
Authors:

THE ANATOMY OF THE

1541 DISK DRIVE
A Complete Guide to Using
The Commodore Disk Drive

Lothar Eng1isch
Norbert Szczepanowski

Edited by: Greg Dykema
Arnie Lee

ABACUS SOFTWARE
P.O. BOX 7211

GRAND RAPIDS, MI 49510

Second English printing, June 1984
Printed in U.S.A
Copyright (C)1983

Copyright (C)1984

Data Becker GrngH
Merowingerstr. 30
4000 Dusseldorf W. Germany
Abacus Software
P.O. Box 7211
Grand Rapids, MI 49510

This book is copyrighted. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of ABACUS Software, Inc.

ISBN 0-916439-01-1

PREFACE

The VIC-154l disk drive represents a very efficient external
storage medium for the Commodore user. It is an affordable
peripheral. In order to get the most from your 1541, you
need the appropriate information. In months of long,
detailed work, Lothar Englisch and Norbert Szczepanowski
have discovered many secrets of the 1541.

This book progresses from simple storage techniques, to
direct access commands , to program chaining techniques.
Beginners will welcome the nUmerous sample programs that are
fully explained in clear text. Machine language programmers
will particularly like the detailed documentation listing of
the Disk Operating System (005).

This book contains many useful and ready-to-run programs
that need only be typed in. Some of these programs
are: routines for extending BASIC, helpful routines such as
spooling, efficient address management, a complete household
budget planner and an easy-to-use DOS monitor to manipulate
individual sectors. Have fun with this book and your VIC-
1541 disk drive.

TABLE OF CONTENTS

Chapter 1: programming the VIC-1541 •••••••••••••••••••••••• 1

1.1 Getting Started •• l
1.1.1 The Disk Operating System ••••••••••••••••••••••• l
1.1.2 The TEST/DEMO Diskette •••••••••••••••••••••••••• 2
1.1.3 Formatting New Diskettes •••••••••••••••••••••••• 2
1.1.4 Some Facts about a 1541 Diskette •••••••••••••••• 3

1.2 Storing Programs on Diskette ••••••••••••••••••••••••••• 4
1.2.1 SAVE - Storing BASIC Programs ••••••••••••••••••• 4
1.2.2 LOAD - Loading BASIC Programs ••••••••••••••••••• 4
1.2.3 VERIFY - Checking Stored prograros ••••••••••••••• 5
1.2.4 SAVE "@: Replacing Prograros ••••••••••••••••• 5
1.2.5 Loading Machine Language Programs ••••••••••••••• 6
1.2.6 Storing Machine Language Programs ••••••••••••••• 7

1.3 Disk System Commands •••••••••••••••••••••••••••••••••• l0
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1.3.9
1.3.10

Transmitting Commands to the Disk Drive •••••••• 10
NEW - Formatting Diskettes ••••••••••••••••••••• 11
Reading the Error Channel •••••••••••••••••••••• 12
LOAD "$",8 Loading the Directory •••••••••••••• 13
SCRATCH - Deleting Files ••••••••••••••••••••••• 14
RENAME - Renaming Files •••••••••••••••••••••••• 15
COpy - Copying Files ••••••••••••••••••••••••••• 16
INITIALIZE - Intitializing the Diskette •••••••• 16
VALIDATE - "Cleaning up· the Diskette •••••••••• 17
? * - The Wildcards ••••••••••••••••••••••••••• 18

1.4 Sequential Data Storage ••••••••••••••••••••••••••••••• 20
1.4.1 The principle •••••••••••••••••••••••••••••••••• 20
1.4.2 OPENing a Sequential File •••••••••••••••••••••• 21
1.4.3 Transferring Data between Disk and Computer •••• 24
1.4.4 Adding Data to Sequential Files •••••••••••••••• 27
1.4.5 CLOSEing a sequential File ••••••••••••••••••••• 28
1.4.6 Redirecting the Screen Output ••••••••••••••• · ••• 29
1.4.7 Sequential Files as Tables in the Computer ••••• 30
1.4.8 Searching Tables ••••••••••••••••••••••••••• ~ ••• 32
1.4.9 Simple sorting of Tables ••••••••••••••••••••••• 35
1.4.10 Mailing List Management with Sequential

Data Storage •••••••••••••••••••••••••••••••• 38
1.4.11 Uses for Sequential Storage •••••••••••••••••••• 45

1.5 Relative Data Storage ••••••••••••••••••••••••••••••••• 46
1.5.1 The Principle •••••••••••••••••••••••••••••••••• 46
1.5.2 The Advantage over Sequential Storage •••••••••• 47
1.5.3 OPENing a Relative File •••••••••••••••••••••••• 47
1.5.4 Preparing the Data for Relative Storage •••••••• 50
1.5.5 Transferring Data •••••••••••••••••••••••••••••• 52
1.5.6 CLOSEing a Relative File ••••••••••••••••••••••• 55
1.5.7 Searching Records with the Binary Method ••••••• 55
1.5.8 Searching Records with a Separate Index File ••• 58
1.5.9 Changing Records ••••••••••••••••••••••••••••••• 61
1.5.10 Expanding a Relative File •••••••••••••••••••••• 62

1.5.11 Home Accounting with Relative Data Storage ••••• 64

1.6 Disk Error Messages and their Causes •••••••••••••••••• 72

1.7 Overview of Commands with a Comparison of
BASIC 2.0 - BASIC 4.0 - OOS 5.1 •••••••••••••••••••• 77

Chapter 2: Advanced Programming ••••••••••••••••••••••••••• 82

2.1 The Direct Access of any Block of the Diskette •••••••• 82

2.2 The Di rect Access Commands ••••••••••••••••.••••••••••• 86
2.2.1 The Block-Read Command ••••••••••••••••••••••••• 86
2.2.2 The Block-Pointer Command •••••••••••••••••••••• 87
2.2.3 The Block-Write Command •••••••••••••••••••••••• 88
2.2.4 The Block-Allocate Command ••••••••••••••••••••• 89
2.2.5 The Block-Free Command ••••••••••••••••••••••••• 90
2.2.6 The Block-Execute Command •••••••••••••••••••••• 91

2.3 Uses of Di rect Access ••••••.•••••••••••••••••••••••••• 92

2.4 Accessing the DOS - The Memory Commands ••••••••••••••• 94
2.4.1 The Memory-Read Command •••••••••••••••••••••••• 94
2.4.2 The Memory-Write Command ••••••••••••••••••••••• 95
2.4.3 The Memory-Execute Command ••••••••••••••••••••• 96
2.4.4 The User Commands •••••••••••••••••••••••••••••• 97

Chapter 3: Technical Information •••••••••••••••••••••••••• 99

3.1 The Construction the VIC-154l ••••••••••••••.•••••••••• 99
3.1.1 Block Diagram of the Disk Drive •••••••••••••••• 99
3.1.2 DOS Memory Map - ROM, RAM, 1/0 •••••••••••••••• 100

3.2 Operation of the DOS - An Overview •••••••••.••••••••• l04

3.3 The Structure of the Diskette •••••••••••••••••••••••• 106
3.3.1 The BAM of the VIC 1541 ••••••••••••••••••••••• 106
3.3.2 The Directory ••••••••••••••••••••••••••••••••• l07
3.3.3 The Directory Format •••••••••••••••••••••••••• l09

3.4 The Organization of Relative Files ••••••••••••••••••• 114

3.5 OOS 2.6 Rom Listings ••••••••••••••••••••••••••••••••• 118

Chapter 4: Programs and Tips For utilization
of the VIC-154l ••••••••••••••••••••••••.••••••• 269

4.1 Utility Programs ••••••••••••••••••••••••••••••••••••• 269
4.1.1 Displaying all File Parameters •••••••••••••••• 269
4.1.2 Scratch-protect Files - File Protect ••.••••••• 273
4.1.3 Backup Program - Copying a Diskette ••••••••••• 278
4.1.4 Copying Individual Files to another Diskette •• 280

4.1.5 Reading the Directory from within a program ••• 281

4.2 The Utility Programs on the TEST/DEMO Disk, •••••••••• 283
4.2 .1 008 5.1 •••.•••••••••••••••••••••••••.••••••••• 283
4.2.2 COPY/ALL •••••••••••••••••••••••••••••••••••••• 284
4.2.3 DISK ADDR CHANGE •••••••••••••••••••••••••••••• 284
4.2.4 DIR ••••.•••••••••••••.•••••••••••••••••••••••• 2fS
4.2.5
4.2.6
4.2.7
4.2.8

VIEW BAM •••••••••••••••••••••••••••••••••••••• 285
CHECK D1 SK •••••••••••••••••••••••••••••••••••• 285
DISPLAY T&S ••••••••••••••••••••••••••••••••••• 286
PERFORMANCE TEST •••••••••••••••••••••••••••••• 286

4.3 BASIC-Expansion and Programs for
Easy Use of the 1541 •••••••••••••••••••••••••• 287

4.3.1 Input strings of desired Length from the Disk.287
4.3.2 Easy preparation of Data Records •••••••••••••• 290
4.3.3 Spooling - Printing Directly from the Disk •••• 295

4.4 OVerlay Technique and Chaining
Machine Language Programs ••••••••••••••••••••• 299

4.5 Merge - Appending BASIC Programs ••••••••••••••••••••• 302

4.6 Disk-Monitor for Commodore 64 and VIC 20 ••••••••••••• 304

Chapter 5: The Larger CBM Disks •••••••••••••••••••••••••• 317

5.1 IEEE-Bus and Serial Bus •••••••••••••••••••••••••••••• 317

5.2 Comparison of all CBM Disk Drives •••••••••••••••••••• 319

Anatomy of the 1541 Disk Drive

Chapter 1: programming the VIC-154l

1.1 Getting Started

There it sits, your new Commodore VIC-154l disk drive. It's
fast and efficient but also intimidating. But have no fear.
We will instruct you in the ways of disk programming. The
first part of this book gives the beginner an intensive look
at the VIC-l54l. At least one example follows each command,
thereby explaining its functions and capabilities. You will
be surprised how easy the operation of your disk drive can
be, when you understand the "basics".

The beginner probably uses the disk drive mainly to store
programs. perhaps he has not realized that there are many
other ways to use the disk drive. This book attempts to
uncover these other ways.

Experienced programmers should not ignore the first chapter.
There may be some sections that may shed light on disk
usage. This is especially true concerning relative files and
data management.

1.1.1 The Disk Operating System

The disk drive is a rather complicated device which
coordinates mechanical hardware and electronic circuitry to
allow the storage of data on the diskette. When the
Commodore 64 or VIC-20 needs to read from or write to the
disk drive, it sends commands to the disk drive along the
heavy black cable that connects the drive to the computer.
The commands sent by the Commodore 64 or VIC-20 are under
stood at the disk drive by a by a built in program called
the Disk Operating System (DOS).

The DOS is a lengthy program contained on ROM in the disk
drive and carries out the activities of the disk drive as
commanded by the Commodore 64 or VIC-20. The version of DOS
contained in the VIC-154l carries the designation CBM DOS
V2.6.

The Commodore 64 and VIC-20 contain a version of BASIC
called COMMODORE BASIC 2.0. Other versions of BASIC (e.g.
BASIC 4.0 found of the Commodore 8032) have more advanced
disk commands which the VIC-l54l can also understand. In
order to use these advanced disk commands, you have to
sil11ulate them using BASIC 2.0.

At the end of the chapter is a listing of the BASIC 2.0

1

Anatomy .of the 1541 Disk Drive

commands with corresponding commands of the easier BASIC
4.0, as found on the larger Commodore computers.

1.1.2 The TEST/DEMO Diskette

The VIC-l54l disk drive is packaged with a diskette called
TEST/DEMO. Some of the programs contained on it cannot he
used without adequate knowledge of the way the disk drive
works. For now, lay this diskette aside.

The TEST/DEMO diskette is described in detail later.

1.1.3 Formatting New Diskettes

Brand new diskettes must be prepared before using them to
store data. Preparing them is called formatting.

what does formatting mean? Each disk drive mechanism has its
own special characteristics. A diskette is divided into
tracks and information is written along each track (similar
to the grooves of a phonographic record). The number of
tracks per diskette is varies from one manufacturer to
another. Each track is divided into sectors, whose number
can also vary.

During formatting empty sectors are written to the diskette.
A sector is written to each track and sector location and
each sector receives its own "address". This allows the DOS
to identify its position on the diskette. A sector is also
given a code so that the DOS can recognize if this diskette
was formatted by this type of disk drive. The code for the
VIC-154l disk drive is 2A. The remainder of the sector
(called a block) is used to store data and accommodates
exactly 256 characters.

The final purpose of formatting is to construct the
directory for the diskette. The directory is a "table of
contents· of the files stored on the diskette. There is also
a special data block (called the bit availability map or
BAM) which indicates if a given block on the diskette is
already in use or available for use. The directory and BAM
are kept on track 18 of the diskette.

2

Anatomy of the 1541 Disk Drive

1.1.4 Some Pacts about a 1541 Diskette

Diskette:

Number of Tracks:
Sectors per Track:
Bytes per block:
Total number of blocks:
Number of free blocks

Entries in the directory:

Mechanism:

35
17 to 21 (depending on track)
256
683
644 (the directory occupies
the remainder)
144 per diskette

- intelligent peripheral with its own processor and control
system

- connection to serial bus from CBM 64 or VIC-20, device
number 4-15 (8 standard)

3

Anatomy of the 1541 Disk Drive

1.2 Storing Programs on Diskette

The most common use of the disk drive is for storage of
programs. storing programs with a disk drive is considerably
easier than with a cassette recorder. The greatest advantage
of the disk drive is the speed of data transfer to and from
the computer. Here's a comparison:

Saving a 3 Kbyte program takes:
- 75 seconds with the VIC-1530 Datasette
- 12 seconds with the VIC-154l disk drive

An additional advantage is that a diskette can store more
programs than the cassette. To load a program, you can
consult the directory to view the selection of programs.
Even though the cassette drive allows you to store more than
one program on a tape, searching for that program is very
time consuming.

Before trying any of the following examples in this chapter,
you should remember that the diskette must be previously
formatted as explained in section 1.3.2 in order to be able
to save programs onto it.

1.2.1 SAVE - Storing BASIC Programs

Perhaps you previously owned a datasette on which you stored
programs. In this case the commands to save programs onto
diskette should be familiar to you. The SAVE command for the
disk drive is essentially the same as for the cassette
drive. You need only tell the computer that the program is
to be saved onto the disk drive and not on cassette. This
is done by adding the device number (usually 8) to the
command SAVE. Normally the drive is preset to respond to
this device number. Now write a small BASIC program and save
it with the command:

type in a the NEW command so the program in the computer's
memory is erased. In the following section you will learn
how the program can be retrieved.

1.2.2 LOAD - Loading BASIC Programs

AS with the SAVE command, this command is similar to the
LOAD command for the datasette with the addition of the
device number. NOW load in the previously saved program
with:

4

Anatomy of the 1541 Disk Drive

You can check the program by using the LIST command. Any
previous program in memory has now been replaced by the
program "TEST". It is possible to load a program into the
memory without replacing the previous program in memory.
Combining two program in memory is called "merging" An
example of merging is presented in a later section.

1.2.3 VERIFY - Checking Stored Programs

When you have saved a program on disk with the SAVE command,
it is often desirable to make sure that the program was
written error-free. You can do this by using the VERIFY
command. It has the following format:

Earlier you saved a program with SAVE -TEST-,8. This pro
gram should still be in memory. Using VERIFY, the program 1n
memory is checked against the program stored on diskette. If
both programs are identical, the computer responds with OK.

To try this out, type a few BASIC lines and then give the
following commands:

SAVE ·TEST2-,8
VERIFY ·TEST2·,8

Your computer will respond with OK if it is performing
correctly.

1.2.4 SAVE·@: ••• • - Replacing Programs

If you try to save your small TEST program on the disk
again, the computer will respond with a FILE EXISTS error
and will not complete the SAVE. The operating system of ehe
VIC-154l disk drive does not allow two programs to be saved
under the same name. This is logical because the computer
would not be able to distinguish between two programs with
the same name.

However you may want to update a program on diskette that was
previously saved. There are three ways to accomplish this:

1. Save the program under a different name
2. First erase the old program from the disk and save tte

new one under the old name

5

Anatomy of the 1541 Disk Drive

3. Use the addition @: in front of the file name in the SAVE
command

This is used as follows:

SAVE-@:TEST-,8

If you forget to use the characters @: in front of the
filename, and try to save a program whose name is already
contained on the diskette, you get the FILE EXISTS error.

If you are ieplacing a program on a diskette then the DOS
carries this out as follows:

1. A free block is designated as the first block of the
program and its location is stored in the directory entry
of the old copy.

2. The new copy of the program is stored in a free area of
the diskette.

3. All of the blocks of the old copy are marked as free.

1.2.5 Loading Machine Language Programs

Machine language programs are handled a little differently
from BASIC programs. A machine language program is trans
ferred to the computer by using a secondary address of 1.
When secondary address 1 is used, the program is loaded
"absolutely", that is, loaded into memory beginning at the
address specified in the first two bytes of the disk file.
An example:

loads the machIne language program at an absolute address.

For example, the program may he set up to load at the
decimal address 49152, and is started by the command: SYS
49152. Should you load a machine language program without
the secondary address, you will most likely see the message
"SYNTAX ERROR IN •••• " if you type RUN.

Likewise, trying to LIST the machine language program will
display nonsense. Unfortunately, machine language programs
are not differentiated from BASIC programs in the directory.
Roth have the file type PRG.

Usually, if typing RUN results in SYNTAX ERROR IN •••• , you
know that the program is not written in BASIC and should be
treated as a machine language program. In this case it must
be loaded with the command LOAD ·program-,8,1. It cannot be

6

Anatomy of the 1541 Disk Drive

started with RUN however! You must first find the execution
address of this program.

In a later section is a program that lists all the file
parameters of a program. One of the parameters is a load
address. This load address is usually the initial execution
address of the program and can be called with the command
SYS load address. You can find the load address of a program
with the following program:

10 OPEN 1,8,2,"programname,S,R"
20 GET#l,X$:IF X$='"' THEN X$=CHR$(O)
30 LB=ASC(X$)
40 GET#l,X$:IF X$="n THEN X$=CHR$(O)
50 HB=ASC(X$)
60 CLOSE 1
70 AD=HB*256+LB
80 PRINT"LOAD ADDRESS:":AD

The program shows the load address of "programname". Here
the program file is opened as a sequential data file. The
starting address is stored as the first two bytes of the
file and read using the GET command and appropriately con
structed. The first byte is the low byte and the second byte
the high byte of the two-byte address. If the function of
this program is unclear, handling sequential files clarified
in the next sections.

1.2.6 Storing Machine Language Programs

Machine language programs are usually written with an assem
bler or a machine language monitor and saved using this
program. Machine language programs can also be written from
BASIC with the individual bytes of the program written in
decimal values in DATA statements. A machine language pro
gram written in BASIC with the help of DATA statements
follows:

10 SA=starting address
20 EA=ending address
30 FOR I=SA TO EA
40 READ X
50 POKE I,PEEK(X)
60 NEXT I
80 DATA ••••••••••••••••••••••••••••••••••••
90 DATA ••••••••••••••••••••••••••••••••••••

In this example, the decimal value of the starting address
is placed in line 10 and the ending address fn line 20. The
decimal values of the individual bytes of the machine
language program are typed into the DATA statements of the

7

Anatomy of the 1541 Disk Drive

program, separated by commas.

Naturally, you can save any machine language program that
you find in this book in the form of a BASIC program. This
is, however, a tedious and complicated process. A more
elegant and time-saving method is to store the machine
language program in true form. This way, you can immediately
execute the program after LOADing without requiring any
complicated conversion.

The following program will save such a program that is
already in memory:

10 SA=starting address
20 EA=ending address
30 OPEN 1,8,1,"programname"
40 HB=INT(SA/256):LB=SA-HB*256
50 PRINT#l,CHR$(LB);CHR$(HB);
60 FOR I=SA TO EA
70 PRINT#l,CHR$(PEEK(I»;
80 NEXT I
90 CLOSE 1

This routine assumes that the machine language program is
already in the memory of the computer. If a program is
already encoded into DATA statements, the following routine
can be used to produced a pure machine language program:

10 SA=starting address
20 EA=ending address
30 OPEN 1,8,1,"programname"
40 HB=INT(SA/256):LB=SA-HB*256
50 PRINT#l,CHR$(LB);CHR$(HB);
60 FOR I=SA TO EA
70 READ X
80 PRINT#I,CHR$(X);
90 NEXT I
100 CLOSE 1
110 DATA •••••••••••••••••••.••••.•
120 DATA ••••••••••••••••••••••••••

Here the addresses and DATA statements are filled in also.
The above program writes a machine language program to
diskette which can later be loaded with the command LOAD
·programname-,8,1. Then the program can be executed with
the command: SYS (starting address). Machine language pro
grams can also be loaded and executed from a BASIC program.
Such a program might have this form:

10 IF A=O THEN A=l:LOAD"programname" ,8,1
20 SYS (starting address)

The IF command in line 10 is puzzling at first. It must be
present because after performing a LOAD from within a pro
gram, the BASIC interpreter begins executing again at the

8

Anatomy of the 1541 Disk Drive

first line of the new BASIC program. Because the machine
language program doesn't usually overlay the BASIC program
in memory, the original BASIC program remains intact and is
therefore is re-executed. If you use the routine:

10 LOAD"programname",8,1
20 SYS (starting address)

the program continues to LOAD "programname" again, and the
SYS command is never executed. If the variable A is present,
the program branches to line 20 at the end of the first
command on line 10. This loader can be placed on the
diskette together with the machine language program. To
execute the machine language program, you need only give the
commands:

LOAD-loader-,8
RUN

This has the advantage that the starting address of the
machine language program need not be known, because it is
included in the SYS of the loader.

9

Anatomy of the 1541 Disk Drive

1.3 Disk System Commands

As already mentioned, the VIC-I54l disk drive is similar to
the the earlier, larger disk drives of the Commodore family

the CBM 4040, 8050, 8250. They are all intelligent peri
pheral device with their own processor and control system.
The Disk Operating System (DOS) occupies no space in the
memory of the Commodore 64 or VIC-20 and yet offers a flex
ible set of efficient commands. These commands effectively
expand the builtin commands of your Commodore computer.

Because the disk drive is an intelligent peripheral, the
commands of the DOS can be executed independently of the
computer. But because the commands are not found in the
version of BASIC supplied in the Commodore 64 or VIC-20,
you will have to communicate to the disk using a special
method. When the commands are sent to the disk drive, the
DOS interprets and carries out the desired task.

1.3.1 Transmitting commands to the Disk Drive

Commands intended for the disk drive, are sent over a
channel. You can communicate with the disk drive over any of
the 15 available channels. But channel 15 is reserved as the
command channel. Data transfer over this channel takes place
as follows:

- opening the channel
- data transfer
- close the channel

(OPEN)
(PRINT)
(CLOSE)

In the OPEN command you specify a logical file number
(arbitrary between 1 and 127), a device number of the disk
drive (usually 8) and the secondary address (15 for the
command channel). You can also send a command to the device
as illustrated below:

OPEN Ifn,8,I5,·command·
or

OPEN Ifn,8,I5:PRINT'Ifn,·command-

The number 8 is the device number of the disk drive and the
number 15 is the secondary address or channel number. The
parameter lfn is the logical file number which is used in
subsequent commands (PRINT#, INPUT#, GET#). It can be a
number in the range 1-127. The ·commandw can either follow
the OPEN statement directly, or can be transferred with a
PRINT# command following the o~ening. Any number of system
commands can be transmitted untll the channel is closed, but
must be referenced by the logical file number used in the
OPEN command.

10

Anatomy of the 1541 Disk Drive

1.3.2 NEW - Formatting Diskettes

The command to format a diskette is called NEW and can, as
every other command, be abbreviated to its first letter (N).
As already mentioned, the command can follow an OPEN command
or be ~iven in a PRINT# command. The NEW command has the
followIng format:

NEW:diskname,id

The parameter diskname may contain up to 16 characters and
is stored in the header of the diskette directory. The
parameter ID (identification) consists of two arbitrary
characters, so that the DOS can recognize if a different
diskette has been used. Since you can freely choose the id,
this allows you to uniquely identify each diskette. Here is
an example for formatting a disk:

The command can be abbreviated to:

OPEN 1,8,15,-N:ABCDISK.KL-

You need only use the command once - when you first use a
brand new diskette. Formatting takes about 80 seconds. For
matting uses the processor of the 1541 drive while the
processor of the computer is not needed; you can continue to
work with the computer.

To use the command with a PRINT# statement, the following
commands must be given:

OPEN 1,8,15
PRINTtl,-N:ABCDISK,KL-

to open the channel

The number 1 in the PRINT# command is the logical file
number corresponding to the OPEN command. Other commands may
also be transmitted over this channel after the PRINT#
statement. When no more commands are to be transmitted, the
channel must be closed. This is accomplished through the use
of the CLOSE statement. Give the following command after
formatting:

CLOSE 1

Now the command channel is closed. The number 1 is again the
logical file number of the corresponding OPEN command.

11

Anatomy of the 1541 Disk Drive

1.3.3 Reading the Error Channel

When the Commodore 64 or VIC-20 is incorrectly programmed,
it responds with an error message. Disk commands are carried
out and verified by the processor of the disk drive.
Therefore the computer cannot directly display error
messages that are detected by the disk drive. Errors are
indicated by the flashing red LED on the disk drive. In
order to determine which error has occurred, the computer
must read the error from channel 15. Therefore channel 15
must be OPENed, if this has not already been done. Then the
error can be read with the INPUT# command. An error is sent
back to the computer in four fields -

Field 1: Error number
Field 2: Description of the error (string)
Field 3: Track number
Field 4: Sector number

The track and sector information may indicate where the
error occurred (if these fields are relevant to the
command). These four fields of the error message must be
read into four variables. You can use an INPUT# statement
followed by four variables. An example of reading the errc'r
cha.nnel:

OPEN 1,8,15 (if not already done)
INPUT'l,EN,DE$,TR,SE
CLOSE 1

The INPUT' statement must be entered from within a program.
It is not proper to issue an INPUT# statement from command
mode.

10 OPEN 1,8,15
20 INPUT#l,EN,DE$,TR,SE
30 PRINT EN;DE$;TR;SE
40 CLOSE 1

(to display the error)

To understand the operation of this program, first create
the following error:

OPEN l,8,I5,-NEW ABCDISK,Tl
CLOSE 1

When you have given these commands, the red LED on the disk
drive begins to blink. Did you spot the error? A colon is
missing from the command NEW. Now type the program to read
the error channel and type RUN. The error will appear on the
screen:

34 SYNTAX ERROR 0 0

The 34 is the number of the error, which is explained later.
The track and sector fields are 0 because this information

12

Anatomy of the 1541 Disk Drive

is not relevant to this error.

If you read the error channel when an error had not
occurred, the message:

o OK 0 0

is returned. In any case, if the red LED on the drive
blinks, check the syntax of the command, since most errors
can be easily recognized. otherwise, you can simply read the
error channel to find the error which the DOS has detected.
A detailed description of the error message and their caus~s
follows in section 1.6.

1.3.4 LOAD-$-,8 - Loading the Directory

The directory is a "table of contents" of the diskette. All
the files on the diskette are cataloged here. Be sure to
note that loading the directory has a disadvantage: any
program previously in memory is overlayed by the directory
information. The directory is loaded by typing:

LOAD -$-,8

and can be viewed with the LIST command. Try LOADing the
directory of the TEST/DEMO diskette that accompanies your
disk drive. Insert this diskette into the disk drive and
enter: LOAD -$-,8 to load the directory. Then display the
directory by using the LIST command. what follows should be
shown on the screen

o
13
5
4
I
4
11
4
4
6
4
14
9
5
13

"1541test/demo
"how to use"
"how part two"
"vic-20 wedge"
"c-64 wedge"
"dos 5.1"
"copy/all"
"disk addr change"
"dir"
"view bam"
"cheek disk"
"display t&s"
"performance test"
"sequential file"
"random file"

" zx 2a
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg

A lot of information is kept in the directory. Let's look at
the first line, the header of the directory. The number 0 in
this line means that the directory is of the diskette in
drive O. Other disk drives such as the 4040, contain two
disk drives - drive 0 or drive 1. On the 1541 the drive

13

Anatomy of the 1541 Disk Drive

number is always O. Next follows the name and ID of the
diskette as set up by formatting. The characters 2A sym
bolize the disk format. If this format is not 2A then this
diskette was not formatted with a 1541 drive.

Next are the individual file names, their lengths in blocks
in the first column and the file type in the last column.
This diskette contains three different file types:

PRG These are PROGRAM files, written in either
BASIC or machine language

SEQ sequential data files, explained later

REL This is another form of data storage, also
explained later

The length of the files is given in blocks. Each block
contains 256 bytes. You can find the approximate size a
program. by subtracting 2 bytes from each 256-byte block
that the file occupies. Finally at the end of the directory
is the number of free blocks remaining on the disk. When you
add the lengths of the files and the number of free blocks,
the result is the total number of available blocks on a
diskette (664).

If you own a printer, this directory can be printed as you
would print a program listing. Use the following commands:

OPEN 1,4
CMD 1

LIST
PRINT#l
CLOSE 1

open the printer
the printer is now linked to the
screen
the directory will be printed
send a RETURN to the printer
dIose the printer again

It is assumed that the directory is already loaded with the
LOAD·S·,8 command before these commands are executed. By
inserting a wildcard when loading the directory, you can
cause only part of the directory to be loaded, such as only
the programs. This is explained in section 1.3.10

1.3.5 SCRATCH - Deleting Files

Sometimes an unneeded file must be removed from the
diskette. The SCRATCH command is provided for doing so.
Before using this command, you must be sure that the name
given in the SCRATCH command corresponds with the file to be
deleted. An unintentionally deleted file can ruin many hours
or even days of work, so he careful before using the SCRATCH
command.

14

Anatomy of the 1541 Disk Drive

To delete a file, the following format should be used:

PRINT'lfn.·SCRATCH: filenamel, filename2 •••• •

More than one file can be deleted by using a single command.
But remember that only 40 characters at a time can be sent
over the transmission channel to the disk drive.

For example, to erase a file with the name TEST, the
following commands are used:

OPEN 1.8.l5.·S:TEST·
CLOSE 1

If channel 15 is already open, only the PRINT# command is
required:

PRINTtl.·S:TEST·

It is possible to delete the entire contents of a diskette.
This is discussed in section 1.3.10, the wildcard character
(*) :

PRINT'l.·S:*·

But be very careful! Make sure that you do not need any of
the files on the diskette before using this command. After
completing the operation the error channel transfers the
message:

01 FILES SCRATCHED nn 00

where nn is the number of deleted files. This message can be
read with the routine given in section 1.3.3.

1.3.6 RENAME - Renaming Files

You can also change the name of a file on the diskette. The
command RENAME is provided for this purpose. It has tte
following format:

RENAME:newname=oldname

For example, if you want to change the name of the file from
TEST to PEST you would use the following commands:

OPEN 1.8.l5,·R:PEST=TEST·
CLOSE 1

or

15

Anatomy of the 1541 Disk Drive

OPEN 1,8,15
PRINTfl,-R:PEST=TEST
CLOSE I

Note that you cannot rename a file until it is CLOSEd.

1.3.7 COpy - Copying Files

Using this command, a file can by copied on a diskette.
Several different sequential files can be used to create a
new file. If, for example, you have a data record for each
month of your household expenses and they have the names
EXP.Ol, EXP.02, etc. you can combine them into quarters
(EXP.OI for example) with this command. The COpy command has
the format:

COPY:newfile=oldfilel,oldfile2, •••

So, the named data records can be combined as follows:

OPEN 1,8,15,·C:EXP.Ol=EXP.Ol,EXP.02,BXP.03-
CLOSE I

This method of combining data records cannot be used for
programs. only a single program can be copied on the
diskette. Also the name of the new file must not already
exist on the diskette.

The COpy command is seldom used. This is because copying
files onto the same diskette usually makes no sense. The
only sensible use of the command is to combine several
sequential or user files into a single file.

Copying files from one diskette to another diskette is much
more sensible. This is indispensible for data security. If
you own two disk drives, you can assign the device number 9
to one of them and use the program COPY/ALL to copy files
from one to the other. This program is found on the
TEST/DEMO diskette.

We have also thought of you who have only one disk drive. A
utility program is inclUded in section 4.1 to allow you to
copy individual files and even the entire diskette.

1.3.8 INITIALIZE Initializing the Diskette

The DOS requires a BAM (Block Allocation Map) to be present
on each disk. The BAM 1S a layout of the usage of the
blocks on each diskette. It marks each block on the diskette

16

Anatomy of the 1541 Disk Drive

as free for use or allocated (already in use). If you change
diskettes in the drive and the new diskette has the same id
as the old diskette, the DOS will not recognize the fact
that you have changed diskettes. The BAM of the new diskette
will be different, but the DOS will still be working with
the old RAM.

Therefore, each diskette should be given a unique id when
you format it. It is a good practice to give each diskette a
different id. You can force the disk drive to read the BAM
of a new diskette by issuing the INITIALIZE command. This
command has the following format:

PRINT,lfn,"INITIALIZE"

or shortened to

Example:

PRINTt1fn,"I"

OPEN 1,8,15,"1"
CLOSE 1

If you change diskettes and also change data records, then
we strongly recommend that you use the INITIALIZE command
after changing the diskettes, to be safe.

1.3.9 VALIDATE - "Cleaning Up" the Diskette

The command VALIDATE frees all allocated blocks that are not
assigned to normally CLOSEd files. For example, if you OPIN
a file, and transfer data to that file, but forget to CLOSE
the file, the VALIDATE command can be used to free the data
blocks that were written to. If you use the direct access
commands, be sure to allocate them (using the BLOCK-ALLOCATE
command) or the VALIDATE command will free them again.

The command has an additional function: If a file is deleted
using the SCRATCH command, the file type in the first byte
of the file entry is set to O. It no longer appears in the
directory. If you now change this byte back to its old file
type with the DOS monitor (described later) or other direct
access commands, VALIDATE will restore the file. If it has
not been overwritten, it will be the same as before the
SCRATCH command. The command has the following format:

PRINTt1fn,·VALIDATE"

or the shorter form

PRINTt1fn,·V"

17

Anatomy of the 1541 Disk Drive

An example:

OPEN 1,8,15,-V
CLOSE 1

If you have a diskette such that the sum of the file lengtt!s
plus the number of free blocks does not equal the total
number available (664), use the VALIDATE command to restore
it.

Another example: If you want to store a program or data
record that uses more than the number of free blocks, the
DOS will give the error DISK FULL. If the disk had shown
some blocks free before, the number is now zero. The
VALIDATE command will restore the original free blocks.

1.3.10 ? * - The Wildcards

There are two wildcard characters - the asterisk (*) and the
characters of the first file on the disk that begins with
the characters which precede the asterisk. An example:

This command loads the first program that begins with the
first four letters "TEST". The command:

LOAD-·- ,8

loads the first program on the diskette because there are no
characters in front of the asterisk. The asterisk in the
SCRATCH command has a different effect. If used in the
SCRATCH command, not only the first file will be deleted,
but all files. For instance, the command:

OPEN 1,8,15,-S:TEST·
CLOSE 1

erases all files beginning with the the letters "TEST". This
must be taken into account! Loading the directory with an
asterisk can also select certain files. An example:

loads only the directory of the files that begin with the
letter "All.

The DOS offers an additional use of the asterisk that has
not been mentioned yet. It can also select file types if the
asterisk is followed by the first letter of the desired file
type. Here is a summary:

18

*=S
*=p
*=R
*=U

Anatomy of the 1541 Disk Drive

selects only sequential files
selects program files .
selects relative files
selects user-files

For example, the command:

LOAD ·$*=P·,8

causes only the directory entries of programs to be loaded
and shown when you type LIST. This can also be used with the
SCRATCH command to delete all sequential files, for
instance. Here is the command:

OPEN l,8,15,·S:*=S·
CLOSE 1

With the question mark, certain characters of a file name
can be declared "not relevant". To illustrate the function
of the question mark, here are two examples of shortened
file names and their effects:

A?????

????TEST

- refers to a six-letter filename of whict
first character is A

- refers to an eight-character filename, the
last four letters of which are TEST

A combination of asterisks and question marks is allowed.
You should notice, however, that an asterisk followed by
question marks has no meaning. Two examples of combinations
of asterisks and question marks:

????*

TEST.??*

TEST-??Ol*=S

- refers to all file names that have four
characters before a period

- refers to all file names having at least 7
characters, of which the first five are
TEST.

- refers to all sequential files whose names
have at least nine characters, the first
five heing TEST- and the eighth and ninth
being 01

19

Anatomy of the 1541 Disk Drive

1.4 Sequential Data Storage

A disk drive need not be used exclusively for storing pro
grams. If you have written a program that manages a large
quantity of data, you need a fast way of organizing it.
Sequential data storage is not the fastest, but it is the
easiest method of managing data. This method is comparable
to sequential storage on a cassette, which can be maintained
in a program as such:

1. Load the program

2. Read the entire data file into the memory of the computer

3. Work with the data in memory (change, delete, combine)

4. Write the new file on an external medium (cassette,
diskette)

5. Exit the program

The maximum number of data items that the program can handle
depends on the size of the computer's memory, because a
single data item cannot be changed or erased directly on the
cassette or diskette. To that end, the entire set of data
items must be read in, changed, and then rewritten again.
Reading and rewriting the data occurs remarkably faster on a
disk drive than on cassette.

It is worth mentioning that programs which work with
sequential data on cassettes can be easily modified to work
with disk. Only the corresponding OPEN commands need be
changed.

1.4.1 The Principle

A sequential data file consists of several data records that
are further divided into fields. The following is a name and
address file and illustrates the principle of sequential
data storage. Individual names and addresses comprise the
data records of this file. A record consists of several
fields (last name, first name, etc.). The structure of the
file looks something like this:

Field 1 : Field 2 : Field 3 : Field 1 : Field 2 : Field 3 :

Data record 1 Data record 2

FILE

20

Anato~y of the 1541 Disk Drive

Only two records are shown above. The data records of a file
are stored one after another (sequentially) as are the the
fields within each record. The fields and records may be of
any length. For example, field 1 of record 1 may be longer
than field 1 of record 2. This is possible because the
fields are separated from each other by a special character
(the RETURN character), which is generated by the PRINT#
statement. When read back into the computer by the INPUT#
statement, the RETURN character is recognized as a field
separator.

Each field is associated with a variable when written with a
PRINT# statement or read with an INPUT# statement.

How does the computer know, when reading the data, where
each field ends? Each field ends with a RETURN character.
The RETURN character has the decimal ASCII value 13. An
example of a telephone directory file illustrates this. Our
telephone directory file has three fields:

FIELD 1
FIELD 2
FIELD 3

LAST NAME
FIRST NAME
TELEPHONE EXTENSION

Let's look at a section of this previously written file (the
character + symbolizes a RETURN):

position:

Data:

1111111111222222222233333333334444444
1234567890123456789012345678901234567890123456

SMITH+JOHN+236+LONG+TIM+121+HARRIS+SAM+654+ •••

You can see that the fields are of different lengths and are
all separated by a RETURN character. This RETURN character
is automatically written after the data field by a PRINT#
statement, provided the PRINT# statement is not followed by
a semicolon (which suppresses the RETURN character).

These data items are assigned to the variables with an
INPUT# statement. After that, another INPUT# must follow in
order to read the next field, and so on. The following
sections explain the fundamentals of writing programs using
sequential data storage.

1.4.2 Opening a Sequential Data File

To create a sequential data file, you must first OPEN the
file. When opening a file to be written to, the following is
carried out:

1. The diskette is checked to-see if an existing file has

21

Anatomy of the 1541 Disk Drive

the same name. If so, the error message FILE EXISTS is
given by the DOS.

2. The file entry in the directory is written. In the file
type it is noted that this file is not yet CLOSEd. This
appears in a directory listing with an asterisk which
preceeds the file type.

3. A free block is found, into which the first data items
are written. The address (track and sector) of this free
block is stored in the file entry of the directory.

4. The number of blocks in the file is set to 0, because no
blocks of the file have been written yet.

The OPEN command specifies for what purpose (mode) the file
is to be used (reading or writing). The format of the OPEN
command looks like this:

OPEN Ifn.8,sa,-filename.filetype.mode-

When the logical file number is between 1 and 127, a PRINTi
statement sends a RETURN character to the file after each
variable. If the logical file number is greater than 127
(128-255), the PRINT* statement sends an additional line
feed after each RETURN. This is necessary for printers, for
example, that do not provide an automatic line-feed after a
RETURN character.

The secondary address (sa) can bE> a value between 2 and 14.
The secondary address indicates the channel over which the
computer is to transfer data to and from the disk drive.
Secondary addresses 0 and 1 are reserved by the DOS for
saving and loading programs. Secondary address 15 is desig
nated as the command and error channel. Should several files
be open at once, they must all use different secondary
addresses, as only one file can use a channel. If, however,
a file is opened with the secondary address of a previously
opened file, the previous file is closed.

A maximum of 3 channels can be opened with the VIC-1541 at a
time. When utilizing relative data files, the DOS requires 2
channels per file. Therefore, the following maximum
combinations are possible:

- 1 relative and 1 sequential file
or - 3 sequential files

When specifying the filename to be written to (in the OPEN
command), you must be sure that the fi Ie name does not
already exist on the diskette. If a file that already exists
is to be to opened for writing, an at sign followed by a
colon (@:) must be placed in front of the file name (same as
in the SAVE command). For example:

22

Anatomy of the 1541 Disk Drive

OPEN 1.8,2.-@:ADDRESSES.S.W-

The file type must be given when the file is opened. The
file type may be shortened to one of following:

S - sequential file
U - user file
P - program
R - relative file

User files are sequential files that are listed in the
directory with the file type USR. It is not a data file in
the true sense. This file type is usually used when output
that normally goes to the screen (BASIC listing, directory)
is sent to the disk. In section 1.4.6 you find a description
of this technique.

The last parameter (mode) establishes how the channel will
used. There are four possibilities:

W - Write a file (WRITE - section 1.4.3)
R - Read a file (READ - section 1.4.4)
A - Add to a sequential file

(APPEND - section 1.4.4)
M - read a file that has not been closed

("discovered" by us in the DOS listing and
explained in section 1.4.5)

Now open a sequential file with the name SEQU.TEST for
writing:

OPEN 1.8.2.-SEOU.TEST.S.W-

If you now load the directory with LOAD-$-.8 and then LIST
it, you see this file listed with an asterisk before the
file type:

o SEQU.TEST *SEO

But you are no longer allowed to close this file! After a
file is OPENed and data written to it, it must be closed
before the directory is loaded!

While a file is open, the command/error channel 15 may be
opened, but when channel 15 is closed, all other channels
are closed as well. You must take note of this.

Now some examples of the OPEN command:

OPEN 1,8,2,"SEOU.TEST,S,R"

OPEN 2,8,3,"SEOU.TEST,l],W"
OPEN 3,8,4,"TEST,P,R"

23

- open a sequential file for
reading

- open a user file for writing
- open a program file for

reading

AnatOItty of the 1541 Disk Drive

OPEN 4,8,5,"SEOU.TEST,S,A" - open a sequential file for
appending data

OPEN 5,8,6,"CSTMRS.1983,S,M" - open the unclosed customer
file for reading

1.4.3 Transferring Data Between Disk and Computer

After opening a file for writing, you transfer data to be
stored to the diskette with the PRINTiF statement. This
statement transmits an additional RETURN that is required
for separating data. In the following example, a file is
OPENed, data written to it, and CLOSEd again. PRINT# cen
also be used as a direct command, that is, outside of the
program, so the following commands can be typed one after
the other and executed. Now open a file with the name
"TEST":

OPEN 1,8,2,-TEST,S,W-

You should notice that the red LED on the disk drive was
lit. It signals the fact that a file was OPENed. You can now
write to the file named TEST. Here is how we would write a
name and address record consisting of 4 fields:

PRINT# 1, "SAM"
PRINT#I,"HARRIS"
PRINT#l,"2001 MAIN STREET"
PRINT# 1, "ANYTOWN"

Now these data items have been written to the file so we can
close the file with CLOSE 1. The red LED should go out. In
order to read this data again, you must open the file in the
read mode (R). Because the INPUT# statement cannot be used
directly, a small program must be written:

10 OPEN 1,8,2,"TEST,S,R"
20 INPUT#I,FNS
30 INPUT#!, LN$
40 INPUT#I,ST$
50 INPUT#! ,CTS
60 CLOSE 1
70 PRINT"FIRST NAME:
80 PRINT"LAST NAME:
90 PRINT"STREET:
100 PRINT"CITY:

";FN$
";LNS
";STS
" lCT$

The program is simple to explain:

Line 10 The file TEST is opened for reading

24

Anatomy of the 1541 Disk Drive

Lines 20-50 The data are read in the same order as they
were written. variables are used so that the
data can be printed later.

Line 60 The file is closed.

Lines 70-100 The data are printed out on the screen.

When you enter this program and type RUN, the data will
appear as written earlier, on the screen:

FIRST NAME:
LAST NAME:

SAM
HAFRIS

STREET:
CITY:

2001 MAIN STREET
ANYTOWN

Four INPUTi statements were used to read the data because
the name and address record is composed of four fields. But
when a record is written that has, say, 20 fields, it is
very time-consuming to type out 20 INPUT# statements. A loop
can make this much simpler. This is obvious in this example:

10 OPEN 1,8,2,"TEST,S,F"
20 FOR 1=1 TO 4
30 INPUTU,D$(I)
40 NEXT I
50 CLOSE 1
60 PRINT"FIRST NAME:
70 PFINT"LAST NAME:
80 PRINT"STREET:
90 PRINT"CITY:

", D$ (1)
", D$ (2)
",D$(3)
",D$(4)

Here, instead of four separate string variables, an array
with index 1-4 is used. It should be noted that in BASIC
2.0, if an index higher than 10 is used, the array must be
dimensioned with a DIM statement. Should we want to read in
20 fields, the statement DIM 0$(20) must be given before any
are read.

There are still more ways of shortening input and output of
data. With the INPUT statement for keyboard input, several
variables can be given in one line, separated by commas. For
example:

INPUT FN$.LN$.TE

wi th this statement, three variables must be entered, such
as:

NICHOLAS,MULLER,7465

The read data can be printed on the screen with:

PRINT FN$.LN$.TE

25

Anatomy of the 1541 Disk Drive

In this manner, sequential data can be written and later
read back in again. The only difference is that the string
variables containing the data to be written must be
separated by commas enclosed in quotes. For example, if you
wish to write the previous variables to a file, the PRINT#
statement command must changed as follows:

Numeric variables need only be separated with a comma from
the other variables. To read the data, use the command:

INPUTll,FV$,LN$,TE
Because the maximum number of characters read by an INPUT#
statement may not exceed 88, this method of reading is only
marginally useful. If a field in a record is more than 88
characters long, a different statement must be used. This is
the GETI statement, which r.ads each individual character,
one at a time. Suppose you want to read a record of which a
field is 100 characters long. This record can be placed in a
string variable with the following routine:

10 OPEN 1,8, ••••••••••••••
20 D$=
30 FOR 1=1 TO 100
40 GETll,X$
50 D$=D$+X$
60 NEXT I
70 GETIl,X$
80 CLOSE 1

At the end of this program, the string variable D$ will
contain the 100 characters of the data field. After opening
a sequential data file, the DOS establishes a pointer that
always points to next character to be read. We assume that
the data was written with a PRINTI statement without a
trailing semicolon, so that a RETURN was written at the end
of the data item. After reading the first 100 characters,
the pointer points to this RETURN. The next GET. in line 70
is necessary to read the RETURN found at the end of the
field. Then the next GET' statement can read the next field
and not the RETURN.

In the above example, we used data records with a constant
length of 100 characters. According to the rules of sequep
tial access, the length of data records need not be con
stant. Since the INPUT. statement can only read a maximum of
88 characters, we will use the GET' statement to recognize
the RETURN as the end of a field. Such a routine looks like
this:

lOOP EN 1, 8 , .•••••••••••••••••••••
20 S$=''''
30 GET#l,X$
40 IF X$=CHRS(13) THEN 80

26

50 S$=S$+X$
60 IF ST<>64 THEN 30
70 CLOSE l:END
80 PRINT S$
90 GOTO 20

Anatomy of the 1541 Disk Drive

Here a file with variable record length is read and printed
on the screen. Naturally, you can use the data in other ways
instead of printing it on the screen.

To avoid the problem of reading data records of more than 88
characters, divide the record into several parts, which you
can combine after reading them.

1.4.4 Adding Data to Sequential Files

If you want to add data to a sequential file, you have to
read the entire file into memory, add the data, and write
the new file back to the diskette again. This is a very
time-consuming process. For this reason, the DOS offers an
easier alternative to add to a sequential data file without
reading the entire file. This is made possible through the
OPEN mode A (Append). If you have a sequential data file, as
in the previous section, you can add data to it by selecting
the A mode in the OPEN command. An example follows.

Give the following commands:

OPEN 1,8,2,"TEST2,S,W"
PRINT#l,"l. DATA RECORD"
CLOSE 1

Now you have a sequential data file containing one data
record. This file can be expanded with tw.o more records as
follows:

OPEN 1,8,2,"TEST2,S,A ft

PRINT#1,"2. DATA RECORD"
PRINT#1,"3. DATA RECORD"
CLOSE 1

Now the file TEST2 has three data records. You can check
this with the following program:

100 OPEN 1,8,2,"TEST2,S,R"
110 FOR 1=1 TO 3
120 INPUTU,DR$
130 PRINT DR$
140 NEXT I
150 CLOSE 1

After the program starts, the data records is read and
printed on the screen.

27

Anatomy of the 1541 Disk Drive

You can see that the append A mode makes it quick and easy
to expand a sequential data fileS.

1.4.5 Closing a Sequential File

OPENed data files can be closed with the CLOSE command. This
command has the format:

CLOSE lfn

The parameter Ifn is the logical file number of the file
that was used in the OPEN statement. Should several files
need to be closed a CLOSE statement must be given for each
one. When the last file is closed, the red LED on the drive
goes out.

As you already know, data is sent to the disk drive over a
channel. This channel uses storage inside the disk (called a
buffer) in which the data transmitted by the computer is
stored. When this buffer is full, its contents are written
to the diskette.

When the file is closed, any data still in the buffer is
written to the diskette. An unclosed file is incomplete and
is also not recognized by the DOS as a properly closed file.
The DOS allows no read access in the R (Read) mode and
responds WRITE FILE OPEN when trying to read an unclosed
file.

This could be a problem if the DOS did not allow read access
to a file. For this reason, the DOS offers the M mode. A
file that is marked as an improperly closed file can be read
in this mode. It is logical to then write these records to a
second file which can then be properly closed. In this way
one can "rescue" a file.

The following program will transfer an improperly closed
file (original file) to a correctly closed file (destination
file) :

100 INPUT"ORIGINAL FILE NAME";S$
110 INPUT"DESTINATION FILE NAME";D$
120 OPEN 1,8,2,S$+",S,M"
130 OPEN 2,8,3,D$+",S,W"
140 INPUT#I,X$
150 PRINT#2,X$
160 IF ST<>64 THEN 140
170 CLOSE I:CLOSE 2
180 OPEN l,8,15,"S:"+S$
190 CLOSE 1

At the completion of the program, the unneeded original file

28

Anatomy of the 1541 Disk Drive

is deleted (scratched).

1.4.6 Redirecting the Screen Output

Any output appearing on the video screen (PRINT, LIST, etc)
can be redirected to a sequential data file. This is accon
plished through the CMD command, which has the following
format:

CMD Ifn

For this to occur, a file of type USR must be opened. To
transfer a BASIC program listing, for instance, as a
sequential file on diskette, use the following commands:

OPEN 1,8,2,"TEST.LIST,U,W"
CMD 1
LIST
CLOSE 1

The command CLOSB 1 causes further output to be sent to the
screen.

Storing a program as a sequential file on disk is very
useful, if, for example, you would like to read a program
with a word processor to edit it. It is assumed that the
word processor in this case reads data stored in ASCII code.

This is how the listings in this book were transferred from
a Commodore 64 to a Commodore 8032.

In order to print this file on the screen again, you need
the following routine:

10 OPEN 1,8,2,"TEST.LIST,U,R"
20 GET#l,X$
30 PRINT X$
40 IF ST<>64 THEN 20
50 CLOSE 1

This routine is a loop that reads every character (byte) of
the file and displays it on the screen. The end of the file
is signalled by the status variable which is set to 64 at
the end. To send a sequential file to the printer, use the
following program:

10 OPEN 1,8,2,"TEST.LIST,U,R"
20 OPEN 2,4
30 GETU,X$
40 PRINT#2,X$
50 IF ST<>64 THEN 30
60 CLOSE 1

29

Anatomy of the 1541 Disk Drive

Here it assumed that the printer is connected as device
address 4.

1.4.7 Sequential Files as Tables in the Computer

Sequential data files must reside completely in the computer
for data management. Most of the time, a two dimensional
table can be used. This table is also called an array or
matrix, because a data element can be addressed through the
input of two coordinates. To this end, you use a two dimen
sional variable, which must be reserved with a DIM state
ment. The first dimension corresponds to the data record,
the second dimension to the field inside the record. The
following diagram shows an example of a table:

Field 1 Field 2 Field 3
~---~

Record 1 ~ DSIl,l) ~ 0$11,2) ~ 0$(1,3) ~

~---~
Record 2 " 0$ (2 ,1) " 0$ (2 ,2) ~ 0$ (1 ,3) "

~---~
Record 3 ~ 0$(3,1) ~ 0$(3,2) ~ 0$(3,3) ~

~---~
Record 4 ~ 0$(4,1) ~ 0$(4,2) ~ 0$14,3) ~

~---~
Record 5 " oS I 5 , 11 ~ DS (5 ,2) " oS (5,3) "

~---~
Record 6 " D$16,1) " D$(6,2) " D$16,3) ~

~---~

This table is a file composed of six records which have
three fields each. The variable 0$ is reserved with DIM
D$(6,3). To read a sequential file as a table, it is
necessary to create such a file with, for example, six
records with three fields each. For this purpose, use the
following program:

100 OPEN 1,8,2,"TABFILE,S,W"
110 FOR X=l TO 6
120 PRINT CHR$(147)
130 PRINT"RECORD ";X
140 PRINT"---------"
150 FOR Y=l TO 3
160 PRINT"FIELD ";Y;": ":
170 INPUT X$
180 PRINTU,X$
190 NEXT Y
200 NEXT X

.210 CLOSE 1

Two nested loops are used here, whose variables are numbered
wi th the record and field. Enter six data records. When the
program is done, these records will be contained on the

30

Anatomy of the 1541 Disk Drive

diskette with the filename of TABFILE. A tip: save this
program with SAVE-TABPROG-,8 so. you can use it later.

This file can now be loaded into the computer as a table.
Two nested loops indexed for the table are necessary:

100 OPEN 1,8,2,"TABFILE.SEO,S,R"
110 DIM 0$(6,3)
120 FOR X=l TO 6
130 FOR Y=l TO 3
140 iNPUTtl,D$(X,Y)
150 NEXT Y
160 NEXT X
170 CLOSE 1

This program places data into the table. You can check this
with a PRINT statements, to see if the data has been stored
in the right place. Because each field can be addressed with
indices, you can give a command like PRINT 0$(1,2) to see
the second field of record one. It is meaningful to be able
to display the fields of a given record. Use the following
routine for this purpose, after you have saved the previous
program:

100 INPUT"RECORD NUMBER: ":X
110 PRINT"------------------"
120 PRINT"FIELD 1: ":D$(X,l)
130 PRINT"FIELD 2: ":D$(X,2)
140 PRINT"FIELD 3: ":D$(X,3)

Notice that the first index (the record number) after the
question is used as the variable in the field output. The
second index (field number) is then constant.

This table can now be altered as desired. Add the following
lines to the preceeding program:

160 PRINT"------------------"
170 INPUT"FIELD TO CHANGE:":Y
180 INPUT"NEW CONTENTS: ":D$(X,y)
190 PRINT"OK"
200 PRINT"FURTHER CHANGES (yiN)?"
210 GET X$:IF X$="" THEN 210
220 IF X$="Y" THEN 100
230 IF X$="N" THEN END
240 GOTO 210

Here the number of the field to be changed is used as the
second index, which is adjacent to the index of the desired
record to input the new table element.

This modified table must now be written to the diskette
again. You can use the following routine. Don't forget to
save the previous edit program first!

31

Anatomy of the 1541 Disk Drive

100 OPEN 1,8,2,"@:TABFILE,S,W"
110 FOR X=1 TO 6
120 FOR Y=l TO 3
130 PRINT#l,D$(X,Y)
140 NEXT Y
150 NEXT X
160 CLOSE 1

This routine also is relatively short because of the use of
nested loops. The @: in line 10 is necessary in order to
overwrite the existing file.

Accessing data through the use of the table is very fast.
The access time is independent of the size of the table. The
size of the table and therefore the quantity of data is
dependent on the memory capacity of the computer, however.
The large storage area of the Commodore 64 is excellent for
table management. If you write a data management program
that occupies 8K bytes, then 30K bytes still remain for
storing data. If you consider that storing a name and
address record of about 80 characters, you can still store
384 records in memory! And this with an access time that
cannot be surpassed by refined data management techniques
(indexed sequential, relative). But with larger quantities
of data, sequential storage is no longer feasible.

1.4.B Searching Tables

As mentioned in the table processing section, each data
record of a table can be indexed. Because the table is two
dimensional, the first index selects the data record. If a
record of the table is to be changed or accessed, the
operator must know the record number. The record number can
be a part or customer number. There are files, however, for
which there is no suitable method of numbering. In such
files, the number of the record must be found through a

search of all the records. Here is a practical example:

First of all, create a data file with the following program.
Names and telephone numbers are saved in the example:

100 OPEN 1,B,2,"TELEDAT,S,W"
110 PRINT CHR$(147)
120 INPUT"LAST NAME :";LN$
130 INPUT"FIRST NAME :";FN$
140 INPUT" AREA CODE :"; AC$
150 INPUT"NUMBER :";NU$
160 PRINT"INFORMATION CORRECT (YIN),?"
170 GETX$:IF X$="" OR X$<>"Y" AND X$<>"N" THEN 170
180 IF X$="N" THEN 110
190 PRINT'l,LN$","FN$","AC$","NU$

32

Anatomy of the 1541 Disk Drive

200 PRINT"MORE INPUT (yiN)?"
210 GETX$:IF X$="II OR X$<>'Y' AND X$<>"N" THEN 200
220 IF X$="N" THEN 240
230 GOTO llO
240 CLOSE 1

Program Documentation:

Line 100 The sequential file "TELEDAT" is opened for
writing

Line 110 The screen is cleared

Lines 120-150 The four fields are entered from the keyboard

Lines 160-lBO If the data are not correct, they can entered
again

Line 190 The four fields are written to disk

Lines 200-220 Here the execution of the program can be
ended

Line 230 Input will be continued

Line 240 The file opened in line 100 is closed

Type this program in, RUN it, and enter some data. Save the
the program on diskette, so you can combine it with other
routines later if you like. In the last section of this
chapter, is a complete program for managing your telephone
numbers.

If you have entered some data, you would probably like to
find a telephone number. To do so, you could print the
entire file on the screen or printer and find it yourself.
This is, however, a wasteful method, especially if you have
entered many records.

The search for the telephone number corresponding to a given
name can be performed by the computer. It runs through the
who~e list, looking for the desired name. Once found, it
gives you the complete record which contained that name. The
following routine accomplishes this:

100 OPEN l,B,2,"TELEDAT,S,R"
110 DIM D$(100,4):X=1
120 INPUT*l,D$(X,l),D$(X,2),D$(X,3),D$(X,4)
130 IF ST<>64 THEN X=X+l:GOTO 120
140 CLOSE 1
150 PRINT CHR$(147)
160 PRINT"DESIRED NAME: n:N$
170 FOR 1=1 TO X
IBO ID D$(I,l)=N$ THEN 210
190 NEXT I

33

Anatomy of the 1541 Disk Drive

200 PRINT"NAME NOT FOUNDI":GOTO 280
210 PRINT"NAME FOUND:"
220 PRINT"------~----"
230 PRINT"LAST NAME: "lD$(I,l)
240 PRINT"FIRST NAME: "lD$(I,2)
250 PRINT"AREA CODE: "10$(1,3)
260 PRINT"NUMBER: "lD$(I,4)
270 PRINT"-~---------"
280 PRINT"MORE (YIN)?"
290 GETX$:IF X$="" OR X$<>"Y" AND X$<>"N" THEN 290
300 IF X$="Y" THEN 150
310 PRINT"PROGRAM DONE":END

program Documentation

Line 100

Line 110

Line 120

Line 130

Line 140

Line 150

Line 160

The sequential file uTELEDAT" is opened for
reading

The table is dimensioned for 100 records and
the index is set to one

The data records are read into the table

The status variable ST is checked for end of
file (indicated by a value of 64). If the
end has not been reached, the index is
incremented and a new record is read.

The file opened in line 100 is closed

The screen is cleared

The last name to be searched for is read from
the keyboard and placed in the variable N$

Lines 170-190 The loop searches the table of records,
checking the name fields against the desired
name. If the position is found, the program
branches to the output routine

Line 200 The name was not found

Lines 210-270 The record containing the desired name is
displayed

Lines 280-310 The possibility to search for a new name is
allowed

You will notice that this search is quite fast when the data
is already loaded into the computer •. Searching the
computer's memory is faster than searching the diskette. The
program can be easily changed to search for a .desired field
other than the name. You might want to search for an area
code, fOr instance. The first program stops the search when
the first matching data record is found. This is not always

34

Anatomy of the 1541 Disk Drive

desired, however. If, for instance, you wish to search the
table looking for a particular area code and want all
matches to be displayed, a different routine is needed. The
routine must continue the search after the first match is
found. The next program takes care of this:

100 OPEN 1,8,2,"TELEOAT,S,R"
110 DIM D$(100,4) :X=l
120 INPUT#1,D$(X,1),0$(X,2),0$(X,3),0$(X,4)
130 IFST<>64 THEN X=X+l:GOTO 120
140 CLOSE 1
150 PRINT CHR$(147)
160 PRINT"AREA CODE TO SEARCH FOR: ",AC$
170 FOR 1=1 TO X
180 IF D$(I,3)=AC$ THEN 210
190 NEXT I
200 PRINT"ENO OF OATA!":GOTO 270
210 PRINT"----------------n
220 PRINT"LAST NAME: ",0$ (1,1)
230 PRINT"FIRST NAME: ",0$(1,2)
240 PRINT" AREA COOE: ",0$ (1,3)
250 PRINT"NUMBER: ",0$(1,4)
260 PRINT"----------------"
270 PRINT"MORE (Y/N)?U
280 GETX$:IF X$="" OR X$<>"Y" AND X$<>"N" THEN ;280
290 IF X$="Y" THEN 190
300 PRINT"SEARCH OONE!":END

Here the search is continued if a record with the
appropriate area code is found. This happens in line 290,
which branches back to the loop instead of ending the
program. After searching all of the records, the program
responds ENO OF DATA. If you understand the operation of
this program, you can now develop a search for the last
name. with the help of the previous programs, this should
present no difficulty.

1.4.9 Simple Sorting of Tables

In data processing, it is often necessary to sort data into
numeric or alphabetic order. This has always been a time
consuming task, which the programmer has tried to shorten ty
using better sorting methods. Sorting is certainly a time
consuming task when performed with the programming language
BASIC, which is relatively slow.

Why should we sort the data at all? suppose you had a
telephone book in which the names were not ordered. You
would have search the entire book from beginning to end to
find a name. Sorting offers advantages when searching data.
The computer can also search sorted data faster.

35

Anatomy of the 1541 Disk Drive

There are several search methods which differ mainly in
their speed of execution. The simplest method compares each
data item with every other. If a table is supposed to be
sorted in ascending order, the first item in the table is
compared to the second. If the first is greater, it is
exchanged with the second. After that, the first will ce
compared to the third, and SO on, until the last item is
reached. Now the smallest item is at the beginning, in the
right place. The next time through, the first item is no
longer needed. A flowchart of the program logic appears
below.

No

TA(I)
>

TA(X)? Yes

1(----0(X > max?

No
~------< I max?

Yes

END

36

TA(O)=TA(I)
TA(I)=TA(X)
TA(X) =TA(0)

Anatomy of the 1541 Disk Drive

This sort program starts using an index of 1, which is
stored in the variable I. The second index is the variable
x, which receives a value one greater than I. Then the first
item is compared to the second. If the value of TA(I) is
greater then TA(X), the program must use a temporary
variable, TA(O), to make the exchange between the two. After
this, the value of X is incremented, to three, and TA(I) is
again compared to TA(X), etc. When the last item in the
table is reached, (X > last index), the first item will be
the smallest, and the index I is incremented by one. Now the
second item is compared to every other (starting with the
third), and so on.
This sort method looks quite complicated at first glance.
Comparisons in memory are done relatively quickly, however.
This method is sufficient for small quantities of data.

In order to run this program, a table must be built. This
example uses a table with twelve items containing alpha
numeric data (strings). The table is filled by the following
routine:

100 DIM TA$ (12)
110 FOR 1=1 TO 12
120 INPUT TA$(!)
130 NEXT I

This program allows you to enter twelve strings, which are
then sorted with the following program:

140 1=1
150 X=I+l
160 IF TAS(I) < TA$(X) THEN 180
170 TA$(O)=TA$(I):TAS(I)=TA$(X):TA$(X)=TA$(O)
180 X=X+l
190 IF X <= 12 THEN 160
200 1=1+1
210 IF I <> 12 THEN 150
220 FOR 1=1 TO 12
230 PRINT TAS(12)
240 NEXT I

The table is sorted and displayed on the screen. If, instead
of a one dimensional table, you want to sort a two
dimensional table such as our telephone file, exchange the
fields by changing lines 160-170 as below:

160 IF DS(I,l) < D$(X,l) THEN 180
170 DS(O,l)=D$(I,l):D$(I,l)=DS(X,l):

D$(X,l)=DS(O,l)
171 D$(0,2)=D$(I,2):DS(I,2)=D$(X,2):

D$(X,2)=D$(O,2)
172 D$(0,3)=DS(I,3):D$(I,3)=DS(X,3):

D$ (X, 3) =DS (0 ,3)
173 D$(0,4)=D$(I,4):D$(I,4)=D$(X,4):

DS(X,4)=D$(0,4)

37

Anatomy of the 1541 Disk Drive

It is very time consuming to sort a greater amount of data
with this method. If you have a large amount of data to be
sorted, we recommend that you use the very fast machine
language sort routine from our book Commodore 64 Tips &
Tricks.

1.4.10 MAILING LIST MANAGEMENT with Sequential Data Storage

At the end of this section, is a mailing list management
program that every user will hopefully find easy to use. At
the same time, this program provides insight into the opera
tion of many data processing techniques.

A mailing list record of this program consists of the
following fields:

- NAME 1
- NAME 2
- STREET
- CITY, STATE
- ZIP CODE
- TELEPHONE NUMBER
- NOTES

The use of the fields 'NAME I' and 'NAME 2' are up to the
user. For instance, 'NAME I' can be the first name and 'NAME
2' the last name, or 'NAME I' the company name and "to the
attention oL •• " in 'NAME 2'. The field 'NOTES' can be used
for grouping the addresses (family, business, friends,
etc.).

The program offers the following Main Menu options:

-1- LOAD DATA
-2- SAVE DATA
-3- INPUT DATA
-4- EDIT DATA
-5- SELECT/PRINT DATA
-6- DELETE DATA
-0- END PROGRAM

-1- LOAD DATA

Use this function to enter the name of the mailing list
file that is to be maintained. If the file exists on the
diskette, it is loaded and ready to be used. The number
of records in the file is displayed. If an error is
encountered while loading, or if the file does not exist,
the message DISK ERROR! is displayed. At the conclusion
of this function, the Main Menu reappears.

38

Anatomy of the 1541 Disk Drive

-2- SAVE DATA

Use this function to write an updated or expanded copy of
the mailing list to the diskette. If the file name
already exists, then the file is overwritten.

The mailing list should be saved often while using the
program in case a power outage should erase the
computer's memory. After saving, the file can be used
further, without having to reload it in.again.

-3- INPUT DATA

Use this function to add records to the mailing list:

1. When no data has been previously loaded.

First a file name for the mailing list is entered.
Enter a file name which does not already exist on the
diskette or the old file is overwritten. All records
that are inputted are new to the mailing list.

2. When data has been previously loaded.

All records that are inputted are added to the
existing mailing list.

After entering an mailing list entry, the message CORRECT
(Y/N)? is displayed. Here you may correct the data. If
the entry is not correct, press the N key. If the entry
is correct, press Y. Now the message MORE INPUT (Y/N)? is
displayed. If you want to enter another mailing list
entry, press Y. If you press N, the Main Menu appears
again.

-4- EDIT DATA

Use this function to change existing mailing list rec
ords. Both Name 1 and Name 2 must be entered. If both
nawes are not known, the other can be found with the
SELECT/PRINT DATA routine. After entering the names, the
mailing list is searched for matching names. When they
are found, the complete address is displayed with the
fields numbered. Now you must enter the number of the
field which you want to change. The new contents are
requested. The record is once again displayed in its
updated form. If no more changes to this record are
required, press 9. The program asks if another record is
to be changed. This question is to be answered by
pressing Y or N.

39

Anatomy of the 1541 Disk Drive

-5- SELECT/PRINT DATA

Use this function to search for certain records and print
or display them. You must first specify if the selected
records are to be printed on the screen (S) or the
printer (P). If you have selected the printer, you must
again choose if the data is to be printed with all fields
on normal paper (P), or if fields 1-5 are to be printed
on mailing labels (M). The address labels must be in a
single column and measure 89mm x 36mm.

In order to select the data, enter search criteria. For
fields which are not relevant, simply press RETURN. If,
for example, you want to find all addresses in Grand
Rapids, press RETURN for the first three fields and type
GRAND RAPIDS, MI for the fourth, and press RETURN for the
next three.

An example:

NAME 1
NAME 2
STREET
CITY, STATE
ZIP CODE
TELEPHONE NUMBER
NOTES

M

<return>
<return>
<return>
<return>
<return>
FAMILY

All family merobers whose name 1 begins with 'M' will be
displayed.

You can see how versatile this search is. Try it out
yourself.

-6- DELETE DATA

Use this function to delete records. After entering the
first and second names of the record, the record is reed
and the remaining fields are displayed. Then you are
asked to confirm that the record is to be deleted. If you
press Y, the record is deleted.

-0- END PROGRAM

Use this function to leave the prograro. Before the
program is ended, you are reminded that you can restart
the program without losing data by typing GOTO 110. This
is important if you forget to save the data before ending
the program.

40

Anatomy of the 1541 Disk Drive

Here is the program listing:

100 POKE 53280,5:POKE53281,2:PRINTCHR$(158),:DIMD$(100,7)
110 GOSUB2030
120 PRINT"SELECT THE DESIRED FUNCTION:"
130 PRINT"----------------------------":PRINT
140 PRINT" -1- LOAD DATA"
150 PRINT" -2- SAVE DATA"
160 PRINT" -3- INPUT DATA"
170 PRINT" -4- EDIT DATA"
180 PRINT" -5- SELECT/PRINT DATA"
190 PRINT" -6- DELETE DATA":PRINT
200 PRINT" -0- END PROGRAM"
210 PRINT
220 PRINT" CHOICE (0-6)?"
230 GETX$:IFX$<"0"ORX$>"6"THEN230
240 IF X$<>"0"THEN340
250 PRINT:PRINT" ARE YOU SURE (Y/N)?"
260 GETX$:IFX$<>"N"ANDX$<>"Y"THEN260
270 IFX$="N"THENI10
280 GOSUB2030
290 PRINT"THE PROGRAM CAN BE RESTARTED WITH
300 PRINT" 'GOTO 110'"
310 PRINT" WITHOUT LOSS OF DATA"
330 END
340 ONVAL(X$)GOSUB360,540,680,880,1190,1770
350 GOTO 110
360 REM *********
370 REM LOAD DATA
380 REM *********
390 GOSUB 2030
400 INPUT"NAME THE FILE :",FN$
410 OPEN 15,8,15
420 OPENl,8,2,FN$+",S,R"
430 INPUTiI5,FE:IF FE=O THEN 460
440 PRINT"DISK ERROR!"
450 GOTO 510
460 X=l
470 INPUTil,D$(X,l) ,D$(X,2) ,D$(X,3) ,D$(X,4) ,DS(X,5) ,D$(X,6),

D$(X,7)
480 IF ST<>64 THEN X=X+l:GOT0470
490 PRINT"FILE IS LOADED AND CONTAINS",X,"RECORDS."
500 PRINT
510 CLOSE:CLOSE15
520 PRINT"RETURN FOR MORE"
530 INPUTX$:RETURN
540 REM *********
550 REM SAVE DATA
560 REM *********
570 IF X>O THEN 590
580 GOSUB2230:RETURN
590 GOSUB 2030
600 OPEN 1,8,2,"@:"+FN$+",S,W"
610 FORI=lTOX
620 PRINT#1,D$(I,1)","D$(I,2)","D$(I,3),

41

Anatomy of the 1541 Disk Drive

630 PRINT#1,D$(I,4)","D$(I,5)","D$(I,6)","D$(I,7)
640 NEXT
650 PRINT"DATA IS SAVED":CLOSE1:RETURN
660 PRINT"RETURN FOR MORE"
670 INPUTX$:RETURN
680 REM **********
690 REM INPUT DATA
700 REM **********
710 IFX>OTHEN730
720 GOSUB2030:INPUT"FILENAME ",FN$
730 X=X+l
740 GOSUB2030
750 PRINT"INPUT DATA:"
760 PRINT"-----------":PRINT
770 I=X:GOSUB2110
780 FORI=lT07:PRINTCHR$(145),:NEXT
790 FORI=lT07:PRINTTAB(12);:INPUTD$(X,I):NEXT
800 PRINT:PRINT"CORRECT (YIN)?"
810 GETX$:IFX$<>"N"ANDX$<>"Y"THEN810
820 IFX$=" y"THEN840
830 GOTO 740
840 PRINT"MORE INPUT (YIN)?"
850 GETX$:IFX$O"N"ANDX.$O"Y"THEN850
860 IFX$="Y"THEN730
870 RETURN
880 RE.M *********
890 REM EDIT DATA
900 REM *********
910 IF X>OTHEN930
920 GOSUB2230:RETURN
930 GOSUB2030
940 INPUT"NAME 1: ",Nl$
950 INPUT"NAME 2: ",N2$
960 FORI=lTOX
970 IF D$(I,1)=N1$ANDD$(I,2)=N2$THEN1010
980 NEXTI
990 PRINT-NAME NOT FOUND!"
1000 PRINT"RETURN FOR MORE":INPUTX$:RETURN
1010 GOSUB2030
.1020 PRINT"-l-
1030 PRINT"-2-
1040 PRINT"-3-
1050 PRINT"-4-
1060 PRINT"-5-
1070 PRINT"-6-
1080 PRINT D-7-
1090 PRINT"NO.

CHANGES)"

NAME 1
NAME 2
STREET
CITY, STATE
ZIP CODE
TELEPHONE
NOTES
OF FIELD TO

:";0$(1,1)
:";D$(I,2)
:"; 0$ (1,3)
:",D$(I,4)
:";0$(1,5)
:"; 0$ (1,6)
:";D$(I,7)
CHANGE: ":PRINT"(9=NO

1100 GETX$:IFVAL(X$) <10RVAL(X$) > 7 AN DVA L (X$) o9THENll00
1110 IFVAL(X$)=9THEN1150
1120 Y=VAL(X$)
1130 INPUT"NEW CONTENTS",D$(I,Y) :PRINT
1140 GOTO 1010
1150 PRINT"MORE CHANGES (YIN)?"
1160 GETX$:IFX$<>"y"ANDX$<>"N"THEN1160

42

1170 IFX$="Y"THEN880
1180 RETURN
1190 REM *****************
1200 REM SELECT/PRINT DATA
1210 REM *****************
1220 IF X>OTHENI240
1230 GOSUB2230:RETURN

Anatomy of the 1541 Disk Drive

1240 GOSUB2030:PRINT"OUTPUT TO PRINTER (P) OR SCREEN (S)?"
1250 GETX$:IFX$<>"S"ANDX$<>"P"THENI250
1260 O$=X$:IFO$="S"THENI300
1270 PRINT:PRINT"PAPER (P) OR MAILING LABELS (M)?"
1280 GETX$:IFX$<>"P"ANDX$<>"M"THENI280
1290 D$=X$
1300 GOSUB2030
1310 PRINT"ENTER THE SEARCH DATA:"
1320 PRINT"PRESS RETURN BY IRRELEVANT FIELDS."
1330 PRINT"----------------------------------":PRINT
1340 I=O:GOSUB2110 .
1350 FORI=IT07:PRINTCHR$(l45): :S$(I)="":NEXT
1360 FORI=IT07:PRINTTAB(12)::INPUTS$(I):NEXT
1370 IFO$="S"ORD$="M"THENI450
1380 GOSUB2030:PRINT"PRINTER READY (Y)?"
1390 GETX$:IFX$<>"Y"THENI390
1400 OPEN 1,4
1410 PRINTlI 1, "NAME 1": SPC(8) : "NAME 2": SPC(8) : "STREET":

SPC(lO) :
1420 PRINT1I1,"CITY, STATE";SPC(4):"ZIP CODE TELEPHONE NOTES"
1430 FORI=IT079:PRINTlIl,"="::NEXT:PRINT#1
1440 CLOSEI
1450 FORI=ITOX
1460 FORY=IT07
1470 IFS$(Y)=LEFT$(D$(I,Y),LEN(S$(Y»)THENZ=Z+I:GOTOI480
1480 NEXTY
1490 IFZ=7THENGOSUB1550
1500 Z=O:NEXTI
1510 PRINT:PRINT"END OF DATA!":PRINT
1520 PRINT"RETURN FOR MORE":PRINT
1530 INPUTX$
1540 RETURN
1550 IFO$="S"THEN1730
1560 IFD$="M"THEN1670
1570 OPENl,4
1580 PRINTil,D$(I,1);SPC(14-LEN(D$(I,1»):
1590 PRINTlIl,D$(I,2):SPC(14-LEN(D$(I,2»):
1600 PRINTi1,D$(I,3);SPC(16-LEN(D$(I,3»);
1610 PRINTlIl,D$(I,4):SPC(15-LEN(D$(I,4»);
1620 PRINT#I,D$(I,5);SPC(8-LEN(D$(I,5»):
1630 PRINTlIl,O$(I,6);SPC(12-LEN(D$(I,6»);
1640 PRINTil,O$(I,7)
1650 PRINTi1:CLOSEI
1660 RETURN
1670 OPEN2,4
1680 PRINTlI 2
1690 FORJ=IT05:PRINTlI2,O$(I,J) lNEXT
1700 PRINT#2:PRINT1I2~PRINT1I2

Anatomy of the 1541 Disk Drive

1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2220
2230
2240
2250
2260

CLOSE2
RETURN
GOSUB2030:GOSUB2110
PRINT:PRINT"MORE (Y)?"
GETX$: IFX$<>" y"THEN17 50
RETURN
REM ***********
REM DELETE DATA
REM ***********
IFX>OTHEN1820
GOSUB2230:RETURN
GOSUB2030
INPUT"NAME 1 : ";N1$
INPUT"NAME 2 : ";N2$
FORI=lTOX
IFO$(I,1)=Nl$ANOO$(I,2)=N2$THEN1900
NEXTI
PRINT"NAME NOT FOUND!":PRINT
PRINT"RETURN FOR MORER:INPUTX$:RETURN
GOSUB2030:GOSUB2110
PRINT:PRINT"OELETE RECORD (yiN)?"
GETX$:IFX$<>"Y"ANOX$<>"N"THEN1920
IFX$=RN"THENRETURN
FORY=ITOX-l
FORJ=lT06
D$(Y,J)=D$(Y+l,J)
NEXTJ,Y
FORJ=lT06:0$(X,J)="":NEXTJ
X=X-l
PRINT"RECORD IS DELETED!"
PRINT"RETURN FOR MORE"
INPUTX$:RETURN
REM ***************
REM PROGRAM HEADING
REM ***************
PRINTCHR$ (14 7) ;
PRINTTAB(8);"======================="
PRINTTAB(8);"M A I LIN G LIS T
PRINTTAB(8);"======================="
RETURN
REM ************
REM PRINT RECORD
REM ************
PRINT"NAME 1
PRINT"NAME 2
PRINT"STREET
PRINT"CITY, STATE
PRINT"ZIP CODE
PRINT"TELEPHONE
PRINT"NOTES
RETURN
REM ********
REM NO DATA!
REM ********
GOSUB2030

";D$(I,1)
";0$(1,2)
";0$(1,3)
";0$(1,4)
";D$(I,5)
";0$(1,6)
";0$(1,7)

Anatomy of the 1541 Disk Drive

2270 PRINT"NO DATA IN MEMORY1":PRINT
2280 PRINT"RETURN FOR MORE"
2290 INPUTX$:RETURN

1.4.11 Uses for Sequential storage

The great advantage of sequential storage as compared to
relative and direct access storage, is that a lot of data
can be written to the diskette quickly. Data of varying
lengths can be stored together, without requiring the rec
ords to be of a defini te length. It makes sense to make u~e
of th is advantage, where the the file must not be
permanently divided into parts. Examples are:

* Bookkeeping files
In a bookkeeping journal, all entries are recorded
continuously. Changes should not be made to these
entries. Instead, adjustment entries should be made
to effect changes.

* Analysis files
You analyze a direct access file, looking for, say, all
customers with whom you have done more than 2000
dollars of business in a certain zip code, and write
the found records in a sequential file for later
access.

Naturally, sequential files also offer a substitute for
direct access files, as discussed in this chapter, if the
user does not possess further programming knowledge. we must
certainly recommend that you work through the other methods
of data storage, which offer other advantages.

45

Anatomy of the 1541 Disk Drive

1.5 Relative Data Storage

Relative data storage and its programming is not described
in the VIC-1541 user's manual. The reason may lie in the
fact that the Commodore 64 and the VIC-20 have no commands
to process relative files using BASIC 2.0. Therefore, it is
in principle not possible to use relative data storage on
the Commodore 64 and VIC-20 - but only in principle. We have
developed a few tricks that work within the limitations of
BASIC 2.0 and permit the Commodore 64 and also the VIC-20 to
use relative data storage. The examples may seem to be
somewhat complicated at first. For example, information
about the record lengths will be transmitted to the disk
using CHR$(x) codes. But they provide for a very easy method
of data storage.

1.5.1 The Principle

When using relative record data processing, the data records
are numbered. It is assumed that all records in a relative
file have the same length and that the record number of
every record is known or can be calculated. To find a
record, it is not necessary to search through the entire
file. Only the record number need be given to access the
record. Using the record number, the DOS can find where the
record is "relative" to the beginning of the file on the
diskette and can read it directly. Therefore, you don't have
to read an entire file into the computer, only the desired
records.

Managing a relative file follows this pattern:

Create a relative file:

1. The file is opened. With this the length of a record
is established.

2. The last record is marked.
3. The file is closed.

Writing a record:

1. The file is opened.
2. The file is positioned on the record to be written.
3. The record is written.
4. The file is closed.

Reading a record:

1. The file is opened.
2. The file is positioned over the record to be read.
3. The record is read.
4. The file is closed.

46

Anatomy of the 1541 Disk Drive

This is only an outline. In the following sections these
processes will be explained in detail.

1.5.2 The Advantage over Sequential Storage

The greatest adVantages of relative storage are:

* faster access to individual records
* does not require much of the computer's memory

It has already been mentioned that the sequential file must
reside completely in the computer's memory for processing.
Using sequential techniques, it may be necessary to search
the entire file to find a given record. The record must be
read and compared during the search process. But if a
sequential file cannot be entirely loaded into memory, this
method of search is impossible.

Using relative data files, the processing is much simpler.
By using the record number, a desired record can be read
individually. The file size is not limited to the computer's
memory. So, for example, a program that uses all 3.5K bytes
of a standard VIC-20 can manage a file with up to 163
Kbytes!

The advantages of relative over sequential file management
are large enough that many of you, once acquainted with the
techniques will prefer to use them.

1.5.3 Opening a Relative File

Relative files are also opened with the OPEN command. The
command differs only slightly from that for sequential
files. Take a look at the format of the OPEN command:

OPEN Ifn,da.channel. -fi lename,L. -+CHR$ (recordlength)

The first four parameters are identical to those for
sequential files. They are logical file number, device
address (normally 8), channel (2-14), and name of the file.
Next follows an L which informs the DOS that a relative file
should be opened, whose record length follows. This record
length is transmitted with a CHR$ code. The length is
between one and 254. Thus each record of a relative file is
limited to a maximum of 254 characters.

If the record length is smaller than 88, the record can be
read with an INPUT# statement. For this, it is necessary

47

Anatomy of the 1541 Disk Drive

that the PRINT# statement transfers the record with a
tr.ailing RETURN. A PRINT# statement sends a RETURN when it
is not ended with a semicolon. This RETURN is now a part of
the record. When you want to read records with INPUT#, the
record length must be increased by one.

A file composed of 80-character records, to be read by the
INPUT# statement would be opened as follows:

OPEN l,8,2,"FILE.REL,L,"+CHR$(8l)

Here a relative file with the name "FILE.REL" is opened
using channel 2. The record length should total 81
characters. Records comprised of 80 characters should be
sent with a PRINT# statement, with no trailing semicolon.

It is important to note that only one relative file can be
opened at a time. If you want to work with two relative
files, you must always close the first before opening the
second. One sequential file may be opened in addition to one
relative file.

When a relative file is opened fpr the first time, the DOS
cre~tes as many "null" or unused records that can fit in a
single 254 byte block. It creates these "null" records by
writing a record with a CHR$(255) at the beginning of each
record. This is called formatting a relative file.

If you want to expand a relative file beyond the initial
number of records that the DOS formatted, then you can
reference the last record number that you want to write (by
positioning to that record number) and the DOS automatically
formats the"records between the current end of file and the
new last record number by writing records containing
CHR$(255). Formatiing takes time to complete.

If you try to read a record whose number greater than that
of the last record, the DOS returns the error RECORD NOT
PRESENT. However, if you write a record which is greater
than the highest current record, all records less than the
new record number are also written with CHR$(255).
Subsequently accessing these record does not result in an
error.

If you want to avoid long delays as relative records are
formatted (as the file is expanded), then you should
reference the last record number immediately after opening
the file. The formatting of the null records takes place at
that time instead of at a more inconvenient time.

To position the DOS for a specific relative record you mUf't
send a position command over the command channel (15), as
shown here:

PRINTllfn,-P-+CHR$(channel)+CHR$(low)+CHR$(higA)+CHR$(bytel

48

Anatomy of the 1541 Disk Drive

If you are positioning to a record which is beyond the
current end of file, the DOS presents the message RECORD
NOT PRESENT appears to the disk error channel. If this
record is to be written, then you can ignore the message.
The following PRINTi statement is carried out in spite of
the error message.

The parameters low and high in the P command designate the
record number. The maximum value that can be given with one
byte is 255, but a relative file contains up to 65535 rec
ords. Therefore, the record number must be transmitted in
two bytes. These two bytes are calculated with the following
formula:

HB=INT(RN/256)
LB=RN-HB*256

HB High Byte (parameter high)
LB Low Byte (parameter low)
RN Record Number

The last parameter (byte) serves to position to a specific
location within the given record. An example:

PRINTI2,-P-+CHR$(2)+CHR$(10)+CHR$(I)+CHR$(5)

Here the file is positioned to the fifth byte of the 266th
record. This 266 is coded as a low byte of 10 and a high
byte of 1 (high byte * 256 + low byte = record number).

To read or write a complete record, the file is positioned
to the first byte of the record. If the last parameter is
not given, the trailing RETURN (CHR$(13» is taken as the
character location.

The corresponding BASIC program to establish a file of 100
80-character records looks like this:

100 RN=100
110 HB=INT(RN/256)
120 LB=RN-HB* 256
130 OPENl,8,2,"FILE.REL,L,"+CHR$(80)
140 OPEN2,8,15
150 PRINTi2,"P"+CHR$(2)+CHR$(LB)+CHR$(HB)+CHR$(1)
160 PRINT#1,CHR$(255)
170 CLOSE l:CLOSE 15

Freeing 100 records takes some time. The creation of this
file takes about ten minutes. Notice that of the 80 char
acters ina record, only 79 can be used to hold data,
because transferring data with a PRINTi command adds a
trailing RETURN.

49

Anatomy of the 1541 Disk Drive

1.5.4 Preparing Data for Relative Storage

As already mentioned, you cannot change the record length of
a relative file. If a record consists of several fields,
these fields must be combined. It is important that these
fields always be in the same position so that they can be
separated later. Let's work through a problem:

We want to manage an inventory using relative storage
techniques. To that end, the following fields are necessary:

PART NUMBER
DESCRIPTION
QUANTITY
COST
PRICE

4 CHARACTERS
15 CHARACTERS

5 CHARACTERS
6 CHARACTERS
6 CHARACTERS

Record length 36 bytes

The inventory contains approximately 200 items with a record
length of 36 bytes. This inventory file can now be created:

100 RN=200:REM NUMBER OF INVENTORY ITEMS
110 RL=36 :REM RECORD LENGTH
120 OPEN 1,8,2,"INVEN,L,"+CHR$(36)
130 OPEN 2,8,15
140 PRINT#2,"P"+CHR$(2)+CHR$(200)+CHR$(0)+CHR$(1)
150 PRINT#1,CHR$(255)
160 CLOSE l:CLOSE 2

Now the file is created and all records are written. Let's
suppose that the inventory is present as a sequential file.
It consists of 200 records, the fields of which are ordered
one after the other. These fields must be written to the
relative file. This is not simple, however, because many of
the descriptions are not the full fifteen characters in
length, for example. The structure of the relative file
looks as follows:

111111111122222222223333333
Position : 123456789012345678901234567890123456

Field

Contents

: PN$-DE$------------Q$---C$----P$----

1
2
3

1/8 in. sheet
No. 10 screw
Valve A3A4

1344 11.40 20.30
1231 4.00 7.00
1243 11.45 16.40

200 1/2 in. tubing 2321 3.35 4.10

The fields will be read from the sequential file into the
following variables:

50

Anatomy of the 1541 Disk Drive

Part number PN$
Description DES
Ouantity 0$
Cost C$
Price p$

The following command chains these fields together:

RC$ = PN$ + DE$ + 0$ + C$ + P$

The record variable Re$ does not have the deSired structure.
The reason is that the quantity immediately follows the
description. Because the quantity must begin at position 20
and the description is not always fifteen characters, we
have a problem. In order to read the records from the rela
tive file, the structure must be observed. Therefore, all
fields that are shorter than the planned length must be
padded with blanks. Taking this into account, the chaining
goes like this:

BL$=n
RC$=PN$+LEFT$(BL$,4-LEN(PN$»
RC$=RC$+DE$+LEFT$(BL$,15-LEN(DE$»
RC$=RC$+O$+LEFT$(BL$,5-LEN(OS»
RC$=RC$+C$+LEFT$(BL$,6-LEN(C$»
RC$=RC$+P$+LEFT$(BL$,6-LEN(P$»

This concatenation looks more complicated than it really is.
Each field must be filled with enough blanks to bring it to
its appropriate length. The blanks are added to the
individual fields from the string BL$, defined at the
beginning. T

Let's go through an example:

Suppose the first part number is 8. The length of this
string, LEN(PN$), is then one. The maximum length of this
field (4) minus the actual length (1) is 3. The string PN$
must therefore be padded with three blanks, LEFT$(BL$,3).

Each record of the old sequential file must be prepared in
this manner before it can be transferred to the relative
file.

Naturally, the above is true for all input values to be used
in a relative file. Therefore, you must always remember to
use a routine to fill each field with blanks to its full
length when working with relative data processing.

51

Anatomy of the 1541 Dis.k Drive

1.5.5 Transferring Data

In principle, transferring data to and from a relative file
does not differ from sequential storage. Records are written
with PRINT# and read with INPUT# or GET#. The only
difference is that before a record is be written or read,
the file must be positioned to that record. This is accom
plished with the P command. This example program illustrates
what we have discussed:

100 BL$="
105 OPEN 1,8,2, "TEST .REL, L, "+CHR$ (41)
110 OPEN 2,8,15
120 PRINT#2,"P"+CHR$(2)+CHR$(100)+CHR$(0)+CHR$(1)
130 PRINT#1,CHR$(255)
140 PRINT CHR$(147)
150 PRINT"INPUT RECORD:"
160 PRINT"-------------"
170 INPUT"RECORD NUMBER (1-100) : "lRN
180 IF RN<l OR RN>lOO THEN PRINTCHR$(145)1:GOT0160
190 INPUT"FIELD 1 (MAX.lO CHAR.) : "lFl$
200 IF LEN(Fl$»lO THEN PRINTCHR$(145)nGOT0190
210 INPUT"FIELD 2 (MAX. 5 CHAR.) : "lF2$
220 IF LEN(F2$»S THEN PRINTCHR$(14S)::GOT0210
230 INPUT"FIELD 3 (MAX.lO CHAR.): "lF3$
240 IF LEN(F3$»10 THEN PRINTCHR$(145)1:GOT0230
250 INPUT"FIELD 4 (MAX.15 CHAR.) : "lF4$
260 IF LEN(F4$»15 THEN PRINTCHR$(145)::GOT0250
270 PRINT"COHRECT (YIN)?"
280 GETX$:IF X$<>"Y' AND X$<>"N" THEN 280
290 IF X$="N" THEN 140
300 RC$=Fl$+LEFT$(BL$,lO-LEN(Fl$»
310 RC$=RC$+F2$+LEFT$(BL$,5-LEN(F2$»
320 RC$=RC$+F3$+LEFT$(BL$,10-LEN(F3$»
330 RC$=RC$+F4$+LEFT$(BL$,15-LEN(F4$»
340 PRINT#2,"P"+CHR$(2)+CHR$(RN)+CHR$(0)+CHR$(1)
350 PRINT# 1, RC$
360 PRINT"MORE INPUT (YIN)?"
370 GETX$:IF X$<>"Y" AND X$<>"N" THEN 370
380 IF X$="Y" THEN 140
390 CLOSE l:CLOSE 2:END

The following line-oriented documentation explains the
operation of the program:

100 A blank-character string with 15 blanks is
defined.

105 The relative file is opened with a length of 15.
110 The command channel 15 is opened.
120 To initialize the relative file, the head is

positioned over the first byte of the last (lOOth)
record.

130 The last record is freed and the initialization
begun.

140 The screen is erased.

52

150-260

270-290
300-330
340

350
360-380
390

Anatomy of the 1541 Disk Drive

The record no. and fields 1-4 are entered and
checked for correct length.
The entered data can be corrected.
The record is prepared.
The head is positioned over the first byte of the
record.
The record is written to the disk.
New data can be entered.
The program ends.

Now write some records with this program, but don't forget
to save in case you need it later.

Certainly, it also necessary to read and change e~isting
records. To do this, the relative file is opened, the file
is positioned to the appropriate record, and the record is
read. This record must then be divided into its fields.
Let's read a record that was recorded with the previous
program. The following routine reads the record:

100 OPEN 1,8,2,"TEST.REL,L,"+CHR$(4l)
110 OPEN 2,8,15
115 PRINT CHR$(147)
120 INPUT"RECORD NUMBER :";RN
130 PRINT# 2, "P"+CHRS (2) +CHR$ (RN) +CHR$ (0) +CHR$ (1)
140 INPUT# 1 ,RC$
160 IF ASC(RC$)<>255 THEN PRINT"RECORD NOT FOUND!":

GOT0250
170 PRINT RC$
250 CLOSE l:CLOSE 2

This routine reads a specified record. If this record has
never been written, it is recognized by the value 255 with
which every record was marked at the establishment of the
file.

A record that is found is displayed. You can see that the
four fields are in the same positions. If you want to divide
the record into its individual parts, you must use the
function MIDS. For example, in order to extract field 1 of
the record, give the following statements in the direct mode
after the record is found and read:

Fl$=MIDS(RC$,l,lO)
PRINT Fl$

Now the variable Fl$ contains the first field, as written by
the first program. The division of records into individual
fields is accomplished by building on the previous program.
Add or change the following lines:

170 FlS=MID$(RC$,l,lO)
180 F2$=MID$(RCS,11,5)
190 F3$=MID$(RC$,16,10)
200 F4$=MID$(RC$,26,15)

53

Anatomy of the 1541 Disk Drive

210 PRINT"FIELD 1: H Fl$
220 PRINT"FIELD 2: " F2$
230 PRINT"FIELD 3: " F3$
240 PRINT"FIELD 4: " F4$
250 PRINT"MORE (YIN) "
260 GETX$:IF X$<>"yn AND X$<>"N" THEN 260
270 IF X$"'''Y" THEN 115
280 CLOSE l:CLOSE 2

Here the record is separated into the individual fields and
the fields are displayed. It is important for the MID$
function that the exact positions of the fields within the
record be maintained. The first parameter within the paren
theses is the string variable containing the record. The
second parameter is the position at which the number of
characters represented by the parameter will be taken out.
Further work may done with the selected fields inside the
program.

So far, we have read the records with the INPUTi statement.
If the record is longer than 88 characters, it can no longer
be read with the INPUT# statement. The way to get around the
limited INPUT# statement is with the GET# statement. The
bytes of a record are read one at a time with this command
and assembled into a single string. Suppose you have a
relative file with l28-character records. Now you want to
read the tenth record of this file and place it in the
variable RC$. The example of the following routine
illustrates reading this with GET#:

100 OPEN 1,8,2, "TEST .GET ,L, "+CHR$ (128)
110 OPEN 2,8,15
120 PRINT#2,"P"+CHR$(2)+CHR$(10)+CHR$(0)+CHR$(1)
130 RC$"'""
140 FOR 1"'1 TO 128
150 GET#! ,X$
160 RC$"'RC$+X$
170 NEXT I

After running this routine, the record is contained in the
variable RC$. If this record had been written with a PRI'NT#
statement without a trailing semicolon, the last character
in the string will be a RETURN. To ignore this RETURN, allow
the loop in line 140 to run only to 127. The last character
of the record RETURN is not read.

AS already mentioned, the last parameter of the P command
specifies at which character the transfer of data should
begin. If, for instance, in the l27-character record of the
previous example, you want to read positions 40-60 into a

54

Anatomy of the 1541 Disk Drive

field, the head must be positioned over the 40th charact~r
and the next 21 bytes read. The following routine clarifies
this:

100 OPEN 1,8,2,"TEST.GET,L,"+CHR$(128)
110 OPEN 2,8,15
120 PRINTI2,"P"+CHR$(2)+CHR$(10)+CHR$(0)+CHR$(40)
130 F$=""
140 FOR 1=1 TO 21
150 GETll,X$
160 F$=F$+X$
170 NEXT I

In line 120, the head is positioned over the the 40th byte
of the tenth record in line 120 and the loop in lines 140-
170 reads the following 21 bytes (bytes 40-60 of the record)
into F$.

You see then that the entire record need not be read if you
only want to work with part of it.

1.5.6 Closing a Relative File

There is no difference between closing a relative file and
sequential file. Because the command channel must always be
open to send the position command when working with relative
storage, it must also be closed.

1.5.7 Searching Records with the Binary Method

Normally each record is accessed by record number. But what
if you want to search for a specific name in a relative file
and the record number is not known. It is possible to read
each record and compare each for the desired name. But this
is very time consuming if the file has many records.

If the file is kept in name order, the records can be
searched using an alternative method. This method is called
a binary search. In order to use a binary search, the
relative file must be arranged in sorted order. USing the
above example, relative record 1 must contain a name with
the lowest collating sequence while the last relative record
must contain a name with the highest collating sequence.
Thus the name AARON might be contained in relative record 1
and ZYPHER might be contained in the last relative record of

55

Anatomy of the 1541 Disk Drive

the file and all other names would be ordered throughout.

When records are added to the file, then the records must
be reordered. Similarly if a name is changed, then the
records must be reordered.

The binary search can be explained using a simple example.
When you want to find a name in the telephone book, you
don't search through it sequentially. You open the book in
the middle and compare the first letter of the desired name
with the first letter of names on the page. If the desired
name comes before these, you turn halfway into the first
section of the book, and so on. You go through it
systematically.

The binary search is not a sequential search. It identifies
.a record halfway through the remaining number of records.
The following example will clarify this:

There exists the following relative file, sorted in
ascending order:

Record number
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Contents
1985
1999
2005
2230
2465
2897
3490
3539
4123
5000
5210
6450
6500
6550
6999

out of these fifteen records we will search for a contents
of 3490. It is not known which record it is stored in.

We must first know how many records are in the file. In this
case, there are fifteen. We divide this by two. The middle
of the file is record eight with the contents 3539. We
determine if the contents of this record equal to the target
value, and if not, whether it is larger or smaller. In this
case, it (3539) is larger. This means the record we are
looking for is in the first half of the file. So we divide
eight by two and examine the contents of record four, 2230.
Since 2230 is less than 3490, it lies between four and
eight. We again divide by two and add this to record 4 which
and results in record 6 whose contents is 2897. 2897 is less
than 3490, so our target lies between records six and eight.
Record seven is indeed the record we are looking for.

56

Ana~amy of the 1541 Disk Drive

The principle of the binary search is to determine by the
result of each comparison whether to search upwards or
downwards until the search data is found. The maximum number
of comparisons can be found using the following formula:

S=INT(LOG(N)!LOG(2)+1)

S is the number of comparisons (searches) and N is the
number of records in the file. In a sorted relative data
file with 1000 records, no more than ten comparisons will be
necessary to find the desired record!

Let's create a relative data file with fifteen records to
test the binary search:

100 OPENl,8,2,"BINARY.REL,L,"+CHR$(5)
110 FORI=l T015
120 READ RC$
130 PRINTU ,RC$
140 NEXT I
150 CLOSE l:CLOSE 2:END
160 DATA 1985,1999,2005,2230,2465,2897,3490,3539
170 DATA 4123,5000,5210,6450,6500,6550,6999

This program puts the fifteen records in a file called
BINARY.REL using the values given in lines 160-170. The
position command is not necessary because the data will be
written straight through from first to last record. After
opening the file the pointer points to the first record.
This file is designed to be searched with the binary method.
The following program is based on the logic of the binary
search:

100 OPENl,8, 2, "BINARY .REL, L, "+CHR$ (5)
110 OPEN2,8,15
120 PRINTCHR$(147)
140 N=15: REM NUMBER OF RECORDS
150 I=LOG(N)!LOG(2)
160 IF I-INT(I)<>O THEN I=INT(I)+l
170 M=I-1
180 1=2"1
190 X=I/2
210 INPUT"RECORD TO FIND (* TO END): ";SR$
220 IF SR$="*" THEN 320
230 IF M<O. THEN PRINT"RECORD NOT FOUND":GOT0140
240 M=M-l
250 PRINT#2,"P"+CHR$(2)+CHR$(X)+CHR$(0)+CHR$(I)
260 INPUTU ,RC$
270 IF SR$=RC$ THEN 340
280 IF SR$<RC$ THEN X=X-2 AM:GOT0230
290 X=X+ 2 "1'1
300 IF X>I THEN PRINT"END OF FILE EXCEEDED!"
310 GOTO 230
320 CLOSE l:CLOSE 2

57

Anatomy Of the 1541 Disk Drive

330 END
340 PRINT"RECORD FOUND!"
350 PRINT"CONTENTS : ":RCS
360 GOTO 140

Program Documentation:

100
110
120
140

150-190

210-220

230

240

250-260

2.70

280-310

320-330
340-360

The relative file "BINARY.REL" is opened.
The command channel is opened.
The screen is erased.
The number of records is assigned to the variable
N.
If the maximum number of records does not
represent a power of two, the next higher power
of two is formed. The file will be expanqed, but
no records are lost. The exponent of this power of
two is used as the index. X is the value of 1/2.
1/2 indicates the exact middI'e of the (expanded)
file. After that, the variable M receives the
value of 1-1.
The record to be found is read. To end the
program, enter a '*'.
If M<O, the record was not found.

M is decremented by one. The next Mth power
represents half of the rest of the file.
The file is positioned over the record containing
in the variable x.
If the target record is found, the search is
ended and the record displayed.
It is determined if the target record is larger
or smaller than the record just read. The middle
of the upper or lower half (as appropriate) is
stored in the variable X.
The file is closed and the program is ended.
The found record is displayed.

This binary search, coded in BASIC, is implemented
universally. Only the number of records and the appropriate
record to be searched for need be changed. You can use this
routine for finding records in your sorted relative data
files.

1.5.8 Searching Records with a Separate Index File

If you work with individual records frequently and need
quick access with alphanumeric keys that don't correspond to
the logical record number, and your file is not sorted, we
recommend another method. .

Create an index file for each desired key field, in which
each record is composed of

58

Anatomy of the 1541 Disk Drive

- an index key
- the corresponding record number

This entire index file is to be loaded into the computer's
memory. An example:

You have constructed your name and address manager as a
relative file consisting of

- First name
- Last name
- street
- City, State
- zip code
- Telephone number

You want to be able to search the file based on the Last
name. So you create an additional sequential file that
contains the desired key (in this case the last name) and
the record number of the corresponding record in the
relative file.

The index file is read completely into the computer so the
search can be accomplished as quickly as possible. If you
want to access a record that has the last name HARRIS, then
you search through the appropriate index in memory and whE'n
found, read the corresponding relative record by using the
record number also contained in the index.

Here is an example:

We assume that a data file and an index file exist for the
names:

Data file: Index file:

Last name First name more fields Index Record No.
(last name) LB HB

--------------------,--
Smith John · Smith 01 00
Harris Sam · Harris 02 00
Hanson Carl · Hanson 03 00
Johnson Mark Johnson 04 00

Green Simon · Green 99 00

The file contains 99 records. Before the program can be
used, the index file must be read in.' This can be a
sequential file, which can be read into a memory table
res'erved with DIM IT$(99). The first twenty characters of
each index table position comprise the last name. The next

59

Anatomy of the 1541 Disk Drive

to the last byte (no. 21) is the low byte and the last byte
(no. 22) is the high byte of the record number. with these
conditions, a desired record can be found with the following
routine:

100 INPUT "LAST NAME":N$
110 FOR 1=1 TO 99
120 IF LEFTS(ITS(I),20)=N$ THEN 150
130 NEXT I
140 PRINT "NAME NOT FOUNDl":END
150 PRINT "RECORD FOUNDl"
160 OPENl,8,2,"ADDRESS,L,"+CHR$(81)
170 OPEN 2,8,15
180 PRINT'2,"P"+CHR$(2)+MID$(IT$(I),21,1)+CHR$(0)

+CHR$(l)
190 INPUT.l,RC$

The loop in lines 110-130 goes through the index table
sequentially, searching for the target name contained in the
twenty leftmost characters. If the name is not found, an
appropriate message is given (line 140)", before the program
is ended.

If, in line 120, the target name matches the index entry,
the program branches to line 150. After giving the message,
the address file is opened. After opening the command
channel, the position command is sent to the disk. Because
the next to the last byte of the index entry contains the
low byte of the record number, it must be extracted using
the MID$ function. The high byte is known to be zero since
there are fewer than 255 record.

Finally the relative record is read in line 190.

The access of index files is an equally fast and
extraordinarily flexible form of data organization. One can
theoretically have as many index files as desired. Above
all, you must take note of two important restrictions:

1. Changes in the main data file which affect the key
fields must also be made to the corresponding index
file. with several index files this can become very
time-consuming.

2. The number and size of the index files that are kept in
the computer's memory for fast access are limited by
the availability of memory.

60

Anatomy of the 1541 Disk Drive

1.5.9 Changing Records

The logical process for changing a record is this:

1. Read the record
2. Split the record into its fields
3. Change the appropriate field
4. Rebuild the record (combine fields)
5. Rewrite the record

In section 1.5.5 we wrote some records in the file
RTEST.REL". This file had the following properties:

Record length
Number of records
Number of fields
Length, position

41 bytes
100

• II

,
Trailing RETURN

field 1
field 2
field 3
field 4

in position

4
10, 1-10
5, 11-15

10, 16-25
15, 26-40
41

A file description such as the one above should be made for
each of your files. This is very important if other programs
are to use these data. The file description defines the
order and length of the fields of the file.

In this file, we allow for the contents of the records to be
changed. The following program allows changes:

100 REM ===================
110 REM PREPARATION
120 REM ===================
130 BL$="
140 OPEN 1,8,2,"TEST.REL,L,"+CHR$(41)
150 OPEN 2,8,15
160 REM ===================
170 REM READ RECORD
180 REM ===================
190 PRINT CHR$(147)
200 INPUT"RECORD NUMBER (1-100): "IRN
205 IF RN(l OR RN>lOO THEN PRINTCHR$(145);:GOT0200
210 PRINT"---------------------------"
220 PRINT*2, "P"+CHR$ (2) +CHR$ (RN)+CHR$ (0)+CHR$ (1)
230 INPUTU,RC$
240 IF ASC(RC$)<>255 THEN 270
250 PRINT "RECORD NOT WRITTEN"
260 GOTO 630
270 REM ======================
280 REM PREPARE RECORD
290 REM ======================
300 F$(l)=MID$(RC$,l,lO)
310 F$(2)=MID$(RC$,11,5)
320 F$(3)=MID$(RC$,16,10)
330 F$(4)=MID$(RC$,26,15)

61

Anatomy of the 1541 Disk Drive

340 REM ======================
350 REM DISPLAY FIELDS
360 REM ======================
370 PRINT CHR$(147)
380 FOR 1=1 TO 4
390 PRINT"FIELD";I;": ";F$(I)
400 NEXT I
410 PRINT"-------------------------"
420 REM ======================
430 REM CHANGE FIELDS
440 REM ======================
450 PRINT"CHANGE WHICH FIELD (l-4)?"
460 GETX$:IFX$<"l" OR X$>"4" THEN 460
470 INPUT"NEW CONTENTS: ";F$(VAL(X$»
480 PRINT"RECORD IS CHANGED"
490 PRINT"MORE CHANGES IN THIS RECORD (YIN)?"
500 GETX$:IF X$<>"Y" AND X$<>"N" THEN 500
510 IF X$="Y" THEN 340
520 REM ====================
530 REM CHAIN FIELDS
540 REM ====================
550 RC$=F$(l)+LEFT$(BL$,lO-LEN(F$(l»)
560 RC$=RC$+F$(2)+LEFT$(BL$,5-LEN(F$(2»)
570 RC$=RC$+F$(3)+LEFT$(BL$,10-LEN(F$(3»)
580 RC$=RC$+F$(4)+LEFT$(BL$,15-LEN(F$(4»)
590 REM =========================
600 REM WRITE RECORD BACK
610 REM =========================
620 PRINT#! ,RC$
630 REM ====================
640 REM END PROGRAM?
650 REM ====================
660 PRINT"MORE CHANGES TO FILE (YIN)?"
670 GETX$:IF X$<>"Y" AND X$<>"N" THEN 670
680 IF X$="Y" THEN 160
690 CLOSE l:CLOSE 2:END

After this program is RUN you can change any desired record.
This record must have been written with the program in
section 1.5.5.

This editing program does not check the new field data for
correct length.

The important commands in this program have already b~en
explained in the corresponding sections.

1.5.10 Expanding a Relative File

Every relative file has a user-determined number of records
that ranges from 1 to 65538. This number is the record with
the highest record number and is written to the file with a

62

Anatomy o£ the 1541 Disk Drive

value of CHR$(255). Writing this last record also formats
all records in the file that precede this record number with
CHR$(255).

You can expand the size of a relative file at a later tiroe.
For example, consider a relative file that is initially
created with three records. After the file is OPENed, you
position the file at record number 3 and write the record
with CHR$(255). Here's an example of how you might do this:

10 OPEN 1,8,2, "RELFILE, L, "+CHR$ (50)
20 OPEN 15,8,15
30 PRINTU5, "P"+CHR$ (2) +CHR$ (3)+CHR$ (O)+CHR$ (1)
40 PRINTil,CHR$(255)

When statement 40 is performed, not only is record 3
written, but records 1 and 2 are also formatted by the DOS.
Subsequently, if you position and write a 90th record, the
DOS formats records 4 through 89 (see lines 150 and 160
below). Each time the file is expanded, the DOS formats
records between the current high record number and the new
high record number.

150 PRINTi15,"P"+ CHR$(2)+CHR$(90)+CHRS(0)+CHR$(1)
160 PRINTil,CHR$(255)

500 PRINTi15,"P"+CHR$(2)+CHR$(175)+CHR$(0)+CHR$(1)
510 PRINTil,CHR$(255)

An existing relative file can be expanded at any time,
provided there is sufficient room on the disk. To do so, the
new last record is written with CHR$(255). At the same time,
all records between the old and new end of file are also
formatted.

When writing a record to a relative file whose record number
is higher than the current high record number, a DOS error
is not returned. If there is room on the diskette for the
new records (current high record number through the new high
record number) the file is simply expanded. If there is a
lack of space on the diskette for the new records, the DOS
error FILE TOO LARGE is returned. When reading a record from
a relative file whose record number is higher than the
current high record number, the DOS error RECORD NOT PRESENT
is returned to the error channel.-

63

Anatomy of the 1541 Disk Drive

1.5.11· Home Accounting with Relative ·Data Storage

A complete example of problem solving using relative files
offers you a good insight into the organization of relative
file processing. It can be used by most readers of this
book. Few examples of relative file usage have been
explained elsewhere, so here is such a program.

In this application, individual accounts are numbered. This
account number is used as a key to the corresponding
records.

This provides that each account contain a clear text
description. The first field of each record is this account
name. Twenty characters are allowed for the name.

since information is needed for each month, twelve fields
are necessary for each record. These summary fields are each
ten characters long. The account summaries are stored as
strings which are converted to numbers with .the help of the
VAL function. The record consists of 141 characters (twenty
for the name, 12*10 for the month summaries and one for
RETURI'/) •

The layout of the records follows:

Field

Account name
January summary
February summary

November summary
December summary

Length

20
10
10

10
10

position

1-20
21-30
31-40

121-130
131-140

The maximum number of accounts per year is set to twenty.
Therefore, a year's file consists of twenty records of 141
bytes each.

We also specified the functions that this program is to
perform.

* Create accounts

* Post to accounts

* Display summary by Account

* Display account names

* Display Monthly summary

64

Anatomy of the 1541 Disk Drive

* Display Year-end summary

Create accounts:

This function creates the file for a year. It asks for the
number and names of the accounts. The records are then
written with the account name and the summary fields are set
to zero. Should a data file already exist with the sane
name, the old file is deleted.

Post to accounts:

This function asks for the account number to be posted and
whether the posting is an income or expense. For example,
the category "SALARY" is an income account and the category
"RENT" is an expense account.

After this, the current contents of the account are
displayed. When you post the appropriate amount, which is
always positive. If you are making a correction entry, use a
negative amount.

Now the updated contents are displayed. You may then make a
new entry.

Producing account summary:

After entering the account number, the summary of the twelve
months and the year's total are displayed for that account.

Display account names:

Each account is determined by its number. Should you forget
a number, this function lists all accounts by name and
corresponding number.

Display monthly summary:

Here the income or expenses of all accounts are displayed.
The monthly balance of all accounts is also displayed.

Display year-end summary:

This function shows the summary of all accounts and the
year-end balance. This display takes some time, since all
monthly fields of each record must be read and totaled. It
accesses the entire file.

Here's the program listing:

65

Anatomy of the 1541 Disk Drive

100 POKE 53280,2:POKE5328l,2:PRINTCHR$(158)::
BL$=" ":DIMS(12)

110 GOSUB 2050
120 INPUT"CURRENT YEAR: ":Y$
130 IF Y$<"1984"ORY$>"1999"THENPRINTCHR$(145);:GOT0120
140 GOSUB 2050
150 PRINT"SELECT A FUNCTION:
160 PRINT"------------------":PRINT
170 PRINT" -1- CREATE ACCOUNTS"
180 PRINT" -2- POST TO ACCOUNTS"
190 PRINT" -3- ACCOUNT SUMMARY"
200 PRINT" -4- DISPLAY ACCOUNT NAMES"
210 PRINT" -5- MONTHLY SUMMARY"
220 PRINT" -6- YEAR SUMMARY":PRINT
230 PRINT" -0- END PROGRAM"
240 GETX$:IFX$<"0"ORX$>"9"THEN240
250 IFX$<>"0"THEN270
260 END
270 ONVAL(X$)GOSUB 290,560,920,1160,1370,1720
280 GOTO 140
290 REM ================-=======
300 REM CREATE ACCOUNTS
310 REM ========================
320 GOSUB 2050
330 PRINT"CAUTION! ANY PREVIOUS FILE FOR THIS YEAR"
340 PRINT"WILL BE ERASED!":PRINT
350 PRINT"CONTINUE(Y/N)?"
360 GETX$:IFX$<>"Y"ANDX$<>"N"THEN360
370 IFX$="Y"THEN390
380 CLOSEl:CLOSE2:RETURN
390 OPEN2,8,15,"S:ACCOUNTS"+Y$
400 OPEN1,8,2,"ACCOUNTS"+Y$+",L,"+CHR$(141)
410 GOSUB 2050
420 INPUT"HOW MANY ACCOUNTS (1-20): .. :AN
430 PRINT
440 IFAN<10RAN>20THENPRINTCHR$(145)::GOT0420
450 FORI=ITOAN
460 PRINT"NAME OF ACCOUNT NO.":I;": to;
470 INPUTAN$
480 IFLEN(AN$»20THENPRINTCHRS(145);:GOT0420
490 RC$=AN$+LEFT$(BL$,20-LEN(AN$»
500 FORX=lT012
510 RC$=RC$+STR$(0)+LEFT$(BL$,8)
520 NEXTX
530 PRINTH,RCS
540 NEXT I
550 CLOSE I:CLOSE 2:RETURN
560 REM =============
570 REM POSTING
580 REM =============
590 GOSUB2050
600 INPUT"ACCOUNT NmIBER" :AN
610 IFAN<10RAN>20THENPRINTCHR$(145)::GOT0600
620 GOSUB2140
630 PRINT"----------------------------"

66

Anatomy of the 1541 Disk Drive

640 PRINT"NO."lAN1" - "lAN$
650 PRINT"------------------------"
660 PRINT"INCOME OR EXPENSE (I/E)?"
670 PRINT"------------------------"
680 GETX$:IFX$<>"I"ANDX$<>"E"THEN680
690 INPUT"MONTH (1-12) : "1M
700 IFM<10RM>12THENPRINTCHR$(145)1:GOT0690
710 PRINT"----------------------------"
720 PRINT"OLD CONTENTS : "lS(M)
730 PRINT"----------------------------"
740 INPUT"POSTING AMOUNT: ";PA
750 PRINT"----------------------------"
760 IFX$="I"THENS(M)=S(M)+PA:GOT0780
770 S(M)=S(M)-PA
780 PRINT"NEW CONTENTS : "lS(M)
790 PRINT"----------------------------"
800 RC$=AN$+LEFT$(BL$,20-LEN(ANS»
810 FORI=lT012
820 S$=STRS(S(I»
830 RC$=RC$+S$+LEFT$(BL$,10-LEN(S$»
840 NEXT!
850 PRINH 2," P"+CHR$ (2) +CHR$ (AN) +CHR$ (0) +CHR$ (1)
860 PRINT#l,RC$
870 CLOSEl:CLOSE2
880 PRINT"FURTHER POSTING (Y/N)?"
890 GETX$:IFX$<>"Y"ANDX$<>"N"THEN890
900 IFX$<>"Y"THENGOSUB2050:GOT0600
910 RETURN
920 REM ===================
930 REM ACCOUNT SUMMARY
940 REM ===================
950 GOSUB2050
960 INPUT"ACCOUNT NUMBER: ";AN
970 IFAN<10RAN>20THENPRINTCHR$(145);:GOT0960
980 GOSUB2140
990 GOSUB2050:PRINTCHR$(145);CHR$(145)1
1000 PRINT"-------------------------"
1010 PRINT"NO.";AN;" - "lAN$
1020 PRINT"-------------------------"
1030 PRINT"MONTH TOTAL"
1040 PRINT"-------------------------"
1050 TL=O
1060 FORI=lT012
1070 PRINTI;TAB(8)lS(I)
1080 TL=TL+S(I)
1090 NEXT I
1100 PRINT"-------------------------"
1110 PRINT"TOTAL";TAB(8) ;TL
1120 PRINTTAB(9);"======="
1130 PRINT"RETURN FOR MORE"
1140 INPUTX$
1150 CLOSE1:CLOSE2:RETURN
1160 REM =====================
1170 REM DISPLAY ACCOUNT NAMES
1180 REM =====================

67

Anatomy of the 1541 Disk Drive

1190 GOSUB2050
1200 OPEN1,8,2,"ACCOUNTS"+Y$+",L,"+CHR$(141)
1210 OPEN2,8,15
1220 1=1
1230 PRINT* 2," P"+CHR$ (2) +CHR$ (I) +CHR$ (0) +CHR$ (1)
1240 RC$=""
1250 FORX=IT020
1260 GETU ,X$
1270 RC$=RC$+X$
1280 NEXTX
1290 INPUT*2,X
1300 IFX=50THENI340
1320 PRINTI:" - ":RC$
1330 I=I+l:GOTOI230
1340 PRINT"RETURN FOR MORE"
1350 INPUTX$
1360 CLOSEl:CLOSE2:RETURN
1370 REM ===============
1380 REM MONTH SUMMARY
1390 REM ===============
1400 GOSUB2050
1410 INPUT"MONTH : ":M
l420 GOSUB2050
1430 PRINT"---------------------------------"
1440 PRINT"NO. NAME CONTENTS·
1450 PRINT"---------------------------------"
1460 OPENl, 8,2, ,. ACCOUNTS"+Y$+" , L, "+CHR$ (141)
1470 OPEN2,8,15
1480 TL=O
1490 FORAN=IT020
1500 AN$="":S$=""
1510 PRINT#2,"P"+CHR$(2)+CHR$(AN)+CHR$(0)+CHR$(I)
1520 FORI=IT020
1530 GET*I,X$
1540 AN$=AN$+X$
1550 NEXTI
1560 INPUT#2,F
1570 IFF<>50THENI590
1580 GOT01670
1590 PRINT#2,"P"+CHR$(2)+CHR$(AN)+CHR$(0)+CHR$(20+(M-l)*10)
1600 FORI=ITOI0
1610 GETU,X$
16 20 S$=S$+X$
1630 NEXT I
1640 TL=TL+VAL(S$)
1650 PRINT AN:TAB(6):AN$:TAB(26):S$
1660 NEXT AN
1670 PRINT"---------------------------------"
1680 PRINT"TOTAL BALANCE":TAB(26):STR$(TL)
1690 PRINTTAB(26):"======="
1700 PRINT"RETURN FOR MORE":
1710 INPUTX$:CLOSE1:CLOSE2:RETURN
1720 REM ==============
1730 REM YEAR SUMMARY
1740 REM ==============

68

Anatomy of the 1541 Disk Drive

1750 GOSUB2050
1760 OPENl,8,2,"ACCOUNTS"+Y$+",L,"+CHR$(141)
1770 OPEN2,8,15
1780 PRINT .. ------------------------------------ ..
1790 PRINT"NO. NAME YEAR BALANCE"
1800 PRINT .. ------------------------------------ ..
1810 TL:O
1820 FOR AN:IT020
1830 PRINT,2,"P"+CHR$(2)+CHR$(AN)+CHR$(0)+CHR$(1)
1840 RC$=
1850 FORI=lT0140
1860 GETU,X$
1870 RC$=RC$+X$
1880 NEXTI
1890 INPUT'2,F:IFF=50THEN1980
1900 AN$=LEFT$(RC$,20)
1910 YB=O
1920 FORI:ITOI0
1930 YB:YB+VAL(MID$(RC$,20+(I-l)*10,10»
1940 NEXTI
1950 TL=TL+YB
1960 PRINTAN,TAB(6),AN$,TAB(26);YB
1970 NEXTAN
1980 PRINT .. ---------------------------- ..
1990 CLOSEl:CLOSE2
2000 PRINT"TOTAL BALANCE";TAB(26),TL
2010 PRINTTAB(26),"::=:==="
2020 PRINT"RETURN FOR MORE"
2030 INPUTX$
2040 RETURN
2050 REM =========:=========
2060 REM PROGRAM HEADING
2070 REM ===================
2080 PRINTCHR$(147),
2090 PRINTTAB(4);"============================"
2100 PRINTTAB(4);"H 0 MEA C C 0 U N TIN G"
2110 PRINTTAB(4);"============================"
2120 PRINT:PRINT
2130 RETURN
2140 REM ================
2150 REM READ ACCOUNT
2160 REM ================
2170 OPENl,8,2,"ACCOUNTS"+Y$+",L,"+CHR$(141)
2180 OPEN2,8,15
2190 PRINT'2,"P"+CHR$(2)+CHR$(AN)+CHR$(O)+CHR$(l)
2200 RC$=
2210 FORI=lT0140
2220 GET'l,X$
2230 RC$=RC$+X$
2240 NEXT I
2250 INPUT'2,F
2260 IFF<>50THEN2300
2270 PRINT"YEAR FILE OR ACCOUNT NOT FOUND!":PRINT
2280 PRINT"RETURN FOR MORE":INPUTX$
2290 CLOSEl:CLOSE2:RETURN

69

Anatomy of the 1541 Disk Drive

2300 AN$=LEFT$(RC$,20)
2310 TL=O
2320 FORI=lT012
2330 S(I)=VAL(MID$(RC$,20+(I-l)*10,10»
2340 TL=TL+S(I)
2350 NEXT I
2360 RETURN

Program Documentation:

Initialization:

100

llO-l30
140-280

Screen and character color set: blank character
string defined: variable for account summaries
dimensioned.
Program heading displayed and current year read.
Program functions displayed and choice read:
corresponding subprogram called.

Establish Accounts:

390-400

480

500-540

530

posting:

590

800
810-840
850-860

Any existing files of this year are erased and the
new file is opened.
Account name is placed in positions 1-20 of the
record RC$.
Month summaries are set to zero and placed in the
record as string variables.
The record is transferred with a trailing RETURN.

The routine "Read Account" is called. This routine
places the month summaries of the account in the
variables S(l) to S(12).
Account name is placed in the record.
Account summary is placed in the record.
Record is transferred.

Account summary:

980 Desired account is read and the month summaries'
are placed in variables S(l) to S(12).

1050-1090 Month summaries are displayed and the total (TL)
is added up.

1110 Total displayed.

Display Account Names:

1220 Account number is initialized.
1230 The head is positioned over the corresponding

70

Anatomy of the 1541 Disk Drive

record.
1240-1280 Account name is read out of the record in RCS.
1290-1300 If RECORD NOT PRESENT is sent over the error

channel (error 50), the routine is broken off.
1320 Account number and name are displayed.

Month Summary:

1490-1660
1510
1520-1550
1560-1580

1590
1600-1630
1640
1650

1680

Loop to read all accounts.
position head over record.
Read account name.
Determine if account existsl stop if all twenty
accounts have been defined.
position over summary field of the desired month.
Read the month summary.
Add month summary to total.
Account number, account name and month summary are
displayed.
Total balance displayed.

Year Summary:

1820-1970
1830
1850-1880
1890
1900
1920-1940

1950
1960

2000

Loop to read all accounts
position head over record.
Complete record read into RC$.
Test if RECORD NOT PRESENT.
Get account name from record.
Read month summary, convert to numerical form and
add to year summary (YS).
Year summary (YS) is added to total (TL).
Account number, account name and year summary
displayed.
Total balance (month balance) displayed.

Read Account:

2190
2210-2240
2250-2260
2300
2320-2350

position over record given in AN.
Read record into RCS.
Test if RECORD NOT PRESENT.
Account name read from record.
Month summaries read from record, converted to
numerical form and placed into the table S(l) to
S(12) •

71

Anatomy of the 1541 Disk Drive

1.6 Disk Error Messages and their Causes

If you cause an error while ,,?orking with the disk drive, the
drive signals this by blinking the red LED. The LED blinks
until you read the error channel of the disk drive or until
you send a new command. First we want to see how to read the
error message from the disk drive.

In order to do this, the error/command channel must be
opened with the secondary address 15:

100 OPEN 15,8,15
110 INPUT#15,A,B$,C,D
120 PRINT A,B$,C,D

If no error has occurred, the following is displayed:

o OK o o

The first number is the error number, in this case zero,
which. means no error has occurred. Next follows the error
message (variable B$). The variables C and D contain the
track and sector numbers, respectively, in which the error
occurred, which is dependent on the type of error (mainly
associated with hardware errors and block-oriented
commands) •

This routine accomplishes the same function:

100 OPEN15,8,15
110 GET#15,A$:PRINTA$;:IFST<>64THENl10

00, OK,OO,OO

Here characters are read from the error channel until the
end is recognized (status = 64). This gives the error message
exactly as the BASIC 4.0 command

PRINT DS$

When using BASIC 4.0, variables DS$ and DS are reserved
variables which contain the complete error message and error
number. Each access of these variables gives the error
status of the last disk operation. Unfortunately, the
Commodore 64 does not use BASIC 4.0, so these variables are
meaningless in Commodore 64 BASIC (BASIC 2.0).

Next follows the list of error messages that the DOS can
recognize:

00. OK.OO.OO
This message occurs when the last disk operation was error
free or if no command or data was sent after the last
error message.

72

Anatomy of the 1541 Disk Drive

01.FILBS SCRATCHBD.XX.OO
This is the message after a SCRATCH command. The number XX
denotes the number of filed that were erased. Since this
is not really an error message, the LED does not blink.

20.READ BRROR.TT.SS
This error means that the 'header' of a block was not
found. It is usually the result of a defective diskette.
TT and SS designate the track and sector in which the
error occurred. Remedy: change defective diskette.

21.RBAD ERROR.TT,SS
This is also a read error. The SYNC (synchronous) marker
of a block was not found. The cause may be an unformatted
disk, or no disk in the drive. This error can also be
caused by a misaligned read/write head. Remedy: Either
insert a diskette, format the disk, or have the read/write
head aligned.

22,READ ERROR.TT.SS
This error message means that a checksum error has
occurred in the header of a data blocK, which can be
caused by the incorrect writing of a block.

23.READ ERROR.TT.SS
The error implies that a data block was read into the DOS
buffer, but a checksum error occurred. One or more data
bytes are incorrect. Remedy: Save as many files as
possible onto another diskette.

24.RBAD ERROR.TT.SS
This error also results from ~ checKsum error in the data
block or in the preceding data header. Incorrect bytes
have been read. Remedy: same as error 23.

25.WRITE ERROR.TT.SS
This error is actually a VERIFY ERROR. After writing every
block the data is read again checked against the data in
the buffer. This error is produced if the data are not
identical. Remedy: Repeat the command that caused the
error. If this doesn't work, the corresponding block must
be locked out from further use with the block-allocate
command.

26.WRITE PROTECT ON.TT.SS
An attempt was made to write to a disK with a write
protect tab on it. Remedy: Remove write protect tab.

27,RBAD ERROR.TT.SS
A checksum error occurred in the header of a data block.
Remedy: Repeat command or rescue block.

73

Anatomy of the 1541 Disk Drive

28,WRITE ERROR,TT,SS
After writing a data block, the SYNC characters of the
next data block were not found. Remedy: Format disk again,
or exchange it.

29,DISK ID MISMATCH,TT,SS
The ID (two character disk identification) in the DOS
memory does not agree with the ID on the diskette. The
diskette was either not initialized or there is an error
in the header of a data block. Remedy: Initialize
diskette.

30,SYNTAX ERROR,OO,OO
A command was sent over the command channel that the DOS
could not understand. Remedy: Check and correct command.

31,SYNTAX ERROR,OO,OO
A command was not recognized by the DOS, for example, the
BACKUP command (Duplicate) on the 1541. Remedy: Do not use
the command.

32,SYNTAX ERROR,OO,OO
The command sent over the command channel was longer than
40 characters. Remedy: Shorten command.

33,SYNTAX ERROR,OO,OO
A wildcard ('*' or '?') was used in an OPEN or SAVE
command. Remedy: Remove wildcard.

34,SYNTAX ERROR,OO,OO
The DOS cannot find the filename in a command. This may be
because a colon was forgotten after the command word.
Remedy: Check and correct command.

39,FILE NOT FOUND,OO,OO
User program of type 'USR' was not found for automatic
execution. Remedy: Check filename.

50,RECORD NOT PRESENT,OO,OO
A record was addressed in a relative data file that has
not yet been written. When writing a record this is not
really an error. You can avoid this error message if you
write the highest record number of the file with CHR$(255)
when initializing it. This error will no longer occur upon
later access.

51,OVERFLOW IN RECORD,OO,OO
The number of characters sent when writing a record in a
relative file was greater than the record length. The
excess characters are ignored.

52,FILE TOO LARGE,OO,OO
The record number of a relative file is too big: the
diskette does not have enough capacity. Remedy: Use
another diskette or reduce the record number.

74

Anatomy of the 1541 Disk Drive

60,WRITE FILE OPEN,OO,OO
An attempt was made to OPEN a file that had not previously
been CLOSEd after writing. Remedy: Use mode 'M' in the
OPEN command to read the file.

6I,FILE NOT OPEN,OO,OO
A file was accessed that had not been OPENed. Remedy: Open
the file or check the filename.

62,FILE NOT ~UND,OO,OO
An attempt was made tp load a program or open
does not exist on the diskette. Remedy:
filename.

63,FILE EXISTS,OO,OO

a file that
Check the

An attempt was made to establish a new file with the name
of a file already on the diskette. Remedy: Use a different
filename or @: (to replace the old file).

64,FILE TYPE MISMATCH,OO,OO
The file type use in the OPEN command does not agree
with the file type in the directory. Remedy: Correct
file type.

65,NO BLOCK,TT,SS
This error message is given in association with the BLOCK
ALLOCATE command when the specified block is no longer
free. In this case, the DOS automatically searches for a
free block with a higher sector and/or track number and
gives these values as the track and sector number in the
error message. If no block with a greater number is free,
two zeroes will be given.

66,ILLEGAL TRACK OR SECTOR,TT,SS
If you attempt to use a block with the block commands that
does not exist, this error is returned.

61,ILLEGAL TRACK OR SECTOR,TT,SS
The track-sector combination of a file produces a non
existent track or sector.

10,NO CHANNEL,OO,OO
An attempt was made to open more files than channels
available or a direct access channel is already reserved.

11,DIR ERROR,TT,SS
The number of free blocks in "the DOS storage does not
agree with the BAM. Usually this means the disk has not

• been initialized.

12,DISK FULL,OO,OO
Fewer than three blocks are free on the diskette or t~e
maximum number of directory entries have been used (144 on
the VIC 1541).

15

Anatomy of the 1541 Disk Drive

73,CBM DOS V.26 1541.00,00
The message is the power-up message of the VIC 1541. As an
error message, it appears when an attempt is made to write
to a disk that was not formatted with the same DOS
version, for example, the forerunner of the CBM 4040, the
CBM 2040 (DOS version 1.0).

74.DRIVE NOT READY,OO,OO
When one attempts to use the disk without a diskette in
the drive, this error message is returned.

75,FORMAT SPEED ERROR.OO,OO
This error message occurs only on the CBM 8250. It
indicates a deviation from the normal revolutions per
minute while formatting.

76

Anatomy of the 1541 Disk Drive

1.7 Overview of Commands with a Comparison of BASIC 2.0 -
BASIC 4.0 - DOS 5.1

BASIC 2.0 BASIC 4.0 (abbrev) DOS 5.1

OPEN - Mode 'A' APPEND (aP)
BACKUP (bA)

LOAD"$",B & LIST CATALOG (CA) @$ or >$
V(alidate) COLLECT (coL) @V or >V

CONCAT (conC)
C(opy) COpy (coP) @C: •• or >C: ••
CLOSE ... DCLOSE (dC)
LOAD" ••• ",B DLOAD (dL) ©file or /file
OPEN ,8, DOPEN (dO)
OPEN 1,B,15 ... DS$, DS @ or >
SAVE" ••• " ,B DSAVE (dS)
N(ew) HEADER (hE) @N: •• or >N: ••
I(nitialize) I(initialize) @I or >1
P RECORD (reC)
R(ename) RENAME (reN) @R: •• or >R: ••
S(cratch) SCRATCH (sC) @S: •• or >S: ••

This table lists the different versions of BASIC. The DOS
5.1 is found on the TEST/DEMO disk and will be described in
section 4.2.1.

The essential difference between BASIC 2.0 and BASIC 4.0 is
that with BASIC 2.0, each command is executed by the disk
control system (DOS) and must be sent over channel 15. The
disk commands of BASIC 4.0 manage this channel themselves
(with the exception of INITIALIZE). For example, the command
HEADER DO,"DISKl",IHJ generates the same sequence of
commands necessary in BASIC 2.0, namely:

OPEN l,B,15,"N:DISKl,HJ"
CLOSE 1

Here are are the specifics of the BASIC 4.0 commands:

Note the following parameters:

Ifn logical file number
dn drive number - drive 0 (DO) or drive 1 (Dl) with

a double drive, or DO for a single drive
da device address of the disk drive (U4 to U31)

Information in parentheses is optional. The standard
parameters DO and UB will be used (meaning Drive 0 and Unit
B) •

77

Anatomy of the 1541 Disk Drive

APPEND:
T'i1iSCommand allows data to be added to a sequential file,
which is accomplished in BASIC 2.0 with the OPEN-command
mode A.

This command has the following format:

APPEND#lfn,"filenamen(,Ddn,Uda)

For example, should the sequential file "SEQU.l" be on drive
0, the following statements are necessary to add a data
record to it:

BACKUP:

100 APPEND#l,"SEQU.l",DO
110 PRINT#! ,X$
120 CLOSE 1

With this command, a complete diskette can be copied. The
BACKUP command can only be used with a dual disk drive (such
as the 4040), however. Notice the format of this command:

BACKUP Ddn TO Ddn(,Uda)

It is important that either DO to Dl or Dl to DO be given.
An example:

The diskette in drive 1 is supposed to be copied onto the
disk in drive O. To this end, give the following command:

BACKUP Dl TO DO

CATALOG:
The CATALOG command of BASIC 4.0 has the advantage that the
program in the computer's memory is not erased, as is true
in BASIC 2.0. The format of the command:

CATALOG (Ddn,Uda)

If no drive number is given for a double drive, the contents
of both drives are given. With a single drive, CATALOG DO is
assumed. An example:

CATALOG DO

The contents of the disk in drive 0 will be displayed.

COLLECT:
This command corresponds with the VALIDATE command of BASIC
2.0. The syntax of this command looks like this:

COLLECT (Ddn)

78

Anatomy of the 1541 Disk Drive

CONCAT:
CON'CAT concatenates sequential files, in which one file is
to be made from the data of two files. The format:

CON CAT (Ddn,)"filel" TO (Ddn,)"file2" (ON Udal

Suppose you want to combine the data of the files "SEOU.2"
in drive 0 and "SEOU.l" in Dl. To accomplish this, issue the
following command:

CON CAT DO,"SEOU.2" TO Dl,"SEOU.l"

COPY:
with this command files can be copied from one drive to the
other (except relative files). The command is useless with a
single drive. The syntax looks like this:

COpy (Ddn,)("filel") TO (Ddn,)("file2")

To copy all files (for example, from drive 0 to drive 1),
use the following command:

COPY DO TO Dl

DCLOSE:
The command DCLOSE has the same function as the simple CLOSE
command, with the following exceptions:

DCLOSE closes all files
DCLOSE#l closes file number 1
DCLOSE# 1 ON U9 closes the logical file #l on device

address 9
DCLOSE U8 closes all files on device address 8

The command has the following syntax:

DC LOSE (#lfn) (ON Udal

DLOAD:
The command DLOAD has the advantage that the standard device
address 8 used. The format:

DLOAD "program" (, Ddn) (, Uda)

For instance, if you want to load the program "PRG.2" from
drive 0 or from a single drive, give the following command:

DLOAD "PRG.2"

Drive 0 (DO) is the default value.

79

Anatomy of the 1541 Disk Drive

OOPEN:
T1iTS command of BASIC 4.0 is very comprehensive. The
following format verifies this:

DOPEN#lfn,"file H (,Ddn) (,Uda) (,fileparameter)

The peculiarity of this method of opening is the file
parameter. There are two file parameters, that have the
following function:

: 'L'-parameter : 'W'-parameter : Mode of operation

YES

NO

NO

NO

YES

NO

A relative file is
opened.
A sequential file is
opened for writing.
A file is opened for
reading(REL,SEO,PRG,USR):

In addition to the 'L' parameter the record length must be
given (such as LBO). A DOPEN command of this type looks like
this:

DOPEN#1,"FILE.REL",DO,L80

Here a relative file is opened with a record length of 80
bytes. The declaration of the file parameter is only
necessary once, at the establishment of the file. All later
openings of the file can occur without the parameter
declaration.

DS$ Ii OS:
After a disk error, the complete error message can be
displayed with PRINT DS$ or just the error number with PRINT
DS. of course, the error can be read within a program and
the appropriate branch made. For example:

100 IF DS = 26 THEN GOTO •••

DSAVE:
A program can be saved on disk with this command. Tte
following format is to be noted:

DSAVE (Ddn,)"programname"(,Uda)

BEADER:
x-dISk is formatted with the HEADER command in BASIC 4.0. It
corresponds to the NEW command in BASIC 2.0. The syntax of
the command:

80

or

Anatomy of the 1541 Disk Drive

HEADER "diskname",DO,Iid(U,da)
HEADER Ddn,"diskname" ,lid

Here there are two possibilities to designate the drive. The
id is the diskette identification. If it is not given, the
disk is presumed to be formatted and is merely given a new
name and all files are erased.

RECORD:
This command corresponds to the position command of BASIC
2.0 (DOS 2.6). The read/write head can be positioned over a
record in a relative file, without the need to send the
position over channel 15. The syntax of this command
illustrates how easy this positioning is:

RECORD#lfn,rn(,bp)

The logical file number is obtained from the opened relative
file. 'rn' is the record number (1-65535) and 'bp' is the
position within this record (1-254).

An example: You want to position the head over the twelfth
byte of the 128th record of a relative file opened with the
logical file number 2. The following commaniC accomplishes
this:

RECORD#2,128,12

RENAME:
This RENAME is similar to the RENAME of BASIC 2.0. The
format of this command:

RENAME (Ddn,)" old name" TO "new name" (, Uda)

SCRATCH:
This method of erasing files is essentially easier because
files can be erased with one command. The format of this
command:

SCRATCH (Ddn,)"file"(,Uda)

After entering a SCRATCH command the message "ARE YOU SURE?"
which allows the command to be stopped. If the file is
really supposed to be erased, answer 'y' else 'N'. After
erasing the file, the message "FILES SCRATCHED" appears on
the screen.

81

Anatomy of the 1541 Disk Drive

Chapter 2: Advanced Disk Programming

2.1 Direct Access of any Block of the Diskette

When handling files and programs on the diskette, as des
cribed in Chapter 1, we didn't have to concern ourselves
with the organization on the diskette, because the disk
operating system (DOS) took care of these details for us.

But the DOS offers the capability of accessing each
individual block on the diskette. This gives us a lot of
flexibility - ranging from manipulation of individual files
to creating completely new data structures.

In order to access a block directly, a channel is OPENed to
a data buffer within the 1541 disk drive. It is over this
channel that data is transmitted. The data buffer serves as
an intermediate storage place for the data that is read from
the diskette or written to the diskette. In order to inform
the DOS that we want to work with direct access commands, we
use a special filename in the OPEN command:

OPEN 1,8,2,-'-

Using this command, logical file number 1 on device 8 (the
disk drive), is associated with a direct access file.
Channel 2 serves to transmit data to and from the disk
drive. The channel number (secondary address in the OPEN
command) may be 2 through 14. Channels 0 and 1 are reserved
for LOAD and SAVE and channel 15 is the command channel. The
choice of a secondary address is arbitrary. You may not use
the same secondary address simultaneously, since the DOS,
upon encountering the second OPEN command with the same
secondary address, closes the previous file using this
channel number. This also occurs when working with
sequential or relative files.

This form of the OPEN command causes the DOS to search for
a free data buffer and assign it to that channel. By using a
GET# statement immediately after the OPEN we can find the
buffer number that the DOS assigns:

100 OPEN 1,8,2,"#"
110 GET#!, A$
120 PRINT ASC(AS+CHR$(O»
RUN

3

In this case, buffer three was assigned. The buffer numbers
range from 0 to 4. Each buffer can hold 256 characters of
data. The buffers are located in the following memory

82

Anatomy of the 1541 Disk Drive

locations in the VIC 1541:

Buffer number
o
1
2
3
4

Memory location
$300-$3FF, 768-1023
$400-$4FF, 1024-1279
$500-$5FF, 1280-1535
$600-$6FF, 1536-1791
$700-$7FF, 1792-2047

Buffer 4 is normally unavailable, because the BAM is stored
there. If we work with sequential or relative files at the
same time, buffer 3 is also unavailable, because it is used
for the directory. If we want to associate a specific data
buffer for direct access, we can assign it with the OPEN
command.

This associates buffer 3 ($600-$6FF) with channel number 2,
assuming it is still free. Unless you have a pressing reason
to use a specific buffer, you should leave the choice of the
buffer up to the DOS, because the choice of a definite
buffer increases the possibility that it will not be
available.

After opening a channel, you should check the error channel.

130 OPEN 15,8,15
140 GETtIS, A$: PRINT A$: : IF ST<>64 THEN 140

If the buffer is already in use, you will receive the error
message

70,NO CHANNEL,OO,OO

If no other files are open, you can open up to 4 channels
for direct access. The following example illustrates this:

10 OPEN 1,8,15,"10" : 1=2 : REM ERROR CHANNEL
20 OPEN 2,8,2, "t" GOSUB 100
30 OPEN 3,8,3, "i" GOSUB 100
40 OPEN 4,8,4, "i" GOSUB 100
50 OPEN 5,8,5, nt" GOSUB 100
60 OPEN 6,8,6, 't" GOSUB 100
70 END

100 GETtI,A$:PRINT ASC(A$+CHR$(O»
110 1=1+1 : REM BUFFER NUMBER
120 GETil,A$: PRINT A$: : IF ST<>64 THEN 120
130 RETURN

When RUN, the above program produces the following output:

3

83

Anatomy of the 1541 Disk Drive

00, OK,OO,OO
2

00, OK,OO,OO
1

00, OK,OO,OO
a

00, OK,OO,OO
199

70.NO CHANNEL,OO.OO

As you see, attempting to open a fifth channel for direct
access fai Is.

Transmitting data to and from the buffer usually takes place
using the GET#, INPUT# and PRINT# statements.

If a buffer contains pure text (alphanumeric data) which is
not longer than 88 characters and is separated using CR
(Carriage Return, CHR$(13», it can be read using INPUT#.
However, if the buffer contains control characters or the
text is separated using commas or colons, the INPUT#
statement fails. Then we must use the GET# statement, which
retrieves only one character at a time. GET# does not ailow
null values (CHR$(O» to be read. In this case, GE1#
receives an empty string and you must check for this
condition as below:

100 GET'2, A$: IF A$ + •• THEN A$ = CHR$(O)

A simpler alternative to the GET# statement is to use the
statement INPUT*, as is described in section 4.3.1. Here you
can declare how many characters are to be read into a
string. It also handles null values (CHR$(O». You can read
almost the entire buffer (255 characters are possible) with
one command.

In the next section, all commands used for direct access are
described in detail. Keep the following points in mind when
using direct access commands.

When using direct access commands, you must explicitly cause
the blocks on the diskette to be read or written. The direct
access commands are transmitted over command channel 15. The
data that is read from or written to a buffer are
transmitted over a separate channel that is associated with
that buffer. Both channel 15 and the separate channel must
be OPENed before transmission can begin.

1) A PRINT# statement to command channel 15, sends a direct
access command to the DOS.

2) A PRINT# statement to channels 2 thru 14 sends data to a
buffer.

3) An INPUT# or GET# statement to command channel 15 re-

84

Anatomy of the 1541 Disk Drive

turns any error messages detected by the DOS.

4) An INPUT. or GET. statement to channels 2 thru 14, reads
the data from the buffer.

If you are ready to work wi th the block commands and want to
display individual blocks on the screen or change them, you
can use the DOS monitor in section 4.6, which provides a
simple and easy way of doing so.

85

Anatomy of the 1541 Disk Drive

2.2 The Direct Access Commands

2.2.1 The Block-Read Command B-R

The block-read command instructs the 1541 to read a block
from the diskette into a buffer of a previously opened
direct access file. The block-read command is sent over the
command channel (secondary address 15) to the disk drive.
The block-read command can be shortened to B-R. Because this
command does not read the first byte of the block, you can
substitute the command Ul to read a block. The command has
the following syntax:

Ul channel number drive track sector

You must give the channel number that you used when OPENing
the direct access file. Next follows the drive number, which
is always zero for the VIC 1541, and then the track and
sector numbers of the block you want to read.

10 OPEN 1,8,15
20 OPEN 2,8,2, "#"
30 PRINT#l, ·Ul 2 0 18 0"

This reads the contents of track 18 sector 0 into the buffer
belonging to channel 2. Now you can read the data from this
buffer with GET#2.

40 GET# 2, A$, B$
50 PRINT ASC(AS), ASC(B$)

18 1

Now we have read and displayed the first two bytes in the
buffer. Sector 0 of track 18 contains a pointer to the first
directory block (track and sector) and the BAM for the
diskette.

In the demo program DISPLAY T&S on the TEST/DEMO diskette
(section 4.2.7) this command is used in order to read the
BAM from the disk and to graphically display each record on
the disk.

We can read all 256 bytes of the block from the buffer with
the GET# statement; in our example we will read the diskette
name and ID from position 144.

The blocks which comprise a file are chained to each other.
The first two bytes of each file block contains a pointer to
the track and sector of the following block. Using this
information, you can piece together the usage of disk space
for a file. A track pointer of zero indicates the last

86

Anatomy of the 1541 Disk Drive

block of the file and the pointer which usually contains the
sector number now contains the number of bytes of the last
block which are part of this file. The first sector of a
file can be read with our program in section 4.1.1. The
following small program displays all of the remaining tracks
and sectors that are part of the file.

100 OPEN 1,8,15
110 OPEN 2,8,2, ''It''
120 INPUT "TRACK AND SECTOR ·,T,S
130 PRINT#l,"Ul 2 O",T,S
140 GETlt2, T$, S$
150 T = ASC(T$+CHR$(O»: S = ASC(S$+CHR$(O»
160 IF T=O THEN CLOSE 2 : CLOSE 1 : END
170 PRINT "TRACK",T,"SECTOR",S
180 GOTO 130

Enter 18 and 0 as track and sector to follow the blocks for
the BAM and directory.

2.2.2 The Block-Pointer Command B-P

The diskette name is located starting at position 144 of
track 18, sector O. using the above example, we have to read
the first 143 bytes of the buffer in order to be positioned
at the diskette name. But the DOS has an easier way to do
this. To access any desired byte of a buffer, you can use
the block-pointer command. using the block-pointer command
the DOS moves to an exact position within the buffer. The
block-pointer command can be shortened to B-P. The syntax
is the following:

B-P channelnumber position

Now we can read the diskette name directly:

100 OPEN 1,8,15
110 OPEN 2,8,2, ·It''
120 PRINTltl,"Ul 2 0 18 0"
130 PRINTlIl,"B-P 2 144"
140 FOR I = 1 TO 16 : REM MAXIMUM LENGTH
150 GET#2, A$: IF A$=CHR$(160) THEN 170
160 PRINT A$, : NEXT
170 CLOSE 2 : CLOSE 1

Here we first read the block, set the buffer pointer to
position 144 and then read and print the diskette name which
has a maximum length of 16 characters. A shifted space
(CHR$(160» indicates the end of the diskette name.

The bytes in the buffer are numbered 0 through 255, the
first byte having the number O. The buffer pointer is auto-

87

Anatomy of the 1541 Disk Drive

matically set to zero by reading a block with vI. You can,
for example, read byte number 2 after reading the name. You
do this by setting the buffer pointer to this value.

PRINT#l, "B-P 2 2"

2.2.3 The Block-Write Command B-W

The block-write command allows us to write the contents of a
buffer to a desired block on the diskette. with this, you can
write the block one has sent to the buffer within the disk
drive.

It is possible to read a block into the buffer with the
block-read command, change some bytes, and then write the
block back. The block-write command can be shortened to B-W.
Because this B-W command writes the contents of the buffer
pointer, one usually uses the U2 command which always sets
the buffer pointer to 1. The syntax of the command is
analogous to the B-R command:

V2 channelnumber drive track sector

100 OPEN 1,8,15
110 OPEN 2,8,2, "#"
120 PRINT#2, "TEST DATA"
130 PRINT'l, "U2 2 0 1 0"
140 CLOSE 2 : CLOSE 1

Here the text "TEST DATA" will be written to the buffer
associated to channel 2 and then written to track 1 sector 0
of the diskette. The V2 command does not change the contents
of the buffer.

Here's an example of using the block-write command to change
the diskette name that we read in the last section. For this
we must fill the new name with 16 characters ending with a
shifted spaces CHR$(160), so that we can write it to the
disk. We will again use the block-pointer command to set the
buffer pointer directly to the desired position within the
buffer.

100 OPEN 1,8,15
110 OPEN 2,8,2, "I"
120 PRINTl1,"Ul 2 0 18 0"
130 PRINT,l,"B-P 2 144"
140 A$="NEW FILE NAME"
150 IF LEN(A$)<16 THEN A$=A$+CHR$(160)
160 PRINT#2,A$;
170 PRINTl1,"U2 2 0 18 0"
180 CLOSE 2
190 PRINTI1,"IO" : CLOSE 1

88

GOTO 150

Anatomy of the 1541 Disk Drive

First we read track IB sector 0 into the buffer, set the
buffer pointer to the position of the diskette name and
write a new 16 character name to the buffer. Note that the
diskette name is changed in the buffer only. But in line
170, the buffer contents are written to the same block which
changes the name permanently on the diskette. Next channel 2
is closed. Finally the diskette is initialized so the BAM
and name in the DOS memory are updated. Get the directory
with

LOAD"$",B
LIST

on the screen to verify that the diskette name has changed.

2.2.4 The Block-Allocate Command B-A

The block-allocate command has the task of indicating in the
BAM (block availability map) is a particular diskette block
is being used. The block allocate command can be shortened
to B-A. For program, sequential or relative files, as
diskette blocks are used, the BAM is updated to note that
the block is no longer available. But blocks written using
the direct access commands are not automatically allocated.
When blocks used in this manner are not allocated, the
possibility exists that they will be overwritten when other
files are used. The block-allocate command can be used to
prevent this overwriting. The block-allocate command has the
following syntax:

B-A drive track sector

With this the corresponding block in the BAM is marked as
allocated and is protected from being overwritten by other
files. If the block was already allocated, the error channel
returns error message 65,'NO BLOCK'.

lOO OP EN 1, B , 15
110 INPUT "TRACK, SECTOR ":T,S
120 PRINT#l, "B-A O":T:S
130 INPUT#l, A$,B$,C$,D$
140 PRINT A$","B$","C$","D$

Using this program you can input a track and sector number
of a block that you want to allocate. If the block is still
free, it was allocated and the message 00, 01(,00,00 is
returned. If that block is already allocated, the message
65,NO BLOCK,TT.SS is returned. In this case TT and SS
contain the next higher numbered free block on the diskette.
This tells you that the requested block is allocated but the
block at TT,SS is still available. If error message 65
returns zeroes as the track and sector numbers, it means

89

Anatomy of the 1541 Disk Drive

that no block with a higher track and/or sector number is
available. The following program automatically allocates the
next free sector:

100 OPEN 1,8,15
110 INPUT "TRACK, SECTOR ";T,S
120 PRINT.l, "B-A O";T;S
130 INPUTll, A$,B$,TT,SS
140 IF A$ = "00" THEN 190
150 IF A$<>"6S" THEN PRINT A$","B$","TT","SS END
160 IF TT=O THEN PRINT "NO MORE FREE BLOCKS" END
170 IF TT=18 THEN TT=19 : SS=O
180 T=TT : S=SS : GOTO 120
190 PRINT "TRACK" TT "SECTOR" SS "ALLOCATED."

The test for track 18 in line 180 prevents a block in the
directory from being allocated. An additional error message
in connection with the B-A command is interesting. If one
attempts to allocate a block that does not exist, for
example, track 20 sector 21, one received the error message

66,ILLEGAL TRACK OR SECTOR,20,21

Marking a block as allocated in the BAM prevents it from
being overwritten by other files. The block will be
recognized as allocated until the command VALIDATE (COLLECT
in BASIC 4.0) is issued. The VALIDATE command rebuilds a new
BAM by rechaining the blocks of individual files and marking
each block as belonging to a a new BAM. Unclosed files,
marked in the directory with * are deleted. All blocks
allocated with the B-A command and those not belonging to a
properly closed file are freed. So, if you allocate blocks
that do not belong to a file that appears in the directorl,
you should not use the VALIDATE command, or the blocks will
be freed, thus destroying your file.

2.2.5 The Block-Free Command B-F

The block-free command performs the opposite function of the
block-allocate command. It marks a block as not allocated
(free) in the BAM. The block-free command can be shortened
to B-F.The syntax is analogous to the block-allocate
command:

B-F drive track sector

100 OPEN 1,8,15
110 PRINTll, "B-F 0 20 9"

Here the block in track 20 sector 9 is freed in the BAM. If
this block is already free, no error occurs.

90

Anatomy of the 1541 Disk Drive

Allocating and freeing blocks has an effect only on the
blocks used by program, sequential or relative file by the
DOS. The block-write and block-read commands do not check
the BAl4 before overwriting blocks. With these commands you
can write to blocks marked as allocated in the BAM. If, for
example, you have a disk containing only direct access
files, it is in principle unnecessary to allocate written
blocks because no other files will be written on the
diskette. In this case, you can use the directory blocks in
track 18 and have 672 blocks available on the VIC 1541
diskette.

2.2.6 The Block-Execute Command B-E

The block-execute command allows a block to be read from
diskette into a buffer and then the contents of the buffer
to be executed as a machine language program. You can cen
write routines that the DOS is supposed to execute with the
B-W or U2 command to a sector and later load it into a
buffer with the block-execute program where it will be
executed as a machine language program. Naturally, this
presupposes knowledge of the internal workings of the DOS.
If you want to use the B-E command, you usually give the
buffer number in the OPEN command, in case the machine
language program is not relocatable and is written for a
specific buffer. The block-execute command has the following
syntax:

B-E channelnurnber drive track sector

100 OPEN 1,8,15
110 OPEN 2,8,2, "#3"
120 PRINT#l, "B-E 2 0 17 12"

Here buffer 3 ($600-$6FF) is assigned to channel 2. The
contents of track 17 sector 12 is loaded into this buffer
and there the machine language program is executed.

The block-execute command is a combination of the block-read
and memory-execute commands. Examples of the design of
machine language programs to execute in the DOS are found in
section 2.4 by the memory commands.

91

Anatomy of the 1541 Disk Drive

2.3 Uses of direct access

What do the direct access commands permit us to do?

Here is a sample of their use:

By manipulating individual sectors you can make changes to
the BAM sector (Track 18, Sector 0) such as changing the
diskette name or 10.

You can make changes to the DIRECTORY (beginning at Track
18, sector 1). Each file entry in the directory has unused
space. You can use the unused space to store additional
information.

You can change file names in the directory by using direct
access commands.

You can follow the "chaining" of the blocks in a file to
determine if the file is intact.

You can CLOSE an unclosed file by setting bit 7 of the file
type indicator in the directory. For example, you can change
the file type indicator from $02 to $82. Normally these
files are indicated in the directory with an asterisk: after
the above change the asterisk will disappear.

Each file entry also contains a "lock" which disallows
deletion (SCRATCH command). If you set bit 6 of the file
type then the file is said to be locked and not available
for deletion. These entries have the < symbol after the type
designation in the directory listing. Using this bit of
knowledge, you can protect important programs on your
diskette from accidental erasure. More information on this
topic is found in section 4.1.

If you are interested in making such changes, you may want
to read an entire sector and display it on the screen,
change it, and write it back again. Such a program called
the DISK MONITOR is described in section 4.6. Before you
begin with such experiments, however, you should make a copy
of your diskette. A directory or BAM error can result in the
loss of the entire diskette contents.

Have you ever accidentally scratched a program or file from
a diskette? As long as you haven't written any other
programs or data to the diskette, you can recover this
scratched file. Scratching a file simply sets the file type
to 0 in the directory and frees the allocated blocks. You
need only search the directory entries for the file and
restore the file type: $81 for SEQ, $82 for PRG, $83 for
USR, and $84 for REL. After restoring the file type, you
should use the VALIDATE command to reallocate the blocks
again (for example: OPEN 1,8,15:PRINT#1,"VO").

92

Anatomy of the 1541 Disk Drive

other uses of direct access can provide the means for
creating new data structures that the DOS normally does not
recognize. You can undertake the management of the new file
yourself, and use the direct access commands for reading and
writing. Such a data structure is the ISAM file. ISAM is an
abbreviation for Indexed Sequential Access Method. With an
ISAM file, you can directly access each record, similar to
the relative file. However, access is not by the record
number, however, but by a key or index. This index is a
field within the record. If, for example, a record consists
of 5 fields, last name, first name, street, city/state and
zip code, last name can be defined as the access key. To to
read the record Muller, the command is simply' read record
"Muller"'. We need not concern ourselves with record number
or other ordering criteria and can select which record we
want to read, change, write or erase with clear text. In
such an ISAM file system, the index is usually saved
separately, together with the information where the data
record can be found on the disk. Such an ISAM file
management with very powerful additions as described here,
is found along with other features in the program
development system MASTER 64, also available for the
Commodore 64 from Abacus Software.

93

Anatomy of the 1541 Disk Drive

2.4 Accessing the DOS - The Memory Commands

In section 2.2.6 we saw a way to load a program into DOS
memory and execute it. With the memory commands, we can
access each byte of the DOS and execute programs in RAM and
ROM. For instance, we can access the work space of the DOS
and read the number of free blocks on the disk or get the
disk name from the BAM buffer. By writing into the DOS RAM
we can change constants such as the device number of the
drive or the number of read attempts for a block until an
error message results. Furthermore, we can execute routines
inside the DOS memory. These can be DOS ROM routines or your
own, that are stored in a buffer and executes there. Of
course this presumes knowledge of 6502 machine language and
of the method of operation of the DOS. We hope this book is
be helpful for the latter. Now follows a description of the
commands and examples of their use.

2.4.1 The Memory-Read Command M-R

Using this command, you can access each byte of the DOS. The
memory-read command can be shortened to M-R. The memory-read
command is transmitted over the command channel. The byte
read is then returned over the command channel where it can
be retrieved with GET#. The syntax of the command looks like
this:

M-R CHR$(LO) CHR$(HI)

LO and HI signify the low and high bytes of the address in
the DOS that should be read. The following program asks for
an address and reads the contents of the address out of the
DOS.

100 INPUT"ADDRESS ";A
110 HI = INT (A!256)
120 LO = A-256*HI
130 OPEN 1,8,15
140 PRINT#I, "M-R";CHR$(LO);CHR$(HI)
150 GET#!,AS
160 PRINT ASC(A$+CHR$(O»

For instance, if we want to know the number of free blocks
on a diskette, we don't have to re~d the entire directory,
rather we can read the appropria~ ~ bytes directly from the
DOS storage. This may be necessary i~ files are to be
established by a program and you don't know if there is
enough space on the disk.

100 OPEN 1,8,15,"10"
110 PRINTll, "M-R" CHR$(250) CHR$(2)
120 GET#!, A$: IF A$='''' THEN A$=CHR$ (0)

94

Anatomy of the 1541 Disk Drive

130 PRINT#l, "M-R" CHR$(252) CHR$(2)
140 GET#l, B$: IF B$="· THEN B$=CHR$(O)
150 PRINT ASC(A$) + 256 * ASC(B$) "BLOCKS FREE"
160 CLOSE 1

With this syntax, an M-R command must be given for each byte
that is to be read. As you can gather from the DOS listing
and through checking and verifying, one can read more than
one byte at a time with a M-R command. You need only give
the number of bytes to be read as the third parameter:

M-R CHR$(LO) CHR$(HI) CHR$(NUMBER)

We can use this to read the name of a diskette from the BAM
buffer storage. Before this can be done, the diskette must
be initialized so that the current diskette name is stored
in the buffer at address $700, out of which we will read the
name of the disk with the M-R command.

100 OPEN 1,8,15, "10"
110 PRINT#l, "M-R" CHR$(144) CHR$(7) CHR$(16)
120 INPUT#l, A$
130 PRINT AS

This is a simple way to read the name of the diskette (16
characters padded with shifted spaces (CHR$(160)). With this
you can check if the correct diskette is in the drive.

The disk buffer can also be read using this method. It also
allows parts of the DOS to be manipulated by copying the
contents of the ROM to a buffer where it can be changed and
executed. This is explained in the next two sections.

2.4.2 The Memory-Write Command M-W

The complement command of memory-read is the command to
write data in the DOS storage memory-write or M-W. writing
is allowed only to DOS RAM - page zero, stack, and buffers.
It is possible to send several bytes with one command. The
syntax look like this:

M-W CHR$(LO) CHR$(HI) CHR$(NUMBER) CHR$(DATAl) CHR$(DATA2)

The number of bytes as specified by NUMBER can be
transmitted, theoretically 255, but because the input buffer
holds only 40 characters, the number of bytes is limited to
34. A possible use of this command is to change the address
number (see program 'DISK ADDRESS CHANGE', section 4.2.3).
The address is stored in two memory locations in page zero.
The device number plus $20 (32 decimal) is stored in address
$77 (119 decimal) for LISTEN, for receiving data from the
computer. The address immediately following contains the

95

Anatomy of the 1541 Disk Drive

device number plus $40 (64 decimai) for TALK, for sending
data to the computer. Because the addresses are saved
separately. It is possible to use different send and receive
addresses. In the following example, the receive address is
set to 9 and the send address to 10.

100 OPEN 1,8,15
110 PRINTt1, "M-W· CHR$(119) CHR$(O) CHR$(2)

CHR$(9+32) CHR$(10+64)
120 CLOSE 1
140 OPEN 1,9,15
150 OPEN 2,10,15
160 PRINTtl,"IO"
170 INPUT#2,A$,B$,C$,D$
180 PRINT A$",UB$","C$","D$

00, OK,OO,OO

Programs cannot be loaded this way because the DOS will try
to load the program using the same address that the filename
was sent under.

Changing the device number is necessary if you want to use
more than one disk drive with a single computer. To this
end, change the device address of the second drive to 9.
This software change remains in effect only until a reset
(for example, turning the drive off). If the change needs to
be permanent, you can change the with DIP switches or cut
the circuit board jumper inside the drive.

Because many parameters of the DOS are in RAM, you can make
extensive changes to the function of the DOS, such as the
step size, with which the number of sectors per track is
determined (address $69 (105 decimal), normally contains
10). We can also specify the number of attempted reads until
an error results (address $6A (106 decimal), contains 5).
More addresses of parameters can be found in section 3.1.2.

2.4.3 The Memory-Execute Command M-E

Using this command you can call up and execute machine
language programs in the DOS memory. The memory-execute
command can be shortened to M-E. The programs must end with
RTS (Return from Subroutine, $60). The syntax of the
command:

M-E CHR$(LO) CHR$(HI)

Again, LO and HI are the low and high bytes of the starting
address of the machine language routine. It is possible to
call up routines in the DOS ROM as well as our own routines
written to a buffer with M-W and there executed. As an

96

Anatomy of the 1541 Disk Drive

example, you can call up a routine that creates an error
message. For example, address $EFC9 is the entry point for
message 72, 'DISK FULL'. The, example looks like this:

100 OPEN 1,8,15
110 PRINT#l,"M-E" CHR$(20l) CHR$(239)
120 INPUT#l,A$,B$,C$,D$
130 PRINT A$.," B$ ",. C$.," D$

In line 110, the address $EFC9 is divided into a low byte of
$C9 (201) and high byte of $EF (239) and sent as the
parameters of the M-E command. Then the error channel is
read and the message displayed.

72.DISK FULL,OO,OO

If you want to run your own programs in the 1541 drive, the
program should be w·ritten to a buffer and .there called with
M-E. Should this program be used more often, the contents of
the buffer can be written to a block on the diskette. It can
then be executed with the B-E command, which loads the
contents of the block in the buffer and then automatically
starts the routine. As a suggestion for your own program in
DOS, you can display the directory in a different form, with
additional parameters, similar to the program in section
4.1.1. In addition, you could count the number of files on
the disk and display that. using such a routine you can get
a much clearer understanding of how the directory is created
in the DOS listing. If you are clear on the matter of the
new directory format, you are ready to take the additionel
parameters from the directory entries and assemble them in
the desired format.

2.4.4 The User Commands U

Using the USER commands there are two possible ways of
executing programs in the drive. The user commands have the
following syntax:

UX

X can be a letter from A to J or a digit from 1 to 9 or 'I'
(which takes the place of 10). When a command is called, a
jump is made to the following addresses in DOS:

UA Ul $CD5F substitute for 'Block-Read'
UB U2 $DC97 substitute for 'Block-Write'
UC U3 $0500
un U4 $0503
UE U5 $0506
UF u6 $0509
UG U7 $050C

97

Anatomy of the 1541 Disk Drive

UH
UI
UJ

U8
U9
U:

$050F
$FFOI
$EAAO reset

You are already acquainted with the commands Ul and U2 (also
UA and UB)1 they serve as substitutes for BLOCK-READ and
BLOCK-WRITE. The commands U3 to U8 (UC to UH) jump to
addresses within buffer 2 (address $500 (1280) - see section
2.1). If you want to use several commands, a jump table to
individual routines can be placed therel if only one user
command (U3) is used, the program can begin directly at
$500.

The user command UJ jumps to the reset vectorl the disk
drive is then reset.

100 OPEN 1,8,15
110 PRINT#I,"UJ"
120 FOR 1=1 TO 1000 : NEXT
130 GET#I,A$: PRINT A$: IF ST<>64 THEN 130

73,CBM DOS V2.6 1541,00,00

Line 120 waits for the reset to take place. Then the
initialization message is retrieved in line 130.

By using the user commands, parameters can be passed to the
routines. The complete command string is put in the input
buffer at $200 (512). possible parameters are addresses,
command codes, and filenames. This way, the user commands
can be utilized to expand the commands of the disk or to
realize a new data structure. Whole user commands can
replace the M-E command with its corresponding addresses 1
the user-call is shorter and clearer.

98

Anatomy of the 1541 Disk Drive

Chapter 3: Technical Information

3.1 The Construction of the VIC 1541

3.1.1 Block Diagram of the Disk Drive

1''0 -
3

I(" .) Q

iL :}:>a:}o.Id '" ~ !
N !' -a:}l.IM "

N
~ < N '" § C-

o-; Ltl " a:}l.lM-peag :> II)

.IO:}OW <
:> 6uldda:}s '

z
<

0
0:: ..
H '::lO:}OW)(S-':O ' . '--

til-til 0.
0 al

K
al til

) til < til 0
Eo< IIQ Q:l

~
Jli
Q r--- I

U Q IlQ
:£ < N r- f1 p H

~ < N
0-; Ltl t-l :> IC <

[: - 0-;

) 0::

:t
IlQ
til

H -

\j v\
0

N 0::
Q :::> H

III Il<
IC U

99

Anatomy of the 1541 Disk Drive

3.1.2 DOS Memory Map - ROM, RAM, I/O

Memory map of the VIC 1541 disk drive

65535

49152

7183

7168

6159

6144

2047

o

16K

Control system

VIA Disk Control

VIA serial bus

2 K

RAM

100

$FFFF

$eooo

$lCOF

$lCOO

$180F

$1800

$07FF

$0000

Anatomy of the 1541 Disk Drive

Layout of the I/O Ports (VIA 6522)

VIA 6522 1, Port for Serial Bus

S1800 Port B
S1801 Port A
S1802 Direction of Port B
S1803 Direction of Port A

S1805 Timer

PB 0: DATA IN
PB 1: DATA OUT
PB 2 : CLOCK IN
PB 3: CLOCK OUT
PB 4 : ATN A
PB 5,6: Device address
CB 2 : ATN IN

VIA 6522 2, Port for Motor and Read/Write Head Control

SlCOO
SlCOl
SlC02
SlC03

PB 0:
PB 1 :
PB 2:
PB 3 :
PB 4:

PB 7 :
CA 1:
CA 2:

Port B, control port
Port A, data to and from read/write head
Direction of Port A
Direction of Port B

STP I
STP 0
MTR
ACT
WPS

SYNC
Byte ready
SOE

step motor for head movement
drive motor
LED on drive
Write Protect Switch

101

Anatomy of the 1541 Disk Drive

The Layout of the Important Memory Locations

o
1
2
3
4
6
8

10
12
14
18
20
22
32
48
57

58
61
63
67

71

73
74
81

105
106
111
119
120
121
122
124
125
127
128
129
l30
131
132
l33
l39
148
153
155
157
159
161
163
165

$00
$01
$02
$03
$04
$06-$07
$08-$09
$OA-$OB
SOC-SOD
$OE-$OF
$12-$l3
$14-$15
$16-$17
$20-$21
$30-$31
$39

$3A
$3D
$3F
$43

$47

$49
$4A
$51
$69
$6A
$6F-$70
$77
$78
$79
$7A
$7C
$7D
$7F
$80
$81
$82
$83
$84
$85
S8B-$8D
$94-$95
$99-$9A
$9B-$9C
$9D-$9E
$9F-$AO
$A1-$A2
$A3-$A4
$A5-$A6

Command code for buffer 0
Command code for buffer 1
Command code for buffer 2
Command code for buffer 3
Command code for buffer 4
Track and sector for buffer 0
Track and sector for buffer 1
Track and sector for buffer 2
Track and sector for buffer 3
Track and sector for buffer 4
ID for drive 0
ID for drive 1
ID
Flag for head transport
Buffer pointer for disk controller
Constant 8, mark for beginning of data
block header
Parity for data buffer
Drive number for disk controller
Buffer number for disk controller
Number of sectors per track for
formatting
Constant 7, mark for beginning of data
block header
Stack pointer
step counter for head transport
Actual track number for formatting
Step size for sector division (10)
Number of read attempts (5)
Pointer to address for M & B commands
Device number + $20 for listen
Device number + $40 for talk
Flag for listen (1/0)
Flag for talk (1/0)
Flag for ATN from serial bus receiving
Flag for EOI from serial bus
Drive number
Track number
Sector number
Channel number
Secondary address
Secondary address
Data byte
Work storage for division
Actual buffer pointer
Address of buffer 0 S300
Address of buffer 1 $400
Address of buffer 2 $500
Address of buffer 4 $600
Address of buffer 5 $700
Pointer to input buffer $200
Pointer to buffer for error message $2D5

102

181
187
193
199
212
213
214
215
231
249
256-325
512-552
586
600
601
602
628
632
663
640-644
645-649
725-761
762/764
768-1023

1024-1279
1280-1535
1536-1791
1792-2047

$B5-$BA
$BB-$CO
$Cl-$C6
$C7-$CC
$D4
$D5
$D6
$D7
$E7
$F9
$100-$145
$200-$228
$24A
$258
$259
$25A
$274
$278
$297
$280-$284
$285-$289
$2D5-$2F9
$2FA/$2FC
$300-$3FF
$400-$4FF
$500-$5FF
$600-$6FF
$700-$7FF

Anatomy of the 1541 Disk Drive

Record * 10, block * 10
Record * hi, block * hi
Write pointer for reI. file
Record length for reI. files
Pointer in record for reI. file
Side sector number
Pointer to data block in side sector
Pointer to record in reI. file
File type
Buffer number
Stack
Buffer for command string
File type
Record length
Track side-sector
Sector side-sector
Length of input line
Number of file names
File control method
Track of a file
Sector of a file
Buffer for error message
Number of free blocks
Buffer 0
Buffer 1
Buffer 2
Buffer 3
Buffer 4

103

Anatomy of the 15~1 Disk Drive

3.2 Operation of the DOS - An Overview

The VIC-1541 is an intelligent disk drive with its own
microprocessor and control system (Disk Operation System,
DOS). This means that no memory space or processing time is
taken from the computer. The comput1!!r needs only transm it
commands to the disk drive, which it then executes on its
own.

The disk performs three tasks simultaneOUSly: Firstly, it
manages data traffic to and from the computer. secondly, it
interprets the commands and performs the management of files
and the associated communications channels and block buffer.
Thirdly, it handles the hardware-oriented related functions
of the disk drive - formatting, reading and writing, etc.

These tasks are carried out simultaneously by the 6502
microprocessor in the VIC 1541. This is possible with the
help of the interrupt technique. Only in this way can three
tasks be executed simultaneously.

Most of the DOS is concerned with interpreting and executing

the transmitted commands. The reception of data and commands
from the computer is controlled by interrupts. If the
computer wants to talk to a peripheral device, it sends a
pulse along the ATN line (ATteNtion, see section 5.11. This
generates an interrupt at the disk drive. The DOS stops its
current task and notices that the computer wants to send
data. The DOS then finishes the original task. After that,
the DOS will accept further data and commands from the the
computer. If the command is finished, the DOS stays in a
wait loop until new commands arrive from the disk.

The execution of a command at this level is limited to the
logical processing of the command, the management of the
communications channel to and from the computer and the
preparation and retrieval of data to be written or read,
respectively. The tasks of a disk controller, formatting
diskettes and writing and reading individual blocks, must

, also be performed by the processor.

These tasks are again interrupt controlled. Regular programs
in the disk are interrupted every 14 milliseconds by a
built-in timer, and control branches to a program that
fulfills the tasks of a disk controller. Communications
between the two independent programs is handled through a
common area of memory, in which the main program places
codes for the disk controller program. If the interrupt
program is active, it looks at the memory locations to
determine which activities are demanded, such as formatting
a diskette. if this is the case, the drive and head motors
are set in motion. At the end of the interrupt routine, the
main program examines the memory locations to determine if
the task was carried out by the disk controller, or if it

104

Anatomy of the 1541 Disk Drive

must wait yet. In this way, the main program is informed in
case of an error, such as a read error or if a write protect
tab is present. The main program can then react
appropriately and display the error message, for example.

In the large CBM disks, two 6504 microprocessors are used as
a disk controller. Communication again occurs over a common
area of memory.

An overview of the storage layout of the DOS such as the I/O
primitives for managing the diskette and serial bus can be
found in the previous section.

This overview of the work of the DOS is naturally just a
rough outline. If you want more exact information, refer to
the DOS listing of the VIC 1541 in section 3.5, in which the
complete 16K control system is documented.

105

Anatomy 'of the 1541 Disk Drive

3.3 The Structure of the VIC 1541 Diskette

The diskette of the 1541 is divided into 35 tracks. Each
track contains from 17 to 21 sectors. The total number of
sectors is 683. Because the directory occupies track 18, 664
data are available for use, each containing 256 bytes. The
tracks are layed out as follows:

TRACK NUMBER OF SECTORS :
:------------------------------:
:lT017
:18 TO 24
:25 TO 30
:31 TO 35 •.

21
19
18
17

The varying number of sectors per track is necessitated by
the shortening of the tracks from the midpoint on.

3.3.1 The BAM of the VIC 1541

BAM is an abbreviation for Block Availability Map. The BAM
indicates whether a block on the diskette is free or
allocated to a file. After every manipulation of blocks
(saving, deleting, etc.) the BAM is updated. When the BAM
indicates that a file to be saved requires more blocks than
are available, an error message is given. When a file is
OEPNed, the BAM in the DOS storage is updated, and is
rewritten to disk when the file is CLOSEd. Commands that
have a write or delete function read the BAM, update it, and
rewrite it to the diskette. The BAM is organized as follows
on track 18 sector 0:

: Track 18, sector 0

: BYTE : CONTENTS : MEANING

0,1 ($OO-$Ol) $12,$01 Track and sector of the 1st· :
block of the directory

2 ($02) $41 ASCII character 'A' ;
indicates 1541 format

3 ($03) $00 Zero flag for future use
4-143 ($04-$8F) Bit map of free and

allocated blocks *

* 1 = block free; 0 = block allocated

The bit map of the blocks is organized so that 4 bytes

106

Anatomy of the 1541 Disk Drive

represent the sectors on a track. As can be inferred from
the following table, the first of the 4 bytes contain the
number of free blocks in the track. The other 3 bytes (24
bits) indicate which blocks are free and which are allocated
in this track.

Structure of the BAM entry of a track:

: BYTE : CONTENTS

o
1
2
3

Number of available blocks in this track
Bit map of sectors 0-7
Bit map of sectors 8-15
Bit map of sectors 16-23

4 bytes of a track designation in the BAM:

: Track 18, sector 0, bytes 4-7 (track 1) :

: 00001010
($OA)

: 10 free
: blocks

00000000 00000011 11111111 :
($00) ($03) ($FF)

1 = free
o = allocated

Using a simple program, you can read the first byte of each
track entry in the bit map, add them up and find the total
number of free blocks on the diskette.

3.3.2 The Directory

The directory is the table of contents of the diskette. It
contains the following information:

- disk name
- disk 10
- DOS version number
- filenames
- file types
- blocks per file
- free blocks

This directory is loaded into memory with the command LOAD
-$-.8. A program previously in memory will be destroyed! It
can be displayed on the screen with the LIST command.

The directory occupies all of track 18 on the disk. The file
entries follow the directory header. Each block accommodates

107

Anatomy of the 1541 Disk Drive

a maximum of 8 file entries. Because the BAM and the header
occupy one block, 18 blocks are left for file entries. A
total of 144 files may reside on one diskette (18 blocks
with 8 entries each).

Format of the directory header:

: Track 18, sector 0

: BYTE, : CONTENTS : MEANING

144-161 ($90-$A1) Disk name (padded with
shifted spaces)

162,163 ($A2-$A3) Disk 10 marker
164 ($A4) $AO Shifted Space
165,166 ($A5-$A6) $32,$41 ASCII characters "2A"

(format)
167-170 ($A7-$AA) $AO Shifted Space
171-255 ($AB-$FF) $00 not used, filled with 0

: * Bytes 180 to 191 have the contents "BLOCKS FREE" on
: many diskettes

The Diskette Name:

The name of the diskette can be a maximum of 16 characters
in length and is established when the diskette is formatted.
If fewer then 16 characters are given, the rest is filled
with shifted spaces ($AO). The following BASIC routine reaos
the name and saves it in the string variable DN$:

100 OPEN 15,8,15,"10"

110 OPEN 2,8,2,"#"
120 PRINTjl15, "B-R":2; 0; 18; 0

130 PRINT#15,"B-P";2;144

DN$=""
REM LOOP TO READ
FOR 1=1 TO 16
:.:GET# 2 ,X$

THE 16

REM COMMAND CHANNEL 15
AND DISK INITIALIZED
REM DATA CHANNEL 2 OPENED
REM TRACK 18, SECTOR 0 READ
AND PLACED IN CHANNEL 2
REM BUFFER-POINTER TO BYTE
144
REM STRING DN$ IS ERASED

BYTES OF THE NAME

REM READ A BYTE

140
150
160
170
180
190
200
210

::IF ASC(X$)=160
: :DN$=DN$+X$
NEXT I

THEN 200 REM IGNORE SHIFT SPACE
REM BYTE ADDED TO DN$

CLOSE 2:CLOSE 15 REM CLOSE CHANNELS

After running the routine, the string DNS contains the disk
name.

108

Anatomy of the 1541 Disk Drive

Diskette ID:

The diskette ID is two characters in length and is specified
when formatting the diskette. The DOS uses this ID to detect
if a diskette in the drive has been replaced. If so, then
the DOS performs an INITIALIZE. Initializing a diskette
loads the BAM into memory in the drive. This way, the actual
BAM is always in memory, provided the ID given when
formatting is always different. Should this not be the case,
a diskette must be initialized explicitly by using the
INITIALIZE command.

3.3.3 The Directory Format

Blocks 1 through 19 on track 18 contain the file entries.
The first two bytes of a block point to the next directory
block with file entries. If no more directory blocks follow,
these bytes contain SOD and SFF, respectively.

: Track 18, sector 1

: Byte

0,1

2-31
34-63
66-95
98-127
130-159
lfi2-191
194-223
226-255

(SOO,SOl)

(S02-S1F)
(S22-S3F)
(S42-S5F)
(S62-S7F)
(S82-S9F)
(SA2-SBF)
(SC2-SDF)
(SE2-SFF)

: Contents

Track and sector number of the
next directory block
Entry of 1st file
Entry of 2nd file
Entry of 3rd file
Entry of 4th file
Entry of 5th file
Entry of 6th file
Entry of 7th file
Entry of 8th file

Format of a Directory Entry:

Each file entry consists of 30 bytes, the functions of which
are described below:

109

Anatomy of the 1541 Disk Drive

: BYTE : CONTENTS

o
1,2

3-18
19,20

21

22-25
26,27

28,29

(SOO)
(SOl,S02)

(S03-S12)
(S13,S14)

(SIS)

(S16-S19)
(SlA-SIB)

(SIC-SID)

File type
Track and sector number of the
first data block
Filename (padded with "SHIFT SPACE"
Only used for relative files
(track and sector of the first
side-sector block)

Only used for relative files
(record length)
Not used
Track and sector number of the new
file when overwritten with the @:
Number of blocks in the file (low
byte, high byte)

Fi1e Type Marker:

Byte 0 of the file entry denotes the file type. Bits 0-2 are
used to indicate the 5 file types •. Bit 7 indicates if the
file has been CLOSEd properly. Closing a file sets bit 7. An
unclosed file is denoted with an asterisk in front of the
file type in the directory listing. If, for example, a
sequential file "TEST" is opened and the directory is
listed, this file will be represented like this:

12 "TEST" *SEO

If the file is CLOSEd again, the asterisk does not appear in
future directory listings. If this file remains unclosed and
later opened, the error message "WRITE FILE OPEN" will
appear.

The File Type:

In order to understand the function of byte 0 in the file
entry, the file type, a table of all file types follows:

: File type : Bit mask opened : Bit mask closed
: 7654 3210 HEX : 7654 3210 HEX

--
DELeted 0000 0000 SOO 1000 0000 S80
SEOuential 0000 0001 SOl 1000 0001 $81
ProGram 0000 0010 S02 1000 0010 S82
USeR 0000 0011 S03 1000 0011 S83
RELative 0000 0100 $04 1000 0100 $84

perhaps you have noticed that bits 3-6 have no function. Rut
we verified with help from the DOS listing, bit 6 has a

110

Anatomy of the 1541 Disk Drive

function:

BIT 6 OF THE FILE TYPE DENOTES A PROTECTED FILE!

If you set this bit to I, the corresponding file can no
longer be deleted. This is designated in the directory
listing with a < next to the file type. Because setting this
bit requires some complicated commands, you will find a
program in chapter 4 of this book with which you can
protect, unprotect, and delete files.

Track and sector of the first Data Block

Bytes 1 and 2 of the file entry point to the first data
block of the file. The first byte contains the track and the
second the sector number where the file begins. The first
data block, in turn contains a pointer to the second block
of the file (also contained in the first two bytes of the
block). The last data block of the file is indicated by a
first-byte value of $00. The second byte contains the number
of bytes used in this last sector.

This concatenation can be explained with the help of the Dl'S
MONITOR, contained in this book:

> :BO AD AD AD AD AD 00 00 00
> :B8 00 00 00 00 00 00 DB 00 ·
>:CO 00 00 81 13 09 54 31 32 •.••• T12
> :C8 2F 53 30 31 AD AD AD AD /SOI
> :00 AD AD AD AD AD 00 00 00
>: D8 00 00 00 00 00 00 06 00 ·
):EO 00 00 82 10 00 44 49 53 •••.. DIS
): E8 4B 20 41 44 44 52 20 43 K ADDR C
>:FO 48 41 4E 47 45 00 00 00 BANGE •••
>: F8 00 00 00 00 00 00 04 00

This is an extract from the directory (track 18, sector 1)
of the TEST/DEMO diskette. You can follow the organization
of the file DISK ADDR CHANGE. The entry of this file begins
at byte $E2 and ends with byte $FF. This is a PRG file,
which can be recognized by the file type $82 in byte $E2.
This file comprises 4 blocks on the disk. This is evident
from bytes $FE and $FF. Bytes SE3 and SE4 of the entry
address the first data block of the file {SID, SOD,
corresponding to track 16, sector OJ.

Let's look at a section of this block:

>:00 10 OA 01 04 OF 04 64 00 • •••.• $ •
>:08 97 35 39 34 36 38 2C 31 .59468,1
):10 32 00 39 04 6E OD 99 22 2.9 ••.• "
>:18 93 13 11 11 11 11 44 52 • ••••• DR
):20 49 56 45 20 41 44 44 52 IVE ADDR
>: 28 45 53 53 20 43 48 41 4E ESS CHAN

111

Anatomy of the 1541 Disk Drive

>:30
>:38
>:40
>:48

47 45 20 50 52 4F 47 52
41 4D 22 00 59 04 6F 00
99 22 11 54 55 52 4E 20
4F 46 46 20 41 4C 4C 20

GE PROGR
AM".Y./.
••• TURN
OFF ALL

This block contains the first part of the program. It is
stored on the diskette exactly as it is stored in the
computer's memory. The BASIC commands are converted to one
byte codes called tokens. This is why only the text can be
recognized in the right hand translation of the hexadecimal
codes. The first two bytes of this data block indicate the
second data block ($10 and $OA, track 16, sector 10) from
with this section follows:

>:00
>:08
>:10
>:18
> :20
>:28
>:30
>:38
>:40
>:48

10 14 34 30 00 ID 05 AO
00 80 20 33 30 30 3A 20
8F 20 46 49 4E 44 20 44
52 49 56 45 20 54 59 50
45 00 39 05 AA 00 8D 20
36 30 30 3A 20 8F 20 43
48 41 4E 47 45 20 41 44
44 52 45 53 53 00 68 05
B4 00 99 22 11 54 48 45
20 53 45 4C 45 43 54 45

• .40 •••
•• 300:
• FIND D
DRIVE TYP
E.9.
600: • C
HANGE AD
DRESS.(.

•••• THE
SELECTE

The program is continued in this block. Bytes $00 and $01
point to the third data block of the file ($10, $14, track
16, sector 20):

>:00
>:08
>:10
>:18
>:20
>:28
>:30
>:38
>:40
>:48

10 08 31 30 30 30 00 23
06 54 01 8B 20 43 B2 32
35 34 20 A7 20 4D 54 B2
31 31 39 3A 20 8F 3A 20
32 30 33 31 20 56 32 2E
36 00 45 06 5E 01 8B 20
43 B2 32 32 36 20 A7 20
4D 54 B2 35 30 3Ao 20 8F
3A 20 32 30 34 30 20 56
31 2E 32 00 67 06 68 01

•• 1000.#
.T .. C 2
54 MT
119: .:
2031 V2.
6.E •••
C 226
MT 50: •
: 2040 V
1.2. • (•

This is the next to the last block of the program. You have
no doubt recognized that the data blocks are in the same
track, but are not contiguously. The first data block is
block O. The next is block 10, 10 blocks from the first
block. 9 blocks are always skipped between data blocks of a
file. The third data block is block number 20. The DOS
begins again with the first block if the calculated block
oversteps the highest blOCk. Because track 16 contains 21
blocks, the last data block is block number 8. The first two
bytes of this third hlock address it:

> 00
> 08
> 10
> 18

00 F8 SA 42 B2 31 20 A7
20 34 34 30 00 14 07 A3
01 8B 20 53 54 20 A7 20
31 30 30 30 00 45 07 B8

112

• ZB 1
440 •••

•• ST
1000.E.

Anatomy of the 1541 Disk Drive

>:20 01 98 31 35 2C 22 4D 2D •. 15,"M-
>:28 52 22 C7 28 31 37 32 29 R" (172)
>: 30 C7 28 31 36 29 3A Al 23 (16) : #
>:38 31 35 2C 5A 43 24 3A SA 15,ZC$:Z
>:40 43 B2 C6 28 5A 43 24 AA C F(ZC$
>:48 C7 28 30 29 29 00 66 07 G(O».&.

Here the end of the program is marked by the value $00 in
byte $00. Byte $01 gives the number of bytes in this last
block that belong to the program. ($F8 corresponds to 248
bytes). Now we can find out the size of the program:

3 blocks with 254 bytes each = 762 bytes
last block = 248 bytes

Size of the program llOO bytes

The Filename:

The filename is contained in bytes 3-18 of the file entry.
It consists of a maximum of 16 characters. Should the name
be shorter than 16 characters, the rest of the name is
padded with shifted spaces (SAO).

Track and Sector of the new File for "Overwriting-:

If a file is overwritten by using the @:, the new file is
first completely saved. No filename entry is made in the
directory for this file because the file already exists
under this same name. Instead the address of the first block
of the new file is placed in bytes 26 and 27 of the filename
entry. If the new program is removed, the old one is
deleted, which merely designates the blocks allocated to the
file as free in the BAM. Now the address of the first data
block of the new file is placed into the filename entry in
bytes I and 2 is used and the file is "overwritten".

Number of Blocks in the File:

The length of a file is given in bytes 28 and 29 of its file
entry. A file consists of at least one block and as many as
664 blocks. The first byte is the low byte, and the second
is the high byte. If, for example, you discovered the file
length $IF,SOO with the DISK MONITOR, the file consists of
31 blocks.

113

Anatomy of the 1541 Disk Drive

3.4 The Organization of Relative Piles

Relative files differ from sequential files in that each
data record can be accessed directly by a record number.
The 1541 OOS takes care of most of the tasks required to
support relative records. Let's take a closer look at the
organization of a relative file.

First OPEN a relative file with a record length of 100:

OPEN 2,8,2, "REL-FILE,L,"+CHR$(lOO)

Now write data record number 70:

The

>:00
>:08
>:10
>:18

OPEN 1,8,15
PRINTU,"P"+CHR$(2)+CHR$(70)+CHR$(0)+CHR$(1)
PRINT*2,DDATA FOR RECORD 70"
CLOSE 2 : CLOSE 1

directory entry then looks like this:

84 11 00 52 45 4C ••• REL
20 46 49 4C 45 AO AO AO -FILE
AO AO AO AO AO 11 OA 64 •• $
00 00 00 00 00 00 10 00

The first byte $84 denotes a relative file. The next two
bytes denote the first track and sector of the data ($11,
$00: track 17 sector 0): exactly as with a sequential file.
As usual, the name of the file follows (16 characters,
padded with shifted spaces, $AO). Following are two fields
not used with sequential files. The first field is a two
byte pointer to the track and sector of the first side
sector block. A side-sector contains the pointers to each
data record and is described more in detail later ($11, $OAI
track 17, sector 10). The second field is a byte w-hich
contains the record length, a value between 1 and 254, in
our case $64 (100).

The convenience of being able to access each record
individually requires a definite length for each record thet
must be defined when establishing a relative file. The rest
of the fields in the directory entry have the usual
significance; the last two bytes contain the number of
blocks in the file (10 and hi byte, $10 and $00 (29».

What does such a side-sector block look like and what is its
function?

The side-sector blocks contain the track and sector pointers
to the individual data records. For example, if we want to
read the 70th record in the relative file, the DOS consults
the side-sector block to determine which track and sector
contains the record and then read this record directly. As

114

Anatomy of the 1541 Disk Drive

a resul t, you can read the 70th record of the file without
having to read the entire file. Now let's take a look at the
exact construction of a side-sector block. This s ide-sectc'r
block is from our previous file.

>:00 00 47 00 64 11 OA 00 00 .G.$ ••••
>:08 00 00 00 00 00 00 00 00 ·
>: 10 11 00 11 OB 11 01 11 OC ·
>:18 11 02 11 OD 11 03 11 OE ·
>:20 11 04 11 OF 11 05 11 10 ·
>:28 11 06 11 11 11 07 11 12 ·
>:30 11 08 11 13 11 09 11 14 ·
>:38 10 08 10 12 10 06 10 10 ·
>:40 10 04 10 OE 10 02 10 OC
>:48 00 00 00 00 00 00 00 00 ·
>:50 00 00 00 00 00 00 00 00 ·
etc.

The first two bytes point to the track and sector of the
next side-sector block, as usual. In our case, no further
side-sector blocks exist ($00) and only $47 = 71 bytes of
this sector are used. Byte 2 contains the number of the
side-sector block, 00. A relative file can contain a maximum
of 6 such blocksl the numbering goes from 0 to 5. The record
length, $64 (100), is in byte 3. The next twelve bytes
(bytes 4 through 15) contain the track and sector pointers
(two bytes each) to the 6 side-sector blocks (00,00 means
the block is not yet used). Starting at byte 16 ($10) are
the pointers to the data, and the track and sector pointers
to the first 120 data blocks (in our case, only ~8
pointers). Using the record number and record length, the
DOS can calculate in which block the data lies and at which
position within the block the record begins. Take the
following example, for instance:

To read the 70th record from the file with a record length
of 100 characters, you can perform the following calcula
tions:

(70-1) * 100 / 254

We get a quotient of 27 and a remainder of 42. The DOS now
knows that the record can be found in the 27th data block at
the 42+2 or 44th position.

Here's an explanation of the calculation. Each block
contains 256 bytes, the first two of which are used as a
pOinter to the next block. 254 bytes are then left over for
data storage. We can calculate the byte number from the
start of the file (which is record 1) from the record number
and record length. If we divide this value by the number of
bytes per block, we get the number of the block containing
the record. The remainder of the division gives the position
within the block (add 2, because the first two bytes serve
as a pointer). If the record overlaps the end of the block,

115

Anatomy of the 1541 Disk Drive

the next block must also be read.

In our example, the 27th data block lies in track $10 = 16
and sector SOC = 12. If we read this block, we get the
following picture:

>:00
>:08
>:10
>:18
>:20
>:28
>:30
>:38
>:40
>:48
>:50
>:58
>:60
> :68
>:70
>:78
>:80
>:88
>:90
>:98
> :AO
>:A8
>:BO
>:B8
>:CO
> :C8
> :00
>:08
9:EO
>: E8
> :FO
> :F8

00 F3 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 44 41 54 41
20 46 4E 52 20 52 45 43
46 52 44 20 37 30 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
FF 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 FF 00 00 00
00 00 00 00 00 00 00 00

•••• DATA
FOR REC

ORO 70 ••

If we get a block number greater than 120 from the
calculation, the pointer can no longer be found on the first
side-sector block, rather in the next side-sector blocks. In
this case, you divide the block number by 120, the quotient
being the number of the side-sector block. The remainder
gives the location of the pointer within this block. Fer
instance, to find record number 425, divide by 120 and get a
quotient 3, remainder 65. Therefore, you must read side
sector block 3 and get the pointer to the 65th data block.
Between 2 and 4 block accesses are necessary to access a
record of a relative data file.

When creating or expanding a relative file, the following
takes place:

First, a directory entry is created for the relative file,

116

Anatomy of the 1541 Disk Drive

containing the record length. Two channels are reserved for
the relative file,one for the data, the other for the side
sectors. If a record pointer is set to a specific record,
the DOS first checks to see if the record already exists. If
so, the corresponding block is read and the buffer pointer
set so that the contents can be accessed. If not, the record
is created. All records preceding this record number that do
not already exist are also created. The first byte of a new
record is written to contain $FF (255), and the rest of the
record is filled with $00.

If the corresponding record is at the beginning of a block,
the rest of the block is filled with empty records. Each
time a non-existing record is accessed, the error message
50,RECORD NOT PRESENT is returned. When writing a new
record, this is not considered an error, but indicates that
a new record was created.

You can use this method for creating a new file if you know
the maximum number of data records. You simply set the
record pointer to this record and write $FF (CHR$(255» to
this record. By allocating a file like this, the error
message 50 no longer appears. You also know if there is
sufficient space on the diskette. If not, the error message
52, FILE TOO LARGE is returned.

With a maximum of 6 side sectors, a relative file can
contain 6 * 120 * 254 = 182,880 bytes. In the case of the
VIC 1541, this is more than the capacity of the whole
diskette. With the bigger 8050 drive, which contains more
than 500K of storage, this may present a limitation. But DOS
version 2.7 has an expansion of the side-sector procedure
('super side-sector'), with which a relative file mey
contain up to 23 MB. DOS 2.7 is contained in the CBM 8250
and the Commodore hard drives as well as the newer 8050
drives (see section 5.2).

Because a relative file requires two data channels, and the
VIC 1541 has only 3 channels available, only one relative
file can be open at a time. The third channel can still be
used for a sequential file open at the same time. With the
larger CBM drives, more channels are available (3 relative
files open simultaneously, see also section 5.2).

117

Anatomy of the 1541 Disk Drive

3.5 DOS 2.6 ROM LISTINGS

CIOO 78 SEI
CIOI A9 F7 LDA II$F7
CI03 2D 00 IC ANO $ICOO
CI06 48 PHA
CI07 AS 7F LOA $7F
CI09 FO 05 BEO $CllO
CIOB 68 PLA
CIOC 09 00 ORA #$00
ClOE DO 03 BNE $C1l3
ClIO 68 PLA
Clli 09 08 ORA #$08
C1l3 8D 00 IC STA $lCOO
C1l6 58 CLI
C1l7 60 RTS

C1l8 78 SEI
C119 A9 08 LDA #$08
CllB 00 00 IC ORA $ICOO
CllE 8D 00 IC STA $ICOO
C12I 58 CLI
CI22 60 RTS

Cl23 A9 00 LDA #$00
Cl25 80 6C 02 STA $026C
Cl28 8D 60 02 STA $026D
Cl2B 60 RTS

Cl2C 78 SEI
Cl20 8A TXA
Cl2E 48 PHA
Cl2F A9 50 LDA #$50
Cl31 8D 6C 02 STA $026C
Cl34 A2 00 LDX #$00
Cl36 BD CA FE LOA SFECA,X
Cl39 8D 6D 02 STA $0260
Cl3C 00 00 IC ORA SICOO
Cl3F 80 00 IC STA SICOO
Cl42 68 PLA
CI43 AA TAX
Cl44 58 CLI
C145 60 RTS

Cl46
Cl48
Cl4B

A9 00
80 F9 02
AD 8E 02

LOA #SOO
STA S02F9
LOA S028E

118

turn LEO on

erase LED bit

drive number
O?

not drive 0, turn LED off

turn LED on

turn LED on

LED on

erase error flags

save X register

8

turn LEO on

get x register back

interpret command from
computer

last drive number

Anatomy of the 1541 Disk Drive

Cl4E 85 7F STA $7F drive number
C150 20 BC E6 JSR $E6BC prepare 'ok l message
C153 A5 84 LDA $84 secondary address
C155 10 09 BPL $C160
C157 29 OF AND #$OF
C159 C9 OF CMP #$OF 15, command channel
C15B FO 03 BEQ $C160 yes
C15D 4C B4 D7 JMP $07B4 to OPEN command
C160 20 B3 C2 JSR $C2B3 determine line length and

erase flags
C163 Bl A3 LDA ($A3),Y get first character
C165 80 75 02 STA $0275 and store
C168 A2 OB LDX #$OB 11
C16A BO 89 FE LDA $FE89,x commands
C16D CD 75 02 CMP $0275 compare to first character
C170 FO 08 BEQ $C17A found?
C172 CA OEX
C173 10 F5 BPL $CI6A
Cl75 A9 31 LDA #S31 not found
Cl77 4C C8 Cl JMP $CIC8 31, 'syntax error'
C17A 8E 2A 02 STX $022A number of command words
C17D EO 09 CPX #$09
Cl7F 90 03 BCC $C184 command nUlllber < 9?
C181 20 EE Cl JSR $ClEE test for 'R' , IS' , and 'N'
C184 AE 2A 02 LDX $022A command number
C187 BO 95 FE LDA $FE95,X jump address 10
C18A 85 6F STA $6F
Cl8C BO Al FE LOA $FEAl,X jump address hi
Cl8F 85 70 STA $70
C191 6C 6F 00 JMP ($006F) jump to command

****************************** prepare error message after
executing command

C194 A9 00 LOA #$00
C196 80 F9 02 STA $02F9
C199 AO 6C 02 LDA $026C flag set?
C19C DO 2A BNE $CIC8 yes, then set error message
Cl9E AO 00 LOY #$00
CIAO 98 TYA error number 0
CIAI 84 80 STY $80 track number 0
CIA3 84 81 STY $81 sector number 0
CIA5 84 A3 STY $A3
CIA7 20 C7 E6 JSR $E6C7 prepare 'ok' message
ClAA 20 23 Cl JSR $C123 erase error flag
ClAD A5 7F LOA $7F drive number
CIAF 80 8E 02 STA $028E save as last drive number
CIB2 AA TAX
CIB3 A9 00 LOA #$00
CIB5 95 FF STA $FF,X
CIB7 20 BD CI JSR $CIBO erase input buffer
CIBA 4C DA 04 JMO $D40A close internal channel

****************************** erase input buffer
CIBO AO 28 LOY #$28 erase 41 characters
CIBF A9 00 LOA #$00

119

Anatomy of the 1541 Disk Drive

CICI 99 00 02 STA $0200,Y $200 to $228
CIC4 88 DEY
CIC5 10 FA BPL $CICl
CIC7 60 RTS
****************************** give error message

(track & sector)
CIC8 AO 00 LDY #$00
CICA 84 80 STY $80 track = 0
CICC 84 81 STY $81 sector = 0
CICE 4C 45 E6 JMP $£645 error number ace, generate

error message

****************************** check input line
CIDl A2 00 LDX #$00
CID3 8E 7A 02 STX $027A pointer to drive number
CID6 A9 3A LDA #$3A . : .
CID8 20 68 C2 JSR $C268 test line to I: I or to end
CIDB FO 05 BEO $CIE2 no colon found?
CIDD 88 DEY
CIDE 88 DEY
CIDF 8C 7A 02 STY $027A point to drive number

(before colon)
C1E2 4C 68 C3 JMP $C368 get drive # and turn LED on

****************************** check input line
C1£5 AO 00 LDY #$00 pointer to input buffer
CIE7 A2 00 LDX #SOO counter for commas
CIE9 A9 3A LDA #S3A I: t

ClEB 4C 68 C2 JMP $C268 test line to colon or to end

****************************** check input line
CIEE 20 E5 Cl JSR $CIE5 test line to 1: ' or end
CIFI DO 05 BNE $CIF8 colon found?
CIF3 A9 34 LDA #S34
CIF5 4C C8 Cl JMP SCIC8 34, , syntax error'
CIF8 88 DEY
CIF9 88 DEY set pointer to colon
CIFA 8C 7A 02 STY S027A position of the drive no.
CIFD 8A TXA comma before the colon
C!FE DO F3 BNE $CIF3 yes, then 'syntax error'
C200 A9 3D LDA #S3D '='
C202 20 68 C2 JSR $C268 check input to '='
C205 8A TXA comma found?
C206 FO 02 BEO SC20A no
C208 A9 40 LDA #S40 bit 6
C20A 09 21 ORA #S21 and set bit 0 and 5
C20C 8D 8B 02 STA S028B flag for syntax check
C20F E8 INX
C210 8E 77 02 STX $0277
C213 8E 78 02 STX $0278
C216 AD 8A 02 LDA $028A wildcard found?
C219 FO OD BEO SC228 no
C2lB A9 80 LOA #$80
C2lD OD 8B 02 ORA $028B set bit 7
C220 8D 8B 02 STA $028B

120

Anatomy of the 1541 Disk Drive

C223 A9 00 LDA #$00
C225 8D 8A 02 STA $028A reset wildcard flag
C228 98 TYA '=' found?
C229 FO 29 BEO $C254 no
C22B 9D 7A 02 STA $027A,X
C22E AD 77 02 LDA $0277 number of commas before '='
C231 8D 79 02 STA $0279
C234 A9 8D LDA #S8D shift CR
C236 20 68 C2 JSR $C268 check line to end
C239 E8 INX increment comma counter
C23A 8E 78 02 STX $0278 store # of commas
C23D CA DEX
C23E AD 8A 02 LDA $028A wildcard found?
C24A FO 02 REO $C245 no
C243 A9 08 LDA #$08 set bit 3
C245 EC 77 02 CPX $0277 comma after '=' ?
C248 FO 02 BEO $C24C no
C24A 09 04 ORA #$04 set bit 2
C24C 09 03 ORA #$03 set bits 0 and 1
C24E 4D 8B 02 EOR $028B
C251 8D 8B 02 STA $028B as flag for syntax check
C254 AD 8B 02 LDA $028B syntax flag
C257 AE 2A 02 LDX $022A command number
C25A 3D AS FE AND $FEA5,X combine with check byte
C25D DO 01 BNE $C260
C25F 60 RTS
C260 8D 6C 02 STA S026C set error flag
C263 A9 30 LDA #$30
C265 4C C8 Cl JMP $CIC8 30, 'syntax error'

****************************** search characters in input
buffer

C268 8D 75 02 STA S0275 save character
C26B CC 74 02 CPY $0274 already done?
C26E BO 2E BCS $C29E yes
C270 Bl A3 LDA (SA3) ,Y get char from buffer
C272 C8 INY
C273 CD 75 02 CMP $0275 compared with char
C276 FO 28 BEO $C2AO found
C278 C9 2A CMP #S2A ,* ,
C27A FO 04 BEO $C280
C27C C9 3F CMP #$ 3F '? '
C27E DO 03 BNE SC283
C280 EE 8A 02 INC S028A set wildcard flag
C283 C9 2C CMP #S2C , , ,
C285 DO E4 BNE $C26B
C287 98 TYA
C288 9D 7B 02 STA $027B,X note comm", position
C28B AD 8A 02 LDA $028A wildcard flag
C28E 29 7F AND #S7F
C290 FO 07 BEO $C299 no wildcard
C292 A9 80 LDA #$80
C294 95 E7 STA $E7,X note flag
C296 8D 8A 02 STA $028A and save as wildcard flag
C299 E8 INX inc comma counter

121

Anatomy of the 1541 Disk Drive

C29A EO 04 CPX #$04 4 commas already?
C29C 90 CD BCC SC26B no, continue
C29E AO 00 LDY #SOO
C2AO AD 74 02 LDA $0274 set flag for line end
C2A3 9D 7B 02 STA S027B,X
C2A6 AD 8A 02 LDA $028A wildcard flag
C2A9 29 7F AND #S7F
C2AB FO 04 BEO $C2Bl no wildcard
C2AD A9 80 LDA #S80
C2AF 95 E7 STA $E7,X set flag
C2Bl 98 TYA
C2B2 60 RTS

****************************** check line length
C2B3 A4 A3 LDY SA3 ptr to command input buffer
C2B5 FO 14 BEO SC2CB zero?
C2B7 88 DEY
C2B8 FO 10 BEO SC2CA one?
C2BA B9 00 02 LDA S0200,Y pointer to input buffer
C2BD C9 OD CMP #SOD 'CR'
C2BF FO OA BEO $C2CB yes, line end
C2Cl 88 DEY
C2C2 B9 00 02 LDA S0200, Y preceding character
C2C5 C9 OD CMP #SOD 'CR'
C2C7 FO 02 BEO SC2CB yes
C2C9 C8 INY
C2CA C8 INY pointer to old value again
C2CB 8C 74 02 STY S0274 same line length
C2CE CO 2A CPY #S2A compare with 42 characters
C2DO AO FF LDY #$FF
C2D2 90 08 BCC SC2DC smaller, ok
C2D4 8C 2A 02 STY S022A
C2D7 A9 32 LDA #S32
C2D9 4C C8 Cl JMP SClC8 32, 'syntax error' line too

long

****************************** erase flag for input command
C2DC AO 00 LDY #SOO
C20E 98 TYA
C20F 85 A3 STA SA3 pointer to input buffer 10
C2El 8D 58 02 STA S0258 record length
C2E4 8D 4A 02 STA S024A file type
C2E7 8D 96 02 STA S0296
C2EA 85 D3 STA SD3
C2EC 8D 79 02 STA $0279 comma counter
C2P.F 8D 77 02 STA $0277
C2F2 8D 78 02 STA $0278
C2F5 8D 8A 02 STA $028A wildcard flag
C2F8 80 6C 02 STA $026C error flag
C2FB A2 05 LDX #$05
C2FD 9D 79 02 STA S0279,X flags for line analysis
C300 95 D7 STA $D7,X directory sectors
C302 95 DC STA SDC,X buffer pointer
C304 95 El STA SEl,X drive number
C306 95 E6 STA $E6,X wildcard flag

122

Anatomy of the 1541 Disk Drive

C308 9D 7F 02 STA $027F,X track number
C30B 9D 84 02 STA $0284,X sector number
C30E CA DEX
C30F DO EC BNE $C2~'D

C311 60 RTS

****************************** preserve drive number
C312 AD 78 02 LDA $0278 number of commas
C315 8D 77 02 STA $0277 save
C318 A9 01 LDA i$Ol
C31A 8D 78 02 STA $0278 number of drive numbers
C31D 8D 79 02 STA $0279
C320 AC 8E 02 LDY $028E last drive number
C323 A2 00 LDX i$OO
C325 86 D3 STX $D3
C327 BD 7A 02 LDA $027A,X position of the colon
C32A 20 3C C3 JSR $C33C get drive no. before colon
C32D A6 D3 LDX $D3
C32F 9D 7A 02 STA $027A save exact position
C332 98 TYA
C333 95 E2 STA $E2,X drive number in table
C335 E8 INX
C336 EC 78 02 CPX $0278 got all drive numbers?
C339 90 EA BCC $C325 no, continue
C33B 60 RTS

****************************** search for drive number
C33C AA TAX note position
C33D AO 00 LDY #$00
C33F A9 3A LDA i$3A 1:1

C341 DD 01 02 CMP $0201,X colon behind it?
C344 FO OC BEO $C352 yes
C346 DD 00 02 CMP $0200,X colon here?
C349 DO 16 BNE $C361 no
C34B E8 INX
C34C 98 TYA
C34D 29 01 AND #$01 drive number
C34F A8 TAY
C350 8A TXA
C351 60 RTS

C352 BD 00 02 LDA $0200,X get drive number
C355 E8 INX
C356 E8 INX
C357 C9 30 CMP i$30 '0 I?
C359 FO F2 BEO $C34D yes
C35B C9 31 CMP i$31 111 ?
C35D FO EE BEO $C34D yes
C35F DO EB BNE $C34C no, use last drive number
C361 98 TYA last drive number
C362 09 80 ORA #$80 set bit 7, uncertain drive #
C364 29 81 AND #$81 erase remaining bits
C366 DO E7 BNE $C34F

****************************** get drive number

123

Anatomy of the 1541 Disk Drive

C368 A9 00 LDA #$00
C36A 8D RB 02 STA $028B erase syntax flag
C36D AC 7A 02 LDY $027A position in command line
C370 Bl A3 LDA ($A3},Y get chars from command buffer
C372 20 BD C3 JSR $C3BD get drive number
C375 10 11 BPL $C388 certain number?
C377 C8 INY increment pointer
C378 CC 74 02 CPY $0274 line end?
C37B BO 06 BCS $C383 yes
C37D AC 74 02 LDY $0274
C380 88 DEY
C38l DO ED BNE $C370 search line for drive no.
C383 CE 8B 02 DEC $0288
C386 A9 00 LDA #$00
C388 29 01 AND #$01
C38A 85 7F STA $7F drive number
C38C 4C 00 Cl JMP SClOO turn LED on

****************************** reverse drive number
C38F A5 7F LDA $7F drive number
C391 49 01 EOR #$01 switch bit 0
C393 29 01 AND #$01
C395 85 7F STA $7F
C397 60 RTS

****************************** establish file type
C398 AD 00 LDY #$00
C39A AD 77 02 LDA $0277 '=1 found?
C39D CD 78 02 CMP $0278
C3AO FO 16 BEO SC3B8 no
C3A2 CE 78 02 DEC $0278 get pointer
C3AS AC 78 02 LDY $0278
C3A8 B9 7A 02 LDA S027A,Y set pointer to character

behind '=1
C3AB A8 TAY
C3AC Bl A3 LDA (SA3) ,Y pointer to buffer
C3AE AO 04 LDY #$04 compare with marker for

file type
C3BO D9 BB FE CMP SFEBB,Y lSI, • pI I I U· I 'R'
C3B3 FO 03 REO SC3B8 agreement
C3S5 88 DEY
C3B6 DO F8 RNE SC3BO
C3B8 98 TYA
C3B9 8D 96 02 STA $0296 note file type (1-4)
C3BC 60 RTS

****************************** check drive number
C3BD C9 30 C~1P #$ 30 '0 '
C3BF FO 06 BEO SC3C7
C3C1 C9 31 CMP #S31 ' l'
C3C3 FO 02 BEO SC3C7
C3C5 09 80 ORA #S80 no zero or one, then set bit 7
C3C7 29 81 AND #S81
C3C9 60 RTS

124

Anatomy of the 1541 Disk Drive

****************************** verify drive number
C3CA A9 00 LDA #$00
C3CC 85 6F STA $6F
C3CE 8D 8D 02 STA $028D
C3Dl 48 PHA
C3D2 AE 78 02 LDX $0278 number of drive numbers
C3D5 68 PLA
C3D6 05 6F ORA $6F
C3D8 48 PHA
C3D9 A9 01 LDA #$01
C3DB 85 6F STA $6F
C3DD CA DEX
C3DE 30 OF BMI $C3EF
C3EO B5 E2 LDA SE2,X
C3E2 10 04 BPL $C3E8
C3E4 06 6F ASL $6F
C3E6 06 6F ASL $6F
C3E8 4A LSR A
C3E9 90 EA BCC $C3D5
C3EB 06 6F ASL $6F
C3ED DO E6 BNE $C3D5
C3EE' 68 PLA
C3FO AA TAX
C3Fl BD 3F C4 LDA SC43F,X get syntax flag
C3F4 48 PHA
C3F5 29 03 AND #$03
C3F7 8D 8C 02 STA S028C
C3FA 68 PLA
C3FB OA ASL A
C3FC 10 3E BPL SC43C
C3FE A5 E2 LDA $E2
C400 29 01 AND #SOl isolate drive number
C402 85 7~' STA S7F
C404 AD 8C 02 LDA S028C
C407 FO 28 BEO SC434
C409 20 3D C6 JSR $C63D initialze drive
C40C FO 12 BEO $C420 error?
C40E 20 8F C3 JSR $C38E' switch to other drive
C411 A9 00 LDA #$00
C413 8D 8C 02 STA $028C
C416 20 3D C6 JSR $C63D init ial ize drive
C419 FO IE BEO SC439 no error?
C41B A9 74 LDA #$74
C41D 20 C8 Cl JSR SClC8 74, 'drive not ready'
C420 20 8F C3 JSR SC38F

C423 20 3D C6 JSR $C63D initialize drive
C426 08 PHP
C427 20 8F C3 JSR $C38F switch to other drive
C42A 28 PLP
C42B FO OC BEO $C439 no error?
C42D A9 00 LDA #$00
C42F 8D ac 02 STA $028C number of drives
C432 FO 05 BEO $C439
C434 20 3D C6 JSR $C63D initialize drive

125

Anatomy of the 1541 Disk Drive

C437 DO E2 BNE $C41B error?
C439 4C 00 Cl JMP $CI00 Turn LED on
C43C 2A ROL A drive # from carry after bit a
C43D 4C 00 C4 JMP $C400

****************************** flags for drive check
C440 00 80 41 01 01 01 01 81
C448 81 81 81 42 42 42 42

****************************** search for file in directory
C44F 20 CA C3 JSR $C3CA initialize drive
C452 A9 00 LOA #$00
C454 80 92 02 STA $0292 pointer
C457 20 AC C5 JSR $C5AC read first directory block
C45A DO 19 BNE $C475 entry present?
C45C CE BC 02 DEC $028C drive number clear?
C45F 10 01 BPL $C462 no
C461 60 RTS

C462 A9 01 LOA #$01
C464 80 80 02 STA $0280
C467 20 8F C3 JSR $C38F change drive
C46A 20 00 Cl JSR $CI00 Turn LED on
C46D 4C 52 C4 JMP $C452 and search

C470 20 17 C6 JSR $C617 search next file in directory
C473 Fa 10 BEO $C4B5 not found?
C475 20 08 C4 JSR $C408 verify directory entry
C47B AD BF 02 LOA $02BF
C47B FO 01 BEO $C47E more files?
C470 60 RTS

C47E AD 53 02 LOA $0253
C481 30 ED BMI $C470 fi Ie not found?
C483 10 F'O BPL $C475 yes
C485 AD 8F 02 LOA $028F
C488 FO 02 BEO $C45C
C48A 60 RTS

C48B 20 04 C6 JSR $C604 search next directory block
C48E FO lA BEO $C4AA not found?
C490 DO 28 BNE $C4BA

C492 A9 01 LOA #$01
C494 BD 80 02 STA $0280
C497 20 8F C3 JSR $C38F change drive
C49A 20 00 Cl JSR $CI00 turn LED on
C490 A9 00 LOA #$00
C49F 80 92 02 STA $0292
C4A2 20 AC C5 JSR $C5AC read directory block
C4A5 DO 13 BNE $C4BA found?
C4A7 80 8F 02 STA $028F
C4AA AD 8F 02 LOA $028F
C4AD DO 28 BNE $C4D7
C4AF CE 8C 02 DEC $028C

126

Anatomy of the 1541 Disk Drive

C4B2 10 DE BPL $C492
C4B4 60 RTS

C4B5 20 17 C6 JSR $C617 next entry in directory
C4B8 FO FO BEO $C4AA not found?
C4BA 20 D8 C4 JSR $C4D8 check entry
C4BD AE 53 02 LOX $0253
C4CO 10 07 BPL $C4C9 file found?
C4C2 AD 8F 02 LDA $028F
C4C5 FO EE BEO $C4B5 yes
C4C7 DO DE BNE $C4D7 no, then done

C4C9 AD 96 02 LOA $0296
C4CC FO 09 BEO $C467
C4CE B5 E7 LOA $E7,X file type
C4DO 29 07 AND #$07
C4D2 CD 96 02 CMP $0296 same as desired file type?
C4D5 00 DE BNE $C4B5 no
C4D7 60 RTS

C4D8 A2 FF LOX #$FF
C4DA 8E 53 02 STX S0253 flag for data found
C4DO E8 INX
C4DE 8E 8A 02 STX S028A
C4El 20 89 C5 JSR $C589 set pointer to data
C4E4 FO 06 BEQ SC4EC
C4E6 60 RTS

C4E7 20 94 C5 JSR $C594 pointer to next file
C4EA DO FA BNE SC4E6 end, then done
C4EC A5 7F LOA S7F drive number
C4EE 55 E2 EOR $E2,X
C4FO 4A LSR A
C4F1 90 DB BCC $C4FE
C4F3 29 40 AND #S40
C4F5 FO FO BEQ $C4E7
C4F7 A9 02 LOA #$02
C4F9 CD 8C 02 CMP $028C search both drives?
C4FC FO E9 BEO $C4E7 yes
C4FE ElO 7A 02 LDA $027A,X
C50I AA TAX
C502 20 A6 C6 JSR $C6A6 get length of filename
C505 AD 03 LOY #$03
C507 4C 10 C5 JMP SC510

C50A BO 00 02 LDA $0200,X get chars out of command line
C500 01 94 CMP (S94),Y same character in directory?
C50F ~'O OA BEQ $C51E1 yes
C511 C9 3F' CMP #$3F I? '
C513 00 02 BNE $C4E7 no
C5I5 Bl 94 LOA ($94),Y
C517 C9 AO CMP #SAO shift blank, end of name?
C519 FO CC BEQ $C4E7 yes
C51B E8 INX increment pointer
C51C C8 INY

127

Anatomy of the 1541 Disk Drive

C51D EC 76 02 CPX $0276 end of the name in the command?
C520 BO 09 BCS $C52B yes
C522 BD 00 02 LDA $0200,X next character
C525 C9 2A CMP #$2A • *.
C527 FO OC BEQ SC535 yes, file found
C529 DO DF BNE $C50A continue search

C52B CO 13 CPY #S13 19
C52D BO 06 BCS $C535 reached end of name
C52F Bl 94 LDA ($94), Y
C531 C9 AO CMP #SAO shift blank, end of name
C533 DO B2 BNE SC4E7 not found
C535 AE 79 02 LDX $0279
C538 8E 53 02 STX S0253
C53B B5 E7 LDA SE7,x
C53D 29 80 AND #$80
C53F 8D 8A 02 STA $028A
C542 AD 94 02 LDA $0294
C545 95 DD STA SDD,X
C547 AS 81 LDA S81 sector number of the directory
C549 95 D8 STA SD8,X enter in table
C54B AD 00 LDY #SOO
C54D Bl 94 LDA (S94), Y file type
C54F C8 INY
C550 48 PHA
C55l 29 40 AND *$ 40 isolate scratch-protect bit
C553 85 6F STA $6F (6) and save
C555 68 PLA
C556 29 DF AND #$DF erase bit 7
C558 30 02 BMI $C55C
C55A 09 20 ORA #$20 set bit 5
C55C 29 27 AND #$ 27 erase bits 3 and 4
C55E 05 6F ORA $6F get bit 6 again
C560 85 6F STA $6F
C562 A9 80 LDA #$80
C564 35 E7 AND $E7 , X isolate flag for wildcard
C566 05 6F ORA $6F , X
C568- 95 E7 STA SE7 , X write in table
C56A B5 E2 LDA $E2 , X
C56C 29 80 AND #$80
C56E 05 7F ORA $7F drive number
C570 95 E2 STA SE2,X
C572 Bl 94 LDA ($94) I Y
C574 9D 80 02 STA $0280 , X first track of file
C577 C8 INY
C578 Bl 94 LDA ($94) I Y
C57A 9D 85 02 STA S0285,X get sector from directory
C57D AD 58 02 LDA $0258 record length
C580 DO 07 BNE $C589
C582 AO 15 LDY #$15
C584 B1 94 LDA ($94), Y record length
C586 8D 58 02 STA $0258 get from directory

-C589 A9 FF LDA #SFI<'
CS8B 8D 8F 02 STA $028F
C58E AD 78 02 LDA S0278

128

Anatomy of the 1541 Disk Drive

C591 SD 79 02 STA $0279
CS94 CE 79 02 DEC $0279
CS97 10 01 BPL $CS9A
CS99 60 RTS

CS9A AE 79 02 LDX $0279
CS9D BS E7 LDA $E7,X wildcard flag set?
CS9F 30 OS BMI $CSA6 yes
CSAl BD SO 02 LDA $ 02S0,X track number already set
CSA4 DO EE BNE $CS94 yes
CSA6 A9 00 LOA #$00
CSAS So SF 02 STA $02SF
CSAB 60 RTS

CSAC AO 00 LOY #$00
CSAE SC 91 02 STY $0291
CSBl SS DEY
CSB2 SC S3 02 STY $02S3
CSBS An SS FE LDA $FES5 IS, directory track
CSBS S5 SO STA $SO
C5BA A9 01 LDA #$01
C5BC SS Sl STA $Sl sector 1
C4BE SD 93 02 STA $0293
C5C1 20 75 D4 JSR $D475 read sector
C5C4 AD 93 02 LDA $0293
C5C7 DO 01 BNE $CSCA
C5C9 60 RTS

C5CA A9 07 LDA #$07
CSCC SD 95 02 STA $0295 number of directory entries (-1)
CSCF A9 00 LDA #$00
CSDI 20 F6 D4 JSR $D4r'6 get pointer from buffer
C5D4 So 93 02 STA $0293 save as track number
CSD7 20 ES D4 JSR $D4ES set buffer pointer
C5DA CE 9S 02 DEC $029S decrement counter
CSDO AO 00 LDY #$00
CSOF Bl 94 LDA ($94),Y first byte from directory
CSEI DO 18 BNE $CSFB
CSE3 AO 91 02 LOA $0291
CSE6 DO 2F BNE $C617
CSE8 20 3B DE JSR $DE3B get track and sector number
CSEB AS 81 LDA $Sl
CSED SD 91 02 STA $0291 sector number
CSFO AS 94 LDA $94
C5F2 AE 92 02 LDX $0292
C5F5 SD 92 02 STA $0292 buffer pointer
C5FS FO 10 BEO $C617
CSFA 60 RTS

C5FB A2 01 LDX #$01
C5FD EC 92 02 CPX $0292 buffer pointer to one?
C600 DO 2D BNE $C62F
C602 FO 13 BEO $C617

C604 AD S5 FE LDA $FESS IS, track number of BAM

129

Anatomy of the 1541 Oisk Orive

C607 85 80 STA $80 track number
C609 AO 90 02 LOA $0290
C60C 85 81 STA $81 sector number
C60E 20 75 04 JSR $0475 read block
C611 AO 94 02 LOA $0294
C614 20 C8 04 JSR $04C8 set buffer pointer
C617 AO FF LOA #$FF
C619 80 53 02 STA $0253 erase-file found flag
C61C AO 95 02 LOA $0295
C61F 30 08 BMI $C629 all directory entries checked?
C621 A9 20 LOA #$20
C623 20 C6 01 JSR $01C6 inc buffer ptr by 32, next entry
C626 4C 07 C5 JMP $C567 and continue

C629 20 40 04 JSR $0440 set buffer pointer
C62C 4C C4 C5 JMP $C5C4 read next block

C62F A5 94 LOA $94
C631 80 94 02 STA $0294
C634 20 3B OE JSR $OE3B get track & sector no. from buffe
C637 AS 81 LOA $81
C639 80 90 02 STA $0290 save sector number
C63C 60 RTS

****************************** test and initialize drive
C630 A5 68 LOA $68
C63F 00 28 BNE $C669
C64l A6 7F LOX $7F drive number
C643 56 lC LSR $lC,X disk changed?
C645 90 22 BCC $C669 no, then done
C647 A9 FF LOA $FF
C649 80 98 02 STA $0298 set error flag
C64C 20 OE 00 JSR $OOOE read directory track
C64F AO FF LOY #$FF
C651 C9 02 CMP #$02 20, 'read error'?
C653 FO OA BEQ $C65F yes
C655 C9 03 CMP #$03 21, 'read error'?
C657 FO 06 BEQ $C65F yes
C659 C9 OF CMP #$OF 74, 'drive not ready' ?
C65B FO 02 BEQ $C65F yes
C650 AO 00 LOY #$00
C65F A6 7F LOX $7F drive number
C661 98 TYA
C662 95 FF STA $FF,X save error flag
C664 00 03 BNE $C669 error?
C666 20 42 DO JSR $0042 load BAM
C669 A6 7F LOX $7F drive number
C66B B5 FF LOA $FF.X transmit error code
C660 60 RTS

****************************** name of file in directory buffer
C66E 48 PHA
C66F 20 A6 C6 JSR $C6A6 get end of the name
C672 20 88 C6 JSR $C688 write filename in buffer
C675 68 PLA

130

Anatomy of the 1541 oisk Orive

C676
C677
C67A
C67B
C670
C67F
C68l
C683
C684
C685
C687

38
EO 4B 02
AA
FO OA
90 08
A9 AO
91 94
C8
CA
00 FA
60

SEC
SBC $024B
TAX
BEQ $C687
BCC $C687
LOA lI$AO
STA ($94),Y
INY
OEX
BNE $C68l
RTS

C688
C689
C68A
C68B
C68E
C690
C693
C695
C697
C69A
C69C
C690
C69F
C6AO
C6A3
C6A5

98
OA
A8
B9 99 00
85 94
B9 9A 00
85 95
AO 00
BO 00 02
91 94
C8
FO 06
E8
EC 76 02
90 F2
60

TYA
ASL A
TAY
LOA $0099,Y
STA $94
LOA $009A
STA $95
LOY #$00
LOA $0200,X
STA ($94),Y
INY
BEQ $C6A5
INX
CPX $0276
BCC $C697
RTS

compare len with max length

pad with 'Shift blank'

buffer number

times 2 as pointer

buffer pointer after $94/$95

transmit characters in buffer

buffer already full?

****************************** search for end of name in command
C6A6
C6A8
C6AB
C6AC
C6AO
C6BO
C6B2
C6B4
C6B6
C6B8
C6BB
C6BC
C6BE
C6Cl
C6C3
C6C6
C6C8
C6CB
C6CC
C6CO

A9 00
80 4B 02
8A
48
BO 00 02
C9 2C
FO 14
C9 30
FO 10
EE 4B 02
E8
A9 OF
CO 4B 02
90 05
EC 74 02
90 E5
8E 76 02
68
AA
60

LOA #$00
STA $024B
TXA
PHA
LOA $0200,X
CMP #$2C
BEQ $C6C8
CMP #$30
BEQ $C6C8
INC $024B
INX
LOA #$OF
CMP $024B
BCC $C6C8
CPX $0274
BCC $C6AO
STX $0276
PLA
TAX
RTS

C6CE
C600

A5 83
48

LOA $83
PHA

131

get characters out of buffer , , ,

'='
increment length of name

15

greater?
end of input line?

pointer to end of name

secondary address and channel no.

Anatomy of the 1541 Disk Drive

C601 AS 82 LOA $82
C603 48 PHA
C604 20 DE C6 JSR $C60E create file entry for directory
C607 68 PLA
C608 85 82 STA $82
C60A 68 PLA get data back
C60B 85 83 STA $83
C600 60 RTS

C60E A9 11 LOA #$11 17
C6EO 85 83 STA $83 secondary address
C6E2 20 EB DO JSR $OOEB open channel to read
C6E5 20 E8 04 JSR $04E8 set buffer pointer
C6E8 AO 53 02 LOA $0253
C6EB 10 OA BPL $C6F7 not yet last entry?
C6EO AD 80 02 LOA $0280
C6FO DO OA BNE $C6FC
C6F2 20 06 C8 JSR $C806 write 'blocks free.

,
C6F5 18 CLC
C6F6 60 RTS
C6F7 AD 80 02 LOA $0280
C6FA FO IF BEO $C7lB
C6FC CE 80 02 DEC $0280
C6FF DO 00 ENE $C70E
C701 CE 80 02 DEC $028D
C704 20 8F C3 JSR $C38F change drive
C707 20 06 C8 JSR $C806 write 'blocks free.

,
C70A 38 SEC
C708 4C 8F C3 JMP $C38F change drive

C70E A9 00 LOA #$00
C7l0 80 73 02 STA $0273 drive no. for header, hi-byte
C713 80 80 02 STA $0280
C7l6 20 B7 C7 JSR $C7B7 write header
C7l9 38 SEC
C7lA 60 RTS

C71B A2 18 LOX #$18
C7l0 AO 10 LOY #$10
C71F Bl 94 LOA ($94), Y number of blocks hi
C721 80 73 02 STA $0273 in buffer
C724 FO 02 BEO $C728 zero?
C726 A2 16 LOX 11$16
C728 88 DEY
C729 Bl 94 LDA ($94), Y number of blocks 10
C72B 80 72 02 STA S0272 in buffer
C72E EO 16 CPX #$16
C730 FO OA BEO $C73C
C732 C9 OA CMP II$OA 10
C734 90 06 BCC $C73C
C736 CA DEX
C737 C9 64 CMP IIS64 100
C739 90 01 BCe SC73C
C73B CA OEX

132

Anatomy of the 1541 Disk Orive

C73C 20 AC C7 JSR $CnC erase buffer
C73F Bl 94 LDA ($94), Y file type
C741 48 PHA
C742 OA ASL A bit 7 in carry
C743 10 05 BPL $C74A bit 6 not set?
C745 A9 3C LOA #$3C ,< ' for protected file
C747 90 B2 02 STA $02B2,X write behind file type
C74A 68 PLA
C74B 29 OF ANO #$OF isolate bits 0-3
C740 A8 TAY as file type marker
C74E B9 C5 FE LOA $FEC5,Y 3rd letter of the file type
C751 90 Bl 02 STA $02Bl,X in buffer
C754 CA OEX
C755 B9 CO ~'E LOA $FECO,y 2nd letter of file type
C758 90 Bl 02 STA $02Bl,X in buffer
C75B CA OEX
C75C B9 BB FE LOA $FEBB,Y 1st letter of file type
C75F 90 Bl 02 .STA $02Bl,X in buffer
C762 CA OEX
C763 CA OEX
C764 80 05 BCS $C76B file not closed?
C766 A9 2A LOA #$2A ,* ,
C768 90 82 02 STA $02B2,X before file type in buffer
C76B A9 AO LOA #$AO pad with 'shift blank'
6760 90 Bl 02 STA $02Bl,X in buffer
C770 CA OEX
C771 AO 12 LOY i$12
C773 Bl 94 LOA ($94) ,Y filenames
C775 90 Bl 02 STA $02Bl,X write in buffer
C778 CA OEX
C779 88 OEY
C77A CO 03 CPY i$03
C77C BO F5 BCS $C773
C77E A9 22 LOA i$22 '='
C780 90 Bl 02 STA $02Bl,X write before fi Ie type
C783 E8 INX
C784 EO 20 CPX i$20
C786 BO OB BCS $C793
C788 BO Bl 02 LOA $02Bl,X character from buffer
C78B C9 22 CMP #$22 '='?
C780 FO 04 BEQ $C793
C7BF C9 AO CMP i$AO 'shift blank' at end of name
C791 00 FO BNE $C783
C793 A9 22 LOA #$22 fill through '='
C795 90 Bl 02 STA $02Bl,X
C798 E8 INX
C799 EO 20 CPX i$20
C89B BO OA BCS $C7A7
C790 A9 7F LOA #$7F bit 7
C79F 30 Bl 02 ANO $02Bl,X
C7A2 90 Bl 02 STA $02Bl,X erase in the remaining chars
C7A5 10 Fl BPL $C798
C7A7 20 B5 C4 JSR $C4B5 search for next directory entry
C7AA 38 SEC
C7AB 60 RTS

133

Anatomy of the 1541 Disk Drive

C7AC
C7AE
C7BO
C7B3
C7B4
C7B6

AO IB
A9 20
99 BO 02
88
DO FA
60

LDY #$lB
LDA #$20
STA $02BO,Y
DEY
BNE $C7BO
RTS

C7B7
C7BA
C7BD
C7CO
C7C2
C7C4
C7C6
C7C9
C7CB
C7CE
C7DO
C7D3
C7D5
C7D8
C7DA
C7DC
C7DE
C7EO
C7E2
C7E4
C7E5
C7E7
C7E9
C7EB
C7ED
C7FO
C7Fl
C7F3
C7F5
C7F8
C7FA
C7FD
C800
C802
C805

20 19 Fl
20 DF FO
20 AC C7
A9 FF
85 6F
A6 7fo'
8E 72 02
A9 00
8D 73 02
A6 F9
BD EO ~'E

85 95
AD 88 FE
85 94
AO 16
Bl 94
C9 AO
DO OB
A9 31
2C
Bl 94
C9 AO
DO 02
A9 20
99 B3 02
88
10 F2
A9 12
80 Bl 02
A9 22
SD B2 02
8D C3 02
A9 20
8D C4 02
60

JSR SF1l9
JSR $FODF
JSR SC7Ae
LDA #SFF
STA $6F
LDX $7F
STX $0272
LDA #$00
STA S0273
LDX $F9
LOA $FEEO,X
STA $95
LDA $FE88
STA $94
LOY #S16
LOA ($94),Y
CMP #$AO
BNE $C7EO
LOA #$31
,BYTE $2C
LOA ($94),Y
CMP #$AO
BNE $C7EO
LDA #$20
STA $02B3
OEY
BPL $C7E5
LDA #$12
STA $02Bl
LOA #$22
STA $02B2
STA $02C3
LDA #$20
STA $02C4
RTS

C806
C809
caOB
C80E
CBll
C8l2
CB14

20 AC C7
AO OB
B9 17 C8
99 Bl 02
88
10 F7
4C 4D EF

JSR $C7AC
LOY #$OB
LOA $Ca17,Y
STA $02Bl,Y
DEY
BPL $C80B
JMP $EF40

134

erase directory buffer

, , blank
write in buffer

create header with disk name
initialize if needed
read disk name
erase buffer

drive number
as block no, 10 in buffer

block number 10
buffer number
hi-byte of the buffer address

$90, position of disk name
save

pad buffer with 'shift blank'

, l'

character from buffer
compare with 'shift blank'

, , blank
in buffer

'RVS ON'
in buffer

write before
and after disk name
, , blank
behind it

create last line
erase buffer
12 characters
'blocks free.'
write in buffer

number of free blocks in front

Anatomy of the 15~1 Oisk Orive

C8l7 42 4C 4F 43 4B 53 20 46 'blocks f'
C8lF 52 45 45 2E 'ree.'

*********~********************
C823
C826
C829
C82C
C82E
C830
C833
C835
C838
C83A
C83C
C83E
C840
C842
C845
C847
C849
C84B
C840
C84E
C850
C852
C855
C858
C85A
C85C
C85E
C861
C863
C866
C868
C86B
C860
0870
C872
C874
C876
C878
C87A

20 98 C3
20 20 C3
20 CA C3
A9 00
85 86
20 90 C4
30' 30
20 B7 00
90 33
AO 00
B1 94
29 40
00 2B
20 B6 C8
AO 13
Bl 94
FO OA
85 80
C8
B1 94
85 81
20 70 C8
AE 53 02
A9 20
35 E7
00 00
BD 80 02
85 80
BD 85 02
85 81
20 70 C8
E6 86
20 8B C4
10 C3
AS 86
85 80
A9 01
AO 00
4C A3 Cl

JSR $C398
JSR $C320
JSR $C3CA
LOA #$00
STA $86
JSR $C490
BMI $C872
JSR $ODB7
BCC $C860
LOY #$00
LOA ($94),Y
ANO 1$40
BNE $C860
JSR $C8B6
LOY 11$13
LOA ($94),Y
BEQ $C855
STA $80
INY
LOA ($94),Y
STA $81
JSR $C870
LOX $0253
LDA 11$20
ANO $E7,X
BNE $C86B
LOA $0280,X
STA $80
LOA $0285,X
STA $81
JSR $C870
INC $86
JSR $C48B
BPL $C835
LOA $86
STA $80
LOA *$01
LOY #$00
JMP $CIA3

C870
C880
C883
C886
C888
CB8A
C88C
C88F
C891

20 SF EF
20 75 D4
20 19 Fl
B5 A7
C9 FF
FO 08
AO F9 02
09 40
80 F9 02

JSR $EF5F
JSR $0475
JSR $F119
LOA $A7,X
CMP #$FF
BEQ $C894
LOA $02F9
ORA #$40
STA $02F9

135

S command 'scratch'
ascertain file type
get drive number
initialize drive if needed

counter for erased files
search for file in directory
not found?
is file open
yes

file type
scratch protect
yes
erase file and note in directory

track no. of the first side-sector
none present?
note track number

and sector number

erase side-sector
file number

bit 5 set?
yes, file not closed
get track

and sector

erase file
increment number of erased files
search for next file
if present, erase
number of erased files
save as 'track'
1 as disk status
o as 'sector'
message 'files scratched'

erase file
free block in BAM

get buffer number in BAM

Anatomy of the 1541 Disk Drive

C894 A9 00 LOA #$00
C896 20 C8 04 JSR $04C8 buffer pointer to zero
C899 20 56 01 JSR $D156 get track
C89C 85 80 STA $80
C89E 20 56 D1 JSR $D156 get sector
C8A1 85 81 STA $81
C8A3 A5 80 LOA $80 track number
C8A5 DO 06 RNE $C8AO not equal to zero
C8A7 20 F4 EE JSR $EEF4 write BAM
C8AA 4C 27 D2 JMP $0227 close channel

C8AD 20 5F EF JSR $EF5F free block in BAM
C8BO 20 4D 04 JSR $D440 read next block
C8B3 4C 94 C8 JMP $C894 and continue

****************************** erase directory entry
C8B6 AO 00 LDY #$00
C8B8 98 TYA
C8B9 91 94 STA ($94) ,Y set file type to zero
C8BR 20 5E DE JSR $DE5E write block
C8SE 4C 99 05 JMP $0599 and check

k************************* O-command ' backup'
C8C1 A9 31 LDA #$31
C8C3 4C C8 C1 JMP $C1C8 31, 'syntax error'

****************************** format diskette
C8C6 A9 4C LOA #$4C JMP-command
C8C8 80 00 06 STA $0600
C8CB A9 C7 LOA #$C7
C8CD 8D 01 06 STA $0601 JMP $FAC7 in $600 to $602
C8DO A9 FA LOA #$FA
C802 8D 02 06 STA $0602
C8D5 A9 03 LOA #$03
C807 20 03 D6 JSR $0603 set track and sector number
C80A AS 7F LOA $7F drive number
C80C 09 EO ORA #$EO command code for formatting
C80E 85 03 STA $03 transmit
C8EO AS 03 LOA $03
C8E2 30 FC BMI $C8EO wait until formatting done
C8E4 C9 02 CMP #$02
C8E6 90 07 BCC $C8EF smaller than two, then ok
C8ES A9 03 LOA #$03
C8EA A2 00 LOX #$00
C8EC 4C OA E6 JMP $E60A 21, , read error'
C8EF 60 RTS

****************************** C-command 'copy'
C8FO A9 EO LOA #$EO
C8F2 8D 4F 02 STA $024F
C8F5 20 01 FO JSR $F001
C8FS 20 19 Fl JSR SF1l9 get buffer number of BAM
C8FB A9 FF LOA #$FF
C8FD 95 A7 STA $A7,X
C8FF A9 OF LOA #$OF

136

Anatomy of the 1541 Disk Drive

C90l 8D 56 02 STA $0256
C904 20 E5 Cl JSR $ClE5 check input line
C907 DO 03 BNE $C90C
C909 4C Cl C8 JMP $C8Cl 31, 'syntax error-

C90C 20 F8 Cl JSR $ClF8 check input
C90F 20 20 C3 JSR SC320 test drive number
C9l2 AD 8B 02 LOA S028B flag for syntax check
C915 29 55 AND #$55
C917 DO OF BNE SC928
C919 AE 7A 02 LOX S027A
C91C BO 00 02 LOA S0200,X character of the command
C9H' C9 2A CMP #S2A ,* ,
C921 DO 05 BNE SC928
C923 A9 30 LOA #S30
C925 4C C8 Cl JMP SClC8 30, 'syntax error'

C928 AD 8B 02 LOA S028B syntax flag
C92B 29 09 AND #$D9
C920 DO F4 BNE SC923 30, 'syntax error l

C92F 4C 52 C9 JMP $C952
C932 A9 00 LOA #$00
C934 80 58 02 STA $0258
C937 80 8C 02 STA $028C number of drives
C93A 80 80 02 STA S0280 track number in directory
C93D 80 81 02 STA $0281
C940 A4 E3 LDA $E3
C942 29 01 AND #$01
C944 85 7F STA $7F drive number
C946 09 01 ORA #SOI
C948 80 91 02 STA $0291
C94B AD 7B 02 LOA S027B
C94E 8D 7A 02 STA S027A
C951 60 RTS

C952 20 4F C4 JSR $C44F search for file in directolY
C955 AD 78 02 LOA S0278 number of filenames in command
C958 C9 03 CMP #$03 smaller than three?
C95A 90 45 BCC $C9Al yes
C95C A5 E2 LDA SE2 first drive number
C95E C5 E3 CMP SE3 second drive number
C960 DO 3F BNE SC9Al not on same drive?
C962 AS DD LOA $OD directory block of the 1st file
C964 C5 OE CMP SOE same dir block as second file?
C966 DO 39 BNE SC9Al no
C968 AS 08 LDA SD8 directory sector of first file
C96A C5 09 CMP S09 same dir sector as second file?
C96C DO 33 BNE SC9Al no
C96E 20 CC CA JSR SCACC is file present
C971 A9 01 LOA #S01
C973 80 79 02 STA $0279
C976 20 FA C9 JSR SC9~'A
C979 20 25 Dl JSR S0125 get data type
C97C FO 04 REO SC982 reI-file?
C97E C9 02 CMP #$02 prg-file

137

Anatomy of the 1541 Disk Drive

C980 DO 05 BNE $C987 no
C982 A9 64 LDA #$64
C984 20 C8 Cl JSR $CIC8 64, 'file type mismatch'
C987 A9 12 LDA #$12 IS
C989 85 S3 STA $83 secondary address
C9SB AD 3C 02 LDA $023C
C9SE SD 3D 02 STA $023D
C991 A9 ff LDA #$fo'F
C993 8D 3C 02 STA $023C
C996 20 2A DA JSR $DA2A prepare append
C999 A2 02 LDX #$02
C99B 20 B9 C9 JSR $C9B9 copy file
C99E 4C 94 Cl JMP SC194 done

C9Al 20 A7 C9 JSR SC9A7 copy file
C9A4 4C 94 Cl JMP SC194 done

C9A7 20 E7 CA JSR SCAE7
C9AA A4 E2 LDA SE2 drive no. of first file
C9AC 29 01 AND #SOl
C9AE 85 7f STA $7f drive number
C9BO 20 86 D4 JSR $0486
C9B3 20 E4 D6 JSR S06E4 enter file in directory
C9B6 AE 77 02 LOX $0277
C9B9 8E 79 02 STX $0279
C9BC 20 FA C9 JSR $C9FA
C9BF A9 11 LDA #Sl1 17
C9Cl 85 83 STA S83
C9C3 20 EB DO JSR $OOEB
C9C6 20 25 Dl JSR $0125 get data type
C9C9 DO 03 BNE $C9CE no reI-file?
C9CB 20 53 CA JSR $CA53
C9CE A9 OS LDA #$OS
C9DO 85 F8 STA $fS
C9D2 4C DS C9 JMP SC9D8

C9D5 20 9B CF JSR $CF9B write byte in buffer
C9D8 20 35 CA JSR $CA35 and get byte
C90B A9 80 LOA #$80
C9DO 20 A6 OD JSR SODA6 test bit 7
C9EO FO F3 BEO $C9D5 not set?
C9E2 20 25 01 JSR $0125 check file type
C9E5 FO 03 BEO $C9EA reI-file?
C9E7 20 9B CF JSR $CF9B get data byte in buffer
C9EA AE 79 02 LOX $0279
C9EO E8 INX
C9EE EC 7S 02 CPX $027S
C9Fl 90 C6 BCC $C9B9
C9F3 A9 12 LDA #$12 18
C9F5 85 83 STA $83
C9F7 4C 02 DB JMP $DB02 close channel

C9FA AE 79 02 LOX $0279
C9FO B5 E2 LDA $E2,X drive number
C9FF 29 01 ANO #$01

138

Anatomy of the 1541 Disk Drive

CAOI 85 7F STA $7F save
CA03 AO 85 FE LOA $FE85 18, directory track
CA06 85 80 STA $80 save
CA08 B5 08 LOA SD8,X directory sector
CAOA 85 81 STA $81
CAOC 20 75 04 JSR $0475 read block
CAOF AE 79 02 LOX S0279
CAl2 B5 DO LOA SDO,X pointer in block
CAl4 20 C8 04 JSR S04C8 set buffer pointer
CAl7 AE 79 02 LOX S0279
CAIA B5 E7 LOA $E7,X file type
CAlC 29 07 ANO #$07 isolate
CAIE 8D 4A 02 STA S024A and save
CA2l A9 00 LOA #$00
CA23 80 58 02 STA $0258
CA26 20 AO 09 JSR $09AO get parameters for reI-file
CA29 AO 01 LOY #SOI
CA2B 20 25 01 JSR $0125 get file type
CA2E FO 01 BEO $CA31 reI-file?
CA30 C8 INY
CA3l 98 TYA
CA32 4C C8 04 J~1P $04C8 set buffer pointer
CA35 A9 11 LOA #$11 17
CA37 85 83 STA $83
CA39 20 9B 03 JSR $039B open channel and get byte
CA3C 85 85 STA $85
CA3E A6 82 LOX $82 channel number
CA40 85 F2 LOA $F2,X
CA42 29 08 ANO #$08 isolate end marker
CA44 85 F8 STA $F8
CA46 00 OA BNE $CA52 not set?
CM8 20 25 Dl JSR $0125 get data type
CA4B FO 05 BEO $CA52 reI-file?
CA40 A9 80 LOA #$80
CA4F 20 97 00 JSR $D097 set bit 7
CA52 60 RTS

CA53 20 03 01 JSR $0103 set drive number
CA56 20 CB El JSR $EICB
CA59 AS 06 LOA $06
CA5B 48 PHA
CA5C AS 05 LOA $05
CASE 48 PHA
CA5F A9 12 LOA #$12 18
CA61 85 83 STA $83
CA63 20 07 01 JSR $0107 open write channel
CA66 20 03 01 JSR $0103 set drive number
CA69 20 CB EI JSR $EICB
CA6C 20 9C E2 JSR $E29C
CA6F A5 06 LOA $06
CA71 85 87 STA $87
CA73 AS 05 LOA $05
CA75 85 86 STA $86
CA77 A9 00 LOA #$00
CA79 85 88 STA $88

139

Anatomy of the 1541 Disk Drive

CA7B 85 D4 STA $D4
CA7D 85 D7 STA $D7
CA7F 68 PLA
CA80 85 D5 STA $D5
CA82 68 PLA
CA83 85 D6 STA $D6
CA8S 4C 3B E3 JMP $E33B

****************************** R-command, 'rename'
CA88 20 20 C3 JSR $C320 get drive no. from command line
CA8R A5 E3 LDA $E3
CA8D 29 01 AND #$01
CA8F 85 E3 STA $E3 2nd drive number
CA91 C5 F.2 CMP $E2 compare with 1st drive number
CA93 FO 02 BEO $CA97 same?
CA9S 09 80 ORA #$80
CA97 85 E2 STA $E2
CA99 20 4F C4 JSR $C44F' search for file in directory
CA9C 20 E7 CA JSR $CAE7 does name exist?
CA9F' A5 E3 LDA $E3
CAAI 29 01 AND #$01
CAA3 85 7F STA $7F drive number
CAA5 A5 D9 LDA $09
CAA7 85 81 STA $81 sector number
CAA9 20 57 DE JSR $OES7 read block from directory
CAAC 20 99 DS JSR $0599 ok?
CAAF A5 DE LDA $DE pointer to directory entry
CABI 18 CLC
CAB2 69 03 ADC #$03 pointer plus 3 to file name
CAB4 20 C8 D4 JSR $D4C8 set buffer pointer
CAB7 20 93 Dr' JSR $DF93 get buffer number
CABA A8 TAY
CARB AE 7A 02 LDX S027A
CABE A9 10 LDA #$10 16 characters
CACO 20 6E C6 JSR $C66E write name in buffer
CAC3 20 5E DE JSR $DE5E write block to directory
CAC6 20 99 D5 JSR $D599 ok?
CAC9 4C 94 Cl JMP $C194 done, prepare disk status

****************************** check if file present
CACC AS E8 LDA $E8 file type
CACE 29 07 AND #$07
CADO 8D 4A 02 STA $024A save
CAD3 AE 78 02 LDX S0278
CAD6 CA DEX
CAD? EC 77 02 CPX $0277
CADA 90 OA BCC $CAE6
CADC BD 80 02 LOA $0280,X track number
CADF DO FS BNE $CAD6 not zero?
CAEl A9 62 LOA #$62
CAE3 4C C8 Cl JMP $ClC8 62, I file not found I

CAE6 60 RTS

CAE7 20 CC CA JSR $CACC does file exist with old n, me?
CAEA 80 80 02 LDA $0280,X track number of new file

140

Anatomy of the 1541 Disk Drive

CAED FO 05 BEO SCAF4 file erased?
CAEF A9 63 LDA #$63
CAFl 4C C8 Cl JMP $ClC8 63, 'fi Ie exists'
CAF4 CA DEX
CAF5 10 F3 BPL SCAEA
CAF7 60 RTS

****************************** M-command, 'memory'
CAF8 AD 01 02 LDA S0201 2nd character from buffer
CAFB C9 2D CMP #S2D '-'
CAFD DO 4C BNE $CB4B
CAFF AD 03 02 LDA $0203
CB02 85 6F STA $6F address in $6F/S70
CB04 AD 04 02 LDA $0204
CB07 85 70 STA $70
CB09 AO 00 LDY #$00
CBOR AD 02 02 LDA S0202 3rd character from buffer
CROE C9 52 CMP #S52 ' R'
CBIO FO OE BEQ SCB20 to memory read
CB12 20 58 F2 JSR $F258 (RTS)
CB15 C9 57 CMP #S57 'w'
CBl7 FO 37 BEO $CB50 to memory write
CB19 C9 45 CMP #S45 ' E'
CBIR DO 2E BNE $CB4B
CBID 6C 6F 00 JMP (S006F) memory-execute

****************************** M-R, 'Memory-Read'
CB20 Bl 6F LDA ($6F),Y read byte
CB22 85 85 STA S85
CB24 AD 74 02 LDA $0274 length of command line
CB27 C9 06 CMP #S06 less than 6?
CB29 90 1A RCC $CR45 yes
CB2B AE 05 02 LDX S0205 number
CB2E CA DEX
CB2F FO 14 BEO SCR45 only one byte?
CB31 8A TXA number of bytes
CB32 18 CLC
CB33 65 6F ADC $6F plus start address
CB35 E6 6F INC $6F
CB37 8D 49 02 STA $0249 end pointer
CB3A A5 6F LDA $6F
CB3C 85 A5 STA $A5 buffer pointer for error mEssage
CB3E A5 70 LDA S70 set to start address for ' r1-R'
CB40 85 A6 STA SA6
CB42 4C 43 D4 JMP SD443 byte out

CB45 20 EB DO JSR SDDEB open read channel
CB48 4C 3A D4 J~IP $D43A byte out

CB4B A9 31 LDA #$31
CB4D 4C C8 C1 JMP $C1C8 31, 'syntax error'

****************************** M-W, 'memory-write'
CB50 B9 06 02 LDA S0206,Y read character
CB53 91 6F STA (S6F), Y and save

141

Anatomy of the 1541 Disk Drive

CB55 C8 INY
CBS6 CC OS 02 CPY $0205 number of characters
CBS9 90 FS BCC $CBSO all characters?
CBSB 60 RTS

****************************** U-command, 'user'
CBSC AC 01 02 LOY $0201 second char
CBSF CO 30 CPY #$30 '0 '
CB61 DO 09 BNE $CB6C no
CB63 A9 EA LOA #$EA
CR6S 85 6R STA $6B ptr to table of user-addresses
CB67 A9 FF LOA #$FF $FFEA
CB69 85 6C STA $6C
CR6B 60 RTS

CB6C 20 72 CB JSR $CB72
CR6F 4C 94 Cl JMP $C194 done, prepare error message

CB72 88 OEY
CB73 98 TYA
CB74 29 OF AND #$OF number
CB76 OA ASL A times 2
CB77 A8 TAY
CB78 Bl 6B LOA ($6B), Y as pointer in table
CB7A 85 75 STA $75
C87C C8 INY address at $75/$76
CB70 Bl 6B LOA ($6B),Y
Cll7F 85 76 STA $76
CB81 6C 75 00 JMP ($0075) execute function

****************************** open direct access channel, , #'
CB84 AO 8E 02 LOA $028E last drive number
CB87 85 7F STA $7F drive number
CB89 AS 83 LOA $83 channel number
CB8B 48 PHA
CB8C 20 30 C6 JSR $C630 check drive and initialize
CB8F 68 PLA
CB90 85 83 STA $83
CB92 AE 74 02 LOX $0274 length of filename
CB95 CA DEX
CB96 00 OD BNE $CBAS greater than one?
CB98 A9 01 LOA #$01
CB9A 20 E2 01 ,]SR $01E2 layout buffer and channel
CB90 4C Fl CB JMP $CBFl set flags, done

CBAO A9 70 LOA #$70
CBA2 4C C8 Cl JMP $CIC8 70, 'no channel'
CBAS AO 01 LOY #$01
CBA7 20 7C CC JSR $CC7C get buffer number
CBAA AE 85 02 LOX $0285 buffer number
CBAD EO 05 CPX #$05 bigger than 5?
CBAF BO EF BCS $CBAO 70, 'no channel'
CBBI A9 00 LDA lI$OO
CBB3 85 6F STA S6!"
CBBS 85 70 STA S70

142

Anatomy of the 1541 Disk Drive

CBB7 38 SEC
CBB8 26 6F ROL $6F
CBBA 26 70 ROL $70
CBBC CA OEX
CBBO 10 F9 BPL $CBB8
CBBF A5 6F LOA $6F
CBCl 20 4F 02 AND $024F
CBC4 DO OA BNE $CBAO
CBC6 A5 70 LOA $70
CBC8 20 50 02 AND $0250
CBCB DO D3 BNE $CBAO
CBCO A5 6F LOA $6F
CBCF 00 4F 02 ORA $024F
CB02 8D 4F 02 STA $024F
CBD5 A5 70 LDA $70
CB07 00 50 02 ORA $0250
CBOA 8D 50 02 STA $0250
CBOO A9 00 LOA lIS 00
CBOF 20 E2 Dl JSR $01E2 search channel
CBE2 A6 82 LDX $82 channel number
CBE4 AD 85 02 LOA $0285 buffer number
CBE7 95 A7 STA $A7,X
CBE9 AA TAX
CBEA AS 7F LOA $7F drive number
CBEC 95 00 STA $OO,X
CBEE 9D 5B 02 STA $025B,X
CBn A6 83 LOX $83 secondary address
CBF3 BD 28 02 LOA $022B,X
CBF6 09 40 ORA #$40 set READ and WRITE flags
CBF8 9D 2B 02 STJ>. $022B,X
CBFB A4 82 LOY $82 channel number
CBFO A9 FF LOA lI$FF
CBFF 99 44 02 STA $0244,Y end pointer
CC02 A9 89 LOA #$89
CC04 99 F2 00 STA $OOF2,Y set READ and WRITE flags
CC07 89 A7 00 LOA $00A7,Y buffer number
CCOA 99 3E 02 STA $023E,Y
CCOD 01'1 ASL A times 2
CCOE AA TAX
CCOF A9 01 LOA #$01
CCll 95 99 STA $99,X buffer pointer to one
CC13 A9 OE LOA t$OE
CC15 99 EC 00 STA $OOEC,Y flag for direct access
CC18 4C 94 Cl JMP $C194 done

****************************** B-command, 'Block'
CClB AD 00 LOY #$00
CClO AO 00 LOX #$00
CClF A9 20 LOA #$20 '-'
CC2l 20 68 C2 JSR $C268 search for minus sign
CC24 DO OA BNE $CC30 found?
CC26 A9 31 LOA #$31
CC28 4C C8 Cl JMP $CIC8 31, 'syntax error'

143

Anatomy of the 1541 Dis~ Drive

CC2B
CC2D

CC30
CC3l
CC33
CC35
CC38
CC3B
CC3D
CC3E
CC40
CC42
CC43
CC45
CC48
CC46
CC4E
CC4F
CC50
CC53
CC55
CC58
CC5A

A9 30
4C C8 Cl

8A
DO F8
A2 05
B9 00 02
DO 5D CC
FO 05
CA
10 F8
30 E4
8A
09 80
8D 2A 02
20 6F CC
AD 2A 02
OA
AA
BO 64 CC
85 70
BD 63 CC
85 6F
6C 6F 00

LDA *$30
JMP $C1C8

TXA
BNE $CC2B
LDX #$05
LDA $0200,Y
CMP $CC5D,X
BEQ $CC42
OEX
BPL $CC38
BMI $CC26
TXA
ORA *$80
STA $022A
JSR $CC6F
LDA $022A
ASL A
TAX
LDA $CC64,X
STA $70
LOA $CC63,X
STA $6F
JMP ($006F)

CC5D 41 46 52 57 45 50

CC63
CC65
CC67
CC69
CC6B
CC60

03 CD
F5 CC
56 CD
73 CD
A3 CD
BO CD

30, 'syntax error'

comma, then error

char from buffer
compare with 'AFRWEP'
found?

compare with all characters
not found, error

command number, set bit 7

get parameters

number times 2
as index
address of command hi

address 10

jump to command

names of the various block cmds
'AFRWEP'

addresses of block commands
$CD03, B-A
$CCF5, B-F
$CD56, B-R
$CD73, B-W
$CDA3, B-E
$CDBO, B-P

****************************** get parameters for block command I
CC6F
CC71
CC73
CC75
CC78
CC7A
CC7C
CC7F
CC8l
CC83
CC85
CC87
CC89
CC8B
CC8C
CCBF
CC9l

AO 00
A2 00
A9 3A
20 68 C2
DO 02
AO 03
B9 00 02
C9 20
FO 08
C9 lD
FO 04
C9 2C
DO 07
C8
CC 74 02
90 EB
60

LOY 41$00
LDX *$00
LDA *$3A
JSR $C268
BNE $CC7C
LDY *$03
LOA $0200,Y
CMP i$20
BEO $CC8B
CMP #$10
BEQ $CC8B
CMP #$2C
BNE $CC92
INY
CPY $0274
BCC $CC7C
RTS

144

I:'
test line to colon
found?
no, begin at 4th character
search for separating char
, , blank

cursor right

',I comma

line end?

Anatomy of the 1541 Disk Drive

CC92
CC95
CC98
CC9B
CC9D
CC9F
CCAI
CCA3
CCA5
CCA7
CCA9
CCAB
CCAE
CCBO
CCB2
CCB4
CCB6
CCB8
CCB9
CCBB
CCBD
CCBF
CCCI
CCC2
CCC4
CCC5
CCC7
CCCA
CCCD
CCCE
CCDO
CCDI
CCD3
CCD5
CCD7
CCD8
CCDA
CCDD
CCDF
CCEO
CCE2
CCE4
CCE5
CCE8
CCEA
CCED
CCEE
CCFl

20 Al CC
EE 77 02
AC 79 02
EO 04
90 EC
BO 8A
A9 00
85 6F
85 70
85 72
A2 FF
B9 00 02
C9 40
BO 18
C9 30
90 14
29 OF
48
A5 70
85 71
A4 6F
85 70
68
85 6F
C8
CC 74 02
90 El
8C 79 02
18
A9 00
E8
EO 03
BO OF
B4 6F
88
30 F6
7D F2 CC
90 F8
18
E6 72
DO F3
48
AE 77 02
A5 72
9D 80 02
68
9D 85 02
60

JSR $CCAI
INC $0277
LOY $0279
CPX *$04
BCC $CC8B
BCS $CC2B
LDA *$00
STA $6F
STA $70
STA $72
LOX *$FF
LDA $0200,Y
CMP *$40
BCS $CCCA
CMP #$30
BCC $CCCA
AND #$OF
PHA
LDA $70
STA $71
LDA $6F
STA $70
PLA
STA $6F
INY
CPY $0274
BCC $CCAB
STY $0279
CLC
LDA #$00
INX
CPX lI$03
BCS $CCE4
LDY $6F,X
DEY
BMI $CCDO
ADC $CCF2,X
BCC $CCD7
CLC
INC $72
BNE $CCD7
PHA
LDX $0277
LDA $72
STA $0280,X
PLA
STA $0285,X
RTS

CCF2 01 OA 64

CCF5
CCF8

20 F5 CD
20 SF EF

JSR $CDF5
JSR $EF5F

145

preserve next parameter
increment parameter counter

compare with maximum number

30, 'syntax error'

erase storage area for decimal *s

get characters from input buffer

no digits?
'0 '
no digits?
convert ASCII digits to hex
and save

move digits one further

note read number
increment pointer in input buffer
line end reached
no
save pointer

convert hex digits to one byte

add decimal value

counter for parameters

hi-byte

10-byte

decimal values
1, 10, 100

B-F command, 'Block-Free'
get track, sector and drive no.
free block

Anatomy of the 1541 Disk Drive

CCFB 4C 94 Cl JMP $C194

CCFE
COOO

A9 01
80 F9 02

LDA 11$01
STA $02F9

C003
C006
C008
C009
CDOC
COOE
COOF
COll
COl3
C016

COl9
COlA
COIC
COlE
C020
C022
CD25
CD27
CD2A
C02C
CD2E
CD31
CD33

20 F5 CD
A5 81
48
20 FA Fl
FO OB
68
C5 81
00 19
20 90 EF
4C 94 Cl

68
A9 00
85 81
E6 80
A5 80
CD 07 FE
BO OA
20 FA Fl
FO EE
A9 65
20 45 E6
A9 65
20 C8 Cl

JSR $CDF5
LDA $81
PHA
JSR $FlFA
BEQ $CDl9
PLA
CMP $81
BNE $CD2C
JSR $EF90
JMP $C194

PLA
LDA 11$00
STA $81
INC $80
LDA $80
CMP $FED7
BCS $CD31
JSR $FIFA
BEQ SCOlA
LDA 11$65
JSR $E645
LDA 11$65
JSR $CIC8

CD36
CD39

20 F2 CD
4C 60 D4

JSR $CDF2
JMP $D460

CD3C
CD3F
CD41

20 2F 01
Al 99
60

JSR $D12F
LDA ($99,X)
RTS

CD42
CD45
CD47
CD4A
CD4D
CD50
CD52
CD55

20 36 CD
A9 00
20 C8 D4
20 3C CD
99 44 02
A9 89
99 F2 00
60

JSR $C036
LOA 11$00
JSR $04C8
JSR $CD3C
STA $0244,Y
LDA $89
STA $00F2,Y
RTS

CD56
CD59
CD5C

20 42 CO
20 EC D3
4C 94 Cl

JSR $C042
JSR $D3EC
JMP $C194

146

done, prepare error message

B-A command, 'Block-Allocate'
get track, sector and drive no.
sector
save
find block in BAM
block allocated?
desired sector
= next free sector?
no
allocate block in BAM
done

sector 0
next track
track number
36, last track number + 1
>=, then 'no block'
find free block in next track
not found, check next track

65, 'no block' next free block

65,'no block' no more free blocks

open channel, set parameters
read block from disk

get byte from buffer
set pointer to buffer
get byte

read block from disk
open channel, read block

set buffer pointer to zero
get a byte from the buffer

set read and write flag

B-R command, 'Block-Read'
read block from disk
prepare byte from buffer
prepare error message

CD5F
CD62
CD65
CD68
CD6B
CD6D
CD70

20 6F CC
20 42 CD
B9 44 02
99 3E 02
A9 FF
99 44 02
4C 94 Cl

JSR $CC6F
JSR $CD42
LDA $0244,Y
STA $023E,Y
LDA #$FF
STA $0244,Y
JMP $C194

CD73
CD76
CD79
CD7A
CD7B
CD7D
CD7F
CD81
CD83
CD86
CD87
CD8A
CD8B
CD8C
CD8F
CD90
CD91
CD94

20 F2 CD
20 E8 D4
A8
88
C9 02
BO 02
AO 01
A9 00
20 C8 D4
98
20 Fl CF
8A
48
20 64 D4
68
AA
20 EE D3
4C 94 Cl

JSR $CDF2
JSR $D4E8
TAY
DEY
CMP #$02
BCS $CD81
LDY #$01
LDA #$00
JSR $D4C8
TYA
JSR $CFFI
TXA
PHA
JSR $D464
PLA
TAX
JSR $D3EE
JMP $C194

CD97
CD9A
CD9D
CDAO

20 6F CC
20 F2 CD
20 64 D4
4C 94 Cl

JSR $CC6F
JSR $Cm'2
JSR $D464
JMP $C194

CDA3
CDM
CDA9
CDAB
CDAD
CDAF
CDB2
CDB4
CDB7
CDBA

20 58 F2
20 36 CD
A9 00
85 6F
A6 F9
BD EO FE
85 70
20 BA CD
4C 94 Cl
6C 6F 00

JSR $F258
JSR $CD36
LDA #$00
STA $6F
LDX $F9
LDA $FEEO,X
STA $70
JSR $CDBA
JMP $C194
JMP ($006F)

CDBD
CDCO
CDC2
CDC3
CDC4
CDC7

20 D2 CD
A5 F9
OA
AA
AD 86 02
95 99

,ISR $CDD2
LDA $F9
ASL A
TAX
LDA $0286
STA $99,X

Anatomy of the 1541 Disk Drive

Ul command, sub. for 'Block-Read'
get parameters of the command
read block from disk
end pointer
save as data byte

end pointer to $FF
done, prepare error message

R-W command, 'Block-Write'
open channel
set bUffer pointer

buffer pointer 10 less than 2?
no

buffer pointer to zero

write byte in buffer

write block to disk

get byte from buffer
done, error message

U2, sub for 'Block-Write'
get command parameters
open channel
and write block to disk
done

'B-E' command, 'Block-Execute'
(RTS)
open channel and read block

address low
buffer number
buffer address high

execute routine
done
jump to routine

'B-P' command, 'Block-Pointer'
open channel, get buffer number
buffer number
* 2
as index
pointer value
save as buffer pointer

147

Anatomy of the 1541 Disk Drive

CDC9
CDCC
CDCF

20 2F Dl
20 EE D3
4C 94 Cl

JSR SD12F
JSR SD3EE
JMP SC194

CDD2
CDD4
CDD6
CDD9
CODA
CDDB
CDDC
CDDE
CDEO
CDE2

CDE5
CDE7
CDEA
COEC
COEF
COFI

A6 D3
E6 D3
BD 85 02
A8
88
88
CO OC
90 05
A9 70
4C C8 Cl

85 83
20 EB DO
BO F4
20 93 OF
85 F9
60

LOX $D3
INC S03
LOA S0285,X
TAY
DEY
DEY
CPY #$OC
BCC $COE5
LDA #$70
JMP $ClC8

STA $83
JSR $OOEB
BCS SCOEO

JSR $OF93
STA $F9
RTS

COF2
COF5
COF7
COFA
COFC
COFE
CEOI
CE03
CE06
CE08
CEOB

20 02 CO
A6 03
BO 85 02
29 01
85 7F
BO 87 02
85 81
BO 86 02
85 80
20 SF 05
4C 00 Cl

JSR $C002
LOX $D3
LOA $028S,X
AND #$01
STA $7F
LOA $0287,X
STA $81
LOA $0286,X
STA S80
JSR $055F
JMP SCI00

CEDE
CEll
CE14
CE16
CE18
CEIB
CEIO
CEIF
CE2l
CE23
CE25
CE26
CE27
CE29
CE2B

20 2C CE
20 6E CE
A5 90
85 D7
20 71 CE
E6 07
E6 D7
A5 8B
85 D5
A5 90
OA
18
69 10
85 D6
60

.]SR $CE2C
JSR SCE6E
LDA S90
STA S07
JSR SCE7l
INC $07
INC SD7
LDA $8B
STA $D5
LOA S90
ASL A
CLC
AOC #SlO
STA $06
RTS

CE2C 20 D9 CE JSR SCE09

148

prepare a byte in buffer
for output
done

open channel

buffer number

buffer number smaller than 14?
yes

70, 'no channel'

secondary address
open channel
already allocated,70 'no channel

buffer number
set

check buffer no. and open channe
channel number
buffer address

drive number

sector

track
track and sector ok?
turn LED on

set pointer for reI-file
record number * record length
divide by 254
remainder = pointer in data bloc)
data pointer
divide by 120 = side-sector #

data ptr + 2 (track/sector ptr!)
result of division
equals side-sector number
remainder
times 2

plus 16
=ptr in side-sector to data bloc~

erase work storage

Anatomy of the 1541 Disk Drive

CE2F 85 92 STA $92
CE31 Ali 82 LOX $82 channel number
CE33 B5 B5 LOA $B5,X record number 10
CE35 85 90 STA $90
CE37 B5 BB LOA $BB,X record number hi
CE39 85 91 STA $91
CE3B 00 04 BNE $CE41
CE30 A5 90 LOA $90
CE3F FO OB BEO $CE4C record number not zero?
CE41 A5 90 LDA $90
CE43 38 SEC
CE44 E9 01 SBC #$01 then subtract one
CE46 85 90 STA $90
CE48 BO 02 BCS SCE4C
CE4A C6 91 DEC $91
CE4C B5 C7 LDA $C7,X record length
CE4E 85 6F STA $6F
CE50 46 6F LSR $6F
CE52 90 03 BCC $CE57
CE54 20 ED CE JSR $CEED record number * record length
CE57 20 E5 CE JSR $CEE5 shift reg ister left
CE5A A5 6F LOA $6F
CE5C 00 F2 BNE $CE50
CE5E A5 04 LOA $04
CE60 18 CLC
CE61 65 8B ASC $8B
CE63 85 8B STA $8B
CE65 90 06 BCC $CE6D result in $8B/$8C/$8D
CE67 E6 8C INC $8C
CE69 DO 02 BNE $DE6D
CE6B E6 80 INC $80
CE6D 60 RTS

****************************** divide by 254, calculate block #
CE6E A9 FE LDA #$FE 254
CE70 2C .BYTE $2C

****************************** divide by 120, calculate
CE7l A9 78 LOA #$78 side-sector number
CE73 85 6F STA S6F divisor
CE75 A2 03 LOX #$03
CE77 B5 8F LOA $8F,X
CE79 48 PHA
CE7A 85 8A LDA $8A,X
CE7C 95 8F STA $8F,X
CE7E 68 PLA
CE7F 95 8A STA S8A,X
CE8l CA OEX
CE82 DO F3 BNE SCE77
CE84 20 D9 CE JSF $CE09 erase work storage
CE87 A2 00 LOX #$00
CE89 85 90 LOA $90,X
CE8B 95 8F STA S8F,X
CE80 E8 INX
CE8E EO 04 CPX #$04

149

Anatomy of the 1541 Disk Drive

CE90 90 F7 BCC $CE89
CE92 A9 00 LDA #$00
CE94 85 92 STA $92
CE96 24 6F BIT $6F
CE98 30 09 BMI $CEA3
CE9A 06 8F ASL $8F
CE9C 08 PHP
CE9D 46 8F LSR $8F
CE9F 28 PLP
CEAO 20 E6 CE JSR $CEE6 shift register 1 left
CEA3 20 ED CE JSR $CEED add register 0 to register 1
CEA6 20 E5 CE JSR $CEE5 shift register 1 left
CEM 24 6F BIT $6F
CEAB 30 03 BMI $CEBO
CEAD 20 E2 CE JSR $CEE2 left-shift reg ister 1 twice
CEBO AS 8F LDA $8F
CEB2 18 CLC
CEB3 65 90 ADC $90
CEB5 85 90 STA $90
CEB7 90 06 BCC $CEBF
CEB9 E6 91 INC $91
CEBB DO 02 BNE $CEBF
CEBD E6 92 INC $92
CEBF AS 92 LDA $92
CEC1 05 91 ORA $91
CEC3 DO C2 BNE $CE87
CEC5 AS 90 LDA $90
CEC7 38 SEC
CEC8 E5 6F SBC $6F quotient in $8B/$8C/$8 D
CECA 90 OC BCC $CED8
CECC E6 8B INC $8B
CECE DO 06 BNE $CED6
CEDO E6 8C INC $8C
CED2 DO 02 BNE $CED6
CED4 85 90 STA $90 remainder in $90
CED8 60 RTS

****************************** erase work storage
CED9 A9 00 LDA #$00
CEDB 85 8B STA $8B
CEDD 85 8C STA $8C
CEDF 85 8D STA $8D
CEEl 60 RTS

****************************** left-shift 3-byte register twice
CEE2 20 E5 CE JSR $CEE5

****************************** left-shift 3-byte register once
CEE5 18 CLC
CEE6 29 90 ROL $90
CEE8 26 91 ROL $91
CEEA 26 92 ROL $92
CEEC 60 RTS

150

Anatomy of the 1541 Disk Drive

CEED 18 CLC
CEEE A2 FD LOX #$FD
CEFO B5 8E LOA $8E,X register $90/$91/$92
CEF2 75 93 ADC $93,X add to register $8B/$SC/$8D
CEF4 95 8E STA $8E,X
CEF6 E8 INX
CEF7 DO F7 BNE $CEFO
CEF9 60 FTS

CEFA A2 00 LDX #$00
CEFC 8A TXA
CEFD 95 FA STA $FA,X
CEFF E8 INX
0'00 EO 04 CPX #$04
CF02 DO F8 BNE $CEFC
Cr'04 A9 06 LDA #$06
CF06 95 FA STA $FA,X
Cr'08 60 RTS

CF09 AO 04 LDY #$04
O'OB A6 82 LDX $82 channel number
CFOD B9 FA 00 LDA $OOFA,Y
cno 96 FA STX $FA,Y
CF12 C5 82 CMP $82 channel number
Cl"l4 FO 07 BEO $CFlD
CFl6 88 DEY
CF'l7 30 El BMI $CE~'A
CF19 AA TAX
CFIA 4C OD CF JMP $CFOD
CFlD 60 RTS

CFIE 20 09 CF JSF $CF09
0'21 20 B7 OF JSR SDFB7
CF24 DO 46 BNE SCF6C
CF26 20 D3 D1 JSF $D1D3 set drive number
CF29 20 8E D2 JSR $D28E
CF2C 30 48 BMI $CF76
CF2E 20 C2 OF JSR $OFC2
0'31 A5 80 LOA $80 track
0'33 48 PHA
CF34 A5 81 LDA $81 sector
CF36 48 PHA
CF37 A9 01 LDA #$01
CF39 20 F6 D4 JSF $D4F6 get byte 1 from buffer
cnc 85 81 STA $81 sector
CF3E A9 00 LDA #$00
CF40 20 F6 D4 JSR SD4F6 get byte 0 from buffer
CF43 85 80 STA $80 track
CF45 FO IF BEO $CF66
CF47 20 25 D1 JSR $D125 check file type
CF4A FO Os BEO $CF57 reI-file?
0'4C 20 AB DD JSR $DDAR
CF4F D(I 06 BNE $C~'57
0'51 20 8C CF JSR $CF8C
CF54 4C 50 n' JMP SCF5D

151

Anatomy of the 1541 Disk Drive

CFS7 20 8C CF JSR $CF8C
CF5A 20 57 DE JSR $DE57
CF5D 68 PLA
CP5E 85 81 STA $81 get sector
CF60 68 PLA
C~'61 85 80 STA $SO and track number
CF63 4C 6F CF JMP $CP6F

CF66 68 PLA
CF67 85 81 STA $81 get back sector
CF69 68 PLA
CF6A 85 80 STA $80 and track number
CP6C 20 8C CF JSR $CF8C
CF6P 20 93 DF JSR $DF93
CF72 AA TAX
CF73 4C 99 D5 JMP $D599 and verify

CP76 A9 70 LDA #$70
cns 4C C8 Cl JMP $ClCS 70, 'no channel'

CF7B 20 09 CF' JSR $CF09
Cl"7E 20 B7 DF JSR $DFB7
CF8l DO 08 BNE $CF8B
CF83 20 8E D2 JSR $D28E
CF86 30 EE B~II $CF76
Cl"88 20 C2 DF JSR $DFC2
CF8B 60 RTS

****************************** change buffer
CF8C A6 82 LDX $82 channel number
CF8E B5 A7 LDA $A7,X
CF90 49 80 EOR #$80
CF92 95 A7 STA $A7,X
CF94 B5 AE LDA $AE,X rotate bit 7 in table
CF96 49 80 EOR #$80
CF98 95 AE STA $AE,X
CF9A 60 RTS

****************************** write data byte in buffer
CF9B A2 12 LDX #$12 channel 18
CE'9D 86 83 STX $83
CF9F' 20 07 Dl JSR $D107 open write channel
CFA2 20 00 Cl JSR $C100 turn LED on
CFA5 20 25 D1 JSR $D125 check file type
CF'AB 90 05 BCC $CF'AF no reI-file
CFAA A9 20 LDA #$20
CFAC 20 9D DD JSR $DD9D change buffer
CF'AP AS 83 LDA $83 secondary address
CF'BI C9 OF' CMP #$OF' IS?
n'B3 PO 23 BEO $Cf'D8 yes
CFB5 DO 08 BNE $CF'BF' no

C~'B7 A5 84 LDA $84 secondary address
CFB9 29 8F AND #$8P

152

Anatomy of the 1541 Disk Orive

CFBB C9 OF CMP #$OF greater than 15?
CFBO BO 19 BCS $CFD8 then input buffer
CFBF 20 25 01 JSR $0125 check file type
CFC2 BO 05 BCS $CFC9 reI-file or direct access?
CFC4 AS 85 LOA $85 data byte
CFC6 4C 90 01 JMP $0190 write in buffer

CFC9 00 03 BNE $CFCE direct access file?
CFCB 4C AB EO JMP $EOAB write data byte in reI-file

CFCE AS 85 LOA $85
CFDO 20 Fl CF JSR $CFF1 write data byte in buffer
CFD3 A4 82 LDY $82 channel number
CF05 4C EE 03 JMP $D3EE prepare next byte for output

CFD8 A9 04 LDA #$04 channel 4
CFDA 85 82 STA $82 corresponding input buffer
C~'DC 20 E8 D4 JSR $D4E8 set buffer pointer
O'DF C9 2A CMP #$2A 40
CFE1 FO 05 BEO $CFE8 buffer end?
CFE3 AS 85 LDA $85
CFE5 20 Fl CF JSR $C~'F1 write data byte in buffer
CFE8 A5 F8 LOA $F8 end flag set?
CFEA FO 01 BEO $CFEO yes
CFEC 60 RTS

CFED EE 55 02 INC $0255 set command flag
CFFO 60 RTS

****************************** write data byte in buffer
CFFl 48 PHA save data byte
CFF2 20 93 OF JSR $DF93 get huffer number
CFF5 10 06 BPL $CFFD associated buffer?
0'F7 68 PLA
CFF8 A9 61 LDA #$61
CFFA 4C C8 C1 JMP $C1C8 61, ' file not open'
CFFD OA ASL A buffer number times 2
O'FE AA TAX as index
CFFF 68 PLA data byte
DODO 81 99 STA ($99,X) write in buffer
D002 1"6 99 INC $99,X increment buffer pointer
D004 60 RTS

****************************** I-command, Initialize
D005 20 D1 C1 JSR $C1Dl find drive number
D008 20 42 DO JSR $0042 load BAM
DOOB 4C 94 C1 JMP $C194 prepare disk status

DOOE 20 OF Fl JSR SFIOF
DOll A8 TAY
D012 86 A7 LDX SA7,Y
D014 EO 1"1" CPX #SFF
D016 48 PHA
D019 20 8E 02 JSR $D28E

153

Anatomy of the 1541 Disk Drive

DOIC AA TAX
DOID A9 70 LDA lI$70
D02l 20 48 E6 JSR $E648 70, 'no channel'
D024 68 PLA
D025 A8 TAY
D026 8A TXA
DO 27 09 80 ORA H80
D029 99 A7 00 STA $OOA7,Y
D02C 8A TXA
D02D 29 OF AND lISOF
D02F 85 F9 STA SF9
0031 A2 00 LDA lISOO
D033 86 81 STX S81 sector 0
D035 AE 85 FE LDX SFE85 18
D038 86 80 STX $80 track 18
D03A 20 D3 D6 JSR $D6D3 transmit param to disk controll
D03D A9 BO LDA #$BO command code 'read block header
D03F 4C 8C D5 JMP $D58C transmit to disk controller

****************************** load BAM
D042 20 Dl Fa JSR $FODI
D045 20 13 D3 JSR $D313
D048 20 OE DO JSR $DOOE read block
D04B A6 7F LDX $7F drive number
D04D A9 00 LDA lISOO
D04F 9D 51 02 STA S025l,X reset flag for 'BAM changed'
D052 8A TXA
D053 OA ASL A
D054 AA TAX
D055 AS 16 LDA S16
D057 95 12 STA $12,X
D059 A4 17 LDA $17 save ID
D05B 95 13 STA S13 ,X
D05D 20 86 D5 JSR $D586
D060 AS F9 LDA $F9 buffer number
D062 OA ASL A
D063 AA ;TAX
D064 A9 02 LDA #$02 buffer pointer to $200
D066 95 99 STA $99,X
D068 Al 99 LDA ($99,X) get character from buffer
D06A A6 7F LDX S7F drive number
D06C 9D 01 01 STA SOlOl,X
D06F A9 00 LDA #$00
D07l 95 lC STA $lC,X flag for write protect
D073 95 FF STA $FF,X flag for read error

****************************** calculate blocks free
D075 20 3A EF JSR $EF3A buffer address to $6D/$6E
D078 AO 04 LDY lI$04 begin at position 4
D07A A9 00 LOA #SOO
D07C AA TAX
D07D 18 CLC
D07E 71 6D ADC (S6D),Y add no. of free blocks per track
0080 90 01 BCC $D083
D082 E8 INX X as hi-byte

154

Anatomy of the 1541 Disk Drive

D083 C8 INY
D084 C8 INY plus 4
D085 C8 INY
D086 C8 INY
D087 CO 48 CPY #$48 track 18?
D089 FO F8 BEO $D083 then skip
D08B CO 90 CPY #$90 last track number?
D08D DO EE BNE $D07D no
D08F 48 PHA lo-byte
D090 8A TXA hi-byte
D091 A6 7F LDX $7F drive number
D093 9D FC 02 STA $02FC ,X hi-byte to $2FC
D096 68 PLA lo-byte
D097 9D FA 02 STA $02FA,X to $2FA
D09A 60 RTS

D09B 20 DO D6 JSR $D6DO parameters to disk controller
D09E 20 C3 DO JSR $DOC3 read block
DOAI 20 99 D5 JSR $D599 ok?
DOM 20 37 Dl JSR $D137 get byte from buffer
DOA7 85 80 STA $80 track
DOA9 20 37 Dl JSR $D137 next byte from buffer
DOAC 85 81 STA $81 sector
DOAE 60 RTS

DOAF 20 9B DO JSR $D09B
DOR2 A5 80 LDA $80 track
DOR4 DO 01 BNE $DOB7
DOB6 60 RTS
DOB7 20 IE CF JSR $CFlE change buffer
DOBA 20 DO D6 JSR $D6DO parameters to disk controller
DOBD 20 C3 DO JSR $DOC3 read block
DOCO 4C IE CF JMP $CFIE change buffer

****************************** read block
DOC3 A9 80 LDA #$80 code for tread'
DOC5 DO 02 BNE $DOC9

****************************** write block
DOC7 A9 90 LDA #$90 code for 'write'
DOC9 8D 4D 02 STA $024D save
DOCC 20 93 DF JSR $DF93 get buffer number
DOCF AA TAX
DODO 20 06 D5 JSR $D506 get track/sector, read/write blk
DOD3 SA TXA
DOD4 48 PHA
DOD5 aA ASL A buffer pointer times 2
DOD6 AA TAX
DOD7 A9 00 LDA #$00
DOD9 95 99 STA $99,X pointer in buffer to zero
DODB 20 25 Dl JSR $D125 get file type
DaDE C9 04 CMP #$04 reI-file or direct access?
DOEO BO 06 BCS SDOES yes
DOE2 F6 B5 INC SB5,X

155

Anatomy of the 1541 Disk Drive

DOE4
DOE6
DOE8
DOE9
DOEA

DO 02
F6 BB
68
AA
60

BNE $DOE8
INC $BB,X
PLA
TAX
RTS

DOEB
DOED
DOEF
DOFI
DOF3
DOF5
DOF7
DOF9
DO FA
DOFB
DOFE
DI00
DI02
DI04
0105
DI06

A5 83
C9 13
90 02
29 OF
C9 OF
DO 02
A9 10
AA
38
BD 2B 02
30 06
29 OF
85 82
AA
18
60

LOA $83
CMP #$13
BCC $DOF3
AND #$OF
CMP #$OF
BNE $DOF9
LOA #$10
TAX
SEC
LOA $022B,X
BMI $0106
AND #$OF
STA $82
TAX
CLC
RTS

0107
DI09
DI0B
0100
DI0F
DllO
DID
D1l4
D1l5
D1l7
D1l9
DllA
DllC
DllE
DllF
D120

D121
0123
0124

A4 83
C9 13
90 02
29 OF
AA
BO 2B 02
A8
OA
90 OA
30 OA
98
29 OF
85 82
AA
18
60

30 F6
38
60

LDA $83
CMP #$13
BCC $DI0F
AND #$OF
TAX
LDA $022B,X
TAY
ASL A
BCC $D121
BMI S0123
TYA
AND #SOF
STA S82
TAX
CLC
RTS

BMI $D119
SEC
RTS

increment block counter

open channel for reading
secondary address
19
smaller?

16

flag for ok

open channel for writing
secondary address
19
smaller?

channel number

flag for ok

flag for channel allocated

.*.** •• i**.** •• ********* check for file type 'REL'
0125
0127
D129
D12A
D12C
Ol2E

A6 82
B5 EC
4A
29 07
C9 04
60

LOX S82
LDA $EC,X
LSR A
AND #$07
OIP #$04
RTS

'REL'?

***************.************** get buffer and channel numbers

156

Anatomy of the 1541 Disk Drive

012F 20 93 OF JSR $OF93 get buffer number
0132 OA ASL A
0133 AA TAX
0134 A4 82 LOY $82
0136 60 RTS

****************************** get a byte from buffer
0137 20 2F 01 JSR $012F get buffer and channel number
013A B9 44 02 LOA $0244,Y end pointer
0130 FO 12 BEO $0151
013F Al 99 LOA ($99,X) get byte from buffer
0141 48 PHA
0142 B5 99 LOA $99,X buffer pointer
0144 09 44 02 CMP $0244,Y equal end pOinter?
0147 00 04 BNE $014D no
0149 A9 FF LOA i$FF
014B 95 99 STA $99,X buffer pointer to -1
0140 68 PLA data byte
014E F6 99 INC $99,X increment buffer pointer
0150 60 RTS
0151 Al 99 LOA ($99,X) get character from buffer
0153 F6 99 INC S99,y increment buffer pointer
0155 60 RTS

****************************** get byte and read next block
0156 20 37 01 JSR S0137 get byte from buffer
0159 00 36 BNE $0191 not last character?
015B 85 85 STA $85 save data byte
0150 B9 44 02 LOA $0244,Y end pointer
0160 FO 08 BEQ S016A yes
0162 A9 80 LOA i$80
0164 99 F2 00 STA $00F2,Y REAO-flag
0167 A5 85 LOA $85 data byte
0169 60 RTS

016A 20 IE CF JSR $CFlE change buffer and read next block
0160 A9 00 LOA #$00
016F 20 C8 04 JSR $04C8 set buffer pointer to zero
0172 20 37 01 JSR $0137 get first byte from buffer
0175 C9 00 CHP #$00 track number zero
0177 FO 19 BEQ $0192 yes, then last block
0179 85 80 STA $80 save last track number
Ol7B 20 37 01 JSR S0137 get next byte
Ol7E 85 81 STA $81 save as following track
0180 20 IE CF JSR $CFlE change buffer and read next block
0183 20 03 01 JSR $DI03 save drive number
0186 20 00 06 JSR $0600 param to disk controller
0189 20 C3 00 JSR $00C3 transmit read command
018C 20 IE CF JSR SCFIE change buffer and read block
018F A5 85 LOA S85 get data byte
0191 60 RTS

0192 20 37 Dl JSR $D137 get next byte from buffer
0195 A4 82 LOY $82
0197 99 44 02 STA S0244,Y save as end pointer

157

Anatomy of the 1541 oisk Drive

D19A AS 85 LOA $85 get data byte back
019C 60 RTS
****************************** byte in buffer and write blocl
0190 20 F1 CF JSR $CFFI byte in buffer
DIAO FO 01 BEQ $D1A3 buffer full?
D1A2 60 RTS

DIA3 20 D3 D1 JSR $DI03 get drive number
DIA6 20 IE Fl JSR $FllE find free block in BAM
DIA9 A9 00 LDA #$00
DIAB 20 C8 04 JSR $D4C8 buffer pointer to zero
OIAE AS 80 LDA S80
DIBO 20 Fl CF JSR SCFFl track number as first byte
DlB3 AS 81 LDA S81
DIB5 20 Fl CF JSR SCFFI sector number as second byte
DIB8 20 C7 00 JSR SDOC7 write block
OIBB 20 IE CF JSR SCFlE change buffer
DIBE 20 00 06 JSR S0600 param to disk controller
DlCl A9 02 LOA #$02
DlC3 4C C8 D4 JMP SD4C8 buffer pointer to 2

****************************** increment buffer pointer
DIC6 85 6F STA $6F
DICB 20 EB 04 JSR $04EB get buffer pointer
DlCB 18 CLC
DICC 65 6F ADC $6F
DICE 95 99 STA $99,X and increment
DIDO 85 94 STA $94
DlD2 60 RTS

****************************** get drive number
DID3 20 93 DF JSR $DF93 get drive number
DID6 AA TAX
DID7 BD 58 02 LDA $025B,X
DIDA 29 01 AND #SOl isolate drive number
DIDC 85 7F STA $7F and save
DIDE 60 RTS

****************************** find write channel and buffer
DlDF 3B SEC flag for writing
OlEO BO 01 BCS SOlE3

****************************** find read channel and buffer
DIE2 18 CLC flag for reading
DIE3 08 PHP save
DIE4 85 6F STA $6F bu ffer number
DIE6 20 27 02 JSR $0227 close channel
DIE9 20 7F D3 JSR SD37F allocate free channel
DIEC 85 82 STA S82 channel number
DIEE A6 83 LOX $83 secondary address
DIFO 28 PLP
DIFI 90 02 BCC SOIF5 read channel?
DIF3 09 80 ORA #SBO flag for writing
DIF5 90 2B 02 STA $022B,X set
DIFB 29 3F ANO #S3F

158

Anatomy of the 1541 Disk Orive

OIFA A8 TAY
OlFB A9 FF LOA #SFF default value
OlFD 99 A7 00 STA $00A7,Y
0200 99 AE 00 STA $OOAE,Y write in associated table
0203 99 CO 00 STA $OOCO,Y
0206 C6 6F OEC $6F decrement buffer number
0208 30 lC BMI $0226 done already?
020A 20 8E 02 JSR $028E find buffer
0200 10 08 BPL $0217 found?
020F 20 5A 02 JSR $025A erase flags in table
0212 A9 70 LOA *$70
0214 4C C8 Cl J~IP $CIC8 70, 'no channel'
0217 99 A7 00 STA $00A7,Y buffer number in table
021A C6 6F OEC $6F buffer number
021C 30 08 BMI $0226 already done?
021E 20 8E 02 JSR $028E find buffer
0221 30 EC BMI $020F not found?
0223 99 AE 00 STA $OOAE,Y buffer number in table
0226 60 RTS

****************************** close channel
0227 AS 83 LOA $83 secondary address
0229 C9 OF CMP *$OF IS?
022B 00 01 BNE $022E no
0220 60 RTS else done already

022E A6 83 LOX $83
0230 BO 2B 02 LOA $022B,X channel number
0233 C9 FF CMP #$FF not associated?
0235 FO 22 BEO $0259 then done
0237 29 3F ANO #$3F
0239 85 82 STA $82 channel number
D23B A9 FF LOA #$FF
0230 90 2B 02 STA $022B ,X erase association in table
0240 A6 82 LDX $82
0242 A9 00 LOA #$00
0244 95 F2 STA $F2,X erase REAO and WRITE flag
0246 20 5A 02 JSR $D25A free buffer
D249 A6 82 LOX $82 channel number
024B A9 01 LOA #$01 set bit 0
0240 CA OEX
024E 30 03 BMI $0253 shift to correct position
D250 OA ASL A
0251 00 FA BNE $0240
0253 00 56 02 ORA $0256 free in allocation register
D256 80 56 02 STA $0256
0259 60 RTS

****************************** free buffer
025A A6 82 LOX $82 channel number
025C B5 A7 LDA $A7,X buffer number
025E C9 FF CMP #$FF
0260 FO 09 BEO $D26B not associated?
D262 48 PHA
D263 A9 FF LDA #$FF

159

Anatomy of the 1541 Disk Drive

0265 95 A7 STA $A7,x erase buffer association
0267 68 PLA
0268 20 F3 D2 JSR $D2~'3 erase buffer allocation re~, iste
026B A6 82 LDX $82 channel number
026D B5 AE LOA $AE,X
026F C9 FF CMP #$FF associated in second table?
0271 FO 09 BEO $D27C no
0273 48 PHA
0274 A9 FF LDA #$FF
0276 95 AE STA $AE,X erase association
0278 68 PLA
D279 20 F3 D2 JSR $D2F3 erase buffer in allocation reg.
027C A6 82 LDX $82 channel number
D27E B5 CD LDA $CD,X
0280 C9 FF CMP #$FF associated in 3rd table?
D282 FO 09 BEO $D28D no
0284 48 PHA
0285 A9 FF LDA #$FF
0287 95 CD STA $CD,X erase association
D289 68 PLA
D28A 20 F3 D2 JSR $D2F3 erase buffer in allocation reg
D28D 60 RTS

****************************** find buffer
D28E 98 TYA
028F 48 PHA
0290 AO 01 LDY #$01
0292 20 BA D2 JSR $D2BA
D295 10 DC BPL $D2A3
0297 88 DEY
D298 20 BA D2 JSR $D2BA
029B 10 06 BPL $D2A3
D29D 20 39 D3 JSR $0339
D2AO AA TAX
D2A1 30 13 BMI $D2B6
D2A3 B5 00 LDA $OO,X
D2A5 30 FC BMI $D2A3
D2A7 AS 7F LDA $7F
D2A9 95 00 STA $OO,X
D2AB 9D 5B 02 STA $025B,X
D2AE 8A TXA
D2AF OA ASL A
D2BO A8 TAY
D2B1 A9 02 LDA #$02
D2B3 99 99 00 STA S0099,y
D2B6 68 PLA
D2B7 A8 TAY
D2B8 8A TXA
D2B9 60 RTS

D2BA A2 07 LDX #$07
D2BC 89 4F 02 LDA $024F,Y
D2BF 3D E9 EF AND $EFE9 ,Y erase bit
D2C2 FO 04 BEO $D2C8
D2C4 CA DEX

160

Anatomy of the 1541 oisk Drive

02C5 10 F5 BPL $D2BC
02C7 60 RTS

02C8 B9 4F 02 LOA $024F,Y
02CB 50 E9 EF EOR $EFE9,X rotate bit
02CE 99 4F 02 STA $024F,Y
0201 8A TXA buffer number
0202 88 OEY
0203 30 03 BMI $0208
0205 18 CLC
0206 69 08 AOC *$08
0208 AA TAX buffer number
0209 60 RTS
020A A6 82 LOX $82
020C B5 A7 LOA $A7,X
020E 30 09 BMI $02E9
02EO 8A TXA
02El 18 CLC
02E2 69 07 AOC #$07
02E4 AA TAX
02E5 B5 A7 LOA $A7,X
02E7 10 FO BPL $0209
02E9 C9 j,'F CMP #$FF
02EB FO EC BEQ $0209
02EO 48 PHA
02EE A9 FF LOA *$FF
02FO 95 A7 STA $A7,X
02F2 68 PLA
02F3 29 OF ANO #$OF
02F5 A8 TAY buffer number
02F6 C8 INY
02F7 A2 10 LOX #$10 16
02F9 6E 50 02 ROR $0250
02FC 6E 4F' 02 ROR $024F rotate 16-bit allocation reg.
02FF 88 OEY
0300 00 01 BNE S0303
0302 18 CLC erase bit for buffer
0303 CA OEX
0304 10 F3 BPL $02F9
0306 60 RTS

****************************** close all channels
0307 A9 OE LOA #$OE 14
0309 85 83 STA $83 secondary address
030B 20 27 02 JSR $0227 close channel
030E C6 83 OEC $83 next secondary address
0310 00 F9 BNE $030B
0312 60 RTS

****************************** close channels of other drives
0313 A9 OE LOA #$OE 14
0315 85 83 STA $83 secondary address
0317 A6 83 LOX $83
0319 BO 2B 02 LOA S022B,X association table
D31C C9 FF CMP #$FF channel associated?

161

Anatomy of the 1541 Disk Drive

D31E FO 14 BEO $D334 no
D320 29 3F AND #$3F
D322 85 82 STA $82 channel number
D324 20 93 DF JSR $DF93 get buffer number
D327 AA TAX
D328 BD 5B 02 LDA $025B,X drive number
D32B 29 01 AND #$01 isolate
D32D C5 7F CMP $7F equal to actual drive number
D32F DO 03 BNE $D334 no
D331 20 27 D2 JSR $D227 close channel
D334 C6 83 DEC $83 next channel
D336 10 DF BPL $D317
D338 60 RTS

D339 A5 6F LDA $6F
D33B 48 PHA
D33C AO 00 LDY #$00
D33E B6 FA LDX $FA,Y
D340 B5 A7 LDA $A7,X
0342 10 04 BPL $D348
0344 C9 FF CMP #$FF
D346 DO 16 BNE $D35E
D348 8A TXA
D349 18 CLC
D34A 69 07 ADC #$07
D34e AA TAX
D34D B5 A7 LDA $A7,X
D34F 10 04 BPL $D355
D351 C9 FF CMP #SFF
D353 DO 09 BNE $D35E
D355 C8 INY
D356 CO 05 CPY #$05
D358 90 E4 BCC SD33E
D35A A2 n~ LDX #SFF
D35C DO lC BNE $D37A
D35E 86 6F STX $6F
D360 29 3F ANO #$3F
D362 AA TAX
D363 B5 00 LOA SOD ,X
0365 30 FC BMI $0363
D367 C9 02 CMP #$02
0369 90 08 Bee $0373
036B A6 6F LOX S6F
0360 EO 07 epx #$07
036F 90 07 Bce S0348
0371 BO E2 BeS $0355

0373 A4 6F LOY S6F
D375 A9 FF LOA #SFF
0377 99 A7 00 STA $00A7,Y
D37A 68 PLA
037B 85 6F STA SoF
0370 8A TXA
037E 60 RTS

162

Anatomy of the 1541 Disk Drive

****************************** find channel and allocate
037F AD 00 LOY #$00
0381 A9 01 LOA #$01 set bit 0
0383 2C 56 02 BIT $0256
D386 DO 09 BNE $0391 channel free?
0388 C8 INY
0389 OA ASL A rotate bit to left
038A DO F7 BNE $0383 all channels checked?
D38C A9 70 LOA #$70
038E 4C C8 C1 JMP $ClC8 70, 'no channel'

0391 49 FF EOR #$FF rotate bit model
0393 20 56 02 AND $0256 erase bit
0396 80 56 02 STA $0256 allocate channel
0399 98 TYA
039A 60 RTS

****************************** get byte for output
039B 20 EB DO JSR $OOEB open channel for reading
039E 20 00 Cl JSR $ClOO turn LED on
03Al 20 AA 03 JSR $03AA get byte in output register
03A4 A6 82 LOX $82 channel number
03A6 BO 3E 02 LOA $023E,X get byte
03A9 60 RTS

03AA A6 82 LOX $82 channel number
03AC 20 25 Dl JSR $0125 check file type
03AF DO 03 BNE $03B4 no reI-file?
03Bl 4C 20 El JMP $E120 get byte from reI-file

03B4 A5 83 LOA $83 secondary address
03B6 C9 OF CMP #$01" 15
03B8 FO 5A BEO $0414 yes, r:ead error channel
03BA B5 F2 LOA $F2,X
03BC 29 08 AND #$08 end flag set?
03BE DO 13 ENE $0303 no
03CO 20 25 01 JSR $0125 check file type
03C3 C9 07 CMP #$07 direct access file?
03C5 00 07 BNE $03CE no
03C7 A9 89 LOA #$89 set REAO and WRITE flag
D3C9 95 F2 STA $F2,X
03CB 4C OE 03 JMP $030E

03CE A9 00 LOA #$00
0300 95 F2 STA $F2,X erase READ and WRITE flag
0302 60 RTS

0303 A5 83 LOA $83 secondary address
0305 FO 32 BEO $0409 zero, LOAD?
0307 20 25 01 JSR $0125 check file type
030A C9 04 CMP #$04 reI-file or direct access?
030C 90 22 BCC $0400 no
030E 20 2F Dl JSR $012F get buffer and channel number
03EI B5 99 LDA $99,X buffer pointer

163

Anatomy of the 1541 Disk Drive

D3E3 D9 44 02 CMP $0244,Y equal end pointer?
D3E6 DO 04 BNE SD3EC no
03E8 A9 00 LOA #$00
03EA 95 99 STA S99,X buffer pointer to zero
03EC F6 99 INC S99,X increment buffer pointer
03EE Al 99 LOA (S99,X) get byte from buffer
03FO 99 3E 02 STA S023E,y into output register
03F3 B5 99 LOA S99,X buffer pointer
03F5 09 44 02 CMP S0244,y equal end pointer?
03~'8 DO 05 BNE SD3FF no
03FA A9 81 LOA #S8l
03FC 99 F2 00 STA SOOF2,Y set flags
03FF 60 RTS

0400 20 56 Dl JSR $0156 get byte from buffer
D403 A6 82 LDX $82 channel number
0405 9D 3E 02 STA $023E,X byte in output register
0408 60 RTS

0409 AO 54 02 LOA $0254 flag for directory?
D40C FO F2 BEO $0400 no
040E 20 67 EO JSR $E067 create directory line
0411 4C 03 04 JMP SD403

0414 20 E8 04 JSR SD4E8 set buffer pointer
0417 C9 D4 CMP #$D4
D419 DO 18 BNE SD433
D4lB AS 95 LDA S95
D41D C9 02 CMP #S02
D41F DO 12 BNE SD433
0421 A9 OD LDA #$00 CR
0423 85 85 STA S85 in output register
0425 20 23 Cl JSR $C123 erase error flags
D428 A9 00 LOA #$00
042A 20 Cl E6 JSR $E6Cl create 'ok l message
042D C6 AS OEC $A5 set buffer pointer back
042F A9 80 LOA #S80 set REAO flag
0431 00 12 BNE $0445

0433 20 37 01 JSR $D137 get byte from buffer
0436 85 85 STA $85 into output register
0438 00 09 BNE $0443
043A A9 04 LOA #SD4
043C 20 C8 D4 JSR SD4C8 set buf ptr in front of error ptr
043F A9 02 LDA #$02
0441 95 9A STA S9A,X hi-address
0443 A9 88 LOA #S88 set READ flag
D445 85 F7 STA SF7
D447 AS 85 LOA S85 data byte
D449 80 43 02 STA S0243 into output register
D44C 60 RTS

****************************** read next block
D440 20 93 OF JSR SOF93 get buffer number
0450 OA ASL A times 2

164

Anatomy of the 1541 Disk orive

0451 AA TAX
0452 A9 00 LOA *$00
0454 95 99 STA $99,X buffer pointer to zero
0456 Al 99 LOA ($99,X) get first byte from buffer
0458 FO 05 BEO $045F no block following?
045A 06 99 OEC $99,x buffer pointer to -1
045C 4C 56 01 JMP $0156 read next block
045F 60 RTS

****************************** read block
0460 A9 80 LDA *$80 command code for reading
0462 00 02 BNE $0466

****************************** write block
0464 A9 90 LOA #$90 command code for writing
0466 05 7F ORA $7F drive number
0468 80 40 02 STA $0240 save code
046B A5 F9 LOA $F9
0460 20 03 06 JSR $0603 param to disk controller
0470 A6 F9 LOX $F9
0472 4C 93 05 JMP $0593 execute command

****************************** allocate buffer and read block
0475 A9 01 LOA *$01
0477 80 4A 02 STA $024A file type to sequential
047A A9 11 LOA #$11 17
047C 85 83 STA $83 secondary address
047E 20 46 OC JSR $OC46 allocate buffer and read block
0481 A9 02 LOA #$02
0483 4C C8 04 JMP $D4C8 buffer pointer to 2

****************************** allocate new block
D486 A9 12 LDA #$12 18
0488 85 83 STA $83 secondary address
048A 4C DA DC JMP $DCDA allocate new block

****************************** write directory block
D480 20 3B DE JSR $OE3B get track and sector number
0490 A9 01 LOA #$01
0492 85 6F STA $6F a block
0494 A5 69 LOA $69 save step width 10 for block
D496 48 PHA allocation
0497 A9 03 LOA *$03
0499 85 69 STA $69
049B 20 20 Fl JSR $F12D find free block in BAM
049E 68 PLA
049F 85 69 STA $69 get step width back
04A1 A9 00 LOA #$00
D4A3 20 C8 04 JSR $D4C8 buffer pointer to zero
04A6 A5 80 LOA $80
04A8 20 F1 CF JSR $CFF1 track number in buffer
04AB A5 81 LDA $81
04AO 20 Fl CF JSR $CFFl sector number in buffer
04BO 20 C7 00 JSR $00C7 wri te block to disk
04B3 20 99 05 JSR $D599 and verify

165

Anatomy of the 1541 Oisk Orive

04B6 A9 00 LOA HOO
04B8 20 C8 04 JSR $04C8 buffer pointer to zero
D4BB 20 FI CF JSR $CFFI fill buffer with zeroes
D4BE 00 FB BNE $D4BB
D4CO 20 FI CF JSR $CFFI zero as following track
04C3 A9 FF LOA *$FF
D4C5 4C FI CF JMP $CFFI $FF as number of bytes

****************************** set buffer pointer
04CB 85 6F STA $6F save pointer
D4CA 20 93 OF JSR $OF93 get buffer number
04CO OA ASL A times 2
04CE AA TAX
04CF B5 9A LOA $9A,X buffer pointer hi
04Dl 85 95 STA $95
04D3 A5 6F LDA $6F
0405 95 99 STA $99,X buffer pointer 10, new value
D4D7 85 94 STA $94
04D9 60 RTS

****************************** close internal channel
D4DA A9 11 LOA #$11 17
04DC 85 83 STA $83
D40E 20 27 02 JSR $0227 close channel
04El A9 12 LOA #$12 18
04E3 85 83 STA $83
04E5 4C 27 02 JMP $0227 close channel

****************************** set buffer pointer
04E8 20 93 OF JSR $OF93 get buffer number
04EB OA ASL A
04EC AA TAX
04ED B5 9A LDA $9A,X buffer pointer hi
04EF 85 95 STA $95
04Fl B5 99 LOA $99,X buffer pointer 10
04F3 85 94 STA $94
D4F5 60 RTS

****************************** get byte from buffer
04F6 85 71 STA $71 pointer 10
D4F8 20 93 OF JSR $OF93 get buffer number
04FB AA TAX
04FC BO EO FE LOA $FEEO,X hi-byte buffer address
04FF 85 72 STA $72 pointer hi
0501 AO 00 LOY #$00
0503 Bl 71 LDA ($7l),Y get byte from buffer
0505 60 RTS

****************************** check track and sector numbers
0506 BO 5B 02 LOA $025B,X command code for disk controller
0509 29 01 ANO #$01 drive number
D50B 00 40 02 ORA $0240 plus command code
050E A8 PHA save
050F 86 F9 STX $F9 buffer number
D511 8A TXA

166

Anatomy of the 1541 Disk Drive

0512 OA ASL A times 2
D513 AA TAX
OS14 BS 07 LOA $ 07 ,X sector
0516 80 40 02 STA $0240 save
OS19 BS 06 LOA $06,X track
DSIB FO 20 BEO $oS4A 66, , illegal track or sector'
oSlo CD 07 FE CMP $FE07 36, highest track number + 1
D520 BO 28 BCS $oS4A 66, , illegal track or sector'
0522 AA TAX
D523 68 PLA command code
D524 48 PHA
D525 29 FO AND lI$FO
D527 C9 90 CMP #$90 code for writing?
D529 DO 4F BNE $DS7A no
D52B 68 PLA
D52C 48 PHA
D520 4A LSR A
D52E BO 05 BCS $OS35
D530 AD 01 01 LOA $0101
D533 90 03 BCC $OS38
D535 AD 02 01 LOA $0102
D538 FO 05 BEO $053F
D53A CO D5 FE CMP $FED5 IAI, format marker
D53D DO 33 BNE $0572 73, 'cbm dos v2.6 1541'
D53F 8A TXA track number
D540 20 4B F2 JSR $F24B get maximum sector number
D543 CD 40 02 CMP $0240 compare with sector number
D546 FO 02 BEO $D54A equal, then error
D548 BO 30 BCS $057A smaller?
054A 20 52 05 JSR $0552 get track and sector number
0540 A9 66 LDA #S66
D54F 4C 45 E6 ,TMP $E645 66, 'illegal track or sector'

****************************** get track and sector number
D552 A5 F9 LOA $F9 buffer number
D554 OA ASL A *2
0555 AA TAX as index
D5S6 B5 06 LOA S06,X
0558 85 80 STA $80 track
OSSA B5 07 LOA $07,X
055C 85 81 STA $81 sector
055E 60 RTS

055F A5 80 LOA $80 track
D561 FO EA BEO $0540 zero, then error
0563 Co 07 FE CMP $FED7 36, maximum track number + 1
D566 BO E5 BCS $054D 66, 'illegal track or sector'
0568 20 4B F2 JSR $F24B get maximum sector number
056R C5 81 CMP $81 sector
OS60 FO OE BEO S054D
056F 90 DC BCC $054D error
0571 60 RTS

0572 20 52 D5 JSR S0552 get track and sector numbet
0575 A9 73 LDA #$73

167

Anatomy of the 1541 Disk Drive

D577 4C 45 E6 JMP $E645 73, 'cbm dos v2.6 1541'

D57A A6 F9 LDX $F9 buffer number
D57C 68 PLA
D57D 8D 4D 02 STA $024D command code for disk controller
D580 95 00 STA $OO,X in command register
D582 9D 5B 02 STA $025B,X and write in table
D585 60 RTS

****************************** read block
D586 A9 80 LDA #$80 code for read
D588 DO 02 BNE $D58C

****************************** write block
D58A A9 90 LDA #$90 code for write
D58C 05 7F ORA $7F drive number
D58E A6 F9 LDX $F9 buffer number
D590 8D 4D 02 STA $024D
D593 AD 4D 02 LDA $024D command code
D596 20 OE D5 JSR $D50E check track and sector

****************************** verify execution
D599 20 A6 D5 JSR $D5A6 verify execution
D59C BO FB BCS $D599 wait for end
D59E 48 PHA
D59F A9 00 LDA #$00
D5Al 8D 98 02 STA $0298 erase error flag
D5A4 68 PLA
D5A5 60 RTS

D5A6 B5 00 LDA $OO,X cmd code (bit 7) still in reg?
D5A8 30 1A BMI SD5C4 yes
D5AA C9 02 CMP #$02
D5AC 90 14 BCC $D5C2 error-free execution
D5AE C9 08 CMF #$08 8
D5BO Fa 08 BEO $D5BA write protect
D5B2 C9 08 CMP #$OB 11
D5B4 Fa 04 BEO $D5BA ID mismatch
D586 C9 OF CMF #SOF 15
D5B8 DO OC BNE $D5C6
D5BA 2C 98 02 BIT $0298
DSBD 30 03 BMI $DSC2
D5BF 4C 3F D6 JMP SD63F create error message
D5C2 18 CLC execution ended
D5C3 60 RTS

D5C4 38 SEC execution not yet ended
D5C5 60 RTS

D5C6 98 TYA
D5C7 48 PHA
D5C8 AS 7F LOA $71" drive number
D5CA 48 PHA
05CB BO 58 02 LDA $025B,X

168

Anatomy of the 1541 Disk Drive

D5CE 29 01 AND #$01 drive number
D5DO 85 7F STA $7F
D5D2 A8 TAY
D5D3 B9 CA FE LDA $FECA,Y bit roodel for drive
D5D6 8D 6D 02 STA $026D
D5D9 20 A6 D6 JSR $D6A6 read attempt
D5DC C9 02 CMP #$02
D5DE BO 03 BCS $D5E3 not ok?
D5EO 4C 6D D6 JMP $D66D done
D5E3 BD 5B 02 LDA $025B,X command code
D5E6 29 FO AND #$FO isolate
D5E8 48 PHA
D5E9 C9 90 CMP #$90 code for write
D5EB DO 07 BNE $D5F4 no
D5ED A5 7F LDA $7F drive number
D5EF 09 B8 ORA #$B8
D5Fl 9D 5B 02 STA $025B,X
D5F4 24 6A BIT $6A
D5F6 70 39 BVS $D63l
D5F8 A9 00 LDA #$00
D5FA 8D 99 02 STA S0299 cntr for searches next to track
D5FD 8D 9A 02 STA S029A
D600 AC 99 02 LDY $0299 counter
D603 AD 9A 02 LDA S029A
D606 38 SEC
D607 F9 DB FE SBC $FEDB,Y constants for read atteropts
D60A 8D 9A 02 STA $029A
D60D B9 DB FE LDA $FEDB,Y
D6l0 20 76 D6 JSR $D676 position head next to track
D6l3 EE 99 02 INC $0299 increment counter
D616 20 A6 D6 JSR $D6A6 read ateropt
D6l9 C9 02 CMP #$02 return message
D6lB 90 08 BCC $D625 smaller than 2, ok?
D6lD AC 99 02 LOY $0299 load counter
D620 B9 DB FE LOA $FEDB,Y get constants
D623 DO DB BNE $0600 not yet zero (table end)?
D625 AO 9A 02 LDA $029A
D628 20 76 D6 JSR $D676 position head
062B B5 00 LDA $OO,X
D62D C9 02 CMP #$02 return message
062F 90 2B BCC $D65C ok?
0631 24 6A BIT S6A
D633 10 OF BPL SD644
0635 68 PLA command code
D636 C9 90 CMP #S90 for writing?
D638 DO 05 BNE SD63F no
063A 05 7F ORA S7F drive number
D63C 90 5B 02 STA S025B,X command code in table
063F 85 00 LDA SOO,X return message
0641 20 OA E6 JSF SE60A set error message
D644 68 PLA
0645 2C 98 02 BIT $0298
D648 30 23 BMI $D66D
D64A 48 PHA
064B A9 CO LOA #SCO command code for head positioning

169

Anatomy of the 1541 Disk Orive

0640 05 7F ORA $7F drive number
064F 95 00 STA $OO,X in command registe~
0651 B5 00 LOA $OO,X
0653 30 FC BM! S0651 wait for execution
0655 20 A6 06 JSR $06A6 attempt command execution agair
0658 C9 02 CMP #$02 return message
065A BO 09 RCS $0635 incorrect?
065C 68 PLA
0650 C9 90 CMP #$90 command code for writing
065F 00 OC RNE $066D no
0661 05 7F ORA $7F drive number
0663 90 5B 02 STA $025B,X in table
0666 20 A6 D6 JSR $06A6 attempt execution again
0669 C9 02 CMP #$02 return message
066B BO 02 BCS $063F error?
0660 68 PLA
066E 85 7F STA $7F get drive number back
0670 68 PLA
0671 A8 TAY
0672 B5 00 LOA $OO,X error code
0674 18 CLC end-of-execution flag
0675 60 RTS

0676 C9 00 CMP #$00
0678 FO 18 BEO $0692
067A 30 OC BM! $0688
067C AO 01 LOY #$01
067E 20 93 D6 JSR S0693 transmit data for head position
0681 38 SEC
0682 E9 01 SBC #$01
0684 00 F6 BNE S067C
0686 FO OA BEO $0692

0688 AO FF LOY #SFF
068A 20 93 06 JSR S0693 transmit data for head position
0680 18 CLC
068E 69 01 AOC #SOl
0690 00 F6 BNE SD688
0692 60 RTS

0693 48 PHA
0694 98 TYA
0695 A4 7F LOY S7F drive number
0697 99 F'E 02 STA $02FE,Y
069A 09 FE 02 CMP $02FE,Y wait for r-eturn message from
069D FO FB REO $069A
069F A9 00 LOA #$00 disk contr-011er
06A1 99 FE 02 STA $02FE,Y
06A4 68 PLA
06A5 60 RTS

D6A6 A5 6A LOA $6A maximum number of repetitions
06A8 29 3F ANO #S3F
D6AA A8 TAY
D6AB AD 60 02 LOA $026D bit for LED

170

D6AE
D6Bl
D6B4
D6B7
D6B9
D6BB
D6BD
D6BF
D6Cl
D6C2
D6C4
D6C5
D6C8
D6CB
D6CE
D6CF

4D ODIC
8D ODIC
BD 5B 02
95 00
B5 00
30 FC
C9 02
90 03
88
DO E7
48
AD 6D 02
OD ODIC
8D ODIC
68
60

EOR $lCOO
STA $lCOO
LDA $025B,X
STA $OO,X
LDA $OO,X
BMI $D6B9
CMP #$02
BCC $D6C4
DEY
BNE $D6AB
PHA
LDA $026D
ORA $lCOO
STA $lCOO
PLA
RTS

D6DO
D6D3
D6D4
D6D5
D6D7
D6DA
D6DC
D6DF
D6El
D6E2
D6E3

20 93 DF
OA
A8
A5 80
99 06 00
A5 81
99 07 00
A5 7F
OA
AA
60

JSR $DF93
ASL A
TAY
LDA $80
STA $0006,Y
LDA $81
STA $0007,Y
LDA $7F
ASL
TAX
RTS

D6E4
D6E6
D6E7
D6E9
D6EA
D6EC
D6ED
D6EF
D6FO
D6F2
D6F4
D6F7
D6FA
D6FB
D6FD
D6FF
D701
D703
D706
D707
D709
D70B
D70E
D711

A5 83
48
A5 82
48
A5 81
48
A5 80
48
A9 11
85 83
20 3B DE
AD 4A 02
48
A4 E2
29 01
85 7F
A6 F9
5D 5B 02
4A
90 OC
A2 01
8E 92 02
20 AC C5
FO lD

LDA $83
PHA
LDA $82
PHA
LDA $81
PHA
LDA $80
PHA
LDA #$11
STA $83
JSR $DE3B
LDA $024A
PHA
LDA $E2
AND #$01
STA $7F
LDX $F9
EOR $025B,X
LSR A
Bce $D715
LDX #$01
STX $0292
JSR $C5AC
BEO $D730

Anatomy of the 1541 Disk Drive

command
transmit to disk controller
and return message
wait
ok?
yes
decrement counter
attempt again

LED off

transmit param to disk controller
get buffer number

track number
transmit
sector number
transmit
drive number
times 2

enter file in directory
secondary address

channel number

sector number

track number
save

secondary address 17
get track and sector number
file type
save
drive number

set
buffer number

equal drive number?

pointer in directory
load dir and find first entry
not found?

171

Anatomy of the 1541 Disk Drive

0713 00 28 BNE $0730 found?

0715 AO 91 02 LOA $0291 sector number in directory
0718 FO OC BEO $0726 equal zero
071A C5 81 CMP $81 equal sector number?
07lC FO IF BEO $0730 yes
D7lE 85 81 STA $81 save sector number
0720 20 60 04 JSR S0460 read block
0723 4C 30 07 JMP $0730

0726 A9 01 LOA lI$Ol
0728 80 92 02 STA $0292 pointer to one
072B 20 17 C6 JSR $C617 find next entry in directory
D72E DO 00 BNE $0730 found?
0730 20 80 04 JSR $0480 write directory block
0733 A5 81 LOA $81 sector number
0735 80 91 02 STA $0291
0738 A9 02 LOA lIS02
073A 80 92 02 STA $0292 pointer to 2
0730 AD 92 02 LOA $0292
0740 20 C8 04 JSR $04C8 set buffer pointer
0743 68 PLA
0744 80 4A 02 STA $024A file type
0747 C9 04 CMP #$04 reI-file?
0749 00 02 BNE $0740 no
074B 09 80 ORA #$80 set bit 7
0740 20 Fl CF JSR $CFFI and write in buffer
0750 68 PLA
0751 80 80 02 STA $0280 following track
0754 20 FI CF JSR $CFFI in buffer
0757 68 PLA
0758 80 85 02 STA $0285 following sector
075B 20 Fl CF JSR $CFFI in buffer
075E 20 93 OF JSR $OF93 get buffer number
0761 AS TAY
0762 AO 7A 02 LOA $027A pointer to dr i ve numbe r
0765 AA TAX
0766 A9 10 LOA #$10 16, length of filename
0768 20 6E C6 JSR $C66E write filename in buffer
076B AO 10 LOY #$10
076D A9 00 LOA #$00
076F 91 94 STA (S94),Y fill with zeroes at pos 16
0771 C8 INY
D772 CO IB CPY #$lB position 27 already?
0774 90 F9 BCC $076F no
0776 AO 4A 02 LDA $024A file type
0779 C9 04 CMP #$04 reI-file
077B 00 13 BNE $0790 no
0770 AO 10 LDY #$10
077F AD 59 02 LOA $0259 track
0782 91 94 STA ($94) ,Y
0784 C8 INY
0785 AD 5A 02 LDA S025A and sector
0788 91 94 STA (S94) , Y the side-sectors in dir entry
078A C8 INY

172

Anatomy of the 1541 Disk Drive

D78B AD 58 02 LOA $0258 record length
D78E 91 94 STA (S94) ,Y in directory
D790 20 64 D4 JSR $D464 write block
D793 68 PLA
D794 85 82 STA $82 channel number
D796 AA TAX
D797 68 PLA
D798 85 83 STA $83 secondary address
D79A AD 91 02 LDA $0291
D79D 85 D8 STA $D8
D79F 9D 60 02 STA $0260,X
D7A2 AD 92 02 LDA $0292
D7A5 85 DD STA SDD
D7A7 9D 66 02 STA $0266,X
D7AA AD 4A 02 LDA $024A file type
D7AD 85 E7 STA $E7
D7AF A5 7F LDA $7F drive number
D7Bl 85 E2 STA SE2
D7B3 60 RTS

****************************** OPEN command, secondary adr <> 15
D7B4 A5 83 LDA S83 secondary address
D7B6 8D 4C 02 STA S024C
D7B9 20 B3 C2 JSR SC283 get line length, erase flags
D7BC 8E 2A 02 STX S022A
D7BF AE 00 02 LDX S0200 first character from buffer
D7C2 AD 4C 02 LDA S024C secondary address
D7C5 DO 2C BNE SD7F3 not equal 0 (LOAD)?
D7C7 EO 2A CPX ltS2A '* ,
D7C9 DO 28 fiNE $D7n
D7CB A5 7E LDA S7E last track number
D7CD FO 4D BEO $08lC
07CF 85 80 STA $80 track number
D7Dl AD 6E 02 LDA S026E last drive number
D7D4 85 7F STA S7F drive number
07D6 85 E2 STA $E2
D7D8 A9 02 LDA #$02
D7DA 85 E7 STA $E7 set data type to program
D7DC AD 6F 02 LDA S026F last sector number
D7DF 85 81 STA S8l sector
D7El 20 00 Cl JSR $CIOO turn LBD on
D7E4 20 46 DC JSR SDC46 allocate buffer, read block
D7E7 A9 04 LDA #$04 file type
D7B9 05 7F ORA S7F drive number
D7EB A6 82 LDX S82 channel number
D7ED 99 EC 00 STA $OOEC,Y set flag
D7FO 4C 94 Cl JMP $C194 done

D7F3 EO 24 CPX *$ 24 '$,
D7F5 DO IE BNE $0815 no
D7F7 AD 4C 02 LDA S024C secondary address
D7FA DO 03 BNE SD7FF not equal to zero?
D7FC 4C 55 DA JMP $OA55 OPEN S

D7FF 20 Dl Cl JSR SCIDI analyze line to end

173

Anatomy of the 1541 Disk Drive

0802 AD 85 FE LOA $FE85 18, directory track
0805 85 80 STA $80 track
0807 A9 00 LOA #$00
0809 85 81 STA $81 sector 0
080B 20 46 DC JSR $OC46 allocate buffer, read block
080E AS 7F LOA $7F drive number
0810 09 02 ORA #$02
0812 4C EB 07 J~lP $07EB continue as above

0815 EO 23 CPX #$23 '# '
D817 DO 12 BNE $082R
0819 4C 84 CB JMP $CB84 open direct access file

08lC A9 02 LOA #$02
08lE 80 96 02 STA $0296 file type program
D821 A9 00 LOA #$00
0823 85 7F STA $7F drive 0
0825 80 8E 02 STA $028E
0828 20 42 DO JSR $0042 load BAM
082B 20 E5 Cl JSR $CIE5 analyze line
082E DO 04 BNE $0834 colon found?
0830 A2 00 LOX #$00
0832 FO OC BEO $0840
D834 8A TXA comma found?
D835 FO 05 REO $083C no
0837 A9 30 LOA #$30
0839 4C C8 Cl JMP $C1C8 30, 'syntax error'

083C 88 DEY
D830 FO 01 BEO $0840
083f' 88 OEY
0840 8C 7A 02 STY $027A pointer to drive number
0843 A9 80 LOA #$80 shift CR
0845 20 68 C2 JSR $C268 analyze line to end
0848 E8 INX
0849 8E 78 02 STX $0278 comma counter
084C 20 12 C3 JSR $C312 get drive number
D84F 20 CA C3 JSR $C3CA check drive number
D852 20 9D C4 JSR $C49D find file entry in directory
0855 A2 00 LDX #$00 default values
0857 8E 58 02 STX $0258 record length
D85A 8E 97 02 STX $0297
D85D 8E 4A 02 STX $024A file type
D860 E8 INX
0861 EC 77 02 CPX $0277 comma before equal sign?
0864 BO 10 BCS $0876 no
D866 20 09 DA JSR $DA09 get file type and control mode
0869 Ell INX
086A EC 77 02 CPX $0277 additional comma?
0860 BO 07 BCS $0876 no
086F CO 04 CPY *$04
087l FO 3E REO S08Bl
0873 20 09 DA JSR $OA09 get file type and control method
D876 AE 4C 02 LOX $024C
0879 86 83 STX $83 secondary address

174

Anatomy of the 1541 Disk Drive

D87B EO 02 CPX #$02 greater than 2?
D87D BO 12 BCS $DB91 yes
D87F BE 97 02 STX $0297 o or 1 (LOAD or SAVE)
D882 A9 40 LDA #$40
D884 8D F9 02 STA $02F9
D887 AD 4A 02 LDA $024A file type
D88A DO IB BNE $D8A7 not deleted
D88C A9 02 LDA #$02 PRG
D88E 8D 4A 02 STA $024A -as file type
D891 AD 4A 02 LDA $024A
D894 DO 11 BNE $D8A7
D896 AS E7 LDA $E7
D898 29 07 AND #$07 get file type and command line
D89A 80 4A 02 STA $024A
D89D AD 80 02 LDA $02BO track number
DBAO DO 05 BNE $DBA7 not equal zero?
D8A2 A9 01 LDA #$01
DBA4 BD 4A 02 STA $024A file type sequential
DBA7 AD 97 02 LDA $0297 control method
DBAA C9 01 CMP #$01 'w'
DBAC FO 18 BEO $D8C6 yes
DBAE 4C 40 D9 JMP $0940

DBBI BC 7A 02 LDY $027A,X pointer behind second comma
D8B4 B9 00 02 LDA $0200,Y get value
D8B7 BD 5B 02 STA $025B record length
DBBA AD 80 02 LDA $02BO track number
DBBD DO B7 RNE $DB76
DBBF A9 01 LOA #$01 'w'
DBCl BD 97 02 STA $0297 as control method
D8C4 DO BO BNE $DR76

D8C6 AS E7 LOA $E7 file type
DBC8 29 80 AND #$80 isolate wildcard flag
D8CA AA TAX
D8CR DO 14 BNE $D8El wildcard in name
DB CD A9 20 LDA #$20
D8CF 24 E7 BIT $E7 was file closed?
D8Dl FO 06 BEO $D8D9 yes
D8D3 20 B6 C8 JSR $C8B6 byte 0 in buffer and write block
D8D6 4C E3 D9 JMP $D9E3

D8D9 A9 80 02 LOA $0280 track number of the first block
D8DC DO 03 BNE $D8El already existing
D8DE 4C E3 D9 JMP $D9E3
D8El AD 00 02 LDA $0200 first character from input buffer
D8E4 C9 40 CMP #$40 I@ I?

D8E6 FO 00 BEO $D8FS yes
D8E8 8A TXA
D8E9 DO 05 BNE $DBFO wildcard set?
D8EB A9 63 LDA #$63
DBED 4C C8 CI JMP $CICB 63, 'file exists'
DBFO A9 33 LDA #$33
D8F2 4C CB CI JMP $CIC8 33, 'syntax error'

175

Anatomy of the 1541 oisk Orive

****************************** open a file with overwriting
08F5 AS E7 LOA $E7 file type
08F7 29 07 ANO *$07 isolate
08F9 CO 4A' 02 CMP $024A
08FC DO 67 BNE $0965 file type different?
08FE C9 04 CMP 1t$04 reI-file?
0900 FO 63 BEO $0965 64, , file type mismatch'
0902 20 OA DC JSR $OCDA
0905 AS 82 LOA $82
0907 8D 70 02 STA $0270 save channel number
D90A A9 11 LDA *$11
D90C 20 EB DO JSR $DOEB open read channel
D911 AD 94 02 LDA $0294
0914 20 C8 04 JSR $04C8 set buffer pointer for directory
0917 AO 00 LOY *$00
0919 Bl 94 LDA ($94),Y file type
09lB 09 20 ORA *$20 set bit S, open file
0910 91 94 STA (S94),Y
091F AD 1A LOY lI$lA
0921 AS 80 LOA $80 track
0923 91 94 STA ($94) ,Y
092S C8 INY
0926 A5 81 LOA $81 and sector
0928 91 94 STA ($94), Y for open with at-sign
092A AE 70 02 LOX S0270 channel number
0920 AS 08 LDA $08
092F 90 60 02 STA $0260,X pointer to directory block
0932 AS 00 LOA $00
0934 90 66 02 STA S0266,X
0937 20 3B OE JSR $DE3B get track and sector number
093A 20 64 04 JSR $D464 write block
0930 4C EF 09 JMP $D9EF prepare trk, sector, and drive II

0940 AO 80 02 LOA $0280 first track number
0943 00 OS BNE S094A file not erased?
0945 A9 62 LOA *$62
0947 4C C8 Cl JMP $ClC8 62, , file not found'
094A AD 97 02 LOA $0297 control mode
094D C9 03 CMP #$03 'M'
094F FO OB BEO $D9SC yes,then no test of unclosed fill
0951 A9 20 LOA #$20 bit S
0953 24 E7 HIT $E7 test in file type
0955 FO 05 BEO S09SC not set, ok
0957 A9 60 LOA #$60
0959 4C C8 C1 JMP i$ClC8 60, 'write file open',
D95C AS E7 LDA SE7
095E 29 07 AND #$07 isolate file type
0960 CD 4A 02 C~IP $024A
D963 FO 05 BEO $096A
D965 A9 64 LOA i$64
D967 4C C8 Cl JMP SClC8 64, 'file type mismatch'
D96A AO 00 LOY #SOO
D96C 8C 79 02 STY $0279
D96F AE 97 02 LDX S0297 control mode
D972 EO 02 CPX #$02 IAI, append

176

Anatomy of the 1541 Disk Drive

D974 DO lA BNE $D990 no
D976 C9 04 CMP #$04 reI-file?
D978 FO EB BEQ $D965
D97A Bl 94 LDA ($94), Y
D97C 29 4F AND #$4F
D97E 91 94 STA ($94), Y
D980 A5 83 LDA $83
D982 48 PHA
D983 A9 11 LDA .$11
D985 85 83 STA $83 channel 17
D987 20 3B DE JSR $DE3B get track and sector number
D98A 20 64 D4 JSR $D464 write block
D98D 68 PLA
D98E 85 83 STA $83 get channel • back
D990 20 AO D9 JSR SD9AO
D993 AD 97 02 LDA $0297 control Illode
D996 C9 02 CMP #$02
D998 DO 55 BNE $D9EF
D99A 20 2A DA JSR $DA2A
D99D 4C 94 Cl JMP $C194 done

D9AO AO 13 LDA .$13
D9A2 Bl 94 LDA ($94), Y track
D9A4 8D 59 02 STA $0259
D9A7 C8 INY
D9A8 Bl 94 LDA ($94),Y
D9AA 8D 5A 02 STA $025A
D9AD C8 INY
D9AE Bl 94 LDA (S94), Y record length
D9BO AE 58 02 LDX $0258 last record len
D9B3 8D 58 02 STA $0258
D9B6 8A TXA
D9B7 FO OA BEO SD9C3
D9B9 CD 58 02 CMP .$0258
D9BC FO 05 BEQ $D9C3
D9BE A9 50 LDA #$50
D9CO 20 C8 C1 JSR $CIC8 50, 'record not present'
D9C3 AE 79 02 LDX $0279
D9C6 BD 80 02 LDA $0280,X
D9C9 85 80 STA $80 track
D9CB BD 85 02 LDA $0285,X
D9CE 85 81 STA $81 sector
D9DO 20 46 DC JSR $DC46
D9D3 A4 82 LDY $82
D9D5 AE 79 02 LDX $0279
D9D8 B5 D8 LDA $D8,X
D9DA 99 60 02 STA $0260,Y
D9DD B5 DD LDA $DD,X
D9DF 99 66 02 STA $0266,Y
D9E2 60 RTS

D9E3 A5 E2 LDA $E2 drive #
D9E5 29 01 AND #$01
D9F7 85 7F STA $7E'
D9E9 20 DA DC JSR SDCDA

177

Anatomy of the 1541 Disk Drive

D9EC 20 E4 D6 JSR $D6E4
D9EF A5 83 LDA $83 channel #
D9Fl C9 02 CMP #$02
D9F3 BO 11 BCS $DA06
D9F5 20 3E DE JSR $DE3E
D9F8 A5 80 LDA $80
D9FA 85 7E STA $7E
D9FC A5 7F LDA $7F
D9FE 8D 6E 02 STA $026E
DAOI A5 81 LDA $81
DA03 8D 6F 02 STA $026F
DA06 4C 99 Cl JMP $C199

****************************** check file type and control mOl
DA09 BC 7A 02 LDY $027A,X pointer in command line
DAOC B9 00 02 LDA $0200,Y get characters from line
DAOF AO 04 LDY #$04
DAll 88 DEY
DA12 30 08 BMI $DAIC
DA14 D9 B2 FE 01P $FEB2,Y control modes • R I, I WI, 'AI, I ~

DAl7 DO F8 BNE $DAll
DA19 BC 97 02 STY $0297 save
DAlC AO 05 LDY #$05
DAlE 88 DEY
DAIF 30 08 BMI $DA29
DA2l D9 86 FE CMP $FEB6,Y file types ID' ,'S' ,'pi ,lUI ,'L I

DA24 DO F8 BNE $DAlE
DA26 8C 4A 02 STY $024A save
DA29 60 RTS

****************************** preparation for Append
DA2A 20 39 CA JSR $CA39 open channel to read, get byte
DA2D A9 80 LOA #$80
DA2F 20 A6 DO JSR $DDA6 last byte?
DA32 FO F6 BEQ $DA 2A no
DA34 20 95 OE JSR SDE95 get track and sector number
DA37 A6 81 LDX S8l sector number
DA39 E8 INX
DA3A 8A TXA
DA3B DO 05 BNE $0A42 not $FF?
DA3D 20 A3 01 JSR $DIA3 close buffer, write block
DA40 A9 02 LDA #$02
DA42 20 C8 D4 JSR $D4C8 buffer pointer to 2
DA45 A6 82 LDX $82 channel number
DM7 A9 01 LOA #$01
OA49 95 F2 STA $F2,X set flag for WRITE
OMB A9 80 LDA #S80
OA40 05 82 ORA $82
OMF A6 83 LOX $83
DA5l 90 2B 02 STA S022B,X channel number in table
OA54 60 RTS

****************************** OPEN U$"
DA55 A9 OC LOA #SOC command number 12
OA57 80 2A 02 STA $022A

178

DA5A
DA5C
DA5F
DA60
DA62
DM3
DM5
DA68
DMB
DA6D
DA6F
DA72
DA75
DA78
DA7A
DA7C
DA7E
DAB 1
DA84
DA86
DAB9
DA8B
DA8E
DA90
DA91
DA92
DA95
DA98
DA9B
DA9E
DAAl
DAA4
DAA7
DAAA
DAAD
DAM'
DAB2
DAB4
DAB7
DAB9
DABB
DABD
DABF

A9 00
AE 74 02
CA
FO OB
CA
DO 21
AD 01 02
20 BD C3
30 19
85 E2
EE 77 02
EE 78 02
EE 7A 02
A9 80
85 E7
A9 2A
BD 00 02
BD 01 02
DO lB
20 E5 Cl
DO 05
20 DC C2
AO 03
88
88
BC 7A 02
20 00 C2
20 98 C3
20 20 C3
20 CA C3
20 B7 C7
20 9D C4
20 9E EC
20 37 Dl
A6 82
9D 3E 02
A4 7F
8D 8E 02
09 04
95 EC
A9 00
85 A3
60

LDA *$00
LDX $0274
DEX
BEO $DA6D
DEX
BNE $DAB6
LDA $0201
JSR $C3BD
BMI SDAB6
STA SE2
INC $0277
INC $0278
INC $027A
LDA *$80
STA $E7
LDA *$2A
STA $0200
STA $0201
BNE $DA9E
JSR $ClE5
BNE $DA90
JSR $C2DC
LDY #$03
DEY
DEY
STY $027A
JSR $C200
JSR $C398
JSR $C320
JSR $C3CA
JSR $C7B7
JSR SC49D
JSR $EC9E
JSR $D137
LDX S82
STA $023E
LDA S7F
STA $028E
ORA *$04
STA $EC,X
LDA #SOO
STA $A3
RTS

Anatomy of the 1541 Disk Drive

second character
get drive number
not a plain number?

set wildcard flag ,* ,
as file name in command buffer

absolute jump
test input line to ':'
found?
erase flags

pointer to drive no. in command
analyze 1 ine
ascertain file type
get drive number
initialize drive if necessary
prepare disk title
load directory
create and prepare directory
get byte from buffer
channel number
byte in output register
drive number
save as last drive number

PRG-flag

set pointer back in input buffer

****************************** CLOSE-routine
DACO
DAC2
DAC5
DAC7
DAC9
DACB
DACE
DADI

DAD4

A9 00
8D F9 02
A5 83
DO OB
A9 00
BD 54 02
20 27 D2
4C DA D4

C9 OF

LDA *$00
STA $02F9
LDA SB3
BNE $DAD4
LDA #$00
STA $0254
JSR $D227
JMP $D4DA

CMP #$OF

179

secondary address
not zero?
secondary address 0, LOAD

close channel
close internal channels 17 & 18

15

Anatomy of the 1541 Disk Drive

DAD6 FO 14 BEO $DAEC yes, close all channels
DADS 20 02 DB JSR $DB02 close file
DADB AS 83 LDA $83 secondary address
DADD C9 02 CMP #$02
DADF 90 FO BCC $DADI smaller than 2?
DAEI AD 6C 02 LDA $026C
DAE4 DO 03 BNE $DAE9
DAE6 4C 94 Cl JMP $C194 termination

DAE9 4C AD CI JMP $C1AD
DAEC A9 OE LDA #$OE 14
-DAEE 85 83 STA $83 secondary address
DAFO 20 02 DB JSR $DB02 close file
DAF3 C6 83 DEC $83 next secondary address
DAF5 10 F9 BPL $DAFO
DAF7 AD 6C 02 LDA $026C
DAFA DO 03 BNE $DAFF
DAFC 4C 94 C1 JMP $C194 termination
DAFF 4C AD C1 JMP $CIAD

****************************** close file
DB02 A6 83 LDX $83 secondary address
DB04 BD 2B 02 LDA $022B,X get channel number
DB07 C9 FF CMP #$FF no channel associated?
DB09 DO 01 BNE $DBOC
DBOB 60 RTS no, then done

DBOC 29 OF AND #$OF isolate channel number
DBOE 85 82 STA $82
DB10 20 25 D1 JSR $D125 check data type
DBl3 C9 07 CMP #$07 direct access?
DB15 FO OF BEO $DB26 yes
DB17 C9 04 CMP #$04 reI-file?
DB19 FO 11 BEO $DB2C yes
DBIB 20 07 D1 JSR $D107 channel for writing open
DBIE BO 09 BCS $DB29 no file for writing?
DB20 20 62 DB JSR $DB62 write last block
DB23 20 A5 DB JSR $DBA5 wri te en try in d ir and block
DB26 20 F4 EE JSR $EEF4 write BAM
DB29 4C 27 D2 JMP $D227 close channel

DB2C 20 FI DD JSR $DDFI get buffer number, write block
DB2F 20 IE CF JSR $CF1E change buffer
DB32 20 CB El .TSR $EICB get last side-sector
DB35 A6 D5 LDX $D5 side-sector number
DB37 86 73 STX $73
D839 E6 73 INC $73
DB3B A9 00 LDA #$00
DB3D 85 70 STA $70
DB3F 85 71
DB41 A5 D6 LDA $D6
DB43 38 SEC
DB44 E9 OE SBC #$OE minus 14 for pointer
CB46 85 72 STA $72
DB48 20 51 DF JSR $ DF51 calculate block number of file

180

Anatomy of the 1541 Disk Drive

DB4B A6 B2 LDX $B2 channel number
DB4D AS 70 LDA $70
DB4F 95 B5 STA $B5,X record number 10
DB51 A5 71 LDA $71
DB53 95 BB STA $BB,X record number hi
DB55 A9 40 LDA #$40
DB 57 20 A6 DD JSR $DDA6 bit 6 set?
DB5A FO 03 BEO $DB5F no
DB5C 20 A5 DB JSR $DBAS enter in dirctory
DB5F AC 27 D2 JMP $D227 close channel

**** •. ************************* write last block
DB62 A6 B2 LDX S82 channel number
DB64 B5 B5 LDA $B5,X record number 10
DB66 15 BB ORA $BB,X record number hi
DB68 DO OC BNE $DB76 not zero?
DB6A 20 EB D4 JSR SD4E8 set buffer pointer
DB6D C9 02 C~lP #S02
DB6F DO 05 BNE $DB76 not 2
DB71 A9 OD LDA #SOD CR
DB73 20 Fl CF JSR SCFFI in buffer
DB76 20 E8 D4 JSR $D4EB set buffer pointer
DB79 C9 02 CMP #$02 now equal to 2?
DB7B DO OF BNE $DB8C no
DB7D 20 lE CF JSR $CF'l E change buffer
DB80 A6 82 LDX $82 channel number-
DB82 B5 B5 LDA $B5,X record number 10
DBB4 DO 02 BNE SDB88
DB86 D6 BB DEC $BB,X decrement block number hi
DBB8 D6 B5 DEC SB5,X and block number 10
DBBA A9 00 LDA #$00
DBBe 38 SEC
DB8D E9 01 SBC #$01 set pointer to end
DBBF 4B PHA
DB90 A9 00 LDA #SOO
DB92 20 C8 D4 JSR S04C8 buffer pointer- to zero
DB95 20 F'l CF JSR $CFFI write zero in buffer
DB98 68 PLA second byte = pointer to end
DB99 20 Fl CF JSR $CFFI write in buffer
DB9C 20 C7 DO JSR SDOC7 write block to disk
DB9F 20 99 D5 JSR $D599 and verify
OBA2 4C IE CF JMP $CF'lE change buffer

****************************** directory entry
DBA5 A6 82 LDX $82 channel number
DBA7 8E 70 02 STX $0270 save
DBAA A5 83 LDA $83 secondary address
DBAC 48 PHA save
DBAD BD 60 02 LDA $0260,X sector number in directory
DBBO 85 81 STA $81 set
DBB2 BD 66 02 LOA $0266,X pointer in directory
DBB5 8D 94 02 STA $0294
DBB8 B5 EC LOA $ EC,X
OBBA 29 01 AND #SOl
DBBC 85 7F STA $ 7 ~~ drive number

181

Anatomy of the 1541 Disk Drive

DBBE AD 85 FE LDA $FE8S 18, directory track
DBCl 85 80 STA $80 set
DBC3 20 93 DF JSR $DF93 increment buffer number
DBC6 48 PHA
DBC7 85 F9 STA $F9
DBC9 20 60 D4 JSR $D460 read directory block
DBCC AO 00 LDY #$00
DBCE BD EO ~'E LDA $FEEO,X buffer address
DBDI 85 87 STA S87
DBD3 AD 94 02 LDA $0294 buffer pointer
DRD6 85 86 STA $86
DBDB Bl 86 LDA (S86), Y file type
DBDA 29 20 AND #$20 file closed?
DBDC FO 43 BEQ $DC21 yes
DBDE 20 25 Dl JSR $D125 check file type
DBEI C9 04 CMP #$04 reI-file?
DBE3 FO 44 BEQ $DC29 yes
DBE5 Bl 86 LDA ($86),Y
DBE7 29 8F AND #$8F erase bits 4,5, and 6
DBE9 91 86 STA ($86) , Y in file type
DBEB C8 INY
DBEC Bl 86 LDA ($86),Y track number
DBEE 85 80 STA $80
DBFO 84 71 STY $71
DBF2 AO IB LDY #$lB
DBF4 Bl 86 LDA ($86),Y sector # of the file for
DBF6 48 PHA overwriting
DBF7 88 DEY
DBF8 Bl 86 LDA ($86) , Y track # for overwriting
DBFA DO OA BNE $DC06 set?
DBFC 85 80 STA $80 set track number
DBFE 68 PLA
D8FF 85 81 STA $81 sector number
DCOI A9 67 LDA #$67
DC03 20 45 E6 JSR SE645 67, , illegal track or sector'
DC06 48 PHA
DC07 A9 00 LDA #$00
DC09 91 86 STA ($86),Y erase track number
DCOB C8 INY
DCOC 91 86 STA ($86) , Y and sector number of the
DCOE 68 PLA substitute file
DCOF A4 71 LDY $71
DCll 91 86 STA ($86),Y
DCl3 C8 INY set track & sec # of the new fil,
DC14 Bl 86 LDA ($86) , Y
DC16 85 81 STA $81
DC18 68 PLA
DC19 91 86 STA ($86),Y
DClB 20 7D C8 JSR $C87D erase all files
DClE 4C 29 DC JMP $DC29

DC2l Bl 86 LDA ($86),Y get fi Ie type
DC23 29 OF AND #$OF isolate bits 0-3
DC25 09 80 ORA #$80 set bit 7 for closed file
DC27 91 86 STA ($86) , Y

182

Anatomy of the 1541 Disk Drive

DC29 AE 70 02 LDX $0270 channel number
OC2C AO lC LOY lI$lC
OC2E B5 B5 LDA $B5,X block number 10
OC30 91 86 STA ($86) ,Y in directory entry
OC32 C8 INY
OC33 B5 BB LDA $BB,Y and block number hi
OC35 91 86 STA ($86),Y write
OC37 68 PLA buffer number
OC38 AA TAX
DC39 A9 90 LDA lI$90 code for 'writing'
OC3B 20 90 05 JSR $0590 write block
OC40 68 PLA
DC41 85 83 STA $83 secondary address
DC43 4C 07 01 JMP $0107 open channel for writing

****************************** read block, layout buffer
OC46 A9 01 LOA lI$Ol
OC48 20 E2 01 JSR $ 01 E2 find channel and buffer for read
OC4B 20 B6 DC JSR $DCB6 set pointer
DC4E AD 4A 02 LOA $024A file type
DC51 48 PHA save
OC52 OA ASL A
DCS3 05 7F ORA $7F drive number
OCS5 95 EC STA $EC,X
DC57 20 9B DO JSR $D09B read block in buffer
DC5A A6 82 LDX $82 channel number
DC5C A5 80 LDA $80 track
OC5E DO 05 BNE $DC65 following track?
DC60 A5 81 LOA $81 sector
DC62 9D 44 02 STA $0244,X as end pointer
OC6S 68 PLA file type
DC66 C9 04 CMP lI$04 rel-file?
DC68 DO 3F BNE $DCA9 no
DC6A A4 83 LDA $83 secondary address
DC6C B9 2B 02 LDA $022B,Y channel number
DC6F 09 40 ORA #$40
DC71 99 2B 02 STA $022B,Y set flag for READ and WRITE':
DC74 AD 58 02 LDA $0258 record length
DC77 95 C7 STA $C7,X
DC79 20 8E D2 JSR $D28E find buffer for side-sector
DC7C 10 03 BPL $DC81 found?
DC7E 4C OF D2 JMP $D20F 70, 'no channel'

DC8l A6 82 LDX $82 channel number
DC83 95 CD STA $CD,X
DC85 AC 59 02 LDY $0259
DC88 84 80 STY $80 track for side-sector
DC8A AC 5A 02 LDA $025A
DC8D 84 81 STY $81 sector for side-sector
DC8F 20 D3 D6 JSR $D6D3 transmit parameters to disk cont.
DC92 20 73 DE JSR $DE73 read block
DC95 20 99 D5 JSR $D599 and verify
DC98 A6 82 LDX $82 channel number
DC9A A9 02 LDA lI$02
DC9C 95 Cl STA $Cl,X pointer for writing

183

Anatomy of the 1541 Disk Drive

DC9E A9 00 LDA #$00
DCAO 20 C8 D4 JSR $D4C8 buffer pointer to zero
DCA3 20 53 E1 JSR $E153 find next record
DCA6 4C 3E DE JMP $DE3E get track and sector number

DCA9 20 56 Dl JSR $D156 get byte from buffer
DCAC A6 82 LDX $82 channel number
DCAE 9D 3E 02 STA $023E,X byte in output register
DCBl A9 88 LDA #$88 set flag for READ
DCB3 95 F2 STA $F2,X
DCB5 60 RTS

****************************** reset pointer
DCB6 A6 82 LDX $82 channel number
DCB8 B5 A7 LDA $A7,X buffer number
DCBA OA ASL A times 2
DCBB A8 TAY
DCBC A9 02 LDA lI$02
DCBE 99 99 00 STA $0099,y buffer pointer 10
DCC1 B5 AE LDA $AE,X
DCC3 09 80 ORA #$80 set bit 7
DCC5 95 AE STA SAE,X
DCC7 OA ASL A
DCC8 A8 TAY
DCC9 A9 02 LDA #$02
DCCB 99 99 00 STA S0099,Y buffer pointer 10
DCCE A9 00 LDA #$00
DCDO 95 B5 STA $B5,X block number 10
DCD2 95 BB STA $BB,X block number hi
DCD4 A9 00 LDA #$ 00
DCD6 9D 44 02 STA $0244,X end pointer
DCD9 60 RTS

****************************** construct a new block
DCDA 20 A9 Fl JSR $FIA9 find free sector in BAM
DCDD A9 01 LDA #$01
DCDF 20 DF Dl JSR $DIDF open channel
DCE2 20 DO D6 JSR $D6DO transm i t param to disk controller
DCE5 20 B6 DC JSR $DCB6 reset pointer
DCE8 A6 82 LDX $82 channel number
DCEA AD 4A 02 LDA $024A file type
DCED 48 PHA
DCEE OA ASL A
DCEF 05 7 r' ORA $7F drive number
DCn 95 EC STA $EC,X save as flag
DCn 68 PLA
DCF4 C9 04 CMP #$04 reI-file?
DCF6 FO 05 BEO $DCFD yes
DCF8 A9 01 LDA #$01
DCFA 95 F2 STA $F'2,X set WRITE flag
DCFC 60 RTS

DCFD A4 83 LDY $83 secondary address
DeFF 89 28 02 LDA S022B,Y channel number in table
DD02 29 3f' AND #$1F erase the top two bits

184

Anatomy of the 1541 Disk Drive

DD04 09 40 ORA #$40 set bit 6
DD06 99 2B 02 STA $022B,Y READ and WRITE flag
DD09 AD 5S 02 LDA $0258 record length
DDOC 95 C7 STA $C7,X in table
DDOE 20 SE D2 JSR $D28E find buffer
DDll 10 03 BPL $DD16 found?
DD13 4C OF D2 JMP $D20F 70, 'no channel'

DD16 A6 82 LDX $S2 channel number
DD18 95 CD STA $CD,X buffer number for side-sector
DDIA 20 Cl DE JSR $DECI erase buffer
DDID 20 IE Fl JSR $FllE find free block in BAM
DD20 AS 80 LDA $80 track
DD22 8D 59 02 STA $0259 for side-sector
DD25 A5 81 LDA $81 sector
DD27 SD 5A 02 STA $025A for side-sector
DD2A A6 82 LDX $82 channel number
DD2C B5 CD LDA $CD,X buffer number
DD2E 20 D3 D6 JSR $D6D3 transmit param to disk controller
DD31 A9 00 LDA #$00
DD33 20 E9 DE JSR $DEE9 buffer pointer to zero
DD36 A9 00 LDA #$00
DD38 20 8D DD JSR $DDSD
DD3B A9 11 LDA #$11 17
DD3D 20 8D DD JSR $DD8D as end pointer in buffer
DD40 A9 00 LDA #$00 zero
DD42 20 8D DD JSR $DDBD as side-sector number in bt'ffer
DD45 AD 58 02 LDA $0258 record length
DD48 20 8D DO JSR $DD8D in buffer
DD4B A5 SO LDA $SO track number of this block
DD4D 20 8D DD JSR $DD8D in buffer
DD50 A5 81 LDA $81 sector number
DD52 20 SD DD JSR $DD8D in buffer
DD55 A9 10 LDA #$10 16
DD57 20 E9 DE JSR $DEE9 buffer pointer to 16
DD5A 20 3E DE JSR SDE3E get track and sector number
DD5D AS SO LDA SSO track # of the first data block
DD5F 20 8D DO JSR SDD8D in buffer
DD62 AS 81 LDA S81 sector # of the first data block
DD64 20 SD DD JSR SDDSD in buffer
DD67 20 6C DE JSR SDE6C write block to disk
DD6A 20 99 D5 JSR $D599 and check
DD6D A9 02 LDA #S02
DD6F 20 CS D4 JSR $D4C8 buffer pointer to 2
DD72 A6 82 LDX SS2 channel number
DD74 3S SEC
DD75 A9 00 LDA #$00
DD77 F5 C7 SBC $C7,X record length
DD79 95 Cl STA SCl,X pointer for writing
DD7B 20 E2 E2 JSR $E2E2 erase buffer
DD7E 20 19 DE JSR $DE19 write link bytes in buffer
DD81 20 SE DE JSR SDESE write block to disk
DD84 20 99 D5 JSR SD599 and check
DDS7 20 F4 EE JSR SEEF4 write BArI
DD8A 4C 98 DC JMP $DC98 and done

185

Anatomy of the 1541 Disk Drive

DDBD
DDBE
DD90
DD92

4B
A6 82
B5 CD
4C FD CF

PHA
LDX $82
LDA $CD,X
JMP SO'FD

DD95
DD9?
DD99
DD9B
DD9D
DD9F
DDAI
DDA3
DDA5
DDA6
DDA8
DDAA

90 06
A6 82
15 EC
DO 06
A6 82
49 FF
35 EC
95 EC
60
A6 82
35 EC
60

Bec $DD9D
LOX $82
ORA $EC,X
BNE $DDA3
LDX S82
EOR #$FF
AND SEC,X
STA $EC,X
RTS
LDX $82
AND $EC,X
RTS

DDAB
DDAE
DDAF
DDB2
DDB4
DDB6

20 93 OF
AA
BD 5B 02
29 FO
C9 90
60

JSR $DF93
TAX
LDA $025B,X
AND #$FO
CMP #$90
RTS

DDB?
DDB9
DDBB
DDBE
DDCO
DDC2
DDC4
DOCS
DDC7
DDC9

DDCA
DDce
DDCE
DDCF
DDD2
DDD4
DDD6
DDD9
DDDR
DDDD
DDDF
DDEl
DDE4
DDE6

A2 00
86 71
BD 2B 02
C9 FF
DO 08
A6 71
88
EO 10
90 FO
60

86 71
29 3F
A8
B9 EC 00
29 01
85 70
AE 53 02
B5 E2
29 01
C5 70
DO 81
89 60 02
05 DB
DO DA

LOX #$00
STX 571
LOA S022R,X
CMP #$FF
BNE $ODCA
LOX $71
INX
CPX #$10
Bce $DDB9
RTS

STX $71
AND #$3F
TAY
LDA $OOEC,Y
AND #$ 01
STA S70
LDX $0253
LDA $E2,x
AND #$01
CMP $70
BNE $DDC2
LDA $0260,Y
CMP SD8,X
BNE $DDC2

186

write byte in side-sector block
save byte
channel number
buffer # of the side-sector
write byte in buffer

manipulate flags

channel number
set flag

channel number

erase flag

channel number
test flag

check command code for writing
get buffer number

isolate command code
code for writing?

counter for secondary address
get channel number from table

file open?

increment counter
smaller than l6?

isolate channel number

isolate drive number

isolate drive number
same drive?
no
sector number in directory
same as file?
nO

DDE8
DDEB
ODED
DDEF
DDFO

B9 66 02
D5 DD
DO D3
18
60

LDA $0266,Y
CMP $DD,X
BNE $DDC2
CLC
RTS

*.****************************
DDFI
DDF4
DDF6
DDF9
DDFC

20 9E DF
50 06
20 5E DE
20 99 D5
60

JSR $D~'9E
BVC $DDFC
JSR $DE5E
JSR $D599
RTS

DDFD
DEOO
DE02
DE04
DE05
DE07
DE09

20 2B DE
AS 80
91 94
C8
AS 81
91 94
4C 05 El

JSR $DE2B
LDA $80
STA (S94),Y
INY
LDA $81
STA ($94),Y
JMP $ElO5

DEOC
DEOF
DEll
DEl3
DE14
DE16
DE18

20 2B DE
Bl 94
85 80
C8
Bl 94
85 81
RTS

JSR $DE2B
LDA ($94),Y
STA $80
INY
LDA ($94),Y
STA $81

DE19
DEIC
DElE
DE20
DE21
DE23
DE25
DE26
DE27
DE28
DE2A

20 2B DE
A9 00
91 94
C8
A6 82
B5 Cl
AA
CA
8A
91 94
60

JSR SDE2B
LDA #$00
STA ($94),Y
INY
LDX $82
LDA $Cl,X
TAX
DEX
TXA
STA ($94),Y
RTS

DE2B
DE2E
DE2F
DE30
DE32
DE34
DE36
DE38
DE3A

20 93 DF
OA
AA
B5 9A
85 95
A9 00
85"94
AO 00
60

JSR $DF93
ASL A
TAX
LDA $9A,X
STA $95
LDA #$00
STA $94
LDY #$00
RTS

Anatomy of the 1541 Disk Drive

pointer same?
no

write a block of a reI-file
get buffer number
no reI-file?
write block
and verify

write bytes for following track
set buffer pointer
track number
in buffer

sector number
in buffer
set reI-flag

get following track and sector *
set buffer pointer
following track number

and get sector number

following track for last block
set buffer pointer
zero
as track number

channel number
pointer in block

minus I

as pointer in block

buffer pointer to zero
get buffer number
times 2

buffer pointer hi

buffer pointer 10

187

Anatomy of the 1541 Disk Drive

OE3B
OE3E
OE41
OE43
OE44
OE45
OE48
OE4A
OE40
OE4F

20 EB DO
20 93 OF
85 F9
OA
A8
B9 06 00
85 80
B9 07 00
85 81
60

JSR $OOEB
JSR $OF93
STA $F9
ASL A
TAY
LOA $0006.Y
STA $80
LOA $0007.Y
STA $81
RTS

OE50
DE52
DE55

DE57
OE59
DE5C
DE5E
OE60
OE63

OE65
DE67
DE6A

DE6C
DE6E
DE71

DE73
DE75
OE78
DE7A
DE7C
DE7D
OE7F
DEB2
DEBS
OEB6
DEB8
DE8B
DEBE
DE91
DE92

A9 90
8D 4D 02
DO 28

A9 80
8D 4D 02
DO 21
A9 90
80 40 02
DO 26

A9 80
80 4D 02
DO IF

A9 90
80 4D 02
DO 02

A9 80
8D 4D 02
A6 82
B5 CD
AA
10 13
20 00 06
20 93 OF
AA
AS 7F
90 5B 02
20 15 E1
20 93 OF
AA
4C 06 05

LOA #$90
STA $024D
BNE $OE7F

LDA #$80
STA $024D
BNE $OE7/:O'
LOA #$90
STA $024D
BNE $OE8B

LOA #$80
STA $024D
BNE $OE8B

LDA #$90
STA $0240
BNE $OE75

LOA #$80
STA $0240
LOX $82
LOA $CO.X
TAX
BPL $OE92
JSR $0600
JSR $OF93
TAX
LOA $7F
STA $025B.X
JSR $E1l5
JSR $OF93
TAX
JMP $D506

OE95
OE97
OE9A
DE90
OE9F
OEA2

A9 00
20 C8 04
20 37 01
85·80
20 37 01
85 81

LOA #$00
JSR $04C8
JSR $D137
STA $80
JSR $0137
STA $81

188

get track and sector
get channel number
get buffer number
save
times 2

get track

and sector # from disk controlle

command code for writing

command code for reading

command code for writing

command code for reading

command code for writing

command code for reading

channel number
side-sector buffer number

buffer associated?
generate header for disk cont.
get buffer number

drive number

buffer number
get buffer number

wri te block

get following track & sector fron
buffer
buffer pointer to zero
get byte
save as track
get byte
as sector

Anatomy of the 1541 Disk Drive

DEM 60 RTS

****************************** copy buffer contents
DEA5 4B PHA
DEA6 A9 00 LDA #$00
DEAB 85 6F STA $6F
DEM 85 71 STA $71
DEAC B9 EO FE LDA $FEEO,y buffer address Y, hi
DEAF B5 70 STA $70
DFBI BD EO FE LDA $FEEO,X buffer address X, hi
DEB4 85 72 STA $72
DEB6 68 PLA
DEB7 AB TAY
DEBB 88 DEY
DEB9 Bl 6F LDA ($6F),Y copy contents of buffer Y
DEBB 91 71 STA ($71l,Y to buffer X
DEBD 88 DEY
DEBE 10 F9 BPL $DEB9
DECO 60 RTS

****************************** erase buffer Y
DECI A8 TAY buffer number
DEC2 89 EO FE LDA $FEEO,y get hi-address
DEC5 85 70 STA $70
DEC7 A9 00 LDA #$00 lo-address
DEC9 85 6F STA $6F
DECB AS TAY
DECC 91 6F STA ($6F), Y erase buffer
DECE C8 INY
DEC~' DO FB BNE $DECC
DEDI 60 RTS

****************************** get side-sector number
DED2 A9 00 LDA #$00
DED4 20 DC DE JSR SDEDC buffer pointer to zero
DED7 AO 02 LDY #$02
DED9 Bl 94 LDA (S94),Y byte 2 contains the side-sector #
DEDB 60 RTS

****************************** set buffer ptr to side-sector
DEDC 85 94 STA $94 pointer 10
DEDE A6 82 LDX $82 channel number
DEEO B5 CD LDA $CD,X buffer number
DEE2 AA TAX
DEE3 BD EO FE LDA $FEEO,X buffer address hi
DEE6 85 95 STA S95 set
DEE8 60 RTS

******************~*********** buffer pointer for side-sector
DEE9 48 PHA pointer in side-sector
DEEA 20 DC DE JSR $DEDC set buffer pointer
DEED 48 PHA
DEEE SA TXA buffer number
DEEF OA ASL A times 2
DEFO AA TAX

189

Anatomy of the 1541 oisk Orive

OEFI
OEF2
OEF4
OEF5
OEF7

68
95 9A
68
95 99
60

PLA
STA $9A,X
PLA
STA $99,X
RTS

OEF8
OEFB
OEFO
OEFF
OFOI
OF03
OF06
0F'09
OFOB
OFOE
OFll
OF'12
OF14
OF17
OFIA

20 66 OF
30 OE
50 13
A6 82
B5 CO
20 18 OF
20 66 OF
10 07
20 CB El
2C CE FE
60
A5 06
20 E9 OE
2C CO OE
60

JSR $OF66
8MI $OFOB
BVC $DF12
LOX $82
LOA $CO,X
JSR $DFIB
JSR $DF66
BPL $DF12
JSR $EICB
BIT $FECE
RTS
LOA $06
JSR $OEE9
BIT $FECD
RTS

OFIB
OFIO
OFIF

85 F9
A9 80
00 04

STA $F9
LDA *$80
BNE $OF25

DF21
DF23
DF25
OF26
OF28
DF2A
Or'2C
OF2D
DF2F
DF32
OF34
DF36
DF37
DF39
DF3B
OF30
OF40
OF42

85 F9
A9 90
48
B5 EC
29 01
85 7F
68
05 7F
8D 40 02
Bl 94
85 80
C8
Bl 94
85 81
A5 F9
20 D3 D6
A6 F9
4C 93 05

STA $F9
LOA #$90
PHA
LOA $EC,X
ANO #$01
STA $7F
PLA
ORA $7F
STA $0240
LOA ($94),Y
STA $80
INY
LOA ($94), Y
STA $81
LOA $F9
JSR $0603
LOX $F9
JMP $0593

01"45
Df'47
OF49

A6 82
B5 CD
4C E8 04

LOX $82
LOA $CD,X
JMP $D4EB

DF4C A9 78 LDA #$78

190

buffer pointer hi

buffer pointer 10

get side-sector and buffer ptr
is side-sector in buffer
no
ok
channel number
buffer number
read side-sector
and check if in buffer
yes?
get last side-sector
set V bit

side-sector end pointer
set pointer in side-sector
erase V bit

read side-sector
buffer number
command code for reading

write side-sector
buffer number
command code for writing

isolate drive number

command code plus drive number
save
track number

sector number

buffer number
transmit param to disk controller
buffer number
tranmit cmd to disk controller

set buffer pointer in side-sector
channel number
buffer number
set buffer pointer

calculate block # of a reI-file
120 block ptrs per side-sector

Anatomy of the 1541 Disk Drive

OF4E 20 SC DF JSR $DFSC add to $70/$71
OFSl CA DEX side-sector number
DFS2 10 F8 BPL $DNC next side-sector?
DFS4 AS 72 LDA $72 pointer value in last block
OFS6 4A LSI< A divided by 2
OFS7 20 SC DF JSR $OFSC add to previous sum
DF5A AS 73 LDA $73 number of the side-sector block
DF5C 18 CLC
OF50 6S 70 AOC $70
DF5F 8S 70 STA $70 add
DF61 90 02 BCC $DF65
DF63 E6 71 INC $71
DF65 60 RTS

****************************** verify side-sector in buffer
OF66 20 D2 DE JSR $DE02 get side-sector number
DF69 CS OS CMP $D5 = number of necessary block?
DF6B DO OE BNE $DF7B no
DF6D A4 D6 LOY $06 pointer in side-sector
DF6F Bl 94 LDA ($94) ,Y track number
DF71 FO 04 BEQ SOF77
DF73 2C CO FE BIT $FECD erase bits
OF76 60 I<TS
OF77 2C CF FE BIT SFECF set N-bit
DF7A 60 RTS

DF7B AS OS LOA $OS side-sector number
DF70 C9 06 CMP #$06 6 or greater?
OF7F BO OA BCS $OF8B yes
OF81 OA ASL A
OF82 A8 TAY
OF83 A9 04 LDA #S04
DF8S 85 94 STA $94
DF87 Bl 94 LDA ($94),Y track number
DF89 00 04 BNE $DF8F
DF8B 2C DO FE BIT $FEDO set N and V bits
OF8E 60 RTS

OFBF 2C CE FE BIT $~'ECE set V bit
DF92 60 RTS

****************************** get buffer number
OF93 A6 82 LDX $82 channel number
DF95 BS A7 LOA $A7,X buffer number
DF97 10 02 BPL $DF9B
DF99 BS AE LDA SAE,X buffer number from second table
DF9B 29 BF AND #SBF erase V bit
DF9D 60 RTS

DF9E A6 82 LDX $82 channel number
DFAO 8E S7 02 STX $02S7 save
DFA3 B5 A7 LDA $A7,X get buffer number
DFA5 10 09 BPL SDFBO buffer allocated
DFA7 8A TXA
DFA8 18 CLC

191

AnatOlllY of the 1541 Disk Drive

DFA9 69 07 ADC #$07 increment number by 7
OFAB 8D 57 02 STA $0257 and save
DFAE B5 AE LOA $AE,X buffer number from table 2
OFBO 85 70 STA $70
DFB2 29 IF AND #$lF erase the highest 3 bits
DFB4 24 70 BIT $70
OFB6 60 RTS

OFB7 AO 82 LOX $82 channel number
OFB9 B5 A7 LOA $A7,X buffer number
DFBB 30 02 BMI $DFBF buffer free?
DFBO B5 AE LDA $AE,X buffer number from table 2
DFBF C9 FF CMP #$FF free?
OFCl 60 RTS

OFC2 A6 82 LDX $82
DFC4 09 80 ORA #$80
DFC6 B4 A7 LDY $A7,X
DFC8 10 03 BPL $DFCO
DFCA 95 A7 STA $A7,X
OFCC 60 RTS
OFCO 95 AE STA $AE,X
DFCF 60 RTS

****************************** get next record in reI-file
DFDO A9 20 LDA #$20
DF02 20 90 DO JSR $0090 erase bit 5
OF05 A9 80 LOA #$80
OF07 20 A6 DO JSR $ODA6 test bit 7
DFDA DO 41 BNE $EOIO set?
OFOC A6 82 LOX $82 channel number
OFOE F6 B5 INC $B5,X increment record number
OFEO DO 02 BNE $OFE4
OFE2 F6 BB INC $BB,X record number hi
OFE4 A6 82 LOX $82 channel number
OFE6 B5 Cl LOA $Cl,X write pOinter
OFE8 FO 2E BEO $E018 zero?
OFEA 20 E8 04 JSR $04E8 set buffer pointer
OFEO A6 82 LOX $82 channel number
m'EF 05 Cl CMP $Cl,X buffer ptr smaller than write ptr
OFF 1 90 03 BCC $OFF6 yes
OFF3 20 3C EO JSR $E03C wri te block, read next block
OFF6 A6 82 LOX $82 charmel number
OFF8 B5 Cl LOA $Cl,X write pointer
OFFA 20 C8 04 JSR $04C8 set buffer pointer = write ptr
O~'FO Al 99 LOA ($99) ,X byte from buffer
OFFF 85 85 STA $85 put in output register
EOOI A9 20 LOA *$20
E003 20 90 DO JSR $OD90 erase bit 5
E006 20 04 E3 JSR $E304 add record length to wri te ptr
E009 48 PHA and save
EOOA 90 28 flCC $E034 not yet in last block?
EOOC A9 00 LOA #$00
EOOE 20 F6 04 JSR $04F6 get track number
EO 11 DO 21 BNE $E034 does block exist?

192

Anatomy of the 1541 Disk Drive

E013 68 PLA pointer
E014 C9 02 CMP #$02 = 2
E016 FO 12 BEO $E02A yes
E018 A9 80 LOA #$80
EOIA 20 97 00 JSR $0097 set bit 7
EOIO 20 2F 01 JSR $012F get byte from buffer
E020 B5 99 LOA $99,X buffer pointer
E022 99 44 02 STA $0244,Y as end pointer
E025 A9 00 LOA #$00 CR
E027 85 85 STA $85 in output register
E029 60 RTS

E02A 20 35 EO JSR $E035
E020 A6 82 LOX $82 channel number
E02F A9 00 LOA #$00
E03l 95 Cl STA $Cl,X write pointer to zero
E033 60 RTS

E034 68 PLA
E035 AG 82 LOX $82 channel number
E037 95 Cl STA $Cl,X set write pointer
E039 4C 6E El JMP $E16E

****************************** write block and read next block
E03C 20 03 01 JSR $0103 get drive number
E03F 20 95 OE JSR $oE95 get track and sector number
E042 20 9E Of' JSR $OF9E get buffer number
E045 50 16 BVC $E050 no reI-file?
E047 20 5E OE JSR $OE5E write block
E04A 20 IE CF JSR $CFlE change buffer
E04D A9 02 LOA #$02
E04F 20 C8 04 JSR $04C8 buffer pointer to 2
E052 20 AB 00 JSR $ DOAB command code for writing?
E055 DO 24 BNE $E078 no
E057 20 57 OE JSR $OE57 read block
E05A 4C 99 05 JMP $0599 and verify

E050 20 IE CF JSR $CFlE change buffer
E060 20 AB 00 JSR $OOAB command code for writing?
E063 00 06 BNE $E068 no
E065 20 57 OE JSR $OE57 read block
E068 20 99 05 JSR $0599 and verify
E06B 20 95 OE JSR SOE95 get track and sector number
E06E AS 80 LOA S80 track
E070 f'0 09 BEO $E07B no following track
E072 20 IE CF JSR $CFlE change buffer
E075 20 57 OE JSR $OE57 read block
E078 20 IE CF JSR $CFlE change buffer
E07B 60 RTS

****************************** write a byte in a record
E07C 20 05 El JSR $El05
E07F 20 93 OF JSR $OF93 get buffer number
E082 OA ASL A times 2
E083 AA TAX

193

Anatomy of the 1541 Disk Drive

E084 AS 85 LDA $85 data byte
E086 81 99 STA ($99,X) write in buffer
E088 B4 99 LDY $99,X buffer pointer
E08A C8 INY increment
E08B DO 09 BNE SE096 not equal zero?
E08D A4 82 LDY S82 channel number
E08F B9 Cl 00 LDA SOOCl,Y write pointer
E092 FO OA BEO $E09E equal zero?
E094 AO 02 LDY #$02 buffer pointer to 2
E096 98 TYA
E097 AS 82 LDY S82 channel number
E099 D9 Cl 00 CMP SOOCl,Y buffer pointer = write pointer?
E09C DO 05 BNE SE043 no
E09E A9 20 LDA #S20
EOAO 4C 97 DD JMP SDD97 set bit 5

EOA3 F6 99 INC S99,x increment buffer pointer
EOA5 DO 03 BNE SEOAA not zero?
EOA7 20 3C EO JSR $E03C else write block, read next one
EOAA 60 RTS

****************************** .write byte in reI-file
EOAB A9 AO LDA #$AO
EOAD 20 A6 DD JSR SDDA6 test bits 6 & 7
EOBO DO 27 BNE $EOD9 set?
EOB2 AS 85 LDA $85 data byte
EOB4 20 7C EO JSR $E07C write in record
EOR7 AS F8 LDA $FS end?
EOR9 FO OD BEO SEOC8 yes
EOBB 60 RTS

EOBC A9 20 LDA #S20
EORE 20 A6 DD JSR $DDA6 test bit 5
EOCI FO 05 REO SEOC8 not set
EOC3 A9 51 LDA #S51 51, 'overflow in record'
EOC5 SD 6C 02 STA S026C set error flag
EOC8 20 F3 EO JSR SEO~'3 fill remainder with zeroes
EOCB 20 53 El JSR SE153
EOCE AD 6C 02 LDA S026C error flag set?
EOOl FO 03 BEO $EOD6 no
EOD3 4C C8 Cl JMP SC1C8 set error message

EOD6 4C BC E6 JMP SE6RC error free execution
EOD9 29 SO AND #$80 bit 7 set?
EODB DO 05 BNE $EOE2 yes
EODD AS FS LDA S FS
EODF FO DB BEO SEOBC end?
EOEl 60 RTS

EOE2 AS S5 LDA $85 data byte
EOE4 4S PHA
EOE5 20 lC E3 JSR $E31C expand side-sector
EOES 68 PLA
EOE9 S5 85 STA $85
EOEB A9 80 LDA #$SO

194

Anatomy of the 1541 Disk Drive

EOED 20 9D DD JSR SDD9D erase bit 7
EOFO 4C B2 EO JMP SEOB2 write byte in file

****************************** fill record with zeroes
EOF3 A9 20 LDA #S20
EOF5 20 A6 DD JSR SDDA6 test bit 5
EOF8 DO OA BNE SEI04 set?
EOFA A9 00 LDA #SOO
EOFC 85 85 STA S85 zero as data byte
EOFE 20 7C EO JSR SE07C write in record
EIOI 4C F3 EO JMP $EOF3 until record full

EI04 60 RTS

****************************** write buffer number in table
El05 A9 40 LDA *S40
El07 20 97 DD JSR $DD97 set bit 6
ElOA 20 9E DF JSR SDF9E get buffer number
ElOD 09 40 ORA *S40 set bit 6
ElOF AE 57 02 LDX S0257 channel number + 7
E1l2 95 A7 STA SA7,X write in table
Ell4 60 RTS

EllS 20 9E DF JSR SDF'9E get buffer number
E1l8 29 BF' AND *SBF' erase bit 6
EllA AE 57 02 LDX S0257 channel number
EllD 95 A7 STA SA7,X write in table
EllF 60 RTS

****************************** get byte from reI-file
E120 A9 80 LDA #580
El22 20 A6 DD JSR $DDA6 test bit 7
E125 DO 37 BNE $E15E set?
E127 20 2F Dl JSR SD12F get byte from buffer
E12A B5 99 LDA S99,X buffer pointer
E12C 09 44 02 CMP $0244,Y compare to end pointer
El2F FO 22 BEO $E135 equal?
E131 F6 99 INC 599,X increment buffer pointer
E133 DO 06 BNE $E13B not zero?
El35 20 3C EO JSR $E03C write block, read next one
El38 20 2F Dl JSR $DI2F get byte from buffer
El3B Al 99 LDA ($99,X)
El3D 99 3E 02 STA $023E,Y in output register
E140 A9 89 LDA *$89
E142 99 F2 00 STA $00F2,Y set READ and ,mITE flag
El45 BS 99 LDA $99,Y buffer pointer
E147 D9 44 02 CMP S0244,Y compare to end pointer
El4A FO 01 BEO $E14D same?
E14C 60 RTS

E14D A9 81 LDA #$81
E14F 99 F2 00 STA $00F'2,Y set flag for end
E152 60 RTS

E153 20 DO DF JSR SDF'DO find next record

195

Anatomy of the 1541 Disk Drive

E156 20 2F 01 JSR $D12F get buffer and channel number
8159 AS 85 LOA $85 data byte
E15B 4C 30 E1 JMP $8130 into output register

ElSE A6 82 LOX $82 channel number
E160 A9 00 LOA #$00 CR
E162 90 3E 02 STA $023E,X into output register
E165 A9 81 LOA #$81
E167 95 F2 STA $F2,X set flag for end
E169 A9 50 LOA #$50
E16B 20 C8 C1 JSR $C1C8 50, 'record not present'

E168 A6 82 LOX $82 channel number
E170 85 Cl LOA $C1,X write pointer
E172 85 87 STA $87 save
E174 C6 87 OEC $87
E176 (:9 02 CMP #$02 equal 2?
.E178 DO 04 BNE $E17E no
E17A A9 FF LDA #$FF
E17C 85 87 STA $87
E17E B5 C7 LOA $C7,X record length
E180 85 88 STA $88
E182 20 E8 04 JSR $04E8 set buf~er pointer
E185 A6 82 LOX $82 channel number
E187 C5 87 CMP $87 buffer pointer > write pointer?
E189 90 19 BCC $EIA4
E18B FO 17 BEO $EIA4 no
E18D 20 IE CF JSR $CF1E change buffer
E190 20 B2 El JSR $EIB2
E193 90 08 BCC $El9D
E195 A6 82 LDX $82 channel number
E197 9D 44 02 STA $0244,X
E19A 4C IE CF JMP $C},'lE change buffer

E19D 20 IE CF JSR $CFIE change buffer
EIAO A9 FF LDA *$FF
EIA2 85 87 STA $87
ElM 20 82 E1 JSR SEIB2
EIA7 BO 03 BCS $EIAC
EIA9 20 E8 D4 JSR S04E8 set buffer pointer
EIAC A6 82 LDX $82 channel number
EIAE 90 44 02 STA $0244,X end pointer
E1Bl 60 RTS

EIB2 20 2B DE JSR $DE2B buffer pointer to ze.ro
EIB5 A4 87 LOY $87
81B7 B1 94 LDA (S94) ,Y byte from buffer
81B9 00 00 BNE SEIC8 not zero?
E1BB 88 DEY
EIBC CO 02 CPY #$02
E1BE 90 04 BCC $EIC4
EICO C6 88 DEC S88
E1C2 00 F3 BNE $EIB7
E1C4 C6 88 OEC .$88
E1C6 18 CLC

196

Anatomy of the 1541 Disk Drive

E1C7 60 RTS

E1C8 98 TYA
E1C9 38 SEC
E1CA 60 RTS

****************************** get last side-sector
E1CB 20 D2 DE JSR $DED2 get number of the side-sector
E1CE 85 D5 STA $D5 save
E1DO A9 0-4 LDA #$04
E1D2 85 94 STA $94 pointer to side-sectors
EID4 AD OA LDY *SOA
EID6 DO 04 BNE $EIDC

EID8 88 DEY
EID9 88 DEY
EIDA 30 26 BMI $E202
EIDC Bl 94 LDA (S94),Y track # of the previous block
EIDE FO F8 BEO $EID8
EIEO 98 TYA
E1El 4A LSR A divide by 2
E1E2 C5 D5 CMP $D5 = number of the actual block?
E1E4 FO 09 BEO SEIEF yes
E1E6 85 D5 STA $D5 else save all numbers
E1E8 A6 82 LDX S82 channel number
ElEA B5 CD LDA $CD,X buffer number
E1EC 20 IB DF JSR $DFIB read block
E1EF AO 00 LDY #$00
E1Fl 84 94 STY $94 buffer pointer
EIF3 Bl 94 LDA ($94) ,Y track number
E1F5 DO OB BNE $E202 another block?
E1F7 C8 INY
E1F8 Bl 94 LDA ($94),Y sector number = end pointer
EIFA 1'18 TAY
E1FB 88 DEY
EIFC 84 D6 STY $D6 save end pointer
E1FE 98 TYA
E1FF 4C E9 DE JMP $DEE9 set buffer pointer

E202 A9 67 #$67
E204 20 45 E6 JSR $E645 67, , illegal track or sector'

****************************** P-command, 'Record'
E207 20 B3 C2 JSR $C2B3 verify lines
E20A AD 01 02 LDA $0201 secondary address
E20D 85 83 STA $83
E20F 20 EB DO JSR SDOEB find channel number
E2l2 90 05 BCC $E2l9 found?
E2l4 1'19 70 LDA #$70
E2l6 20 C8 Cl JSR $C1C8 70, 'no block'

E2l9 1'19 AD LDA #$AO
E21B 20 9D DD JSR $DD9D erase bits 6 & 7
E21E 20 25 Dl JSR $D125 verify if 'REL'-file
E22l FO 05 REO $E228 yes

191

Anatomy of the 1541 Disk Drive

E223 A9 64 LDA #$64
E225 20 C8 Cl JSR $CIC8 64, , file type mismatch'

E228 B5 EC LDA $EC,X
E22A 29 01 AND #$01
E22C 85 7F STA $7F drive number
E22E AD 02 02 LDA $0202 record number 10
E231 95 B5 STA $B5,X
E233 AD 03 02 LDA $0203 record number hi
E236 95 BB STA $BB,X
E238 A6 B2 LDA $82 channel number
E23A A9 89 LDA #$89
E23C 95 F2 STA $F2,X READ and WRITE flag
E23E AD 04 02 LDA $0204 byte-pointer
E241 FO 10 BEO $E253 zero?
E243 38 SEC
E244 E9 01 SBC #$01
E246 FO 08 BEO $E253
E248 D5 C7 CMP $C7,X compare wi th record length
E24A 90 07 BCC $E253
E24C A9 51 LDA #$51
E24E 8D 6C 02 STA $02liC 51, 'overflow in record'
E251 A9 00 LDA #$00
E253 85 D4 STA $D4
E255 20 OE CE JSR $CEOE calculate pointer in reI-file
E258 20 F8 DE JSR $DEF8 and read appropriate side-sector
E25B 50 08 BVC $E265 does blocK exist?
E25D A9 80 LDA #$80
E25F 20 97 DD JSR $DD97 set bit 7
E262 4C 5E El JMP $E15E and 50, , record not present'

E265 20 75 E2 JSR $E275
E268 A9 80 LDA #$80
E26A 20 A6 DD JSR $DDM test bit 7
E26D FO 03 BEO $E272 not set
E26F 4C 5E El JMP $E15E 50, 'record not present'
E272 4C 94 Cl JMP $C194 done

E275 20 9C E2 JSR $E29C
E278 A5 07 LDA $D7 pointer in reI-file
E27A 20 C8 D4 JSR $D4C8 set buffer pointer
E270 M 82 LDX $82 channel number
E27F B5 C7 LDA $C7,X record length
E281 38 SEC
E282 E5 D4 SBC $D4 minus position
E284 BO 03 BCS $E289 positive?
E286 4C 02 E2 JMP $E202 67, , illegal track or sector'

E289 18 CLC
E28A 65 07 ADC $D7 add pointer in data blocK
E28C 90 03 BCC $E291 no overflow
E28E 69 01 ADC #$01 plus 2
E290 38 SEC
E291 20 09 EO JSR $E009 set pointer
E294 4C 38 E1 JMP $E138 get byte froIl' buffer

198

Anatomy of the 1541 Disk Drive

E297 A9 51 LDA #$51
E299 20 C8 Cl JSR $CIC8 51, 'overflow in record'

E29C A5 94 LDA $94 buffer pointer 10
E29E 85 89 STA $89
E2AO A5 95 LDA $95 buffer pointer hi
E2A2 85 8A STA $8A
E2M 20 DO E2 JSR $E2DO compare track and sector
E2A7 DO 01 BNE SE2AA not equal?
E2A9 60 RTS

E2M 20 Fl DD JSR $DDFI
E2AD 20 OC DE JSR $DEOC
E2BO A5 80 LDA $80 track
E2B2 FO OE BEQ $E2C2 no block following?
E2B4 20 D3 E2 JSR $E2D3 compare track and sector number
E2B7 DO 06 BNE $E2BF not equal?
E2B9 20 IE CF JSR $CFIE change buffer
E2BC 4C DA D2 JMP $D20A
E2BF 20 DA 02 JSR $D20A
E2C2 AO 00 LOY #$00
E2C4 Bl 89 LOA ($89), Y track
E2C6 85 80 STA $80
E2C8 C8 INY
E2C9 Bl 89 LOA ($89),Y and sector of the next block
E2CB 85 81 STA $81
E2CD 4C AF DO JMP $DOAF read block

E2DO 20 3E DE JSR $OE3E
E2D3 AO 00 LOY #$00
E2D5 Bl 89 LOA ($89),Y track number
E2D7 C5 80 CMP $80 compare
B2D9 FO 01 BEQ $E2DC
E2DB 60 RTS
E2DC C8 INY
B2DD Bl 89 LDA ($89) ,Y sector number
E20F C5 81 C~lP $81 compare
E2El 60 RTS

****************************** subdivide records in data block
E2E2 20 2B DE JSR $DE2B set buffer pointer
E2E5 AO 02 LDY #$02
E2E7 A9 00 LDA #$00
E2E9 91 94 STA ($94) ,Y erase buffer
E2EB C8 INY
E2EC DO FB BNE $E2E9
E2EE 20 04 E3 JSR $E304 set pointer to next record
E2Fl 95 Cl STA $Cl,X
E2F3 A8 TAY
E2F4 A9 FF LDA #$FF
E2f'6 91 94 STA ($94) ,Y SFF as 1st character in record
E2F8 20 04 E3 JSR $E304 set pointer to next record
E2FB 90 F4 BCC $ E2F1 done in this block?
E2FD DO 04 BNE $E303 block full?

199

Anatomy of the 1541 Disk Drive

E2r'F A9 00 LDA #SOO
E301 95 Cl STA $Cl,X write pointer to zero
E303 60 RTS

****************************** set pointer to next record
E304 A6 82 LDX $82 channel number
E306 B5 Cl LDA $Cl,X write pointer
E308 38 SEC
E309 FO OD BEO $E318 equal zero?
E30B 18 CLC
E30C 75 C7 ADC $C7,X add record length
E30E 90 OB BCC $E31B smaller than 256?
E310 DO 06 BNE $E318 equal 256?
E312 A9 02 LDA #$02
E314 2C CC FE BIT $F'ECC
E317 60 RTS

E318 69 01 ADC #$01 add two
E31A 38 SEC
E31B 60 RTS

****************************** expand side-sector
E31C 20 D3 Dl JSR SDID3 get drive number
E31F 20 CB El JSR SEICB get last side-sector
E322 20 9C E2 JSR $E29C
E325 20 7B CF JSR $CF7B
E328 AS D6 LDA SD6
E32A 85 87 STA $87
E32C A5 D5 LDA $D5 side-sector number
E32E 85 86 STA $86
E330 A9 00 LDA #$00
E332 85 88 STA $88
E334 A9 00 LDA #$00
E336 85 D4 STA $D4
E338 20 OE CE JSR $CEOE calculate side-sector no. and pt
E33B 20 40 EF JSR $EF4D number of free blocks
E33E A4 82 LDY $82 channel number
E340 B6 C7 LDX $C7,Y record length
E342 CA DEX
E343 8A TXA
E344 18 CLC
E345 65 07 ADC $07 plus pointer in data hlock
E347 90 DC FlCC $E355
E349 E6 06 INC SD6
E34B E6 06 INC $06 increment ptr to end by 2
E34D DO 06 BNE $E355
E34F E6 05 INC $D5 increment side-sector number
E351 A9 10 LDA #$10
E353 85 06 STA #06 set pointer to 16
E355 AS 87 LOA $87
E357 18 CLC
E358 69 02 ADC #$02
F,35A 20 E9 DE JSR $DEE9 set buffer ptr for side-sector
E35D AS D5 LOA $D5 side-sector number
E35F C9 06 CMP #$06

200

Anatomy of the 1541 Disk Drive

E361 90 05 8CC $E368 smaller than 6?
E363 A9 52 LOA *$52
E365 20 C8 Cl JSR SCIC8 52, ' file too large'
E368 A5 06 LOA $D6 end pointer
E36A 38 SEC
E368 E5 87 S8C S87 minus last end pointer
E36D 80 03 8CS $E372
E36F E9 OF SBC HOF minus 16
E371 18 CLC
E372 85 72 STA $72
E374 A5 D5 LDA SD5 side-sector number
E376 E5 86 SBC $86 minus last side-sector number
E378 85 73 STA S73 save
E37A A2 00 LDX #SOO
E37C 86 70 STX S70 erase sum for calculation
E37E 86 71 STX $71
E380 AA TAX
E381 20 51 DF JSR $OF5I calculate block # of reI-file
E384 A5 71 LDA S71
E386 DO 07 BNE $E38F
E388 A6 70 LDX $70
E38A CA DEX
E388 DO 02 BNE $E38F
E38D E6 88 INC $88
E38F CD 73 02 CMP S0273 block number of reI-file
E392 90 09 BCC $E39D greater than free blocks on disk?
E394 DO CD BNE SE363 52, 'file too large'
E396 AD 72 02 LDA S0272
E399 C5 70 CMP $70
E39B 90 C6 8CC $E363 52, 'file too large'
E390 A9 01 LDA #$01
E39F 20 F6 D4 JSR $D4F6 get byte from buffer
E3A2 18 CLC
E3A3 69 01 ADC #$01 plus 1
E3A5 A6 82 LDX 582
E3A7 95 Cl STA $Cl,X as write pointer
E3A9 20 IE Fl JSR $FllE find free block in BAM
E3AC 20 FD DO JSR $ODFD track and sector in buffer
E3AF A5 88 LDA $88
E38l 00 15 BNE $E3C8 only one block needed?
E383 20 5E DE JSR $DE5E write block
E3B6 20 IE CF JSR $CFlE change buffer
E389 20 DCi' D6 JSR $06DO transmit param to disk controller
E3BC 20 IE Fl JSR $FllE find free block in BAM
E3BF 20 FD DD JSR $DDFD track and sector in buffer
E3C2 20 E2 E2 JSR $E2E2 erase buffer
E3C5 4C D4 E3 JMP $E3D4

E3C8 20 IE CF JSR $CF1E change huffer
E3CB 20 DO D6 JSR $D6DO transmit par-am to disk controller
E3CE 20 E2 E2 JSR $E2E2 erase buffer
E30l 20 19 DE JSR SDE19 zero byte and end ptr in buffer
E304 20 5E DE JSR $DE5E write block
E3D7 20 OC DE JSR $OEOC get track and sector
E3DA A5 80 LOA $80 track

201

Anatomy of the 1541 Disk Drive

E3DC 48 PHA
E3DD A4 81 LDA S81 and sector
E3DF 48 PHA save
E3EO 20 3E DE JSR $DE3E get track and sector from disk
E3E3 A5 81 LOA $81 controller
E3E5 48 PHA
E3E6 A5 80 LOA $80 save track and sector
E3E8 48 PHA
E3E9 20 45 OF JSR $DF45 set buffer ptr for side-sector
E3EC AA TAX
E3ED DO OA BNE $E3F9 pointer not zero?
E3EF 20 4E E4 JSR $E44E write side-sector
E3F2 A9 10 LOA #$10
E3F4 20 E9 OE JSR $OEE9 buffer pointer to 16
E3F7 E6 86 INC $86 increment side-sector number
E3F9 68 PLA
E3FA 20 80 DD JSR $0080 track in side sector
E3FD 68 PLA
EWE 20 80 00 JSR $008D sector in side-sector
E401 68 PLA
E402 85 81 STA $81 sector
E404 68 PLA
E405 85 80 STA $80 and get track back
E407 FO OF BEO $E418 no more blocks?
E409 A5 86 LDA $86 side-sector number
E40B C5 05 CMP $D5 changed?
E40D 00 A7 BNE $E3B6 yes
E40F 20 45 DF JSR $0F45 set buffer ptr in side-sector
E412 C5 D6 CMP $06 end pointer
E414 90 AO BCC $E336 smaller?
E416 FO BO BEO $E3C8 same
E418 20 45 OF JSR $DF45 set buffer ptr in side-sector
E413 48 PHA
E41C A9 00 LDA #$00
E41E 20 DC DE JSR $DEDC buffer pointer to zero
E421 A9 00 LDA #$00
E423 A8 TAY
E424 91 94 STA ($94), Y zero as track number
E426 C8 INY
E427 68 PLA end pointer
E428 38 SEC
E429 E9 01 SEC #$01 minus one
E42B 91 94 STA ($94), Y as sector
E42D 20 6C DE JSR $DE6C write block
E430 20 99 D5 JSR $0599 and verify
E433 20 F4 EE JSR $EEF4 update BAM
E436 20 OE CE JSR $CEOE update pointer for reI-file
E439 20 IE CF JSR $CFIE change buffer
E43C 20 F8 OE JSR $OEFB right side-sector?
E43F 70 03 BVS $E444 no
E441 4C 75 E2 JMP $E275

E444 A9 BO LOA i$80
E446 20 97 DO JSR $0097 set bit 7
E449 A9 50 LDA #$50

202

Anatomy of the 1541 Disk Drive

E44B 20 C8 Cl JSR $CIC8 50, 'record not present'

****************************** write side-sector and allocate
new one

E44E 20 IE Fl JSR $FllE find free block in BAM
E451 20 IE CF JSR $CFIE change buffer
E454 20 Fl DD JSR $DDFI write block
E457 20 93 DF JSR $DF93 get buffer number
E45A 48 PHA
E45B 20 Cl DE JSR $DECl erase buffer
E45E A6 82 LDX $82 channel number
E460 B5 CO LOA $CO,X buffer number
E462 A8 TAY
E463 68 PLA
E464 AA TAX
E465 A9 10 LOA *$10 16 bytes of the side-sector
E467 20 A5 OE JSR $OEA5 copy in buffer
E46A A9 00 LOA *$00
E46C 20 DC DE JSR $OEDC buffer ptr to 0, old side-sector
E46F AO 02 LDY *$02
E471 Bl 94 LOA ($94) , Y side-sector number
E473 48 PHA
E474 A9 00 LDA #$00
E476 20 C8 04 JSR $04C8 buffer ptr to 0, new side-sector
E479 68 PLA
E47A 18 CLC
E47B 69 01 AOC *$01 increment side-sector numbE'r
E470 91 94 STA ($94) , Y and in buffer
E47F OA ASL A times 2
E480 69 04 ADC #$04 plus 4
E482 85 89 STA $89
E484 A8 TAY
E485 38 SEC
E486 E9 02 SBC #$02 minus 2
E488 85 SA STA $8A same pointer to old side-sector
E48A AS 80 LOA $80 track
E48C 85 87 STA $87
E48E 91 94 STA ($94) , Y in buffer
E490 C8 INY
E491 AS 81 LOA $81 sector
E493 85 88 STA $88
E495 91 94 STA ($94) , Y in buffer
E497 AO 00 LOY *$00
E499 98 TYA
E49A 91 94 STA ($94) , Y zero in buffer
E49C C8 INY
E49D A9 II LDA #$11 17
E49F 91 94 STA ($94) , Y number of bytes in block
E4A1 A9 10 LDA #$10 16
E4A3 20 C8 D4 JSR $D4C8 buffer pointer to 16
E4A6 20 50 DE JSR $DE50 write block
E4A9 20 99 05 JSR $D599 and verify
E4AC A6 82 LDX $82 channel number
E4AE B5 CD LDA $CD,X buffer number of the side-~'ector
E4BO 48 PHA

203

Anatomy of the 1541 DiskOrive

E4Bl 20 9E OF JSR $OF9E get buffer number
E4B4 A6 82 LOX $82 channel number
E4B6 95 CO STA $CO,X write in table
E4B8 68 PLA
E4B9 AE 57 02 LOX $0257 channel number + 7
E4BC 95 A7 STA $A7,X in table
E4BE A9 00 LOA i$OO
E4CO 20 C8 04 JSR $04C8 buffer pointer to zero
E4C3 AO 00 LOY #$00
E4CS AS 80 LOA $80 track
E4C7 91 94 STA ($94), Y in buffer
E4C9 C8 INY
E4CA AS 81 LOA $81 sector
E4CC 91 94 STA ($94), Y in buffer
E4CE 4C OE E4 JMP $E40E

E4Dl 20 93 OF JSR $OF93 get buffer number
E404 A6 82 LOX $82 channel number
E406 20 IB OF JSR $OFIB read block
E409 A9 00 LDA #$00
E40B 20 C8 04 JSR $04C8 buffer pointer to zero
EFDE C6 8A OEC $8A
E4EO C6 8A DEC $8A counter for side-sector blocks
E4E2 A4 89 LOY $89
E4E4 AS 87 LOA $87 track number
E4E6 91 94 STA ($94), y in buffer
E4E8 C8 INY
E4E9 AS 88 LOA $88 sector number
E4EB 91 94 STA ($94), Y in buffer
E4ED 20 5E DE JSR $OE5E write block
E4FO 20 99 D5 JSR $0599 and verify
E4F3 A4 8A LOY $8A counter for side-sector blocks
E4f'5 CO 03 Cpy #$03
E4F7 SO 08 BCS $E401 greater than or equal to 3?
E4F9 4C IE CF JMP $CFIE change buffer

****************************** table of error messages
E4FC 00 00
E4FO AO 4F CB , oK'
E500 20 21 22 23 24 27 error numbers of ' read error'
E506 02 45 41 44 'Read'
E50A 89 pointer to (error-
E50B 52 52
E50C 83 pointer to 'file'
E500 20 54 4F 4F 20 AC 4A 52 47 C5

, too largE'
E517 50 50
E518 8B 06 pointer to 'record , and 'not ,
E51A 20 50 52 45 53 45 4E 04 , presenT'
E522 51 51
E523 CF 56 45 52 46 4C 4F 57 20 'Overflow in'
E52E 8B pointer to 'record'
E52F 25 28 error numbers of ' write error'
E531 8A 89 pointer to 'write' and 'error ,
E533 26 26
E534 8A pointer to 'write'

204

Anatomy of the 1541 Disk Drive

E535 20 50 52 4F 54 45 43 54 20 4F CE , protect oN'
E540 29 29
E541 88 pointer to 'disk'
E542 20 49 85 , id'
E545 85 pointer to

, mismatch'
E546 30 31 32 33 34 error numbers for 'syntax error'
E54B D3 59 4E 54 41 58 'Syntax'
E551 89 pointer to , error'
E552 60 60
E553 8A 03 84 ptrs to 'write', 'file' & 'open'
E556 63 63
E557 83 pointer to 'file'
E558 20 45 58 49 53 54 D3

, existS'
E55F 64 64
E560 83 pointer to 'file'
E561 20 54 59 50 45 , type'
E566 85 pointer to 'mismatch'
E567 65 65
E568 CE 4F 20 42 4C 4F 43 CB 'No block'
E570 66 67 'illegal track or sector'
E572 C9 4C 4C 45 47 41 4C 20 'Illegal ,
E57A 54 52 41 43 4B 20 4F 52 'track or'
E582 20 53 45 43 54 4F D2 'sectoR'
E589 61 61
E58A 83 06 84 pointer to I fi Ie I, 1 not' & 'open'
E58D 39 62 error nos. for 'file not found'
E590 83 06 87 ptrs to 'file', 'not' & 'found'
E593 01 01
E594 83 pointer to 'f i 1e'
E594 53 20 53 43 52 41 54 43 48 45 C4 ' s scratcheD'
E59F 70 70
E5AO CE 4F 20 43 48 41 4E 4E 45 CC 'No channeL'
E5AA 71 71
E5AB C4 49 52 'Dirt
E5AE 89 pointer to 'error'
E5AF 72 72
E5BO 88 pointer to 'disk'
E5Bl 20 46 55 4C CC , fulL'
E5B6 73 73
E587 C3 42 4D 20 44 4F 53 20 'Cbm dos ,
E5BF 56 32 2E 36 20 31 35 34 Bl 'v2.6 1541'
E5C4 74 74
E5C5 C4 42 49 56 45 'Drive'
E5CA 06 pointer to 'not'
E5CB 20 52 45 41 44 D9 , readY'
E5D5 09
E5D6 C5 52 52 4F D2 'ErroR'
E5DB OA
E5DC D7 52 49 54 C5 '''lritE'
E5El 03
E5E2 C6 49 4C C5 'FilE'
E5E6 04
E6E7 CF 50 45 CE 'OpeN'
E5EB 05
E5EC CD 49 53 4D 41 54 43 C8 'MismatcH'

205

Anatomy of the 1541 Disk Drive

E5F4 06
E5F5 CE 4F D4 'NoT'
E5F8 07
E5F9 C6 4F 55 4E C4 'FounD'
E5FE 08
E5FF C4 49 53 CB ' DisK'
E603 OB
E604 D2 45 43 4F 52 C4 'RecorD'

****************************** prepare error number and messagl
E60A 48 PHA save error code
E60B 86 F9 STX $F9 drive number
E600 8A TXA
E60E OA ASL A times 2
E60F AA TAX as pointer
E610 B5 06 LOA $06,X
E612 85 80 STA $80 get track
E614 B5 07 LOA $07,X
E616 85 81 STA $81 and sector number
E618 68 PLA get error code back
E619 29 OF ANO #$OF isolate bits 0-3
E61B FO 08 BEO $E625 zero, then 24, , read error'
E610 C9 OF CMP jI$OF 15?
E61F 00 06 BNE $E627
E621 A9 74 LOA #$74
E623 00 08 BNE $E620 74, 'drive not ready'
E625 A9 06 LOA #$06 6
E627 09 20 ORA #$20 add $20
E629 AA TAX
E62A CA DEX
E62B CA OEX subtract two
E62C 8A TXA
E620 48 PHA save error number
E62E AD 2A 02 LOA $022A number of the disk command
E631 C9 00 CMP #$00 OPEN or VALIDATE?
E633 00 OF BNE $E644 no
E635 A9 FF LOA #$FF
E637 80 2A 02 STA $022A
E63A 68 PLA get error number back
E63B 20 C7 E6 JSR $E6C7 generate error message
E63E 20 42 00 JSR $0042 load BAM
£641 4C 48 E6 JMP $£648 set error message

E644 68 PLA
E645 20 C7 E6 JSR $£6C7 set error message
E648 20 BO C1 JSR $ClBD erase input buffer
£64B A9 00 LOA #$00
E64D 80 F9 02 STA $02F9 erase error flag
E650 20 2C C1 JSR $C12C turn LED off
E653 20 OA 04 JSR $04DA close channels 17 and 18
E656 A9 00 LOA #$00
E658 85 A3 STA $A3 input buffer pointer to zero
E65A A2 45 LOX #$45
£65C 9A TXS initialize stack pointer
£65D A5 84 LOA S84 secondary address

206

Anatomy of the 1541 Disk Drive

E65F 29 OF AND #$OF
E661 85 83 STA $83
E663 C9 OF CMP #$OF IS?
E665 FO 31 BEQ $E698 yes, command channel
E667 78 SEI
E668 A5 79 LDA $79 LISTEN act i ve?
E66A DO lC BNE $E688 yes
E66C A5 7A LDA $7A TALK active?
E66E DO 10 BNE $E680 yes
E670 A6 83 LDX $83 channel number
E672 BD 2B 02 LDA S022B,X open channel to this second. addr
E675 C9 FF CMP #$FF
E677 FO IF BEO $E698 no
E679 29 OF AND #$OF
E67B 85 82 STA $82 channel number
E67D 4C 8E E6 JMP $E68E

****************************** TALK
E680 20 EB DO JSR SDOEB open channel for reading
E683 20 4E EA JSR $EA4E accept byte
E686 DO 06 BNE $E68E

****************************** LISTEN
E688 20 07 Dl JSR $DI07 open channel for writing
E68B 20 4E EA JSR $EA4E accept byte
E68E 20 25 Dl JSR $D125 verify file type
E691 C9 04 CMP #S04 file type REL?
E693 BO 03 BCS $E698 yes
E695 20 27 D2 JSR $D227 close channel
E698 4C E7 EB JMP $EBE7

****************************** convert hex to decimal (2 bytes)
E69B AA TAX
E69C A9 00 LDA #SOO
E69E F8 SED
E69F EO 00 CPX #SOO
F6Al FO 07 BEQ SE6AA convert hex to BCD
E6A3 18 CLC
E6A4 69 01 ADC #S01
A6A6 CA DEX
E6A7 4C 9F F,6 JMP SE69F
E6AA D8 CLD

****************************** divide BCD number into two bytes
E6AB AA TAX
E6AC 4A LSR A
E6AD 4A LSR A shift hi-nibble down
E6AE 4A LSR A
E6AF 4A LSR A
E680 20 B4 E6 JSR $E6B4 convert to ASCI I
E6B3 SA TXA
E6B4 29 OF AND #$OF erase top 4 bits
E6B6 09 30 ORA #$30 add '0 '
E6B8 91 AS STA ($A5),Y write in buffer
E6BA C8 INY increment buffer pointer

207

Anatomy of the 1541 Disk Drive

E6BB 60 RTS

E6BC
E6BF
E6C1
E6C3
E6C5

20 23 Cl
A9 00
AO 00
84 80
84 81

JSR SC123
LDA IISOO
LDY IISOO
STY S80
STY S81

E6C7
E6C9
E6C8
E6CD
E6CF
E6Dl
E6D4
E6D6
ED6B
E6D9
E6DC
E60F
E6EO
E6E3
E6E5
E6E7
E6EB
E6EA
E6ED
E6EF
E6Fl
E6F2
E6F4
E6F7
E6FB
E6F9
E6FA
E6FC
E6FF
E701
E703
E705

AO 00
A2 D5
86 A5
A2 02
86 A6
20 AB E6
A9 2C
9A A5
C8
AD D5 02
8D 43 02
8A
20 06 E7
A9 2C
91 A5
C8
A5 80
20 98 E6
A9 2C
91 A5
C8
A5 Bl
20 9B E6
88
9B
IB
69 D5
8D 49 02
E6 AS
A9 88
85 F7
60

LOY IISOO
LDX IISD5
STX SA5
LDX IIS02
STX SA6
JSR SE6AB
LDA jlS2C
STlI (S1I5),Y
INY
LDlI S02D5
STA S0243
TXA
JSR SE706
LOA IIS2C
STA (S1I5),Y
INY
LDA S80
JSR SE69B
LDA 1I$2C
STA (SA5),Y
INY
LDA $81
JSR SE69B
OEY
TYA
CLC
AOC lI$05
STA $0249
INC $1I5
LDA #S88
STA $F7
RTS

E706
E707
E709
E70A
E70C
E70D
E70F
E713
E7l5
E716
E718

All
A5 86
48
AS 87
48
A9 FC
85 86
85 87
8A
A2 00
Cl 86

TAX
LOA $86
PHA
LOA $87
PHA
LOA #$FC
STA lIS E4
STA $87
TXA
LOX #$00
CMP ($86,X)

208

write 'ok' in buffer
erase error flag
error number 0

track 0
sector 0

error message in buffer
buffer pointer

pointer $A5/S1I6 TO $205

error * to lISCII and in buffer
.,. comma
write in buffer
increment buffer pointer
first digit of the disk status
in output register
error number in accumulator
error message in buffer
I,' comma
write in buffer
and increment buffer pointer
track number
to ASCII and in buffer
• " comma
wri te in buffer
increment buffer pointer
sector
convert to ASCII and in buffer

end pointer

set READ flag

write error message to buffer
error code to X

preserve pointer $86/$87

start of the error messages

error number in accumulator

compare with error no in table

Anatomy of the 1541 Disk Drive

E7lA
E7lC
E71D
E720
E722
E725
E727
E729
E72B
E72D
E72F
E731
E733
E735
E736
E739
E73A

E73D
E740
E742
E745
E748
E74A
E74D
E74E
E750
E751
E753

FO 21
48
20 75 E7
90 05
20 75 E7
90 FB
A5 87
C9 E6
90 08
DO OA
AO OA
C5 86
90 04
68
4C 18 E7
68
4C 4D E7

20 67 E7
90 FB
20 54 E7
20 67 E7
90 F8
20 54 E7
68
85 87
68
85 86
60

BEO $E73D
PHA
JSR $E775
BCC $E727
JSR $E775
BCC $E722
LDA $87
CMP #SE6
BCC $E735
BNE $E739
LDA #SOA
CMP $86
BCC $E739
PLA
JMP $E7l8
PLA
JMP $E74D

JSR $E767
BCC $E73D
JSR $E754
JST $E767
BCC $E742
JSR $E754
PLA
STA $87
PLA
STA $86
RTS

E754
E756
E758
E759
E75B
E75D
E75E
E75F
E762
E763
E765
E766

C9 20
SO OB
AA
A9 20
91 A5
C8
8A
20 06 E7
60
91 A5
C8
60

CMP #$20
BCS $E763
TAX
LDA #$20
STA ($AS),Y
INY
TXA
JSR SE706
RTS
STA ($A5),Y
INY
RTS

E767
E769
E76B
E76D
E76F
E770
E772
E774

E6 86
DO 02
E6 87
Al 86
OA
Al 86
29 7F
60

INC $86
BNE $E76D
INC $87
LDA ($86,X)
ASL A
LDA ($86,X)
AND #$7F
RTS

209

bit 7 into carry and erase
not set?
bit 7 into carry
wait for character with bit 7 set

$E60A, check to end of table

no, continue

done

get a character, bit 7 in carry
wait for character with bit 7 set
and write in buffer
get next character
wait for character with bit 7 set
put character in buffer

get pointer $86/$87 back

get character and in buffer
•• blank
greater, then write in buffer
save code
blank
write in buffer
increment buffer pointer
code in accumulator
output previous text

write character in buffer
and increment pointer

get a char of the error message

increment pointer

get character
bit 7 into carry
get character
erase bit 7

increment pointer

Anatomy of the 1541 Disk Drive

E77S 20 6D E7 JSR SE76D bit 7 into carry
E778 E6 86 INC S86
E77A DO 02 BNE $E77E increment pointer
E77C E6 87 INC S87
E77E 60 RTS

E77F 60 RTS

****************************** check for AUTO-start
E780 AD 00 18 LDA S1800 read IEEE port
E783 AA TAX
E784 29 04 AND #$04 isolate 'CLOCK IN' bit
E786 Fa F7 BEO $E77F not set, then done
E788 8A TXA
E789 29 01 AND #$01 isolate 'DATA IN' bit
E78B FO F2 BEO SE77F not set, then done
E78D 58 CLI
E78E AD 00 18 LDA $1800 load IEEE port
E791 29 05 AND #$05 test 'DATA IN' and 'CLOCK IN'
E793 FO F9 BNE SE78E wait until both set
E795 EE 78 02 INC S0278 file name
E798 EE 74 02 INC $0274 character in the input line
E79B A9 2A LDA #S2A '* , as filename
E79D 80 00 02 STA $0200 write in buffer
E7AO 4C A8 E7 JMP SE7A8

****************************** '& ' - command
E7A3 A9 8D LDA #S8D
E7A5 20 68 C2 JSR SC268 check command line to end
E7A8 20 58 F2 JSR $F2S8 (RTS)
E7AB AD 78 02 LOA S0278 number of file names
E7AE 48 PHA save
E7AF A9 01 LDA #$01
E7Bl 80 78 02 STA S0278 file name
E7B4 A9 FF LOA iSFF
E7B6 8S 86 STA S86
E7B8 20 4F C4 JSR SC44F find file
E7BB AD 80 02 LOA $0280
E7BE DO 05 BNE SE7C5 found?
1':7CO A9 39 LOA #$39
E7C2 20 C8 C1 JSR SClC8 39, ' file not found'
E7C5 68 PLA
E7C6 80 78 02 STA S0278 get number of file names back
E7C9 AD 80 02 LDA S0280
E7CC 85 80 STA S80 track
E7CE AO 85 02 LDA $0285
E7D1 85 81 STA S81 and sector
E703 A9 03 LOA #$03 file type 'USR'
E705 20 77 D4 JSR $D477 buffer allocated, read 1st bloc
E708 A9 00 LOA #$00
E7DA 85 87 STA $87 erase checksum
E7DC 20 39 E8 JSR $E839 get byte from file
E70F 85 88 STA $88 save as start address 10
E7E1 20 4B E8 JSR S884B form checksum

210

Anatomy of the 1541 Disk Drive

E7E4 20 39 E8 JSR $E839 get byte from file
E7E7 85 89 STA $89 as start address hi
E7E9 20 4B E8 JSR $E84B form checksum
E7EC A5 86 LOA $86
E7EE FO OA BEO $E7FA
E7FO A5 88 LOA $88
E7F2 48 PHA save program start address
E7F3 A5 89 LDA $89
E7F5 48 PHA
E7F6 A9 00 LOA #$00
E7F8 85 86 STA $86
E7FA 20 39 E8 JSR $E839 get byte from file
E7FD 85 8A STA $8A save as counter
E7FF 20 4B E8 JSR $E84B form checksum
E802 20 39 E8 JSR $E839 get byte from file
E805 AO 00 LOY #$00
E807 91 88 STA ($88),y save as program bytes
E809 20 4B E8 JSR $E84B form checksum
E80C A5 88 LDA $88
E80E 18 CLC
E80F 69 01 AOC UOI
E811 85 88 STA $88 increment $88/$89
E813 90 02 BCC $E8l7
E8l5 E6 89 INC $89
E8l7 C6 8A OEC $8A decrement pointer
E819 DO E7 BNE $E802
E8lB 20 35 CA JSR $CA35 get next byte
E8lE A5 85 LDA $85 data byte
E820 C5 87 CMP $87 equal to checksuro?
E822 FO 08 BEO $E82C yes
E824 20 3E DE JSR $OE3E transmit param to disk controller
E827 A9 50 LOA #$50
E829 20 45 E6 JSR $E645 50, 'record not present'
E82C A5 F8 LOA $F8 end?
E82E DO A8 BNE $E7D8 no, next data block
E830 68 PLA
E831 85 89 STA $89
E833 68 PLA get program start address back
E834 85 88 STA $88
E836 6C 88 00 JMP ($0088) and execute program
E839 20 35 CA JSR $CA35 get byte from file
E83C A5 F8 LOA $F8 end?
E83E DO 08 BNE $E848 no
E840 20 3E DE JSR $DE3E transmit param to disk controller
E843 A9 51 LDA #$51
E845 20 45 E6 JSR $E645 51, 'overflow in record'
E848 A5 85 LDA $85 data byte
E84A 60 RTS

****************************** generate checksum
E84B A8 CLC
E84C 65 87 ADC $87
E84E 69 00 ADC #$00
E850. 85 87 STA $87
E852 60 RTS

211

Anatomy of the 1541 Disk Drive

****************************** IRO routine for serial bus
E853 AD 01 18 LDA $1801 read port A, erase IRO flag
E856 A9 01 LDA #$01
E858 85 7C STA $7C set flag for 'ATN received'
E85A 60 RTS

****************************** servicing the serial bus
E85B 78 SEI
E85C A9 00 LDA #$00
E85E 85 7C STA $7C erase flag for • ATN received'
E860 85 79 STA $79 erase flag for LISTEN
E862 85 7A STA $7A erase flag for TALK
E864 A2 45 LDX #$ 45
E866 9A TXS ini tiali ze stack pointer
E867 A9 80 LDA #$80
E869 85 F8 STA $F8 erase end flag
E86B 85 7D STA $7D erase EOI flag
E86D 20 B7 E9 JSR $E9B7 CLOCK OUT 10
E870 20 A5 E9 JSR $E9A5 DATA OUT, bit ' 0 I, hi
E873 AD 00 18 LDA $1800
E876 09 10 ORA jI$10 switch data lines to input
E878 8D 00 18 STA $1800
E87B AD 00 18 LDA $1800 read IEEE port
E87E 10 57 BPL $E8D7 EO!?
E880 29 04 AND #$ 04 CLOCK IN?
E882 DO F7 BNE $E87B no
E884 20 C9 E9 JSR $E9C9 get byte from bus
E887 C9 3F CMP #$3F un1isten?
E889 DO 06 BNE $E891 no
E88B A9 00 LDA jI$OO
E88D 85 79 STA $79 reset flag for LISTEN
E88F FO 71 BEO $E902
E891 C9 5F CMP #$5F untalk?
E893 DO 06 BNE $E89B no
E895 A9 00 LDA #$00
E897 85 7A STA $7A reset flag for TALK
E899 FO 67 BEO $E902
E89B C5 78 CMP $78 TALK address?
E89D DO OA BNE $E8A9 no
E89F A9 01 LDA #$01
E8A1 85 7A STA $7A set flag for TALK
E8A3 A9 00 LDA jI$OO
E8A5 85 79 STA $79 reset flag for LISTEN
E8A7 FO 29 BEO $E8D2
E8A9 C5 77 CMP $77 LISTEN address?
E8AB DO OA BNE $E8B7 no
E8AD A9 01 LDA jI$Ol
E8AF 85 79 STA $79 set flag for LISTEN
EBB1 A9 00 LDA #$ 00
EBB3 85 7A STA $7A reset flag for TALK
EBB5 FO IB BEO $E8D2
E8B7 AA TAX
E8B8 29 60 AND #$60
EBBA C9 60 CMP #$60 set bit 5 and 6

212

Anatomy of the 1541 Disk Drive

E8BC DO 3F BNE $E8FD no
E8BE 8A TXA
E8BF 85 84 STA $84 byte is secondary address
E8Cl 29 OF AND #$OF
E8C3 85 83 STA $83 channel number
E8C5 AS 84 LDA $84
E8C7 29 FO AND #$FO
E8C9 C9 EO CMP #$EO CLOSE?
E8CB DO 35 BNE $E902
E8CD 58 CLI
E8CE 20 CO DA JSR $DACO CLOSE routine
E8Dl 78 SEI
E8D2 2C 00 18 BIT $1800
E8D5 30 AD BMI $E884
E8D7 A9 00 LDA #$00
E8D9 85 7D STA $7D set EOI
E8DB AD 00 18 LDA $1800 IEEE port
E8DE 29 EF AND #$EF switch data lines to output
E8EO 8D 00 18 STA $1800
E8E3 AS 79 LDA $79 LISTEN active?
E8E5 FO 06 BEQ $E8ED no
E8E7 20 2E EA JSR $EA2E receive data
E8EA 4C E7 EB JMP $EBE7 to delay loop

ESED AS 7A LDA $7A TALK active?
E8EF FO 09 BEQ $ES~'A no
ESFl 20 9C E9 JSR $E99C DATA OUT, bit 11· , 10
ESF4 20 AE E9 JSR $E9AE CLOCK OUT hi
ESF7 20 09 E9 JSR $E909 send data
E8FA 4C 4E EA JMP $EME to delay loop
ESFD A9 10 LDA #$10 either TALK or LISTEN,ignore byte
ESFF SD 00 IS STA $lSOO switch data lines to input
E902 2C 00 18 BIT $1800
E905 10 DO BPL $ESD7
E907 30 F9 BMI $E902 wait for handshake

*******************.********** send data
E909 7S SEI
E90A 20 EB DO JSR $DOEB open channel for read
E90D BO 06 BCS $E9l5 channel active
E90F A6 S2 LOX $82 channel number
E911 B5 F2 LOA $F2,X set READ flag?
E913 30 01 BMI $E916 yes
E915 60 RTS
E916 20 59 EA JSR $EA59 check EOI
E919 20 CO E9 JSR $E9CO read IEEE port
E91C 29 01 AND *$01 isolate data bit
E91E 08 PHP and save
E91F 20 B7 E9 JSR $E9B7 CLOCK OUT 10
E922 28 PLP
E923 FO 12 BEQ $E937
E925 20 59 EA JSR $EA59 check EOI
E928 20 CO E9 JSR $E9CO read IEEE port
E92B 29 01 AND #$01 isolate data bit
E92D 00 F6 BNE $E925

213

Anatomy of the 1541 Dis~ Drive

E92F A6 82 LDX $82 channel number
E931 B5 F2 LDA $F2,X
E933 29 08 AND #$08
E935 DO 14 BNE $E94B
E937 20 59 EA JSR $EA59 check EOI
E93A 20 CO E9 JSR $E9CO read IEEE port
E93D 29 01 AND #$01 isolate data bit
E93F DO F6 BNE $E937
E941 20 59 EA JSR $EA59 check EOI
E944 20 CO E9 JSR $E9CO read IEEE port
E947 29 01 AND #$01 isolate data bit
E949 FO F6 BEO $E941
E84B 20 AE E9 JSR $E9AE CLOCK OUT hi
E94E 20 59 EA JSR $EA59 check EOI
E951 20 CO E9 JSR $E9CO read IEEE port
E954 29 01 AND #$01 isolate data bit
E956 DO F3 BNE $E94B
E958 A9 08 LDA #$08 counter to 8 bits for serial
E9SA 8S 98 STA $98 transmission
E95C 20 CO E9 JSR $E9CO read IEEE port
E95F 29 01 AND #$01 isolate data bit
E961 DO 36 BNE $E999
E963 A6 82 LDX $82
E965 BO 3E 02 LDA $023E,X
E968 6A ROR A lowest bit in carry
E969 9D 3E 02 STA $023E,X
E96C BO OS BCS $E973 set bit
E96E 20 AS E9 JSR $E9A5 DATA OUT, output bit ' 0'
E971 DO 03 BNE $E976 absolute jump
E973 20 9C E9 JSR $E99C DATA OUT, output bit ' I'
E976 20 B7 E9 JSR $E9B7 set CLOCK OUT
E979 AS 23 LDA $23
E97B DO 03 BNE $E980
E97D 20 F3 FE JSR $FEF3 delay for serial bus
E980 20 FB FE JSR $FEFB set DATA OUT and CLOCK OUT
E983 C6 98 DEC S98 all bits output?
E985 DO D5 BNE $E95C no
E987 20 59 EA JSR $EA59 check EOI
E98A 20 CO E9 JSR $E9CO read IEEE port
E98D 29 01 AND #$01 isolate data bit
E98F FO F6 BEO $E987
E991 58 CLI
£992 20 AA D3 JSR $D3AA get next data byte
E995 78 SEI
E996 4C OF E9 J~lP $E90F and output

E999 4C 4E EA JMP $EA4E to delay loop

****************************** DATA OUT 10
E99C AD 00 18 LDA $1800
E99F 29 FD AND #$FD output bit 'I'
E9A1 8D 00 18 STA $1800
E9A4 60 RTS

****************************** DATA OUT hi

214

Anatomy of the 1541 Disk Drive

E9A5 AD 00 18 LOA $1800
E9A8 09 02 ORA #$02 output bit '0 '
E9AA 80 00 18 STA $1800
E9AD 60 RTS

****************************** CLOCK OUT hi
E9AE AD 00 18 LOA $1800
E9B1 09 08 ORA #$08 set bit 3
E9B3 80 00 18 STA $1800
E9B6 60 RTS

****************************** CLOCK OUT 10
E9B7 AD 00 18 LOA $1800
E9BA 29 F7 AND #$F7 erase bit 3
E9BC 80 00 18 STA $1800
E9BF 60 RTS

****************************** read IEEE port
E9CO AD 00 18 LOA $1800 read port
E9C3 CD 00 18 CMP $1800 wait for constants
E9C6 DO F8 BNE $E9CO
E9C8 60 RTS

E9C9 A9 08 LOA #$08
E9CB 85 98 STA $98 bit counter for serial output
E9CD 20 59 EA JSR $EA59 check EOI
E9DO 20 CO E9 JSR $E9CO read IEEE port
E9D3 29 04 AND #$04 CLOCK IN?
E9D5 DO F6 BNE $E9CD no, wait
E9D7 20 9C E9 JSR $E99C DATA OUT, bit ' I'
E9DA A9 01 LOA #$01
E9DC 80 05 18 STA $1805 set timer
E9DF 20 59 EA JSR $EA59 check EOI
E9E2 AD 00 18 LOA $1800
E9E5 29 40 AND #$40 timer run down?
E9E7 DO 09 BNE $E9F2 yes, EOI
E9E9 20 CO E9 JSR $E9CO read IEEE port
E9EC 29 04 AND #$04 CLOCK IN?
E9EE FO EF BEQ $E9DF no, wait
E9FO DO 19 BNE $EAOB
E9F2 20 A5 E9 JSR $E9A5 DATA OUT bit '0' hi
E9F5 A2 OA LOY #$OA 10
E9F7 CA DEX delay loop, approx 50 micro sec.
E9FB DO FD BNE $E9F7
E9FA 20 9C E9 JSR $E99C DATA OUT, bit '1' , 10
E9FD 20 59 EA JSR $EA59 check EOI
EAOO 20 CO E9 JSR $E9CO read IEEE
EA03 29 04 AND #$04 CLOCK IN?
EA05 FO F6 BEO $E9FD no, wait
EA07 A9 00 LOA #$00
EA09 85 F8 STA $F8 set Eor flag
EAOB AD 00 18 LOA $1800 IEEE port
EAOE 49 01 EaR #$01 invert data byte
EAI0 4A LSR A

215

Anatomy of the 1541 Disk Drive

EAll 29 02 AND #$02
EA13 DO F6 BNE $EAOB CLOCK IN?
EA15 EA NOP
EA16 EA NOP
EAl7 EA NOP
EA18 66 85 ROR $85 prepare next bit
EAIA 20 59 EA JSR $EA59 check EOI
EAID 20 CO E9 JSR $E9CO read IEEE port
EA20 29 04 AND #$04 CLOCK IN?
EA22 FO F6 BEQ $EAIA no
EA24 C6 98 OEC $98 decrement bit counter
EA26 DO E3 BNE $EAOB all bits output?
EA28 20 A5 E9 JSR $E9A5 DATA OUT, bit ' 0 1 , hi
EA2B A5 85 LOA $85 load data byte again
EA2D 60 RTS

****************************** accept data from serial bus
EA2E 78 SEI
EA2F 20 07 01 JSR $0107 open channel for writing
EA32 BO 05 RCS $EA39 channel not active?
EA34 B5 F2 LOA $F2,X WRITE flag
EA36 6A ROR A
EA37 BO DB BCS $EM4 not set?
EA39 A5 84 LOA $84 secondary address
EA3B 29 FO ANO #$FO
EA30 C9 FO CMP #$FO OPEN command?
EA3F FO 03 BEO $EM4 yes
EMI 4C 4E EA JMP $EME to wait loop

EA44 20 C9 E9 JSR $E9C9 get data byte from bus
EA47 58 CLI
EA48 20 B7 CF JSR $CFB7 and write in buffer
EMB 4C 2E EA JMP $EA2E to loop beginning

EA4E A9 00 LOA #$00
EA50 80 00 18 STA $1800 reset IEEE port
EA53 4C E7 EB JMP $EBE7 to wait loop

EA56 4C 5B E8 JMP $EB58 to serial bus main loop

EA59 A5 7D LOA $70 EOI received?
EA5B FO 06 BEO $EA63 yes
EA5D AD 00 18 LOA $lROO IEEE port
EA60 10 09 BPL $EA6B

EA62 60 RTS

EA63 AD 00 18 LDA $1800 IEEE port
EA66 10 FA BPL $EA62
EA68 4C D7 E8 JMP $E807 set EOI, serve serial bus

****************************** blink LED for hardware defects
EA6E A2 00 LOX #$00 blink once, zero page
EA70 2C .BYTE $2C

216

Anatomy of the 1541 Disk Drive

EA7l A5 6F LDX $6F blink X+l times for RAM/ROM err
EA73 9A TXS
EA74 BA TSX
EA75 A9 08 LDA #$08 select LED bit in the port
EA77 OD 00 lC ORA $lCOO
EA7A 4C EA FE JMP $FEEA turn LED on, back to $EA7D
EA7D 98 TYA
EA7E 18 CLC
EA7F 69 01 ADC #$01
EA81 DO FC ENE $EA7F
EA83 88 DEY
EA84 DO F8 BNE $EA7E
EA86 AD 00 Ie LDA $lCOO
EAB9 29 F7 AND #$F7 turn LED off
EABB 8D 00 lC STA $lCOO
EA8E 9B TYA
EABF IB CLC
EA90 69 01 ADC #$01
EA92 DO FC BNE $EA90 delay loop
EA94 B8 DEY
EA95 DO FB BNE $EABF
EA97 CA DEX
EA98 10 DB BPL $EA75
EA9A EO FC CPX #$FC
EA9C DO FO BNE $EA8E wait for delay
EA9E FO D4 BEO $EA74 turn LED on again

****************************** RESET routine
EAAO 78 SEl
EAAI D8 CLD
EAA2 A2 FF LDX #$FF
EAA4 BE 03 IB STX SlB03 port A to output
EAA7 E8 lNX
EAA8 AO 00 LDY #SOO
EAAA A2 00 LDX #SOO
EAAC BA TXA
EAAD 95 00 STA $OO,X erase zero page
EAAF E8 INX
EABO DO FA BNE $EAAC
EAB2 8A TXA
EAB3 D5 00 CMP $OO,X is byte erased?
EAB5 DO B7 BNE $EA6E no, then to error display (blink)
EAB7 F6 00 INC $OO,X
EAB9 C8 INY
EABA DO FB BNE SEAB7
EABC D5 00 CMP $OO,X
EABE DO AE BNE $EA6E error
EACO 94 00 STY $OO,x
EAC2 B5 00 LDA $OO,X
EAC4 DO AB BNE $EA6E error
EAC6 EB lNX
EAC7 DO E9 BNE $EAB2
EAC9 E6 6I" INC $6F
EACB 86 76 STX $76
EACD A9 00 LDA #$00

217

Anatomy of the 1541 Disk Drive

EACF 85 75 STA $75
EADI A8 TAY
EAD2 A2 20 LDX #$20 test 32 pages
EAD4 18 CLC
EAD5 C6 76 DEC $76
EAD7 71 75 ADC ($75) ,Y
EAD9 C8 INY
EADA DO FB BNE $EAD7
EADC CA DEX
EADD DO F6 BNE $EAD5 test ROM
EADF 69 00 ADC #$00
EAEI AA TAX
EAE2 C5 76 CMP $76
EAE4 DO 39 BNE $EBIF ROM error
EAE6 EO CO CPX #$CO
EAE8 DO DF BNE $EAC9
EAEA A9 01 LDA #$01
EAEe 85 76 STA $76
EAEE E6 6F INC $6F'
EAFO A2 07 LDX #$07 test RAM, beginning at page 7
EAF2 98 TYA
EAF3 18 CLC
EAF4 65 76 ADC $76
EAF6 91 75 STA ($75) ,Y
EAF8 C8 INY
EAF9 DO F7 BNE $EAF2
EAFB E6 76 INC $76
EAFD CA DEX
EAFE DO F2 BNE $EAF2
EBOO A2 07 LDX #$07
EB02 C6 76 DEC $76
EB04 88 DEY
EB05 98 TYA
EB06 18 CLC
EB07 65 76 ADC $76
EB09 Dl 75 CMP ($75),Y
EBOB DO 12 BNE $EBIF RAM error
EBOD 49 FF EOR #$FF
EBOF 91 75 STA ($75),Y
EBll 51 75 EOR ($75),Y
EBl3 91 75 STA ($75) ,y
EB15 DO 08 BNE $EB1F RAM error
EB17 98 TYA
EB18 DO EA BNE $EB04
EB1A CA DEX
EBlB DO E5 BNE $EB02 continue test
EBID FO 03 BEO $EB22 ok
EB1F 4C 71 EA JMP $EA7l to error display

EB22 A2 45 LDX #$45
EB24 9A TXS initialize stack pointer
EB25 AD 00 lC LDA $ICOO
EB28 29 F7 AND #$F7 turn LED off
EB2A 8D 00 lC STA $lCOO
EB2D A9 01 LDA #$01

218

EB2F
EB32
EB34
EB37
EB3A
EB3D
EB3F
EB40
EB41
EB42
EB43
EB45
EB47
EB49
EB4B
EB4D
EB4F
EB51
EB53
EB54
EB57
EB59
EB5A
EB5B
EB50
EB5F
EB61
EB63
EB64
EB66
EB68
EB69
E86B
EB6D
EB6E
EB70
EB72
EB74
EB76
EB79
EB7A
EB7C
EB7E
EB80
EB82
EB84
EBB5
EB87
EB89
EBBB
EB8D
EB8F
EB91
EB93
EB95

8D OC 18
A9 82
8D OD 18
8D OE 18
AO 00 18
29 60
OA
2A
2A
2A
09 4B
85 78
49 60
85 77
A2 00
AO 00
A9 00
95 99
E8
B9 EO FE
95 99
E8
C8
CO 05
DO FO
A9 00
95 99
E8
A9 02
95 99
E8
A9 D5
95 99
E8
A9 02
95 99
A9 FF
A2 12
9D 2B 02
CA
10 FA
A2 05
95 A7
95 AE
95 CD
CA
10 F7
A9 05
85 AB
A9 06
85 AC
A9 F'F
85 AD
85 B4
A9 05

Anatomy of the 1541 Disk Drive

STA S180C
LOA #S82
STA S180D
STA S180E
LDA S1800
AND #S60
ASL A
ROL A
ROL A
ROL A
ORA #S48
STA S78
EOR #S60
STA S77
LOX #SOO
LDY #SOO
LDA #SOO
STA S99,x
INX
LDA $F'EEO, Y
STA $99,x
INX
INY
CPY #S05
BNE SEB4F'
LDA #$00
STA S99,X
INX
LDA #S02
STA S99,X
INX
LDA #$D5
STA S99,X
INX
LDA #S02
STA $99,X
LDA #SFF
LDX #S12
STA $022B,X
DEX
BPL SEB76
LDX #$05
STA SA7,X
STA SAE,X
STA $CD,X
DEX
BPL SEB7E
LOA #$05
STA SAB
LDA #S06
STA SAC
LDA #SFF
STA SAD
STA SB4
LDA #S05

219

CAl (ATN IN) trigger on pas edge

interrupt possible through ATN IN

read port B
isolate bits 5 & 6 (device #)

rotate to bit positions 0 & 1

add offset from 8 + S40 for TALK
device number for TALK (send)
erase bit 6, set bit 5
device number + S20 for LISTEN

low-byte of buffer address

high byte of address from table
save

ptr SA3/$A4 to S200, input buffer

pointer SA5/SA6 to S2D5, error
message pointer

fill channel table with SFF

erase buffer table

erase side-sector table

buffer 5
associate with channel 4
buffer 6
associate with channel 5

Anatomy of the 1541 Disk Drive

EB97 SO 3B 02 STA $023B channel 5 WRITE flag erased
EB9A A9 84 LDA *$S4
EB9C SO 3A 02 STA $023A channel 4 WRITE flag set
EB9F A9 OF LOA *$OF initialize channel allocation re~

EBAI 80 56 02 STA $0256 bit '1 ' equals channel free
EBA4 A9 01 LOA *$01
EBA6 85 F6 STA $F6 WRITE flag
EBA8 A9 88 LOA *$S8
EBAA 85 F7 STA SF7 REAO flag
EBAC A9 FO LOA *$EO 5 buffers free
EBAE 80 4F 02 STA $024F initialize buffer allocation reg
EBBI A9 FF LOA *$FF $24F/$250, 16 bit
EBB3 80 50 02 STA $0250
EBB6 A9 01 LOA *$01
EBB8 85 lC STA SIC flags for WRITE protect
EBBA 85 10 STA S10
EBBC 20 63 CB JSR SCB63 set vector for UO
EBBF 20 FA CE JSR $CEFA initialize channel table
EBC2 20 59 F2 JSR $F259 intialization for disk controller
EBC5 A9 22 LOA *$22
EBC7 85 65 STA $65
EBC9 A9 EB LOA #$EB pointer $65/$66 to $EB22
EBCB 85 66 STA $66
EBCD A9 OA LOA *$OA
EBCF 85 69 STA $69 step width 10
EBOI A9 05 LOA H05 for sector assignment
EBD3 85 6A STA $6A 5 read attempts
EB05 A9 73 LDA #$73 prepare power-up message
EB07 20 Cl E6 JSR $E6Cl 73, 'cbm dos v2.6 1541'
EBDA A9 lA LOA #$lA bit 1, 3 & 4 to exit
EBDC 8D 02 18 STA $1802 data direction of port B
EBOF A9 00 LOA #$00
EBEI 8D 00 18 STA $1800 erase data register
EBE4 20 80 E7 JSR $E7S0 check for auto-start
EBE7 58 CLI
EBES AO 00 18 LDA $lS00
EBEB 29 E5 AND #$E5 reset serial port
ERED SO 00 18 STA $1800
EBFO AO 55 02 LOA $0255 command flag set?
EBF3 FO OA BEO $EBFF no
EBF5 A9 00 LDA *$00
EBF7 80 55 02 STA $0255 reset command flag
EBFA 85 67 STA $67
EBFC 20 46 Cl JSR $C146 analyze and execute command

****************************** wait loop
EBFF 58 CLI
ECOO A5 7C LDA $7C ATN signal discovered?
EC02 FO 03 REO $EC07 no
EC04 4C 58 E8 JMP SE85B to IEEE routine
EC07 58 CLI
EC08 A9 OE LOA #$OE 14
ECOA 85 72 STA $72 as secondary address
ECOC A9 00 LDA #$00
ECOE 85 6F STA $6F job counter

220

Anatomy of the 1541 Disk Drive

EClO 85 70 STA $70
EC12 A6 72 LOX $72
EC14 BD 2B 02 LOA $022B,X secondary address
EC17 C9 FF CMP #$FF channel associated?
EC19 FO 10 BEO $EC2B no
EClB 26 3F AND #S3F
EClD 85 82 STA $82 channel number
EClF 20 93 OF JSR SDF93 get buffer number
EC22 AA TAX
EC23 BD 5B 02 LOA $025B,X drive number
EC26 29 01 AND #$01
EC28 AA TAX
EC29 F6 6F INC $6F,X increment job counter
EC2B C6 72 DEC $72 10 address
EC2D 10 E3 BPL $EC12 continue search
EC2F AO 04 LOY #$04 buffer counter
EC3l B9 00 00 LDA $OOOO,y disk controller in action?
EC34 10 05 BPL SEC3B no
EC36 29 01 AND #$01 isolate drive number
EC38 AA TAX
EC39 F6 6F INC $6F ,X increment job counter
EC3B 88 DEY
EC3C 10 F3 BPL $EC31 next buffer
EC3E 78 SEI
EC3F AD 00 1C LDA $ICOO
EC42 29 F7 AND #$P? erase LED bit
EC44 48 PHA
EC45 A5 7F LOA $7F drive number
EC47 85 86 STA $86
EC49 A9 00 LDA #$00
EC4B 85 7F STA $7F drive 0
EC40 A5 6F LOA S6F job for drive O?
EC4F FO OB BEO $EC5C no
EC51 AS lC LOA SIC write protect for drive O?
EC53 FO 03 BEO $EC58 no
EC55 20 13 D3 JSR $0313 close all channels to drive 0
EC58 68 PLA
EC59 09 08 ORA #$08 set LED bit
EC5B 48 PHA
EC5C E6 7F INC $7F increment drive number
EC5E AS 70 LDA $70 job for drive I?
EC60 FO DB BEO $EC6D no
EC62 AS ID LDA $10 write protect for drive I?
EC64 FO 03 BEO SEC69 no
EC66 20 13 D3 JSR S0313 close all channels to drive 1
EC69 68 PLA
EC6A 09 00 ORA #$00
EC6C 48 PHA
EC6D A5 86 LDA S86
EC6F 85 7F STA $7F get drive number back
EC71 68 PLA bit for LED
EC72 AE 6C 02 LDX $026C interrupt counter
EC75 Fa 21 BEO $EC98 to zero?
ECn AD 00 lC LDA $lCOa
EC7A EO 80 CPX #S80

221

Anatomy of the 1541 Disk Drive

EC7C DO 03 BNE $EC81
EC7E 4C 8B EC JMP $EC8B
EC81 AE 05 18 LDX $1805 erase timer interrupt
EC84 30 12 BMI $EC98
EC86 A2 AO LDX #$AO
EC88 8E 05 18 STX $1805 set timer
EC8B CE 6C 02 DEC $026C decrement counter
ECBE DO 08 BNE $EC98 not yet zero?
EC90 4D 6D 02 EOR $026D
EC93 A2 10 LDX #$10
EC95 8E 6C 02 STX $026C reset counter
EC98 8D 00 lC STA $lCOO turn LED on/off
EC9B 4C FF EB JMP $EBFF back to wait loop

****************************** LOAD 11$11
EC9E A9 00 LDA #$00
ECAD 85 83 STA $83 secondary address 0
ECA2 A9 01 LDA #$01
ECA4 20 E2 Dl JSR $DIE2 find channel and buffer
ECA7 A9 00 LDA #$00
ECA9 20 C8 D4 JSR $D4C8 initialize buffer pointer
ECAC A6 82 LDX $82 channel number
ECAE A9 00 LDA #$00
ECBO 9D 44 02 STA $0244,X pointer to end = zero
ECB3 20 93 DF JSR $DF93 get buffer number
ECB6 AA TAX
ECB7 AS 7F LDA $7F drive number
ECB9 9D 5B 02 STA $025B,X bring in table
ECBC A9 01 LDA #$01 1
ECBE 20 Fl CF JSR $CFFI write in buffer
ECCI A9 04 LDA #$04 4, start address $0401
ECC3 20 Fl CF JSR $CFFI write in buffer
ECC6 A9 01 LDA #$01 2 times 1
ECC8 20 Fl CF JSR $CFFI
ECCB 20 Fl CF JSR $CFFI write in buffer as link address
ECCE AD 72 02 LDA $0272 drive number
ECDI 20 Fl CF JSR $CFFI write in buffer as line number
ECD4 A9 00 LDA #$ 00 line number hi
ECD6 20 Fl CF JSR $CFFI in buffer
ECD9 20 59 ED JSR $ED59 directory entry in buffer
ECDC 20 93 DF JSR $DF93 get buffer number
ECDF OA ASL A
ECEO AA TAX
ECEI D6 99 DEC $99,X decrement buffer pointer
ECE3 D6 99 DEC $99,X
ECE5 A9 00 LDA #$00
ECE7 20 1:'1 CF JSR $CFFl 0 as line end in buffer
ECEA A9 01 LDA #$01
ECEC 20 Fl CF JSR $CFFl 2 times 1 as link address
ECEF 20 Fl CF JSR $CFFI
ECF2 20 CE C6 JSR $C6CE directory entry in buffer
ECF5 90 2C BCC $ED23 another entry?
ECF7 AD 72 02 LDA $0272 block number 10
ECFA 20 Fl CF JSR $CFFI in buffer
ECFD AD 73 02 LDA $0273 block number hi

222

Anatomy of the 1541 Disk Drive

EDOO 20 Fl CF JSR $CFFI in buffer
Eo03 20 59 EO JSR $E059 directory entry in buffer
ED06 A9 00 LOA #$00
E008 20 Fl CF JSR $CFFl zero as end marker in buffer
EOOB 00 00 BNE $ECEA buffer full? no
EOOO 20 93 OF JSR $OF93 get buffer number
EOIO OA ASL A
EOll AA TAX
E012 A9 00 LOA #$00
E014 95 99 STA $99,X buffer pointer to zero
E016 A9 88 LOA #$88 set REAO flag
E018 A4 82 LOY $82 channel number
EOIA 80 54 02 STA $0254
EOIO 99 F2 00 STA $00F2,Y flag for channel
E020 A5 85 LOA $85 data byte
E022 60 RTS

***********.******************
E023 AO 72 02 LOA $0272 block number 10
E026 20 Fl CF JSR $CFFI write in buffer
E029 AD 73 02 LOA $0273 block number hi
E02C 20 Fl CF JSR $CFFI in buffer
E02F 20 59 ED JSR $E059 I Blocks free. I in buffer
E032 20 93 OF JSR $OF93 get buffer number
E035 OA ASL A
E036 AA TAX
E037 06 99 DEC $99,X
E039 06 99 DEC $99,X buffer pointer minus 2
E03B A9 00 LOA #$00
E030 20 Fl CF JSR $CFFI
E040 20 Fl CF JSR $en'l three zeroes as program end
E043 20 Fl C~' JSR $CFFI
E046 20 93 OF JSR $OF93 get buffer number
E049 OA ASL A times 2
E04A A8 TAY
E04B B9 99 02 LOA $0099,Y buffer pointer
E04E A6 82 LOX $82
E050 90 44 02 STA $0244,X as end marker
E053 OE 44 02 DEC $0244,X
E056 4C 00 EO JMP $EOOO

****************************** transmit directory line
E059 AO 00 LOY #$00
E05B B9 Bl 02 LOA $02Bl,Y character from buffer
E05E 20 Fl CF JSR $CFFI write in output buffer
E06l C8 INY
E062 CO IB CPY #$lB 27 characters?
E064 00 F5 BNE $E05B
E066 60 RTS

****************************** get byte from buffer
E067 20 37 01 JSR $0137 get byte
E06A FO 01 BEO $E060 buffer pointer zero?
E06C 60 RTS

223

Anatomy of the 1541 Disk Drive

E06D
E06F
E071
E074
E076
E078
E07B
E07D

E07E
E07F
E082
E083

85 85
A4 82
B9 44 02
FO 08
A9 80
99 F2 00
AS 85
60

48
20 EA EC
68
60

STA $85
LOY $82
LOA $0244,Y
BEO $E07E
LOA #$80
STA $00F2,Y
LOA $85
RTS

PHA
JSR $ECEA
PLA
RTS

E084
E087
E08A
EOBC
E08F
E092
E094
E097
E09A
E09C
E09E
EOAO
EOA3
EOAS
EDAB
EOAA
EOAO
EOBO

20 01 C1
20 42 DO
A9 40
80 F9 02
20 B7 EE
A9 00
80 92 02
20 AC C5
00 3D
A9 00
85 81
AO 8E FE
B5 80
20 E5 EO
A9 00
80 F9 02
20 FF EE
4C 94 C1

JSR $C101
JSR $0042
LOA #$40
STA $02F9
JSR $EEB7
LOA #$00
STA $0292
JSR $CSAC
BNE $E009
LOA #$00
STA $B1
LOA SFE85
STA $80
JSR SEOE5
LOA #SOO
STA $02F9
JSR SEEFF
JMP $C194

EOB3
EOB4
EOB6
EOB7
EOB8
EOBA
EOBB
EOBO
EOBF
EOC1
EOC3
EDC4
EOC6
EOC8
EOCB
EOCC
EOCE
EOCF
EOD1
EOD4

C8
B1 94
48
C8
Bl 94
48
AO 13
Bl 94
FO OA
85 80
C8
B1 94
85 81
20 E5 EO
68
85 81
68
85 80
20 ES ED
20 04 C6

INY
LOA (S94),Y
PHA
INY
LOA (S94),Y
PHA
LOA #$13
LDA (S94),Y
BEO SEDCB
STA S80
INY
LOA ($94),Y
STA $81
JSR SEOE5
PLA
STA $81
PLA
STA $80
JSR $EDE5
JSR $C604

224

save data byte
channel number
set end marker
zero (LOAD S)?

set REAO flag
data byte

create directory line in buffer

V command, • collect •
find drive number in input line
load BAM

create new BAM in buffer

load directory, find 1st flag
found?

sector 0
18
track 18 for BAM
mark dir blocks as allocated

write BAM back to disk
done, prepare disk status

save track

and sector

pointer to side-sector block

no track following?
track and

sector of 1st side-sector block
mark side-sector blocks as
allocated

get track and sector back

mark blocks of file as allocated
read next entry in directory

Anatomy of the 1541 oisk Drive

E007 FO C3 BEO $E09C end of directory?
E009 AO 00 LOY #$00
EOOB Bl 94 LOA ($94) , Y file type
EOOO 30 04 BMI SEOB3 bit 7 set, file closed?
EOOF 20 B6 C8 JSR SC8B6 file type to zero and write BAM
EOE2 4C 04 EO JMP SE004

****************************** allocate file blocks in BAM
EOE5 20 5F 05 JSR S055F check track and sector number
EOE8 20 90 EF JSR SEF90 allocate block in BAM
EOEB 20 75 04 JSR $0475 read next block
EOEE A9 00 LOA #$00
EOFO 20 C8 04 JSR S04C8 buffer pointer zero
EOF3 20 37 01 JSR $0137 get byte from buffer
EOF6 85 80 STA S80 track
EOF8 20 37 Dl JSR $D137 get byte from buffer
EOFB 85 81 STA $81 sector
EDFD A5 80 LOA $80 another block?
EDFF DO 03 BNE SEE04 yes
EEOl 4C 27 02 JMP $0227 close channel

EE04 20 90 EF JSR SEF90 allocate block in BAM
EE07 20 4D 04 JSR S044D read next block
EEOA 4C EE EO JI1P $EDEE continue

****************************** N command, 'header'
EEOD 20 12 C3 JSR $C312 get drive number
EEIO A5 E2 LDA $E2 drive number
EE12 10 05 BPL SEE19 not clear?
EE14 A9 33 LDA #$ 33
EE16 4C C8 Cl JI1P $C1C8 33, 'syntax error'
EE19 29 01 ANO #$01
EEIB 85 7F STA $7F drive number
EEID 20 00 Cl JSR SCIOO turn LED on
EE20 A5 7F LOA $7F drive number
EE22 OA ASL A times 2
EE23 AA TAX
EE24 AC 7B 02 LOY $027B comma position
EE27 CC 74 02 CPY $0274 compare with end name
EE2A FO lA BEO $EE46 format without 1D
EE2C B9 00 02 LOA $0200,Y first character of 1D
EE2F 95 12 STA $12,X save
EE31 B9 01 02 LDA S0201,Y second character
EE34 95 13 STA $13,X
EE36 20 07 03 JSR $0307 close all channels
EE39 A9 01 LOA #$01
EE3B 85 80 STA $80 track 1
EE30 20 C6 C8 JSR $C8C6 format disk
EE40 20 05 FO JSR $F005 erase buffer
EE43 4C 56 EE JMP SEE56 continue as below

EE46 20 42 00 JSR $0042 load BAM
EE49 A6 7F LDX $7F drive number
EE4B BO 01 01 LOA $OlOl,X
EE4E CO 05 FE CMP SFE05 'A' , marker for 1541 format

225

Anatomy of the 1541 Disk Orive

EE51 FO 03 BEO SEE56 ok
EE53 4C 72 05 JMP S0572 73, 'cbm dos v2.6 1541'

EE56 20 B7 EE JSR SEEB7 create BAM
EE59 A5 F9 LOA SF9 buffer number
EE5B AS TAY
EE5C OA ASL A
EESD AA TAX
EE5E AD 88 FE LOA SFE88 S90, start of disk name
EE61 95 99 STA S99,X buffer pointer to name
EE63 AE 7A 02 LOX S027A
EE66 A9 1B LOA #SlB 27
EE6B 20 6E C6 JSR SC6f;E write filenames in buffer
EE6B AO 12 LDY 1IS12 position 18
EE6D A6 7F LOX S7F drive number
EE6F AO D5 FE LOA SFE05 'A'r 1541 format
EE72 90 01 01 STA S0101,X
EE75 8A TXA
EE76 OA ASL A times 2
EE77 AA TAX
EE7B B5 12 LOA S12,X ID, first character
EE7A 91 94 STA (S94),Y in buffer
EE7C C8 INY
EE70 B5 13 LOA S13 ,X and second character
EE7F 91 94 STA (S94) ,Y in buffer
EE81 C8 INY
EE82 C8 INY
EE83 A9 32 LOA #S32 '2'
EE85 91 94 STA (S94) ,Y in buffer
EE87 C8 INY
EE8B AO D5 F'E LDA SFE05 'A' 1541 format
EE8B 91 94 STA (S94), Y in buffer
EE8D AO 02 LDY 1IS02
EE8F 91 6D STA (S60) ,Y and at position 2
EE91 AO 85 FE LOA SFE85 18
EE94 85 BO STA $80 track number
EE96 20 93 EF JSR SEF93 mark block as allocated
EE99 A9 01 LOA #SOI 1
EE9B 85 Bl STA S81 sector number
EE90 20 93 EF JSR SEF93 mark block as allocated
EEAO 20 FF BE JSR $EE~'F wri te BAM
EEA3 20 05 FO JSR SF005 pointer S60/$6E to buffer, erase
EEA6 AO 01 LOY #SOI buffer
EEAB A9 FF LOA #SFF
EEAA 9A 6D STA (S6D),Y track following is zero
EEAC 20 64 D4 JSR S0464 write BAM
EEAF C6 81 OEC S81 decrement sector number, 0
EEBI 20 60 04 JSR $0460 read block
EEB4 4C 94 Cl JMP SC194 prepare disk status

****************************** create BAM
EEB7 20 01 FO JSR SFOOI
EEBA AO 00 LOY #SOO
EEBC A9 12 LOA #S12 18
EEBE 91 60 STA (S60),Y pointer to directory track

226

EECO
EECl
EEC2
EEC4
EEC5
EEC6
EEC7
EEC9
EECB
EECD
EECF
EEDO
EEDl
EED2
EED5
EED7
EED8
EED9
EEDA
EEDC
EEDE
EEEO
EEEl
EEE3
EEE5
EEE7
EEE8
EEE9
EEEB
EEED
EEEF
EEFI

C8
98
91 6D
C8
C8
C8
A9 00
85 6F
85 70
85 71
98
4A
4A
20 4B F2
91 6D
C8
AA
38
26 6F
26 70
26 71
CA
DO F6
B5 6F
91 6D
C8
E8
EO 03
90 F6
CO 90
90 D6
4C 75 DO

INY
TYA
STA (S6D),Y
INY
INY
INY
LDA #$00
STA S6F
STA S70
STA S71
TYA
LSR A
LSR A
JSR SF24B
STA(S6D),Y
INY
TAX
SEC
ROL S6F
ROL S70
ROL S71
DEX
BNE SEED9
LDA S6F,X
STA (S6D),Y
INY
INX
CPX #S03
BCC SEEE3
CPY #S90
BCC SEEC7
JMP S[)075

Anatomy of the 1541 Disk Drive

1
pointer to directory sector

3 bytes = 24 bits for sectors

byte position

divided by 4 = track number
get number of sectors
and in BAM

create bit model

3 bytes
the BAM in huffer

position 144?
no, next track
calculate number of free blocks

****************************** write BAM if needed
get buffer number EEF4

EEF7
EEF8
EEFB
EEFD
EEFF
EFOI
EF04
EF06

EF07
EF09
EFOC
EFOF
EFll
EF12
EF13
EF16
EFl7
EF18
EFIA

20 93 DF
AA
BD 5B 02
29 01
85 7F
114 7F
B9 51 02
DO 01
60

1\9 00
99 51 02
20 3A EF
AS 7F
OA
48
20 A5 FO
68
18
69 01
20 AS FO

JSR SDf'93
TAX
LDA S025B,X
AND #$01
STA S7F
LDY S7F
LDA $025I,Y
BNE SEF07
RTS

LDA #$00
STA S025l,Y
JSR SEF3A
LDA S7F
ASL A
PHA
JSR SFOA5
PLA
CLC
ADC #SOl
JSR $FOA5

227

command for disk controller

isolate drive number

BAM-changed flag set?
yes

reset BAM-changed flag
set buffer pointer for BAM
drive number
times 2

verify BAM entry

increment track number
verify BAM entry

Anatomy of the 1541 Disk Drive

EFID AS 80 LDA S80 track
EFIF 48 PHA
EF20 A9 01 LDA #SOl
EF22 85 80 STA S80 track 1
EF24 OA ASL A
EF25 OA ASL A times 4
EF26 85 6D STA S6D
EF28 20 20 F2 JSR SF220 verify BAM
EF2B E6 80 INC S80 increment track number
EF20 AS 80 LOA S80
EF2F CD 07 FE CMP SFED7 and compare with max val + 1
EF32 90 FO BCC SEF24 ok, next track
EF34 68 PLA
EF35 85 80 STA S80 get track number back
EF37 4C SA DS JMP S058A write BAI' to disk

****************************** set buffer pointer for BAM
EF3A 20 OF FI JSR SFIOF get 6 for drive 0
EF30 AA TAX
EF3E 20 DF FO JSR SFODF allocate buffer
EF41 A6 F9 LDX SF9 buffer nUJllber
EF43 BO EO FE LOA $FEEO,X buffer address, hi byte
EF46 85 6E STA S6B
EF48 A9 00 LDA #SOO 10 byte
EF4A 85 60 STA $6D pointer to S60/S6E
EF4C 60 RTS

****************************** get # of free blocks for dir
EF4D A6 7F LDX S7F drive number
EF4F BD FA 02 LDA S02FA,X number of blocks, 10
EF52 8D 72 02 STA S0272
EFS5 BD FC 02 LDA S02FC,X number of blocks, hi
EF58 8D 73 02 STA S0273 in buffer for directory
EF5B 60 RTS

****************************** mark block as free
EF5C 20 Fl EF JSR SEFFI set buffer pointer
EF5F 20 CF EF JSR SEFCF erase bit for sector in BAM
EF62 38 SEC
EF63 DO 22 BNE SEFS7 block already free, then done
EF65 Bl 6D LDA ($60), Y bit model of BAM
EFG7 10 £9 EF ORA SEFE9 set bit X, marker for free
EF6A 91 6D STA (S60) ,Y
EF6C 20 88 EF JSR SEFS8 set flag for BAM changed
EF6F M 6F LOY S6F
EF71 18 CLC
EF72 Bl 6D LDY (S60),Y
EF74 69 01 AOC #SOI increment # of free blocks/track
EF76 91 60 STA (S60),Y
EF78 AS 80 LOA SSO track
EF7A CD 85 FE CMP SFE8S equal to 18?
EF7D FO 313 BEO SEFBA then skip
EF7F ~"E FA 02 INC S02FA,X inc # of free blocks in disk
EF82 DO 03 BNE SEF87
EF84 FE FC 02 INC S02PC,X increment number of blocks hi

228

Anatomy of the 1541 Oisk Orive

EF87 60 FTS

****************************** set flag for 'BAM changed'
EF88 A6 7F LOX $7F dri ve number
EF8A A9 01 LOA #$01
EF8C 90 51 02 STA $0251,X flag = 1
EF8F 60 RTS

****************************** mark block as allocated
EF90 20 F1 EF JSR $EFFI set buffer pointer
EF93 20 CF EF JSR $EFCF erase bit for sector in BAM
EF96 FO 36 BEO $EFCE already allocated, then done
EF98 Bl 60 LOA ($60) ,Y
EF9A 50 E9 EF EOR $EFE9,X erase bit for block
EF90 91 60 STA (S60) ,Y
EF9F 20 88 EF JSR SEF8S set flag for BAM changed
EFA2 M 6F LOA $6F
EFM Bl 60 LOA (S60),Y
EFA6 38 SEC
EFA7 E9 01 SBC #$01 decrement 1I of blocks per track
EFA9 91 6D STA (S60),Y
EFAB A5 80 LDA S80 track
EFAD CD 85 FE CMP SFE85 18?
EFBO FO OB BEO $EFBO
EFB2 BD FA 02 LDA $02FA,X number of free blocks 10
EFR5 DO 03 BNE SEFBA
EFB7 DE FC 02 DEC $02FC,X decrement number of free blocks
EFBA DE FA 02 DEC S02FA,X
EFBD BD FC 02 LOA S02FC,X number of free blocks hi
EFCO DO OC FINE SEFCE more than 255 blocks free?
EFC2 BD FA 02 LDA $02FA,X free blocks 10
EFC5 C9 03 CMP #S03
EFC7 BO 05 BCS SEFCE smaller than 37
EFC9 A9 72 LDA #$72
EFCB 20 C7 E6 JSR $E6C7 72, 'disk full'
EFCE 60 RTS

**********~******************* erase bit for sector :n BAM entry
EFCF 20 11 FO JSR SFOll find BAM field for this track
EFD2 98 TYA
EFD3 85 6F STA $6F
EFD5 A5 81 LDA $81 sector
EFD7 4A LSR A
EFD8 4A LSR A divide by 8
EFD9 4A LSR A
EFDA 38 SEC
EFDB 65 6F ADC S6F
EFDD A8 TAY byte number in BAM entry
EFDE A5 81 LDA $81 sector number
EFEO 29 07 AND #S07
EFE2 AA TAX bit number in BAM entry
EFE3 B1 60 LDA (SfiD) ,Y byte in BAM
EFE5 30 E9 EF AND SEFE9,X erase bit for corresponding
EFE8 60 RTS sector

229

Anatomy of the 1541 Disk Drive

****************************** powers of 2
EFE9 01 02 04 08 10 20 40 80

****************************** write BAM after change
EFFI A9 FF LOA #$FF
EFF3 2C F9 02 BIT $02F9
EFF6 FO OC BEO $F004
EFF8 10 OA BPL $F004
EFFA 70 08 BVS $F004
EFFC A9 00 LOA #$00
EFFE 80 F9 02 STA $02F'9 reset flag
FOOl 4C 8A 05 JMP $DS8A write block
FOO4 60 RTS

****************************** erase BAM buffer
FOOS 20 3A EF JSR $EF3A pointer $6D/S6E to BAM buffer
FOO8 AO 00 LOY #$00
FOOA 98 TYA
FOOB 91 6D STA (S6f),Y erase BAM buffer
FOOD C8 INY
FOOE DO FB BNE SFOOB
FOIO 60 RTS

** •• *******.*******.*******.*.
Fall AS 6F LOA $6F
F013 48 PHA
F014 AS 70 LDA S70
F016 48 PHA
F017 A6 7F LDX $7F drive number
FOl9 B5 FF LDA $FF,X
FOIB FO as BEO $F022 drive zero?
FOlD A9 74 LDA #$74
FOIF 20 48 E6 JSR $E648 'drive not ready'
F022 20 OF FI JSR $FIOF get buffer number for BAM
F025 85 6F STA $6F
F027 8A TXA
F028 OA ASL A
F029 85 70 STA $70
F02B AA TAX
F02C A5 80 LOA S80 track
F02E DD 9D 02 CMP S0290,X
F031 FO OB BEO $F03E
F033 EB INX
F034 86 70 STX $70
F036 00 9D 02 CMP S029D,X
F039 FO 03 BEO SF03E
F03B 20 5R FO JSR SFOSB
F03E AS 70 LOA S70
F040 A6 7F LDX $7F drive number
F042 90 9B 02 STA S029B,X
F045 OA ASL A
F046 OA ASL A times 4
F047 18 CLC
F048 69 Al ADC #$Al
F04A 85 6D STA S6D

230

Anatomy of the 1541 Oisk Orive

F04C A9 02 LOA 1IS02
F04E 69 00 AOC #SOO
F050 85 6E STA S6E
F052 AO 00 LOY #SOO
F054 58 PLA
F055 85 70 STA S70
F057 68 PLA
F058 85 6F STA S6F
F05A 60 RTS

F05B A6 6F LOX S6F
F050 20 Of FO JSR SFOOF
F060 A5 7F LOA S7F dri ve number
F062 AA TAX
F063 OA ASL A
F064 10 9B 02 ORA $029B,X
F067 49 01 EOR #SOI
F069 29 03 ANO #S03
F06B 85 70 STA S70
F060 20 A5 FO JSR SFOA5
F070 AS F9 LOA SF9 buffer number
F072 OA ASL A
F073 AA TAX
F074 AS 80 LOA S80 track
F076 OA ASL A
F077 OA ASL A times 4
F078 95 99 STA S99,X equal pointer in BAM field
F07A AS 70 LOA S70
F07C OA ASL A
F070 OA ASL A
F07E A8 TAY
F07F Al 99 LOA (S99,X)
F08l 99 Al 02 STA S02Al,X
F084 A9 00 LOA #SOO
F086 81 99 STA (S99,X) zero in buffer
F088 F6 99 INC S99,X increment buffer pointer
F08A C8 INY
F08B 98 TYA
F08C 29 03 ANO #S03
F08E 00 EF' BNE SF07F
F090 A6 70 LOX S70
F092 A5 80 LOA S80 track
F094 90 90 02 STA S0290,X
F097 AO F9 02 LDA S02F9
F09A DO 03 BNE SF'09F
F09C 4C 8A 05 JMP S058A write block

F09F 09 80 ORA #S80
FOAl 80 F9 02 STA S02F9
FOM 60 RTS

FOA5 A8 TAY
FOA6 B9 90 02 LDA S0290,y
FOA9 E'O 25 BEO SFOOO

231

Anatomy of the 1541 Disk Drive

FOAB 48 PHA
FOAC A9 00 LDA #$00
FOAE 99 9D 02 STA $029D,Y
FOBl AS F9 LDA $F9 buffer number
FOB3 OA ASL A times 2
FOB4 AA TAX
FOBS 68 PLA
FOB6 OA ASL A
FOB7 OA ASL A
FOBB 95 99 STA $99,x
FOBA 98 TYA
FOBB OA ASL A
FORC OA ASL A
FOBD AB TAY
FOBE B9 Al 02 LDA $02AI,Y
FOCI 81 99 STA ($99,X) write in buffer
FOC3 A9 00 LDA #$00
FOC5 99 Al 02 STA $02AI,Y
FOCB F6 99 INC $99,X increment buffer pointer
FOCA C8 INY
FOCB 9B TYA
FOCC 29 03 AND #$03
FOCE DO EE BNE $FOBE
FODO 60 RTS

FODI AS 7F LDA $7F drive number
FOD3 OA ASL A
FOD4 AA TAX
FOD5 A9 00 LDA #$00
FOD7 9D 9D 02 STA $029D,X
FODA E8 INX
FODS 9D 9D 02 STA $029D,X
FODE 60 RTS

FODF B5 A7 LDA SA7,X
FOEI C9 FF CMP #$1"1"
FOE3 DO 25 ENE SFIOA
FOES 8A TXA
FOE6 48 PtTA
FOE7 20 HE D2 JSR $D28E
FOEA AA TAX
FOEB 10 05 BPL SFOF2
FOED A9 70 LDA #$70
FOEF 20 C8 Cl JSR SCIC8 70, • no channel'
(,"01"2 fl6 1"9 STX SF9
FOF4 68 PLA
1"01"5 A8 TAY
FOF6 8A TXA
FOF7 09 80 ORA #S80
FOF9 99 A7 00 STA $00A7,Y
FOFC OA ASL A
FOFD AA TAX
FOFE AD 85 FE LDA SFE85 18, directory track
1"101 95 06 STA S06,x save
FI03 A9 00 LDA #$00 0

232

Fl05
FI07

FIOA
FlOC
FlOE

95 07
4C 86 D5

29 OF
85 F9
60

STA S07,X
JMP $D586

AND #$OF
STA $F9
RTS

FIOF
Flll
FIl3
F1l5
FIlii
Fll8

A9 06
A6 7F
DO 03
18
69 07
60

LDA #$06
LDX $7F
BNE SF1l8
CLC
ADC #$07
RTS

Anatomy of the 1541 Disk Drive

as sector
write hlock

buffer number

get buffer number for RAM

drive number

gives 13 for drive 0

****************************** buffer number for BAM
F1l9
FllC
FllD

20 OF Fl
AA
60

JSR SFIOF
TAX
RTS

get buffer number

****************************** find and allocate free block
FllE
Fl21
F123
Fl25
F127
F12A
F12D
F12F
F130
Fl33
F134
F136
F138
Fl3A
Fl3C
F13F
F141
F143
F145
F147
Fl4A
F14C
F14F
F150
F152
F154
F156
F158
F15A
F15C
F15F
F161
F163
F166

20 3E DE
A9 03
85 6F
A9 01
OD F9 02
8D F9 02
A5 6F
48
20 11 FO
68
85 6F
Bl 6D
DO 39
A5 80
CD 85 FE
FO 19
90 lC
E6 80
A5 80
CD D7 FE
DO El
AE 85 FE
CA
86 80
A9 00
85 81
C6 6F
DO D3
A9 72
20 C8 Cl
C6 80
DO CA
AE 85 FE
E8

JSR SDE3E
LDA 41$03
STA S6F
LDA #SOI
ORA S02F9
STA S02f'9
LDA S6F
PHA
JSR SFOll
PLA
STA S6F
LDA (S6D),Y
BNE Sf'173
LDA S80
CMP SFE85
REO SF15A
BCC SF15F
INC S80
LDA S80
CMP SFED?
BNE SF12D
LDX SFE85
DEX
STX S80
LDA #SOO
STA S81
DEC S6F
BNE SF12D
LDA #S72
JSR SCIC8
DEC S80
BNE SF12D
LDX SFE85
INX

233

get track and sector number

counter

save counter

find BAM field for this track

get counter back
number of free blocks in track
blocks still free?
track
18, directory track?
yes, 'disk full'
smaller, then next lower track
increment track number

36, highest track number plus one
no, continue searching thi~ track
18, directory track
decrement
save as track number

begin with sector number zero
decrement counter
not yet zero, then continue

72, 'disk full'
decrement track number
not yet 0, continue in this track
18, directory track
increment

Anatomy of the 1541 Disk Drive

FI67
FI69
F16B
F160
Fl6F
F171

Fl73
Fl75
Fl76
F178
Fl7A
Fl7C
Fl7F
Fl82
Fl8S
Fl87
Fl1l9
F18A
FIBC
FIBF
FI9!
Fl93
Fl9S
Fl98
F19A
Fl9D
Fl9F
FIAI
FIM
FIA6

86 80
A9 00
85 81
C6 6F
DO BC
FO E7

A5 81
18
65 69
85 81
A5 80
20 4B F2
8D 4E 02
80 4D 02
CS III
BO OC
38
AS 81
ED 4E 02
85 81
FO 02
C6 81
20 FA Fl
FO 03
4C 90 EF
A9 00
85 III
20 FA Fl
DO F4
4C F5 Fl

STX $80
LDA *$00
STA $81
DEC $6F
BNE $F12D
BEO $F15A

LDA $81
CLC
ADC $69
STA $81
LDA $80
JSR SF24B
STA $024E
STA S024D
CMP S8l
BCS SF195
SEC
LDA S8l
SBC S024E
STA $81
BEO SF195
DEC S81
JSR SFIFA
BEO SFI<lD
JMP SEF90
LDA *SOO
STA S81
JSR SFIFA
BNESF19A
JMP SFIF5

save as track number

begin with sector zero
decrement counter
not yet zero, then continue
else 'disk full'

sector number

plus step width (10)
as new number
track number
get maximum sector number

and save
greater than selec.te.d sector jI,
yes
else
sector number
minus maximum sector number
save as new sector number
zero?
else decrement sector no. by or
check BAM, find free sector
not found?
allocate block in BAM

sector zero
find free sector
found?
no, 'dir sector'

****************************** find free sector and allocate
FlA9
FlAB
FIBI
FIB3
FIB4
FIB6
FIB8
FIBB
FIBC
FIBE
FICO
FIC2
FIC4
FIC7
FIC9
FICB
FICE
FICF
FIDI
FlO]
FID5
FID8

A9 01
OD F9 02
AS 86
48
49 01
85 86
AD 85 FE
38
ES 86
85 80
90 09
FO 07
20 11 Fa
Bl 60
DO IB
AD 85 FE
18
65 86
85 80
E6 86
CD D7 FE
90 05

LDA IIS01
ORA S02F9
LDA S86
PHA
LDA #SOl
STA $86
LDA SFE8S
SEC
SBC $86
STA S80
BCC SFICB
BEO SFlCB
JSR SFOll
LDA (S6D),Y
BNE SFIE6
LDA SFE85
CLC
ADC S86
STA S80
INC S86
CMP SFED7
flCC SFIDF

234

tra·ck counter

18, directory track

minus counter
save as track number
result (= zero?
then try top half of dir
find BAM field for this track
no. of free blocks in this trac
free blocks exist
18, directory track

plus counter
save as track number
increment counter
36, max track number plus one
smaller, then ok

Anatomy of the 1541 Disk Drive

FlDA A9 67 LOA #$67
FlDC 20 45 E6 JSR $E645 67, , illegal track or sector'
FlDF 20 11 FO JSR $F011 find BAM field for this track
FlE2 Bl 60 LOA ($6D),Y no. of free blocks in this track
FlE4 FO 02 BEO $FIBB no more free blocks?
FlE6 68 PLA
FIE7 85 86 STA $86
FIE9 A9 00 LOA #SOO
FlEB 85 81 STA S81 sector 0
FlED 20 FA Fl JSR SFlFA find free sector
FIFO FO 03 REO SFIF5 not found?
FlF2 4C 90 EF JMP SEF90 allocate block in BAM

FIF5 A9 71 LDA #S7l
FlF7 20 45 E6 JSR $E645 71, 'dir error'

****************************** find free sectors in actual track
FlFA 20 11 FO JSR SFOll find BAM field for this trc;ck
FIFO 98 TYA points to II of free blocks
FlFE 48 PHA
FIFF 20 20 F2 JSR SF220 verify BAM
F202 A5 80 LOA $80 track
F204 20 4B F2 JSR $F24B get max II of sectors of the track
F207 8D 4E 02 STA $024E save
F20A 68 PLA
F20fl 85 6F STA S6F save pointer
~'200 A5 81 LOA S81 compare sector
F20E' CD 4E 02 CMP $024E with maximum number
F212 BO 09 BCS $F210 greater than or equal to?
F214 20 D5 EF JSR SEFD5 get bit .number of sector
F217 DO 06 BNE SF21F sector free?
F219 E6 81 INC $81 increment sector number
F21B DO FO BNE $F20D and check if free
F2lD A9 00 LDA #$00 no sectors free
F2lF 60 RTS

****************************** verify no. of free blocks in BAM
F220 A5 6F LOA S6F
F222 48 PHA
F223 A9 00 LDA #Soo
F225 85 6F STA $6F counter to zero
F227 AC 86 ~'E LDY SFE86 4, no. of bytes per track in BAM
F22A 88 DEY
F22R A2 07 LDX #S07
F22D Bl 6D LDA (S60),Y
F22F 3D E9 EF AND $EFE9,X isolate bit
F232 FO 02 BEO SF236
F234 E6 6F INC $6F increment counter of free sectors
F236 CA OEX
F237 10 F4 RPL SF22D
F239 88 DEY
F23A DO EF BNE $F22R
F23C Bl 60 LDA (S6D),Y compare with number on diskette
F23E C5 6F CMP $6E'
F240 DO 04 BNE $F246 not equal, then error

235

Anatomy of the 1541 Disk Drive

F242 68 PLA
F243 85 6F STA S6F
F245 60 RTS
F246 A9 71 LOA #S71
F2~8 20 45 E6 JSR $E645 71, 'dir error'

****************************** establish # of sectors per trac
F24B AE D6 FE LDX $FED6 4 different values
F24E DD D6 FE CMP $FED6,X track. number
F251 CA DEX
F252 BO FA BCS $F24E not greater?
F254 BD Dl FE LDA SFEDl,X get number of sectors
F257 60 RTS

F258 60 RTS

****************************** initialize disk. controller
F259 A9 6F LOA #S6F bit 4 (write prot) & 7 (SYNC)
F25B 8D 02 lC STA SlC02 data direction register port B
F25E 29 FO AND #SFO
F260 80 00 lC STA SlCOO port B, control port
F263 AO OC lC LOA SlCOC PCR, control register
F266 29 FE ANO #SFE
F268 09 OE ORA #$OE
F26A 09 EO ORA #$EO
F26C 8D OC lC STA SlCOC
F26F A9 41 LOA #$41
F271 80 OB lC STA SlCOB timer 1 free running, enable
F274 A9 00 LOA #$00 port A latch
F276 80 06 lC STA SlC06 timer 1 10 latch
F279 A9 3A LOA #$3A
F27B 80 07 lC STA SlC07 timer 1 hi latch
F27E 80 05 lC STA SlC05 timer 1 hi
F281 A9 7F LOA #S7F
F283 80 OE lC STA SlCOE erase IROs
F286 A9 CO LDA #SCO
F288 80 00 IC STA SlCOO
F28B 80 OE IC STA SICOE IER, allow interrupts
F28E A9 FF LOA #SFF
F290 85 3E STA $3E
F292 85 51 STA $51 track. counter for formatting
F294 A9 08 LDA #$08 8
F296 85 39 STA $ 39 constants for block. header
F298 A9 07 LOA #$07 7
F29A 85 47 STA $47 constants for data block.
F29C A9 05 LOA #$05
F29E 85 62 STA $62
F2AO A9 FA LOA #$FA pointer S62/S63 to SFA05
F21\2 85 63 STA S63
F21\4 A9 C8 LDA #SC8 200
F2A6 85 64 STA S64
F2A8 A9 04 LDA #$04
F21\A 85 5E STA SSE
E2AC A9 04 LDA #S04
F 21\[0; 85 6F STA $6F

236

F2BO
F2BI
F2B3
F2B6
F2B9
F2BB
F2BE
F2CO
F2C3
F2CS
F2C7
F2C9
F2CA
F2CD
F2CF
F2Dl
F2D3
F2DS

F2D8
F2D9
F2DB
F2DD
F2DF
F2E2
F2E4
F2E6

F2E9
F2EB
F2ED
F2EE
F2FO

F2F3
F2F4
F2F6

F2F9
F2FB
F2FD
F2FF
F301
F304
F306
F308
F30A
F30C
F30F
F311
F313
F315
F317

BA
86 49
AD 04 lC
AD OC IC
09 OE
8D OC IC
AO OS
B9 00 00
10 2E
C9 DO
DO 04
98
4C 70 F3
29 01
FO 07
84 3F
A9 OF
4C 69 F9

AA
85 3D
C5 3E
FO OA
20 7E F9
AS 3D
85 3E
4C 9C F9

A5 20
30 03
OA
10 09
4C 9C F9

88
10 CA
4C 9C F9

A9 20
8S 20
AO OS
84 3F
20 93 F3
30 lA
C6 3F
10 F7
A4 41
20 95 F3
A5 42
85 4A
06 4A
A9 60
85 20

TSX
STX S49
LDA SlC04
LDA SICOC
ORA #SOE
STA SICOC
LDY #S05
LDA SOOOO,y
BPL SF2F3
CMP #SDO
BNE SF2CD
TYA
JMP SF370
AND #SOI
BEO SF2D8
STY $3F
LDA #SOF
JMP SF969

TAX
STA S3D
CMP $3E
BEO SF2E9
JSR $F97E
LDA $3D
STA S3E
JMP SF99C

LDA S20
BMI SF2FO
ASL A
BPL 5F2F9
JMP SF99C

DEY
BPL SF2CO
JMP SF99C

LDA #$20
STA 520
LDY #$05
STY S3F
JSR $F393
BMI SF320
DEC S3F
BPL SF301
LDY S41
JSR $F395
LDA S42
STA S4A
ASL S4A
LDA #560
STA S20

Anatomy of the 1541 Disk Drive

IRO routine for disk controller

save stack pointer

erase interrupt flag from timer

command for buffer Y?
no
exec. code for program in buffer
no

execute program in buffer
isolate drive number
drive zero?

else
74, 'drive not ready'

motor running?
yes
turn drive motor on

set flag
to job loop

head transport programmed?

to job loop

check next buffer
to job loop

program head transport

initialize buffer counter
set pointer in buffer
command for buffer?
decrement counter
check next huffer
buffer number
set pointer in buffer
track difference for last job
as counter for head transport

set flag for head transport

237

Anatomy of the 1541 Disk Drive

F319 B1 32 LOA (S32) , Y get track number from huffer
F31B 85 22 STA S22
F31D 4C 9C F9 JMP SF99C to job loop
F320 29 01 AND #S01 isolate drive number
~'322 C5 30 CMP $30 equal drive number of last job?
F324 DO EO BNE SF306 no
F326 A5 22 LOA S 22 last track number
F328 FO 12 BEO SF33C equal zero?
F32A 38 SEC
F32B Fl 32 SBC (S32), Y equal track number of this job?
F32D FO 00 BEO SF33C yes
F32F 49 FF EOR #SFF
F331 85 42 STA S42
F333 E6 42 INC S42
F335 AS 3F LDA S3F drive number
F337 85 41 STA S41
F339 4C 06 F3 JMP SF306

E33C A2 04 LOX #S04
F33E Bl 32 LDA (S32) ,Y track number cif the job
F340 85 40 STA S40 save
F342 DD D6 FE CMP SFED6,X compare with max track number
F345 CA DEX
F346 BO FA BeS SF342 greater?
F348 80 01 FE LDA SFEDl,X get # of sectors per track
F34B 85 43 STA S43 and save
F340 8A TXA
F34E OA ASL A
F34F OA ASL A
F3S0 OA ASL A
F3S1 OA ASL A
F3S2 OA ASL A
F3S3 85 44 STA S44 gives 0, 32, 64, 96
F3S5 AD 00 IC LDA SICOO
F3S8 29 9F AND #S9F
F3SA 05 44 ORA 844 generate control byte for notor
F3SC 8D 00 IC STA SICOO
F3SF A6 3D LDX S3D
F361 AS 45 LOA S45 command code
F363 C9 40 nIP #S40 position head?
F365 FO 15 BEO SF37C yes
F367 C9 60 CMP #S60 command code for prg execution?
F369 FO 03 BEO SF36E yes
F36R 4C 81 F3 JMP SF3Bl read block header

****************************** execute program in buffer
F36£ A5 3F' LOA S3F' buffer number
F370 18 CLC
F371 69 03 AOC #S03 plus 3
F373 85 31 STA $31
F375 A9 00 LOA #SOO equals address of buffer
F377 85 30 STA $ 30
F379 6C 30 00 JMP (S0030) execute program in buffer

****************************** position head

238

Anatomy of the 1541 Disk Drive

F37C A9 60 LDA #$60
F37E 85 20 STA $20 set flag for head transport
F380 AD 00 lC LDA $lCOO
F383 29 FC AND #$~'C turn stepper motors on
F385 8D 00 lC STA $lCOO
F388 A9 A4 LDA #$A4 164
F38A 85 4A STA $4A step counter for head transport
F38C A9 01 LDA #$01
F38E 85 22 STA $22 track number
F390 4C 69 F9 JMP $F969 ok

****************************** initialize pointer in buffer
F393 A4 3F LDY $3F buffer number
F395 B9 00 00 LDA SOOOO,y command code
F398 48 PHA save
F399 10 10 RPL $F3AB
F39B 29 78 AND #$78 erase bits 0,1,2, and 7
F39D 85 45 STA S45
F39F 98 TYA buffer number
F3AO OA ASL A times two
F3Al 69 06 ADC #S06 plus 6
F3A3 85 32 STA $32 equals point.er to actual buffer
F3A5 98 TYA buffer number
F3A6 18 CLC
F3A7 69 03 ADC #$03 plus 3
F3A9 85 31 STA $31 equals buffer address hi
F3AB AO 00 LDY #SOO
F3AD 84 30 STY $30 buffer address 10
F3AF 68 PLA get command code back
F3BO 60 FTS

****************************** read block header, verify ID
F3Bl A2 5A LDX #S5A 90
F3B3 86 4B STX S4B counter
F3B5 A2 00 LDX #SOO
F3B7 A9 52 LDA #$52 82
~'3B9 85 24 STA $ 24s
F3BB 20 56 F5 JSR $F556 wait for SYNC
F3BE 50 FE BVC $F3RE byt.e ready?
F3CO B8 CLV
F3Cl AD 01 lC LDA $lCOl data from read head
F3C4 C5 24 CMP $24
F3C6 DO 3~' RNE $F407 20, 'read error'
F3C8 50 FE BVC SF3C8 byte ready?
F3CA B8 CLV
F3CB AD 01 lC LDA SlCOl data byte froID disk(block header)
F3CE 95 25 STA $25,X save 7 bytes
F3DO E8 INX
F3Dl EO 07 CPX lIS07
F3D3 DO F3 BNE $F3C8 continue reading
F3D5 20 97 F4 JSR $F497
F3D8 AO 04 LDY #S04 4 bytes plus parit.y
F3DA A9 00 LDA #$00
F3DC 59 16 00 EOR SOO16,Y form checksum for header
F3DF 88 DEY

239

Anatomy of the 1541 Disk Drive

F3EO 10 FA BPL $F3DC
F3E2 C9 00 CMP #$00 parity ok?
F3E4 DO 38 BNE $F4IE 27, 'read error'
F3E6 A6 3E LDX $3E drive number
F3E8 A4 18 LDA $18 track number of header
F3EA 95 22 STA $22,X use as actual track number
F3EC AS 45 LDA $45
F3EE C9 30 CMP #$30 code for 'preserve header'
F3FO FO IE BEO $F410 preserve header
F3F2 AS 3E LDA $3E
F3F4 OA ASL A
F3FS A8 TAY
F3F6 B9 12 00 LDA $0012,Y
F3F9 C5 16 CMP $16 compare with ID1
F3FB DO IE BNE $F41B
F3FD B9 13 00 LDA $0013,Y
F400 CS 17 CMP $17 compare with ID2
F402 DO 17 BNE $F41B <>, then 29, 'disk id mismatch'
F404 4C 23 F4 JMP $F423

F407 C6 4B DEC $4B decrement counter for attempts
F409 DO BO BNE $F3BB and try again
NOB A9 02 LDA #$02 else
NOD 20 69 F9 JSR $F969 20, 'read error'

****************************** preserve block header
F410 AS 16 LDA $16 1D1
F412 85 12 STA $12
F414 AS 17 LDA $17 and 1D2
F416 85 13 STA $13 preserve
F41S A9 01 LDA #$01 ok
F41A 2C .BYTE $2C
F41B A9 DB LDA #$OB 29, 'disk id mismatch'
F41D 2C .BYTE $2C
F41E A9 09 LDA #$09 27, 'write error'
F420 4C 69 F9 JMP $F969 done

F423 A9 7F LDA #$7F
F425 85 4C STA $4C
F427 A5 19 LDA $19
F429 IS CLC
F42A 69 02 ADC #$02
F42C C5 43 OlP S43
F42E 90 02 BCC $F432
1'430 E5 43 SEC $43
F432 R5 4D STA S4D
F434 A2 05 LDX #S05
F436 86 3F STX S3F
F438 A2 FF LDX #$F'F
F43A 20 93 F3 JSR SF393 set buffer ptr for disk control.
F43D 10 44 BPL SF483
F43F' 85 44 STA S44
F'441 29 01 AND #$01
F443 CS 3E CMP S3E

240

Anatomy of the 1541 Oisk Orive

F445 00 3C BNE $F483
F447 AO 00 LDY #$00
F449 81 32 LOA ($ 32) • Y
F44B C5 40 CMP $40
F440 00 34 BNE $,,'483
F44F AS 45 LDA $45 command code
F451 C9 60 CMP #$60
F453 FO OC BEO $F461
F455 AO 01 LOY #SOI
1"457 38 SEC
F458 Bl 32 LOA ($ 32) • Y
F45A E5 40 SBC S40
F45C 10 03 BPL SF461
F45E i8 CLC
F45F 65 43 AOC S43
F461 C4 4C CMP S4C
F463 BO IE RCS SF483
F465 48 PHA
F466 A5 45 LOA S45
F468 FO 14 BEO SF47E
F46A 68 PLA
F46B C9 09 CMP #S09
F460 90 14 BCC SF483
F46F C9 OC CMP #SOC
F471 BO 10 BCS $F483
F473 85 4C STA 54C
F475 A5 3F LOA 53F
F477 AA TAX
F478 69 03 AOC #$03
F47A 85 31 STA 531
F47C DO 05 BNE SF483
F47E 68 PLA
F47F C9 06 CNP #$06
F481 90 FO BCC SF473
F483 C6 3[< DEC 53F
F485 10 B3 BPL 5F43A
F487 8A TXA
F488 10 03 BPL $F48D
F48A 4C 9C 10'9 JMP 5F99C to job loop

F480 86 3F' STX $3F'
F48F 20 93 F3 JSP 5F393 get buffer- number-
F492 A5 45 LOA $45 command code
F'494 4C CA F4 JNP $F4CA continue checking

F497 A5 30 LOA $30
F499 48 PLA save pointer $30/$31
F49A A5 31 LOA $31
F49C 48 PHA
F490 A9 24 LOA #$ 24
F49F 85 30 STA 530
F4Al A9 00 LDA #$00 pointer $30/$31 to $ 24
F'4A3 85 31 STA $31
F4A5 A9 00 LDA #$00
F4A7 85 34 STA $34

241

Anatomy of the 1541 Disk Drive

F4A9 20 E6 F7 JSR $F7E6
F4AC AS 55 LOA $55
F4AE 85 18 STA $18
F4BO AS 54 LOA $54
F4B2 85 19 STA $19
F4B4 AS 53 LOA $53
F4B6 85 IA STA $IA
F4B8 20 E6 F7 JSR $F7E6
F4EB AS 52 LDA S52
F4BO 85 17 STA $17
F4BF A5 53 LOA $53
F4CI 85 16 STA S16
F4C3 68 PLA
F4C4 85 31 STA $31
F4C6 68 PLA get pointer S30/S31 back
F4C7 85 30 STA $30
F4C9 60 RTS

F4CA C9 00 CMP #SOO command code for 'read'?
F4CC FO 03 BEO $F401 yes
F4CE 4C 6E F5 JMP SF56E continue checking command code

F401 20 OA F5 JSR $F50A find beginning of data block
F404 50 FE BVC $F404 byte ready?
F406 B8 CLV
F407 AO 01 lC LOA SICOl get data byte
F40A 91 30 STA ($30) ,Y and write in buffer
F4DC C8 INY 256 times
F40D 00 F5 BNE SF404
F4DF AO BA LOY #SBA
F4El 50 FE BVC $F4EI byte ready?
F4E3 B8 CLV
F4E4 AO 01 lC LOA $lCOl read bytes
F4E7 99 00 01 STA SOIOO,Y from SIBA to $IFF
F4EA C8 INY
F4EB 00 F4 ENE $F4EI
F4EO 20 EO F8 JSR SFIlEO
F4FO A5 38 LDA S38
F4F2 C5 47 CMP $47 equal 7, beginning of data bloc
F4F4 FO 05 BEO $F4FB yes
F4F6 A9 04 LOA #$04 22, 'read error'
F4F8 4C 69 F9 JMP $F969 error termination

F4FB 20 E9 F5 JSR $F5E9 calculate parity of data block
F4FE C5 3A CMP $3A agreement?
F500 FO 03 BEO $F505 yes
F502 A9 05 LOA #$05 23, 'read error'
F504 2C .BYTE S2C
F505 A9 01 LOA #SOl ok
F507 4C 69 F9 JMP SF969 prepare error message

****************************** find start of data block
F50A 20 10 ~'5 JSR SF510 read block header
F500 4C 56 F5 JMP $F556 wait for SYNC

242

Anatomy of the 1541 oisk Orive

F510
F512
F513
F514
F516
F51S
F51A
F51C
F51E
F520
F522
F523
F525
F527
F529
F52B
F520·
F52F
F531
F533
F536
F53S
F53B
F530
F53F
F540
F543
F546
F548
F549
F54B
F540

F54E
F54F
F551
F553

A5 30
OA
AA
B5 12
85 16
B5 13
85 17
AD 00
Bl 32
85 18
C8
Bl 32
85 19
A9 00
45 16
45 17
45 18
45 19
85 lA
20 34 F9
A2 5A
20 56 F5
AO 00
50 FE
B8
AO 01 lC
09 24 00
00 06
C8
CO 08
00 FO
60

CA
00 E7
A9 02
4C 69 F9

LOA S30
ASL A
TAX
LOA S12,X
STA S16
LOA S13,X
STA $17
LOY #SOO
LOA (S32),Y
STA S18
INY
LOA (S32),Y
STA S19
LOA *SOO
EOR $16
EOR S17
EOR S18
EOR $19
STA SlA
JSR SF934
LOX #S5A
JSR SF556
LOY tt$OO
BVC SF'350
CLV
LOA SlCOl
CMP S0024,Y
BNE SF54E
INY
CPY #S08
BNE SF530
RTS

OEX
BNE SF538
LOA #S02
JMP SF969

F556
F558
F55B
F550
F560
F562
F565
F567
F56A
F56B
F560

A9 00
80 05 18
A9 03
2C 05 18
10 Fl
2C 00 lC
30 F6
AO 10 lC
B8
AO 00
60

LOA #800
STA S1805
LOA #S03
BIT S1805
BPL SF553
BIT SlCaO
B~H SF550
LOA SlCOl
CLV
LOY #SOO
RTS

F56E C9 10 CMP #$10

243

read block header
drive number

WI
save
102
save

get track and

sector number from buffer

calculate parity for block header

and save

90 attempts
wait for SYNC

byte ready?

read data from block header
compare with saved data
not the same, try again

8 bytes read?
no

decrement counter
not yet zero?

20, 'read error'

wait for SYNC
208
start timer
error code

timer run down, then 'read error'
SYNC signal
not yet found?
read byte

command code for 'write'

Anatomy of the 1541 Disk Drive

1"570 1"0 03 BEO $1"575 yes
1"572 4C 91 1"6 JMP $1"691 continue checking command code

****************************** write data block to disk
1"575 20 E9 ~'5 JSR $F5E9 calculate parity for buffer
F57B 85 3A STA $3A and save
F57A AD 00 lC LDA $lCOO read port B
F57D 29 10 AND #$10 isolate bit for 'wri te protect'
1"571" DO 05 BNE $1"586 not set, ok
1"581 A9 08 LDA #$08
F583 4C 69 1"9 JMP $1"969 26, 'write protect'

F586 20 81" 1"7 JSR $F7AF
1"589 20 10 1"5 JSR $1"510 find block header
F58C A2 09 LOX #S09
F58E 50 FE BVC $F58E byte ready?
F590 B8 CLV
1"591 CA DEX
1"592 DO FA BNE $F58E
1"594 A9 FF LDA #SFF
F596 8D 03 1C STA $lC03 port A (write/read head) to
F599 AD OC 1C LDA SlCOC to output
F59C 29 IF AND #$lF
F59E 09 CO ORA #$CO change PCR to output
F5AO 8D OC 1C STA ~lCOC
F5A3 A9 1"1" LDA #$1"1"
F5A5 A2 05 LOX #$05
F5A7 80 01 1C STA SlC01 write $FF to disk 5 times
F5M B8 CLV
F5AB 50 FE BVC SF5AB as SYNC characters
F5AO B8 CLV
F5AE CA DEX
F5AF DO FA BNE SF5AB
F5Bl AO BB LOY #SBB
F5B3 B9 00 01 LOA S0100,y bytes SlBB to SlFF to disk
F5B6 50 FE BVC $F5B6
F5B8 B8 CLV
F5B9 80 01 lC STA SlC01
F5BC C8 INY
F'5BO DO 1"4 BNE $F5B3
F5BF B1 30 LDA (S30) , Y write data buffer (256 bytes)
F5Cl 50 FE BVC $F5C1
F5C3 138 CLV
F5C4 8D 01 lC STA S lCOl
F'5C7 C8 INY
F5C8 DO 1"5 BNE SF5BF'
F5CA 50 FE BVC SF5CA byte ready?
1"5CC AD OC lC LDA $lCOC
F5CF 09 EO ORA #SEO PCR to input again
1"5Dl 8D DC lC STA $lCOC
F5D4 A9 00 LOA #SOO
F5D6 80 03 lC LOA $lC03 port A (read/write head) to inpl
f'5D9 20 1"2 1"5 JSR Sf'5F2
F5DC A4 3F LDY S3F
F50E 89 00 00 LDA SOOOO,y

244

Anatomy of the 1541 Disk Drive

F5El 49 30 EOR #$30 convert command code 'write'
F5E3 99 00 00 STA $OOOO,y to 'verify'
F5E6 4C Bl F3 JMP $F3Bl

****************************** calculate parity for data I'uffer
F5E9 A9 00 LDA #$00
F5EB A8 TAY
F5EC 51 30 EOR ($30) ,Y
F5EE C8 INY
F5EF DO FB BNE $F5EC
F5Fl 60 RTS

F5F2 A9 00 LDA #$00
F5F4 85 2E STA $2E
F5F6 85 30 STA $30
F5F8 85 4F STA $4F
F5FA AS 31 LDA $31
F5FC 85 4E STA S4E
F5FE A9 01 LDA #SOI
F600 85 31 STA $31
F602 85 2F STA $2F
F604 A9 BB LDA #$BB
F606 85 34 STA S34
F608 85 36 STA $36
F60A 20 E6 F7 JSF $F7E6
F60D AS 52 LDA $52
F60F 85 38 STA $38
F611 A4 36 LDY $36
F613 AS 53 LDA $53
F615 91 2E STA (S2E), Y
F617 C8 INY
F618 AS 54 LDA $ 54
F61A 91 2E STA ($2E), Y
F61C C8 INY
F61D AS 55 LDA $55
F61F 91 2E STA (S2E) ,Y
F6.21 C8 INY
F622 84 36 STY $36
F624 20 E6 F7 JSF $F7E6
F627 A4 36 LDY $36
F629 AS 52 LDA $52
F62B 91 2E STA C$2E), Y
F62D C8 INY
F62E AS 53 LDA $53
F630 91 2E STA ($2E) ,Y
F632 CB INY
F633 FO OE BEO $F643
F635 AS 54 LDA S 54
F637 91 2E STA (S2E) ,Y
F639 C8 INY
F63A AS 55 LDA $55
F63C 91 2E STA (S2E) , Y
F63E C8 INY
F63F 84 36 STY $36
F641 DO El BNE $F624

245

AnatOlllY of the 1541 Disk Drive

F643 A5 54 LDA $54
F645 91 30 STA (S30),Y
F647 C8 INY
F648 A5 55 LDA $55
F64A 91 30 STA (S30), Y
F64C C8 INY
F64D 84 36 STY S36
F64F 20 E6 F7 JSR SF7E6
F652 A4 36 LDY 536
F654 A5 52 LOA S52
F656 91 30 STA (S30), Y
F658 C8 INY
F659 A5 53 LOA S53
F65B 91 30 STA (530) ,Y
F650 C8 INY
F65E A5 54 LDA 554
F660 91 30 STA (530) ,Y
F662 C8 INY
F663 A5 55 LDA 555
F665 91 30 STA (530),Y
F667 C8 INY
F668 84 36 STY $36
F66.A CO BB CPY #SBB
F66C 90 El BCC SF64F
F66E A9 45 LDA #S45
FPO 85 2E STA $2E
F672 A5 31 LDA S31
F674 85 2F STA S2F
F'676 AO BA LOY iSBA
F678 Bl 30 LDA ($30) ,Y
F67A 91 2E STA ($2E) ,Y
F67C 88 DEY
F67D DO F9 BNE SF678
F67F Bl 30 LDA ($30),Y
F681 91 2E STA (S2E),Y
F683 A2 BB LDX lISBB
F685 BD 00 01 LDA $0100,X
F688 91 30 STA (S 30) ,Y
F68A C8 INY
F68B E8 INX
F68C DO F7 BNE $F685
F68E 86 50 STX $50
F690 60 RTS

F691 C9 20 CMP #$ 20 command code for 'verify'?
F693 FO 03 BE(l $F698 yes
F695 4C CA F6 JMP SF6CA continue checking command code

F698 20 E9 F5 JSR $F5E9 calculate parity for data buffer
F69R 85 3A STA $3A and save
F69D 20 8F F7 JSR $F78F
F6AO 20 OA f'5 JSR $F50A find start of data block
F6A3 AO BR LDY #$BB
F6A5 B9 00 01 LOA $0100,Y data from buffer

246

Anatomy of the 1541 Disk Drive

F6A8 50 FE BVC SF6A8 byte ready?
F6AA B8 CLV
F6AB 4D 01 lC EOR SlCOl compare with data from disk
F6AE DO 15 BNE $F6C5 not equal, then eJ:'ror
F6BO CB INY
F6Bl DO F2 BNE $F6A5
F6B3 Bl 30 LDA ($30) , Y data from buffer
F6B5 50 FE BVC SF6B5
F6B7 B8 CLV
F6B8 4D 01 Ie EOR SlCOl compare with data fJ:'om disk
F6BB DO 08 BNE $F6C5 not equal, then error
F6BD C8 INY
F6BE CO FD CPY #SFD
F6CO DO Fl BNE $F6B3
F6C2 4C 18 F4 JMP $F4l8 erJ:'oJ:' free termination

F6C5 A9 07 LDA #$07
F6C7 4C 69 F9 JMP $F969 25, 'write error'

F6CA 20 10 F5 JSR $F5l0 J:'ead block header
F6CD 4e 18 F4 JMP $F4l8 done

F6DO A9 00 LDA #$00
F6D2 85 57 STA $57
F6D4 85 5A STA $5A
F6D6 A4 34 LDY $34
F6D8 A5 52 LDA $52
F6DA 29 FO AND #$FO isolate hi-nibble
F6DC 4A LSR A
F6DD 4A LSR A and J:'otate to lower nibble
F6DE 4A LSR A
F6DF 4A LSR A
F6EO AA TAX as index in table
F6El BD 7F F7 LDA $F77F,X
F6E4 OA ASL A
F6E5 OA ASL A times 8
F6E6 OA ASL A
F6E7 85 56 STA $56
F6E9 A5 52 LDA $52
F6EB 29 OF AND #$OF isolate lower nibble
F6ED AA TAX as index in table
F6EE BD 7F F7 LDA $F77F,X
F6Fl 6A ROR A
F6F2 66 57 ROR $57
F6F4 6A ROR A
F6F5 66 57 ROR $57
F6F7 29 07 AND #$07
F6F9 05 56 ORA $56
F6FB 91 30 STA ($30), Y in buffer
F6FD C8 INY increment buffer
F6FE A5 53 LDA $53
F700 29 FO AND #$FO isolate upper nibble
F702 4A LSR A

247

Anatomy of the 1541 Disk Drive

F703 4A LSR A
F704 4A LSR A shift to upper nibble
F705 4A LSR A
F706 AA TAX as index in table
F707 BD 7F F7 LOA $F77F,X
F70A OA ASL A
F70B 05 57 ORA $57
F70D 85 57 STA $57
F70F A5 53 LOA $53
F711 29 OF AND #$OF lower nibble
F7l3 AA TAX as index
F714 BD 7F F7 LDA SF77F,X
F7l7 2A ROL A
F7l8 2A ROL A
F7l9 2A ROL A
F71A 2A ROL A
F7lB 85 58 STA $58
F7lD 2A ROL A
F7lE 29 01 AND #$01
F720 05 57 ORA S57
F722 91 30 STA (S30) ,Y in buffer
F724 C8 INY increment buffer
F725 A5 54 LDA $54
F727 29 FO AND #$FO isolate hi-nibble
F729 4A LSR A
F72A 4A LSR A
F72B 4A LSR A
F72C 4A LSR A
F72D AA TAX
F72E BD 7F F7 LDA SF77F,X
F731 18 CLC
F732 6A ROR A
F733 05 58 ORA $ 58
F735 91 30 STA ($30) ,Y in buffer
F737 C8 INY increment buffer pointer
F738 6A ROR A
F739 29 80 AND *S80
F73B 85 59 STA $59
F73D A5 54 LDA $54
F73F 29 OF AND #$OF lower nibble
F741 AA TAX as index
F742 BD 7F F7 LDA $F77F,X
F745 OA ASL A
F746 OA ASL A
F747 29 7C AND #$7C
F749 05 59 ORA $59
F74B 85 59 STA S59
F74D A5 55 LDA $55
F74F 29 FO AND #$FO isolate hi-nibble
F751 4A LSR A
F752 4A LSR A shift to lower nibble
F753 4A LSR A
F754 4A LSR A
F755 AA TAX as index in table
F756 BD 7F' F7 LDA $F77F',X

248

Anatomy of the 1541 Disk Drive

F759 6A ROR A
F75A 66 5A ROR $5A
F75C 6A ROR A
F75D 66 5A ROR $5A
F75F 6A ROR A
F760 66 5A ROR $5A
F762 29 03 AND i$03
F764 05 59 ORA $59
F766 91 30 STA ($30) ,Y in buffer
F768 C8 INY increll1ent buffer pOinter
F769 DO 04 B:NE $F76F
F76B A5 2F LOA $2F
F76D 85 31 STA $31
F76F A5 55 LDA $55
F771 29 OF AND i$OF lower nibble
F773 AA TAX as index
F774 BO 7F F7 LDA $F77F ,X
F777 05 5A ORA $5A
F779 91 30 STA ($30) ,Y in buffer
F77B C8 INY increment buffer pointer
F77C 84 34 STY $34 and save
F77E 60 RTS

F77F OA DB 12 13 OE OF 16 17
F787 09 19 1A 1B 00 10 IE 15

F78F A9 00 LOA *$00
F791 85 30 STA $30
F793 85 2E STA $2E
F795 85 36 STA $36
F797 A9 BB LDA i$BB
F799 85 34 STA $34
F79B 85 50 STA $50
F790 A5 31 LOA $31
F79F 85 2F STA $2F
F7A1 A9 01 LOA iS01
F7A3 85 31 STA $31
F7A5 A5 47 LOA $47
F7A7 85 52 STA $52
F7A9 A4 36 LOY $36
F7AB B1 2E LOA ($2E).,Y
F7AO 85 53 STA $53
F7AF C8 INY
F7BO B1 2E LOA ($2E),Y
F7B2 85 54 STA $54
F7B4 C8 INY
F7B5 B1 2E LOA ($2E), Y
F7B7 85 55 STA $55
F7B9 C8 INY
F7BA 84 36 STY $36
F7BC 20 00 F6 JSR $F600
F7BF A4 36 LOY $36
F7C1 B1 2E LDA ($2E) ,Y

249

Anatomy of the 1541 Disk Drive

F7C3 85 52 STA $52
F7C5 C8 INY
F7C6 FO 11 BEO $F7D9
F7C8 B1 2E LDA ($2E},Y
F7CA 85 53 STA $53
F7CC C8 INY
F7CD B1 2E LDA ($2E},Y
F7CF 85 54 STA $54
F7D1 C8 INY
F7D2 B1 2E LDA ($2E) ,Y
F7D4 85 55 STA $55
F7D6 C8 INY
F7D7 DO E1 BNE $F7BA
F7D9 A5 3A LDA S3A
F7DB 85 53 STA S53
F7DD A9 00 LDA #SOO
F7DF 85 54 STA $54
F7E1 85 55 STA S55
F7E3 4C DO F6 JMP SF6DO

F7E6 A4 34 LDY $34
F7E8 B1 30 LDA (S30) ,Y
F7EA 29 F8 AND #$F8
F7EC 4A LSR A
F7ED 4A LSR A
F7EE 4A LSR A
F7EF 85 56 STA $56
F7F1 B1 30 LDA ($30) , Y
F7F3 29 07 AND #$07
F7F5 OA ASL A
F7F6 OA ASL A
F7F7 85 57 STA $ 57
F7F9 C8 INY
F7FA DO 06 BNE $F802
F7FC A5 4E LDA $4E
F7FE 85 31 STA $31
F800 A4 4F LDY S4F
F802 B1 30 LDA ($ 30) , Y
F804 29 CO AND lI$CO
F806 2A ROL A
F807 2A ROL A
F808 2A ROL A
F809 05 57 ORA S57
F80B 85 57 STA $57
F80D B1 30 LDA (S30) , Y
F80F 29 3E AND #$3E
F811 4A LSR A
F812 85 58 STA S58
F814 B1 30 LDA (S30) , Y
F816 29 01 AND #$01
FS18 OA ASL A
F819 OA ASL A
F8lA OA ASL A
F8lB OA ASL A
F8lC 85 59 STA $59

250

Anatomy of the 1541 Disk Drive

F81E C8 INY
F81F Bl 30 LOA ($30), Y
F821 29 FO AND jI$FO
F823 4A LSR A
F824 4A LSR A
F825 4A LSR A
F826 4A LSR A
F827 05 59 ORA $59
F829 85 59 STA $59
F82B Bl 30 LOA ($30), Y
F820 29 OF AND jI$OF
F82F OA ASL A
F830 85 SA STA $5A
F832 C8 INY
F833 Bl 30 LDA ($30),Y
F835 29 80 AND #$80
F837 18 CLC
F838 2A ROL A
F839 2A ROL A
F83A 29 01 AND 11$01
F83C 05 SA ORA $5A
F83E 85 SA STA $5A
F840 Bl 30 LDA ($30),Y
F842 29 7C AND 1I$7C
F844 4A LSR A
F845 4A LSR A
F846 85 5B STA $5B
F848 B1 30 LDA ($30), Y
F84A 29 03 AND 1$03
F84C OA ASL A
F84D OA ASL A
F84E OA ASL A
F84F 85 5C STA $5C
F851 C8 INY
F852 DO 06 BNE $F85A
F854 AS 4E LOA $4E
F856 85 31 STA $31
F858 A4 4F LDY $4F
F85A B1 30 LOA ($30),Y
F85C 29 EO AND II$EO
F85E 2A ROL A
F85F 2A ROL A
F860 2A ROL A
F861 2A ROL A
F862 05 5C ORA $5C
F864 85 5C STA $5C
F866 Bl 30 LDA ($30),Y
FB68 29 IF AND #$lF
F86A 85 5D STA $5D
F86C C8 INY
F86D B4 34 STY $34
F86F A6 56 LOX $56
F871 BD AO F8 LDA SF8AO ,X
F874 A6 57 LDX $57
F876 10 CO F8 ORA $FBCO,X

251

Ana tOllly of the 1541 Disk Drive

FS79 S5 52 STA S52
FS7B A6 5S LDX S5S
FS70 BO AO FS LOA SFSAO,X
FSSO A6 59 LOX S59
FS82 10 CO FS ORA SFSCO ,X
FS85 S5 53 STA S53
F8S7 A6 5A LOX S5A
FS89 BO AO F8 LOA SF8AO,X
FS8C A6 5B LOX S5B
FS8E 10 CO FS ORA SFSCO,X
FS91 85 54 STA S54
FS93 A6 5C LOX S5C
FS95 BO AO FS LOA SFSAO ,X
FS9S A6 50 LOX S50
FS9A ID CO F8 ORA SF8CO,x
FS90 85 55 STA S55
FS9F 60 RTS

FSM FF FF FF FF FF FF FF FF
FSA8 FF 80 00 10 FF CO 40 50
FaBO FF FF 20 30 FF FO 60 70
F8B8 FF 90 AO BO FF 00 EO FF

F8CO FF FF FF FF FF FF FF FF
F8CS FF OS 00 01 FF OC 04 05
F8DO FF FF 02 03 FF OF 06 07
F80S FF 09 OA OB FF 00 OE FF

FSEO A9 00 LOA #SOO
FSE2 S5 34 STA S34
F8E4 85 2E STA S2E
F8E6 85 36 STA S36
FSE8 A9 01 LDA #SOI
F8EA 85 4E STA S4E
F8EC A9 BA LDA #SBA
FSEE S5 4F STA S4F
FSFO A5 31 LOA S31
FSF2 S5 2F STA S2F
FSF4 20 E6 F7 JSR $F7E6
F8F7 A5 52 LDA S52
FSF9 85 3S STA S3S
FSFE! A4 36 LOY $36
FSFO A5 53 LOA $53
FSFF 91 2E STA ($2E),Y
F901 CS INY
F902 A5 54 LOA $54
F904 91 2E STA (S2E) ,Y
F906 CS INY
F907 A5 55 LOA $55
F909 91 2E STA ($2E) ,Y
F90B CS INY
F90C 84 36 STY S36
F90E 20 E6 F7 JSR $F7E6

252

Anatomy of the 1541 Disk Drive

F911 A4 36 LDY $36
F913 A5 52 LDA $52
F915 91 2E STA ($ 2E), Y
F917 C8 INY
F918 FO 11 BEQ $F92B
F91A A5 53 LDA $53
F91C 91 2E STA ($2E),Y
F91E C8 INY
F91F A5 54 LDA $54
F921 91 2E STA (S2E),Y
F923 C8 INY
F924 A5 55 LDA $55
F926 91 2E STA ($2E),Y
F928 C8 INY
F929 DO El BNE $F90C
F92B A5 53 LDA $53
F92D 85 3A STA $3A
F92F A5 2F LOA $2F
F931 85 31 STA $31
F-933 60 RTS

F934 A5 31 LOA $31
F936 85 2F STA $ 2~'
F938 A9 00 LOA #$00
F93A 85 31 STA $31
F93C A9 24 LDA #$24
F93E 85 34 STA $ 34
F940 A5 39 LDA $ 39
F942 85 52 STA $52
F944 A5 1A LDA $IA
F946 85 53 STA $53
F948 A5 19 LDA $19
F94A 85 54 STA $ 54
F94C A5 18 LDA $18
F94E 85 55 STA $55
F950 20 DO F6 JSR $F6DO
F953 A5 17 LDA $17
F955 85 52 STA $52
F957 AS 16 LDA $16
F959 85 53 STA $S3
F9SB A9 00 LOA *SOD
F9S0 85 54 STA $54
F95F 85 55 STA $55
F961 20 00 F6 JSR SF600
F964 A5 2F LOA $2F
F966 85 31 STA $31
F968 60 RTS

F969 A4 3F LOY $3F
F96B 99 00 00 STA $OOOO,y
F96E AS 50 LDA $ 50
F970 FO 03 BEQ $ F'9 7 5
F972 20 F2 F5 JSR $F5F2
F975 20 SF F9 JSR $F98F
F978 A6 49 LOX $49 get stack pointer back

253

AnatOllly of the 1541 Disk Drive

F97A 9A TXS
F97B 4C BE F2 JMP $F2BE

F97E A9 AO LDA i$AO
F980 85 20 STA $20
F982 AD 00 IC LDA $ICOO
F985 09 04 ORA n04 turn drive motor off
F987 8D 00 IC STA $ICOO
F98A A9 3C LDA $3C
F98C 85 48 STA $48
F98E 60 RTS

F98F A6 3E LDX $3E
F991 A5 20 LDA $20
F993 09 10 ORA #$10
F995 85 20 STA S20
F997 A9 FF LDA #$FF
F999 85 48 STA $48
F99B 60 RTS

F99C AD 07 IC LDA $IC07
F99F 8D 05 IC STA SlC05

. F9A2 . AD 00 IC LDA $ICOO
F9A5 29 10 AND #$10 write protect?
F9A7 C5 IE CMP $1E
F9A9 85 IE STA $lE
F9AB FO 04 BEO $F9B1
F9AD A9 01 LDA #$01
F9AF 85 lC STA $IC
F9B1 AD FE 02 LDA $02FE
F9B4 FO 15 BEO $F9CB
F9B6 C9 02 CMP #$02
F9BB DO 07 BNE $F9C1
F9BA A9 00 LDA #$00
F9BC 80 FE 02 STA $02FE
F9BF FO OA BEO $F9CB
F9C1 85 4A STA $4A
F9C3 A9 02 LDA i$02
F9C5 8D FE 02 STA $02FE
F9C8 4C 2E FA JMP $FA2E

F9CB A6 3E LDX $3E
F9CD 30 07 BMI $F9D6
F9CF A5 20 LDA $20
F9D1 A8 TAY
F9D2 C9 20 CMP #$20
F9D4 DO 03 BNE $F9D9
F9D6 4C BE FA JMP SFABE

F9D9 C6 48 DEC $48
F9DB DO ID BNE $F9FA
F9DD 98 TYA
F9DE 10 04 BPL $F9E4
F9EO 29 7F AND #$7F
F9E2 85 20 STA $20

254

Anatomy of the 1541 Disk Drive

F9E4 29 10 AND #$10
F9E6 FO 12 BEO $F9FA
F9E8 AD- 00 1C LDA $lCOO
F9EB 29 FB AND #$FB drive motor on
F9ED 8D 00 1C STA $lCOO
F9FO A9 FF LDA #$FF
F9F2 85 3E STA $3E
F9F4 A9 00 LDA #$00
F9F6 85 20 STA $20
F9F8 FO DC REO $F9D6
F9FA 98 TYA
F9FB 29 40 AND #$40
F9FD DO 03 BNE $FA02
F9FF 4C BE FA JMP $FARE

FA02 6C 62 00 JMP ($0062)

FA05 A5 4A LOA #$4A
FA07 10 05 BPL $FAOE
FA09 49 FF EOR #$FF
FAOB 18 CLC
FAOC 69 01 AOC #$01
FADE C5 64 CMP $64
FA10 80 OA BCS $FA1C
FA12 A9 3B LDA #$3B
FA14 85 62 STA $62
FA16 A9 FA LDA #$FA pointer $62/$63 to $FA3B
FA18 85 63 STA $63
FA1A DO 12 BNE $FA2E
FA1C E5 SE SBC SSE
FA1E ES SE SBC SSE
FA20 85 61 STA $61
FA22 A5 5E LDA SSE
FA24 85 60 STA $60
FA26 A9 7B LOA #$7B
FA28 85 62 STA $62
FA2A A9 FA LDA #$FA pointer S62/S63 to $FA7B
FA2C 85 63 STA $63
FA2E A5 4A LDA $4A step counter for head transport
FA30 10 31 BPL SFA63
FA32 E6 4A INC $4A increment
FA34 AE 00 1C LDX $lCOO
FA37 CA OEX
FA38 4C 69 FA JMP SFA69

FA3B A5 4A LOA S4A step counter for head tranFport
FA3D DO EF BNE $FA2E not yet zero?
FA3F A9 4E LOA #$4E
FA41 85 62 STA S62
FA43 A9 FA LDA #$FA pointer $62/$63 to $FA4E
FA4S 85 63 STA $63
FA47 A9 OS LDA #$OS
FA49 85 60 STA $60 counter to 5
FA4B 4C BE FA JMP $FABE

255

Anatomy of the 1541 Disk Drive

FA4E C6 60 DEC $60 decrement counter
FASO DO 6C BNE $FAFE not yet zero?
FAS2 AS 20 LDA $20
FAS4 29 BF AND #$BF erase bit 6
FA56 85 20 STA $20
FAS8 A9 05 LDA #$05
FASA 85 62 STA $62
FASC A9 FA LDA #$FA pointer $62/$63 to FAOS
FASE 85 63 STA $63
FA60 4C BE FA JMP $FABE

FA63 C6 4A DEC $4A step counter for head transport
FA6S AE 00 IC LDX $ICOO
FA68 E8 INX
FA69 8A TXA
FA6A 29 03 AND #$03
FA6C 85 4B STA $4B
FA6E AD 00 IC LDA $lCOO
FA7l 29 FC AND #$FC
FA73 05 4B ORA $48 stepper motor off
FA7S 8D 00 lC STA $ICOO
FA78 4C BE FA JMP SFABE

FA7B 38 SEC
FA7C AD 07 lC LOA SlC07
FA7F E5 5F SBC $5F
FA8l 80 05 lC STA $lCOS
FA84 C6 60 DEC $60 decrement counter
FA86 DO OC RNE SFA94 not yet zero?
FA88 A5 SE LDA SSE
FA8A 85 60 STA S60
FA8C A9 97 STA .$97
FA8E 85 62 STA $62
FA90 A9 FA LOA #$FA pointer $62/$63 to $FA97
FA92 85 63 STA $63
FA94 4C 2E FA JMP $FA2E

FA97 C6 61 DEC $61
FA99 DO F9 RNE SFA94
FA9B A9 AS LDA .SA5
FA9D 85 62 STA $62
FA9F A9 r'A LDA .$FA pointer 562/$63 to $FAA5
FAAI 85 63 STA $63
FAA3 DO EF BNE $FA94

FAA5 AD 07 lC LDA $IC07
FAA8 18 CLC
FAA9 65 5F ADC $SF
FAAB 80 05 IC STA $lC05

256

Anatomy of the 1541 Disk Drive

FAAE C6 60 DEC S60 decrement counter
FABO DO E2 BNE SFA94 not yet zero?
FAB2 A9 4E LDA #S4E
FAB4 85 62 STA $62
FAB6 A9 FA LDA #SFA pointer $62/S63 to SFA4E
FAB8 85 63 STA 563
FABA A9 05 LDA #S05
FABC 85 60 STA 560 counter to 5
FABE AD OC 1C LDA 51COC
FAC1 29 FD AND #5FD erase bit 1
FAC3 8D OC 1C STA SlCOC
FAC6 60 RTS

****************************** formatting
FAC? A5 51 LDA $51 track number
FAC9 10 2A BPL $FAF5 fomatting already in progress
FACB A6 3D LDX $3D drive number
FACD A9 60 LDA #$60 flag for head transport
FACF 95 20 STA $20,X set
FAD1 A9 01 LDA #$01
FAD3 95 22 STA $22,X set destination track
FAD5 85 51 STA S51 running track # for format
FAD? A9 M LDA #$M 164
FAD9 85 4A STA $4A step counter for head tran~port
FADB AD 00 1C LDA SlCOO
FADE 29 FC AND #$FC stepper motor on
FAEO 8D 00 1C STA SlCOa
FAE3 A9 OA LDA #SOA 10
FAE5 8D 20 06 STA $0620 error counter
FAE8 A9 AO LDA #S40 S621/$622 = 4000
FAEA 8D 21 06 STA S0621 initialize track capacity
FAED A9 OF LDA #SOF 4000 < capacity < 2*4000 bytes
FAEF 8D 22 06 STA $0622
FAF2 4C 9C F9 J~IP $F99C back in job loop

FAF5 AO 00 LDY #$00
FAF? D1 32 CMP (S32), Y
FAF9 FO 05 BEO SFBOO
FAFB 91 32 STA (532) , Y
FAFD 4C 9C F9 JMP SF99C to job loop

FBOO AD 00 lC LDA $lCOO
FB03 29 10 AND #SlO write protect?
FB05 DO 05 BNE SFROC no
FBO? A9 08 LDA #$08
FB09 4C D3 (,'D J~IP SFDf'3 26, 'write protect on'

FBOC 20 A3 FD JSR $FDA3 write SFF to disk 10240 times
FBOF 20 C3 FD JSR SFDC3 code (S621/$622) times to disk
FB12 A9 55 LDA #$55 555
FB14 8D 01 lC STA $lC01 to write head
FBl? 20 C3 FD JSR $FDC3 and (S621/S622) times to disk
FB1A 20 00 FE JSR SFEOO switch to read
FBID 20 56 F'5 JSR $F556 set timer, find SFF (SYNC)
FB20 A9 40 LOA #$40

257

Anatomy of the 1541 Disk Drive

FB22 00 OB 18 ORA $180B timer 1 free running
FB25 80 OB 18 STA $180B
FB28 A9 62 LOA #$62 98 cycles, about 0.1 ms
FB2A 80 06 18 STA $1806
FB20 A9 00 LOA #SOO
FB2F 80 07 18 STA S1807
FB32 80 05 18 STA S1805 start timer
FB35 AO 00 LOY #$00 counter to zero
FB37 A2 00 LDX #SOO
FB39 2C 00 lC BIT SICOO SYNC found?
FB3C 30 FB BMI SFB39 no, wait
FB3E 2C 00 lC BIT SlCOO SYNC found?
FB41 10 FB BPL SFB3E wait for SYNC
FB43 AD 04 18 LDA S1804 reset interrupt flag timer
FB46 2C 00 lC BIT SlCOO SYNC found?
FB49 10 11 BPL SFB5C not SYNC (SS5)?
FB4B AD 00 18 LDA $1800 interrupt flag register
FB4E OA ASL A shift timer flag
FB4F 10 F5 BPL SFB46 timer not run down yet?
FBSI E8 INX increment counter
FB52 DO EF BNE $FB43
FB54 C8 INY increment hi-byte of counter
FB55 DO EC BNE S.FB43
FBS7 A9 02 LDA #$02 overflow, then error
FBS9 4C D3 FD JMP SFDD3 20, 'read error'

FBSC 86 71 STX S71
FBSE 84 72 STY S72
FB60 A2 00 LDX #SOO
FB62 AO 00 LDY #SOO counter to zero again
FB64 AD 04 18 LOA S1804 reset timer 1 interrupt flag
FB67 2C 00 IC BIT SlCOO SYNC found?
FB6A 30 11 BMI SFB70 yes
FB6C AD 00 18 LOA S1800 interrupt-flag register
FB6F OA ASL A timer flag to bit 7
FB70 10 FS BPL SFB67 no, wait until timer run down
FB72 E8 INX
FB73 00 EF BNE SFB64 increment counter
FB75 C8 INY
FB76 00 EC BNE SFB64
FB78 A9 02 LOA #S02 overflow, then error
FB7A 4C 03 FO JMP $FOD3 20, , read error'

FB70 38 SEC
FB7E 8A TXA
FB7F E5 71 SBC $71 difference between counter
t'B81 AA TAX
FB82 85 70 STA $70
FB84 98 TYA and value for SFF-storage
FB85 E5 72 SBe $72
FB87 A8 TAY bring to $70/S71
FB88 8S 71 STA $71
FB8A 10 OB BPL SFB97 difference positive?
FB8C 49 FF EOR #SFF
FB8E A8 TAY

258

Anatomy of the 1541 Disk Drive

FB8F 8A TXA
FB90 49 FF EOR #SFF calculate abs. val of difference
FB92 AA TAX
FB93 E8 INX
FB94 DO 01 BNE SFB97
FB96 C8 INY
FB97 98 TYA
FB98 DO 04 BNE SFB9E
FB9A EO 04 CPX *S04 difference less than 4 * 0.1 ms
FB9C 90 18 BCC SFBB6 yes
FB9E 06 70 ASL $70
FBAO 26 71 ROL S71 double difference
FBA2 18 CLC
FBA3 A5 70 LOA S70
FBA5 60 21 06 AOC S0621
F8A8 8D 21 06 STA S0621 add to 4000
FBAB A5 71 LDAS71
FBAO 6D 22 06 AOC S0622
FBBO 80 22 06 STA S0622
FBB3 4C OC FB JMP SFBOC repeat until diff < 4 * 0.1 ms

FBB6 A2 00 LOX *$00
FBB8 AO 00 LOY #$00 counter to zero
FBBA B8 CLV
FBBB AD 00 1C LOA SlCOO SYNC?
FBBE 10 OE BPL $FBCE no
FBCO 50 59 BVC SFBBB byte ready?
FBC2 B8 CLV
FBC3 E8 INX
FBC4 DO F5 BNE SFBBB increment counter
FBC6 C8 INY
FBC7 DO F2 BNE SFBBB
FBC9 A9 03 LOA #$03 overflow, then error
FBCB 4C 03 FO JMP SFD03 21, read error

FBCE 8A TXA
FBCF OA ASL A double counter
FBDO 80 25 06 STA S0625
FB03 98 TYA
FBD4 2A ROL A and to S624/$625 as track cap.
FBD5 80 24 06 STA S0624
FB08 A9 BF LOA *SBF
FBDA 20 OB 18 AND S180B
FBDO 80 OB 18 STA S180B
~'BEO A9 66 LDA #S66 102
FBE2 80 26 06 STA S0626
FBE5 A6 43 LOX S43 number of sectors in this track
FBE7 AO 00 L.OY #$00
FBE9 98 TYA
FBEA 18 CLC
FBEB 6D 26 06 AOC S0626
FBEE 90 01 BCC SFBn
FBFO C8 INY
FBFl C8 INY
FBF2 CA DEX

259

Anatomy of the 1541 Disk Drive

FBF3
FBFS
FBF7
FBF8
FBFA
FBFB
FBFE
FCOO
FC03
FC04
FCOS
FC07
FC08
FCOA
FCOB
FCOE
FC10
FC12

FC1S
FC16
FC17
FCl9
FCIA
FCIC
FCIE
FCIF
FC21
FC22
FC24
FC27
FC29
FC2B
FC2D
FC30
FC31
FC33
FC36
FC38
FC3B
FC3D
FC3F
FC41
FC44
FC45
FC46
FC49
PC4C
FC4D
FC4P
FC52
F'CS3
PC55
PC58
FC59

DO F5
49 FF
38
69 00
18
6D 25 06
BO 03
CE 24 06
AA
98
49 FF
38
69 00
18
6D 24 06
10 05
A9 04
4C D3 FD

A8
SA
A2 00
38
E5 43
BO 03
88
30 03
E8
DO F'5
8E 26 06
EO 04
BO 05
A9 05
4C D3 FD
18
65 43
8D 27 06
A9 00
8D 28 06
AO 00
A6 3D
A5 39
99 00 03
C8
C8
AD 28 06
99 00 03
C8
A5 51
99 00 03
C8
B5 13
99 00 03
C8
B5 12

BNE $FBEA
EOR #$FF
SEC
ADC #$00
CLC
ADC $0625
BCS $FC03
DEC $0624
TAX
TYA
EOR #$FF
SEC
ADC #$00
CLC
ADC $0624
BPL $FC15
LDA #$04
JMP $FDD3

TAY
TXA
LDX #$00
SEC
SBC $43
BCS $FC21
DEY
BMI SFC24
INX
BNE $FCI9
STX $0626
CPX #$04
BCS $FC30
LDA #$05
JMP $FDD3
CLC
ADC $43
STA $0627
LDA 11$00
STA $0628
LDY #$00
LDX $3D
LDA $39
STA $0300,y
INY
INY
LDA $0628
STA $0300,y
INY
LDA $51
STA $0300,y
INY
LDA $13,x
STA $0300,y
INY
LDA $12,X

260

calculate # of bytes

resul t in A/X

22, 'read error'

total divided by number
of sectors ($43)

compare no. of bytes per interva
with minimum value
ok

23, 'read error'
remainder of division
plus number of sectors
save

counter for sectors
counter 10
drive number
constant 8, marker for heacer
in buffer

sector number
in buffer

track number
in buffer

ID 2
in huffer

ID 1

Anatomy of the 1541 Disk Drive

FC5B 99 00 03 STA S0300,Y in buffer
FC5E C8 INY
FC5F A9 OF LOA #$OF 15
FC61 99 00 03 STA $0300,y in buffer
FC64 C8 INY
FC65 99 00 03 STA $0300,y 15 in buffer
FC68 C8 INY
FC69 A9 00 LOA #800
FC6B 59 FA 02 EOR $02FA,Y
FC6E 59 FB 02 EOR $02FB,Y
FC7l 59 FC 02 EOR S02FC,Y generate checksum
FC74 59 FD 02 EOR S02FD,Y
FC77 99 F9 02 STA $02F9,Y
FC7A EE 28 06 INC $0628 increment counter
FC7D AO 28 06 LOA $0628 counter
FC80 C5 43 CMP 843 compare with no. of sectors
FC82 90 BB BCC $FC3F smaller, then continue
FC84 98 TYA
FC85 48 PHA
FC86 E8 INX
FC87 8A TXA
FC88 90 00 05 STA $0500,X
FC8B EB INX
FC8C 00 FA BNE SFC88
FCBE A9 03 LOA lI$03 buffer pointer to $300
FC90 85 31 STA $31
~'C92 20 30 FE JSR SFE30
FC95 68 PLA
FC96 A8 TAY
FC97 88 OEY
FC98 20 E5 FD JSR $FOE5 copy buffer data
FC9B 20 F5 FD JSR $FOF5 copy data in buffer
FC9E A9 05 LOA lI$05
FCAO 85 31 STA $31 buffer pointer to 8500
FCA2 20 E9 F5 JSR $F5E9 calculate parity for data buffer
FCA5 85 3A STA $3A and save
FCA7 20 8F F'7 JSR $F78F
FCAA A9 00 LOA #$00
FCAC 85 32 STA $32
FCAE 20 OE FE JSR $FEOE
FCBl A9 FF LOA #$FF
FCB3 8D 01 lC STA SlCOl to write head
FCB6 A2 05 LOX #$05 write $FF 5 times
FCB8 50 FE BVC SFCB8 byte ready
FCBA 88 CLV
FCBB CA DEX
FCBC 00 FA BNE SFCB8
FCBE A2 OA LOX #$OA 10 times
FCCO A4 32 LOY $32 buffer pointer
FCC2 50 FE BVC $FCC2 byte ready?
FCC4 B8 CLV
FCC5 B9 00 03 LOA $0300,y data from buffer
FCCS SO 01 lC STA $lC01 write
FCCS C8 INY
FCCC CA DEX 10 data written?

261

Anatomy of the 1541 Disk Drive

FCCD DO F3 BNE SFCC2
~~CCF A2 09 LOX #S09 9 times
FCD1 50 FE BVC SFCD1 byte ready?
FCD3 B8 CLV
FCD4 A9 55 LDA #S55 S55
FCD6 8D 01 lC STA SlCOl write
FCD9 CA DEX
FCDA DO F5 BNE SFCDI 9 times?
FCDC A9 FF LDA #SFF SFF
FCDE A2 05 LDX #S05 5 times
FCEO 50 FE BVC SFCEO byte ready?
FCE2 B8 CLV
FCE3 80 01 lC STA SlC01 to wri te head
FCE6 CA DEX
FCE7 DO F7 BNE SI-'CEO
FCE9 A2 BB LDX #SBB
FCEB 50 FE BVC SFCEB
FCED B8 CLV
FCEE BD 00 01 LOA SOlOO,X area SIRB to SIFF
FCFl 80 01 lC STA SlC01 save
FCF4 E8 INX
FCF5 DO F4 BNE SFCEB
FCI-'7 AO 00 LDY #SOO
FCF9 50 FE BVC SFCF9 byte ready?
FCFB B8 CLV
FCFC Bl 30 LDA (S30), Y 256 bytes of data
FCFE 8D 01 lC STA SlCOl write byte to disk
FOOl C8 INY
FD02 DO F5 BNE SFCF9
FD04 A9 55 LOA #$55 S55
f'D06 AE 26 06 LOX S0626 (S626) times
FD09 50 FE BVC SFD09
FDOB B8 CLV
FDOC 8D 01 lC STA SlCOl write
FDOF CA DEX
FDIO DO F7 BNE SFD09
FD12 AS 32 LOA S32
FD14 18 CLC
FD15 69 OA ADC jlSOA plus 10
FD17 85 32 STA S32
FD19 CE 28 06 DEC S0628 decrement sector number
FDIC DO 93 BNE SFCBl
FDIE 50 FE BVC SFD1E byte ready?
FD20 B8 CLV
FD21 50 FE BVC $FD21 byte ready?
FD23 B8 CLV
FD24 20 00 FE JSR SFEOO switch to reading
FD27 A9 C8 LDA HC8 200
FD29 8D 23 06 STA $0623
FD2C A9 00 LDA #$00
FD2E 85 30 STA S30
FD30 A9 03 LOA #S03 buffer pointer to $200
FD32 85 31 STA $31
FD34 AS 43 LDA S43 number of sectors per track
FD36 80 28 06 STA S0628

262

Anatomy of the 1541 Disk Drive

FD39 20 56 F5 JSK SF556 wait for SYNC
FD3C A2 OA LDX #$OA 10 data
FD3E AO 00 LDY #SOO
FD40 50 FE BVC SFD40 byte ready?
FD42 B8 CLV
FD43 AD 01 lC LDA SlCOl read byte
FD46 Dl 30 CMP (S30) ,Y compare with data in buffer
FD48 DO OE BNE SFD58 not equal, error
FD4A C8 INY
FD4B CA DEX
F'D4C DO F2 BNE $FD40
FD4E 18 CLC
FD4F A5 30 LDA S30
FDSI 69 OA ADC #$OA increment pointer by 10
FDS3 85 30 STA S30
FDS5 4C 62 FD JMP $FD62

FD58 CE 23 06 DEC S0623 decrement counter for attempts
FDSB DO CF BNE SFD2C not yet zero?
FD5D A9 06 LDA #S06 else error
FD5F 4C D3 FD JMP SFDD3 24, Iread error l

FD62 20 56 F5 JSR SF556 wait for SYNC
FD65 AO BB LDY #SBB
FD67 50 FE BVC SFD67 byte ready?
FD69 B8 CLV
FD6A AD 01 lC LDA SlCOI read byte
FD6D D9 00 01 CMP S0100,y compa re with buffer contents
FD70 DO E6 BNE $FDS8 not equal, error
FD72 C8 INY
FD73 DO F2 BNE SFD67 next byte
FD7S A2 FC LDX #$FC
FD77 50 l"E BVC $FD77 byte ready?
FD79 B8 CLV
FD7A AD 01 lC LDA SlCOl read byte
FD7D D9 00 OS CMP S0500,y compare wi th buffer contents
FD80 DO D6 BNE $FD58 not equal, then error
FD82 C8 INY
FD83 CA DEX next byte
FD84 DO F'l BNE $FD77
FD86 CE 28 06 DEC S0628 decrement sector counter
FD89 DO AE BNE $F'D39 not yet zero?
FD8B E6 51 INC $Sl increment track number
FD8D A5 51 LDA $51
FD8F C9 24 CMP #S24 compare with 36, highest trkjf +1
FD91 BO 03 BCS SFD96 greater, then formatting done
FD93 4C 9C F9 JMP $F99C continue

FD96 A9 FF LDA #SFF
FD98 85 51 STA S51 track number to $FF
FD9A A9 00 LDA #SOO
FD9C 85 50 STA S50
FD9E A9 01 LDA #$01
FDAO 4C 69 F9 JMP SF969 ok

263

Anatomy of the 1541 Oisk Orive

****************************** write $FF 10240 times
FDA3
FDA6
FDA8
FDAA
FDAD
FDAF
FDB2
FOBS
FDB7
FDB9
FOBB
FDBC
FDBD
FDBF
FDCO
FDC2

AO OC IC
29 IF
09 CO
80 OC IC
A9 FF
8D 03 IC
80 01 IC
A2 28
AO 00
50 FE
B8
88
DO FA
CA
DO F7
60

LOA $ICOC
AND #$lF
ORA #$CO
STA $ICOC
LOA #$FF
STA $lC03
STA $ICOl
LOX #$28
LOY #$00
BVC $FDB9
CLV
DEY
BNE $FD89
DEX
BNE $FD89
RTS

switch PCR to writing

port A(read/write head) to outp\
write $FF to disk
40

byte ready?

****************************** read/write ($621/$622) times
FDC3
FDC6
FOC9
FDCB
FOCC
FOCD
FOCF
FOOO
F002

AE 21 06
AC 22 06
50 FE
B8
CA
00 FA
88
10 F7
60

LOX $0621
LOY $0622
BVC $FDC9
CLV
DEX
BNE $FDC9
DEY
BPL $FOC9
RTS

FD03
FDD6
FDDS

FDDB
FDDD
FDDF
FDEO
FDE2

CE 20 06
FO 03
4C 9C F9

AO F'F
84 51
C8
84 50
4C 69 F9

DEC $0620
BEO $FDDB
JMP $F99C

LDY #SF'F
STY $51
INY
STY $50
JMP $f'969

FDE5
FDE8
FDEB
F'DEC
FDEE
FDFl
FDF4

B9 00 03
99 45 03
88
DO F7
AD 00 03
8D 45 03
60

LDA $0300,y
STA $0345,Y
DEY
BNE $FDES
LDA $0300
STA $0345
RTS

FDFS
FDF7
FDFA
FDFC
FDFD

AO 44
B9 BB 01
91 30
88
10 F8

LOY #$44
LDA $OlBB,Y
STA ($30),Y
DEY
BPL $FDF7

264

byte ready?

attempt counter for formatting
decrement number of attempts
zero, then error
continue

flag for end of formatting

error termination

copy buffer contents

SlBB to $lFF
write in buffer $30/$31

Anatomy of the 1541 Disk Drive

FDFF 60 RTS

****************************** switch to reading
FEOO AD OC lC LDA SlCOC
FE03 09 EO ORA jl$EO switch PCR to reading
FE05 8D OC lC STA SlCOC
FE08 A9 00 LDA #SOO
FEOA 80 03 lC STA SlC03 port A to input
FEOD 60 RTS

****************************** write S55 10240 times
FEOE AD OC lC LDA SlCOC
FEll 29 IF AND flSlF
FEl3 09 CO ORA jlSCO switch PCR to writing
FE15 80 OC lC STA $lCOC
FE18 A9 FF LOA jI$FF
FEIA 80 03 lC STA $lC03 port A to output (write head)
FEID A9 55 LDA #$55 %01010101
FElF 80 01 lC STA $lCOI to port A (write head)
FE22 A2 28 LDX #$28
FE24 AO 00 LDY #$00
FE26 50 FE BVC $FE26 byte ready for write electronics
FE28 B8 CLV
FE29 88 DEY
FE2A DO FA BNE $FE26 10240 times
FE2C CA DEX
FE2D DO F7 BNE $FE26
FE2F 60 RTS

FE30 A9 00 LOA #$00
FE32 85 30 STA $30
FE34 85 2E STA $2E
FE36 85 36 STA $36
FE38 A9 BB LOA #$BB
FE3A 85 34 STA $34
FE3C A5 31 LOA S31
FE3E 85 2F' STA $2F
FE40 A9 01 LOA #$01
FE42 85 31 STA $31
FE44 A4 36 LDY S36
FE46 B1 2E LOA ($2E), Y
FE48 85 52 STA $52
FE4A C8 INY
FE4B Bl 2E LOA ($2E), Y
FE4D 85 53 STA S53
FE4F C8 INY
FE50 B1 2E LDA ($2E) ,Y
FE52 85 54 STA S54
~'E54 C8 INY
FE55 B1 2E LOA (S2E) ,Y
FE57 85 55 STA S55
FE59 C8 INY
FE5A FO 08 BEO $FE64
FE5C 84 36 STY $36

265

Anatomy of the 1541 Disk Drive

FE5E
FE61

FE64

02 DO F6
4C 44 FE

4C DO F6

JSR $F6DO

JMP $F6DO

'****************************** interrupt routine
FE67 48 PHA
FE68 8A TXA
FE69 48 PHA
FE6A 98 TYA
FE6B 48 PHA
FE6C AD 00 18 LOA $1800
FE6F 29 02 AND *$02
FE7l FO 03 BEQ $FE76
FE73 20 53 E8 JSR $E853
FE76 AD 00 Ie LOA $lCOD
FE79 OA ASL A
FE7A 10 03 BPL $FE7F
FE7C 20 BO F2 JSR $F2f\0
FE7F 68 PLA
FE80 A8 TAY
FEBI 68 PLA
FE82 AA TAX
FE83 68 PLA
FE84 40 RTI

FE85 12
FE86 04
FE87 04
FE88 90

***********.******************
FE89 56 49 44 40 42 55
FE8F 50 26 43 52 53 4E

save registera

interrupt from serial bus

no
serve serial bus
interrupt from timer I?

no
IRQ routine for disk controller

get register 'back

constants for disk format
18, track for BAM and directory
start of BAM at position 4
4 bytes in BAM for each track
$90 = 144, end of BAM, disk nam.

table of command words
'V', 'I',)'D', 'M', 'B', 'u'
'p'., '&', 'C', 'R', IS', 'N'

**************************'**** lo-bytes' of command addresses
FE95 84 05 Cl F8 IB 5C
FE9F 07 A3 FO 88 23 00

****************************** hi-bytes of command addresses
FEAI ED DO C8 CA CC CB
FEA7 E2 E7 C8 CA C8 EE

FEAD 51 DO lC 9E lC bytes for syntax check

****************************** file control methods
FEB2 52 57 41 40

******************.************ file types
FEB6 44 53 50 55 4C 'D', 'sot, 'P', 'u', 'L'

****************************** names of file types
FEBB 44 53 50 55 52 1st letters '0', 'S', 'P', 'U'. 'R'

266

Anatomy of the 1541 Disk Drive

FECO 45 45 52 53 45
FEC5 4C 51 47 52 4C

2nd letters 'E', 'E', 'R', 'S', 'E'
3rd letters 'L', '0', 'G', 'R', 'L'

FECA 08 00 00

FECD 3F 7F BF FF

FED1 11 12 13 15

FED5 4A
FED6 04
FED7 24
FED8 IF 19 12

roasks for bit command

number of sectors per track
17, 18, 19, 21

contants for disk format
'A' marker for 1541 format
4 track numbers
36, highest track number + 1
31, 25, 18 tracks with change of
number of sectors

FEDB 01 FF FF 01 00 control bytes for head position

****************************** addresses of buffers
FEEO 03 04 05 06 07 high bytes

FEE5 07 OE

****************************** for UI command
FEE7 6C 65 00 JMP ($0065)

FEEA
FEED
FEFO

8D 00 lC
8D 02 IC
4C 7D EA

STA $lCOO
STA $IC02
JMP $EA7D

FEF3
FEF4
FEF6
FEF7
FEF9
FEFA

8A
A2 05
CA
DO FD
AA
60

TXA
LOX #$05
DEX
BNE $FEF6
TAX
RTS

FEFB 20 AE E9 JSR SE9AE
FE FE 4C 9C E9 JMP $E99C

FFOI AD 02 02 LOA $0202
FF04 C9 2D CMP #S2D
FF06 FO 05 BEC) $FFOD
FF08 38 SEC
FF09 E9 2B SBC #$2B
FFOB DO OA BNE SFEE7

267

for diagnostic routine
turn LED on
port to output
back to diagnostic routine

delay loop for serial bus

about 40 microseconds

data output to serial bus
CLOCK OUT hi
DATA OUT 10

ur vector

'-'

'+'
indirect jump over ($65)

Anatomy of the 1541 Disk Drive

FFOD
FFOF

85 23
60

STA $23
RTS

FFIO AA •• ,
FFEI ••• AA

FFE2 52 53 52 AA
FFE6 C6 CB 8F F9

FFEA
FFEC
FFEE
FFFO
FFF2
FFF4
FFF6
FFFB
FFFA

SF
97
00
03
06
09
OC
OF
01

CD
CD
05
05
05
05
05
05
FF'

USER vectors
UA, Ul, $CD5F
UB, U2, $CD97
UC, U3, $0500
UD, U4, $0503
UE, U5, $0506
UF, U6, $0509
UG, U7, $050C
UH, UB, $050F
UI, U9, $FFOI

(NMI vector not used)

FFFC OA EA
FFFE 67 FE

268

hardware vectors
$EAAO RESET and UJ (U:) vectc
$FE67 IRQ vector

Anatomy of the 1541 Disk Drive

Chapter 4: Programs and Tips for the 1541 Disk Drive

4.1 utility Programs

4.1.1 Displaying all File Parameters

The directory contains several important pieces of
information about each file. Some information is not kept in
the directory, such as the starting address of a program.

These and other file parameters can be easily found ard
displayed by the following program. The number and kind of
file parameters are naturally dependent on the file type. A
relative file, for instance, has no starting address. The
following table presents the parameters displayed by this
program.

PARAMETER FILE TYPE

: DEL : SEO : PRG : USR : REL :

File closed? X
File protected? X
Allocated blocks X
Side-sector blocks
Data blocks
Records
Start address

: Free blocks, disk X
: Allocated bl. disk : X

X
X
X

X
X

X
X
X

X

x
X

X
X
X

X
X

X
X
X
X
X
X

X
X

This program is documented in detail so that the serious
programmer can get a good overview of the file parameters.
In addition, the variables used by the program are
explained.

Variables used in the program:

Numerical Variables

T - Track of the actual block of the file entry in the
directory

S - Sector of the actual block of the file entry in the
directory

FL - Flag, set if the file name read from the diskette does
not agree with the searched-for file

TY - File type of the given file (byte 0 of the entry)

269

Anatomy of the 1541 Disk Drive

FT - nybble of the file type (bits 0-3), contains the
actual file type

LB - Low byte of the starting address
HB - High byte of the starting address
BL - Number of allocated blocks in the file
RL - Record length of a relative file
DT - Track of the first data block of a program file, which

contains the starting address
DS - sector of the first data block of a program file
SA - Starting address of a program file
BF - Number of free blocks on a disk
BA - Number of allocated blocks on a disk
BS - Number of side-sector blocks in a relative file
RC - Number of records in a relative file

String variables

F$ - Name of the file to search for
FF$- Contains the actual file name from the directory
FT$- File type
CL$- Indicates whether the file is closed or not

(contains "YES" or "NO")
PR$- Indicates whether the file is protected or not

(contains "YES· or "NO")
RES- contains CHR$(l8), REVERSE ON
RA$- contains CHR$(l46), REVERSE OFF

Program Documentation:

110
120 - 200
210 - 230

250 - no

280 - 490

500 - 530

540 - 590

600 - 610

620 - 630

640 - 690

Set the color code of the screen
Program heading
Asks if the names should be listed out.
sets flag FL to 1 and executes the routine at
280-490.
Input the filename. Asks for new input if the
filename if greater than 16 characters.
Reads the file name from the directory and either
displays it (FL=l) or compares it to the desired
filename.
Reads byte 0 (file type) of the file entry of the
desired file and stores it in TY. Also, the right
half-byte is stored in FT.
Checks the file type and saves the text in FT$,
and checks for invalid file type.
Checks bit 7 of the file type byte (file closed?)
and saves the result in CL$.
Checks bit 6 of the file type byte (file
protected?) and saves the result in PR$.
Reads the number of allocated blocks in the file
from bytes 28 and 29 of the file entry and saves
it in BL.

270

Anatomy o£ the 1541 Disk Drive

700 - 730 If it is relative file, the record length is read
from byte 21 and saved in RL

740 - 880 If it is a program file, the starting address of
the file is taken from the first data block and
stored in SA.

890 - 980 Free blocks on the disk are calculated by reading
the first byte of the track-marked BAM section
and added to BF. The allocated blocks are calcu
lated by BA = 664 - BF

990 -1020 Here the number of side-sector blocks (BS) of a
relative file is calculated with the help of the
record length (RL) and the number of allocated
blocks in the file (RC).

1040-1230 Here the data can be sent to the screen or the
printer as one chooses. The file parameters are
shown in REVERSE.

1240-1280 The parameters of another file can be output.

The program is written for a CBM 64. In spite of this, it
can be run without major changes on a VIC 20. only line 110,
where the color of the screen is set, need be changed for
the VIC 20.

BASIC Listing of the program:

100 CLR
110 POKE 53280,2:POKE5328l,2:PRINTCHRS(158);CHR$(147);
120 PRINT TAB(6);"==========================="
130 PRINT TAB(6) ;"DISPLAY ALL FILE PARAMETERS"
140 PRINT TAB(6);"==========================="
150 PRINT:PRINT
160 PRINT"WITH THIS PROGRAM, ALL PARAMETERS OF A"
170 PRINT"FILE CAN BE OUTPUT TO THE SCREEN OR TO"
180 PRINT"A PRINTER AT YOUR OPTION."
200 PRINT:PRINT
210 PRINT"LIST FILENAMES (YIN)?"
220 GETX$:IFXS<>"Y"ANDX$<>"N"THEN220
230 IF XS="Y"THENFL=1:GOSUB280
240 FL=O
250 INPUT"NAME OF THE FILE: ";FS
260 IFLEN(F$)<=16THEN280
270 PRINT"FILENAME TOO LONG!":GOT0250
280 OPEN 15,8,15,"IO":OPEN2,8,2,"I"
290 T=lB:S=l
300 PRINTI15,"B-R";2;0;T;S
310 PRINTI15,"B-P";2;0
320 GETI2,X$:IFXS=""THENXS=CHR$(0)
325 T=ASC(X$)
330 GETX$:IFX$=""THENX$=CHR$(O)
340 S=ASC(X$)
350 FORX=OT07
360 PRINT#15,"B-P";2;X*32+5
370 FF$=""
380 FOR¥=OT015
390 GETI2,X$:IFX$=""THENX$=CHR$(0)

271

Anatomy of the 1541 Disk Drive

400 IF ASC(XS)=160THEN430
410 FFS=FFS+X$
420 NEXT Y
430 IFF$=FFSTHEN490
440 IFFLTHENPRINTFFS
450 NEXT X
460 IF T=O THEN 4BO
470 GO TO 300
4BO CLOSE2:CLOSEI5
4B5 IFFL=OTHENPRINT"FILENAME NOT FOUND!":GOT0210
490 IFFLTHENRETURN
500 PRINTI15,"B-P";2;X*32+2
510 GETi2,X$:IFX$=""THENX$=CBRS(0)
520 TY=ASC(XS)
530 FT=TYAND15
540 IFFT=OTHENFT$="DELETED"
550 IFFT=lTHENFT$="SEOUENTIAL"
560 IFFT=2THENFTS"'''PROGRAM"
570 IFFT=3THENFT$="USER"
5BO IFFT=4THENFT$="RELATIVE"
590 IFFT>4THENPRINT"INVALID FILE TYPE!":GOT0200
600 IFTYAND128THENCLS"'''YES'':GOT0620
610 CLS="NO"
620 IFTYAND64THENPR$="YES":GOT0640
630 PRS="NO"
640 PRINTI15,"B-P";2;X*32+30
650 GET.2,X$:IFXS=""THENXS-CHRS(0)
660 LB"'ASC(X$)
670 GET,2,X$:IFX$=""THENX$-CHRS(0)
680 HB=ASC(X$)*256
690 BL=LB+HB
700 IFFT<>4THEN740
710 PRINTI15,"B-P";2;X*32+23
720 GETi2,XS:IFXS=""THENXS=CHR$(0)
730 RL=ASC(X$)
740 IFFT<>2THENB90
750 PRINTI15,"B-P";2;X*32+3
760 GETi2,X$:IFX$=""THENX$-CHR$(0)
770 DT=ASC (X$)
780 GETI2,X$:IFX$-""THENX$=CHR$(0)
790 DS=ASC(X$)
800 OPEN3,8,3,","
BI0 PRINT'15,"B-R";3;0;DT;DS
820 PRINTI15,"R-P";3;2
830 GET#3,X$:IFX$=""THENX$=CHRS(0)
840 LB=ASC(X$)
850 GET.3,X$:IFX$=""THENX$=CHR$(0)
860 HR=ASC(X$)*256
B70 SA=LR+HB
8RO CLOSE3
890 PRINTi15,"R-R";2;0;18;0
900 BF=O
910 FORI-4TOI40STEP4
920 IFI-72THEN960
930 PRINTi15,"B-P";2;I

272

Anatomy of the 1541 Disk Drive

940 GET#2,XS:IFX$=""THENX$=CHRS(O)
950 BF=ASC(X$)+BF
960 NEXT
980 BA=664-BF
990 IFFT<>4THENl040
1010 BS=BL/12l:IFBS<>INT(BS)THENBS=INT(BS+1)
1020 RC=INT«(BL-BS)*254)/RL)
1040 PRINTCHRS(147);"SCREEN OR PRINTER (S/P)?"
1050 GETXS:IFXS<>"S"ANDXS<>"P"THENl050
1060 RES=CHRS(18):RA$=CHRS(146)
1070 IFXS="S"THENOPENl,3:PRINTI1,CHR$(147)
1080 IFXS="P"THENOPENl,4
1090 PRINT'l,"FILE PARAMETERS ";RE$;FS;ROS
1100 PRINT#l,"------------------------------------"
1110 PRINTil,"FILE TYPE: ";RES ;FT$;RAS :PRINTjll
1120 PRINTil,"FILE CLOSED: ";RE$;CL$;RAS:PRINT'l
1130 PRINTi1,"FILE PROTECTED: ";RE$;PRS;RA$:PRINTll
1140 PRINTil,"ALLOCATED BLOCKS: ";RES;BL;RAS:PRINTll
1150 IFFT<>4THEN1200
1160 PRINTJI 1, "RECORD LENGTH:
1170 PRINTil,"SIDE-SECTOR BLOCKS:
1180 PRINTl1,"DATA BLOCKS:

";RES;RL;RA$:PRINTil
";RES;BS;RAS:PRINTII
";RE$;BL-BS;RA$:PRINTil

1190 PRINTi1,"RECORDS: ";RE$;RC;RA$:PRINTjll
ADDRESS: 1200 IFFT=2THENPRINTi1,"START

RES;SA;RAS:PRINTil
1210
1220
1230
1240
1250
1260
1270

PRINTi1,"FREE BLOCKS (DISK): ";RES;BF;RA$:PRINTU
PRINTil,"ALLOCATED BLOCKS (D):";RE$;BA;RA$:PRINTII
CLOSEI
PRINT"MORE (Y/N)?"
CLOSE2:CLOSE15
GETX$:IFX$<>"Y"ANDX$<>"N"THEN1260
IFXS="Y"THEN100

4.1.2 Scratch-protect Files - File Protect

n:

As already mentioned, it is possible to protect files on the
VIC-IS4l diskette and save this information in the
directory. A file's type is contained in byte 0 of the file
entry. Bit 6 denotes a protected file. If this bit is set to
1, the file can no longer be deleted with the SCRATCH
command. But because the DOS has no command to set this bit
an alternative way must be used to protect a file.

with the following program, you can:

* display all files on the disk
* protect files
* unprotect files
* erase files

This program can delete protected files as well as
unprotected files. If you wish to delete a protected file,

273

Anatomy of the 1541 Disk Drive

you must confirm it. This program is also documented with a
variable usage and descriptions so that you can use these
techniques in your own programs.

List of variables:

OF - Flag, set in the routine "read/search file" if the
desired filename is found

FL - Set if the routine "read/search file" is only to be
used for listing files

FT - variable for storing the filetype
T Track of the actual block of the file entry
S - Sector of the actual block of the file entry
TT - Track, in which the file entry block of the desired

file is found
SS - Sector, in which the file entry block of the desired

file is found .
FFS - last filename read from the directory
F$ - filename to search for

Program Documentation:

100 Set the screen color
110 - 230 Program header and option menu
240 - 260'Read the menu choice and call the appropriate

subroutine
270 Back to the option menu
280 - 350 Subprogram "list all files"

310 Erase screen
320 Set flag FL to list files in the subroutine

"read/search file"
350 Reset the flag and jump back

360 - 600 Subroutine "protect file"
390 Call subroutine "input filename"
400 Call the subroutine "read/search file"

410 - 450 Test if the file is found
460 - 480 Read file type and store in FT
490 - 500 Test if the file is already protected

510 Protect file (bit 6 to 1)
520 - 550 Transfer the file type to the buffer and write the

block to disk
560 Close the channel

570 - 600 Message "File protected" and jump back
610 - 850 Subroutine "unprotect file"

640 Call subroutine "input filename"
650 Call subroutine "read/search file"

660 - 700 Test if file is found
710 - 730 Read file type and store in FT
740 - 750 Test if the file is already unprotected

760 Unprotect the file (bit 6 to 0)
770 - 800 Transfer the file type to the buffer and write

the block to the disk
810 Close the file

820 - 850 End the subroutine

274

Anatomy of the 1541 Disk Drive

860 -1170 Subroutine "erase a file"
890 Call the subroutine "input filename"
900 Call the subroutine "read/search file"

910 - 950 Test if the file is found
960 - 980 Read the file type and save in FT

990 Test if the file is protected
1000-1030 Indicate that the file is protected, with the

possibility to erase it anyway
1040-1060 Ask if the file should really be erased

1070 Bit 6 set back, if protected
1080-1110 Transfer the file type to the buffer and write

the block to the disk
1120 Initialize the diskette
1130 Erase the file

1140-1170 End the subroutine
1190-1560 Subroutine "read/search file"

1220 open the command and data channels
1230-1240 Read directory and set buffer pointer
1250-1320 Test if the disk contains a write protect. For

this purpose, the directory is written back to the
disk unchanged (line 1250). If the disk has a
write protect tab on it, the error message 26,
WRITE PROTECT ON will occur.

1330 Initial values for the track and sector variab1e~
are set

1340-1350 Read the file entry block and position the buffer
pointer to the first byte

1360-1390 Read the address of the next file entry block
1400-1530 Loop to read filenames. The names are then either

listed on the screen or compared to the desired
filename, based on the value of flag FL

1540-1560 If the variable T (track) contains zero, no more
file entry blocks follow and the subroutine ends.

BASIC Listing of the Program:

100 POKE 53280,2:POKE53281,2:PRINTCHR$(158);CHR$(147);
110 PRINTTAB(8);"===================-==="
120 PRINTTAB(8);"ERASE AND PROTECT FILES"
130 PRINTTAB(8);"======================="
140 PRINT:PRINT
150 PRINT"WITH THIS PROGRAM, FILES CAN BE"
160 PRINT"PROTECTED, ERASED, AND UNPROTECTED"
180 PRINT:PRINT
190 PRINTTAB(6);" -1- LIST ALL FILES":PRINT
200 PRINTTAB(6);" -2- PROTECT A FILE":PRINT
210 PRINTTAB(6);" -3- UNPROTECT A FILE":PRINT
220 PRINTTAB(6);" -4- ERASE A FILE":PRINT
230 PRINTTAB(6);" -5- END THE PROGRAM":PRINT
240 GETX$: I FX$= ''''ORVAL (X$) (lORVAL(X$) >5THEN240
250 IFVAL(X$)=5THENEND
260 ONVAL(X$)GOSUB280,360,610,860
270 GaTO 100
280 REM --------------
290 REM LIST ALL FILES

275

Anatomy of the 1541 Disk Drive

300 REM --------------
310 PRINTCHR$(147)
320 FL=I:GOSUBI190
330 PRINT:PRINT"RETURN FOR MORE"
340 INPUTX$
350 FL=O: RETURN
360 REM --------------
370 REM PROTECT A FILE
380 REM --------------
390 GOSUB1580
400 GOSUB1l90
410 IFDF=ITHEN460
420 PRINT"FILE NOT FOUND!":PRINT
430 PRINT"RETURN FOR MORE"
440 INPUTX$:CLOSE2:CLOSEI5
450 RETURN
460 PRINT.15,·B-P"~2~X*32+2
470 GETII2,X$:IFX$="ITHENX$=CHR$(O)
480 FT=ASC(X$)
490 IF(FT AND 64)=0 THEN 510
500 PRINT"FILE IS ALREADY PROTECTED!":PRINT:GOT0430
510 FT=(FT OR 64)
520 PRINTtI5,"B-P"~2~X*32+2
530 PRINT'2,CHR$(FT)~
540 PRINT'15,·B-P"~2~0
550 PRINTII15,·U2";2;0;TT~SS
560 CLOSE2:CLOSE15
570 PRINT"FILE PROTECTED."
580 PRINT"RETURN FOR MORE"
590 INPUTX$
600 CLOSE2:CLOSEI5:RETURN
610 REM ----------------
620 REM UNPROTECT A FILE
630 REM ----------------
640 GOSUB158o
650 GOSUB1l90
660 IFDF=lTHEN710
670 PRINT"FILE NOT FOUND!":PRINT
680 PRINT"RETURN FOR MORE"
690 INPUTX$:CLOSE2:CLOSE15
700 RETURN
710 PRINTII15,"B-P":2;X*32+2
7 20 GET# 2 ,X$: I FX$=" "THENX$=CHR$ (0)
730 FT=ASC(X$)
740 IF (FT AND 64)=64THEN760
750 PRINT"FILE IS ALREADY UNPROTECTED!":PRINT:GOT0680
760 FT=(FTAND255-64)
770 PRINT#15,"B-P":2:X*32+2
780 PRINTII2,CHR$(FT);
790 PRINTlII5,"B-P";2;0
800 PRINT#15,"U2";2;0;TT;SS
810 CLOSE2:CLOSEI5
820 PRINT"FILE UNPROTECTED."
830 PRINT"RETURN FOR ~lORE"
840 INPUTX$

276

850 RETURN
860 REM ------------
870 REM ERASE A FILE
880 REM ------------
890 GOSUB1580
900 GOSUB1l90
910 IFDF=lTHEN960

Anatomy of the 1541 Disk Drive

920 PRINT"FILE NOT FOUND!":PRINT
930 PRINT"RETURN FOR MORE"
940 INPUTX$:CLOSE2:CLOSE15
950 RETURN
960 PRINTI15."B-P";2;X*32+2
970 GET.2.X$:IFX$= THENX$=CHR$(0)
980 FT=ASC(X$)
990 IF(FT AND 64)=OTHENI040
1000 PRINT"WARNING! FILE IS PROTECTED!"
1010 PRINT"UNPROTECT AND ERASE (YIN)?"
1020 GETX$:IFX$<>"Y"ANDX$<>"N"THENI020
1030 IFX$="N"THENl170
1040 PRINT"ARE YOU SURE (YIN)?"
1050 GETX$:IFX$<>"y"ANDX$<>"N"THENI050
1060 IFX$="N"THENl170
1070 FT=(FT AND 255-64)
1080 PRINTI15."B-P":2;X*32+2
1090 PRINT,2.CHR$(FT);
1100 PRINT,15."B-P";2;0
1110 PRINTI15."U2";2;0;TT;SS
1120 PRINT,15."IO"
1130 PRINTI15."S:"+F$
1140 PRINT"FILE ERASED."
1150 PRINT"RETURN FOR MORE"
1160 INPUTX$
1170 CLOSE2:CLOSEI5:RETURN
1180 REM
1190 REM ------------------
1200 REM READ I SEARCH FILE
1210 REM ------------------
1220 OPENI5.8.15 ... IO .. :OPEN2.8.2
1230 PRINTI15."B-R":2;0:18;0
1240 PRINTI15."B-P";2;0
1250 PRINTI15."U2";2;O;18;0
1260 INPUTI15.Xl$
1270 IF VAL(Xl$)<>26 THEN 1330
1280 PRINT"PLEASE REMOVE THE WRITE PROTECT TAB FROM"
1290 PRINT"THE DISKETTE BEFORE USING THIS PROGRAM."
1300 PRINT"RETURN FOR MORE"
1310 INPUTXS
1320 CLOSE2:CLOSE15:RETURN
1330 T=18:S=I:TT=18:SS=1
1340 PRINTI15."B-R";2;0;T;S
1345 TT=T:SS=S
1350 PRINTI15."B-P";2;O
1360 GETI2.X$:IFXS= THENX$=CHR$(0)
1370 T=ASC(X$)
1380 GET.2.X$:IFX$= THENX$=CHR$(0)

277

Anatomy of the 1541 Disk Dri~e

1390 S=ASC(X$)
1400 FORX=OT07
1410 PRINTilS,"B-P";2;X*32+2
1420 GET,2,X$:IFX$=""THENX$=CHR$(0)
1430 IFASC(X$)=OTHENlS30
1440 PRINTI15,"B-P";2;X*32+5
1450 FF$=""
1460 FORY=OTOI5
1470 GET'2 ,X$: IFXS=" "THENX$=CHR$ (0)
1480 IFASC(X$)=160THEN1500
1490 FF$=FF$+X$
1500 NEXTY
1510 IFFLTHENPRINTFF$:GOTOI530
1520 IFF$=FF$THENDF=1:GOT01570
1530 NEXTX
1540 IFT<>OTHENI340
1550 CLOSE2:CLOSEIS
1560 IFFL=OTHENPRINT"FILENAME NOT FOUND!":FORI=lT02000:

NEXT
1570 RETURN
1580 REM --------------
1590 REM INPUT FILENAME
1600 REM --------------
1610 PRINT:PRINT
1620 INPUT"FILENAME:";F$
1630 IFLEN(F$)<=16THEN1650
1640 PRINT"FILENAME TOO LONG!":GOT01620
1650 DF=O:FL=O
1660 RETURN

This utility program was written for the CBM 64. This
version can also be run on the VIC 20. Only line 100 which
sets the screen color on the CBM 64 need be changed or
ignored. If you value perfect video output, lines 110-230
can also be changed to accommodate the VIC 20's smaller
screen size.

4.1.3 Backup Program - Copying a Diskette

The VIC 1541 disk drive does not allow disks to be
duplicated since it is a single drive, as the double drives
permit with the COpy or BACKUP commands of BASIC 4.0. With
the 1541, each program to be copied must be transferred
through the computer.

Here's an example of how you might copy a diskette using a
single disk drive:

First, the BAM as well as the names and IDs of the disk to
be copied are read into the computer. From the information
in the BAM, you can determine which blocks of the original
diskette are used. In order to save time, only the allocated

278

Anatomy of the 1541 Disk Drive

blocks are copied. Then a direct access file is opened and
the first 169 (as many as will fit in the memory of t~e
Commodore 64) allocated blocks are read. Then the user is
asked to put a new diskette in the drive. The new diskette
is then formatted with the name and ID of the original
diskette. Now the previously read blocks are written to the
diskette. The next 169 blocks of the original diskette are
read into memory and written out to the destination
diskette. This ends after four disk swaps, at which time the
entire diskette will have been copied.

The program is written in BASIC except for the portion which
reads and writes the direct access file. This part is
written in machine language which is considerably faster
than a GET# loop in BASIC. Because of the nature of the
program, the number of diskette changes is dependent on the
free storage in the computer. A VIC 20 with a 16K expansion
requires 11 changes of original and destination diskettes.

Here is a time comparison between this program and
duplication on a double drive with the same capacity. Our
program requires about 20 minutes, while the CBM 4040 does
it in about 3 minutes.

Duplicating a diskette with this program is quite simple.
You need only follow the messages on the screen to insert
the original or destination diskette. The program does the
rest for you.

100 REM BACKUP PROGRAM C64 - VIC 1541
110 REM
120 POKE56,23:CLR:GOSUB640
130 OPENl,8,l5
140 DIM B%(35,23),S%(35),Z(7),A$(1l
150 A$ (0) ="DESTINATION" :A$ (1) ="ORIGINAL": R=l
160 AD=23*256:GOSUB590
170 POKE250,0:POKE251,AD/256
180 GOSUB530:GOSUB290
190 PRINTNS"BLOCKS TO COPY":PRINT
200 T=l:S=O
210 FORI=lT04:TT=T:SS=S:R=1:IFI=lTHEN240
220 IFR=OANDI=lTHENGOSUB450:GOT0240
230 GOSUB590
240 POKE251,AD/256:FORJ=lT0169
250 IFB%(T,S)=OTHENGOSUB570
260 S=S+1:IFS=S%(T)THENT=T+l:S=0:IFT=36THENJ=169
270 NEXT:IFRTHENR=O:T=TT:S=SS:GOT0220
280 NEXT:GOT0510
290 T=18:S=0:GOSUB570
300 NS=0:FORT=lT035:S=0
310 NS=NS+S%(T)-PEEK(AD+4*T)
320 FORJ=lT03
330 B=PEEK(AD+4*T+J)
340 FORI=OT07

279

Anatomy of the 1541 Disk Drive

340 FORI=OT07
350 B%(T,S)=B AND Z(I):S=S+l
360 NEXT I,J
370 FOR S=S%(T)T023
380 B%(T,S)=-l : NEXT S,T
390 FOR I=OT015
400 A=PEEK(AD+144+I)
410 IFA<>160THENN$=N$+CHR$(A)
420 NEXT
430 I$=CHR$(PEEK(AD+162»+CHR$(PEEK(AD+163»
440 PRINTNS,I$:RETURN
450 PRINT"PLEASE INSERT NEW DISKETTE"
460 PRINT"AND PRESS RETURN":PRINT:POKE198,0:CLOSE2
470 GETA$:IFAS<>CHR$(13)THEN470
480 PRINT#I,"NO:"NS","I$
490 INPUTlIl,A ,B$,C, D: IFATHENPRINTA" , "BS" , "c" , "D: END
500 GOT0630
510 CLOSE2:CLOSEl:END
520 REM SECTORS PER TRACK
530 FORT=lT035
540 S%(T)=21:IFT>17THENS%(T)=19:IFT>24THENS%(T)=18:

IFT>30THENS%(T)=17
550 NEXT
560 FORI=OT07:Z(I)=2'tI:NEXT:RETURN
570 IFRTHENPRINT#l,"Ul 2 0"T1S:SYSIN:RETURN
580 PRINT#l,"B-P 2 0":SYSOUT:PRINT#1,"U2 2 0"T1S:RETURN
590 CLOSE2:PRINT"PLEASE INSERT "A$(R)" DISKETTE."
600 PRINT"AND PRESS RETURN":PRINT:POKE198,0
610 GETA$:IFA$<>CHR$(13)THEN610
620 PRINT#I,"IO"
630 OPEN2,8,2,"#":RETURN
640 FOR I = 828 TO 873 : REM READ MACHINE LANG. PROGRAM
650 READ X : POKE I,X : S=S+X : NEXT
660 DATA 162, 2, 32,198,255,160, 0, 32,207,255,145,250
670 DATA 200,208,248,230,251, 32,204,255, 96,198, 1,162
680 DATA 2, 32,201,255,160, 0,177,250, 32,210,255,200
690 DATA 208,248,230,251, 32,204,255,230, 1, 96
700 IF S<>7312 THEN PRINT "ERROP IN DATA!!":END
710 IN=828:0UT=849:PETURN

4.1.4 Copying Individual Files to another Diskette

The following program permits you to copy individual files
from one diskette to another. The files can be programs
(PRG), sequential files (SEO) or user files (USP). Relative
files cannot be copied with this program1 these can be
copied with a ~ASIC program that reads all data records into
a string array and then writes them back again into a new
file.

In the first pass, the program reads the complete file into
the memory of the Commodore 64. Then the destination

280

Anatomy of the 1541 Disk Drive

Next the complete file is written on the second disk. The
computer has 49 Kbytes for data storage; you can handle up
to 196 blocks on the diskette.

For reasons of speed, the reading and writing of the data is
performed by a machine language program, which is stored in
DATA statements.

The program is suited for copying sequential files as
already mentioned, as well as programs of all kinds; the
start address (of a machine language program) is not
relevant.

100 REM FILE COPIER PROGRAM C64
llO REM
120 POKE 56,12 : CLR
130 GOSUB 1000
140 INPUT"FILENAME ";NS
150 PRINT"FILE TYPE ";
160 GETT$:IFT$<>"S"ANDT$<>"P"ANDT$<>"U"THENI60
170 PRINTT$:PRINT
180 PRINT"PLEASE INSERT ORIGINAL DISK"
190 PRINT"AND PRESS A KEY":PRINT
200 GETA$:IFA$=""THEN200
210 OPEN 2,8,2,N$+","+T$
220 POKE 3,0:POKE 4,12:SYS 866
230 CLOSE 2
240 PRINT"PLEASE INSERT DESTINATION DISK"
250 PRINT"AND PRESS A KEY":PRINT
260 GETA$:IFA$=""THEN260
270 OPEN 2,8,2,N$+","+T$+",W"
280 POKE 3,0:POKE 4,12:SYS 828
290 CLOSE 2 : END
1000 FOR I = 828 TO 898
1010 READ X : POKE I,X : S=S+X : NEXT
1020 DATA 162, 2, 32,201,255,198, 1,160, 0, 56,165, 3
1030 DATA 229, 5,165, 4,229, 6,176, 13,177, 3, 32,210
1040 DATA 255,230, 3,208,236,230, 4,208,232,230, 1, 76
1050 DATA 204,255,162, 2, 32,198,255,160, 0, 32,207,255
1060 DATA 145, 3,230, 3,208, 2,230, 4, 36,144, 80,241
1070 DATA 165, 3,133, 5,165, 4,133, 6, 76,204,255
1080 IF S<>8634 THEN PRINT "ERROR IN DATA !!":END
1090 RETURN

4.1.5 Reading the directory from within a program

Sometimes applications programs store user data in a file
under a desired name. If you want to use this file again,
but you cannot remember the fi Ie name, then you have a
problem. If this happens, you must exit the program, search
for the name in the directory, reload the program and start

281

Anatomy of the 1541 Disk Drive

again. To avoid this, you can include a directory listing
routine in your program. If you forget the filename, you can
display the directory with a function key, for example,
without ·the need to leave the program. Here is a sample of
such a routine:

100 PRINTCHR$(147);
110 OPEN15,8,15,"IO":OPEN2,8,2,"JI"
120 T-18:S=1
130 PRINT'15,"B-R";2;0;T;S
140 PRINT'15,"B-P";2;0
150 GET.2,X$:IFXS=""THENX$=CHR$(0)
160 T=ASC(X$)
170 GET,2,X$:IFX$=""THENX$=CHR$(0)
180 S=ASC(X$)
190 FORX=OT07
200 PRINT'15,"B-P";2;X*32+5
210 FF$=· .. •
220 FORY=OT015
230 GET'2,X$:IFX$=""THENXS=CHRS(0)
240 IFASC(X$)=160THEN270
250 FF$=n'S+X$
260 NEXTY
270 IFA=OTHENA=1:PRINTFF$;:GOT0290
280 A=0:PRINTTAB(20);FF$
290 NEXTX
300 IFT<>OTHEN130
310 CLOSEl:CLOSE2
320 PRINT"RETURN FOR MORE"
330 INPUTX$
340 END:REM IF SUBROUTINE, THEN RETURN HERE

In order to select the filename, the directory is printed on
the screen. Should this program be used as a subroutine
(called with GOSUB) line 340 must contain RETURN instead of
END.

We used this routine in the utility programs in sections
4.1.1 and 4.1.2.

282

Anatomy of the 1541 Disk Drive

4.2 The utility Programs on the TEST/DEMO Disk

There are many 1541 owners that know little about the
programs contained on the Test/Demo disk. The main reason is
that these programs are largely undocumented. The following
descriptions of these programs should help you:

4.2.1 DOS 5.1

The DOS 5.1 simplifies the operation of the VIC-1541 OOS. It
can run on the VIC-20 or Commodore 64. To load DOS 5.1 on
the VIC-20, give the commands

LOAD"VIC-20 WEDGE",8
RUN

This is the loader for DOS 5.1 for the VIC 20.

If you want to use it on the Commodore 64, give the
commands:

LOAD"C-64 WEDGE",8
RUN

This loads DOS 5.1 into the CBM 64.

What does this DOS 5.1 offer? It allows you to send
convenient commands to the 1541 disk drive. If, for example,
you want to display the directory on the screen, you use the
DOS 5.1 command @$ or >$. This does not erase the program in
memory.

The individual commands of the DOS 5.1

Command

@$ or >$
@V or >V
@C: ••• or >C: •••
cfile or /file
@ or >
@N: ••• or >N: •••
@I or >1
@R: ••• or >R: •••
@S: ••• or >S: •••
@#n or >lIn

Function

Display the directory
Same function as "VALIDATE"
Copy files (COPY)
Load program
Read and display error message
Format a diskette
Intitialize the disk
Rename a file (RENAME)
Erase a file (SCRATCH)
Change disk device to n

283

Anatomy of the 1541 Disk Drive

4.2.2 COPY/ALL

With the program COPY/ALL files can be copied between disk
drives with different addresses. A drive must be changed
from device address 8 with the program DISK ADDR CHANGE
before this can occur. After starting the program, the
message:

disk copy all jim butterfield

from unit? 8

appears on the screen. Here you give the device address of
the disk drive from which you wish to get the files. If this
address is 8, just press RETURN. After this you give the
corresponding drive number of this unit (always 0 for single
drives). In this manner you also give the device address of
the destination drive. Once this has occurred, the program
asks

want to new the output disk
?n

You are being asked if the destination diskette should te
formatted. You answer with 'y' (yes) or 'n' (no).
Then you can choose the files you want to copy with the
wildcard (*). If all files are supposed to be copied, just
give the asterisk.
Now the program gives the message

hold down 'y' or 'n' key to select

The program displays the files on the original disk, which
you can select with the 'y' key (yes) or 'n' (no). The files
by which you pressed 'y' will be copied.
If, during the copying process, asterisks (***) appear behind
the files, it means that an error has occurred.
If there is not enough room on the destination disk, "***
output disk full" and "do you have a new one" appears. The
remaining files can be put on another formatted diskette. To
do this, answer 'y' when ready.

At the the conclusion of the copying process, the number of
free blocks on the destination disk is displayed.

4.~.3 DISK ADDR CHANGE

with this program, the device address of a disk drive can tee
changed through software. After starting the program, turn
all drives off except for the one you wish to change. Now
enter the old and new device addresses.

284

Anatomy of the 1541 Disk Drive

After this, the address is changed and the other drive can
be turned back on.

The following drives can be changed with this program:

2031
2040
4040
4040
8050
8050
8250

4.2.4 DIR

DOS V2.6
OOS Vl.l
DOS V2.l
OOS V2.7
DOS V2.5
OOS v2.7
DOS V2.7

This is a small help program with the following
possibil i tes:

d - display the directory on the screen

> - With this character, a disk command can be given
in shortened form (for example, >N:TEST,KN to
format a diskette)

q - exit the program

s - display the error channel

These possibilities are also found in DOS 5.1, along with
other commands.

4.2.5 VIEW BAM

With this utility program you can view the usage of diskette
blocks on the screen. This table displays the sectors in
columns and the tracks in rows. Crosses indicate free blocks
and reverse crosses indicate allocated blocks. 'n/a' means
that these blocks do not exist on the track.

After outputting the table, the diskette name and the number
of free blocks is displayed.

4.2.6 CHECK DISK

The utility program CHECK DISK tests every block on the
diskette by writing to and reading from it. The current

285

Anatomy of the 1541 Disk Drive

block and the total number of tested blocks is displayed on
the screen.

4.2.7 DISPLAY T&S

If you are interested in the construction of the individual
blocks of the disk and want to display these on the screen,
this utility program will help you. After starting the
program you give the desired track and sector. This will
then be sent to the printer or screen. The DISK-MONITOR
contained in this book is a easier to use, because it allows
you to change blocks and save them again.

4.2.8 PERFORMANCE TEST

This program makes it possible to test the mechanics of the
VIC-1541 disk drive. To accomplish this, all the access
commands are executed, in the following order:

1. Disk is formatted
2. A file is opened for reading
3. Data are written to this file
4. The file is closed again
5. This file is opened for reading
6. The data are read
7. The file is closed again
8. The file is erased
9. Track 35 is written

10. Track 1 is written
11. Track 35 is read
12. Track 1 is read

After each access of the disk the error channel is
displayed. In this manner, it can be established which
access of the disk is not executed properly.

When using this program, use only diskettes containing no
important data because the entire diskette is erased during
the testing.

286

Anatomy of the 1541 Disk Drive

4.3 BASIC-Expansion and Programs for easy Use of the 1541

4.3.1 Input strings of desired length from the disk

Reading data from the disk with the INPUT# statement has one
major disadvantage - only data items having fewer than 88
characters can be read. This is because the input buffer of
the computer is limited. In addition, not all characters can
be read with the INPUT# statement. If a record contains a
comma or colon, BASIC views it as a separating character and
the remainder of the input is assigned to the next variable.
If the INPUT# statement has only one variable, the remainder
is ignored and the next INPUT# statement continues reading
past the next carriage return (CHRS(13». The alternative,
to read the input with a GET# statement but results in much
slower input.

To avoid these disadvantages, we can use a small machine
language routine.

We will change the INPUT# statement, so that we can specify
the number of characters to be read. To distinguish it from
the normal INPUT# statement, we name the command INPUT*. The
syntax looks like this:

INPUT* Ifn, len, var

Lfn is the logical file number of the previously OPENed
file, len is the number of characters to be read, and var is
the string variable into which the characters are to be
read. A program excerpt might look like this:

100 OPEN 2,8,2,"FILE"
110 INPUT* 2,100,A$

This reads a string of 100 characters from the opened file
into AS. This procedure is especially suited for relative
files, because a complete record can be read with one
command after positioning the record pointer. The
partitioning of record into fields can be accomplished with
the MIDS function. An elegant method of creating"records is
described in the next section.

With this procedure it is no longer necessary to end a
record with a carriage return. You can especially make use
of the maximum record length with relative files:

100 OPEN 1,8,15
110 OPEN 2,8,2, "REL-FILE,L,"+CHRS(20)
120 PRINT#l, "P"+CHR$(lO)+CHR$(O)+CHR$(l)
130 PFINT#2, "12345678901234567890":
140 PRINT#l, "P"+CHR$(lO)+CHF$(O)+CHRS(l)

287

Anatomy of the 1541 Disk Drive

150 INPUT* 2,20,A$
160 PRINT A$

12345678901234567890

Here is the assembler listing for the machine language
program. It resides in the cassette buffer just lik.e a
loader program in BASIC for the Commodore 64 and VIC 20.

110: 033C

150:
160:
170:
180:
190:

210:
220:
380:
390:
400:
410:
420,
430:
440:
450:
460 :
470:

240:
250:
260:
270:
280:
290:
300:
310:
320:
330 :

490:
500:
510:

033C
033C
033C
033C
033C

033C
033C
033C
033C
033C
033C
033C
033C
033C
033C
033C
033C

033C
033C
033C
033C
033C
033C
033C
033C
033C
033C

033C
033C
033C

033C

INPliT* LFN,LEN,A$
,

INPliT
STAR
BASVEC
CHRGET
CHRGOT

EOli $85
EOli $AC
EOli $308
EOli $73
EOli CHRGET + 6

,
1 C64 VERSION
,

CHKIN EOli
BASIN EOU
CHKCOM EOli
INTER EOli
EXECOLD EOli
INPUTOLO EOli
FINOVAR EOli
STRRES EOli
FRESTR EOli
GETBYT EOli

$EllE
$E1l2
$AEFD
$A7AE
$A7E7
$ABBF
$B08B
$B475
$B6A3
$B79E

1 VIC 20 VERSION
,

CHKIN EOli
BASIN EOli
CHKCOM EOli
INTER EOli
EXECOLO EOli
INPliTOLO EOli
FINOVAR EOli
STRRES EOli
FRESTR EOli
GETBYT EOli .

$EllB
$EIOF
$CEFD
$C7AE
$C7E7
$CBBF
$008B
$D475
$D6A3
$D79E

1 COMMON LABELS

VARADR
CLRCH
PARA

EOli $49
EOli $FFCC
EOli $61

ORG 828 530
540
550
560
570

033C A9 47 INIT LOA #<TEST
LOY #>TEST
STA BASVEC
STY BASVEC+1

033E An 03
0340 8D 08 03
0343 8C 0<) 03

288

Anatomy of the 1541 Disk Drive

580: 0346 60 RTS
,

600: 0347 20 73 00 TEST JSR CHRGET
610 : 034A C9 85 CMP #INPUT
620: 034C FO 06 BEQ FOUND
630 : 034E 20 79 00 JSR CHRGOT
640: 0351 4C E7 A7 JMP EXECOLD TO THE OLD

ROUTINE
650: 0354 20 73 00 FOUND JSR CHRGET
660: 0357 C9 AC CMP #STAR NEW INPUT

ROUTINE
670: 0359 FO 06 BEO OKSTAR
680 : 035B 20 BF AB JSR INPUTOLD
680: 035E 4C AE A7 JMP INTER
690: 0361 20 9B B7 OKSTAR JSR GETBYT-3 GET FILE

NUMBER
700: 0364 20 IE El JSR CHKIN
710: 0367 20 FD AE JSR CHKCOM
720: 036A 20 9E B7 JSR GETBYT LENGTH
730 : 036D 8A TXA
730: 036E 48 PHA NOTICE
740: 036F 20 FD AE JSR CHKCOM
750: 0372 20 8B BO JSR FINDVAR SEARCH FOR

VARIABLE
760: 0375 85 49 STA VARADR
760: 0377 84 4A STY VARADR+l
770: 0379 20 A3 B6 JSR FRESTR
780: 037C 68 PLA LENGTH
790: 037D 20 75 B4 JSR STRRES RESERVE PLACE

FOR STRING
800: 0380 AO 02 LDY #2
810: 0382 B9 61 00 STORE LDA PARA,Y
820: 0385 91 49 STA (VARADR) ,Y
830 : 0387 88 DEY
840: 0388 10 F8 BPL STORE
850: 038A C8 INY Y=O
860: 038B 20 12 El FETCH JSR BASIN
870: 038E 91 62 STA (PARA+l) ,Y
880: 0390 C8 INY
890: 0391 C4 61 CPY PARA
900: 0393 DO F6 BNE FETCH
910: 0395 20 CC FF JSR CLRCH
910: 0398 4C AE A7 JMP INTER ;TO INTERPRETER

LOOP

Here are the BASIC programs for entering the machine
language program for the INPUT* statement.

INPUT* , 64 Version

100 FOR I = 828 TO 922
110 READ X : POKE I,X S=S+X : NEXT
120 DATA 169, 71,160, 3,141, 8, 3,140, 9, 3, 96, 32

289

Anatomy of the 1541 Disk Drive

130 DATA 115, 0,201,133,240, 6, 32,121, 0, 76,231,167
140 DATA 32,115, 0,201,172,240, 6, 32,191,171, 76,174
150 DATA 167, 32,155,183, 32, 30,225, 32,253,174, 32,158
160 DATA ~83,138, 72, 32,253,174, 32,139,176,133, 73,132
170 DATA 74, 32,163,182,104, 32,117,180,160, 2,185, 97
180 DATA 0,145, 73,136, 16,248,200, 32, 18,225,145, 98
190 DATA 200,196, 97,208,246, 32,204,255, 76,174,167
200 IF S <> 11096 THEN PRINT "ERROR IN DATA!!" : END
210 SYS 828 : PRINT ·OK."

'INPUT· , VIC 20 VERSION

100 FOR I = 828 TO 922
110 READ X : POKE I,X : S=S+X : NEXT
120 DATA 169, 71,160, 3,141, 8, 3,140, 9, 3, 96, 32
130 DATA 115, 0,201,133,240, 6, 32,121, 0, 76,231,199
140 DATA 32,115, 0,201,172,240, 6, 32,191,203, 76,174
150 DATA 199, 32,155,215, 32, 27,225, 32,253,206, 32,158
160 DATA 215,138, 72, 32,253,206, 32,139,208,133, 73,132
170 DATA 74, 32,163,214,104, 32,117,212,160, 2,185, 97
180 DATA 0,145, 73,136, 16,248,200, 32, 15,225,145, 98
190 DATA 200,196, 97,208,246, 32,204,255, 76,174,199
200 IF S <> 11442 THEN PRINT "ERROR IN DATA!!" : END
210 SYS 828 : PRINT ·OK."

4.3.2 Easy preparation of 'Data Records

If you have worked with relative files before, you know that
a definite record length must be established. This record is
usually divided into several fields which likewise begin at
a definite position within the record, and have a set
length.

If you create a new record, for example, a separate INPUT
statement is generally used for each field. Befora the
complete record can be written, it must be assembled
properly. Each field must be checked for proper length. If
it is longer than then the planned length of the
corresponding data field, the remainder must 'be truncated to
the proper length. Here are two new BASIC commands that are
excellently suited for this task. These new commands are
written in machine language and are initialized with a SYS
command. You can then use them as any other BASIC commands.

The first command has the name !STR$ and serves to create a
string with the length of the data record.

A$ = !STR$(100,· ")

290

Anatomy of the 1541 Disk Drive

creates a string with 100 blanks and puts it in the variable
A$.

The next command places our data field in the previously
created string. For example, if you want to assign the
variable N$ containing the last name as a field of 25
characters at position 1 in the string A$, our new command
looks like this:

MID$ (A$,1,25) = N$

Here the MID$ command is used as a so-called pseudo-variable
on the left side of the assignment statement. What happens
here is as follows:

The variable N$ replaces the first 25 characters of A$. If
the variable N$ is longer than 25 characters, only the first
25 characters are replaced and the rest are disregarded. If
N$ is shorter than 25 characters, only as many characters
are replaced as N$ contains. The original characters in P$
remain (blanks, in our case). That is exactly as we wanteC!.
Now we can program the following:

200 INPUT "LAST NAME ", L$
210 INPUT "FIRST NAME H, F$
220 INPUT "STREET " . S$,
230 INPUT "CITY . ; C$
240 INPUT "STATE ", T$
250 INPUT "ZIP CODE ". Z$,
260 A$ = !STR$ (92, " U)

270 MID$ (A$,1,25) L$
280 MID$ (A$,26,20) F$
290 MID$ (A$,46,20) S$
300 MID$ (A$,66,15) C$
310 MID$ (A$,81,2) 't$
320 MID$ (A$,83,9) Z$
330 PRINT*2, A$

Here is the machine language program for the Commodore 64

135: C800 ORG $C800
140: C800 CHKOPEN EOU $AEFA
150: C800 CHKCLOSE EOU $AEF7
160: C800 CHKCOM EOU $AEFD
170: C800 FRMEVL EOU $AD9E
180: C800 CHKSTR EOU $AD8F
190: C800 FRESTR EQU $B6A3
200: C800 YFAC EOU $B3A2
205: C800 CHRGET EOU $73
210 : C800 CHRGOT EOU CHRGET+6
220: C800 GETBYT EQU $B79B
226 : C800 INTEGER EQU $B1AA
229: C800 DESCRPT EOU $64
230: C800 STRADR EOU $62
231: C800 ADR2 EOU $FB

291

Anatomy of the 1541 Disk Drive

232: C800 ADRI EOU $FB+2
233: C800 LENI EOU 3
234: C800 LEN2 EOU 4
235: C800 NUMBER EOU 5
236: C800 START EOU 6
237: C800 TYPFLAG EOU 13
238: C800 STRCODE EOU $C4
240: C800 ILLOUAN EOU $B248
241 : C800 SYNTAX EOU $AF08
242: C800 POSCODE EOU $B9
243: C800 VECTOR EOU $30A
245: C800 TEMP EOU LEN1
248: C800 A9 OD LDA #<TESTIN
248: C802 AO C8 LDY #>TESTIN
248: C804 8D OA 03 STA VECTOR
248: C807 8C OB 03 STY VECTOR+1
248: C80A 4C 6B C8 JMP MIDSTR
250: C80D A9 00 TESTIN LDA #0
250: C80F 85 OD STA TYPFLAG
250: C8ll 20 73 00 JSR CHRGET
251 : C814 C9 21 CMP # I'! ..
251: C816 FO 06 BEO TEST2
251: C818 20 79 00 JSR CHRGOT
251 : C81B 4C 8D AE JMP $AE8D
252: C81E 20 73 00 TEST2 JSR CHRGET
252: C821 C9 C4 CMP #STRCODE
252: C823 FO 03 BEO STRING
253: C825 4C 08 AF JMP SYNTAX

STRING$ FUNCTION
;

900: C828 20 73 00 STRING JSR CHRGET
900: C82B 20 FA AE JSR CHKOPEN ;OPEN PAREN
910: C82E 20 9E B7 JSR GETBYT+3
920 : C831 8A TXA
920: C832 48 PHA ,NOTICE LENGTH
930: C833 20 FD AE JSR CHKCOM
940: C836 20 9E AD JSR FRMEVL
950: C839 24 OD BIT TYPFLAG
960: C83B 30 OC BMI STR ,STRING
970: C83D 20 AA Bl JSR INTEGER
980: C840 A5 64 LDA DESCRPT ,HIGH BYTE
990: C842 DO 24 BNE ILL >255
1000: C844 A5 65 LDA DESCRPT+l ; LOW BYTE,

LENGTH
1010: C846 4C 52 C8 JMP STR2
1020: C849 20 82 B7 STR JSR $B782 ;SETSTR

TYPFLAG TO
NUMERIC

1030: C84C FO lA BEO ILL ;LENGTH 0
1040: C84E AO 00 LDY #0
1050: C850 B1 22 LDA ($22) ,Y ,FIRST CHAR
1060: C852 85 03 STR2 STA TEMP
1070: C854 68 PLA ;LENGTH
1080: C855 20 7D B4 JSR $B47D ,FRESTR

292

AnatOJ1lY of the 1541 Disk Drive

1090: C858 A8 TAY
1100 : C859 FO 07 BEO STR3
1110: C85B A5 03 LDA TEMP
ll20 : C85D 88 LOOP DEY
ll20: C85E 91 62 STA (STRADR) ,Y ; CREATE

STRING
1130 : C860 DO FB BNE LOOP
1140 : C862 20 CA B4 STR3 JSR $B4CA ;BRING STRING

IN DESCRIPTOR STACK
1150: C865 4C F7 AE JMP CHKCLOSE
1160 : C868 4C 48 B2 ILL JMP ILLQDAN

;
; MID$(STRINGVAR,POS,LEN) = STRING EXP
; MID$(STRINGVAR,POS) = STRING EXP
;

200: C86B MIDconE EOU $CA
210: C86B EXECUT EOD $308 ;VECTOR FOR

STATEMENT EXECUTE
240: C86B EXECOLD EOU $A7E7
250: C86B VARNAM EOU $45
255: CB6B VARADR EOU $49
260: C86B DESCRPT EOD $64
270: CB6B TESTSTR EQD SAD8F
280: C86B GETVAR EOU $B08B
290: C86B SETSTR EOD $AA52
325: CB6B TEST EOU $AEFF
330: C86B GETBYT EQU $B79E
355: 0003 ORG 3
360: 0004 LENGTH DST 1
370: 0005 POSITION DST 1
372: 0007 VARSTR DST 2
375: 0007 cmlP EOU SB2
378 : 0007 POINT2 EQU $50

400: C86B A9 76 MIDSTR LDA #<MIDTEST
410: C86D AO C8 LDY #>rnDTEST
420: C86F 8D 08 03 STA EXECUT
430: C872 8C 09 03 STY EXECUT+l
440: C875 60 RTS
450: C876 20 73 00 MIDTEST JSR CHRGET
460: C879 C9 CA CMP #MIDCODE ;CODE FOR MID$
470: C87B FO 06 BEO MID ;? YES
480: C87D 20 79 00 JSR CHRGOT
490: C880 4C E7 A7 JMP EXECOLD ;EXECUTF.

NORt1AL STATEMENT
500 C883 20 73 00 MID JSR CHRGET ;NEXT CHAR
505 C886 20 FA AE JSR CHKOPEN ;OPEN PAREN
510 C889 20 8B BO JSR GETVAR ;GET VAR
520 C88C 85 64 STA DESCRPT
530 C88E 84 65 STY DESCRPT+1
535 C890 85 49 STA VARADR
535 C892 84 4A STY VARADR+l
540 C894 20 A3 B6 JSR FRESTR
545 C897 AO 00 LDY #0
545 C899 B1 64 LDA (DESCRPT) , Y

293

Anatomy of the 1541 Disk Drive

545: CB9B 4B PHA ; LENGTH
545: CB9C FO 2E BEO ILL
550: CB9E 20 52 AA JSR SETSTR ; PUT STRING IN

RAM
560: CBAI AO 01 LDY #1
560: CBA3 Bl 49 LDA (VARADR) ,Y
560: CBA5 B5 05 STA VARSTR ;VAR ADDR
570: CBA7 CB INY
570: CBAB Bl 49 LDA (VARADR), Y
570: C8AA B5 06 STA VARSTR+l
600: CBAC 20 FD AE JSR CHKCOM
610: CBAF 20 9E B7 JSR GETBYT ;GET POS
620: C8B2 BA TXA
630: C8B3 FO 17 BEO ILL
650: CBB5 CA DEX
650: CBB6 B6 04 STX POSITION
660: CBBB 20 79 00 JSR CHRGOT
660: CBBB C9 29 CMP II") " ; END OF

EXPRESSION?
665: CBBD DO 04 BNE NEXT
665 : CBBF A9 FF LDA jI$FF ;MAX LENGTH
665: CBCl DO OC BNE STORE
670: CBC3 20 FD AE NEXT JSR CHKCOM
670 : CBC6 20 9E B7 JSR GETBYT ;GET LEN
6BO: C8C9 BA TXA
690: CBCA DO 03 BNE *+5
700: C8CC 4C 4B B2 ILL JMP ILLOUAN
710: C8CF B5 03 STORE STA LENGTH
715 : CBDI 6B PLA
715: C8D2 3B SEC
715: CBD3 E5 04 SBC POSITION
717: CBD5 C5 03 CMP LENGTH
717: C8D7 BO 02 BCS OK
717: C8D9 85 03 STA LENGTH
720 : C8DB 20 F7 AE OK JSR CHKCLOSE ;CLOSE ·PAREN
730: CBDE A9 B2 LDA #COMP
770: CBEO 20 FF AE JSR TEST
7BO: CBE3 20 9E AD JSR FRMEVL ;GET EXP
790: CBE6 20 A3 B6 JSR FRESTR
BOO: CBE9 AD 02 LDY #2
800: CBES Bl 64 LDA (DESCRPT),Y
BOO: CBED 85 51 STA POINT2+1
800 : CBEF 88 DEY
800: C8FO Bl 64 LDA (DESCRPT),Y
800: C8F2 85 50 STA POINT2
810: C8F4 BB DEY
BI0: C8F5 Bl 64 LDA (DESCRPT),Y
820: C8F7 f'O D3 BEO ILL ;0 THEN ERROR
840 : C8F9 C5 03 CMP LENGTH
B50: C8FB 80 02 BCS OKI
860: C8FD 85 03 STA LENGTH
870: C8FF AS 05 OKI LDA VARSTR
B80: C90l 18 CLC
B80: C902 65 04 ADC POSITION
910: C904 B5 05 STA VARSTR

294

Anatomy of the 1541 Disk Drive

910: C906 90 02 BCC *+4
920 : C908 E6 06 INC VARSTR+1
940: C90A A4 03 LDY LENGTH
950: C90C 88 LOOP DEY
950: C90D B1 50 LDA (POINTl) ,Y ,TRANSFER

CHARS FROM STRING
960: C90F 91 05 STA (VARSTR) ,Y IEXP TO VAR
970: C911 CO 00 CPY #0
970: C913 DO F7 BNE LOOP
980: C915 4C AE A7 JMP $A7AE ,TO INTERPRETER

LOOP

For those who have no monitor or assembler for the Commodore
64, we have written a loader program in BASIC.

100 FOR I = 51200 TO 51479
110 READ X : POKE I,X : S=S+X : NEXT
120 DATA 169, 13,160,200,141, 10, 3,140, 11, 3, 76,107
130 DATA 200,169, 0,133, 13, 32,115, 0,201, 33,240, 6
140 DATA 32,121, 0, 76,141,174, 32,115, 0,201,196,240
150 DATA 3, 76, 8,175, 32,115, 0, 32,250,174, 32,158
160 DATA 183,138, 72, 32,253,174, 32,158,173, 36, 13, 48
170 DATA 12, 32,170,177,165,100,208, 36,165,101, 76, 82
180 DATA 200, 32,130,183,240, 26,160, 0,177, 34,133, 3
190 DATA 104, 32,125,180,168,240, 7,165, 3,136,145, 98
200 DATA 208,251, 32,202,180, 76,247,174, 76, 72,178,169
210 DATA 118,160,200,141, 8, 3,140, 9, 3, 96, 32,115
220 DATA 0,201,202,240, 6, 32,121, 0, 76,231,167, 32
230 DATA 115, 0, 32,250,174, 32,139,176,133,100,132,101
240 DATA 133, 73,132, 74, 32,163,182,160, 0,177,100, 72
250 DATA 240, 46, 32, 82,170,160, 1,177, 73,133, 5,200
260 DATA 177, 73,133, 6, 32,253,174, 32,158,183,138,240
270 DATA 23,202,134, 4, 32,121, 0,201, 41,208, 4,169
280 DATA 255,208, 12, 32,253,174, 32,158,183,138,208, 3
290 DATA 76, 72,178,133, 3,104, 56,229,. 4,197, 3,176
300 DATA 2,133, 3, 32,247,174,169,178, 32,255,174, 32
310 DATA 158,173, 32,163,182,160, 2,177,100,133, 81,136
320 DATA 177,100,133, 80,136,177,100,240,211,197, 3,176
330 DATA 2,133, 3,165, 5, 24,101, 4,133, 5,144, 2
340 DATA 230, 6,164, 3,136,177, 80,145, 5,192, 0,208
350 DATA 247, 76,174,167
360 IF S <> 31128 THEN PRINT "ERROR IN DATA!!" : END
370 SYS 51200 : PRINT ·OK."

4.3.3 Spooling - Printing Directly from the Disk

If you have a printer connected to your computer in addition
to the disk drive, you can use a special characteristic of
the the serial bus.

It is possible to send files directly from disk to the

295

Anatomy of the 1541 Disk Drive

printer, without the need to transfer it byte by byte with
the computer. For example, if you have text saved as a
sequential file, and you want to print it on the printer,
the following program allows you to do so:

100 OPEN 1,4 : REM PRINTER
110 OPEN 2,8,2, "O:TEST" : REM TEXT FILE
120 GET#2, AS : IF ST = 64 THEN 140
130 PRINT#l, ASl : GOTO 120
140 CLOSE 1 : CLOSE 2
150 END

Characters are sent from the disk to the printer until the
end of file is recognized. Then the two files are closed apd
the program ended.

The following is done when spooling:

First both files are opened again. Then a command to receive
data (Listen) is sent to the printer, while the disk drive
receives the command to send data (Talk). Data are sent
automatically from the disk to the printer until the end of
file is reached. During this time, the computer can be used
without interferring with the transfer of data. Only the use
of peripheral devices is not possible during this time.

In practice, this is done with a small machine language
program. When you want to start printing, you call the
program and give the name of the file which you want to
send.

SYS 828. "TEXT-

OPENs the file TEXT on the diskette and sends it to the
printer. As soon as the transfer is begun, the computer
responds with READY. again and you can use it, as long as no
attempt is made to access the serial bus. You can prove that
the computer is no longer needed for transfer by pulling out
the bus cable to the disk, so that the diskette is connected
only to the printer. When the spooling is done, the disk
file is still open (the red LED is still lit). You can CLOfE
the file and turn the printer off and then back on, and give
the SYS command without a filename (the cable to the disk
must be attached, of course).

SYS 828

Wi th same command you can stop a transfer in progress. The
machine language program in the form of a loader program for
the Commodore 64 and the VIC 20 is found at the end.

Here are some hints for use:

We have successfully used the printer spooling with a
Commodore 64 and a VIC 20 with a printer such as the the VIC

296

Anatomy of the 1541 Disk Drive

1525. Attempts using an Epson printer with a VIC interface
as well as the VIC 1526 did not succeed. The serial bus, in
contrast with the parallel IEEE bus, appears to be capable
of spooling only with limitations. This is why it is
necessary to turn the printer off after spooling, because it
still blocks the bus. we would be happy if you would inform
us of your experience with other printers.

~

~ 1541 - 64 SPOOL

110: 033C CHRGOT EOU $79
130 : 033C LISTEN EOU $FFBI
140: 033C ATNRES EOU $EDBE ~ATN HI
142 : 033C CLOCK EOU $EE85 ~CLOCK HI
144: 033C DATA EOU $EE97 ;DATA HI
160: 033C CLOSE EOU $FFC3
170: 033C CLALL EOU $FFE7
175: 033C SETFIL EOU $FFBA
180 : 033C GETNAME EOU $E254 ;GET FILENAME
190, 033C OPEN EOU $FF'CO
200: 033C CHKIN EOU $FFC6
202 : 033C UNTALK Eon $FFAB
204 : 033C UNLISTEN EOU $FFAE
230: 033C FNLEN EOU $87
240: 033C INDEV EOU $99 ; INPUT DEVICE
260: 033C NMBFLS EOU $98 ;NO. OF FILES
280: 033C ERROR EOU $AF08 ; SYNTAX ERROR

300: 033C ORG 828
310 : 033C 20 79 00 JSR CHRGOT ;MORE CHARS
320: 033F FO 33 BEO OFF ;SPOOL DONE
330: 0341 20 E7 FF JSR CLALL
340, 0344 20 54 E2 JSR GETNAME
350: 0347 A6 B7 LDX FNLEN
360: 0349 FO 38 BEO SYNTAX
370: 034B A9 02 LDA #2
380: 034D A2 08 LDX #8
390: 034F AO 02 LOY #2
400: 0351 20 BA FF JSR SETFIL
410: 0354 20 CO FF JSR OPEN ;OPEN FILE
411: 0357 A9 04 LOA #4
412: 0359 20 Bl FF JSR LISTEN ,PRINTER
413: 035C 20 BE ED JSR ATNRES
420 035F A2 02 LOX #2
430 0361 20 C6 FF JSR CHKIN ,DISK
435 0364 20 BE ED JSR ATNRES
435 0367 20 85 EE JSR CLOCK
435 036A 20 97 EE JSR DATA
510 036D A9 00 LDA #0
520 036F 85 99 STA INDEV
530 0371 85 98 STA NMBFLS
540 0373 60 RTS
550 0374 A9 01 OFF LOA #l
560 0376 85 98 STA NMBFLS

297

Anatomy of the 1541 Disk Drive

570: 0378 20 AE FF JSR UNLISTEN
580: 037B 20 AB FF JSR UNTALK
620: 037E A9 02 LDA *2
630 : 0380 4C C3 FF JMP CLOSE
640: 0383 4C 08 AF SYNTAX JMP ERROR

Here is the BASIC loader program for the Commodore 64.

100 FOR I = 828 TO 901
110 READ X : POKE I,X : S=S+X : NEXT
120 DATA 32,121, 0,240, 51, 32,231,255, 32, 84,226
130 DATA 166,183,240, 56,169, 2,162, 8,160, 2, 32
140 DATA 186,255, 32,192,255,169, 4, 32,177,255, 32
150 DATA 190,237,162, 2, 32,198,255, 32,190,237, 32
160 DATA 133,238, 32,151,238,169, 0,133,153,133,152
170 DATA 96,169, 1,133,152, 32,174,255, 32,171,255
180 DATA 169, 2, 76,195,255, 76, 8,175.
190 IF S <> 9598 THEN PRINT "ERROR IN DATA I!" : END
200 PRINT "OK."

For the VIC 20, use the following program:

100 FOR I = 828 TO 901
110 READ X : POKE I,X : S=S+X : NEXT
120 DATA 32,121, 0,240, 51, 32,231,255, 32, 81,226
130 DATA 166,183,240, 56,169, 2,162, 8,160, 2, 32
140 DATA 186,255, 32,192,255,169, 4, 32,177,255, 32
150 DATA 197,238,162, 2, 32,198,255, 32,197,238, 32
160 DATA 132,239, 32,160,228,169, 0,133,153,133,152
170 DATA 96,169, 1,133,152, 32,174,255, 32,171,255
180 DATA 169, 2, 76,195,255, 76, 8,207
190 IF S <> 9648 THEN PRINT "ERROR IN DATA!!" : END
200 PRINT "OK."

298

Anatomy of the 1541 Disk Drive

4.4 Overlay Technique and Chaining Machine Language Programs

A proven programming technique involves the creation of a
menu program which then loads and executes other programs
based on the user's choice. There are two variations:
preserving or clearing the old variables in the chained
program.

It is possible to pass the old variables if the calling
program is as large or larger than the chained program. If a
program is chained from another program, the pointer to the
end of the previous program remains intact, and the new
program loads over the old.

In this example, we would get the following result:

100 REM PROGRAM 1
: 110 REM THIS PROGRAM IS LARGER THAN THE SECOND

I, 120 A = 1000
130 LOAD "PROGRAM 2",8

100 REM PROGRAM 2
110 PRINT A

1000

If the chained program is larger than the original program,
part of the variables are overwritten and contain
meaningless values. Moreover, when the variables that the
program destroyed are assigned new values, part of the
program is also destroyed.

There are two characteristics of passing variables from the
previous program that should be noted - for strings and for
functions.

Any string variables that are defined as constants enclosed
in quotes in the first program, will have a problem. The
string variable pointer points to the actual text in the
program. If, for example, a string is defined in the first
program with the following assignment

100 AS = "TEXT"

the variable pointer points to the actual text within line
number 100. When chaining, the next program does not chan~:e
this pointer. New text is now at the original location, so
the variable has unpredictable contents. We can easily work
around this, however. We need only ensure that the text is
copied from the program into string storage where text
variables are normally stored. You can do this as follows:

100 AS = "TEXT" + ""

299

Anatomy of the 1541 Disk Drive

By concatenating an empty string, you force the contents of
the variable to be copied to the string storage area.

Similar considerations apply to function definitions,
because here also the pointer points to the definition
within the program. Here you must define the function again
in the second program, for example:

100 DEF FN A(X) = 0.5 * EXP (-X*X)

If you want to chain a program, you can continue to use the
old variables provided the second program is not longer than
the first. If the chained program is longer, and we do not
want to preserve the old variables, there is a trick we can
use.

We need only set the end-of-program pointer to the end of
the new program immediately after loading. This can be done
with two POKE commands:

POKE 45, PEEK(174) : POKE 46, PEEK (175) : CLR

The CLR command is absolutely necessary. This line should be
the first line in the chained program. This allows us to
chain a large program without transfer of variables.
Another, not so elegant method involves writing the load
command in the keyboard buffer so the program will
automatically be loaded in the direct mode. To do this, we
write the LOAD and RUN commands on the screen and fill the
keyboard buffer with 'HOME' and carriage returns. An END
statement must come after this in the program. The control
system then gets the contents of the keyboard buffer in the
direct mode and reads the LOAD and RUN commands that control
the loading and execution of the program. Because this
occurs in the direct mode, the end address of the program is
automatically set, the variables are erased and the program
is started with the RUN. The disadvantage of this method is
that since the LOAD command must appear on the video screen,
any display will be destroyed. In practice it looks like
this:

1000
1010
1020
1030
1040
1050

PRINT CHR$(147) "LOAD"CHR$(34) "PROGRAM 2"CHR$(34)",8"
PRINT : PRINT : PRINT : PRINT
PRINT "RUN"
POKE 631,19
POKE 634,13
POKE 198,6

POKE 632,13
POKE 635,13
END

POKE 633,13
POKE 636,13

You can see that this procedure is more complicated than .the
previous one; it is only mentioned for the sake of
completeness. With the first procedure, only the LOAD
command need be programmed in line 1000:

1000 LOAD "PROGRAM 2",8

300

Anatomy of the 1541 Disk Drive

There is another technique for chaining machine language
programs.

If a machine language program is to be used from a BASIC
program, it must usually be loaded at the beginning of the
BASIC program. You must take note of two things:

First of all, you must make sure that the machine language
program loads to a specific place in memory. If you load a
program without additional parameters, the control system
treats it as a BASIC program and loads it at the starting
address of the BASIC RAM, generally at 2049 (Commodore 64).
Machine language programs can only be run, however, when
they are loaded at the address for which they were written.
This absolute loading can be accomplished by adding the
secondary address 1:

LOAD "MACH-PRG",8,1

But remember that when loading a program from within another
program, BASIC attempts to RUN the program from the
beginning. This leads to an endless loop when loading
machine language programs, because the operating system
thinks that a new BASIC program has been chained:

100 LOAD "MACH-PRG",8,1

Here we can make use of the fact that the variables are
preserved when chaining. If we program the following, we
have reached our goal:

100 IF A=O THEN A=l
110

LOAD "MACH-PRG",8,1

When the program is started with RUN, A has the value zero
and the assignment after the THEN is executed, A contains
the value 1 and the machine language program is then LOADed.
When the program begins again after LOADing the program
MACH-PRG, A has the value 1 so the next line is executed.

The procedure is similar if you have several machine
language programs to load.

100 IF A=O THEN A=l
110 IF A=l THEN A=2
120 IF A=2 THEN A=3
130

LOAD "PROG 1",8,1
LOAD "PROG 2",8,1
LOAD "PROG 3",R ,1

The first time through, PROG 1 will be loaded, the next
time, PROG 2, and so on. Once all the programs are loaded,
execution continues with line 130.

301

Anatomy of the 1541 Disk Drive

4.5 Merge - Appending BASIC Programs

Certainly you have thought about the possibility of
combining two separate BASIC programs into one. without
further details this is not possible, because loading the
second program would overwrite the first. With the knowledge
of how BASIC programs are stored in memory and on the
diskette, you can develop a simple procedure to accomplish
this task.

BASIC programs are stored in memory as follows:

NL NH
LL LH
XX yy ZZ
00

pointer to the next program line, 10 hi
line number, 10 hi
••••• tokenized BASIC statements

end-of-line marker

At the end of the program are two additional zero bytes:
00 00 a total of 3 zero bytes

Programs are also saved in this format. Where the program
starts and ends lies in .two pointers in page zero:

PRINT PEEK(43) + 256 * PEEK(44)

gives the start of BASIC, 2049 for the Commodore 64,

PRINT PEEK(45) + 256 * PEEK(46)

points to the byte behind the three zero bytes.

Because a program is always loaded at the start of BASIC,
contained in the pointer at 43/44, one can cause a second
program to load at the end of the first. In practice, we
must proceed as follows:

First we load the first program into memory.

Now get the value of the ending address of the program.

A = PEEK(45) + 256 * PEEK(46)

This value is decremented by two so that the two zero bytes
at the end of the program are known.

A = A - 2

Now, note the original value of the start of BASIC.

PRINT PEEK(43), PEEK(44)

Next, set the start of BASIC to this value.

·302

Anatomy o£ the 1541 Disk Drive

POKE, A AND 255 : POKE 44, A / 256

Now, LOAD the second program.

LOAD "PROGRAM 2",8

If you set the start of BASIC back to the original value, 1
and 8 for the Commodore 64 (as shown above with the PRINT
commands), you have the complete program in memory and can
view it with LIST or save it with SAVE.

POKE 43,1 : POKE 44,8

The following should be noted when using this method:

The appended program may contain only line numbers that are
greater than the largest line number of the first program.
Otherwise these line numbers can never be accessed with GOTO
or GOSUB and the proper program order cannot be guaranteed.

This procedure is especially well suited for constructing a
subroutine library for often used routines, so they need not
be typed in each time. It will work out best if you reserve
specific line numbers for the subroutines, such as 20000-
25000, 25000-30000, and so on. If you want to merge several
programs in this manner, you must first load the program
with smallest line numbers, and then the program with the
next highest numbers, etc.

303

Anatomy of the 1541 Disk Drive

4.6 Disk Monitor for the Commodore 64 and VIC 20

In this section we present a very useful tool for working
with your disk drive, allowing you to load, display, modify,
and save desired blocks on the diskette.

For reasons of speed, the program is written entirely in
machine language. The following commands are supported:

*
*
*
*
*
*
*

Read a block from the disk
Write a block to the disk
Display a block on the screen
Edit a block on the screen
Send disk commands
Display disk error messages
Return to BASIC

The program announces its execution (automatically by the
BASIC load program) with

DISK-MONITOR Vl.O
>

and waits for your input. If you enter '@', the error
message from the disk will be displayed, for example

00, ok,OO,OO

If you want to send a command to the disk, enter an '@'
followed by the command.
You can initialize a diskette with

>@I

YOU can send complete disk commands in this manner, that you
would otherwise send with

OPEN 15,8,15
PRINT# 15," command n

CLOSE 15

For example, you can erase files, format disks, and so on.

The most important function of the disk monitor is the
direct access of any block on the diskette. For this, you
use the commands Rand W. R stands for READ and reads a
desired block, W stands for WRITE and writes a block to the
diSk. YOU need only specify the track and sector you want to
read. These must be given in hexadecimal, exactly as the
output is given on the screen. If, for example, you want to
read track 18, sector 1 (the first directory block), enter
the following command:

)R 12 01

304

Anatomy of the 1541 Disk Drive

Each input must be given as a two-digit hex number,
separated from each other with a blank.

In order to display the block, use the command M. We receive
the following output:

DISK-MONITOR Vl.O
>M
>:00 12 04 82 11 01 47 52 41 ••••• GRA
> :08 46 49 4B 20 41 49 44 2E FIX AID.
>:10 53 52 43 AO AO 00 00 00 SRC
>: 18 00 00 00 00 00 00 15 00
>:20 00 00 82 13 00 48 50 4C ••••• HPL
>: 28 4F 54 2E 53 52 43 AO AO OT.SRC
>:30 AO AO AO AD AO 00 00 00
>:38 00 00 00 00 00 00 05 00
>:40 00 00 82 13 03 56 50 4C . " •• VPL
>:48 4F 54 2E 53 52 43 AO AO OT.SRC
>:50 AD AO AO AO AO 00 00 00
> :58 00 00 00 00 00 00 09 00
> : 60 00 00 82 13 09 4D 45 4D ••.•• MEM
> :68 2E 53 52 43 AO AO AO AO .SRC
>:70 AD AO AO AO AO 00 00 00
>:78 00 00 00 00 00 00 06 00
) : 80 00 00 82 13 08 4D 45 4D ••.•• MEM
):88 2E 4F 42 4A AO AD AO AO .OBJ

etc.

Let's take a closer look at the output. The first hex number
after the colon gives the address of the following 8 bytes
in the block, 00 indicates the first byte in the block (the
numbering goes from 00 to FF (0-255». 8 bytes follow the
address (4 on the VIC 20). In the right half are the
corresponding ASCII characters. If the code is not printable
($00 to $lF and $80 to $9F), a period is printed. When you
give the command M, as above, the entire block is displayed.
Because the block does not fit on the screen completely, it
is possible to display only part of it. You can give an
address range that you would like to display. If you only
want to see the first half, enter:

)M 00 7F

The second half with:

>M 80 FF

With the VIC 20, you can view quarters of the block. If you
now wish to change some data, you simply move the cursor to
the corresponding place, overwrite the appropriate byte, and
press RETURN. The new value is now stored and the right half
is updated with the proper ASCII character.

To write the modified block back to the diskette, you use
the command W. Here also you must give the track and sector

305

Anatomy of the 1541 Disk Drive

numbers in hexadecimal.

>W 12 01

writes the block back to track 18, sector 1, from where we
had read the block previously.

If you want to get back to BASIC, enter X and the computer
will respond with READY •• If you then want to use the disk
monitor again, you need not load it again. Just type SYS
49152 for the C64 or SYS 6690 for the VIC 20.

A warning:

Be sure to make a copy of any diskette that you work with in
this way. Should you make an error when editing or writing a
block, you can destroy important information on the disk so
that it can no longer be used in the normal manner. You
should make it a rule to only work with a copy.

Here you find an issembler listing of the program. After
this are the BASIC loader programs for the Commodore 64 and
VIC 20.

190: COOO
200: COOO

210: COOO
220: COOO
230: COOO
240: COOO
250: COOO
260: COOO
270: COOO
280: COOO
290: COOO
300: COOO
310: COOO
320: COOO
330: COOO
340: COOO
350: COOO
360: COOO
370: COOO
380: COOO
390: COOO
400: COOO
410: 0200

420: 0201
430: 0202
440: 0203

disk monitor vic 20 / cbm 64

PROMPT
NCMDS

INPUT
TALK
SECTALK
IEEEIN
UNTALK
LISTEN
SECLIST
IEEEOUT
UNLIST
WRITE
OPEN
CLOSE
SETPAR
SETNAM
CHKIN
CKOUT
CLRCH
CR
OUOTE
OUOTFLG

SAVX
WRAP
BAD

306

EOU
EOU

EOU
EOU
EOU
EQU
EOU
EQU
EOU
EOU
EOU
E(lU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
ORG

BYT
BYT
BYT

II> II

6

$FFCF
$FFB4
$FF96
$FFA5
$FFAB
$FFBI
$FF93
$FFAB
$FFAE
$FFD2
$FFCO
$FFC3
$FFBA
$FFBD
$FFC6
$FFC9
$FFCC
13
$22
$D4
$200

a
0
a

;NUMBER OF
COMMANDS

; BASIC INPUT
BUFFER

Anatomy of the 1541 Disk Drive

450 0204 FROM BYT 0
460 0205 TO BYT 0
470 0205 STATUS EOU $90
480 0205 SA EOU $B9 ; SECONDARY

ADDRESS
490: 0205 FA EOU $BA ;DEVICE t
500: 0205 FNADR EOU $BB ; FILENAME ADR
510: 0205 FNLEN EOU $B7 ;LEN OF

FILENAME
520: 0205 TMPC EOU $97
610: COOO COUNT EOU 8 ;t OF BYTES PER LINE
620: COOO READY EOU $E37B ;$E467 FOR VIC
630: COOO A2 00 INIT LDX to
640: C002 BD 85 C2 MSGOUT LDA MESSAGE,X
650: C005 20 D2 FF JSR WRITE
660: C008 E8 INX
670: C009 EO 12 CPX tASCDMP-MESSAGE
680: COOB DO F5 BNE MSGOUT
690: COOD A2 OD START LDX tCR
700: COOF A9 3E LDA tPROMPT
710: COll 20 EB CO JSR WRTWHR
710: C014 A9 00 LDA #0
710: C016 8D 01 02 STA WRAP
720: COl9 20 33 Cl STI JSR RooC ;READ INPUT LINE
730: COlC C9 3E CMP tPROMPT
740: COlE FO F9 BEO STl
750: C020 C9 20 CMP t- Il ;READ OVER BLANK
760: C022 FO F5 BEO STI
770: C024 A2 05 sO LOX tNCMDS-l ;COMPARE WITH.

COMMAND TABLE
780: C026 DD 6A CO Sl CMP CMDS,X
790: C029 DO OC BNE S2
800: C02B 8E 00 02 STX SAVX ;# OF CMDS IN TABLE
840: C02E BD 70 CO LDA AD~H,X
850: C03l 48 PHA ;JUMP ADDR TO

STACK
860: C032 BD 76 CO LDA ADRL,X
870: C035 48 PHA
880: C036 60 RTS
890: CO 37 CA S2 DEX
900: C038 10 EC BPL Sl ; LOOP OF ALL CMDS
910 : C03A 4C OD CO JMP START

SUBROUTINE TO DISPLAY
; THE DISK CONTENTS

960: C03D 85 97 DM STA TMPC
970: C03F 20 62 CO DMI JSR SPACE
980: C042 B9 EO C2 LDA BUFFER,y ;GET BYTE FROM

BUFFER
990: C045 20 DC CO JSR WROB
1000 C048 C8 INY
1000 C049 DO 03 BNE DM2
1000 C04B EE 01 02 INC WRAP
1010 C04E C6 97 DM2 DEC TMPC
1020 COSO 00 ED BNE DMI

307

Anatomy of the 1541 Disk Drive

1030: C052 60 RTS
; READ BYTES AND WRITE TO MEMORY

1060: C053 20 FE CO BYT JSR RDOB
1070: C056 90 03 BCC BY3 ; BLANK?
1080: C058 99 EO C2 STA BUFFER,Y ;WRITE BYTE IN

BUFFER
1090: C05B C8 BY3 INY
1100 : C05C C6 97 DEC TMPC
1110: C05E 60 RTS
1120 : C05F 20 62 CO SPAC2 JSR SPACE
1130: C062 A9 20 SPACE LDA II" n

1140 : C064 2C BYT $2C
1150: C065 A9 OD CRLF LDA #CR
1160: C067 4C D2 FF JMP WRITE

;
1 COMMAND AND ADDRESS TABLE

1190 : C06A 3A CMDS ASC 1: I lEDIT MEM CONTENTS
1200: C06B 57 ASC 'w' ;WRITE BLOCK
1210: C06C 52 ASC 'R' lREAD BLOCK
1220: C06D 4D ASC 'M' lDISLPAY BYTES
1230: C06E 40 ASC '@' ;DISK COMMAND
1240: C06F 58 ASC 'X' lEXIT
1250: C070 CO ADRH EOU >ALTM-l
1260: C07l Cl EOU >DIRECT-l
1270: C072 Cl EOU >DIRECT-l
1280: C073 CO EOU >DSPLYM-l
1290: C074 Cl EOU >DISK-l
1300 : C075 E3 EOU >READY-l
1310: C076 CO ADRL EOU <ALTM-l
13 20: C077 90 EOU <DIRECT-l
1330: C078 90 EOU <DIRECT-l
1340 : C079 7B EQU <DSPLYM-l
1350: C07A 3E EOU <DISK-l
1360 : C07B 7A EOU <READY-l
1370: C07C AO 00 DSPLYM LDY #0
1380 : C07E 8C 03 02 STY FROM
1370: C081 88 DEY
1370 : C082 8C 04 02 STY TO
1370 : C085 20 CF FF JSR INPUT
1370 : C088 C9 OD CMP #CR
1370: C08A FO 17 BEO DSPI
1380 : C08C 20 FE CO JSR RDOB ;READ START

ADDRESS
1390 C08F 90 12 BCC DSPI
1400 C091 8D 03 02 STA FROM
1410 C094 20 CF FF JSR INPUT
1410 C097 C9 OD CMP #CR
1410 CD99 FO 08 REO DSP1
1420 C09B 20 FE CO JSR RDOB ;READ END ADR
1430 CD9E 90 03 BCC DSPI
1440 COM 8D 04 02 STA TO
1450 COA3 AC 03 02 DSPI LDY TO
1460 COA6 20 C6 C2 DSP2 JSR TESTEND
1470 COA9 20 D6 C2 JSR ALTRIT
1470 COAC 98 TYA

308

Anatomy of the 1541 Disk Drive

1480 COAD 20 DC CO JSR WROB ;ADDRESS
1490 COBO 20 62 CO JSR SPACE ;OMIT FOR VIC
1500 COB3 A9 08 LDA iCOUNT ;8 OR 4
1510: COB5 20 3D CO JSR DM ; DISPLAY
1520: COB8 20 97 C2 JSR ASCDMP ; ASCII DUMP
1530 : COBB 4C A6 CO JMP DSP2 ;ABS JUMP
1550: CO BE 4C OD CO BEQSl JMP START

;EDIT MEMORY; READ ADDRESS AND DATA
1570: COCI 20 FE CO ALTM JSR RDOB ; READ ADDR
1580: COC4 90 F8 BCC BEQS1
1590: COC6 A8 TAY
1600: COC7 A9 08 LDA #COUNT ;# OF BYTES
1610: COC9 85 97 STA TMPC
1610: COCB 20 33 Cl JSR RDOC ;OMIT FOR VIC
1620: COCE 20 33 Cl A5 JSR RDOC
1620 : COol 20 53 CO JSR BYT
1630: COD4 DO F8 BNE A5
1640: COD6 20 97 C2 JSR ASCDMP
1650: COD9 4C OD CO JMP START

;WRITE BYTE AS HEX NUMBER
1710: CODC 48 WROB PHA
1720 : CODD 4A LSR A
1730: CODE 4A LSR A
1740: CODF 4A LSR A
1750: COEO 4A LSR A
1760: COEI 20 F4 CO JSR ASCII ; CONVERT TO

ASCII
1770: COE4 AA TAX
1780 : COE5 68 PLA
1790: COE6 29 OF AND #SOF
1800: COE8 20 F4 CO JSR ASCII

; WRITE CHARACTERS IN X AND A
1820: COEB 48 WRTWHR PHA
1830: COEC 8A TXA
1840: COED 20 D2 FF JSR WRITE
1850: COFO 68 PLA
1860: COFl 4C D2 FF JMP WRITE
1870: COF4 18 ASCII CLC
1880: COF5 69 F6 ADC #SF6
1890 : COF7 90 02 BCC ASCI
1900: COF9 69 06 ADC #6
1910 : COFB 69 3A ASCI ADC #S3A
1920 : COFD 60 RTS

; READ HEX BYTE AND PUT IN A
1950: COFE A9 00 RDOB LDA #0
1960: CI00 80 02 02 STA BAD ;READ NEXT CHAR
1970: CI03 20 33 Cl JSR RDOC
1980: CI06 C9 20 RDOBI CMP # •
1990: CI08 DO 09 BNE RDOB2
2000: CIOA 20 33 C1 JSR RDOC ;READ NEXT CHAR
2010: ClOD C9 20 CMP # •
2020 : CIOF DO OF BNE RDOB3
2030: Clll 18 CLC ;CY=O
2040: C1l2 60 RTS

309

Anatomy of the 1541 Disk Drive

2050: Cll3 20 28 Cl ROOB2 JSR HEXIT
2060: C1l6 OA ASL A
2070: C1l7 OA ASL A
2080: C1l8 OA ASL A
2090: C1l9 OA ASL A
2100: CllA 8D 02 02 STA BAD
2110: CllD 20 33 C1 JSR RDOC
2120: C120 20 28 C1 RDOs3 JSR HEXIT
2130: C123 OD 02 02 ORA BAD
2140: C126 38 SEC ;CY=l
2150: C127 60 RTS
2160: C128 C9 3A HEXIT CMP #$3A
2170: C12A 08 PHP
2180: C12S 29 OF AND #$OF
2190: C12D 28 PLP
2200: CI2E 90 02 BCC HEX09 ;0-9
2210: Cl30 69 08 ADC #8 ;PLUS 9 (C-l)
2220 : Cl32 60 HEX09 RTS
2230: Cl33 20 CF FF RDOC JSR INPUT ; READ CHAR
2240: CI36 C9 OD CMP #CR ;CR?
2250: Cl38 DO F8 BNE HEX09 ;NO, RETURN
2260: Cl3A 68 PLA
2270: Cl3B 68 PLA
2280: Cl3C 4C OD CO JMP START

DOS SUPPORT
2320: Cl3F 20 CF FF DISK JSR INPUT
2330 C142 C9 OD CMP #CR
2340 C144 DO 27 BNE DSKCMD ;DISK COMMAND
2350 C146 A9 00 LDA jlO
2350 C148 85 90 STA STATUS ;ERASE STATUS
2360 C14A 20 65 CO JSR CRLF
2370 C14D A9 08 LDA #8
2380 C14F 85 BA STA FA ;DISK ADDR
2390 CI51 20 B4 FF JSR TALK
2400 C154 A9 6F LDA #15+$60 ;SA 15
2410 C156 85 B9 STA SA
2420 C158 20 96 FF JSR SECTALK ;SEC ADDR
2430 C15B 20 AS FF ERRIN JSR IEEEIN
2440 C15E 24 90 BIT STATUS
2440 C160 70 05 BVS ENDDSK
2450 C162 20 D2 FF JSR WRITE
2460 C165 DO F4 BNE ERRIN
2470 C167 20 AS FF ENDDSK JSR UNTALK
2480 C16A 4C OD CO JMP START
2490 C16D C9 24 DSKCMD C~lP #'$
2500 C16F FO 1D REO ERR1 ; CATALOG
2510 C17l 48 PHA
2510 Cl72 A9 08 LDA jl8
2520 Cl74 85 BA STA FA
2530 C176 20 Bl FF JSR LISTEN
2540 Cl79 A9 6F LDA #15+$60
2550 C17B 85 B9 STA SA
2560 Cl7D 20 93 FF JSR SEC LIST

310

Anatomy of the 1541 oisk Orive

2560: C180 68 PLA
2570: C181 20 A8 FF CMOOUT JSR IEEEOUT
2580: C184 20 CF FF JSR INPUT
2590: C187 C9 00 CMP #CR
2600: C189 00 F6 BNE CMDOUT
2610 : C18B 20 AE FF JSR UNLIST
2630: C18E 4C 00 CO ERRI JMP START
2640 : C191 20 33 Cl DIRECT JSR RDOC
2640: C194 20 FE CO JSR ROOB ;REAO TRACK
2650 : C197 90 F5 BCC ERRI
2660: C199 8D 27 C2 STA TRACK
2670: C19C 20 33 Cl JSR RDOC
2670: C19F 20 FE CO JSR ROOB
2680: CIA2 90 EA BCC ERRI
2690: CIM 8D 2A C2 STA SECTOR
2690: ClA7 20 49 C2 JSR OPNOIR
2690: CIAA AD 00 02 LOA SAVX
2690: ClAD C9 01 CMP #1
2690: CIAF FO IE BEO OIRWRITE
2700: CIBI A9 31 LOA #'1
2710: CIB3 20 ED Cl JSR SENDCMD ;SENO BLOCK

READ COMMAND
2720: CIB6 A2 OD LOX #13
2730 : CIB8 20 C6 FF JSR CHKIN
2740: CIBB A2 00 LOX #0
2750: CIBD 20 CF FF DIRIN JSR INPUT
2760: CICO 90 EO C2 STA BUFFER,X
2770: ClC3 E8 INX
2770: CIC4 DO F7 BNE DIRIN
2780: CIC6 20 CC FF JSR CLRCH
2790: ClC9 20 6E C2 ENOOIR JSR CLSDIR
2790: ClCC 4C OD CO JMP START
2800: CICF 20 2C C2 DIRWRITE JSR BUFPNT ;SET BUFFER

POINTER
2810 CID2 A2 OD LDX #13
2820 CID4 20 C9 FF JSR CKOUT
2830 CID7 A2 00 LOX #0
2840 CI09 BO EO C2 DIROUT LOA BUFFER,X
2850 CIOC 20 02 FF JSR WRITE
2860 CIOF E8 INX
2860 ClEO 00 F7 BNE DIROUT
2870 CIE2 20 CC FF JSR CLRCH
2880 CIE5 A9 32 LOA .'2
2890 CIE7 20 EO Cl JSR SENDCMO ;SENO BLOCK

WRITE COMMAND
2900 CIEA 4C C9 Cl JMP ENOOIR
2910 CIED 80 20 C2 SENDCMO STA CMOSTR+l
2910 CIFO A2 OF LOX #15
2920 CIF2 AO 27 C2 LOA TRACK
2920 CIF5 20 78 C2 JSR NUMBASC
2920 CIF8 8E 27 C2 STX TRACK
2920 CIFB 80 28 C2 STA TRACK+l
2930 CIFE AO 2A C2 LOA SECTOR
2930 C201 20 78 C2 JSR NUMBASC
2930 C204 8E 2A C2 STX SECTOR

311

Anatomy of the 1541 Disk Drive

2930: C207 80 2B C2 STA SECTOR+l
2940: C20A A2 OF LOX US
2940: C20C 20 C9 FF JSR CKOUT
2950: C20F A2 00 LOX #0
2960: C211 BO IF Cl COMOOUT LOA CMOSTR,X
2970 : C2l4 20 02 FF JSR WRITE
2980: C217 E8 INX
2980: C2l8 EO 00 CPX #BUFPNT-CMOSTR
2990: C2lA DO F5 BNE COMOOUT
3000: C21C 4C CC FF JMP CLRCH
3010: C21F 55 31 3A CMOSTR ASC '01:13 0 •

31 33 20
30 20

3020: C227 00 00 20 TRACK BYT 0,0,$20
3030: C22A 00 00 SECTOR BYT 0,0
3040: C22C A2 OF BUFPNT LOX US
3050: C22E 20 C9 FF JSR CKOUT
3060: C231 A2 00 LDX #0
3070: C233 BO 41 C2 PNTOUT LOA BUFTXT,X
3080: C236 20 02 FF JSR WRITE
3090: C239 E8 INX
3090: C23A EO 08 CPX #OPNOIR-BUFTXT
3100: C23C 00 F5 BNE PNTOUT
3110 : C23E 4C CC FF JMP CLRCH
3120: C241 42 20 50 BUFTXT ASC 'B-P 13 0'_

20 31 33
20 30

3130 : C249 A9 OF OPNOIR LOA US
3130: C24B A8 TAY
3140: C24C A2 08 LOX #8
3150: C24E 20 BA FF JSR SETPAR
3160: C251 A9 00 LDA #0
3170: C253 20 BO FF JSR SETNAM
3180: C2S6 20 CO FF JSR OPEN
3190: C259 A9 00 LOA #13
3190: C25B A8 TAY
3200: C25C A2 08 LOX #8
3210: C25E 20 BA FF JSR SETPAR
3220: C261 A9 01 LOA III
3230 : C263 A2 60 LOX #<OAOR
3240: C265 AO C2 LDY .>DAOR
3250: C267 20 BO FF JSR SETNAM
3260: C26A 4C CO FF JMP OPEN
3270: C260 23 OADR .BYT • #
3280: C26E A9 OD CLSDIR LOA .13
3290 : C270 20 C3 FF JSR CLOSE
3300: C273 A9 OF LOA #15
3310: C27S 4C C3 FF JMP CLOSE
3230: C278 A2 30 NUMBASC LDX #'0 ;HEX i TO ASI
3330: C27A 38 SEC
3340: C27B E9 OA NUMBI SBC UO
3350: C270 90 03 BCC NUMB2
3360: C27F E8 INX
3370: C280 BO F9 BCS NUMBl
3380: C282 69 3A NUMB2 ADC .$3B ~ '9' + 1

312

Anatomy of the 1541 Disk Drive

3390: C284 60 RTS
3400 : C285 OD MESSAGE EOU CR
3410: C286 44 49 53 ASC 'DISK-MONITOR Vl.0'

4B 2D 4D
4F 4E 49
54 4F 52
20 56 31
2E 30

3430: C297 98 ASCDMP TYA
3440: C298 38 SEC
3440: C299 E9 08 SBC #COUNT
3440: C29B A8 TAY
3450: C29C 20 62 CO JSR SPACE
3460: C29F A9 12 LDA U8 :RVS ON
3470: C2Al 20 D2 FF JSR WRITE
3480: C2M A2 08 LDX #COUNT
3490: C2A6 B9 EO C2 AC2 LDA BUFFER,Y
3500: C2A9 29 7F AND #$7F
3510: C2AB C9 20 CMP # '
3520: C2AD BO 04 BCS AC3
3530: C2AF A9 2E LDA # ' •
3540: C2B1 DO 03 BNE AC4
3550: C2B3 B9 EO C2 AC3 LDA BUFFER,Y
3560 : C2B6 20 D2 FF AC4 JSR WRITE
3570: C2B9 A9 00 LDA #0
3570: C2BB 85 D4 STA OUOTFLG
3580: C3BD C8 INY
3580: C2BE CA DEX
3590: C2BF DO E5 BNE AC2
3600: C2Cl A9 92 LDA U46 ;RVS OFF
3610 : C2C3 4C D2 FF JMP WRITE
3620: C2C6 AD 01 02 TESTEND LDA WRAP
3620 : C2C9 DO 06 BNE ENDEND
3630: C2CB CC 04 02 CPY TO
3640: C2CE BO 01 BCS END END
3650: C2DO 60 RTS
3660: C2D1 68 ENDErliD PLA
3660: C2D2 68 PLA
3660: C2D3 4C OD CO JMP START
3670: C2D6 20 65 CO ALTRIT JSR CRLF
3680: C2D9 A9 3A LDA # ' :
3690: C2DB A2 3E LDX #PROMPT
3700 : C2DD 4C EB CO JMP WRTWHR
3730: C2EO BUFFER DST 256 ;256 BYTE BUFFER

FOR BLOCK

Here is the BASIC program for entering the disk monitor if
you do not have an assembler.

313

Anatomy of the 1541 Disk Drive

DISK-MONITOR, C64 VERSION

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610

FOR I : 49152 TO 49887
READ
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

X : POKE I,X : S:S+X : NEXT
162, 0,189,133,194, 32,210,255,232,224, 18,208
245,162, 13,169, 62, 32,235,192,169, 0,141, 1

2, 32, 51,193,201, 62,240,249,201, 32,240,245
162, 5,221,106,192,208, 12,142, 0, 2,189,112
192, 72,189,118,192, 72, 96,202, 16,236, 76, 13
192,133,151, 32, 98,192,185,224,194, 32,220,192
200,208, 3,238, 1, 2,198,151,208,237, 96, 32
254,192,144, 3,153,224,194,200,198,151, 96, 32
98,192,169, 32, 44,169, 13, 76,210,255, 58, 87
82, 77, 64, 88,192,193,193,192,193,227,192,144

144,123, 62,122,160, 0,140, 3, 2,136,140, 4
2, 32,207,255,201, 13,240, 23, 32,254,192,144

18,141, 3, 2, 32,207,255,201, 13,240, 8, 32
254,192,144, 3,141, 4, 2,172, 3, 2, 32,198
194, 32,214,194,152, 32,220,192, 32, 98,192,169

8, 32, 61,192, 32,151,194, 76,166,192, 76, 13
192, 32,254,192,144,248,168,169, 8,133,151, 32
51,193, 32, 51,193, 32, 83,192,208,248, 32,151

194, 76, 13,192, 72, 74, 74, 74, 74, 32,244,192
170,104, 41, 15, 32,244,192, 72,138, 32,210,255
104, 76,210,255, 24,105,246,144, 2,105, 6,105
58, 96,169, 0,141, 2, 2, 32, 51,193,201, 32

208, 9, 32, 51,193,201, 32,208, 15, 24, 96, 32
40,193, 10, 10, 10, 10,141, 2, 2, 32, 51,193
32, 40,193, 13, 2, 2, 56, 96,201, 58, 8, 41
15, 40,144, 2,105, 8, 96, 32,207,255,201, 13

208,248,104,104, 76, 13,192, 32,207,255,201, 13
208, 39,169, 0,133,144, 32,101,192,169, 8,133
186, 32,180,255,169,111,133,185, 32,150,255, 32
165,255, 36,144,112, 5, 32,210,255,208,244, 32
171,255, 76, 13,192,201, 36,240, 29, 72,169, 8
133,186, 32,177,255,169,111,133,185, 32,147,255
104, 32,168,255, 32,207,255,201, 13,208,246, 32
174,255, 76, 13,192, 32, 51,193, 32,254,192,144
245,141, 39,194, 32, 51,193, 32,254,192,144,234
141, 42,194, 32, 73,194,173, 0, 2,201, 1,240

30,169, 49, 32,237,193,162, 13, 32,198,255,162
0, 32,207,255,157,224,194,232,208,247, 32,204

255, 32,110,194, 76, 13,192, 32, 44,194,162, 13
32,201,255,162, 0,189,224,194, 32,210,255,232

208,247, 32,204,255,169, 50, 32,237,193, 76,201
193,141, 32,194,162, 15,173, 39,194, 32,120,194
142, 39,194,141, 40,194,173, 42,194, 32,120,194
142, 42,194,141, 43,194,162, 15, 32,201,255,162

0,189, 31,194, 32,210,255,232,224, 13,208,245
76,204,255, 85, 49, 58, 49, 51, 32, 48, 32, 0

0, 32, 0, 0,162, 15, 32,201,255,162, 0,189
65,194, 32,210,255,232,224, 8,208,245, 76,204

255, 66, 45, 80, 32, 49, 51, 32, 48,169, 15,168
162, 8, 32,186,255,169, 0, 32,189,255, 32,192

314

Anatomy of the 1541 Disk Drive

620 DATA 255,169, 13,168,162, 8, 32,186,255,169, 1,162
630 DATA 109,160,194, 32,189,255, 76,192,255, 35,169, 13
640 DATA 32,195,255,169, 15, 76,195,255,162, 48, 56,233
650 DATA 10,144, 3,232,176,249,105, 58, 96, 13, 68, 73
660 DATA 83, 75, 45, 77, 79, 78, 73, 84, 79, 82, 32, 86
670 DATA 49, 46, 48,152, 56,233, 8,168, 32, 98,192,169
680 DATA 18, 32,210,255,162, 8,185,224,194, 41,127,201
690 DATA 32,176, 4,169, 46,208, 3,185,224,194, 32,210
700 DATA 255,169, 0,133,212,200,202,208,229,169,146, 76
710 DATA 210,255,173, 1, 2,208, 6,204, 4, 2,176, 1
720 DATA 96,104,104, 76, 13,192, 32,101,192,169, 58,162
730 DATA 62, 76,235,192
740 IF S <> 90444 THEN PRINT "ERROR IN DATA !!" : END
750 SYS 49152

DISK-MONITOR, VIC 20 VERSION

In order to allow this program to be run on the VIC 20, it was
split into two parts. Enter each program separately, saving the
first under the name "DOS LOADER.l" and second under "DOS
LOADER.2". To load the disk monitor, load the first program and
start it with RUN. If all data are correct, the second program
will automatically be loaded and the disk monitor started.

100 POKE 55, 6690 AND 255 : POKE 56, 6690 / 256 : CLR
105 FOR I = 6690 TO 7056 : REM DOS LOADER.l
110 READ X : POKE I,X : S=S+X : NEXT
120 DATA 162, 0,189,164, 28, 32,210,255,232,224, 18,208
130 DATA 245,162, 13,169, 62, 32, 7, 27,169, 0,141, 1
140 DATA 2, 32, 79, 27,201, 62,240,249,201, 32,240,245
150 DATA 162, 5,221,140, 26,208, 12,142, 0, 2,189,146
160 DATA 26, 72,189,152, 26, 72, 96,202, 16,236, 76, 47
170 DATA 26,133,151, 32,132, 26,185, 0, 29, 32,248, 26
180 DATA 200,208, 3,238, 1, 2,198,151,208,237, 96, 32
190 DATA 26, 27,144, 3,153, 0, 29,200,198,151, 96, 32
200 DATA 132, 26,169, 32, 44,169, 13, 76,210,255, 58, 87
210 DATA 82, 77, 64, 88, 26, 27, 27, 26, 27,228,223,175
220 DATA 175,157, 90,102,160, 0,140, 3, 2,136,140, 4
230 DATA 2, 32,207,255,201, 13,240, 23, 32, 26, 27,144
240 DATA 18,141, 3, 2, 32,207,255,201, 13,240, 8, 32
250 DATA 26, 27,144, 3,141, 4, 2,172, 3, 2, 32,229
260 DATA 28, 32,245, 28,152, 32,248, 26,169, 4, 32, 95
270 DATA 26, 32,182, 28, 76,200, 26, 76, 47, 26, 32, 26
280 DATA 27,144,248,168,169, 4,133,151, 32, 79, 27, 32
290 DATA 117, 26,208,248, 32,182, 28, 76, 47, 26, 72, 74
300 DATA 74, 74, 74, 32, 16, 27,170,104, 41, 15, 32, 16
310 DATA 27, 72,138, 32,210,255,104, 76,210,255, 24,105
320 DATA 246,144, 2,105, 6,105, 58, 96,169, 0,141, 2
330 DATA 2, 32, 79, 27,201, 32,208, 9, 32, 79, 27,201
340 DATA 32,208, 15, 24, 96, 32, 68, 27, 10, 10, 10, 10
350 DATA 141, 2, 2, 32, 79, 27, 32, 68, 27, 13, 2, 2
360 DATA 56, 96,201, 58, 8, 41, 15, 40,144, 2,105, 8

315

Anatomy of the 1541 Disk Drive

370 DATA 96, 32,207,255,201, 13,208,248,104,104, 76, 47
380 DATA 26, 32,207,255,201, 13,208, 39,169, 0,133,144
390 DATA 32,135, 26,169, 8,133,186, 32,180,255,169,111
400 DATA 133,185, 32,150,255, 32,165,255, 36,144,112, 5
410 DATA 32,210,255,208,244, 32,171,255, 76, 47, 26,201
420 DATA 36,240, 29, 72,169, 8,133
430 IF S <> 35614 THEN PRINT "ERROR IN DATA ! ! II : END
440 LOAD "oos LOADER.2",8

100 eLR : FOR I = 7057 TO 7422 : REM OOS LOADER. 2
110 READ X : POKE I,X : s=s+x : NEXT
120 DATA 186, 32,177,255,169,111,133,185, 32,147,255,104
130 DATA 32,168,255, 32,207,255,201, 13,208,246, 32,174
140 DATA 255, 76, 47, 26, 76, 47, 26, 32, 79, 27, 32, 26
150 DATA 27,144,245,141, 70, 28, 32, 79, 27, 32, 26, 27
160 DATA 144,234,141, 73, 28, 32,104, 28,173, 0, 2,201
170 DATA 1,240, 30,169, 49, 32, 12, 28,162, 13, 32,198
180 DATA 255,162, 0, 32,207,255,157, 0, 29,232,208,247
190 DATA 32,204,255, 32,141, 28, 76, 47, 26, 32, 75, 28
200 DATA 162, 13, 32,201,255,162, 0,189, 0, 29, 32,210
210 DATA 255,232,208,247, 32,204,255,169, 50, 32, 12, 28
220 DATA 76,232, 27,141, 63, 28,162, 15,173, 70, 28, 32
230 DATA 151, 28,142, 70, 28,141, 71, 28,173, 73, 28, 32
240 DATA 151, 28,142, 73, 28,141, 74, 28,162, 15, 32,201
250 DATA 255,162, 0,189, 62, 28, 32,210,255,232,224, 13
260 DATA 208,245, 76,204,255, 85, 49, 58, 49, 51, 32, 48
270 DATA 32, 0, 0, 32, 0, 0,162, 15, 32,201,255,162
280 DATA 0,189, 96, 28, 32,210,255,232,224, 8,208,245
290 DATA 76,204,255, 66, 45, 80, 32, 49, 51, 32, 48,169
300 DATA 15,168,162, 8, 32,186,255,169, 0, 32,189,255
310 DATA 32,192,255,169, 13,168,162, 8, 32,186,255,169
320 DATA 1,162,140,160, 28, 32,189,255, 76,192,255, 35
330 DATA 169, 13, 32,195,255,169, 15, 76,195,255,162, 48
340 DATA 56,233, 10,144, 3,232,176,249,105, 58, 96, 13
350 DATA 68, 73, 83, 75, 45, 77, 79, 78, 73, 84, 79, 82
360 DATA 32, 86, 49, 46, 48,152, 56,233, 4,168, 32,132
370 DATA 26,169, 18, 32,210,255,162, 4,185, 0, 29, 41
380 DATA 127,201, 32,176, 4,169, 46,208, 3,185, 0, 29
390 DATA 32,210,255,169, 0,133,212,200,202,208,229,169
400 DATA 146, 76,210,255,173, 1, 2,208, 6,204, 4, 2
410 DATA 176, 1, 96,104,104, 76, 47, 26, 32,135, 26,169
420 DATA 58,162, 62, 76, 7, 27
430 IF S <> 39496 THEN PRINT "ERROR IN DATA !! .. : END
440 SYS 6690

316

Anatomy of the 1541 Disk Drive

Chapter 5: The Larger CBM Disks

5.1 IEEE-Bus and Serial Bus

Standard Commodore 64's and VIC 20's have a serial bus over
which they communicate with peripheral devices such as the
VIC 1541 disk drive as well as printers and plotters.

The principle of the bus makes it possible to chain
peripherals. Each device has its own device address over
which one can communicate with it. The standard address of
the disk is a, a printer is usually 4. The device address is
identical to the primary address in the OPEN command. For
instance,

OPEN .1,4

opens a channel to the printer. In order to open several
disk files at once, another address, the secondary address,
serves to distinguish them. The disk has 16 secondary
addresses at its disposal, from 0 to 15. Three secondary
addresses are reserved, while the other 13 can be freely
used:

Secondary address 0 is used for loading programs.

secondary address 1 is used for saving programs.

Secondary address 15 is the command and error channel.

The secondary addresses from 2 to 14 can be used for opening
files as desired.

The transfer of information between the Commodore 64 and the
VIC 1541 occurs serially over this bus. Serial means that
the the data is sent a bit at a time over just one wire.
Data within the computer and disk drive are stored and
manipulated in 8 bit groups called bytes. When a byte is
sent serially, each individual bit must be sent over the
data line. In order that the sender and receiver can stay in
step, a so-called 'handshake' line is needed. If we look at
the pin-out of the serial bus, we find 6 wires:

Pin Function
1 SRQ IN
2 ground
3 ATN
4 CLCK
5 DATA
6 RESET

If the computer wants to send data to the disk drive, the

317

Anatomy of the 1541 Disk Drive

ATN (attention) line is set. When this signal is high, all
peripherals on the bus stop their work and read the next
byte. The data is sent bit-wise over the DATA line. So that
the receivers know when the next bit comes. a signal is also
sent along the CLCK (clock) line. This transmitted byte is
the device address. If this value does not correspond with
the device address of a receiving peripheral, the rest of
the data is ignored. If, however, the device is addressed, a
secondary address may be transmitted. Along with the device
address (0 to 31), the device is informed by means of the
other three bits whether it is supposed to receive data
(LISTEN) or send data (TALK). Following this, data is sent
from the computer or from the addressed device.

The RESET line resets all attached devices when the computer
is turned on. Over the SRO IN (service request) line,
peripheral devices can inform the bus controller (in our
case, the computer), if data is ready, for example. However,
this line is not checked by the control system in the
Commodore computers.

If one wants to attach several disk drives to the same
computer, each must have a different peripheral address. If
this is done only occasionally, the program DISK'ADDR CHARGE
can be used, as described in section 4.2.3. The new address
(9 for example), remains only until the device is turned
off. If the change should be permanent, it can be, changed
with DIP switches in the drive.

The principle of transfer of data over th'e IEEE 488 bus is
similar to the serial bus function. The important difference
is that the data is transmitted over 8 data lines in
parallel, not serial. In addition, more handshake lines are
needed, so the IEEE bus requires a 24-line cable. The main
advantage of the IEEE 488 bus is its ability to transmit a
byte at a time, resulting in a higher rate of transfer.
Measurements indicate that the IEEE-bus is about 5 times
faster than the serial bus: 1.8 Kbyte/second vs. 0.4
Kbyte/second. Loading a 10K program with the VIC 1541 takes
about 25 seconds: on the identical 2031, it takes less than
6. This reason alone is enough to warrant outfitting your
computer with an IEEE bus.

At the same time, it is possible to use all the other
peripherals that the large CBM computers can access.

318

Anatomy of the 1541 Disk Drive

5.2 Comparison of all CBM Disk Drives

In the following table you find the technical data of all
CBM disk drives compared.

The Technical Data of all Commodore Disk Drives

Model 1541 2031 4040 8050 8250

DOS version(s) 2.6 2.6 2.1/ 2.5/ 2.7
2.7 2.7

Drives 1 1 2 2 2
Heads per drive 1 1 1 1 2

Storage capacity 170 K 170 K 340 K 1. 05 M 2.12 M
Sequential files 168 K 168 K 168 K 521 K 1.05 M
Relative files 167 K 167 K 167 K 183 K/ 1,04 M

518 K

Buffer storage (KB) 2 2 4 4 4

Tracks 35 35 35 77 77
Sectors per track 17-21 17-21 17-21 23-29 23-29
Bytes per block 256 256 256 256 256
Free blocks 664 664 1328 4104 8266
Directory and BAM 18 18 18 38/39 38/39

(track)
Directory entries 144 144 144 224 224

Transfer rate (KB/s)
internal 40 40 40 40 40
over ser./IEEE bus 0.4 1.8 1.8 1.8 1.8

Access time (ms)
Track to track 30 30 30 5 5
Average time 360 360 360 125 125

Revolutions/minute 300 300 300 300 300

Overview of the Illarge ll CBM drives

The VIC 1541 disk drive has the smallest storage capacity of
the CBM disks, but it is also the only drive that can be
connected directly to the Commodore 64 and VIC 20 over the
serial bus.

The functions, construct ion, and operation are identical to
those of the CBM 2031 drive. The only difference from the
VIC 1541 is the parallel IEEE bus instead of the serial bus.

319

Anatomy of the 1541 Disk Drive

This results in an increase in the transfer rate to the
computer of a factor of 5. To connect a Commodore 64 or VIC
20, one needs an IEEE interface, as with all other CBM
drives. The storage format of the 2031 is compatible to the
1541; both have l70K per disk. Diskettes can be written with
one device and read with the other. This is true for the
next drive in the line, the CBM 4040. The 4040 is a double
driVe with l70K per drive.

The advantage of a double drive lies not only in the
increased storage capacity, but also in the ability to
transfer data from drive to drive. It is possible to copy
complete programs and files using the existing 1541 command.

OPEN 1,8,15, "Cl:TEST=O:TEST" or

COpy "TEST",DO TO "TEST",Dl

copies the file TEST from drive 0 to drive 1 with the same
name. In this manner one can concatenate several files on
di£ferent drives. The most important capability of double
driv€s is the ability to duplicate entire diskettes. This
is accomplished by a command from the computer; the drive
automatically formats the disk and then makes a track ty
track copy from one drive to the other. The command to do
this is worded:

OPEN 1,8,15, "01=0" or

BACKUP DO TO Dl

The process takes less than 3 minutes on the 4040; during
this time the computer may be used since the disk drive
performs the entire operation by itself.

The two other CBM drives, the CBM 8050 and the CBM 8250
operate in double density (77 tracks). Disks written with
the 1541 or 4040 are not compatible with the 8050/8250.
Programs and data can be copied with the COPY/ALL program,
which transfers from one format to another. This is the
reason these drives have greater storage capacity: 1 MB for
the 8050 and 2 MB for the 8250. The doubled capacity of the
8250 comes about because both sides of the disk are used
(double-sided); it has two reads/write heads per drive. In
order to be able to use the whole capacity for relative
files (see section 3.4), a so-called 'super side-sector' was
introduced, which contains pointers to 127 groups of 6 side
sector blocks each. Through this, a relative file can
(theoretically) hold 23 MB of data. These drives can be
connected to a Commodore 64 or VIC 20 over an IEEE bus, ~-o

that these computers can also access several megabytes.

An additional advantage of the large CBM drives is their
larger buffer storage. It is possible to have more files
open simultaneously than on the VIC 1541. Up to 5 sequential

320

Anatomy of the 1541 Disk Drive

files or 3 relative files may be open at anyone time, as
well as combinations of the two, of course.

with the 8050/8250 format, tracks 38 and 39 are used for the
BAM and directory. The disk name and format marker are in
track 39 sector O.

>:00
>:08
>:10
>:18

26 00 43 00 00 00 43 42
4E 20 38 30 35 30 AD AD
AD AD AD AD AD AD AD AD
30 31 AD 32 43 AD AD AD

&. C ••• CB
M 8050

01 2C

The track/sector pointer to the first BAM block (track 38
sector 0) is in bytes 0 and 1. Byte 2 contains the format
marker 'C'. Bytes 3 through 5 are unused. The disk name is
in 6 to 21, filled with shifted spaces, in our case CBM
8050. Bytes 24 and 25 contain the id '01', while bytes 26
and 27 contain the DOS format 2e.

The BAM no longer occupies just one block, but is dispersed
over track 38; sectors 0 and 3 are used in the 8050, the
8250 used sectors 6 and 9 in addition. Because more sectors
are use per track, the BAM entry for each track has been
enlarged to 5 bytes. The first byte still contains the
number of free sectors per track and the following bytes
contain the bit model of the free and allocated sectors (0 =
sector allocated, 1 = sector free). Here we have the
contents of track 38 sector 0

>:00
>:08
>:10
>:18
>:20
>:28
>:30
> : 38
>:40
>:48
>:50
>:58
>:60
>:68
>:70
>:78
>:80
>:88
>:90
>:98
> :AO
>:A8
>: 80
> :B8
> :CO
> :C8

26 03 43 00 01 33 ID FF
FF FF IF 1D FF FF FF IF
ID FF FF FF IF ID FF FF
FF IF ID FF FF FF IF ID
FF FF FF IF ID FF FF FF
IF ID FF FF FF IF ID FF
FF FF IF ID FF FF FF IF
ID FF FF FF IF ID FF FF
FF IF 10 FF FF FF IF 10
FF FF FF IF In FF FF FF
IF ID FF FF FF IF ID FF
FF FF IF ID FF FF FF IF
10 FF FF FF IF ID FF FF
FF IF ID FF FF FF IF ID
FF FF FF IF ID FF FF FF
IF ID FF FF FF IF ID FF
FF FF IF ID FF FF FF IF
10 FF FF FF IF ID FF FF
FF IF ID FF FF FF IF ID
FF FF FF IF 10 FF FF FF
IF ID FF FF FF IF ID FF
FF FF IF 18 FC F3 EF IF
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 OF
F4 93 46 lA 18 6C FB FF
IF 00 00 00 00 00 00 00

321

Anatomy of the 1541 Disk Drive

>:00 00 00 00 00 00 00 00 00
>:08 05 00 00 40 04 1B FF FF
>:EO FF 07 1B FF FF FF 07 1B
> :E8 FF FF FF 07 1B FF FF FF
>:FO 07 1B FF FF FF 07 1B FF
> :F8 FF F~ 07 1B FF FF FF 07

Bytes 0 and 1 point to the next BAM block, track 38 sector
3. Byte 2 contains the format marker 'e' again. The track
numbers belonging to this BAM section are in bytes 4 and 5:
here tracks 1 through 51. At position 6 we find the 5 byte
entry for each track. The next BAM block is constructed
similarly. The last BAM block always points to the first
directory block: track 39 sector 1.

Four BAM blocks are needed for the 8250: track 38 sector 0
contains the tracks 1 to 51, track 38 sector 3 contains 52
to 100, track 38 sector 6 contains track 101 through 150 and
track 38 sector 9 pertains to tracks 151 to 154.

The directory track, track 39, contains 28 free blocks: up
to 28*8=224 directory entries can be stored, in contrast to
144 f,or the 1541/4040. The construction of the directory is
a1 ike for all formats. The f'ollowing table illustrates the
track/sector layout:

1541 / 4040 8050 / 8250
--
Tracks 1 - 17 0 - 20 1 - 39 0 - 28 sectors

18- 24 0 - 18 40 - 53 0 - 26
25- 30 0 - 17 54 - 64 0 - 24
31- 35 0 - 16 65 - 77 0 - 22

8250 only
78 -116 0 - 28

117 -130 0 - 26
131 -141 0 - 24
142 -154 0 - 22

Blocks 683 20R3 4186
Free blocks 664 2052 4133

322

Anatomy of the 1541 Disk Drive

OTHER BOOKS AVAILABLE:

The Anatomy of the Commodore 64 - is our insider's guide to
your favorite computer. This book is a must for those of you
who want to delve deep into your micro. This 300+ page book
is full of information covering all aspects of the '64.
Includes fully commented listing of the ROMs so you can
investigate the mysteries of the BASIC interpreter,
kernal and operating system. It offers numerous examples of
machine language programming and several samples that make
your programming sessions more enjoyable and useful.

ISBN# 0-916439-00-3 Available now: S19.95

The Anatomy of the 1541 Disk Drive - unravels the mysteriEs
of working the the Commodore 1541 disk drive. This 320+ page
book starts by explaining program, sequential and relative
files. It covers the direct access commands, diskette
structure, DOS operation and utilties. The fully commented
ROM 1 ist ings are presented for the real "hackers". Includes
listings for several useful utilities including BACKUP,
COPY, FILE PROTECTOR, DIRECTORY. This is the authoritive
source for 1541 disk drive information.

ISBN# 0-916439-01-1 Available now: S19.95

Tricks & Tips for the Commodore 64 - presents a collection
of easy-to-use programming techniques and hints. Chapters
cover advanced graphics, easy data entry, enhancements for
advanced BASIC, CP/M, connecting to the outside world and
more. Other tips include sorting', variable dumps, and POKEs
that do tricks. All-in-all a solid set of useful features.

ISBN# 0-916439-03-8 Available June 29th: $19.95

Machine Language Book of the Commodore 64 - is aimed at the
owner who wants to progress beyond BASIC and write faster,
more memory efficient programs in machine language. The book
is specifically geared to the Commodore 64. Learn all of the
6510 instructions as they apply to the '64. Access PCM
routines, I/O, extend BASIC, more. Included are listings of
three full length programs: an ASSEMBLER; a DISASSEMBLER;
and an amazing 6510 SIMULATOR so the reader can ·see"the
operation of the '64.

ISBN# 0-916439-02-X Available now:
Optional program diskette:

OTHER TITLES COMING SOON!!!

323

S14.95
$14.95

FREE CATALOG Ask for a listing of other
AbaCus SOftware for Commodo 64orVlc-20
1III11IIIUTORS
llutllrlblla:

""""'" lBNuwictlAve
AocII~.Lancs
m·,.....

-,
IfIItr.SIrW:at
AYGuilauIMSi
""lCJO.lIeII1um
2-.,441

---147AYenut~
RIIIIII~.FGnce
,."."..

.... ..,..,: : AIIInIII::
DATA BECKER T1Al TRADING CW ELECTRONICS
Merowingerslr:ll P0516 416~ .. 1!oId
4OOO0usseId0rf 343OO~mhult 1IrIsbInII, Queens.
02111312085 476-12304 07.0397-0eD8 * DEALER INQUIRIES INVITED

c..dI~:
raNG r.tCROWARE lTD.

=:r~=~lZ6
514/737-9336

IIIW ZMIIMI:
VlSCOI.lITElECTfIONICS
306-308 CftuFCII Street
PaImerstonNOrth

AVAILABLE AT COMPUTER STORES, OR WRITE:

Abacus _ Software
P.O. BOX 7211 GRAND RAPIDS, MICH. 48510 IIti!III
For postage & handfing, add $2.50 (U.S. and Canada), add $5.00 .1!Ia!J
~; =~c:~e(~1:;~ ~~~e:"~ bl:s~~~ :~)y order

FOR QUICK SERVICE PHONE 616-241-551D

