or more shorter lines by ‘substitut-
ing in a newline’. As the simplest exampie, sup-
pose a line has gotten unmanageably long
because of editing (or merely because it was
unwisely typed). If it looks like

ext Xy rtext .

you can break it between the ‘x’ and the ‘y’ like
this:

8/xy/x\

y/

This is actually a singie command, although it is
typed on two lines. Bearing in mind that ‘\’
turns off special meanings, it seems relatively
intuitive that a ‘\’ at the end of a line would .
make the newline there no longer special.

You can in fact make a single line into
several lines with this same mechanism. As a
large example, consider underiining the word
‘very’ in a long line by splitting ‘very’ onto a
separate line, and preceding it by the roff or nroff
formatting command ‘.ul’.

text a very big rext
The command

s/ overyc/\
aul\

very\

/

converts the line into four shorter lines, preced-
ing the word ‘very’ by the line ‘.ul’, and elim-
inating the spaces around the ‘very’, all at the
same time.

When a newline is substituted in, dot is
left pointing at the last line created.

Joining Lines

Lines may also be joined together, but this
is done with the j command instead of s. Given
the lines

Now is
othe time

and supposing that dot is set to the first of them,

then the command
]
joins them together. No bianks are added. which

is why we carefully showed a blank at the begin-
ning of the second line.

All by itself, a j command joins line dot to
line dot+1, but any contiguous set of lines can
be joined. Just specify the starting and ending
line numbers. For example,

1,Sip

joins all the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \ (...\)

(This section should be skipped on first
reading.) Recall that "&' is a shorthand that
stands for whatever was matched by the left side
of an s command. [n much the same way you
can capture separate pieces of what was matched:
the only difference is that you have 1o specify on
the left side just what pieces you're interested in.

Suppose. for instance. that you have a file
of lines that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede
the name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands. but it is tedious and error-prone. (It
is instructive to figure out how it is done,
though.)

The alternative is to ‘tag’ the pieces of the
pattern (in this case, the last name, and the ini-
tials). and then rearrange the pieces. On the left
side of a substitution, if part of the pattern is
enciosed between \(and \), whatever matched
that part is remembered, and available for use on
the nght side. On the right side, the symbol ‘\1°
refers to whatever matched the first \(...\) pair,
‘\2' 10 the second \(...\). and so on.

The command
1.8s/\([".]*\). 2 s\ (.s\)/\ 22\ 1/

although hard to read, does the job. The first
\(...\) matches the last name, which is any string
up to the comma: this is referred to on the right
side with *\1’. The second \(...\) is whatever
follows the comma and any spaces., and is
referred to as "\2".

Of course, with any editing sequence this
complicated. 1t's foolhardy to simply run it and

hope. The global commands g and v discussed
in section 4 provide a way for you to print
exactly those lines which were affected by the
substitute command. and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressing in ed. that is, how you
specify what lines are to be affected by editing
commands. We have already used constructions
like

1.8s/x/y/

to specify a change on ail lines. And most users
are long since familiar with using a single new-
line (or return) to print the next line, and with

/thing/

to find a line that contains ‘thing'. Less familiar,
surprisingly enough, is the use of

7thing?

to scan backwards for the previous occurrence of
‘thing’. This is especially handy when you real-
ize that the thing you want to operate on is back
up the page from where you are currently edit-
ing.

The slash and question mark are the only
characters you can use to delimit a context
search, though you can use essentially any char-
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like *.’, 'S, */.../" and *?...?”" with ‘<’
and *='. Thus

S—-1
is a command to print the next to last line of the
current file (that is, one line before line ‘S").

For exampie, to recall how far you got in a previ-
ous editing session,

$-5.5p
prints the last six lines. (Be sure you understand

why it's six. not five.) If there aren't six. of
course, you'll get an error message.

As another example,
~3,.+3p

prints from three lines before where you are now
(at line dot) to three lines after. thus giving you
a bit of context. By the way, the ‘<+° can be
omuitted:

.—~3..Jp

is absolutely identical in meaning.

Another area in which you can save typing
effort in specifying lines is to use ‘*—" and ‘+" as
line numbers by themselves.

by itself is a command to move back up one line
in the file. In fact, you can string several minus
signs together to move back up that many lines:

moves up three lines, as does ‘—3'. Thus
-3,+3p)
is also identical to the examples above.
Since ‘~" is shorter than ‘.—1", construc-
tions like
—..s/bad/good/

are useful. This changes ‘bad’ to ‘good’ on the
previous line and on the current line.

‘4’ and ‘=" can be used in combination
with searches using */.../° and *?..7", and with
*‘$’. The search

/thing/ ==

finds the line containing ‘thing’, and positions
you two lines before it.

Repeated Searches
Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it
isn’t the horrible thing that you wanted, so it is
necessary to repeat the search again. You don't
have to re-type the search, for the construction

1l

is a shorthand for ‘the previous thing that was
searched for’, whatever it was. This can be
repeated as many times as necessary. You can
also go backwards:

77
searches for the same thing, but in the reverse
direction.

‘ Not only can you repeat the search, but
you can use ‘//° as the left side of a substitute
command, to mean ‘the most recent pattern’.

/horrible thing/
«e.. €d prints line with ‘horrible thing’ ...
s//good/p

To go backwards and change a line, say
7%s//good/

Of course, you can still use the ‘&’ on the right
hand side of a substitute to stand for whatever

got matched:
/1s//&c&/p

finds the next occurrence of whatever you
searched for last, replaces it by two copies of
itself, then prints the line just to verify that it
worked.

Defauit Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a command if you don’t specify the
lines it is to act on, and on what line you will be
positioned (i.e., the value of dot) when a com-
mand finishes. If you can edit without specifying
unnecessary line numbers, you can save a lot of
typing.

As the most obvious example, if you issue
a search command like

/thing/

you are left pointing at the next line that con-
tains ‘thing’. Then no address is required with
commands like s to make a substitution on that
line, or p to print it, or | to list it, or d to delete
it, or a to append text after it, or ¢ to change it,
or i to insert text before it.

What happens if there was no ‘thing’?
Then you are left right where you were — dot is
unchanged. This is also true if you were sitting
on the only ‘thing’ when you issued the com-
mand. The same rules hold for searches that use
*2...7"; the only difference is the direction in
which you search.

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line ‘S’ gets deleted, however, dot points
at the new line ‘S°.

The line-changing commands a, ¢ and i by
default all affect the current line — if you give
no line number with them, a appends text after
the current line, ¢ changes the current line, and i
inserts text before the current line.

8, ¢ and i behave identically in one
respect — when you stop appending, changing or
inserting, dot points at the last line entered.
This is exactly what you want for typing and edit-
ing on the fly. For example, you can say

a

. text ...

... botch ... (minor error)
s/botch/correct/ (fix botched line)
a

... more text ...

without specifying any line number for the sub-

stitute command or for the second append com-
mand. Or you can say

a

.. text ...

... horrible botch ...
¢ (repiace entire line)
... fixed up line ...

(major error)

You should experiment to determine what
happens if you add no lines with a, cor L

The r command will read a file into the
text being edited, either at the end if you give no
address, or after the specified line if you do. In
either case, dot points at the last line read in.
Remember that you can even say Or to read a
file in at the beginning of the text. (You can
also say 0Oa or 1li to start adding text at the begin-
ning.)

The w command writes out the entire file.
If you precede the command by one line
number, that line is written. while if you precede
it by two line numbers, that range of lines is
written. The w command does nor change dot:
the current line remains the same, regardless of
what lines are written. This is true even if you
say something like

/"\.AB/./"\.AE/w abstract

which invoives a context search.

Since the w command is so easy to use,
vou should save what you are editing regularly as
vou go along just in case the system crashes, or
in case you do something foolish. like clobbering
what you're editing.

The least intuitive behavior. in a sense. is
that of the s command. The rule is simpie —
you are left sitting on the last line that got
changed. If there were no changes, then dot is
unchanged.

To illustrate. suppose that there are three
lines in the buffer. and vou are sitting on the
middle one:

xl
x2
x3

Then the command
—.+s/x/v/p

prints the third line. which is the
changed. But if the three lines had been

last one

xl
v2
v3

and the same command had been issued whiie

dot pointed at the second line, then the resuit
would be to change and print only the first line,
and that is where dot would be set.

Semicolon *;’

Searches with */.../° and *?...?° start at the
current line and move forward or backward
respectively until they either find the pattern or
get back to the current line. Sometimes this is
not what is wanted. Suppose, for example, that
the buffer contains lines like this:

ab

Starting at line 1, one would expect that the
command

lal.Jb/p

prints ail the lines from the ‘ab’ to the ‘B¢’
inclusive. Actuaily this is not what happens.
Borh searches (for *a’ and for ‘d’) start from the
same point, and thus they both find the line that
contains ‘ab’. The result is to print a single line.
Worse, if there had been a line with a ‘b’ in it
before the ‘ab’ line. then the print command
would be in error. since the second line number
would be less than the first, and it is illegai to try
to print lines in reverse order.

This is because the comma separator for
line numbers doesn’t set dot as each address is
processed: each search starts from the same
place. In ed, the semicolon ;" can be used just
like comma, with the single difference that use
of a semicolon forces dot to be set at that point
as the line numbers are being evaluated. In
effect, the semicoion "‘moves’ dot. Thus in our
axample above, the command

/a/./b/p

prints the range of lines from ‘ab’ to ‘"be’,
because after the "a’ is found, dot is set to that
line. and then 'b’ is searched for, starting beyond
that line.

This property is most often useful in a
very simpie situauon. Suppose you want to find
the second occurrence of ‘thing'. You could say

/thing/
/"

but this prints the first occurrence as well as the

second. and is a nuisance when you know very
well that it is only the second one you're
interested in. The solution is to say

/thing/.//

This says to find the first occurrence of ‘thing’,
set dot to that line, then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something, as in

?something?.??

Printing the third or fourth or ... in either direc-

tion is left as an exercise.

Finally, bear in mind that if you want to
find the first occurrence of something in a file,
starting at an arbitrary place within the file, it is
not sufficient to say

1:/thing/

because this fails if ‘thing’ occurs on line 1. But
it is possible to say

0:/thing/

(one of the few places where 0 is a legal line
number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command, things are put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,
some changes are irrevocable — if you are read-
ing or writing a file or making substitutions or
deleting lines, these will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them). Dot may or may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line, then hit
delete, you are nor sitting on that line or even
near it. Dot is left where it was when the p com-
mand was started.

4. GLOBAL COMMANDS

The global commands g and v are used to
perform one or more editing commands on all
lines that either contain (g) or don't contain (v)
a specified pattern.

As the simplest example, the command
g/UNIX/p

prints all lines that contain the word ‘UNIX".
The pattern that goes between the slashes can be

-10-

anything that could be used in a line search or in
a substitute command: exactly the same rules
and limitations apply.

As another example, then,
8/"\./p

prints all the formatting commands in a file
(lines that begin with *.").

The v command is identical to g, except
that it operates on those line that do nor contain
an occurrence of the pattern. (Don't look too
hard for mnemonic significance to the letter ‘v’.)
So

v/"\Jp

prints all the lines that don't begin with ‘." — the
actual text lines.

The command that follows g or v can be
anything:

g/"\./d

deletes all lines that begin with *.’, and
g/°8/d

deletes all empty lines.

Probably the most useful command that
can follow a global is the substitute command,
for this can be used to make a change and print
each affected line for verification. For example,
we could change the word ‘Unix' to ‘UNIX’
everywhere, and verify that it really worked, with

g/Unix/s//UNIX/gp

Notice that we used ‘//° in the substitute com-
mand to mean ‘the previous pattern’, in this
case, ‘Unix’. The p command is done on every
line that matches the pattern, not just those on
which a substitution took place.

The global command operates by making
two passes over the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, each marked line in tum is exam-
ined, dot is set to that line, and the command
executed. This means that it is possible for the
command that follows a g or v to use addresses,
set dot, and so on, quite freely.

g/ "\.PP/ +

prints the line that follows each ‘.PP' command
(the signal for a new paragraph in some format-
ting packages). Remember that ‘+' means ‘one
line past dot’. And

g/topic/?"\.SH?1

searches for each line that contains ‘topic’, scans
backwards until it finds a line that begins ‘.SH’
(a section heading) and prints the line that fol-
lows that, thus showing the section headings

under which ‘topic’ is mentioned. Finally.
2/ \.EQ/+./"\.EN/~p

prints all the lines that lie between lines begin-
ning with *.EQ" and ".EN" formatting commands.

The g and v commands can aiso be pre-
ceded by line numbers. in which case the lines
searched are only those in the range specified.

Multi-line Global Commands

It is possibie to do more than one com-
mand under the control of a global command.
although the syntax for expressing the operation
is not especially naturali or pleasant. As an
example, suppose the task is to change *x’ t0 ‘v’
and ‘a’ to ‘b’ on all lines that contain ‘thing’".
Then

g/thing/s/x/vy/\
s/a/b/

is sufficient. The *\’ signals the g command that
the set of commands continues on the next line:
it terminates on the first line that does not end
with *\". (As a minor blemish. vou can't use a
substitute command to insert a newline within a
g command.)

You shouild watch out for this problem:
the command

g/x/slvi\
s/a/b/

does nor work as vou expect. The remembered
patiern is the last pattern that was actually exe-
cuted. so sometimes it will be ‘x’ (as expected).
and sometimes it will be ‘a’" (not expected). You
must spell it out, like this:

g/ x/s/x/y/\
s/a/b/

It is also possible 10 execute a, ¢ and i
commands under a global command. as with
other multi-line constructions. ail that is needed
is 10 add a °\" at the end of each line except the

last. Thus to add a ‘.nf" and ‘.sp’ command
before each “.EQ’ line. type

8/"\.EQ/i\

.af\

<SP

There is no need for a final line containing a *.’
to terminate the i command. uniess there are
further commands being done under the giobal.
On the other hand. it does no harm 1o put it in
either.

-1 -

5. CUT AND PASTE WITH UNIX COM-
MANDS

One editing area in which non-
programmers seem not very confident s in what
might be called ‘cut and paste’ operations -
changing the name of a file. making a copy of a
file somewhere eise, moving a few lines from
one place to another in a file, inserting one file in
the middle of another. splitting a file into pieces,
and splicing two or more files together.

Yet most of these operations are actually
quite easy, if vou keep vour wits about you and
go cautiously. The next several sections talk
about cut and paste. We will begin with the UNIX
commands for moving entire files around. then
discuss ed commands for operating on pieces of
files.

Changing the Name of a File

You have a file named ‘memo’ and you
want it to be called ‘paper’ instead. How is it
done?

The UNiX program that renames files is
called mv (for ‘move’); it ‘moves’ the file from
one name to another, like this: .

mv memo paper

That's all there is to it: mv from the old name to
the new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can't move a file
to itself —

mv X X

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a
file = an entirely fresh version. This might be
because you want to work on a file, and vet save
a copy in case something gets fouled up, or just
because you're paranoid.

In any case, the way to do it is with the ¢p
command. (cp stands for ‘copy’. the system is
big on short command names. which are appreci-
ated by heavy users. but sometimes a strain for
novices.) Suppose vou have a file called ‘good’
and vou want to save a copy before you make
some dramatic editing changes. Choose a name
- ‘savegood’ might be acceptable = then type

cp good savegood‘

This copies ‘good’ onto ‘savegood'. and vou now

have two identical copies of the file ‘good’. (If
‘savegood” previously contained something, it
gets overwritten.)

Now if you decide at some time that you
want to get back to the original state of ‘good’,
you can say

mv savegood good

(if you're not interested in ‘savegood’ any
more), or

cp savegood good
if you still want to retain a safe copy.

[n summary, mv just renames a file; cp
makes a duplicate copy. Both of them clobber
the ‘target’ file if it already exists, so you had
better be sure that’s what you want to do before
you do it.

Removing a File

If you decide you are really done with a
file forever, you can remove it with the rm com-
mand:

rm savegood

throws away (irrevocably) the file called

‘savegood’.

Putting Two or More Files Together

The next step is the familiar one of collect-
ing two or more files into one big one. This will
be needed, for example, when the author of a
paper decides that several sections need to be
combined into one. There are several ways to do
it, of which the cleanest, once you get used to it,
is a program called cat. (Not a// programs have
two-letter names.) cat is short for ‘concatenate’,
which is exactly what we want to do.

Suppose the job is to combine the files
‘filel” and ‘file2’ into a single file cailed ‘bigfile’.
If you say

cat file

the contents of ‘file’ will get printed on your ter-
minal. If you say

cat filel file2

the contents of ‘filel’ and then the contents of
‘file2’ will borh be printed on your terminal, in
that order. So cat combines the files, all right,
but it’'s not much help to print them on the ter-
minal — we want them in ‘bigfile’.

Fortunately, there is a way. You can tell
the system that instead of printing on your ter-
minal, you want the same information put in a
file. The way to do it is to add to the command
line the character > and the name of the file

-12-

where you want the output to go. Then you can
say

cat filel file2 >bigfile

and the job is done. (As with cp and mv, you're
putting something into ‘bigfile’, and anything
that was aiready there is destroyed.)

This ability to ‘capture’ the output of a
program is one of the most useful aspects of the
system. Fortunately it’s not limited to the cat
program - you can use it with any program that
prints on your terminal. We’'ll see some more
uses for it in 2 moment.

Naturally, you can combine several files,
not just two:

cat filel file2 filed ...

collects a whole bunch.
Question: is there any difference between

c¢p good savegood

> bigfile

and
cat good >savegood

Answer: for most purposes, no. You might rea-
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that cp will do some other things as
well, which you can investigate for yourself by
reading the manual. For now we’ll stick to sim-
ple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it; in fact before reading
further it would be valuable if you figured out
how. To be specific, how would you use cp, mv
and/or cat to add the file ‘goodl’ to the end of
the file ‘good’?

You could try

cat good goodl >temp
mv temp good

which is probably most direct. You should also
understand why

cat good goodl >good

doesn’t work.
‘good'!)

The easy way is to use a variant of >,
cailed > >. In fact, > > is identical to > except
that instead of clobbering the oid file, it simply
tacks stuff on at the end. Thus you could say

cat goodl > >good
and ‘goodl’ is added to the end of ‘good’. (And

(Don’t practice with a good

if ‘good’ didn't exist, this makes a copy of
‘good1’ called ‘good’.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of files — individual lines or groups of lines.
This is another area where new users seem
unsure of themseives.

Filenames

The first step is to ensure that you know
the ed commands for reading and writing files.
Of course you can't go very far without knowing
rand w. Equally useful. but less well known, is
the ‘edit’ command e. Within ed. the command

e newfile

says ‘] want to edit a new file called newfile.
without leaving the editor.” The e command dis-
cards whatever you're currently working on and
starts over on newfile. It's exactly the same as if
you had quit with the q command, then re-
entered ed with a new file name, except that if
you have a pattern remembered, then a com-
mand like // will still work.

If you enter ed with the command
ed file

ed remembers the name of the file, and any sub-
sequent e, r or w commands that don’t contain a
filename will refer to this remembered file. Thus

ed file!

... (editing) ...

w (writes back in filel)

e file2 (edit new file, without leaving editor)
... (editing on file2) ...

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the
name of any file more than once. (As an aside,
if you examine the sequence of commands here,
you can see why many UNIX systems use eas a
synonym for ed.)

You can find out the remembered file
name at any time with the f command: just type
f without a file name. You can also change the
name of the remembered file name with f; a use-
ful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file, then uses f
to guarantee that a careless w command won't
clobber the onginal.

<13 -

Inserting One File into Another

Suppose you have a file called ‘memo’,
and you want the file called ‘tabie’ to be inserted
just after the reference to Table 1. That is, in
‘memo’ somewhere is a line that says

Table 1 shows that ...

and the data contained in ‘table’ has to go there,
probably so it will be formatted properly by nroff
or troff. Now what?

This one is easy. Edit ‘memo’, find ‘Tabie
1°, and add the file ‘table’ right there:

ed memo

/Tabie 1/

Tabie | shows that ... [response from ed]
& table

The critical line is the last one. As we said ear-
lier, the r command reads a file; here you asked
for it to be read in right after line dot. An r
command without any address adds lines at the
end, 30 it is the same as Sr.

Writing out Part of a File

The other side of the coin is writing out
part of the document you're editing. For exam-
pie, maybe you want to split out into a separate
file that table from the previous example, so it
can be formatted and tested separately. Suppose
that in the file being edited we have

IS
...[lots of stuff]
. .TE

which is the way a table is set up for the tbl pro-
gram. To isolate the table in a separate file
called ‘tabie’, first find the start of the table (the
*. TS’ line), then write out the interesting part:

/1°\.TS/
TS led prints the line it found/
o/ “\.TE/w table

and the job is done. If you are confident, you
can do it all at once with

/°\.TS/;/"\.TE/w tabie

The point is that the w command can write
out a group of lines, instead of the whole file. In
fact, you can write out a singie line if you like;
just give one line number instead of two. For
example, if you have just typed a horribly com-
plicated line and you know that it (or something
like it) is going to be needed later, then save it
- don’t re-type it. In the editor, say

a
...Jots of stuff...
...horrible line...
W temp

a

«eomore stuff...
.r temp

a

«omore stuff...

This last example is worth studying, to be sure
you appreciate what's going on.

Moving Lines Around

Suppose you want to move a paragraph
from its present position in a paper to the end.
How would you do it? As a concrete example,
suppose each paragraph in the paper begins with
the formatting command ‘.PP’. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad)
is to write the paragraph onto a temporary file,
delete it from its current position, then read in
the temporary file at the end. Assuming that
you are sitting on the ‘.PP’ command that begins
the paragraph, this is the sequence of commands:

.,/‘\.PP/-' temp
o/ =d
$r temp

That is, from where you are now (‘.’) until one
line before the next ‘.PP* (*/°\.PP/-=") write
onto ‘temp’. Then deiete the same lines.
Finally, read ‘temp’ at the end.

As we said, that’s the brute force way.
The easier way (often) is to use the move com-
mand m that ed provides — it lets you do the
whole set of operations at one crack, without any
temporary file.

The m command is like many other ed
commands in that it takes up to two line
numbers in front that tell what lines are to be
affected. It is also followed by a line number that
teils where the lines are to go. Thus

linel, line2 m line3

says to move all the lines between ‘linel’ and
‘line2’ after ‘line3’. Naturally, any of ‘linel’
etc., can be patterns between slashes, $ signs, or
other ways to specify lines.

Suppose again that you’re sitting at the
first line of the paragraph. Then you can say

o/"\.PP/=m$§
That’s all.

-14-

As another example of a frequent opera-
tion, you can reverse the order of two adjacent

" lines by moving the first one to after the second.

Suppose that you are positioned at the first.
Then

m+

does it. It says to move line dot to after one line
after line dot. If you are positioned on the
second line,

m -
does the interchange.

As you can see, the m command is more
succinct and direct than writing, deleting and re-
reading. When is brute force better anyway?
This is a2 matter of personal taste — do what you
have most confidence in. The main difficuity
with the m command is that if you use patterns
to specify both the lines you are moving and the
target, you have to take care that you specify
them properly, or you may well not move the
lines you thought you did. The resuit of a
botched m command can be a ghastly mess.
Doing the job a step at a time makes it easier for
you to verify at each step that you accomplished
what you wanted to. It’s also a good idea to
issue a w command before doing anything com-
plicated; then if you goof, it’s easy to back up to
where you were.

Marks

ed provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can be handy for moving lines, and for
keeping track of them as they move. The mark
command is k; the command

kx

marks the current line with the name ‘x’. If a
line number precedes the k, that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer to the marked line
with the address

’,

X

Marks are most useful for moving things
around. Find the first line of the block to be
moved, and mark it with 2. Then find the last
line and mark it with 5. Now position yourseif
at the place where the stuff is to go and say

‘a,’dbm.
Bear in mind that only one line can have a

particular mark name associated with it at any
given time.

Copying Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often. so as to
cut down on typing ume. Of course this couid
be more than one line: then the saving is
presumably even greater.

ed provides another command. called t
(for “transfer’) for making a copy of a group of
one or more lines at any point. This is often
easier than writing and reading.

The t command is identical to the m com-
mand. except that instead of moving lines it sim-
ply duplicates them at the piace vou named.
Thus

1.8t8

duplicates the entire contents that you are edit-
ing. A more common use for t is for creating a
series of lines that differ only slightly. For
example. vou can say .

a
X ... (long line)

asessseces
.

t, (make a copy)

s/x/yl (change it a bit)

t. (make third copy)

s/viz/ (change it a bit)
and so on.

The Temporary Escape *!°

Sometimes it is convenient to be able 10
temporarily escape from the editor 10 do some
other UNIX command. perhaps one of the file
copy or move commands discussed in section 3.
without leaving the editor. The ‘escape’ com-
mand @ provides a way to do thss.

If vou say
lany UNIX command

vour current editing state is suspended. and the
UNIX command vou asked for is executed. When
the command finishes. ed will signal vou by
printing another ! at that point vou can resume
editing.

You can really do am UNIX command.

including another ed. (This is quite common, in
fact.) In this case. vou can even do another .

7. SUPPORTING TOOLS

There are several tools and iechniques that
go along with the editor. ail of which are refa-
tively easy once vou know how ed works.
because they are all based on the editor. In this
section we will give some fairly cursory examples
of these tools. more 1o indicale their exisience
than to provide 4 compiete tutorial. More infor-

mation on each can be found in (3].

Grep

Sometimes vou want to find all
occurrences of some word or pattern in a set of
files. 10 edit them or perhaps just to verify their
presence or absence. It may be possible 10 edit
each file separately and look for the pattern of
interest. but if there are many files this can get
very tedious. and if the files are really big. it may
be impossibie because of limits in ed.

The program grep was invented to get
around these limitations. The search patierns
that we have described in the paper are often
called ‘regular expressions’. and °grep’ stands for

g/re/p

That describes exactly what grep does — it prints
every line in a set of files that contains a particu-
lar pattern. Thus

grep ‘thing’ filel file2 file3 ...

finds ‘thing’ wherever it occurs in any of the files
‘filel®, *file2". etc. grep also indicates the file in
which the line was found. so vou can later edit it
if vou like.

The pattern represented by °thing’ can be |
any pattern vou can use in the editor, since grep
and ed use exactly the same mechanism for pat-
tern searching. It is wisest always 10 enclose the
pattern in the single quotes "..’ if it contains any
non-aiphabetic characters. since many such char-
aclers aiso mean something special to the UNIX
command interpreter (the ‘shell’). If vou don't
quote them, the command interpreter will try to
interpret them before grep gets a chance.

There is also a way to find lines that don
contain a4 pattern:

grep —v ‘'thing' filel file2

finds ail lines that don't contains ‘thing’. The
-+ must occur in the position shown. Given
grep and prep - v, it is possible 1o do things like
selecting all lines that contain some combination
of patterns. For exampie. to get all lines that
contain ‘x° but not ‘y":

grep x file... | grep =v v

(The notation | is a "pipe’. which causes the out-
put of the first command to be used as input to
the second command: see [2].)

Editing Scripts

If a fairly complicated set of editing opera-
tions is to be done on a whole set of files. the
easiest thing to do is to make up a ‘script’. i.e.. a
file that contains the operations vou want (o per-
form. then appiy this script 10 each file in turn.

For example, suppose you want to change
every ‘Unix’ to ‘UNIX' and every ‘Gcos’ to
‘GCOS’ in a large number of files. Then put
into the file ‘script’ the lines

8/Unix/s//UNIX/g
8/Geos/3//GCOS/g
w

q
Now you can say

ed filel <script
ed file2 <script

This causes ed to take its commands from the
prepared script. Notice that the whole job has to
be planned in advance.

And of course by using the UNIX command
interpreter, you can cycle through a set of files
automatically, with varying degrees of ease.

Sed

sed (‘stream editor’) is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of
input. Basically sed copies its input to its output,
applying one or more editing commands to each
line of input.

As an example, suppose that we want to
do the ‘Unix’ to ‘UNIX' part of the example
given above, but without rewriting the files.
Then the command

sed ‘s/Unix/UNIX/g’ filel file2 ..

applies the command ‘s/Unix/UNIX/g’ to all
lines from ‘filel’, ‘file2°’, etc., and copies all lines
to the output. The advantage of using sed in
such a case is that it can be used with input too
large for ed to handle. All the output can be col-
lected in one place, either in a file or perhaps
piped into another program.

If the editing transformation is so compli-
cated that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slightly more
complex syntax. To take commands from a file,
for example,

sed —f cmdfile input—files...

sed has further capabilities, including con-
ditional testing and branching, which we cannot
go into here.
Acknowiedgement -

[am grateful to Ted Dolotta for his careful
reading and valuable suggestions.

- 16 -

References

(1]

(2]
(3]

Brian W. Kernighan, 4 Turorial Introduction
to the UNIX Text Ediror, Bell Laboratories
internal memorandum.

Brian W. Kernighan, UNI/X For Beginners,
Bell Laboratories internai memorandum.
Ken L. Thompson and Dennis M. Ritchie,
The UNIX Programmer’s Manual. Bell
Laboratories.

UNX 3.2.1
Ex Reference Manual

William Joy

Revised for Versions 3.5 (VAX UNIX) and 2.13 (PDP UNIX) by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

Exis a line oriented text editor which supports both command and display oriented editing. This refer-
ence manual describes the command oriented part of ex, the display editing features of exare described in 4n
Introduction to Display Editing with Vi Other documents about the editor include the introduction Edir: A
Turorial, the Ex/Edit Command Summary, and a Vi Quick Reference card.

Computer Science
September 1980

Computing Services Notes

This manual documents both versions 2.13 and 3.5 of the text editor ex. Version 2.13 is currently supported on
the PDP UNIX Systems operated by Computer Facilities and Operations (CFO); version 3.6 is currently sup-
ported on the CFO VAX UNIX system. For VAX UNIX users, the changes from version 3.5 to 3.6 are listed in
an appendix to this manual. Also, a cumulative list of changes to the editor from version to version is main-
tained online on all UNIX systems; to retrieve the information type help ex news on PDP UNIX and cat
/usr/news/ex on VAX UNIX. -

A small number of features available with version 3.5 are not found in version 2.13. In most cases, the
manual documents these differences with footnotes stating ‘‘Version 3 only.” But there are still some instances
in which differences are not noted, or are noted ambiguously. Here is a complete list of the editor’s commands
and options available in version 3.5 but not in 2.13:

Ex Commands Vi Commands Options

appreviate “Et edcompatible
map Yt mesg

unmap remap

stop tagst

+Simultaneously press the control key and the character key.

tThe tag command is present in version 2.13, although the tags option is not. This means that, if tags are used
with the version 2.13 editor, they are read from a prescribed set of files. You cannot specify alternate names
for tag files.

Some size limitations differ between versions 2.13 and 3.5. Most significantly, version 3.5 can accomodate
larger files, up to 250,000 lines, as opposed to about 250,000 characters in version 2.13. For details on different
limitations, refer to the online lists of changes mentioned above.

Various other features of the editor are noted in the manual as *‘not available on all v2 editors.”” This
message relates to variants of ex designed for computers other than the PDP 11/70; the restrictions generally do
not apply to customers df CFO UNIX systems.

Computing Services
September 1981

Ex Reference Manual
Version 3.5/2.13 — September, 1980

William Joy

Revised for versions 3.5/2.13 by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, Ca. 94720

1. Starting ex

Each instance of the editor has a set of options, which can be set to tailor it to your liking.
The command edit invokes a version of ex designed for more casual or beginning users by
changing the default settings of some of these options. To simplify the description which fol-
lows we assume the default settings of the options.

When invoked, ex determines the terminal type from the TERM variable in the environ-
ment. It there is a TERMCAP variable in the environment, and the type of the terminal
described there matches the TERM variable, then that description is used. Also if the TERMCAP
variable contains a pathname (beginning with a /) then the editor will seek the description of
the terminal in that file (rather than the default /etc/termcap.) If there is a variable EXINIT in
the environment, then the editor will execute the commands in that variable, otherwise if there
is a file .exrc in your HOME directory ex reads commands from that file, simulating a source com-’
mand. Option setting commands placed in EXINIT or .exrc will be executed before each editor
session.

A command to enter ex has the following prototype:t
ex[=][=v][=twmg]l[=r][=1][=wn][=x][=R][+command] name ...
The most common case edits a single file with no options, i.e.:
ex name |

The — command line option option suppresses all interactive-user feedback and is useful in
processing editor scripts in command files. The =—v option is equivalent to using vi rather than
ex. The —t option is equivalent to an initial tag command, editing the file containing the tag
and positioning the editor at its definition. The —r option is used in recovering after an editor
or system crash, retrieving the last saved version of the named file or, if no file is specified,
typing a list of saved files. The =1 option sets up for editing LiSp, setting the showmartch and
lisp options. The =—w option sets the default window size to n, and is useful on dialups to start
in small windows. The —x option causes ex to prompt for a key, which is used to encrypt and
decrypt the contents of the file, which should already be encrypted using the same key, see
crypr(1). The —R option sets the readoniy option at the start. *+ Name arguments indicate files
to be edited. An argument of the form +command indicates that the editor should begin by

The financial support of an 1BM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.

t Brackets ‘[' ‘]’ surround optional parameters here.

¢ Not available in all v2 editors due 10 memory constraints.

.2.

executing the specified command. If command is omitted, then it defaults to “‘S*’, positioning
the editor at the last line of the first file initially. Other useful commands here are scanning
patterns of the form ‘‘/pat’’ or line numbers, e.g. ‘“+ 100" starting at line 100.

»

2. File manipulation

2.1. Current file

Ex is normally editing the contents of a single file, whose name is recorded in the current
file name. Ex performs all editing actions in a buffer (actually a temporary file) into which the
text of the file is initially read. Changes made to the buffer have no effect on the file being
edited unless and until the buffer contents are written out to the file with a write command.
After the buffer contents are written, the previous contents of the written file are no longer
accessible. When a file is edited, its name becomes the current file name, and its contents are
read into the buffer.

The current file is almost always considered to be edited. This means that the contents of
the buffer are logically connected with the current file name, so that writing the current buffer
contents onto that file, even if it exists, is a reasonable action. If the current file is not edited
then ex will not normally write on it if it already exists.*

2.2. Alternate file

Each time a new value is given to the current file name, the previous current file name is
saved as the alternate file name. Similarly if a file is mentioned but does not become the
current file, it is saved as the alternate file name.

2.3. Filename expansion

Filenames within the editor may be specified using the normal shell expansion conven-
tions. In addition, the character ‘%’ in filenames is replaced by the current file name and the
character ‘#’ by the alternate file name.?t

2.4. Multiple files and named buffers

If more than one file is given on the command line, then the first file is edited as
described above. The remaining arguments are placed with the first file in the argument list.
The current argument list may be displayed with the args command. The next file in the argu-
ment list may be edited with the next command. The argument list may also be respecified by
specifying a list of names to the next command. These names are expanded, the resulting list
of names becomes the new argument list, and ex edits the first file on the list.

For saving blocks of text while editing, and especially when editing more than one file, ex
has a group of named buffers. These are similar to the normal buffer, except that only a lim-
ited number of operations are available on them. The buffers have names a through z.¢

2.5. Read only

It is possible to use ex in read only mode to look at files that you have no intention of
modifying. This mode protects you from accidently overwriting the file. Read only mode is on
when the readonly option is set. It can be turned on with the —R command line option, by the
view command line invocation, or by setting the readonly option. It can be cleared by setting
noreadonly. It is possibie to write, even while in read only mode, by indicating that you really

* The file command will say ‘‘{Not edited]" if the current file is not considered edited.

t This makes it easy to deal alternately with two files and eliminates the need for retyping the name supplied
on an edit command after a Vo write since last change diagnostic is received.

t It is also possible to refer to 4 through Z: the upper case buffers are the same as the lower but commands
append to named buffers rather than replacing if upper case names are used.

-3.

know what you are doing. You can write to a different file, or can use the ! form of write, even
while in read only mode.

3. Exceptional Conditions

3.1. Errors and interrupts

When errors occur ex (optionally) rings the terminal bell and, in any case, prints an error
diagnostic. If the primary input is from a file, editor processing will terminate. If an interrupt
signal is received, ex prints “‘Interrupt’” and returns to its command level. If the primary input
is a file, then ex will exit when this occurs.)

3.2. Recovering from hangups and crashes

If a hangup signal is received and the buffer has been modified since it was last written
out, or if the system crashes, either the editor (in the first case) or the system (after it reboots
in the second) will attempt to preserve the buffer. The next time you log in you should be able
to recover the work you were doing, losing at most a few lines of changes from the last point
before the hangup or editor crash. To recover a file you can use the =r option. If you were
editing the file resume, then you should change to the directory where you were when the crash
occurred, giving the command

exX =r resume

After checking that the retrieved file is indeed ok, you can write it over the previous contents of
that file.

You will normally get mail from the system telling you when a file has been saved after a
crash. The command '

ex =—r

will print a list of the files which have been saved for you. (In the case of a hangup, the file
will not appear in the list, although it can be recovered.)

4. Editing modes

Ex has five distinct modes. The primary mode is command mode. Commands are entered
in command mode when a ‘:’ prompt is present, and are executed each time a complete line is
sent. In text input mode ex gathers input lines and places them in the file. The append, insert,
and change commands use text input mode. No prompt is printed when you are in text input
mode. This mode is left by typing a ‘.’ alone at the beginning of a line, and command mode
resumes.

The last three modes are open and visual modes, entered by the commands of the same
name, and, within open and visual modes texr insertion mode. Open and visual modes allow
local editing operations to be performed on the text in the file. The open command displays
one line at a time on any terminal while visua/ works on CRT terminals with random positioning
cursors, using the screen as a (single) window for file editing changes. These modes are
described (only) in An Introduction to Display Editing with Vi.

5. Command structure .

Most command names are English words, and initial prefixes of the words are acceptable
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands.* h

® As an example, the command subsuiute can be abbreviated ‘s’ while the shortest available abbreviation for
the ser command is ‘se’.

5.1. Command parameters

Most commands accept prefix addresses specifying the lines in the file upon which they
are to have effect. The forms of these addresses will be discussed below. A number of com-
mands also may take a trailing count specifying the number of lines to be involved in the com-
mand.t Thus the command **10p’" will print the tenth line in the buffer while ‘‘delete 5 will
delete five lines from the butfer, starting with the current line.

Some commands take other information or parameters, this information always being
given after the command name.#

5.2. Command variants

A number of commands have two distinct variants. The variant form of the command is
invoked by placing an ‘! immediately after the command name. Some of the default variants
may be controlled by options; in this case, the ‘!’ serves to toggie the default.

5.3. Flags after commands

The characters ‘#’, ‘p’ and ‘I’ may be placed after many commands.** In this case, the
command abbreviated by these characters is executed after the command completes. Since ex
normally prints the new current line after each change, ‘p’ is rarely necessary. Any number of
‘4’ or ‘=’ characters may also be given with these flags. If they appear, the specified offset is
applied to the current line value before the printing command is executed.

5.4. Comments

It is possible to give editor commands which are ignored. This is useful when making
complex editor scripts for which comments are desired. The comment character is the double
quote: ". Any command line beginning with " is ignored. Comments beginning with " may also
be placed at the ends of commands, except in cases where they could be confused as part of
text (shell escapes and the substitute and map commands).

5.5. Multiple commands per line

More than one command may be placed on a line by separating each pair of commands by
a ‘! character. However the global commands, comments, and the shell escape ‘!’ must be the
last command on a line, as they are not terminated by a .

S.6. Reporting large changes

Most commands which change the contents of the editor buffer give feedback if the scope
of the change exceeds a threshold given by the report option. This feedback helps to detect
undesirably large changes so that they may be quickly and easily reversed with an undo. After
commands with more global effect such as global or wisual, you will be informed if the net
change in the number of lines in the buffer during this command exceeds this threshold.

6. Command addressing

6.1. Addressing primitives

. The current line. Most commands leave the current line as the last line
which they affect. The default address for most commands is the current
line, thus “." is rarely used alone as an address.

+ Counts are rounded down if necessary.

t Examples would be option names in a ser command i.e. ‘‘set number’. a file name n an edir command, a
reguiar expression in a subsnute command, or a target address for a copy command, i.e. 1,5 copy 25™".

** A 'p’or ‘' must be preceded by a blank or tab except in the single special case ‘dp’.

-5.

n The nth line in the editor’s buffer, lines being numbered sequentially
from 1.

$ The last line in the buffer.

% An abbreviation for ‘“1,3", the entire buffer.

+n =n An offset relative to the current buffer line.t

/pat/ ?pat? Scan forward and backward respectively for a line containing pat, a regu-

lar expression (as defined below). The scans normally wrap around the
end of the buffer. If all that is desired is to print the next line containing
pat, then the trailing / or ? may be omitted. If pat is omitted or expli-
citly empty, then the last regular expression specified is located.:

69

X Before each non-relative motion of the current line ‘.’, the previous
current line is marked with a tag, subsequently referred to as “"’. This
makes it easy to refer or return to this previous context. Marks may also
be established by the mark command, using single lower case letters x
and the marked lines referred to as *'x’.

o0 0

6.2. Combining addressing primitives

Addresses to commands consist of a series of addressing primitives, separated by ,’ or *;’.
Such address lists are evaluated left-to-right. When addresses are separated by *;’ the current
line *.’ is set to the value of the previous addressing expression before the next address is inter-
preted. If more addresses are given than the command requires, then all but the last one or
two are ignored. If the command takes two addresses, the first addressed line must precede the
second in the buffer.t

7. Command descriptions
The following form is a prototype for all ex commands:

address command ! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in
06,9

the file. For sanity with use from within visua/ mode, ex ignores a ‘‘:>’ preceding any com-
mand. :

In the following command descriptions, the default addresses are shown in parentheses,
which are not, however, part of the command.

abbreviate word rhs abbr: ab

Add the named abbreviation to the current list. When in input mode in visual, if word is
typed as a complete word, it will be changed to rhs.

(.) append abbr: a
lext

b

Reads the input text and places it after the specified line. After the command, °.
addresses the last line input or the specified line if no lines were input. If address ‘0’ is
given, text is placed at the beginning of the buffer.

t+ The forms ‘.+3" ‘43’ and ‘+ <+ <" are all equivaient; if the current line is line 100 they all address line
103.

t The forms \/ and \? scan using the last regular expression used in a scan; after a substitute // and ??
would scan using the substitute’s regular expression.

t Null address specifications are permitted in a list of addresses, the default in this case is the current line *.";
thus *,100’ is equivalent to *.,100". It is an error to give a prefix address to a command which expects none.

The variant flag to append toggles the setting for the autoindent option during the input of
text.

args
The members of the argument list are printed, with the current argument delimited by ‘[’
and *J".

(.,.) change count abbr: ¢
text

Replaces the specified lines with the input rext. The current line becomes the last line
input; if no lines were input it is left as for a defete.

The variant toggles autoindent during the change.

(.,.)copy addr flags abbr: co

A copy of the specified lines is placed after addr, which may be ‘0’. The current line *.’
addresses the last line of the copy. The command ¢ is a synonym for copy.

(.,.)delete buffer count flags abbr: d

Removes the specified lines from the buffer. The line after the last line deleted becomes
the current line; if the lines deleted were originally at the end, the new last line becomes
the current line. If a named buffer is specified by giving a letter, then the specified lines
are saved in that buffer, or appended to it if an upper case letter is used.

edit file abbr: e
ex file

Used to begin an editing session on a new file. The editor first checks to see if the buffer
has been modified since the last write command was issued. If it has been, a warning is
issued and the command is aborted. The command otherwise deletes the entire contents
of the editor buffer, makes the named file the current file and prints the new filename.
After insuring that this file is sensiblet the editor reads the file into its buffer.

If the read of the file completes without error, the number of lines and characters read is
tvped. [f there were any non-ASCll characters in the file they are stripped of their non-
ASCII high bits, and any nuil characters in the file are discarded. If none of these errors
occurred, the file is considered edited. If the last line of the input file is missing the trail-
ing newline character, it will be supplied and a complaint will be issued. This command
leaves the current line ‘.’ at the last line read.t

t le., that it is not a binary file such as a directory, a block or character special file other than /dev/ry, a ter-
minal. or a binary or executable file (as indicated by the first word).
t [executed from within open or visual, the current line is initially the first line of the file.

e! file
The variant form suppresses the complaint about modifications having been made and not

written from the editor buffer, thus discarding all changes which have been made before
editing the new file.

e +nfile

Causes the editor to begin at line »n rather than at the last line; n may also be an editor
command containing no spaces, e.g.. ‘‘+/pat’’.

file abbr: f

Prints the current file name, whether it has been ‘[Modified]’ since the last write com-
mand, whether it is read only, the current line, the number of lines in the buffer, and the
percentage of the way through the buffer of the current line.*

file file
The current file name is changed to file which is considered ‘[Not edited]’.

(1,8) global /pat/ cmds . abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with °.” initially set to each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a *\’. If ¢mds (and pos-
sibly the trailing / delimiter) is omitted, each line matching pat is printed. Append, insert,
and change commands and associated input are permitted; the ‘.’ terminating input may
be omitted if it would be on the last line of the command list. Open and visual commands
are permitted in the command list and take input from the terminal.

The global command itself may not appear in ¢mds. The undo command is also not per-
mitted there, as undo instead can be used to reverse the entire globa/ command. The
options autoprint and autoindent are inhibited during a global, (and possibly the trailing /
delimiter) and the value of the report option is temporarily infinite, in deference to a
report for the entire global. Finally, the context mark ’ is set to the value of ‘.’ before
the global command begins and is not changed during a global command, except perhaps
by an open or visual within the global.

g! /pat/ cmds , abbr: v

The variant form of global runs cmds at each line not matching pat.
(.)insert abbr: i
text

3

Places the given text before the specified line. The current line is left at the last line
input; if there were none input it is left at the line before the addressed line. This com-
mand differs from-append only in the placement of text.

* In the rare case that the current file is ‘[Not edited]’ this is noted also; in this case you have to use the
form w! to write to the file, since the editor is not sure that a write will not destroy a file unrelated to the
current contents of the buffer.

rext
The variant toggles auroindent during the insert.

(.,.+1) join count flags abbr: j
Places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at least one blank character, two if there was a .’ at
the end of the line, or none if the first following character is a'*)’. If there is already
white space at the end of the line, then the white space at the start of the next line will be
discarded.

i
The variant causes a simpler join with no white space processing; the characters in the
lines are simply concatenated.

() kx

The k command is a synonym for mark. [t does not require a blank or tab before the fol-
lowing letter.

(.,.) list count flags

Prints the specified lines in a more unambiguous way: tabs are printed as ‘I’ and the end
of each line is marked with a trailing ‘S$’. The current line is left at the last line printed.

map /hs rhs

The map command is used to define macros for use in visual mode. Lhs should be a sin-
gle character, or the sequence ‘‘#n’’, for n a digit, referring to function key 7. When this
character or function key is typed in visual mode, it will be as though the corresponding
rhs had been typed. On terminals without function keys, you can type ‘‘#n’’. See section
6.9 of the ‘‘Introduction to Display Editing with Vi’ for more details.

(.) mark x

Gives the specified line mark x, a single lower case letter. The x must be preceded by a
blank or a tab. The addressing form ‘’x’ then addresses this line. The current line is not
affected by this command.

(.,.) move addr abbr: m

The move command repositions the specified lines to be after addr. The first of the
moved lines becomes the current line.

next abbr: n
The next file from the command line argument list is edited.

n! .
The variant suppresses warnings about the modifications to the buffer not having been
written out, discarding (irretrievably) any changes which may have been made.

n filelist

n +command filefist

-9.

The specified filelist is expanded and the resulting list replaces the current argument list;
the first file in the new list is then edited. If command is given (it must contain no
spaces), then it is executed after editing the first such file.

(., .) number count flags abbr: # or nu

Prints each specified line preceded by its buffer line number. The current line is left at
the last line printed.

(.) open flags abbr: o

(.) open /pat/ flags
Enters intraline editing open mode at each addressed line. If paris given, then the cursor
will be placed initially at the beginning of the string matched by the pattern. To exit this
mode use Q. See An Introduction to Display Editing with Vifor more details.
$

preserve

The current editor buffer is saved as though the system had just crashed. This command
is for use only in emergencies when a write command has resulted in an error and you
don’t know how to save your work. After a preserve you should seek help.

(.,.)print count abbr: por P

Prints the specified lines with non-printing characters printed as control characters ‘“x’;
delete (octal 177) is represented as **?'. The current line is left at the last line printed.

(.) put buffer abbr: pu

Puts back previously deleted or yanked lines. Normally used with delete to effect move-
ment of lines, or with yank to effect duplication of lines. If no buffer is specified, then the
last deleted or yanked text is restored.* By using a named buffer, text may be restored that
was saved there at any previous time.

quit abbr: q
Causes ex to terminate. "No automatic write of the editor buffer to a file is performed.
However, ex issues a warning message if the file has changed since the last write command
was issued, and does not quit.} Normally, you will wish to save your changes, and you
should give a write command; if you wish to discard them, use the q! command variant.

Quits from the editor, discarding changes to the buffer without complaint.

(.) read file abbr: r

Places a copy of the text of the given file in the editing buffer after the specified line. If
no file is given the current file name is used. The current file name is not changed unless
there is none in which case file becomes the current name. The sensibility restrictions for
the edit command apply here also. If the file buffer is empty and there is no current name
then ex treats this as an edit command.

t Not available in all v2 editors due to memory constraints.

* But no modifying commands may intervene between the delete or yank and the pur, nor may lines be
moved between files without using a named buffer.

t Ex will also issue a diagnostic if there are more files in the argument list.

-10 -

Address ‘0’ is legal for this command and causes the file to be read at the beginning of
the buffer. Stiatistics are given as for the edit command when the read successfully ter- .
minates. After a read the current line is the last line read.t

(.) read 'command

Reads the output of the command command into the buffer after the specified line. This
is not a variant form of the command, rather a read specifying a command rather than a
filename; a blank or tab before the ! is mandatory.

recover file

Recovers file from the system save area. Used after a accidental hangup of the phone*®
or a system crash®® or preserve command. Except when you use preserve you will be
notified by mail when a file is saved.

rewind abbr: rew
The argument list is rewound, and the first file in the list is edited.

rew!
Rewinds the argument list discarding any changes made to the current buffer.

set parameier

With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all of the option values.

Giving an option name followed by a ‘?’ causes the current value of that option to be
printed. The ‘?’ is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form ‘set option’ to turn them on or ‘set nooption’ to turn them
off;, string and numeric options are assigned via the form ‘set option=value’.

More than one parameter may be given to set; they are interpreted left-to-right.

shell abbr: sh
A new shell is created. When it terminates, editing resumes.

source file abbr: so
Reads and executes commands from the specified file. Source commands may be nested.

(., .) substitute /pat/repl/ options count flags abbr: s

On each specified line, the first instance of pattern pat is replaced by replacement pattern
repl. If the global indicator option character ‘g’ appears, then all instances are substituted;
if the confirm indication character ‘c’ appears, then before each substitution the line to be
substituted is typed with the string to be substituted marked with ‘1’ characters. By typing
an ‘y’ one can cause the substitution to be performed, any other input causes no change
to take place. After a substitute the current line is the last line substituted.

Lines may be split by substituting new-line characters into them. The newline in rep/
must be escaped by preceding it with a *\". Other metacharacters available in par and repl
are described below.

t Within open and wsual the current line is set to the first line read rather than the last.
°* The system saves a copy of the file you were editing only if you have made changes to the file.

-11 -

stop

Suspends the editor, returning control to the top level shell. If aqutowrite is set and there
are unsaved changes, a write is done first unless the form stop! is used. This commands
is only available where supported by the teletype driver and operating system.

(., .) substitute options count flags abbr: s

If pat and rep/ are omitted, then the last substitution is repeated. This is a synonym for
the & command.

(.,.) t addr flags
The 1 command is a synonym for copy.

ta r1ag
The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file.t

The tags file is normally created by a program such as crags, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the
tag, the second the name of the file where the tag resides, and the third gives an address-
ing form which can be used by the editor to find the tag; this field is usually a contextual
scan using ‘/pat/’ to be immune to minor changes in the file. Such scans are always per-
formed as if nomagic was set.

The tag names in the tags file must be sorted alphabetically. #

unabbreviate word abbr: una
l Delete word from the list of abbreviations.

undo abbr: u

Reverses the changes made in the buffer by the last buffer editing command. Note that
global commands are considered a single command for the purpose of undo (as are open
and visual.) Also, the commands write and edit which interact with the file system cannot
be undone. Undo is its own inverse.

Undo always marks the previous value of the current line ‘. as “’. After an undo the
current line is the first line restored or the line before the first line deleted if no lines
were restored. For commands with more global effect such as globa/ and visual the
current line regains it’s pre-command value after an undo.

unmap /hs
The macro expansion associated by map for /As is removed.

(1,8) v /pat/ cmds

A synonym for the global command variant g!, running the specified ¢mds on each line
which does not match par.

version abbr: ve
Prints the current version number of the editor as well as the date the editor was last
changed.

t If you have modified the current file before giving a /1ag command, you must write it out; giving another
tag command, specifying no tag will reuse the previous tag.
$ Not available in all v2 editors due to memory constraints.

-12 -

(.) visual type count flags abbr: vi

Enters visual mode at the specified line. Type is optional and may be ‘=", ‘1” or *." as in
the z command to specify the placement of the specified line on the screen. By default, if
tvpe is omitted, the specified line is placed as the first on the screen. A counr specifies an
initial window size; the default is the value of the option window. See the document An
Introduction to Display Editing with Vi for more details. To exit this mode, type Q.

visual file
visual +# file

From visual mode, this command is the same as edit.

(1,S3) write file abbr: w

Writes changes made back to file, printing the number of lines and characters written.
Normally file is omitted and the text goes back where it came from. If a file is specified,
then text will be written to that file.* If the file does not exist it is created. The current
file name is changed only if there is no current file name; the current line is never
changed.

If an error occurs while writing the current and edited file, the editor considers that there
has been ‘‘No write since last change’ even if the buffer had not previously been
modified.

(1,8) write>> file abbr: w>>
Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normal write command, and will write to any file which the
system permits.

(1,8)w !'command

Writes the specified lines into command. Note the difference between w! which overrides
checks and w ! which writes to a command.

wq name
Like a write and then a quit command.
wq! name
The variant overrides checking on the sensibility of the write command, as w! does.

xit name
If any changes have been made and not written, writes the buffer out. Then, in any case,
quits.

(.,.)yank buffer count abbr: ya

Places the specified lines in the named buffer, for later retrieval via put. If no buffer name
is specified, the lines go to a more volatile place; see the put command description.

* The editor writes to a file only if it is the current file and is edited, if the file does not exist, or if the file is
actually a teletype, /devirty, /devinull. Otherwise, you must give the variant form w! to force the write.

(.+1) z count
Print the next count lines, default window.

(.) z type count

Prints a window of text with the specified line at the top. If rype is ‘="’ the line is placed
at the bottom; a ‘." causes the line to be placed in the center.® A count gives the number
of lines to be displayed rather than double the number specified by the scroll option. On a
CRT the screen is cleared before display begins unless a count which is less than the
screen size is given. The current line is left at the last line printed.

! command

The remainder of the line after the ‘!" character is sent to a shell to be executed. Within
the text of command the characters ‘%’ and ‘#’ are expanded as in filenames and the char-

. acter ‘!’ is replaced with the text of the previous command. Thus, in particular, ‘!!’
repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed. The current line is unchanged by this command.

If there has been *‘[No write]”’ of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a warning. A
single ‘!’ is printed when the command completes.

(addr , addr) ! command

Takes the specified address range and supplies it as standard input to command; the result-
ing output then replaces the input lines.

(S) =
Prints the line number of the addressed line. The current line is unchanged.

(.,.) > count flags
(.,.) < count flags

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is determined by the shifiwidth option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted; no non-white char-
acters are discarded in a left-shift. The current line becomes the last line which changed
due to the shifting. '

D
An end-of-file from a terminal input scrolls through the file. The scroil option specifies
the size of the scroll, normally a half screen of text.

(.+1,.+1)

(.+1,.+1)]

An address alone causes the addressed lines to be printed. A blank line prints the next
line in the file.

® Forms ‘z=" and ‘z{"' also exist; ‘z=" places the current line in the center, surrounds it with lines of ‘="
characters and leaves the current line at this line. The form ‘z!’ prints the window before ‘z=—" would. The
characters ‘+°, ‘1’ and ‘="' may be repeated for cumulative effect. On some v2 editors, no fype may be
given.

-14 -

(.,.) & options count flags
Repeats the previous substitute command.

(.,.) " options count flags

Replaces the previous regular expression with the previous replacement pattern from a
substitution.

8. Regular expressions and substitute replacement patterns

8.1. Regular expressions

A regular expression specifies a set of strings of characters. A member of this set of
strings is said to be marched by the regular expression. Ex remembers two previous regular
expressions: the previous regular expression used in a substitute command and the previous reg-
ular expression used elsewhere (referred to as the previous scanning regular expression.) The
previous regular expression can always be referred to by a null re, e.g. *//" or ‘77",

8.2. Magic and nomagic

The regular expressions allowed by ex are constructed in one of two ways depending on
the setting of the magic opnon. The ex and vi default setting of magic gives quxck access to a
powerful set of regular expression metacharacters. The disadvantage of magic is that the user
must remember that these metacharacters are magic and precede them with the character ¢\’ to
use them as ‘‘ordinary’’ characters. With nomagic, the default for edit, regular expressions are
much simpler, there being only two metacharacters. The power of the other metacharacters is
still available by preceding the (now) ordinary character with a *\’. Note that ‘\’ is thus always
a metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of
this option is magic.t

8.3. Basic regular expression summary
The following basic constructs are used to construct magic mode regular expressions.

char An ordinary character matches itself. The characters ‘1’ at the beginning of a
line, ‘S’ at the end of line, ‘*’ as any character other than the first, <.’, \’, ‘[,
and ‘7’ are not ordinary characters and must be escaped (preceded) by *\’