
Pascal
Reference
Volume 1

PASCAL REFERENCE MANUAL: VOLUME 1

Specifications Subject to Change.

Convergent Technologies, Convergent, CTOS,
CT-BUS, CT-DBMS, CT-MAIL, CT-Net, DISTRIX,

AWS, IWS, and NGEN are trademarks of
Convergent Technologies, Inc.

CP!M-86 is a trademark of Digital Research.
MS, GW and XENIX are trademarks of Microsoft Corp.

UNIX is a trademark of Bell Laboratories.

Third Edition (September 1984) A-09-008S2-01-A

Copyright © 1981, 1984
by Convergent Technologies, Inc.

All rights reserved. Title to and ownership of
the documentation contained herein shall at all
times remain in Convergent Technologies, Inc.
and/or its suppliers. The full copyright notice
may not be modified except with the express
written consent of Convergent Technologies, Inc.

CONTENTS: VOLUME 1

SUMMARY OF CHANGES ••••••••••••••.•••••••.•••

RELATED DOCUMENTATION •••••••.•••..••••••••••

1

2

3

LANGUAGE OVERVIEW •••••••••••.••••••••.••
COMPILER ••••••••••••••••••••••••••••••••

Language Levels •••••••••••••••••••••••
The Compiler Metacommands •••••••••••

PROGRAMS AND COMPILABLE PARTS OF
PROGRAMS ••••••••••••••••••••••••••••••

Program Structure •••••••••••••••••••••
Modules ••••••••••••••••.••••••••••••••
Un i ts •••••••••••••••••••••••••••••••••
Advantages to Breaking Programs into
Modules and Units •••••••••••••••••••••

PROCEDURES AND FUNCTIONS ••••••••••••••••
STATEMENTS ••••••••••••••••••••••••••••••
EXPRESSIONS •••••••••••••••••••••••••••••
VARIABLES ••••••••••••••••••• ~ •••••••••••
CONSTANTS ••••••••••••••••••••••••.••••••
TYPES •••••••••••••••••••••••••••••••••••
IDENTIFIERS ••••••••••••••••••••••••••.••
NOTATION ••••••••••••••••••••••••••••••••

NOTATION ••••••••••••••••••••••••••••••••
COMPONENTS OF IDENTIFIERS •••••••••••••••

Letters
Digits
Using the Underscore Character ••••••••

SEPARA.TORS ••••••••••••••••••••••••••••
COMMENTS •••••••••••••••••••••• -••••••••••
SPEC IAL SYMBOLS •••••••••••••••••••••••••

Punctuation •••••••••••••••••••••••••••
Operators
Reserved Words ••••••••••••••••.•••••••

UNUSED CHARA.CTERS •••••••••••••••••••••••
OTHER NOTES ON CHARACTERS •••••••••••••••

IDENTIFIERS •••••••••••••••••••.••••.••••
DECLARING AN IDENTIFIER •••••••••••••••••
THE SCOPE OF AN IDENTIFIER .•••••••••••••
PREDECLARED IDENTIFIERS •••••••••••••••••

Contents: Volume 1

vii

xi

1-1
1-2
1-2
1-2

1-4
1-4
1-5
1-6

1-7
1-8

1-10
1-12
1-13
1-14
1-15
1-17
1-18

2-1
2-1
2-2
2-2
2-2
2-2
2-3
2-4
2-4
2-5
2-6
2-6
2-7

3-1
3-3
3-4
3-5

iii

4

5

6

7

INTRODUCTION TO DATA TYPES ••••••••••••••
WHAT IS A TyPE? ••••••••••••••••••••••••
DECLARING DATA TYPES ••••••••••••••••••••
TYPE COMPATIBILITy ••••••••••••••••••••••

Type Identity and Reference
Parameters•.
Type Compatibility and Expressions ••••
Assignment Compatibility ••••••••••••••

SIMPLE TYPES............................
ORDINAL TyPES •••••••••••••••••••••••••••

Integer•..
Word ••••••••••••••••••••••••••••••••••
Char ••••••••••••••••••••••••••••••••••
Boolean•...
Enumerated Types ••••••••••••••••••••••
Subrange Types ••••••••••••••••••••••••

REAL ••••••••••••••••••••••••••••••••••••
INTEGER4 ••••••••••••••••••••••••••••••••

ARRAYS, RECORDS, AND SETS •••••.•••••••••
ARRAyS ••••••••••••••••••••••••••••••••••
SUPER ARRAyS •••••••••••••••••••.••••••••

STRINGs •••••••••••••••••••••••••••••••
LSTRINGs ••••••••••••••••••••••••••••••
Using STRINGs and LSTRINGs ••••••••••••

RECORDS •••••••••••••••••••••••••••••••••
Variant Records •••••••••••••••••••••••
Explicit Field Offsets ••••••••••••••••

SETS ••••••.••.••••••••••••••••.•••••••••
Internal Representation of Arrays,
Records, and Sets •••••••••••••••••••••

FILES ••••••••••••••••••••••••••••••••••••
DECLARING FILES ••••••••••••••••••••
BUFFER VARIABLES ••••••••••••••••••••••••
FILE STRUCTURES •••••••••••••••••••••••••

BINARY ••••••••••••••••••••••••••••••••
ASC I I ••••••••••••••••••••••••••.••••••

FILE ACCESS MODES •••••••••••••••••••••••
Terminal Mode Files ••••••••.••••••••••
Sequential Mode Files •••••••••••••••••
Direct Mode Files •••••••••••••••••••••

INPUT AND OUT PUT ••••••••••••••••••••••••
EXTEND LEVEL I/O ••••••••••••••••••••••••

iv Pascal Manual

4-1
4-1
4-3
4-5

4-5
4-6
4-7

5-1
5-1
5-1
5-2
5-3
5-3
5-4
5-4
5-8

5-10

6-1
6-2
6-4
6-7
6-9

6-11
6-16
6-17
6-21
6-24

6-26

7-1
7-1
7-3
7-5
7-5
7-5
7-6·
7-6
7-7
7-7
7-8
7-9

8 REFERENCE AND OTHER TYPES .•••••••••••.••
REFERENCE TyPES ••••••••••••••.••••••••••

Pointer Types •••••••••••••••••••••••••
Address Types •••••••••••••••••••••••••

Reference Parameters ••••••••••••••••
Using the Address Types •••••••••••••••
Notes on Reference Types ••••••••••••••

PACKED TyPES ••••••••••••••••••••••••••••
PROCEDURAL AND FUNCTIONAL TyPES •••••••••

9 CONSTANTS. • • • • • • . • • • • • • . • • • • • . • • • • . • • . . •
WHAT IS A CONSTANT? ••••••••••••••••••••
DECLARING CONSTANT IDENTIFIERS ••••••••••
NUMERIC CONSTANTS ••••••••••••••••••••••.

Real Constants •••••••••• ~ •••••••••••••
INTEGER, WORD, and INTEGER4
Constants •••••••••••••••••••••••••••••
Nondecima1 Numbering ••••••••••••••••••

CHARACTER STRINGS •••••••••••••••••••••••
STRUCTURED CONSTANTS ••••••••••••••••••••
CONSTANT EXPRESSIONS ••••••••••••••••••••

19 VARIABLES AND VALUES •••.•.•...••••••••••

11

WHAT IS A VARIABLE? •.•••••...••••.•.••.
DECLARING A VARIABLE ••••••••••••••••••••
THE VALUE SECTION ••••••••••••.••••••••••
USING VARIABLES AND VALUES •••.••••••••••

Components of Entire Variables and
Values ••••••••••••••••••••••••••••••••

Indexed Variables and Values ••••••.•
Field Variables and Values ••••••••••
File Buffers and Fields •••••••••••••

Reference Variables •••••••••••••••••••
ATTRIBUTES ••••••••••••••••••••••••••••••

The STATIC Attribute ••••••••••••••••••
The PUBLIC AND EXTERN Attributes ••••••
The ORIGIN AND PORT Attributes ••••••••
The READONLY Attribute ••••••••••••••••

COMBINING ATTRIBUTES ••••••••••••••••••••

EXPRESS IONS ••••••••.•••••••••..•••••••••
SIMPLE TYPE EXPRESSIONS ••••••.••••••••••
BOOLEAN EXPRESSIONS •••••••••••••••••••••
SET EXPRESS IONS •••••••••••••••••••••••••
FUNCTION DESIGNATORS ••••••••••••••••••••
EVALUATING EXPRESSIONS ••••••••••••••••••
OTHER FEATURES OF EXPRESSIONS •••••••••••

The EVAL Procedure ••••••••••••••••••••
The RESULT Function •••••••••••••••••••
The RETYPE Function •••••••••••••••••••

8-1
8-1
8-1
8-4
8-7
8-8

8-10
8-11
8-12

9-1
9-1
9-3
9-4
9-5

9-6
9-7
9-9

9-11
9-14

10-1
10-1
10-3
10-4
10-5

10-6
10-6
10-7
10-8
10-8

10-10
10-11
10-12
10-13
10-14
10-16

11-1
11-3
11-7

11-10
11-12
11-14
11-17
11-17
11-17
11-18

Contents: Volume 1 v

12 STATEMENTS ••••••••••••••••••••••••••••••
SYNTAX

Separating Statements •••••••••••••••••
The Reserved Words BEGIN and END ••••••
Labels•...

SIMPLE STATEMENTS •••••••••••••••••••••••
Assignment Statements •••••••••••••••••
Procedure Statements ••••••••••••••••••
GOTO Statements •••••••••••••••••••••••

STRUCTURED STATEMENTS •••••••••••••••••••
Compound Statements •••••••••••••••••••
Conditional Statements ••••••••••••••••

The IF Statement ••••••••••••••••••••
The CASE Statement ••••••••••••••••••

Repetitive Statements •••••••••••••••••
The WHILE Statement •••••••••••••••••
The REPEAT Statement ••••••••••••••••
The FOR Statement •••••••••••••••••••
The BREAK and CYCLE Statements ••••••

The RETURN Statement ••••••••••••••••••
The WITH Statement ••••••••••••••••••••
Sequential Control ••••••••••••••••••••

12-1
12-2
12-2
12-3
12-3
12-5
12-5
12-7
12-8

12-11
12-11
12-12
12-12
12-15
12-18
12-18
12-19
12-20
12-24
12-26
12-26
12-28

INDEX Index-1

LIST OF TABLES

1-1.
2-1.
2-2.
3-1.
4-1.
9-1.

9-2.
9-3.
10-1.
11-1.
11-2.
12-1.

Summary of Statements •••••••••••••••
Summary of Punctuation ••••••••••••••
Equivalent ASCII Characters •••••••••
Declaring Identifiers •••••••••••••••
Categories of Types ••••••••••••• ~ •••
INTEGER, WORD, and INTEGER4
Constants•............•...
Constant Conversions ••••••••••••••••
Constant Operators and Functions ••••
Attributes for Variables ••••••••••••
Expressions •••••••••••••••••••••••••
Set Operators •••••••••••••••••••••••
S ta ternen ts•..........•....••.

vi Pascal Manual

1-10
2-4
2-7
3-3
4-2

9-6
9-7

9-15
10-10

11-1
11-10

12-1

SUMMARY OF CHANGES

The 9.0 Release of Pascal is described in this
third edi tion of the Pascal Manual (Volume 1,
A-09-00852-01-A, and Volume 2, A-09-00868-01A).

This edition has been completely rewritten.
Changes encompass descriptions of features added
to the 7.0 to 9.0 releases, as well as the addi
tion of more reference material. The User Manual
~ Report by Jensen and Wirth is no longer
distributed with the manual.

Although the manual is still a reference manual
and does not attempt to teach Pascal, much more
information has been included in the manual to
describe the use of standard Pascal. Care has
been taken to point out how our version differs
from the ISO standard. In addition, Appendix B
summarizes how this version of Pascal differs from
the ISO standard and from other popular versions
of Pascal.

Features of our version of Pascal that probably
will not be portable to versions supplied by other
vendors are described in this manual as extend
level features. Extend level is shown in bold
faced type to make it easy for you to find.

In addition more information has been added on the
Pascal run-time routines, the compiler, and on the
use of Pascal with our operating system. Sections
18 and 19, "Using the Compiler" and "Run Time and
Debugging," respectively, and Appendix F, "Using
Pascal as a Systems Programming Language," contain
most of this information.

Features that have been added to Pascal since the
second edi tion of the manual was published are
summarized below.

o New numeric data types: INTEGERl, INTEGER2,
INTEGER4, REAL4, AND REAL8 have been added.
These are discussed in Section 5, "Simple
Types."

Summary of Changes vii

o Real numbers are represented in 8087/IEEE
format. Internal representations of all data
types are discussed in Appendix G, "Internal
Representations of Data Types," and conversion
of old real number formats to the IEEE format
is discussed in Appendix E, "Conversion to and
from IEEE format."

o An 8087 instruction emulator has been added.
The 8087 emulator will not be linked with your
Pascal programs if the programs do not use any
floating point constants or variables. How
ever, it is automatically linked if they are
used. The 8087 emulator is discussed in
Section 18, "Using the Compiler."

o Operations on sets with up to 16 elements now
generate inline code. Operations on sets also
now use the stack instead of the heap for
temporaries. Sets are discussed in Section 6,
"Arrays, Records, and Sets."

o New predefined types have been added: ADSMEM,
and ADRMEM. These are discussed in the
subsection "Address Types" in Section 8,
"Reference and Other Types."

o A new parameter type, CONSTS, is available.
Use of CONSTS parameters parallels use of VARS
for formal reference parameters. CONSTS
parameters are discussed in the subsection,
"Reference Parameters," in Section 8,
"Reference and Other Types," and in the
subsection "Constant and Segment Parameters"
in Section 13, "Introduction to Procedures and
Functions. II

o The VALUE section now allows initialization of
ADR and ADS variables. The VALUE section is
discussed in Section 10, "Variables and
Values. II

o The operator XOR has been implemented and is
discussed in Section 11, "Expressions."

o You can now turn off the default PUBLIC attri
bute of procedures and functions in a MODULE
by using empty brackets ([]) in the MODULE
header. This is discussed in Section 13,
"Introduction to Procedures and Functions."

viii Pascal Manual

o Intrinsics are discussed in Section 14,
"Available Procedures and Functions."

The following are new intrinsics: BYWORD,
FILLSC, MOVRSL, MOVRSR, LOWORD, HIWORD,
BYLONG.

The following intrinsics have been re
defined (renamed and changed):

COpy to COPYLST
COPYSTR (new arguments only)
FILLCHAR to FILLC
MOVE LEFT to MOVEL
MOVERIGHT to MOVER
POS to POSITN

Run-time intrinsics that used to take VAR
parameters now also accept VARS parameters
with these (permanent) exceptions: files,
the LSTRING parameter to Encode and
Decode, all parameters to ReadSet, and the
msg parameter to Abort.

o Two new heap functions have been added:
PREALLOCHEAP and PREALLOCLONGHEAP. Using the
heap is discussed in the subsection "Dynamic
Allocation in Section 14, "Available Proce
dures and Functions," and details are given
for each function further on in that section.

PREALLOCHEAP lets you specify how much storage
is to be allocated for the heap, so that the
remainder of short-lived memory can be used
for other purposes.

PREALLOCLONGHEAP performs the same function
for the long heap.

o The long heap is available to user programs
together with functions to handle its allo
cation: ALLMQQ, FREMQQ, GETMQQ, DISMQQ.

o Two new metacomrnands have been added: $REAL:N
and $INTEGER:N. Metacommands are discussed in
Section 17, "Metacommands."

Summary of Changes ix

o Compiler capabilities have been increased.

Compiler speed is improved: the compiler
is about 30 percent faster.

Code generation is improved: Code density
has improved 3 to 5 percent.

There has been a 100 percent increase in
symbol table capacity. The Pascal com
piler now compiles larger programs.

The compiler now uses the long heap (a
heap that can be greater than one segment)
for identifier storage, so larger programs
can be compiled.

o Compiler and run-time error codes have been
updated and are listed in Appendix A,
"Compiler Error Messages."

x Pascal Manual

RELATED DOCUMENTATION

The following manuals, or related products, are
referenced in this manual. It may be helpful to
have copies of them on hand when you are using
this manua 1.

The complete Guide to Technical Documentation is
provided in the Executive Manual or similar
command-line interpreter manual for your operating
system.

Assembly Language Manual

CTOS M Operating System Manual

Debugger Manual

Executive Manual

Linker/Librarian Manual

Status Codes Manual

The Assembly Language Manual specifies the machine
architecture, instruction set, and programming at
the symbolic instruction level.

The CTOS M Operating System Manual describes the
operating system. It specifies services for
managing processes, messages, memory, exchanges,
tasks, video, disk, keyboard, printer, timer,
communications, and files. In particular, it
specifies the standard file access methods: SAH,
the sequential access method: RSAM, the record
sequential access method; and DAM, the direct
access method.

The Debugger Manual describes the Debugger, which
is designed for use at the symbolic instruction
level. It can be used in debugging FORTRAN,
Pasca 1, and assemb ly-language programs. (COBOL
and BASIC, in contrast, are more conveniently
debugged using special facilities described in
their respective manuals.)

Related Documentation xi

The Executive Manual describes the command inter
preter, the program that first interacts with the
user when the system is turned on. It describes
available commands and discusses command execu
tion, file management, program invocation, and
system management. It also addresses status in
quiry, volume management, the printer spooler, and
execution of batch jobs. This manual now incor
porates the System Utilities and Batch Manuals.

The Linker/Librarian Manual describes the Linker,
which links together separately compiled object
files, and the Librarian, which builds and manages
libraries of object modules.

The Status Codes Manual contains complete listings
of all status codes, bootstrap ROM error codes,
and CTOS initialization codes. The codes are
listed numerically along with any message and an
explanation.

xii Pascal Manual

LANG UAG E OVERVI EW

This section presents an overview and summary of
the elements of the Pascal language and their
function, as implemented for our version of
Pascal. It briefly discusses the compiler and
available metacommands, programs and compilable
parts of programs, procedures and functions,
statements, expressions, variables, constants,
types, identifiers, and notation. The remaining
sections of the manual discuss each of these
elements in more detail.

Note that this manual does not attempt to teach
Pascal, but is intended as a reference for those
who already have some familiarity with the
language.

Language Overview 1-1

COMPILER

The Pascal system consists of the Pascal compiler
and a library containing the Pascal run-time
environment. A Pascal program is run by compiling
its one or more source modules, linking the
resulting object files with the Pascal library
using the Linker, and invoking the resulting run
file, which is usually done through the Executive.

The Pascal compiler translates your Pascal source
programs into object modules. The compiler
provides a source listing, error messages, and a
number of compiler metacommands to aid in program
development and debugging.

The compiler generates native 8086 machine code,
which is directly executed by the hardware.

LANGUAGE LEVELS

This version of Pascal offers two language levels:

o The standard level is limited to features that
conform to the ISO standard. Programs you
create at this level are portable to and from
other machines running other ISO compatible
Pascal compilers.

o The extend level includes features specific to
our versioi1C)"f Pascal. Programs that use
extend level features may not be portable.

Whenever extend level features are discussed
in this manual the words extend level appear
in boldface type to make them easy for you to
locate.

THE COMPILER METACOMMANDS

The Pascal metacornmands provide a control language
for the compiler. They specify options that
affect the overall operation of a compilation.
For example, you can conditionally compile
different source files, generate a listing file,
or enable or disable run-time error checking code.

Metacommands are inserted inside comment state
ments. All the metacommands begin with a dollar
sign ($).

1-2 Pascal Manual

Although most implementations of Pascal have some
type of compiler control, the metacommands are not
part of standard Pascal and hence are not
portable.

A complete list of the available metacommands and
a detailed description of how to use each can be
found in Section 17, "Metacommands."

Language Overview 1-3

PROGRAMS AND COMPILABLE PARTS OF PROGRAMS

The compiler processes programs, modules, and
implementations of units. Modules and implementa
tions of units contain subroutines that you can
compile separately and use in Pascal. Collec
ti vely, these compilable programs and parts of
programs are referred to as compilands. You can
compile modules and implementations of units sepa
rately and later link them to a program without
having to recompile the module or unit.

(See Chapter 16, "Compilable Parts of a Program,"
for a complete discussion of programs, modules,
and units. In addition, see Appendix H, "Program
ming Examples, II for examples of complete Pascal
programs.)

PROGRAM STRUCTURE

The fundamental unit of compilation is a program.
A program has three parts, which occur in the
following order:

1. Program
heading

2. Declaration
section

3. Body

Identifies the program and gives
a list of program parameters.

Contains declarations of labels,
constants, types, variables,
functions, and procedures.
These must all be declared here
in the declaration section (un
less they are predeclared) be
fore they are used in the body
of the program.

Contains all the executable in
structions that are not part of
a procedure. It is enclosed by
the reserved words BEGIN and END
and is terminated by a period.
The period is the signal to the
compiler that it has reached the
end of the source file.

This three-part structure (heading, declaration
section, body) is used throughout the Pascal
language. Procedures, functions, modules, and
units are all similar in structure to a program.

1-4 Pascal Manual

The following program illustrates the three-part
program structure:

{Program heading}
PROGRAM FRIDAY (INPUT, OUTPUT)i

{Declaration section}
LABEL 1:
CONST DAYS IN WEEK = 7:
TYPE KEYBOARD INPUT = CHARi
VAR KEYIN: KEYBOARD_INPUT:

{Program body}
BEGIN

WRITE('IS TODAY FRIDAY? '):
1: READLN(KEYIN);

CASE KEYIN OF
'Y', 'y' : WRITELN (, It' 's Friday.'):
'N', 'n' : WRITELN('It"s not Friday.');

OTHERWISE
WRITELN <-' Enter Y or N.'):
WRITE('P1ease re-enter: ')i
GOTO 1

END
END.

MODULES

Modules are program-like units of compilation that
contain the declaration of variables, constants,
types, procedures, and functions. You can compile
a module separately and later link it to a
program, but it cannot be executed by itself.

Example of a module:

{Module heading}
MODULE MODPART:

{Declaration section}
CONST PI = 3.14

PROCEDURE PARTAi
BEGIN

WRITELN ('parta')
END:

{Body}
END.

A module, like a program, ends with a period.

Language OVerview 1-5

UNITS

A unit has two sections: an interface and an
implementation. Like a module, a unit can be com
piled separately and later linked to the rest of
the program.

o

o

The interface contains the
lets you connect a unit
modules, and programs.

information that
to other units,

The implementation
structions for the
defined by the unit.

contains the
procedures and

actual in
functions

Example of a unit:

{Heading for interface}
INTERFACE:
UNIT MUSIC (SING, TOP):

{Declarations for interface}
VAR TOP : INTEGER:
PROCEDURE SING;

{Body of interface}
BEGIN
END;

{Heading for implementation}
IMPLEMENTATION OF MUSIC;

{Declaration for implementation}
PROCEDURE SING;
VAR I INTEGER:
BEGIN

FOR I := 1 TO TOP DO
BEGIN

WRITE ('FA '): WRITELN ('LA LA')
END

END;

{Body of implementation}
BEGIN

TOP := 5
END.

A unit, like a program or a module, ends with a
period.

1-6 Pascal Manual

ADVANTAGES OF BREAKING PROGRAMS INTO MODULES AND
WITS

Modules and units let you develop large structured
programs that can be broken into parts. This
practice is useful in the following situations:

o If a program is large, breaking it into parts
makes it easier to develop, test, and
maintain.

o If recompiling the entire source file for a
large program is time consuming, breaking the
program into parts saves compilation time.

o If you intend to include certain routines in a
number of different programs, you can create a
single module or unit that contains these
routines and then link it to each of the pro
grams in which the routines are used.

o If certain routines are executed very fre
quently, you might place them in a module or
unit to test the validity of an algorithm and
later create and implement similar routines in
assembly language to increase the speed of the
algorithm.

Language Overview 1-7

PROC8DURES AND FUNCTIONS

Procedures and functions act as subprograms that
execute under the supervision of a main program.
However, unlike programs, procedures and functions
can be nested within each other and can even call
themselves. Furthermore, they have sophisticated
parameter-passing capabilities that programs lack.

Procedures are subprograms invoked as statements.

A procedure declaration, like a program, has a
heading, a declaration section, and a body.

Example of a procedure declaration:

{Heading}
PROCEDURE COUNT_TO{NUM

{Declaration section}
VAR I : INTEGER:

{Body}
BEGIN

INTEGER) :

FOR I := I TO NUM DO WRITELN (I)
END:

A function is a procedure that is invoked as a
part of an expression and returns a value of a
particular type: hence, a function declaration
must indicate the type of the return value.

Example of a function declaration:

{Heading}
FUNCTION ADD (VALl, VAL2 : INTEGER): INTEGER:

{Declaration section empty}

{Body}
BEGIN

ADD := VALl + VAL2
END:

Procedures and functions look somewhat different
from programs, in that their parameters have types
and other options. Like the body of a program,
the body of a procedure or a function is enclosed
by the reserved words BEGIN and END: however, a
semicolon rather than a period follows the word
END.

1-8 Pascal Manual

Declaring a procedure or function is entirely
distinct from using it in a program. For example,
the procedure and function declared above might
actually appear in a program as follows:

TARGET NUMBER := ADD (5, 6):
COUNT_TO (TARGET_NUMBER):

See Section 13, "Introduction to Procedures
Functions," for a complete discussion of
cedures and functions.

and
pro-

See Section 14, "Available Procedures and
Functions," and Section 15, "File-Oriented
Procedures and Functions," for a discussion of
procedures and functions that are predeclared as
part of this version of the Pascal language.

Language Overview 1-9

STATEMENTS

Statements perform actions, such as computing,
assigning, altering the flow of control, and
reading and wri ting files. Statements are used
in the bodies of programs, procedures, and func
tions and are executed as a program runs.
Statements available with this version of Pascal
perform the actions shown in Table 1-1.

See Section 12, "Statements," for a detailed
discussion of each of these statements.

Table 1-1. Summary of Statements. (Page 1 of 2)

Statement Purpose

Assignment Replaces the current value of
a variable with a new value.

BREAK Exits the currently executing
loop.

CASE Allows for the selection of
one action from a choice of
many, based on the value of an
expression.

CYCLE

FOR

GOTO

IF

l-l~

Starts the next iteration of a
loop.

Executes a statement repeat
edly while a progression of
values is assigned to a
control variable.

Continues processing at an
other part of the program.

Together with THEN and ELSE,
allows for conditional exe
cution of a statement.

Pascal Manual

Table 1-1. Summary of Statements. (Page 2 of 2)

Statement Purpose

Procedure

REPEAT

RETURN

WHILE

WITH

Invokes a procedure with
actual parameter values.

Repeats a sequence of state
ments one or more times, until
a Boolean expression becomes
true.

Exits the
function,
mentation.

current
program,

procedure,
or imple-

Repeats a statement zero or
more times, until a Boolean
expression becomes false.

Opens the scope of a statement
to include the fields of one
or more records, so that you
can refer to the fields
directly.

Language Overview 1-11

EXPRESSIONS

An expression is a formula for computing a value.
It consists of a sequence of operators (which in
dicate the action to be performed) and operands
(the values on which the operation is performed.)
Operands may contain function invocations, vari
ables, constants, or even other expressions. In
the following expression, plus (+) is an operator,
while A and B are operands:

A + B

There are three basic kinds of expressions:

o Arithmetic expressions perform arithmetic
operations on the operands in the expression.

o Boolean expressions perform logical and com
parison operations with Boolean results.

o Set expressions perform combining and compari
son operations on sets, with Boolean or set
results.

Expressions always return values of a specific
type. For instance, if A, B, C, and D are all
REAL variables, the following expression evaluates
to a REAL result:

A + B + (C / D) + 12.3

Expressions may also include function designators
as shown in the example below:

ADDREAL (2, 3) + (C / D)

ADDREAL is a function that has been previously de
clared to return a REAL value in a program. It
has two REAL value parameters, which it adds
together to obtain a total. This total is the
return value of the function, which is then added
to (C / D).

Expressions are not statements, but may be compo
nents of statements. In the following example,
the entire line is a statement: only the portion
after the equal sign is an expression:

X := 2 / 3 + A * B

See Section 11, "Expressions," for a detailed
discussion of expressions.

1-12 Pascal Manual

VARIABLES

A variable is a value that is expected to change
during the course of a program. Every variable
must be of a specific data type. (See the sub
section, "Types," for a discussion of data types.)

You declare a var iable in the heading or decla
ration section of a compiland, procedure, or func
tion. Once you have declared a variable, you can

0 initialize it, in the VALUE section of a
program

0 assign it a value, with an assignment
statement

0 pass it as a parameter to a procedure or
function

0 use it in an expression

See Section 10, "Variables and Values," for a
complete discussion of variables.

The VALUE section, a feature of this version of
Pascal, applies only to statically allocated vari
ables (variables with a fixed address in memory.)

To use the VALUE section, you first declare the
variables, as shown in the following example:

VAR I, J, K, L, INTEGER:

Then you assign them initial values in the VALUE
section:

VALUE I := 1: J := 2; K := 3; L := 4;

Later in statements, the variables can be assigned
to and used as operands in expressions. For
example:

I := J + K + L:
J := 1 + 2 + 3:
K := (J * K) + 9 + (L DIV J):

Language Overview 1-13

CONSTANTS

A constant is a value that is not expected to
change during the course of a program. At the
standard level, a constant may be

o a number, such as 1.234 and 100

o a string enclosed in single quotation marks,
such as 'Miracle' or 'A1207'

o a constant identifier that is a synonym for a
numeric or string constant

You declare constant identifiers in the CONST
section of a compiland, procedure, or function.

CONST REAL CONST = 1.234:
MAX VAL 100:
TITLE = 'PASCAL' :

Because the order of declarations is flexible in
this version of Pascal, you can declare constants
anywhere in the declaration section of a com
piland, any number of times.

Constants are closely tied to the concepts of
variables and types. Variables are all of some
type: types, in turn, designate a range of assum
able values. These values, ultimately, are all
constants.

Two powerful extensions of our version of Pascal
are structured constants and constant expressions.

o VECTOR, in the following example, is an array
constant:

CONST VECTOR = VECTORTYPE (1,2,3,4,5):

o MAXVAL, in the following example, is a con
stant expression (A, B, C, and D must also be
constants) :

CONST MAXVAL = A * (B DIV C) + D - 5:

See Section 9, "Constants," for a complete discus
sion of these and other aspects of constants.

1-14 Pascal Manual

TYPES

Much of Pascal's power and flexibility lies in its
data typing capability. Although a great variety
of data types are available, they can be divided
into three broad categories:

o A simple data ~ represents a single value
and includes

INTEGER

WORD

CHAR

BOOLEAN

enumerated

subrange

REAL (REAL4 and REAL8)

INTEGER4

o A structured data ~ represents a collection
of values and includes

ARRAY

RECORD

SET

FILE

o A reference ~ allows recursive definition
of types.

All variables in Pascal must be assigned a data
type. A type is either predeclared (for example,
INTEGER and REAL) or defined in the declaration
section of a program. The following sample type
declarations create types that can store infor
mation about a student:

Language Overview 1-15

TYPE
SEXTYPE = (MALE, FEMALE):
PEOPLETYPE RECORD

SEX SEXTYPE:
AGE INTEGER
END:

{enumerated type}
{record type}

POPULATIONTYPE = ARRAY [1 •• 100] OF
PEOPLETYPE : {array type}

For a detailed discussion of data types, see the
following sections: Section 4, II Introduction to
Data Types: II Section 5, "Simple Types:" Section 6,
"Arrays, Records, and Sets:" Section 7, IFi1es:"
and Section 8, "Reference and Other Types."

1-16 Pascal Manual

IDENTIFIERS

Identifiers are names that denote the constants,
variables, data types, procedures, functions and
other elements of a Pascal program. Procedures
and functions must have identi fiers. Constants,
data types, and variables usually are given
identifiers, but are not required to have them.

You, the programmer, make up most of the identi
fiers in a program and assign them meaning in
declarations. Other identifiers are the names of
variables, data types, procedures, and functions
tha tare built into the language and need not be
declared.

An identifier must begin with a letter (A through
Z and a through z.) The initial letter may be
followed by any number of letters, digits (0-9),
or underscore characters(). The compiler ignores
the case of letters 7 thus, "All and "all are
equivalent.

The underscore character
version of Pascal. Thus,
identical:

FOREST

FOR EST

is significant
the following

in
are

our
not

The compiler considers only the first 31 charac
ters of an identifier to be significant.

An identifier cannot be the same as a Pascal
reserved word. (See the subsection IIReserved
Words" in Section 2, "Notation," for a discussion
of reserved words, and Appendix E, "Summary of
Reserved Words and Predeclared Identifiers," for a
complete list.)

See Section 3, "Identifiers," for a complete
discussion of identifiers.

Language Overview 1-17

NOTATION

The basis of all Pascal programs is an irreducible
set of symbols with which the higher syntactic
components of the language are created.

The underlying notation is the ASCII character
set. Characters are used as components of identi
fiers, separators, punctuation, or operators.
Characters not part of the notation can still be
used in a string literal or comment.

A good understanding of this notation will
increase your productivity by reducing the number
of subtle syntactic errors in a program. See
Section 2, "Notation," for a detailed discussion
of notation.

Also see Appendix C, "Pascal Syntax Diagrams," for
specific information about Pascal syntax.

1-18 Pascal Manual

2 NOTATION

All components of this version
language are constructed from the
character set. Characters "make up
which is separated by a carriage
Lines make up files.

of the Pascal
standard ASCI I
lines, each of
return (0Ah).

You can use upper and lower case characters:
however, the difference in case is not significant
for identifier names.

Any individual character or any group of charac
ters falls into one or more of the following four
categories:

o identifiers or components of identifiers

o separators

o special symbols

o unused characters

Each of these categories is discussed below.

COMPONENTS OF IDENTIFIERS

Identifiers are names that denote the constants,
variables, data types, procedures, functions, and
other elements of a Pascal program.

This section discusses only how to construct
identifiers. Their use is described thoroughly in
Section 3, "Identifiers."

Identifiers must begin with a letter: subsequent
components may include letters, digits, and under
score characters. Only the first 31 characters of
an identifier are significant. I f an identifier
has more than 31 characters, the compiler gives a
warning that the identifier is too long and has
been truncated.

Notation 2-1

LETTERS

You can use uppercase and lowercase letters in
identifiers in your source program. However,
internally, the compiler converts all lowercase
letters used in identifiers to the corresponding
uppercase letters internally.

DIGITS

Digits in Pascal are the numbers zero through nine
(0-9). Digits can occur in identifiers (for ex
ample, AS129M) or in numeric constants (for
example, 1.23 and 456).

USING THE UNDERSCORE CHARACTER

The underscore () is the only nonalphanumeric
character allowed- in identifiers, and for this
compiler the underscore is a significant
character.

You can use the underscore to improve readability
of identifier names in the same way you would use
a space. For example, the identifiers in the
right-hand column below are easier to read than
those in the left-hand column.

POWEROFTEN
MYDOGMAUDE

POWER OF TEN
MY DOG MAUDE

You can also make identifiers more readable by
using capitals for significant letters:

PowerOfTen MyDogMaude

SEPARATORS

Separators delimit adjacent numbers, reserved
words, and identifiers, none of which can have a
separator embedded within it.

2-2 Pascal Manual

A separator can be any of the following ASCII
characters:

o a space (ASCII code 20h)

o a tab (ASCII code 09h) (~)

o a formfeed (ASCII code 0Ch) (,)

o a linefeed (ASCII Code 0Ah) (~)

o a comment

Always use a separator between an identifier and a
number. If you fail to do so, the compiler gener
ally issues an error or warning message. In a few
cases, however, a missing separator can be
accepted.

For example, at the extend level,

l00MOD#127

is accepted as 100 MOD #127, where #127 is a
hexadecimal number. However,

l00MOD127

is assumed to be 100 followed by the identifier
MOD127.

COMMENTS

Any character can be used wi thin a comment or
string literal.

Comments in standard Pascal can span more than one
line and take one of the following forms:

{This is a comment, enclosed in braces}

(*This is another form of comment*)

At the extend level, you can also begin comments
wi th an exclamation point (1). For comments in
this form, the linefeed delimits the comment.

Notation 2-3

Nested comments are permitted, so long as each
level has different delimiters. Thus, when a com
ment is started. the compiler ignores succeeding
text until it finds the matching end-of-comment.
Note that, such nested comments might not be
portable.

SPECIAL SYMBOLS

Special symbols fall into three categories:

o punctuation

o operators

o reserved words

PUNCTUATION

Table 2-1 below summarizes the use of several
punctuation symbols.

Table 2-1. Summary of Punctuation.
(Page 1 of 2)

Symbol

[]

:=

Purpose

Braces delimit comments.

Brackets delimit array indices, sets,
and attributes. They can also
replace the reserved words BEGIN and
END in a program.

Parentheses
parameter
parameters.

delimit expressions,
lists, and program

Single quotation marks delimit string
literals.

A colon directly followed by an equal
sign denotes an assignment statement.

A semicolon separates statements and
declarations.

2-4 Pascal Manual

Tab1e 2-1. Summary of Punctuation.
(Page 2 of 2)

1

@

$

OPERATORS

A colon separates variables from
types and labels from statements.

An equal sign separates identifiers
and type clauses in a TYPE section.

A comma separates the components of a
list.

A double period denotes a subrange.

A period designates the end of a
program, indicates the fractional
part. of a real number, and delimits
fields in a record.

A caret denotes the value pointed to
by a reference value. The question
mark (1) and the at sign (@) are
synonyms for the caret.

The question mark denotes the value
pointed to by a reference value.

The at sign denotes the value pointed
to by a reference value.

A number sign denotes
numbers.

nondecimal

A dollar sign prefixes metacommands.

Operators are a form of punctuation that indicate
that an operation is to be performed. Some are
alphabetic, others are one or two nonalphanumeric
characters. Operators that consist of more than
one character must not have a separator between
the characters.

Notation 2-5

The operators that consist only of nonalphabetic
characters are the following:

+ * / > < <> <= >=

Some operators are reserved words, for example,
NOT and DIV. (See below).

See Section 11, "Expressions," for a complete list
of the nonalphabetic operators and a discussion of
the use of operators in expressions.

RESERVED WORDS

Reserved words are used for names of attributes,
directives, and features of the standard and
extend levels of Pascal.

You cannot create an identifier that is the same
as any reserved word. You can, however, declare
an identifier that contains within it the letters
of a reserved word (for example, the identi fier
DOT containing the reserved word DO).

Reserved words are a fixed part of our version of
Pascal. They include, for example, statement
names, such as BREAK, and words such as BEGIN and
END that bracket the main body of a program.

See Appendix D, "Summary
Predeclared Identifiers,"
reserved words.

UNUSED CHARACTERS

of Reserved Words and
for a complete list of

The following printing characters are not used by
this version of Pascal:

% &

You can, however, use them within comments or
string literals.

2-6 Pascal Manual

Error messages are generated if you use the
following nonprinting ASCII characters in anything
but a comment or string literal in a source file:

o ASCII characters 0 to 31 (0h to
cepting the tab character (09h)
formfeed character (0Ch)

IFh) ,
and

ex
the

o ASCII characters 127 to 255 (7Fh to 0FFh)

The tab character is treated as a space and is
passed to the listing file. A formfeed is treated
as a space and starts a new page in the listing
file.

OTHER NOTES ON CHARACTERS

As an extension to the ISO standard, the question
mark (?) or the at sign (@) can be substituted for
a caret (A).

Table 2-2
characters
character.

gives
that

a list of
represent

pairs
the

of printing
same ASCII

Table 2-2. Equivalent ASCII Characters.

ASCII Prints as

94

95

35 #

36 $

Equivalent Characters

caret, up arrow

underscore, left arrow

number sign, English
pound sign

dollar sign, scarab
(circle with four
spikes)

Notation 2-7

3 IDENTIFIERS

Identifiers are names that denote the constants,
variables, data types, procedures, functions, and
other elements of a Pascal program. Procedures
and functions must have identifiers: constants,
data types, and variables usually are given
identifiers, however they are not required to have
them.

Some identifiers are predeclared: others you
declare in a declaration section. Standard Pascal
allows identifiers for the following elements of
the Pascal language:

0 constants

0 types

0 variables

0 procedures

0 functions

0 programs

0 fields and tag fields in records

The following extend level features also can have
identifiers:

o super array types

o modules

o units

o statement labels

An identifier consists of a sequence of alpha
numeric characters or underscore characters. The
first character must be alphabetic. Underscores
in identifiers are allowed, and are significant,
for example MY_IDENTIFIER.

Identifiers can be as long as you wish, as long as
they fit on a single line. However, only the
first 31 characters of an identifier are signifi
cant. The compiler generates a warning message,
not a error, when an identi fier longer than 31
characters is encountered.

Identifiers 3-1

Standard Pascal allows unsigned integers as state
ment labels.

Extend level Pascal allows labels that are normal
alphabetic identifiers.

Statement labels have the same scope rules as
identifiers. (See the subsection "The Scope of An
Identifier," below.) Leading zeros are not
significant.

Identifiers of seven characters or fewer save
space during compilation.

NOTE

Most identifiers used internally by the
runtime system are four alphabetic characters
followed by the characters QQ. Avoid this
form when creating new identifier names.

In addition, PUBLIC names should not begin
with the characters XXX, as this can cause
problems when the program is linked.

3-2 Pascal Manual

DECLARING AN IDENTIFIER

You declare identifiers in the declaration section
of a program, module, interface, implementation,
procedure, or function. You can also declare
identifiers in the heading of a program,
procedure, or function. The declaration
associates the identifier with a language object.
Table 3-1, shows examples of identifiers that
might be used for each of the possible language
objects, and gives examples of the syntax used for
the declaration.

Table 3-1. Declaring Identifiers.

Object Identifier

Program Z

Module ABC

Interface UUU

Imp!emen- UUU
tat ion

Constant DAYS

Type

'Record
fields

Variable

Label

Label

Procedure

Function

LETTERS

x, Y, Z

J

A

HAWAII

BANG

FOO

Sample Declaration

PROGRAM Z (INPUT,OUTPUT)

MODULE ABC

INTERFACE; UNIT UUU

IMPLEMENTATION of UUU

CONST DAYS = 365

TYPE LETTERS = 'A' •• 'Z'

TYPE A = RECORD
X, Y, Z : REAL END

VAR J INTEGER

LABEL A

LABEL HAWAII

PROCEDURE BANG

FUNCTION FOO: INTEGER

Identifiers 3-3

THE SCOPE OF AN IDENTIFIER

An identifier is defined for . the duration of the
program, module, implementation, interface, pro
cedure, or function in which you declare it. This
holds true for any nested procedure or function.
An identifier's association must be unique within
its scope; that is, it must not name more than
one thing at a time.

A nested procedure or function can redefine an
identifier only if the identifier has not already
been used in it. However, the compiler does not
identify such redefinition as an error, but will
generally use the first definition until the
second occurs. A special exception for reference
types is discussed in the subsection "Notes on
Reference Types" in Section 8, "Reference and
Other Types."

3-4 Pascal Manual

PREDECLARED IDENTIFIERS

Our version of Pascal makes available a number of
predeclared identifiers, which you can use freely
without declaring. Predeclared identifiers differ
from reserved words in that you can redefine them
whenever you wish.

Predeclared identifiers include the identifiers
for predeclared types, super array types, con
stants, file variables, functions, and procedures.
See Appendix D, "Summary of Reserved Words and
Predeclared Identifiers," for a list of the pre
declared identifiers for this version of Pascal.

Identifiers 3-5

4 INTRODUCTION TO DATA TYPES

WHAT IS A TYPE?

A ~ is the set of values that a variable or
value can have within a program. Types are either
predeclared or declared explicitly.

For example, the types INTEGER and REAL are pre
declared, while the type 1 •• 10 is declared
explicitly. An explicitly declared type can also
be given a type identifier. In the latter case, a
type declaration is required.

Types fall into three broad categories:
structured, and reference.

simple,

o Simple types, for example INTEGER, cannot be
divided into any other types.

o Structured types, however, are composed of
other types that can be structured or simple,
themsel ves • An example of a structured type
is an array ,which can be a collection of
integers, as in ARRAY [1 •• 10] OF INTEGER.

o Reference types allow data structures that
vary in size and form and provide an indirect
form of access. An example of a reference
type is the predeclared address type ADR,
which means an actual machine address, a
l6-bit offset into the default data segment.

Table 4-1 below gives a breakdown of the types in
each of these categories. The remainder of this
section provides an introduction and discusses
types in general; each category is discussed in
detail in Sections 5 through 8.

Introduction to Data Types 4-1

Table 4-1. Categories of Types.

Catesorl

Simple

Structured

Reference

Procedural
and
Functional

Super
Array

Types
Included

Ordinal
INTEGER
WORD
CHAR
BOOLEAN
enumerated
subrange

REAL4, REAL8

INTEGER4

ARRAY OF type
general (OF any

type)
STRING{n)
LSTRING{n)

RECORD

SET OF type

FILE OF
general (binary)

files

TEXT

Pointer

ADR OF type
ADS OF type

SUPER ARRAY OF type
general (OF any

type)
STRING
LSTRING

4-2 Pascal Manual

Comments/Examples

-MAXINT •• MAXINT
0 •• MAXWORD
CHR(0) •• CHR(255)
{FALSE, TRUE)
e • g ., (RED , BLUE)
e. g., 10121 •• 5121121121

-MAXINT4 •• MAXINT4

[l •• nJ of CHAR
[0 •• nJ of CHAR

Like FILE OF CHAR

for example,
ATREETIP

Relative address
Segmented address

Only as parameter
type

[1 •• *J of CHAR
[12I •• *J of CHAR

DECLARING DATA TYPES

The type declaration associates an identifier with
a type of value. You declare types in the TYPE
section of a program, module, interface, implemen
tation, procedure, or function. Types are not de
clared in the heading of a procedure or function.

A type declaration consists of an identifier
followed by an equal sign and a type clause.

Examples of type definitions:

TYPE COLOR
NAMES

AGE

(RED, BLUE, GREEN);
.(TOM, DICK, HARRY);
0 •• 60;

After declaring the data types, you declare vari
ables of the types just defined in the VAR section
of a program, procedure, function, module, or
interface, or in the heading of a procedure or
function. The following sample VAR section de
clares variables of the types in the preceding
sample TYPE section:

VAR PLAYER: NAMES;
BALL : COLOR;

The examples below are also type definitions.
PAGE is a structured type that contains other
structured types.

TYPE LINE
PAGE

STRING (80):
RECORD
PAGENUM : 1 •• 499:
LINES: ARRAY [1 •• 60J OF LINE:
FACE: (LEFT, RIGHT);
NEXT PAGE : A pAGE ;
END;

Because a type identifier is not defined until its
declaration is processed by the compiler, a
recursi ve type declaration such as the following
is illegal:

T = ARRAY [0 •. 9J OF T;

Re ference types are a standard exception to this
rule and are discussed in Section 8, "Reference
and Other Types."

Introduction to Data Types 4-3

Super types are a special feature of our version
of Pascal. A super type is like a set of types or
like a function that returns a type.

The only super types currently available are super
arrays. (Super arrays are discussed in the sub
section of that name in Section 6, "Arrays,
Records, and Sets."

A super type declaration determines the set of
types that designators of that super type can
assume; it also associates an identifier with the
super type.

Super type declarations also occur in the TYPE
section.

4-4 Pascal Manual

TYPE COMPATIBILITY

To the ISO standard for type compatibility, our
version of Pascal adds rules for super array
types, LSTRINGs, and constant coercions (that is,
forced changes in the type of a constant). Type
transfer functions, to override the typing rules,
are also available.

Two types can be "identical," "compatible," or
"incompatible." An expression can be "assignment
compatible" with a variable, value parameter, or
array index.

TYPE IDENTITY AND REFERENCE PARAMETERS

Two types are identical if they have the identical
identifier or if the identifiers are declared
equivalent with a type definition such as the
following:

TYPE Tl = T2;

"Identical" types are truly identical in this
version of Pascal: there is no difference between
types Tl and T2 in the example above. Type
identity is based on the name of the types, rather
than on the way they are declared or structured.
Thus, for example, Tl and T2 are not identical in
the following declarations:

TYPE Tl
T2

ARRAY [1 •• 10J OF CHARi
ARRAY [1 •• 10J OF CHARi

Actual and formal reference parameters must be of
identical types. Or, if a formal reference param
eter is of a super array type, the actual
parameter must be of the same super array type or
a type derived from it. Two record or array types
must be identical for assignment. (For an expla
nation of actual and formal reference parameters,
see the Glossary.)

The only exception is for strings. Here, actual
parameters of type CHAR, STRING, STRING (n),
LSTRING, and LSTRING (n) are compatible with a
formal parameter of super array type STRING.
Also, the type of a string constant changes to any
LSTRING type with a large enough bound. For
example, the type of 'ABC' changes to LSTRING (5)
if necessary.

Introduction to Data Types 4-5

STRING (n) is a shorthand notation for

PACKED ARRAY [l •• n] OF CHAR

The two types are identical. However, because
variables with the type LSTRING are treated
specially in assignment, comparisons, READs, and
WRITEs, LSTRING (n) is not a shorthand notation
for PACKED ARRAY [0 •• n] OF CHAR. The two types
are not identical, compatible, or assignment com
patible. (See the subsection "Using STRINGs and
LSTRINGs," in Section 6, "Arrays, Records, and
Sets," for further information on string types.)

TYPE COMPATIBILITY AND EXPRESSIONS

Two simple or reference types are compatible if
one of the following is true:

0 They are identical.

0 They are both ADR types.

0 They are both ADS types.

0 One is a subrange of the other.

0 They are subranges of compatible types.

Two structured types are compatible if one of the
following is true~ if they are

o identical

o SET types with compatible base types

o STRING-derived types of equal length

o LSTRING-derived types

However, two structured types are incompatible if
one of the following is true:

o Either type is a FILE or contains a FILE.

o Either type is a super array type.

o One type is PACKED and the other is not.

4-6 Pascal Manual

Two values must be of compatible types when
combined with an operator in an expression. (Most
operators have additional limitations on the type
of their operands. See Section 11, "Expressions,"
for details.) A CASE index expression type must
be compatible with all CASE constant values. Note
that two sets are never compatible if one is
PACKED and the other is not.

ASSIGNMENT COMPATIBILITY

Some types are implicitly compatible. This per
mits assignment across type boundaries. For
instance, assume you declare the following
variables:

VAR DESTINATION
SOURCE

T DEST:
T:SOURCE:

SOURCE is assignment-compatible with DESTINATION
(that is, DESTINATION := SOURCE is permitted) if
one of the following is true:

o T SOURCE and T DEST are identical types.

o T SOURCE and T DEST are compatible and SOURCE
has a value in the range of subrange type
T DEST.

o T DEST is of type REAL or REAL8 and T SOURCE
is compatible with type INTEGER or INTEGER4.

o T DEST is of type INTEGER4 and T SOURCE is
compatible with type INTEGER or WORD.

Also, if T DEST
structured types,
compatible with
following is true:

and T SOURCE
then SOURCE

DESTINATION if

are compatible
is assignment

one of the

o for SETs, every member of SOURCE is in the
base type of T DEST

o for LSTRINGs,

UPPER (DESTINATION) >= SOURCE.LEN

(The predeclared function UPPER is discussed in
Section 14, "Available Procedures and Functions.")

Introduction to Data Types 4-7

Other than in the assignment statement
assignment compatibility is required
following cases of implicit assignment:

o passing value parameters

o READ and READLN procedures

itself,
in the

o control variable and limits in a FOR statement

o super array type array bounds, and array
indexes

If the range checking switch ($RANGECK) is on,
assignment compatibility is checked at run time:
otherwise, no checking is done. Assignment com
patibility is usually known and checked at compile
time. However, some subrange, set, and LSTRING
assignments depend on the value of the expression
to be assigned and thus cannot be checked until
run time.

4-8 Pascal Manual

5 SIMPLE TYPES

The basic distinction between simple and struc
tured data types is that simple types cannot be
divided into other types, while structured types
(discussed in Section 6, "Arrays, Records, and
Sets," and Section 7, "Files 1\) are composed of
other types. The simple data types fall into
three categories:

o ordinal

oREAL

o INTEGER4

ORDINAL TYPES

Ordinal types are all finite and countable. They
include the following simple types:

o INTEGER

o WORD

o CHAR

o BOOLEAN

o enumerated

o subrange

INTEGER4, though finite and countable, is not an
ordinal type.

INTEGER

INTEGER values are a subset of the whole numbers
and range from -MAXI NT through 0 to MAXINT.
MAXI NT is the predeclared constant 32767
(2**15 - 1). (The value -32768 is not a valid
INTEGER~ the compiler uses it to check for unin
itialized INTEGER and INTEGER subrange variables.)

Note that INTEGER is not a subrange of INTEGER4
(discus sed in the subsection .. INTEGER4," below.)
If it were, signed expressions would have to be
calculated using the INTEGER4 type and the result
converted to INTEGER.

Simple Types 5-1

Expressions are always calculated using a base
type, not a subrange type. INTEGER type constants
can be changed internally to WORD type if neces
sary, but INTEGER variables cannot. INTEGER
val ues change to REAL or INTEGER4 in an expres
sion, if necessary, but not to REAL8. The ORO
function converts a value of any ordinal type to
an INTEGER type.

The predeclared type INTEGER2 is identical to
INTEGER.

The predeclared type INTEGERl, has the same range
as the data type SINT, -127 to +127. It occupies
only one byte of storage, in contrast to INTEGER,
which occupies two bytes.

WORD

WORD and INTEGER types are similar, differing
chiefly in their range of values. Both are
ordinal types. You can think of WORD values as
ei ther a group of 16 bits or as a subset of the
whole numbers from 0 to "MAXWORD (65535,
2**16 - 1).

The WORD type, a feature of our version of Pascal,
is useful in several ways:

o to express values in the range from 32768 to
65535

o to operate on machine addresses

o to perform primitive machine operations, such
as word ANDing and word shifting, without
using the INTEGER type and running into the
-32768 value

Unlike INTEGERs, all WORDs are nonnegative values.
The WRD function changes any ordinal type value to
WORD type. Like INTEGER values, WORD values in an
expression are converted to the INTEGER4 type, if
necessary.

5-2 Pascal Manual

Ha v ing both an INTEGER and a
mapping of 16-bit quantities
ways:

WORD type
in either

permits
of two

o as a signed value ranging from -32767 to
+32767

o as a non-negative value ranging from 0 to
65535

However, do not mix WORD and INTEGER values in an
expression (although doing so generates a warning
rather than an error message). Neither are WORD
and INTEGER values assignment-compatible.

CHAR

In this version of Pascal, CHAR values are 8-bit
ASCI I values. CHAR is an ordinal type. All
256-byte values are included in the type CHAR. In
addition, SET OF CHAR is supported. Relational
comparisons use the ASCII collating sequence.

The CHR function changes any ordinal type value to
CHAR type, as long as ORD of the value is in the
range from 0 to 255.

(See Appendix B, "Standard Character Set," in the
~ Operating System Manual for a complete
listing of the ASCII character set.)

BOOLEAN

BOOLEAN is an ordinal type with only two (pre
declared) val ues: FALSE and TRUE. The BOOLEAN
type is a special case of an enumerated type,
where ORD (FALSE) is 0 and ORD (TRUE) is 1. This
means that FALSE < TRUE.

You can redefine the identifiers BOOLEAN, FALSE,
and TRUE, but the compiler implicitly uses the
former type in Boolean expressions and in IF,
REPEAT, and WHILE statements.

No function exists for chang ing an ordinal type
value to a BOOLEAN type value. However, you can
achieve this effect with the ODD function for
INTEGER and WORD values, or the expression

ORD (val ue) < > 0

Simple Types 5-3

ENUMERATED TYPES

An enumerated type defines an ordered set of
values. These values are constants and are
enumerated by the identifiers that denote them.

Examples of enumerated type declarations:

FLAGCOLOR = (RED, WHITE, BLUE)
SUITS = (CLUB, DIAMOND, HEART, SPADE)
DOGS = (MAUDE, EMILY, BRENDAN)

The type values (for example, RED, CLUB, or MAUDE)
do not have to be declared in the CONST section or
any other section in the program.

Every enumerated type is also an ordinal type.
Identifiers for all enumerated type constants must
be unique within their declaration level.

The ORD function, at the standard level, can be
used to change enumerated values into INTEGER
values; the WRD function changes enumerated values
into WORD values.

The values obtained by applying the ORO function
to the constants of an enumerated type always
begin with zero. Thus, the values obtained for
the type FLAGCOLOR, from the example above, are as
follows:

ORD (RED) "
ORD (WHITE) I
ORD (BLUE) 2

The RETYPE function, at extend level, can be used
to change INTEGER or WORD values to an enumerated
type. For example:

IF RETYPE (COLOR, I) = BLUE THEN
WRITELN ('TRUE BLUE')

Enumerated types are particularly useful for
representing an abstract collection of names, such
as names for operations or commands. Modifying a
program by adding a new value to an enumerated
type is much safer than using raw numbers, since
any arrays indexed with the type or any sets based
on the type are changed automatically.

5-4 Pascal Manual

For example, interactive input of a command might
be accomplished by reading the enumerated type
identifier that corresponds to a command. Since
enumerated types are ordered, comparisons like
RED < GREEN can also be useful. At times, access
to the lowest and highest values of the enumerated
type is useful with the LOWER and UPPER functions,
as in the following example:

VAR TINT: COLOR;
FOR TINT := LOWER (TINT) TO UPPER (TINT)

00 PAINT (TINT)

SUBRANGE TYPES

A subrange type is a subset of an ordinal type.
The type from which the subset is taken is called
the "host II type. Therefore, all subrange types
are also ordinal types.

You can define a subrange type by giving the lower
and upper bound of the subrange (in that order).
The lower bound must not be greater than the upper
bound, but the bounds can be equal. The subrange
type is frequently used as the index type of an
array or as the base type of a set. (See Section
6, "Arrays, Records, and Sets, II for a discussion
of arrays and sets.)

Examples of subranges along with their host
ordinal type:

Host Ordinal

INTEGER
WORD
CHAR
enumerated type

Subrange

100 •• 200
WRD (1) •• 9
• A' •• • Z •
RED .• YELLOW

In addition, you can substitute a subrange clause
for a list of values in the following
circumstances:

o set constants

o set constructors

o CASE statement constants and record variant
labels (at the extend level)

Simple Types 5-5

Besides using the subrange type in array and set
declarations, you can use it to help to guarantee
that the value of a variable is within acceptable
bounds. If the range-checking switch ($RANGECK)
is on during compilation, these bounds are checked
at run time.

For instance, if the logic of a program implies
that a variable always has a value from 100 to
999, then declaring it with a subrange causes the
compiler to check that the variable is never
assigned a value outside this range.

In addition, declaring a subrange type can permit
the compiler to allocate less room and use simpler
operations. For example, declaring BOTTLES to be
the INTEGER subrange 1 •• 100 means that the type
can be allocated in eight bits instead of sixteen.

Three subrange types are predeclared:

0 BYTE = WRD (0) •• 2 5 5 :
{8-bit WORD subrange}

0 SINT = -127 •• 127:
{8-bit INTEGER subrange}

0 INTEGERI = SINT

The BYTE type is particularly useful in machine
oriented applications. For example, the ADRMEM
and ADSMEM types normally treat memory as an array
of bytes. However, since the BYTE type is really
a subrange of the WORD type, expressions with BYTE
values are calculated using l6-bit instead of
8-bit arithmetic, if necessary. (See the sub
section, "Address Types,1I in Section 8, IIReference
and Other Types" for details on ADRMEM and ADSMEM
types.)

In some cases (for example, an assignment of a
BYTE expression to a BYTE variable when the math
checking switch ($MATHCK) is off), the compiler
can optimize l6-bit arithmetic to 8-bit
ari thmetic. In general, using BYTE instead of
WORD saves memory at the expense of BYTE-to-WORD
conversions in expression calculations.

5-6 Pascal Manual

At the extend level, subrange bounds can be
constant expressions. Because the compiler
assumes that the left parenthesis always starts an
enumerated type declaration, the first expression
in a subrange declaration must not start with a
left parenthesis. For example:

TYPE {First two are permitted.}
FEE = (A, B, e)i
FIE = M + 2 * N •• (p - 2) * N i

{Faa is invalid as declared.}
Faa = (M + 2) * N •• P - 2 * Ni

Simple Types 5-7

REAL

For real numbers, standard Pascal provides a type
REAL. Wi th this version of Pascal, three real
types are available:

0 REAL4 Single precision real numbers (7
significant digits)

0 REALS Double precision real numbers (15
significant digits)

0 REAL Identical to either REAL4 or REALS

Note that the type REAL is always either REAL4 or
REALS. The choice is made with a metacornmand,
$REAL:n, where n is either 4 or S. Thus,
{$REAL:8} has the same effect as TYPE REAL =
REAL8. The default type for REAL is REAL4.

Any or all of these real number forms can be used
in a single program. However, programs that use
REAL4 and REALS will not be portable.

This version of Pascal uses the IEEE real number
format. The REAL4 type is in 32-bit IEEE format,
and the REAL8 type is in 64-bit IEEE format. The
IEEE standard format is as follows:

o

o

REAL4

REALS

Sign bit, 8-bit binary exponent
with bias of 127, 23-bit mantissa

Sign bit, II-bit binary exponent
with bias of 1023, 52-bit mantissa

In both cases, the mantissa has a "hidden" most
significant bit (always one) and represents a
number greater than or equal to 1.0 but less than
2.0. An exponent of zero means a value of zero,
and the maximum exponent means a value called NaN
(not a number). Bytes are in "reverse" order: the
lowest addressed byte is the least-significant
mantissa byte.

The REAL4 numeric range is barely 7 significant
digi ts (24 bits), with an exponent range of E-3S
to E+3S. The REAL8 numeric range includes over 15
significant digits (53 bits), with an exponent
range of E-306 to E+306.

5-8 Pascal Manual

As an extension to standard Pascal, the exponent
character can be "D" or "d" as well as "E" or II e" ,
for example, l2.34d56. Note that the D or d expo
nent character does not indicate double precision,
as it does in the FORTRAN language.

This version of Pascal performs floating point
operations using either the 8087 math coprocessor
chip, or the Pascal run-time support library 8087
emulator routines. The 8087 chip is an option
installed only on some workstations. (See the
subsection "Linking Your Program" in Section 18,
"Using the Compiler," for information on how to
link you program if you have an 8087 chip.)

Operations on two REAL4 operands are calculated in
REAL4 precision with the 8087 emulator, but with
REAL8 precision if you have an 8087 chip installed
on your workstation.

REAL literals are converted first to REAL8 format
and then to REAL4 as necessary (for example, to be
passed as a CONST parameter or to initialize a
variable in a VALUE section). If you need actual
REAL4 constants, you must declare them as REAL4
variables (perhaps adding the READONLY attribute)
and assign them a constant in a VALUE section.

Both REAL 4 and REAL 8 values are passed to
intrinsic functions as reference (CONSTS) param
eters, rather than as value parameters. The
compiler accepts REAL expressions as CONSTS pa
rameters~ it will evaluate the expression, assign
the result to a stack temporary, and pass the
address of the temporary, which is usually more
efficient than passing the value itself.

Functions that return REAL values use the long
return method. That is, the caller passes an
additional, hidden, offset address of a stack
temporary, which will receive the result. This
applies to all functions returning REAL4 or REAL8
values, both user-defined and intrinsic. (See the
subsection "Boolean Expressions, II in Section 11,
"Expressions, II for a description of REAL compari
sons that produce an unordered result.)

All results are rounded up to the nearest
representable number (with 0.5 rounded up or down
to make the next digit even.)

Simple Types 5-9

INTEGER4

As with INTEGER and WORD values, INTEGER4 values
are a subset of the whole numbers. INTEGER4
values occupy four bytes of storage and range from
-MAXINT4 to MAXINT4. MAXINT4 is a predeclared
constant with the value of 2,147,483,647
(2**31 - 1). The value -2,147,487,648 (-2**31) is
not a valid INTEGER4.

Unlike INTEGER and WORD, the INTEGER4 type is not
considered an ordinal type. There are no INTEGER4
subranges and INTEGER4 cannot be an array index or
the base type of a set. INTEGER4 values also
cannot be used to control FOR and CASE statements.

INTEGER4 is currently an extended numeric type, as
is REAL. Values of type INTEGER or WORD in an
expression change automatically to INTEGER4 if the
expression requires an intermediate value that is
out of the range of either INTEGER or WORD.
Values of type INTEGER4 do not change to REAL in
an expression; you must explicitly use the FLOAT4
function to make the conversion. The functions
ROUND4 and TRUNC4 are also available for
REAL/INTEGER4 conversion.

To assign
instead of
sign-extend
example:

a WORD to an INTEGER4, use BYLONG
the ORD function, because ORD will
the sign bit of the WORD. For

Integer4Var := BYLONG (0, WordExpression);

5-18 Pascal Manual

6 ARRAYS, RECORDS, AND SETS

A structured ~ is composed of other types. The
components of structured types are either simple
types or other structured types. A structured
type is characterized by the types of its compo
nents and by its structuring method. A structured
type can occupy up to 65534 bytes of memory.

The following are structured types:

o ARRAY <range> OF <type>

o SUPER ARRAY <range> OF <type>

STRING

LSTRING

o RECORD

o SET OF <base-type>

o FILE OF <type>

TEXT

Because components of structures can be structured
types themselves, you can have, for example, an
array of arrays, a file of records containing
sets, or a record containing a file and another
record. This is an example of the data typing
flexibility that provides Pascal with much of its
linguistic power as a computing language.

The remainder of this section discusses arrays,
records, and sets. See Section 7, "Files," for a
discussion of files.

Arrays, Records, and Sets 6-1

ARRAYS

An array type is a structure that consists of a
fixed number of components. All the components
are of the same type (called the "component
type") •

The elements of the array are designated by
indexes, which are values of the index type of the
array. The index type must be an ordinal type:
BOOLEAN, CHAR, INTEGER, WORD, subrange, or
enumerated.

Arrays in Pascal are one dimensional, but since
the component type can al so be an array,
n-dimensional arrays are supported as well.

Examples of type declarations for arrays:

VAR

INT ARRAY ARRAY [1 •• 10J OF INTEGER:

ARRAY 2D
0 •• 9:

ARRAY [0 •• 7J OF ARRAY [0 •• 8J OF

MORAL RAY,: ARRAY [PEOPLEJ OF (GOOD, EVIL):

In the last
type, while
constants.

declaration,
GOOD and

PEOPLE is
EVIL are

a subrange
enumerated

A shorthand notation available for n-dimensional
arrays makes the following statement:

ARRAY 2D : ARRAY [0 •• 7, 0 •• 8J OF 0 •• 9:

the same as

ARRAY 2D
0 •• 9:

ARRAY [0 •• 7J OF ARRAY [0 •• 8J OF

After declaring these arrays, you can assign
values to components of the arrays with statements
such as these:

INT_ARRAY [10J := 1234:

ARRAY_2D [0,8J := 9:

MORAL RAY [MACHIAVELLIJ := EVIL:

6-2 Pascal Manual

All of ~n n-dimensional PACKED array is packed:
therefore these statements are equivalent:

PACKED ARRAY [1 •• 2, 3 •• 4J OF REAL~

PACKED ARRAY [1 •• 2J OF PACKED ARRAY [3 •. 4J OF
REAL;

See Section 8, "Reference and Other Types," for a
discussion of packed types.

Arrays, Records, and Sets 6-3

SUPER ARRAYS

A super array is a special variable-length array.
Using the super array type you can pass arrays of
different lengths to a reference parameter and you
can create dynamically dimensioned arrays.

A super array is an example of a super type. A
super type is like a set of types or like a func
tion that returns a type. Super types in general,
and super arrays in particular, are features of
our version of Pascal.

A super type identifier specifies the set of types
represented by the super type. A later type
declaration can declare a normal type identifier
as a type "der i ved II from that class of types.
This derived type is like any other type.

A super array type declaration is an array type
declaration prefixed with the keyword SUPER. The
array upper bound is replaced with an asterisk, as
shown:

TYPE VECTOR = SUPER ARRAY [l •• *J OF REAL:

Following the preceding type declaration, you
could declare the following variables:

VAR ROW: VECTOR (10);
COL: VECTOR (30):
ROWP: A VECTOR;

In this example, VECTOR is a super array type
identifier. VECTOR (10) and VECTOR (30) denote
simple der i ved types: VECTOR (10) denotes ARRAY
[1 •. 10J OF REAL and VECTOR (30) denotes ARRAY
[1 •• 30 J OF REAL. ROWand COL are variables of
types derived from VECTOR. ROWP is a pointer to
the super array type VECTOR.

Although the general concept of super types allows
other types of types, such as super subranges and
super sets, super types currently allow only an
array type with parametric upper bounds. A super
type is a class of types and not a specific type.
Thus, in the VAR section of a program, procedure,
or function, you cannot declare the variables to
be of a super type: you must declare them as
variables of a type derived from the super type.

6-4 Pascal Manual

However, a formal reference parameter in a pro
cedure or function can be given a super type:
this allows the routine to operate on any of the
possible derived types. (This kind of parameter
is called a conformant array in other Pascals.)

A pointer referent type can also be given a super
type. This allows a pointer to refer to any of
the possible derived types. A pointer referent to
a super type allows dynamic arrays. These arrays
are allocated on the heap by passing their upper
bound to the procedure NEW. (See Section 8,
"Reference and Other Types," for a discussion of
pointer types and dynamic allocation. See Section
14, "Available Procedures and Functions," for a
description of the procedure NEW.)

Example using the NEW procedure for dynamic
allocation:

VAR STR PNT: ASUPER PACKED ARRAY [l •• *J OF
CHAR~

VEC PNT: ASUPER ARRAY [0 •• *, 0 •• *J OF
REAL~

NEW (STR PNT, 12)~
NEW (VEC:PNT, 9, 99)~

where 12, 9, and 99 replace the asterisks (*).

An actual parameter in a procedure or function can
be of a super type rather than a derived type, but
only if the parameter is a reference parameter or
pointer referent. (These are the only kinds of
variables that can be of a super rather than a
derived type.)

Example of super arrays:

TYPE VECTOR = SUPER ARRAY [l •• *J OF REAL~
{"VECTOR" is the super array type identifier.}

VAR X: VECTOR (12)~
Y: VECTOR (24) ~
Z: VECTOR (36)~

{X, Y, and Z are types derived from VECTOR.}

{Below, SUM accepts variables of all types}
{derived from the super type VECTOR.}
FUNCTION SUM (VAR V: VECTOR): REAL~
{V is the formal reference parameter of the}

Arrays, Records, and Sets 6-5

VAR S: REALi I: INTEGERi
BEGIN

S := 0i
FOR I := 1 TO UPPER (V) DO S := S + V [IJi
SUM := Si

ENDi

BEGIN

TOTAL := SUM (X) + SUM (Y) + SUM (Z)i

END

The normal type rules for components of a super
array type and for type designators that use a
super array type allow components to be assigned,
compared, and passed as parameters.

The UPPER function returns the actual upper bound
of a super array parameter or referent. The maxi
mum upper bound of a type derived from a super
array type is limited to the maximum value of the
index type implied by the lower bound (that is,
MAXINT, MAXWORD).

A super array type's internal representation is
similar whether it is a reference parameter or the
referent of a pointer. First comes the address
(reference parameter) or pointer value, which is
ei ther 2 or 4 bytes long. Following the address
are the upper bounds, which are signed or unsigned
l6'-bi t quanti ties. The bounds occur in the same
order as they are declared. A pointer value to a
super array type is normally longer than other
pointers, since the upper bounds are included.

Two super array types are predeclared: STRING and
LSTRING. The compiler directly supports STRING
and LSTRING types in the following ways:

o LSTRING and STRING assignment

o LSTRING and STRING comparison

o LSTRING and STRING READs

o access to the length of a STRING with the
UPPER function

6-6 Pascal Manual

o access to maximum length of an LSTRING with
the UPPER function

o access to LSTRING
STR[0J, where STR
LSTRING

length
is the

with STR.LEN and
identifier of the

These subjects are discussed in the subsection
"Using STRINGs and LSTRINGs."

The following are some of the most powerful ways
you can use super arrays:

o To process strings.

Both STRING and LSTRING are predeclared super
array types. The LSTRING type handles
variable-length strings, with a maximum length
of 255 characters. STRING handles fixed
length strings, including strings more than
255 characters long.

o To dynamically allocate arrays of varying
sizes.

Otherwise, such arrays would need a maximum
possible size preallocation.

o As a formal parameter type in a procedure or
function.

Such a declaration makes the procedure or
function usable for a set or class of types,
rather than for just a single fixed-length
type.

STRINGs

STRINGs are
characters:

TYPE STRING

predeclared super arrays

SUPER PACKED ARRAY [l •• *J OF
CHAR;

of

A string literal such as • abcdefg' automatically
has the type STRING (n). The size of the array

I abcdefg I is 7; thus, the constant is of the
STRING-derived type, STRING (7).

Arrays, Records, and Sets 6-7

Standard Pascal calls any packed array of charac
ters with a lower bound of one a "string" and
permits a few special operations on this type
(such as comparison and writing), which you cannot
do with other arrays.

In this version of Pascal, the super array
notation STRING (n) is identical to PACKED ARRAY
[1 •• n] OF CHAR. (n can range from 1 to MAXINT.)
There is no default for n, as in some other
Pascal s, since STRING means the super array type
itself and not a string with a default length.

The identifier STRING is for a super array, so you
can only use it as a formal reference parameter
type or pointer referent type. The other super
array restrictions apply: you cannot compare such
a parameter or dereferenced pointer or assign it
as a whole.

Any variable (or constant) with the super array
type STRING, or one of the types CHAR or STRING
(n) or PACKED ARRAY [l •• n] OF CHAR, can be passed
to a formal reference parameter of super array
type STRING. Furthermore, a variable of type
LSTRING or LSTRING (n) can also be passed to a
formal reference parameter of type STRING. For a
discussion of STRING as a formal reference
parameter, see the subsection, "Using STRINGs and
LSTRINGs."

Standard Pascal supports assigning, comparing, and
writing STRINGs. The extend level permits reading
STRINGs, including the super array type STRING and
a derived type STRING (n). Reading a STRING
causes input of characters until the end of a line
or the end of the STRING is reached. If the end
of the line is reached first, the rest of the
STRING is filled with blanks. Wri ting a string
writes all of its characters.

The normal Pascal type compatibility rules are
relaxed for STRINGs. Any two variables or con
stants with the type PACKED ARRAY [1 •• n] OF CHAR
or the type STRING (n) can be compared or assigned
if the lengths are equal. However, since the
length of a STRING super array type can vary, com
parisons and assignments of STRING variables are
not allowed.

6-8 Pascal Manual

Exam~le of an illegal STRING assignment:

PROCEDURE CANNOT DO (VAR S : STRING);
VAR STR : STRING-(10);
BEGIN

STR := S
{This assignment is illegal because}
(the length of S can vary.}

END;

The PACKED prefix in the declaration PACKED ARRAY
[1 •• n] OF CHAR, as defined in the ISO standard,
normally implies that a component cannot be passed
as a reference parameter. In our version of
Pascal, however, this restriction does not apply.

To conform with the ISO standard, passing of the
CHAR component of a STRING as a reference param
eter is defined as an "error not detected." Also,
the index type of a string is officially INTEGER,
but WORD type values can also be used to index a
STRING. Many string-processing applications are
expected to take advantage of the LSTRING type,
described in the subsection, ILSTRINGs."

A number of intrinsic procedures and functions for
strings are discussed in
Procedures and Functions."
and functions described
apply only to LSTRINGs.

LSTRINGs

Section 14, "Available
Many of the procedures

work on STRINGs; some

The LSTRING feature allows variable-length
strings. LSTRING {n} is predeclared as:

TYPE LSTRING = SUPER PACKED ARRAY [0 .• *] OF
CHAR

However, although they are structurally the same,
a variable with the explicit type PACKED ARRAY
[0 •• n] OF CHAR is not "identical II to the type
LSTRING (n). There is no default for n, the range
of which is from zero to 255. Characters in an
LSTRING can be accessed with the usual array
notation.

Internally, LSTRINGs contain a length (L) ,
followed by a string of characters. The length is
contained in element zero of the LSTRING and can
vary from 0 to the upper bound. The length of an
LSTRING variable T can be accessed as T[0] with

Arrays, Records, and Sets 6-9

type CHAR, or as T.LEN with type BYTE. String
constants of type CHAR or STRING (n) are changed
automatically to type LSTRING, if required.

The predeclared constant, NULL, is the empty
string, LSTRING (0). NULL is the only constant
with type LSTRING; there is no way to define other
LSTRING constants.

As with STRINGs, a CHAR component of an LSTRING
can be passed as a reference parameter, and WORD
and INTEGER values can be used to index an
LSTRING.

Several operations work differently on LSTRINGs
than on STRINGs. An LSTRING can be assigned to
any other LSTRING, if the current length of the
right side is not greater than the maximum length
of the left side. Similarly, an LSTRING can be
passed as a value parameter to a procedure or
function, if the current length of the actual
parameter is not greater than the maximum length
specified by the formal parameter. If the range
checking switch ($RANGECK) is on, the compiler
generates code to check the assignment of LSTRINGs
and the passing of LSTRING (n) parameters. The
actual number of bytes assigned or passed is the
minimum of the upper bounds of the LSTRINGs.

Nei ther side in an LSTRING assignment can be a
parameter of the super array type LSTRING; both
must be types derived from it.

Examples of LSTRING assignments:

{Declaring the variables}
VAR A LSTRING (19);

B LSTRING (14);
C : LSTRING (6);

.
{Assigning the variables}
A := '19 character string';

{String literal on right converted to }
{LSTRING(A) }

B := '14 characters';
C := 'shorty';
A := B:
{This is legal, since the length of B}
{is less than the maximum length of A.}
C := A:
{This is illegal, since length of A}
{is greater than the maximum length of C.}

6-10 Pascal Manual

You can compare any two LSTRINGs, including super
array type LSTRINGs. (This comparison is the only
super array type comparison allowed.) Reading an
LSTRING variable causes input of characters, until
the end of the current line or the end of the
LSTRING, and sets the length to the number of
characters read. Wr i ting from an LSTRING wr i tes
the current length string.

USING STRINGs AND LSTRINGs

This subsection describes the STRING and LSTRING
operations directly supported by the compiler. An
annotated program at the end of this subsection
illustrates the use of STRINGs and LSTRINGs in
context.

See also Section 14, "Available
Functions," for descriptions of
string procedures and functions:

Procedures and
the following

CONCAT
COPYLST
COPYSTR
DELETE

INSERT
POSITN
SCANEQ
SCANNE

At the extend level, the procedures FILLC, FILLSC,
MOVEL, MOVESL, MOVER, and MOVESR also operate on
strings.

This version of Pascal supports STRINGs and
LSTRINGs directly in the following ways:

Assignment You can assign any LSTRING value to
any LSTRING variable, as long as
the maximum length of the target
variable is greater than or equal
to the current length of the source
value and neither is the super
array type LSTRING. If the maximum
length of the target is less than
the current length of the source,
only the target length is assigned,
and, if the range-checking switch
is on ($RANGECK), a run-time error
occurs. You can assign a STRING
value to a STRING variable, as long
as the length of both sides is the
same and neither side is the super
array type STRING.

Arrays, Records, and Sets 6-11

Comparison

Passing either STRING or LSTRING as
a value parameter is done similarly
to making an assignment.

The LSTRING operators
< <= > >= <) use the length
byte for string comparisons: the
operands can be of different
lengths. Two strings must be the
same length to be considered equal.
If two strings of different lengths
are equal up to the length of the
shorter one, the shorter is con
sidered less than the longer one.
Toe operands can be of the super
array type LSTRING. For STRINGs,
the same relational operators are
available, but the lengths must be
the same, and operands of the super
array type STRINGs are not allowed.

READs and WRITEs
READ LSTRING reads until the
LSTRING is filled or until the end
of-line is found. The current
length is set to the number of
characters read. WRITE LSTRING
uses the current length. See also
READSET (described in Section 15,
"File-Oriented Procedures and
Functions") , which reads into an
LSTRING as long as input characters
are in a given SET OF CHAR. READ
STRING pads the string with spaces
if the line is shorter than the
STRING. WRITE STRING writes all
the characters in the string. Both
READ and WRITE permit the super
array types STRING and LSTRING, as
well as their derived types.

Length access You can access the current length
of an LSTRING variable T with
T. LEN, which is of type BYTE, or
with T[0], which is of type CHAR.
This notation can be used to assign
a new length, as well as determine
the current length. The UPPER
function finds the maximum length

6-12 Pascal Manual

of an LSTRING or the length of a
STRING. This is especially useful
for finding the upper bound of a
super array reference parameter or
pointer referent.

You cannot assign or compare mixed STRINGs and
LSTRINGs, unless the STRING is constant. You can
assign STRINGs to LSTRINGs, or vice versa, with
one of the MOVE routines or with the COPYSTR and
COPYLST procedures. Since constants of type
STRING or CHAR change automatically to type
LSTRING if necessary, STRING and CHAR constants
can be used as if they were LSTRING constants.
NULL (the zero length LSTRING) is the only
explicit LSTRING constant.

In the sample program at the end of this subsec
tion, all STRING parameters (CONST or VAR) can
take either a STRING or an LSTRING: all LSTRING
parameters are VAR LSTRING and must take an
LSTRING variable.

You can pass an actual LSTRING parameter to a for
mal reference parameter of type STRING using the
following technique. The length of the formal
STRING is the actual length of the LSTRING.
Therefore, if LSTR (in the following example) is
of type LSTRING (n) or LSTRING, it can be passed
to a procedure or function with a formal reference
parameter of type STRING:

VAR LSTR : LSTRING (10);

PROCEDURE TIE STRING (VAR STR STRING) ;

TIE STRING (LSTR);

In this case, UPPER (STR)
LSTR.LEN.

is equivalent to

Procedures and functions with reference parameters
of super type STRING can operate equally well on
STRINGs and LSTRINGs.

Arrays, Records, and Sets 6-13

Example of a program that uses STRINGs and
LSTRINGs:

PROGRAM STRING_SAMPLE~

PROCEDURE STRING PROC (CONST S: STRING):
BEGIN END:

PROCEDURE LSTRING PROC (CONST S: LSTRING)~
BEGIN END;

VAR
CHRIVAR: CHAR:
STR5VAR: STRING (5)~
LST5VAR: LSTRING (5)~
LST9VAR: LSTRING (9):
STR4VAR: PACKED ARRAY [1 •• 4J OF CHAR:
STR6VAR: PACKED ARRAY [1 •• 6] OF CHAR:

BEGIN

{Look at all the kinds of strings a}
{CONST STRING parameter takes.}
STRING PROC ('A'):
{Character constant is OK.}
STRING PROC (CHRlVAR):
{Character variable is OK.}
STRING PROC ('STRING')~
{STRING constant is OK.}
STRING PROC (STR5VAR)~
{STRING variable is OK.}
STRING PROC (LST5VAR):
{LSTRING variable is OK.}

{However, a CONST LSTRING parameter cannot}
{take non-LSTRING variables.}
LSTRING PROC ('A'):
{Character constant is OK.}
LSTRING PROC (CHRlVAR):
{Character variable is not OKl}
LSTRING PROC ('STRING'):
{STRING-constant is OK.}
LSTRING PROC (STR5VAR):
{STRING-variable is not OKl}
LSTRING PROC (LST5VAR):
{LSTRING variable is OK.}

6-14 Pascal Manual

{Assignments to a STRING variable are limited}
{to the same type.}
STR5VAR := 'A';
{Character constant is not OKl}
STR5VAR := CHRIVAR;
{Character variable is not OKl}
STR5VAR := 'TINY';
{STRING constant too small.}
STR5VAR := 'RIGHT';
{Both sides have five characters; OK.}
STR5VAR := 'longer';
{Not OK; STRING constant is too large.}
STR5VAR := LST5VAR;
{Not OK; you cannot assign LSTRINGs to}
{STRINGs.}
COPYSTR (LST5VAR, STR5VAR);
{COPYSTR is an intrinsic procedure.}
STR5VAR := STR4VAR;
{Not OK; STRING variable is too small.}
COPYSTR (STR4VAR, STR5VAR);
{COPYSTR is OK; padding of space in}
{STR5VAR[5].}
STR5VAR := STR5VAR;
{OK; both sides have five characters.}
STR5VAR := STR6VAR;
{Not OK; STRING variable is too large.}

{Assignments to an LSTRING variable, however,}
{are more flexible.}
LST5VAR := 'A';
{character constant is OK.}
LTR5VAR := CHRIVAR;
{Character variable is not OK.}
LTR5VAR := 'TINY';
{Smaller STRING constant is OK.}
LTR5VAR := 'RIGHT';
{Same length STRING constant is OK.}
LTR5VAR := 'longer';
{This gives an error at run time only; OK for}
{now.}
LST5VAR := LST9VAR;
{This can give an error at run time; OK for}
{now.}
LST9VAR := LST5VAR;
{This isn't even checked at run time; always}
{OK.}
LST5VAR := STR5VAR;
{Not OK; you cannot assign a STRING variable}
{to an LSTRING variable.}
COPYLST (STR5VAR, LST5VAR);
{This is the way to copy a STRING variable to}
{an LSTRING.}

END.

Arrays, Records, and Sets 6-15

RECORDS

A record structure acts as a template for a col
lection of conceptually related data of different
types. The record type itself is a structure
consisting of a fixed number of components,
usually of different types.

Each component of a record type is called a field.
The definition of a record type specifies the type
and an identifier for each field within the
record. Because the scope of these "field identi
fiers II is the record defini tion itself, they must
be unique within the declaration. The field
values associated with field identifiers are
accessible with either record notation or the WITH
statement.

The example below declares a record with three
fields: TITLE of type LSTRING(100), ARTIST of type
LSTRING (100) , and PLASTIC of type ARRAY
[l •• SaNG_NUMBER] OF SONG TITLE:

CaNST SONG NUMBER = 1000:

TYPE
SONG TITLE LSTRING (20):

LP = RECORD
TITLE: LSTRING (100):
ARTIST: LSTRING (100):
PLASTIC : ARRAY

[l •• SaNG_NUMBER] OF SONG TITLE
END:

In this example, when a variable of type LP is
declared (for example BEATLES 1, below), the
compiler allocates a contiguous -block of memory
sufficient to hold all the fields. Each field
then can be used as an independent variable.

VAR BEATLES 1 : LP:

Finally, you could access a component of the
record using either field notation (note the
period separating field identifiers) or using the
WITH statement:

BEATLES 1.TITLE := 'Meet The Beatles':J
WITH BEATLES 1 DO

PLASTIC[I]-:= 'I Wanna Hold Your Hand'

6-16 Pascal Manual

Thus, BEATLES 1.TITLE can be used as a variable of
type LSTRING(100). Note that when the WITH
statement is used above, using PLASTIC wi thin it
is identical to using BEATLES1.PLASTIC outside the
context of the WITH statement.

VARIANT RECORDS

Variant records are records where some fields can
share memory (that is, overlap). Consider the
declarations

TYPE SHAPE (SQUARE, CIRCLE);
OBJECT = RECORD

X,Y : REAL~

S : SHAPE~

SIZE, ANGLE : REAL;
DIAMETER : REAL
END;

Suppose a variable of type OBJECT is to hold its
SIZE and ANGLE (some parameters) if S is equal to
SQUARE, and it is to hold DIAMETER if S is equal
to CIRCLE. In the former case, DIAMETER is
ignored; in the latter case SIZE and ANGLE are
ignored.

You can make the pair SIZE and ANGLE share memory
with DIAMETER as follows:

TYPE OBJECT = RECORD
X,Y : REAL;
S : SHAPE;
CASE S OF

SQUARE
CIRCLE

END;

(SIZE, ANGLE: REAL);
(DIAMETER : REAL)

The declaration for
CASE, as below.
mandatory:

S can be made part of the
The parentheses used are

TYPE OBJECT RECORD
X,Y : REAL;
S : SHAPE;
CASE S : SHAPE OF

SQUARE (SIZE, ANGLE: REAL);
CIRCLE : (DIAMETER : REAL)

END;

Arrays, Records, and Sets 6-17

S is called a tag~. If a variable is de
clared of type OBJECT (for example, VAR OB
OBJECT), then the variable is given enough memory
to hold either SIZE and ANGLE or DIAMETER, (but
not all three), and the contents of the shared
memory are interpreted according to the value of
the tag field (S) • The fields are accessed as
usual.

Examples:

OB.X := 1.0;

IF OB.S = SQUARE
THEN OB.SIZE. := 3.0
ELSE OB.DIAMETER := 4.0;

WITH OB DO
BEGIN

S := CIRCLE;
DIAMETER := 3.1

END;

Thus, when you use OB.SIZE, OB.S should equal
square, but the compiler does not check that.

The tag field may have no memory allocated for it
and no identifier either. That is, you can have

TYPE OBJECT = RECORD
X,Y : REAL;
CASE S : SHAPE OF

SQUARE (SIZE, ANGLE: REAL);
CIRCLE : (DIAMETER : REAL)

END;

This declaration is similar to the previous ones:
the variables for this type will hold the values
of X,Y, and either SIZE and ANGLE or DIAMETER (but
not all three). No memory is allocated in the
record for the tag field, so consistent use of the
variants (SIZE, ANGLE, DIAMETER) is entirely your
responsibility.

Some operations, such as the NEW and DISPOSE
procedures and the SIZEOF function, can specify a
tag value even if the tag is not stored as part of
the record.

6-18 Pascal Manual

Only one variant part per record is allowed i it
must be the last field of the record. However,
this variant part can also have a variant (and so
on, to any level). All field identifiers in a
given record type must be unique, even in
different variants. For example, after declaring
the record types below, you could create and then
assign to the variables shown:

TYPE OBJECT = RECORD
X,Y : REALi
CASE S : SHAPE OF

SQUARE (SIZE, ANGLE :
REAL) :

CIRCLE (DIAMETER: REAL)
END:

FOO RECORD

END:

VAR 0, P
F, G

BEGIN

CASE BOOLEAN OF
TRUE: (I, J: INTEGER) i

FALSE: (CASE COLOR OF
BLUE: (X: REAL):
RED: (Y: INTEGER4»:

OBJECT:
FOO:

O.DIAMETER := 12.34i
P.SIZE := 1.2:

{CASE of CIRCLE}
{CASE of SQUARE}
{CASE of TRUE)
{CASE of FALSE and}
{BLUE}

F.I := 1; F.J := 2:
G.X := 123.45:

G.Y .= 678999

END:

{CASE of FALSE and)
{RED}
{this overwrites}
{G.X.}

The latest ISO standard requires every possible
tag field value to select some variant. There
fore, it is illegal to include CASE INTEGER OF and
omit a variant for every possible INTEGER value.
However, such an omission is an error not detected
by the compiler.

Our version of Pascal supports the use of full
CASE constant options in the variant clause: that
is, a list of constants can define a case. At the
extend level, subranges and the OTHERWISE state
ment can also define a case. If used, OTHERWISE
applies to the last variant in the list and is not

Arrays, Records, and Sets 6-19

followed by a colon. You can also declare an
empty variant, such as POINT: (). You can even
declare an entirely empty record type, although
the compiler issues a warning whenever the record
is used.

TYPE R RECORD
I : INTEGER;
CASE W : WORD OF

1 , 2 , 5 : (RE : REAL) ;
{1,2,5 is a list of constants}

8 •• 80 : (P , Q : WORD) ;
{8 •• 80 is a subrange of constant}
{values}

100 : () {empty variant}
END;

The ISO standard defines a number of errors that
relate to variant records: these errors may not be
detected by the compiler.

The ISO standard further declares that when a
"change of variant" occurs (such as when a new tag
value is assigned), all the variant fields become
undefined. However, our version of Pascal does
not set the fields to an uninitialized value when
a new tag is assigned. Therefore, using a variant
field with an undefined value is an error not
detected by the compiler.

Various restrictions are not enforced on a record
variable allocated on the heap with the long form
of the NEW procedure. (See Section 14, "Available
Procedures and Functions," for details.) However,
this version of Pascal does check an assignment to
such a record to see that only the record itself
is modified in the heap.

A record allocated with the long form of NEW can
be released using the short form of DISPOSE with
no ill effects. (This is an ISO error not
detected by the compiler.) It is also an error
not detected to DISPOSE of a record passed as a
reference parameter or used by an active WITH
statement.

6-29 Pascal Manual

Variant records interact with features of this
version of Pascal in two ways:

o Declaring a variant that contains a file is
not safe: any change to the file's data using
a field in another variant can lead to I/O
errors, even if the file is closed. In the
following example, any use of R can lead to
errors in F:

RECORD CASE BOOLEAN OF
TRUE: (F: FILE OF REAL):
FALSE: (R:ARRAY [1 •• 100J OF REAL):
END:

o Giving initial data to several overlapping
variants in a variable in a VALUE section can
have unpredictable results. Note that the
records field can be initialized in the VALUE
section like any other var iables. In the
following example, the initial value of LAP is
uncertain:

VAR LAP : RECORD CASE BOOLEAN OF
TRUE: (!: INTEGER4):
FALSE: (R: REAL);
END:

VALUE LAP.! := 10: LAP.R := 1.5:

The compiler generates a warning message if you
attempt either of these operations.

EXPLICIT FIELD OFFSETS

You can assign explicit byte offsets, from the
beginning of a record, to the fields in a record.
This extend level feature can be useful for inter
facing to software in other languages, since their
formats may not conform to Pascal's field allo
cation method. However, because it also permits
unsafe operations, such as overlapping fields and
word values at odd byte boundaries, it is not
recommended unless the interface is necessary.

Arrays, Records, and Sets 6-21

Example showing assignment of explicit byte
offsets:

TYPE CPM RECORD
NDRIVE [00]: BYTE~
{occupies byte 0}
FILENM [01]: STRING (8)~
{occupies bytes 1 through 8}
FILEXT [09]: STRING (3)~
{occupies bytes 9 through II}
EXTENT [12]: BYTE~
CPMRES [13]: STRING (20)~
RECNUM [33]: WORD~
RECOVF [35]: BYTE~
END~

OVERLAP = RECORD
BYTEAR [00]: ARRAY [0 •• 7] OF

BYTE~

{occupies bytes 0 through 7}
WORDAR [00]: ARRAY [0 •• 3] OF

WORD~
{occupies bytes 0 through 5}
BITSAR [00]: SET OF 0 •• 63:
END:

As can be seen in the example, the offset is
enclosed in brackets [J: this is similar to attri
bute notation. The number is the byte offset of
the start of the field.

If you give any field an offset, give offsets to
all fields. For any offset that you omit, the
compiler picks an arbitrary value. Al though the
compiler will process a declaration that includes
both offsets and variant fields, you should use
only one or the other in a given program, since
otherwise the fields may overlap unpredictably.

Although you can completely control field overlap
wi th explicit offsets, variants provide the long
forms of the procedures NEW, DISPOSE, and SIZEOF.
If you want to allocate different length records,
use the RETYPE and GETHQQ procedures instead of
variants and the long form of NEW. For example:

CPMPV := RETYPE (CPMP, GETHQQ (36»:

6-22 Pascal Manual

(For more information on each of the procedures
and functions described above, see the subsection
"Dynamic Allocation" and the individual entry for
each procedure or function in Section 14,
"Available Procedures and Functions.")

The compiler does support structured constants for
record types with explicit offsets.

Internally, odd length fields greater than one are
rounded to the next even length. For example:

ODDR = RECORD
Fl[00]
F2[03]
END;

STRING (3) i
CHAR

In this example, field Fl is four bytes long, so
an assignment to Fl overwrites F2. In such a
record, all odd length fields must be assigned
first.

Arrays, Records, and Sets 6-23

SETS

A set type defines the range of values that a set
can assume. This range of assumable values is the
"power set ll of a base type you specify in the type
definition where the base type can be any ordinal
type. The power set is the set of all possible
sets that could be composed from the base type.
The null set, [], is a value of every set type.

Suppose you declare the following set types:

TYPE COLOR = (RED, BLACK, WHITE, GREEN, BLUE):
HUES = SET OF COLOR:
CAPS = SET OF ·A· •• ·Z·:
MATTER ~ SET OF (ANIMAL, VEGETABLE,
MINERAL) :

Then you declare variables like the following:

VAR FLAG : flUES:
VOWELS : CAPS:
LIVE : MATTER:

Finally, you could assign values to these set
variables:

FLAG := [RED, WHITE, BLUE]:
{a subset of COLOR}
VOWELS : = [. A " , E " 'I', , 0 " 'U'] :
{a subset of 'A •• Z'}
LIVE := [ANIMAL, VEGETABLE]:
{a subset of (ANIMAL, VEGETABLE, MINERAL)}

The set elements must be enclosed in brackets.
This practice differs from the use of parentheses
to enclose the base enumerated type in a set type
declaration.

Set operations are implemented directly by gener
ated inline code or by routines in the set unit.
See Section 11, IIExpressions," for a complete
discussion of operations on sets.

The ORO value of the base type can range from 0 to
255. Thus, SET OF CHAR is legal, but SET OF
1942 •• 1984 is not. (See Section 14, IIAvailable
Procedures and Functions" for a discussion of
ORO.)

6-24 Pascal Manual

Sets whose maximum ORD value is 15 (that is, sets
that fit into a WORD) are us.ually more efficient
than larger ones. If the range-checking switch
($RANGECK) is on, passing a set as a value param
eter invokes a run-time compatibility check,
unless the formal and actual sets have the same
type.

Sets provide a clear and efficient way of giving
several qualities or attributes to an object. In
another language, you might assign each quality a
power of two:

READY = I
GETSET 2
ACTIVE 4
DONE = 8

You might then assign the qualities with a
statement like this:

X := READY + ACTIVE:

and then test them using OR and AND as bitwise
operators, with a statement like:

IF «X AND ACTIVE) <> 0) THEN WRITELN ('GO
FISH I) ;

The equivalent declaration in this version of
Pascal might be:

TYPE
QUALITIES = SET OF (READY, GETSET, ACTIVE,

DONE) ;
VAR X : QUALITIES;

You could then assign the qualities with X :=
[READY, ACTIVE] and test them with the following
operations:

IN
+

tests a bit
sets a bit
clears a bit

For example, an appropriate construction might be:

IF ACTIVE IN X THEN WRITELN ('GO FISH')

Arrays, Records, and Sets 6-25

The number of bytes allocated for a SET is

(ORD (upperbound) DIV 16) * 2 + 2

You can also use SET OF 0 •• 15 to test and set the
bits in a WORD. Using WORDs both as a set of bits
and as the WORD type requires giving two types to
the word, with a variant record, the RETYPE
function, or an address type.

IBTERNAL REPRESENTATION OF ARRAYS, RECORDS, AND
SETS

For arrays and records, the internal form is com
prised of the internal forms of the components, in
the same order as in the declaration. Arrays,
records, variants, sets, and files always start on
a word boundary. In any case, variables cannot be
allocated more than MAXWORD (64K-l) bytes.

A PACKED type has the same representation as an
unpacked one.

A variable or component 16 bits or larger is
always aligned on a word boundary: therefore, it
always has an even byte address. The only
exception is when explicit field offsets are given
by the user in a program.

An 8-bit variable is also aligned on a word
boundary, but an 8-bi t component of a structure
(array or record) is aligned on a byte boundary,
which can be at an even or odd address. An array
of 8-bit variables starts on a word boundary.

This is always an even number from 2 to 32 bytes.
For example, SET OF I A I •• I Z' requires 12 bytes.
Internally, a set consists of an array of bits,
with one bit for every possible ORD value from 0
to the upper bound. Bits are assigned starting
wi th the lowest addressed byte, and bits in each
byte are assigned starting with the most signifi
cant bit. The occurrence of a given ORD value as
an element of a set implies the corresponding bit
is 1, and the byte and bit position of a given ORD
value of any set is the same. For example, if 'A'
is the base type of a set, the ORD value of 'A' is
65, and the second bit is of the ninth byte in a
set is 1 if 'AI is in the set. For example, for
[A], the ninth byte is 2#01000000.

6-26 Pascal Manual

7 F.I LES

A file is a structure that consists of a sequence
of--oDmponents, all of the same type. It is
through files that Pascal interfaces with the
operating system. Therefore, you must understand
the FILE type in order to perform input to and
output from a program. .

DECLARING FILES

As with any other type, you must declare a file
variable in order to use it. However, the number
of components in a file is not fixed by declaring
a FILE type.

Examples of FILE declarations:

TYPE COLOR = (RED, BLUE)~
FI FILE OF COLOR~
F2 FILE OF CHAR~
F3 TEXT~ {Similar to FILE OF CHAR}

Conceptually, a file is simply another data type,
like an array, but with no bounds and with only
one component accessible at a time. However, a
file usually corresponds to one of the following:

o disk files

o keyboard

o video display

o printers

o other input and output devices

This implies the following restriction in Pascal:
a FILE OF FILE is illegal, directly or indirectly.
Other structures, such as a FILE OF ARRAYs or an
ARRAY OF FILEs, are permitted.

The operating system is used to access files, and
no additional formatting or structure is imposed
on the files.

Our version of Pascal supports normal statically
allocated files, files as local variables (allo
cated on the stack), and files as pointer

Files 7-1

referents (allocated on the heap). (File in this
context, refers to a file control block, that is a
memory structure that contains information about
the file.) Except for files in super arrays, the
compiler generates code to initialize a file when
it is allocated and to CLOSE a file when it is
deallocated.

This initialization call occurs automatically in
most cases. However, a file declared in a module
or unini tialized unit I s interface will only get
its initialization call if you call the module or
unit identifier as a procedure. File declarations
in such cases get the following compiler warning:

Contains file initialize module

Only a file in an interface of an unini tialized
unit does not generate this warning. (See Section
16, "Compilable Parts of a Program," for a
discussion of units, modules, and interfaces.)

This version of Pascal sets up the standard files,
INPUT and OUTPUT (discussed in the subsection,
"INPUT and OUTPUT," below). In standard Pascal,
files must be given in the program header: and
when you run your program, the run-time system
prompts you for filenames. At the extend level,
you can use the ASSIGN or READFN procedures to
give explicit operating system filenames to files
not included in the program header.

Files in record variants or super array types are
not recommended: if you use them, the compiler
issues a warning. A file variable cannot be
assigned, compared, or passed by value. It can
only be declared and passed as a reference
parameter.

At the extend level, you can indicate a file IS

access method or other characteristics by speci
fying the mode of the file. The mode is a value
of the predeclared enumerated typelffLEMODES. The
modes available normally include the three base
modes, SEQUENTIAL, TERMINAL, and DIRECT. All
files, except INPUT and OUTPUT, are given
SEQUENTIAL mode by default. INPUT and OUTPUT are
given the default mode TERMINAL.

7-2 Pascal Manual

BUFFER VARIABLES

Every file F has an associated buffer variable FA.
A buffer variable and its associated file might
look like this:

a b c d e

1
Pointer to current
component

D Buffer variable

The procedures GET and PUT use this buffer vari
able to READ from and WRITE to files. GET copies
the current component of the file to the buffer
variable. PUT does the opposite: that is, PUT
copies the value of the buffer variable to the
current component.

The buffer variable can be referenced (that is,
its value fetched or stored) like any other Pascal
variable. This allows execution of assignments
like the following:

FA := 'z':
C : = FA:

A file buffer variable can be passed as a refer
ence parameter to a procedure or function or used
as a record in a WITH statement. However, the
file buffer variable might not be updated cor
rectly if the file position changes wi thin the
procedure, function, or WITH statement. The com
piler issues a warning message to alert you to
this possibility.

For example, the following use of a file buffer
variable would generate a warning at compile time:

VAR A: TEXT:
PROCEDURE CHAR PROC (VAR X

CHARPROC (A A) :
{Warning issued here}

CHAR) :

Files 7-3

A special internal mechanism in this version of
Pascal, lazy evaluation, allows interactive input
in a natural way. Lazy evaluation is applied to
all ASCII structured files and is necessary for
natural input.

Lazy evaluation generates a run-time call that is
executed before any use of the buffer variable.
See the subsection, "Lazy Evaluation," in Section
15, "File-Oriented Procedures and Functions," for
complete details.

7-4 Pascal Manual

FILE STRUCTURES

Pascal files have two basic structures: BINARY
and ASCII. These two structures correspond to raw
data files and human-readable textfi1es,
respectively.

BINARY

The Pascal data type FILE OF <type> corresponds to
BINARY structure files. These, in turn, corre
spond to unformatted operating system files. See
the subsection "File Access Modes" for further
discussion of BINARY files.

ASCII

The Pascal data type TEXT corresponds to ASCII
structure files. These, in turn, correspond to
textual operating system files, which we refer to
as textfi1es.

The Pascal TEXT type is like a FILE OF CHAR,
except that groups of characters are organized
into "lines" and, to a lesser extent, "pages."
Primitive file procedures, such as GET and PUT,
always operate on a character basis.

Pascal textfi1es (files of type TEXT) are divided
into lines wi th a line marker, (the line feed:
0Ah). When read, this character always looks like
a blank.

At the extend level, a declaration for a textfi1e
can include an optional line length. Setting the
line length, which sets record length,. is only
needed for DIRECT mode textfi1es. You can specify
line length for other modes as well, but doing so
has no effect.

Specify the line length of a textfile as a
constant in parentheses after the word TEXT:

TYPE NAMEADDR
DEFAULTX
SMALLBUF

TEXT (128):
TEXT:
TEXT (2):

Files 7-5

PILE ACCESS MODES

The file access modes are SEQUENTIAL, TERMINAL,
and DIRECT. SEQUENTIAL and TERMINAL mode files
are available at the standard level: at the eztend
level, DIRECT mode is also available. The default
mode is SEQUENTIAL for all files except INPUT and
OUTPUT, for which the default mode is TERMINAL.

SEQUENTIAL and TERMINAL mode ASCII structure files
can have variable-length records (lines): DIRECT
mode files must have fixed-length records or
lines.

The declaration of a file in Pascal implies its
structure, but not its mode. For example, FILE OF
STRING (80) indicates BINARY structure: TEXT
indicates ASCII structure. An assignment like
F.MODE := DIRECT sets the mode~ this only works at
the extend level and is currently only needed to
set DIRECT mode.

TERMINAL MODE FILES

TERMINAL mode files always correspond to an
interactive terminal (keyboard and video display)
or printer. TERMINAL mode files, like SEQUENTIAL
mode files, are opened at the beginning of the
file for either reading or writing. Bytes are
accessed one after the other until the end of the
file is reached.

Operation of TERMINAL mode input for terminals
depends on the file structure (ASCII or BINARY).
For ASCII structure (type TEXT), entire lines are
read at one time. This permits the usual oper
ating system intraline editing, including back
space, advance cursor, and cancel. Characters are
echoed to the video display while the line is
being typed.

For BINARY structure TERMINAL mode (usually type
FILE OF CHAR), you can read characters as you type
them. No intraline editing or echoing is done.
This method permits screen editing, menu selec
tion, and other interactive programming on a
keystroke rather than line basis.

7-6 Pascal Manual

TERMINAL mode files use lazy evaluation to
properly handle normal interactive reading of the
keyboard. See the subsection, "Lazy Evaluation,"
in Section 15, "File-Oriented Procedures and
Functions," for details.

SEQUENTIAL MODE FILES

SEQUENTIAL mode files are generally disk files or
other sequential devices that support sequential
access. Like TERMINAL mode files, SEQUENTIAL mode
files are opened at the beginning of the file for
either reading or writing, and records are
accessed one after another until the end of the
file. Standard Pascal files are in SEQUENTIAL
mode by default (except for INPUT and OUTPUT).

DIRECT MODE PILES

DIRECT mode files are generally disk files or
other random access devices. DIRECT mode files
and the ability to access the mode of a file are
available at the extend level.

DIRECT mode ASCII structure files, as well as all
BINARY structure files, have fixed-length records,
where a record is either a line or file component.
(Here the term "record" re fers not to the normal
Pascal record type, but to a disk structuring
unit.)

DIRECT files are always opened for both reading
and writing, and records can be accessed randomly
by record number. There is no record number zero:
records begin with record number one.

Piles 7-7

INPUT AND OU'!'PUT

Two files, INPUT and OUTPUT, are predeclared in
every program. These files get special treatment
as program parameters (discussed in Section 16,
"Compi1able Parts of a Program") and are normally
required as parameters in the program heading:

PROGRAM ACTION (INPUT, OUTPUT)~

If there are no program parameters and the program
does not use the files INPUT and OUTPUT, the
heading can look like this:

PROGRAM ACTION~

However, you should include INPUT and OUTPUT as
program parameters if you use them:

WRITE (OUTPUT, • Prompt: .)
WRITE (. Prompt: .)

{Explicit use}
{Implicit use}

These examples would generate a warning if OUTPUT
was not declared in the program heading. The only
effect of INPUT and OUTPUT as program parameters
is to suppress this warning.

Although you can redefine the identifiers INPUT
and OUTPUT, the file assumed by text file input and
output procedures and functions (for example,
READ, EOLN) is the predeclared definition. The
procedures RESET (INPUT) and REWRITE (OUTPUT) are
generated automatically, whether or not INPUT and
OUTPUT are present as program parameters (you can
also use these procedures explicitly).

INPUT and OUTPUT have ASCII structure and TERMINAL
mode. They are initially connected to your key
board and video display and opened automatically.
At the extend level, you can change these
characteristics if you wish.

7-8 Pascal Manual

EX'l'END LEVEL 1/0

A file variable is really a record of type FCBFQQ,
called a file control block (FCB). At the extend
level, a few standard fields in this record help
you handle file modes and error trapping.

Along with access to certain FCB fields, eztend
level I/O also includes the following procedures:

ASSIGN
CLOSE
DISCARD

READFN
READSET
SEEK

See the subsection, "Extend Level I/O," in Section
15, "File-Oriented Procedures and Functions" for a
description of these procedures.

The following types are predeclared:

TYPE FILEMODES = (SEQUENTIAL, TERMINAL,
DIRECT) ;

FCBFQQ = RECORD
TRAP BOOLEAN;
ERRS BYTE;
MODE FILEMODES
END;

Use the normal record field syntax to access FeB
fields. For a file F, the fields are named
F.MODE, F.TRAP, and F.ERRS. You can change or
examine these fields at any time.

F.MODE: FILEMODES
This field contains the mode of the
file: SEQUENTIAL, TERMINAL, or
DIRECT. These values are constants
of the predeclared enumerated type
FILEMODES. The file system uses
the MODE field only during RESET
and REWRITE. Th us , chang ing the
MODE field of an open file has no
effect and is, in fact, discour
aged. Except for INPUT and OUTPUT,
which have TERMINAL mode, a file's
mode is SEQUENTIAL by default.

RESET and REWRITE change the mode
from SEQUENTIAL to TERMINAL if they
discover that the device being
opened is the keyboard, video, or

Files 7-9

F.TRAP: BOOLEAN

printer. This is useful in pro
grams designed to work ei ther
interactively or in batch mode.
You must set DIRECT mode before
RESET or REWRITE if you plan to use
SEEK on a file.

If this field is 'TRUE, error trap
ping for file F is turned on.
Then, if an input/output error
occurs, the program does not abort
and the error code can be examined.
Initially, F.TRAP is set to FALSE.
If FALSE and an I/O error occurs,
the program aborts.

F.ERRS: BYTE: This field contains the error code
for file F. An error code of zero
means no error; values from 1 to 15
imply an error condition: only the
values 0 through 15 are used. If
you attempt a file operation other
than CLOSE or DISCARD and F.ERRS is
not zero, the program innnediately
aborts if F.TRAP is FALSE. How
ever, if F.TRAP is TRUE, the
attempted file operation is ignored
and the program continues.

7-10

CLOSE and DISCARD do not examine
the initial value of F.ERRS, so
they do not cause an immediate
abort. Nevertheless, if CLOSE or
DISCARD themselves generate an
error condition, F.TRAP is used to
determine whether to trap the error
or to abort.

An operation ignored because of an
error condition does not change the
file itself, but can change the
buffer variable or READ procedure
input variables. (See Appendix A,
"Compiler Error Messages," for a
complete listing of error messages
and warnings.)

Pascal Manual

Also at the extend level, you can set the line
length for a textfile, as shown:

TYPE SMALLBUF = TEXT (16);
VAR RANDOMTEXT: TEXT (132);

Declaring line length applies only to DIRECT mode
ASCII structure files, where the line length is
the record length used for reading and writing.
Setting the line length has no effect on other
ASCII files.

At the extend level, you can also call procedures
and functions that have a formal reference param
eter of type FCBFQQ with an actual parameter of
the type FILE OF <type> or TEXT, or the identical
FCBFQQ type.

The FCBFQQ type is the underlying record type used
to implement the file type. The interface for the
FCBFQQ type (and any other types needed) is part
of the internal file system. Thus, procedures and
functions that reference FCBFQQ parameters can be
called with any file type, including predeclared
procedures and functions like CLOSE and READ.

An FCBFQQ type variable can be passed to proce
dures like READLN and WRITELN that require a
textfile.

Files 7-11

8 REFERENCE AND OTHER TYPES

The array, record, and set types discussed in
Section 6 let you describe data structures whose
form and size are predetermined and whose compo
nents are accessed in a standard way. The file
type, described in Section 7, "Files," is a
structure that varies in size but whose form and
means of access are predetermined.

This section discusses reference types, which
allow data structures that vary in size and form
and whose means of access is particular to the
programming problem involved. Also included are
notes on PACKED types and procedural and func
tional types.

REFERENCE TYPES

A reference to a variable or constant is an indi
rect way to access it. The pointer type is an
abstract type for creating, using, and destroying
variables allocated from an area called the heap.
The heap is a dynamically growing and shrinking
region of memory.

Our version of Pascal also provides two machine
oriented address types: one for addresses that
can be represented in 16 bits, the other for
addresses that require 32 bits.

Pointers are generally used for trees, graphs, and
list processing. Programs which use pointers are
portable.

Address types provide an interface to the hardware
and operating system; their use is frequently
unstructured, machine specific, low level, and
unsafe. Both pointers and address types are
discussed further in the following sections.

POINTER TYPES

A pointer m!:. is a set of values that point to
variables of a given type. The type of the vari
ables pointed to is called the reference m!:..
Reference variables are all dynamically allocated

Reference and Other Types 8-1

from the heap with the NEW procedure. Pascal
variables are normally allocated on the stack or
at fixed locations.

You can perform only the following actions on
pointers:

o assign them

o test them for equality and inequality with the
two operators = and <>

o pass them as value or reference parameters

o dereference them with the caret(A), or at the
extend level use the question mark (?) or the
at sign (@)

In declarations of pointer types, the caret ("')
prefixes the type pointed to: in program state
ments, it dereferences a pointer so that the value
pointed to can be assigned or operated on.

Example:

VAR P AWORD :
BEGIN NEW(P): {Allocate a word on the heap}

{and make P point to it}
p A

:= 1 {Assign to that word}
END:

Every pointer type includes the pointer value NIL.
NIL pointer value if the pointer does not point to
anything.

Pointers are frequently used to create list struc
tures of records, as shown in the following
example, where TREETIP is the pointer .type with
reference type TREE:

TYPE
TREETIP = "'TREE:
TREE = RECORD

VAL: INTEGER:
{Value of TREE cell.}

LEFT, RIGHT: TREETIP
{Pointers to other TREETIP}
{cells.}
{Note recursive definition.}

END:

8-2 Pasca1 Manual

Unlike most type declarations, the declaration for
a pointer type can refer to a type of which it is
itself a component, so that pointers can point to
themselves and to records of which they themselves
are fields.

The declaration for a pointer type can also refer
to a type declared later in the same TYPE section,
as in TREE and TREETIP in the previous example.
Such a declaration is called a forward pointer
declaration and permits recursive and mutually
recursive structures. Because pointers are so
often used in list structures, forward pointer
declarations occur frequently.

The compiler checks for an ambiguous pointer
declaration. Suppose the previous example was in
a procedure nested in another procedure that also
declared a type TREE. Then the reference type of
TREETIP could be either the outer definition or
the one following in the same TYPE section. The
compiler assumes the TREE type intended is the one
later in the same TYPE section and gives the
warning.

Pointer Type Assumed Forward

At the extend level, a pointer can have a super
array type as a reference type. The actual upper
bounds of the array are passed to the NEW pro
cedure to create a heap variable of the correct
size. Forward pointer declarations of the super
array type are not allowed.

Our version of Pascal conforms to the ISO require
ment for strict compatibility between pointers.
For example, you cannot declare two pointers with
different types and then assign or compare them,
even if they happen to point to the same under
lying type. For example:

VAR PRA
PRE

BEGIN PRA

"REAL;
"REAL;
.= PRE END; {This is illegal!}

Programs usually contain only one type declaration
for a pointer to a given type. In the TREETIP
example, the type of LEFT and RIGHT could be "TREE
instead of TREETIP, but then you could not assign

Reference and Other Types 8-3

var iables of type TREETIP to these fields. How
ever, it is sometimes useful to make sure that two
classes of pointers are not used together, even if
they point to the same type.

For example, suppose you have a type RESOURCE kept
in a list and declare two types, OWNER and USER,
of type ARESOURCE. The compiler would catch
assignment of OWNER values to USER variables and
vice versa and issue a warning message.

Pointers are implemented by this version of Pascal
as relative addresses in the data segment.

If the initialization-checking switch ($INITCK) is
on, a newly created pointer has an uninitialized
value. If the NIL checking switch is on, pointer
values are tested for various invalid values.
Invalid values include NIL, uninitialized values
that have been referenced to a heap item that has
been DISPOSEd, or a value that is not valid as a
heap reference.

ADDRESS TYPES

As a system implementation language, Pascal needs
a method of creating, manipulating, and derefer
encing actual machine addresses. The pointer type
is only applicable to variables in the heap.

There are two kinds of addresses:

o Relative, referred to by the keyword ADR. A
relative address is a l6-bit offset i"iltO the
default data segment. This takes two bytes of
storage.

o Segmented, referred to by the keyword ADS. A
segmented address is a l6-bit offset-and a
l6-bit segment. This takes four bytes of
storage.

8-4 Pascal Manual

As the following example shows, you use the key
words both as type clause prefixes and as prefix
operators:

VAR INT VAR INTEGER:
REAL VAR REAL:
A INT : ADR OF INTEGER:
{Declaration of ADR variable}
AS REAL : ADS OF REAL:
{Declaration of ADS variable}

BEGIN
INT VAR := li
{Normal integer variable}
REAL VAR:= 3.1415:
{Normal real variable}
A INT := ADR INT VAR:
{ADR used as operator)
AS REAL := ADS REAL VAR:
{ADS used as operatorT
WRITELN (A INTA,AS REALA)
{Note use of caret-to dereference}
(the address types.)
(Output is 1 and 3.1415.)

END.

In this version of Pascal, you can declare a vari
able that is an address:

VAR X : ADR OF BYTEi

Then, with the following record notation, you can
assign numeric values to the actual variable:

X.R := l6#FFFF

That is, a variable of type ADR can be used as a
variable of type

RECORD
R: WORD
END:

and a variable of type ADS can be used as a vari
able of type

RECORD
R:WORDi
S: WORD
END:

(al though, of course, ADR and ADS types are not
equivalent to the above RECORD types.)

Reference and Other Types 8-5

You can specify the assigned value in hexadecimal
notation. You can also assign to a segment field
with the ADS type using the field notation .S
(segment address). Thus, you can declare a vari
able of an ADS type and then assign values to its
two fields:

VAR Y : ADS OF WORD;

Y.S := 16#0001;
Y.R := l6#FFFF;

As shown above, any l6-bit value can be directly
assigned to address type variables, using the .R
and .S fields. The ADR and ADS operators obtain
these addresses directly. The example below
assigns addresses this way to the variables X and
Y:

VAR X
Y
W
B

ADR OF BYTE:
ADS OF WORD:
WORD:
BYTE:

X := ADR B:
Y := ADS W:

This version of Pascal supports these two pre
declared address types:

ADRMEM
ADSMEM

ADR OF ARRAY [0 •• 32765] OF BYTE:
ADS OF ARRAY [0 •• 32765] OF BYTE:

Since the type referred to by the address is an
array of bytes, byte indexing is possible. For
example, if A is of type AD RM EM , then A""[15] is
the byte at the address A.R + 15, where .R speci
fies an actual l6-bit address.

8-6 Pascal Manual

You can use the address types for a constant
address (a form of structured constant): you can
also take the address of a constant or expression.
For example:

TYPE ADRWORD
ADSWORD

VAR W: WORD;

ADR OF WORD;
ADS OF WORD;

R: ADRWORD;
CONST CONADR = ADRWORD (1234);
BEGIN

W :=
{Get
W :=
{Get
W :=
{Get
R :=
{Get
R :=
{Get

END;

CONADR'" :
word at address l234}
ADSWORD (0, 32)"';
word at .address 32: 0}
(ADS W). S:
value of DS register}
ADR '123':
address of a constant value}
ADR (W DIV 2+ 1):
address of expression value}

However, constants or functions that yield addres
ses cannot currently be used as the target of an
assignment (or as a reference parameter or WITH
record), as shown:

VAR AW : ADSWORD:
CONST ADSCON = ADSWORD (256, 64):
FUNCTION SOME ADDRESS: ADS\vORD:
BEGIN

{OK}
{OK}

ADSWORD (0, 32)'" := W: {NOT PERMITTED}
ADSCON'" := 12: {NOT PERMITTED}
SOME ADDRESS'" := 100: {NOT PERMITTED}
AW'" := W: {Permitted. AW is neither a}

{constant nor function call}
END:

Reference Parameters

You can pass the segmented address of a variable
(ADS) the same way that you can pass a relative
address, by using either of the keywords VARS or
CONSTS as a parameter prefix (instead of VAR and
CONST) •

If P is of type ADS of FOO, then p'" can be passed
to a VARS formal parameter, such as VARS X: FOO.
However, it cannot be passed to a VAR formal
parameter.

Reference and Other Types 8-7

When only relative addresses are
default data segment is assumed.
ADR variables and VAR parameters.

specified, the
This applies to

A VAR parameter is passed as the default data
segment offset of a variable. For a VARS param
eter both the segment address and the offset value
are passed.

Both VARS parameters and ADS variables have the
offset (.R) value in the WORD with the lower
address and the segment (.S) value at the higher
address.

USING THE ADDRESS TYPES

The caret (A) dereferences ADR and ADS types in
program statements, so that the value pointed to
can be assigned or operated on. It also derefer
ences a pointer in program statements, and, in
pointer type declarations, the caret prefixes the
type pointed to.

The caret (...) has a higher precedence than the
unary operators ADR or ADS. Because the caret (A)
selector can appear after any address variable to
produce a new variable, it can occur, for example,
in the target of an assignment, in a reference
parameter, as well as in expressions. Since ADS
and ADR are prefix operators, they are used only
in expressions, where they apply only to a vari
able, constant, or expression.

Pascal is a strongly typed language: two pointer
variables are compatible only if they have the
same type, not if they only point to the same
type. However, two address types are c;onsidered
the same type if they are both either ADR or ADS
types. For example, you can assign an ADR of WORD
to an ADR of STRING (200). Such an as signment
would make it easy to wipe out part of memory by
assigning a variable of type STRING (200) to the
200 bytes starting at the address of a WORD
variable.

If PI is of type ADR OF STRING (200) and P2 is of
any ADR OF type, the assignment PIA := generates
fast code with no range checking. Although this
capability is not safe, operating systems and
other software sometimes require it.

8-8 Pascal Manual

ADR and ADS are not compatible with each other,
but the .R notation should overcome or reduce the
problem.

Within limits, you can combine and intermingle the
two address types. The following example illus
trates the rules that apply:

VAR
P: ADS OF DATA;
{p is segmented address of some type DATA.}
Q: ADR OF DATA;
{Q is relative address of type DATA.}
X: DATA;
{X is some variable of type DATA.}

BEGIN
P := ADS X;
{Assign the address of X to P.}
X := pA;
{Assign to X the value pointed to by P.}
P := ADS pA;
{Assign to p the address of the value whose}
{address is pointed to by P. Pis}
{unchanged}
{by this assignment.}
Q := ADR X;
{Assign the relative address of X to Q.}
Q.R := (ADR X).R;
{Assign the relative address of X to Q,}
{using the WORD type.}
P : = ADS QA;
{Assign address of variable at Q to P.}
{You can always apply ADS to ADRA.}
Q := ADR pA;
{Illegal; you cannot apply ADR to ADS A.}
P.R := 16#8000;
{Assign 32768 to piS offset field.}
P.S := 16;
{Assign 16 to piS segment field.}
Q.R := P.R + 4;
{Assign piS offset plus 4 to be the value of}
{Q. }

END;

See also the examples given in the subsection,
"Address Types."

Reference and Other Types 8-9

NOTES ON REFERENCE TYPES

The address type and pointer type should be
treated as two distinct types. The pointer type,
in theory, is just an undefined mapping from a
variable (pointer) to another variable (refer
ence.) The method of implementation is undefined.
However, the address type deals with actual
machine addresses.

Therefore, the pointer type is an abstract data
type that works the same in all implementations:
and the address type is generally not portable.
Address types are portable only if you restrict
yoursel f to using ADS and never assign to fields
.R and .S. .

The following special facilities that use pointer
variables are not allowed with address variables.

o The NEW and DISPOSE procedures are only
permi t ted with pointers. NIL does not apply
to the address type. There are no special
address values for empty, uninitialized, or
invalid addresses.

o The type lIaddress of super array type ll is not
supported in the same way as IIpointer to super
array type. II Getting the address of a super
array variable is still permitted with ADR and
ADS. For example, if a procedure or function
formal parameter is declared as VAR S: STRING,
then within the procedure or function, the
expression ADS S is fine. Unlike a pointer,
the address does not contain any upper bounds.

8-18 Pascal Manual

PACKED TYPES

Any of the structured types can be PACKED. This
could economize storage at the possible expense of
access time or access code space. However, in
this version of Pascal, some limitations on the
use of PACKED structures currently apply:

o In sets, files, and arrays of characters, the
prefix PACKED is always ignored, except for
type checking, and has no actual effect on
the representation of records and other
arrays.

Furthermore, PACKED can only precede one of
the structure names ARRAY, RECORD, SET, or
FILE; it cannot precede a type identifier.
For example, if COLORMAP is the identifier for
an unpacked array type, "PACKED COLORMAP" is
not accepted.

o A component of a PACKED structure cannot be
passed as a reference parameter or used as the
record of a WITH statement, .unless the struc
ture is of a string type. Also, obtaining the
address of a PACKED component with ADR or ADS
is not permitted.

o A PACKED prefix only applies to the structure
being defined: any components of that struc
ture that are also structures are not packed
unless you explicitly include the reserved
word PACKED in their definition. The only
exception to this rule, n-dimensional arrays,
is discussed in the subsection, "Arrays" in
Section 6, "Arrays, Records, and Sets."

Reference and Other Types 8-11

PROCEDURAL AND FUNCTIONAL TYPES

Procedural and functional types are different from
other Pascal types. (Wherever the term
"procedural" is used from hereon, both procedural
and functional is implied.) You cannot declare an
identifier for a procedural type in a TYPE
section: nor can you declare a variable of a
procedural type. However, you can use procedural
types to declare the type of a procedural
parameter, and in this sense they conform to the
Pascal idea of a type.

A procedural type defines a procedure or function
heading and gives the parameters. For a function,
it also defines the result type. The syntax of a
procedural type is the same as a procedure or
function heading, including any attributes. There
are no procedural variables in this version of
Pascal, only procedural parameters.

Example of a procedural type declaration:

PROCEDURE ZERO (FUNCTION FUN (X, Y: REAL):
REAL)

The parameter identifiers in a procedural type (X
and Y in the previous example) are ignored: only
their type is important.

See the subsection "Procedural and Functional
Parameters" in Section 13, "Introduction to Pro
cedures and Functions," for more information about
procedural types.

8-12 Pascal Manual

9 CONSTANTS

WHAT IS A CO.START?

A constant is a value that is known before a pro
gram starts and that will not change as the
program progresses. Examples of constants include
the number of days in the week and your birth
date.

You can give a constant an identifier, but you
cannot alter the value associated with that
identifier during the execution of the program.
When you declare a constant, its identifier be
comes a synonym for the constant itself.

Each constant implicitly belongs to some category
of data:

o Numeric constants are
number types: REAL 8 ,
INTEGER4.

one of the several
INTEGER, WORD, or

o Character constants are strings of characters
enclosed in single quotation marks and are
called string literals in this version of
Pascal.

o Structured constants, available at the extend
level, include constant arrays, records, and
typed sets.

Constant expressions, also available at the extend
level, let you compute a constant based on the
values of previously declared constants in
expressions.

Numeric constants, character constants, structured
constants, and constant expressions are each
discussed in a subsection below.

The identifiers defined in an enumerated type are
constants of that type and cannot be used directly
with numeric (or string) constant expressions.
These identifiers can be used with the ORD, WRD,
or CHR functions (for example, ORD (BLUE».

Constants 9-1

TRUE and FALSE are predeclared constants of type
BOOLEAN and can be redeclared. NIL is a constant
of any pointer type: however, because it is a
reserved word, you cannot redefine it. Also, the
null set is a constant of any set type.

Numeric statement labels have nothing to do with
numeric constants: you cannot use a constant
identifier or expression as a label. Internally,
all constants are limited in length to a maximum
of 255 bytes.

9-2 Pascal Manual

DECLARING CONSTANT IDENTIFIERS

Declaring a constant identifier introduces the
identifier as a synonym for the constant. You put
these declarations in the CONST section of a com
piland, procedure, or function.

The general form of a constant identifier decla
ration is the identifier followed by an equal sign
and the constant value.

The following program fragment includes four
statements that identify constants (beginning
after the word "CONST \I) :

PROGRAM DEMO (INPUT, OUTPUT);
CONST DAYSINYEAR = 365;

DAYSINWEEK = 7;
NAMEOFPLANET = 'EARTH':
WORKDAYS = DAYSINWEEK - 2:

In this example, the numbers 365 and 7 are numeric
constants: 'EARTH' is a string literal constant
and must be enclosed in single quotation marks.

When you compile a program, the constant identi
fiers are not actually defined until after the
declarations are processed. Thus, a constant
declaration like the following has no meaning:

N = -N

The ISO standard defines a strict order in which
to set out the declarations in the declaration
section of a program:

CONST MAX
TYPE NAME
VAR FIRST

10 :
PACKED ARRAY [l •• MAX] OF CHAR:
NAME:

Our version of Pascal, however, relaxes this order
and, in fact, allows more than one instance of
each kind of declaration:

TYPE COMPLEX = RECORD R, I : REAL END:
CONST PII = COMPLEX (3.1416, 00):
{Structured constant of type COMPLEX}
VAR PIX: COMPLEX:
TYPE IVEC = ARRAY [1 •• 3J OF COMPLEX;
CONST PlVEC = lVEC (PII, PII, COMPLEX (0.0,

1.0»:

Constants 9-3

NUMERIC CONSTANTS

Numeric constants are irreducible numbers such as
45, 12.3, and 9E12. The notation of a numeric
constant generally indicates its type: REAL8,
INTEGER, WORD, or INTEGER4.

Numbers can have a leading plus sign (+) or minus
sign (-), except when the . numbers are within
expressions. Therefore:

ALPHA := +10

ALPHA + -10

Blanks embedded
permitted.

{is legal}

{is illegal}

within constants are not

The compiler truncates any identifier that exceeds
a maximum of 31 characters and gives a warning
when this occurs.

The syntax for numeric constants applies not only
to the actual text of programs, but also to the
content of textfiles read by a program.

Examples of numeric constants:

123
+12.345
-1.7E-10

17E+3
-17E3

0.17
007

-26.0
26.0E12
lEI

Numeric constants can appear in any of the
following:

0 CONST sections

0 expressions

0 type clauses

0 set constants

0 structured constants

0 CASE statement CASE constants

0 variant record tag values

The different types of numeric constants are
discussed in detail in the following sections.

9-4 Pascal Manual

REAL CONSTANTS

The type of a number is REAL if the number in
cludes a decimal point or exponent. Real numbers
use the IEEE format. For REAL4 values, the range
is barely seven significant digits (24 bits), with
an exponent range of E-38 to E+38. REAL8 values
have a range of over fifteen significant digits
(53 bits) and an exponent range of E-306 to E+306.

There is, however, a distinction between REAL
values and REAL constants. In IEEE format, REAL
numeric constants are kept in double precision and
so can range from about lE-306 to lE306.

The compiler issues a warning if there is not at
least one digit on each side of a decimal point.
A REAL number starting or ending with a decimal
point can be misleading. For example, because
left parenthesis-period substitutes for left
square bracket, and right parenthesis-period for
right square bracket, the following:

(.1+2.)

is interpreted as:

[1+2J

Scientific notation in REAL numbers (as in 1.23E-6
or 4E7) is supported. The decimal point and expo
nent sign are optional when an exponent is given.
Both the uppercase "E" and lowercase "e" are
allowed in REAL numbers. liD II and "d" are also
allowed to indicate an exponent. This provides
compatibility with other languages.

All real constants are stored in REAL8 (double
precision) format. If you require a single preci
sion REAL4 constant, declare a REAL4 variable and
give it your real constant value in a VALUE
section. (You may wish to give this variable the
READONLY attribute as well.)

Constants 9-5

III'l'EGER, WORD, AND III'l'EGER4 CONSTANTS

The type of a non-REAL numeric constant is
INTEGER, WORD, or INTEGER4. Table 9-1 shows the
range of values that constants of each of these
types can assume.

Table 9-1. INTEGER, WORD, and INTEGER4
Constants.

~

INTEGER

WORD

Range of Values Predeclared
(minimum/maximum) Constant

-MAXINT to MAXINT MAXINT=32767

o to MAXWORD MAXWORD=65535

INTEGER4 -MAXINT4 to MAXINT4 MAXINT4=2147483547

MAXINT, MAXWORD, and MAXINT4 are all predeclared
constant identifiers.

One of three things happens when you declare a
numeric constant identifier:

o A constant identifier from -MAXINT to MAXINT
becomes an INTEGER.

o A constant identifier from MAXINT+l to MAXWORD
becomes a WORD.

o A constant
-MAXINT-l or
INTEGER4.

identifier from -MAXI NT 4
MAXWORD+l to MAXINT4 becomes

to
an

However, any INTEGER type constant (including
constant expressions and values from -32767 to -1)
automatically changes to type WORD if necessarYi.
if the INTEGER value is negative, 65536 is added
to it and the underlying l6-bit value is not
changed.

For example, you can declare a subrange of type
WORD as WRD(0) •• 127i the upper bound of 127 is
automatically given the type WORD. The reverse is
not true: constants of type WORD are not auto
matically changed to type INTEGER.

9-6 Pascal Manual

The ORO and WRD functions also change the type of
an ordinal constant to INTEGER or WORD. Also, any
INTEGER or WORD constant automatically changes to
type INTEGER4 if necessary, but the reverse is not
true.

Examples of relevant conversions are given in
Table 9-2.

At the standard level, any numeric constant (that
is, a literal or identifier) can have a plus (+)
or minus (-) sign.

Table 9-2. Constant Conversions.

Constant Assumed Type

o INTEGER could become WORD or INTEGER4

-32768 INTEGER4 only

32768 WORD could become INTEGER 4

0 •• 20000 INTEGER subrange

0 •• 50000 WORD subrange

0 •• 80000 Invalid: no INTEGER4 subranges

-1 •• 50000 Invalid: becomes 65535 •• 50000 (that
is, -1 is treated as 65536)

NONDEClMAL NUMBERING

At the extend level, our version of Pascal sup
ports not only decimal notation, but also numbers
in hexadecimal, octal, binary, or other base
numbering (where the base can range from 2 to 36).
The number sign (#) acts as a radix separator,
that is, the number preceding it is the radix of
the number following the sign.

Constants 9-7

Examples of numbers in nondecimal notation:

l6#FF02
10#987

8#776
2#111100

hexadecimal
decimal
octal
binary

Leading zeros are recognized in the radix, so a
number like 008#147 is permitted.

In hexadecimal notation, upper
letters A through F are permitted.
constant without the radix (such
assumed to be hexadecimal.

or lowercase
A nondecimal
as #44) is

Nondecimal notation does not imply a WORD constant
and can be used for INTEGER, WORD, or INTEGER4
constants. You must not use nondecimal notation
for REAL8 constants or numeric statement labels.

9-8 Pascal Manual

CHARACTER STRINGS

Most Pascal manuals refer to sequences of charac
ters enclosed in single quotation marks as string.
In this version of Pascal, they are called string
literals to distinguish them from strint constants, which can be expressions, or values 0

the STRING type.

A string constant contains from 1 to 255 charac
ters. A string constant longer than one character
is of type PACKED ARRAY [l •• n] OF CHAR, also known
in this version of Pascal as the type STRING (n).
A string constant that contains just one character
is of type CHAR. However, the type changes from
CHAR to PACKED ARRAY [1 •• 1] OF CHAR, that is,
STRING (1), if necessary. For example, a constant
('A') of type CHAR could be assigned to a variable
of type STRING (1).

A string literal must fit on a line.

String literals are usually enclosed in single
quotation marks. The compiler recognizes string
literals enclosed in double quotation marks (") or
accent marks ('), instead of single quotation
marks, but issues a warning message when it
encounters them.

A literal apostrophe (single quotation mark) is
represented by two adjacent single quotation marks
(for example, 'DON' 'T GO').

The null string (II) is not permitted.

The constant expression feature (discussed in the
subsection, "Constant Expressions") permits string
constants made up of concatenations of other
string constants, including string constant
identifiers, the CHR () function, and structured
constants of type STRING(n). This is useful for
representing string constants that are longer than
a line or that contain nonprinting characters.
For example:

'UNDERLINED TEXT' * CHR(13)
* STRING(DO 15 OF ' ')

The last string in the example above is a struc
tured constant. Structured constants are dis
cussed in the subsection below.

Constants 9-9

The ~STRING feature of this version of Pascal adds
the super array type LSTRING. LSTRING is similar
to PACKED ARRAY [0 •• n] OF CHAR, except that
element 0 contains the length of the string, which
can vary from 0 to a maximum of 255. If neces
sary, a constant of type STRING (n) or CHAR
changes automatically to type LSTRING. (See the
subsection, "LSTRINGs," in Section 6, "Arrays,
Records, and Sets.")

NULL is
LSTRING,
equal to
since it
constant

a predeclared constant for the null
wi th the element 0 (the only element)
CHR (0). NULL cannot be concatenated,
is not of type STRING. It is the only

of type LSTRING.

Examples of string literal declarations:

CONST

NAME = 'John Jacob'i

LETTER = 'Z':

QUOTED QUOTE = III Ii
NULL STRING = NULLi
NULL-STRING = "i

DOUBLE = "OK":

9-18 Pascal Manual

{a legal string)
{literal)
{LETTER is of type}
{CHAR)
{Quoted quote}
{legal)
{illegal)
{generates a warning}

STRUCTURED CONSTANTS

Standard Pascal permits only the numeric and
string constants described above, the pointer
constant value NIL, and untyped constant sets.

At the extend level, however, you can use constant
arrays, records, and typed sets. Structured con
stants can be used anywhere a structured value is
allowed, in expressions as well as in CONST and
VALUE sections.

o An array constant consists of a type identi
fier followed by a list of constant values in
parentheses separated by commas.

Example of an array cons~ant:

TYPE

CONST
VAR
VALUE

VECT TYPE ARRAY [-2 •• 2] OF
INTEGER;

VECT = VECT TYPE (5, 4, 3, 2,
A : VECT TYPE;
A := VECT:

l) :

o A record constant consists of a type identi
fier followed by a list of constant values in
parentheses separated by commas.

Example of a record constant:

TYPE REC TYPE RECORD
A, B: BYTE;
C, D: CHAR;
END;

CONST RECR = REC TYPE (#20, 0, I A I, CHR
(20T) ;

VAR FOO : REC TYPE;
VALUE FOO := RECR:

o A set constant consists of an optional set
type identifier followed by set constant ele
ments in square brackets. Set constant
elements are separated by commas. A set con
stant element is either an ordinal constant,
or two ordinal constants separated by two dots
to indicate a range of constant values.

Constants 9-11

Example of a set constant:

TYPE COLOR TYPE = SET OF
(RED, BLUE, WHITE, GREY, GOLD):

CONST SETC = COLOR TYPE [RED, WHITE
GOLDJ~

VAR RAINBOW: COLOR TYPE:
VALUE RAINBOW :=SETC:-

A constant wi thin a structured array or record
constant must have a type that can be assigned to
the corresponding component type. For records
wi th variants, the value of a constant element
corresponding to a tag field selects a variant,
even if the tag field is empty. The number of
constant elements must equal the number of compo
nents in the structure, except for super array
type structured constants. Nested structured con
stants are permitted.

An array or record constant nested within another
structured constant must still have the preceding
type identifier. For this reason, a super array
constant can have only one dimension (see the sub
section, "Super Arrays, II in Section 6, "Arrays,
Records and Sets. ") The size of the represen
tation of a structured constant must be from 1 to
255 bytes. I f this 255-byte limit is a problem,
dec lare a structured variable with the READONLY
attribute, and initialize its components in a
VALUE section.

Example of a complex structured constant:

TYPE R3 = ARRAY [1 •• 3J OF REAL:
TYPE SAMPLE = RECORD I: INTEGER:

A: R3:
CASE BOOLEAN OF
TRUE: (S: SET OF

'A' •• 'Z ' :
P: "'SAMPLE):

FALSE: (X: INTEGER):
END:

CONST SAMP CONST = SAMPLE (27, R3 (1.4, 1.4,
- 1.4),

TRUE, [I A I , I E I , I I I J, NIL):

Constant elements can be repeated with the phrase
DO <n> OF <constant>, so the previous example
could have included "00 3 OF 1.4" instead of "1.4,
1.4, 1.4".

9-12 Pascal Manual

Set constant expressions, such as [' 'J + LETTERS,
or file constant expressions are not supported.
The constant 'ABC' of type STRING (3) is equiva
lent to the structured constant STRING (' A', 'B',
'C':). LSTRING structured constants are not per
mitted: use the corresponding STRING constants
instead.

Structured constants (and other structured values,
such as variables and values returned from
functions) can be passed by reference using CONST
parameters. (For more information, see the sub
section, "Procedural and Functional Parameters" in
Section 13, "Introduction to Procedures and
Functions.")

There are two kinds of set constants: one with an
explicit type, as in CHARSET ['A' •• 'z'J, and one
with an unknown type, as in [20 •• 40]. You can use
either in an expression or to define the value of
a constant identi fier. Set constants with an
explicit type can also be passed as a reference
(CONST) parameter. Sets of unknown type are
unpacked, but the type changes to PACKED if neces
sary. Passing sets by reference is generally more
efficient than passing them as value parameters.

Constants 9-13

CONSTANT EXPRESSIONS

Constant expressions in our version of Pascal
allow you to compute constants based on the values
of previously declared constants in expressions.
Constant expressions can also occur within program
statements.

Example of a constant expression declaration:

CONST HEIGHT OF LADDER = 6~
HEIGHT-OF-MAN = 6:
REACH ; HEIGHT OF LADDER +

HEIGHT:OF:MAN:

Because a constant
constants that you
following is illegal:

expression can
have declared

CONST MAX A + B~
A = l0~
B 20:

contain
earlier,

only
the

Certain functions can be used within constant
expressions. For example:

CONST A LOBYTE (-23) DIV 23~
B = HIBYTE (-A) ~

Table 9-3 shows the functions and operators you
can use with REAL, INTEGER, WORD, and other
ordinal constants, such as enumerated and subrange
constants.

Examples of constant expressions:

CONST FOO = (100 + ORD('X'» * 8#100 +
ORD ('Y') ~

MAXSIZE = 80~
X = (MAXSIZE > 80) OR (IN_TYPE

PAPERTAPE) ~
{X is a BOOLEAN constant}

In addition to the operators shown in Table 9-3
for numeric constants, you can use the string
concatenation operator (*) with string constants,
as follows:

9-14

CONST A 'abcdef'~
M CHR (109); {CHR is allowed}
ATOM = A * 'ghijkl' * M:
{ATOM = 'abcdefghijklm'}

Pascal Manual

Note that the asterisk (*) works only with string
constants and not with variables. For variable
strings you must use the procedure CONCAT.

These constants can span more than one line, but
are still limited to the 255 character maximum.
These string constant expressions are allowed
wherever a string literal is allowed, except in
metacornrnands.

Table 9-3. Constant Operators and Functions.

Type of Operand

REAL, INTEGER

INTEGER, WORD

Ordinal types

Boolean

ARRAY

Any type

Operators and Functions

Unary plus (+)
Unary minus (-)

+ DIV OR HYBYTE(}
MOD NOT LOBYTE ()

* AND XOR BYWORD (}

< <= CHR(} LOWER ()
> >= ORD90 UPPER(}

<> WRD ()

AND NOT OR

LOWER () UPPER()

SIZEOF () RETYPE ()

Constants 9-15

10 VARIABLES AND VALUES

WHAT IS A VARIABLE?

A variable is a value that is expected to change
during the course of a program. Every variable
must be of a specific data type. A variable can
have an identifier.

If A is a variable of type INTEGER, then the use
of A in a program actually refers to the data
denoted by A. For example:

VAR A: INTEGER;
BEGIN

A := 1;
A := A + 1:

END;

These statements would first assign a value of 1
to the data denoted by A, and subsequently assign
it a value of 2.

Variables are manipulated by using some sort of
notation to denote the variable; in the simplest
case, a variable identifier. In other cases,
variables can be denoted by array indexes or
record fields or the dereferencing of pointer or
address variables.

The compiler itself can sometimes create
variables, allocated on the stack, in
stances such as the following:

IIhidden ll

circum-

o When you call a function that returns a
structured result, the compiler allocates a
variable in the caller for the result.

o When you need the address of an expression
(for example, to pass it as a reference param
eter or to use it as a WITH statement record
or with ADR or ADS), the compiler allocates a
variable for the value of the expression.

o The initial and final values of a FOR loop can
require allocating a variable.

Variables and Values 18-1

o When the compiler evaluates an expression, it
can allocate a variable to store intermediate
results.

o Every WITH statement requires a variable to be
allocated for the address of the WITH's
record.

18-2 Pascal Manual

DECLARING A VARIABLE

A variable declaration consists of the identifier
for the new variable, followed by a colon and a
type. You can declare variables of the same type
by giving a list of the variable identifiers,
followed by their common type. For example:

VAR XCOORD, YCOORD: REAL

A variable must be declared if it is used in a
statement.

You can declare a variable in any of the following
locations:

o VAR section of a program, procedure, function,
module, interface, or implementation

o formal parameter list of a procedure, func
tion, or procedural parameter

In a VAR section, you can declare a variable to be
of any legal type; in a formal parameter list, you
can include only a type identifier (that is, you
cannot declare a type in the heading of a pro
cedure or function). For example:

PROCEDURE NAME (GEORGE: ARRAY [1 •• 10J OF
COLOR)

{Illegal; GEORGE is of a new type.}

TYPE CLRS = ARRAY [1 •• 10J OF COLOR;
PROCEDURE NAME (GEORGE: CLRS):
{Legal: CLRS is a type identifier.}

Each declaration of a file variable F of type FILE
OF T implies the declaration of a buffer variable
of type T, denoted by FA. At the extend level, a
file declaration also implies the declaration of a
record variable of type FCBFQQ, whose fields are
denoted as F.TRAP, F.ERRS, F.MODE, and so on. See
the subsections "The Buffer Variable" and "Extend
Level I/O" in Section 7, "Files," for further
information on buffer variables and FCBFQQ fields,
respectively.

Variables and Values UJ-3

THE VALUE SECTION

You use the VALUE section to give initial values
to variables in a program, module, procedure, or
function. You can also initialize the variable in
an implementation, but not in an interface. (See
Section 16, "Compi1ab1e Parts of a Program, II for
information on implementations and interfaces.)

The VALUE section can include only statically
allocated variables, that is, any variable
declared at the module, program, or implementation
level, or a variable with the STATIC or PUBLIC
attribute. Variables with the EXTERN or ORIGIN
attribute cannot occur in a VALUE section, since
they are not allocated by the compiler.

The VALUE section can contain assignments of
constants to entire variables or to components of
variables. For example:

VAR ALPHA REAL:
ID STRING (7):
I INTEGER:

VALUE
ALPHA := 2.23:
ID[l] := 'J' :
I := 1;

However, within a VALUE section, you cannot assign
a variable to another variable. The last line in
the following example is illegal, since "I II must
be a constant:

CONTS MAX = H?J:
VAR I, J : INTEGER;
VALUE I := MAX:

J : = I;

If the $ROM metacornrnand is off, variables are
ini tia1ized by loading the static data segment.
If the $ROM metacornrnand is on, the VALUE section
generates an error message, since ROM-based
systems usually cannot statically initialize data.

18-4 Pascal Manual

USING VARIABLES AND VALUES

At the standard level, denotation of a variable
can designate one of three things:

o an entire variable

o a component of a variable

o a variable referenced by a pointer

The value assigned to a variable can be any of the
following:

o a variable

o a constant

o a function designator

o a component of a value

o a variable referenced by a reference value

In an assignment statement, the left-hand
denotes a variable (or a component of one),
the right hand side denotes a value.

side
and

At the extend level, a function can also return an
array, record, or set. The same syntax used for
variables can be used to denote components of the
structures these functions return. This feature
also allows you to dereference a reference type
that is returned by a function. However, you can
only use the function designator as a value, not
as a variable. For example, the following is
illegal:

F (X, y)" := 42:

Also at the extend level, you can declare
constants of a structured type. Components of a
structured constant use the same syntax as vari
ables of the same type. (See the subsection
"Constant Expressions II in Section 9, IIConstants"
for further discussion of this topic.)

Variables and Values 18-5

Examples of structured constant components:

TYPE REAL3 = ARRAY [1 •• 3] OF REAL;
(an array type}
CONST PIES = REAL3 (3.14, 6.28, 9.42);
(an array constant}

X := PIES [1] * PIES [3]:·
{that is, 3.14 * 9.42}
Y : = REAL3 (1.1, 2.2, 3.3) [2];
{that is, 2.2}

COMPONENTS OF ENTIRE VARIABLES AND VALUES

At the standard level, a variable identifier de
notes an entire variable. A variable, function
designator, or constant denotes an entire value.

A component of a variable or value is denoted by
the identifier followed by a selector that speci
fies the component. The form of a selector
depends on the type of structure (array, record,
file, or reference).

Indexed Variables and Values

A component of an array is denoted by the array
variable or value, followed by an index expres
sion. The index expression must be assignment
compatible with the index type in the array type
declaration. (Compatibil i ty is discussed in the
subsection "Type Compatibility" in Section 4,
"Introduction to Data Types. It) An index type must
always be an ordinal type. The index itself must
be enclosed in brackets following the array
identifier.

Examples of indexed variables and values:

ARRAY OF CHAR Etc']
(Denotes-the element of the array}
(corresponding to the index C.}

'STRING CONSTANT' [6]
(Denotes the 6th element, the letter 'G'.}

1"-6 Pascal Manual

BETAMAX [12J [-3]
BETAMAX [12,-3]
{These two are equivalent.}

ARRAY FUNCTION (A, B) [C, D)
{Denotes a component of a two-dimensional}
{array returned by ARRAY FUNCTION (A, B).}
{A and B are actual parameters}

You can specify the current length of an LSTRING
variable, LSTR, in either of two ways:

o with the notation LSTR [0J, to access the
length as a CHAR component

o with the notation LSTR.LEN, to access the
length as a BYTE value

Field Variables and Values

A component of a record is denoted by the record
variable or value followed by the field identifier
for the component. A period (.) separates the
fields. In a WITH statement, you give the record
variable or value only once. Wi thin the WITH
statement, you can use the field identifier of a
record variable directly.

Examples of field variables and values:

PERSON.NAME := 'PETE':

PEOPLE.DRIVER.NAME := 'JOAN':

WITH PEOPLE.DRIVERS DO NAME := 'GERlt;

RECURSING FUNC ('XYZ').BETA:
{Selects BETA field of record returned}
{by the function named RECURSIVE_FUNC.}

COMPLEX_TYPE (1.2, 3.l4).REAL_PART;

Record field notation also applies to files for
FCBFQQ fields, to address type values for numeric
representations, and to LSTRINGs for the current
length.

Variables and Values 19-7

File Buffers and Fields

At any time, only one component of a file is
accessible. The accessible component is deter
mined by the current file position and represented
by the buffer variable. Depending on the status
of the buffer variable, obtaining its value can
involve first reading the value from the file.
(This is called lazy evaluation; see the sub
section "Lazy Evaluation" in Section 15, "File
Oriented Procedures and Functions," for details.)

If a file buffer variable is passed as a reference
parameter or used as a record of a WITH statement,
the compiler issues a warning to alert you to the
fact that, after the position of the file is
changed with a GET or PUT procedure; the value of
the buffer variable could be incorrect.

Examples of file reference variables:

INPUT A

ACCOUNTS PAYABLE.FILE A

REFERENCE VARIABLES

Reference variables or values denote data that
refers to some data type. There are three kinds
of reference variables and values:

o pointer variables and values

o ADR variables and values

o ADS variables and values

In general, a reference variable or value "points"
to a data object. Thus, the value of a reference
variable or value is a reference to that data
object. To obtain the actual data object pointed
to, you must "dereference" the reference variable
by appending a caret (A) to the variable or value.·

18-8 Pascal Manual

Example using pointer values:

VAR P, a : AINTEGER:
{p and a are pointers to integers.}

NEW (P): NEW (a):
{p and a are assigned reference values to}
{regions in memory corresponding to data}
{objects of type INTEGER.}

P : = a:
{p and a now point to the same region}
{in memory.}

p A
:= 123:

{Assigns the value 123 to the INTEGER value}
{pointed to by P. Since a points to this}
{location as well, oA is also assigned 123.}

Using NILA is an error (since a NIL pointer does
not reference anything).

At the extend level, you can also append a caret
(A) to a function designator for a function that
returns a pointer or address type. In this case,
the caret denotes the value referenced by the
return value. This variable cannot be assigned to
or passed as a reference parameter.

Examples of functions returning reference values:

DATAl := FUNKI {I, J)A
{FUNKI returns a reference value. The caret}
{dereferences the reference value returned,}
{assigning the referenced data to DATAl}

DATA2 := FUNK2 (K, L)A. FOO [2]
{FUNK2 returns a reference value. The caret}
{dereferences the reference value returned.}
{In this case, the dereferenced value is a}
{record. The array component FOO [2] of that}
{record is assigned to the variable DATA2.}

If P is of type ADR OF some type, then P.R denotes
the address value of type WORD. If P is of type
ADS OF some type, then P.R denotes the offset por
tion of the address and P. S denotes the segment
portion of the address. Both portions are of type
WORD.

Examples of address variables:

BUFF ADR.R
DATA-AREA.S

Variables and Values 18-9

ATTRIBUTES

At the extend level, a variabie declaration or the
heading of a procedure or function can include one
or more attributes. A variable attribute gives
special information about the variable to the
compiler.

Table 10-1 displays the attributes provided for
variables. Each of the variable at tr ibutes is
discussed in detail in the subsections below.

Ta~le 18-1. Attributes for Variables.

Attribute Variable

STATIC

PUBLIC

EXTERN

ORIGIN

PORT

READONLY

Allocated at a fixed location,
not on the stack.

Accessible by other modules with
EXTERN, implies STATIC.

Declared PUBLIC in another
module, implies STATIC.

Located at specified address,
implies STATIC.

I/O address, implies STATIC.

Cannot be altered or written to.

EXTERN, PUBLIC, and ORIGIN also apply. to pro
cedures and functions. (EXTERN is a procedure and
function directive: PUBLIC and ORIGIN are proce
dure and function attributes. See the subsection
"Directi ves and At tr ibutes" in Section 13,
"Introduction to Procedures and Functions," for a
discussion of procedure and function attributes
and directives.)

You can only give attributes for variables in a
VAR section. Specifying variable attributes in a
TYPE section or a procedure or function parameter
list is not permitted.

18-18 Pascal Manual

You give one or more attributes in the variable
declaration, enclosed in brackets [] and separated
by commas (if specifying more than one attribute).

Examples that specify variable attributes:

VAR A, B, C [EXTERN] : INTEGER:
{Applies to Conly.}

VAR [PUBLIC] A, B, C : INTEGER:
{Applies to A, B, and C.}

VAR [PUBLICJ A, B, C [ORIGIN l6#1000J :
INTEGER:

{A, B, and C are all PUBLIC. ORIGIN of C}
{is the absolute hexadecimal address 1000.}

The brackets can occur in either of two places:

o An attribute in brackets after a variable
identi fier in a VAR section applies to that
variable only.

o An attribute in brackets after the reserved
word VAR applies to all of the variables in
the section.

THE STATIC ATTRIBUTE

The STATIC attribute gives a variable a unique,
fixed location in memory. This is in contrast to
a procedure or function variable that is allocated
on the stack or one that is dynamically allocated
on the heap. Use of STATIC variables can save
time and code space, but increases data space.

All variables at the program, module, or unit
level are automatically assigned a fixed memory
location and given the STATIC attribute.

Functions and procedures that use STATIC variables
can execute recursively, but STATIC variables must
be used only for data common to all invocations.
Since most of the other variable attributes imply
the STATIC attribute, the trade-off between
savings in time and code space or reduced data
space applies to the PUBLIC, EXTERN, ORIGIN, and
PORT attributes as well.

Files declared in a procedure or function with the
STATIC attribute are initialized when the routine

Variables and Values 18-11

is entered: they are closed when the routine
terminates like other files. However, other
STATIC variables are only initialized before pro
gram execution. This means that, except for open
FILE variables, STATIC variables can be used to
retain values between invocations of a procedure
or function.

Example of STATIC variable declarations:

VAR VECTOR [STATIC]: ARRAY [0 •• MAXVEC] OF
INTEGER:

VAR [STATIC] I, J, K: 0 •• MAXVEC:

The STATIC attribute does not apply to procedures
or functions, as some other attributes do.

THE PUBLIC AND EXTERN ATTRIBUTES

The PUBLIC attribute indicates a variable that can
be accessed by other modules: the EXTERN attribute
identifies a variable that resides in some other
module.

Variables given the PUBLIC or EXTERN attribute are
implicitly STATIC.

Examples of PUBLIC and EXTERN variable decla
rations:

VAR [EXTERN] GLOBEl, GLOBE2: INTEGER:
{The variables GLOBEl and GLOBE2 are declared}
{EXTERN, meaning that they must be declared}
{PUBLIC in some other module.}

VAR BASE PAGE [PUBLIC, ORIGIN #12FE]: BYTE:
{The varIable BASE PAGE is located at l2FE,}
{hexadecimal. Because it is also PUBLIC, it}
{can be accessed from other modules that}
{declare BASE_PAGE with the EXTERN attribute.}

Memory for PUBLIC variables is usually allocated
by the compiler, unless you also give them an
ORIGIN. Giving a variable both the PUBLIC and
ORIGIN attributes tells the compiler that a global
name has an absolute address.

Note that if a variable is declared PUBLIC then
the identifier is kept in the symbol table pro
duced by the Linker and can be accessed
symbolically when you are using the Debugger.

UJ-12 Pascal Manual

Note that this does not refer to Pascal error
handling routines, but to the Debugger available
with the standard software for your workstation.

PUBLIC cannot be combined with PORT.

If both PUBLIC and ORIGIN are present, the Linker
does not need to resolve the address. However,
the identifier is still passed to the Linker for
use by other modules.

Memory for EXTERN variables is not allocated by
the compiler. Nor do they have an ORIGIN, since
giving both EXTERN and ORIGIN implies two dif
ferent ways to access the variable.

The reserved word EXTERNAL is synonymous with
EXTERN. (This increases portability from other
Pascals, since others commonly use one of the
two.)

Variables in the interface of a unit are auto
matically given either the PUBLIC or EXTERN
attribute. If a program, module, or unit USES an
interface, its variables are made EXTERN; if you
compile the IMPLEMENTATION of the interface, its
variables are made PUBLIC.

THE ORIGIN AND PORT ATTRIBUTES

The ORIGIN attribute directs the compiler to
locate a variable at a given memory address; the
PORT attribute specifies some kind of I/O address.
ORIGIN and PORT are actually implemented in the
same way. The PORT attribute is included for com
patibility with other Pascals. In either case,
the address must be a constant of any ordinal
type. I/O ports, interrupt vectors, operating
system data, and other related data can be
accessed with ORIGIN or PORT variables.

Examples of ORIGIN and PORT variable declarations:

VAR KEYBOARDP [PORT 16#FFF2J:
VAR INTRVECT [ORIGIN 8#200J:

CHAR;
WORD;

ORIGIN (but not PORT) permits a segmented address
using "segment: offset" notation.

VAR SEGVECT [ORIGIN l6#000l:16#FFFEJ: WORD;

Variables and Values 18-13

Currently, a variable with a segmented ORIGIN
cannot be used as the control variable in a FOR
statement.

Variables with ORIGIN or PORT attributes are
implicitly STATIC. Also, they inhibit common sub
expression optimization. For example, if GATE has
the ORIGIN attribute, the two statements
X : = GATE: Y : = GATE access GATE twice in the
order given, instead of using the first value for
both assignments. This ensures correct operation
if GATE is a memory-mapped input port. However,
if GATE is passed as a reference parameter, refer
ences to the parameter can be optimized away. For
this reason, PORT variables cannot be passed as
reference parameters.

ORIGIN and PORT variables are never allocated or
initialized by the compiler. The associated
address only indicates where the variable is
found. ORIGIN always implies a memory address.

Giving the PORT or ORIGIN attributes in brackets
immediately following the VAR keyword is ambiguous
and generates an error during compilation. (It
would be unclear to the compiler whether all
variables following should be at the same address
or whether addresses should be assigned
sequentially.)

VAR [ORIGIN 0J FIRST, SECOND: BYTE:
{ILLEGAL! }

'!'BE READONLY ATTRIBUTE

The READONLY attribute prevents assignments to a
variable. It also prevents the variable being
passed as a VAR or VARS parameter. A READONLY
variable cannot be read with a READ statement or
used as a FOR control variable. (READ is dis
cussed in Section 15, IIFile-Oriented Procedures
and Functions, II and FOR is discussed in Section.
12, II Sta tements • II) You can use READONLY with any
of the other attributes.

18-14 Pascal Manual

Examples of READONLY variable declarations:

VAR INPORT [PORT 12, READONLY): BYTE:
{INPORT is a READONLY PORT variable.}

VAR [READONLY] I, J [PUBLIC], K [EXTERN]:
INTEGER:

{I, J, and K are all READONLY:}
{J is also PUBLIC: K is also EXTERN.}

CONST and CONSTS parameters, as well as FOR loop
control variables (while in the body of the loop),
are automatically given the READONLY attribute.
READONLY is the only variable attribute that does
not imply STATIC allocation.

A variable that is both READONLY and either PUBLIC
or EXTERN in one source file is not necessarily
READONLY when used in another source file. The
READONLY attribute does not apply to procedures
and functions.

Variables and Values 18-15

COMBINING ATTRIBUTES

You can give a variable multiple
Separate the attributes with commas
the list in brackets, as shown:

VAR [STATIC]

attributes.
and enclose

X, Y, Z [ORIGIN #FFFE, READONLY]: INTEGER:

In this example, Z is a STATIC, READONLY variable
with an ORIGIN at hexadecimal FFFE. These rules
apply when you are combining attributes:

o If you give a variable the EXTERN attribute,
you cannot give it the PORT, ORIGIN, or PUBLIC
attribute in the current compiland.

o If you give a variable the PORT attribute, you
cannot give it the ORIGIN, PUBLIC, or EXTERN
attribute at all.

o If you give a variable the ORIGIN attribute,
you cannot al so give it the PORT or EXTERN
attribute. However, you can combine ORIGIN
with PUBLIC.

o If you give a variable the PUBLIC attribute,
you cannot al so give it the PORT or EXTERN
attribute. However, you can combine PUBLIC
with ORIGIN.

o You can use STATIC and READONLY with any other
attribute.

18-16 Pascal Manual

11 EXPRESSIONS

Expressions are constructions that evaluate to
values. Table 11-1 illustrates a variety of
expressions, which, if A = 1 and B = 2, evaluate
to the value shown.

Table 11-1. Expressions.

EXEression Value

2 2

A 1

A + 2 3

(A + 2) 3

(A + 2) * (B - 3) -3

The operands in an expression can be a value or
any other expression. When any operator is
applied to an expression, that expression is
called an operand. With parentheses for grouping
and operators that use other expressions, you can
construct expressions as long and as complicated
as you wish.

The available operators, in the order in which
they are applied, are listed below. Extend level
operators are shown in boldface text.

1. Unary NOT ADR ADS

2. Multiplying * / DIV MOD AND

3. Adding + - OR XOR

4. Relational <> <= >= < > IN

Expressions 11-1

A Pascal expression
result of applying
values. Al though a
type, most operators
types:

is either a value or the
an operator to one or two
value can be of almost any
only apply to the following

INTEGER
WORD
REAL

INTEGER4
BOOLEAN
SET

The relational operators also apply to the CHAR,
enumerated, string, and reference types. For all
operators (except the set operator IN), operands
must have compatible types.

11-2 Pascal Manual

SIMPLE TYPE EXPRESSIONS

As a rule, the operands and the value resulting
from an operation are all of the same type.
Occasionally, however, the type of an operand is
changed to the type required by an operator.

This conversion occurs on two levels: one for
constant operands only, and one for all operands.
INTEGER to WORD conversion occurs for constant
operands only; conversion from INTEGER to REAL and
from INTEGER or WORD to INTEGER4 occurs for all
operands.

If necessary in constant expressions, INTEGER
values change to WORD type.

If

NOTE

Be careful when mixing INTEGER and WORD con
stants in expressions. For example, if CBASE
is the constant l6#C000 and DELTA is the
constant -1, the following expression gives a
WORD overflow:

WRD (CBASE) + DELTA

The overflow occurs because DELTA is converted
to the WORD value l6#FFFF, and l6#C000 plus
16#FFFF is greater than MAXWORD. However, the
following would work:

WRD (ORD (CBASE) + DELTA)

This expression gives the INTEGER value
-16385, which changes to WORD 16#BFFF.

conversion is needed by an operator or for an
assignment, the compiler makes the following
conversions:

0 from INTEGER to REAL or INTEGER4

0 from WORD to INTEGER4

Expressions 11-3

The following rules determine the
result of an expression involving
types:

type of the
these simple

+ *

11-4

These operators
INTEGERs, REALs,
INTEGER4s, as shown
lowing examples:

+123
A + 123
-23.4
A - 8
A * B * 3

operate
WORDs,
in the

on
and

fol-

Mixtures of REALs with INTEGERs and
of INTEGER4s with INTEGERs or WORDs
are allowed. Where both operands
are of the same type, the result
type is the type of the operands.
If either operand is REAL8, the
result type is REAL8~ if either is
REAL4 and none REAL8, the result is
REAL4. If either operand is
INTEGER4, the result type is
INTEGER4.

Unary pI us (+) and minus (-) are
supported, along with the binary
forms. Unary minus on a WORD type
is 2 1 s complement (NOT is lis
complement)~ since there are no
negative WORD values, this always
generates a warning.

Because unary minus has the same
precedence level as the adding
operators, (X + -1) is illegal.
For the same reason, (-256 AND X)
is interpreted as -(256 AND X).

This is a "true" division operator.
The result is always REAL.
Operands can be INTEGER, INTEGER4,
REAL, or REAL8 (not WORD.)

Examples of division:

34 / 26.4
18 / 6

Pascal Manual

1.28787 •••
3.00000 •••

DIV MOD

AND OR XOR

These are the operators for integer
division quotient and remainder,
respectively. The left operand
(dividend) is divided by the right
operand (divisor).

Examples of integer division:

123 MOD "5 = 3
-123 MOD 5 = -3

{Sign of results is sign of}
{dividend}

123 MOD -5 = 3
1.3 MOD 5
{Illegal with REAL operands}

123 DIV 5 = 24
1.3 DIV 5
{Illegal with REAL operands}

Both operands must be of the same
type: INTEGER, WORD, or INTEGER4
(not REAL) • The sign of the re-
mainder (MOD) is always the sign of
the dividend.

Our version of Pascal differs from
the ISO standard with respect to
the semantics for DIV and MOD with
negative operands, but the re-
sulting code is more efficient.
Programs intended to be portable
should not use DIV and MOD unless
both operands are positive.

NOT
These extend level operators are
bi twise logical functions. Oper
ands must be INTEGER or WORD or
INTEGER4 (never a mixture), and
cannot be REAL. The result has the
type of the operands.

NOT is a bitwise ones complement
operation on the single operand.
I f an INTEGER variable V has the
value MAXINT, NOT V gives the
illegal INTEGER value -32768. This
generates an error if the initial
ization switch ($INITCK) is on and
the value is used later in a
program.

Expressions 11-5

Given the following initial INTEGER
values,

x = 2#1111000011110000
Y = 2#1111111100000000

AND, OR, XOR, and NOT perform the
following functions:

X AND Y

X OR Y

X XOR Y

NOT X

11-6 Pascal Manual

1111000011110000
1111111100000000

1111000000000000

1111000011110000
1111111100000000

1111111111110000

1111000011110000
1111111100000000

0000111111110000

1111000011110000

0000111100001111

BOOLEAN EXPRESSIONS

The Boolean operators at the standard level are:

NOT AND OR
< >

<> <= >=

XOR is available at the extend level.

You can also use P <> 0 as an exclusive OR func
tion. Since FALSE < TRUE, P <= 0 denotes the
Boolean operation lip implies 0."

The Boolean operators AND and OR are not the same
as the WORD and INTEGER operators of the same name
that are bitwise logical functions. The Boolean
AND and OR operators mayor may not evaluate their
operations. The following example illustrates the
danger of assuming that they do not:

WHILE (I <= MAX) AND (V [IJ <> T)
DO I := I + I:

If array V has an upper bound MAX, then the
evaluation of V [IJ for I > MAX is a run-time
error. This evaluation mayor may not take place.
Sometimes both operands are evaluated during
optimization, and sometimes the evaluation of one
can cause the evaluation of the other to be
skipped. In the latter case , either operand can
be evaluated first.

Instead, use the following construction:

WHILE I <= MAX DO
IF V [IJ <> T THEN I := I + 1 ELSE BREAK:

(See the subsection "Sequential Control" in Sec
tion 12, "Statements," for information on using
AND THEN and OR ELSE to handle situations, such as
the previous example, where tests are examined
sequentially.)

The relational operators produce a Boolean result.
The types of the operands of a relational operator
(except for IN) must be compatible. If they are
not compatible, one must be REAL and the other
compatible with INTEGER.

Expressions 11-7

Reference types can only be compared with = and
< > • To compare an address type with one of the
other relational operators, you must use address
field notation, as shown:

IF (A.R < B.R) THEN <statement>:

(See Section 8 "Reference and Other Types" for a
discussion of the address type.)

Except for the string types STRING and LSTRING,
you cannot compare files, arrays, and records as
wholes. Two STRING types must have the same upper
bound to be compared: two LSTRINGs can have dif
ferent upper bounds.

In LSTRING comparison, characters past the current
length are ignored. If the current length of one
LSTRING is less than the current length of the
other and all characters up to the current length
of the shorter are equal, the compiler assumes the
shorter one is IIless than II the longer one. How
ever, two LSTRINGs are not considered equal unless
all current characters are equal and their current
lengths are equal. (See the subsection IIUsing
STRINGs and LSTRINGs lI in Section 6, "Arrays,
Records, and Sets,1I for more information.)

The six relational operators =, <>, <=, >=, <, and
> have their normal meaning when applied to
numeric, enumerated, CHAR, or string operands.
The subsection, "Set Expressions," discusses the
meaning of these relational operators (along with
the relational operator IN) when applied to sets.

Since the relational operators in Boolean expres
sions have a lower precedence than logical AND
and OR, the following equivalent statements are
incorrect:

IF I < 10 AND J = K THEN
IF I < (10 AND J) K THEN

Instead, you must write:

IF (I < 10) AND (J K) THEN

Also, you cannot use the numeric types where a
Boolean operand is called for. (Some other lan
guages permit this.) For an integer I, the clause
IF I THEN is illegal: you must use the following
instead:

IF I <> 0 THEN

11-8 Pascal Manual

Note that the following is also not allowed, if I
is not an INTEGER constant:

$IF I $THEN

The inclusion of special "not-a-number" (NaN)
val ues means that a comparison between two real
numbers can have a result other than less than,
equal, or greater than. The numbers can be un
ordered, meaning one or both are NaNs. An
unordered result is the same as "not equal, not
less than, and not greater than."

For example, if variables A or B are NaN values:

0 A < B is false.

0 A <= B is false.

0 A > B is false.

0 A >= B is false.

0 A =B is false.

0 A <> B is, however, true.

REAL comparisons do not follow the same rules as
other comparisons in many ways. A < B is not
always the same as NOT (B <= A): this prevents
some optimizations otherwise done by the compiler.
If A is a NaN, then A <> A is true: in fact, this
is a good way to check for a NaN value.

Expressions 11-9

SET EXPRESSIONS

Table 11-2
differently
expressions.

Table 11-2.

Operator

+

*
=
<>
<= and >=
< and >
IN

shows the
to sets

operators that apply
than to other types of

Set Operators.

Meaning in Set Operations

Set union
Set difference
Set intersection
Test set equality
Test set inequality
Test subset and superset
Test proper subset and superset
Test set membership

Any operand whose type is SET OF S, where S is a
subrange of of some type T,. is treated as if it
were SET OF T. (T is restricted to the range from
" to 255 or the equivalent ORD values.) Unless
one operand is a constant or constructed set, both
operands must be either PACKED or not PACKED.

With the IN operator, the left operand (an
ordinal) must be compatible with the base type of
the right operand (a set). The expression X IN B
is TRUE if X is a member of the set B, and FALSE
otherwise. X can be outside of the range of the
base type of B legally. For example, X IN B is
always false if the following statements are true:

X 1
B = SET OF 2 •• 9

(1 is compatible, but not assignment compatible,
with 2 •• 9).

Operations on sets with up to 16 elements generate
inline code.

Angle brackets < > are set operators only at the
extend level, since the ISO standard does not
support them for sets. They test that a set is a

11-10 Pascal Manual

proper subset or superset of another set. A set
can be a subset but is not a proper subset of
itself.

Expressions involving sets can use the "set
constructor, II which gives the elements in a set
enclosed in square brackets[J. Each element can
be an expression whose type is in the base type of
the set or the lower and upper bounds of a range
of elements in the base type. Elements cannot be
sets themselves.

Examples of sets involving set constructors:

SET COLOR := [RED, BLUE •• PURPLEJ - [YELLOWJi

SET NUMBER := [12, J+K, TRUNC (EXP (X» ••
TRUNC (EXP (X+l»Ji

Set constructor syntax is similar to CASE constant
syntax. I f X > Y then [X •• YJ denotes the empty
set. Empty brackets also denote the empty set and
are compatible with all sets. Also, if all
elements are constant, a set constructor is the
same as a set constant.

Like other structured constants, the type identi
fier for a constant set can be included in a set
constant, as a COLORSET [RED •• BLUEJ. This does
not mean that a set constructor with variable
elements can be given a type in an expression:
NUMBERSET [I •• JJ is illegal if I or J is a
variable.

A set constructor such as [I, J, •• KJ or an untyped
set such as [1, 5 •• 7J, is compatible with either a
PACKED or an unpacked set. A typed set constant,
such as DIGITS [1, 5 .• 7J, is only compatible with
sets that are PACKED or unpacked, respectively, in
the same way as the explicit type of the constant.

Operations on sets use the stack instead of the
heap for temporaries.

Expressions 11-11

FUNCTION DESIGNATORS

A function designator specifies the activation of
a function. It consists of the function identi
fier, followed by a (possibly empty) list of
"actual parameters" in parentheses:

{Declaration of the function ADD.}
FUNCTION ADD (A, B: INTEGER): INTEGER;

.
{Use of the function ADD in an expression.}
X := ADD (7, X * 4) + 123:
{ADD is function designator.}

The actual parameters substitute, position for
position, for their corresponding "formal param
eters," defined in the function declaration.

Parameters can be variables, expressions, proce
dures, or functions. If the parameter list is
empty, the parentheses must be omitted. (See the
subsection, "Procedure and Function Parameters,"
in Section 13, "Introduction to Procedures and
Functions" for more information on parameters.)

The order of evaluation and binding of the actual
parameters varies, depending on the optimizations
used. If the $SIMPLE metacornmand is on, the order
is left to right.

In most computer languages, functions have two
different uses:

o In the mathematical sense, they take one or
more values from a domain to produce a
resulting value in a range. In this case, if
the function does nothing else (such as assign
to a static variable or do input! output), it
is called a pure function.

o The second type of function can have side
effects, such as changing a static variable or
a file. Functions of this second kind are
said to be impure.

At the standard level, a function can return
either a simple type or a pointer. At the extend
level, a function can return any assignable type
(that is, any type except a file or super array).

11-12 Pascal Manual

At the standard level, a pointer that is a
function designator (that is, returned by a
function) can only be compared, assigned, or
passed as a value parameter. At the extend level,
however, the usual selection syntax for reference
types, arrays, and records is allowed, following
the function designator. (See the subsection
"Using Variables and Values" in Section 10,
"Variables and Values," for information.)

Examples of function designators:

SIN (X+Y)

NEXTCHAR

NEXTREC (1 7) ,.
{Here the function return type}
{is a pointer, and the returned}
{pointer value is dereferenced.}

NAD.NAME [lJ
{Here the function NAD has no parameters.}
{The return type is a record, one}
{field of which is an array.}
{The identifier for that field is}
{NAME. The example above selects}
{the first array component of the}
{returned record.}

It is more efficient to return a component of a
structure than to return a structure and then use
only one component of it. The compiler treats a
function that returns a structure like a proce
dure, with an extra VAR parameter representing the
resul t of the function. The function's caller
allocates an unseen variable (on the stack) to
receive the return value, but this variable is
only allocated during execution of the statement
that contains the function invocation.

Expressions 11-13

EVALUATING EXPRESSIONS

In cases of ambiguity, an operator at a higher
level is applied before one at a lower level. For
instance, the following expression evaluates to 7
and not to 9:

1 + 2 * 3

Use parentheses to change operator precedence.
Thus, the following evaluates to 9 rather than 7:

(1 + 2) * 3

If the $SIMPLE switch is on, sequences of oper
ators of the same precedence are executed from
left to right. If the switch is off, the compiler
may rearrange expressions and evaluate common sub
expressions only once, in order to generate
optimized code. The semantics of the precedence
relationships are retained, but normal associative
and distributive laws are used. For example,

x * 3 + 12

is an optimization of:

3 * (6 + (X - 2»

These optimizations can occasionally give you
unexpected overflow errors. For example,

(I - 100) + (J - 100)

are optimized into the following:

(I + J) - 200

This can result in an overflow error, although the
original expression did not (for example, if 11111
and IIJII were each 16400).

This optimization can be suppressed by turning on
the $ DEBUG switch (except for some constant
folding, for example replacing an expression such
as 3*6 by 18). The $SIMPLE metacommand does ~
suppress it.

An expression in your source file mayor may not
actually be evaluated when the program runs. For
example, the expression F(X + Y)*0 is always zero,
so the subexpression (X + Y) and the function call
need not be executed.

11-14 Pascal Manual

The compiler does not optimize REAL expressions as
much as, for example, INTEGER expressions, to make
sure that the result of a REAL expression is
always what a simple evaluation of the expression,
as given, would be. For example, the INTEGER
expression

«1 + I) - 1) * J

is optimized to:

I * J

but the same expression with real variables is not
optimized, since the results can be different due
to precision loss. Common subexpressions, such as
2 * X in SIN (2 * X) * COS (2 * X), can still be
calculated just once and reloaded as necessary,
but they are saved in a special 80-bit inter
mediate precision.

The order of evaluation can be fixed by
parentheses:

(A + B) + C

is evaluated by adding A and B first, but

A + B + C

can be evaluated by adding A and B, Band C, or
even A and C first.

Any expression can be passed as a CONST or CONSTS
parameter or have its "address" found. The
expression is calculated and stored in a temporary
variable on the stack, and the address of this
temporary variable can be used as a CONST or
CONSTS parameter or in some other address context.

To avoid ambiguities, enclose such an expression
wi th operators or function calls in parentheses.
For example, to invoke a procedure FOO (CONST X,
Y: INTEGER), FOO {I, (J+14» must be used instead
of FOO (I, J+14).

Expressions 11-15

This implies a subtle distinction in the case of
functions. For example:

FUNCTION SUM (CONST A, B: INTEGER): INTEGER;
BEGIN

SUM := A;
IF B <> 0 THEN

SUM : = SUM (SUM, (SUM (B, 0) - l» + 1
END;

In this example, SUM is called recursively sub
tracting one from B until B is zero.

The use of a function identifier in a WITH state
ment follows a similar rule. For example, given a
parameterless function, COMPLEX, which returns a
record, "WITH COMPLEX" means "WITH the current
value of the function." This can only occur in
side the COMPLEX function itself. However, "WITH
(COMPLEX)" causes the function to be called and
the result assigned to a temporary local variable.

Another way to describe this is to distinguish
between "address" and "value" phrases. The left
hand side of an assignment, a reference parameter,
the ADR and ADS operators, and the WITH statement
all need an address. The right-hand side of an
assignment and a value parameter all need a value.

If an address is needed but only a value, such as
a constant or an express ion in parentheses, is
available, the value must be put into memory so it
has an address. For constants, the value goes in
static memory; for expressions, the value goes in
stack (local) memory. A function identifier
refers to the current value of the function as an
address, but causes the function to be called as a
value.

Finally, in the scope of a function, the intrinsic
procedure RESULT permits a reference to the
current value of a function. For a function F,
this means ADR F and ADR RESULT (F) are the same:
the address of the current value of F. RESULT
forces use of the current value while putting the
function in parentheses, as in (F(X», forces
evaluation of the function.

11-16 Pascal Manual

OTHER FEATURES OF EXPRESSIONS

EVAL and RESULT are two procedures available at
the extend level for use with expressions. EVAL
uses a function as a procedure: RESULT yields the
current value of a function within a function or
nested procedure or function.

At the extend level, the function RETYPE allows
you to change the type of a value.

THE EVAL PROCEDURE

EVAL evaluates its parameters without actually
calling anything. Generally, you use EVAL to use
a function as a procedure. In such cases, the
val ues returned by functions are of no interest,
so EVAL is only useful for functions with side
effects. For example, a function that advances to
the next item and also returns the item might be
called in EVAL just to advance to the next item,
since there is no need to obtain a function return
value.

Examples of the EVAL procedure:

EVAL (NEXTLABEL (TRUE»
EVAL (SIDEFUNC (X, Y), INDEX (4), COUNT)

THE RESULT FUNCTION

Within the scope of a function, the intrinsic
procedure RESULT permits a reference to the
current value of a function instead of invoking it
recursively. For a function F, this means ADR F
and ADR RESULT (F) are the s arne: tha tis, the
address of the current value of F. RESULT forces
use of the current value, while putting the
function in parentheses as in (F (X» forces
evaluation of the function.

Expressions 11-17

Examples of the RESULT function:

FUNCTION FACTORIAL (I: INTEGER): INTEGERi
BEGIN

FACTORIAL := li WHILE I > 1 DO
BEGIN

FACTORIAL := I * RESULT (FACTORIAL):
I := I - li

END:
END:

FUNCTION ABSVAL (I: INTEGER): INTEGERi
BEGIN

ABSVAL := Ii
IF I < 0 THEN ABSVAL := -RESULT (ABSVAL)

END:

THE RETYPE FUNCTION

Occasionally, you need to change the type of a
value. You can do this with the RETYPE function,
available at the extend level. If the new type is
a structure, RETYPE can be followed by the usual
selection syntax.

NOTE

You must use RETYPE with caution.
complicated algorithm and is
unpredictable.

Examples of the RETYPE function:

It uses a
sometimes

RETYPE (COLOR, 3)
RETYPE (STRING2, I*J+K) [2]

{inverse of ORO}
{effect can vary}

11-18 Pascal Manual

12 STATEMENTS

The body of a program, procedure, or function con
tains statements. Statements denote actions that
the program can execute.

This section first discusses the syntax of state
ments and then separates and describes two
categories of statements: simple statements and
structured statements. A simple statement has no
parts that are themselves other statements; a
structured statement consists of two or more other
statements. Table 12-1 lists the statements in
each category.

Table 12-1. Statements.

Simple Structured

Assignment (:=)
Procedure
GOTO
BREAK
CYCLE
RETURN
Empty

Compound
IF/THEN/ELSE
CASE
FOR
WHILE
REPEAT
WITH

Statements 12-1

SYNTAX

Pascal statements are separated by a semicolon (;)
and enclosed by reserved words such as BEGIN and
END. A statement begins, optionally, with a
label.

Each of these elements of statement syntax are
discussed in the following sections.

SEPARATING STATEMENTS

Semicolons separate statements, rather than termi
nate them. However, since our version of Pascal
permi ts the empty statement, using the semicolon
as if it were a statement terminator is rarely
disastrous.

Example showing .semicolon to separate statements:

BEGIN
10: WRITELNi
A := 2 + 3;
GOTO 10

END

A common error is to terminate the THEN clause in
an IF/THEN/ELSE statement with a semicolon. Thus,
the following example generates a warning message:

IF A
ELSE A

2 THEN WRITELN;
3

Another cornmon error is to put a semicolon after
the DO in a WHILE or FOR statement:

FOR I := 1 TO 10 DOi
BEGIN

A[I] := Ii
B[I] := 10 - Ii

ENDi

The previous example, as written, "executes" an
empty statement ten times, then executes the array
assignments once. Since there are occasional
legitimate uses for repeating an empty statement,
no warning is given when this occurs. (The FOR
statement is discussed further on in this
section.)

12-2 Pascal Manual

The semicolon also follows the reserved word END
at the close of a block of program statements.

THE RESERVED WORDS BEGIN AND END

Whenever you want a program to execute a group of
statements, instead of a single simple statement,
you can enclose the block with the reserved words
BEGIN and END. Follow END with a semicolon.

For example, the following group of statements be
tween BEGIN and END are all executed if the
condition in the IF statement is TRUE:

IF (MAX> 10) THEN
BEGIN

MAX = 10:
MIN = 0:
WRITELN (MAX,MIN)

END:
WRITELN (I done I)

Note that a semicolon is not necessary after the
last statement within the BEGIN •• END block. Since
the empty statement is legal in this version of
Pascal" however, you can use a semicolon after the
last statement without causing a warning or
execution error.

At the extend level, you can substitute a pair of
square brackets for the pair of keywords BEGIN and
END.

IF (MAX > 10) THEN
[MAX = 10:

MIN = 0:
WRITELN (MAX,MIN)];

WRITELN (I done I)

LABELS

Any statement referred to by a GOTO statement must
have a label. A label at the standard level is
one or more digits; leading zeros are ignored.
Constant identifiers, expressions, and nondecimal
notation cannot serve as labels.

All labels must be declared in a LABEL section.
At the extend level, a label can also be an
identifier.

Statements 12-3

Example using labels and GOTO statements:

PROGRAM LOOPS (INPUT,OUTPUT)i
LABEL 1, HAWAII, MAINLAND:

BEGIN
MAINLAND: GOTO Ii
HAWAII: WRITELN ('Here I am in Hawaii'):
1: GOTO HAWAII

END.

A loop label is any label immediately preceding a
looping statement: WHILE, REPEAT, or FOR. At the
extend level, a BREAK or CYCLE statement can also
refer to a loop label.

When both a CASE constant list and a GOTO label
precede a statement, the CASE constants come first
and then the GOTO label. In the following
example, 321 is a CASE value, 123 is a label:

321: 123: IF LOOP THEN GO TO 123

12-4 Pascal Manual

SIMP~E STATEMENTS

A simple statement is one in which no part consti
tutes another statement. Simple statements in
standard Pascal are the following:

o assignment statement

o procedure statement

o GOTO statement

o empty statement

The empty statement contains no symbols and
denotes no action. It is included in the
definition of the language primarily to permit you
to use a semicolon after the last in a group of
statements enclosed between BEGIN and END.

The extend level adds three simple statements:
BREAK, CYCLE, and RETURN.

ASSIGNMENT STATEMENTS

The assignment statement replaces the current
value of a variable with a new value, which you
specify as an expression. Assignment is denoted
by a colon together with an equal sign (:=).

Examples of assignment statements:

A := B:
{A is assigned the value of B}

A[I] := 12 + 4 + (B * C):

X : = Y:
{Illegal. Colon (:) and equal}
{sign (=) must be adjacent.}

A + 2 := B:
{Illegal. A + 2 is not a variable.}

A := ADD (1,1):

The value of the expression must be assignment
compatible with the type of the variable.
Selection of the variable can involve indexing an
array or dereferencing a pointer or address. If

Statements 12-5

it does, the compiler can, depending on the opti
mizations performed, mix these actions with the
evaluation of the expression. If the $SIMPLE
metacommand is on, the expression is evaluated
first.

Note that an assignment to a nonlocal variable
(including a function return) causes the compiler
to put an equal sign (=) or percent sign (%) in
the G column of the listing file. (See the sub
section, "Listing File Format," in Section 18,
"Using the Compiler," for more information about
these and other symbols used in the listing.)

Within the block of a function, an assignment to
the identifier of the function sets the value
returned by the function. The assignment to a
function identifier can occur either wi thin the
actual body of the function or in the body of a
procedure or function nested wi thin it. (Using
functions is discussed in detail in Section 13,
"Introduction to Procedures and Functions.")

If the range-checking switch ($RANGECK) is on, an
assignment to a set, subrange, or LSTRING variable
can imply a run-time call to the error checking
code.

Each section of code without a label or other
point that could receive control is eligible for
rearrangement and common subexpression elimination
by the optimizer. Naturally, the order of exe
cution is retained when necessary.

Given these statements,

X := A + C + B~
Y := A + Bi
Z := A

the compiler might generate code to per form the
following operations:

o Get the value of A and save it.

o Add the value of B and save the result.

o Add the value of C and assign it to X.

o Assign the saved A + B value to Y.

o Assign the saved A value to z.

12-6 Pascal Manual

This optimization occurs only if assignment to X
and Y and getting the value of A, B, or C are all
independent. If C is a function without the PURE
attribute and A is a global variable, evaluating C
can change A. Then since the order of evaluation
wi thin an expression in this case is not fixed,
the value of A in the first assignment could be
the old value or the new one.

However, since the order of evaluation among
statements is fixed, the value of A in the second
and third assignments is the new value.

The following actions can limit the ability of the
optimizer to find common subexpressions:

0 assignment to a nonlocal variable

0 assignment to a reference parameter

0 assignment to the referent of a pointer

0 assignment to the referent of an address
variable

0 calling a procedure

0 calling a function without the PURE attribute

The optimizer does allow for "aliases," that is, a
single variable with two identifiers, perhaps one
as a global variable and one as a reference
parameter.

PROCEDURE STATEMENTS

A procedure statement executes the procedure
denoted by the procedure identifier. (Using pro
cedures is discussed in detail in Section 13,
"Introduction to Procedures and Functions.)

For example, assume you have defined the procedure
DO IT:

PROCEDURE DO_IT:
BEGIN

WRITELN('Did it')
END;

DO IT is now a statement that can be executed
simply by invoking its name:

DO IT

Statements 12-7

If you declare the procedure with a formal param
eter list, the procedure statement must include
the actual parameters.

This version of Pascal includes a large number of
predeclared procedures. See Section 14, "Availa
ble Procedures and Functions, II for complete
information.

One of the predeclared procedures is ASSIGN. You
need not declare it in order to use it.

ASSIGN(INFILE, 'MYFILE')

Note that the ASSIGN procedure contains a param
eter list. These parameters are the actual
parameters that are bound to the formal parameters
in the procedure declaration. (For a discussion
of formal and reference parameters, see the sub
section "Parameters to Procedures and Functions II
in Section 13, II Introduction to Procedures and
Functions.")

GOTO STATEMENTS

A GOTO statement indicates that further processing
continues at another part of the program text,
namely at the place of the label. You must
declare a LABEL in a LABEL declaration section
before using it in a GOTO statement.

Several restrictions apply to the use of GOTO
statements:

o A GOTO must not jump to a more deeply nested
statement, that is, into an IF, CASE, WHILE,
REPEAT, FOR, or WITH statement.

GOTOs from one branch of an IF or CASE
statement to another are permitted.

o A GOTO from one procedure or function to a
label in the main program or in a higher level
procedure or function is permitted. A GOTO
can jump out of one of these statements, so
long as the statement is directly within the
body of the procedure or function. However,
such a jump generates extra code both at the
location of the GOTO and at the location of
the label. The GOTO and label must be in the
same compiland, since labels, unlike vari
ables, cannot be given the PUBLIC attribute.

12-8 Pascal Manual

Examples of GOTO statements, both legal and
illegal:

PROGRAM LABEL EXAMPLES:
LABEL 1, 2, 37 4:

PROCEDURE ONE:
LABEL II, 12, 13:

PROCEDURE IN ONE:
LABEL 21: -
{Outer level GOTOs cannot jump in to 2l.}

BEGIN
IF TUESDAY THEN GOTO 1
ELSE GOTO 11:
{I and 11 are both legal outer level}
{labels.}
21: WRITE (IIN_ONEI)

END:

BEGIN {Procedure one}
IF RAINING THEN GOTO 1 ELSE GOTO 11:
{That was legal.}
11: GOTO 21:
{Illegal. Cannot jump into inner level}
{procedures.}

END:

PROCEDURE TWO:
BEGIN

GOTO 11
{Illegal. Cannot jump into different}
{procedure at same level}

END:

BEGIN {Main level}
IF SEATTLE
THEN

BEGIN BEGIN
GOTO 2:
{OK to go to 2 at program level.}

4: WRITE (Ihere l
):

END END
ELSE GOTO 4:
{OK to jump into THEN clause.}

Statements 12-9

2: GOTO 3:
{Illegal. Cannot jump into REPEAT}
{ statement.}
REPEAT

WHILE SINGLE DO
3: GOTO 2
{OK to jump out of loops.}

UNTIL DATE:
1: GOTO IIi
{Illegal. Cannot jump into procedure from}
{program. }

END.

12-18 Pascal Manual

STRUCTURED STATEMENTS

Structured statements are themselves composed of
other statements. There are four kinds of struc
tured statements:

o compound statements

o conditional statements

o repetitive statements

o WITH statement

The control level for statements is shown in the C
(control) col umn of the listing file. (See the
subsection "Listing File Format II in Section I 7 ,
"Metacommands," for more information.)

COMPOUND STATEMENTS

The compound statement is a sequence of state
ments, enclosed by the reserved words BEGIN and
END. The components of a compound statement
execute in the same sequence as they appear in the
source ,file.

Examples of compound statements:

BEGIN
TEMP := A [IJ;
A[IJ := A [JJ;
A [JJ := TEMP
{Semicolon not needed here.}

END

BEGIN
OPEN DOOR;
LET EM IN;
CLOSE DOOR;
{Semicolon signifies empty statement.}

END

All conditional and repetitive control structures
(except REPEAT) used in this version of Pascal
operate on a single statement, not on multiple
statements with ending delimiters. If you want
those structures to operate on a sequence of
several statements, you can make a compound state
ment out of the sequence by enclosing it with the
reserved words BEGIN •• END.

Statements 12-11

In this context, BEGIN and END serve as punctu
ation, like semicolon, colon, or parentheses. If
you prefer, at the extend level you can substitute
a pair of square brackets for the BEGIN and END
pair of reserved words. Note that a right bracket
(]) matches only a left bracket ([) not a BEGIN,
CASE, or RECORD. In other words, a right bracket
is not a synonym for END, because END has other
uses than forming compound statements.

Brackets cannot be used, however, as synonyms for
BEGIN and END to enclose the body of a program,
implementation, procedure, or function~ only BEGIN
and END can be used for this purpose.

Examples of brackets replacing BEGIN and END:

IF FLAG THEN [X := l~ Y := -1]
ELSE [X := -l~ Y := 0]~

WHILE P.N <> NIL DO
[0 := Pi P:= P.N~ DISPOSE (O)]~

FUNCTION R2 (R: REAL): REAL~
[R2 := R * 2]
(Illegal.}

CONDITIONAL STATEMENTS

A conditional statement selects for execution only
one of its component statements. The conditional
statements are the IF and CASE statements. Use
the IF statement for one or two conditions, the
CASE statement for multiple conditions.

The IF Statement

The IF statement can take one of the two forms:

o IF <expression> THEN <statementl>

o IF <expression>
<statement2>

where

<expression>

THEN <statementl>

is any Boolean expression.

<statementl>
can be any statement.

< statement2 >
can be any statement.

12-12 Pascal Manual

ELSE

IF, THEN, and ELSE are reserved words. No semi
colon can precede the reserved word ELSE.

The <expression> is evaluated first.
is TRUE, <statementl> is executed.
is FALSE,

If its value
If the value

o In the first case above nothing is done,
control passes to the next statement.

o In the second case <statement2> is executed.

Examples of IF statements:

IF I > 0 THEN I := I - 1
{No semicolon between IF and ELSE.}
ELSE I := I + 1:

IF (I <= TOP) AND (ARRI [I] <> TARGET) THEN
I := I + 1:

<statementl> can be anyone statement. To specify
a sequence of statements in the THEN clause above,
make them into one compound sta tement (by
enclosing them in a BEGIN •• END pair.) The same
applies to <statement2>.

Example:

IF I > 0
THEN

BEGIN
J :=
K :=

END

ELSE
BEGIN

3:
4

J := 7:
K := 8

END:

<statementl> and <statement2> can themselves be·
conditional statements. In the case of such a
"nested" conditional statement, an ELSE is paired
with the inner IF clause, as in the following
example:

IF 1>0
THEN

IF InnerI > 0
THEN J := 5
ELSE J := 6;

Statements 12-13

The ELSE is paired with IF InnerI > 0, so that the
above is equivalent to

IF 1>0
THEN

BEGIN
IF InnerI >0
THEN J := 5
ELSE J := 6

END

and not to

IF 1>0
THEN

BEGIN
IF InnerI >0
THEN J := 5

END
ELSE J := 6

The following are additional examples of how you
can use the IF statement:

IF I <= TOP THEN
IF ARRI [IJ <> TARGET THEN

I := I + 1

IF I = 1 THEN
IF J = 1 THEN

WRITELN('I equals J I
}

ELSE
WRITELN('DONE only if I = 1 and j <> l'};
{This ELSE is paired with the most deeply}
{nested IF. Thus, the second WRITELN is}
{executed only if I = 1 and J <> I.}

IF I + 1 THEN BEGIN
IF J + 1 THEN WRITELN('I equals J I

}

END
ELSE

WRITELN('DONE only if I <> l'}:
{Now the ELSE is paired with the first}
{IF, since the second IF statement is}
{bracketed by the BEGIN/END pair. Thus,}
{the second WRITELN is executed if I <> l.}

The Boolean expression following an IF can include
the sequential control operators described in the
subsection "Sequential Control" at the end of this
section.

12-14 Pascal Manual

The CASE Statement

The CASE statement is similar to the conditional
statement in that it specifies that only one (or
none) of a number of statements must be executed.

CASE and OTHERWISE are reserved words.

The syntax of the CASE statement is:

CASE <index> OF
<valuel>: <statementl>;
<value2>: <statement2>;

<valueN>: <statementN>
END

where

<index>

<valuel>

is any expression of an ordinal type.

can be any constant of the same type, or a
list of constants separated by commas, or
a subrange of the same type. The same
applies to <value2>, •• <valueN>.

Each constant in the type can be defined
by not more than one <value>.

<statementl>
can be anyone statement. (A compound
statement can be used if you want more
than one statement there). It can also be
another conditional and case statement.
This applies also to <statement2>,
<statementN>, <statement> in the example
below.

At the extend level, the CASE statement can also
look as follows:

CASE <index> OF
<valuel>: <statementl>;
<value2>: <statement2>;

<valueN>: <statementN>;
OTHERWISE <statement>

END

Statements 12-15

When the CASE statement is executed, the <index>
is evaluated. If its value is equal to <va1ue1>
(or, if <va1ue1> is a list of constants or a sub
range and <index> equals one of the constants
specified by <value1», then <statement1> is
executed: the rest of the statements are ignored.
Control then passes to the statement following the
CASE statement.

If the
defined

<index> value is equal to a constant
by <va1ue2>, only <statement2> is

(The same is true for the rest of the executed.
<value>'s.)

If <index> is not equal to any of the constants
defined by the <value>' s, then one of the fol
lowing occurs:

o If the OTHERWISE clause is present,
<statement> is executed, and control is passed
to the statement following the CASE statement.

o If there is no OTHERWISE clause, none of the
<statement>'s is executed, and control is
passed to the statement following the CASE
statement.

Example:

VAR OPERATOR (PLUS,MINUS,TIMES):
NEXTCH CHAR:

BEGIN

CASE OPERATOR OF
PLUS: X:= X + Y:
MINUS: X := X - Y:
TIMES: X := X * Y

END:
{OPERATOR is the CASE index. PLUS, MINUS,}
{and TIMES are CASE constants. In this}
{instance they are all of the values}
{assumable by the enumerated variable,}
{OPERATOR. }

12-16 Pascal Manual

CASE NEXTCH OF
'A' •• 'Z', WRITE ('Identifier'):
'+', ,'*', '/' : WRITE ('Operator'):
{Commas separate CASE constants}
{and ranges of CASE constants.}
OTHERWISE

WRITE ('Unknown Character')
{that is, if any other character}

END

Note that <index> cannot be an INTEGER4, since
INTEGER4 is not an ordinal type.

The CASE syntax for <valuel> •• <valueN> is the same
as for RECORD variant declarations. In standard
Pascal, a CASE constant is one or more constants
separated by commas. At the extend level, you can
substitute a range of constants, such as 'A' •• 'Z',
for a constant. No constant value can apply to
more than one statement.

The extend level also allows the CASE statement to
end with an OTHERWISE clause. The OTHERWISE
clause contains additional statements to be
executed in the event that the CASE index value is
not in the given set of CASE constant values. One
of two things happens if the CASE index value is
not in the set and no OTHERWISE clause is present:

o If the range-checking switch ($RANGECK) is on,
a run-time error is generated.

o If the range-checking switch is off, the
result is undefined.

NOTE

It is not recommended to use the CASE state
ment without the $RANGECK metacommand on,
unless you include an OTHERWISE clause in the
statement.

Depending on optimization, the code generated
by the compiler for a CASE statement can be
either a "jump table" or series of comparisons
(or both). If it is a jump table, a jump to
an arbitrary location in memory can occur if
the control variable is out of range and the
range-checking switch is off.

Statements 12-17

You can include an empty OTHERWISE clause to force
control to pass on to the next statement, if you
wish.

A semicolon (;) can appear after the final state
ment in the list, but is not required. The
compiler skips over a colon (:) after an OTHERWISE
and issues a warning.

REPETITIVE STATEMENTS

Repeti ti ve statements specify repeated execution
of a statement. In standard Pascal, these include
the WHILE, REPEAT, and FOR statements.

At the extend level, there are two additional
statements, BREAK and CYCLE, for leaving or
restarting the statements being repeated. These
statements are functionally equivalent to a GOTO
but easier to use.

The WHILE Statement

The WHILE statement repeats a statement zero or
more times, until a Boolean expression becomes
false. The syntax of the WHILE statement is

WHILE <expression> DO <statement>

where

<expression>
is any Boolean expression.

<statement>
is any statement.

WHILE and DO are reserved words.

<statement> is executed while <expression> is
TRUE, that is:

1. <expression> is evaluated.

2. If its value is FALSE, the execution of the
WHILE statement is terminated and control
passes to the next executable statement.

If its value is TRUE, <statement> is executed
and control returns to step 1.

12-18 Pascal Manual

Examples of WHILE statements:

WHILE P <> NIL DO P := NEXT {P}

WHILE NOT MICKEY DO
BEGIN

NEXTMOUSEi
MICE := MICE + 1

END

The Boolean expression in a WHILE statement can
include the sequential control operators described
in the subsection, IISequential Control. 1I

Use WHILE if it is possible that no iterations of
the loop will be necessary; use REPEAT where you
expect that at least one iteration of the loop
will be required.

The REPEAT Statement

The REPEAT statement repeats a sequence of state
ments one or more times, until a Boolean
expression becomes true.

The syntax of the REPEAT statement is

REPEAT
<statementl>;

<statementN>
UNTIL <expression>

where

<statementl> •. <statementN>
are any statements.

<expression>
is any Boolean expression.

REPEAT and UNTIL are reserved words.

Statements 12-19

The REPEAT statement is executed as follows:

1. <statementl>
executed.

through

2. <expression> is evaluated.

<statementN> are

If its value is FALSE, control returns to
Step 1.

If its value is TRUE, control passes to the
statement following the REPEAT statement, that
is, the loop terminates.

Examples of REPEAT statements:

REPEAT
READ (LINEBUFF):
COUNT := COUNT + I

UNTIL EOF:

REPEAT GAME UNTIL TIRED:

The Boolean expression in a REPEAT statement can
include the sequential control operators described
in the subsection, "Sequential Control."

Use the REPEAT statement to execute statements,
not just a single statement, one or more times
until a condition becomes true. This differs from
the WHILE statement in which a single statement
may not be executed at all.

The FOR Statement

The FOR statement tells the compiler to execute a
statement repeatedly while a progression of values
is assigned to a variable, called the control
variable of the FOR statement.

The values assigned start with a value called the
initial value and end with one called the final
value. The FOR statement has two forms, one where
the control variable increases in value and one
where the control variable decreases in value.

INTEGER4 values cannot be used to control FOR
statements.

12-29 Pascal Manual

The syntax of the FOR statement can be one of the
following:

o FOR <control variable> := <initial value> TO
<final value>
DO <statement>

o FOR <control variable> := <initial value>
DOWNTO <final value>
DO <statement>

where

<control variable>
is any variable of any ordinal type
(cannot be an INTEGER4).

<initial value> and <final value>
are expressions compatible with the
type of <control variable>.

<statement>
is any statement.

FOR, TO, DOWNTO and DO are reserved words.

The FOR statement is executed as follows:

1. <initial value> is evaluated. Then <final
value> is evaluated.

2.

3.

<control variable> is assigned the value of
<initial variable>.

<control variable> is compared with <final
value>.

The test is made if <control variable>

o less than or equal to <final value>
if TO is used.

is

o greater than or equal to <final value>
if DOWNTO is used.

I f the test does not pass, the execution of
the FOR statement is terminated and control
passes to the next statement.

Statements 12-21

If the test passes, <statement> is executed.
Then <control variable> is

o incremented if TO is used, and control
passes to step 3, above, or

o decremented if DOWNTO is used, and control
passes to step 3, above

Examples:

FOR I := 1 TO 10 DO
{I is the control variable.}

SUM := SUM + VICTORVECTOR [I]

FOR CH := 'z' DOWNTO 'A' DO
{CH is the control variable.}

WRITE (CH);

You can also use a FOR statement to step through
the values of a set, as shown:

FOR TINT :=
LOWER (SHADES) TO UPPER (SHADES) DO

IF TINT IN SHADES
THEN PAINT_AREA (TINT);

The following ISO standard rules apply to the
control variable in FOR statements:

o It must be of an ordinal type.

o It must also be an entire variable, not a
component of a structure.

o It must be local to the immediately enclosing
program, procedure, or function and cannot be
a reference parameter of the procedure or
function.

However, at the extend level, the control
variable can also be any STATIC variable, such
as a variable declared at the program level,
unless the variable has a segmented ORIGIN
attribute. Using a program level variable is
an ISO error not detected by this compiler.

12-22 Pascal Manual

o ~o assignments to the control variable are
allowed in the repeated statement. This error
is caught by making the control variable
READONLY within the FOR statement; it is not
caught when a procedure or function invoked by
the repeated statement alters the control
variable. The control variable cannot be
passed as a VAR (or VARS) parameter to a
procedure or function.

o The initial and final values of the control
variable must be compatible with the type of
the control variable. If the statement is
executed, both the initial and final values
must also be assignment compatible with the
control variable. The initial value is always
evaluated first, and then the final value.
Both are evaluated only once before the state
ment executes.

The statement following the DO is not executed at
all if

o The initial value is greater than the final
value in the TO case.

o The initial value is less than the final value
in the DOWNTO case.

The sequence of values given the control variable
starts with the initial value. This sequence is
defined with the SUCC function for the TO case or
the PRED function for the DOWNTO case until the
last execution of the statement, when the control
variable has its final value. (See Section 14,
"Available Procedures and Functions, " for a
description of PRED and SUCC.) The value of the
control variable, after a FOR statement terminates
naturally (whether or not the body executes), is
undefined. It can vary due to optimization and,
if $INITCK is on, can be set to an uninitialized
value. However, the value of the control variable
after leaving a FOR statement with GOTO or BREAK
is defined as the value it had at the time of
exit.

In standard Pascal, the body of a FOR statement
mayor may not be executed, so a test is necessary
to see whether the body should be executed at all.
However, if the control variable is of type WORD
(or a subrange) and its initial value is a
constant zero, the body must be executed no matter

Statements 12-23

what the final value.
need be executed and
perform such a test.

In this case, no extra test
no code is generated to

A control variable with the STATIC attribute can
also be more efficient than one that is not.

At the extend level, you can use temporary control
variables:

FOR VAR <control-variable>

The prefix VAR causes the control variable to be
declared local to the FOR statement (that is, at a
lower scope) and need not be declared in a VAR
section. Such a control variable is not available
outside the FOR statement, and any other variable
with the same identifier is not available within
the FOR statement itself. Other synonymous vari
ables are, however, available to procedures or
functions called within the FOR statement.

Examples of temporary control variables:

FOR VAR I := 1 TO 100 DO
SUM := SUM + VICTOR [IJ;

FOR VAR COUNTDOWN := 10 DOWNTO LIFT OFF DO
MONITOR_ROCKET;

The BREAK and CYCLE Statements

At the extend level, the BREAK and CYCLE state
ments are allowed in addition to the simple
statements already described. Both statements are
functionally equivalent to a GOTO statement. In
theory, a program using the extend level BREAK and
CYCLE statements does not need to use any GOTO
statements.

These statements perform the following functions:

o BREAK exits the currently executing loop.

A BREAK statement is a GOTO to the first
statement after a repetitive statement.

o CYCLE exits the current iteration of a loop
and starts the next iteration.

12-24 Pascal Manual

A CYCLE statement is a GOTO to an implied
empty statement after the body of a repetitive
statement. Thus jump starts the next iter
ation of a loop. In either a WHILE or REPEAT
statement, CYCLE performs the Boolean test in
the WHILE or UNTIL clause before executing the
statement again: in a FOR statement, CYCLE
goes to the next value of the control
variable.

BREAK and CYCLE have two forms, one with a loop
label and one without. If you give a loop label,
the label identifies the loop to exit or restart.
If you do not give a label, the innermost loop is
assumed, as shown in the following example:

OUTER: FOR I := 1 TO Nl DO
INNER: FOR J := 1 TO N2 DO

IF A [I, J] = TARGET THEN BREAK OUTER:

Each of these two statements has two forms, one
with a loop label and one without. A loop label
is a normal GOTO label prefixed to a FOR, WHILE,
or REPEAT statement. Since, at the extend level,
you can use identifier labels, a suggested
practice is to use integers for labels referenced
by GOTOs and identifiers for loop labels.

Examples of CYCLE and BREAK statements:

LABEL SEARCH, CLIMB:

SEARCH: WHILE I <= I TOP DO
IF PILE [I] TARGET THEN BREAK SEARCH
ELSE I : = I + 1;

FOR I := 1 TO N DO
IF NEXT [I] NIL THEN BREAK;

CLIMB: WHILE NOT ITEMA.LEAF DO
BEGIN

IF ITEMA.LEFT <> NIL
THEN [ITEM := ITEMA.LEFT; CYCLE CLIMB];

IF ITEMA.RIGHT <> NIL
THEN [ITEM := ITEMA.RIGHT; CYCLE CLIMB]:

WRITELN (IVery strange node l
);

BREAK CLIMB
END:

Statements 12-25

THE RETURN STATEMEN'l'

At the extend level the RETURN statement exits the
current procedure, function, program, or implemen
tation.

A RETURN statement is a GOTO to an implied empty
statement after the last statement in the current
procedure or function or the body of a program or
implementation.

Examples:

PROCEDURE TELL IF ONE (W : WORD);
{This procedure writes a message which}
{indicates whether W = l}

BEGIN
IF W = 1 THEN

BEGIN
WRITELN (IW is indeed 11);
RETURN

END;
WRITELN (IW is not 1');

END;

FUNCTION FACT (I : INTEGER); WORD;
{This function returns the factorial of i}

BEGIN
FACT := 1;
IF I < 0 THEN

END;

BEGIN
WRITELN (II MUST BE >= 0. I is :1, I);
{the above is an error message}
RETURN

END;
FOR VAR J = I DOWNTO 2 DO

FACT := RESULT (FACT) * J;

THE WITH STATEMENT

The WITH statement opens the scope of a statement
to include the fields of one or more records, so
you can refer to the fields directly. For
example, the following statements are equivalent:

WITH PERSON DO WRITE (NAME, ADDRESS, PHONE)
WRITE (PERSON.NAME, PERSON.ADDRESS,

PERSON.PHONE)

12-26 Pascal Manual

The record given can be a variable, constant iden
tifier, structured constant, or function identi
fier; it cannot be a component of a PACKED
structure. If you use a function identifier, it
refers to the function I s local result variable.
If the record given in a WITH statement is a file
buffer variable, the compiler issues a warning,
since changing the position in the WITH statement
can cause an error.

The record given can also be any expression in
parentheses, in which case the expression is
evaluated and the result assigned to a temporary
(hidden) variable. If you want to evaluate a
function designator, you must enclose it in
parentheses.

You can give a list of records after the WITH,
separated by commas. Each record so listed must
be of a different type from all the others, since
the field identifiers refer only to the last
instance of the record with the type. These
statements are equivalent:

WITH PMODE, QMODE DO statement
WITH PMODE DO WITH QMODE DO statement

Any record variable of a WITH statement that is a
component of another variable is selected before
the statement is executed. Active WITH variables
should not be passed as VAR or VARS parameters,
nor can their pointers be passed to the DISPOSE
procedure. However, these errors are not detected
by the compiler. Assignments to any of the record
variables in the WITH list or components of these
variables are allowed, as long as the WITH record
is a variable.

In this version of Pascal, every WITH statement
allocates an address variable that holds the
address of the record. If the record variable is
on the heap, the pointer to it should not be
DISPOSEd within the WITH statement. If the record
variable is a file buffer, no I/O should be done
to the file within the WITH statement. Avoid
assignments to the WITH record itself in programs
intended to be portable.

Statements 12-27

SEQUENTIAL CON'l'ROL

To increase execution speed or guarantee correct
evaluation, it is often useful in IF, WHILE, and
REPEAT statements to treat the Boolean expression
as a series of tests. If one test fails, the
rema1n1ng tests are not executed. Two extend
level operators in this version of Pascal provide
for such tests:

o AND THEN

X AND THEN Y is false if X is false:
evaluated only if X is true.

o OR ELSE

Y is

X OR ELSE Y is true if X is true: Y is evalu
ated only if X is false.

AND THEN and OR ELSE are logical operators similar
to AND and OR, respectively.

If you use several sequential control operators,
the compiler evaluates them strictly from left to
right.

You can only include these operators in the
Boolean expression of an IF, WHILE, or UNTIL
clause: they cannot be used in other Boolean
expressions. Furthermore, they cannot occur in
parentheses and are evaluated after all other
operators.

Examples of sequential control operators:

IF SYM <> NIL AND THEN SYM~.VAL < 0 THEN
NEXT_SYMBOL:

WHILE I <= MAX AND THEN VECT [IJ <> KEY DO
I := I + 1:

REPEAT GEN (VAL)
UNTIL VAL = 0 OR ELSE (QU DIV VAL) 0:

WHILE POOR AND THEN GETTING POORER
OR ELSE BROKE AND THEN BANKRUPT DO

GET RICH

12-28 Pascal Manual

INDEX

This index covers both Volumes 1 and 2. Sections 1
through 12 are in Volume 1. Sections 13 through the
Glossary are in Volume 2.

Page numbers in boldface indicate the principal
discussion of a topic.

*, 11-4
+, 11-4

, 11-4
:=, 12-5
<, 11-7
<=, 11-7
<>, 11-7
=, 11-7
>, 11-7
>=, 11-7

ABORT, 14-12, 17-8,
19-16

A2DRQQ, 14-16
A2SRQQ, 14-16, 17-8,

19-16
ABS, 14-13
Access modes, files, 7-6

to 7-7
ACDRQQ, 14-13
ACSRQQ, 14-13
Actual parameter, 13-8
Addition operators, 11-4
Address, segmented,

13-11
Address types, 8-4 to

8-9, G-3
comparing, 11-8
predeclared, 8-6
READs, 15-16
using, 8-8 to 8-10
WRITEs, 15-23

Address variables, 10-8
to 10-9, 10-13

ADR, 8-8 to 8-10
ADRMEM, 8-6
ADS, 8-8 to 8-10
ADSMEM, 8-6
AIDRQQ, 14-13
AISRQQ, 14-13
ALLHQQ, 14-4, 14-14

ALLMQQ, 14-4, 14-14
Allocation of memory,

14-3 to 14-5
AND, 11-5, 11-7
AND THEN, 12-28
ANDRQQ, 14-14
Angle brackets «»,

11-10
ANSI/IEEE standard

Pascal, comparisons
to, B-1 to B-14

ANSRQQ, 14-14
ARCTAN, 14-15
Arithmetic, floating

point, 5-9, 18-8
Arithmetic functions,

14-6 to 14-8
predeclared, 14-7
writing your own, 14-8

Arrays, 6-2 to 6-15
conformant, 6-5, B-1
constant, 9-11 to 9-13
declarations, 6-2
index, 5-10, 6-2, 18-6

to 18-7
internal representa

tion, 6-26, G-4
PACKED, 6-8, 6-3
super arrays, 6-4 to

6-15, B-1, G-3
variable-length, 6-4

to 6-15
ASCII character set,

1-18
ASCII files, 7-5
ASDRQQ, 14-15
ASSIGN, 7-2, 7-9, 14-15,

15-24, 16-3
Assignment compati

bility, 4-7 to 4-8,
12-5 to 12-7

address types, 8-8
INTEGER, 5-3

Index-1

Assignment compati
bility (cont.)

pointer types, 8-3
STRINGs and LSTRINGs,

6-11
WORD, 5-3

Assignment statement,
10-5, 12-5 to 12-7

ASSRQQ, 14-15
ATDRQQ, 14-16
At sign (@), 2-7
ATSRQQ, 14-16
Attributes,

combining, 10-16,
13-18

declaring, 13-19
in modules, 16-9
procedural and func-

tional, 13-15,
13-18 to 13-27

variable, 10-10 to
10-16

video, F-9
Attributes, by name

EXTERN, 10-12 to 10-13
INTERRUPT, 13-14 to

13-26
ORIGIN, 18-13 to

18-14, 13-23 to
13-24

PORT, 18-13 to 18-14,
13-10

PUBLIC, 18-12 to
18-13, 13-20,
13-22 to 13-23

PURE, 13-20, 13-26
READONLY, 18-14 to

18-15, 13-10
STATIC, 10-11 to 10-12

$BRAVE, 17-10
Base type, 5-2
BEGIN and END, 12-2,

12-3, 12-11
BEGOQQ, 14-10, 14-16
BEGXQQ, 14-17, 19-1,

19-8
~inary files, 7-5
Binary numbers, 9-7 to

9-8
Binary tree search ex

ample, H-10 to H-18

Index-2 Pascal Manual

Bitwise logical func-
tions, 11-5

Block, 13-1
Body, 1-4 to 1-5, 12-1
BOOLEAN type, 5-3, 11-2,

G-2
expressions, 11-7
READs, 15-16
WRITEs, 15-22

Bounds-checking, 5-6
Bounds, super array, 6-6
Braces, ({}), 2-3
Brackets, ([]), 6-24,

10-14, 13-20
BREAK statement, 12-24

to 12-25
Buffer variable, 7-3 to

7-4, 10-8
BYLONG, 14-18
BYTE, 5-6
BYWORD, 14-18

Calculating expressions,
1-12, 11-1

Calling sequence, 13-24
Carriage return, 2-1
CASE constant, 6-19,

12-4
CASE statement, 5-10,

9-4, 12-15 to 12-18
constants in, 5-5
in variant records,

6-19
Case, upper or lower,

2-1
Changing type value,

11-18
CHAR, 5-3,- G-2
Character constants, 9-9

to 9-10
Characters, 2-1 to 2-7

case, 2-1
separators, 2-2 to 2-3
special uses in

Pascal, 2-1 to 2-7
underscore, 2-2
unused, 2-6 to 2-7

CHDRQQ, 14-19
CHR, 14-19
CHSRQQ, 14-19
CLOSE, 7-9, 14-19, 15-24
CNDRQQ, 14-20

CNSRQQ, 14-20
Colon and equals sign

(:=), 12-5
Command form, 18-5
Comments, 2-3 to 2-4

metacommands, 17-1
Comparison, STRINGs and

LSTRINGs, 6-12
Comparisons to other

versions of Pascal,
B-1 to B-14

Compatibility between
types, 4-5 to 4-8

address types, 8-8
pointer types, 8-3
STRINGS, 6-8

Compilands, 1-4 to 1-7,
16-1 to 16-22

accessing one from
another, 13-22

modules, 16-8 to 16-10
units, 16-11 to 16-22;

see also Modules
and Units

Compiler, 18-1 to 18-17
bounds-checking, 5-6
compi1ands, 16-1 to

16-22
controlling source

file, 17-15 to
17-18

directives, 1-2, 17-1
to 17-27; see also
Metacommands

error messages, 19-16,
A-I to A-58

intermediate files,
18-14

invoking, 18-5 to 18-7
language levels, 1-2
listing file control,

17-19 to 17-22
memory requirements,

18-14 to 18-15
metacornmands, 1-2,

17-1 to 17-27
optimization, 5-6
options, 18-3 to 18-4
run-time routines,

19-9
structure, 18-14 to

18-15
variables, 10-1

Compound statements,
12-11 to 12-12

Computing a value, 1-12
CONCAT, 14-20
Concatenation of

strings, 9-14
Conditional statements,

12-12 to 12-18
Conformant array, 6-5,

B-1
CONST parameters, 10-15,

13-12
CONST section, 9-3, 13-3
Constant arrays, 9-11 to

9-13
Constant coercions, 4-5
Constant expressions,

5-7, 9-14 to 9-15,
11-3

Constant records, 9-11
to 9-13

Constant sets, 9-11 to
9-13

Constants, 1-14, 9-1 to
9-15

arrays, 9-11 to 9-13
CASE, 6-19, 12-4
character, 9-9 to 9-10
identifiers, 3-1, 9-1,

9-3
INTEGER, 9-6
LSTRINGs, 6-10
MAXINT, 5-1
numeric, 9-4
parameters, 13-12
predeclared, 6-10, 9-6
REAL, 5-9, 9-5
records, 9-11 to 9-13
sets, 9-11 to 9-13
structured, 9-11 to

9-13
type compatibility,

4-5
WORD, 9-6

CONSTS parameters, 8-7
to 8-8, 10-15, 13-12

Controlling the video
display, F-9 to F-29

Control variable, 12-20,
13-10

Conversion, INTEGER to
WORD, 14-10: see
also Assignment
compatibility

COPYLST, 6-13, 14-28
COPYSTR, 6-13, 14-21
COS, 14-21

Index-3

eTOS, F-1 to F-22
example showing how to

access, F-6 to F-8
structures, F-5

CYCLE statement, 12-24
to 12-25

$DEBUG, 11-14, 13-25,
17-1"

Data conversion func
tions, 14-5 to 14-6

Data types; see Types
Debugging, 19-3

metacommands, 17-8 to
17-14

Declaration section,
1-4, 3-3

Declaration
arrays, 6-2
constants, 9-3
files, 7-1 to 7-2
functions, 1-9, 13-1,

13-5 to 13-7
pointer types, 8-3
procedures, 1-9, 13-1

to 13-4
variable attributes,

10-10; see also
Types

variables, 113-3
DECODE, 14-22
DELETE, 14-23
Derived type, 6-4
DGroup, 18-113, 19-6
Diagrams, syntax, C-1 to

C-13
Digits, 2-2
DIRECT access mode, 7-6

to 7-8
Directives, 13-18 to

13-27
compiler; see Meta

commands
EXTERN, 13-21 to 13-22
FORWARD, 13-19, 13-21

DISCARD, 7-9, 14-23,
15-25

DISMQQ, 14-4, 14-23
DISPOSE, 14-3, 14-24
DIV, 11-5
Division, 11-4 to 11-5
OS Allocation, 18-113

Index-4 Pascal Manual

$ERRORS, 17-113
$END, 17-16 to 17-17
$ENTRY, 13-25, 17-18,

19-17
EDF file, F-2
Empty record, 6-213
Empty sets, 11-11
Empty statement, 12-2,

12-5
EMSEQQ, 17-8, 19-16
ENCODE, 14-25
END, 12-3, 12-11
End-of-fi1e, 15-6
End-of-1ine, 15-6
ENDOQQ, 14-113, 14-25
ENDXQQ, 14-26
ENTGQQ, 16-3, 19-8
Entry point, 19-1
Enumerated types, 5-4 to

5-5, G-2
changing to, 5-4
constants, 9-1
READs, 15-16

EOF, 14-26, 15-6
EOLN, 14-27, 15-6
Equal to (=), 11-7
ErcType, F-3
Error checking, 12-6

run-time routines,
19-2

Error handling
metacommands, 17-8 to

17-14
run-time support

library, 19-16 to
19-213

Error messages, 19-16,
A-I to A-58

in listing file, 17-26
Escape sequences, video,

F-l13 to F-16
EVAL, 11-17, 14-113,

14-27
Evaluating expressions,

11-14 to 11-17,
14-10

Examples, H-1 to H-18
accessing CTOS, F-6 to

F-8
binary tree search,

H-l13 to H-18
minimal Pascal, 19-22

to 19-24

Examples (cont.)
module, 1-5, 8-1 to

8-S
units, 1-5, 8-6 to 8-9
video display, F-16 to

F-25
Exclamation point (1),

2-3
EXDRQQ, 14-27
EXP, 14-28
Explicit field offsets,

6-21 to 6-23
Exponents, 5-9, 9-5
Expressions, 1-12, 11-1

to 11-18
BOOLEAN, 11-7
common subexpressions,

12-7
constant, 5-7, 9-14 to

9-1S, 11-3
conversion of types

in, 11-3 to 11-6
evaluating, 11-14 to

11-17, 14-10
INTEGER, 11-3
optimization, 11-12,

11-14 to 11-17
passing the value of,

11-14 to 11-17,
13-12

set, 11-9 to 11-11
simple types, 11-2 to

11-6
type compatibility,

4-6, 5-2
using functions

within, 1-8, 11-12
to 11-13, 11-17 to
11-18

EXSRQQ, 14-27
Extensions to standard

Pascal, B-5 to B-9
EXTERN attribute, varia

bles, 10-12 to 10-13
EXTERN directive, 13-21

to 13-22
External definition

file, F-2

FCBFQQ, 7-9
Features, comparisons to

other versions of
Pascal, B-1 to B-14

Field, 6-16
identifier, 3-1, 6-16,

10-7
tag field, 6-18
values, 10-7
variables, 10-7

File
external definition

(EDF), F-2
listing format, 17-23

to 17-27
object list, 19-3
symbol, 19-3: see also

Files
File Control Block,

accessing fields of,
15-24

File-oriented functions,
15-1 to 15-29

File-oriented proce
dures, 15-1 to 15-29

Files, 7-1 to 7-12
access modes, 7-6 to

7-7
ASCII, 7-5
binary, 7-5
buffer variable, 7-3

to 7-4, 10-8
declaring, 7-1 to 7-2
INPUT and OUTPUT, 7-2,

7-8, 15-11, 16-4
internal representa

tion, G-4
temporary, 15-29
text, 7-5, 15-11 to

15-12
File structure, 7-5
File system, 14-3, lS-2

to 15-18
File variable, 7-9
FILLC, 14-28
FILLSC, 14-28
FLOAT, 14-19
FLOAT4, 14-19
Floating point arith-

metic, 5-9, 18-8
FOR statement, 5-10,

12-21 to 12-24
Formal parameter, 13-8
Format, READ, 15-15
Format, WRITE, 15-20 to

15-23
Formatting, textfiles,

15-7
FORWARD, 13-19, 13-21

Index-S

Frames, video display,
F-14

FREECT, 14-4, 14-19
FREMQQ, 14-4, 14-30
Function identifier,

13-5
Functions, 1-8 to 1-9,

13-1 to 13-27
arithmetic, 14-6 to

14-8
current value, 11-17,

13-6
data conversion, 14-5

to 14-6
declaration, 1-9,

13-1, 13-5 to 13-7
designating in an

expression, 11-12
to 11-13

directives, 13-18 to
13-27

directory of available
functions, 14-1 to
14-67: see also
Functions, by name

file-oriented, 15-1 to
15-29

identifiers, 3-1
parameters, 13-8 to

13-17, G-3
predeclared, 14-1
REAL values, 5-9
using as a procedure,

11-17 to 11-18;
see also Attri
butes, by name

Functions, by name
A2DRQQ, 14-16
A2SRQQ, 14-16, 17-8,

19-16
ABS, 14-13
ACDRQQ, 14-13
ACSRQQ, 14-13
AIDRQQ, 14-13
AISRQQ, 14-13
ALLHQQ, 14-4, 14-14
ALLMQQ, 14-4, 14-14
ANDRQQ, 14-14
ANSRQQ, 14-14
ARCTAN, 14-15
ASDRQQ, 14-15
ASSRQQ, 14-15
ATDRQQ, 14-16
ATSRQQ, 14-16
BYLONG, 14-18

IDdez-6 Pascal Manual

BYWORD, 14-18
CHDRQQ, 14-19
CHR, 14-19
CHSRQQ, 14-19
CNDRQQ, 14-20
CNSRQQ, 14-20
COS, 14-21
DECODE, 14-22
DISMQQ, 14-4, 14-23
ENDOQQ, 14-10, 14-25
EOF, 14-26, 15-6
EOLN, 14-27, 15-6
EXDRQQ, 14-27
EXP, 14-28
EXSRQQ, 14-27
FLOAT, 14-19
FLOAT4, 14-19
FREECT, 14-19
FREMQQ, 14-30
GET, 14-38, 15-3
GETMQQ, 14-4, 14-38
GTYUQQ, 14-31
HIBYTE, 14-31
HIWORD, 14-31
LADDOK, 14-32
LDDRQQ, 14-32
LDSRQQ, 14-32
LMULOK, 14-33
LN, 14-33
LNDRQQ, 14-33
LNSRQQ, 14-33
LOBYTE, 14-34
LOCKED, 14-34
LOWER, 13-11, 14-35
LOWORD, 14-35
MDDRQQ, 14-37
MDSRQQ, 14-37
MEMAVL, 14-37
MNDRQQ, 14-38
MNSRQQ, 14-38
MXDRQQ, 14-41
MXSRQQ, 14-41
ODD, 14-44
ORD, 14-44
PIDRQQ, 1tl-46
PISRQQ, 14-46
POSITN, 14-46
PRDRQQ, 14-49
PREALLOCHEAP, 14-47
PREALLOCLONGHEAP,

14-48
PRED, 14-48
PRSRQQ, 14-49
PURE, 13-20, 13-26
RESULT, 13-6, 14-53

Functions, by name
(cont.)

RETYPE, 11-18, 14-54
to 14-55

ROUND, 14-56
ROUND4, 14-56
SADOOK, 14-57
SCANEQ, 14-57
SCANNE, 14-58
SHDRQQ, 14-58
SHSRQQ, 14-58
SIN, 14-59
SIZEOF, 14-59
SMULOK, 14-59
SNDRQQ, 14-60
SNSRQQ, 14-60
SQR, 14-60
SQRT, 14-60
SRDRQQ, 14-60
SRSRQQ, 14-60
SUCC, 14-61
THDRQQ, 14-61
THSRQQ, 14-61
TNDRQQ, 14-61
TNSRQQ, 14-61
TRUNC, 14-62
TRUNC4, 14-62
UADOOK, 14-63
UMULOK, 14-63
UPPER, 13-11, 14-65
WRD, 5-2, 14-66

$GOTO, 17-11
GET, 14-38, 15-3
GOTO Statements, 12-8 to

12-10
using BREAK and CYCLE

instead, 12-24
greater than (», 11-7
greater than or equal to

(>=), 11-7
GTYUQQ, 14-11, 14-31

Heading, 1-4
Heap, 8-1, 10-11, II-II,

12-27, 14-3 to 14-5,
14-42 to 14-43,
19-5, B-1, G-3

Hexadecimal numbers, 9-7
to 9-8

HIBYTE, 14-31
HIWORD, 14-31

$IF, 17-16 to 17-17
$INCLUDE, 16-12, 17-17

example, H-6 to H-9
$INCONST, 17-17
$INDEXCK, 17-11
$INITCK,11-5, 13-4,

13-6, 17-11
$INTEGER, 17-6
II2MSQQ, E-l
IC column of listing

file, 17-25
Identical types, 4-5
Identifiers, 1-17, 3-1

to 3-5
case of characters

used, 2-1
constant, 3-1, 9-1,

9-3
construction of, 2-1

to 2-2
declaring, 3-3
enumerated types, 5-4
field, 6-16
function, 13-5
module, 16-8
predeclared, 3-5, D-l

to D-3
program, 16-3
restrictions, 2-1 to

2-6
scope, 3-2 to 3-4
STRING, 6-8
super type, 6-4
unit, 3-1, 16-13 to

16-14
variable, 3-1, 10-1,

18-6
IEEE real number format,

5-8
conversion of REAL

numbers from old
format to, E-1

IF statement, 12-12 to
12-14

Implementations of
units, 16-19 to
16-22: see also
Units, examples

IN, 11-10
Incompatible types: see

Compatibility be
tween types

Index expression, 10-6
to 10-7

Index-7

Index type of an array,
6-2

Initialization, 14-10,
19-8 to 19-13

metacomrnand, 17-11
program, 16-4
using to write your

own routines,
19-14

INPUT (file), 7-8,
15-11, 16-4

Input/Output, 7-9, 15-7
to 15-9

extend level, 15-24 to
15-29

file, 7-2
predeclared files,

15-10 to 15-12
routines, 14-11
textfi1es, 15-10 to

15-12, 15-24 to
15-29

INSERT, 14-32
INTEGER, 5-1 to 5-2,

11-2
assignment compati

bility, 5-3
changing to enumer

ated, 5-4
changing to WORD,

14-10
constants, 9-6
expressions, 11-3
internal representa-

tion, G-1
READs, 15-15
WRITEs, 15-21

INTEGER1, 5-2, 5-6
INTEGER2, 5-2
INTEGER4, 5-10, 11-2

assigning to WORD,
5-10

constants, 9-6
internal representa

tion, G-1
READs, 15-16
WRITEs, 15-22

Interactive 1/0
Interface, 16-17 to

16-19; see also
Units, examples

Index-8 Pascal Manual

Internal representation
of data types, G-1
to G-5

arrays, 6-26
pointer types, 8-4
records, 6-26
sets, 6-26
super array, 6-6

INTERRUPT attribute,
13-14 to 13-26

Interrupt vectoring and
enabling, 13-25

Invoking the compiler,
18-5 to 18-7

ISO Pascal, comparisons
to, B-1 to B-14

JG column of listing
file, 17-25

Keyboard LED indicators,
F-9

$LINE, 17-12
$LINESIZE, 17-20
$LIST, 17-20
LABEL section, 12-3,

13-3
LADDOK, 14-32
Lazy evaluation, 15-7 to

15-9
LDDRQQ, 14-32
LDSRQQ, 14-32
LED indicators, F-9
Length access, STRINGs

and LSTRINGs, 6-12
Less than «), 11-7
Less than or equal to

«=),11-7
Letters, 2-1; see also

Characters
Libraries; see Run-time

support library
Line number of listing

file, 17-25

Lines, in textfi1es, 2-1
Linking, 18-8 to 18-11
Listing file, 18-3

control, 17-19 to
17-22

format, 17-23 to 17-27
Literals, REAL, 5-9
LMULOK, 14-33
LN, 14-33
LNDRQQ, 14-33
LNSRQQ, 14-33
LOBYTE, 14-34
LOCKED, 14-34
Loop label, 12-4
Looping, use of BREAK

and CYCLE, 12-24
LOWER, 13-11, 14-10,

14-35
Lower case, 2-1
LOWORD, 14-35
LSTRING, 6-6, 6-9 to

6-15
comparing, 11-8
concatenation, 9-14
constants, 6-10, 9-9

to 9-16'
differences from

STRINGs, 6-10
examples, 6-14 to 6-15
intrinsics, 14-9 to

14-10
parameter passing,

6-13
READs, 15-17
type compatibility,

4-5 to 4-6
WRITEs, 15-23

$MATHCK, 14-6, 17-12
$MESSAGE, 17-18
M21SQQ, E-l
MARKAS, 14-4, 14-36
MAXINT, 5-1
MAXINT4, 5-10
MDDRQQ, 14-37
MDSRQQ, 14-37
MEMAVL, 14-4, 14-37
Memory allocation, 14-3

to 14-5
Memory organization,

19-5 to 19-7

Memory requirements,
compiler, 18-14 to
18-15

Metacomrnands, 1-2, 17-1
to 17-27

error handling and de
bugging, 17-8 to
17-14

giving, 17-1
listing file control,

17-19 to 17-22
optimization with,

17-6
source file control,

17-15 to 17-18
summary, 17-3 to 17-5

Metacommands, by name
$BRAVE, 17-10
$DEBUG, 11-14, 13-25,

17-18
$END, 17-16 to 17-17
$ENTRY, 13-25, 17-18,

19-17
$ERRORS, 17-10
$GOTO, 17-11
$IF, 17-16 to 17-17
$INCLUDE, 16-12, 17-17
$INCONST, 17-17
$INDEXCK, 17-11
$INITCK, 11-5, 13-4,

13-6, 17-11
$INTEGER, 17-6
$LINE, 17-12
$LINESIZE, 17-20
$LIST, 17-20
$MATHCK, 17-12
$MESSAGE, 17-18
$NILCK, 17-13
$OCODE, 17-20
$PAGE, 17-20
$PAGEIF, 17-20
$PAGESIZE, 17-20
$POP, 17-18
$PUSH, 17-18
$RANGECK, 5-6, 12-6,

12-17, 13-9, 17-13
$REAL, 5-8, 17-6
$ROM, 10-4, 17-6
$RUNTIME, 13-25,

17-14, 19-18
$SIMPLE, 11-12, 12-6,

17-6
$SIZE, 17-6

J:ndex-9

Metacommands, by name
(cont.)

$SKIP, 17-20
$SPEED, 17-6
$STACKCK, 13-25, 17-14
$SUBTITLE, 17-20
$SYMTAB, 17-21
$THEN, 17-16 to 17-17
$TITLE, 17-21
$WARN, 17-14

Metavariables: see Meta
commands and Meta
commands, by name

Minimizing program size,
19-21 to 19-24

Minus (-), 11-4
MISO, 19-9
MNDRQQ, 14-38
MNSRQQ, 14-38
MOD, 11-5
Mode of file, 7-2
Modules, 1-4 to 1-7,

16-8 to 16-U'
attributes for proce

dures and func
tions, 16-9

example, 1-5, 8-1 to
8-5

identifiers, 3-1, 16-8
structure, 1-5 to 1-7
suppressing the

default PUBLIC
attribute, 13-20

MOVE, 6-13
MOVEL, 14-38
MOVER, 14-39
MOVESL, 14-40
MOVESR, 14-41
Multiplication, 11-4
MXDRQQ, 14-41
MXSRQQ, 14-41

$NILCK, 17-13
NaN, 5-8, 11-9
NEW, 14-3, 14-42 to

14-43
Nondecima1 numbering,

9-7 to 9-8
NOT, 11~5, 11-7
Not a number (NaN), 5-8,

11-9
Not equal to «», 11-7

Index-I" Pascal Manual

Notation, 1-18, 2-1 to
2-7, 17-16

NULL, 6-10, 9-10
Null set, 6-24
Numbering, nondecima1,

9-7 to 9-8
Numbers, 5-1 to 5-10

legal digits, 2-2
Numeric constants, 9-4

$OCODE, 17-20
Object file, 18-5
Object list file, 18-3,

19-3
Octal numbers, 9-7 to

9-8
ODD, 14-6, 14-44
Offsets, explicit field

offsets, 6-21 to
6-23

Operand, 11-1
Operating system, acces

sing with Pascal,
F-l to F-22

Operators, 1-12, 2-5 to
2-6, 11-1 to 11-2

AND THEN, 12-28
and types, 11-2
BOOLEAN, 11-7, 12-28
INTEGER quotient and

remainder, 11-5
OR ELSE, 12-28
precedence, 11-1,

11-15
quotient, 11-5
relational, 11-2
remainder, 11-5
sets, 11-10

Optimization, 5-6,
10-14, 12-6 to 12-7,
12-23

expressions, 11-14 to
11-17

metacommands for, 17-6
minimal run-time use,

19-21 to 19-24
Optimizer, 13-26
OR, 11-5, 11-7
OR ELSE, 12-28
ORO, 14-44

Ordinal types, 5-1 to
5-7

changing to Boolean,
5-3

changing value, 5-2
subranges, 5-5

ORIGIN attribute, 13-23
to 13-24

variables, 10-13 to
10-14

OTHERWISE statement, in
variant records,
6-19

OUTPUT (predeclared
file), 7-2, 7-8,
15-11

Overflow, 11-14, 13-25,
14-7

error messages, A-5,
A-33

Overlays, 18-16 to 18-17
run-time overlays,

18-8
Overview of Pascal

language, 1-1 to
1-18

$PAGE, 17-20
$PAGE, 17-20
$PAGEIF, 17-20
$PAGESIZE, 17-20
$POP, 17-18
$PUSH, 17-18
PACK, 14-6, 14-45
PACKED, 13-10
PACKED array, 6-3, 6-8
PACKED types, 8-11
PAGE, 14-45, 15-7
Panic errors, A-I
Parameters, 13-8

actual, 13-8
CONST, 10-15, 13-12
CONSTANT, 13-12
CONSTS, 8-7 to 8-8,

10-15
formal, 13-8
internal representa

tion, G-3
list, 10-3

passing, 11-15 to
11-16, 13-6 to
13-17

by reference, 13-12
to 13-13

to STRINGs and
LSTRINGs, 6-13

procedural and func
tional, 13-13 to
13-17

program, 7-8, 16-4,
H-10 to H-18

reference, 4-5 to 4-6,
8-7 to 8-8, 13-9
to 13-11

segment, 13-12
super array, 13-11
value, 13-8 to 13-9
VARS, 8-7 to 8-8

Parentheses in expres
sions, 11-15

Parts of a program, 1-4
to 1-10

TYPE section, 4-4
. VALUE section, 1-13

Pascal, 1-1 to 1-18
CTOS, F-l to F-22
command form, 18-5
comparisons to other

versions, B-1 to
B-14

compiler, 18-1 to
18-17

library: see Run-time
support library

notation, 1-18, 2-1 to
2-7, 17-16

program examples, H-1
to H-5

running a program,
18-12 to 18-13

systems programming
with, F-1 to F-22

Pasca1.Lib: see Run-time
support library

PASMAX, 19-9
Passing parameters, 13-6

to 13-17
file buffer variable,

7-3
PIDRQQ, 14-46

Index-II

PISROQ, 14-46
Plus (+), 11-4
PLYUQQ, 14-11
Pointer type, 6-5, 8-1

to 8-4
compatib1ity, 8-3
declarations, 8-3
internal representa-

tion, 8-4, G-2 to
G-3

READs, 15-16
WRITEs, 15-23

Pointer variables, 10-8
to 10-9

PORT attribute, proce
dural, 13-10

PORT attribute, vari
ables, 10-13 to
10-14

Portability, 1-2, 5-8,
B-1

POSITN, 14-46
PPMFQQ, 16-6
PRDRQQ, 14-49
PREALLOCHEAP, 14-5,

14-47
PREALLOCLONGHEAP, 14-5,

14-48
Precision, 5-9
PRED, 14-48
Predeclared address

types, 8-6
Predeclared constants,

9-6
Predeclared functions,

14-1
Predeclared identifiers,

3-5
summary, D-1 to D-3

Predeclared types, 6-6
Primitives, 15-1 to

15-29
Procedural types, 8-12
Procedures, 1-8 to 1-9,

13-1 to 13-27
data conversion, 14-5

to 14-6
declaration, 13-1 to

13-4
directives, 13-18 to

13-27
directory, 14-1 to

14-67
file-oriented, 15-1 to

15-29

Index-12 Pascal Manual

file system, 14-3
identifiers, 3-1
parameters, 13-8 to

13-17, G-3
predeclared, 14-1

Procedures, by name
ABORT, 14-12, 16-8,

19-6
ASSIGN, 7-2, 7-9,

14-15, 15-24, 16-3
BEGOQQ, 14-10, 14-16
BEGXQQ, 14-17, 19-1,

10-8
CLOSE, 7-9, 14-19,

15-24
CONCAT, 14-20
COPYLST, 6-13, 14-28
COPYSTR, 6-13, 14-21
DELETE, 14-23
DISCARD, 7-9, 14-23,

15-25
DISPOSE, 14-3, 14-24
ENCODE, 14-25
ENDXQQ, 14-26
EVAL, 11-17, 14-10,

14-27
FILLC, 14-28
FILLSC, 14-28
GET, 14-30, 15-3
INSERT, 14-32
MARKAS, 14-4, 14-36
MOVE, 6-13
MOVEL, 14-38
MOVER, 14-39
MOVESL, 14-40
MOVESR, 14-41
NEW, 14-3, 14-42 to

14-43
PACK, 14-6, 14-45
PAGE, 14-45, 15-7
PTYUQQ, 14-11, 14-49
PUT, 14-49, 15-4
READ, 14-58, 15-2,

15-13 to 15-17
READFN, 7-2, 7-9, .

14-50, 15-26, 16-3
READLN, 14-51, 15-13

to 15-17
READSET, 7-9, 14-51,

15-26
RELEAS, 14-4, 14-52
RESET, 14-53, 15-4 to

15-5
RESULT, 11-17 to

11-18, 13-6, 14-53

Procedures, by name
(cont.)

REWRITE, 14-55, 15-5
SEEK, 7-9, 14-58,

15-27 to 15-28
UNLOCK, 14-6, 14-64
UNPACK, 14-64
WRITE, 14-61, 15-2,

15-18 to 15-23
WRITELN, 14-67, 15-18

to 15-23
Procedure statements,

12-7 to 12-8
Program examples; see

Examples
Program parameters, 1-8,

16-3
example, H-10 to H-18

Programs, 1-4 to 1-5
compiling, 18-1 to

18-17
entry point, 19-1
identifiers, 3-1, 16-3
initialization, 16-4
linking, 18-8 to 18-11
parameters; see Pro-

gram parameters
parts of, 16-1 to

16-22
Pascal examples, H-l

to H-5
portability, 1-2, 5-8,

B-1
running, 18-12 to

18-13
size, 19-21 to 19-24
structure, 1-3 to

1-18, 1-13, 16-1
to 16-1, 19-9

VALUE section, 10-4
VAR section, 10-3

PRSRQQ, 14-49
PTYUQQ, 14-11, 14-49
PUBLIC attribute, 13-20,

13-22 to 13-23
variables, 18-12 to

1"-13
Punctuation, 2-4 to 2-5

syntax diagrams, C-13
PURE attribute, 13-20,

13-26
PUT, 14-49, 15-4

Question mark, (1), 2-1,
B-1

$RANGECK, 5-6, 12-6,
12-17, 13-9, 11-13

$REAL, 5-8, 11-6
$ROM, 10-4, 11-6
$RUNTIME, 13-25, 11-14,

19-18
Radix, 9-7 to 9-8
Range-checking, 5-6; see

$RANGECK
Range of data types; see

Internal representa
tion

READ, 14-51, 15-2, 15-13
to 15-11

formats, 15-15
READFN, 7-2, 7-9, 14-50,

15-26, 16-3
Reading, STRINGs and

LSTRINGs, 6-12
READLN, 14-51, 15-13 to

15-11
READONLY attribute,

11-14 to 18-15,
13-10

READSET, 7-9, 14-51,
15-26

REAL type, 5-8 to 5-9,
11-2

comparing, 11-9
constants, 9-5
conversion to IEEE

format, E-l
internal representa

tion, 5-8, G-l
mixing with INTEGER,

11-4
READs, 15-16
WRITEs, 15-22

REAL4, 5-8 to 5-9
REAL8, 5-8 to 5-9
Record, 6-16 to 6-23

constant, 9-11 to 9-13
empty, 6-20
explicit field off-

sets, 6-21 to 6-23
field, 6-16

Index-13

Record (cont.)
field variables and

values, 10-7
internal representa

tion, 6-26, G-4
variant record, 6-17

to 6-21, 9-4
WITH statement, 12-26

to 12-2S
Recursion, 13-1
Reference parameters,

4-5 to 4-6, S-7 to
S-8, 13-9 to 13-11

Reference types, 8-1 to
8-12, G-2 to G-3

comparing, 11-S
compatibility, 4-6
READs, 15-16
WRITEs, 15-23

Reference variables,
10-8 to 10-9

Relative address types;
see Address types
and ADR

RELEAS, 14-4, 14-52
Remainder, 11-5
REPEAT statement, 12-19

to 12-20
Repetitive statements,

12-18 to 12-25
Reserved words, 2-6

summary, D-1 to D-3
RESET, 14-53, 15-4 to

15-5
RESULT, 11-17 to II-IS,

13-6, 14-53
RETURN statement, 12-26
RETYPE, 11":lS, 14-54 to

14-55
REWRITE, 14-55, 15-5
ROUND, 14-56
ROUND4, 14-56
Run file, 18-3, 18-12
Run-time error messages,

A-41 to A-50
Run-time routines, 19-9
Run-time support

library, 16-12, 19-1
to 19-24

architecture, 19-4 to
19-20

avoiding, 19-21 to
19-24

entry point, 19-1

Index-14 Pascal Manual

error handling, 19-16
to 19-20

initialization, 19-1,
19-8 to 19-13

memory organization,
19-5 to 19-7

program structure,
19-9

suffixes, 19-4
using initialization

and termination
points, 19-14 to
19-16

Running a program, lS-12
to lS-13

$SIMPLE, 12-6, 17-6,
11-12

$SIZE, 17-6
$SKIP, 17-20
$SPEED, 17-6
$STACKCK, 13-25, 17-14
$SUBTITLE, 17-20
$SYMTAB, 17-21
SADDOK, 14-57
SCANEQ, 14-57
SCANNE, 14-5S
Scientific notation, 9-5
Scope of identifiers,

3-2 to 3-4
Screen: see Video

display
Screen attributes, F-9
SEEK, 7-9, 14-58, 15-27

to 15-28
Segment, data segment,

lS-10
Segment parameters,

13-12
Segmented address,

passing as a parame
ter, 13-11

Segmented address types;
see Address types
and ADS

Semaphore, 14-11
Semicolon, 12-2
Separator characters,

2-2 to 2-3, 12-2
SEQUENTIAL access mode,

7-6 to 7-7
SET, 11-2

Set constants, 5-5
Set constructors, 5-5
Set expressions, 11-9 to

11-11
SET of CHAR, 5-3
Sets, 6-24 to 6-26

and variables, 11-11
base type, 5-10, 6-24
bytes allocated for,

6-26
constant, 9-11 to 9-13
efficient use of, 6-25
empty, 11-11
internal representa-

tion, 6-26, G-4
null set, 6-24
operators, 11-10

SHDRQQ, 14-58
SHSRQQ, 14-58
Simple statements, 12-5

to 12-10
Simple type expressions,

11-2 to 11-6
Simple types, 5-1 to

5-10
compatibility, 4-6

SIN, 14-59
Sine,14-15
SINT, 5-2, 5-6
SIZEOF, 14-4, 14-59
SMULOK, 14-59
SNDRQQ, 14-60
SNSRQQ, 14-60
Source file, metacom

mands to control,
17-15 to 17-18

SQR, 14-60
SQRT, 14-60
Square brackets ([]),

13-20
instead of BEGIN and

END, 12-3
SRDRQQ, 14-60
SRSRQQ, 14-60
Stack, 11-11, 13-1,

13-2, 14-3 to 14-5,
15-24, 18-9, 19-5

Standard ISO Pascal,
comparisons to, B-1
to B-14

Standard Pascal, exten
sions to, B-5 to B-9

Statement, CASE, 6-19
Statement, OTHERWISE,

6-19

Statement labels, iden
tifiers for, 3-1

Statements, 1-10 to
1-11, 12-1 to 12-18,
12-24 to 12-25

compound, 12-11 to
12-12

conditional, 12-12 to
12-18

empty, 12-2, 12-5
labels, 12-3 to 12-4
procedure, 12-7 to

12-8
repetitive, 12-18 to

12-25
separating, 12-2
sequential control,

12-28
simple, 12-5 to 12-10
structured, 12-1,

12-11 to 12-28
syntax, 12-2 to 12-4

Statements, by name
Assignment, 10-5, 12-5

to 12-7
BREAK, 12-24 to 12-25
CASE, 9-4, 12-15 to

12-18
CYCLE, 12-24 to 12-25
FOR, 12-20 to 12-24
GOT 0 , 12-3, 12-8 to

12-U'
IF, 12-12 to 12-14
REPEAT, 12-19 to 12-20
RETURN, 12-26
WHILE, 12-18 to 12-19
WITH, 12-26 to 12-28

STATIC attribute, 10-11
to 10-12

Status messages, A-1 to
A-50

STRINGs, 6-6 to 6-15
concatenation, 9-14
comparing, 11-8
constant, 9-9 to 9-10
examples, 6-14 to 6-15
intrinsics, 14-9 to

14-10
identifier, 6-8
type compatibility,

4-6, 6-8
constant, 6-8, 9-9 to

9-UJ
parameter passing,

6-9, 6-13

Index-IS

·STRINGs (cont.)
READs, 15-17
variable length: see

LSTRING
WRITEs, 15-23

Structure of programs,
16-1 to 16-7

Structure, run-time,
19-9

Structured constants,
9-11 to 9-13

Structured statements,
12-11 to 12-28

Structured types, 6-1,
8-11

Structures, internal
representation, G-4

Subrange types, 5-5 to
5-7, 15-14

Subranges, using con
stant expressions as
bounds, 5-7

Subroutines: see Proce
dures, Functions,
Modules, or Units

Subtraction operators,
11-4

SUCC, 14-61
Super arrays, 6-4 to

6-15
compatibility, 4-5
identifiers, 3-1
predeclared, 6-6
internal representa-

tion, 6-6, G-3
parameters, 13-11
upper bound, 6-6

Super type identifiers,
6-4

Swap buffer, 18-16 to
18-17

Symbol, 17-16
Symbol file, 19-3
Syntax

diagrams, C-1 to C-13
statements, 12-2 to

12-4: see also
Notation

Systems programming, F-1
to F-22

$THEN, 17-16 to 17-17
$TITLE, 17-21
Tag field, 6-18

Indez-16 Pascal Manual

Tangent, 14-15, 14-16
Temporary files, 15-29
TERMINAL access mode,

7-6 to 7-7
Termination, 19-8 to

19-13
Text files, 7-5, 15-1&

to 15-12
formatting, 15-7
THDRQQ, 14-61
THSRQQ, 14-61
TNDRQQ, 14-61
TNSRQQ, 14-61
Trouble shooting, error

messages, A-I to
A-50

TRUNC, 14-62
TRUNC4, 14-62
TYPE section, 4-4
Type compatibility,

STRINGs, 6-8
Type conversion, 11-3 to

11-6
Type declaration, 4-3 to

4-4
TYPE section, 13-3
Types, 1-14 to 1-15, 4-1

to 4-8
address, 8-4 to 8-9,

15-16, 15-23
and expressions, 5-2
array, 6-2 to 6-15
assignment compati-

bility, 4-5, 4-7
to 4-8

base, 5-2
BOOLEAN, 5-3, 11-2,

15-16, 15-22
BYTE, 5-6
CHAR, 5-3
Compatibility, 4-5 to

4-8, 6-8, 4-5 to
4-8

conversion, 14-5 to
14-6

conversion in expres
sions, 11-3 to
11-6

declaring, 4-3 to 4-4
derived type, 6-4
Enumerated, 5-4 to

5-5, 15-16, 15-22
file, 7-1 to 7-12
for variables or

values, 4-1

Types (cont.)
identical, 4-S
identifiers and, 3-1
identity of, 4-S
INTEGER, 5-1 to 5-2,

11-2, IS-IS, lS-21
INTEGER1, S-6, S-2
INTEGER2, S-2
INTEGER4, S-10, 11-2,

1S-16, lS-22
internal representa

tion of, G-1 to
G-S

LSTRING, 6-6, 6-9 to
6-15, 1S-17, lS-23

ordinal, S-l to S-7
PACKED, 8-11
pointer, 6-S, 8-1 to

8-4, 1S-16, lS-23
predeclared subrange,

S-6
procedural, 8-12
REAL, 5-8 to 5-9,

11-2, lS-16, lS-22
REAL4, S-8 to S-9
REAL8, S-8 to S-9
Record, 6-16 to 6-23
Reference, 4-1, 8-1 to

8-12, lS-16, lS-23
SET, 11-2
sets, 6-24 to 6-26
simple, 4-1, 5-1 to

5-U'
SINT, 5-2, S-6
STRING, 6-6 to 6-9,

lS-17, lS-23
structured, 4-1, 8-11,

6-1
subrange, 5-5 to 5-7,

1S-14
super array, 6-4 to

6-15, 13-11, B-1
super, 4-4
WORD, 5-2 to 5-3,

11-0, IS-IS, lS-21

UAODOK, 14-63
UMULOK, 14-63
Unary minus, 11-4
Unary plus, 11-4
Underscore (_), 2-2, B-1

Units, 1-4 to 1-7, 16-11
to 16-22, 19-21

examples, l-S, 8-6 to
8-9

identifiers, 3-1,
16-13 to 16-14

in other languages,
16-21

structure, 1-6 to 1-7
using attributes with,

13-19
version number of

implementation,
16-21

Unit U, 19-9
UNLOCK, 14-64
UNPACK, 14-6, 14-64
UPPER, 13-11, 14-10,

14-65
Upper case, 2-1
USCD Pascal, comparisons

to, B-12 to B-14
USE, 16-12

Value parameters, 13-8
to 13-9

VALUE section, 1-13,
18-4, 13-3

Values, 1-13, 18-1 to
18-16

computing, 1-12
enumerated set of, 5-4
field, 10-7
in assignment state

ments, 10-S
indexed, 10-6 to 10-7

VAR, 13-9
VAR parameter, 13-12
VAR section, 18-3,

10-10, 13-3
Variables, 1-13, 18-1 to

18-16
address, 10-8 to 10-9,

10-13
assignment statement,

12-S
attributes for, 10-10

to 10-16
buffer, 10-8 to 10-9
declaring, 18-3, 10-10
field, 10-7

Index-17

Variables (cont.)
identifiers, 3-1, 19-6
in assignment state-

ments, 10-5
indexed, 10-6 to 10-7
initializing, 10-4
memory location, 10-11
multiple attributes,

10-16
names, 1-17
passing segmented

address of, 8-7 to
8-8

reference, 10-8 to
10-9

segmented address,
10-13

types, 4-1
using, 10-5 to 10-10
value, 14-6; see also

Variant record
Variant record, 6-17 to

6-21, 9-4
empty, 6-20
labels, 5-5

VARS, 13-11
VARS parameters, 8-7 to

8-8, 13-12
Video display, F-9 to

F-29
frames, F-14

Virtual Code Management
facility, 18-16 to
18-17

Index-IS Pascal Manual

$WARN, 17-14
Warnings, A-I
WHILE, 12-1S to 12-19
WITH, 12-26 to 12-2S
WORD, 5-2 to 5-3, 11-2

assigning INTEGER4 to,
5-10

assignment compati
bility, 5-3

changing to enumer
ated, 5-4

constants, 9-6
internal representa

tion, G-I
READs, 15-15
WRITEs, 15-21

Word ANDing, 5-2
Word shifting, 5-2
WRD, 5-2, 14-66
WRITE, 14-67, 15-2,

IS-IS to 15-23
WRITELN, 14-67, IS-IS to

15-23
Writing, STRINGs and

LSTRINGs, 6-12

XOR, 11-5

USER'S COMMENT SHEET

Pascal Reference Manual, .Volume 1
Third Edition
A-09-00852-01-A

We welcome your comments and suggestions. They help us
improve our manuals. Please give specific page and paragraph
references whenever possible.

Does this manual provide the information you need? Is it at the
right level? What other types of manuals ale needed?

Is this manual written clearly? What is unclear?

Is the format of this manual convenient in arrangement, in size?

Is this manual accurate? What is inaccurate?

Name Date _____ _

Title Phone ______ _

Company Name/Department

Address

City ________ _ State Zip Code

Thank you. All comments become the property of Convergent Techn%gles, Inc.

II
BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 1807 SAN JOSE. CA

POSTAGE WILL BE PAID BY ADDRESSEE

Convergent Technologies
Attn: Technical Publications
2700 North First Street
PO Box 6685
San Jose, CA 95150-6685

1111".1.1,,"11.1.1. 1111.1.1 •• 111.11.111.11111,1111

9J9H Plo::!

81delS lON 00 eS891d

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

ed8.l

Convergent
2700 North First Street
San Jose, CA 95150-6685

Printed in USA

