

running at 5 Mhz, and we verified that the 8087 was operational.
If you ordered the CPU 86/87 without the 8087 chip, but now would
like it installed, you may return the board to CompuPro for an
upgrade. This is the recommended procedure, as it ensures that
the hardware will be working correctly. If you want to install
your own 8087, be aware that you will have to unsolder some
components and solder in some new ones. If you do this badly, it
will void your warranty. Also, even if you do the job neatly,
but it doesn't '\Tork when you're finished, we are going to charge
you to find the problem. Don't expect help over the phone,
either.

For the brave among you, here is the procedure: Carefully
unsolder capacitors C9 and CIO, crystal Xl and inductor L1.
Replace crystal Xl with a 15 MHz crystal. Replace capacitor C9
with a 220 pfd silver mica capacitor. Replace capacitor C10 with
a 120 pfd silver mica capacitor. Replace inductor L1 with a 1 uH
inductor. Carefully plug the math chip into socket U19. Remove
jumper J8. Hope that it works.

Again, we strongly suggest that you return the CPU 86/87 to the
factory for an 8087 upgrade.

*

USING THE MEMORY MANAGER

The memory manager on the CPU 86/87 is a simple 4 bit parallel port
that allows control of the upper four extended address lines (A23-
20) on the S-100 Bus.

The data appearing in the upper four data bi ts of an I/O wri te to
the memory manager's port address will be present on the address
lines at the next CPU cycle. The lower four data bits will be
ignored.

The use of the port seems deceptively simple. In fact, there are
several things to watch out for. The first is that the page
running the code that bumps the memory manager will vanish as soon
as the write occurs. This means that the new page must contain
known code so that the 8086 can continue. How do you get it there?
It's like the chicken. and the egg. The CPU cannot put the code
there itself. However, you can use the DISK1 to read a sector (or
more) there directly, since it can transfer to the full 24 bit
range. Or the MPX-1 can be used to put or move code to the
extended page. The standard MPX-1 ROM code has a function to move
data between extended pages.

Secondly, since the 8086 is pipe-lined machine, the actual write to
the memory manager port may occur after the next several
instructions are fetched. This can cause problems if the 8 or so
bytes following the output instruction are not identical in both
pages. Make sure they are!

9

BRIEF SUMMARY OF RUNNING
THE 8086/80130 WITH VEcroRED IB"lERRUPTS

1) Decide who is going to control your interrupts. You have
the option of using the 80130 in the 8086 board or the 8259s
in the System Support board. Whenever both boards are
present,. the unused controller{s) must be put in a benign
state (all 8 or 16 interrupts masked) since the interrupt
chips come up in undefined states - most likely ready to
interrupt in some obscure manner.

If you use the System Support board as your interrupt
controller it may be easiest to just remove the 80130 chip
from the 8086 board. In this case, do not jumper JO-J7
since the interrupt line drivers (U44) with open inputs will
have active inverted outputs that will activate the
interrupt 1 i ne s.

Using the timers and/or baud rate generator of the 80130
chip to drive the System Support interrupts requires
programming the 80130's interrupt controller into a dormant
state. Here the 8086 board I/O select switch (Switch 3
paddle 2) must be on for software access to the 80130. In
jumpering JO-J7 be careful not to jumper to the 80130's
interrupt output (right side of J5).

Although the following is for using 80130 to control
interrupts, it is for the most part applicable to the 8259s.

2) There are two physical considerations - turn Switch 3 paddle
2 on - again this allows you to select the 80130. Also
jumper the right sides of J5 and J6 together. This connects
the INT output of the 80130 to S-100 bus pin 73 (INT*) and
thus to the INT input of the 8086.

3) Next you have to program the 80130. Read the following
section as it does much to clarify an inherently obtuse
situation. The comments on the 8259 in the System Support
manual are also useful. Note that Initialization Control
Word 2 (ICW2) sets the base address of your vector table.
80H gives a starting address of 200H.

4) Operational Control Word 1 (OCWI) must be given to enable
(unmask) as many of the 8 interrupts as you want. OOH
enables all eight vectored interrupts.

5) As you set up the table, remember the order of the bytes is
low Instruction Pointer, high IP, low Code Segment, high CS.
Don't assume what CS will be - copy it from the processor at
run time.

10

6) After you have received an interrupt, you have to do two
things if you ever want to get another. One thing is, you
have to execute an enable interrupts instruction. The other
is to send out the specific OCW2 to acknowledge to the 80130
that the interrupt has been handled.

USING THE 80130 INTERRUPTS AND INTERVAL TIMERS

The 80130 supplied with the CPU 86/87 board contains no ROM code,
but you can still use the interrupt controller and interval timers
built into the part. The CP/M-86 software supplied by CompuPro for
the CPU 86/87 contains special code to initialize the interrupt
controller to a benign state (all interrupts masked). This
section of the manual assumes that you are familiar with interrupts
and interval timers. If not, we refer you to the Intel Data
Catalog - read the sections on the 8259A and the 8253/54. Also,
the 8086 Family Handbook has an exceptional application note on the
8259A and interrupts in general (it's AP-59). If you happen to
have a CompuPro System Support Manual, much of the data and
concepts are covered there as well. This section is only intended
to give you the raw data about the internals of the 80130, and is
not a tutorial. The following is not a complete description, but
is intended to be as guidelines.

INTERRUPT CONTROLLER IN"I'ERNALS

As mentioned above, this section is not going to attempt to explain
how interrupts work. The interrupt section of the 80130 is very
similar to the 8259A when operating in the 8086 mode. The 80130
accepts two types of command words to set its various operational
modes. Between three and six of these words must be sent to the
chip before it may be used. These are called "Initialization
Command Words" or abbreviated ICWs. Once the initial ICW sequence
is sent, it need not be sent again. After the rcw sequence, two
"Operational Command Words" (OCWs) must be sent to complete the
ini tial programming sequence. OCWs are used during normal
interrupt operation for things such as interrupt masking, end-of
interrupt and reading the interrupt status. OCWs may be sent any
time after the rcws are sent.

NOTE: The following examples assume that the 80130 is addressed at
I/O port locations FFFO through FFFF hex.

Interrupt Initialization

Whenever a command is written to address FFFOH with D4=1, the data
is interpreted by the 80130 as Initialization Command Word 1
(ICW1). ICWl starts an internal initialization sequence during
which the following events automatically occur:

11

a) The edge sense circui ts are reset, which means tha t
following the initialization sequence, an interrupt request
(IR) input must make a low-to-high transition (high-to-low
on the S-100 Bus) to generate an interrupt, until the IR
input is programmed as level sensitive input (which it must
be to meet the S-100 vectored interrupt specs).

b) The interrupt mask register is cleared, meaning that all IR
inputs are enabled.

c) Status read is set to allow reading of the Interrupt Request
Register (IRR).

d) The Interrupt Acknowledge ci rcui try is reset and prepared
for the first INTA cycle.

ICVs 1 and 2

Issuing ICW1, ICW2 and ICW4 is the minimum amount of programming
needed by the 80130 priority interrupt controller (PIC). ICW1
contains bits that indicate whether the 80130 can expect to see
ICW3, ICW5 and ICW6 sent or not. Once ICW1 has been written, the
following writes to I/O address FFF2H must be the sequence of ICW2,
ICW3, ICW4, ICW5 and ICW6 (unless ICW3, ICW5 and ICW6 are not
needed, as specified in ICW1). The 80130 is ready to accept inter
rupts after the last ICW is sent. Note that ICW3, ICW5 and ICW6
are never sent in the implementation of the 80130 on the CPU 86/87.

ICW2 contains the bits T7-3 of the vector supplied to the 8086
during the second lNTA cycle. The remaining bits (T2-0) are deter
mined by the interrupt level being acknowledged and are supplied
automatically by the 80130.

ICWl:

ICW1 is specified by writing to I/O port address FFFOH with D4 set
to "1". The meaning of the bits of ICW1 are as follows:

Bits 7 and 6: Unused and may be any value.

Bit 5: Should always be set to "0". This tells the 80130
not to expect lCW6.

Bit 4: Should always be "I". lndentifies lCWl.

Bits 3 and 2: These bits should always be sent with bit 3 =
"1" and bi t 2 = "0". This tells the 80130 that all the IR
inputs are level sensitive (to be compatible with the S-100
bus spec), and not to expect ICW5.

12

Bit 1: Should always be set to "I". This tells the 80130
that there are no other slave interrupt controllers on the
board.

Bit 0: Should always be "1".

These really don't leave you leave you much choice as to what value
to send for ICWl, does it? The value to send is: 1BH.

ICW2:

ICW2 is specified by writing to I/O port address FFF2H immediately
after writing ICH1 above. The meaning of the bits in ICW2 are as
follows:

Bits 7 through 3: These bits specify the five most signifi
cant bits of the vector byte supplied by the 80130 to the CPU
during an INTA cycle. Bit 7 is the most significant and Bit 3
is the least significant. These are equivalent to bits T7-3
as referred to in the 8259A and 8086 documentation.

In brief, here is how the bits specify an address:

The 8086 responds to interrupts by sending out two INTA cycles. The
first is a "dummy" cycle, but one byte of vector information is
read by the 8086 during the second INTA cycle. Bits T7-3 are sent
during this time on D7-3. T2-0 (D2-0) are dependent upon the IR
level being acknowledged, which the 80130 supplies.

The 8086 takes this byte and multiplies it by 4 (shifts left twice)
giving a 10 bit ''vector'' with the two least significant bits = "0".
This vector is used to point to a memory location, with all higher
address bits = "0". Since the lower two bits are "0", this address
will point to anyone of 256 four byte blocks starting at physical
address O. The 8086 picks up IP and CS bytes from these four
locations and branches to the interrupt service routine.

Hence, T7-T3 may be thought of as corresponding to address bits A9-
5. Address bits A4-2 are supplied by the 80130 and Al and AO
always = "0".

Bits 2 through 0: Unused and may be any value.

ICW3:

IeW3 is not used 1n the CPU 86/87 configuration for the 80130.

ICW4:

ICW4 is always required by the 80110 and is used to select between
the Special Fully Nested and Fully Nested modes. For a complete
description of what these modes are, see the 8259A literature

13

referenced above. The 80130 as implemented on the CPU 86/87 will
normally use the fully nested mode.

ICW4 is written to I/O address FFF2H immediately fol.lowing ICW2
above. The meaning of the various bits of ICW4 are as follows:

Bits 7 through 5: Unused, but should be set to "0".

Bit 4: Used to select between the Special Fully Nested Mode
and the Fully Nested Mode. When set to "1", selects the
Special Fully Nested Mode. When set to "a", selects the
Fully Nested Mode. Normal operation of the 80130 on the CPU
86/87 requires the Fully Nested Mode, so set this bit to
"0".

Bit 3: Should always be set to "1". (Selects the buffered
mode, but is actually ignored by the 80130.)

Bit 2: Should always be set to "1". (Selects the 80130 as
the master, but is actually ignored by the 80130.)

Bit 1: Should always be set to "0". (Selects the normal end
of interrupt mode, but is actually ignored by the 80130.)

Bit 0: Should always be set to "1". (Selects the 8086
mode, but is actually ignored by the 80130.)

Note: The above bits that are "ignored" by the 80130 are "hard
wired" internally to select the modes as described above. However,
they should always be written as described.

ICW5 and ICW6

ICW5 and ICW6 are not used 1n the CPU 86/87 configuration of the
80130.

OCWI

OCWI is used to set and clear the interrupt mask bits in the
Interrupt Mask Register. When a bit is set to "1", it masks or
inhibits its respective IR input. When a bit is set to "0", that
IR input is unmasked or enabled.

OCW2 is written to I/O address FFF2H any time after the ICWs are
sent. The mask bit to IR input correlation is as follows:

Bit 7 : "1" masks IR7, "0" enables IR7.
Bit 6: "1" masks IR6, "0" enables IR6.
Bit 5: "1" masks IR5, "0" enables IRS.
Bit 4: "1" masks IR4, "0" enables IR4.
Bit 3: "1" masks IR3, "0" enables IR3.
Bit 2: "1" masks IR2, "0" enables IR2.
Bit 1 : "1" masks IRl, "0" enables IRI.
Bit 0: "1" masks IRa, "0" enables IRa.

14

Masking an IR channel does not affect other channels in operation.

OCW2

Use OeW2 to 1ssue end of interrupt (EOI) commands to the 80130.
The 80130 operates only in the specific EOI mode, which means that
each interrupt's service rout ine must send an EOI command to the
80130 when that routine is completed. The EOI sent must be the
specific Eor for that interrupt level.

oeW2 is written to I/O address FFFOH any time after the ICWs are
sent. The meaning of the bits in oeW2 are as follows:

Bits 7 through 5: Should always be sent with bit 7 = "0",
bit 6 = "1" and bit 5 = "1". This selects the specific Eor
mode. The 80130 actually ignores these bits, but they should
be sent as described anyway.

Bit s 4 and 3: Bot h bit s s h 0 u 1 d a 1 way s be set to" 0". Th i s
se lects OeW2.

Bits 2 through 0: These bits contain a binary code that
indicates which IR level gets the EOI as shown in the table
below:

Bit 2 Bit 1 Bit 0 IR level that gets EOI

0 0 0 IRQ
0 0 1 IRI
0 1 0 IR2
Q 1 1 IR3
1 0 0 IR4
1 0 1 IRS
1 1 0 IR6
1 1 1 IR7

Note: One point that causes a lot of confusion for people writing
interrupt service routines is the need for sending an EOI. Without
the EOI, that IR level and all those of a lower priority will never
be interrupted again.

OCW3

oeW3 1S used to read two of the registers internal to the 80130.
Those registers are the Interrupt Request Register (IRR) and the
In-Service Register (ISR).

The IRR contains 8 bits which correspond to the IR inputs that have
not yet been serviced. It is essentially an image of the IR inputs
with bit 7 corresponding to IR7 and bit 0 corresponding to IRO.
The bits in the register are "1" when an interrupt is pending.

15

The ISR register contains information as to which interrupt is
being serviced. Bit 7 corresponds to IR7 and bit 0 corresponds to
IRO. A bit is "1" if that level is "in-service".

Reading the IRR or ISR is performed by sending an OeW3 that selects
one of the two registers for reading. Any I/O reads following OeW3
made to I/O address FFFOH will then yield the appropriate
register's data. Note that the 80130 "remembers" the last register
requested, so subsequent reads of the same register do not require
oeW3 to be sent again.

oeW3 is sent by writing to I/O address FFFOH. The meaning of the
bits of oeW3 is shown below:

Bits 7 through 5: Unused. ean be any value.

Bits 4 and 3: Bit 4 should always be sent as "0" and bit 3
should always be sent as "1". This selects OCW3.

Bits 2 and 1: Unused. Can be any value.

Bit 0: Used to select between the IRR and ISR. When set to
"0" selects the IRR for reading. When set to "1", selects
the ISR for read ing.

Reading Interrupt Mask Register

The interrupt mask register may be read at any time by performing
an I/O read to address FFF2H.

80130 Interrupt Inputs

The 80130 interrupt inputs are hard-wired to the S-100 bus vectored
interrupt lines as shown below:

S-100 VI7*)-----------) 80130 IR7
S-100 VI6*)-----------) 80130 IR6
S-100 VI5*)-----------) 80130 IR5
S-100 VI4*)-----------) 80130 IR4
S-100 VI3*)-----------) 80130 IR3
S-100 VI2*)-----------) 80130 IR2
S-100 VI1*)-----------) 80130 IR1
S-100 VIO*)-----------) 80130 IRO

80130 Interrupt Outputs

For a complete discussion of the 80130 interrupt outputs, see the
section of this manual entitled "Jumpers" in the "Switch Settings
and Option Selection" section.

That completes the descript ion of the 80130 interrupt controller.
The next section describes the internals of the interval timer
section of the 80130.

16

COURTER TIMER INTERNALS

The interval timer section of the 80130 is basically a "hard-wired"
8254 (which is very similar to the 8253). This section is not
intended to tell you everything there is to know about these parts
or interval timers in general, but will just tell you about the
80130 implementation of them. For more information, refer to the
8254 and 8253 data sheets in the Intel Component catalog. The 8253
data sheet is also reprinted in the System Support 1 manual, if you
happen to have a copy.

Description of Timer Hodes

Timer 0 is hard-wired to the Rate Generator mode (Mode 2).
Upon loading the last byte of Timer O's count register (CR),
the timer will start counting down. When it reaches zero, the
SYSTICK output will go low for one clock cycle. The CR will
automatically be reloaded and counting will start again.

Timer 1 Timer 1 is hard-wired to the Interrupt on Terminal
Count mode (Mode 0). The DELAY output will be set low upon
initialization and will remain low until the CR is loaded.
The timer will then start counting down, and when it reaches
zero the DELAY output will go high and will remain high until
the CR is reloaded.

Timer 2 is hard-wired to the Square Wave Generator mode (Mode
3). After the CR is loaded the BAUD output will contain a
square wave at a frequency dependent on the count value. The
output will be low for half the value and high for the other
half.

Sending Data to Timers

Loading the CR of each timer consists of the following sequence:

1) Write the timer initialization byte to the timer control
port (FFFEH).

2) Write the LSB of the count value to the appropriate timer
data port.

3) Write the MSB of the count value to the timer data port.
Counting then starts.

There are three timer initialization bytes, one for each timer.
The timer initialization byte is always written to I/O address
FFFEH (the timer control port). The three timer initialization
bytes are as follows:

17

Timer 0 = 00111010
Timer 1 = 01110000
Timer 2 = 10110110

The count values are sent to each timer's data port. The LSB is
always sent first, followed by the MSB. It is not possible to
write the count value in a single 16 bit operation. The timer's
data port I/O addresses are as follows:

Reading Count Value

Timer 0 = FFF8H
Timer 1 = FFFAH
Timer 2 = FFFCH

To read the current value of any of the count registers, it is
necessary to send the timer a special "latch count" command. This
does not stop the timer from counting, but stores the current count
value in a latch so that the CPU doesn't read the counter data just
as it's changing (which could result in erroneous data).

Each timer has its own "latch count" command byte that is sent to
the timer control port (FFFEH). The commands are:

Latch Count Command for Timer 0 = 00000000
Latch Count Command for Timer 1 = 01000000
Latch Count Command for Timer 2 = 10000000

After the latch count command is sent to the timer control port,
the latched data may be read from the appropriate timer's data port
(see above for addresses). The LSB is always read first, followed
by the MSB. After both bytes are rea"d, the latch holding the data
will be unlatched and begin tracking the count registers again.

18

THEORY OF OPERATION

This section of the manual will explain, in general, how the
circuitry on the CPU 86/87 works. In the following discussion, it
will be helpful to refer to the schematic diagrams contained in the
appendix of this manual.

The CPU 86/87 is based on the Intel 8086 cpu. The clock for the
cpu is generated by the 8284A clock generator IC (U40). It uses an
external oscillator consisting of two inverters, crystal Xl,
capacitor C9 and inductor LI. The crystal is a third overtone
type, and is three times the desired processor frequency. For
example, to run the CPU at 8 MHz, a 24 MHz crystal would be used.
If the crystal value is changed, the value of C9 must also be
changed.

The clock output of the 8284A is sent unbuffered to the 8086, 8087
and 80130 to keep the rise and fall times within spec. Terminating
resistors R7 and R18 minimize undershoot and reflections.
Inverters are used to provide the CLK* and CLK signals for the rest
of the board. The CLK signal is buffered by a Tri-statem buffer to
form bus d. The Tri-state enable is driven by the inverting
output of flip flop U41b. The D and CLR inputs to this flip-flop
are driven by the newly defined bus line ~DSB* on pin 21 of the S-
100 bus. This line will be driven low by a temporary master coin
cident with the CDSB* signal (which is just after the rising edge
of the clock). This will immediately cause the bus clock to be
Tri-stated. Pull-up Rl7 makes sure that it floats to the high
state, but the temporary master should be driving the clock now
anyway. When the temporary master relinquishes the bus, it will
drive CDSB* high and float its clock high. Flip-flop U41b will
then be free to enable the CPU 86/87's clock, but not until after
the next rising edge of it. This ensures that there are no slices
on the clock line.

The 8086 (U20) and the 8087 (U19) have most of their common pins
wired together. The exceptions are the RQ/GT* lines. When there
is no 8087 installed, J8 connects the RQ/GT* line to the 8086
directly. When the 8087 is installed, J8 is removed and the RQ/GT*
line goes through the 8087 and then to the 8086. This ensures that
DMA requests are handled correctly if the 8087 is in control of the
bus.

The 8288 system controller IC (U36) is used to generate the read
and write strobes, the ALE signal, and the direction and data
buffer control signals DT/R* and DEN. ALE is used to latch the
address information from the CPU into the address latches U21,32
and 45. These also provide the buffering for the S-100 bus address
lines. ALE is also used by U15b to generate the pSYNC signal. The
pSTVAL* signal is a function of pSYNC and CLK*.

The MRDC*, IORC* and INTA* signals are ANDed by a section of U38 to
form a generalized read strobe, which eventually becomes pDBIN.
Similarly, the MWTC* and IOWC* signals are ANDed by a section of

19

U2S to form a generalized write strobe, which eventually becomes
pWR*.

All these "p" signals are buffered by U37 and go out to the bus.

The S-100 status lines are generated by a 74S288 bipolar PROM. The
three status lines from the CPU (SO*-S2*) are latched by USI. The
outputs of USI go to 3 of the address inputs of the PROM. The PROM
then decodes ,the proper status and puts it out on its data output
lines 01-7. Data output 08 is used to inhibit generation of a wait
state by flip-flop U6b. Wait states will be allowed only if the
right cycle type is occurring (determined by the two wait state
switches connected to the other two address inputs to the PROM).

The S-100 status lines are buffered by US2.

The sXTRQ* line is generated by the OR of the latched BHE* signal
LBHE* and AD. If LBHE* and AO are low, and it's not an interrupt
acknowledge cycl~, a sixteen request will be generated. If SIXTN*
goes low, indicating that a 16 bit transfer can occur, the output
of U3S will go high, causing the ONECYCLE signal to be true. This
signal tells the CPU to complete the 16 bit transfer at full speed.
If the SIXTN* signal stays high, U3S's output will be low causing
the ONE CYCLE signal to be false. This starts a process whereby the
CPU 86/87 will halt the 8086 and read or write two bytes serially.
This is performed by the state machine consisting of U12, Ul3 and
Ul4, which generates the signals STBINH, FORCE, and FLIP. These
are used to sequence the logic on the board to run the two bus
cycles.

The data bus is buffered, multiplexed and latched (depending on
what is required) by U16, 47, 48 and 49. The control of these
buffers and latches is performed by a 2S6x4 bipolar PROM (USO).
The direction inputs of U47 and 49 (the main data bus buffers) are
connected directly to the DT/R* line from the 8288. A section of
U3S is used to disable the PROM entirely, which gives us a few more
input terms. All buffers will be disabled when DODSB*, or ACK*
(the signal specifying that an access to the 80130 is occurring)
is true, and DEN is false. The rest of the inputs to the PROM
control when the various buffers are enabled. The LAO, LBHE* and
DT/R* signals control the basic 16 bit cycles, while the FLIP and
TWOCYCLE signals control the buffers during a byte serial transfer.
The POJ* signal disables the buffers if the power-on-jump signal is
active. The INTAK signal routes the byte data correctly during
interrupt acknowledge cycles.

The 80130 interface is mostly straight-forward decoding logic, with
U9, UI0 and part of U8 providing the IOCS* signal and U7 and U8
providing the MEMCS* signal. These are the I/O chip select and
Memory chip select signals, respectively. The 80130 address/data
and status lines connect to the equivalent 8086 lines similar to
the 8087. The ACK* output signifies that an access to the 80130 is
occurring.

20

The memory manager circuitry is merely a 4 bit I/O port whose
address is decoded by U33 and U22. U46 is a 4 bit latch whose
output passes through to U45 which keeps the address from appearing
on the bus until the next ALE and also buffers it.

The S-100 bus uses a HOLD/HLDA protocol for DMA requests, but the
8086/87 use a RQ/GT protocol when in their max mode. U4, US, and
U6a provide the HOLD/HLDA to RQ/GT* conversion. When HOLD* is
asserted, a pulse one clock cycle wide is issued on the RQGT* line.
When a GT pulse is issued by the CPU on RQGT*, U6a will be set low,
causing pHLDA to be asserted. When HOLD* goes away another pulse
will be issued on RQGT* causing the processor to assume control of
the bus again. One clock cycle after the last pulse, pHLDA goes
false.

Three sections of U56, crystal X2 (4 MHz) and U41a provide a 2 MHz
clock for the S-100 CLOCK signal on pin 49. A separate oscillator
was used so that CLOCK will always be 2 MHz independent of the CPU
frequency.

The power fai 1 circ ui t causes a POC* to be issued upon the ris ing
edge of PWRFAIL*. This insures that the system will recover just
as if the power had come on for the first time, and prevents
problems that might occur if the power dips for a short period
causing PWRFAIL* to be asserted, but the power doesn't really stop.

21

PARTS LIST

INTEGRATED CIRCUIT8 . U40 8284A-1 CAPACITOR8
U41 74L874

U1-U3 7805 U42 7416 C1-C6 10. uF
U4 74L874 U43 81L896/98 C7 .01 uF
U5 74L802 U44 7416 C8 18 uF
U6 74L874 U45 74L8373 C9 8ilver Mica
U7 25L82521 U46 74L8175 31 By-pass
U8 74L8266 U47 74L8245
U9 25L82521 U48 74L8244 DIODE
U10 74L8266 U49 74L8245
U11 74L8R86 U50 748287 (G193) D1 1N914
U12 74L874 U51 74L875
U13 74L8175 U52 74L8244 TRAN8I8TOR
U14 74L874 U53 748288 (G192)
U15 74L874 U54 74L874 Q1 2N3904
U16 74L8373 U55 74L8125A
U17 81L896/98 U56 74F04 8WITCHE8
U18 80130 ROM-less
U19 8087 OPTIONAL RE8I8TOR8 81-82 10 position
U20 8086 83 8 position
U21 74L8373 R1-R4 1.5K Ohm 84-85 10 position
U22 25L82521 R5 4.7K Ohm
U23 74L832 R6 10K Ohm JUMPER8
U24 74L804 R7 18 Ohm
U25 74L808 R8 560 Ohm JO-J7 8x2 position
U26 74L832 R9-R10 10K Ohm J8 2 position
U27 74L804 R11 270 Ohm
U28 74L808 - R12 2.2K Ohm
U29 74L802 R13 2.7K Ohm
U30 7416 R14-R16 1K Ohm
U31 81L896/98 R17 1.5K Ohm
U32 74L8373 R18 18 Ohm
U33 74L830 8Rl-8R5 4.7 Ohm or
U34 74L8125A 5.1K Ohm
U35 74L810 8R6 1.5K Ohm
U36 8288 8R7 4.7 Ohm or
U37 74L8367A 5.1K Ohm
U38 74L811 8R8-8R9 1.5K Ohm
U39 74L8125A

22

N
W

COMPONENT LAYOUT

2 I 1

tl+
5V PAGE 1 .OF 9

+5 40

h Vee 35 SRI
RQ/GTl A19 ~ A19

33 A18 36 A18
r--- MN/MX A17 37 :> A17
~ GND A16 38) A16

D I~ A15 39) AD15 D
GND A14 2) AD14

~
A13 3 :> AD13 5 3 6- 17
A12 4 :> AD12 12, U NMI 5 SR6 All :> ADl1 32 6 RD*~ RD A10 > AD10

~
A9 7 :> AD9

73 1 U30 2 18 INTR A8 8 > AD8 9 r-- A7
10

) AD7
U20 A6 :> AD6

8086 AS 11) ADS R7 19 12 PRClK '- ClK A4 > AD4 , vv ... 13
31 A3) AD3

RQ/GT0 A2 14
) AD2 15

RESET) 21 RESET
Al

16
) ADI

A0 > AD0
C READY~

22 READY S2 28 :> S2* C
24 Sl 27 > Sl* QS1 26 S0) S0* 25

QS0 BHE 34 :> BHE*
TEST

23 R6
..A. A. A.

vvvl
23 _

r-- BUSY 19 *-- elK A19
----.ll RESET A18

A17 37
22

READY A16 38

24 AD15 39
QS1 AD14 2

25
QS0 AD13 3

B AD12 4 B
AD11 5
AD10 6

31
RQ/GT0 AD9 7

AD8 8
I AD7 9 U19 J8 AD6 10

RQGT*~ r 8087 ADS 11
l"-I-- SRI AD4 12 33

RQ/GTl AD3 13
+5 AD2 14

L.! AD1 15

Vee AD0 16

52 28
1 51 27

r--- GND
50 26 A A

4~ BHE 34
GND

-:: INT ~) 87INT -
CPU 86/87 1868 ©1982

COMPUPRO

2 I 1

24

o

c

8

A

2

PAGE 2 OF 9

'" 9 A [3 11 ~43 0 AD15 17 (007)
AD14 S 8 12 93 016 (006)

3 \.. 7 13 92 015 (005)
ADI ~ 6 74lS245 14

"'~-I--I-~"'-'-------------I--f-~"-----~ 91 014 (004) AD12 (5 15
Mll(~~~~~~-----------~~~~~---~4~ ~9 16 42 013 (003) 0
AD10 (3 ~ 17 41 012 (OD2)

AD9.(2 A~[3 18 94 DII (OD1)
AD8" - ~ DI0 (OD0)

~6: FLIP
U29 5

STB INH 11 8 13 6 154 17 2 1718 3 4 7 1413 8

D DOD D D D D
G

)1
U16

74LS373 ~
QQQQQQQQ ~
16 19 2 5 6 15 12 9

U48
p:..

74lS244 ~~
'-r-l-~-r--r-r-f--r..J

9 12 7 14 5 16 3 18

DIR

AD7 ')--IIJ-If--t.--f--+--+-i-if--_t--_9--f-A... B 11 9
AD6 ('>----41t-l~-I--4-~-I---I-~8~ 12 40
AD5 ('>-_-41 -4--+--+-_+_--+-........;.7-1 13 39

(6 U47 14
AD4 (38 5 15
AD3 ('>----.... -+--+--+---+-----=4-1 74LS245 16 89
AD2 "')-----..... -+--+---+----.;-1 88

.... 3 17 ADI ("')------~-+---+-----=-I 35
2 A B 18

AD0 /r--------~.--+-~~_~~~~---------~~--r_~-_r~36

DIR

-

D07 (ED7)
D06 (ED6)
005 (ED5)
D04 (ED4)
003 (ED3)
002 (ED2)
DOl (EDl)
000 (£00)

+5 745287 +5

~ SR8 ~~
1 A7 04 11 ~.

POJ* '">-I---~ A6, ~
INTAK (2 A5 03 ~10 (>----4.
DT /R* < 3 A4 9

~ 4 02~-r--------~------------------T_-~~--~.
LA0 (A3 U50 ~12 ~

LBHE* (7 A2 GI9301r~~-----------------------~~-~<>___:>-
FLIP 6 Al +5

TWOCYCLE 5 5 A0 ,j~
E2 E1 ! ~4?13

Y5R8

DODSB* 23 >---Cl~ __ -...;.9--4~

DEN >--_1~0-1

11 ACK* />--~-I

U3SY

CPU 86/87

COMPUPRO

1868

2

©1982

25

VCC
J..2. CEN ALE ~> ALE

2 DEN~>DEN
PRCLK)---L ClK DT/R~>DT/R*

-11 :\.
U36 IOWC ~/ IOWC*

8288 MWTC ~> MWTC*
INTA ~> INTA*

S2*)---1ll S2 MRDC ~> MRDC*

51 * 3 51 IORC 13) IORC*
lOB j-:

l__e---,

50*

10

1

c

8

A

o

A

SIXTN* 6

ST8*

CLEAR*

CPU 86/87
COMPUPRO

2

6

13

ACK* >--~

+5

4
PR 5 12

Q

U14a

1868

2

1

PAGE 3 OF 9

o
12

... 3 __ ;> ONECYCLE

+5

10

PR Q 9
0

U14b

A

©1982

1

26

27

D

c

B

A

2 1

74LS175 74LS373 PAGE 5 OF 9
AD15 ,->--_143-;D . Qt-21_5-_18

3
--1 D

AD14 <. D
AD13 (12 U46 Q 10 4 D

D Q 7 D
AD12 (>--___ 50004D Q 7 D

, A

19 I Q 2 64 A23

Q 5 63 A22
Q 6----i62 A21
Q 61 A20

CLEAR*
1 9 U45

~~~ (;:::::::::::::::~l ~~ ~ ~ ~i-6 --I~I~ ~~~ 
All (>-____ +-__ ~13~ 0 Q 12 17 A17 

1\16 ( 14 0 Q 15 16 A16 
, ~A~~~ 

111 1 
--~ 

74LS373 

ADI5'- 18 , 3 D 19 32 A15 Q 2 
ADI4'- 17 D 
AD13 <. 4 D 

Q 16 86 A14 
Q 5 85 A13 

AD12 (" 2 (>------+--t-+-~14~ D U 1 
ADll 7 D 
AD10 (>------+--+--t-~13-t D 

Q 15 33 A12 
Q 6 37 All 

AD9 ~>------+--t-+-";"8~ D 
Q 12 87 A10 
Q 34 A9 

AD8 >~----+--+-+-~ DA 
9 Q ~+_+-+-+-+--t-~.--------------t84 A8 

IOWC*~6 ~Jl"""I-----Il 
4 U23 2 18 5 15 6 14 9 11 ~>A2 

l~ 
19"" 

.... EO 
U22 

25LS2521 
EIpl. U33 

: "1.13 

2 1 12 4 11 5 6 3 

.fff{Y{i{:R5 
PORT ADDR. \~\~\~V\~¥\~~ 

SELECT 54 Uiiiii£ 
74LS373 ~ 

~~::;41 ~ AI' 

-..--) Al 

AD7 ,,>--_____ -+-+-1_8~ D Q .-1_9 ---------....... +_+--If-+-+-+-+_---I83 

AD6 (~------+-+-I...::~-I D Q ~6 82 
AD5 ~ 4 D Q 5 29 
AD4 " D Q 30 
AD3 <: 14 D U32 Q 15 31 

AD2 '" 7 D Q 6 81 
ADI ( 8 D Q 9 8 

AD0 ~ 13 D A Q 12 79 

Jll ~}1 ) LA0 ~:> A0 
ALE '->----wl-t--~ 2 

, Ull 3 9 U34~8_~ 

CPU 86/87 

COMPUPRO 

1868 

2 

FLIP I - J1~ 

.+5 
~ 
~ R3 

©1982 ~ 9 
ADSB* 22 ">--...... --1 U24 ~ 8 

1 

28 

A7 
A6 
A5 
A4 

A3 
A2 
Al 
A0 

D 

c 

B 

A 



Al * ,---";;'=....1 

CPU 86/87 

COMPUPRO 

2 

1868 ©1982 

29 

+5 

10 

....",..._-.:.9 l~> STB* 

15 

7 

1 

) AD12 

) ADll 

) AD10 



2 1 

+5 +5 PAGE 7 OF 9 
R13 

10 
PR R12 POC* 9 

Q + 

- 0, 0 -= --- SLAVE ::-ClR ClR* 
13 

RESET* 
+5 

L1 +5 9 

13 
F/C 

U40 
R9 

7 AEN2 RES 11 -
ClK 8 ~ PRClK 

8284A RI8 
12 14 EFI ~ ClK C Xl 17 

C Xl 16 

I C9 RESET <: 10 RESET X2 

-

30 



D 

C 

B 

A 

2 

MEMORY 
ENABLE SRI 

19 

A23 
3 EI EO 

A22 11 

A21 17 

A20 5 

15 
U7 

A19 
7 25L52521 

Ala 

A17 13 

A16 9 

-= 
a 

A5 11 

A6 6 

A7 13 

Aa 
4 

A9 15 

A10 
2 

All 
17 

CPU 86/87 
COMPUPRO 

25L52521 

U9 

186B 

2 

+5 PAGE 8 OF 9 

Rl 

11 U24 10 
~ MEMes* D 

51 

C 

74L5266 +5 

52 B 

--
A 

©1982 

1 

31 



2 

PAGE 9 OF 9 
+5 ,~~ 

~/ 
81lS96 

39 VCC 37 3 U43 
AD15 AD15 IR7 VI7* 

AD14 2 AD14 IR6 0 
36 17 VI6* 0 

ADl3 3 AD13 IR5 38 5 
VI5* 

AD12 4 °ADI2 IR4 34 15 
VI4* 

AD11 
5 

ADll IR3 
33 7 

AD10 6 AD10 IR2 32 13 VI2* 
7 31 9 

VIl* AD9 AD9 IR1 

AD8 AD8 IR0 3 11 VI0* U18 
AD7 AD7 

80130 24 
AD6 AD6 ill NC 

ADS 11 ADS '::' 

AD4 12 AD4 SR4 
C 

AD3 13 AD3 ACK 25 ) ACK* 
C 

AD2 14 AD2 lOCS 18 IOCS* 

AD1 15 AD1 MEMCS 17 MEMCS* 

AD0 16 AD0 BHE 38 BHE* 
23 SYSTICK S2 28 S2* 
21 BAUD S1 27 SI* C) 22 DELAY S0 

26 
S0* - .-.. -... 

29 INT ClK 19 ClK 

8 
8 

87INT J7 o---fIT> 11 VI7* 
J6 o----rm> VI6* 

3 J 5 <>----II:> VI5* 
10 J4 0---[[> VI4* 

J 3 o-----CZ> VI3* 
8 J2 0--{]> VI2* 

Jlo--1]> Vll* 
J0 o---£:L> VI0* 

A A 

73 INT* 

CPU 86/87 1868 ©1982 

COMPUPRO 

~ 0 

32 



CPU 86/87 

(cimpuPro® 
A GODBOUT COMPANY 

3506 Breakwater Court, Hayward, CA 94545 


