
•
UNISYS CTOS™

Programming
Guide
Volume I
General Programming Topics

3.2 BTOS II
9.10 CTOS
2.4 CTOSNM
3.0 CTOS/XE
12.0 Standard Software

Priced item

March 1990
Distribution code SA

Printed in USA
09-02392

• UNISYS CTOS®
Programming
Guide

Volume I
General Programming Topics ·

Copyright © 1991 Unisys Corporation
All Rights Reserved
Unisys is a trademark of Unisys Corporation

CTOS 13.3
CTOS II 3.3
CTOS/XE 3.0/3.1
Priced Item

June 1991
Printed in USA

43574490-110

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the names,
places, and/or events with the names of any individual, living or otherwise, or that of any group or
association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and conditions of
a duly executed Program Product license or Agreement to purchase or lease equipment. The only
warranties made by Unisys, if any, with respect to the products described in this document are set forth
in such license or Agreement. Unisys cannot accept any financial or other responsibility that may be
the result of your use of the information or software material, including direct, indirect, special or
consequential damages.

You should be careful to ensure that the use of this information and/or software material complies with
the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes andtor additions.

Convergent, Convergent Technologies, CTOS, and NGEN are registered trademarks of Convergent
Technologies, Inc.

Art Designer, AutoBoot, AWS, Chart Designer, ClusterCard, ClusterShare, Context Manager, Context
Manager!VM, CTAM, CT-DBMS, CT-MAIL, CT-Net, CTOS!VM, CWS, Document Designer, Generic
Print System, Image Designer, IWS, Network PC, PC Emulator, Phone Memo Manager, Print Manager,
Series 186, Series 286, Series 386, Series 286i, Series 386i, Shared Resource Processor, Solution
Designer, SRP, SuperGen, TeleCluster, The Operator, Voice/Data Services, Voice Processor, and
X-Bus are trademarks of Convergent Technologies, Inc.

Intel is a registered trademark of Intel Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

•
UNISYS Product Information

Announcement
• New Release 0 Revision 0 Update 0 New Mail Code

CTOSTM Programming Gulde: Volume I, General Programming Topics
Volume II, Extended System Services and Libraries

This Product Information Announcement announces the release and availability of the CTOS
Programming Guide, Volume I: 09-02392, Volume II: 09-02393, dated April 1990.
Information in this document is relative to BTOS 113.2, CTOS 9.10, CTOSNM 2.4, CTOS/XE
3.0, and Standard Software 12.0.

This Programming Guide describes techniques for effective programming in the CTOS
environment. It concentrates on Unisys-specific hardware and system software programming.
Both guides include specific programming examples. When ordered as a set, the
Programming Guide includes a floppy disk containing the examples.

Volume I, General Programming Topics, provides an overview of programming in the Unisys
CTOS/BTOS environment and includes specific sections on color programming, the
Installation Manager, synchronous data communication, and writing distributed system
services for the XE-530. Volume 11, Extended System Services and Libraries, describes the
use of system serivce procedures that are not part of the operating system but are distributed
with it. Topics include Mouse Services, Voice/Data (Telephone) Services, Performance
Statistics Services, Queue Manager, Spooler, and the writing of asynchronous system
services using Async.lib.

You may order copies of this newly released Programming Guide as follows:

4120 5394-800 - Programming Guide Vols. I and II with binders and slipcases
09-02392 - Programming Guide Volume I only 02392
09-02393 - Programming Guide Volume II only 02393

To order copies, contact your branch
representative or:

Unisys Corporation, Corporate Software
and Publications Operations

13250 Haggerty Road
Plymouth, Michigan 48170

CTOS is a trademark of Convergent, Inc

Please address all technical communication
relative to this Programming Guide to:

Unisys Corporation
Multimedia Product Information
2700 N. First St.
P.O. Box 6685
San Jose, CA 9515~685

Announcement only:
SA

Announcement and attachments: System: CTOS
Release: BTOS II 3.2, CTOS

9.10, CTOSNM 2.4,
CTOS/XE 3.0,
Standard
Software 12.0
April 1990

Pan Number: 09-02392

Page Status

Page Issue

Volume I
i through xviii 6/91
1-1through1-17 6/91
1-18 Blank
2-1 through 2-13 Original
2-14 Blank
3-1 through 3-46 6/91
4-1 through 4-18 Original
5-:-1 through 5-79 6/91
5...:80 Blank
6-1 through 6-9 Original
6-10 Blank
7-1 through 7-20 Original
8-1 through 8-13 Original
8-14 Blank
9-1 through 9-20 Original
1 0-1 through 10-1 o Original
lndex-1 through lndex-22 6/91

Volume II
i-xvi 6/91
1-1 through 1-30 Original
2-1 through 2-30 Original
3-1 through 3-15 Original
3-16 Blank
4-1 through 4-104 6/91
5-1 through 5-19 6/91
5-20 Blank
6-1 through 6-62 Original
7-1 through 7-58 6/91
8-1 through 8-28 6/91
lndex-1 through lndex-22 6/91

6/91 iii

Contents

About This Manual
What Is the CTOS Programming Guide? , xv
What's New in This Update . xvi
Who Should Use This Guide . xvi
Structure of This Guide . xvi
Related Documentation. xvii

1 The CTOS Programming Environment

6191

Introduction . 1-1
Distributed Client-Server Computing: The CTOS Cluster 1-1

Tools Available to the CTOS Programmer 1-2
An Overview of CTOS System Software . 1-3
General Steps in Writing a CTOS Program 1-5

Writing Source Code . 1-5
Co1npiling.. 1-6
Linking . 1-6

Running the Program . 1-8
Naming Conventions . 1-8

Variable Naming . 1-8
Prefixes . 1-8
Roots . 1-10
Suffixes . 1-11

Examples of Variable Names.. 1-11
Procedure Naming; ,.............................. 1-12

File Suffix Conventions . 1-12
Models of Computation................................... 1-14

Your Compiler and Models of Computation................ 1-14
Procedural· Calls Between Programming Languages 1-15

Your Compiler and Calls Between Languages 1-15

Contents v

Some Configuration Tips for Programmers 1-16
Installing the Debugger . 1-16
The :EnterDebuggerOnFault: Config.sys Parameter 1-16
Using Consistent Library Versions . 1-16

2 Introduction to Protected Mode
Introduction . 2-1
Advantages of Protected Mode . 2-1
Review of Segmented Addressing . 2-2
Review of Real Mode Addressing . 2-2
Protected Mode Addressing . 2-3
Memory Mapping Using 80386 Paging . 2-6
The Format of a Selector . 2-7
The Segment Descriptor Tables . 2-7

Local Descriptor Table {LDT) . 2-7
Global Descriptor Table {GDT) . 2-8

The Contents of a Segment Descriptor. 2-9
Processor Exceptions and Faults . 2-11
Gate Descriptors . 2-12
Protection Models , . 2-12

3 Using Color
Introduction . 3-1
Video Concepts . 3-2
Program Interfaces . 3-3
ProgramColorMapper . 3-4
ProgramColorMapper Structures . 3-4

Single-Palette Format . 3-5
Advantages Over Three-Palette Format 3-7

Three-Palette Format . 3-8
Color Structure . 3-9

Field Descriptions . 3-10
Enabling Background Color Capability . 3-12

Single-Palette Example. 3-13
Three-Palette Example................................. 3-14
Workstations with a 16-Entry Palette.. 3-15

More Sample Palettes . 3-15
Case 1: Condition A.................................. 3-16
Case 1: Condition B . 3-17

vi CTOS Programming Guide, Volume I 6191

Case 1: Condition C . 3-17
Case 1: Condition D.................................. 3-18
Case 2: Condition A.................................. 3-18
Case 2: Condition B . 3-19
Case 2: Condition C . 3-20

Gray-Scale Monitors . 3-21
Application Notes . 3-22

Combining Alphanumeric Color With the Values in the
Attribute Byte . 3-22
Defining Bitmap Color . 3-24
Color Priorities . 3-25

Programming Tips . 3-28
Avoid Use of Reverse Video and Graphics 3-28
Obtaining Single-Palette Format . 3-28
Avoid Combining Alpha Background with Graphics......... 3-28

Program Examples . 3-29
Three-Palette Format Example . 3-29
Single-Palette Format Example . 3-36

4 Writing Partition-Managing Programs

6191

A Review of Partition Management Operations 4-1
Creating a Partition and Loading a Program into It 4-2

Creating a Partition and Swapping It into Memory 4-2
Setting Up the Program's Environment . 4-3
Loading the Program into the New Partition 4-5

Finding the Program's Termination Status 4-6
The Child-Termination Question . 4-6
A Solution - Defining a Termination Request 4-7
Calling the Termination Procedure . 4-8
Structure of the Termination Procedure 4-8

Deallocating the Partition . 4-10
A Sample Partition Management Program 4-11

Contents vii

5 Software Installation: The Installation Manager
Introduction . 5-1
Key Concepts . 5-2

Types of Installation: Floppy, Tape, Server................ 5-2
Public vs. Private Installation. 5-2
Subpackages . 5-3

The Installation Manager . 5-3
Batch . 5-5
Installation Files . 5-5

Control File . 5-6
Installation Script File . 5-11
Message File. 5-11
Conunand File . 5-12

User Configuration File...... 5-13
Naming Your Floppy Installation Files...................... 5-14
Naming Your Tape Installation Files . 5-17
Organizing Your Installation Media. 5-18

For a Floppy Installation . 5-18
For a Tape Installation . 5-20

Installation Variables. 5-21
File Lists . 5-24
Restarting an Installation . 5-25
Nationalization . 5-26
Tips . 5-27
Example 1: One Subpackage. 5-30

Install.ctr/ File . 5-30
InstallMsg.bin File . 5-31
Install.cmds File. 5-32
Install.jcl File . 5-33

Example 2: Nested Subpackages . 5-39
Install.ctr! File . 5-40
DevelopmentUtilities>Install.ctrl File . 5-41
DevelopmentRunFiles>Install.ctrl File . 5-42
DevelopmentRunFiles>InstallMsg.bin File 5-42
DevelopmentRunFiles>lnstall.cmds File.................... 5-42
DevelopmentRunFiles>lnstall.jcl File . 5-43
DevelopmentLibraries>Install.ctrl File . 5-49
DevelopmentLibraries>lnstallMsg.bin File.................. 5-50

viii CTOS Programming Guide, Volume I 6191

Development Libraries> Install.jcl File . 5-51
AsynchronousExamp/es>lnstal/.ctrl File 5-57
AsynchronousExamples>Instal/Msg.bin File 5-58
AsynchronousExamples>lnstall.cmds File.................. 5-58
AsynchronousExamples>lnstall.jcl File . 5-59

Example 3: Tape Installation. 5-68
Instal/Msg.bin File . 5-69
Install.jc/ File.. 5-70

6 Using the System Log File
Introduction . 6-1
Log File Format . 6-1
Writing Messages to the Log File. 6-2
Displaying Messages Using PLog . 6-2
Log File Fields in the Volume Home Block. 6-3
How the File System Writes to the Log File 6-3

Record Fits in the Buffer . 6-3
Record Does Not Fit in the Buffer . 6-4

How to Read the Log File . 6-5
Accessing the Log File Fields in the VHB 6-6
Determining if Records Have Wrapped Around 6-6
Reading the File in Chronological Order. 6-6
If Records Have Not Wrapped Around 6-6
If Records Have Wrapped Around . 6-7

Reading the File in Reverse Chronological Order 6-8
Saving Offsets to Records . 6-8
If Records Have Not Wrapped Around 6-8
If Records Have Wrapped Around . 6-8
PLog's Algorithm For Processing Each Sector 6-9

7 Writing System Services for the XE-530
Portation Issues for Existing Programs . 7-1

General Guidelines . 7-1
User Numbers and Exchanges. 7-2
Remote Memory and Inter-CPU Communication 7-2
Inter-CPU Communication Buffer Block Size Issues . : 7-3
The Demise of the MCommands . 7-3
Restriction on the GetWSUserName Operation 7-4

6191 Contents ix

Controlling the Routing of Requests on the XE-530 7-4
The SRP Request Routing Directives . 7-4
Local Routing . 7-6
Ren1ote Routing.. 7-7
Routing by Device Specification ; . . 7-10
Other Routing Methods . 7-17
Use of Handles on the XE-530 . 7-18

The Standard Connection Handle . 7-18

Non-Standard Handle Types............................ 7-19

8 The Synchronous CommLine Interface
The CommLine Interface . 8-1
Extensions to the Traditional CommLine Interface 8-1

InitCotnmLine . 8-2
Differences Between 8274 and 82530 Communication
Controllers . 8-3
ChangeCommLineBaudRate . 8-4
ReadCommLineStatus . 8-4
WriteCommLineStatus . 8-5

Using DMA with Synchronous Data Communication 8-5
Initializing Communications DMA . 8-5
TransmitCommLineDMA . 8-6
ReceiveCommLineDMA . 8-7
GetCommLineDMAStatus. 8-8

Implementing X.21 (1984) Protocol Support 8-8
What Is the X.21 Protocol? . 8-8
Features of the X.21 Support Hardware 8-9
Initializing a Communications Line with X.21 Support
Enabled . 8-11
Using the X.21 Support Hardware in Drivers-Only Mode..... 8-12

Using V.35 Support Hardware............................. 8-12

x CTOS Programming Guide, Volume I 6/91

9 The SCSI Manager Target Mode
Introduction . 9-1
SCSI Con1mands . 9-2

INQUIRY. 9-3

RECEIVE . 9-5
REQUEST SENSE.. 9-6
SEND.. 9-9
SEND DIAGNOSTIC 9-10
TEST UNIT READY 9-11

SCSI Messages . 9-12
ABORT.. 9-13
BUS DEVICE RESET.. 9-13
DISCONNECT.. 9-13
IDENTIFY.. 9-14
INITIATOR DETECTED ERROR . 9-14
SYNCHRONOUS DATA TRANSFER REQUEST........ 9-15

Guidelines for SCSI Processor Target Mode................. 9-16
Single-Threaded Mode . 9-16
Multi-Threaded Mode . 9-17
Illegal Transfer Lengths . 9-18
Finishing a Target Mode Application...................... 9-19

10 Making CTOS Requests from MS-DOS
Why Call CTOS from DOS? . 10-1
What Is CSKNAMES.OBJ? . 10-1

Kernel Primitives Supported by CSKNAMES.OBJ.......... 10-2
Using CSKNAMES.OBJ . 10-3

The PC Emulator Version Port . 10-4
A Sample Program Using CSKNAMES.OBJ 10-5

Index . I-1

6191 Contents xi

· List of Figures

1-1. Where CTOS System Calls Are Processed 1-4

2-1. Real Mode Segment Addressing . 2-3

2-2. Protected Mode Segment Addressing . 2-5

2-3. Protected Mode Address Translation for Paging 2-6

2-4. The Format of a Selector . 2-7

2-5. Pointer Aliasing . 2-10

2-6. Separate Address Spaces Protection Model............... 2-13

3-1. Character Cell with Foreground and Background Pixels 3-2

3-2. Example Palette in the Single-Palette Format 3-6

3-3. Three-Palette Format and Single-Palette Format 3-11

3-4. Sample Single-Palette Format........................... 3-13

3-5. Sample Three-Palette Format . 3-14

3-6. Case 1 Palette Settings . 3-16

3-7. Case 2 Palette Settings . 3-19

3-8. Sample Palette. 3-26

3-9. Color Priorities . 3-26

6-1. Log File Wraparound.................................. 6-5

List of Tables

1-1. Common Prefixes . 1-9

1-2. Common Roots....................................... 1-10

7-1. SRP Request Routing Types............................ 7-5

8-1. 8274 and 82530 Register Differences . 8-3

8-2. X.21 Status Indication Bit Patterns . 8-10

xii CTOS Programming Guide, Volume I 6191

Source Code Listings

3-1. ThreePalette.c . 3-29

3-2. NewPalette.c . 3-36

4-1. Creating a Partition . 4-2

4-2. Initializing a New Partition's Environment 4-4

4-3. Loading a Task for Execution. 4-6

4-4. Calling a Child-Termination Procedure.................. . 4-8

4-5. A Child-Termination Procedure. 4-8

4-6. A Partition Removal Procedure . 4-10

4-7. A Simple Partition-Managing Program 4-11

4-8. A Termination Request Definiton File 4-18

6-1. PLog's Record-Processing Algorithm . 6-9

7-1. Sample Request.txt File Using Remote Routing 7-8

7-2. Sample Request.txt File Using Device Routing 7-11

7-3. A Client Program that Supports Device Routing........... 7-14

7-4. Changes to Sample System Service to Illustrate
Device Routing . 7-16

10-1. DOS Function Definitions for the Kernel Primitives • 10-3

10-2. Determining PC Emulator Version From DOS 10-4

10-3. Calling a PC Emulator Version Procedure 10-5

10-4. A Sample DOS Program Using CSKNAMES.OBJ 10-6

6191 Contents xiii

About This Manual

This chapter provides a general road map for using this guide, and
explains this guide's relationship to other CTOS documentation.

What Is the CTOS Programming Guide?

This Guide is a two-volume set, which describes many of the aspects of
programming in the CTOS environment.

A separate book, the CTOS/Open Programming Practices and Standards
guide, should also be considered part of this set. CTOS/Open
Programming Practices and Standards describes the interfaces to features
that are common to all CTOS-based operating systems. It also contains
many sample programs, which illustrate how to use various aspects of the
CTOS operating system. If your programs follow the guidelines in that
guide, they should be both upwardly and downwardly compatible with
most versions of CTOS and with most other CTOS-based operating
systems.

Volume I of the CTOS Programming Guide, "General Programming
Topics", explains the programming interfaces to many internal features of
the operating system. It focuses primarily on features which may not be
common to all versions of the operating system, or to all hardware
platforms. For example, the chapter on shared resource processor
programming clearly applies only to that type of hardware.

Volume II, "Extended System Services and Libraries", explains the
programming interfaces to features which are not internal to the operating
system, but which are packaged with it. For example, the Mouse System
Service is a separate system service which a user can choose not to install.
However, all users receive the Mouse System Service with their copy of
the operating system.

6191 About This Manual xv

What's New in This Update

In Volume I, Chapters 1 and 3 have been expanded with additional
explanations and examples. Chapter 5 has been completely updated to
reflect changes in the Installation Manager software.

In Volume II, Chapter 4 has been updated to reflect the addition of the
Audio Service and the Series 5000 workstation. Changes made to
Chapter 5 are mainly editorial in nature. Volume II also contains two new
chapters: Chapter 7, "CD-ROM Service," and Chapter 8, "Sequential
Access Service." A new index is included for both volumes.

Who Should Use This Guide

The CTOS Programming Guide is intended for programmers who want to
write programs in the CTOS environment. Before using this guide, you
should be familiar with CTOS as an end user and you should have some
experience programming under CTOS or another operating system
(preferably a multitasking one).

As mentioned above, the CTOS Programming Guide should be ,used in
conjunction with CTOS/Open Programming Practices and Standards.

Structure of this Guide

Each section of this guide describes a different topic in CTOS
programming. The sections are ordered with the features of more general
interest toward the beginning, and the more esoteric or product-specific
features toward the end.

To use this guide, read the sections on the features in which you are
interested.

xvi CTOS Programming Guide, Volume I 6191

Related Documentation

The following manuals are part of the CTOS documentation set, and are
likely to be of use to you. Additional programming tools and libraries are
also available. Contact your sales representative for more information.

CTOS Documentation Directory
This quick reference card describes each of the manuals in the set and
points the user to specific types of information.

CTOS Executive User's Guide
This procedural guide explains how to use the Executive command
prompt and command forms. It also explains the file system and
provides step-by-step procedures for performing common tasks, such
as copying or deleting files, backing up to floppy disk, and initializing
floppy disks.

CTOS Executive Reference
This reference manual is organized alphabetically by command name.
It includes detailed information about the Standard Software
commands and special features of the Executive.

CTOS Editor User's Guide
This guide describes how to use the new, enhanced Editor. It covers
basic use of the Editor to create and modify an ASCII text file. It also
describes new features added to the Editor to enhance it's use as a
programmer's tool.

CTOS System Administration Guide
This guide contains general information about hardware types and
system software products. It provides detailed information about
installing system services, user configuration files, formatting disks,
backing up data, optimizing performance, configuring and customizing
operating systems, and troubleshooting common problems.

CTOS Development Utilities Reference Manual
This guide describes using the Linker, Librarian, and Assembler.

CTOS Debugger User's Guide
This guide describes how to use the Debugger commands to debug
programs on real and protected mode operating systems. The manual
provides hands-on exercises in using the commands as well as
debugging tips.

6191 About This Manual xvii

CTOS Operating System Concepts Manual
This manual describes the BTOS II 3.2, CTOS/XE 3.0, CTOS/VM
2.4, and CTOS 9.10 (nine point ten) operating systems. It provides an
explanation of how the operating system works and gives some
orientation to the basic concepts the CTOS or BTOS programmer
needs to understand.

CTOS/Open Programming Practices and Standards
This how-to guide describes the commonly-used, hardware independent
aspects of programming under CTOS, It covers basic 1/0, error
handling, parameter management, guidelines for protected mode
programming, writing nationalizable programs, writing system services,
stack format and calling conventions, mixed-language programming,
writing multiprocess programs, overlays, customized SAM, and
communications programming. It includes programming examples.

CTOS Procedural Interface Reference Manual
This alphabetically organized reference manual covers each of the
programming operations for BTOS II 3.2, CTOS/XE 3.0, CTOS/VM
2.4, and CTOS 9.10 (nine point ten). It also includes descriptions of
certain operating system data structures.

CTOS Status Codes Reference Manual
This ·reference manual lists status codes returned by application
programs and by the operating system. Codes are listed numerically.
The second volume lists bootstrap errors.

CTOS Batch Manager II Installation, Configuration, and Programming
Guide
This guide describes the use of the foreground and background Batch
products.

CTOS Sort/Merge Programming Reference Manual
This guide describes Sort/Merge utilities and the Sort/Merge object
module library.

CTOS Indexed Sequential Access Method (ISAM II) Programming
Reference Manual
This guide describes programming with the ISAM libraries.

xviii CTOS Programming Guide, Volume I 6191

1
The CTOS Programming Environment

Introduction

This chapter gives a general overview of the CTOS environment as it
relates to programmers. The chapter also identifies some specific issues
that may apply to your environment, depending on which program
development tools you use.

This chapter assumes that you are familiar with CTOS and with the
Executive. If you are not, refer to the manuals listed in the "Related
Documentation" section of this manual. If you are new to CTOS, you
should pay particular attention to the CTOS Executive User's Guide and
the CTOS Operating System Concepts Manual.

In addition, the CTOS/Open Programming Practices and Standards guide
contains extensive programming documentation, with example programs,
covering many of the most popular CTOS operating system features. It is
also designed to serve as a CTOS primer for programmers.

Distributed Client-Server Computing: The CTOS
Cluster

The CTOS cluster is a distributed computing environment based on the
client-server model. A cluster consists of one server and one or more
cluster workstations. When an application program executing on a cluster
workstation calls the operating system, it sends a request to the operating
system at that workstation.

If the local operating system is unable to provide the requested resource,
it automatically forwards the request to the operating system at the server.
The server then attempts to provide the requested resource. This process
occurs transparently to the application program.

6191 The CTOS Programming Environment 1-1

This transparent routing of operating system calls is the foundation of the
distributed CTOS environment. It allows applications to take advantage
of the CTOS cluster network without any special effort on the part of the
application programmer. In effect, any application that runs on a CTOS
workstation is a networked application.

For more detailed information about the request mechanism and about
related CTOS internals, see the CTOS Operating System Concepts Manual.

Tools Available to the CTOS Programmer

An extensive array of program development tools are available under
CTOS. The list below enumerates some of the most commonly used
packages.

CTOS Development Utilities

The Development Utilities package includes an Assembler, Linker,
Librarian and Debugger. It also includes Ctos.lib and
CtosToolKit.lib, two libraries of object modules which provide the
programming interface to the operating system. The Development
Utilities are a prerequisite for programming under CTOS.

CTOS Developer's Tool Kit

The Developer's Tool Kit consists of over 40 utility programs of
various types. Some are unique to CTOS and perform functions
useful in the CTOS environment. Others are industry-standard
utilities common on many platforms, such as the UNIX utilities
Make, Yacc and Awk.

Assorted Language Compilers and Interpreters

In addition to the utility packages, compilers and/or interpreters are
available for most popular computer languages, including Basic, C,
Cobol, Fortran, Pascal, and PL/M.

Additional Programmer's Libraries

The CTOS Development Utilities contain the essential libraries, but
additional libraries are available, both from Unisys and from
third-party developers. These libraries provide support for such

1-2 CTOS Programming Guide, Volume I 6191

features as device-independent printing, display of graphics, and
interfaces to electronic mail, among others.

Take the time to familiarize yourself with the tools at your disposal, and
with the other tools that may be available, before you plunge into
programming under CTOS.

An Overview of CTOS System Software

CTOS system calls consist of four types of entity: kernel primitives,
requests, system common procedures, and object module procedures.
The description of each procedure in the CTOS Procedural Interj ace
Reference Manual specifies which type it is.

A kernel primitive is a direct command to the CTOS kernel. Kernel
primitives can be used when a lower-level interface to the operating
system is needed. Most programs use the kernel primitives only
indirectly, by using the procedural interface for requests.

A request passes through the CTOS kernel, which determines where to
route the request for processing. Most internal operating system features
are implemented using requests. There is also a special class of
application program, called a system service, which serves
application-defined requests.

A system-common procedure is a subroutine which is part of the
operating system and can be called directly. Calls to system common
procedures do not pass through the CTOS kernel. Instead, CTOS uses a
feature of the Intel microprocessors (a Call Gate) to redirect the call to
the appropriate subroutine within the operating system. As with requests,
system service programs can install their own system common procedures
for use by other applications.

An object module procedure is simply a subroutine stored in Ctos.lib or
in CtosToolKit.lib. If your program calls one of these procedures, the
Linker links the object module that contains the procedure to your
program at link time. That procedure then becomes part of your
program.

6191 The CTOS Programming Environment 1-3

CTOS
Kernel

Application Program Code

Object Module Procedures

Installed
System Common Procedures

Operating System and
Installed System Services

Cluster Network Interface ("Cluster Agent")
To

Server
2392.1-1

Figure 1-1. Where CTOS System Calls Are Processed

Figure 1-1 shows the level at which the different types of procedures
execute, relative to the CTOS kernel. As you can see from the figure, the
kernel controls access to the cluster network. Therefore, only those
system calls that pass through the kernel can be routed across the cluster.

Starting at the top, observe that object module procedures actually
become part of your program when you link it. Calls to these procedures
remain "inside" your program. Their code is linked into your program,
and your program's thread of execution executes the code.

Shown below the object module procedures are the installed system
common procedures. These procedures are not part of your program, but
they do execute on the local processor. Your program's thread of

1-4 CTOS Programming Guide, Volume I 6191

execution executes the code in a system-common procedure, but the code
itself is not linked into your program.

On the third level is the CTOS kernel. All requests your program makes
are routed through the kernel, which forwards them to the local operating
system or to an installed system service (if the appropriate one is
available). Otherwise, the kernel sends the request over the cluster
network to the server for processing.

General Steps in Writing a CTOS Program

The following topics describe the general process of writing and running a
program under CTOS. This section assumes you are using a compiled
language, such as C. If you are using an interpreted language, such as
Basic or COBOL, the steps may be somewhat different. See your
language interpreter manual for more information.

Writing Source Code

Several high-level languages and assembly language are supported. You
can write programs entirely in these languages, if they provide all the
functionality you need. Your program can also call CTOS operations
directly. See your compiler documentation for more information.

Most CTOS programmers use the Editor to write their source code. You
can, however, use other text processing programs, such as Document
Designer or OFISDesigner. The Editor, Version 11.0 or higher, provides
many of the features of a text processor, such as opening multiple files in
different windows. In addition, the Editor includes other features designed
specifically for the programmer, such as block checking. For details on
the Editor, see the CTOS Editor User's Guide.

In most languages, programs are written in modules, or subparts, which
are linked together later into a complete program. You create a separate
source code file for each module.

6191 The CTOS Programming Environment 1-5

The CTOS system naming convention is to attach a period and a suffix to
the name of a source file. The suffix indicates the language in which the
source code is written, for example,

MyProgram.asm
MoreCode.pas
StringOps.c

assembly language
Pascal
c

Usually, you should give your source code text file the same name you will
use for the compiled, object code version of it. You should also use this
file name if your programming language requires you to explicitly name the
module inside the source file. Following this convention makes the
Linker's map file much easier to read, and helps you keep track of your
source code.

Compiling

After you have written the code, the next step is to compile or assemble
the modules of your program. See your compiler documentation for any
special requirements.

Most compilers generate the following two output files:

• A list file from the compilation. This file is automatically named.
Your source file name suffix (if any) is dropped, and the suffix ./st is
appended to the root name to create the list file name. For
example, the list file for StringOps.c is named StringOps.lst.

The compiler writes any compilation errors it detects to this file.
You can examine the file by using the Type command and specifying
the list file name in the command form. You can also print it out or
edit it.

• An object file, if the compilation was successful. The object file
contains the executable code generated by the compiler. The name
of this file is the root file name with the new suffix .obj.

1-6 CTOS Programming Guide, Volume I 6191

Linking

An object file is not a run file. You cannot execute an object file directly:
it must be linked first, even if there is only one object module in your
program.

To make your program executable, start the Linker and specify the names
of the object modules you want linked along with the name to give your
run file. This name, unlike those from the compiler, is not assigned
automatically. It is useful to give this file name the suffix .run.

The Link V6 command starts the Linker and tells it to create a program
that can run in protected mode under CTOS II, but can still run in real
mode on older processors. When you use the Link V6 command, enter
the keyword Protected in the command form field, [Run file mode]. To
create a real-mode-only program, which runs in real mode no matter which
CTOS operating system is present, you can specify Real as the run file
mode.

When you use either Linker command, you also may need to specify other
parameters, such as the names of libraries that you want searched. For
details on using the Linker, see the following sources:

• The CTOS Development Utilities Reference Manual.

• "Protected Mode Programming Guidelines" in the CTOS/Open
Programming Practices and Standards guide.

• The section on linking programs in your language manual.

If the Link is successful, three more files are generated:

• The run file for your program.

• A symbol file, which is named RunFileName.sym. The symbol file is
used during debugging. It maps the symbolic names you gave your
variables to their locations in your program's image in memory.
This lets you look up the value of MyVar in the Debugger, instead of
having to look up the value of an address, such as DS:04E2h.

6191 The CTOS Programming Environment 1-7

• A map file, which shows the relative address in the memory image
and the length of each segment of the program, as well as any errors
encountered during the link. The map file has the name
RunFileName.map. You can examine it by using the Type
command.

Running the Program

Use the Run command to execute your run file. Run is a generic
command for executing files that do not have Executive commands of their
own. The Run command simply presents a numbered list of parameter
fields, with no special labels to identify runtime parameters.

To give users a conventional means of executing the run file, create a new
Executive command for your program using the Command File Editor or
the New Command command.

Naming Conventions

CTOS programmers are encouraged to use the CTOS naming conventions
for variables, procedures, and files.

Variable Naming

The name of the variable implies some of its characteristics. Parameters
used in procedure definitions and fields of request blocks and other data
structures are named according to this convention.

A variable name is composed of up to three parts: a prefix, a root, and a
suffix.

Prefixes

The prefix identifies the data type of the variable. Common prefixes and
the number of bytes required for each are shown in Table 1-1. Note that a
flag passed to the operating system or returned by an operating system
procedure is interpreted as meaning TRUE if its value is OFFh and
FALSE if its value is 0. Even if you are using a high-level language that
uses a different value for TRUE or FALSE, you must use these values to
mean TRUE and FALSE in operating system calls.

1-8 CTOS Programming Guide, Volume I 6191

Table 1-1. Common Prefixes

Bytes
Prefix Required Description

b Byte (character or unsigned integer).

c 2 Count (unsigned integer).

cb 2 Count of bytes (in a string of bytes).

Flag (TRUE = OFFh and FALSE = 0).

2 Index (unsigned integer).

varies literal (a constant).

n 2 Number (unsigned integer) (same as c).

0 2 Offset from the segment base address.

p 4 Logical memory address (pointer) consisting of a
segment address and an offset.

pb 4 Logical memory address of a string of bytes.

q 4 Quad (unsigned integer).

rg varies Array. Usually used with another prefix, for
example, the prefix rgb identifies an array of
bytes.

mp varies Map. A one-to-one correspondence between
two variables. Usually used with other variables
being mapped, for example, mpcParcRq maps
the count of paragraphs to the count of requests
of that size

s 2 Size in bytes (unsigned integer).

sb varies String. An array of bytes where first byte is the
size of the string.

sz varies String. An array of bytes with a null terminating
byte.

w 2 word

6/91 The CTOS Programming Environment 1-9

Roots

The root can be a unique name for a variable (such as clientA), it can be a
general name such as the examples shown in Table 1-2, or it can be a
combination of a unique name and a general name (such as exchClientA).
Common roots and the number of bytes required for each are shown in
Table 1-2.

Root

ere

ex ch

fh

fhb

Ila

qeh

rq

sa

sg

sl

sn

sr

userNum

Table 1-2. Common Roots

Bytes
Required

2

2

2

4

4

varies

2

2

2

2

2

2

Description

Error code.

Exchange.

File handle.

File Header Block (FHB). (See "System
Structures" in the CTOS Procedural Interface
Reference Manual for the size of the FHB system
structure.)

Logical file address.

Queue entry handle.

Request block. Size varies with the request.

Segment address (high-order two bytes of a
logical memory address) An sa may be either an
sn or an sr. (See below.)

Global Descriptor Table (GOT) selector.

Local Descriptor Table (LDT) selector.

Selector (high-order two bytes of a protected
mode logical memory address).

Paragraph number (high-order two bytes of a real
mode logical memory address).

User number.

1-10 CTOS Programming Guide, Volume I 6191

Suffixes

The suffix identifies the use of the variable. Suffixes are

Last

Max

Ret

Largest allowable index of an array.

Maximum length of an array or buffer (thus one
greater than the largest allowable index).

Identifies a variable whose value is set by the called
process or procedure rather than by the caller.

Examples of Variable Names

cbFileSpec

ercRet

pbFileSpec

pDataRet

ppDataRet

pRq

sData

sDataMax

psDataRet

ssDataRet

6191

Count of bytes in a file specification.

Error code to be returned to the caller.

Memory address of a string of bytes containing a file
specification.

Memory address of an area to which data is to be
returned to the caller.

Memory address of a 4-byte memory area to which
the memory address of a data item is returned to the
caller.

Memory address of a request block.

Size (in bytes) of a data area.

Maximum size (in bytes) of a data area.

Memory address of a 2-byte memory area to which
the size of a data item is returned.

Size of the memory area to which the size of a data
item is returned.

The CTOS Programming Environment 1-11

Procedure Naming

The name of a public procedure (one called by modules other than the
one where it is defined) should describe its function and should be
specific enough so that it does not conflict with other procedure names.
It is a convention to begin each new word or abbreviation within a
procedure name with a capital letter:

GetDateTime
PosFrameCursor
QueryDefaultRespExch

Procedures that are part of a system service usually consistently contain an
abbreviation that denotes that system service:

TsConnect
TsDial
TsEnableRing
CloseISAM
DeleteISAM
GetISAMRecords

File Suffix Conventions

The type of a file is denoted by the suffix on its name, as was noted
earlier in this section. Some of these suffixes are required, and some are
optional. For those related to programming, compiling, and linking, see
the appropriate language manual for more information. Whether required
or not, it is a good idea to use the suffixes because they let you determine
a file's use from its name.

Here is a summary of some common suffixes. These are related to
programming and to system files. A few other suffixes exist in file names
generated by various application programs.

Suffix

.asm

.a wk

.bas

Use

assembly language source file

Awk script file

BASIC source file

1-12 CTOS Programming Guide, Volume I 6191

6191

Suffix

.bin

.c

.cbl

.config

.edf

.fls

.for

.form

· .gnt

.h

.idf

.img

.int

.jcl

.lib

.1st

.map

.mdf

.obj

.pas

.plm

Use

a binary message file

C language source file

a COBOL source file

program configuration file

external definition file

a file containing a list of files: usually an at-file

FORTRAN source file

object module created by Forms Editor

a COBOL intermediate-format file

C-language header file

internal definition file

bootable protected mode image

a COBOL intermediate-format file

a job-control text file

a library file created by Librarian

list file from compiler

map file from Linker

assembly language macro definition file (may
contain other definitions also)

object module from compiler or assembler

Pascal source file

PL/M source file

The CTOS Programming Environment 1-13

Suffix

.run

.sed

.sub

.sym

.sys

.tmp

.txt

.user

Use

run file from Linker (not assigned by default)

Sed script file

submit file, read by Submit command

binary symbol file from Linker, defining public
labels for use by Debugger

system file, used by operating system

temporary file, created by standard software or
application program

a message text file

user configuration file

Models of Computation

The Intel architecture uses a number of "models" of computation. These
models are based on the way a program is divided. For example, in the
small model, all the program's code and data is lumped together in a
single segment.

CTOS uses the medium model, in which each object module has its own
separate code segment. However, all the global data for the program,
plus it~ stack, are placed together in a single data segment called
DGROUP.

Your Compiler and Models of Computation

The language compilers and interpreters available from Unisys and from
third-party developers use widely varying models of computation. Many
also support more than one model.

The model you use becomes significant when your program needs to make
an operating system call, because the model your compiler uses may differ
from the one CTOS uses. Compilers and interpreters that cannot use the

1-14 CTOS Programming Guide, Volume 1 6191

medium model generally provide an interface mediator for operating
system calls. See your compiler documentation for more information
about how to make operating system calls from that language.

For more general information about models of computation, see "Stack
Format and Calling Conventions" in the CTOS/Open Programming
Practices and Standards guide.

Procedural Calls Between Programming Languages

Calls to the operating system can be thought of as calls to a different
programming language. You may also find yourself in a situation where
you need to call C routines from Cobol, or something similar.

There are several issues involved when you mix programming languages,
but the two primary ones are model of computation and stack format.

The language compilers and interpreters available from Unisys and from
third-party developers generally provide a simple mechanism that allows
you to make operating system calls from that language. See your compiler
documentation for more information.

For more general information about procedural calls between
programming languages, see "Mixed-Language Programming" in the
CTOS/Open Programming Practices and Standards guide.

Your Compiler and Calls Between Languages

When you need to call non-operating system procedures written in a
different programming language, the best strategy is to map both to the
CTOS calling convention. The CTOS calling convention is described in
"Stack Format and Calling Conventions" in the CTOS/Open Programming
Practices and Standards guide.

If the language you need to call can use the CTOS calling convention
natively, then your job is easy. Use the CTOS calling convention for the
procedures you need to call, and have the calling language pretend that
they are operating system procedures.

If the language used for the called procedures cannot use the CTOS
calling convention, the task is more difficult. You need to carefully

6191 The CTOS Programming Environment 1-15

review the documentation for each compiler, and try to identify a calling
convention that both can use.

Some Configuration Tips for Programmers

This section collects some miscellaneous information that can help you set
up your development system.

Installing the Debugger

All you need to do to install the CTOS debugger is install the files for it.
If the Debugger file resides in your boot directory (where sysimage.sys
resides) the operating system loads the Debugger into memory
automatically.

See the CTOS Debugger User's Guide for the name of the Debugger file
used by your operating system.

The :EnterDebuggerOnFault: Config.sys Parameter

When developing programs that run in protected mode, bugs often
manifest themselves as protection violations. To trap these violations
when they occur, add the following line to your Config.sys file:

: EnterDebuggerOnF au It: Yes

This parameter causes the operating system to enter the Debugger
whenever it detects a protection violation. You then have the opportunity
to trace the cause of the fault before your program exits.

Using Consistent Library Versions

When you update your development environment, take care to maintain
its consistency. If you developed a program using one version of Ctos.lib,
you should keep that version until you want to update the program. Using
incompatible versions of software can cause perplexing errors.

One such pitfall is that the contents of Ctos.lib changes from release to
release as features are added. The CTOS developers go to great pains to

1-16 CTOS Programming Guide, Volume I 6/91

prevent incompatibilities, but they do occur. For example, a new
operating system call could have the same symbolic name as one of the
procedures in your program. If the Linker encounters such a situation, it
returns an error message.

A second common pitfall is accidentally using a symbolic name that is
already used in Ctos.lib. For example, a program might define a global
variable, f ProtectedMode. This name also corresponds to a procedure in
Ctos.lib. Such a program will link successfully, then cause a protection
fault when it executes.

A third potential pitfall is that some third-party object module library you
use could depend on a particular version of Ctos.lib. If this type of
problem occurs, your program may link successfully, then act strangely
when you try to run it.

Finally, when you update your development environment, make sure you
install all parts of your new development package. If you install a new
version of Ctos.lib without new versions of its associated header ("EDF")
files, you are likely to run into trouble.

As a general rule, you should keep close track of the configuration of
your development environment. You should also save a copy of your
previous library versions when you install new ones.

6191 The CTOS Programming Environment 1-17

2
Introduction to Protected Mode

Introduction

This section is intended to familiarize you with protected mode concepts,
so that you will understand how to write programs that run in protected
mode on CTOS protected mode operating systems, such as CTOS/VM,
CTOS/XE and BTOS II.

This section introduces you to features that are provided by Intel's
protected mode microprocessors and are used by protected mode CTOS
operating systems. For details on Intel microprocessor architecture, see
the following Intel manuals:

• iAPX 286 Programmer's Reference Manual

• 80386 Programmer's Reference Manual

In addition, this section compares real mode addressing to protected mode
addressing. Understanding addressing differences can help you avoid
compatibility problems.

To be sure that your programs are compatible (can be loaded and executed
in either real or protected mode), you should follow the guidelines in
"Protected Mode Programming Guidelines" in the CTOS/ Open
Programming Practices and Standards manual.

Advantages of Protected Mode

Protected mode offers advantages over real mode, including the following:

• A program can access a much larger address space (memory). The 1
megabyte limit of real mode does not apply.

Introduction to Protected Mode 2-1

• The hardware protection mechanism prevents a program from
accidentally overwriting code or writing beyond the end of a segment.

Review of Segmented Addressing

On Intel microprocessors, instructions do not accept physical addresses as
operands; they accept only segmented logical addresses. A logical address
is formed from two 16-bit parts, the segment address (SA) and the relative
address (RA). The RA is often referred to as an offset from the SA. The
processor combines these two parts to identify a location in memory.
When using the Assembler or Debugger, logical addresses are written as
follows:

SA:RA

As each instruction executes, the processor forms a linear address from
each logical address. The processor then uses the newly-formed linear
address to access physical memory. Note that a program never uses a
linear address directly. Programs always reference memory by using
logical addresses.

The Intel architecture is referred to as a segmented addressing model,
because of its two-part logical addresses. Every logical address is
composed of a relative offset from some segment address (SA). Note the
contrast to a linear addressing model such as the Motorola architecture,
where instructions accept 32-bit linear addresses rather than SA:RA pairs.

When a logical address contains a real mode segment address (SA), that
SA is sometimes referred to as an SR, to distinguish it from a protected
mode segment address, which is sometimes called an SN. The
abbreviation SA applies to either mode. Thus, in real mode, all logical
addresses are actually SR:RA addresses. In protected mode, they are
actually SN :RA addresses. The difference between an SR and an SN is
described next.

Review of Real Mode Addressing

Real address mode is the only mode in which 8086 and 80186
microprocessors operate. Protected mode microprocessors, such as the
80286 and 80386, execute in real mode initially upon power-up or reset, but
then switch to protected mode under the control of the operating system.

2-2 CTOS Programming Guide, Volume I

In real mode, to compute a 20-bit linear address result, the processor
shifts the segment address left by four binary places (effectively multiplying
it by 16), then adds the relative address.

The resulting 20-bit quantity can address only 1 megabyte of memory (220
locations). For example, the linear address generated from logical address
3A02:235h is shown in Figure 2-1. Note that one hexadecimal digit in the
figure corresponds to four binary address bits.

real address 3A02:235

l3A020 SR

+lQm RA

3A255 20-bit linear address

Figure 2-1. Real Mode Segment Addressing

2392.2-1

In real mode, each segment address identifies a location 16 bytes higher in
memory than the previous segment address. These 16-byte units of
memory, each aligned on a 16-byte boundary, are called paragraphs.
Therefore, a real mode segment address can be considered a paragraph
number, because it denotes a particular 16-byte boundary in the physical
address space.

In real mode, the segment registers contain the paragraph numbers
corresponding to the base of the respective segments. The segments are
always aligned to start on 16-byte boundaries.

Protected Mode Addressing

Protected mode microprocessors can address extended memory beyond the
first megabyte. The amount of addressable memory is determined by the
microprocessor and hardware limits. The 80286 microprocessor, for
example, can address up to 16 megabytes of memory in protected mode.
To do so requires a linear address of 24 bits. However, no Intel
microprocessor, not even the 80286 or 80386, can address more than 1

Introduction to Protected Mode 2-3

megabyte in real mode. This is because only a 20-bit address can be
formed by the address calculation described in the previous section.

To achieve this longer address in a compatible manner and to allow other
features of protected mode to be implemented, the same two-part
addressing scheme (the segmented addressing model) is used. The address
still consists of an SA:RA, but the SA part of the logical address is
interpreted differently. The RA part has the same meaning as in real
mode.

In protected mode the 16-bit SA in the segment register is no longer a
paragraph number, as it is in real mode. Rather, the SA is an index into a
descriptor table. The SA is called a selector in protected mode because of
the indexing or selection function it performs and is written as SN to
distinguish it from a real mode segment address.

The operating system constructs and maintains a descriptor table called a
Local Descriptor Table (LDT) for each run file executing in protected
mode from information provided by the Linker in the run file header.
Note that to produce the proper run file format, you must enter the
keyword Protected in the Linker Bind command field, [Run file mode).

Each code and data segment in the program has a unique selector assigned
by the Linker and a corresponding unique LDT entry. The LDT is an
array of these entries, called descriptors, which contain various information
about the segment. The selector is basically an offset into the LDT.

When an instruction loads a selector into a segment register in a protected
mode program, the processor uses the selector to find the corresponding
descriptor and to retrieve a segment base address from it. On the 80286
microprocessor, this base address is 24 bits long. By comparison, the base
address is 32 bits long on the 80386 microprocessor, which has com­
paratively greater address space (up to 4 gigabytes). When an instruction
refers to a memory address (using the segment register and an RA), the
RA is added to the base address to obtain a linear address. Unlike real
mode, no shift of this base address is done; it is not a paragraph number,
but a true physical address.

Figure 2-2 shows this process schematically. Note that the example,
18:235, addresses the same memory location as the real mode example
shown in Figure 2-1.

2-4 CTOS Programming Guide, Volume I

00
08
10
18

virtual address 18:235

descriptor table

l'-..._...__..__.'-P--'___...._.__.._._-+--'--'---'-+--"--"'--1

20 i--.---.----,.---.--+--,.--,-..,.......,,...-,.........,,_,__,.--,..-+--.,.--r--,I

28
30 "--"---''--'---"'"_.._.__._-'I

03A255 24-bit linear address

Figure 2-2. Protected Mode Segment Addressing

2392.2-2

Figure 2-2 shows the descriptor holding the linear base address, 03A020.
Instead of the segment register holding the paragraph number 03A02, it
holds a selector value, 18, which is used as an index into the descriptor
table.

The protected mode SN :RA logical address is sometimes referred to as a
virtual address, because the SN refers only indirectly to memory via a
descriptor table entry. By changing the descriptor table entry, the
operating system can make the same virtual address refer to a different
linear address (for example, to relocate the segment in memory without the
program's knowledge).

The real mode SR:RA logical address is referred to as a real address,
because it always corresponds to the same linear memory address.

Most incompatibilities between real mode and protected mode arise from
this difference between paragraph numbers (SRs) and selectors (SNs). In
particular, they arise most often from the assumption that a segment
address is a paragraph number.

Introduction to Protected Mode 2-5

Memory Mapping Using 80386 Paging

The physical address is the actual location in system memory. In real
mode and in protected mode without paging, there is a direct
correspondence between the linear address and the physical address.
When paging is enabled on 80386-based systems in protected mode,
however, the linear address is mapped to the physical address by means of
a page translation table. The operating system controls the use of this
table in a manner transparent to programs. Figure 2-3 illustrates how
addresses are mapped.

SA

Selector
(SN)

LDT orGDT

/#///////////////////////,
Segment Base Address

1/////////$/////////////;

/////////, ;/////////,
Linear Address

///////////////////,

Page Paging Enabled
Translation

Tobie

RA

Offset

Physical Address 2392.2-3

Figure 2-3. Protected Mode Address Translation for Paging

2-6 CTOS Programming Guide, Volume I

The Format of a Selector

The format of the 16-bit selector (SN) is shown in Figure 2-4. The
high-order 13 bits form the offset that indexes into the descriptor table.
The next bit discriminates between two kinds of descriptor tables, the
Local Descriptor Table (LDT) and the Global Descriptor Table (GDT).
The low-order 2 bits (indicated as rpl in Figure 2-4) currently are not
currently used by CTOS.

SN Io o 1 a I

0000000000011000
descriptor index L rpl

L = 1 for LDT
L= OforGDT

Figure 2-4. The Format of a Selector

2392.2-4

The 13 index bits of the selector can generate 213 or 8192 possible values.
Thus the hardware permits 8192 entries in each of the two tables.

The Segment Descriptor Tables

Two kinds of descriptor tables are used to address segments: Local
Descriptor Tables (LDTs), which were discussed previously, and the
Global Descriptor Table (GDT). Typically, there is a separate LDT for
each run file executing in protected mode. There is only one GDT per
processor.

Local Descriptor Table (LDT}

At any one time, there is only one LDT in effect. This LDT is the current
LDT. It describes the current program's code and data, and the entry

Introduction to Protected Mode 2-7

points (or call gates) at which the program can make system calls. (See
"Gate Descriptors," later in this section.)

Each protected mode program may be associated permanently with an
LDT when it is created. All processes of a program share the same LDT.
When process switching occurs, the current LDT is automatically changed
by firmware.

Global Descriptor Table (GOT)

The GDT describes global segments (segments that may be addressed by
any program or the operating system). The operating system controls the
use of the GDT. Currently, CTOS uses GDT-based segments for the
following:

• operating system code and data

• dynamically allocated system data, such as character maps and the
Application System Control Block

• code and data of programs that contain system-common procedures

• alias selectors for interprocess communication

Because operating system code and data are GDT-based, the operating
system can be called at certain entry points at any time as a subroutine of
the user process. The operating system services known as Kernel
primitives and system-common procedures are implemented in this manner.

In addition, programs, such as the Video Access Method (VAM), that
include system-common procedures must have GDT-based selectors when
linked. (Such programs must be linked using the keyword GdtProtected in
the Linker's Bind command form. See the CTOS Development Utilities
Reference Manual for more information.) A protection mechanism known
as a call gate limits the user program to calling at legitimate entry points
and provides a convenient way to bind the user program to those entry
points at program load time. (See "Gate Descriptors," later in this
section.)

When an LDT-based program issues a request to a system service, the
operating system gains control and changes the LDT-based pointers in the
request block into GDT-based pointers. These GDT-based pointers are

2-8 CTOS Programming Guide, Volume I

called alias pointers. Aliasing allows the client and the system service to
communicate with each other. The system service cannot directly use the
client's LDT-based pointer, because the system service also may have an
LDT that is different from the client's. Only one LDT can be current at a
time.

Figure 2-5 on page 2-10 illustrates segment aliasing. Client A issues a
request to System Service B. One of the request block parameters is a
buffer accessible to Client A at address 84:0. The operating system gains
control and creates an alias selector that also points to Client A's buffer.
System Service B can access Client A's buffer at the GDT-based address,
100:0.

The Contents of a Segment Descriptor

Segment descriptors contain information about individual memory
segments. In addition to the base address described in "Protected Mode
Addressing," earlier in this section, each segment descriptor contains other
information, such as

• the segment's size, which is indicated by its base and limit

• the segment type, such as code or data

• whether the segment is in memory or is swapped to disk

While a program executes in protected mode, the hardware performs
various checks using information in the segment descriptor. These checks
provide the following protection features:

• It is not possible to access memory beyond the end of the segment,
either accidentally or deliberately.

• Data segments can be designated as writable or readable but can
never be used as code segments.

• Code segments are implicitly executable but cannot be overwritten.

Introduction to Protected Mode 2-9

G) Client A issues request
to System Service B.
One of the request block
parameters is pBuffer (84:0).

Client A

SN:RA
pBuffer

84:0
@ CTOS traps the request

and creates an alias
GOT-based selector (100:0)
that points to Client A's buffer

ClientA's ------,1
LDT

0

System

Service

B

GOT
0--r-::.-----,

100-Li-----t
0

@ System Service B can

Access Client A's buffer
using address 100:0.

2392.2-5

Figure 2-5. Pointer Aliasing

2-10 CTOS Programming Guide, Volume I

Processor Exceptions and Faults

A fault occurs if a selector is invalid or is used improperly. Faults transfer
control automatically to the operating system.

Faults are of two types: restartable faults and exceptions. Restartable
faults are, in theory, recoverable. Exceptions, on the other hand, are
errors that prevent further execution of the program.

The not-present fault is an example of a restartable fault. Such a fault
occurs when the operating system has marked a segment's descriptor to
indicate that it is not currently resident, but is swapped out on disk. This
kind of fault gives the operating system the opportunity to read the missing
segment into any available free memory, fix up the base address in the
descriptor, mark the descriptor present, and return to the interrupted
program. The program then proceeds to try the instruction that faulted
again, since the processor's instruction pointer still points to that
instruction.

The use of an invalid selector because of a programming error is another
example of an exception, called a general protection fault.

For instance, some real-mode programs use the ES register to store data.
In protected mode, however, you can load only selectors into the ES
register. If a program loads into ES any value that is not a selector, even
before it attempts to use that value, the hardware's attempt to fetch the
associated descriptor results in a fault.

There is one exception to this rule. The selector value 0 is special. It can
be loaded into a segment register, but it causes a fault if it is subsequently
used in an address calculation. The 0 value is permitted to allow the
passing of NULL pointers, for example pbPassword = 0 and cbPassword =
0 in a CTOS OpenFile call. Outlawing NULL pointers would be extremely
inconvenient, so they are allowed, but the value can never be used in
calculating an address.

There are additional exceptions, which can occur later when a valid
segment register is used in an address calculation. As an example, a limit
exception occurs when attempting to address beyond the end of a segment.

For more detailed information about faults and exceptions, see the Intel
documentation.

Introduction to Protected Mode 2-11

Gate Descriptors

A gate descriptor is a structure that allows a program to call routines, the
addresses of which cannot be known until the program is loaded.
Generally, any address that lies outside the run file will be unknown until
load time. For example, a program may call a system-common procedure
or a Kernel primitive, the location of which the Linker cannot supply.

To resolve such a reference, the Linker uses a call gate in the protected
mode run file. At load time, the operating system fills the gate with the
virtual address of the called procedure. The actual CALL instructions in
the calling code segment, however, are not modified.

In the program code, these calls simply appear to call a virtual address
using an ordinary far CALL instruction. When the call is executed, the
processor uses the selector to fetch its associated descriptor. Upon
examination of the descriptor, however, the processor determines that it
identifies a call gate. Therefore, its destination fields are used in place of
the original address to reach the appropriate routine. The call gate SN
(not the original SN) is placed in the CS register. The original RA is
ignored, and a value of zero is placed in the instruction pointer. This
address is the first instruction of the called procedure.

In addition to the call gates just described, there are other types of gates
with varying functions. Task State Segment (TSS) gates normally are used
by the operating system. TSS gates also are involved in interrupt
processing, as are two other gates: interrupt gates and trap gates. For
more information on the function and use of these gates, see the Intel
documentation.

Protection Models

Protected mode on Intel microprocessors actually uses two models of
protection. Only one of these models, however, currently is used by
CTOS. These models are summarized below:

• Protection by separate address spaces, shown in Figure 2-6, in which a
program is restricted to one virtual address space and cannot even
describe locations in another address space. CTOS uses this
protection model. It provides isolation of one run file from another.

2-12 CTOS Programming Guide, Volume I

• Protection by privilege level, in which every program executes at one
of several levels of authority. This protection model currently is not
used by CTOS.

In Figure 2-6, each pie slice represents a separate address space,
described by a separate LDT (the first protection model). The domain of
each descriptor table is also shown.

2392.2-6

Figure 2-6. Separate Address Spaces Protection Model

A program in one address space is aware of and can describe only those
locations for which it can load selectors. At any given time only one LDT
is in effect (the LDT associated with the current process). The GDT is
also in effect (all the time). Therefore, each process can address only
those objects for which there exist descriptors in its own LDT or the
GDT.

The LDT describes the program's own code and data, and the gates it may
use to make system calls. In other words, it describes only those objects
that it is legitimate for the program to access. The uses of the GDT are
described in "Descriptor Tables," above.

Introduction to Protected Mode 2-13

3
Using Color

Introduction

This section describes how to use the ProgramColorMapper operation to
define color for use in graphics and alphanumeric displays.
ProgramColorMapper is an object module procedure available in the
standard operating system library. Although the single-palette format
provided by ProgramColorMapper (described in detail in this section) is
available with YAM, Version 3.1 and later, the ProgramColorMapper
operation itself is backward and forward compatible with all supported
versions of the operating system and with Context Manager.

This section begins by discussing a few video concepts you need to
understand when manipulating color. The section continues with an
overview of ProgramColorMapper and other related color operations that
call ProgramColorMapper. Following this introduction, the section
describes the structures for setting up and controlling the way color will
be displayed. At the conclusion of this section, there are two program
examples, which show how to use ProgramColorMapper to set up palettes
in either of two formats.

Before reading this section, you should familiarize yourself with the video
concepts described in "Video" in the CTOS Operating System Concepts
Manual. In addition, you should know how to assign attributes to
characters and display characters to the video device using the V AM and
VDM operations. If you are not familiar with these operations, review
their detailed descriptions in the CTOS Procedural Inter/ ace Reference
Manual. Finally, if you intend to write graphics applications, you should
be familiar with the graphics library procedures. See the Graphics
Programmer's Guide for details. Background on advanced color theory is
left to the reader.

6191 Using Color 3-1

Video Concepts

Brief definitions of video concepts discussed in this section are presented
below:

pixel An illuminated dot displayed on the video device
as a result of manipulating the alphanumeric
character map or the graphics multi-plane bit map.

character cell A rectangular pattern of pixels displayed to the
video device. The pixels define a single
alphanumeric character and the area surrounding
that character. Depending on the hardware,
character cells are displayed in different sizes
(height and width in pixels) and in different
resolutions (proximity of pixels in the character
cell).

fore ground color Color displayed by the pixels in a character cell
that define the character.

background color Color displayed by the pixels in a character cell
that define the area surrounding the character.

Imagine that the dots shown in Figure 3-1 are two colors: the filled-in dots
represent one color, and the empty dots, a different color. All the dots
represent pixels defining a character cell. The filled-in dots define the
foreground alphanumeric color within the character cell. The empty dots
define the background color. Some hardware (for example, workstations
with Enhanced Video or VGA) can display multiple background colors.
On such hardware, character cells adjacent to each other could display
the background in different colors.

• • • 0

• 0 0_
-1' Foreground Color

• • • 0

• 0 0 •

• • • 0 Background Color
2392.3-1

Figure 3-1. Character Cell with Foreground and Background Pixels

3-2 CTOS Programming Guide, Volume I 6191

The concepts of foreground and background need to be taken into
account when displaying alphanumeric information through V AM or
VDM operations that manipulate the character map (on either character
map workstations or on bit map workstations with character map
emulation). When calling graphics routines to manipulate the multi-plane
bit map, however, pixels are not viewed with regard to foreground or
background because there is no character cell concept.

Using the single-palette format through ProgramColorMapper as described
in this section, it is possible to use the same palette entry for graphics and
alphanumerics. Manipulating color at the level of the pixel requires a
priority to determine which pixel color will be displayed. This subject will
be addressed in "Application Notes," later in this section after you have
been introduced to the ProgramColorMapper structures.

Program Interfaces

To customize the use of color and to program the graphics control
registers, your program must call the ProgramColorMapper operation
either directly or indirectly. The operation is implemented in a
hardware-independent manner and has run time checks for the support of
each workstation type.

All procedures in the standard operating system library that manipulate
color call ProgramColorMapper. · The SetAlphaColorDefault procedure,
for example, calls ProgramColorMapper to establish a default set of
colors. SetAlphaColorDefault is called by the Executive as well as by
routines in the graphics library. If you don't need to customize colors you
will use, your program can use the default values. Three other color
manipulating procedures are documented in the CTOS Procedural
Interface Reference Manual for backwards compatibility only. These are

SetStyleRam
LoadColorStyleRam
SetStyleRamEntry

Because ProgramColorMapper performs all the functions provided by
these procedures, it is recommended that you use ProgramColorMapper
in all new programs.

6191 Using Color 3-3

Note that when an application returns control to the Executive, color
palette values that were set within the application are reset to the current
Executive default color palette values. (Other screen attributes, such as
font type, resolution, number of lines and columns, reverse video, and
character attributes, are also reset to the Executive default values when
control returns to the Executive.)

ProgramColorMapper

You use ProgramColorMapper to perform the following functions:

• To enable or disable an alphanumeric or graphics display.

• To display alphanumeric characters in customized colors along with
the standard alphanumeric character attributes (half bright,
underline, reverse video, blinking, bold, and struck-through). Once
you have defined the colors you want to use by calling
ProgramColorMapper, you can assign them to the alphanumeric
characters you intend to display using V AM or VDM operations
such as PutFrameAttrs, PutFrameChars, and
PutFrameCharsAndAttrs.

• To define color for use in graphics displays. If you don't want to
use the default color palettes set up by routines in the graphics
library, you can use ProgramColorMapper to define your own
palettes for use in subsequent calls to graphics library procedures
that manipulate the graphics bit map.

Once you have defined colors with ProgramColorMapper, you can
redefine them by selecting different palettes or different palette entries or
by changing the definition of existing entries.

ProgramColorMapper Structures

Through the parameters you provide to Program Color Mapper, you set up
the two types of color structures: a control structure and one or more
palettes.

The control structure allows you to specify whether you want to enable
graphics or alphanumeric mode and whether you want to enable color for
either mode. In addition, with the ProgramColorMapper operation

3-4 CTOS Programming Guide, Volume I 6/91

available in Standard Software, Version 12.0 and higher, you can specify
either of two palette formats. The single-palette format sets up a single
palette for all color uses; the three-palette format allows you use of one to
three palettes. For all hardware types, either format can be used, even if
the actual color palette hardware is programmed differently.

Each palette contains entries that define color for alphanumeric, graphics,
and/or background color. Each palette entry defines a color and its
intensity. In "Application Notes," later in this section, you will see how
color values defined in the palettes combine with the bits in the attribute
byte to define the color and attributes of alphanumeric characters.

ProgramColorMapper

• maintains the control structure and palettes

• programs the hardware for the palette(s)

• programs the palette(s) according to the specifications you establish
in the control structure

The single-palette format is described first because it provides greater
flexibility. Because there is very little difference in the fields of the
control structure for either palette format, both control structures are
described in "Control Structure," later in this section.

Single-Palette Format

Using the single-palette format, the color palette is a single array of
3-word entries.

The words in each entry define color as follows:

Bits 47-32 31-16 15-0

Red Green Blue

The palette can contain as many entries as the hardware will support
(currently up to 256). Through the control structure for this palette
format, you can define certain groups of entries for alphanumeric or
background color. (See "Control Structure," for details.) Furthermore,
any of the entries can be used for graphics color.

6191 Using Color 3-5

To define the intensity of a color, you specify a value in the range of 0 to
1000. Each unit increment in this range represents a 1/10% increase in
intensity up to 100% intensity. For example, to display a color at 50% of
its intensity, you can specify a value of 500. A value of 0 means no
intensity.

Figure 3-2 shows six entries in an example palette.

(Red) (Green) (Blue)

0 1000
0

0

0 500 0

0 0 1000 2

0 0 500 3

1000 0 0
4

500 0 0
n

2392.J-2

Figure 3-2. Example Palette in the Single-Palette Format

3-6 CTOS Programming Guide, Volume I 6191

In the figure from top to bottom, the palette entries define the following
colors:

full bright green
half-bright green
full bright blue
half-bright blue
full bright red
half-bright red

Each palette entry is identified by an index value. (See the numbers to
the right of the entries in the figure.) Index 0 corresponds to the first
entry, 1 to the second, and so forth. In a call to ProgramColorMapper,
you specify the index value of the first palette entry you want to define in
the control structure field wlndexStart. (See "Control Structure," later in
this section.)

Advantages Over Three-Palette Format

There are several advantages to using the single-palette format over the
three-palette. A few of these are noted here.

Because intensities can be specified in a broad spectrum, this format
allows you to be very specific about the intensity of a color. If the
hardware supports the intensity, the color intensity is displayed the way
you specified. Otherwise the hardware displays the supported intensity
closest to the one you chose. If, for example, the hardware supported
three levels of intensity, you could specify 330, 670, and 100 to achieve
1/3, 2/3, and full intensity color, respectively. If you specified 256, the
resulting color would be displayed at 1/3 intensity.

Furthermore, it is relatively easy to specify intensity values: you simply
specify percentages. As yon will see, this is more user friendly than
specifying intensities using the three-palette format. The three-palette
format requires that you manipulate bits.

In addition to the wide range of intensities offered by this format, the
control structure allows you to use palette entries interchangeably for
different applications.

6/91 Using Color 3-7

Three-Palette Format

With this format, color can be defined in three palettes: one palette is an
array of alphanumeric character color (rgbA/pha) and the other two
(rgbGraphicsl and rgbGraphics2) are arrays of graphics colors. Each
palette in this format consists of 8 one-byte entries, as shown in the
following structure:

pttset Field Size
(Bytes)

0 rgbAlpha 8
8 rgbGraphics1 8

16 rgbGraphics2 8

Using the three-palette format in a call to Program Color Mapper, you can
assign colors to any of the following:

• a single alphanumeric palette (the first 8 bytes of the structure)

• the alphanumeric and the first graphics palette, rgbGraphicsl (the
first 16 bytes of the structure)

• all three palettes (all 24 bytes)

The use of these palettes is described below.

Each one-byte palette entry is defined as follows:

Bit 7 6 5 4 3 2 1 0

A1 AO R1 RO G1 GO 81 BO

where

Letter Description

A Undefined

R Red

G Green

B Blue

You specify the intensity of a color by manipulating the bits for that color
(such as green, Gl GO)

3-8 CTOS Programming Guide, Volume I 6191

where

Bit Values

11

10

01

00

Color Structure

Description

Full Intensity

2/3 Intensity (normally used for half bright)

1/3 Intensity

Off

For each of the palette formats, there is a corresponding control
structure. The structure allows programs to set the color in any of the
palettes and to turn the alphanumeric character map and the graphics bit
map on or off independently.

The control structure for the three-palette format is shown below.

Offset

0
1
2
3
4

Field

GraphicsPalette
AlphaEnabled
AlphaColorEnabled
GraphicsEnabled
GraphicsColorEnabled

Size
(Bytes)

Using the three-palette control structure, programs may switch the
graphics bit map to use either of the two graphics palettes. This is done
by specifying a value for the field GraphicsPalette. (See 11Field
Descriptions" for details.)

The format of a single-palette control structure is an extension of the
structure shown above. It contains the following additional fields:

Offset

6191

5
6

Field

bFormat
wlndexStart

Size
(Bytes)

1
2

Using Color 3-9

Field Descriptions

If ProgramColorMapper is called with a 0 value in any of the control
structure fields, that field is left unchanged. The meanings of the control
structure fields are described below:

GraphicsPalette Has no meaning with the single-palette format.
With the three-palette format, a value of 1 selects
the first graphics palette (rgbGraphicsl), and a
value of 2 selects the second (rgbGraphics2).

In the next four fields, a value of 1 means enabled, and a value of 2
means disabled.

AlphaEnabled

AlphaColorEnabled

A value of 1 turns on the alphanumeric character
map.

With the three-palette format, a value of 1 means
the alpha palette can be used for color selection.
With the single-palette format, a value of 1 means
that palette index entries 8 through 15 can be used
for alphanumeric color.

On workstations with background color support,
you can set the flag JBackgroundColor to TRUE
in a call to the ResetVideoGraphics operation to
use a background palette. With the three-palette
format, the first graphics palette (index entries 8
through 15) is used for background color (see
Figure 3-3). With the single-palette format, index
entries 0 through 7 are used for background color.
(See the example provided later in this section for
a detailed description showing how the index
entries are used as background colors).
Specifying FALSE for JBackgroundColor allows
use of only entry 0 (single-palette format) or entry
8 (three-palette format) for background color.

3-10 CTOS Programming Guide, Volume I 6191

Three-palette Format

0
11-----t

2 31-------l

4, ___ -l
51-----l
61-------l
7...._ __ _,

Alpha
(Foreground)

8
9 1-------l

10
111-----l

12 1-----t
13, ____ ,

141-----l
15...._ __ _,

Graphics 1
(Background)

Single-palette Format

0
1-------1

.. 1- ____ --1 Background
7
8 1------1
.. Alpha (foreground)
15 1-------1

16 !------
.. I- _ _ _ _ _ Other palette entries
255~-~

16
171-----t

18
191-----l

201-----l
21,__ __ _,
221-----1
23...__ __ _,

Graphics 2

512.3-3

Figure 3-3. Three-Palette Format and Single-Palette Format

A value of 2 causes the default screen colors to
be displayed (for example, green foreground with
black background), and all normal character at­
tributes are enabled.

NOTE: When AlphaColorEnabled is set to 1, the
normal character attribute for half bright has its
meaning changed. (For details, see "Application
Notes, " later in this section.)

GraphicsEnabled A value of 1 turns on the graphics bit map.

GraphicsColorEnabled With the three-palette format, a value of 1 means
either graphics palette can be used for color
selection. With the single-palette format, any of
the palette entries can be used for graphics color.

6191 Using Color 3-11

bFormat

wlndexStart

A value of 1 turns on the single-palette format. A
value of 0 (or a control structure size of less than
6 bytes) causes ProgramColorMapper to return
the three-palette format, even if the palette was
previously defined in the single-palette format. In
such a case, any value specified for wlndexStart
(described below) is ignored.

Specifies the index value of the first palette entry
to be defined or read back using
ProgramColorMapper.

If A/phaEnab/ed equals 1 and AlphaColorEnabled equals 1, the
/BackgroundColor flag in the ResetVideoGraphics operation affects how
background colors are chosen, as shown in "Example" below.

When AlphaEnabled equals 1 and AlphaColorEnabled equals 2, then the
system default values are used for foreground, background, and
half-bright, and the color palette is ignored. The same condition results
when GraphicsEnabled equals 1 and Co/orGraphicsEnabled equals 2.

Enabling Background Color Capability

Use the QueryVideo operation to determine the current setting of the
fBackgroundColor flag.

Use the ResetVideoGraphics operation to enable and disable background
color. Several other factors also determine whether background color is
enabled or disabled.

1. Workstation hardware type. Some workstation configurations
support background color and some do not. If your workstation
configuration does not support background color, the settings
described here have no effect.

2. If your workstation hardware does support background color (for
example, with VGA-equipped workstations), you also need to enable
background color mode explicitly by adding the following entry to
your Config.sys file:

:EVBackgroundOff: No

3-12 CTOS Programming Guide, Volume I 6191

The default (Yes) disables background color mode.

Once you have enabled background color mode with the above Config.sys
entry (and if your hardware supports it), you can turn the mode on and
off with calls to ResetVideoGraphics. If selected applications need to use
background color, it is recommended that you enable background color
mode at the system level (with Config.sys) and then allow the individual
application to turn background color on and · off with
ResetVideoGraphics.

Single-Palette Example

The following example illustrates how fBackgroundColor affects the
background colors. Entries 8 through 15 make up the alphanumeric
palette (foreground), and entries 0 through 7 make up Graphics Palette 1
(background). Assume colors are assigned to each entry as shown in
Figure 3-4.

0
1
2
3
4
5
6
7

green
half-_g_reen

red
half-red

blue
half-blue
_Y.ellow

half-_yellow

Graphics Palette 1
(Background)

8
9

10
11
12
13
14
15

rea
green
blue

_y_ellow
black

magenta
cyan
white

Alphanumeric Palette
(Foreground)

512.3-4

Figure 3-4. Sample Single-Palette Format

Using the single-palette format, with fBackgroundColor set to TRUE, you
obtain the following color combinations for the above palette. The
notation used here is f oreground_color/background_color.

6191 Using Color 3-13

red foreground I
green foreground I
blue foreground I
yellow foreground I
black foreground I
magenta foreground I
cyan foreground I
white foreground I

green background
half-green background
red background
half-red background
blue background
half-blue background
yellow background
half-yellow background

With JBackgroundColor set to FALSE, using the above palette, you
obtain each foreground value (entries 8 through 15) with entry 0 (green in
this case) as the background color in all cases.

Three-Palette Example

With the three-palette format, entries 0 through 7 make up the
alphanumeric palette (foreground), and entries 8 through 15 make up
Graphics Palette 1 (background). Assume colors are assigned to each
entry as shown in Figure 3-5. Also assume that Graphics Palette 1 is
selected by specifying 1 for the GraphicsPalette field of the control
structure.

0
1
2
3
4
5
6
7

green
half-green

red
half-red

blue
half-blue
Lellow

half-Lellow

Alphanumeric Palette
(Foreground)

8
9
10
11
12
13
14
15

red
green
blue

_yellow
black

magenta
cyan
white

Grophics 1 Palette
(Background)

512.J-5

Figure 3-5. Sample Three-Palette Format

Using the three-palette format, with JBackgroundColor set to TRUE, you
obtain the following color combinations for the above palette. The
notation used here is f oreground_color/background_color.

3-14 CTOS Programming Guide, Volume I 6191

green foreground I
half-green foreground I
red foreground I
half-red foreground I
blue foreground I
half-blue foreground I
yellow foreground I
half-yellow foreground I

red background
green background
blue background
yellow background
black background
magenta background
cyan background
white background

With /Background Col or set to FALSE, using the above palette, you
obtain each foreground value (entries 0 through 7) with entry 8 as the
background color in all cases.

Workstations with a 16-Entry Palette

Even if your workstation only supports a 16-entry palette, you can use the
single palette format to define alphanumeric and graphics color by turning
off the flag JBackgroundColor in a call to ResetVideoGraphics. Then
with alpha color enabled, you can use index value 0 for background, index
values 1 through 7 for graphics, and index values 8 through 15 for
alphanumeric color.

Similarly, for the three-palette format, index values 0 through 7 would be
used for alphanumeric color, index value 8 would be used as background,
and index values 9 through 15 would be used for graphics color.

More Sample Palettes

The following examples show the use of the same palette with different
settings for the control structure fields. These examples are for the
three-palette format. Figure 3-6 shows the palette assignments for Case 1.

6191 Using Color 3-15

0
1
2
3
4
5
6
7

white
red

green
blue
cyan

orange
magenta
_iellow

Alpha
(Foreground)

8
9
10
11
12
13
14
15

block
brown

holf-(;}'9n
half-red

white
blue
red

green

Graphics 1
(Background)

16
17 1----i'-,-"----l

1 8 l-..--fr--'-'-o~--1
19

,____~~---<

20 1--'----'---'--.---'--'-------l

21 1-----~------1
22 ,_____w~•~e _ __,
23 ..____b_lo_c_k_~

Graphics 2
(Background)

512.3-6

Figure 3-6. Case 1 Palette Settings

Case 1: Condition A

Case 1 focuses on how changes to the AlphaColorEnab/ed and
GraphicsPa/ette fields affect the resulting background colors used.
Assume that the control structure fields are set as follows (where 1 means
enabled, 2 means disabled, 0 means does not change, and x means don't
care):

GraphicsPalette 1
AlphaEnabled 1
Alpha Color Enabled 1
Graphics Enabled 2
GraphicsColorEnabled x

If fBackgroundColor is set to FALSE in this case, then Alpha is used as
the foreground palette, and Graphics 1 is the background palette
(Graphics 2 is not used). Since background color is off, only entry 0 of
Graphics 1 is used for background color. This value is white for white
background monitors, and black for black background monitors. In this
case, we see white characters over black background. The complete set
of resulting colors for Condition A is shown below.

3-16 CTOS Programming Guide, Volume I 6191

white/black
red/black
green/black
blue/black
cyan/black
orange/black
magenta/black
yellow/black

Case 1: Condition B

Assume JBackgroundCo/or is set to TRUE and the control structure fields
are set the same as described in Condition A. In this case, Graphics 1 is
used for background colors, as shown below.

white/black
red/brown
green/ 1/2 cyan
blue/ 1/2 red
cyan/white
orange/blue
magenta/red
yellow/green

Case 1: Condition C

If JBackgroundCo/or is TRUE and we change the value of the
GraphicsPalette to 2, Graphics 2 is used for background colors, as shown
below.

6/91

white/gray
red/blue
green/yellow
blue/ 1/2 yellow
cyan/ 1/2 brown
orange/red
magenta/white
yellow /black

Using Color 3-17

Case 1: Condition D

Finally, assume that the control structure fields are set as follows
(AlphaColorEnabled is OFF):

GraphicsPalette 1
AlphaEnabled 1
Alpha Col or Enabled 2
Graphics-Enabled 2
GraphicsColorEnabled x

If fBackgroundColor is FALSE as well, then the background color is one
preset color chosen by the system. (If fBackgroundCo/or were TRUE,
there would be eight preset colors chosen by the system.)

white/preset system color
red/preset system color
green/preset system color
blue/preset system color
cyan/preset system color
orange/preset system color
magenta/preset system color
yellow/preset system color

Case 2: Condition A

Case 2 focuses on how changes to the GraphicsColorEnabled field affect
the resulting background colors used.

Assume that the control structure fields are set as follows (where 1 means
enabled, 2 means disabled, 0 means does not change, and x means don't
care):

GraphicsPalette 2
AlphaEnabled 2
Alpha Color Enabled x
GraphicsEnabled 1
GraphicsColorEnabled 2

3-18 CTOS Programming Guide, Volume I 6/91

0
1
2
3
4
5
6
7

orange
green
}'ell ow
blue
cyan

m~enta
brown
block

Bitmap Memory
(Foreground)

8
9
10
11
12
13
14
15

black
brown

half-9'._an
half-red

white
blue
red

green

Graphics 1
(Background)

16
17
181---~---1

19 ,__,_____~ _ __,
20
21 1---,.,.,-.----1
22 r---~~---t
23~---~

Graphics 2
(Background)

512.3-7

Figure 3-7. Case 2 Palette Settings

If /BackgroundCo/or is set to FALSE in this case (where
GraphicsColorEnabled is also set to FALSE), then the background values
are preset colors chosen by the system, as follows:

orange/preset system color
green/preset system color
yellow/preset system color
blue/preset system color
cyan/preset system color
magenta/preset system color
brown/preset system color
black/preset system color

Case 2: Condition B

Next, assume that /BackgroundColor is set to FALSE and the control
structure fields are set as follows (GraphicsColorEnabled is now TRUE):

6191

Graphics Palette
AlphaEnabled
Alpha Color Enabled
Graphics Enabled
Graphics Co/or Enabled

2
2
x
1
1

Using Color 3-19

In this case, the resulting background color is the first entry of the
specified graphics palette (here, Graphics 2).

orange/gray
green/gray
yellow/gray
blue/gray
cyan/gray
magenta/gray
brown/gray
black/gray

Case 2: Condition C

Finally, assume that fBackgroundColor is set to TRUE and the control
structure fields are set as follows (GraphicsColorEnabled is TRUE):

GraphicsPalette 2
AlphaEnabled 2
Alpha Color Enabled x
Graphics Enabled I
GraphicsColorEnabled I

In this case, the resulting background colors are chosen in a similar
manner to those in Case 1, except that bitmap characters are chosen from
bitmap memory instead of from the Alpha palette.

orange/gray
green/blue
yellow/yellow
blue/ 1/2 yellow
cyan/ 1/2 brown
magenta/reel
brown/white
black/black

3-20 CTOS Programming Guide, Volume I 6191

Gray-Scale Monitors

If your monitor is not a color monitor, it is a "gray-scale" monitor.
Gray-scale monitors interpret the entries in the color palette as shades of
gray. Some monitors have very few gray scales (for example, some
gray-scale monitors have only black and white; others have only green,
half-green, and black). Other gray-scale monitors provide up to 64 shades
of gray.

Use the QueryVideo operation to determine the specific capabilities of
your monitor and graphics controller, as well as the number of intensities
(gray scales) available on your monitor.

Both sample programs at the end of this chapter can be successfully run
on gray-scale monitors that have a reasonable number of gray scales (16 or
more) if you comment out the following lines:

if (!pVidinfo.fColorMonitor)
ErrorExitString(O, "This workstation does not support

color . " , 4 0) ;

Systems with gray-scale monitors work in the same way as do color
systems, except that gray shades are calculated based on red, green, and
blue values. For systems with fewer than three gray scales, the fields
AlphaColorEnabled and GraphicsColorEnabled in the Color Control
structure are always 2 (disabled). For systems with fewer than four gray
scales, the field AlphaCo/orEnabled in the Color Control structure is
always 2 (disabled).

6191 Using Color 3-21

Application Notes

The following paragraphs provide detailed information on how to combine
alphanumeric color with the values in the attribute byte, how to define
bitmap color, and how to set color priorities.

Combining Alphanumeric Color With the Values in the Attribute
Byte

On monochrome workstations or color workstations with color disabled,
the attribute assigned to a character with PutFrameAttrs operation is
defined as follows:

Bit Attribute

0 Half bright
1 Underline
2 Reverse video
3 Blinking
4 Bold
5 Struck-through
6-7 not used

On a workstation with alphanumeric color enabled, the attributes are
redefined as follows:

Bit Attribute

0 pO
1 Underline
2 Reverse video
3 Blinking
4 Bold
5 Struck-through
6 pl
7 p2

p2, pl, and pO combine to select the index number of one of the palette
entries for alphairnmeric color (as shown by example in the next few
paragraphs). Although the half-bright attribute defined by bit 0 is lost, it
is possible to regain half bright by defining half-bright colors.

3-22 CTOS Programming Guide, Volume I 6191

With either the single-palette or the three-palette format, a maximum of
eight entries can define alphanumeric color. Therefore, if you intend to
preserve the six character attributes, four alpha colors are possible. Half
bright intensity can be defined using four of the entries and full color
intensity, using the remaining entries.

Following is an example showing the full bright and half-bright intensities
of four colors using the three-palette format.

Palette Entry

0
1
2
3
4
5
6
7

Bit Assignments

OOOOUOOb (OCh) (green)
OOOOlOOOb (08h)
OOUOOOOb (30h) (red)
OOlOOOOOb (20h)
OOOOOOllb (03h) (blue)
OOOOOOlOb (02h)
00111100b (3Ch) (yellow)
00101000b (28h)

To make a red character with this palette, you specify an attribute byte to
PutFrameAttrs of OlOOOOOOb or 40h. The following shows how this is
done.

Recall that bits 0, 6, and 7 of the attribute byte combine to select the
color index number. Looking at the bits in the attribute byte from left to
right, the color index is formed as shown:

Bits in attribute byte

Bits forming color index
Bit values for color index 2

7 6 5 4 3 2 1 0

0 1 0

Combining bits 7, 6, and 0, the resulting binary value OlOb is the value of
the color index. This value selects rgbAlpha(2) of the palette above. The
value of rgbAlpha(2) is OOllOOOOb, in which RlRO is 11 or full bright.

Because no attribute bits are set (bits 1 through 5 for underline, reverse
video, blinking, bold, and struck-through, respectively), the value of the
attribute byte in binary is

0 1 0 0 0 0 0 0

In hexadecimal, this is 40h.

6191 Using Color 3-23

To make a red, blinking, reverse-video character with the above palette,
you specify an attribute byte with bits 2 and 3 turned on as shown below:

Bits in attribute byte 7 6 5 4 3 2 1 0

Bits forming color index
0 1 0 0 0 0 0 0

Bit turned on for reverse video 0 0 0 0 0 1 0 0
Bit turned on for blinking 0 0 0 0 1 0 0 0

Resulting binary value 0 1 0 0 1 1 0 0

In this case the value of the attribute byte is 01001100b or 4Ch.

NOTE: With the control structure field AlphaColorEnabled set to 1, the
single-palette format uses entries in the range of 8 through 15 for
alphanumeric color. (See "Field Descriptions," earlier in this section.)

The call to PutFrameAttrs would be the same whether you defined the
eight color entries using the three-palette or the single-palette format.
Using the single-palette with AlphaColorEnabled set to 1, the combined
value of the color bits (2) would select entry 10, the third alphanumeric
palette entry.

Defining Bitmap Color

For bitmap color, the graphics planes are combined for each pixel and are
used as an index to the correct palette entry for the pixel color.

With the three-palette structure, the resulting value is the index of the
entry in the graphics palette (either rgbGraphicsl or rgbGraphics2,
depending on the value of GraphicsPalette in the color control structure).
With the single-palette format, GraphicsPalette has no meaning. The
value directly indexes the entry defining the color.

3-24 CTOS Programming Guide, Volume I 6191

NOTE: ResetVideo leaves the three palettes and the value of
GraphicsPalette untouched and resets AlphaEnabled and
GraphicsEnabled to 0. SetScreenVidAttrs sets or resets AlphaEnabled and
leaves the palettes, GraphicsPalette, and GraphicsEnabled untouched.

Color Priorities

As indicated earlier in this section, the single-palette format allows you to
use any of the palette entries for graphics color. With hardware that
allows you to affect pixels using the alphanumeric character map or the
graphics bit map, there can be some confusion over which color would
actually be displayed. A priority must be set to determine the color
displayed. This is the subject of the following example.

Assume that color is set up in the following way:

• The control structure field AlphaColorEnabled is the value 1.

• The flag JBackgroundCo/or was set to TRUE in a previous call to
ResetVideoGraphics (entries 0 through 7 are background colors).

• The values of bits 0, 6, and 7 of the attribute byte combine to select
palette entry 1.

P2 Pl PO
0 0 1

• The palette shown in Figure 3-8 is defined using the single-palette
format.

6191 Using Color 3-25

0
1
2
3
4
5
6
7

block
__green ..

..

..

.. ..

..
Graphics Palette 1

{Background)

8
9
10
11
12
13
14
15

red
:Erue ..

..

..

..

..

..
Alphanumeric Palette

(Foreground)

512.3-8

Figure 3-8. Sample Palette

Using this setup, the letter B (shown in Figure 3-9) is displayed to the
video device by a call to PutFrameChars. Entry 1 (P2 Pl PO = 001)
indicates blue foreground and green background, since the alphanumeric
palette is always foreground and the graphics palette (either 1 or 2) is
background. The letter B is thus displayed with a blue foreground, and
background pixels are in green.

• • • 0

• 0 0 e-i.... Foreground Color

• • • 0

• 0 0 •

• • • 0 Background Color
2392.J-1

Figure 3-9. Color Priorities

Now assume that in addition to the above conditions, GraphicsEnabled
and GraphicsColorEnabled are set to 1 and that you manipulate the pixels
through the graphics bit map. If you attempt to display each pixel in the
right-most column shown in the figure using palette entry 8 (red), all the
background color pixels in this column would display as red. All the
foreground pixels, however, would display as blue.

3-26 CTOS Programming Guide, Volume I 6191

When combining alphanumerics and graphics to manipulate pixels, the
priority (from highest to lowest) of the color displayed is

1. alphanumeric foreground

2. graphics

3. background

6191 Using Color 3-27

Programming Tips

The following paragraphs provide useful programming tips.

Avoid Use of Reverse Video and Graphics

Setting the screen to reverse video mode (with SetScreenVidAttrs) can
cause confusing results when used in conjunction with graphics. When
alphanumerics is cleared in normal video (not reverse video), nothing
exists in the character map, and so it is transparent. This means that any
graphics below will be visible.

When alphanumerics is cleared to reverse video, all of the character cells
are filled up. Since alphanumerics overlays graphics, the graphics will not
be visible. It is advised that Set Screen VidAttrs be used to ensure that
reverse video is not used in conjunction with graphics.

Obtaining Single-Palette Format

When you use ProgramColorMapper to return existing palette settings, the
three-palette format is returned by default. To return the single-palette
format, the bFormat control byte must be set to 1, and 8 bytes of new
control information must be specified in the call to ProgramColorMapper.
The number of control bytes must be 8. The bFormat control byte is not
a permanent setting. It simply determines the treatment of the palette
data that is passed or returned.

Avoid Combining Alpha Background with Graphics

Since palette entries are shared between the alpha background color
palette and the graphics palette, the use of alpha background and graphics
together is not advised. When background color mode is set and both
alpha and graphics are used, graphics palette entries will be treated as
alpha background colors and may produce unwanted background colors.

3-28 CTOS Programming Guide, Volume I 6191

Program Examples

The following program examples show how to use the
ProgramColorMapper operation to display color using the three-palette
and single-palette formats. Both sample programs can be successfully run
on gray-scale monitors that have a reasonable number of gray scales (16 or
more) if you comment out the following lines:

if (!pVidinfo.fColorMonitor)
ErrorExitString(O, "This workstation does not support

color . " , 4 0) ;

Three-Palette Format Example

/* Program name: ThreePalette.c

*/

Description: This is a sample program that shows how three
palette style color works for character modes. In this example,
only the alpha palette is used.

#define sysli t
#include <CTOSTypes.h>

#define CheckErc
#define ErrorExit
#define ErrorExitString
#define ProgramcolorMapper
#define PutFrameAttrs
#define PutFrameChars
#define QueryVideo
#define ReadKbdDirect
#define ResetFrame
#define SetAlphaColorDefault
#include <CTOSLib.h>

/* Color literals; NOTE that these are constructed using the
'three palette'format:

Al AO Rl RO Gl GO Bl BO
For example, the Magenta color is formed by:

Al Al Rl RO Gl GO Bl BO
0 0 1 1 0 0 1 1 ~ 33 Hex

*/

Listing 3-1. ThreePalette.c. (Page 1 of 7)

6191 Using Color 3-29

#define lBlue
#define lHalfBlue
#define !Magenta
#define lHalfMagenta
#define lAmber
#define lOrange
#define lSalmon
#define !Grey
#define lReverseVideo
#define lBlinking

typedef struct
(

Byte
Byte
Byte
Byte
Byte
Word
Word
Word
Word
Word
Byte
Byte
Byte
Pointer
Pointer
Byte
Byte
Word
Word
Word
Word
Word
Word
Byte
Byte

Word
Byte
Byte
Word
Word
Word
Word
Byte

VidinfoType;

Ox3
Ox2
Ox33
Ox22
Ox38
Ox34
Ox25
Oxl5
4
8

Level;
nLinesMax;
nColsNarrow;
ncolsWide;
GraphicsVersion;
nPixelsHigh;
nPixelsWide;
saGraphicsBoard;
ioPort;
wBytesPerLine;
nCharHeight;
nCharWidthNarrow;
nCharWidthWide;
pBitmap;
pFont;
bModule'l'ype;
bModulePos;
wModuleEar;
nYCenter;
nXCenterNarrow;
nXCenterWide;
wxAspect;
wyAspect;
bPlanes;
fColorMonitor;
nColors;
fBackgroundColor;
fHardwareCharMap;
nAlternateLinesMax;
nAlternateCharHeight;
wVidRelease;
wVidVersion;
Reserved[45);

Listing 3-1. ThreePalette.c. (Page 2 of 7)

3-30 CTOS Programming Guide, Volume I 6191

typedef struct

I
Byte
Byte
Byte
Byte
Byte
Byte
Word

bGraphicsPalette;
bAlphaEnabled;
bAlphaColorEnabled;
bGraphicsEnabled;
bGraphicsColorEnabled;
bFormat;
windexstart;

ClrCtrlType;

void main ()

/*

*/

6191

Byte rgbNewPalette[B],
rgbOldPalette[B],

Color Attributes:

As an example of how to interpret the color attribute byte, let's
look at rgbColorAttrs[6]:

If you want to make some text yellow (using default colors), you
need to set the color index in the attribute byte to six (6). The
bits in the attribute byte that form the color index are bits 0,
6, and 7. Bits 1 through 5 are used for the other character
attributes (underline, reverse video, blinking, bold, and struck­
through):

Attribute byte:
Color index formed
from these bits:
To get index 6
is the 2's place and
To get the attr mask
no other attributes.

76543210

11
llxxxxxO (bit 0 is the l's place, bit 6

bit 7 is the 4's place)
11000000 - OxCO (hex). Selects color 6 and

When using color you lose the half-bright attribute. If you have
half-bright colors defined, then you can use those has the 'half­
bright attribute'.

Listing 3-1. ThreePalette.c. (Page 3 of 7)

Using Color 3-31

rgbColorAttrs[8)
{

o,
1,
Ox40,
Ox41,
Ox80,
Ox81,
OxCO,
oxcl

), bChar;
char *rgbTextDef [I
{

"This is
11 This is
"This is
"This is
"This is
"This is
"This is
"This is

),

*rgbTextNew [I
(

} ;

Word

"This
"This
"This
"This
"This
"This
"This
"This

is
is
is
is
is
is
is
is

green
half-bright
cyan
half-bright
white
half-bright
yellow
red

blue
half-bright
Magenta
half-bright
amber
orange
salmon
grey

iCol,
iLine;

ClrctrlType
NewControl,
OldControl;

VidinfoType
pVidinfo;

green 11 ,

cyan

white",

" I
blue

Magenta",

CheckErc (QueryVideo (&pVidinfo, 100));

Listing .3-1. ThreePalette.c. (Page 4 of 7)

3-32 CTOS Programming Guide, Volume I 6191

/*

*/

/*

*/

/*

*/

I*

*/

/*

*/

6191

First check if we can use color.
NOTE: This check is not quite correct considering that there
are analog monochrome monitors that can support shades of
grey. Since this is an example of color, we won't try to run on
monochrome monitors.

if (!pVidinfo.fColorMonitor)
ErrorExitString (0, "This workstation does not support
color.", 40);

Save old color palette and control so that we can reset upon exit.
We assume that we are being 'run' from the Executive.
The Executive uses the 'three palette' format so we only need
to get 8 bytes for the Color Palette and 5 bytes for the
Control Structure.

CheckErc (ProgramColorMapper (rgbNewPalette, O, &Newcontrol,
O,rgbOldPalette, 8, &OldControl, 5));

Set up default alpha color palette.

CheckErc (SetAlphaColorDefault (O));

Display some color text using default palette.

CheckErc (ResetFrame (O));
for (iLine - O, iCol - O; iLine < 8; iLine++, iCol++)

CheckErc (PutFrameChars (0, iCol, iLine,
rgbTextDef[iLine], 25));
CheckErc (PutFrameAttrs (0, iCol, iLine,
rgbColorAttrs[iLine], 25));

CheckErc (ReadKbdDirect (0, &bChar));

Now use color and reverse video (default palette); Note that we
are ORing the color attribute byte with the Reverse Video
attribute (4)

Listing 3-1. ThreePalette.c. (Page 5 of 7)

Using Color 3-33

/*

*/

/*

*/

CheckErc (ResetFrame (0));
for (iLine = O, iCol = O; iLine < 8; iLine++, iCol++)

CheckErc (PutFramechars (0, iCol, iLine,
rgbTextDef[iLine], 25));
CheckErc (PutFrameAttrs (0, iCol, iLine,
rgbColorAttrs[iLine] I lReverseVideo, 25));

CheckErc (ReadKbdDirect _(0, &bChar));

Now let's change the palette

rgbNewPalette[O]
rgbNewPalette[l]
rgbNewPalette[2]
rgbNewPalette[3]

!Blue;
lHalfBlue;
!Magenta;
lHalfMagenta;

rgbNewPalette[4] !Amber;
rgbNewPalette[5] !Orange;
rgbNewPalette[6] !Salmon;
rgbNewPalette(7] !Grey;
NewControl.bGraphicsPalette 2;
NewControl.bAlphaEnabled = l;
NewControl.bAlphaColorEnabled = l;
Newcontrol.bGraphicsEnabled = 2;
Newcontrol.bGraphicsColorEnabled = 2;
CheckErc (ProgramColorMapper (rgbNewPalette, 8, &Newcontrol,
5, rgbOldPalette, O, &OldControl, 0));

Display some color text using new palette.

CheckErc (ResetFrame (O));
for (iLine = 0, iCol = O; iLine < 8; iLine++, iCol++)

CheckErc (PutFrameChars (0, iCol, iLine,
rgbTextNew[iLine], 27));
CheckErc (PutFrameAttrs (0, iCol, iLine,
rgbColorAttrs[iLine], 27));

CheckErc (ReadKbdDirect (0, &bChar));

Listing 3-1. ThreePalette.c. (Page 6 of 7)

3-34 CTOS Programming Guide, Volume I 6191

/*

*/

/*

*/

6191

Now use color and blinking attribute; Note that we are ORing the
color attribute byte with the blinking attribute (8)

CheckErc (ResetFrame (O));
for (iLine = 0, icol = O; iLine < 8; iLine++, iCol++)

CheckErc (PutFrameChars (0, iCol, iLine,
rgbTextNew[iLine], 27));
CheckErc (PutFrameAttrs (0, iCol, iLine,
rgbColorAttrs[iLine) I lBlinking, 27));

CheckErc (ReadKbdDirect (O, &bChar));

Reset palette and control structure to original values.

CheckErc (ProgramcolorMapper (rgbOldPalette, 8, &Oldcontrol, 5,
rgbOldPalette, O, &OldControl, 0));

ErrorExit (O);

Listing 3-1. ThreePalette.c. (Page 7 of 7)

Using Color 3-35

Single-Palette Format Example

I*
Program name: NewPalette.c

Description: This is a sample program that shows how the single
palette style color works for character modes.

caveats: This is meant to be a sample program and should not be
considered to be a 'real' program. It is just a representation of
basic character color concepts. Also, this program was developed
for use with the Metaware™ High C compiler for CTOS. It will
most likely require changes for other C compilers.

*/

#include <stdio.h>

#define syslit
#include <cTOSTypes.h>
#define CheckErc
#define ErrorExit
#define ErrorExitstring
#define InitCharMap
#define InitVidFrame
#define ProgramColorMapper
#define PutFrameAttrs
#define PutFrameChars
#define QueryVideo
#define ReadKbdDirect
#define ResetFrame
#define SetAlphaColorDef ault
#define SetScreenVidAttr
#include (CTOSLib.h>

pragma Calling_Convention (CTOS_CALLING_CONVENTIONS);
extern ErcType ResetVideoGraphics (Byte nCols, Byte nLines, Byte
fAttr,Byte bSpace, Pointer psMapRet,Word nPixelsWide, Word nPixelsHigh,
Word bPlanes, FlagType fBackgroundColor);

#defi.ne lReverseVideo 4

typedef struct [
Byte Level;
Byte
Byte
Byte
Byte

nLinesMax;
nColsNarrow;
ncolsWide;
GraphicsVersion;

Listing 3-2. NewPalette.c. (Page 1 of 11)

3-36 CTOS Programming Guide, Volume I 6191

Word
Word
Word
Word
Word
Byte
Byte
Byte
Pointer
Pointer
Byte
Byte
Word
Word
Word
Word
Word
Word
Byte
Byte
Word
Byte
Byte
Word
Word
Word
Word
Byte

nPixelsHigh;
nPixelsWide;
saGraphicsBoard;
ioPort;
wBytesPerLine;
ncharHeight;
nCharWidthNarrow;
nCharWidthWide;

pBitmap;
pFont;
bModuleType;
bModulePos;
wModuleEar;
nYCenter;
nXCenterNarrow;

nXCenterWide;
wxAspect;
wyAspect;
bPlanes;
fColorMonitor;
ncolors;
fBackgroundColor;
fHardwareCharMap;
nAlternateLinesMax;
nAlternateCharHeight;
wVidRelease;
wVidVersion;
Reserved[45];

VidinfoType;

typedef struct
(

Byte
Byte
Byte
Byte
Byte
Byte

bGraphicsPalette;
bAlphaEnabled;
bAlphaColorEnabled;
bGraphicsEnabled;
bGraphicsColoiEnabled;
bFormat;

Word windexStart;
ClrCtrlType;

typedef struct
(

word
Word

wRed;
wGreen;

Word wBlue;
RGBColorType;

Listing 3-2. NewPalette.c. (Page 2 of 11)

6191 Using Color 3-37

void main ()

I*

*/

Byte rgbOldPalette[8] 1

Color attribute byte. As an example of how to interpret the color
attribute byte, let's look at rgbColorAttrs[6]:

If you want to make some text yellow, you need to set the color
index in the attribute byte to six (6). The bits in the attribute
byte that form the color index are bits 0 1 6 1 and 7. Bits 1
through 5 are used for the other character attributes (underline,
reverse video, blinking,bold, and struck-through):

Attribute byte: 76543210
Color index formed
from these bi ts: 11
To get index 6 llxxxxxO (bit 0 is the l's place, bit 6
is the 2's place and bit 7 is the 4's place)
To get the mask 11000000 ~ OxCO (hex)

When using color you lose half-bright attribute. If you have
half-bright colors defined, then you can use those has the
'half-bright attribute'.

rgbColo:r:;Attrs[8)
[

0,
1,
Ox40,
Ox41,
Ox80,
Ox81,
oxco,
Ox cl

l '
bChar;

FlagType
fEV,
fGCOOl,
fBackgroundColor;

Listing 3-2. NewPalette.c. (Page 3 of 11)

3-38 CTOS Programming Guide, Volume I 6191

6191

char
•rgbTextl[)
[

"This is green
"This is half-bright green",
"This is cyan
"This is
"This is
"This is
"This is
"This is

half-bright cyan ",
white
half-bright white",
yellow
red

I '
•rgbText2[) =
[

"Text green/Background black
"Text half-bright green/Background grey
"Text cyan/Background blue
"Text half-bright cyan/Background half·-bright blue
"Text white/Background magenta

" '

"Text half-bright white/Background half-bright magenta",
"Text yellow/Background half-bright red
"Text red/Background half-bright yellow

I '
•rgbTextJ[] =
[

"Text black/Background green
"Text grey/Background half-bright green
"Text blue/Background cyan
"Text half-bright blue/Background half-bright cyan
"Text magenta/Background white
"Text half-bright magenta/Background half-bright white",
"Text half-bright red/Background yellow

);

Word

"Text half-bright yellow/Background red

iCol,
iLine,
ncols,
nLines,
scharMap;

ClrctrlType
Newcontrol,
OldControl;

RGBColorType
rgColorPalette[16);

VidinfoType
pVidinfo;

Listing 3-2. NewPalette.c. (Page 4 of 11)

Using Color 3-39

/*

*/

/*

*/

I*

*/

I*

*/

CheckErc (QueryVideo (&pVidinfo, 100));
nCols = pVidinfo.nColsNarrow;
nLines = pVidinfo.nLinesMax;

if ((pVidinfo.wVidRelease < 3) && (pVidinfo.wVidVersion < l))
ErrorExitString (0, "This program requires VAM version 3.1 or
later.", 47);

First check if we can use color.
NOTE: This check is not quite correct considering that there are
analog monochrome monitors that can support shades of grey. Since
this is an example of color, we won't try to run on monochrome
monitors.

if (!pVidinfo.fColorMonitor)
ErrorExitString (0, "This workstation does not support
color.", 40);

If we made it past the previous c.heck, then check if we have
Extended Video:
Check if fBackgroundcolor is already TRUE, that we can set 34
lines and that the resolution is set to 0. This almost assures us
that we are Extended Video and not GC-x04.
NOTE: This should not cause any problems, since fBackgroundColor
will always be FALSE for GC-001 and GC-x04 always has resolution
set to some non-zero state (e.g., 720x348 or 1024x768)

fEV = (pVidinfo.fBackgroundColor && (pVidinfo.nAlternateLinesMax
== 34) && (pVidinfo.nPixelsWide == 0) && (pVidlnfo.nPixelsHigh ==
0));

Make sure we know if we are on GC-001 with color monitor;

fGCOOl (pVidinfo.GraphicsVersion 3);

Save old color palette and control so that we can reset upon exit.
We assume that we are being 'run' from the Executive. The
Executive uses the 'three palette' format so we only need to get 8
bytes for the Color Palette and.5 bytes for the Control Structure.

Listing 3-2. NewPalette.c. (Page 5 of 11)

3-40 CTOS Programming Guide, Volume I 6191

/*

*/

/*

*/

/*

*/

/*

*/

/*

*/

6191

CheckErc (ProgramColorMapper (0, O, 0, O, rgbOldPalette, 8,
&OldControl, 5));

Start setting up new color palette; We are making this color
palette look like default color palette as set up by the

SetAlphaColorDefault call. NOTE that foreground colors start at
index 8.

Background color 0 - black

rgColorPalette[O] .wRed - O;
rgColorPalette[O] .wGreen - O;
rgColorPalette[O] .wBlue - O;

Background color 1 - Dark grey

rgColorPalette[l] .wRed - 333;
rgColorPalette[l] .wGreen - 333;
rgColorPalette[l] .wBlue - 333;

Background color 2 - Blue

rgColorPalette[2] .wRed - O;
rgColorPalette[2] .wGreen - O;
rgColorPalette[2] .wBlue - 1000;

Background color 3 - Half-bright Blue

rgColorPalette [3] . wRed - 0;
rgColorPalette[J] .wGreen - O;
rgColorPalette[J] .wBlue - 500;

Background color 4 - Magenta

rgColorPalette(4] .wRed - 1000;
rgcolorPalette[4] .wGreen - O;
rgColorPalette[4] .wBlue - 1000;

Listing 3-2. NewPalette.c. (Page 6 of 11)

Using Color 3-41

/*

*/

/*

*/

/*

*/

/*

*/

/*

*I

/*

*/

Background color 5 - Half-bright Magenta

rgColorPalette[5] .wRed = 500;
rgColorPalette[5] .wGreen = O;

rgColorPalette[5].wBlue = 500;

Background color 6 - Half-bright red

rgColorPalette[6) .wRed = 500;
rgColorPalette[6) .wGreen - O;
rgColorPalette[6] .wBlue = O;

Background color 7 - Half-bright yellow

rgColorPalette[7) .wRed = 500;
rgColorPalette[7] .wGreen = 500;
rgColorPalette[7) .wBlue = O;

Foreground color 0 - Green

rgColorPalette[B] .wRed = O;
rgColorPalette[B] .wGreen = 1000;
rgColorPalette[BJ .wBlue - O;

Foreground color 1 - Half-bright green

rgcolorPalette[9] .wRed = O;
rgColorPalette[9] .wGreen = 500;

rgColorPalette[9] .wBlue = O;

Foreground color 2 - cyan

rgColorPalette[lO] .wRed = O;
rgColorPalette[lO] .wGreen = 1000;
rgColorPalette[lO] .wBlue = 1000;

Listing 3-2. NewPalette.c. (Page 7 of 11)

3-42 CTOS Programming Guide, Volume I 6191

/*

*/

/*

*/

/*

*/

/*

*/

/*

*/

/*

*/

6191

Foreground color 3 - Half-bright cyan

rgColorPalette[ll] .wRed = O;
rgColorPalette[ll] .wGreen = 500;

rgColorPalette[ll] .wBlue = 500;

Foreground color 4 - White

rgColorPalette[l2].wRed = 1000;
rgColorPalette[l2] .wGreen = 1000;
rgColorPalette[l2] .wBlue = 1000;

Foreground color 5 - Half-bright white

rgColorPalette[ll] .wRed = 500;

rgColorPalette[ll] .wGreen = 500;
rgcolorPalette[ll] .wBlue = 500;

Foreground color 6 - Yellow

rgColorPalette[l4] .wRed = 1000;
rgColorPalette[l4] .wGreen = 1000;

rgColorPalette[l4) .wBlue = O;

Foreground color 7 - Red

rgColorPalette[l5] .wRed = 1000;
rgColorPalette[l5] .wGreen = O;
rgColorPalette[l5] .wBlue = O;

Enable alpha color only and set up the color palette.

Listing 3-2. NewPalette.c. (Page 8 of 11)

Using Color 3-43

/*

*/

/*

*/

/*

*/

/*

*/

NewControl.bGraphicsPalette = 2;
Newcontrol.bAlphaEnabled = l;
Newcontrol.bAlphaColorEnabled = l;
NewControl.bGraphicsEnabled = 2;
NewControl.bGraphicsColorEnabled 2;
NewControl. bFormat = 1;
NewControl.windexstart = O;

Set new color palette. Note that size of the color palette is:
3 Words (Red, Green, Blue) times 2 bytes per word times the number
of entries in the palette (16) = 96.

CheckErc (ProgramColorMapper (rgColorPalette, 96, &NewControl, 8,
O, O, 0, O));

Note that we won't do the following with enhanced video (EV) since
this part of the code assumes that fBackgroundcolor is FALSE
and makes the messages appear incorrect.

if (! fEV)

Display some color text

CheckErc (ResetFrame (O));

for (iLine = 0, icol = O; iLine < 8; iLine++, iCol++)

CheckErc (PutFrameChars (0, iCol, iLine, rgbTextl[iLine],
25));
CheckErc (PutFrameAttrs (0, iCol, iLine,
rgbColorAttrs[iLine], 25));

CheckErc (ReadKbdDirect (0, &bChar));

Now use color and reverse video.

CheckErc (ResetFrame (0));
for (iLine = O, iCol = O; iLine < 8; iLine++, iCol++)

CheckErc (PutFrameChars (0, iCol, iLine, rgbTextl[iLine],
2 5)) ;

CheckErc (PutFrameAttrs (0, iCol, iLine,
rgbColorAttrs[iLine] I lReverseVideo, 25));

Listing 3-2. NewPalette.c. (Page 9 of 11)

3-44 CTOS Programming Guide, Volume I 6191

/*

*/

/*

*I

/*

*/

/*

*/

/*

*/

6191

CheckErc (ReadKbdDirect (O, &bChar));

Set fBackgroundColor to TRUE (if supported) and reinitialize the
character map

fBackgroundColor = !fGCOOl;
CheckErc (ResetVideoGraphics (nCols, nLines, TRUE, Ox20,
&sCharMap, O, O, O, fBackgroundColor));
CheckErc (InitVidFrame (0, O, 0, nCols, nLines, 0, 0, 0,
FALSE, FALSE));
CheckErc (Ini tCharMap (0, scharMap)) ;
CheckErc (SetScreenVidAttr (l, TRUE));

Set new color palette. Note that size of the color palette is:
3 Words (Red, Green, Blue) times 2 bytes per word times the number
of entries in the palette (16) = 96.

CheckErc (ProgramColorMapper (rgColorPalette, 96, &Newcontrol,
8, O, O, O, O));

end of if ·(! fEV)

Background color has no meaning on GC-001 so rather than confuse
the person running the program, we won't even do this. Again
messages don't reflect what is displayed on the screen.

if (! fGCOOl)

Display some color text

CheckErc (ResetFrame (O));
for (iLine = O, iCol = O; iLine < 8; iLine++, icol++)

Cl)eckErc (PutFrameChars (0, iCol, iLine, rgbText2[iLine),
53));
CheckErc (PutFrameAttrs (0, iCol, iLine,
rgbColorAttrs[iLine), 53));

CheckErc (ReadKbdDirect (0, &bChar));

Listing 3-2. NewPalette.c. (Page 10 of 11)

Using Color 3:_45

/*

*/

/*

*/

Now use color and reverse video.

CheckErc (ResetFrarne (O));
for (iLine = 0, iCol = O; iLine < 8; iLine++, iCol++)

CheckErc (PutFrameChars (0, iCol, iLine, rgbText3[iLine],
53));
CheckErc (PutFrameAttrs (0, iCol, iLine,
rgbColorAttrs[iLine) I lReverseVideo, 53));

CheckErc (ReadKbdDirect (O, &bChar));
/*end of if (!fGCOOl) */

Reset to original state;

CheckErc (ProgramColorMapper (rgbOldPalette, 8, &OldControl, 5, O,
0, 0, 0));

CheckErc (ResetVideoGraphics (0, 0, TRUE, Ox20, &sCharMap, O, 0,
0, FALSE));
ErrorExit (O);

Listing 3-2. NewPalette.c. (Page 11 of 11)

3-46 CTOS Programming Guide, Volume I 6191

4
Writing Partition-Managing Programs

Certain kinds of applications need the ability to "spawn" other programs.
For example, some applications allow users to run utility programs in the
background, while the application continues to run in the foreground.

One way to accomplish this is for the application to create a child
partition and run the utility program in that partition. Then, when the
utility program has terminated, the application deallocates the child
partition.

This chapter discusses the methods available to accomplish that.

A Review of Partition Management Operations

As discussed in the CTOS Operating System Concepts Manual, the
operating system provides several operations which aid in partition
management. The Context Manager also includes a library of operations
which can be used when the Context Manager is installed.

In general, if your program will always run when Context Manager is
installed, use the Context Manager operations. However, if your program
needs to run whether or not Context Manager is installed you must use
the operating system partition management operations directly.

This chapter addresses the latter case, when a program must run whether
or not the Context Manager is present. See your Context Manager
documentation for more information about the programmatic interface to
the Context Manager.

Writing Partition-Managing Programs 4-1

Creating a Partition and Loading a Program into It

Creating partitions is not particularly complicated, as long as you perform
four basic steps in the correct order. The steps in creating a partition are:

1. Allocate memory and create the partition.

2. Swap its context into memory.

3. Set up the partition's environment.

4. Load a task into the partition.

The following sections discuss each of these steps in more detail. For an
example of a complete partition-creating procedure, see the listings at the
end of this chapter.

Creating a Partition and Swapping It into Memory

Listing 4-1 shows a code fragment that creates a partition and swaps it
into memory. In protected mode, any partition can create other
partitions. In real mode operating systems, only the primary partition can
create other partitions.

ere= CreateBigPartition("MyChild", 7,(DWord)
MemSize*64 /*parags*/, Par6, &userNumChild);

if(erc != ercOK)
return(erc);

RetCleanup(SwapinContext(userNumChild));

Listing 4-1. Creating a Partition

The fragment first creates a partition using CreateBigPartition. Using
CreateBigPartition allows the program to create a partition of any size,
while CreatePartition limits partition size to one megabyte. Note,
however, that CreateBigPartition works only on protected-mode
workstations.

4-2 CTOS Programming Guide, Volume I

The created partition is of type 6, which allows the partition to be resized
dynamically by the operating system whenever a program in the partition
terminates. Also, note that the MemSize parameter represents a number
of K bytes. This number must be multiplied by 64 to yield the paragraph
count needed by the CreatePartition calls.

After the program has created the partition, it swaps the new partition
into memory. This causes the operating system to verify that enough
physical memory is available, and to allocate that memory to the
newly-created partition. A program must perform a SwaplnContext
before it attempts to load a task into a newly-created partition, or the
results will be undefined.

RetCleanup is a macro which causes the program to deallocate the
partition in case of error. See the complete program listing at the end of
this chapter if you want to see how the macro is defined.

Partition-managing programs must be extremely careful about deallocating
partitions they create. If a partition-managing program exits without
deallocating a partition it created, that partition cannot be destroyed
without rebooting the system.

Setting Up the Program's Environment

After the partition has been created, the program must set up the
partition environment for the task it plans to load. The amount of setup
required depends on the resources the task will use.

In general, the minimal setup consists of initializing the new partition's
virtual screen and Application System Control Block. This ensures that
the program can write to its virtual screen, and can retrieve basic
information about itself.

The code fragment in Listing 4-2 shows the initialization of a
newly-created partition. Note that "Alt" requests are used for most of
these tasks.

Alt requests allow a program to send requests on behalf of another user
number. For each request the operating system serves, there is also an
Alt version. The only difference between a regular request and an Alt
request is that the Alt requests take an additional parameter, the user
number for whom the request should be sent.

Writing Partition-Managing Programs 4-3

/* copy Vlpb and insert its address in the child
partition's Asch */

RetCleanup(GetpStructure(lGetpVLPB, O, &pVlpbMine));
RetCleanup(AltAllocMemoryLL(userNumChild,

*(Word *)pVlpbMine, &pVlpbChild));
memcpy(pVlpbChild, pVlpbMine, *(Word *)pVlpbMine);
RetCleanup(GetpStructure(lGetpAscb, userNumChild,

&pAscbChild));
pAscbChild->pVlpb = pVlpbChild;

/* copy user name, signon password, and sys.cmds spec
in new Ascb */

RetCleanup(GetpStructure(lGetpAscb, O, &pAscbMine));
memcpy(pAscbChild->sbUserName, pAscbMine->sbUserName,

SCOPYAREA);

/* sneakily replace my pVlpb with childs so I can get
* params. Have to do this cuz RgParam ops are not
* requests, so no Alt versions available */

pTemp = pAscbMine->pVlpb;
pAscbMine->pVlpb = pVlpbChild;
/* function to get any parameters for the child */
RetCleanup(GetParams(pVlpbChild));
/* restore my Ascb */
pAscbMine->pVlpb = pTemp;

/* set child's exit run file */
RetCleanup(AltSetExitRunFile(userNumChild,

"[Sys]<Sys>Exec.run", 18, NULL, O, Ox80));

/* copy current path to new partition */
RetCleanup(GetUCB(&ucb, sizeof(ucb)));
RetCleanup(AltSetPath(userNumChild, ucb.rgbVol,

ucb.cbVol, ucb.rgbDir, ucb.cbDir, ucb.rgbPswd,
ucb.cbPswd));

if (ucb.cbPrefix)
RetCleanup(AltSetPrefix(userNumChild, ucb.rgbPrefix,

ucb. cbPrefix));

Listing 4-2. Initializing a New Partition's Environment (Page 1 of 2)

4-4 CTOS Programming Guide, Volume I

if (ucb.cbNode)
RetCleanup(AltSetNode(userNumChild, ucb.rgbNode,

ucb.cbNode));

/* initialize exec screen - font doesn't need loading,
nor double bar */

RetCleanup(AltQueryVidHdw(userNumChild, &vidHdw,
sizeof(vidHdw)));

cLines = vidHdw.nLinesMax;
cCols = vidHdw.nColsNarrow;
RetCleanup(AltResetVideo(userNumChild, cCols, cLines,

TRUE, 0, &sMap));
RetCleanup(AltinitVidFrame(userNumChild, 1, O, O,

cCols, 2, 0, 0, O, O, O));
RetCleanup(AltinitVidFrame(userNumChild, 2, O, 2,

cCols, 1, O, O, O, O, 0));
RetCleanup(AltinitVidFrame(userNumChild, O, 0, 3,

cCols, cLines - 3, 0, 0, 0, 0, 0)) ;
RetCleanup(AltinitCharMap(userNumChild, O, sMap));
RetCleanup(AltSetScreenVidAttr(userNumChild,l, OxFF));

Listing 4-2. Initializing a New Partition's Environment (Page 2 of 2)

Loading the Program into the New Partition

Once the partition has been created and the environment has been set up,
the partition-managing program can load a task into the new partition. A
task simply consists of a run file. Calling LoacllnteractiveTask or
LoadPrimaryTask causes the operating system to read the specified run
file from disk into memory, then to create and schedule a process for the
new task.

When LoadinteractiveTask or LoadPrimaryTask return to the caller, the
newly loaded program is in memory and scheduled for execution. Listing
4-3 shows a call to LoadlnteractiveTask.

A partition-managing program must ensure that the run file can be loaded
successfully before it attempts to load the task. If the operating system
attempts to load the task but fails, the workstation may crash. In
particular, this condition can occur when insufficient memory is specified
for the partition and the Context Manager is not installed.

Writing Partition-Managing Programs 4-5

RetCleanup(LoadinteractiveTask(userNumChild,
pRunFileName, strlen(pRunFileName), NULL, O,
StdPriority, FALSE));

RetCleanup(SwapinContext(userNumChild));

Listing 4-3. Loading a Task for Execution

This condition occurs because of the way the operating system interacts
with the Context Manager. If the operating system's attempt to load a
task into a partition fails, it checks whether the NotifyCM request is
served. If the request is served, the operating system sends a NotifyCM
request asking the Context Manager to remove the partition. However, if
the NotifyCM request is not served, the operating system calls Crash.

Finding the Program's Termination Status

As shown by the last three sections, creating a partition and executing a
program in it is not particularly difficult. Removing a partition is equally
simple, and is discussed later in this chapter. The difficult aspect of
partition management is discovering when the program terminated and
what its termination status was.

The Child-Termination Question

There is no operating system request that allows a program to determine
the termination status of another program. A program can examine
another program's ASCB to discover the most recent exit status code, but
that provides only half the picture. How can it know whether the
program in which it is interested has terminated? If that program is still
active, the status code in the ASCB is irrelevant.

Also, the partition-managing program generally does not just want to
discover at some future time whether its child has finished executing. It
wants to be notified immediately when the program in its child partition
terminates.

4-6 CTOS Programming Guide, Volume I

A Solution - Defining a Termination Request

Because there is no predefined operating system request for it, there is no
simple way to determine when a child terminates. It can be done,
however, by defining your own termination request.

Whenever any program terminates, the operating system issues
termination requests for it. These termination requests notify other
programs (usually system services) that the program is terminating. This
notification allows system services to perform any needed cleanup
functions if the terminating program is a client.

If your partition management program serves a termination request, it will
be notified whenever any program on the workstation terminates. It can
then identify whether or not the terminating program is its child, and take
appropriate action. The general steps to do this are as follows:

1. The partition-managing program creates a child partition and loads a
task into it.

2. Immediately after doing this, the partition-management program calls
a procedure which waits for the child to terminate.

3. The termination procedure first disables Action-Finish and swapping,
then serves the termination request.

4. When the termination procedure receives the termination request
from the child user number, it unserves the request and returns to
the main body of the program.

5. When the termination procedure returns, the main program knows
that its child has terminated.

Note that the termination handler need not be just a procedure. It could
be a separate process, which would allow the main program to continue
running while the termination process waited for the child to terminate.
The only caution is that whenever an application program serves a
request, Action-Finish and swapping must be disabled.

Writing Partition-Managing Programs 4-7

Calling the Termination Procedure

Listing 4-4 shows a code fragment that calls the termination procedure,
named WaitForTermination in the example.

ere= WaitForTermination(userNumChild);
if(erc == ercNoExitRunFile) {

/* retrieve child's ere another way */
ere= *(((Word*) pAscbChild) + 4);
printf("\nChild partition exit run file not

found.");

Listing 4-4. Calling a Child-Termination Procedure

Structure of the Termination Procedure

Listing 4-5 shows an example of a child-termination procedure. Examine
Listing 4-5 carefully, and you will see that it does more than simply check
for a single termination request. The procedure must do this extra work
in case the Context Manager software has been installed.

When the Context Manager is installed, multiple applications run at the
same time. It is possible (though unlikely) for two programs to terminate
almost simultaneously. Because of this possibility, programs which serve
termination requests may have more than one outstanding request in their
request queue.

Therefore, the termination procedure must empty its request queue before
unserving its termination request.

ErcType WaitForTermination(Word userNum)
RqTerminationType *pRqBlocRet;
Word iMessageType;
FlagType fAlive = TRUE;
ErcType ere, ercRet = ercNoExitRunFile;

static Word MyExchange = O;
rqinfoType rqOldExchange;

Listing 4-5. A Child-Termination Procedure (Page 1 of 2)

4-8 CTOS Programming Guide, Volume I

RetPreCleanup(DisableActionFinish(OxFF));
RetPreCleanup(SetSwapDisable(OxFF));

if(MyExchange == 0)
RetPreCleanup(AllocExch(&MyExchange));

RetPreCleanup(QueryRequestinfo(lMyTerminationRq,
&rqOldExchange, sizeof(rqinfoType)));

RetPreCleanup(ServeRq(lMyTerminationRq, MyExchange));

while(fAlive != FALSE) (
RetCleanup(Wait(MyExchange, &pRqBlocRet));
/* if right user num to catch termination request */
if(pRqBlocRet->rqHead.userNum == userNum) (

pRqBlocRet->rqHead.ercRet = ercOK;
fAlive FALSE;
ercRet = pRqBlocRet->ercTermination;
}

Respond(pRqBlocRet);
}

cleanup:
while(erc != ercNoMessage) (

/*make sure nobody's in queue */
ere= Check(MyExchange, &pRqBlocRet);
if(erc == ercOK)

Respond(pRqBlocRet);

CheckErc(ServeRq(lMyTerminationRq,
rqOldExchange.exch));

precleanup:
CheckErc(SetSwapDisable(FALSE));
CheckErc(DisableActionFinish(FALSE));
return(ercRet);

Listing 4-5. A Child-Termination Procedure (Page 2 of 2)

Writing Partition-Managing Programs 4-9

Deallocating the Partition

Deallocating a partition is the simplest of the partition management
operations. To deallocate a child partition, the parent program simply
vacates the partition, then removes it. Listing 4-6 shows a procedure that
performs these operations.

void KillPartition(Word userNum) {
ErcType MyErc;

MyErc = VacatePartition(userNum);
if(MyErc != ercOK && MyErc != ercPartitionvacant)

CheckErc(MyErc);
MyErc = RemovePartition(userNum);
if(MyErc != ercOK)

CheckErc(MyErc);

Listing 4-6. A Partition Removal Procedure

4-10 CTOS Programming Guide, Volume I

A Sample Partition Management Program

Below is a complete listing of a simple partition management program. A
sample request definition file for the program's termination request
follows the program listing.

/**************************************
* Filename: Partitions.c
* Date: 12/8/89
* Author: A. Coleman
* Compiler: Metaware C

*
* This file spawns a partition, runs a program in it, then kills the
* partition.

*
**************************************/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define AllocExch
#define Check
#define Check Ere
#define CreateBigPartition
#define DisableActionFinish
#define ForwardRequest
#define GetPartitionStatus
#define GetpStructure
#define Get UCB
#define GetUserNumber
#define LoadinteractiveTask
#define LoadPrimaryTask
#define QueryBigMemAvail
#define QueryRequestinfo
#define RgParaminit
#define ServeRq
#define setSwapDisable
#define SwapinContext
#define RemovePartition
#define Request
#define Respond
#define RgParaminit
#define RgParamSetSimple
#define VacatePartition
#define Wait

Listing 4-7. A Simple Partition-Managing Program (Page 1 of 7)

Writing Partition-Managing Programs 4-11

#define sdType
ltdefine Syslit
#define UCBType
#define GetpStructureCase
#define RqHeaderType
#define rqlnfoType

#include <ctoslib.h>
#define kernelErc
#define mpErc
#define RxErc
#define RqErc
#include <erc.h>

ltdefine ParBackground 0
#define Par2 2
#define Par6
#define ParBatch

#define StdPriority
#define lNotifyCMRq

6

Ox FF

Ox80
258

#define lCMTerminationRq 273
#define lMyTerminationRq OxEOOS
#define Go OxlB

#define RetCleanup(x) if((erc = x) != ercOK) goto cleanup
#define RetPreCleanup(x) if((erc = x) != ercOK) goto precleanup

typedef struct {
Word fhSwapFile;
Pointer pVlpb;
char unreferenced[58);
char sbUserName[31);
char sbPassword[l3);
char sbCmdFile[79);

AscbType;
#define SCOPYAREA 31+13+79
/* size of sbUserName, sbPassword, sbCmdFile */

typedef struct {
Byte level;
Byte nLinesMax;
Byte nColsNarrow;
Byte nColsWide;

VidHdwType;

Listing 4-7. A Simple Partition-Managing Program (Page 2 of 7)

4-12 CTOS Programming Guide, Volume I

typedef struct [
RqHeaderType rqHead;
ErcType ercTermination;
} RqTerminationType;

/* Just a status buffer */
Byte pStatus[250];

pragma Calling_convention(CTOS_CALLING_CONVENTIONS);
extern ErcType AltAllocMemoryLL(Word userNum, Word cBytes,

Pointer ppSegmentRet);
extern ErcType AltinitCharMap(Word userNum, Pointer pMap, Word sMap);
extern ErcType AltinitVidFrame(Word userNum, Byte iFrame, Byte

iColStart,Byte iLineStart, Byte nCols, Byte nLines, Byte borderDesc,
Byte bBorderChar, Byte bBorderAttr, Byte fDblHigh, Byte fDblWide);

extern ErcType AltQueryVidHdw(Word userNum, Pointer pBuffer,
Word sBuffer);

extern ErcType AltResetVideo(Word userNum, Byte nCols, Byte nLines,
Byte fAttr, Byte bSpace, Pointer psMapRet);

extern ErcType AltSetNode(Word userNum, Pointer pbNodeName,
Word cbNodeName) ;

extern ErcType AltSetPath(Word userNum, Pointer pbVolSpec,
Word cbVolSpec, Pointer pbDirName, Word cbDirName,
Pointer pbPassWord, Word cbPassWord);

extern ErcType AltSetPrefix(Word userNum, Pointer pbPrefix,
Word cbPrefix);

extern ErcType AltSetScreenVidAttr(Word userNum, Word iAttr, Word fOn);
extern ErcType AltSetExitRunFile(Word userNum, Pointer ExitRunFile,

Word cbRunFile, Pointer pbPassword, Word cbPassword, Word Priority);
pragma Calling_convention();

void KillPartition(Word userNum)
ErcType MyErc;

MyErc = VacatePartition(userNum);
if(MyErc != ercOK && MyErc != ercPartitionVacant)

CheckErc(MyErc);
MyErc = RemovePartition(userNum);
if(MyErc != ercOK)

CheckErc(MyErc);

Listing 4-7. A Simple Partition-Managing Program (Page 3 of 7)

Writing Partition-Managing Programs 4-13

/* NOTE: This could be a separate process */
ErcType WaitForTermination(Word userNum) {

RqTerminationType *pRqBlocRet;
Word iMessageType;
FlagType fAlive = TRUE;
ErcType ere, ercRet = ercNoExitRunFile;

static Word MyExchange = O;
rqinfoType rqOldExchange;

RetPreCleanup(DisableActionFinish(OxFF));
RetPreCleanup(SetSwapDisable(OxFF));

if(MyExchange == 0)
RetPreCleanup(AllocExch(&MyExchange));

RetPreCleanup(QueryRequestinfo(lMyTerminationRq, &rqOldExchange,
sizeof(rqinfoType)));

RetPreCleanup(ServeRq(lMyTerminationRq, MyExchange));

while(fAlive != FALSE) [
RetCleanup(Wait(MyExchange, &pRqBlocRet));
/* if is right user num and is termination request */
if(pRqBlocRet->rqHead.userNum == userNum) [

pRqBlocRet->rqHead.ercRet = ercOK;
fAlive FALSE;
ercRet = pRqBlocRet->ercTermination;
)

Respond(pRqBlocRet);
)

cleanup:
while(erc != ercNoMessage) [

/* make sure nobody's in queue */
ere= Check(MyExchange, &pRqBlocRet);
if(erc == ercOK)

Respond(pRqBlocRet);

CheckErc(ServeRq(lMyTerminationRq, rqOldExchange.exch));
precleanup:

CheckErc(SetswapDisable(FALSE));
CheckErc(DisableActionFinish(FALSE));
return(ercRet);

Listing 4-7. A Simple Partition-Managing Program (Page 4 of 7)

4-14 CTOS Programming Guide, Volume I

ErcType GetParams(Pointer pVlpb) [
ndefine MAXPARAMS 8

ErcType
int
sdType
char

ere;
iCurrent = l;
sdParam;
rgbString[BO];

sdParam.pb
sdParam.cb

rgbstring;
O;

ere= RgParaminit(pVlpb, O, MAXPARAMS);
printf("\nType param or press Go, then Return to execute.\n");

while (TRUE) [
printf("Enter parameter %d:
gets(rgbString);
if(rgbString[O] == Go)

break;
sdParam.cb = strlen(rgbstring);

iCurrent);

ere= RgParamSetSimple(iCurrent, ((Pointer) &sdParam));
iCurrent++;

return(erc);

ErcType RunSubTask(char *pRunFileName, Word MemSize) [
ErcType ere, ercRet=O;
DWord dMemAvail;
Word userNumChild, userNum;
AscbType * pAscbChild, *pAscbMine;
Pointer pVlpbMine, pVlpbChild;
Pointer pTemp;
UCBType ucb;
VidHdwType vidHdw;
Word sMap, cLines, cCols;

ere= CreateBigPartition("MyChild", 7,(DWord) Memsize*64 /*parags*/,
Par6, &userNumChild);

if(erc != ercOK)
return(erc);

Retcleanup(SwapinContext(userNumchild));

/* copy Vlpb and insert its address in the child partition's Ascb */
Retcleanup(GetpStructure(lGetpVLPB, O, &pVlpbMine));

Listing 4-7. A Simple Partition-Managing Program (Page S of 7)

Writing Partition-Managing Programs 4-15

RetCleanup(AltAllocMemoryLL(userNumChild,*(Word *)pVlpbMine,
&pVlpbChild));

memcpy(pVlpbChild, pVlpbMine, *(Word *)pVlpbMine);
RetCleanup(GetpStructure(lGetpAscb, userNumChild, &pAscbChild));
pAscbChild->pVlpb = pVlpbChild;

/* copy user name, signon password, and sys.cmds spec in new Ascb */
RetCleanup(Getpstructure(lGetpAscb, O, &pAscbMine));
memcpy(pAscbChild->sbUserName, pAscbMine->sbUserName, SCOPYAREA);

/* sneakily replace my pVlpb with childs so I can get params */
/* have to do this cuz RgParam ops are not requests, so no Alt

versions available */
pTemp = pAscbMine->pVlpb;
pAscbMine-)pVlpb = pVlpbChild;
/* get any parameters the user wants to enter */
RetCleanup(GetParams(pVlpbChild));

/* restore my Ascb */
pAscbMine-)pVlpb = pTemp;

/* set child's exit run file */
RetCleanup(AltSetExitRunFile(userNumChild, "[Sys]<sys>Exec.run", 18,

NULL, 0, Ox80));

/* copy current path to new partition */
RetCleanup(GetUCB(&ucb, sizeof(ucb)));
RetCleanup(AltSetPath(userNumChild, ucb.rgbVol, ucb.cbVol,

ucb.rgbDir, ucb.cbDir, ucb.rgbPswd, ucb.cbPswd));
if (ucb.cbPrefix)

RetCleanup(AltSetPrefix(userNumChild, ucb.rgbPrefix,
ucb. cbPrefix));

if (ucb.cbNode)
RetCleanup(AltSetNode(userNumChild, ucb.rgbNode, ucb.cbNode));

/* initialize exec screen - neither font double bar needed */
RetCleanup(AltQueryVidHdw(userNumChild, &vidHdw, sizeof(vidHdw)));
cLines = vidHdw.nLinesMax;
cCols = vidHdw.nColsNarrow;
RetCleanup(AltResetVideo(userNumChild, cCols, cLines, TRUE, O,

&sMap)) ;
RetCleanup(AltinitVidFrame(userNumChild, 1, o, o, cCols, 2 I

0, o, 0, 0, 0)) ;
RetCleanup(AltinitVidFrame(userNumChild, 2, o, 2' cCols, 1,

o, 0, o, o, 0)) ;
RetCleanup(AltinitVidFrame(userNumChild, 0, o, 3, cCols, cLines

QI 0, o, o, 0)) ;

-

Listing 4-7. A Simple Partition-Managing Program (Page 6 of 7)

4-16 CTOS Programming Guide, Volume I

) I

RetCleanup(AltinitCharMap(userNumChild, 0, sMap));
RetCleanup(AltSetScreenVidAttr(userNumChild, 1, OxFF));

RetCleanup(LoadinteractiveTask(userNumChild, pRunFileName,
strlen(pRunFileName), NULL, O, StdPriority, FALSE));

RetCleanup(SwapinContext(userNumChild));

ere= WaitForTermination(userNumChild);
if(erc == ercNoExitRunFile) [

/* retrieve child's ere another way */
ere= *(((Word*) pAscbChild) + 4);
printf("\nChild partition exit run file not found or CM not

installed.");

cleanup:
KillPartition(userNumChild);
return(erc);

main()
char rgbRunFile[BO];
char rgbMemSize[20];
Word MemSize;
ErcType ercRet;

while(TRUE) [
printf ("\nEnter run file name: ");
gets(rgbRunFile);
if(rgbRunFile[O] 0)

break;
printf("How much memory does it need (in K): ");
gets(rgbMemSize);
MemSize = atoi(rgbMemSize);
ercRet = RunSubTask(rgbRunFile, MemSize);
printf("\nExecuted %s. Returned ere= %d\n", rgbRunFile,

ercRet);

return (0);

Listing 4-7. A Simple Partition-Managing Program (Page 7 of 7)

Writing Partition-Managing Programs 4-17

:WsAbortRq: OEOOSh
:TerminationRq: OEOOSh

:RequestCode:
:RequestName:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Params:
:NetRouting:
:SrpRouting:

OEOOSh
TerminationAndWsAbortRq
l

0002h
exchinstalledMastr
6

0
0

none
noRouting
rLocal

Listing 4-8. A Termination Request Definiton File

4-18 CTOS Programming Guide, Volume I

5
Software Installation: The Installation Manager

Introduction

If you have written an application or system service, users need to install
it as a software product on the hard disk of their workstation or server.
You need to create several files to accomplish this process. This chapter
describes the installation process and provides guidelines for writing the
installation files as well as instructions on how to place these files on the
installation media. This chapter assumes that you are familiar with the
batch processing of job control language (JCL) files. If you are not, refer
to the CTOS Batch Manager II Installation, Configuration, and
Programming Guide before proceeding.

Two run files, two message files, and a command file provided with
Standard Software, Version 12.1, work together to install software. These
files are Instal/Mgr.run, StdSoftMsg.bin, Batch.run, BatchMsg.bin, and
Install> English.cmds.

InstallMgr.run initiates installation and deinstallation of software. It does
the preliminary work needed to accomplish the installation, such as
collecting installation parameter data from the user configuration file or
interactively from the user, verifying the availability of resources required
by the product, and copying installation files to a temporary location on
the hard disk where their contents can be accessed by Batch.run.
English>Insta/l.cmds contains commands commonly used in installation
scripts. Batch uses this file to resolve $Command statements in the
installation scripts.

Once the installation environment is set up, the Installation Manager calls
the Chain operation to pass control to Batch. Batch does the actual work
of installing your software product. Guided by information provided by
the Installation Manager, Batch performs the job steps in the installation
script. These steps typically include copying the files for your product to

6191 Software Installation: The Installation Manager 5-1

the hard disk and merging your product's commands with the proper
command file. For your understanding of the installation process, this
chapter begins by describing the Installation Manager and Batch programs
in greater detail. Following the program descriptions, this section
describes the contents of the installation files, explains how you create
these files, and instructs you on how to organize the content of your
distribution media. Later in this section, example scripts show you how
to write the instructions Batch needs to carry out the installation.

Key Concepts

This section describes key concepts related to the installation process:
the type of installation (floppy, tape, or server), whether the installation is
public or private, and whether the product needs to be divided into
subpackages for separate installation.

Types of Installation: Floppy, Tape, Server

The installation media is the type of media on which your product is sold
to the customer. It could be 5 1/4-inch or 3 1/2-inch disks or
Quarter-Inch Cartridge (QIC) tape. A floppy installation is an installation
whose media is floppy disks. A tape installation is an installation whose
media is QIC tape.

A server installation is an installation whose media is a disk on the server.
A subpackage must be installed publicly before it can be installed from
the server.

Public vs. Private Installation

A public installation is a floppy or tape installation that puts files onto the
server and commands into the file [!Sys]<Sys>Cluster.cmds. When a
subpackage is installed publicly, it is made available to all members of the
cluster without having to be installed on the cluster workstation's disk. A
number of special fields must be included in the control file (see below)
when a subpackage is installed publicly. These fields are omitted if the
installation is private. A private installation puts files onto a hard disk on
the workstation from which the Installation Manager is invoked.

5-2 CTOS Programming Guide, Volume I 6191

Subpackages

A product is the set of files that make up the entity you are distributing.
It consists of system services, (client) run files, and supporting files (for
example, configuration files and request files) required by your service
and/or run files. These arc files that you create and distribute. Your
product does not include files like the Context Manager's configuration
file, which is part of the Context Manager product, nor Request.sys, which
is part of the Standard Software product.

Before putting your product onto distribution media, you must decide
whether it is atomic or can be divided into smaller pieces. This is
determined most of the time by answering the question: 11 Are there parts
of the product that some users would want and others would not?" For
example, Standard Software consists of more than 15 pieces
(subpackages). On a smaller scale, a product might consist of a system
service (that would only be installed on the server) and several client
programs. In this case, you would divide it into two subpackages. Using
subpackages allows you to take full advantage of the variables and other
resources that the Installation Manager provides to you as script author.

A subpackage is a part of an application that is self-sufficient. It will have
its own entry in the installation database. For instance, an accounting
product might have four subpackages: Accounts Payable, Accounts
Receivable, Payroll, and General Ledger.

The installation database is the file where the Installation Manager keeps
the information about the subpackage. It gets the information from the
control file, described later in this chapter. Subpackages that are
installed publicly are put into [!Sys]<Installed>Cluster.installed.
Subpackages that are installed locally are put into
[Sys] <Installed>username.installed.

A package is a special case where the product consists of one subpackage.

The Installation Manager

To install a software product, a user invokes the Installation Manager
using the Executive Installation Manager command. Information on
using this command is contained in the CTOS System Administration
Guide. The Installation Manager determines the type of installation the
user wants to perform and sets up the appropriate environment.

6/91 Software Installation: The Installation Manager 5-3

A user can also specify directly which type of installation is needed
through use of the Floppy Install, Tape Install, or Server Install
commands.

When invoked by the Installation Manager command, the Installation
Manager performs the following procedure sequence. When invoked by
the Floppy Install, Tape Install, or Server Install commands, the
sequence begins at step 3.

1. It allows the user to choose a function - Install New Software, Show
Installed Software, or Remove Installed Software. We will assume
the user chooses the Install New Software option.

2. It queries the user for the source of the installation, such as floppy
disk, QIC tape, or the server.

3. It sets the installation variables based on parameter values obtained
from the user configuration file (or from the user choosing the
.t.;xamine/Change Defaults option from the Installation Defaults
menu). (All the installation variables are described in "Installation
Variables," later in this chapter.)

4. It then asks the user to choose the subpackage(s) s/he wishes to
install. If the installation is performed from the server, only one
subpackage inay be chosen at a time.

5. It calculates whether disk space is sufficient for installing the product
using data obtained from the installation control file (described
later).

6. The Installation Manager then chains to Batch and passes the values
of the installation variables to Batch.

7. Batch processes the installation script and then returns control to the
Installation Manager.

8. If the installation succeeds, the database will be updated to reflect
the installation of the subpackage.

If the installation type was from floppy and the user selected more than
one subpackage, steps 6 through 8 are repeated for each subpackage.

5-4 CTOS Programming Guide, Volume I 6191

If the installation type was from server, then the user begins again at step
1. Note that step 3 only has to be done once each time the Installation
Manager is invoked. The Installation Manager does not (re)set these
values except upon initial invocation and during step 3.

There is only one installation script for tape installation, regardless of the
number of subpackages that the user selects. Therefore steps 6 and 7 are
only done once, but step B is performed once for each subpackage
selected.

Batch

Once the Installation Manager passes control to Datch, Batch does the
actual work of installing your subpackage on the hard disk. Using the
values in the installation variables, Batch executes the statements in your
installation script.

Instructions in the installation script typically include:

• copying the files for your subpackage from the installation media to
the appropriate destination on the hard disk.

• merging your requests into the user's request file.

• merging your commands into the appropriate command file.

See the end of the chapter for examples of installation scripts.

Installation Files

. You create four installation files as part of your sub package:

• a control file (required), Install.ctr/

• an installation script file (required), Install.jcl

• a message file (optional), Instal/Msg.bin

• a command file (optional), Install.cmds

6191 Software Installation: The Installation Manager 5-5

The Installation Manger reads these files from the installation media and
copies them to a temporary location on the hard disk where their contents
are available for the duration of the installation process. The first two
files are ASCII files and are created by using the Editor. The message
file is created from an ASCII file using the Executive command Create
Message File. The command file is a typical command file and is created
by the Command File Editor.

Control File

The control file contains information needed to guide the installation
process. The Installation Manager reads the contents of this file and
uses the information it contains to perform functions, such as

• displaying the package name and version number on the user screen

• verifying that there are ac.iequaie space aad resources for the
installation

• updating the database

All information in the control file is placed in the user's installation
database upon successful installation.

The control file for Mouse Services, for example, contains the following
fields and parameter entries:

:PackageName:Mouse
:Version:l2.l.O
:RequiredDiskSpace:JOl
:Verify:
:Directory:<Sys>
:Commands: 'Install Mouse Service' 'Deinstall Mouse Service' 'Set
Mouse Controls'
: ProductF'i les: l024x760_PntSys.icon 720x340_Pntsys.icon
Defaul tcursor. icon Mouse. run Mousenm. run MouseCh. run MouseForm. lib
MouseMsg.bin SetMouse.run

Values for each keyword start on the same line as the keyword. Spaces
may exist between the ending colon of the keyword and the beginning
character of the value. The value is terminated by a carriage return. This
is especially important to remember when dealing with values such as
:ProductFiles: which contain a list of files that might wrap around several

5-6 CTOS Programming Guide, Volume I 6191

lines. Do not use carriage returns to make the file look pretty. A
carriage return terminates the list. If the value is a list of different
elements, separate the elements with a space, not a comma. Place single
quotation marks around individual elements if they contain embedded
spaces.

Entries are optional unless so stated. The keywords and a description of
each field are described below.

The contents of this file are of the form :keyword: value

PackageName (required)

The PackageName field should contain a name that clearly identifies the
software product to the user. The maximum length is 30 characters.
Embedded spaces are allowed. This name must be unique. "OFIS
Designer" is a good name, whereas its part number would not be a good
name. (Note that the field name should technically be
SubPackageName, but remains PackageName so old installations do not
break.)

MultiPkgName (optional)

The MultiPkgName specifies the name of a subpackage. See
PackageName above for restrictions. If this entry appears in a control
file, then the control file must contain exactly one PackageName entry
and between two and fifteen MultiPkgName entries, and nothing else.

Version (required)

The Version field lets the Installation Manager know if the same or an
earlier version of the product is already installed, or if the installation is
being performed for the first time. The maximum length is 15
characters. Embedded spaces are not allowed.

Commands (optional)

The Commands field contains a list of all commands used to invoke the
run files and/or services in the subpackage. These commands will be
removed from the command file when the user removes the
subpackage.

6191 Software Installation: The Installation Manager 5-7

Directory (optional)

The Directory field specifies the directory in which the files will reside.
Include angle brackets. Usually the value is <Sys>. The maximum
length is 14. If you use this entry, do not put the directory in the file
specifications given in the ProductFiles and OverwriteNoFiles fields. If
you must place files in more than one directory, do not use this entry.
Instead, place the directories in the file specifications given in the
ProductFiles and OverwriteNoFiles fields.

ProductFiles (optional)

The ProductFiles field includes a comprehensive list of files that make
up your subpackagc. They are deleted when the subpackage is
deinstalled. When the user requests a backup of the previous version of
software (the next time you release your product), these files along with
those listed in the RelatedFiles field will be archived. The length of
these files should be added and that number placed in the
RequiredDiskSpace entry. Do not include volume information in the file
name. The user controls the volume name. Do not include directory
information if you included the Directory field. The directory name will
be taken from the Directory field.

If the verify feature is enabled, after returning from Batch, the
Installation Manager checks the files in the ProductFiles list to see if
their modification/creation date-time stamps are greater than when the
Installation Manager was invoked. If they are not, the installation fails
and a message with the file name of the non-updated file is put in the
installation log file.

PublicProductFiles (optional)

The PublicProductFiles field contains a list of files that make up your
subpackage when it is installed publicly. If there is no difference in a
public and private installation, do not include this entry. If some files
are common to both public and private installations, make sure you
include them in both the PublicProductFiles and ProductFiles fields.

If the verify feature is enabled, after returning from Batch, the
Installation Manager checks the files in the PublicProductFiles list to see
if their modification/creation date-time stamps are greater than when
the Installation Manager was invoked. If they are not, the installation

5-8 CTOS Programming Guide, Volume I 6191

fails and a message with the file name of the non-updated file is put in
the installation log file.

OverwriteNoFiles (optional)

The OverwriteNoFiles field specifies a list of file names that belong to
your subpackage, but which should not be overwritten by the
installation process if they already exist. Do not include volume
information in the file name. The user controls the volume name. Do
not include directory information if you included the Directory field.
The directory name will be taken from the Directory field.
User-configurable files would go into this list-for example, Queue.index.
These names must also be in the ProductFiles list.

If the verify feature is enabled, after returning from Batch, the
Installation Manager checks the files in the OverwriteNoFiles list to see
if they exist. If they don't, the installation fails and a message with the
file name of the nonexistent file is put in the installation log file.
Remember to include these file names in the ProductFiles list.

PublicOverwriteNoFiles (optional)

The PublicOverwriteNoFi/es field contains a list of files that belong to
your subpackage, but which should not be overwritten by a public
installation if they already exist. See OverwriteNoFiles for restrictions.
The names here must also be in the PublicProductFiles list. If there is
no difference in a public and private installation, do not include this
entry.

If the verify feature is enabled, after returning from Batch, the
Installation Manager checks the files in the PublicOverwriteNoFiles list
to see if they exist. If they don't, the installation fails and a message
with the file name of the nonexistent file is put in the installation log
file. Remember to include these file names in the PublicProductFiles
list.

RelatedFiles (optional)

The Re/atedFiles field is a list of files that the installation process will
update but which are not part of your product-for example, Request.sys.
At this time there is no way to specify files such as the .user file and the
Context Manager's configuration file, since the names can be changed
by the user at install time. These files are archived along with the files
listed in the ProductFiles entry.

6191 Software Installation: The Installation Manager 5-9

RequiredDiskSpace (optional)

The RequiredDiskSpace field specifies the total length (in K Bytes) of all
installation files in your subpackage. Although the units are kilobytes,
do not append "K" to the number. (See also ProductFiles above.)

PublicRequiredDiskSpace (optional)

The Pub/icRequiredDiskSpace field is the total size of all the files in
your subpackage when it is installed publicly. See RequiredDiskSpace
for restrictions. If there is no difference in a public and private
installation, do not include this entry.

RequestCodes (optional)

The RequestCodes field is a list of request codes for which your
subpackage issues ServeRq calls. The codes must be separated by a
space, not a comma. The request codes can be either decimal or
hexadecimal numbers. If they are hexadecimal, don't forget to append
"h," for example, OEOOlh. These request codes will be removed when
your subpackage is deinstalled.

RequiredMemory (optional)

The RequiredMemory field specifies the amount of memory your largest
run file requires. This entry is not currently used.

Verify (optional)

The Verify field, if included, indicates that the Installation Manager
should verify the time/date stamp during installation. This field
contains no value. This entry should always be included since the verify
feature is a useful function of the Installation Manager. If only a
portion of the product files is to be installed, dividing the product into
appropriate subpackages allows the user to install an entire subpackage,
and to verify the time and date of each product file.

NoDbUpdate (optional)

The NoDbUpdate field, if included, indicates that the Installation
Manager should not update the installation database. Normally this
field would not be included in the control file. However, some remote
installations (via SWD, a different CTOS installation method) may want

5-10 CTOS Programming Guide, Volume I 6191

only to copy files or perform some other functions and therefore don't
want the database updated.

Installation Script File

The installation script file contains Batch JCL instructions that will cause
the installation of a subpackage. You are responsible for writing the
contents of this file, without which an installation will fail. Because most
installation errors occur when Batch executes the script file, you must pay
careful attention to writing the scripts.

Your installation can also use multiple JCL files. Your main JCL file can
execute other JCL files by using the $Call command. Using the $Call
command makes your installation scripts more modular. This can ease
script development and speed up the user's software installation process.
See your Batch documentation for more information on nesting JCL files.
Using more than one JCL file is not recommended, however, since the
subpackage concept and use of the installation variables and the message
file greatly reduce the amount of work that a JCL file has to do. If you
do use multiple JCL files, you are responsible for making them accessible
to Batch for all types of installations, especially installations from the
server. Also, the additional JCL files will not be deleted when a package
is removed (the main JCL file, message file, and command file are
deleted because the Installation Manager knows their names).

Since you should allow the user to install your subpackage publicly, the
script file(s) must handle installation from server as well as installation
from the media (floppy or tape).

Message File

In order to aid nationalization efforts, you should keep all nationalizable
text strings in a message file. In general, only two nationalizable strings
will be needed in the script file: one that is used to report the absence of
the message file and one to be used as an argument to NextFloppy() to
ensure that the correct disk is mounted. (By ensuring that the correct
disk is mounted, the user should never see the message reporting the
absence of the message file, since it will be on the disk that should be
mounted.) After creating the message file, use the Executive command
Create Message File to create the binary message file that will be placed
on the distribution media.

6191 Software Installation: The Installation Manager 5-11

Command File

The command file for a software product contains all the commands that
need to be added to the system in support of that product. Each product
command file is a standard command file like the Executive command
file, Sys.cmds, but usually with fewer entries in it. Don't forget to place
all the names in the Commands field of the control file.

Use the Command File Editor Executive command to create the file
containing the commands that will be used to invoke your run file(s)
and/or install your system service. You should use the Merge Command
Files command statement in your script file to update the user's command
file. We recommend that you do not use New Command in the script file.

NOTE: The command file is required only if your product has associated
commands.

The command file for Mouse Services, for example, contains the
following entries:

Install Mouse Service
Deinstall Mouse Service
Set Mouse Controls

For more details on how to create a customized command file, see the
description of the Command File Editor in the CTOS Executive Reference
Manual.

The Installation Manager does not read the contents of a command file.
It merely copies the file to a temporary location so that the file contents
are available to Batch. During the installation process, your script file,
using the installation variables CmdFileFrom, CmdFileTo, and
VolumeTo, tells the Command File Editor to merge the commands in this
file with the user-specified command file.

Because a command file merge adds all the commands to the
user-specified command file, you have the option of creating several
command files for your product. By doing so, each command file you
create can be merged with the command file of the user. This allows you

5-12 CTOS Programming Guide, Volume I 6191

to selectively merge only those commands the user may need. However,
if you use more than one command file, your script is responsible for
placing it somewhere where it will be available to all types of installations,
including installation from server.

User Configuration File

In addition to reading the installation files just described, the Installation
Manager reads tho contents of the user configuration (.user) file. It then
sets the following values of the installation variables:

• installation type (public or private)

• video level (verbose or silent)

• whether to archive the currently installed version of the subpackage

• whether to save the archive

• the volume and directory into which to create the archive (if
archiving is desired) when the installation is private

• the volume and directory into which to create the archive (if
archiving is desired) when the installation is public

• the volume upon which to install the software when the installation is
private

• the volume upon which to install the software when the installation is
public

• The name of the Context Manager configuration file to use when the
installation is private

• The name of the Context Manager configuration file to use when the
installation is public

• Whether or not to use a log file

• The name of the log file

As a script writer, you do not have to be concerned about how the user
configuration file (or the user interactively) influences an installation.

6191 Software Installation: The Installation Manager 5-13

There is one parameter, however, that you need to take into account:
that is, whether the installation is public or private. You only need to be
aware of this value if the distribution media is floppy disks and the files
for a public installation are not the same as a private installation. In all
other cases, by using the installation variables provided by the Installation
Manager to Batch, this attribute is transparent to you.

Naming Your Floppy Installation Files

In the simplest case, the product is atomic. It has one name in the
database. In this case, the names of the installation files are

Instal/.ctrl
lnstall.jcl
lnstal/Msg.bin
lnstall.cmds

With subpackages, you have at least two levels of control files. The top
level is always called Install.ctrl. To illustrate, let's use the example of an
accounting package, Accounts for You, pictured in Figure 5-1.

The Install.ctrl file for Accounts for You would have the following entries:

:PackageName: Accounts for You
:MultiPkgName: Accounts Payable
:MultiPkgName: Accounts Receivable
:MultiPkgName: Payroll
:MultiPkgName: General Ledger

5-14 CTOS Programming Guide, Volume I 6191

Accounts for You
lnstoll.ctrl

Accounts Accounts
Payable Receivable

lnstoll.ctrl lnstoll.ctrl
lnstoll.jcl

Accounts Payable
Tutorial
lnstoll.ctrl
lnstoll.jcl

lnstollMsg.bin
lnstoll.cmds

lnstollMsg.bin
lnstoll.cmds

Accounts Payable
Product
lnstoll.ctrl
lnstoll.jcl

lnstollMsg.bin
lnstoll.cmds

Payroll
lnstoll.ctrl
lnstoll.jcl

lnstollMsg. bin
lnstoll.cmds

General
Ledger

lnstoll.ctrl
lnstoll.jcl

lnstollMsg.bin
lnstoll.cmds

512.5-1

Figure 5-1. Files used in a floppy installation for an accounting package

The Accounts Receivable subpackage has its own control file, installation
script, message file, and command files, as shown in the figure. So do
the Payroll and General Ledger subpackages. They are called

AccountsReceivable> Install .ctrl
AccountsReceivable> Install.jcl
AccountsReceivable> InstallMsg.bin
AccountsReceivable> Install.cmds
Payroll> Install.ctr}
Payroll> Install.jct
Payroll> InstallMsg.bin
Payroll> Install.cmds
GeneralLedger> Install.ctrl
GeneralLedger> Install.jcl
GeneralLedger> InstallMsg. bin
GeneralLedger> Install.cmds

The Accounts Payable subpackage is further subdivided into two
subpackages: Accounts Payable Tutorial and Accounts Payable Product.

6191 Software Installation: The Installation Manager 5-15

Accounts Payable has only a control file, since it is not yet at the bottom
of the product "tree." Its two subpackages each have all four installation
files, since they are at the bottom of the tree. The
AccountsPayable>Install.ctrl file would have the following entries:

:PackageName:Accounts Payable
:MultiPkgName: Accounts Payable Tutorial
:MultiPkgName:Accounts Payable Product

In this example, there are two layers before the user actually chooses a
subpackage. The user is presented a menu containing "Accounts
Payable," "Accounts Receivable," "Payroll," and "General Ledger." After
Accounts Payable is chosen, another menu with the contents of
AccountsPayable>Install.ctrl is displayed and the user chooses which of
those subpackages to install.

During installation, the Installation Manager reads Install.ctr/ and displays
a menu. When the user makes a selection (let's say that a!! five items ~re
chosen), the Installation Manager will try to open the control file related
to the first (top) entry, AccountsPayableTutorial>Install.ctrl. If this file is
not found, it will prompt the user to mount the proper disk. If it is
found, the installation files (AccountsPayableTutorial> Install*) are copied
to [Ser]<$>. The control file is read and information is extracted. Note
that the :PackageName: entry must match the prefix part of the name of
the control file. Control is then passed to Batch, which will execute
AccountsPayableTutorial>Install.jcl. When the first subpackage has been
successfully installed, the Installation Manager then tries to read
AccountsPayableProduct>Install.ctrl, and the process repeats itself.

NOTE: The Installation Manager will make all the above files, but no
others, available to Batch by copying them to [Ser]<$>. If the installation
is public, the Installation Manager will also copy them to
[!Sys]<Installed>PkgName> Version> Install*, which makes them available
when a user installs the package from the server. If your script calls other
scripts or uses other command files, or uses any other files, it is your
responsibility to make the script copy them from the floppy to where they
will be accessible for later use.

5-16 CTOS Programming Guide, Volume I 6191

Naming Your Tape Installation Files

The method of installing a product from tape is slightly different than a
floppy installation and therefore requires a slightly different scheme.

Tape installation requires all of the above control files and command
files. However, it only uses one message file and one script file,
Instal!Msg.bin and Insta/l.jcl. The reason is that there is one message file
for every script file, and there is only one script file, Install.jcl. Figure 5-2
shows the installation files required for a tape installation for the same
product. All 24 installation files should be archived to [Qic]O.l

Note that Install.jcl must do the work of installing all the subpackages that
the user might choose. It will need to query the installation variable Pkgs
to determine the packages that the user has chosen. The individual
installation control files are used just as they are in a floppy installation.
The individual installation script, message, and command files (for
example, Payroll>Install.jc/, Payroll>lnsta/IMsg.bin, and
Payroll>Insta/l.cmds) are not used by the tape installation but are
included in case the user chooses to do a public installation. In this case,
the script, message, and command files are copied to [!Sys] <Installed>
for subsequent use when someone does an installation from server.

NOTE: The Installation Manager will put all the files in the Installation
Archive File ([Qic]O) into [Ser]<$>. If your script uses other files, it is
your responsibility to have the script move them to somewhere permanent so
they are accessible when the user installs your product from the server.

6191 Software Installation: The Installation Manager 5-17

Accounts
Payable

lnstall.ctrl

Accounts for You
lnstoll.ctrl
lnstoll.jcl

lnstollMsg.bin

Accounts Payroll
Receivable

lnstall.ctrl lnstall.ctrl

lnstall.jcl lnstoll.jcl

lnstollMsg.bin lnstollMsg.bin

lnstoll.cmds lnstoll.cmds

Accounts Payable
Tutorial

Accounts Payable
Product

General
Ledger

Install.ctr!
lnstoll.jcl

lnstollMsg.bin
lnstoll.cmds

instoll.ctrl
lnstoll.jcl

lnstollMsg.bin
lnstoll.cmds

lnstoll.ctrl
lnstoll.jcl

lnstollMsg.bin
lnstoll.cmds 512.5-2

Figure 5-.2. Files used in a tape installation for an accounting package

Organizing Your Installation Media

) Once you have created the files you need for your program and its
installation, you place these files on the appropriate distribution media.

For a Floppy Installation

For floppy disks, the control file, installation script, message file, and
command file must reside in the <Sys> directory of the floppy disk. If
your product contains only one subpackage, the installation files go onto
the first disk. However, if you have more than one subpackage, then the
Install.ctr/ file goes on the first disk, and the installation files go on the
first disk that contains the product files associated with that subpackage.
For example, say that a product contains three subpackages, a word
processor, a spell checker, and a grammar checker.

5-18 CTOS Programming Guide, Volume I 6191

Disk Number Subpackage Name Installation Files

1 Word Processor Install.ctr/
WordProcessor> Install. ctr/
WordProcessor> Install. jct
WordProcessor> Inst all. cmds
WordProcessor> InstallMsg.bin
Spell Checker> Install.ctr/
Spell Checker> Install.jcl
Spell Checker> Install. cmds
Spell Checker> InstallMsg. bin
GrammarChecker> Install. ctr/
GrammarChecker> Install. jct
GrammarChecker> Install. cmds
GrammarChecker> InstallMsg .bin

2 Word Processor
3 Word Processor
4 Word Processor Spell Checker> Install. ctr/

and Spell Checker Spell Checker> Install.jct
Spell Checker> Inst al I. cmds
SpellChecker>Instal/Msg.bin

5 Spell Checker
6 Spell Checker
7 Grammar Checker GrammarChecker> Install. ctrl

GrammarChecker> Install. jct
GrammarChecker>Install.ands
GrammarChecker> InstallMsg .bin

In the case where two subpackages fit on one disk, all the installation files
for those subpackages must be placed on that disk.

It is convenient for the user if all installation files are duplicated on the
first disk, although this is not required. If this is done, the user has a
better idea of what disk to insert. For example, let's say that the user
inserted the first disk and invoked the Installation Manager. A menu
would be presented allowing him to choose the Word Processor, Spell
Checker, or Grammar Checker. Let's say the third subpackage,
Grammar Checker, is chosen. The Installation Manager would try to
open GrammarChecker>Install.ctrl. Since it is not on the first disk, the
Installation Manager would prompt the user with a message like "Please
insert the first disk of the Grammar Checker software." The user would
then have to look in the release notice to find out which of the 7 disks

6/91 Software Installation: The Installation Manager 5-19

was the first disk of the Grammar Checker. However, if all the
installation files are placed on disk 1 (and on their proper other disks as
described above) then GrammarChecker>lnsta/l.ctrl would be found, the
files would get copied to [Ser]<$>, and Batch would be invoked. The
first statement in the installation script should always be a NextFloppy
statement for the proper disk, in this case: NextFloppy('WordsforYou 7
of 7'). Now the user knows exactly which disk to insert.

Note that even when all the installation files are placed on the first disk,
the installation files for the Spell Checker must still go on disk 4 and
those for the Grammar Checker onto disk 7. The reason is that the user
may choose more than one subpackage. Only the installation files for the
one subpackage get copied to [Ser)<$> at a time. So if the user chooses
all three subpackages, WordProcessor> Install* is copied to [Ser]<$>,
then control is passed to Batch, then the Installation Manager updates the
database and then tries to open SpellChecker> Install .ctrl. Since the user
has disk 4 mounted, it is logical to put it there instead of making the user
reinsert disk 1 just to get the instaHaHon files.

For a Tape Installation

For tape the installation files should be placed in [Qic)O. By placing all
your product files on the next tape file, (in this case, [Qic]l), you will be
able to take advantage of the DeviceFrom variable in your script file. In
general, even numbered tape files should contain installation files and the
next tape file should contain product files. However, as we will show
later, even the most complicated tape installation can be easily done by
using only [Qic]O and [Qic]l.

After the user has had the opportunity to change the installation variable
values, the Installation Manager uses RestoreArchive.run to place all the
files from the Installation Archive File (usually [Qic]O) into [Ser]<$>.
The Installation Manager reads the control files as necessitated by the
user's choices. . It builds lists of files that belong to the chosen
subpackages and puts them in files in (Ser]<$> where they are available
to the script. It then passes control to Batch, setting Install.jcl as the
script file and InstallMsg.bin as the message file. The script file then
should then perform the actual installation. When the Installation
Manager is reloaded, it checks that all subpackages were installed
correctly and updates the database for each subpackage.

5-20 CTOS Programming Guide, Volume I 6191

Installation Variables

The CTOS Batch Manager II Installation and Configuration Guide
contains most of the following information. It is repeated here with
additional information relating specifically to the installation process.
These installation variables are set by the user in the Installation Manager
before the installation script is processed by Batch. They should not be
changed by the installation script. Since the values are passed to Batch by
the Installation Manager, the values are only valid when Batch has been
invoked by the Installation Manager. Since all these variables can be set
by the user, you must use them if they apply to your installation. For
example, you cannot assume that if an installation is public, that your files
are being copied to (!Sys]; You must use the variable VolumeTo.
Likewise, you cannot assume that for private installations your commands
should be merged into (Sys]<Sys>Sys.cmds. You must use CmdFileTo.

These "variables" are read-only. Although Batch will not report an error
if you assign a value to them (for example, VolumeTo == '(Sys]'), this
approach may thwart the desires of the user and is not recommended.

Variable Name

CmdFileFrom

CmdFileTo

6191

Description

is the name of the command file that
contains the commands for the subpackage.
It is set to subpackage>Install.cmds. It
should be used as the argument to the
Command File From parameter in the
Merge Command Files command.

is the name of the command file into which
the commands in CmdFileFrom will be
merged. The name is set by the user during
the Examine/Change defaults phase of the
installation. However, if the installation is
public, the value is always
[!Sys]<Sys>Cluster.cmds. It should be used
as the argument to the Command File To
parameter in the Merge Command Files
command.

Software Installation: The Installation Manager 5-21

DeviceFrom

CmConfigFile

DirectoryTo

InstallType

for floppy installations (both 51/,i" and 31/i''),
this variable is the disk drive in which the
installation disk is mounted. It is of the
form [fn] where n is the drive number. For
tape installations, this variable is the tape
specification. The value is one more than
the tape specification given by the user. In
other words, if the user did not change the
tape specification from its default of [Qic]O,
its value would be [Qic]l, the tape file where
your product files are archived. It should be
used as the argument to the Archive Dataset
(QIC) parameter of Restore Archive. For
server installations, it is the node name
({Master}) and volume name of the volume
to which it was publicly installed. (The
Installation Manager keeps track of it in the
database).

is the name of the user's Context Manager
Configuration File. The name is set by the
user during the Examine/Change defaults
phase of the installation. It should be used
as the argument to the CM Config File
parameter in CM Add Application. The
default is [Sys]<Sys>CmConfig.sys.

is the directory name, including angle
brackets, into which the product files will be
copied. If your product files must be copied
into more than one directory, you should
disregard this variable. It will always be
<Sys> for tape installations.

is the type of installation that the user is
performing:

0 =Floppy
1 =Tape
2 =Server

5-22 CTOS Programming Guide, Volume I 6191

MsgFile

Pkgs

Public

Unattended

6191

is the name of the message file associated
with the subpackage. It is meant to be used
as an argument to the Batch function
InitMsgFile. For tape installations it will
always be lnstal/Msg.bin.

is a string containing the subpackage
currently being installed and all subsequent
subpackages that the user has chosen. Calls
to the Batch function SubString should be
used to query the contents of this variable.
If other subpackages have been chosen, you
can prompt the user to insert the correct
diskette to continue the installation.

is a flag that is set to TRUE if the user has
chosen a public installation. Otherwise, it is
set to FALSE. Note that the proper way to
interrogate a flag in an if statement is:

If Public

Endlf

DO NOT USE

True= 65535
If Public = True

Endif

because you may set the value of True
incorrectly and it just takes up room in
Batch's symbol table.

is a flag used to indicate that the user does
not want to be asked any questions during
the installation script. This variable should
always be queried before performing the
Batch functions DisplayAndWait,
U serEnterValue, U serSelectMultiple,
UserSelectSingle, and UserSelectYesNo. It

Software Installation: The Installation Manager 5-23

VolumeTo

File Lists

will always be FALSE during a floppy
installation.

is the volume name, including brackets, of
the volume onto which the user wants the
subpackagc(s) installed. It should also be
used as the argument to the Default Volume
parameter in the Merge Command Files
command.

The Installation Manager also creates four at-files that are extremely
useful for tape and server installation.

[Scr]<$>lnstallOverwriteNoFrom.fls

This is a list of file names that were listed in the control file entry
OverwriteNoFiles (or PublicOverwriteNoFiles if the installation is public).

For floppy and server installations, this list contains only files in the
subpackage being currently installed. The file specifications contain
volume, directory, and file name. For floppy installations, the volume
is the same as DeviceFrom and the directory is the same as DirectoryTo.
Since DirectoryTo is usually <Sys>, and the product files are usually
(and should be) placed in a directory other than <Sys>, the list is not
very useful for floppy installations. For server installations, the values
for volume and directory are taken from the installation database.

For tape installations it contains files in every subpackage selected by
the user. The file specifications are of the form <*>filename, making
the list suitable as an argument to the [File list from (<*>*)] parameter
of the Executive command Restore Archive.

[Ser]<$> lnstallOverwriteNoTo.fls

This is a list of file names that were listed in the control file entry
OverwriteNoFiles (or PublicOverwriteNoFiles if the installation is public).
The list contains the same file names as lnstallOverwriteNoFrom.fls, but
the volume and directory information are different.

5-24 CTOS Programming Guide, Volume I 6/91

For floppy and server installations, this list contains only files in the
subpackage being currently installed. The file specifications contain
volume, directory, and file name. The volume is the same as VolumeTo
and the directory is the same as DirectoryTo.

For tape installations it contains files in every subpackage selected by
the user. The file specifications contain . volume, directory, and file
name. The volume is the same as VolumeTo and the directory is the
same as DirectoryTo, making the list suitable as an argument to the [File
list to (<*>*)] parameter of the Executive command Restore Archive.

[Ser]<$> Instal/OverwriteOkFrom.fls

This is a list of file names that were listed in the control file entry
ProductFiles (or PublicProductFiles if the installation is public). See the
description for Instal/OverwriteNoFrom .fls, earlier.

[Ser]<$> Install OverwriteOkTo ./ls

This is a list of file names that were listed in the control file entry
ProductFiles (or PublicProductFiles if the installation is public). See the
description for Instal/OverwriteNoTo.fls, earlier.

Restarting an Installation

The sample installation scripts in the following section contain a number
of restart labels ("RestartLabel"). This section includes a brief description
of how Batch and the Installation Manager interact with respect to restart
labels, which are markers within the JCL file that indicate points where
processing of the JCL file can be restarted.

Every time Batch encounters a restart label, it opens the JCL file header
and writes the number of restart label statements it has encountered.
After each nonintrinsic statement Batch encounters (such as a command
statement or a run statement), it looks in the ASCB to see if the
application completed successfully. If it did not complete successfully
(and ContinueOnError was not specified), then Batch exits and loads the
Installation Manager. The Installation Manager looks in the ASCB for a
nonzero status code. It then opens the JCL file that was being processed
and looks at the file header to see if it can be restarted (that is, the
number of restart labels is greater than zero). The Installation Manager

6191 Software Installation: The Installation Manager 5-25

puts some additional information into the file header, reports the error to
the user, and exits.

The user looks in the log file and fixes the problem (for example, if the
directory was full, creating a bigger directory or deleting some files might
help).

Then the user invokes the Installation Manager again. The Installation
Manager looks for JCL files, opens the file and checks the file header to
see whether it can be restarted. If it can be restarted, the Installation
Manager tells the user if the last installation failed and allows him to
restart it.

If the user specifies to restart the previous installation, control passes to
Batch, which opens the file and looks for the last restart label it
encountered. It then begins processing the JCL file from that point
onward.

Note that the mere presence of restart labels in a JCL file does not
guarantee that the installation can be restarted in all cases. First, the
error must have occurred after Batch has read at least one RestartLabel
statement in the JCL file. Second, the utility reporting the error must
place the status code in the ASCB (otherwise the Installation Manager
will have no way of knowing that an error occurred). Third, Batch must
have time to write the necessary information in the file header of the JCL
file before it returns control to the Installation Manager.

Nationalization

The file [Sys]<Sys>lnstall>English.cmds contains common commands
(in English) used in installation scripts. This file is provided so that the
$Command statements used in installation scripts do not have to be
translated from English into the local language.

Check to be sure that all the command names that you use with
$Command statements are contained in [Sys]<Sys>lnstall>English.cmds.
If a command used in your script is not in this file, add the command
through use of the Merge Command Files command or the New
Command command (in your script file). Do not overwrite the existing
Install> English.cmds file, because other products might rely on
commands they have added to it.

5-26 CTOS Programming Guide, Volume I 6191

The commands that are in the 12.1 version of Install>English.cmds are
Append, CM Add Application, CM Remove Application, Copy, Create
Directory, Create File, Create Message File, Delete, Expand File, Format
Disk, Install New Requests, Install Sequential Access Service, Install
Xbif Service, LCopy, List Request Set, Make Request Set, Merge
Command Files, Move, New Command, Path, Remove Command,
Remove Directory, Rename, Restore Archive, Run, Selective Archive,
Set Protection, Update Request Set, and Volume Archive.

Tips

The following paragraphs present some tips for creating installation
scripts.

1. Do not path anywhere within the installation script. Since you can't
know what the user's original current working directory was, you
can't path back to it. You will surprise the user by leaving him or
her in a new path.

2. Use message files rather than putting messages directly into the
installation script. This method aids nationalization. In addition, if
verbose mode is used, messages wrap around the screen and scroll
up, so the messages are hard to read.

3. Take care not to prompt for information in your script that the
Installation Manager has already prompted for (the name of the
command file or the Context Manager configuration file, for
example).

4. If you give the user the option to terminate during the script, use the
Batch Cancel statement. When an installation terminates
abnormally, Batch needs to notify the Installation Manager not to
update the database. If you do not use the Batch command Cancel
statement, Batch will have no way of knowing that the script was
terminated abnormally and the database could be incorrectly
updated. When Batch encounters a Cancel statement, it causes the
Installation Manager to report status code 4 (operator intervention).

5. If your product has to be installable by version 12.0 of the
Installation Manager, you cannot use subpackages. To make your
installation script compatible with both versions, your installation

6191 Software Installation: The Installation Manager 5-27

script must perform the extra work of assigning values to those
installation variables that are not available in version 12.0. Use the
Batch FileVersion statement to determine what version of the
Installation Manager run file you have. The variables that you have
to set are DirectoryTo, MsgFile, and VolumeTo.

FileVersion returns a string. It should be checked as follows:

ver = File Version <'[Sys]<Sys> InstallMgr.run')
If Substring('l2.0' ,ver)<>65535

Endlf

By calling Substring instead of checking to see if ver = '12.0' you are
assured of obtaining the correct answer, regardless of the version of
12.0 that the user may have installed (Substring would report TRUE
when the version is 12.0.1, where "if ver = '12.0' would not.)

6. Installation scripts that are accessed via the $Call command and that
have RestartLabel directives in them must be copied somewhere onto
a hard disk. Batch terminates with status code 302 (write-protected)
if the script file is referenced on your write-protected distribution
diskette. When Batch encounters a RestartLabel statement, it
attempts to open the script file in mode modify, which it cannot do if
the media is write-protected. The Installation Manager copies your
main installation script to hard disk, so you don't have to worry
about copying it.

7. If, during testing, your script fails with "Command not found," then
you are using a command that is not contained in
Install>English.cmds. In that case your script must add the
command using the New Command command before it issues the
$Command statement for that command.

5-28 CTOS Programming Guide, Volume I 6191

Installation Script Examples

The following pages illustrate three sets of installation files. Each JCL
installation script file begins on a lefthand page. Numbered comments
accompanying each script correspond to script lines. The facing
righthand page includes comments for the numbered lines in the script.
These examples are not intended to teach you how to write JCL, but
instead, how to use the installation variables to best advantage.

The binary message file is created from a text file. The contents of the
text file is shown, even though the file is labeled *InstallMsg.bin.

The values of the installation variables are given as if the user had not
changed them from their default values. For example, VolumeTo will be
described as having the value [Sys] for private installations. As stated
above, you as script writer cannot count on any specific value being in the
installation variables, but instead must use them to carry out the desires of
the user.

6191 Software Installation: The Installation Manager 5-29

Example 1: One Subpackage

This example contains one subpackage and spans two floppy disks. The
installation files are Install.ctrl, Instal/Msg.bin, Install.cmds, and Install.jcl.
They are placed in the <Sys> directory of the first disk. A zero-length
file, 'Tape Utilities Diskette 1 of 2' is put in the <Sys> directory on the
first disk. A zero-length file, 'Tape Utilities Diskette 2 of 2' is put in the
<Sys> directory on the second disk. Product files are placed in the
<CTOS> directory of the two disks.

Install.ctr/ File

:PackageName:Basic Tape
:Version:l2.l.0
:RequiredDiskSpace:635
:Verify:
:Directory:<Sys>
:Commands: 'Configure Sequential Access Device' 'Deinstall
Sequential Access Service' 'Install Sequential Access
Service' 'Tape Copy' 'Tape Erase' 'TapeRetension'
:ProductFiles:InstallSeqService.run NGenSeqService.run
QicConfig.sys SeqAccessCopy.run SeqAccessUtility.run
SeqServiceMsg.bin

(QicConfig.sys is not placed in OverwriteNoFiles because in this release,
the format of the file has changed. Files in the old format will no longer
work, and therefore must be overwritten.)

5-30 CTOS Programming Guide, Volume I 6191

/nstal/Msg.bin File

:1: "Tape Utilities Diskette 2 of 2"
: 2: "Merging commands. . . "
:3: "Copying files ... "'
: 4: "done."

6191 Software Installation: The Installation Manager 5-31

Jnstall.cmds File

The Command File Editor was used to create the six commands listed in
the control file.

5-32 CTOS Programming Guide, Volume I 6191

lnstall.jcl File

Number Script

1

2

3

Install.jcl
Install the Basic Tape subpackage ·

Except for yes/no strings, this message is the
only nationalizable string in this file.

ErrorMsg =

FromFloppy
FromServer
FloppySpec
FromSpec
To Spec

'Cannot access message file'

0
2
ConcatStrings(DeviceFrom, '<CTOS>')
ConcatStrings(FloppySpec, '*')
ConcatStrings(VolumeTo, DirectoryTo)

4 InitErc InitMsgFile(MsgFile)
If InitErc > 0

DisplayLine(ErrorMsg)
Cancel

Endif

5 CopyMsg = GetMsg(3)
DoneMsg = GetMsg(4)
Msg = GetMsg(2)
Display(Msg)

6 Command Merge Command Files ,&

6191

CmdFileFrom ,&
CmdFileTo , &
Yes , &
VolumeTo

DisplayLine(DoneMsg)
DisplayLine
Display(CopyMsg)

Software Installation: The Installation Manager 5-33

Number Comment

When values for installation variables are given, it is assumed that
the user has not used the Examine/Change Defaults option from
the Installation Defaults menu. For floppy disk installations, it is
assumed that the user has inserted the floppy disk in drive 0.

1. Assign strings to be used later.

2. Assign values to enhance readability.

3. DeviceFrom is [fO] if the installation is private, [!Sys] if the
installation is public. VolumeTo is [Sys] if the installation is
private, [!Sys] if public. DirectoryTo is <Sys>.

4. Initialize the message file. The message file is
[Ser]<$> Instal!Msg.bin if the installation is private or
[!Sys] <Installed> Ba.sic Tape> 12.1. 0> !:::;tal!l-rfsg.bin if the
installation is from the server. Print a message if the file does not
exist. It should always be there-this is just defensive coding. The
Cancel statement causes termination of script processing by
Batch. The installation will fail because the product files were not
updated.

5. Since the "copying" and "done" messages are used more than once,
put them in their own variables.

6. Merge the command files. CmdFileFrom is [Scr]<$>lnstall.cmds
if the installation is private or
[!Sys}<lnstalled>BasicTape> 12.1.0>lnstall.cmds if the
installation is from the server. CmdFileTo is
[Sys]<Sys>Sys.cmds if the installation is private,
[!Sys]<Sys>Cluster.cmds if it is public. VolumeTo is [Sys] if the
installation is private, [!Sys] if it is public.

5-34 CTOS Programming Guide, Volume I 6191

Number Script

7 If InstallType = FromServer
Command LCopy , &

, &
@[Scr]<$>InstallOverwriteOkFrom.fls,&
@[Scr]<$>InstallOverwriteOkTo.fls,&

, &
Yes ,&
No ,&
No
Yes

DisplayLine(DoneMsg)
DisplayLine

, &

8 GoTo Endit

9

6/91

End if

RestartLabel

Command LCopy
FromSpec

To Spec

Yes
No
No
Yes

DisplayLine(DoneMsg)
DisplayLine

RestartLabel

, &
,&
,&
, &

,&
, &

, &
,&

Software Installation: The Installation Manager 5-35

Number Comment

7. When the user does a public installation, this script file, along
with the accompanying command and message files will be copied
to (!Sys]<Installed> with the prefix BasicTape>12.1.0>. The
script will be invoked when the user attempts to install the
product from the server. Therefore it (and indeed every script)
must allow for the case when the user installs from the server
(even if the script displays a message saying that installation from
the server is not supported for the subpackage). This LCopy
command is performed if the user invoked the Installation
Manager using the Executive command Server Install or if the
"Install from server" option was chosen from the Installation
Media menu. [Scr}<$>lnsta/IOverwriteOkFrom.fls will contain:

[!Sys} <Sys> Instal/SeqService.run
[!Sys] <Sys> NGenSeqService.ru::
[!Sys} <Sys>QicConfig.sys
[!Sys} <Sys>SeqAccessCopy .run
[!Sys}<Sys>SeqAccessUtility.run
[!Sys} <Sys>SeqServiceMsg.bin

[Ser j <$> Instal!OverwriteOkTo.f/s will contain:

[Sys} <Sys> Insta/lSeqService.run
[Sys} <Sys> NGenSeqService. run
[Sys} <Sys>QicConfig.sys
[Sys} <Sys>SeqAccessCopy .run
[Sys}<Sys>SeqAccessUtility.run
[Sys} <Sys>SeqServiceMsg.bin

8. Since there is nothing more to do in the case of an installation
from the server, quit. A GoTo statement is used to make the
script more readable. An Else clause would have been equally
correct.

9. Everything from this point gets executed only if the installation is
being done from floppy disks. Copy the files from the first disk.
FromSpec is (fO]<CTOS>* and ToSpec is [Sys]<Sys> if the
installation is private or (!Sys]<Sys> if the installation is public.

5-36 CTOS Programming Guide, Volume I 6191

Number Script

10 Msg = GetMsg(l)
NextFloppy(Msg)

DisplayLine
Display(CopyMsg)

11 Command LCopy
' &

FromSpec ,&

I &
ToSpec ' &

I &
Yes ,&
No ,&
No I &
Yes

DisplayLine(DoneMsg)
DisplayLine

Endit:
End

6191 Software Installation: The Installation Manager 5-37

Number Comment

10. Ask the user to insert the next floppy disk.

11. Copy the files from the second disk. FromSpec and ToSpec
remain the same.

5-38 CTOS Programming Guide, Volume I 6191

Example 2: Nested Subpackages

This second example contains two levels of subpackages and spans three
floppy disks. The installation files are

Install.ctr/
Development Utilities> Install. ctr/

DevelopmentRunFiles> Install. ctr!
Deve/opmentRunFiles> Install.jc/
Development Run Files> Inst al I Msg. bin
DevelopmentRunFiles> Inst al I. cmds

Development Libraries> Install.ctr/
Development Libraries> Install.jc/
Development Libraries> Instal/Msg. bin

AsynchronousExamples> Install. ctr/
AsynchronousExamples> Inst al l.jcl
AsynchronousExamples> Install Msg. bin
AsynchronousExamp/es> Install.cmds

These files are placed in the <Sys> directory of the first disk.

The following files are also placed in the <Sys> directory of the second
disk:

Development Libraries> Install.ctr/
Development Libraries> Install.jcl
Development Libraries> InstallMsg. bin

The following files are also placed in the <Sys> directory of the third
disk:

Asynchronous Examples> Install. ctr/
AsynchronousExamples> Install.jcl
Asynchronous Examples> InstallM sg. bin
Asynchronous Examples> Install. CJnds

A zero-length file, 'Development Package Diskette 1 of 3' is put in the
<Sys> directory on the first disk. A zero-length file, 'Development
Package Diskette 2 of 3' is put in the <Sys> directory on the second disk.

6191 Software Installation: The Installation Manager 5-39

A zero-length file, 'Development Package Diskette 3 of 3' is put in the
<Sys> directory on the third disk.

Product files for Development Run Files are placed in the <CTOS>
directory of disks 1 and 2. Product files for Development Libraries are
placed in the <Lib> directory of disks 2 and 3. Product files for
Asynchronous examples are placed in the <Async> directory of disk 3.

Install.ctr/ File

:PackageName:Development Package
:MultiPkgName:Development Utilities
:MultiPkgName:Asynchronous Examples

5-40 CTOS Programming Guide, Volume I 6191

DevelopmentUtilities>lnstall.ctrl File

:PackageName:Development Utilities
:MultiPkgName:Development Run Files
:MultiPkgName:Development Libraries

Note that Install.ctrl could have been designed to look like:

:PackageName:Development Package
:MultiPkgName:Development Run Files
:MultiPkgName:Development Libraries
:MultiPkgName:Asynchronous Examples

The first way groups the Run Files and Libraries into their own menu,
which is a nicer presentation to the user. The second way requires
DevelopmentUtilities> Install.ctr! to be removed. Both ways would result
in the same entries in the installation database.

Note that the Installation Manager installs subpackages in the order given
in the various control files. If all three subpackages are chosen, they
would be installed in the following order: (1) Development Run Files;
(2) Development Libraries; (3) Asynchronous Examples.

In this example, Install.ctr! would be opened, and the menu would contain
two choices: Development Utilities and Asynchronous Examples. If the
user chooses both, DevelopmelltUtilities>Instal/.ctrl will be opened and
the menu would contain the two choices Development Run Files and
Development Libraries. If the user chooses both, DevelopmentRun­
Files>Instal/.ctrl will be opened. Since this is the bottom of the "tree,"
the associated command, script, and message files would be copied to
[Ser]<$> and the installation would be performed. Then
DevelopmentLibraries>Install.ctrl would be opened. Again this is the
bottom of the tree, so the files would be copied and the installation
performed. Then AsynchronousExamples>Instal/.ctrl would be opened,
the files copied and that installation performed.

If DevelopmentRunFiles> Install.Ctr/, Development Libraries> Install.ctr/, or
AsynchronousExamples>Install.ctrl had not been at the bottom of the tree
(in other words, they contained :MultiPkgName: entries), then menus
would have been presented to the user at the time the files were opened.
The subpackages listed in DevelopmentRunFiles>Install.ctrl would be
installed before those listed in DevelopmentLibraries>Install.ctrl, and so
on. This can go on for a theoretically infinite number of layers.

6191 Software Installation: The Installation Manager 5-41

DevelopmentRunFiles> Install. ctr! File

:PackageName:Development Run Files
:Version:l2.l.O
:Verify:
:RequiredDiskSpace:l400
: Directory: <Sys>
:Commands: 'Assemble' 'Bind' 'Dump'
:ProductFiles:Assembler.run Linker.run Dump.run

DevelopmentRunFiles>lnstallMsg.bin File

: 1: "Development Package diskette 2 of 3"
: 2: "Development Package diskette 3 of J II

: 3: "Development Libraries"
: 4: "Asynchronous Examples"
. i::. ""'·---.! -- -----~--,-
• J. J..'J.C:.1. 'J .J..U~ \.,.:VJ.lllllO.UU;::i • • •

: 6: "Copying files ... II

: 7: "done."

DevelopmentRunFiles> Install. cmds File

The Command File Editor is used to create the three commands listed in
the control file.

5-42 CTOS Programming Guide, Volume I 6191

Deve/opmentRunFiles>lnstall.jcl File

Number Script

DevelopmentRunFiles>Install.jcl
Install the Development Run Files subpackage

Except for yes/no strings, this message is the
only nationalizable _string in this file.

l ErrorMsg 'Cannot access message file'

2 FromFloppy 0
FromServer 2

3 FloppySpec ConcatStrings(DeviceFrom, '<CTOS>')
FromSpec ConcatStrings(FloppySpec, I* I)

ToSpec ConcatStrings(VolumeTo,

4 InitErc InitMsgFile(MsgFile)
If InitErc > 0

DisplayLine(ErrorMsg)
Cancel

Endif

5 CopyMsg = GetMsg(6)
DoneMsg = GetMsg(7)
Msg = GetMsg(S)
Display(Msg)

6 Command Merge Command Files ,&
CmdFileFrom ,&
CmdFileTo ,&
Yes ,&
VolumeTo

Displayline(DoneMsg)
DisplayLine
Display(CopyMsg)

DirectoryTo)

6191 Software Installation: The Installation Manager. 5-43

Number Comment

When values for installation variables are given, it is assumed that
the user has not used the Examine/Change Defaults option from
the Installation Defaults menu. For floppy disk installations, it is
assumed that the user has inserted the floppy disk in drive 0.

1. Assign strings to be used later.

2. Assign values to enhance readability.

3. DeviceFrom is [fO] if the installation is private, [!Sys] if the
installation is public. VolumeTo is [Sys] if the installation is
private, [!Sys] if public. DirectoryTo is <Sys>.

4. Initialize the message file. The message file is
[Ser j <$> DevelopmentRunFiles> lnstallMsg.bin if the installation is
nr;u~t~ or r·., ~·~ ~·
[!Sys j <Installed> DevelopmentRunFiles> 12.1. 0> lnstal/Msg.bin if
the installation is from the server. Print a message if the file does
not exist. It should always be there-this is just defensive coding.
The Cancel statement causes termination of script processing by
Batch. The installation will fail because the product files were not
updated.

5. Since the "copying" and "done" messages are used more than once,
put them in their own variables.

6. Merge the command files. CmdFileFrom is
[Scr)<$>DevelopmentRunFiles>lnstall.cmds if the installation is
private or
[!Sys j <Installed> DevelopmentRunFiles> 12.1. 0> lnstall.cmds if the
installation is from the server. CmdFileTo is
[Sys]<Sys>Sys.cmds if the installation is private,
[!Sys]<Sys>Cluster.cmds if it is public. VolumeTo is [Sys] if the
installation is private, [!Sys] if it is public.

5-44 CTOS Programming Guide, Volume I 6191

Number Script

7 If InstallType = FromServer
Command LCopy ,&

' &
@[Scr]<$>InstallOverwriteOkFrom.fls,&
@[Scr]<$>InstallOverwriteOkTo.fls,&

Yes
No
No
Yes

Displayline(DoneMsg)
DisplayLine

,&
,&
,&
,&

8 GoTo Endit

9

End if

RestartLabel

Command LCopy
FromSpec

ToSpec

Yes
No
No
Yes

Displayline(DoneMsg)
DisplayLine

RestartLabel

10 Msg = GetMsg(1)
NextFloppy(Msg)

DisplayLine
Display(CopyMsg)

,&

' &
,&

' &

' &

' &
,&
,&

6191 Software Installation: The Installation Manager 5-45

Number Comment

7. When the user does a public installation, this script file, along
with the accompanying c01nmand and message files will be copied
to (!Sys]<lnstalled> with the prefix
DevelopmentRunFiles> 12.1.0>. The script will be invoked when
the user attempts to install the product from the server.
Therefore it (and indeed every script) must allow for the case
when the user installs from the server (even if the script displays a
message saying that installation from the server is not supported
for the subpackage). This LCopy command is performed if the
user invoked the Installation Manager using the Executive
command Server Install or if the "Install from server" option was
chosen from the Installation Media menu.

[Ser]<$> Instal/OverwriteOkFrom.fls will contain:

[!Sys]<Sys>Assembler.run
[!Sys] <Sys> Linker.rwi
[!Sys]<Sys>Dump.run

[Scr]<$>Instal/OverwriteOkTo.fls will contain:

[Sys] <Sys> Assembler. run
[Sys] <Sys> Linker.run
[Sys] <Sys> Dump. run

8. Since there is nothing more to do in the case of an installation
from the server, quit. A Go To statement is used to make the
script more readable. An Else clause would have been equally
correct.

9. Everything from this point is executed only if the installation is
being done from floppy disks. Copy the files from the first disk.
FromSpec is (fO]<CTOS>* and ToSpec is [Sys]<Sys> if the
installation is private or [!Sys]<Sys> if the installation is public.

10. Ask the user to insert the next floppy disk.

5-46 CTOS Programming Guide, Volume I 6191

Number Script

11 Command LCopy
FromSpec

ToSpec

Yes
No
No
Yes

Displayline(DoneMsg)
DisplayLine

' &

' &

' &

' &

' &

' &
,&

,&

12 Pkg = GetMsg(3)
If SubString(Pkg,Pkgs) <> 65535

Msg = GetMsg(l)
NextFloppy(Msg)
GoTo Endit

Endif

13 Pkg = GetMsg(4)

6191

If SubString(Pkg,Pkgs) <> 65535
Msg = GetMsg(2)
NextFloppy(Msg)

End if

Endit:
End

Software Installation: The Installation Manager 5-47

Number Comment

11. Copy the files from the second disk. FromSpec and ToSpec
remain the same.

12. See if the user has chosen the Development Libraries subpackage.
If it was chosen, the NextFloppy will not ask the user to insert a
floppy disk, since it is already inserted. The statement is here so
in case the subpackage grows in the future, minimal rewriting will
have to be done to the script. The GoTo is required in case the
user also chose the Asynchronous Examples subpackage. (If the
GoTo were missing and the Asynchronous Examples subpackage
were chosen, the user would be prompted to insert the third disk.
This would cause the Installation Manager to ask the user to
mount the first disk of the Development Libraries subpackage,
because it would be looking for
fJOJ<Sys>DevelopmentLihraries>lnstall.r.trl, which is on the
second disk.)

13. In the case that the user did not choose the Development
Libraries subpackage, ascertain whether the Asynchronous
Examples subpackage was chosen. If so, ask the user to insert the
third disk.

5-48 CTOS Programming Guide, Volume I 6191

DevelopmentLibraries >Install. ctr/ File

:PackageName:Development Libraries
:Version:l2.l.O
:Verify:
:RequiredDiskSpace:BOO
:Directory:<Sys>
:ProductFiles:Ctos.lib Enls.lib Async.lib

6191 Software Installation: The Installation Manager 5-49

DevelopmentLibraries>lnstal/Msg.bin File

:1: "Development Package diskette 3 of 3"
: 2: "Copying files. . . "
: 3: "done."

5-50 CTOS Programming Guide, Volume I 6/91

DevelopmentUbraries>lnstall.jcl File

Number Script

1

2

3

DevelopmentLibraries>Install.jcl
Install the Development Libraries subpackage

Except for yes/no strings, these two messages are
the only nationalizable strings in this file.

ErrorMsg
FirstDisk

FromFloppy
FromServer
FloppySpec
FromSpec
ToSpec.

='Cannot access message file'
='Development Package diskette 2 of 3'

0
2

ConcatStrings(DeviceFrom, '<Lib>')
ConcatStrings(FloppySpec, '*')
ConcatStrings(VolumeTo, DirectoryTo)

4 If InstallType = FromFloppy
NextFloppy(FirstDisk)

Endif

5 InitErc = InitMsgFile(MsgFile)
If InitErc > 0

DisplayLine(ErrorMsg)
Cancel

End if

6 CopyMsg = GetMsg(2)
DoneMsg = GetMsg(3)
Display(CopyMsg)

6191 Software Installation: The Installation Manager 5-51

Number Comment

When values for installation variables are given, it is assumed that
the user has not used the Examine/Change Defaults option from
the Installation Defaults menu. For floppy disk installations, it is
assumed that the user has inserted the floppy disk in drive 0.

1. Assign strings to be used later.

2. Assign values to enhance readability.

3. DeviceFrom is (fO] if the installation is private, [!Sys] if the
installation is public. VolumeTo is [Sys] if the installation is
private, (!Sys] if public. DirectoryTo is <Sys>.

4. Make sure that the correct floppy disk is inserted. If the user did
not choose "Development Run Files," then the first disk is still
inserted.

5. Initialize the message file. The message file is
[Ser}<$> Development Libraries> Instal/Msg.bin if the installation
is private or
[!Sys] <Installed> DevelopmentLibraries> 12.1.0>InstallMsg.bin if
the installation is from the server. Print a message if the file does
not exist. It should always be there-this is just defensive coding.
The Cancel statement causes termination of script processing by
Batch. The installation will fail because the product files were not
updated.

6. Since the "copying" and "done" messages are used more than once,
put them in their own variables.

5-52 CTOS Programming Guide, Volume I 6191

Number Script

7 If InstallType = FromServer
Command LCopy ,&

' &
@[Scr]<$>InstallOverwriteOkFrom.fls,&
@[Scr]<$>InstallOverwriteOkTo.fls,&

Yes
No
No
Yes

Displayline(DoneMsg)
DisplayLine

,&
,&
,&
,&

8 GoTo Endit

9

End if

RestartLabel

Command LCopy
FromSpec

To Spec

Yes
No
No
Yes

Displayline(DoneMsg)
DisplayLine

RestartLabel

10 Msg = GetMsg(l)
NextFloppy(Msg)

DisplayLine
Display(CopyMsg)

,&
,&
,&
,&

' &
,&
,&
,&

6191 Software Installation: The Installation Manager 5-53

Number Comment

7. When the user does a public installation, this script file, along
with the accompanying command and message files will be copied
to [!Sys]<Installed> with the prefix
DevelopmentLibraries> 12.1.0>. The script will be invoked when
the user attempts to install the product from the server.
Therefore it (and indeed every script) must allow for the case
when the user installs from the server (even if the script displays a
message saying that installation from the server is not supported
for the subpackage). This LCopy command is performed if the
user invoked the Installation Manager using the Executive
command Server Install or if the "Install from server" option was
chosen from the Installation Media menu.

[Ser j <$> Instal/OverwriteOkFrom.fls will contain:

[!Sys} <Sys>Ctos.lib
[!Sys] <Sys> Enis.lib
[!Sys j <Sys> Async.lib

[Scrj<$>lnsta/10verwrite0kTo.fls will contain:

[Sys} <Sys>Ctos./ib
[Sys j <Sys> Enis .lib
[Sys]<Sys>Async.lib

8. Since there is nothing more to do in the case of an installation
from the server, quit. A GoTo statement is used to make the
script more readable. An Else clause would have been equally
correct.

9. Everything from this point gets executed only if the installation is
being done from floppy disks. Copy the files from the first disk.
FromSpec is [fO]<Lib>* and ToSpec is [Sys]<Sys> if the
installation is private or [!Sys]<Sys> if the installation is public.

10. Ask the user to insert the next floppy disk.

5-54 CTOS Programming Guide, Volume I 6191

Number Script

11

6191

Command LCopy
FromSpec

To Spec

Endit:
End

Yes
No
No
Yes

,&
,&
,&
,&
,&
,&
,&

' &

Software Installation: The Installation Manager 5-55

Number Comment

11. Copy the files from the third disk. FromSpec and ToSpec remain
the same.

There is no need to see if the user has chosen the Asynchronous
Examples subpackage, since the third disk is already in the disk
drive.

5-56 CTOS Programming Guide, Volume I 6191

AsynchronousExamples >Install. ctr/ File

:PackageName:Asynchronous Examples
:Version:l2.l.O
:Verify:
:RequiredDiskSpace:360
:Directory:<Async>
:Commands:Start Stop Example
:ProductFiles:Async.h AsyncService.c Deinstall.c
Example.c ExDef.h ExFunc.h ExRqblk.h ExRqLabl.asm
LinkDeinstall.fls LinkDeinstall.sub LinkExample.fls
LinkExample.sub LinkStart.fls LinkStart.sub LinkStop.fls
LinkStop.sub ReadMe RequestEx.txt Start.c Stop.c

6191 Software Installation: The Installation Manager 5-57

AsynchronousExamples>lnstal/Msg.bin File

:l: "Listing requests ... "
:2: "Making Request.sys ... "
: 3: "Merging commands. . . "
:4: "Copying files ... "
: 5: "done."

AsynchronousExamples >Install. cmds File

The Command File Editor was used to create the three commands listed
in the control file.

5-58 CTOS Programming Guide, Volume I 6191

AsynchronousExamp/es > Jnstall.jc/ File

Number Script

1

AsynchronousExamples>Install.jcl
Install the Asynchronous Examples subpackage

Except for yes/no strings, these two messages are
the only nationalizable strings in this file.

ErrorMsg
FirstDisk

= 'Cannot access message file'
='Development Package diskette 3 of 3'

2 FromFloppy = O
FromServer = 2

3

TotalSilence 2

FloppySpec =
FromSpec
To Spec
Ser Spec
If Public

Sys Spec
Else

Sys Spec=
Endif
RqSpec
RqListSpec
RqTextSpec

ConcatStrings(DeviceFrom, '<Async>')
ConcatStrings(FloppySpec, '*')
ConcatStrings(VolumeTo, DirectoryTo)
'[Ser]<$>'

' [!Sys] <Sys>'

'[Sys]<Sys>'

ConcatStrings(SysSpec, 'Request.sys')
ConcatStrings(ScrSpec, 'LRS')
ConcatStrings(ToSpec, 'Request.Ex.txt')

4 If InstallType = FromFloppy
NextFloppy(FirstDisk)

End if

5 InitErc = InitMsgFile(MsgFile)

6191

If InitErc > 0
DisplayLine(ErrorMsg)
Cancel

End if

Software Installation: The Installation Manager 5-59

6 DoneMsg = GetMsg(5)
Msg = GetMsg(3)
Display(Msg)

5-60 CTOS Programming Guide, Volume I 6191

Number Comment

When values for installation variables are given, it is assumed that
the user has not used the Examine/Change Defaults option from
the Installation Defaults menu. For floppy disk installations, it is
assumed that the user has inserted the floppy disk in drive 0.

1. Assign strings to be used later.

2. Assign values to enhance readability.

3. DeviceFrom is [fO] if the installation is private, [!Sys] if the
installation is public. VolumeTo is [Sys] if the installation is
private, [!Sys] if public. DirectoryTo is <Sys>. Note that instead
of using VolumeTo as the volume part of SysSpec, we explicitly
set it to [Sys]<Sys> or [!Sys]<Sys>. The user has the option of
changing the destination volume to something other than [Sys] or
[!Sys], but the request file is always on the Sys volume of the
target computer.

4. Make sure that the correct floppy disk is inserted. If the user
chose only Asynchronous Examples, then the first disk is still
inserted.

5. Initialize the message file. The message file is
[Ser j <$>Asynchronous Examples> lnstallMsg. bin if the installation
is private or
[!Sys]<Installed>A.synchronousExamples>12.1.0>lnstallMsg.bin
if the installation is from the server. Print a message if the file
does not exist. It should always be there-this is just defensive
coding. The Cancel statement causes termination of script
processing by Batch. The installation will fail because the product
files were not updated.

6. Since the "copying" and "done" messages are used more than once,
put them in their own variables.

6191 Software Installation: The Installation Manager 5-61

Number Script

7 Command Merge Command Files ,&
CmdFileFrom ,&
CmdFileTo ,&
Yes
VolumeTo

Displayline(DoneMsg)
DisplayLine
Msg = GetMsg(4)
Display(Msg)

8 If InstallType = FromServer

, &

Command LCopy ,&
, &

@[Scr]<$>InstallOverwriteOkFrom.fl~:&

@[Scr]<$>InstallOverwriteOkTo.fls,&

Yes
No

No
Yes

5-62 CTOS Programming Guide, Volume I

, &

,&
,&
,&

6191

Number Comment

7. Merge the command files. CmdFileFrom is
[Ser] <$>AsynchronousExamples> Install.cmds if the installation
is private or
[!Sys] <Instal/ed>AsynchronousExamples> 12.1.0> Install.cmds if
the installation is from the server. CmdFileTo is
[Sys]<Sys>Sys.cmds if the installation is private,
[!Sys]<Sys>Cluster.cmds if it is public. VolumeTo is [Sys] if the
installation is private, [!Sys] if it is public.

8. When the user does a public installation, this script file, along
with the accompanying command and message files will be copied
to [!Sys)<Installed> with the prefix

6/91

AsynchronousExamples> 12.1.0>. The script will be invoked
when the user attempts to install the product from the server.
Therefore it (and indeed every script) must allow for the case
when the user installs from the server (even if the script displays a
message saying that installation from the server is not supported
for the subpackage). This LCopy command is performed if the
user invoked the Installation Manager using the Executive
command Server Install or if the "Install from server" option was
chosen from the Installation Media menu.

[Ser}<$> InstallOverwriteOkFrom.fls will contain:

[I Sys} <Async > Async. h
[I Sys] <Async > AsyncService. c
[!Sys]<Async>Deinstall.c
[!Sys]<Async>Example.c
[!Sys] <Async> ExDef.h
[!Sys]<Async>ExFunc.h
[!Sys] <Async> ExRqblk.h
[!Sys]<Async>ExRqLabl.asm
[I Sys} <Async > LinkDeinstall.fls
[!Sys]<Async>LinkDeinstall.sub
[!Sys} <Async > LinkExample .fls
[!Sys] <Async> LinkExample.sub
[!Sys]<Async>LinkStart.fls
[!Sys]<Async>LinkStart.sub
[!Sys] <Async> LinkStop.fls

Software Installation: The Installation Manager 5-63

Number Script

9 GoTo DoRqs
End if

RestartLabel

10 Command LCopy ,&

FromSpec , &

' &
To Spec ' &

' &
Yes ' &
No ,&

No ' &
Yes

DoRqs:

Displayline(DoneMsg)
DisplayLine

RestartLabel

Msg = GetMsg(l)
Display(Msg)

5-64 CTOS Programming Guide, Volume I 6191

Number Comment

[!Sys] <Async> LinkStop.sub
[!Sys]<Async>ReadMe
[/Sys]<Async>RequestEx.txt
[!Sys]<Async>Start.c
[!Sys]<Async>Stop.c

[Scrj<$>1nstal/OverwriteOkTo.f/s will contain:

[Sys}<Async>Async.h
[Sys}<Async>AsyncService.c
[Sys} <Async> Deinsta//.c
[Sys}<Async>Example.c
[Sys}<Async>ExDef.h
[Sys} <Async> ExFwzc.h
[Sys]<Async>ExRqblk.h
[Sys} <Async> ExRqLabl.asm
[Sys} <Async> LinkDeinstall.f/s
[Sys} <Async> LinkDeinsta//.sub
[Sys}<Async>LinkExample.fls
[Sys} <Async> LinkExample.sub
[Sys} <Async> LinkStart .fls
[Sys} <Async> LinkStart .sub
[Sys] <Async> LinkStop.fls
[Sys}<Async>LinkStop.sub
[Sys}<Async>ReadMe
[Sys]<Async>RequestEx.txt
[Sys}<Async>Start.c
[Sys]<Async>Stop.c

. L

9. The next step when installing from the server is merging the
requests.

10. Copy the files from the disk. FromSpec is [fO]<Async>* and
ToSpec is [Sys]<Async> if the installation is private or
[!Sys]<Async> if the installation is public.

6191 Software Installation: The Installation Manager 5-65

Number Script

11 Command List Request Set
RqSpec
RqListSpec

Displayline(DoneMsg)
DisplayLine
Msg = GetMsg(2)
Display(Msg)

12 SaveVidLevel = VideoLevel
If VideoLevel = TotalSilence

Echo Some
Endif

,&
,&

Conunand Make Request Set,&
(RqListSpec, RqTextSpec) ,&
RqSpec

12 .1. 0

If SaveVidLevel
EchoOff

End If

Total Silence

Displayline(DoneMsg)
DisplayLine

End

5-66 CTOS Programming Guide, Volume I

, &

,&

6191

Number Comment

11. List the request set. RqSpec is [Sys]<Sys>Request.sys if the
installation is private or [!Sys]<Sys>Request.sys. RqListSpec is
[Scr]<$>LRS.

12. Merge the new requests into the user's request file. Note that
video must be turned on, since there might be errors reported by
Make Request Set. If it reports errors, it stops for user input. If
video were off (non-verbose}, the installation would appear to
hang, since the user would never see the messages. RqListSpec
and RqSpec are unchanged. RqTextSpec is
[Sys]<AJync>Request.Ex.txt if the installation is private or
[!Sys]<Async>Request.Ex.txt if the installation is public.

6191 Software Installation: The Installation Manager 5-67

Example 3: Tape Installation

This last example is a tape installation of the second example
(Development Package). In this example, the following events occur:

1. The product files are copied for each of the chosen subpackages.

2. Two of the subpackages have associated command files
(Development Run Files and Asynchronous Examples). If one
(or both) of these subpackages is chosen, its command files are
merged.

3. One of the subpackages (Asynchronous Examples) has commands
that need to be merged if that subpackage is chosen.

The string variable pkgs contains the names of all the subpackages chosen
by the user. Install Manager passes this variable to Batch. The JCL
installation script then calls the Batch function $Substring to query this
variable.

The installation files are

Install.ctr/ (same as DevelopmentUtilities>lnstall.ctrl in the previous
example)
Install.jcl (see following pages)
InstallMsg.bin (see following pages)

DevelopmentRunFiles> Install. ctr!
DevelopmentRunFiles> Install. cmds

Development Libraries> Install. ctr!

Asynchronous Examples> Install. ctr!
Asynchronous Examples> Install.cmds

These files are placed in [Qic]O.

The contents of the other installation files are the same as that of the files
in the previous example.

5-68 CTOS Programming Guide, Volume I 6191

lnstal/Msg.bin File

:1: "Listing requests ... "
:2: "Making Request.sys ... "
: 3: "Merging commands. . . "
: 4: "Restoring files. . . "
: 5: "done."
:6: "Asynchronous Examples"
:7: "AsynchronousExamples>Install.cmds"
:8: "Development Run Files"
:9: "DevelopmentRunFiles>Install.cmds"

6191 Software Installation: The Installation Manager 5-69

lnstall.jcl File

Number Script

Install.jcl
Install Development Package from Qic Tape

Except for yes/no strings, this message is the
only nationalizable string in· this file.

l ErrorMsg = 'Cannot access message file'

2 Ser Spec '[Ser]<$>'
ToSpec ConcatStrings(VolumeTo, DirectoryTo)
If Public

Sys Spec '[!Sys]<Sys>'
Else

Sys Spec ' [Sys] <Sys>'
End if
RqSpec ConcatStrings(SysSpec, 'Request.sys')
RqListSpec ConcatStrings(ScrSpec, 'LRS')
RqTextSpec =ConcatStrings(ToSpec, 'Request.vm.txt')

3 InitErc = InitMsgFile(MsgFile)
If InitErc > 0

DisplayLine(ErrorMsg)
Cancel

End if

4 DoneMsg = GetMsg(5)
Msg = GetMsg(4)
Display(Msg)

RestartLabel

5-70 CTOS Programming Guide, Volume I 6/91

Number Comment

When values for installation variables are given, it is assumed that
the user has not used the Examine/Change Defaults option from
the Installation Defaults menu. Note that in this script, we don't
have to worry about floppy and server installations, since the
script file will only be used for a tape installation.

1. Assign strings to be used later.

2. VolumeTo is [Sys) if the installation is private, [!Sys] if public.
DirectoryTo is <Sys>. Note that instead of using VolumeTo as
the volume part of SysSpec, we explicitly set it to [Sys)<Sys> or
[!Sys)<Sys>. The user has the option of changing the destination
volume to something other than [Sys] or [!Sys), but the request file
is always always on the sys volume of the target computer.

3. Initialize the message file. The message file is
[Ser]<$> InstallMsg.bin. Print a message if the file does not exist.
It should always be there-this is just defensive coding. The
Cancel statement causes termination of script processing by
Batch. The installation will fail because the product files were not
updated.

4. Since the "copying" and "done" messages are used more than once,
put them in their own variables.

6191 Software Installation: The Installation Manager 5- 71

Number Script

5 Command Restore Archive , &
DeviceFrom , &
@[Scr]<$>InstallOverwriteOkFrom.fls,&
@[Scr]<$>InstallOverwriteOkTo.fls,&
yes

Displayline(DoneMsg)
DisplayLine

RestartLabel

5-72 CTOS Programming Guide, Volume I 6191

Number Comment

5. Restore the product files. We will assume that the user chose all
three subpackages. Since Restore Archive will create directories
that do not already exist, we do not have to create
[VolumeTo]<Async>. DeviceFrom is [Qic]l.

6191

[Ser}<$> InstallOverwriteOkFrom.f/s will contain:

<*>Assembler.run
<*>Linker.run
<*>Dump.run
<*>Ctos.lib
<*>Enis.lib
<*>A.1ync.lib
<Async>Async.h
<*>A.1yncService.c
<*>De install. c
<*>Example.c
<*>ExDef.h
<*>ExFunc.h
<*>ExRqblk.h

<*> ExRqLabl.asm
< * > LinkDeinst all .fl s
< * > LinkDeinstal! .sub
< *> LinkExample .Jls
< *> LinkExample .sub
< *> LinkStart.fls
<*> LinkStart.sub
< *> LinkStop.Jls
<*>LinkStop.sub
<*>ReadMe
<*>RequestEx.txt
<*>Start.c
<*>Stop.c

[Ser}<$> InstallOverwriteOkTo.fls will contain:

[Sys} <Sys> Assembler. run
[Sys} <Sys> Linker.run
[Sys} <Sys> Dump. run
[Sys} <Sys>Ctos.lib
[Sys} <Sys> Enis.lib
[Sys}<Sys>Async.lib
[Sys} <Async>Async.h
[Sys} <Async>AsyncService.c
[Sys} <Async> Deinstall.c
[Sys} <Async> Example.c
[Sys} <Async >Ex Def. h
[Sys} <Async> ExFunc.h
[Sys} <Async> ExRqblk.h
[Sys}<Async>ExRqLabl.asm
[Sys}<Async>LinkDeinstall.fls
[Sys} <Async> LinkDeinstall.sub

Software Installation: The Installation Manager 5-73

This page intentionally left blank.

5-74 CTOS Programming Guide, Volume I 6191

Number Comment

6191

[Sys]<Async>LinkExample.fls
[Sys]<Async>LinkExample.sub
[Sys]<A.sync>LinkStart.f/s
[Sys] <Async> LinkStart .sub
[Sys] <Async> LinkStop.fls
[Sys] <Async> LinkStop.sub
[Sys]<Async>ReadMe
[Sys]<Async>RequestEx.txt
[Sys] <Async>Start.c
[Sys] <Async>Stop.c

If at least one of the control files contained an entry for
OverwriteNoFiles, then those would also have to be restored by the
statements:

OverwriteNo=ConcatStrings(ScrSpec,
'InstallOverwriteNoFrom.fls')

Ver = FileVersion(OverwriteNo)
If Ver = '255' Then

Command Restore Archive ,&

Endif

DeviceFrom , &
@[Scr]<$>InstallOverwriteNoFrom.fls,&
@[Scr]<$>InstallOverwriteNoTo.fls,&
No

If there are no entries for OverwriteNoFiles in the control files of
the chosen subpackages, then Instal/OverwriteNoFrom.fls and
lnstallOverwriteNoTo.f/s are not created. Therefore, we have to
check for their existence. A value of '255' from File Version()
says that the file exists but doesn't have a version (only run files
have versions.) If the files did not exist and the Restore Archive
command was issued anyway, the second and third parameters
would be null. That means that the default of <*>*would be
used, which is clearly not what is desired.

Software Installation: The Installation Manager 5-75

Number Script

6 pkg = GetMsg(6)
If substring(pkg,pkgs) <> 65535

Msg = GetMsg(l)
Display(Msg)

7 Command List Request Set ,&
RqSpec , &
RqListSpec

Displayline(DoneMsg)
DisplayLine
Msg = GetMsg(2)
Display(Msg)

8 SaveVidLevel = VideoLevel
If VideoLevel = TotalSilence

EchoSome
Endif

Command Make Request Set , &
(RqListSpec, RqTextSpec),&
RqSpec , &

' &
12 .1. 0

If SaveVidLevel
EchoOff

Total Silence

End If

Displayline(DoneMsg)
DisplayLine

5-76 CTOS Programming Guide, Volume I 6191

Number Comment

6. Determine whether the Asynchronous Examples subpackage has
been chosen. If so, print the message "Listing requests ... "
Then perform steps 7, 8, and 9 (List Request Set, Make Request
Set, Merge Command Files).

7. List the request set: RqSpec is [Sys] <Sys> Request.sys if the
installation is private or [!Sys]<Sys>Request.sys if the installation
is public. RqListSpec is [Scr]<$>LRS.

8. Merge the new requests into the user's request file. Note that
video must be turned on, since there might be errors reported by
Make Request Set. If it reports errors, it stops for user input. If
video were off (non-verbose), the installation would appear to
hang, since the user would never see the messages. RqListSpec
and RqSpec are unchanged. RqTextSpec is
[Sys]<Async>Request.Ex.txt if the installation is private or
[!Sys]<Async>Request.Ex.txt if the installation is public.

6191 Software Installation: The Installation Manager 5-77

Number Script

9 pkgCmdName = GetMsg(7)
CmdSpec = ConcatStrings(ScrSpec, pkgCmdName)
Command Merge Command Files,&

CmdSpec ,&
CmdFileTo ,&
Yes ,&
VolumeTo

Endif

RestartLabel

10 pkg = GetMsg(8)
If substring(pkg,pkgs) <> 65535

pkgCmdName = GetMsg(9)
CmdSpec = ConcatString~(SrrSp~r,
Command Merge Command Files,&

Endif
End

CmdSpec ,&
CmdFileTo , &
Yes , &

VolumeTo

5-78 CTOS Programming Guide, Volume I

nknrmnN;im<>'
L --J ~------•-----,

6191

Number Comment

9. Merge the command files. CmdFileTo is [Sys}<Sys>Sys.cmds if
the installation is private, [!Sys}<Sys>Cluster.cmds if it is public.
VolumeTo is [Sys] if the installation is private, [!Sys] if it is
public. Note that the names of the command files must come
from the message file, since there is no way for the Installation
Manager to pass them all to Batch.

10. If the Development Run Files subpackage was chosen, then merge
its commands.

6191 Software Installation: The Installation Manager 5-79

6
Using the System Log File

Introduction

The System Log File, Log.sys, is created when you initialize a disk with
the Format Disk command. Any application can read or write to the Log
file, but it is used primarily by the operating system and by system
services to log significant events. For example, the file system logs all
disk errors in the system Log file. End users can view the Log file's
contents by using the Executive's PLog utility. For details on Format
Disk and PLog, see the CTOS Executive Reference Manual.

Only certain types of applications would find the Log file useful. For
example, a system monitor program might check the log file periodically
and send mail to a remote administrator if it finds any error messages
there.

This section describes the internal format of the Log file and explains how
applications can use it. The section assumes you understand how to use
the file management operations. For background, you should read "File
Management" in the CTOS Operating System Concepts Manual.

Log File Format

The contents of the system Log file are called records. There are a
number of different record types for the display of different kinds of
information. Each record type, however, has the same 31-byte header
format, which is automatically generated by the operating system. One of
the fields in the header contains the record size. This field is mentioned
several times in this section because of its significance in reading the Log
file. The record trailer is the type-specific information of the record.
The length and organization of the trailer varies with the type of record.
The Log file format as well as the different record types are described in

Using the System Log File 6-1

detail in "System Structures" in the CTOS Procedural Interj ace Reference
Manual. To' read the Log file, you should be familiar with these formats.

The size the Log file is set at volume initialization and can only be
changed by reinitializing. For this reason, if the file gets full, the
operating system writes new records in circular fashion, starting over
again at the beginning of the first file sector. In this way, when the file
becomes full, the oldest information is overwritten with the newest
information.

Writing Messages to the Log File

The operating system and utilities write different types of records to
Log.sys. The application program, however, can only write an ASCII
record type, and this must be done using the WriteLog request. The file
system is the only program that writes to the Log file. It acts as the
intermediary by serving WriteLog requests and doing the writing to the
Log file. For an example of how to use WriteLog, see "Error Handling
Conventions" in CTOS/Open Programming Practices and Standards. The
WriteLog request itself is described in detail in the CTOS Procedural
Interface Reference Manual.

Displaying Messages Using Plog

If you use PLog to display text messages you've entered in the Log file
with WriteLog, PLog displays the header information followed by the
message

ASCII MESSAGE

Following this information, the contents of your message are displayed.
Because PLog uses video byte streams (calls WriteBsRecord) to display
messages, it does not format messages.

Although you can use PLog, you can write your own routine to display the
contents of the Log file. To do so, however, requires knowing how to
read the file. Reading the file, in turn, makes more sense if you
understand how the file system writes to it in the first place. Finally, to
perform any of these tasks, there are a few fields in the Volume Home
Block (VHB) you need be familiar with. Let's look at the structures first.

6-2 CTOS Programming Guide, Volume I

Log File Fields in the Volume Home Block

Certain fields in the Volume Home Block (VHB) are used to read from
or write to the Log file. These are defined below:

lfaLogBase

cPageLog

currentLogPage

currentLogByte

is the disk location where the Log file is placed
when the file is created. This field is only
important to the file system, which has many
requests to access the disk and needs to make
these requests as rapidly as possible.

is the number of disk sectors in the Log file.

is the number of the current sector to be written to
(a value in the range 0 through cPageLog-l).

is the next byte to be written to in the current
sector (a value in the range 0 through 511).

If aLogBase and cPageLog are static values determined at disk
initialization. current Log Page and currentLogByte, however, are values
that change dynamically as the file system writes to the Log file.

How the File System Writes to the Log File

The file system is the only program that writes to the Log file. The way
that it writes to this file should help you see the intuitive approach to
reading the file, which is described later in this section.

The file system always writes to the current sector (designated by the
value of currentLogPage). First it reads the contents of the current
(512-byte) sector into a 512-byte buffer in memory. Because there may be
valid records already written to the sector, it then compares the combined
value of currentLogByte and the record size with 512. If the combined
value is less or equal to 512, the new record will fit in the buffer.

Record Fits in the Buff er

If the record fits in the buff er, the file system

1. Copies the new record to the buffer starting at offset currentLogByte.

Using the System Log File 6-3

2. Writes the buffer to the disk sector specified by currentLogPage.

3. Increments the value of currentLogByte by the record size.

Record Does Not Fit in the Buffer

If the record doesn't fit in the buffer, the file system does not write part
of the record to this buff er and the remainder to a second buffer,
spanning sectors. Instead, it

1. Increments the value of currentLogPage by 1.

2. Initializes the buffer to zeros.

3. Places the record at the beginning of the buffer.

4. Writes the hnffer to the <li~k ~ector specified by the new
currentLogPage.

5. Sets the value of currentLogByte to the record size.

Incrementing currentLogPage by 1 means that, when the buffer is written
back to disk, it is written to the next file sector. This preserves the
contents of the sector that didn't have enough room for the record.
Initializing the buffer to zeros not only eliminates garbage that may have
been in memory but also indicates the last valid record in a sector to the
Log file reader. (The significance of zeroing out the buffer to find the last
record is explained in "How to Read the Log file," later in this section.)

If the new value of currentLogPage is greater than or equal to the number
of sectors in the Log file (cPageLog), the file system sets currentLogPage
to 0 before it writes the buffer to disk. When this condition occurs, the
file system OR's the value of currentLogByte with the mask 8000h. For
example, if under these circumstances currentLogPage is OOOCh, the file
system OR's this value to 800Ch. Doing so indicates to a program reading
the Log file that the records have wrapped around to the beginning of the
file: the earliest chronological sector is not the first Log file sector on the
disk.

Figure 6-1 shows the contents of a 6-sector Log file that has wrapped
around. The letters M, T, W, TH, and F represent the days of the week
to which the corresponding sectors shown were written. Sector 0 was

6-4 CTOS Programming Guide, Volume I

written on Monday. On Tuesday sectors 1 and 2 were written, and so
forth. Note that Thursday's input filled up the last sector in the file.
Because of this, the file system had to write Friday's input to sectors 0
and 1. When the file system wrote to sector 0, it reset cu"entLogPage to
0 and OR'd the value of currentLogByte with 8000h for the benefit of the
Log file reader.

The figure shows that sector 2 contains the oldest information. This
sector is now the chronological beginning of the file even though sector 0
at LF A 0 is still the beginning of the first file sector. The chronological
beginning of this file starts at the beginning of the third sector or LF A
(2*512).

How to Read the Log File

Any program can read the Log file. A system service might be written,
for example, to read the Log file on an occasional basis, selectively
looking for errors that may need to be called to the attention of a system
administrator. At the request of the user, PLog.run reads and displays
the contents of the entire file.

Sector 0 2 3 4 5

I'M Fl ~Fl T w TH TH

"--- currentlogPage

2392.6-1

Figure 6-1. Log File Wraparound

Before reading the Log file, your program needs to gain access to the Log
file fields in the VHB. Then it needs to determine whether the records in
the file have wrapped around.

Using the System Log File 6-5

Accessing the Log File Fields in the VHB

Before reading the Log file, your program needs to gain access to the
following fields in the VHB: cPageLog, currentLogPage, and
currentLogByte. To do so, your program can call the GetpStructure
operation to get a pointer to the VHB. (GetpStructure is described in
detail in the CTOS Procedural Interface Reference Manual.)

Determining if Records Have Wrapped Around

To find out if the records have wrapped around so your program can tell
where to start and stop reading, AND the value of currentLogByte with
the mask 8000h. A nonzero value means the records have wrapped
around, for example, ANDing with a currentLogByte value of 800Ch is
shown below:

1000 0000 0000 0000
1000 0000 0000 1100

1000 0000 0000 0000

8000h mask
800Ch currentLogByte

Result of ANDing is a nonzero value

Reading the File in Chronological Order

If Records Have Not Wrapped Around

If the records have not wrapped around (currentLogByte AND 8000h
equals zero), start reading the first file sector at LF A 0 and proceed as
follows:

1. Read the first record starting at offset 0 in the sector. Then process
the record. (Process means do what you want with it. Depending on
the record type, you may wish to skip the record, print it, and so
forth. You can obtain general information about the record, such as
its type and size from the 31-byte standard record header
automatically generated when the file system wrote the record to the
Log file.)

2. To read the next record, increment the offset by the size of the first
record. Then check the field Record.size in the next record's header.
If this value is 0, you have reached the end of the valid records in

6-6 CTOS Programming Guide, Volume I

this sector. This is so because when the file system sees that the next
record to be written won't fit in the current sector, it writes the
record to the next sector using a buffer initialized with zeros. As a
result, the unused portion of a sector always contains zero values.
(See "How the File System Writes to the Log File," earlier in this
section.)

3. Continue processing records and incrementing the offset to advance
to the next record until the value of Record.size equals 0.

4. Compare the number of sectors you've read so far to the value of
(currentLogPage+l). If the numbers are equal, you are done reading
all the records in the Log file. Otherwise, repeat steps 1 through 4
with the next sector until you have processed current Log Page+ 1
sectors.

If Records Have Wrapped Around

If the records in the file have wrapped around (currentLogByte AND
8000h equals a nonzero value), proceed as follows:

1. To start reading from the earliest sector written, read the file
beginning at sector (currentLogPage+l). (See Figure 6-1. In the
figure, currentLogPage is 1. The earliest sector written is sector 2.)

2. Process the records in this sector as described in steps 1 through 3 in
"If Records Have Not Wrapped Around."

3. If this sector is the last file sector [(currentLogPage+ 1) = cPageLog],
proceed to step 4. Otherwise, continue processing the records in
each sector until you have processed all records in the last file sector.

4. At the end of the last file sector, read the file starting at the
beginning of the first file sector (LF A 0). Process the records as
described in "If Records Have Not Wrapped Around."

Using the System Log File 6-7

Reading the File in Reverse Chronological Order

Saving Offsets to Records

Reverse chronological order is the order PLog uses to read and display
files.

Because the records in the Log file are of variable length, the only way to
find out where each record starts in a sector is to read the sector first
from the beginning to the end. Record the size of each record you read.
You will know when you get to the last record in the sector because
Record.size will be 0. From the record sizes, calculate the offsets to the
beginning of each record, and save these values in an array.

The next two sections present a stepwise intuitive approach to reading the
records. This is followed by the algorithm PLog uses to process each
sector.

If Records Have Not Wrapped Around

1. Start at the sector specified by currentLogPage.

2. Save away record offsets as described in "Saving Offsets to Records."

3. Look up and process each record in the array of record offsets,
starting with the record at the last offset in the sector and proceeding
to the record at offset 0.

4. Repeat steps 2 and 3 for the sector preceding the current one
(currentLogPage-1).

5. Repeat step 4 until you have read the first sector in the file.

If Records Have Wrapped Around

1. Perform all steps described in "If Records Have Not Wrapped
Around."

2. Start with the last sector in the file. (The value of cPageLog is the
number of this sector).

6-8 CTOS Programming Guide, Volume I

3. Repeat steps 2 through 4 in "If Records Have Not Wrapped Around"
until you have read the sector number (current Log Page+ 1).

Plog's Algorithm For Processing Each Sector

To process each sector, PLog uses the algorithm shown below. The
algorithm is shown in pseudocode. It is not intended to be compiled.
The variables in the algorithm have the following meanings:

Buffer

Lfa

pRecord

pTRecord

is a 512-byte array.

is the value (512 * page number currently being
processed).

points to a Log File Record structure. The format of
this structure is described in "Log File Record Format"
in "System Structures" in the CTOSIVM Reference
Manual.

points to another Log File Record structure. The
format of this structure is the same as Record.

This algorithm is used once for each sector of the log file.

/* Previous Declarations
LogFileRecordType *pRecord
LogFileRecordType *pTRecord

*/

ere= Read(fhLogFile,&Buffer,512,Lfa,&cb);
pRecord = &Buffer;
pTRecord = &Buffer;

do while (pRecord->size != 0) [
i = O;
do while ((pTRecord->size != 0) && (i < cb)) (

pRecord = pTRecord;
i = i + Record.size;
pTRecord = &Buffer[i];
}

ProcessRecord(pRecord);
pRecord->size = O;
}

Listing 6-1. PLog's Record-Processing Algorithm

Using the System Log File 6-9

7
Writing System Services for the XE-530

This chapter describes some of the issues you need to resolve if you want
to write system services that run on an XE-530 with CTOS/XE 3.0 or
greater. This chapter addresses some common pitfalls encountered when
porting system services from 80186-based shared resource processors
(SRPs). It also describes some recommended techniques to help make
new system services compatible with current and future products. In
general, this chapter refers to the XE-530 and its predecessors as SRPs.

Portation Issues for Existing Programs

This section describes some of the issues you may need to address if you
plan to convert an existing real-mode SRP application to run in protected
mode on an XE-530. You should perform this conversion if your
real-mode application is a system service. The XE-530 does not support
real-mode system services on GP processor boards.

If your real-mode application is not a system service, conversion is
recommended, but optional. Cleanly-written application programs that
run either on a workstation or on an 80186-based SRP should run
unaltered on an XE-530. However, converting your application to run in
protected mode has many advantages, among them the protection
mechanism itself and access to vastly greater amounts of memory.

General Guidelines

The single most important rule to follow when writing programs for the
XE-530 is that those programs must conform to the general guidelines for
protected mode programming. These guidelines can be found in
"Protected Mode Programming Guidelines" m the CTOS!Open
Programming Practices and Standards manual.

Writing System Services for the XE-530 7-1

If your application conforms to the guidelines listed in that chapter, it
may require only relinking to nm in protected mode.

The other general requirement for existing SRP applications is to remove
any direct memory references to operating system data structures. These
structures may have been relocated in the new operating system release.
You should try to avoid any direct use of operating system data structures.
If you must have access to one, use the GetpStructure operation with the
appropriate case value.

For most applications and system services, conforming to the rules
described in the paragraphs above will allow them to run in protected
mode on an XE-530.

The two sections below describe unsupported mechanisms used illicitly by
some real-mode SRP software. These mechanisms do not work on
CTOS/XE 3.0 or greater. If your software uses them, convert it to use a
supported interface.

User Numbers and Exchanges

In real-mode SRP operating systems, exchanges and user numbers were
assigned by the OS in the range from 1 to 255. Some programs took
advantage of this fact, using the high-order byte of the UserNum and/or
ExchResp fields of a request block for their own purposes.

In CTOS/XE 3.0, the operating system uses the full word size of these
fields. Any program which uses these fields to contain anything other
than their true user number and response exchange will fail.

Remote Memory and Inter-CPU Communication

On older versions of SRP operating system it was possible (though not
recommended) for a program to bypass the Inter-CPU Communication
mechanism and write directly to the memory of a remote processor. This
is no longer possible with CTOS/XE 3.0 or greater.

The internal mechanism by which processor boards communicate has
changed substantially, and existing programs that attempt to use the old
mechanism will fail.

7-2 CTOS Programming Guide, Volume I

If a program needs to communicate with a remote processor, it should use
the operating system Request interface. The performance of the Request
interface with CTOS/XE 3.0 or greater has been substantially improved
over previous SRP operating system versions, even on existing hardware.
Programs should no longer have any legitimate need to bypass the Request
interface.

Inter-CPU Communication Buffer Block Size Issues

In older SRP operating systems, two types of Inter-CPU Communication
buffer existed: the Z-block and the Y-block. The Z-block was used for
small (less than 180 byte) request buffers and the Y-block was used for
larger (up to 2560 byte) request buffers.

CTOS/XE 3.0 includes these types and a new one, the W-block. The
W-block can accommodate very large request buffers (at least 5120 bytes).
However, the inclusion of W-blocks in the operating system is a
configurable parameter. This means that user-customized SRP operating
systems may not have any.

For this reason, requests that may require a buffer of more than 2560
bytes should be structured so that they can be piecemealed. This ensures
that the request can be used in any hardware configuration.

For instructions on how to make a request piecemealable, see "Writing
Request-Based System Services" in the CTOS/Open Programming Practices
and Standards manual.

The Demise of the MCommands

With older SRP operating systems, a user or administrator entered
commands which began with the letter M to run utilities on the SRP.
These MCommands no longer exist with Standard Software 12.0. They,
and the Administrative Agent software, have been replaced by
Cluster View.

See the CTOS System Administration Guide for more information about
the ClusterView software.

Writing System Services for the XE-530 7-3

Restriction on the GetWSUserName Operation

On a workstation server, the GetWSUserName operation can be used to
obtain the user name of any cluster user. On the SRP, however, the
GetWSUserName operation should not be used. At best, it will retrieve
only those user names connected to the local processor. There is no
clean method of identifying the users of a system service on an SRP.

Controlling the Routing of Requests on the XE-530

This section describes the inter-board request routing methods supported
by CTOS/XE 3.0. System services which run on the SRP must define
some form of inter-board routing for the requests they serve. This section
should help the system service writer to decide which routing method is
appropriate for their service.

The SRP Request Routing Directives

Several types of SRP inter-board routing are supported. Each is listed,
with a short description, in Table 7-1.

The sections below describe the three most commonly used routing types
in greater detail. Almost all system services should use one of these three
routing types. The other types are intended for rare special cases, and for
internal use by the operating system.

7-4 CTOS Programming Guide, Volume I

Field

rlocal*

rRemote*

rDevice•

rBroadcast

Table 7-1. SRP Request Routing Types
(Page 1 of 2)

Description

If the request (block) does not contain a network routing
specification for a remote board, the request is served locally.
Unless the request is served locally, the client receives status
code 33 ("Service not available").

If the request contains a specification for a remote board, the
SRP filter process calls RequestRemote to route the request
to the board specified in the master FP Name table. The filter
uses the specification name (such as Win1 or FPOO) in square
brackets as the key to locate the corresponding board's slot
number in the table. The specification must contain a name in
square brackets or an error code is returned, terminating
routing.

If the request is served locally, rRemote is the same as rLocal.
Otherwise the request is sent by exchange to the remote
board.

When a system service calls ServeRq during installation,
ServeRq updates the operating system request routing table
on each board to reflect the system service's slot number.
This means that only one system service on an entire SRP can
serve a request that is routed rRemote.

If the request contains neither a handle nor specification (no
network routing), the request is routed to all boards previously
accessed by this user number. An example of such a request
might be a termination request.

If the request contains a handle (network routing by file
handle), it is routed by the handle to the appropriate board.
See the discussion of handles, later in this chapter, for more
information.

If the request contains a specification for a remote board
(network routing by device), the SRP filter process calls
RequestRemote to route the request to the board specified in
the master FP Name table. The filter uses the specification
name (such as Win1 or FPOO) in square brackets as the key to
locate the corresponding board slot number in the table. If
the specification does not contain a name in square brackets,
the Kernel on this board attempts to send the request to a
local system service.

The request is routed to every processor board booted on the
SRP.

*This type is frequently used.

Writing System Services for the XE-530 7-5

Field

rMasterFP

rFileld

rlineNum

rHandle

rMasterCp

Table 7-1. SRP Request Routing Types
(Page 2 of 2)

Description

The request is routed to the Master FP.

The request is routed to the appropriate board by the slot
number contained in the first byte of the request block control
information.

The request is routed to the Cluster Processor (CP) that
handles this line. This routing type is used by the operation
MegaFrameDisableCluster.

Each CP has two lines. For example, CPOO has lines 1 and 2;
CP01 has lines 3 and 4; and so on. (For details, see Chapter
43, "Ciuster Management").

The request is routed to the target file processor (such as an
FP, DP, or GP+SI) using an indexed field in the handle.

(Unused)

*This type is frequently used.

Local Routing

Local routing (rLocal) is the simplest form of SRP routing. In general,
this type of routing is used when a request should be served on the board
where it was generated.

When a system service uses local routing for its requests, it must be
installed on the same processor as its clients. If its clients are cluster
workstations, it must be installed on the processor to which those cluster
workstations are physically connected.

If a system service uses local routing, multiple instances of it can be
installed on an XE, but only local clients can communicate with each one.
In other words, if a user installs the system service on each of two CP
processors, users on each CP can talk to their local copy of the system
service. However, users on each CP cannot communicate with the copy

7-6 CTOS Programming Guide, Volume I

of the service on the other CP. Likewise, if the system service is installed
on an FP, only other programs running on that FP can communicate with
it.

Because of these restrictions that local routing places on the location of
the system service within the XE, this routing type should be used
sparingly.

Remote Routing

Remote routing (rRemote) is the most commonly used type of SRP
request routing, and the simplest for both the programmer and the user.
Remote routing allows one instance of a system service to serve clients on
all processor boards and all cluster workstations. These clients need not
know where the system service resides. The request is routed
automatically to the correct processor board by the operating system.

The single restriction imposed by the use of remote routing is that only
one instance of the system service can be installed on the XE. For most
system services, however, only one instance is needed.

Listing 7-1 shows a sample Request.txt file for a system service that uses
remote routing. The sample system service described in CTOS/Open
Programming Practices and Standards runs unaltered on the XE-530 if you
use the Request.txt file shown in Listing 7-1.

Writing System Services for the XE-530 7-7

:WsAbortRq: OEFOSh
:TerminationRq: OEFOSh
:SwappingRq: OEF04h
:ChgUserNumRq: OEF06h

:RequestCode:
:RequestName:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Params:
:NetRouting:
:SrpRouting:

:RequestCode:
:RequestName:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Params:
:NetRouting:
:SrpRouting:

Listing 7-1.

OEFOOh
GetFooText
3
OOOOh
exchinstalledMastr
2
0

2
w(l2), p(l4), w(l8), p(20), c(2,24)
rFh
rRemote

OEFOlh
DeinstallFooServer
2
OOOOh
exchinstalledMastr
0
0
0
none
noRouting
rRemote

Sample Request.txt File Using Remote Routing
(Page 1of3)

7-8 CTOS Programming Guide, Volume I

:RequestCode:
:RequestNarne:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Pararns:
:NetRouting:
:SrpRouting:

:RequestCode:
:RequestNarne:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Pararns:
:NetRouting:
:SrpRouting:

:RequestCode:
:RequestNarne:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Params:
:NetRouting:
:SrpRouting:

Listing 7-1.

OEF02h
OpenFooServer
2
OOOOh
exchinstalledMastr
0

0

l
p(l2), c(2,16)
OpenFh,CloseAtTermination
rRernote

OEF03h
CloseFooServer
2
OOOOh
exchinstalledMastr
2

0
0

w(12)
CloseFh,rFh
rRemote

OEF04h
SwapClientFooServer
2
OOOOh
exchinstalledMastr
2

0

0
none
noRouting
rRernote

Sample Request.txt File Using Remote Routing
(Page 2 of 3)

Writing System Services for the XE-530 7-9

:RequestCode:
:RequestName:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Params:
:NetRouting:
:SrpRouting:

:RequestCode:
:RequestName:
:Version:
:LclSvcCode:
: Scrv·iccExch;
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Params:
:NetRouting:
:SrpRouting:

Listing 7-1.

OEFOSh
TerminateClientFooServer
2
OOOOh
exchinstalledMastr
2
0

0

none
noRouting
rRemote

OEF06h
ChangeUserClientFooServer
2
OOOOh

2

0

0

none
noRouting
rRemote

Sample Request.txt File Using Remote Routing
(Page 3 of 3)

Routing by Device Specification

Routing by device specification (rDevice) allows multiple instances of the
same system service to be installed on different processors in an XE. For
example, routing by device specification allows an SNA Network Gateway
to be installed on each of two GP/CI boards. Cluster workstation clients
can then specify which of the SNA Network Gateways they want to use,
by naming the processor board on which that Gateway is installed.

Routing by device specification is most useful for connection-oriented
resource-controlling programs. An SNA Network Gateway is an example
of such a program, since it controls access to an external computer

7-10 CTOS Programming Guide, Volume I

network and its clients are terminal emulation programs, which establish a
communications session with a remote computer on the SNA network.

Listing 7-2 shows a sample Request.txt file for a system service that uses
routing by device specification.

The sample system service described in CTOS/Open Programming
Practices and Standards runs unaltered on the XE-530 if you use the
Request.txt file shown in Listing 7-2. However, you need to change its
client programs.

Listing 7-3 shows a client program that can access the system service on
any processor board in the XE-530. The user simply specifies the board
name (for example, "GPOO") as a runtime parameter to the client program.

Finally, Listing 7-4 shows two enhancements you can make to the sample
system service in CTOS/Open Programming Practices and Standards.
These changes cause the system service to identify the name of the board
on which it is running, and to return that name as part of the message to
its clients.

:WsAbortRq: OEFOSh
:TerminationRq: OEFOSh
:SwappingRq: 0EF04h
:ChgUserNumRq: 0EF06h

:RequestCode:
:RequestName:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Params:
:NetRouting:
:SrpRouting:

Listing 7-2.

OEFOOh
GetFooText
4

OOOOh
exchinstalledMastr
2

0

2

w(l2), p(l4), w(l8), p(20), c(2,24)
rFh
rDevice

Sample Request.txt File Using Device Routing
(Page 1of3)

Writing System Services for the XE-530 7-11

:RequestCode:
:RequestNarne:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Pararns:
:NetRouting:
:SrpRouting:

:RequestCode:
:RequestNarne:
:Version:
:LclSvcCode:

rt----.! --T:'l---1-
; ..JC.1. V ..L.\.,;t:.C..A.\,..;ll;

:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Pararns:
:NetRouting:
:SrpRouting:

:RequestCode:
:RequestNarne:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Pararns:
:NetRouting:
:SrpRouting:

Listing 7-2.

OEFOlh
DeinstallFooServer
2
OOOOh
exchinstalledMastr
0
0

0

none
NoRouting
rRernote

OEF02h
OpenFooServer
3
OOOOh

6

1
1
pbcb 0 , p (2 4) , c (2 , 2 8)
DevSpec,OpenFh,CloseAtTerrnination
rDevice

0EF03h
CloseFooServer
3
OOOOh
exchinstalledMastr
2
0
0
w(12)
CloseFh,rFh
rDevice

Sample Request.txt File Using Device Routing
(Page 2 of 3)

7-12 CTOS Programming Guide, Volume I

:RequestCode:
:RequestName:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Params:
:NetRouting:
:SrpRouting:

:RequestCode:
:RequestName:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Params:
:NetRouting:
:SrpRouting:

:RequestCode:
:RequestName:
:Version:
:LclSvcCode:
:ServiceExch:
:sCntinfo:
:nReqPbCb:
:nRespPbcb:
:Params:
:NetRouting:
:SrpRouting:

Listing 7-2.

OEF04h
SwapClientFooServer
2
OOOOh
exchinstalledMastr
2
0

0
none
noRouting
rDevice

0EF05h
TerminateClientFooServer
2
OOOOh
exchinstalledMastr
2
0

0
none
noRouting
rDevice

OEF06h
ChangeUserClientFooServer
2
OOOOh
exchinstalledMastr
2
0
0
none
noRouting
rDevice

Sample Request.txt File Using Device Routing
(Page 3 of 3)

Writing System Services for the XE-530 7-13

#define CheckErc
#define Delay
#define ErrorExit
#define OutputToVidO
#define ReadKbdDirect
#define Syslit
#include <ctoslib.h>
#include <stdlib.h>
#include <string.h>

pragma Calling_convention (CTOS_CALLING_CONVENTIONS);
extern ErcType CloseFooServer(Word wHandle);
extern ErcType GetFooText(Word wHandle, Pointer

pbDataRet, Word cbDataRet,
Pointer psDataRet);

extern ErcType OpenFooServer (Pointer pbDevSpec, Word
cLDevSpe~, Pointer pHandleRet);

pragma Calling_convention ();

#define CHECKONLY l
#define DELAYRATE 10
#define ERCNOCHARAVAIL 602

Word hConnect;
Word cbRet;

char bKey;
char rgbServerData[80];

char pMsgintro []
"Press any key to close the connection with service.\n";
char *pbDevSpec = NULL;
Word cbDevSpec = O;

Listing 7-3. A Client Program that Supports Device Routing
(Page 1of2)

7-14 CTOS Programming Guide, Volume I

void main (int argc, void *argv[])

/* get device spec from user param */
if (argc > 1) [

pbDevSpec
cbDevSpec
}

argv[l);
strlen(pbDevSpec);

/* open my connection with the foo server */
CheckErc(OpenFooServer(pbDevSpec, cbDevSpec,

&hConnect)) ;

/* display the intro message */
OutputToVidO (pMsgintro, strlen(pMsgintro));

/* loop checking for a keyboard character, any one */
while(ReadKbdDirect(CHECKONLY,&bKey)==ERCNOCHARAVAIL)

[

/* get a message from the server */
CheckErc (GetFooText (hConnect, &rgbServerData,

sizeof(rgbServerData), &cbRet));
/* display the message */
OutputToVidO (&rgbServerData, cbRet);
/* now wait awhile before continuing */
CheckErc (Delay (DELAYRATE));
}

/* close my connection */
CheckErc (CloseFooServer (hConnect));
ErrorExit (O);

Listing 7-3. A Client Program that Supports Device Routing
(Page 2 of 2)

Writing System Services for the XE-530 7-15

/* new version of ProcessDataRequest returns board name
*/

void ProcessDataRequest (RqDataType *pRq)
[

int i = O;
Word wHandle = pRq->wHandle;

/* check for valid handle */
if (pRq->RqHead.userNum != rgHandles[(wHandle)])

[

pRq->RqHead.ercRet
return;

ERCINVALIDHANDLE;

/* calculate the maximum string size */
if (pRq->cbDataRet < strlen(pMsgRet) +

strlen(rgbDeviceid))
i pRq-icbDataRet;

else
i strlen (pMsgRet) + strlen(rgbDeviceid);

/* put the message and size in the user's buffer */
((char) pRq->pbDataRet) = O;
strncpy (pRq->pbDataRet, pMsgRet, i);

/* attach device spec */
if (i-strlen(pMsgRet) > 0)

strncat(pRq->pbDataRet, rgbDeviceid,
i-strlen(pMsgRet));

*((Word *)(pRq->psDataRet)) = i;

/* return an error OK condition */
pRq->RqHead.ercRet = O;
}

Listing 7-4. Changes to Sample System Service to Illustrate Device
Routing

(Page 1of2)

7-16 CTOS Programming Guide, Volume I

/*

*
*

The following code comes later, inside of main()
function for program, but before ConvertToSys.

*/

/* see if I'm running on a master */
/* get config block */
CheckErc(GetpStructure(Ox2C8, O, &pMySysConfigRet));
/* check offset 33 */
if(pMySysConfigRet->ClusterConfiguration == 2)

£Master TRUE;
else

£Master FALSE;
/* see what my board ID is if I'm on an SRP */
if (£Master) {

ere = GETPROCINFO(&i, &i, &i, rgbDeviceid,
DEVICEIDMAX, &cbDeviceid);

if(erc == ercOK)
/* null terminate the string */
rgbDeviceid[cbDeviceid] = O;

else
/* null string */
rgbDeviceid[O] = O;

Listing 7-4. Changes to Sample System Service to Illustrate Device
Routing

(Page 2 of 2)

Other Routing Methods

The other SRP request routing methods are rarely used, except by the
operating system itself. However, their use is not discouraged. If your
application needs to use one of them, you should use it. See the CTOS
Operating System Concepts Manual for a general description of SRP
routing.

Bear in mind, however, that some of the rarely-used SRP routing types
require specially formatted connection handles. These requirements are
described below.

Writing System Services for the XE-530 7-17

Use of Handles on the XE-530

On the SRP, most request routing types use the same format for handles
as is used on a workstation. Because almost all system services use these
routing types, system services for the SRP rarely need to use special
handles.

The following SRP routing types use standard connection handles:

rLocal
rRemote
rDevice
rBroadcast

The following SRP routing types require special handles:

rHandle
rFileld
rLineNumber

The formats of these special handles are described later in this section.

The Standard Connection Handle

Most SRP routing types use standard connection handles. These handles
have the following format:

Bit 15: reserved for network use.

Bits 13 and 14: set to ls if system service is installed on a server.

Bit 12: Reserved. Should be set to 0.

Bits 11 to 0: Available for use by the system service.

Note, however, that the system service and its client should not attach
meaning to any bits within the handle. The service cannot pass
information to the client by returning a particular value in the connection
handle. CTOS guarantees that both the service and the client will
perceive a unique handle value, but that value may not be the same for
both the client and the service.

7-18 CTOS Programming Guide, Volume I

Non-Standard Handle Types

Requests that are routed rHandle, rFileid, or rLineNumber require
specially formatted handles. The format for each type is described below.

rHandle: Connection handles for requests that are routed rHandle should
have the following format:

Bit(s) Description

13 through 15 Standard.

10,11,12 FPinclex. See description below.

0 through 9 Available for use by service.

The FPindex field contains the index of the FP (or GP/SI) board on
which the service is installed. In other words, if the service is installed on
FPOO, the FPindex is 0. If the service is installed on FPOl, the FPindex is
1.

rFileid: Connection handles for requests that are routed rFileid should
have the following format:

Bit(s)

12 through 15

8 through 11

0 through 7

Description

Standard.

Available for use by the service (4 bits).

Processor Slot ID (for example, 77h)

rLineNumber: Connection handles for requests that are routed
rLineNumber should have the following format:

Bit(s) Description

12 through 15 Standard.

8· through 11 Available for use by the service (4 bits).

0 through 7 Cluster Line Number. See description below.

Writing System Services for the XE-530 7-19

The cluster line number is a unique cluster line index for the entire SRP
starting at cluster line 1. For example, CPOO (or GPOO) owns lines 1 and
2, CPOl (or GPOl) owns lines 3 and 4, and so on.

7-20 CTOS Programming Guide, Volume I

8
The Synchronous CommLine Interface

This chapter describes extensions to the CommLine interface for
synchronous data communications.

The Commline Interface

The CommLine interface is discussed in detail in "Communications
Programming" in CTOS/Open Programming Practices and Standards. That
chapter explains the components of the interface and gives general
guidelines for using it. The chapter also gives general examples of
initializing the serial controller and includes a sample communications
interrupt service routine. Unless you already understand the CommLine
interface, read that chapter before continuing.

To recap the information in CTOS!Open Programming Practices and
Standards, the CommLine interface is a fairly low-level interface used for
synchronous data communications. The interface is designed to provide
as much device-independence as possible without sacrificing performance.
The CommLine interface allows a program that uses it to operate on any
workstation, using any serial port.

However, because performance was the primary consideration in its
design, the CommLine interface requires the programmer to perform a
certain amount of serial controller initialization via direct register writes.

Extensions to the Traditional Commline Interface

There were few choices to make in the traditional CommLine interface.
The program called InitCommLine, and received back two port
addresses, a data port and a control port. The program used the data
port to exchange words of user data with the serial controller. The

The Synchronous CommLine Interface 8-1

program used the control port to perform any initialization or control that
required direct reads or writes to the registers on the serial controller.

The additional operations ReadCommLineStatus and
WriteCommLineStatus controlled RS-232 signals which were not
controlled directly by 8274-type serial controllers. This allowed the
application to query and set these signals in a device-independent fashion.

Lastly, the ChangeCommLineBaudRate operation allowed the application
to set the speed of data transfer in a device-independent way.

All these calls remain in the current version of the interface, but
extensions have been added. The subsections below address each
operation in turn.

lnitCommline

InitCommLine has undergone substantial changes from its traditional
form for the CTOS/XE 3.0 and later versions of the operating system.
However, these changes have been made in such a way that it remains
compatible with existing programs. The mechanism by which this is
accomplished is as follows.

When a new feature is added to the available hardware, a new field is
added to the Communications Line Configuration Block and to the
Communications Line Return Area for subsequent versions of the
operating system.

Programs which know of and desire to use this feature can set that field in
the Communications Line Configuration Block to some specific nonzero
value. If the desired feature is present in the current hardware, the
operating system sets the corresponding field in the Communications Line
Return Area to a nonzero value.

This way, the program knows that the desired feature is present in
hardware and supported by the operating system. If the feature is not
available, the operating system returns zero in the appropriate field of the
Communications Line Return Area. The program can then continue or
terminate, as appropriate for its application. Note that the program must
initialize the Communications Line Return Area to all zeros for this
mechanism to work correctly.

8-2 CTOS Programming Guide, Volume I

The operating system is also able to identify which features a program
does not know about. This is because the program specifies the size of
the Communications Line Configuration Block and of the CommLine
Return Area in its call to InitCommLine. Any fields beyond the specified
size are unknown to the program, and therefore clearly not used by it.

Differences Between 8274 and 82530 Communication Controllers

The 8274-type and 82530-type serial communication controllers are very
similar, but they are not quite register compatible. This has at least some
effect on almost all synchronous communications programs. The table
below shows which registers differ between the two controllers.

Table 8-1. 8274 and 82530 Register Differences

Register No.
and Bit Position*

RRO, bit 1

WRO, bits 3-5 = 001
WRO, bits 3-5 = 011

WR1, bit 2

WR1, bits 3-4 = 00
WR1, bits 3-4 = 10
WR1, bits 3-4 = 11

WR1, bit 6

WR2 (channel A only)

RR3

WR9, bit 0
WR9, bits 1-5
WR9, bits 6- 7

8274

Interrupt Pending

Send Abort
Channel Reset

Status Affects Vector

Rxlnt/DMA Disable
Int. on Rx, Special, and Parity
Int. on Rx and Special

Always 0

Interrupt Control Functions

NIA

NIA
NIA
NIA

• Bits are numbered 76543210

82530

Zero Count

Point High (access regs 9-15)
Send Abort

Parity is Special Condition

Rxlnt Disable
Int. on Rx and Special
Int. on Special Only

Ready/OMA Req. Function

Channel A Interrupt Vector

Similar to Interrupt Pending

Status Affects Vector
Interrupt Control Functions
Channel Reset

The Synchronous CommLine Interface 8-3

ChangeCommlineBaudRate

ChangeCommLineBaudRate allows a program to modify a synchronous
channel's data rate dynamically.

8274-type serial controllers are not affected by this operation, though
errors may occur if a data transfer is in progress when this operation is
called.

If the serial controller is 82530-type controller, this operation sets the
serial controller to the new data rate. However, this operation does not
change the clock source. If a program wants to change from internal to
external clocking, it must do so via direct serial controller port 1/0.

Lastly, on channels which do not support separate transmit and receive
baud rates, the value of the iRxTx parameter to the
ChangeCommLineBaudRate operation must be 0 ("both"). If a program
attempts to set the receive and transmit baud rates separately on hardware
that does not support that feature, an error code (7 or 61) is returned and
the operation is not performed.

ReadCommlineStatus

ReadCommLineStatus performs the same functions as before, but has
additional case values. ReadCommLineStatus can now read the following
signals:

Secondary Receive Data (SRxD)
Data Set Ready (DSR)
Ring Indicator (RI)
Secondary Carrier Detect (SCD)
Secondary Clear-to-Send (SCTS)
Signal Quality

Note that not all hardware supports the SCD, SCTS and Signal Quality
signals. See your hardware documentation for more information.

8-4 CTOS Programming Guide, Volume I

WriteCommlineStatus

Like ReadCommLineStatus, WriteCommLineStatus is essentially
unchanged but supports additional case values. WriteCommLineStatus
can now set or clear the following signals:

Secondary Receive Data (SRxD)
Secondary Request to Send (SRTS)
Rate Select
Select Standby
Data Terminal Ready (DTR)

Programs that use DMA must use WriteCommLineStatus to set or clear
the DTR signal. Programs which do not use DMA must do so using
direct serial controller port I/O.

Using OMA with Synchronous Data Communication

CTOS now provides a device-independent interface for programs that
want to use DMA for communications I/O. DMA for serial
communications is only supported on certain hardware, such as the B39
(386i) and the GP processor on the XE-530. (See your hardware
documentation for more specific information.) Programs can transfer
blocks of data as large as 64K bytes using DMA, though a smaller block
size is more commonly used.

This section describes how to use the CommLine DMA interface, which
includes the following system common procedures:

TransmitCommLineDMA (alias: XmitCommLineDMA)
ReceiveCommLineDMA (alias: RecvCommLineDMA)
GetCommLineDMAStatus

Note that because the CommLine DMA operations are system common
procedures, they can be called directly from interrupt service routines.

Initializing Communications OMA

If a communications program wants to use DMA, it must first specify that
fact in its call to InitCommLine.

The Synchronous CommLine Interface 8-5

The Communications Line Configuration Block contains a field, fDMA,
which allows the program to indicate that it wants to use DMA for
communications 1/0. To request DMA, the program must set the value
of this field to OFFh (255).

After it calls InitCommLine, the program must check the value of the
DMAavailable field of the Communications Line Return Area. If the
value is OFFh (255), DMA hardware is available for the program to use.
If the value is 0, no DMA hardware is available.

If communications DMA hardware is present, InitCommLine sets the
serial controller to use DMA 1/0 mode instead of interrupt I/0 mode.
This requires setting certain bits in write register 1 (bits D7, D6, D5) and
write register 14 (bit D2) of the serial controller. If a DMA-using
program writes to either of these registers, it must be careful to preserve
the settings of the DMA mode control bits.

In addition, if a DMA-using program needs to assert or de-assert the
RS-232 DTR signal, it must use the WriteCommLineStatus procedure to
do so.

Finally, note that when DMA is requested, InitCommLine performs its
normal functions plus setting up the serial controller to use DMA, but
nothing more. The client communications program is still responsible for
completing the initialization of the serial controller.

TransmitCommlineDMA

The TransmitCommLineDMA procedure (called XmitCommLineDMA in
BTOS 3.x) sets up the DMA controller to transfer data directly from
memory to the serial communication controller. This procedure returns
immediately, since it merely sets up a future data transfer. It does not
wait for the data transfer to occur.

The TransmitCommLineDMA procedure takes three parameters: the
CommLine connection handle, a pointer to a data buffer and the size of
the buffer. After TransmitCommLineDMA returns to its caller, the
DMA controller transfers this data one byte at a time from the specified
buffer as the serial controller requests it. The transfers continue until the
entire buffer has been sent. For efficient use of the system data bus, the
buffer should be either word-aligned or doubleword-aligned, never
byte-aligned.

8-6 CTOS Programming Guide, Volume I

When the specified number of bytes have been sent, the serial controller
sends the CRC check value, then generates an External/Status interrupt.
The program's External/Status ISR should verify that the correct number
of bytes was transmitted, then call TransmitCommLineDMA with the
next buffer of data. The serial controller resumes DMA transfers before
the TransmitCommLineDMA call returns.

ReceiveCommlineDMA

The ReceiveCommLineDMA procedure (called RecvCommLineDMA in
BTOS 3.x) sets up the DMA controller to transfer data directly from the
serial communication controller to memory. It is the reverse of the
TransmitCommLineDMA procedure. Like the transmit procedure,
ReceiveCommLineDMA returns immediately, since it merely sets up a
future data transfer. It does not wait for the data transfer to occur.

The ReceiveCommLineDMA procedure takes four parameters: the
CommLine connection handle, a pointer to a data buffer, the size of the
buffer and a pointer to a returned count of bytes transferred. After
ReceiveCommLineDMA returns to its caller, the DMA controller
transfers data one byte at a time to the specified memory buffer as the
serial controller receives it. The transfers continue either until a complete
data frame is received, or until the transfer count reaches the size of the
buffer. As with transmit buffers, the receive buffer should be
word-aligned or doubleword-aligned, but never byte-aligned.

When the serial controller detects the end of a data frame (EOF) or a full
buffer, it generates a Receive Special interrupt. The program's receive
ISR should verify that a complete frame was received successfully, then
call ReceiveCommLineDMA with the next available buffer for data.

Note that the 82530 controller does not indicate EOF until after all
characters have been read from its buffer. If the DMA receive buffer is
too small, EOF may be detected but never reported. For this reason, it is
important to ensure that the receive buffer is slightly larger than the
largest possible incoming frame.

The ReceiveCommLineDMA procedure also returns the number of bytes
successfully received into the previous buffer. This allows the program to
know how much valid data is present in the buffer without making any
additional procedure calls.

The Synchronous CommLine Interj ace 8-7

The serial controller resumes DMA transfers before the
ReceiveCommLineDMA call returns.

GetCommlineDMAStatus

The GetCommLineDMAStatus procedure returns the count of bytes
transferred for the current DMA operation, in both the transmit and the
receive direction.

If called from the External Status ISR, it allows the program to determine
whether a transmission was completed successfully. To do so, the
program simply compares the returned byte count to the size of the
transmit buffer. If they are equal, all bytes were sent successfully.

If called from the Receive Special ISR, it allows the program to
determine the size of the data in the receive buffer. While the
ReceiveCommLineDMA procedure also provides this information, some
programs may need to use GetCommLineDMAStatus anyway. For
example, if the program needs to verify the received data in some way
before requesting the next transfer, it should determine the size of the
received data by calling GetCommLineDMAStatus.

Implementing X.21 (1984) Protocol Support

Certain hardware models, namely the XE-530 GP/CI processor set,
include special hardware which supports the X.21 signalling protocol.
This section describes the interface to that hardware, and the
programming tasks required to use it.

What Is the X.21 Protocol?

X.21 is a digital signalling protocol defined by the CCITT (Consultative
Committee for International Telegraph and Telephone). It allows a DTE
(Data Terminal Equipment) to set up and clear data calls by exchanging
signals with the DCE (Data Circuit-Terminating Equipment) connected to
it. The X.21 protocol uses a combination of data and control signals to
accomplish this task. This section summarizes some of the main features
of the X.21 standard. For more detailed information on X.21, see the
CCITT X.21 standards document.

8-8 CTOS Programming Guide, Volume I

In the X.21 protocol the DTE controls two signal lines, Transmit (T) and
Control (C). The DTE passes data and signalling information to the DCE
over the Transmit line, and passes control information to the DCE on the
Control line. Tlie T and C lines are similar in function to the RS-232
TxD and RTS signals, though the T and Clines perform additional duties.

The DCE also controls two signal lines, Receive (R) and Indication (I).
The DCE passes user data and signalling information to the DTE on the
Receive line, and passes control information to the DTE on the
Indication line. The R and I lines are similar in function to the RS-232
RxD and CTS signals, though the Rand I lines perform additional duties.

The primary additional duties performed by the T and R lines is the
sending and receiving of inband digital signalling information between the
DCE and DTE. This signalling information is used in a way that is
analogous to the call setup tones you hear when placing a telephone call.

When the line is idle, the DCE always indicates "ready", the equivalent of
dial tone. When the DTE initiates a call, the DCE returns a digital "dial
tone" indicating that the DTE can continue. The DTE and DCE then
exchange a series of call progress messages while they set up a connection
with a remote computer. Finally, the DTE and DCE enter a data transfer
mode for the duration of the call.

Features of the X.21 Support Hardware

The serial controller performs most X.21 support functions, but there are
a few which require special hardware. When the serial controller is in its
X.21 mode, it only recognizes data frames which are preceded by two
X.21 SYNC characters. This allows it to recognize any valid X.21 data
frame, but prevents it from recognizing certain special signalling patterns
which can appear in the incoming data bitstream.

Dedicated hardware has been added to detect these special bit patterns.
This hardware scans the incoming bitstream for one of four patterns
which indicate special conditions in the 1984 X.21 protocol. When it
detects one of the patterns, it first verifies that the Indication line is in the
correct state for the pattern to be valid. The X.21 hardware then writes a
value in a special register and changes the state of the CTS signal to the
serial controller.

The Synchronous CommLine Interface 8-9

This causes the serial controller to generate an interrupt whenever the
X.21 hardware detects one of the special bit patterns. Note that the X.21
hardware only detects incoming patterns. It does not generate outgoing
bit patterns. That is the job of the application program.

Three of these bit patterns must be held by the DCE for at least 24
consecutive bits. They are detected by the X.21 hardware when two
consecutive bytes (16 bits) contain the pattern. The fourth pattern must
be held by the DCE for 16 bits, and must appear in the data bitstream
only once, immediately after the Indication line goes "on." This pattern
indicates successful call completion.

See Table 8-2 for a description of each bit pattern, and its required
Indication line state.

Table 8-2. X.21 Status Indication Bit Patterns

Bit Pattern I-Line State Meaning

00000000 00000000 00000000 Off DCE Not Ready

1111111111111111 11111111 Off DCE Ready

01010101 01010101 01010101 Off DCE Controlled, not Ready

1111111111111111 On Ready For Data (Call Setup
Complete)

When the serial controller detects a change in the state of CTS, it
generates an External/Status interrupt. The communication program's
External/Status ISR must then check that the cause of the interrupt is the
X.21 hardware (that the state of CTS has changed) then read the X.21
hardware register. InitCommLine returns the port address of the X.21
hardware register in the ioX21 field of the Communications Line Return
Area.

8-10 CTOS Programming Guide, Volume I

The possible values of bits 0-2 of the ioX21 port are as follows. The
decimal values are listed, with the corresponding binary values in
parentheses.

Value Description

1 (OOlb) DCE Not Ready

2 (OlOb) DCE Ready

3 (Ollb) DCE Controlled, not Ready

4 (lOOb) DCE Ready for Data

The X.21 hardware also has the ability to store one bit pattern in a
temporary buffer. Therefore, if a second bit pattern is detected while the
first is being processed by the program's ISR, the X.21 hardware stores
that pattern until the ISR finishes. It then changes the state of CTS again
to generate another interrupt. Note that even if the X.21 hardware has a
pattern stored in its buffer, it continues to check the incoming bitstream.
If it detects a new pattern, it overwrites the currently-stored one.

Initializing a Communications Line with X.21 Support Enabled

To request use of the X.21 hardware, a communications program must set
the JX21 flag in the Communications Line Configuration Block to the
value OAAh. This value requests full X.21 support.

If the X.21 hardware is present, InitCommLine returns the port address
of the X.21 hardware in the ioX21 field of the Communications Line
Return Block. If the hardware is not present, InitCommLine returns a
nonzero status code.

After a successful call to InitCommLine, the X.21 hardware for the
channel is inactive. To activate the X.21 hardware, the program must
write a one to bit zero of the ioX21 port. After that happens, the X.21
hardware begins scanning the input stream for its special bit patterns.

The program can disable the X.21 hardware at any time, by writing a zero
to bit zero of the X.21 hardware port. The program can then reenable it
later by writing a one. The program should be careful to write only to bit
zero of the X.21 hardware port, however. Other bits are used internally
by the Comm Nub.

The Synchronous CommLine Interface 8-11

Note also that programs which use the X.21 hardware must initialize the
serial controller to enable the External/Status interrupt. Otherwise,
changes in the CTS signal by the X.21 hardware do not cause an
interrupt.

Using the X.21 Support Hardware in Drivers-Only Mode

Using the X.21 support hardware in drivers-only mode disables the
pattern-recognition circuitry. This allows programs to use the 1981 X.21
protocol, which does not include the bit patterns described above.

To request use of X.21 in drivers-only mode, the communications
program must set the JX21 flag in the Communications Line Configuration
Block to the value OFFh.

If :X.?.1 is supported by the hardware, InitCommLine returns status code
0. However, it does not return a port address in the ioX21 field of the
Communications Line Return Area because the pattern detection
hardware is not used in this mode. If X.21 is not supported by the
hardware, InitCommLine returns a nonzero status code.

Using V.35 Support Hardware

As with X.21, only certain hardware supports the V.35 interface.
However, using this interface is almost a non-event for a communications
program. V.35 is an electrical interface, and appears to be the same as
RS-232 to communications programs, except that it supports faster data
rates.

Existing programs need no modification to use the V .35 support
hardware. When InitCommLine receives a Communications Line
Configuration Block that is too small to contain the fV35Mode flag, it
simply uses the current jumper settings for the requested communications
port. So, if an existing program attempts to use a port that is jumpered
for V.35, the attempt succeeds. Note, however, that such programs still
only support the data rates they supported on RS-232. They may or may
not work at higher V.35 rates.

New programs should set the fV35Mode flag in the Communications Line
Configuration Block. This flag informs InitCommLine that the program

8-12 CTOS Programming Guide, Volume I

wants to use V .35 mode. If the requested communications port supports
(and is jumpered for) V.35, InitCommLine sets the fV35Avail field in the
Communications Line Return Area to TRUE. If the requested
communications port does not support (or is not jumpered for) V.35,
InitCommLine sets the fV35Avail field to FALSE, and returns a nonzero
status code.

Programs that explicitly check for V .35 support as described above can
use the higher data rates supported by the V.35 interface. Those which
do not verify that V .35 hardware is present should restrict themselves to
data rates supported by both RS-232 and V.35.

The Synchronous CommLine Interface 8-13

9
The SCSI Manager Target Mode

This chapter describes the target mode of the SCSI Manager. This mode
allows applications on a CTOS machine to communicate with other
processors that support the SCSI-2 standard.

When the SCSI Manager communicates with peripheral devices such as
disks, it uses initiator mode. In initiator mode, the SCSI Manager
controls the exchange of data between itself and the peripheral device.

When in target mode, the SCSI Manager reverses its role. Another
device on the SCSI bus acts as the initiator, and the SCSI Manager acts
as a target device of the processor type. This chapter describes the
operation of the SCSI Manager as a processor device in target mode.

The operation of the SCSI Manager in initiator mode is described in the
CTOS Operating System Concepts Manual.

Introduction

In addition to managing SCSI initiator functions to communicate with
devices connected to the SCSI bus, the CTOS SCSI Manager can
function as a SCSI device of the processor type. This allows it to respond
to commands sent by other initiators connected to the SCSI bus.

In target mode, the SCSI Manager can move data efficiently between the
CTOS processor and other initiator(s) on the SCSI bus. Given the
distance limitations of SCSI, a possible use of this mode might be a Very
Local Area Network (VLAN) to connect two computer systems.

SCSI initiators that issue commands to the SCSI Manager must conform
to certain minimum levels of SCSI implementation as defined in the SCSI
standard, X3.131-1986. These are as follows:

The SCSI Manager Target Mode 9-1

• They must support parity generation. Parity checking by the SCSI
initiator is optional but recommended.

• They must conform to level two of the SCSI standard. In particular
they must conform to the requirement that Logical Unit Numbers
(LUNs) are addressed by means of the IDENTIFY message, not by
the LUN field in the Command Descriptor Block.

• They must support the "hard" reset option.

Programmers who use the SCSI Manager target mode to transfer data
between SCSI devices should be thoroughly familiar with the SCSI
standard definition of processor devices, both their conceptual model and
their operation. The section Guidelines for SCSI Processor Target Mode
in this chapter offers some tips on the use of the SCSI Manager in this
mode. The rest of the chapter consists of a detailed specification of the
Sr.ST nrocessor device renresented hv the Sr.ST Manaver when it is in
- - - .I. .I. J - 0

target mode.

SCSI Commands

The SCSI Manager's target mode functions define a SCSI device in the
processor class as specified in the SCSI-2 specification. The processor
device implemented by the SCSI Manager is capable of accepting the
following SCSI commands:

Value

12h
08h
03h
OAh
1Dh
OOh

Command

INQUIRY
RECEIVE
REQUEST SENSE
SEND
SEND DIAGNOSTIC
TEST UNIT READY

Any other commands received by the SCSI Manager processor device are
terminated with CHECK CONDITION status, and the sense key is set to
ILLEGAL REQUEST {05h). If no path has been established to the
specified LUN, the additional sense code is set to LOGICAL UNIT NOT
SUPPORTED {25h). Otherwise, the additional sense code is set to
INVALID COMMAND OPERATION CODE {20h).

9-2 CTOS Programming Guide, Volume I

The INQUIRY, REQUEST SENSE, SEND DIAGNOSTIC and TEST
UNIT READY commands are processed internally by the SCSI Manager.
They require no intervention on the part of any application program or
system service. "Canned" responses are available for these commands
even if no program has established a path to the processor device LUN
specified. The RECEIVE and SEND commands are rejected by the
SCSI Manager unless a program has activ~ted the specified LUN by
establishing a path. More detail for each individual command is given
below.

Each command requires a specific format for its Command Descriptor
Block (CDB). If the SCSI Manager receives a CDB in which any of the
reserved bits are not zero, the command is terminated with CHECK
CONDITION status, the sense key is set to ILLEGAL REQUEST (05h)
and the additional sense code is set to INVALID FIELD IN CDB (24h).

INQUIRY

The Command Descriptor Block (CDB) for the INQUIRY command
accepted by the SCSI Manager is shown below.

0

2

~ 3

4

5

7

I--

t-

l
6

_l
5

Bit Position

l
4

l
3

l
2

l l
0

Operation Code (12h)

---1
Reserved

------1

Allocation Length

Reserved
2392.9-1

The INQUIRY command requests the SCSI Manager to return data that
uniquely identifies the SCSI Manager processor device and its
capabilities. The SCSI Manager can return up to 36 bytes of inquiry data
to the initiator device, as described below.

The SCSI Manager Target Mode 9-3

ro
'<
,+

!!>

0

2

3

4

5

6
...,
I

8

15

16

31

32

35

Bit Position

7
l

6
l

5 4
l

3
l

2
l l

0

Peripheral Qualifier Processor Device Type (03h)

Reserved

Reserved l ANSI Version (2)

Reserved l Response Data Format (2)

Additional Length (1 Fh)

t-- Reserved -

0----·-..J
Sync J n ______ ...J

l\V"t;I Vt;\J f'.t::Ot:I Vt::U

t-----
Vendor Identification (ASCII) -

'UNISYS I

t--
Product Identification (ASCII)

-
'SCSI Manager '

t----- Product Revision Level (ASCII) -

2392.9-2

If the SCSI Manager receives an INQUIRY command addressed to a
LUN for which no SCSI Manager path has been established, the SCSI
Manager sets the Peripheral Qualifier field in byte 0 to a value of 1. This
sets byte 0 to a value of 23h, indicating that the desired LUN is not
installed.

If the SCSI Manager receives an INQUIRY command addressed to an
LUN for which path has been established, the SCSI Manager sets the
value of the ANSI Version field to 2 and sets the value of the Sync bit to
1. This indicates the presence of a processor device that conforms to the
SCSI-2 standard and is capable of synchronous data transfer.

The SCSI Manager either returns all 36 bytes of inquiry data to the
initiator, or returns the number of bytes specified in the maximum
allocation length field of the INQUIRY command, whichever is less.

9-4 CTOS Programming Guide, Volume I

RECEIVE

The Command Descriptor Block (CDB) for the RECEIVE command
accepted by the SCSI Manager is shown below.

0

~
2

(9 3

4

5

7

MSB
t---

I--

l
6

l
5

Bit Position

l
4

l
3

l
2

l l
0

Operation Code (08h)

Reserved

--Transfer Length -LSB

Reserved
2392.9-3

The RECEIVE command requests a transfer of data from the SCSI
Manager target mode to a SCSI initiator. The length of the data to be
transferred, in bytes, is specified by the Transfer Length field.

If no target-mode path has been opened at the SCSI Manager, the
RECEIVE command is terminated with CHECK CONDITION status,
the sense key is set to ILLEGAL COMMAND (05h) and the additional
sense code is set to LOGICAL UNIT NOT SUPPORTED (25h). If a
target mode path for the LUN specified has been established by a
ScsiOpenPath operation, the RECEIVE command operates in one of two
modes, depending upon whether or not a ScsiTargetDataTransmit
operation has already been issued for the LUN.

If a buff er is available from which to transmit the data for the RECEIVE
command (in other words, a ScsiTargetDataTransmit operation is pending
for the LUN), the SCSI Manager transfers the data in the buffer to the
SCSI initiator during the DATA IN phase and the RECEIVE command
completes normally.

Otherwise, the SCSI Manager disconnects from the SCSI bus after the
Command Descriptor Block (CDB) has been received. This CDB may be
obtained by an application by means of the ScsiTargetCdbCheck or

The SCSI Manager Target Mode 9-5

ScsiTargetCdbWait operations. A subsequent ScsiTargetDataTransmit
operation may provide a buffer with data to transmit, in which case the
SCSI Manager reconnects to the selecting initiator, transfers the
information during a DATA IN phase and completes the command
normally.

If the transfer length of the DATA IN phase does not match the size of
the buffer provided by the ScsiTargetDataTransmit operation, the SCSI
Manager detects an incorrect length condition and sets the appropriate
target status and sense data at the completion of the RECEIVE
command.

If the Transfer Length is less than the size of the buffer provided, the
RECEIVE command completes with GOOD status, the sense key is set to
NO SENSE (OOh), the Illegal Length Indicator (ILi) in the sense data is
set to one and the residue is set to the Transfer Length from the
RECEIVE command minus the buffer size. In this case, the residue i~ a
negative number (two's complement notation) since the requested length
was smaller than the buffer provided.

This sense data is available to the SCSI initiator that issued the
RECEIVE command if that initiator sends REQUEST SENSE as its next
command. The same sense data is also returned to the application that
issued the ScsiTargetDataTransmit so that it can determine that less data
was transferred than requested.

If the Transfer Length is greater than the size of the buffer provided, the
RECEIVE command completes with CHECK CONDITION status, the
sense key is set to NO SENSE (OOh), the Illegal Length Indicator (ILi) in
the sense data is set to one and the residue is set to the Transfer Length
from the RECEIVE command minus the buffer size. In this case, the
residue is a positive number since the requested length was larger than the
buffer provided. The target status and sense data are also returned to the
application that issued the ScsiTargetDataTransmit so that it can
determine that an attempt was made to transfer more data than requested.

REQUEST SENSE

The command descriptor block (CDB) for the REQUEST SENSE
command accepted by the SCSI Manager is shown below. The Allocation
Length field specifies how many bytes of sense data the SCSI Manager
should return, up to a maximum of 18 bytes.

9-6 CTOS Programming Guide, Volume I

0

1

ff 2
n 3

4

5

7

t---

t--

l
6

J
5

Bit Position

l
4

l
3

l
2

l l
0

Operation Code {03h)

-
Reserved

-

Allocation Length

Reserved
2392.9-4

When the SCSI Manager receives the REQUEST SENSE command, it returns any
available sense data to the initiator, then clears the data. Sense data is created at the
end of each command, and in response to a UNIT ATTENTION condition. The
sense data format is shown below.

0

2

3

6

7

~ 8
n

11

12

13

14

17

7
l

6

Valid J

Reserved

MSB
t--

t--

t--

Bit Position

l
5

l
4

J
3

l
2

l l
0

Error Code {70h)

Reserved

11 LI l Rsvd l Sense Key

Residue -
LSB

Additional Sense Length (OAh)

Reserved -

Additional Sense Code

Additional Sense Code Qualifier

Reserved -

2392.9-5

The SCSI Manager Target Mode 9-7

A value of zero in the Valid bit indicates that the contents of the residue
field are not defined. A value of one in the Valid bit indicates that the
contents of the residue field reflects the difference between the requested
transfer length in a RECEIVE or SEND command and the quantity of
data actually transferred. Negative values are indicated by two's
complement notation.

Error code 70h indicates a current error. The SCSI Manager target mode
does not support deferred errors.

An Illegal Length Indicator (ILI) bit of one indicates that the transfer
length requested by the initiator did not match the size of the buffer area
provided to the SCSI Manager by a ScsiTargetDataReceive or
ScsiTargetDataTransmit operation. The information in the residue field is
valid and may be used to determine the extent of the overrun or underrun.

The sense key field indicates the generic nature of the error or exception
condition. The SCSI Manager reports only the sense keys listed below.

Value

OOh
05h
06h
OBh

Sense Key

NO SENSE
ILLEGAL REQUEST
UNIT ATTENTION
ABORTED COMMAND

The additional sense code field contains further information related to the
error or exception condition reported in the sense key field. The
additional sense codes reported by the SCSI Manager are listed below.

Value Additional Sense Code

OOh NO ADDITIONAL SENSE INFORMATION

20h INVALID COMMAND OPERATION CODE

24h INVALID FIELD IN CDB

25h LOGICAL UNIT NOT SUPPORTED

29h POWER ON, RESET OR

BUS DEVICE RESET OCCURRED

3Dh INVALID BITS IN IDENTIFY MESSAGE

47h SCSI PARITY ERROR

48h INITIATOR DETECTED ERROR

MESSAGE RECEIVED

4Eh OVERLAPPED COMMANDS ATTEMPTED

9-8 CTOS Programming Guide, Volume I

SEND

The Command Descriptor Block (CDB) for the SEND command
accepted by the SCSI Manager is shown below.

0

4

5

7

MSB
1--

1--

l
6

l
5

Bit Position

l
4

l
3

l
2

l J
0

Operation Code (OAh)

Reserved

---1
Transfer Length ____,

LSB

Reserved
2392.9-6

The SEND command requests a data transfer from a SCSI initiator to the
SCSI Manager in target mode. The length of data to be transferred, in
bytes, is specified by the Transfer Length field.

If no path has been opened in target mode at the SCSI Manager, the
SCSI Manager terminates the SEND command with CHECK
CONDITION status, sets the sense key to ILLEGAL COMMAND (05h)
and sets the additional sense code to LOGICAL UNIT NOT
SUPPORTED (25h). If a target mode path for the LUN specified has
already been established by a ScsiOpenPath operation, the SEND
command operates in one of two modes, depending upon whether or not
a ScsiTargetDataReceive operation has already been issued for the LUN.

If a buffer is available to receive the data from the send command (in
other words, a ScsiTargetDataReceive operation is pending for the LUN),
the SCSI Manager transfers any data obtained during the DATA OUT
phase to the buffer specified in the ScsiTargetDataReceive operation and
the SEND command terminates normally.

Otherwise, the SCSI Manager disconnects from the SCSI bus after the
Command Descriptor Block (CDB) has been received. This CDB may be
obtained by an application by means of the ScsiTargetCdbCheck or

The SCSI Manager Target Mode 9-9

ScsiTargetCdbWait operations. A subsequent ScsiTargetDataReceive
operation should provide a buffer for the data, in which case the SCSI
Manager reconnects to the selecting initiator, transfers the information
during a DATA OUT phase and completes the command normally.

If the transfer length of the DATA OUT phase does not match the size of
the buffer provided by the ScsiTargetDataReceive operation, the SCSI
Manager detects an incorrect length condition and sets the appropriate
target status and sense data at the completion of the SEND command.

If the Transfer Length is less than the size of the buffer provided, the
SCSI Manager completes the SEND command with GOOD status, sets
the sense key to NO SENSE (OOh), and sets the Illegal Length Indicator
(ILi) in the sense data. It also sets the residue to the Transfer Length
from the SEND command minus the buffer size. In this case, the residue
is a negative number (two's complement notation) since the requested
length was smaller than the buffer provided.

This sense data is available to the SCSI initiator that issued the SEND
command if that initiator sends REQUEST SENSE as its next command.
The SCSI Manager also returns the same sense data to the application
that issued the ScsiTargetDataReceive so that it can determine that less
data was transferred than requested.

If the Transfer Length is greater than the size of the buffer provided, the
SCSI Manager completes the SEND command with CHECK
CONDITION status, sets the sense key to NO SENSE (OOh), and sets the
Illegal Length Indicator (ILi) in the sense data. It also sets the residue to
the Transfer Length from the SEND command minus the buffer size. In
this case, the residue is a positive number since the requested length was
larger than the buffer provided. The SCSI Manager also returns target
status and sense data to the application that issued the
ScsiTargetDataReceive, so that it can determine that an attempt was made
to transfer more data than requested.

SEND DIAGNOSTIC

The command descriptor block (CDB) for the SEND DIAGNOSTIC
command accepted by the SCSI Manager is shown below.

9-10 CTOS Programming Guide, Volume I

Bit Position

7 6 5 4 3 2 0

0 Operation Code (1 Dh)

Reserved SelfTst Reserved

IJl 2
'< r+
(1) 3

Reserved
4

5
2392.9-7

The SEND DIAGNOSTIC command requests the SCSI Manager target
mode to perform self-test diagnostic functions. If there is no pending
UNIT ATTENTION condition, GOOD status is returned by the
command; otherwise SEND DIAGNOSTIC terminates with a CHECK
CONDITION status.

TEST UNIT READY

The command descriptor block (CDB) for the TEST UNIT READY
command accepted by the SCSI Manager is shown below.

Bit Position

7 6 5 4 3 2 0

0 Operation Code (OOh)

IJl 2
'< r+
(1) 3 Reserved

4

5

The SCSI Manager Target Mode 9-11

TEST UNIT READY may be used by another SCSI initiator to verify
that the SCSI Manager is ready to receive or transmit data in target mode.
If a SCSI Manager path in target mode has been established for the LUN
specified by the TEST UNIT READY command, the command
completes with GOOD status. Otherwise, TEST UNIT READY
terminates with CHECK CONDITION status, the sense key is set to
ILLEGAL REQUEST (05h) and the additional sense code is set to
LOGICAL UNIT NOT SUPPORTED (25h).

SCSI Messages

The SCSI Manager processor target mode accepts the following messages
from an initiator during a MESSAGE OUT phase. Any other commands
are rejected with a MESSAGE REJECT message.

Value

06h
OCh
80h
05h
09h
07h
08h

Messa2e

ABORT
BUS DEVICE RESET
IDENTIFY
INITIATOR DETECTED ERROR
MESSAGE PARITY ERROR
MESSAGE REJECT
NO OPERATION
SYNCHRONOUS DATA TRANSFER REQUEST

The SCSI Manager processor target mode generates the following
messages during a MESSAGE IN phase.

Value

OOh
04h
80h
07h

Message

COMMAND COMPLETE
DISCONNECT
IDENTIFY
MESSAGE REJECT
SYNCHRONOUS DATA TRANSFER REQUEST

For those messages that require additional description of the actions taken
by the SCSI Manager target mode (beyond the specifications in the
SCSI-2 standard), more information is given below.

9-12 CTOS Programming Guide, Volume I

ABORT

The ABORT message is sent from an initiator to clear the current I/O
process for the specified LUN. Any pending data and status for the
identified LUN and the issuing initiator are cleared and the SCSI
Manager target mode enters the BUS FREE phase. If no LUN has been
identified when an ABORT message is received, there is no pending data
or status to clear, so the SCSI Manager enters the BUS FREE phase.

If there are any pending ScsiTargetCdbWait, ScsiTargetDataReceive or
ScsiTargetDataTransmit operations on the specified LUN for the initiator
that sent the ABORT message (or any that were issued with the initiator
ID parameter set to "don't care"), they are terminated and error code 379
("SCSI command aborted") is returned to the program that issued them.

BUS DEVICE RESET

The BUS DEVICE RESET message is sent from an initiator to clear all
I/O processes for the SCSI Manager target mode. All pending data and
status for the issuing initiator are cleared and the SCSI Manager target
mode enters the BUS FREE phase. A unit attention condition is created
for all initiators.

Any pending ScsiTargetCdbWait, ScsiTargetDataReceive or
ScsiTargetDataTransmit operations are terminated and error code 386
("SCSI bus reset") is returned.

DISCONNECT

This message is sent by the SCSI Manager target mode when it has
received a RECEIVE or SEND command but a matching
ScsiTargetDataTransmit or ScsiTargetDataReceive operation has not been
issued for the specified LUN. When one of these operations is issued
(i.e. a buffer is provided for the transmission or reception of data
associated with the RECEIVE or SEND command), the SCSI Manager
reconnects to the initiator to complete the I/O process.

The SCSI Manager Target Mode 9-13

IDENTIFY

The IDENTIFY message is sent either by an initiator or by the SCSI
Manager to establish a connection between an I/O process of the SCSI
Manager target mode and the initiator.

Bit Position

~ 0 '~-':_~lo_is_:_P_rv~l_5 __ R_e_s_e:_ed __
3_~_2_LU_Nu_m_be_r_0~ 2392.9-9

With the exception of the RECEIVE and SEND commands, the SCSI
Manager target mode does not disconnect from the SCSI bus until the
completion of an 1/0 process.

If a RECEIVE or SEND command is preceded by an IDENTIFY
message that disallows disconnection privileges for the SCSI Manager
target mode (i.e. the DiscPrv bit is zero) the SCSI Manager cannot
suspend that process. If the SCSI Manager encounters a condition in
which it would normally disconnect and suspend the I/O process (see the
description of the DISCONNECT message above), it terminates the
command with CHECK CONDITION status. It also sets the sense key
to ABORTED COMMAND and sets the additional sense code to
INVALID BITS IN IDENTIFY MESSAGE.

INITIATOR DETECTED ERROR

The INITIATOR DETECTED ERROR message is sent from an initiator
to inform the SCSI Manager target mode that an error has been detected
during the current I/O process. When it receives an INITIATOR
DETECTED ERROR message, the SCSI Manager terminates the current
command with CHECK CONDITION status. It then sets the sense key
to ABORTED COMMAND and sets the additional sense code to
INIDATOR DETECTED ERROR MESSAGE RECEIVED.

9-14 CTOS Programming Guide, Volume I

SYNCHRONOUS DATA TRANSFER REQUEST

0

3

4

7
l

Bit Position

6
l

5
l

4
l

3
l

2
l

Extended Message (01 h)

Extended Message Length (03h)

SYNCHRONOUS DATA TRANSFER REQUEST (01 h)

Transfer Period (times 4 nanoseconds)

REQ/ ACK Offset

l
0

2392.9-10

If the SCSI Manager is not capable of synchronous data transfers because
of hardware limitations, it always refuses incoming synchronous data
transfer requests. If an initiator requests synchronous data transfer, the
SCSI Manager returns a SYNCHRONOUS DATA TRANSFER
REQUEST message with the REQ/ ACK offset set to zero to indicate
asynchronous transfer.

If the SCSI Manager is capable of synchronous data transfers, it always
accepts SYNCHRONOUS DATA TRANSFER REQUEST messages
and attempts to negotiate the shortest transfer period and the greatest
REQ/ ACK offset acceptable to both the initiator and the SCSI Manager
target mode. Unless specifically disabled in the configuration file, the
SCSI Manager target mode initiates synchronous data transfer
negotiations on the first connection with an initiator if any previously
negotiated agreement has become invalid.

The SCSI Manager target mode and an initiator lack a valid synchronous
data transfer agreement under any of the following conditions:

• after the SCSI Manager is first initialized

• after a SCSI bus reset

• after receipt of a BUS DEVICE RESET message

The SCSI Manager Target Mode 9-15

Guidelines for SCSI Processor Target Mode

The effective use of SCSI processor target mode to exchange information
with another initiator on the SCSI bus (usually another computer system)
requires coordination with the application executing on the other system.
Items which need to be defined include layouts of. message packets,
maximum length considerations for message packets, flow control, which
party (or both) is responsible for error recovery, and so on. Most of
these considerations are beyond the scope of this chapter, but some
important aspects of SCSI Manager behavior can be described here.
These aspects should be considered in the system design.

There are two fundamentally different ways in which the RECEIVE and
SEND commands can be used to transfer information. In the first, data
is to be exchanged with only one other initiator on the SCSI bus and the
length (or at least, the maximum length) of each transfer is known
beforehand. This might be <lescrihed as single-threaded use of the
processor target mode. In the second, neither the origin of the data
(which initiator sent it) nor the length of the data is known beforehand.
This might be called a multi-threaded use of processor target mode. Brief
examples of both modes are described below.

Single-Threaded Mode

In this mode, the application on the CTOS processor first issues a
ScsiTargetDataReceive operation to await a message packet sent from the
other initiator by means of a SEND command. The maximum length of
any message packet must be known beforehand or the operation may
terminate with target status of CHECK CONDITION and an Illegal
Length Indicator in the sense data. This ScsiTargetDataReceive
operation remains pending until a SEND command is received; there is
no time-out for target mode operations.

When the SCSI Manager has received a SEND command and transferred
the associated data to the application's buffer, the application may
examine the Command Descriptor Block (CDB) and the data. The
returned data fields that must be checked are the error return code (it
should be zero), the target status (it should be GOOD) and the length of
data transferred (it should match the Transfer Length in the SEND
CDB). If any of these conditions are not met, an exception condition has
occurred and the program should transfer control to its error recovery

9-16 CTOS Programming Guide, Volume I

procedures. Otherwise, the data received by the application indicates an
action to be performed and (usually) a response to be sent to the initiator.

The application responds to the initiator by means of the
ScsiTargetDataTransmit operation. When the initiator issues a RECEIVE
command, it receives the data from the buffer provided by the
ScsiTargetDataTransmit operation and the circle of inbound and
outbound message packets is complete. The application can now resume
its wait for a message packet from the initiator.

Note that this single-threaded example implements a one-way control of
the information exchanged over the SCSI bus: the SCSI initiator is in
control of the data transfers and is the one that issues all SCSI
commands. The SCSI bus may be used in a duplex, but still
single-threaded, fashion if the application on the CTOS processor issues
its own SEND and RECEIVE commands to the other SCSI initiator.
These commands must be issued by the initiator mode SCSI manager
operations in the same fashion as commands to any SCSI device (such as
a disk or a tape drive).

Multi-Threaded Mode

This mode allows an application to establish multiple communications
sessions to exchange data with more than one other initiator on the SCSI
bus. The application awaits (or periodically checks for) the arrival of a
SEND command from another initiator by means of the
ScsiTargetCdbWait or the ScsiTargetCdbCheck operation. When a
SEND command arrives, the SCSI Manager returns the ID of the initiator
that issued the command and returns the SEND CDB (which contains the
length of data to transfer) to the application. The SCSI Manager
disconnects from the SCSI bus after receiving the CDB and is free to
continue with other operations. The application can then use the
ScsiTargetDataReceive operation to cause the SCSI Manager to reconnect
to the initiator and to transfer the data from the initiator, completing the
SEND command.

Then, the application can prepare the response which is implicitly
requested by the SEND command and queue it for later transmission to
the initiator. In this case, the application does not perform a
ScsiTargetDataTransmit at this time. Instead, the application updates its
own data structures to reflect the fact that a buffer is ready to be sent in

The SCSI Manager Target Mode 9-17

response to a RECEIVE command from a particular initiator if such a
command ever arrives. Upon the arrival of a RECEIVE command
(detected by the successful completion of a ScsiTargetCdbWait or
ScsiTargetCdbCheck operation), the application performs a
ScsiTargetDataTransmit operation to cause the response data to be
transferred back to the initiator.

Just as in the single-threaded case, a multi-threaded application may use
the SCSI bus in a duplex fashion by issuing its own SEND and RECEIVE
commands to other SCSI devices with which it wishes to communicate.

Illegal Transfer Lengths

Illegal length (overflow or under-run) conditions occur when the Transfer
Length field of a RECEIVE or SEND command is not exactly equal to
the size of the buffer provided by a ScsiTargetDataTransmit or
ScsiTargetDataReceive operation. In both cases, the sense daia
associated with the command is updated so the sense key is NO SENSE
(OOh), and the Illegal Length Indicator is set to one. In addition, the
Valid bit is set to one, indicating that the Residue field contains the
difference between the expected and actual length of data transferred.
Finally, the additional sense code is set to NO ADDITIONAL SENSE
DATA (OOh). Beyond this point, overflow and under-run are handled
differently.

Under-run occurs when the buffer provided to the SCSI Manager is larger
than the data sent from or received by the other initiator. In this case,
both the RECEIVE and SEND commands complete with GOOD status.
The initiator is never made aware of the under-run condition unless it
issues a REQUEST SENSE command immediately after the command
that caused the under-run. The application using the SCSI Manager by
means of a ScsiTargetDataTransmit or ScsiTargetDataReceive operation
can detect the under-run condition by examining the sense data for the
information described above. Under-run is generally harmless and does
not require any error handling.

Overflow occurs when the buffer provided to the SCSI Manager is smaller
than the data sent from or received by the other initiator. In this case,
both the RECEIVE and SEND commands complete with CHECK
CONDITION status. The initiator is normally expected to discover the
overflow condition by issuing a REQUEST SENSE command immediately

9-18 CTOS Programming Guide, Volume I

after the command that caused the overflow. The application using the
SCSI Manager by means of a ScsiTargetDataTransmit or
ScsiTargetDataReceive operation can detect the overflow condition by
examining the target status for CHECK CONDITION and the sense data
for the information described above. Overflow usually indicates a
programming error, that is, a failure of agreement between the
applications executing on the CTOS processor and the other processor.

Finishing a Target Mode Application

When an application using SCSI Manager processor target mode is
complete, it needs to close the target mode paths before it exits.
Normally, the application would simply call ScsiClosePath for each of the
paths it had opened.

However, the ScsiTargetDataReceive, ScsiTargetDataTransmit and
ScsiTargetCdbWait operations have no time limit for completion, since
they wait for commands from a remote SCSI initiator. If the application
attempts to close a SCSI path on which any of these operations are
outstanding, the attempt fails with status code 394 ("SCSI requests
outstanding"). In this case, the application must call
ScsiTargetOperationsAbort for that SCSI path, to cancel any outstanding
operations.

When the application calls ScsiTargetOperationsAbort for a path, the
SCSI Manager cancels any pending operations on that path unless it has
received a Command Descriptor Block (CDB) for one of them. When
the SCSI Manager cancels outstanding operations, it returns status code
379 ("SCSI Command Aborted") to the program or process which called
each outstanding operation. If it was able to abort all the outstanding
operations for a path, the SCSI Manager returns status code zero to the
program or process that called ScsiTargetOperationsAbort, indicating that
the path can now be closed by a ScsiClosePath operation.

If the SCSI Manager received a CDB for any of the outstanding requests,
ScsiTargetOperationsAbort returns error code 394 ("SCSI requests
outstanding") and the SCSI path may not be closed. In this case, the
application should complete the outstanding operations by normal means.
It should then examine the data received to determine an appropriate
action before it closes its SCSI paths and exits. For example, if the SCSI
Manager received a SEND command CDB, the application should issue a

The SCSI Manager Target Mode 9-19

ScsiTargetDataReceive operation before closing the path. The
application should also reply to the SCSI initiator that sent the CDB
before exiting.

9-20 CTOS Programming Guide, Volume I

10
Making CTOS Requests from MS-DOS

Why Call CTOS from DOS?

Many installations include both CTOS workstations and PCs. DOS-based
PCs can be integrated into the CTOS cluster using the ClusterCard with
ClusterShare software. These products allow PCs to access files and
printers at the CTOS server.

They also create the potential for truly integrated applications that run on
both the DOS and CTOS platforms. Two examples of this type of
integrated application are ClusterShare 3270 and ClusterShare Mail.
These applications extend CTOS SNA network access and access to the
CTOS mail system to PC users.

This chapter describes how to create similar distributed applications.
This type of application allows the user interface to reside on either PCs
or CTOS workstations, while the underlying services reside on a CTOS
server.

What Is CSKNAMES.OBJ?

A file called CSKNAMES.OBJ is distributed with the ClusterShare
software. This file is an object module which allows DOS programs to
call CTOS kernel primitives at the server.

This allows a program on a PC to access request-based system services on
a CTOS server. The interface from DOS to CTOS is basically identical
to the CTOS request interface, though less rich in features.

Making CTOS Requests from MS-DOS 10-1

Kernel Primitives Supported by CSKNAMES.OBJ

CSKNAMES.OBJ allows DOS programs to call several of the CTOS
primitives. The syntax used to call them is identical in both DOS and
CTOS. CSKNAMES.OBJ supports the following CTOS kernel
primitives:

• AllocExch

DOS programs use AllocExch to allocate an exchange for use in
communicating with the server. A DOS program can allocate up to
20 exchanges.

• Check

Check allows a DOS application to poll an exchange for a response
from the server.

• DeAllocExch

DeAllocExch frees a previously allocated exchange. DOS programs
must make sure that they always call DeAllocExch for each
exchange they allocate. ClusterShare exchanges are not freed unless
DeAllocExch is explicitly called.

• Request

Request allows a DOS application to send a request to the server.
All requests are routed to the server automatically. There is no
support for system services under DOS.

• Wait

Wait causes the DOS application to block until it receives a
response to a previous Request. Internally, Wait performs a busy­
loop, repeatedly polling a single exchange for a response from the
server. This can prevent any other application program from
running on the DOS machine until a response is received.

The main difference in the handling of kernel primitives under DOS is
that an exchange can have only one outstanding request. If a program
makes only one Request at a time then Waits for a response to it, this fact
is insignificant. However, if a program may have multiple requests
outstanding, it must use a separate exchange for each of them.

10-2 CTOS Programming Guide, Volume I

This fact impacts the way such programs process responses to their
requests, as well. Under CTOS, the program could simply Wait at a
single exchange and receive each response in turn. Under DOS, however,
the program must loop, using Check to poll each exchange for a response.

Using CSKNAMES.OBJ

Using CSKNAMES.OBJ is much like using the kernel primitives under
CTOS. For detailed information on using CTOS kernel primitives, see
the CTOS/Open Programming Practices and Standards guide. There are a
few special concerns in the DOS environment, though.

First, you need to define the kernel primitives as external functions, and
you need to link CSKNAMES.OBJ with your program. While most
CTOS languages provide an external definition file, you have to do this
yourself in the DOS environment. Listing 10-1 shows sample C-language
function definitions for each of the kernel primitives.

extern int pascal AllocExch(int far *exch);
extern int pascal Check(int exch, void far *MsgRet);
extern int pascal DeAllocExch(int exch);
extern int pascal Request(void far *RqBlk);
extern int pascal Wait(int exch, void far *MsgRet);

Listing 10-1. DOS Function Definitions for the Kernel Primitives

Note that the kernel primitives use the same calling convention as CTOS.
This is compatible with the Pascal calling convention in most DOS
compiler implementations. See your compiler documentation for more
specific information on mixed-language programming.

Second, you need to link CSKNAMES.OBJ with your program. The
CTOS Linker automatically links the needed files for you, but DOS
linkers do not. Check your DOS compiler or linker documentation for
information on linking multiple object modules.

Third, you must use a model of computation which uses far procedural
calls (as opposed to near calls). These models include Medium, Large,
and Huge. Also, when you pass a pointer as a parameter to one of the
kernel primitives, that pointer must be far.

Making CTOS Requests from MS-DOS 10-3

Finally, as mentioned above, each DOS exchange can have only one
outstanding request at a. time. If your program may have multiple
requests outstanding at one time, you must use a separate exchange for
each of them.

If you follow these guidelines, your DOS program should be able to
communicate with CTOS successfully. See the sample program at the
end of this chapter for an example.

The PC Emulator Version Port

DOS programs which run under the PC Emulator can read 1/0 port
7CEOh to determine which version of the PC Emulator is present. DOS
programs can also use this function to determine whether they are running
under the PC Emulator or on an actual PC.

Listing 10-2 shows an Assembly language procedure, EmuVersion, which
reads the PC Emulator version number. Listing 10-3 shows a C procedure
which calls EmuVersion. If the PC Emulator is present, a nonzero byte
value will be returned, which represents the major and minor version
numbers of the PC Emulator. The high-order four bits of the byte contain
the major version number, and the low-order four bits contain the minor
version number.

For example, if the PC Emulator Version 4.0 is present, the byte value
returned is 40h.

PUBLIC EmuVersion
_EmuVersion PROC NEAR

;Returns PCEmulator version in AL
Push bp
Mov bp,sp
Mov AX, 0
Mov DX, 7CEOh
In AL,DX
Pop bp
Ret

_Emuversion ENDP

Listing 10-2. Determining PC Emulator Version From DOS

10-4 CTOS Programming Guide, Volume I

VersionCheck()
Version= EmuVersion();
if(Version <= 0)

/* on a pc */
DoPCStuff () ;

else if(Version < Ox30) {
/*older than 3.0 */
printf("\nBuy new software!");
exit (0);

}

else
/* reasonably up to date emulator version */
DoEmulatorStuff();

Listing 10-3. Calling a PC Emulator Version Procedure

A Sample Program Using CSKNAMES.OBJ

The following sample DOS program retrieves the current time from the
CTOS server and displays it. It then allows the DOS user to change the
time at the CTOS server.

This program has been observed to work correctly with Turbo C 2.0 and
with Microsoft C 5.1.

Note that the program must be linked with CSKNAMES.OBJ.

Making CTOS Requests from MS-DOS 10-5

/***
* Filename: Time.c
* Author: A. Coleman/K. Fuiks
* Date: 12/12/89
* Compiler: Turbo C 2.0

*
* This file changes the CTOS time from the DOS environment. This
* program can be used from a PC with ClusterCard or from the PC
* Emulator. ClusterShare must be installed in either case.

*
* This program is currently written for Medium model (far code,
*near data), but can be compiled as Large. CSKNAMES.OBJ cannot be
* used with near code models, such as Small and Compact.
*************************~**************/

#include <stdio.h>
#include "process.h"
#include "ctype.h"

typedef struct { /* request block header */
char sCntinfo;
char RtCode;
char nReqPbCb;
char nRespPbCb;
int userNum;
int exchResp;
int ercRet;
int rqCode;

RqBlkHdr;

typedef struct {
void far *pb;
int cb;

pbcb;

/* pbcbs */

typedef struct
RqBlkHdr
pbcb

Header;,
Items[2];

) RequestBlockl;

typedef struct
RqBlkHdr Header2;
unsigned int seconds;
unsigned int dayTimes2;

RequestBlock2;

/* define a full request block */

/* define a full request block */

Listing 10-4. A Sample DOS Program Using CSKNAMES.OBJ
(Page 1of5)

10-6 CTOS Programming Guide, Volume I

RequestBlockl GetTimeReq; /* create one */
RequestBlockl far *GetTimePtr = &GetTimeReq; /* and a pointer to it */
RequestBlock2 SetTimeReq;
RequestBlock2 far *SetTimePtr

unsigned int
unsigned int

seconds;
dayTimes2;

int Exchange = O;
int far *Exchpoint = &Exchange;
int ere O;

/* create one */
&SetTimeReq; /* and a pointer to it */

extern int
extern int
extern int

pascal AllocExch(int far *exch);

extern
extern
int
int
int
int
int
int
int

pascal Check(int exch, void far *MsgRet);
pascal DeAllocExch(int exch);

int pascal Request(void far *RqBlk);
int pascal Wait(int exch, void far *MsgRet);

BuildReqBlkl();
BuildReqBlk2();
GetDateTime();
PrintCTOSDateTime();
GetNewDateTime();
SetNewDateTime();
CheckErc(int x);

typedef struct [/* this is the CTOS date/time structure */
unsigned int seconds;
unsigned int dayTimes2;
] DateTimeStruc;

DateTimestruc CTOSTime;
DateTimeStruc far *TimeRet = &CTOSTime;

main ()
[

int ere;

ere= AllocExch(Exchpoint);
CheckErc(ere);
CheckErc(GetDateTime());
CheckErc(GetNewDateTime());
if(seconds) CheckErc(SetNewDateTime());
PrintCTOSDateTime();
DeAllocExch(Exchange);

Listing 10-4. A Sample DOS Program Using CSKNAMES.OBJ
(Page 2 of 5)

Making CTOS Requests from MS-DOS 10-7

GetDateTime()
{

int ere;
BuildReqBlkl();
if(Exchange)
[

/* build request block */

CheckErc(Request(GetTimePtr));
printf("Sent Get Time request.\n");
ere= Wait(Exchange, &GetTimePtr);
CheckErc(erc);

PrintCTOSDateTime();
return(O);

BuildReqBlkl()
[

GetTimeReq.Header.sCntinfo = 6;
Gct.Tiu.cP..cq. Header. RtC'0d'? = o .!

GetTimeReq.Header.nReqPbCb = O;
GetTimeReq.Header.nRespPbCb = l;
GetTimeReq.Header.userNum = O;
GetTimeReq.Header.exchResp = Exchange;
GetTimeReq.Header.rqCode = 14;
GetTimeReq.Items[l] .pb TimeRet;
GetTimeReq.Items[l] .cb = 4;

PrintCTOSDateTime()
{

unsigned int totalsecs
int iHour;
char sec[] = "00", min[]

O;

"00", hour[] = "00", ampm[2];

/* --- Figure out total seconds since last noon or midnight --- */
totalsecs = CTOSTime.seconds;

/* --- Figure out seconds --- */
if ((sprintf(sec, "%d", (totalsecs % 60))) < 2)

sec[l]
sec [0]

sec[O];
I 0 I j

Listing 10-4. A Sample DOS Program Using CSKNAMES.OBJ
(Page 3 of 5)

10-8 CTOS Programming Guide, Volume I

/* ---- Figure out minutes ----- */
if ((sprintf(min, "%d", ((totalsecs / 60) % 60))) < 2)

min[l]
min[O]

min[O];
I 0 Ii

/* Figure out hours and AM/PM ---- */
iHour = (totalsecs/(60*60));
if(iHour == 0)

iHour = 12;
sprintf(hour, "%d", iHour);
if (! (CTOSTime. dayTimes2 % 2))

sprintf(ampm, "AM");
else

sprintf(ampm, "PM");
/* ------- print it ------- */

printf("The CTOS time is: %s:%s:%s %s \n\r", hour, min, sec, ampm);

GetNewDateTime()
(

char ampm[lOJ;
unsigned int hours=O, mins = O, secs = O;

printf("Enter new CTOS Time, or any letter to exit: ");
scanf ("%d: %d: %d %2s", &hours, &mins, &secs, ampm);
strupr(ampm);
switch (ampm[O])
case • P':

if(CTOSTime.dayTimes2 % 2)
dayTimes2

else
dayTimes2

break;

case 1 A 1 :

CTOSTime.dayTimes2;

CTOSTime.dayTimes2 + l;

if(!(CTOSTime.dayTimes2 % 2))
dayTimes2

else
dayTimes2

break;

CTOSTime.dayTimes2;

CTOSTime.dayTimes2 - l;

default: return(l);
l /* end of case */

Listing 10-4. A Sample DOS Program Using CSKNAMES.OBJ
(Page 4 of 5)

Making CTOS Requests from MS-DOS 10-9

if(secs < 60 && mins < 60 && hours <= 12 && hours >= 1) {
seconds = secs + mins * 60 + hours * 60 * 60;
return(O);

else return(l);

BuildReqBlk2()
SetTimeReq.Header2.sCntinfo = 4;
SetTimeReq.Header2.RtCode = O;
SetTimeReq.Header2.nReqPbCb = O;
SetTimeReq.Header2.nRespPbCb = O;
SetTimeReq.Header2.userNum = O;
SetTimeReq.Header2.exchResp = Exchange;
SetTimeReq.Header2.rqCode = 51;
SetTimeReq.seconds = seconds;
SetTimeReq.dayTimes2 = dayTimes2;

BuildReqBlk2();
if (Exchange) {

CheckErc(Request(SetTimePtr));
printf("I sent the Set Time request.\n");
CheckErc(Wait(Exchange, &SetTimePtr));
printf("I sent the Get Time request.\n");
CheckErc(Request(GetTimePtr));
CheckErc(Wait(Exchange, &GetTimePtr));
)

return(O);

CheckErc(int error)
int ere;
if(error)

printf("An error has occurred. ere
if(Exchange)

ere= DeAllocExch(Exchange);
exit(erc);

else
return(O);

%d\n\r", error);

Listing 10-4. A Sample DOS Program Using CSKNAMES.OBJ
(Page 5 of 5)

10-10 CTOS Programming Guide, Volume I

82530 serial controller, 1:8-3
EOF reporting, 1:8-7

8274 serial controller, 1:8-3

a-characters, CD-ROM files, II:7-56
al-characters, CD-ROM files, II:7-57
Abort requests, II:6-17, 6-19
Accessing a remote queue, II:2-22
Adaptive Differential Pulse Code Modulation (ADPCM), 11:4-18
AddQueue operation, II:2-1, 2-7, 2-14, 2-17, 2-21
AddQueueEntry operation, II:2-3, 2-7, 2-12, 2-21, 3-7
Address space protection, 1:2-12
Aliasing, 1:2-9
Allocating heap memory, II:6-15
AllocMemorylnit procedure, 11:6-32
AlphaColorEnabled, 1:3-24, 3-25
Alt requests, 1:4-3
Amplifying voice messages, 11:4-16
Analog crosspoint switch array, 11:4-11
Analog-to-digital signal conversion, II:4-2
Application programs

as queue servers, 11:2-5
Applications

using the spooler, 11:3-3
AsGetVolume, 11:4-7, 4-13
AsSetVolume, 11:4-7, 4-13, 4-16
Async.lib procedures

in common-code module, 11:6-25 to 6-33
in main module, 11:6-10 to 6-24

Async.lib, 11:6-1
Asynchronous model

advantages of, II:6-3
example of, 11:6-4

Asynchronous processing, 11:6-2
diagram of, 11:6-7

6191

Index

Index I-1

Asynchronous request procedural interface, 11:6-10
Asynchronous system service model, 11:6-1
Asynchronous Terminal Emulator (ATE), II:4-3
AsyncRequest procedure, 11:6-14
AsyncRequestDirect procedure, II:6-14
AsyncStats, II:6-23
Attribute byte, 1:3-22
At-files, II:6-34
Audio features, of CD-ROM, 11:7-21
Audio management, 11:4-4
Audio Pause, 11:7-22
Audio play function, of CD-ROM Service, 11:7-21
Audio Play, example of, 11:7-22
Audio Q-Channel Info function, of CD-ROM Service, 11:7-22
Audio Resume, II:7-22
Audio Service, 11:4-1, 4-2
Audio Status, 11:7-22
Awk, 1:1-2

B25/NGEN workstations, 11:4-1
Background color, 1:3-2
Backslash, used in CD-ROM file specification, 11:7-7
Banner page, II:3-1
Batch Manager, 11:2-2
Batch utility, 11:2-21
Batch, 1:5-5, 5-21
Batch.run, 1:5-1
Baud rate, 1:8-4
Binding a system service, 11:6-34
Blank space, on tape, 11:8-7
Block size, 11:8-17
Blocks, increasing size of, 11:8-16
Buffer recovery order, 11:8-12, 8-19
Buffer size, 1:7-3
Buffers

determining size of, 11:8-8
specifying size of, 11:8-15

BuildAsyncRequest procedure, 11:6-10, 6-23
BuildAsyncRequestDirect procedure, 11:6-11, 6-23
Building request blocks, 11:6-13
Byte streams

spooler, 11:3-3

I-2 CTOS Programming Guide, Volumes I and II 6191

c-characters, CD-ROM files, II:7-57
Call gate, 1:2-12
Call progress tone detection (CPTD), II:4-24
Call progress tone detector, 11:4-10
CdAbsoluteRead, 11:7-3
CdAudioCtl, 11:7-3, 7-21

example, 11:7-23
COB, 1:9-3
CdClose, 11:7-3
CdControl, 11:7-3
CdDirectoryList, , 11:7-2, 7-8, 7-9

example of, II:7-10
CdGetDirEntry, II:7-2, 7-17, 7-46
CdGetVolumelnfo, 11:7-2, 7-4
CdOpen, Il:7-3
CdRead, 11:7-3
CdSearchClose, 11:7-2, 7-12
CdSearchFirst, 11:7-2, 7-11
CdSearchNext, Il:7-2, 7-12
CdServiceControl, 11:7-3
CdVerifyPath, 11:7-2
CdVersionRequest, 11:7-2, 7-12
CD-ROM

character sets, 11:7-56
file formats, 11:7-29
files, example of, 11:7-11, 7-12
High Sierra directory record format, Il:7-51
High Sierra primary volume descriptor, 11:7-39
ISO directory record format, Il:7-46
ISO primary volume descriptor, II:7-30
searching for files, Il:7-11
structures used, 11:7-6

CD-ROM disc, specifying locations on, Il:7-21
CD-ROM file, copying to disk, 11:7-17
CD-ROM Service

audio features of, II:7-21
function of, II:7-1
operations, II:7-2
requirements for, II:7-1

ChangeCommLineBaudRate, 1:8-4
Character

attribute byte, 1:3-22
cell, 1:3-2
color, 1:3-22
coordinates, II:l-7
cursor, II: 1-7, 1-8
map, 1:3-3
sets, for CD-ROM, II:7-56

CheckContextStack procedure, Il:6-15
Child partition termination status, 1:4-6

6191 Index /-3

CleanQueue operation, 11:2-8
Client operations

for queue management,· 11:2-3
Client-server model, 1:1-1
Clock source, 1:8-4
CloseByteStream operation, 11:3-3
Cluster network, 1:1-1
Cluster server, 11:8-1
ClusterCard, 1:10-1
ClusterShare, 1:10-1
CODEC (encoder/decoder), 11:4-5, 4-8, 4-11, 4-12, 4-14, 4-15, 4-33
COED modules, 11:6-33
Color intensity, 1:3-6, 3-7

three-palette format, 1:3-8
Color programming, 1:3-1

character attribute byte, 1:3-22
color priority, 1:3-25
and graphics, 1:3-4
graphics colors, 1:3-24
palette control structure, 1:3-9
.:inolP.-n'11P.ttP. fnrm'1t T·1-'i
th-;~~--pal~tt~- ~~j~;-f~r-;;at, 1:3-8

Command Descriptor Block (CDB}, 1:9-3
Command File Editor, 1:5-6, 5-12
Command file, for installation, 1:5-5, 5-12
CommLine interface, 1:8-1

Baud Rate, 1:8-4
clock source, 1:8-4
extensions, 1:8-1
reading signal status, 1:8-4
serial controller differences, 1:8-3
setting signal status, 1:8-5
using DMA with, 1:8-5

Common-code module, 11:6-29, 6-32, 6-36
functions of, 11:6-6

Communication controller, 1:8-3
Communications DMA, 1:8-5

and DTR signal, 1:8-5
and WriteCommLineStatus, 1:8-5
External/Status interrupt, 1:8-7
getting status, 1:8-8
initializing, 1:8-5
Receive Special interrupt, 1:8-7
receiving data, 1:8-7
transmitting data, 1:8-6

Communications Line Configuration Block, 1:8-2
fDMA field, 1:8-6
fV35Mode field, 1:8-12
fX21 field, 1:8-11

I-4 CTOS Programming Guide, Volumes I and II 6191

Communications Line Return Area, 1:8-2
DMAAvailable field, 1:8-6
fV35Avail field, 1:8-13
ioX21 field, 1:8-10

Compressing pauses, in voice files, 11:4-15
Concepts, for programming a mouse, II:l-3
Config.sys parameters, 1:1-16
Config.sys, 1:3-13
ConfigureSpooler operation, 11:3-1, 3-2, 3-7
Configuring the Queue Manager, 11:2-9
Co!)figuring the spooler, II:3-1 to 3-2
Connection handle, 1:7-18
Conserving heap memory, II:6-16
Context Control Block (CCB), 11:6-25, 6-26, 6-28
Context Manager, 1:4-1, 4-5, 4-8, 5-13, 5-22; 11:4-5
Context stack, Il:6-15
Contexts, II:6-3

managing, 11:6-25
other ways to use, Il:6-28
terminating, at deinstallation, II:6-28

Control file, for installation, 1:5-5, 5-6
ConvertToSys, 11:6-30, 6-33
Copying a CD-ROM file to disk, example of, 11:7-17
CPTD configuration file, 11:4-25
Create Message File command, 1:5-11
CreateContext procedure, 11:6-23, 6-26
Creating partitions, 1:4-2
CSKNAMES.OBJ, 1:10-1

function definitions for, I: 10-3
kernel primitives supported by, 1:10-2
models of computation supported, 1:10-3

CTOS, 1:1-1
accessing from DOS, 1:10-1
calling convention, where described, 1:1-15
development tools, I:l-2
model of computation used, 1:1-14
protection model used, 1:2-12
SCSI Manager, 1:9-1
system calls, 1:1-4
system debugger, 1:1-16
system software, 1:1-3
use of call gates, 1:2-12
use of GDT-based segments, 1:2-8

CTOS.lib version consistency, 1:1-16
CTOS/XE, 1:7-1

exchanges and user numbers, 1:7-2
ICC buffer blocks, 1:7-3
standard connection handle, 1:7-18

6191 Index 1-5

Cursor
character, II:l-7, 1-8
graphics, Il:l-6
movement of, Il:l-15 to 1-16
tracking of, 11:1-7

Cyclic Redundancy Check (CRC), 1:8-7

cl-characters, CD-ROM files, II:7-56
dl-characters, CD-ROM files, 11:7-57
Data, reading and writing, 11:4-30
Data and voice

separate lines for, Il:4-21
Data blocks, on tape, 11:8-7
Data call

accepting, II:4-29
converting a voice call to, II:4-29
example, 11:4-28
originating, ll:4-30
starting, 11:4-29
terminating, 11:4-30

Data Control Structure, 11:4-29
Data management, 11:4-2, 4-3
Data segment (DS) space, II:6-3
Data storage characteristics

of sequential access devices, 11:8-4
Data Terminal Ready (DTR), 1:8-5
DDS devices, II:8-17

recording data on, II:8-6
Deallocating heap memory, II:6-15
Debugger, 1:1-16
Debugging

aids, II:6-22
an asynchronous system service, 11:6-35
statistics, 11:6-23

Defining queues
dynamically, 11:2-17
in the Queue Index file, 11:2-14
remote, II:2-23

DeinstallQueueManager operation, II:2-3, 2-8
Descriptor table, 1:2-4
Development library consistency, 1:1-16
Device routing, 1:7-5
Devices, supported by Sequential Access Service, 11:8-1
Dial characters, 11:4-23
Dialer, II:4-34
Dialing telephone numbers, 11:4-22
Digital data storage (DDS), II:8-1

I-6 CTOS Programming Guide, Volumes I and II 6/91

Digital signal processor (DSP), II:4-4, 4-11, 4-12
Digitizing voice, II:4-5
Direct printing, II:3-1
Directory list buffer, for CD-ROM disc, 11:7-8
Directory list, for CD-ROM disc, 11:7-8
Disk

activity, 11:5-1, 5-5
requirements, for voice files, II:4-16
seeks, 11:4-17

Distributed computing, l: 1-1
DMA for communications. See Communications DMA.
DOS, 1:10-1

allocating exchanges under, 1:10-2
calling CTOS from, 1:10-1
identifying PC Emulator version from, 1:10-4
making CTOS requests from, I: 10-2

DS (Data Segment)
allocation, 11:6-35
space, 11:6-15, 6-29, 6-33

DTMF
encoder, II:4-5
generator and receiver, 11:4-5, 4-9
tones, generating, 11:4-22, 4-24

Early warning (EW), of sequential access devices, ll:8-4, 8-8
Edf files, 1:1-17
Editor, l:l-5
Electronic mail, 11:4-2
End of data frame (EOF), 1:8-7
End of Medium condition, 11:8-9
Enhanced video, 1:3-2
EnterDebuggerOnFault, 1:1-16
Erase gaps, on tape, II:8-8
Escape sequences

printer spooler, 11:3-5
EstablishQueueServer operation, II:2-5, 2-8, 2-21
Exception, 1:2-11
Executive, 1:1-1, 3-4, 5-6
ExpandAreaSL operation, II:6-33
External/status interrupt, 1:8-7, 8-10

Fault, 1:2-11
fBackgroundColor, 1:3-13, 1:3-15, 3-25
fDataBufRecoverable, II:8-9
File formats, for CD-ROM, 11:7-3, 7-29

6191 Index I-7

File handle, 1:7-18
File suffix conventions, 1:1-12
File system activity, 11:5-1
File transmission, 11:2-3, 2-5
Filemarks, II:8-20

on tape, 11:8-7
Filter service, II:6-37
Fixed-length records, 11:8-16
Flat file structure, for CD-ROM disc, 11:7-6
Floppy installation, 1:5-2

naming files, 1:5-14
Foreground color, 1:3-2
JSuppressDefaultOnOpen, II:8-19

Gaps, on tape, 11:8-7
Gate descriptor, 1:2-12
General protection fault, 1:2-11
GetCommLineDMAStatus, 1:8-8
GetQMStatus operation, Il:2-8, 2-17, 2-18, 3-5
GetWsUserName operation, 1:7-4
Global Descriptor Table, 1:2-8
Global variables, II:6-1
Graphics and color, 1:3-4
Graphics cursor, II:l-6

changing, 11:1-14 to 1-15
defining, 11:1-12 to 1-14

GraphicsColorEnabled, 1:3-26
GraphicsEnabled, 1:3-26
Gray-scale monitors, 1:3-21

Half-inch
reel-to-reel devices, 11:8-17, 8-20

recording data on, 11:8-6
reel-to-reel tape, II:8-1

Handle, 1:7-18
Header files, l: 1-17
Heap, II:6-3, 6-15, 6-29

allocating and deallocating, II:6-15
conserving, 11:6-16

HeapAlloc procedure, II:6-15, 6-16, 6-31
HeapFree procedure, II:6-15, 6-16
Heaplnit procedure, Il:6-30
Helical scan recording, Il:8-6

I-8 CTOS Programming Guide, Volumes I and II 6191

Hierarchical file structure, for CD-ROM disc, II:7-6
High Sierra standard, for CD-ROM, II:7-1

directory record format, 11:7-51
primary volume descriptor, for CD-ROM, 11:7-39

Hold, placing a telephone line on, II:4-21

1/0, on a Series 5000 workstation, 11:4-11
InitAlloc module, II:6-35
InitCommLine, 1:8-2

and DMA, 1:8-5
selecting extended features, 1:8-2
V.35 protocol support, 1:8-12
X.21 protocol support, 1:8-11

Initializing the mouse, II: 1-6
Initiator mode, I:9-1
Input event, 11:1-7
Input/output switches, on a Series 5000 workstation, II:4-13, 4-14
Inquiry command, 1:9-3
Install CDROM Service command, 11:7-1
Install Queue Manager command, II:2-2, 2-21
Install Sequential Access Service command, Il:8-2
Installation

database, 1:5-3
media, 1:5-2

organizing, 1:5-18
script file, 1:5-5, 5-11
scripts, tips for creating, I:5-27
variables, 1:5-4, 5-21
restarting, I:5-25

Installation Manager
file lists created by, I:5-24
verify feature, 1:5-8

Installing
Mouse Service, II:l-1
Queue Manager, II:2-1, 2-2

Intel documentation titles, 1:2-1
Internationalized call progress tone detection, II:4-24

example of, II:4-27
Interprocess communication (IPC), II:2-1, 6-2
Interrupt service routine

and DMA, I:8-5
and External/Status interrupt, 1:8-7
and Receive Special interrupt, 1:8-7

6191 Index I-9

Inter-CPU communication (ICC), , 1:7-2; 11:2-1
buffer size, 1:7-3

IS0-9660 standard, for CD-ROM, 11:7-1
directory record format, for CD-ROM, 11:7-46
primary volume descriptor, for CD-ROM, 11:7-30

JCL files, 1:5-1, 5-11
examples of, 1:5-23, 5-43, 5-51, 5-59, 5-70

Kernel, 1:1-3
Keys, 11:2-19

Library version consistency, 1:1-16
Link command, 1:1-6
L!!!k V6 r0m11rnn<l, 1:1-7, 7-9
Linker, 1:1-7
List file, 1:1-6
Loading a cursor, problems with, 11:1-17
LoadlnteractiveTask operation, 1:4-5
Local Descriptor Table, 1:2-7
Local routing, 1:7-5, 7-6
Log file, 1:6-1

and Volume Home Block, 1:6-3, 6-6
chronological order, 1:6-6
format of, 1:6-1
for installation, 1:5-9
reading, 1:6-5
record header and trailer, 1:6-1
wraparound, 1:6-4, 6-5, 6-6
writing records to, 1:6-2
written by file system, 1:6-3

LogAsync module, II:6-22, 6-35
Logging messages

for debugging purposes, 11:6-32
Logging session, for Performance Statistics Service, 11:5-1, 5-8

closing, 11:5-9
opening, 11:5-8
reading a log, 11:5-9

Logical address, 1:2-2
Logical Unit (LU), 1:9-2
LogMsgln procedure, 11:6-32
LogRequest procedure, 11:6-32
LogRespond procedure, 11:6-32

I-10 CTOS Programming Guide, Volumes I and II 6/91

Main module
for an asynchronous system service, II:6-8

Make, I:l-2
Managing contexts, 11:6-25
Map file, 1:1-8
Marking queue entries, II:2-6
MarkKeyedQueueEntry operation, 11:2-6, 2-8, 2-20, 2-22
MarkNextQueuedEntry operation, II:2-6, 2-8, 2-22
Master FP name table, 1:7-5
MCommands, 1:7-3
Memory

addressing, I :2-2
freeing leftover, 11:6-33

Merge Command Files command, 1:5-12
Message file, for installation, 1:5-5, 5-11
Minute-second-frame (MSF) format, on CD-ROM disc, 11:7-21
Mixing programming languages, 1:1-15
Models of computation, 1:1-14
Modem, II:4-2, 4-7, 4-11, 4-34

asynchronous use of, II:4-30
Monochrome graphics, 1:3-22
Motion rectangle, II:l-7 to 1-12
Mouse

buttons, II:l-3
examples of how to program, II:l-3
initialization procedures for, II: 1-6
procedures, by function, 11:1-2
tracking, 11:1-15

Mouse Services, 1:5-6, 5-12
definition of, 11:1-1

MS-DOS, 1:10-1. See also DOS.
Multiple queue servers, 11:2-6
Multiple voice messages, in one file, 11:4-19

Naming
conventions, I: 1-8
floppy installation files, 1:5-14
tape installation files, 1:5-17

Nationalization, 1:5-11, 5-26
Network, II:4-3
Normalized screen coordinates, 11:1-4 to 1-5
NotifyCM request, 1:4-6
NULL pointer, 1:2-11

6191 Index I-11

Object file, I: 1-6
Object module library

for mouse, 11:1-1
version consistency, 1:1-16

Object module procedure, 1:1-3
Object modules, binding, 11:6-34
Offl10ok, 11:4-21
OpenByteStream operation, 11:3-3
Operating system calls, I: 1-3
Operator, 11:4-3

Package, 1:5-3
Paging, 1:2-6
Palette, 1:3-5

alphanumeric vs. graphics, priority, 1:3-25
control structure, 1:3-9
sample, 1:3-15

Paraj!,raph, 1:2-3
Parallel recording, 11:8-6
Parameter list

variable length, in PLM, 11:6-12
Parity, 11:4-7
Partition

consequences of unsuccessful task load, 1:4-5
creating, 1:4-2
deallocating, 1:4-3, 4-10
initializing, 1:4-3
loading a task into, 1:4-5
type, 1:4-3

Partition management, 1:4-1
Action-Finish and swapping, 1:4-7
and child termination, 1:4-6
sample program, 1:4-11
termination procedure, 1:4-8
use of termination requests, 1:4-7

Password
to print, 11:3-2

Pause compression, 11:4-15
advantages and disadvantages of, 11:4-16

PBX systems, 11:4-9, 4-21
PC Emulator version port, 1:10-4
PC-DOS, 1:10-1. See also DOS.
Performance Statistics Service

example of, 11:5-10
function of, 11:5-1

Performance Statistics Structure, 11:5-4, 5-16
Piecemealable requests, 1:7-3

I-12 CTOS Programming Guide, Volumes I and II 6191

Pixel, 1:3-2
Pixel count, II: 1-6
Playback, of compressed voice files, 11:4-15
PLog, 1:6-1, 6-2

record-processing algorithm, 1:6-9
Pointing device, II: 1-1
Porting to protected mode, 1:7-1
Power failure, 11:2-1
Pre-GPS spooler byte streams, 11:3-3
Primary volume descriptor, for CD-ROM disc, II:7-4
Print command, II:3-4
Print Manager, 11:2-2, 2-21
Print wheel change, 11:3-5
Printer channel, 11:3-1
Printer spooler escape sequences, II:3-5
Printing, 11:2-3, 2-5

spooled, 11:3-1
direct, II:3-1

Private installation, 1:5-2
Procedural interface

asynchronous, II:6-10
synchronous, 11:6-10

Procedure naming, 1:1-12
Processing

asynchronous, 11:6-2
synchronous, 11:6-2

Processor activity, II:5-1
Program example, of an asynchronous system service, 11:6-36
ProgramColorMapper, 1:3-1

control structure, 1:3-4
functions performed by, 1:3-4
and monochrome graphics, 1:3-22
single-palette format, 1:3-5
three-palette format, 1:3-8

Programming languages, 1:1-2
Protected mode

address calculation in, 1:2-3
descriptor tables, 1:2-7
exceptions and faults, 1:2-11
features of, 1:2-1
introduction to, 1:2-1
run file, I: 1-7

PSCloseSession, 11:5-2, 5-9
PSGetCounters, 11:5-2, 5-6
PSOpenLogSession, 11:5-2
PSOpenStatSession, II:5-2, 5-3
PSReadLog, 11:5-2, 5-9
PSResetCounters, 11:5-2
Public installation, 1:5-2, 5-8, 5-23
Pulse Code Modulation (PCM), 11:4-18

6191 Index 1-13

QIC tape device, II:8-16
recording data on, II:8-5

Quarter-inch cartridge (QIC) tape, II:8-1
Queries, mouse-related, II:l-7
QueryVideo, 1:3-12, 3-21
Queue, 11:2-1

adding an entry to, 11:2-3
defining, II:2-14
defining dynamically, II:2-17
examples of typical, II:2-14
format of, II:2-11
referencing, II:2-17
removing an entry from, II:2-4
type 1, II:3-5

Queue entry
files, 11:2-1
format of, II:2-13
handle, II:2-4, 2-18
header, II:2-13, 2-28
marking, II:2-6
processing order of, ii:2-i2
reading, II:2-4
referencing, II:2-17
rescheduling and removing, II:2-6
size, calculating, II:2-13
unmarking, II:2-6

Queue file header, II:2-11, 2-25
Queue handles, II:2-18
Queue index file, II:2-21, 2-22

example of, II:2-16
sample entries, II:2-23

Queue management
operations, by function, II:2-3
operations, sequence for using, II:2-21 to 2-22
of spooler queues, II:3-5

Queue Manager, II:2-21, 3-1
configuring, II:2-9, II:2-10
deinstalling, II:2-2
installing, II:2-1, 2-2, 2-23
run files, II:2-2
using across the network, II:2-22

Queue manipulation operations
summary of, II:2-7 to 2-9

Queue names, II:2-17
Queue server, II:2-3

establishing, II:2-5
multiple, II:2-6
operations, II:2-5

I-14 CTOS Programming Guide, Volumes I and II 6191

Queue Status Block, II:2-4, 2-8, 2-13, 2-19, 2-30
Queue type, II:2-16
Q-channel, Il:7-22

Raster coordinates, II:l-6
ReadCommLineStatus, 1:8-4
ReadKeyedQueueEntry operation, 11:2-4, 2-8
ReadNextQueueEntry operation, 11:2-4. 2-8, 2-18, 2-22, 3-6
Real mode address calculation, 1:2-2
Receive command, 1:9-5
Receive Special interrupt, 1:8-7
ReceiveCommLineDMA, 1:8-7
Record size, Il:8-17
Record/playback, typical sequence for, II:4-19
Recording data

on half-inch tape devices, Il:8-6
on QIC tape devices, Il:8-5

Recording density, 11:8-4, 8-18
Recording rates, for voice, Il:4-15
Recording voice, 11:4-14
Records, Sequential Access Service, II:8-16
Recovering buffer data, 11:8-9, 8-13
Red Book standard, 11:7-21
Referencing queues, Il:2-17
Remote processor memory, 1:7-2
Remote queue

accessing, 11:2-22
defining, II:2-23

Remote routing, 1:7-5, 7-7
RemoveKeyedQueueEntry operation, 11:2-4, 2-9, 2-20, 2-22
RemoveMarkedQueueEntry operation, II:2-6, 2-9, 2-22
RemoveQueue operation, II:2-9
Removing queue entries, 11:2-6
Request, 1:1-3
Request-based system service, Il:6-2
Request blocks, building, 11:6-13
Request primitive, 11:6-10
Request routing, 1:7-4

across the cluster, 1:1-2
inter-board routing directives, 1:7-4

Request Sense command, 1:9-6
RescheduleMarkedQueueEntry operation, II:2-6, 2-9
Rescheduling queue entries, 11:2-6
ResetVideoGraphics, 1:3-12, 3-15
Residual data, 11:8-10, 8-11
Restarting an installation, 1:5-25
RestartLabel, 1:5-25

6191 Index I-15

Restore command, 11:7-9
ResumeContext procedure, 11:6-24, 6-27
RewriteMarkedQueueEntry operation, 11:2-9
Routing by device specification, 1:7-10
Run command, 1:1-8
Run file, 1:1-7

for an asynchronous system service, II:6-35
for a system service, II:6-8

Run file mode, 1:1-7, 2-8

Scheduling queue, II:3-1
Screen coordinates. See also Virtual screen coordinates.

normalized, 11:1-4 to 1-5
virtual, 11:1-4 to 1-5

SCSI, 1:9-1
devices, II:8-19
interfaces, 11:8-1

SCSI Manager, 1:9-1
---1!--•!~- _ .. !.-1-1!-- ... '·" 1~ app11\..auv11 5u1uv.i111v.3>, .1..7-..1..v

Command Descriptor Block (CDB), 1:9-3
initiator mode, 1:9-1
target mode, 1:9-1

SCSI target mode
Abort message, 1:9-13
application guidelines, 1:9-16
Bus Device Reset message, 1:9-13
commands accepted, 1:9-2
deferred errors, 1:9-8
Disconnect message, 1:9-13
guidelines for use, 1:9-16
Identify message, 1:9-14
illegal transfer length, 1:9-18
Initiator Detected Error message, 1:9-14
Inquiry command, 1:9-3
introduction, 1:9-1
messages accepted from initiator, 1:9-12
messages generated to initiator, 1:9-12
Receive command, 1:9-5 .
receiving data from initiator, 1:9-9
remote initiator requirements, 1:9-1
Request Sense command, 1:9-6
Send command, 1:9-9
Send Diagnostic command, 1:9-10
sending data to initiator, 1:9-5
sense data format, 1:9-7
session shutdown, 1:9-19
Synchronous Data Transfer request handling, 1:9-15

1-16 CTOS Programming Guide, Volumes I and II 6191

SCSI target mode (cont.)
Test Unit Ready command, 1:9-11
transfer length, 1:9-6, 9-10, 9-18

ScsiTargetDataReceive, 1:9-9
ScsiTargetDataTransmit, 1:9-5
Searching, for CD-ROM files, 11:7-11
Security mode, 11:3-4

for printing, 11:3-2
Segment address, 1:2-4
Segment descriptor format, 1:2-9
Segmented addressing, 1:2-2

in protected mode, 1:2-5
Selector, 1:2-4

format of, 1:2-7
Send command, 1:9-9
Send Diagnostic command, 1:9-10
Separators, CD-ROM files, 11:7-58
SeqAccessCheckpoint, 11:8-3, 8-14
SeqAccessClose operation, 11:8-2, 8-12
SeqAccessControl, 11:8-2, 8-7, 8-14
SeqAccessDiscardBufferData, 11:8-3, 8-10, 8-12
SeqAccessModeQuery, 11:8-3, 8-8
SeqAccessModeSet, 11:8-3, 8-12
SeqAccessOpen, II:8-2
SeqAccessRead, 11:8-2
SeqAccessRecoverBufferData, 11:8-3
SeqAccessStatus, 11:8-2
SeqAccessVersion, II:8-4
SeqAccessWrite, II:8-3, 8-9
Sequential access devices

data storage characteristics of, II:8-4
model of, 11:8-4

Sequential Access Service
data buffering, 11:8-8
determining size of service buffers, II:8-9
devices supported by, II:8-1
function of, II:8-1
installing multiple, 11:8-1
placement of in cluster, II:8-2
programming considerations, II:8-17
records, II:8-16
recovering buffer data, 11:8-9

Serial controller, 1:8-3
CTS signal and X.21, 1:8-9
and DMA, 1:8-6
External/Status interrupt, 1:8-7
initializing for X.21, 1:8-12
Receive Special interrupt, 1:8-7

Series 5000 workstations, 11:4-1, 4-4, 4-11
Serpentine recording, 11:8-5

6191 Index I-17

Server installation, 1:5-2
Shared resource processor (SRP), 1:7~1;II:8-1

Administrative Agent, 1:7-3
device specification, I:7-10
exchanges on, I:7-2
and GetWsUserName, I:7-4
ICC buffers, I:7-3
inter-CPU communication on, I:7-2
multi-instance system services, I:7-10
porting real-mode applications, I:7-1
programming guidelines, I:7-1
request routing, 1:7-4
sample request.txt file for, I:7-7, 7-11
special handle types, I:7-19
and system services, I:7-1
use of handles, I:7-18
user numbers on, 1:7-2

Single-palette color format, I:3-5
advantages of, I:3-7

Sketching program, using a mouse, 11:1-18
Smaii Co111putcr SyslE:iils Ii1t~rfaci; (SCSI). Sec SCS!.
Source code files, I:l-5
Spawn, I:4-1
Speech synthesis, Il:4-3
Spooled printing, Il:2-l, 3-1
Spooler, II:2-5, 2-9, 2-11

configuration file, 11:3-4
configuration of, 11:3-1 to 3-2
definition of, 11:3-1

Spooler queue, 11:2-14
control, 11:3-7
scheduling, 11:3-6
status, 11:3-6

Spooler Status command, 11:3-1, 3-2
SpoolerPassword operation, 11:3-2, 3-8
SRP. See shared resource processor.
Stack pointer, 11:6-3
Stack sharing, 11:6-3
Standard connection handle, 1:7-18
Static RAM (SRAM), 11:4-11
Statistics ID block, II:S-2, 5-4
Statistics session,

closing, Il:5-8
opening, 11:5-3
for Performance Statistics Service, 11:5-1

Subpackages, 1:5-3
SuperGen Series 5000 workstations. See Series 5000 workstations.
SwapContextUser procedure, 11:6-21
SwaplnContext, 1:4-2
Swapping requests, 11:6-18

I-18 CTOS Programming Guide, Volumes I and II 6191

Symbol file, l:l-7
Synchronous data communication, 1:8-1

Baud Rate, 1:8-4
clock source, 1:8-4
extensions to traditional interface, 1:8-1
reading signal status, 1:8-4
selecting extended features, 1:8-2
serial controller differences, 1:8-3
setting signal status, l: 8-5
using DMA, 1:8-5
V.35 protocol support, 1:8-12
X.21 protocol support, 1:8-8

Synchronous processing, II:6-2
diagram of, II:6-5

Synchronous request procedural interface, II:6-10
System build, 11:3-3
System configuration tips, l:l-16
System log file, 1:6-1

chronological order, 1:6-6
format of, 1:6-1
reading, 1:6-5
record header and trailer, 1:6-1
and Volume Home Block, 1:6-3, 6-6
wraparound, 1:6-4, 6-5, 6-6
writing records to, 1:6-2
written by file system, 1:6-3

System requests, II:6-17 to 6-21
System service, 1:7-10

asynchronous model of, II:6-1
binding, Il:6-34
and the SRP, 1:7-1

System-common procedure, 1:1-3
and the GDT, 1:2-8

Tape
general layout of, Il:8-5
logical elements within, 11:8-7

Tape installation, 1:5-2
naming files, 1:5-17
organizing files, 1:5-20

Target mode. See SCSI target mode.
Telephone

lines, II:4-9
management, II:4-3

6191 Index I-19

Telephone Service, II:4-1
data call example, 11:4-71
dialing example, 11:4-36
voice memory playback example, 11:4-60
voice response system example, 11:4-40

Telephone Service Configuration Block, 11:4-6
Telephone Status command, II:4-2, 4-3, 4-31

function keys, 11:4-35
screen, 11:4-32

Telephone Status monitor program, 11:4-3
Telephone Status Structure, II:4-6
Telephone unit, 11:4-9, 4-34

parts of, II:4-9
versus telephone line, II:4-21

TerminateAl!OtherContexts procedure, 11:6-29
TerminateContext procedure, II:6-28
TerminateContextUser procedure, II:6-19 to 6-20
TerminateQueueServer operation, 11:2-6, 2-9
Termination requests, 1:4-7, 4-18; 11:6-17, 6-19
Test Unit Ready command, 1:9-11
Three-nalette color format. 1:3-8
Timer Request Block (TRB), 11:6-26, 6-28, 6-29
Timers, 11:6-37
Track

number, on CD-ROM disc, 11:7-21
definition of, II:8-5

Tracking the mouse, II:l-15
Transfer length, 1:9-6, 9-10
TransmitCommLineDMA, 1:8-6
Transport speed, 11:8-18
Troubleshooting, programs that use the mouse, II:l-17
TsConnect operation, 11:4-4, 4-5
TsDataChangeParams operation, 11:4-7
TsDataCheckpoint operation, 11:4-7
TsDataClose operation, 11:4-29
TsDataCloseLine operation, 11:4-7
TsDataOpenLine operation, 11:4-7
TsDataRead operation, 11:4-7
TsDataRetreiveParams operation, 11:4-7
TsDataUnAcceptCall operation, 11:4-7
TsDataWrite operation, 11:4-7
TsDeinstall operation, Il:4-5
TsDial operation, 11:4-4, 4-22
TsDoFunction operation, Il:4-5, 4-21
TsGetStatus operation, Il:4-6
TsHold operation, 11:4-6, 4-21
TsLoadCallProgressTones operation, 11:4-6
TsOffHook operation, 11:4-6, 4-21
TsOnHook operation, 11:4-6, 4-21
TsQueryConfigParams operation, II:4-6

1-20 CTOS Programming Guide, Volumes I and II 6191

TsReadTouchTone operation, 11:4-6
TsRing operation, II:4-6
TsSetConfigParams operation, 11:4-6
TsVersion operation, 11:4-6
TsVoiceConnect operation, 11:4-4
TsVoicePlayBackFromFile operation, II:4-4, 4-20
TsVoiceRecordToFile operation, Il:4-5
TsVoiceStop operation, II:4-5

Unmarking queue entries, II:2-6
UnmarkQueueEntry operation, Il:2-6, 2-9

User configuration file, 1:5-13
User number, 1:7-2

V.35 protocol support hardware, 1:8-12
Variable-length records, II:8-16, 8-18
VGA, 1:3-2, 3-12
Video, during installation, 1:5-13
Video Graphics Array. See VGA.
Video/Voice/Keyboard card (SGV-100), Il:4-1
Virtual address, 1:2-5
Virtual screen coordinates, II:l-4 to 1-5, 1-7, 1-8, 1-12
Voice amplifier, II:4-8
Voice and data, separate lines for, II:4-21
Voice Control Structure, II:4-4, 4-15, 4-19
Voice file, structure of, 11:4-17
Voice File Header, 11:4-18
Voice File Record, Il:4-18
Voice management, Il:4-2
Voice playback from memory, 11:4-20
Voice Processor Module, 11:4-1

connections, II:4-10
data features of, 11:4-11
voice features of, II:4-8

Voice
recognition, 11:4-3
recording, II:4-14
response system, II:4-10

6191 Index I-21

Voice/Data Services
debugging using Telephone Status command, 11:4-31
definition of, 11:4-1
hardware features used by, II:4-8, 4-11
functional groups of operations, II:4-4

Volume control, on a Series 5000 workstation, 11:4-13
Volume Home Block

and log file, 1:6-3, 6-6

W-block, 1:7-3
Wait loop, II:6-3, 6-4, 6-6, 6-25
Windows, Il:l-7
Work area, for the Telephone Service, II:4-17
Workstations, character-mapped, II:l-6
WriteBsRecord operation, Il:3-3
WriteByte operation, Il:3-3
WriteCommLineStatus, 1:8-5
Writing filemarks on tape, II:8-7

X.21 hardware
drivers-only mode, 1:8-12
enabling and disabling, 1:8-11
features of, 1:8-9

X.21 protocol
general description, 1:8-8
signal lines used, 1:8-9
special signalling bit patterns, I: 8-9

X.21 support, 1:8-8
and External/Status interrupt, 1:8-10
hardware features, 1:8-9
initializing communications with, 1:8-11
use of CTS signal, 1:8-9

XE-530, 1:7-1
XmitCommLineDMA, 1:8-6

Y-block, 1:7-3
Yacc, 1:1-2

Z-block, 1:7-3

I-22 CTOS Programming Guide, Volumes I and II 6191

USER'S COMMENT SHEET

CTOS Programming Guide, Volume I, General Programming Topics

09-02392

We welcome your comments and suggestions. They help us
improve our manuals. Please give specific page and paragraph
references whenever possible.

Does this manual provide the information you need? Is it at the
right level? What other types of manuals are needed?

Is this manual written clearly? What is unclear?

Is the format of this manual convenient in arrangement, in size?

Is this manual accurate? What is inaccurate?

Name Date _____ _

Title Phone _______ _

Company Name/Department

Address

City _________ _ State __ Zip Code

Thank you. Alf comments become the property of Unisys Corporation

ade1

111111

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 1807 SAN JOSE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation
Attn: Technical Publications
2700 North First Street
PO Box 6685
San Jose, CA 95150-6685

ll1l111l1l1111ll.1.1.11 ••• 1.1 •• 1 ••• 11.1 ••• 11 •• 1.1 •• 1

aJaH PIO::l

a1delS lON 00 9SB91d

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

ade.L

