PRODUCT SPECIFICATION &
HARDWARE REFERENCE
MANUAL

DATAPOINT 6600

May 17, 1977

MANUAL NO. 60430 !

i ~ DATAPOINT CORPORATION

S e Ty T T e T T e

The leader indispersed data processing ™

COPYRIGHTE 1977 BY DATAPOINT CORPORATION, PRINTED IN U.S.A.

DATAPOINT 6600
PRODUCT SPECIFICATION &
HARDWARE REFERENCE MANUAL

Manual No. 60430

577

[~ 1877 by Datapoint C
Printed in U.S.A.

The “D" togo, Datapoint, Datashare. Datatorm, Databus, Datepott, Scribe, and Tha Leader in Dispersed Datu Processing
are trademarks of Dalapoint Corporation. Registerad in the U.S. Palent Oftice.

6600 SYSTEM

s e T W
Datapoint 6600 \ D T

S e

19%"

PART 1

PART 2

PART 3

PART 4

PART 5

PART 6

TABLE OF CONTENTS

Page
GENERAL FEATURES
T INOAUCHION .. e e 1
1.2 System Elementsl .
1.3 CRTDISPIAY .. oeov ettt e ettt e e A
1.4 Keyboard A
1.8 PrOCESSOr i e e 1
1.6 Cassette Tape Decksol N
1.7 General Specifications
1.8 Peripherals e et s
KEYBOARD
2.1 GONBTA) e e e
2.2 Keyboard Operation L
Tabie 2-1 Keyboard Codes i 4
DISPLAY
3.1 General Descriplion e 5
3.2 Display OPerationsooi.iin ittt et et 5-6
CASSETTE TAPES
4.1 General Descriplion 7
4.2 Operations
4.3 Status
4.4 Control {Table 4-2)
PROCESSOR
5.1 Processor Registers iiiuiiitiiii e 9
5.2 Comparison with Datapoint 5500 and 2200ottt 9
521 Input/Output9
522 Input Parity Checking .9
523 OutputParityChecking9
5.2.4 Compatibility with 5500 and 2200 Systems Peripherals .. .9
5.3 MEMOMY .. . i e .9
531 Parity Checkingo e i e 10
53.2 Physical Layout e 10
5.3.3 Address Generation 10
5.4 Pushdown Stack e e 1t
5.5 Control Flip-Flops e e e e e 12
5.6 System ROM Functions . 12
5.7 Interrupt Handling a3
5.8 Processor Instructions e a3
5.8.1 Comparisan to 2200 System Instructions .. 14
5.8.2 Presentation Format15
5.83 Category 1-22001Instructions il 15-20
5.8.4 Category 2 - Augmented Category 1 Instructions 21-22
585 Category 3- Multi-Byte (string) Operations22-25
58.6 Category 4 - Processor State Save and Restore Instructions ..25-26
5.8.7 Category 5 - Add Manip ion instructions26-28
5.8.8 Category 6 - Operating System Control28
589 Category 7 - 6600 Instruction Set29-31
5.8.10 dnstruction TIMING e 33-34
INPUT/OUTPUT
GENEIAL ... o e e 35
6.1 Input/Output Physical Connections35
6.2 Input/Output Electrical and Timing Requirements
6.21 Outputtine Circuits
6.2.1.1 Line Drivers
6.2.1.2 Receivers
6.22 Input Line Circuits
6.2.2.1 Drivers
6.23 Power and Ground Lines .
6.2.4 Device Address
6.2.5 Data and Control Output . e
Status/Data tnput

AR o RN AT

FIGURES 6-1A THRU B8 . .o oottt ittt ia it e e a e e e 39;46
APPENDIX A SYSTEM ROM OPERATING DESCRIPTION arit ' e
Chapter 1. Systern ROM Functions
1.1 Introductidh’
1.2 Power Up™
1.3 Restart .
Chapter 2. Debug .. e
2.1 introductidy
2.2 Startup Procedure
2.3 Saving th# Machine State : .
2.4 Display FOTMat e
2.5 Command Syntax N R 49
2.6 Input’Command List BRI NN

b Pe % e

ik

PARTY 1
GENERAL FEATURES

1.1 introduction

The Datapoint 6600 is a new addition to the Datapoint
family of processors. The Datapoint 6600 highlights such
features as expanded memory capability to 120K user
memory and faster memory and processor cycle times. The
Datapoint 6600 is also compietely compatible with the
Datapoint 1100, 2200, 5500 and 1150.

Note: Alt numerics preceeded with a leading zero (0) repre-
sent an octal vatue.

1.2 System Elements

There are four basic elements in the 6600 system plus the
capability to interface to a number of external peripheral
devices.

This chapter introduces the basic etements: CRT, key-
board, processor and cassettes. Further information may be
obtained from the following chapters.

1.3 CRT Display
The CRT Display provides the following features:

a. 7" x 3%2" viewing area;

960 characters;

80-character by 12-line format;

Software defined 128-character font;

60 frames-per-second refresh rate (50 frames-per-

second when using 50 heriz power),

5 x 7 matrix character generation;

5 x 7 sofid, blinking cursor, alternates with characters,

nondestructive;

Single conirol line erasure, frame erasure, page roll-up

and roli-down;

. Direct control of all CRT functions by the processor,
providing tab, editing, form control, etc; and

. Writing rate up to 50,000 characters per second.

~ T @~ ®8orw

1.4 Keyboard

The integrat keyboard provides a basic 55-key alphanu-
mersic group, an 11-key numeric group and five system con-
trol keys.

The keyboard provides a unique muiti-key roll-over char-
acteristic providing maximum ease of typing. Transfer of
characters from the keyboard is under control of the pro-
cessor. An audible “click”” providing an acoustical feedback
to the typist is available under processor control,

A programmabie audio “beep’ is also provided when it is
desired to gain a typist's atiention.

1.5 Processor

The integral processor provides all control functions and

includes:

*“ 8-bit memory word length (plus parity)
* Complete parallel O system
Automatic power-up restart

The instruction set contains ait instructions used in the
Datapoint 1100, 2200, 1150 and 5500 systems, providing
complete upward program and input-output compatibitity. in
addition, the processor characteristics of the 6600 provide:

* Higher operating speed
* Hardware Muttiply/Divide
* String moves

* Greater speed

* Expanded memory

This gives the 6600 considerably greater processing capa-
bility than found in the 5500 processors.

1.6 Cassette Tape Decks

Two read-write tape decks are provided for program and
data storage. The deck accepts Norelco (Phillips)-type cas-
settes and provides:

a. 47 characters per inch density;

b. Bi-directional operation; and

c. Processor controlled data transfer, direction control,
and high-speed rewind.

1.7 Generai Specifications

POWER REQUIREMENTS:
115 or 240 VAC (+/—10%), 80 or 50 Hz

EQUIPMENT DIMENSIONS:
Width: 18.5 in. (47 cm)
Height: 9.6 in. (24.5 cm)
Depth: 19.6 in. (50 cm)
Weight: 47 Ibs. (21.3 kg)

OPERATING ENVIRONMENT: (excluding media)
0°to 50° C (32° to 122° F)
20 to 80% Retative Humidity (Non-Condensing)

1.8 Peripherals
The 6600 will accommodate a wide variety of external
peripherals, such as asynchronous and synchronous com-

munications adaptors, printers, disks, and magnetic tapes.

1

£ L A R VT G R -

SRR N - W o M 8 45

Intentionally Blank

‘\
«
»

2.1 General

The keyboard on the Datapoint 6600 processor performs
the functions of data entry and processor control.

The integral keyboard provides a basic 55-key al-
phanumeric key group, an 11-key numeric group and five
system control keys.

The keyboard provides a unique multi-key roli-over charac-
teristic providing maximum ease of typing. Transfer of
characters from the keyboard is under control of the proces-
sof. An audibie “click™ providing an acouslical teedback to
the operator is available under software control.

A programmable audio “beep’ is also provided when. it is
desired to gain the operator's attention.

The 11-key matrix may be optionally supplied with control
key coding rather than numeric key coding and with keytops
engraved to customer specifications.

The five controt keys exert control over the processor.
Their names and associated functions are as follows:

RUN

Momentary contact switch which, when depressed, causes
the processor 1o begin execution of the instruction located at
the address in memory currently addressed by the program
counter.

STOP

Momentary contact switch which, when depressed, causes
instruction execution to halt at the completion of the current
instruction.

KEYBOARD
Momentary contact switch which sets a status bit that may
be tested at any time by the processor,

DISPLAY
Momentary contact switch with a function similar to that of
KEYBOARD switch.

RESTART

Momentary contact switch which causes the processor to
halt and executes the Restart routine contained in ROM. To
protect against accidental restart, the restart function is
inhibited uniess the RESTART and RUN keys are depressed
simultaneously.

2.2 Keyboard Operation

The keyboard is addressed by the processor by loading the
A register* with 0341 oclal and executing an EX ADR com-
mand. (The CRY display also uses this address. Data trans-
fers to the processor are from the keyboard and transfers
from the processor are to the display.) Following the address
sequence the CRT/keyboard status word can be loaded into
the A register by executing an INPUT instruction. Bit 1 of the
A register may be lested by the program to determine if a
character is ready for transfer from the keyboard. The key-
board is singie buffered under processor controt and is de-
signed such that when a character is entered from the key-

PART 2

KEVBOARD

board, another character will not be recognized from the
keyboard until the processor accepts the first character
entered. Bits 2 and 3 will indicate if either the KEYBOARD
or DISPLAY control switch is pressed.

CRT/Keyboard Status Word

[7]e]s[a]3]2]1]o]

CRT Write Ready
Keyboard Read Ready
Keyboard control switch depressed
Display control switch depressed
1 for RAM disptay
u igned

g

The External Commands associated with the operation of
the keyboard are as follows:

a. EX BEEP. This command produces a 1500 Hertz tone
tor a duration of about 400 msec. The tone coutd be
used as ‘an error or ready signal to the keyboard
operator.

b. £X CLICK. This command produces an audible click
which could be used to acknowledge receipt of a vatid
character when a key is depressed.

¢. EX COM1 (Command 1). Presents a control word con-
tained in the A register to the keyboard. Bit 5 of the
control word controls the KEYBOARD switch light and
bit 6 controls the DISPLAY switch light as follows:

CRT/Keyboard Control Word
(7le]s]4]3]2]1]o]
[S——

CRT control
Keyboard Light (1=on, 0=0ff)
Display Light (1=0n, 0=0ff)

Set cursor to auto-increment mode.

Note: The CRT Write Réady must be true before the EX
COM1 can be issued

* For YO transfers in the 6600, the A register is used if an-
other register is not specified. See Part 5, category 2, for
further information.

BB ARG - - 16870 B A Y 3 15 A W0 PRI M e A PN oo el

TABLE 2-1
KEYBOARD CODING (ASCH)*

A-101 a- 141 0-060 072
B-102 b - 142 1-061 073
C-103 c¢-143 2-062 <.074
D-104 d- 144 3-063 =-076
E-105 e- 145 4-064 »-076
F-106 f - 146 5-065 2077
G-107 g - 147 6-066 £-133
H-110 h- 150 7-067 \-176
-1 i - 151 8-070 3135
J-112 j - 182 9-071 A-136
K-113 k- 153 Space-040 .. 137
L-114 - 154 1-041 @ -100
M-115 m-155 | -042 {-173
N-116 n - 156 #-043 - 134
O-117 o - 157 $-044 * - 140
P-120 p- 160 /-045 174
Q-121 q- 161 &-046 }-175
R-122 r-162 -047 Enter - 015
S-123 s- 163 {-050 Cancet - 030
T124 ¢ - 164 051 Backspace - 010
U-125 wu - 165 *-052 Del - 177
V-126 v - 166 +-053
W-127 w- 167 -054

X-130 x-170 -055

Y-131 y- 1N -056

Z-132 z-172 /-057

SPECIAL NUMBER PAD OPTION

()-016
(0)-020
(1)-021
(2)-022
(3)-023
(4)-024
(5)-025
(6)-026
(1)-027
(8)-030
(9)-031

*These codes are all represented in octal

PART 3
DISPLAY

3.1 General Description

The 6600 display provides extended character generation
flexibility and fast character transter rates. The dispiay sys-
tem includes: CRT Display of 12 lines of BO characters,
power hne screen refresh rate, 860 cells of random access
memory holding the screen image, a program loadablé ran-
dom access character generation memory capabie of pro-
ducing 128 individual 5 by 7 dot malsix characters, a group
of registers utilized to position the cursor, and automatic
cursor increment provisions. The maximum character trans-
fer rate to the CRT is determined by processor input/output
speed. The upper limit of the display transfer rate is approxi-
mately 50,000 characters per second.

3.2 Display Operation

The CRT is addressed by the processor by loading the
A register with octal 0341 and executing an EX ADR com-
mand. (Note that the keyboard also uses this address, see
Part 2.) Following the address sequence, the CRT/
keyboard status word can be toaded into the A register by
executing an INPUT instruction. The CRT status assignment
is as follows: Bit 0 of the status word indicates that the CRT is
ready to accepl data or commands if it is set to a logical 1.
(Note that this status bit will indicate a logical one if the
cursor is positioned to an invalid screen position.) Bits 1, 2
and 3 are used for keyboard status.

CRT/Keyboard Status Word

CRT Write Ready
Keyboard Use

1 for RAM Display
Unassigned

Controt of the CRT is accomplished through the use of the
tollowing external commands:

a. EX COM1 {Command 1) transfers a conirol word con-
tained in the A register 1o the CRT. The applicable bit assign-
ments and their functions are as follows:

[7]8]5]a [3]2[1]o]

Roli-down 1 line

Erase from cursor to end of line
Erase from cursor to end of frame
~————Roll-up 1 line

Cursor ON/OFF (on -1, off=0)
Keyboard Light (on=1, oft=0)
Display Light (on=1, otf=0)

Auto Cursor Increment Mode
(0=No Auto Increment)

The foliowing explanations assume that the CRT has been

addressed.

BIT 0: Each execution of EX COM1 with this bit set to 1
causes the roll-down operation to occur. All dis-
played characters (nol the cursor) are moved down
one line. The bottom line on the screen is lost and the
top line is filled with the pattern in position 040 octal
of the character generation memory. The Write
Ready status bit goes false until the roli-down opera-
tion is complete; another EX COM1 must not be is-
sued during this time.

BIT 1: Each execution of EX COM1 with this bit set to 1
causes erasure from (including) the current cursor
position to the end of the line. The character dis-
played in the erased positions is determined by the
patitern in position 040 octat of the character genera-
tion memory. The Write Ready status bit goes false
untit this operation is complete; another EX COM1
must not be issued during this time.

BIT 2: Each execution of EX COM1 with this bit set to 1
causes erasure from (including) the current cursor
position to the end of the frame. The character dis-
played in the erased position is determined by the
pattern in position 040 octal of the character genera-
tion memory. The Write Ready status bit goes false
until this operation is complete; another EX COM1
must not be issued during this time.

BIT 3: Each execution of EX COM?1 with this bit set to 1
causes the roll-up operation to occur. All displayed
characters (not the cursor) are moved up one line
The top fine on the screen is lost and the bottom line
is filled with the pattern in position 040 octal of the
character generation memory. The Write Ready
status bit goes false untit the roil-up operation is
complete; another EX COM1 must not be issued dur-
ing this time.

BIT 4: Thecursorimage may be turned on or off through the
control word. The cursor positicn is the same in
either case. The cursor image is automatically turned
oft whenever the processor is in the HALT state, and
will be turned on again when RUN is depressed if the
cursor was on prior to the HALT.

BITS
5.6. Keyboard & Display Light — See Part 2.

BiT 7: When this bit is set to 1, the automatic cursor incre-
ment feature is in effect. In auto cursor increment
mode, the cursor moves one character to the right
after each EX WRITE command. The vertical position
ot the cursor does not change. If the last character
(horizontat position 79) is written, the cursor will in-
crement off the screen and the CRT Write Ready
status bit will stay true untii the cursor is re-posi-
tioned back onto the screen.

b. EX COM2 (Command 2) positions the cursor to the
horizontal character stot designated by the contents of the A
register. Character positions 0-79 (decimal} or 0-0117 (octal)
are valid, .

¢. EX COM3 (Command 3) positions the cursor to the line
designated by the contents of the A register. Line numbers
0-11 (decimal) or 0-013 (octal) are valid.

d. EX COM4 (Command 4) places the characler generator
memory in the toad mode and sets the load pointer to the
contents of the A register. Character positions 0-127 (deci-
mal) or 0-0177 (octal) are valid.

e. EX WRITE transfers the character in the A register to the
screen image memory at the position indicated by the cursor
position. The cursor need not be on for this transfer to occur.
It the auto cursor increment feature is enabled the cursor
position will be incremented after the transfer. When the
character generation memory has been set to the load mode,
the above transfer is inhibited (as is the automatic cursor
increment) and EX WRITE transfers data from the A register
to the character generation memory. Execution of an EX
WRITE (to either the screen image memory or the character
generation memory) causes the Wrile Ready status bit to go
false for up to 17 microseconds. Unless a detay of at 1east this
duration is guaranteed by the program, the Write Ready sta-
tus bit should be checked before execution of an EX WRITE,
EX COM1, EX COM2, EX COM3 or EX COMA4 after a previous
EX WRITE. Note that EX COM2 and EX COM3 do not affect
the Write Ready status.

Five successive byte transfers are required to load a com-
plete 5 by 7 character dot pattern. The loading format is
illustrated by the following diagram which itlustrates the let-
ter "A” loaded into memory:

Bit No. | 6 x ix}x
50x X
41x X
S x]x]x]fxix
2 X
1]x X
O}x X

112131415
Transfer
Number

(EX WRITE)

For example, the procedure for loading the character loca-

tion 0101 with an A" as illustrated would consist of the

following character transfers:
.
L
-

LA 010t Set toad pointer to
EX COM4 Location 0101

L8 077

CALL DWRITE Load column 1

LB 0110

CALL DWRITE
CALL DWRITE
CALL DWRITE
LB 077

CALL DWRITE

Load column 2
toad column 3
Load column 4

Load column 5

The DWRITE subroutine below is used here instead of an
EX WRITE instruction to guarantee the 17 microseconds
delay required between executions of EX WRITE instruc-
tions:

.
DWRITE LAB

EX WRITE
DWRITW N

SRC

JFC DWRITW

RET

After all five columns of a character have been loaded. the
character load pointer is automatically incremented to the
following character. In the case of the above example the
load pointer will be incremented to location 0102. Note that it
is only necessary to issue addilional EX COM4, when nonse-
quential character locations are being loaded. The display
logic card is removed from the load mode by the execution of
an EX COM1 (with A=0if no other function is desired).

As mentioned previously, the Write Ready status bit goes
false during the roit-up, roli-down, erase-to-end-of-line and
erase-lo-end-of-frame operations. The maximum periods
during which Write Ready will be laise for each of these
opetations is tabulated below for 60 Hz and 50 Hz primary
power frequency:

OPERATION 50HZ 60HZ

Roll up 21.1 msec 17.8 msec
Roll down 21,1 msec 17.8 msec
Erase to-end-of-tine 21.1 msec 17.8 msec
Erase-to-end-of-frame 35 msec 31.7 msee

PART 4

CASSETTE TAPES

4.1 General Description

The Datapoint 6600 contains two cassette tape recording
devices for storage of prograras and data. Since the
hardware Restart (Appendix A, 1.3) uses the rear deck
(number one), programs wilt typically be on it while data
areas will be on the frant deck (number two). However, once
the machine is initially loaded, either deck may be used for
both purposes.

Data on the tape is organized by record (of any length).
Records are written and read at 350 eight-bit characters per
second. See Table 4-1 tor a list of physical specifications.

4.2 Operations

Data is recorded or read in bit serial fashion on one track.
Each eight bit character is iramed by three sync bits on either
side of the character.

The first eight bit string framed by valid sync code groups
{010) indicates the beginning of a record. The appearance of
eleven ones in a row indicates the end of a record. Sync code
groups after the first character in a record and before the end
of the record are ignored.

Note that the sync codes are valid for tape motion in either
direction so the tape may be read backwards, although in the
reverse direction the data bits will appear reversed (bit 0 will
be bit 7, 1 wili be 6, etc.)

This is what a typical record 100ks like:

l111111,010'dddddddd,010hddddl
—_— ——p—— e i

—— ——

Inter Sync tst Character Sync 2nd Character
Record Code in Record Code
Gap

lO‘OIdddddddd'OlO]l!111111lllIll11]
—

Sync Last Character Sync End of Record Inter
Code in Record Code Mark Record
Gap

4.3 status

The cassette tape unit is addressed by the processor by
loading the A register with 0360 octal and executing the EX
ADR instruction. Following this sequence, the tape unit
status can be loaded into the A register by executing an
INPUT instruction. The bit assignments are as follows:

[7]e]s]4[3]2]1]o]are staTUS WoRD
L—Deck Ready

End of Tape
L Read Ready

Write Ready
Inter-Record Gap

nassigned

Cassette in Place

Unassigned

DECK READY Deck Ready will be set whenever the tape
unit is ready to accept another command.
{Only the TSTOP command shouid be is-
sued if this bit is talse). When Deck Ready
is true the tape will be stopped, a cassette
in the selected deck, and the head en-
gaged. This bit should be checked after
selecting a deck.

END OF TAPE End of Tape indicates that the cassette
has run onto leader (in either direction).
READ READY Read Ready indicates that the selected
deck has read another character.

WRITE READY Write Ready indicates that the selected
deck is ready to write another character.

INTER-RECORD Inter-Record Gap indicates selected

GAP deck has come across an inter-record gap
{invalid sync code).

CASSETTE IN Cassatte in Place indicates that a cassette

PLACE is physically in place in the selecled deck.

4.4 Control (Table 4-2)

When the cassette tape unit is addressed the following
instructions will control the action of the tape:

a. EX TSTOP causes any motion of either deck to be
stopped and any read or write operations 1o be termi-
nated. When everything has settied, the Ready status
bit will come true and operations may be resumed.

EX DECK 1 causes deck one (rear) to be the currently
selected deck. Before commanding a deck selection,
care should be taken that the currently selected deck
has completed all operations.

EX DECK 2 causes deck two {front) to be the currently
selected deck. Note the precaution in (b).

EX RBK causes the currently selected deck to be set
in forward motion and, after 70 msec, for the read cir-
cuitry to be enabted. The Read Ready status bit will
come true upon appearance of a valid character.
When an invalid sync code is encountered the Inter-
Record Gap status bit comes true and tape motion is
automatically stopped. Note that this witl happen only
after at least one valid character has been found.
Once the Read Ready status bit comes true, the
character must be taken within 2.8 msec. or it will be
overwritten with the next one. The tape read hard-
ware double-buffersincoming characters to aliow the
2.8 msec. character availability.

EX BSP is simitar to EX RBK except that tape motion
is in the reverse direction so the data bits will be
reversed.

EX SF is similar to EX RBK except the tape is not
stopped upon appearance of an Inter-Record Gap, and
if allowed to continue will start to read the next record
on the tape. In this case, the Read Ready status bit wilt
come true again after the first character of the next

TABLE 4-1

record is read. Only EX TSTOP will stop the motion
initiated by EX SF.

g—:x SBis simitar 10 EX SF except thattape motionisin
the reverse direction and the data bits are reversed.
EX WBK causes the currently selected deck to be set
in forward motion and all stalus bits except the Write
Ready to go false. A character must then be presented
within 2.8 msec, (the first character will be accepted
at once due to the buffering in the tape hardware and
then there wilt be a pause while the tape comes up to
speed), at which time the Write Ready will go false
until the writing circuitry is ready to accept another
character. An end of record is signaled to the hard-
ware by withholding a character for a period of time
longer than the 2.8 msec. specified above. When this
is done, the Writs Ready will go false. an Inter-Record
Gap will be written, the tape motion will cease and the
Deck Ready status bit will come true again.

EX REWIND causes the tape to be rewound to the
beginning on the selected deck. Worst case rewind
time is approximately 40 seconds.

PUNCH TABS onthe cassette cartridge are used for
“write protect” and “automatic restart.” The punch
tab on the left (as you face the processor) inhibits the
ability to write on tape, when punched. When the tab
on the rightis punched, it causes an automatic restart
whenever a halt or power-up occurs.

TAPE UNIT PHYSICAL SPECIFICATIONS

Density 47 characters/inch
Speed 7.5ips
Recording Rate 350 c.p.s.
Capacity 130,000 characters (typical)
Start/Stop time (inter-Record Gap) 280 msec.
Start/Stop Distance (inter-Record Gap) 2 inches
Rewind Speed 90 ips
Rewind Time (max 300 ft) 40 sec.
Character Transter Time 2.8 msec.
TABLE 4-2
COMMAND OCTAL DEVICE
NUMBER CODE COMMAND DESCRIPTION ADDRESS
15 DECK1 155 Seiect Deck 1 Connects deck 1 to /O bus 0360
16 DECK2 157 Select Deck 2 Connects deck 2 to /O bus
17 RBK 161 Read Block Enables read circuitry and sets
tape in forward motion
18 wBK 163 Write Block Enables write circuilry and sets 0360
tape in forward motion
19 — 165 {Unassigned) —— ——
20 BSP 167 Backspace Backs up the selected tape
One Block one record
21 SF 171 Slew Forward Sets selected tape deck in
forward motion
22 sB 173 Siew Backward| Sets selected tape deck in
backward motion
23 REWIND 175 Rewind Rewinds the selected deck to
beginning of tape
24 TSTOP 177 Stop Tape Halts motion of the selected 0360
tape deck

PART 8
PROCESSOR

The processor in the 6600 is comprised of two sets of eight
8-bit program accessible registers, two sets of 4 control
flags, 128K bytes of memory (120K bytes of user program
memory), a 16-bit program counter, an 8-bit instruction reg-
ister, an 8-bit base register, a 16-level push down Stack, a
special 4-bit instruction modification register and a 16-word
memory sector table.

5.1 Processor Registers

The eight programmable registers are named A, B,C, D, £,
H, L, and X. The flag flip-fiops are named C (carry), Z (zero), S
(sign), and P (parity). There are two sets of these registers and
flags and access to them depends upon the mode the pro-
cessor is in. Upon Restart or whenever the Alpha mode in-
struction is executed, all Alpha mode registers and flags are
accessible by the program. Whenever a Beta mode instruc-
tion is executed, the Beta mode registers and flags are ac-
cessible. No other registers or functions within the machine
‘are atfected by the processor mode.

Registers A-L are general purpose registers which may be
interchanged with each other as to their functions. When an
arithmetic, logical or VO instruction is performed and a reg-
ister is not specified, the “"A” register is over stored with
the result.

When using registers for addressing, they may be paired
together to form a 16-bit address; XA, BC, DE and HL. f a pair
of registers is not specified, the HL registers will be assumed.

The X register is a working page register and is not nor-
maly used tor the same functions as registers A-L, except to
form the upper B bits ot a 16-bit address word.

P -The P register is the "location counter for the program
and contains the address of the next instruction to be exe-
cuted. This register is stored in the pushdown Stack upon the
execution of a "CALL" instruction and is loaded with the
effective address upon execution of a “JUMP", *CALL" or
“RETURN" instruction. The P register is 16 bits wide.

1 - The 1 register is the register which holds the “operation
code” of the instruction currently being executed. The con-
tents of | are gated through a decoding network to determine
what operation, internal or external, is to be performed. lis 8
bits wide. This register is for internal hardware sequencing
and is transparent to the user.

5.2 Comparison With Datap
Systems

int 5500 and 2200

5.2.1 input/Output

Besides simply executing I/O instructions faster than the
5500 and 2200 systems, the 6600 system I/O has parity check-

ing while maintaining control over compatibility with 5500
and 2200/110Q devices.

5.2.2 Input Parity Checking

A ninth wire exists in the input and output data paths of the
/0 bus. An INPUT instruction {PIN) exists which wiil cause an
interrupt if there is not an odd number of ones out of the nine
bits on the input bus when the data is strobed into the pro-
cessor. Note that if a non-existent device is addressed and
then a PIN is executed, a parity fault witl occur because the
status will be nine zeros, which is an even number (zero) of
ones. Also note that using the INPUT instruction will never
cause a parity fault interrupt, allowing all 2200 programs to
execute properly on the 6600 systems (see Section 5.2.4).

$.2.3 Output Parity Checking

In addition to the output bus parity bit, there is another
input wire to the processor called the Output Parity Fauit
line. if this wire is low during the parity fault check window
(about 40 nanoseconds wide occurring 2 to 6 microseconds
after the trailing edge of any output strobe), the output parity
fault interrupt will occur. A 6600 system /O device can
check for an even number of ones out of the nine output bits
at the leading edge of the output strobe. If there are an even
number of ones, the device can hold the Output Parity Fauit
line low until the leading edge of the next /O strobe, thus
causing the Output Parity Fault interrupt.

5.?.4 Compatibility With 5500 and 2200 Systems
Peripherals

6600 system peripherals may not be directly compatible

. with the 2200 because of the use of output parity checking,

but are directly compatible with the 5500. However, 2200
peripherals can be made to work on the 6600 system if the
PIN (parity checking input) instruction is not used. Also 6600
system peripherals may be used on 2200 systems via an 1/O
option strap. The three additional wires used in the 6600
system 1/O bus are not used in the 2200 system 1/O.

5.3 Memory

In addition to having more memory capability than the 5500
system, the 6600 memory system is faster. The 6600 also
teatures parity checking and advanced memory handling.

5.3.1 Parity Checking

Each byte in the memory system has a ninth bit which is
used for parity checking. Even parity is written into every
location automatically when the machine is powered up and
into the given location whenever a data byte is written (the
words are written such that there are always an even number
of ones out of the total number of nine bits). Whenever a data
byte is read, a check for even parity is made and a special
interrupt invoked if the check fails. This interrupt supplies the
logical address of the failing memory location for diagnostic
purposes. This means that the base addressing of the par-
ticular routine being run would have to be known to convert
the failure address to a physical memory address. Note that
if a non-existent memory location is accessed, a parity fault
will not occur because all zeros (even number of ones) will
be read. In addition to the RAM, the 600 contains a ROM
(read-only memory) which is used for power initialization,
RESTART, debugging, memory testing, and other system
functions. The parity bit for ROM is generated artificially.

5.3.2 Physlcal Layout

The 6600 contains provisions for five memory boards. The
first four boards comtain 32K bytes of RAM each. The fifth
board contains 4K of ROM and overlays locations 0170000
through 0177777. This gives 124K of RAM, 4K of which is re-
served for System RAM, leaving a total of 120K of user RAM,

0177777
4 ROM 0170000

0377777
3 32K RAM

0300000
2 32K RAM

0200000
1 32K RAM

0100000
0 32K RAM

[}

Figure 5-1

MEMORY LAYOUT

$.3.3 Address Generation

Figure 5-1 is a map of the physical memory tayout.
This memory is referenced by what Is cailed a “physi-
cal” memory address. Board 1 is physical locations 0
through 077777 {(RAM), board 2 is physical locations 0100000
through 0167777 (RAM), board 3 is physical locations
0200000 through 0277777 (RAM), board 4 is physical lo-
cations 0300000 through 0377777 (RAM), and board 5 is

10

physical locations 0170000 through 0177777 (ROM).

User programs use what is called a “logical” memory
address. This is a 16-bit value created by the program
and translated to the proper “physical” memory address
by a mechanism in the processor. The transiation mechanism
utilizes a base register and a memory sector table as depicted
in Figure 5-2.

If the logical memory address is between 0100000 and
0137777, its upper eight bits are added (two's complement)
to the eight bit base register. Otherwise, the upper eight bits
of the logical memaory address are unchanged by the adder.
The new 16-bit value consisting of the iower eight bits of the
logical memory address and the eight bits from the adder is
called the “'based logical memory address.” Note that the
base register may be negative (two's compiement) for
creating based logical memory addresses lower than
0100000.

The upper four bits of the based iogical memory address
form an address for the 16-entry 8-bit sector table. This table
divides the 64K based logical memory space into sixteen 4K
byte sectors, each of which may be transiated to any physical
4K memory section and may be protected from being
accessed if the USER mode flag is set or from being written
into regardiess of the state of the USER mode flag. (Note that
many people in the compuler industry refer to the sector
table as a page table. However, the reference has been
changed here to avoid confusion with the term “page’ used
elsewhere to denote a 256 byte section of logical memory
space starting at an address of 0 modulo 256)

The sector table contains eight bits for each entry. Bit 1
(the next to the least significant) of a sector table entry
contains a hardware generated and checked parity bit. Any
value loaded into this position is ignored since the hardware
generates the proper parity bit when a sector table entry is
loaded. i, during any memory access, there are not an odd
number of one bits out of the eight sector table entry bit
positions, a Sector Table Parity Error System Call interrupt
will be generated to memory location 0167474, Bit 2 of a
sactor table entry is set to enable the sector to be accessed
{read or written) when the machine is in User Mode. Bit3of a
sector table entry is set to enabie the sector to be written in
either User or System Mode. Bits 4 through 7 of a sector table
entry are used for physical memory address bits 12 through
15 and bit O of a sector table entry is used for physicat
memory address bit 16 (giving a total of 17 bits of physical
memory address to allow accessing 128K of physical
memory space.)

With the address generation mechanism described above,
two major benefits can be realized. The first is ease of
reentrant coding for muitiple user tasks. The program can
load into the base register the base address (in multiples of
256 bytes) of his non-reentrant data area minus 0100000 and
then all references to logical memory addresses between
0100000 and 0100000 plus the length of his data area will
automatically be translated into the proper based logical
memory location. The second major benefit is afforded by
the sector table. Besides providing the ability to implement a
completely protected monitor, the sector table provides ease
in running several independent partitions in memory atonce.

5.4 Pushdown Stack

A fealure of the 6600 is the incorporation inlo the pro-
cessor's structure of a pushdown Stack. This is usefut for
subroutine calling, saving the value of register pairs, cal-
culating an address and then jumping to it without having to
overstore a JUMP instruction, making an abortive exit from a
subroutine {returning control to a focation other than the one
after the CALL instruction), and saving the state of the ma-
chine (if there is at feast one free stack location).

Information may be transferred between either the
P-counter and the Stack or any register pair and the Stack.
The Stack is actually a separate scratch pad memory of six-
teen 16-bit words which is addressed by a four-bit up/down
counter. Whenever a CALL or PUSH insiruction is execuled,
the P-counter or indicated register pait is written into the
Stack word pointed out by the Stack Pointer which is then
incremented. The pointer ends-around to 0 if it is incre-
mented past 15. Whenever a RETURN or POP instruction is
executed, the Slack pointer is first decremented (ending
around to 15 if it is decremented below 0) and then the P-
counter or indicated register pair is loaded trom the pointed
location. Note that the above description implies that the
maximum subroutine nesting depth is sixteen and will be
less if data is also pushed onto the Stack. That is, the
seventeenth CALL or PUSH will overstore the value written
in the first if no RETURN or POP instructions intervene.

11

o o ot Y0 o R S

BASE
BASE d
ENABLE REGISTER S WRITE ENABLE
_/ ACCESS ENABLE
PR __/ PARITY BIT
2z __/ —
—_— 2! 216
24 & A 2 2%
D 2
R z .
25
o P PV
- -] 0
o - -
o 2!
27 . Y
20 20
Figure 5-2
LOGICAL
MEMORY PHYSICAL
ADDRESS MEMSORY
ADDRESS
5.5 Control Flip-Flops
POP o Also contained in the basic processor are eight control
PUSH -3 '—> {tag) flip-tiops (four in ALPHA mode and four in BETA mode)
or RETURN which reflect the state of the arithmetic logic unit and which
CALL Address of CALL 5 can be tested through the execution of a CONDITIONAL
JUMP, CALL or RETURN instruction. The flip:-flop
mnemonics with their associated functions are as follows:
Address of CALL 4
C-Carry flip-flop. Set when an arithmetic operation results
Address of CALL 3 in either a carry (add) or borrow (subtract).
Z - Zero flip-flop. Set when the resuit of an arithmetic or
logical operation is equat to zero.
Address of CALL 2 S - Sign ftip-flop. Reflects the state of bit 7 after an arithme-
tic or logical operation.
P - Parity Hip-Hlop. Indicates parity after any arithmetic or
Address of CALL 1 logical operation. This is entirely separate from the /O or
Maximum memory parity system referred to elsewhere. If this flip-flop is
16 bits capacity set (true) there are an odd number of one bits; if it is reset
Note: Some of the complex 16 CALLS {false), there are an even number of one bils.

multi-byte instructions
use 1 Stack entry.

5.6 System ROM Functions

See Appendix A for a complete description of the 6600
processor ROM features.

5.7 Interrupt Handling

There are eleven different interrupt events possible in the
6600. All except the power-up interrupt use the System Call
mechanism {see instruction description} to the memory foca-
tion explained betow. The System Call mechanism pushes
the current value of the P-counter onto the Stack, disables
the one millisecond interrupt, clears the USER mode and
forces execution to continue at the indicated vector loca-
tion. Note that one of the interrupts is actualty the SYSTEM
CALL (SC) instruction and that the other interrupts use the
same mechanism but jump to different locations.

The following describe the interrupt vector entry point
locations. Note that all of these vectors are in Syster RAM lo-
cations and are initialized on power-up. See Appendix A for a
description of how those are handied in the system ROM.

0167400 MEMORY PARITY FAULT

Thisis caused by a memory read resulting in a nine bitword
with an odd number of ones. Betore the P-counter was
pushed onto the Stack by the System Call mechanism, the
based logical memory address of the faulty memory cell was
pushed onto the Stack.

Note that during multiple byte operations which use the
Stack, the P-counter is used during the instruction to hold a
data address. If an interrupt occurs during one of these in-
structions, the value the P-counter pushed onto the Stack
will be a data address instead of the lrue P-counter value
{the actual P-counter value being another entry further down
on the Stack). For this reason, one cannot always determine
the state of the machine if an interrupt occurs.

0167406 INPUT PARITY FAULT

This is caused by a PIN or MIN instruction (see instruction
explanation) resulting in a nine bit word from the 1/0 Bus with
an even number of ones. The P-counter value pushed onto
the Stack points to the PIN or MIN instruction.

0167414 OUTPUT PARITY FAULT

This is caused by the Output Parity Fault line on the /O Bus
being low during the parity fault check window {about 40
nanoseconds occurring 2 to 6 us after thetrailing edge of any
output strobe). The Output Parity Fault line can be heid low
by 6600 System 1/0 devices if they see an even number of
ones out of the nine bits of the /O Bus. The P-counter value
pushed onto the Stack points to the output or MOUT in-
struction.

0167422 WRITE PROTECT VIOLATION

This is caused by a memory write operation being attemp-
ted on a sector of memory for which the Write Enable bit (A3
in the sector table entry) has not been set.

Note that during muitiple byte operations which use the
Stack, the P-counter is used during the instruction to hold a
data address. i an interrupt occurs during one of these in-
structions, the value the P-counter pushed onto the Stack
will be a data address instead of the true P-counter value
(the actual P-counter value being another entry further down
on the Stack}. For this reason, one cannot always determine
the state of the machine if an interrupt occurs.

0167430 ACCESS PROTECT VIOLATION

This is caused by the USER mode flag being set and a
memory operation being performed on a sector of memory
for which the access enable bit (A2 in the page sector table

“ entry) has not been set. The same note concerning multipie

byte operations and the Memory Parity Fault interrupt ap-
plies to the access protect violation interrupt.
0167436 PRIVILEGED INSTRUCTION VIOLATION

This is caused by the execution of an /0 instruction or an
instruction capable of changing the sector tabie or base
register while the USER mode ftag is set. The P-counter value
pushed onto the Stack points to the instruction which caused
the interrupt.

0167444 ONE MILLISECOND INTERRUPT

This is caused every 1000 microseconds. These interrupls
can be inhibited with the DI instruction as in the 5500 system
{and are inhibited with RESTART or POWERUP).

0167452 USER SYSTEM CALL

This is caused by the execution of an SC instruction.

0167460 BREAK POINT

This is caused by the execution of a BP instruction.
0167466 UNDEFINED INSTRUCTION

This is caused by an attempt to execute an instruction
which is undefined in the 6600.

0167474 SECTOR TABLE PARITY FAULT

This is caused when a parity error is detected while 1oading
in the Sector Table during any memory access.

5.8 Processor instructions

The 6600 processor instructions have been divided into
seven categories for convenience of presentation.

* Category ona: All instructions contained
in 1100 and 2200 system processors.

* Category two: 2200 system instructions
which have been enhanced with
additionat register referencing capability.

* Category three: Multi-byte (string)
instructions.

* Category four: Instructions for saving
and restoring the state of the processor.

* Category five: Address manipulation
instructions.

* Category six: Operating system control
instructions.

* Category seven: 6600 Instruction
* Set and Instruction Timing.

13

5.8.1 Comparison to 2200 System Instructions

The 6600 has a number of instructions not in 2200 system
processors. Before these instructions can be described.
however, the new data paths in the processor must be de-
scribed. A new discrete register (not part of the register stack
containing the general purpose registers) has been added. it
is a working register called the implicit register.

Many 2200 instructions reference the A register implicitly
(e.g., use it for an accumulator or foad it trom the /O Bus).
The register that is implicitly referenced in the 6600 in these
cases is still the A register unless an instruction is executed
which changes the implicitly referenced register for the fol-

lowing instruction only. There are eight instructions (one
byte long) which allow the implicit register to be loaded with
one through eight {implying registers A, B,C, D, E, H. L, or X).
Once this is done, interrupts are inhibited until the following
instruction is compteted. If the following instruction would
reference the A register implicitly in the 2200, the 6600 will
reference the register indicated by the implicit register value
instead. This also applies to instructions where HL is the
implied register pair specifying an address. The implicit reg-
ister can be used to specify a ditferent register pair (implying
register pairs BG, DE, HL or XA). Notice the use of the word
“implied”, as references are made to the "implied register”
in later descriptions.

The instructions which set the implicit register will not be
described separately since they are used only to augment the
function code {op code) of the instruction which they modify.
In some cases the value of the implicit register will not deter-
mine a register reference but will modify an operation action
instead. The implicitregister is also used for aloop counter in
many of the multi-byte instructions. Since the implicit regis-
ter is only 4 bits wide the multibyte instructions that use it
for a loop counter are limited to executing the loop sixteen
times (usually meaning that fields are limited to sixteen bytes
in width). However, some of the multi-byte instructions use a
general purpose register for a toop counter enabling them
to loop 256 times. The one millisecond interrupt can occur
only during the fetch of a new instruction if interrupts are
enabled at all. This means that for some of the longer
multi-byte instructions, interrupts can be disabled for as long
as 840 microseconds. This would be troublesome if one
was using the one millisecond clock for short-term time
critical work. The full 256 byte capability is included, how-
ever, in the event that one might find it useful if time critical
work was not being performed.

Two additional genera! purpose registers have been added
to the 6600 processors. By general purposs, it is meant that
there is one for each mode (ALPHA and BETA) and that they
reside in the register stack along with the rest of the general
purpose registers. in the 6600 this register (numbered 7 in
the general purpose register stack) is called the X register.

The X register is not quite as generally accessible as the
rest of the registers, due to the fact that register select num-
ber 7 is used to specify memory in many instructions. How-
ever, the X register can be loaded immediately as well as be
accessed via the implicit register mechanism and also by
several instructions which use the X register’'s contents as
the upper eight bits of an address. The X register is gen-
erally used in the 6600 system to indicate a working page in
memory. (Here, the word "'page is used to denote a 256 byte
section of logical memory space.)

14

The use of the X register enables several of the instructions
which provide a fixed memory address in the instruction to
be one byte shorter by not having to specily the upper eight
bits of the address (using the contents of the X register
instead). Experience in programming the 2200 system has
shown that one working storage page is generally quite
adequate to hold most of the items accessed most oftenby a
given program and that these items are accessed often
enough to make the X register concept useful both in terms
of saving memory and increasing speed.

Additional programming conventions developed with the
2200 system have been reflected in the 6600 instruction set.
The BC and DE register are often used as pairs to form a
sixteen bit value (B or D being the MSP and C or £ being the
LSP). Several of the new instructions treat these pairs speci-
fically as sixteen bit values.

5.8.2 Presentation Format

A description of each 6600 instruction is given below. In
order to simplify the presentation, the following symbols and
abbreviations are used:

Opetation:

Op Code:

Timing:

Length:

Stack:
Entry:

Exit:

Algorithm:

e

gxrxmoowr» >4 <

Stack
(OP)
(rs)
(rd)
(n

(rp)

Symbolic representation of
instruction description

Operation Code, expressed in
octal

Execution time in microseconds
(Note: memory refresh overhead
is 59 implying that a program
will execute, on

the average, 57 slower than the sum
of the indicated timings.)

Number of bytes in the instruction
(Used when the length may not be
especially obvious from the

op code or the

instruction diagram.)

Number of stack entries
Conditions necessary before
execution

Conditions existing after
execution

Steps taken to perform the
instruction execution

The contents of

is replaced by

Is transferred to

Is compared with

Logical “Or" operation

Logical "Exclusive Or" operation
Logical "AND" operation

8-bit processor registers

Contents of Memory location

designated by the contents

of HL or the designated

register pair

Program counter (When shown P + X
ocation relative to tirst byte of instruction)
The Pushdown Stack

One of the eight ALU

operations (AD, AC, SU, S8

ND, XR, OR, CP)

A source general register

(ABCDEHL)(s=0 1o 6)

A destination general register

(ABCDEHL) (d=0 to 6)

A general register (ABCDEHLX)
{sord=0to7)

One o1 the pairs of registers (BC DE HL XA)

r A register select op code
No byte is necessary
for selection of the A register
Otherwise: B=0111, C=062,
D=0113, E=0174, H=0115
L=0176, X=022
wp A register pair select op code
No byte is necessary for
the selection of HL
Otherwise: BC=062, DE=0174, XA=022

p+1 BC=0113, DE=0115, HL=0117, XA=0111
{vvv) An B-bit value used

in an instruction
(adr) A 16-bit value used in

an instruction with the
LSP first, followed by the MSP

{cf) Control flags (CZSP) (c=0to 3)
{Often calied fiip-flops)

(exp) External command, listed in
Table 5-1

data An expression reducing to
an 8-bit immediate vaiue

foc An expression reducing to

a 16-bit address

5.8.3 Category 1 — 2200 System Instructions
For timing, reter to 5.8.10

LOAD IMMEDIATE L {r}
Op Code: 0d6 (vwv)
Operation: (vwv) (1)

Transfers the value of the operand given in the instruction
to the register specitied by bits 3-5 of the instruction word.

7 615 4312107 0
0 d 6 OPERAND

1. d is the destination designator.
2. None of the flag flip-flops are changed.

LOAD
For L(rd)M: Op Code: 3d7

L{rd)M, L{rd)(rs}, LM(rs)

Operation: (M)-s(rd) d <6
For L(rd)(rs): Op Code: 3ds
Operation: {rs}—+(rd) s<6,d<6
For LM(rs): Op Code: 37s

Operation: (1s)}—+(M) s<6

Transters the operand from the source specified by bits 0-2 of
the instruction word to the destination specified by bits 3-5 of
the instruction word.

54 3 10
d

1. The source data is unaffected.
2. s and d both = 7 results in a HALT instruction.
3. None of the flag flip-Hlops are changed.

15

ADD IMMEDIATE AD data
Op Code: 004 (vwwv)

Operation: (A) + {P+1)-*A

Adds the value of the (data) operand to the contents of the
A register and retains the sum in the A register.

7 6|54 321017 0
0 0 4 OPERAND

1. Carry flip-fiop set if add overflow occurs; otherwise carry
is reset.

2. The Sign, Zero and Parity flip-flops indicate the status of
the A register at completion.

ADD AD(rs), ADM
For AD(rs): Op Code: 20s

Operation: (A) + (rs)—A
For ADM: Op Code: 207

Operation: (A) 4+ (M)}—A

This instruction is identical to ADD IMMEDIATE with the
exception of operand source.

543210

s specifies the operand source.

~
N
=]

ADD WITH CARRY IMMEDIATE
Op Code: 014 (vwv)
Operation: (A) + (P+1) + (Carry)— A

AC data

Adds the Carry bit and contents of the operand to the con-
tents of the A register and retains the sum in the A register.

7 6l543|210]7 o]
0 1 4| oPeRAND |

1. W add overtiow occurs, the Carry flip-flop is set; otherwise
Carry is reset.

2. The Sign, Zero and Parity fHip-flops indicate the status of
the A register at completion.

ADD WITH CARRY
For AC(rs): Op Code: 21s

Operation: {A) + (Carry) + (rs)—A
For ACM: Op Code: 217

Operation: (A) 4 (Carry) + (M)—A

AC {rs), ACM

This instruction is identical to ADD WITH CARRY IMMEDIATE
with the exception of operand source.

s specifies the operand source.

SU data

SUBTRACT IMMEDIATE
Op Code: 024 (vwv)
Operation: (A} - (P+1)—~A

Subtracts the value of the operand from the contents in
the A register and retains the difference in the A register.

7 6|5 43[210]7 0
9 2 4 OPERAND

-

. The Carry flip-flop is set if underflow occurs, otherwise
carry is reset.

2. The Zero, Sign and Parity flip-fiops represent the status of
the A register at completion.
SUBTRACT sSU(rs), SUM

For SU(rs): Op Code: 22s
Operation: {A)-{rs)—+ A

For SUM: Op Code: 227

Operation: (A)-(M)—A

This instruction is identical to SUBTRACT IMMEDIATE with
the exception of operand source.

[5 4 3[271]
[2 | s |

s specifies the operand source.

~
=]

SUBTRACT WITH BORROW IMMEDIATE
Op Code: 034 {vwv)
Operation: (A)-(P+1) - (Carry)— A

S8 data

Subtracts the value of the operand and the Carry bit from
the contents of the A register, and retains the ditference in
the A register.

7 65 4 312 1017 0
0 3 4 OPERAND

-

. Sets the Carry flip-fiop if underfiow occurs; otherwise
resets Carry.

2. The Zero, Sign, and Parity fiip-flops represent the status of

the A register at completion.

SUBTRACT WITH BORROW
For $8(rs}: Op Code: 23s
Operation: (A)-{rs)-(Carry) —sA
For SBM: Op Code: 237
Operation: (A)-(M) - (Carry)-—+A

$8{rs), SBM

This instruction is identical to SUBTRACT WITH BORROW
IMMEDIATE with the exception of the operand source.

7]e6[s]4]3]2] 1]o
2 3 S

s specifies the operand source.

i
!
|
g

3

AND IMMEDIATE ND data
Op Code: 044 (vvv}

Operation: (A} AP +1)—=A

Forms the logical product of the contents of the A register
with the value of the operand and places the result in the A
register.

7 6|5 4321017 0
0 4 4 OPERAND

1. Resets the Carry flip-flop upon completion
2. The Zero, Sign and Parity flip flops represent the status of
the A register upon completion.

Sample Operation:

11
11
11

o0 =
(=N —2 g

0000
(P+1) o110
0000

AND ND(rs), NDM
For ND{rs): Op Code: 24s
Operation: (A) p (rs)—A
For NDM: Op Code: 247
Operation: (A)_A_(M)”A

This instruction is identical to AND IMMEDIATE with the
exception of operand source.

[7 65 4 3[2 1 0f
2 [4 | s |

s specifies the operand source.

OR IMMEDIATE OR data
Op Code: 064 (vwv)

Operation: (A) V (P+1)}—s A

Forms the logical sum of the contents of the A Register and
the value of the operand, and places the result in the A
register.

7 6]5 43]210}7 0
0 6 4 OPERAND

1. Resets the Carry flip-flop upon completion.
2. The Zero, Sign and Parity flip-flops represent the status of
the A register upon completion.

Sample Operation:
(ARegy 00001 111
(P+1) 011001t 10
(AReg) 0 1 101 111
OR OR(rs),ORM)

For OR(rs): Op Code: 26s
Operation: {(A) V (1s)—A

For ORM: Op Code: 267
Operation: (A) V (M)—A

This instruction is identical to OR IMMEDIATE with the ex-
ception of operand source.

s specifies operand source.

EXCLUSIVE OR IMMEDIATE XR data
Op Code: 054 (vwv)

Operation: (A)a(P+1)—A

Forms the logical difference of the contents of the A register

and the value of the operand, and places the result in the A

register.

7 6|543(2 1077 0
0 5 4 OPERAND

1. Resets the Carry flip-flop at complstion.
2. The Zero, Sign and Parity flip-flops represent the status of
the A register upon completion.

Sampie operation:

(AReg) ‘0 0 1 101 0t
(P+1) 01011100
(AReg) 0 1 101 001

EXCLUSIVE OR

For XR(rs): Op Code: 25s
Operation: (A) 3 (rs)—eA

For XRM: Op Code: 257
Operation: (A} ¢ (M)—eA

XR(rs), XRM

This instruction is identicat to EXCLUSIVE OR IMMEDIATE
with the exception of operand source.

[7 6|543l210|

|2|5|s|

s specifies the operand source.

17

COMPARE IMMEDIATE
Op Code: 074 (vwv}
Operation: (A} : (P+1}

CP data

Compares the contents of the A register with the value of the
operand.

7 6/5 43121017 0
0 7 4 OPERAND

1. The flagflip-fiops assume the same state as they would for
a Subtract instruction.
2. The contents of the A register are unaffected.

COMPARE

For CP(rs): Op Code: 27s
Operation: {A):(rs)

For CPM: Op Code: 277
Operation: (A):(M)

CP(rs}, CPM

This instruction is identical to COMPARE IMMEDIATE with
the exception of operand source.

[7 6ls 4 3] 21 0f
[2 177 1 s }

s specifies the operand sources

UNCONDITIONAL JUMP JMP loc
Op Code: 104 (adr)

Operation: (adr)— P

An unconditional transfer of control. The second byte of the
instruction represents the least significant portion of the
jump address, while the third byte of the instruction repre-
sents the most significant portion.

P+1 P42
7 6 543 121047 017 4]
1 0 4 LSP MSP
Op Code Address
JUMP IF CONDITION TRUE JT(ef) loc

Op Code: 1{c+4) 0 (adr)

Operation: If condition true, (adr)— P
Examines the designated flip-flop. If set, transfers control to
(adr). if reset, executes the next sequentially available in-
struction.

P+1 P+2
7 6|5 43]210}7 07 0
1| c+a 0 LSP MSP
Op Code Address

1. ¢ designates which flip-flop (condition) is to be tested.
2. The condition of the selected flip-tiop is unchanged by

18

this instruction.

JUMP IF CONDITION FALSE
Op Code: 1c0 (adr)
Operation: if condition false, (adr) — P

JF{cf) loc

Examines the designated flip-flop. if reset, transfers control
to (adr). If set, executes the next sequentially available in-
struction.

P+1 P+2
7 615 4312 10]7 047 0
1 c 0 Lsp MSP
Op Code Address

1. ¢ designates which flip-flop (condition) is to be tested.
2. The condition of the selected flip-flop is unchanged by
this instruction.

CALL foc

SUBROUTINE CALL
Op Code: 106 {(adr)
Operation: P +3— Stack, (adr) —=P

Transfers the address of the next sequentially available in-
struction to the pushdown Stack, and transfers control to
the address specified by the contents of the two memory
locations immediately following the Op Code.

P+1 P+2
7 6{5 4 312 1047 0i7 [
1 0 6 LSP MSP
Op Code Address

The Stack is open-ended in operation. If it is overfilled, the
deepest address will be lost.

SUBROUTINE CALL IF CONDITION TRUE CT{cf) loc
Op Code: 1(c+4)2 (adr)

Operation: If condition true, P+3—+ Stack, {adr) —+ P
Examines the designated flip-fiop. if set, transfers the ad-
dress of the next sequentially available instruction to the
pushdown Stack, and transfers control to (adr). If reset, exe-
cutes the nexi sequentially avaitable instruction.

P+1 P+2
7 6}15 4 312 1 0}7 07 0
1 4 2 LsSP MspP
Op Code Address

1. c designates which flip-flop (condition) is to be tested.

2. The condition of the sefected Nip-flop is unchanged by
this instruction.

3. The Stack is open-ended in operation. If itis overfilled, the
deepest address will be lost.

SUBROUTINE CALL IF CONDITION FALSE CF(cf) loc
Op Code: 1c2 (adr}
Operation: I condition false, P+3-+. Stack, (adr) —+ P

Examines the designated flip-flop. If reset, transfers the ad-

dress of the next sequentially available instrugtion to the
pushdown Stack, and transfers controt to (adr). If set, exe-
cutes the next sequentially available instruction

P+1 P2
7 €15 4 312 1 0|7 017 4]
1 C 2 LsSP MSP
Op Code Address

-

. ¢ designates which flip-flop {condition) is to be tested.

. The condition of the selected flip-flop is unchanged by
this instruction.

The Stack is open-ended in operation. If itis overfilled, the
deepest address will be fost.

N

w

SUBROUTINE RETURN RET
Op Code: 007
Operation: (Stack)—eP

Transters control to the address specified by the most recent
entry into the pushdown Stack. Deletes the most recent entry
from the Stack.

~
o

(5 43]2 10

| o [7]

The eftect of attempting more RETURN instructions than the
Stack is capable of handling is undefined.

SUBROUTINE RETURN IF CONDITION TRUE RT(cf)
Op Code: 0 {c+4) 3
Operation: It condition true, (Stack) —s P.

Examines the designated Hlip-flop. if set, transfers control to
the address specified by the most recent entry into the
pushdown Stack and deletes the most recent entry into the
Stack. If reset, executes the next sequentially available in-
struction.

mnm

1. ¢ designates which flip-tiop (condition) is to be tested.

2. The condition of the selected flip-flop is unchanged by
this instruction.

3. The effect of attempting more RETURN instructions than
the Stack is capable of handling is undefined.

SUBROUTINE RETURN IF CONDITION FALSE RF(cf)
Op Code: 0¢3
Operation: if condition false, (Stack) — P

Examines the designated flip-flop. If reset, transfers control
to the address specified by the most recent entry into the
pushdown Stack and deletes the most recent entry into the
Stack. If set, executes the next sequentially available instruc-

tion.

1. ¢ designates which Hip-flop (condition) is to be tested.

2. The condition of the selected flip-flop is unchanged by
this instruction.

3. The effect of attempting more RETURN instructions than
the Stack is capabie of handling is undefined.

[0 |

SHIFT RIGHT CIRCULAR SRC
Op Code: 012
Operation: Aw)— A1) AD— A7, AQ —+ Carry

Shifts the contants of the A register right in a circular fashion.
Shifts the least significant bit into the most significant bit
position. Upon compietion of the operation, the Carry fip-
flop is equal to the most significant bit.

[7 6]5 4 3] 21 0]
Lofl + 1 21

The Zero, Parity and Sign flip-flops are not affected by this
instruction.

SHIFT LEFT CIRCULAR SLC
Op Code: 002
Operation: Ay~ Awy. A7—s Ao A7 — Carry

Shifts the contents of the A register left in a circular fashion.
Shifts the most significant bit into the least significant bit
position. Upon completion of the operation, the Carry flip-
flop is equal to the least significant bit.

“ { o 1 2 |
The Zero, Parity and Sign flip-flops are not affected by this
instruction.

NO OPERATION NOP
Op Code: 300
Operation: P+1—»P

No operation is performed

7 6154341210
3 0 0
The Zero, Parity and Sign flip-flops are not affected by this
instruction.

HALTY HALT
Op Code: 000, 001, or 377
Timing: Execution stops

Operation: The processor halts
When the START button on the console is depressed, opera-
tion resumes at P+1.

if USER mode is set this instruction will cause a priviléged
instruction interrupt to occur.

POP
Op Code: 060
Operation: (Stack)—»H,L

pPoP

Transfers the most recent Stack entry into the H & L registers.
H=MSP, L=LSP

[T 6]5a3]z10]

toi e | o}

PUSH PUSH
Op Code: 070

Operation: H,L—# Stack

Transfers the contents of the H & L registers into the
pushdown Stack. H-MSP, L-LSP.

[7 6|5 4a3]21 0]

Lof 7 | o |

INPUT INPUT
Op Code: 101

Operation: (/O Bus}—-A

Transters the contents of the /O Bus to the A register.

7 61543

210
1 0 1

Priv. Note: If USER mode is set this instruction wiil cause a
priviteged instruction interrupt to occur.

ENABLE INTERRUPTS El
Op Code: 050

Following the next instruction, El will aliow the interrupts to
occur untii a DISABLE INTERRUPT instruction is executed.

{7 6]5 43]21 0]
vl 5 | @

Priv. Note: If USER mode is set this instruction will cause a
privileged instruction interrupt to occur.

DISABLE INTERRUPTS D
Op Code: 040

Prevents interrupts from occurring until an ENABLE INTER-
RUPT instruction is executed.

[76]543]21o0]
o | 4] o

Priv. Note: If USER mode is set this instruction will cause a
privileged instruction interrupt to occur.

20

rtp o v A 1 e

SELECT ALPHA MODE
Op Code: 030

ALPHA

Selects the ALPHA MODE registers and control flip-flops.

Priv. Note: If USER mode is set this instruction will cause a
privileged instruction interrupt to occur.

~
<
id

SELECT BETA MODE
Op Code: 020

BETA

Selects the BETA MODE registers and controi flip-flops.

[54 3]
2

~
o2

Priv. Note: If USER mode is set this instruction will cause a
privileged instruction interrupt to occur.

EXTERNAL COMMAND
Op Code: 121 to 153

EX {exp)

Operation: Performs /O controt according to (exp}

These instructions perform the functions necessary tor con-
trol of the /O System and external devices. Many of these
functions are specifically reiated 1o operation of particular
devices. The device oriented commands for the Keyboard,
CRT Display. and cassette decks are explained in the sec-
tions covering these devices.

lm

Qf~
—-{n

Table 5-1 is a list of the External Commands. For a detailed
discussion of their use, reference should be made to Part 6
(Input/Output Operations) and to descriptions of the sepa-
rate external devices. External Commands 155-177 are not
listed, as they apply to systems with integral cassette
units and are described in Part 4 (Cassette Tapes).

Priv. Note: If USER mode is set this instruction will cause a
privileged instruction interrupt to occur.

TABLE 3-1

EXTERNAL COMMANDS
EX {exp)
OCTAL DEVICE
{exp) CODE COMMAND DESCRIPTION ADDRESS
ADR 121 Address Selects device specitied by ALL
A register
STATUS 123 Sense Status Connects selected device status
to input lines
DATA 125 Sense Data Connaecls selected device data to
input kines
WRITE 127 Write Strobe Signals selected device that output
data word is on output lines
COM1 131 Command 1 Outputs a control function to
selected device
COom2 133 Command 2 Outputs a control function to
selected device
CcOoM3 135 Command 3 Outputs a control function to
selected device
com4 137 Command 4 Outputs a control tunction to ALL
selected device
BEEP 151 Beep Activates tone producing ALL
mechanism
CLICK 153 Click Activates audible click producing ALL
mechanism

5.8.4 Category 2 - Augmented Category 1
Instructions

LOAD REGISTER FROM MEMORY
USING BC, DE, OR XA FOR THE
ADDRESS

Op Code: p 3d7

Operation: (M)—(rd),d < 6

Length: 2 bytes

Example: LEM BC

L{rd)M {rp)

Identical to the L{rd)M instruction except that the specified
register pair, instead of HL, is used for the memory address.

LOAD MEMORY FROM REGISTER
USING BC, DE, OR XA FOR THE
ADDRESS

Op Code: p 37s

Operation: (rs) —» M, s<6

Length: 2 bytes

Example: LMB DE

LM(rs) (rp)

Identical to the LM(rd) instruction except that the specified
register pair, instead of HL, is used for the memory address.

ARITHMETIC AND LOGICAL OPERATIONS TO
OTHER THAN THE A REGISTER

Mnemonics: Examples:
{op)(rs) (r) ADAB adds Ato B
(op)M (r} ADMC adds (HL) to C

SUC 20 subtracts 20
from C

SRCB shifts Bright
SLCD shifts D left

(op)(r) (vwv)

SRC (r)
SLC (r)

Op Codes: r 2ps, r Op7, r Op4, r 012, 1 002

Timing: Add 1.0 to equivalent category 1 instruction tim-

ing.

Length: Add 1 byte to the equivalent category 1instruction.

Identical to the equivalent category 1 arithmetic operations
except that the specified register, instead of the A register,

is used as the accumulator.

SHIFT RIGHTY EXTENDED
For SRE:
Op Code: 032
Operation: An—s A1) Carry—s A7 Ap—s Carry
Length: 1 byte

SRE, SRE(r)

For SRE(r): Op Code: r 032
Operation: (r)N —s (1)}N-1y Carry—s (r)7,({r}o—s Carry
Length: 2 bytes

The register is shifted right one place with the left hand bit
being replaced by the Carry and the Carry being replaced by
the right-hand bit.

1/0 USING OTHER THAN THE

A REGISTER
For IN(r): Op Code: r 101
Operation: (/O Bus)—»(r)
Length: 2 bytes

For EX (rs) (exp): Op Code: r 121, r 123, etc.

IN(r), EX{rs) (oxp}

Operation: Performs 1/0 control with the specified register
according fo (exp)
.Length: 2 byles

Identical to the 2200 VO operations except that the specified
register, instead of the A register, is used.

PARITY CHECKING INPUT

For PIN: Op Code: 103
Length: 1 byte

For PIN (r}: Op Code: r 103
Length: 2 bytes

PIN, PIN(r)

Identical to the INPUT instruction except that if the nine bits
of the /O Bus contain an even number of ones, an interrupt
will occur.

PUSH USING BC, DE, OR XA
Op Code: rp 070
Operation: {rp) —s Stack
Length: 2 bytes

PUSH (rp)

Pushes the specilied register pair onto the Stack.

PUSH IMMEDIATE
Op Code: 051 (adr)
Operation: (adr)— Stack
Length: 3 bytes

PUSH loc

Pushes the value of the operand onto the Stack.

POP USING BC, DE, OR XA
Op Code: rp 060
Operation: (Stack) —s» (rp)
Length: 2 bytes

POP{rp)

Pops the Stack into the specified register pair.

22

6.8.5 Category 3 — Multl-byte (string)
Operations

BLOCK TRANSFER OR BLOCK
TRANSFER REVERSE
For BT: Op Code: 021

BT, BTR

Length: 1 byte
For BTR: Op Code: 111 021

Length: 2 bytes

The Block Transfer instructions move the number of bytes
specified in the C register from the field pointed to by HL to
the field pointed to by DE while adding the contents of the A
register to each byte transferred. BT causes the pointers to
be incremented after each transfer while BTR causes the
pointers to be decremented after each transfer. if the B regis-
ter is not zero, the transfer will stop if a character which is
equal lo the 2's complement of the B register is stored in
the destination field (stops after the matching character is
moved).

Entry: HL = location of first source byte.

DE =iocation of first destination byte.

C=number of bytes to move {C=1 to
255; 0 for 256),

B=2's complement of terminating
character if not 0.

A=6-bit value added to each byte as
it is moved (for de-zoning and
zoning decimal numbers).

Exit: HL=1ocation past last source byte.

DE -location past last destination
byte,

A=entry value.

B=entry valve.

C =zero or count before terminator
character found.

Condition {lags are all altered.

1 entry used.

Since BT and BTR instructions can
take up to 609 microseconds to
‘execute, care must be exercised
in their use if time critical
interrupt driven programs
are to be simultaneously
exacuted.

Stack:
Caution:

BLOCK CONVERT BCV
Op Code: 062 021

cength: 2 bytes

BLOCK CONVERT is a variation of BLOCK TRANSFER,
where the tield pointed to by the DE registers is translated
byte-by-byte using the iransiate table pointed to by the HL
registers.

oo o

Entry: HL =location of the translate table
{must not cross a page
boundary).

DE =location of the first byte to be
translated.

C=number of bytes to move

B-2's complement of terminating
character it not 0.

A=no entry vatue used.

Exit: HL =undefined

DE =location past last destination
byte

A=LSB of last table position used
for translation.

B =entry value.

C=zero or count betore termination
character found.

Algorithm: 1. Get the byte pointed to by DE.

2. Set A to the sum of the byte
added to L.

3. Get the byte pointed to by
HA. This is the table's transiated
byte.

4. Store the translated byte where
DE points

5. Increment DE.

6. B is added to the translated
byte.

7. Stop if the Carry and Zero
conditions are true — a
match is found.

8. Decrement the C register. {(Add -1)*

9. Go to Step 1 if resuit
is non-zero.

Stack: 1 entry used

Caution: Since BCV instructions can take
over 840 microseconds to
execute, care must be taken
in their use if
time critical interrupt driven
programs are to be simultaneously
executed.

* A decrement operation is

actually an add of -t.
BINARY FIELD ADD WITH CARRY
OR SUBTRACT WITH BORROW
For BFAC: Op Code: 011
tength: 1 byte
For BFSB; Op Code: 031
Length: 1 byte

BFAC, BFS8

These instructions take the field pointed to by HL and either
add it to or subtract it from the tield pointed to by DE, teaving
the result in the fieid pointed by DE. The fields may be 1
through 16 bytes in length.

Entry: HL=location of right hand byte of
the operand field.
DE =1ocation of right hand byte of
the accumulator field
C=the field width (1 through.16; 0

or 16 implies 16).

Carry =carry or borrow into the
operation.

Exit: HL=location to left of the left hand

byte of the operand fieid.

DE=1location to left of the left
hand byte of the Accumulator
field.

C=indeterminate.

Carry=cairy or borrow out of the
operation (all the
condition flags are aitered).

Algorithm: 1. Load the implicit register from C.
Get the byte pointed to by HL.
Add it with carry or subtract
it with borrow from the byte
pointed to by DE and store the
result where DE points.
Decrement HL and DE by one.
. Decrement the implicit register
by one.
. Go to step 2 if the implicit
register is not now zero.
Stack: 1 entry used

©n

o

o

BLOCK COMPARE BsCcP
Op Code: 041
tength: 1 byte

This instruction matches two strings of bytes fromeft 1o right
until either a mismatch is found or the specified maximum
number of bytes have been scanned.
Entry: HL =location of left hand byte of the
subtracting field.
DE =location of left hand byte of the
subtracted from field.
C=the maximum number of byltes to
scan (1 thru 255; 0 implies 256).
Exit: IF A MISMATCH WAS FOUND:
HL=location after the mismatch in
the subtracting field
DE=location after the mismatch in
the subtracted {rom field
C=entry value minus number of
bytes that matched
Condition flags all reftect the result
of the subtract instruction that
found the two bytes ditfering.
IF ALL BYTES MATCHED
HL=location after the last byte in
the subtracting tield
DE =location after the last byte in
the subtracted trom field
C=zero
Condition flags are indeterminate.
(Zero condition being set true)

Algorithm: 1. Get the byte pointed to by HL.

2. Subtract the byte pointed
to by DE from it.
3. Increment DE and HL.

23

4. Exit if the Zero condition is
false
5. Decrement C. (Add -1)
6. Go to Step 1if C is not
equal to zero.
7. Exit with the Zero condition true

Stack: 1 entry used.

DECIMAL FIELD ADD WITH CARRY DFAC

Op Code: 111 041
Length: 2 bytes.

This instruction takes the tield of zoned BCD digits pointed to
by HL and adds it to the lield of zoned decimal digits pointed
to by DE, leaving the result in the field pointed to by DE. The
zone bits of the result field are set to the zone bits in the B
register. The fields may be 1 through 16 bytes in length.

Entry: Same as for the BFAC instruction
except B=output zoning (right 4
bits must be 0; left 4 bits must
be other than 0000).

Exit: Same as for the BFAC instruction

except A register is destroyed.
B=entry value.
Algorithm: 1. Load the implicit register from C.
2. Get the byte pointed to by Ht.
3. Add it with carry to the byte
pointed to by DE.
4. Strip away the zone bits
5. Clear the Carry and go to step 7
if the result is tess than 10.
6. Subtract 10 from the result and
, set the Carry.
7. Set the zoning bits.
8. Store the resuit where DE points.
9. Decrement HL and DE by one.
10. Decrement the implicit register by one.
11. Go to step 2 if the implicit
register is not zero.

Stack: 1 entry used.

NOTE: Thebinary values for the zoned BCD digits with xxxx
not equal to 0000 are as follows (the digits are not
packed, i.e., only one digit per byte):

0:xxxx0000 5:xxxx0101
1:xxxx0001 60:xx0110
2:xxxx0010 Toxxxx0111
3:xxxx0011 8:xxxx1000
4:xxxx0100 9:xxxx1001

DECIMAL FIELD SUBTRACT WITH BORROW
Op Code: 062 041
Length:'1 byte

BFSB

This instruction takes the field of zoned BCD digits pointed to

24

. i b g

_BINARY FIELD SHIFT RIGHT

by HL and subsitracts it trom the fietd of zoned BCD digits
pointed to be DE, leaving the resull in the fietd pointed to by
DE. The zone bits of the two fields must be identical. The zone
bits of the result field are set to the zone bits in the B register.
The tields may be 1 through 16 bytes in length.
Entry: same as for the DFAC instruction.
Exit: same as for the DFAC instruction.
Algorithm: 1. Load the implicit register from C.
2. Get the byte pointed to by HL.
3. Subtract it. with borrow, from
the byte pointed to by DE.
4. Go to Step 6 and clear the Carry
if the byte result is not negative.
5. Add 10 to the result and set the
Carry.
6. Set the zone bits to those in
the B register.
7. Store the result where DE points.
8. Decrement HL and DE by one.
9. Decrement the implicit register
by one. .
10. Go to Step 2 it the implicit
register is not zero.
Stack: 1 entry used.
BINARY FIELD SHIFT LEFT BFSsL
Op Code: 075
Length: 1 byte

This instruction shifts a field of bytes in memory left one bit
position as if all of the bytes made up one continuous word.
Entry: HL =1location of right-hand byte
of the field.
C~the field width (1 through 16;
0 or 16 implies 16).
Carry=bit shifted in on right
Ht.=location left of the left-hand
byte of the field.
C-indeterminate.
A =indeterminate.
Carry =bit shifted out on the left.
All other flags are indeterminate.
1 entry used.

Exit:

Stack:

BFSR
Op Code: 111
Length: 2 bytes

075

This instruclion is simitar to BFSL except the shift is in the
opposite direction.
Entry: HL :-focation of left-hand byte
of the field.
C - the field width (1 through 16:
0 or 16 implies 16)
Carry = bit shifted in on left.
HL =focation right of the right-hand
byte of the field.
C-indeterminate.
A —indeterminate.
Carry - bit shifted out ‘on the right,
AH other flags are indeterminate.
1 eotry used.

Exit:

Stack:

e i gL

MULTIPLE INPUT MIN
Op Code: 111 061
Length: 2 bytes

This instruction moves the number of bytes specifiedinthe C
register from abuffered input device to the field pointed o by
HA&L. The number of bytes moved is the nutnber in the C reg-
ister moduio 16. To make transferring up to 256 bytes easy yet
interruptable, the full eight bit value of the C register is re-
tained during toop counting and exit is made with the C
register containing its entry value minus the number of bytes
transferred, HL containing its entry value plus the number of
bytes transferred, and the Zero condition code reflecting the
eight bit result of the last decrementation of the C register.
Thus the interruptable loop for transferring the number of
bytes indicated by the eight bit value in the C register yet not
inhibiting interrupts more than 155 microseconds would ap-
pear as follows:

LtOOP LA DEVADR
bi
EX ADR
£X DATA
El
MIN
JFZ Loorp

Note that the device must be re-addressed for each execu-
tion of the MIN instruction If an interrupt could cause
some other device to be addressed. The MIN instruction
causes a parity checking input strobe to be executed every
8 microseconds. This execution operates without regard
to any stalus bits of any kind. There is no existing 2200
system YO device capable of using this instruction and it
is included for use with system VO devices with parity
generation and faster huffers allowing them to be used at
data rates equivalent to DMA channeis. The MIN instruction
has alfl of the advantages of a non-i/O device interrupting
system (tower software overhead in high throughput
situations, superior control over the occurrence of events
allowing probability of correctness in the program logic
and repeatability of event occurence, and simpler hardware
using lower speeds and noise filtered buses) and yet
achieves DMA throughput rates.

HL =location of first destination byte

C=number of bytes to move (this
number is taken moduto 16 and if
it is 0 modulo 16 then 16 bytes
will be moved}

Exit: HL =location of entry value plus
number of bytes moved

C =entry value minus number of bytes moved

1. Execute a parity checking INPUT.

2. Store the byte where HL points.

3. Increment HL

4. Load the implicit register from C.

5

6

7

Entry:

Algorithm:

. Decrement C using the ALU. {Add -1)
. Decrement the implicit register.
. Exit if the impficit register is
2er0
8. Decrement the P-counter

9. Re-fetch the instruction without
. allowing interrupts.
Stack: t entry used.
NOTE: To input a block of 256 bytes using the loop described
above would take 2495 microseconds if no interrupts occur-
red {(an average of 9.75 microseconds per byte)

MULTIPLE OUTPUT
Op Code: 111 071
Length: 2 bytes

MouT

This instruction is simifar to the MIN instruction except for
the direction of information low. MOUT moves the number
of bytes specified in the C register from the field pointed to
by HL to a buffered output device. A byte is written using the
EX WRITE strobe every B microseconds and interrupts can
be inhibited for a maximum of 155 microseconds. As with
MIN there is no existing 2200 system /O device capable of
being used with the MOUT instruction.

NOTE: To output a block of 256 bytes using a loop similar to
the one described for MIN {a MOUT instruction would appear
where a MIN instruction appears in the exampie) would take
2495 microseconds if no interrupts occurred (an average of
9.75 microseconds per byte).

5.8.8 Category 4 — Processor State Save and
Restore Instructions

STACK STORE STKS
Op Code: 065

Length: 1 byte

The STACK STORE instruclion POFs a specified number of
Stack entries and stores them (LSB followed by MSB) in the
field pointed to by HL. Upon entry. HL points to the left-hand
byte.

Entry: HL ~first location in the storage area
C-the number of entries to be POPPED
and stored (1 through 16 0 or 16
implies 16)
Exit: HL and C indeterminate
Condition flags unchanged
STACK LOAD STKL

Op Code: 11t 065

Length: 2 bytes
The STACK LOAD instruction pushes onto the Stack the
specified number of entries from the field pointed to by HL.
Upon entry HL points to the right hand byte and the entries
are loaded in reverse order to allow restoring the Stack from
tocations stored using the STKS instruction.

Entry: HL -tast location in the storage area
C=the number of entries to be
PUSHED (1 through 16; 0 or 16
implies 16)
Exit: HL -indeterminate

C-indeterminate
Condition tlags unchanged 25

REGISTER STORE
Op Code: 055
tength: 1 byte

The REGISTER STORE instruction stores ali of ":e registers
tor the currently selected mode (ALPHA or BETA) in the field
pointed 1o by the top entry of the Stack. This entry points to
the right-hand byte of the field and the registers are stored in
reverse order moving from right to left. When the instruc-
tion terminates, the top entry of the Stack points to the left
of the left-hand byte in the field. For example, if entry is made
with the top entry of the Stack pointing to tocation 02007
(octal), the registers are slored as foliows:

02000:A
02001:8
02002:C
02003:D
02004 E
02005:H
. 02006:L
02007:X

In the above example, the lop entry of the Stack will be 01777
when the instruction terminates. The contents of neither the
registers nor the condition flags for the given mode are al-
tered by this instruction

REGISTER LOAD
Op Code: 111 065
tength: 2 bytes

REGL

The REGISTER LOAD instruction loads all of the registers for
“the currently selected’’ mode (ALPHA or BETA) trom the
tield pointed to by HL. Upon entry, HL points to the right-
hand byte of the field. The registers are loaded in reverse or-
der moving to the left in the field. In this manner, the registers
can be reloaded from values stored by the REGS instruction.
In the example given for the REGS instruction, if the REGL in-
struction were entered with HL=02007, the registers shown
would be ioaded from the locations shown. The condition
flags are not altered by this instruction.

CONDITION CODE SAVE
Op Code: 042, 1 042
Length: 1 byte or 2 bytes if r specified.

CCS, CCS(r)

This instruction loads the register (r} with a value such that if
the value is added to itself using the AD(r) operation, the cor-
dition flags will all be restored to their state before the CCS
instruction was executed The logic equations for the value
loaded into (r) are:

26

A7 =Carry

A6 --Sign
A5:-A4=A3=A2=0

Al-=Not Zero and Not Sign
A0=Not Zero and Not Parity

This instruction does not alter the state of any of the condi-
tion flags. it (r) is not specitied, the A register is used.

5.8.7 Category 5 — Address Manipufation
instructions

INCREMENT REGISTER PAIR INCP
Mnemonics Op Codes
INCP HL 015

INCP HL, 2 117 015
INCP HL A 017

INCP BC 062 015
INCP BC,2 113 015
INCP BC,A 062 017
INCP DE 174 015
INCP DE .2 115 015
INCP DE,A 174 017
INCP XA 022 015
INCP XA 2 111 015
INCP XA A 022 017

These instructions increment the indicated register pair by
either one, two or the contents of the A register. The incre-
ment value is added to the LSP register and then the carry is
added to the MSP register, if necessary. The A register is not
changed, except in the XA case, Other condition fiags are in-
delerminate.

DECREMENT REGISTER PAIR DECP
Mnemonics Op Codes
DECP HL 035
DECP HL,2 117 035
DECP HL A 037
DECP BC 062 035
DECP BC,2 113 035
DECP BCA 062 037
DECP DE 174 035
DECP DE,2 115 035
DECP DE,A 174037
DECP XA 022 035
DECP XA 2 111 035
DECP XAA 022 037

These instructions decrement the indicated register pair by
either one, two, or the contents of the A register. The decre-
ment value is subtracted from the LSP register and then the
borrow is subtracted from the MSP register, if necessary. The
A register is not changed, except in the case of XA.

DOUBLE LOAD bL
Mnemonics Op Codes

OL DEHL 047

DL BCHL 111 047

e N e e S e araies}

DL BC,BC 062 047
DL BC.DE 113 047
DL DE.BC 174 047
DL DE.DE 115 047
DL HL.BC 176 047
DL HL.DE 117 047
DL HL HL 057

These instructions foad the register pair specified by the first
operand from the memory location pointed to by the register
pair specitied by the second operand. The LSP register (C, E,
or L) is loaded from the specified memory location and the
MSP register (B.D. or H) is loaded from the next higher
memory location. Note that indirect addressing can be ac-
complished by loading a register pair from the locations that
the pair specify (DL HL.HL for example).

DPOUBLE STORE DS
Mnemonics Op C(')des

DS DE.HL 027

DS BC.HL 111 027

DS BC.DE 113 027

0S DEBC 174 027

DS HL.BC 176 027

DS HL.DE 117 027

These instructions store the register pair specified by the first
operand into the memory locations pointed to by the register
pair specified by the second operand. The LSP register (C.E,
or L) is stored in the specified memory location and the MSP
register (B.D or H) is stored in the nex! higher location.

PAGED LOAD PL
Mnemonics Op Codes
PL A {loc) 105 LSP
PL B,{loc) 114 LSP
PL C.{loc) 124 LSP
PL D (loc} 134 LSP
PL E.(loc) 144 LSP
PL H (loc) 154 LSP
PL L (loc) 164 LSP

These instructions load the specified register from the mem-
ory location specified by the LSP given in the instruction and
the MSP in the X register.

PAGED STORE PS
Mnemonics Op Codes

PS A.(loc) 107 LSP

PS 8,(ioc) 116 LSP

PS C.(loc) 126 LSP

PS D.(loc} 136 LSP

PS E.(loc) 146 LSP

PS H.(loc) 156 LSP

PS L.(loc)

166 LSP

These instructions store the specified register in the memory
location specified by the LSP given in the instruction and the
MSP given in the X register.

DOUBLE PAGED LOAD DPL

Mnemonics. Op Codes

DPL BC,(loc) 111 124 LSP
DPL DE (toc) 113 144 LSP
DPL HL (loc) 115 164 LSP

These instructions load the specitied register pair from the
memory locations specified by the LSP given in the instruc-
tion and the MSP given in the X register. The C.E, or L register
is loaded from the specified memory focation and the B.D. or
H register is loaded from the next higher location.

DOUBLE PAGED STORE pPS
Mnemonics Op Codes

DPS BC (loc) 111 126 LSP

DPS DE (toc) 113 146 LSP

DPS HL,(loc) 115 166 LSP

These instructions store the specified register pair in the
focations specified by the LSP given in the instruction and
the MSP givenin the X register. The C, E or L register is stored
in the specified focation and the B, D or H register is stored in
the next higher location

INCREMENT AND DECREMENT INDEX INC1, DECI

Mnemonics Op Codes

INCI (disp), (index)
DECI (disp), (index)
INCI*(disp), (index)
DECY (disp).(index)

005 LSP(i)
025 LSP(i)
111 005 LSP MSP(i)
111 025 LSP MSP(i)

The processor has a construct called an index which is a
16-bit vatue kept in memory. The concept is simitar to index
registers except that all the values are kept in the page of
memory pointed to by the X register. The index is specified by
a single byte in the instructions (shown as (i) above) which
points to the memory location containing the LSP of the
index value, the MSP being in the next higher memory loca-
tion ({i) specifies the LSP of the index address white the X
register specifies the MSP of the index address). The in-
struction also contains a displacement (shown as (disp)
above) that is either one or two bytes in length {depending
upon the op code). These instruclions either increment ot
decrement the value of the index by the displacement. The
Carry condition flag reflects the carry or borrow from the
incrementation or decrementation. The rest of the condition
fiags are indeterminate.

Stack: 1 entry used

LOAD FROM INDEX INCREMENTED OR DE-
CREMENTED LFI, LFID

Mnemonics Op Codes

LFH BC.(disp). (index)
LFID BC (disp).(index)
LFIl BC,*(disp) (index)

LFID BC.*(disp).(index)

LFH DE (disp).(index}
LFID DE.(disp).(index)

062 005 1SP(i)
062 025 LSPYi
113 005 LSP MSP(i)
113 025 LSP MSP(i)
174 005 LSP(i)
174 025 LSP(i)

27

LFH D& *(disp). {index)
LFID DE,*{disp).(index)
LFit HL (disp).(index)
LFID HL (disp) (index)
LFit HL,* (disp).(index)
LHD HL *{disp).{index)

116 005 LSP MSP(i)
115 025 LSP MSP(1)
176 005 LSP(i)
176 025 ISP(i)
117 005 LSP MSP(i)
117 025 LSP MSP(i)

These instructions are similar to the INCI and DECI instruc-
tions except that they load the specitied pair of registers with
the result ot adding or subtracting the displacement to or
from the value of the index. The condition flags are similarly
affected.

Stack: t entry used

5.8.8 Category 6 - Operating System Control

BASE REGISTER LOAD
Op Code: 072, r 072

BRL, BAL(r)

Length. 1 or 2 if ¢ specitied

This instruction loads the base register trom the specified
register. Note that the base regisier cannot be read. For this
reason, loading the base register will normally be a monitor
function, atlowing the mmonitor to keep within itself the value
ol the base register lor user stale storage purposes. This
instruction will cause a privileged instruction interrupt if the
USER mode flag is set. 1 {r}) is not specified, the A register is
used.

NOP JuUMP NOJ toc
Op Code: 045 (adr)
P13 — [

Length: 3 bytes.

This instruction increments the P-counter twice. it is useful
for overstoring jump instructions which might be executed
while being overstored. The procedure to overstore a jump
instrugtion would be to first overstore the op code with an
045 (NOP JUMP) and then update the address portion.
Then the op code could be overstored with the appropriate
jump instruction. The primary use of this instruction s for
overstoring the interrupt vector jump instructions for the
interrupts which cannot be disabled (such as MEMORY PAR-
1TY FAULT) and which might happen while the jump is being
overstored. No condition flags or registers are modified.

SYSTEM CALL SC
Op Code: 067

This instruction causes the USER mode flag 1o be cleared,
the last entry in the sector table to be set to the last 4K section
of addressabte memory space with access protection, and a
CALL to be performed to 1ocation 0167452 (in the ROM). This
is the mechanism via which the user would communicate
with an operating system that used the USER mode.

USER RETURN UR
Op Code: 111 102

This instruction is idenucal to the RETURN instruction (op
code 007) except that additionally the USER mode flag is set.

SECTOR TABLE LOAD STL
Op Code: 077

Length: 1 byte

This instruction loads up Lo the firsl 15 entries in the sector
table. This table contains eight bits for each entry. Bit 1 is
not used and should always be set 1o zero. Bit 2 is set for
access enable. Bit 3 is set for write enable. The left-hand
four bits and Bit 0 are used to map that entry into a particular
4K section of physical memory space. This instruction will
cause a privileged instruction interruptif the USER mode flag
is set
HL ~location of tirst byte in table

of up to 15 to load.
C—number of entries to load (0 to 15).
Exit: No registers or condition tiags are changed.
Stack: 1 entry used.

Entry:

BREAKPOINT BP
Op Code: 052

Length: 1 byte

Thisinstruction is similar to a SYSTEM CALL (SC) instruction
except the calt is performed to tocation 0167460 of system
RAM. This will cause entry into the system DEBUG routine if
the memory vector is not changed.

ENABLE INTERRUPTS AND JUMP
Op Code: 111 050 (adr)

EJMP {loc)

Length: 4 bytes

Thisinstruction is identical to the ENABLE INTERRUPTS (E1)
instruction excepl that additionally a jump is performed to
the (LSP, MSP) address.

ENABLE INTERRUPTS AND RETURN EUR
Op Code: 062 050

Length: 2 bytes
This instruction is identical to the combination of the ENA-

BLE INTERRUPTS, Set USER Mode Flag and RETURN in-
structions.

Category 7:
5.8.9 6800 instruction Set

The following is a description of the instructions that
are new with the 6600 processor.

DOUBLE PAGED LOAD REVERSED DPLR (rp), loc
Mnemonic Opcode

DPLR BC, loc 062 t14 LSP

DPLR DE, loc 174 134 LSP

DPLR HL, loc 176 154 LSP

Timing: 3.80

These instructions load the specified register pair from
the memory locations specified by the LSP given in the in-
struction and the MSP given in the X-register. The B, D, or H
register is loaded from the specified memory location and
the C, E, or L register is loaded from the next higher loca-
tion. Note that this is similar to the 5500 DPL instruction ex-
cept the order in which the registers are loaded is reversed.

DOUBLE PAGED STORE REVERSED DPSR (rp), loc

Mnemonic Opcode
DPSR BC, loc 062 116 LSP
DPSR DE, loc 174 136 LSP
DPSRA HL. loc 176 156 LSP
Timing: 3.80

These instructions store the specified register pair into
the locations specified by the LSP given in the instruction
and the MSP given in the X-register. The B, D, or H register
is stored into the specified memory location and the C, E, or
L register is stored into the next higher location. Note that
this is similar to the 5500 DPS instruction except the order
in which the registers are stored is reversed.

SECTOR TABLE LOAD STARTING AT OFFSET

$TLO ()
Mnemonic Opcode
STLOA 022 077
STLOB t11 077
STLOC 062 077
STLOD 113 077
STLOE 174 077

Timing: 3.70 + C*1.25

The Sector Table in the 6600 contains eight bits for each
entry. Bit 0 of a Sector Table entry is explained fater. Bit 1
of a Sector Table entry contains a hardware generated and
checked parity bit. Any value loaded into this bit position is
ignored since the hardware generates the proper parity bit
when a Sector Table entry is loaded. if, during any memory
access, there is not the correct number of one bits out of
the eight Sector Table entry bit positions, a Sector Table
Parity Error System Call interrupt will be generated to mem-
ory location 0167474, Bit 2 of a Sector Table entry is set

to enable the sector to be accessed (read or written) when
the machine is in User Mode. Bit 3 of a Sector Table entry is
selto enable the sector to be written in either User or System
Mode. Bits 4 through 7 of a Sector Table entry are used for
physical memory address bits 12 through 15 and bit 0 is used
for physical memory address bit 16 {giving the 6600 17 bits
of physical memory address to accommodate the 128K of
physical memory space).

The STLO(r) instruction is simitar to the 5500 STL in-
struction except that the upper four bits of the specified
register (A, B, C, D, or E) determine where in the Sector
Table the loading is started (the lower four bits can be any
value). For example, if the STLOA instruction is performed
with the A-register containing a 060 (octaf) and the C-register
containing a 5, Sector Table entries 3 through 7 will be
toaded. Note that if the upper four bits of the specified
register plus the lower four bits of the C-register total
more than 15, loading witl wrap around in the Sector Table
into the lower entries and the value that was to be loaded
into the top entry wili be ignored (the top entry always
points to the system ROM sector at 0170000 through
0177777, is access enabled, and not write enabled). For
example, if the STLOB instruction is performed with the
B-register containing a 0300 and the C-register containing a
7, the Sector Table entries loaded will be 12, 13. 14, 15
(ignored), 0, 1, and 2.

Entry: HL = localion of first byte in a table of up to {5
Sector Table entries to be loaded
C = number of entries to be loaded (0 thru 15;
" the upper 4 bits of C can be any value)
(r} = _ starting Sector Table entry (upper four bits

0 thru 15 the lower 4 bits of (r) can be any
value; (ry can be A, B, D, or E)

Exit: Sector Table loaded
No registers or condition flags changed
1 stack tevel used

SYSTEM INFORMATION INFO

Opcode: 111 010

Timing: 2.50

Thisinstruction is used to ditferentiate the 6600 from other
Datapoint processors. In the 5500, this instruction performs
no operation. In the 6600, this instruction loads a 1 into
the A-register and the revision number of the micro-code
ROM into the B-register. None of the condition code flags
and none of the other registers are aflected by this in-
struction. To determine the type of Datapoint processor in
which the program is running. the following sequence is
suggested:

XRA Determine it 2200

LLA

LHA

DECP HL {This is a NOP on a 2200}
JFC IMA2200 ¥'m a 2200

XRA Determine if 5500 or 6600
INFO

ORA

JTZ IMAS5500 1'm a 5500
JMpP IMABB0O I'm a 6600

29

BINARY FIELD LEFT TO RIGHT OPERATIONS

BFLR(op)
Mnemonic Opcode
BFLRAD 111 006
BFLRAAC 111 016
BFLRSU 111 026
BFLRSB 111 036
BFLRND 111 046
BfFt AXR 111 056
BFLROR 111 066

Timing: 6.30 + N* 2,15

These instructions are similar to the 5500 BFAC and
BFSB instructions except that the memory pointers are in-
cremented afler each operation is performed (instead of
being decremented). In addition, togical and non-carry oper-
ators are allowed (the non-carry operators are useful for in-
crementing a number of one-byte counters appearing in
configuous memaory).

DOUBLE MEMORY TO REGISTER OPERATIONS

D{op}M {rp}

Mnemonic Opcode

DADM (rp) Irpt 013
DACM (rp) frpl 310
DSUM (rp) irpl 033
DSBM (rp) trpl 330
DNDM (rp) trp | 043
DXAM (rp) frpi 053
DORM (rp) frp) 063
DCPM (rp) lipl 073

Timing: 4.60 to 5.65

These instructions perform the indicated operation be-
tween the 16-bit vatue al the memory location pointed to by
the HL register pair (LSB at the location pointed to and MSB
at the next higher location) and the 16-bit value in the spec-
itied register pair (BC. DE, HL, or XA). In subtraction and
comparison, the value in memory is subtracted from the value
in the register pair, and in all operations except comparison
the result is deposited in the register pair. The Carry, Sign,
and Zero condition flags reflect the entire 16-bit result (the
Carry is always set false by the logical operations) while the
Parity condition flag is undefined after the operation.

DOUBLE PAGED TO REGISTER OPERATIONS
D{op)P
{rpl,ioc

Mnemonic Opcode
DADP {(rp), loc
DACP (rp), loc
DSUP (rp). toc
DSBP (rp}, loc
DNOP (rp), 10c
DXRP (rp}, loc
DORP (ip), loc
DCPP (rp), loc

Lep+14 013 LOCLSB
Lip+11 310 LOCLSB
lrp+11 033 LOCLSB
lrp+11 330 LOCLSB
Lrp+11 043 LOCLSB
Irp+11 053 LOCLSB
1ep+11] 063 LOCLSB
lep+11 073 LOCLSB

Timing: 5.15 10 6.20

30

These instructions are similar to the D{op)M instructions
except thal the memory focations used are pointed to by the
memory address contained in the instruction {(LSP) and the
X-register (MSP).

DOUBLE IMMEDIATE TO REGISTER OPERATIONS
D{op)l {rp), data.

Mnemonic Opcode

DADI (rp). data frpt 110 1LSB MSB
DACI {rp), data brp i 311 LSB MSB
DSUI {rp), data lipi 130 LSB MSB
DS8I (rp), data 1rpt 331 LSB MSB
DNDI (rp), data Irp1 140 LSB MSB
DXRL {rp), data trpl 150 L.SB MSB
DORI (rp), data Lrpl 160 LSB MSB
OCPI (rp), data frpt 170 LSB MSB

Timing: 4,00 to 5.0

These instructions are similar to the D{op)M instructions
excepl that the operand data is actually the tast two bytes in
the instruction.

DOUBLE REGISTER TO MEMORY OPERATIONS

DM{op} {rp)

Mnemonic Opcode

DMAD (rp) lip+11 110
DMAG (rp) brp+11 311
DMSU (rp) lep+114 130
DMSB (rp) frp+11 331
DMND {rp) lrp+11 140
DMXR (rp) trp+11 150
DOMOR (rp) frp+1t 160

Timing: 5.30 to 6.35

These instructions are similar to the D{op}M instructions
except that the direction of data flow is reversed. On sub-
traction, the register pair value is subtracted from the mem-
ory locations, and in all operations the result is deposited
into the memory localions (specified by the HL register pair).
Note that there is no comparison operation.

SINGLE PAGED TO REGISTER OPERATIONS Plop)

{r), loc

Mnernonic Opcode

PAD {r), toc Frt 106 LOCLSB
PAC (1), loc ir) 112 LOCLSB
PSU (r), loc Irl 122 LOCLSB
PSB (r). loc iri 132 LOCLSB
PND (), loc Iri 142 LOCLSB
PXR (r). loc ir) 152 LOCLSB
POR (1), loc trt 162 LOCLSB
PCP {(r). 1oc tri 172 LOCLSB

Timing: 3.40 {except 3.25 for CP})

These instructions perform the indicated operation be-

tween the 8-bit value in the memory location specified by the
fast byte in the instruction (LSB) and the X-register (MSB)
and the 8-bit value in the specified register with all, except
the comparison operation, depositing the result in the spec-
ified register. All condition flags are setto reflect the result as
in an (op) (r) operation.

DOUBLY LINKED LIST DELETE LLDEL
Opcode: 111 051

Timing: 9.40

A doubly linked list construct in the 6600 appears as
follows:

ITEMt DA ITEM2 forward pointer
DA ITEM3 backward pointer

ITEM2 DA ITEM3 forward pointer
DA ITEM1 backward pointer

ITEM3 DA ITEM1 forward pointer
DA ITEM2 backward pointer

ITEM4 DA 00000 item to be inserted
DA 00000

When the linked list delete instruction is performed with HL
pointing to ITEM2, the instruction deletes ITEM2 from the list
by moving its forward pointer to the forward pointer of ITEM1
and its backward pointer to the backward pointer of ITEM3.
When the instruction completes, the entry value of HL has
not been changed while the DE register is left pointing to
ITEM1 and BC is left pointing to ITEM3. None of the condition
flags are changed by this instruction (ITEM4 will be
referrenced in the following description).
DOUBLY LINKED LIST INSERT LLINS
Opcode: 062 051
Timing: 10.80

This instruction inserts a list item into a linked list con-
struct. Using the example shown for the LLDEL instruction. if
the insert instruction is performed with DE pointing to ITEM2
and HL pointing to ITEM4, the instruction exits with ITEM2's
forward pointer pointing to ITEM4, ITEM4's forward pointer
pointing to ITEM3, ITEM3's backward pointer pointing to
iTEM4, and ITEM4's backward pointer pointing to ITEM2.
Finally, the entry values of the DE and HL registers are
unchanged and the BC register is left pointing to ITEM3.
None of the condition flags are changed by this instruction.

INTEGER MULTIPLY: IMULT
HLDE - HL* BC

Opcode: 111 011

Timing: WH=0 2620+ N*200

HH#0: 4555+ N*200

(N = number of 1's in HL}

This instruction multiplies the unsigned values in HL and
BC putting an unsigned result in the HLDE register quadruple
(most significant byte in H and least significant byte in E).
When the instruction completes, the Zero condition llag re-
flects the 16-bit result in the HL register pair and the Carry
condition flag is set if the sign bit of the D register |s a one.

The A, B, C. and X registers are not changed by this
instruction. The Sign and Parity condition flags are
undefined.

DOUBLE INTEGER DIVIDE:

HLDE/BC = » Q(DE),R(HL) BIDWV
Opcode: 111 031
Timing: f error: 3.55

Else: 57.40 to 82.20

This instruction produces an error indication with the
Carry condition flag set if the BC register pair is less
than or equal to the HL register pair (in unsigned
arithmetic). Otherwise, it divides the unsigned HLDE
register quadruple by the BC register pair placing the
quotient in the DE register pair and the remainder in the HL
register pair. Upon completion of the instruction, the
Carry condition is left cleared to indicate that an error
did not occur and the Zero condition is set based upon the
16-bit value in the HL register pair. The A, B, C. and X
registers are unchanged by this instruction. The Sign and
Parity condition flags are undefined.

INTEGER DIVIDE: DIV
DE/BC = > Q{DE),R{HL) .
Opcode: 062 031
Timing: |f error: 3.90

Else: 57.75 to B2.55

This instruction is identical to the DIDIV instruction ex-
cept that the HL registers are first loaded with zero.

2'S COMPLEMENT A REGISTER PAIR COMP (rp)
Mnemonic Opcode

COMP BC 062 011

COMP DE 174 011

COMP HL 176 011

Timing: 4.75 if compiement

3.70 otherwise

1 the sign bit of the A-register is set, this instruction
performs a 2's complement upon the specified register pair
Upon completion of this instruction, only the specified
register pair's contents can be changed and the condition
flags are undefined.

2'S COMPLEMENT A REGISTER PAIR COMPS [rp)
Mnemonic Opcode
COMPS BC 113 Ot1
COMPS DE 115 o1
COMPS HL 117 01

Timing: 5.20 if complement
4.15 otherwise

This instruction is identical to the COIW> instruction except
that the sign bit of the A-register is duplicated in the next
lower A-register bit position.

31

S Ry BT s R s

Intentionally 8lank

5.8.10 Instruction Timing

The following table shows the 5500 and 6600 timings for
those instructions that are imptemented in the 5500

processor.
Instruction

L(rd)M
L{rd}M (rp)
LM(rd)
M(rd) (rp)
L(rd) (rs)
L(r) data

AD(rs})
AC(rs)
SU(rs)
SB(rs)
ND(rs)
XR(rs)
OR(rs)
CP(rs)

AD(rs) (rd)
AC(rs) (rd)
Sti(rs) (rd)
S§8(rs) (rd)
ND(rs) (rd)
XR(rs) (rd)
OR(rs}) (rd)
CP(rs) (rd)

ADM
ACM
SUM
SBM
NDM
XRAM
ORM
CPM

ADM(rd)
ACM(rd)
SUM(rd)
SBM(rd)
NDM(rd)
XRM(rd)
ORM(rd)
CPM(rd)
AD data
AC data
SU data
S8 data
ND data
XR data
OR data
CP data

AD{r) data
AC{r) data
SU(r} data
SB(r) data
ND(r) data

5500 timing

2.60
3.40
2.60
3.40
1.20
1.80

1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.20

2.40
2.40
2.40
2.40
2.40
2.40
2.40
2.20

2.60
2.60
2.60
2.60
2.60
2.60
2.60
240

3.60
3.60
3.60
3.60
3.60
360
3.60
3.40
220
220
2.20
2.20
2.20
220
220
2.00

3.20
3.20
320
3.20
3.20

6600 timing

1.75
2.60
1.75
2.60
1.00
1.45

1.16
116
1.15
1.15
1.15
1.15
1.15
1.00

2.00
2.00
2.00
200
2.00
2.00
2.00
1.85

210
210
2:10
210
2.10
2.10
210
195

2.95
295
295
295
295
295
295
2.80
1.60
1.60
1.60
1.60
1.60
1.60
1.60
1.45

245
2.45
245
245
2.45

XR(r} data
OR(r) data
CP(r) data

SLC
SRC
SRE

SLC(r)
SRAC(r)
SRE(r)

JMP loc

Jec toc

Jee loc (fall thru)
EJMP loc

NOJ toc

NOP

CALL loc
Ccc loc
Ccc loc (fall thru)

RET

Rcc

Rcc (fall thru)
UR

EUR

iN

IN(r)

PIN
PIN(r}
EX (exp}
EX(r) (exp)
MIN
MOUT
BETA
ALPHA
2]

E

POP

POP (rp)
PUSH
PUSH (rp)
PUSH loc

BT (A=B=0)

BT (A, B#0)
BTR (A=B=0)
BTR (A, B#0)
BCV (A=B=0)
BCV {A, B#0)
BCP (if match)
BCP (mismatch)

BFAC
BFSB
DFAC
DFsSB
BFSL
BFSR

3.20
3.20
3.00

1.40
1.40
1.40

2.40
240
240

2.60
2.80
1.40
4.40
1.40
1.20

2.80
3.20
1.60

1.80
200
1.00
3.20
3.80

5.00
6.00
5.40
6.40
9.20
10.20
3.00
3.00
1.40
1.40
1.40
1.40

220
3.00
1.80
2.60
2.60

+ N* 880
+ N*8.40

480 + N*320
480 + N* 340
580 + N* 3.60
580 + N *3.80

5.80
5.80
5.20
4.40

5.00
5.00

5.40 +

5.40
3.80
4.60

+ N+ 4.80
+ N * 500
+ N * 260
+ N* 260

+ N * 280
+N*280
+ N * 450
+ N* 3.80
+ N* 220
+ N* 200

2.45
2.45
2.30

2.00
2.00
2.00

2.05
226
1.10
3.40
1.00
0.70

2.20
2.45
1.20

1.30
1.50
0.80
2.45
3.15

5.00
585
5.00
585
7.00
7.85
295+ N*830
2954 N*830
1.20
1.20
1.20
120

1.45
2.30
1.15
2.00
2.05

6.70 + N * 1.60
6.00 4+ N* 235
785+ N* 1.60
695+ N*235
755 + N* 250
685+ N*325
535+ N* 195
4854 N* 195

535 + N* 215
535+ N* 2156
620 + N*3.45
6.30 + N *290
300 + N* 170
340 + N* 155

33

STKS

STKL

REGS
REGL
Cccs

INCP HL
INCP HL A
INCP (rp)
INCP (rp).2
INCP {rp}.A
DECP HiL
DECP HL A
DECP (rp)
DECP (rp).2
DECP {rp).A

DL DE HL
DL BC HL
DL BC,BC
DL BC.DE
DL DEBC
DL DE.DE
DL HL.BC
DL HL,DE
DL HiL HL
DS DE HL
DS BC.HL
DS BC.DE
DS DEBC
DS HL.BC
DS HL.DE

PL (1) loc
PS (r).loc
DPL {(rp), toc
DPS (rp).loc

INCI {dsp) (idx)

DECH (dsp (idx)

INCI *(dsp),(idx)
DECI #(dsp),(idx)
LFH (rp),(dsp),(idx)
LFID (rp) (dsp).{idx)
LFIl (rp).*(dsp),(idx)
LFID (rp),*{dsp}),(idx)

BRL
BRL(r)
STL

SC
8P

1.60
4.40
13.00
12.20

t N*240
1 N*220

2.40 to 3.00

2.80
3.00
3.60
3.80
3.80
2.80
3.00
3.60
3.80
3.80

3.60
5.40
4.80
5.20
4.80
520
4.80
520
3.60
3.60
5.40
5.20
4.80
4.80
5.20

3.00
3.00
5.00
5.00

7.40
7.60
9.40
9.60
7.40
7.60
8.40
8.60

1.20
220
3.20

2.00
220

+ N* 180

156 + N* 1.70
360 + N*1.70
9.10

9.85

1.65 to 2.45

1.40 or 1.95
1.55 or 210
2.45 or 3.00
2.50 or 3.05
2.40 or 295
1.40°0or 1.95
1.55 or 2.10
245 0r 3.00
2.50 or 3.05
240 or 2.95

2.50
3.95
3.75
3.90
3.75
3.90
375
3.90
250
2.50
3.95
3.90
3.75
375
3.90

220
220
3.80
3.80

3.650r 510
3.65 or .10
7.25
7.45
5.60
5.80
6.25
6.45

1.00
1.85
270 + N* 1.25

1.80
2.00

AR s S

PART 6
INPUT/OUTPUT

The 6600 communicates with and exercises program con-
trol over external devices via the input/Output System Bus.
The keyboard and display, while internal, are also peripherals
that operate from this 1/O Bus.

All external devices are connected to the /O Busin parallel,
‘‘daisy chain" fashion.

Each exlernal device is assigned (by jumpers in the
peripheral device's controfler) an input/Output “‘address”
which is unique to that device. At any time, one device is
designated by the processor as currently addressed. and
only communication between the processor and that device
is possible. All other devices on the 1/0. Bus are logically.
although not electrically. disconnected from the /O Bus.

Signals on the /O Bus may be divided into six groups.
These are:

1, Nine output lines designated AQUTO () through AOUTB (-).
Eight lines (AOUT0-AOUT7) carry data and controtl informa-
tion from the processor to the external device. AQUTS (-} is
the parity bit for these lines. The (-} signs indicate that the
dataislogically inverted, i.e. lowvoltageequals a binary one.

2. Nine input lines designated AINO (-) through AINS (-). Eight
fines (ANO-AIN7) carry data and status information from the
external device to the processor. AINB (-) is the parity bit for
the other 8 lines.

3. Nine output control and data strobes.
4. The system clock fine.

5. The output data parity error ttag line from the external
devices to the processor.

6. Twelve power and ground lines. Four of these are ground
lines and serve as signal ground for the /O Bus and power
ground for devices which obtain opérating power from the
1/0 Bus.

6.1 Input/Output Physical Connections

The Input/Output System Bus connector on the 6600 is a
§0-pin Amphenol Series 17 receptacle with femals contacts,
with provisions for screw lock assembies.

Each external device has two 50-pin Input/Output Bus
connectors: one an Amphenol Series 17 female plug with
male comacts labelled “/O Bus In" and the other arnt Am-
phenol Series 17 male plug with female contacts labelled “VO
Bus Out”. Both of these connectors have provisions for
screw lock assemblies.

Datapoint Universal Input/Output cables have a male con-
nector at one end and a female at the other.

Connection is made from the 6600 /O connector to the
"I/O Bus In" connector of an external device via a Universal
1/O cable. It more than one device is connected to the /O Bus,
connection is made from the "1/ Bus Out” conneclor of the
first device to the 'O Bus In" connector of the second
device with a Universal /O Cable. The process is repeated for
other external devices.

Every exlernal device must connect each of the 50 pins
(including spares) of its "I/0 Bus In” connector to the corres-
ponding pins of its "I/O Bus Out” connector in addition to
connection to those lines required for the particular device.
This is required for continuity of all signal. power and ground
lines on the /O Bus.

The following table gives O Bus pin assignments:

TABLE 6-1
1/O PIN ASSIGNMENTS
1

SIGNAL PIN NUMBER
AQUTO () 44
AOUT1 () 45
AOUT2 () 46
AOUT3 () 29
AOUTA4 () 30
AOUTS (-) 31
AOUTS (-) 32
AOUT7? (-) 33
AOUTBS (-} {Parity Out) 34
INPUT () 12
EX ADR (-) 15
EX STATUS (1) 13
EX DATA (-) 14
EX WRITE (-) 19
EX COM1 (-} 20
EX COM2 () 21
EX COM3 () 22
EX COM4 (1) 23
SYSTEM CLOCK 39
AINO () 1
AINI () 2
AIN2 (-) 3
AIN3 () 4
AIN4 (-) 5
AINS (-) 6
AING (-) 7
AINT () 18
AINB {-) (Parity n) 17
PERR (-) {Parity Error Flag) 16
GROUND 40, 41,42, 43
+5V 8.9, 10, 11
-5V 27
+12V 25
-1V 24
+24V 26
Spare (unused) 28.35,36.37,
38.47,48, 49,
50

(-) indicates negative true logic

6.2 Input/Output Electrical and Timing Requirements

This section describes interface circuits and timing re-

35

quirements for operation ot exiernal devices on the 6600
Input/Output System Bus.

6.2.1 OUTPUT LINE CIRCUITS

6.2.1.1 LINE DRIVERS

Four types of output line driver circuits are used in the
6600. These are iltustrated in Figure 6-1A-D.

The data lines AOUTO(-) thru AOUT7(-) and the parity out,
AOUTB(-) use the driver shown in Figure 6-1A. The data
drivers use the Miller inegrator 1o control the stew rate of
data signals. The slower rise and fall times greatly reduce the
amount of crosstatk between signal tines. The slew rate is be-
tween 10 to 12 voils per microsecond depending upon
driver loading and Vce. This provides typical rise and fall
times of from 0.2 to 0.4 microseconds.

Strobe lines, all except the input strobe, use the driver cir-
cuit shown in Figure 6-18

The input strobe line driver circuit is that shown in Figure
6-1C.

The Clock line, which is asynchronous with the system,
uses the driver circuit shown in Figure 6-1D.

6.2.1.2 RECEIVERS

All external devices must use the receiver circuit shown in
Figure 6-1E for all dala, strobe and clock lines.

The circuit uses an SN75141 single ended line receiver that
is referenced 1o + 2 volts, t5%. The inpul is filtered against
fast transient pulses and diode clamped to protect against
excessive DC input voltages. The posilive clamp value i$
determined by the zener diode value. The zener diode must
not be biased "on" but left “tloating” 1o prevent loading of
the O bus when the external device is powered down.

Current drawn from any bus output signal by any one re-
ceivar circuit, with the external device powered or unpowered,
must not be greater than 100 microamperes.

The signal detay through an AOUT receiver is shown in
Figure 6-1F. The delays are measured from the.input of
the tilter 1o the output of the receiver and include filter delay
and receiver propagation delays.

6.2.2 INPUT LINE CIRCUITS
6.2.2.1 DRIVERS

The eight AINO(-) through AIN7(-) lines carry data and
status information to the processor. Input line AINS(-) is the
parity bit for input data

Al external AIN drivers are connected in paraliel to each of
the 9input lines. All external devices must use the AN driver
circuit shown in Figure 6-2A. This driver is similar 1o the
ACUT drivers, providing conlrolted rise and fall times to re-
duce signal crosstalk..

The driver output is negative true logic with the following
levels:

togic one = 0 volts
logic zero = +5 volits

Unless enabled, the external device must maintain the AIN
drivers in the iogic zero, ("off”) state.

36

The 4.7k pullup resistor must be present on all AIN fines
even it the external device does not use them.

The +5 volt pultup voltage tor the 4.7k pullup resistors
must be the +5 volls provided by the 6600 /O Bus. This
allows externat device interfaces that are powered indepen-
dent of the processor to be turned off without loading down
the AIN lines causing the processor 1o become inoperative.

Parity Error to the processor is connected to the PERR{-}
fine with the driver circuit shown in Figure 6-28. This driver
is an open collector gate and conditions for its output are
given in Section 6.2.5 .

The AN line receiver circuit used in the 600 processor is
shown in Figure 6-2C. This receiver circuit is identical to the
AQUT receiver circuil with exception of the positive clamp
diode which is returned to + 5 volts.

6.2.3 Power and Ground Lines

The Input/Output System Bus provides ground {common
signal and power) and various supply voltages tor operation
of externat devices on the /O Bus.

Each external device must connect all 12 power and
ground lines (see Table 6-1) between its "/O Bus In"” connec-
tor and '1/0 Bus Out” connector in addition to +5V and
ground conneclions 1o ils own circuitry.

Except as discussed in 6.2.2 above (+5 volts) current must
not be drawn from these voitages by the external device.

The 1/O Bus + S valt line may vary in voltage from +4.2volts
to + 6.3 volts. The exiernal device must operate without dam-
age of maltunction over this range.

6 2.4 Device Address

The processor addresses an external device by means of
the EX ADR (-} strobe. The address of the device to be
selected appears on the AOUTO(-) through AOUT7(-) lines. As
in all oulput operations, AOUTH(-} provides odd parity infor-
mation (i.e.. the totat number of logic 1's on the AOUTO(-) thru
AQUTS(-} lines is odad).

All AQUT (-) bines are stable from 2.0 microseconds before
the teading (negative) edge ot the EX ADR(-) strobe until 2.0
microseconds after the trailling {positive) edge of the strobe.

Logic levels on the nine AOUT(-) tines are as follows:

togic 1=0 volts
Logic 0= +5 volts

The device whose address appears on the AOUTO(-)
through AQUT7(-) lines must be edge-triggered to the ad-
dressed state on the leading (negative) edge of the EX ADR(-}
strobe if the 9-bit parity result is correct.

If the parity result is incorrect the device remains or be-
comes unaddressed and indicates an 1/O Bus parity error by
taking the PERR (-) line ta 0 volis (see 6.2.5), even if the
presented address appears to be its own.

If the presented address is not its own but the parity result
is correct, the device merely remains or becomes unaddres-
sed; it does not take the PERR(-) tine to 0 volts

Once addressed, the device stays addressed until another
EX ADR(-) strobe occurs and the AQU1(-) lines indicate an
address olher than ns own

The device must recognize output strobes (other than EX

|
|
|

ADR(-)). or ptace data or status information on the AIN(-) lines
only while addressed (see 6.2.5. and 6.2.6)

The device must be forced to the unaddressed state by
initiat apptication of 1 5 volt power from the ¥O Bus and must
also be set to the unaddressed state by initial application of
its own logic supply voltage.

In addition, the device must insure that neither the drivers
on the AIN(-) lines (see 6.2.6) nor the PERR(-) driver circuit
(see 6.2.5) become erroneously enabled for any period of
time during application or removal of the device logic supply
voltage.

Although all eight AOUTO(-) thru AOUT7{-} lines are used,
only four of the lines are used to detect the address by mon-
itoring either the logicatl 1's or logical O's. (This gives a
maximum number of 70 unique addresses.) In this scheme
there are always four 1's and four O's in the valid address.

A7 A6 A5 A4 A3 A2 At A0
1 1 0 0 Y 0 1 1

The complete {8 bit) octal address here is 0303

Only a four input gate is required to detect any of these
addresses. Strapping must be arranged so that each gate
input can connect to any of the AOUT lines.

Typical logic implementation of these functions is illus-
trated in Figure 6-3.

Address strapping will be provided by means of a plug with
selective wiring or mechanical posts to which wires will be
soldered.

6.2.5 Data and Controt Output

Alt data or control information is lransferred from the pro-
cessor to external devices using one of the following strobes:

EX DATA(-)
EX STATUS(-)
EX WRITE()
EX COM1(-)
EX COM2()
EX COM3(-)
EX COMA(-)

Each of these is a 2.0 microsecond negative pulse to the 0
volt level.

Except for EX ADR(-). these strobes must not be recog-
nized by the device unless it is addressed

Logic levels on the AOUTO(-) thru AQUTS(-) lines are as
follows:

10 volts
0~ 15 voits

0Odd parity is used on the AQUTO(-) thrt AQUTS (-} lines;
i.e.. the state of AOUTS(-) is such that the number of logic 1s
(0 votts) on these 9 lines is odd

The processor is capable of two types of output operation
normat and multiple.

In normal output mode, the nine AQUT(-} lines are stable
from 2.0 microseconds before the leading (negative) edge of
the strobe until 2.0 microseconds following the trailing (posi-
tive) edge of the strobe (see Figure 6-4A).

In multiple output mode, up to 16 (program determined)
consecutive EX WRITE output strobes can be executed using
the timing shown in Figure 6-4B. The AQUT(-} lines are valid
2.0 microseconds before the leading (negative} edge of the
2.0 microsecond strobe as above. but only remain valid untit
the traiting (positive) edge. The time from the leading edge of
one strobe to the leading edge of the next is B0 mic-
roseconds and new data is presented on the AQUT(-} lines
with each strobe (see Figure 6-4B).

Devices required to utilize the muitiple output operation
must be able lo accept data at the rate of one byte every 8
microseconds.

in either normal or multiple outpul operations, the device
must edge-load the contents of the AQUT(-) lines on the
leading {negative) edge of the strobe

1f the external device is addressed when a sirobe is re-
ceived and the 9-bit parity result is incorrect. the device must
set the PERR(-) line to 0 volts on the leading edge of the
strobe. This requirement pertains to only those strobes used
by the external device if astrobe is notused al all, the device
may ignore parity for the sirobe. Note that the device must
check parity on all output strobes used even if the data given
with the strobe is not used. This is a validity check upon the
exislence of the strobe.

In addition to setting the PERR(:} fine to 0 volts when
incorrect parity is detected, the device must ignore the strobe
if it would cause an irreversable action in the device. The
definition of irreversability is device dependent and is made
specific in each device's specification

Once the PERR(-) ling has been sel 10 0 volts. the device
must maintain this state until another strobe (including EX
ADR(-)}. is received with correct parity

Figure 6-5 shows a typical logic implementation of these
functions.

PERR(-) must be initialized to the "off " state { + 5V} upon
initial application of O Bus +5 voits o1 the device logic
supply voltage

6.2.6 Status/Data Input
Both data (if applicable) and status are transnntted from

37

the external device to the processor over the eight AINO(-)
thiu AIN7(-) lines. Input tine AINB(-) is the parily bit for the
other AIN(-) fines. The device must generate odd parity if the
PIN or MIN instructions are used: i.e , the number of logic 1s
(0 volis) un these 9 lines must be odd.

The device is in stalus mode and will place status informa-
won on the AIN(-) ines inmediately after being addressed or
upon recetptof an EX STATUS(-) strobe. The device is placed
in data mode and will place data on the AIN(-) hnes im-
mediately upon receiptl of an EX DATA(-) strobe. it the device
15 in Jdata mode, either an EX ADR(-) or EX STATUS(-) strabe
returns it 1o stalus mode

All data’status mode changes must be activated by the
leading (negative) edge ot the associated strobe.

The device must maintain all AIN(-) lines in the “"off’" (high
impedance) state while it is not addiessed and for 1.5 mic-
roseconds (130°.) after becoming addressed. The 1.5 mic-
rosecond detay prevents the tri-state drivers from being ena-
bled before the drivers of another device become disabled
Note that this delay applies only to enabling the tii-state driv-
ers; all other logic functions on the interface may respond to
becoming addressed on the leading {negative) edge of the
EX ADR(-) stiobe.

An output-only device (such as a printer) which does not
transmil data 1o the processor need not incorporate the two
maodes; rather, it may stay in status mode at all times.

The processor is capable of two types of input operations
normai and muitiple.

In normat input mode a negaltive going 2.0 microsecond
INPUT(-) strobe is generated by the processor to indicate to
the addressed device that the dala or status information on
the AIN(-) lines has been taken. The AINO(-) thru AINB(-) lines
must be vahd 3.5 microseconds before the leading edge of
the INPUT(-) strobe. This time is with respect to the INPUT(-)
strobe at the processor 10 Bus connector and does not
miclude cable o1 device line receiver deiay.

The data lines are sampled by the processor on the leading
{negative) edge ot the INPUT(-} strobe, su the device may
chuange the AIN(-} lines immediately atler detection of this
edge

in multiple input mode, up to 16 (program determined)
INPUT(-) strobes may occur at 8.0 microsecond intervals
(8.0 microseconds between leading edges). The device must
present new valid data within 4.5 microseconds after the
leading edge of the INPUT(-) strobe. This time is with respect
to the INPUT(-) strobe al the ¥O Bus connector and does not
nciude cable or device line receiver delays

All devices must be able 10 present valid status or data
within 4.5 microseconds of the leading edge of any /O Bus
strobe at the connector. This does not mean that new dala
‘must be available within this tune but that the device must
either give a slatus indicating that new data is not ready or,
once having indicated that new data is ready, be abie to
produce valid data it a strobe is given which demands that
data. This is the output to input strobe specification

Figure 6-6A shows norinal input strobe timing. Figure 6-6B
shows multiple input strobe timing. Figure 6-6C shows
output to input strobe timing.

+5V
270
47 pt
} - AOUT

FAVAVAW

¥ |/
IN2369A
22K
-5y =

AOUT(-) AND PARITY DRIVER

FIGURE 6-1A
+12V +5v
2N2219 IN4148
I‘/ ¥ § é AN\t QUT
100 (}
7407 OR
EQUIVALENT
STROBE DRIVERS (EXCEPT INPUT)
FIGURE 6-18
+12v
+5V
82010 IN4148
Jl/\/ %Y = out
7407 100 O

INPUT STROBE DRIVER
FIGURE 6-1C

39

+8V

22K

153.6KHZ
7407
USEA CLOCK DRIVER
FIGURE 6-1D

“FLOATING,” REFER TO RECEIVER, PARA 6.2.1.2
TO MORE
RECEIVERS

IN4350A

24K A IN4148
] IN4148 :
47PF
+12V
+ 8V
470
2V 2N2222
2v _ TO MORE
I RECEIVERS
fiy 470 4 47uF 1
RECEIVER 0.1 uf
REFERENCE
GENERATOR = —

AQUT(-) RECEIVER (EXTERNAL DEVICES)
FIGURE 6-1E

40

41

41-8 34NOid

SAV13Q NOILYOVdOHd HIAIZDO3Y

Ii le—snoor —|

1NdLno

viva

LNdNI

1ndino

$380H1S

VO BUS 16 VOLTS

AN
CONTROL

ENABLE —P 1.0GIC DATA/STATUS

DATA —¥ TIL LEVELS 22K

STATUS —, L. 2N2369A

-5V

PERIPHERAL
AIN(-) DRIVER
FIGURE 6-2A

TTL OPEN COLLECTOR
PR— 33 0

AM- - e

PERIPHERAL
PERA(-) DRIVER
FIGURE 6-28B

e ke

+5V
S
T

| +2.0V
REFERENCE

AIN RECEIVER (6600)
FIGURE 6-2C

+ 470¢) for PERR (-) receiver

I

E£X ADR STROBE
(FROM LINE RECEIVER)
ADDRESS
AQ OUT JUMPERS
O
o
A4 QUT
oy °
A1 OUT
QU o
A5 OUT O—
O
A2 OUT o
O—
A6 OUT °
\ -
A3 0UT . o ol ADDRESSED
o S L |
A7 OUT C
-0
A OUT LINES R
FROM LINE [o]
RECEIVER
/
GOOD
A8 QUT DD PARITY PARITY
—— CHECKER
110 BUS 45V POWER ON —'J—_L
AESET i >o
POWER ON
DEVICE 15V POWER ON __’_L_ ORFEETO
(IF APPLICABLE) RESET

FIGURE 6-3 DEVICE ADDRESS LOGIC

43

2777277277777

T

DHDOT ALV ANV FHOULS 1NdLN0 59 N4

QUTPUT
STROBES
FROM LINE
RECEIVERS
EXCEPT
EX ADR
AND
INPUT

ADDRESSED
(FIG. 8-3)

GOOD PARITY
iFIG. 8-3)

EX ADR STROBE
(FIG. 5-3)

JL

GATED
___ OutPUT

Il

STROBES
TOLOGIC

Il

{>CEAC PARITY

[¢3

Lol

O

7L
OPEN-COLLECTOR

331
PERR

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

- Y
..... i
T e . e Y
// VVVVV T,

LLLLL

G tsitind/42: [,

APPENDIX A
SYSTEM ROM OPERATING DESCRIPTION

CHAPTER 1. SYSTEM ROM FUNCTIONS
1.1 INTRODUCTION

The Datapoint 6600 ROM occupies 4K of physical memory.
{From 0170000 to 0177777). Four major routines are exe-
cuted in the ROM with which the user should be familiar.
They are POWERUP, RESTART, DEBUG, and MEMORY
TEST.

1.2 POWERUP

The first major ROM routine, POWERUP, is executed when
the 6600 is (initially) supplied with power. This routine dis-
ables the one millisecond interrupt, seiects ALPHA Mode,
writes zeroes in all of RAM Memory to initialize memory parity
{note that there is no machine state to save), and calls a
subroutine SETUP which does six things:

(1) Loads the Sector Table entries 0 => 016(0 - > 14
decimal) with vatues to make a one-for-one trans-
lation from based logical space to physical space
with no protection set. (Note that the 017th entry in
the Sector Table is always set to point to the 4K
sector of physical memory (0170000 —>0177777)
with USER and WRITE access disabled.}

(2) Clears the User Mode Flag.
(3) Initializes the Base Register to zero.
(4) Loads a partial character set in the RAM display.

(5) Clears all entries in the Breakpoint Table (which is
also in System RAM).

(6) Initializes the Interrupt Vector Table in System RAM
(to the internat trap messages).

The vectors are loaded as indicated in the following

RAM memory focations:

0167400 MEMORY PARITY FAILURE VECTOR.
0167406 INPUT PARITY FAILURE VECTOR.
0167414 OUTPUT PARITY FAILURE VECTOR.
0167422 WRITE PROTECT VIOLATION VECTOR.
0167430 ACCESS PROTECT VIOLATION VECTOR.
0167436 PRIVELEDGED INSTR VIOLATION VECTOR.
0167444 ONE MILLISECOND CLOCK VECTOR.
0167452 USER SYSTEM CALL VECTOR.

0167460 BREAKPOINT VECTOR.

0167466 UNASSIGNED INSTRUCTION

0167474 SECTOR TABLE PARITY ERROR

Note that the ONE MILLISECOND INTERRUPT is disabled
during the time any System interrupt is executed. Under the
normal ROM initialization sequence, the ONE MILLISECOND
INTERRUPT vector is pointed back into the ROM where the

ONE MILLISECOND INTERRUPTS are re-enabled prior to the
jump to location zero. If a user program alters any of the
SYSTEM INTERRUPT VECTORS. it must also be responsible
for re-enabling interrupts (El) i required.

System RAM is the term used to denote the 256-byte page
of RAM Memory (From 0167400 to 0167777) which contains
Interrupt Vector Locations in the first 128 bytes and the Ma-
chine State Storage Area and the Diagnostic Scratch Areain
the second 128 bytes.

Interrupts are generated in 6600 firmware through the
‘System-Call” mechanism which shifts program execution
into 6600 ROM locations which contain JMP's to Interrupt
Vectors in the System RAM.

The Interrupt Vectors consist of six byte entries to enable
Vector Address Modification through the use of the NOJ
instruction. (See NOJ description in Sec. 56.8.8))

The POWERUP sequence concludes by loading the RAM
display with an abbreviated ASCH character set (all unloaded
characters are set to triangles) and HALTING to invoke the
bootstrap mechanism.

The POWERUP routine contains an operating fealuie
which gives the user the capability of moving the logical
sector of memory which contains the System RAM to the
bottom (zeroth) physical sector (on RAM card 1) and moving
the rest of the memory up one sector in physical memory.
This feature could conceivably be of use in the case where
the System RAM memory failed and the user wanted to get
into DEBUG to run the memory fest (particutarly if the
memory failure was intermittent). To do this the KEYBOARD
and DISPLAY Keys must BOTH be déepressed at the time of
POWERUP.

1.3 RESTART

The second major ROM routine, RESTART is invoked by
momentarily depressing the RESTART and RUN keys. by the
machine being halted (by other than the STOP key) when
either a cassette is in place in the rear deck with the right-
hand tab punched oul, or when no cassette is in place in the
rear deck and the head gate is closed. Note that if the DIS-
PLAY key is depressed at the time RESTART is invoked, the
Diagnostic routine (DEBUG) will be entered

The RESTART routine disables the one mitlisecond inter-
rupt, puts the 6600 in ALPHA Mode, and checks for
diagnostic activation (DISPLAY key depressed). If DEBUG is
not selected for execution, RESTART calls SETUP and then
executes the bootstrap function which will load a block of data
from a cassette tape in the rear deck or from a disk
peripheral that contains a disk that is on line

If the rear cassette deck has a cassetle tape in place,
the tape will be rewound and the first block of data
read into low RAM and then executed.

Otherwise, disk peripheral devices are scanned in the
order of Mass Storage (/O addresses 0113, 0115, and
0116). Cartridge Disk (/0 address 0170). and Diskette

a7

(VO addresses 074, 072, 071) for a disk on line in drive
zero. It no such disk is found, the cassette deck is checked
again. if during this loop the operator depresses the DIS-
PLAY key, the drive number checked in each of the disk
peripherals is incremented once each lime through the
loop. It the drive number is incremented from 255, a click
is sounded and the drive number is returned to zero. if a
disk is found on line, a 256 byte block is read (from cylinder
0, head 0, sector 3 of Mass Storage; cylinder 0, head 0,
sectosr 3 of Cartridge Disk; track 0, sector 4 of Flexible
Disk). H the format of this block is correct, it is loaded
into memory.and executed. if the format is not correct, the
same action is taken as if the disk is not on line., A click
is sounded for every sector read trom a disk peripheral.

The format of the block of data on the disk is L H -L
-H (252 bytes of data). The L is the LSB and the H is the
MSB of the address of where the data is to be loaded. The
-L and -H are the 1's complements of the L and H values.
The tirst byte of the data musi be a zero and will be over-
stored with the drive number from which the block was
toaded. Execution is begun at the tocation of the second
byte of data. User programs may cause a Restart to occur
by jumping to the Restart routine entry point at 0170033 in
the ROM.

CHAPTER 2. DEBUG
2.1 INTRODUCTION

The Datapoint 6600 DEBUG is a ROM-resident program
whose immediate accessibility creates a flexible interface
between user and machine. This guideis intended to provide
the 8600 user with that information essential to the use of the
ROM-DEBUG System Test.

2,2 STARTUP PROCEDURE
There are four methods of entry to DEBUG
(1) Forcing entry through manual intervention
(2) Entry through a BREAKPOINT set by DEBUG.

(3) Entry through a BREAKPOINT imbedded in the
user program

{4) Entry as the consequence of a RETURN from a
DEBUG Calt Command.

7O FORCE ENTRY INTO DEBUG:

DEPRESS DISPLAY, RUN, RESTART; keeping each key
depressed until all three are down.

Then release RUN or RESTART.

This wilt bring up the DEBUG display and commands may
be entered

2.3 SAVING THE MACHINE STATE

When DEBUG is entered through consote intervention.
maost of the user’s program state is undisturbed. What is not
saved is the state of the interrupt enable flip-flop {interrupts
are disabled). the state of the base register or sector table
{these two are not changed upon entry to DEBUG). the state
of ALPHA'BETA Mode flip-flop (all registers are saved), the
state of the /O system (what device is addressed and the state
of its status/data selection flip-liop). and the bottom two
Stack locations.

What is saved are the ALPHA/BETA Mode registers and
condition caode flip-flops, and the 14 Stack entries (the top
entry containing the P-counter).

Note that there exist default values upon exit from DEBUG
for

{1} ALPHA BETA Mode flip-fiop

(2} Currently addressed device and its StatusiData
Mode flip-flop

These can be changed using DEBUG commands (A G
and ‘R).

2.4 DISPLAY FORMATY

The 6600 DEBUG display consists of five lines and oc-
cupies the bottom-right corner of the screen.

Leiee LOGICAL ADDRESS (IF ORIGIN NOT)
BBBBBB PHYSICAL ADDRESS

NNN ASCIL 8 BIT OCTAL C[CURADR}
MMMMMM LSB. MSB ADDRESS FORMED AT CURADR
nAnnnnn COMMAND INTERPRETER

The first (top) tine shows the logical address only if Origin
{See O commandy) is non-zero

The second line shows the current physical (Based) six-
teen bit address. referred to as CURADR below

The third line contains both an ASCH (One character
shown as *) and an 8-bit octal (Three characters shown as
NNNj) representation of the contents of the current physical
address byte.

The fourth tine contains an octat representation of the
16-bit value whose LSB is at CURADR and whose MSB is at
CURADR + t_(This is the address format used by JMP. CALL.
and DA mnemonics)

THE COMMAND INTERPRETER

The bottom lipe of the display is used to edit and input
commands to DEBUG. The blinking cursor signifies that the
Command Interpreter is awaiting user input

Data is entered serially into the input display butfer. The
cursor is displaced to the right successively as this occurs
The BACKSPACE Key erases the character most recently
entered. shifting the entry cursar to the left one space. The
CANCEL Kev deletes the entire entry

All commands are single characters. Commands which
accept input arguments are preceded by the argument which
is entered in octal. Not all commands require aninput argu-
ment. The las! character input to the interprater must be a
legal command. Hlegal inputisignored, evoking a BEEP from
the 6600.Commands are executed upon their entry into the
interpreter {(no ENTER Key is required and the command
character is not displayed). with the current contents of the
entry line being cleared. Upon command completion the
cursor reappears. awaiting further input

2.5 COMMAND SYNTAX

This explanation of the command syntax uses the follow-
ing notation:

nnn Indicates an optional seqiience of octal
digits not 1o exceed the number of n's
given

{nnhn) nnn If input argument contains more than

eight bits of significance, special resulls
will occur. In generat what wilt happen is

419

annnnn

12345

that two bytes of memory will be atfected
by the command, either a register pair or
a memory address in LSB, MSB format.

16-bit argument. No digits usually
causes special action

There exists a sel of special commands
whose accidental execution 15 inhibited
by the requirement that they contain this
unigue argument

2.6 INPUT COMMAND LIST

50

nnnA

annninB

Address the given or current (it nnn not
given) KO device. The current /O device
is the last one selected by thug command
No check is made on address format
STATUS is displayed as C{CURADR].
Note that the current device is readdres-
sed and put into the mode tasl accessed
(Data mode if 'F" or ‘G’ have been exe-
cuted subsequent to last 'A’ command)
prior to resuming execution through
CALL, EXECUTE, JUMP or USER RE-
TURN Commands

Store a BREAKPOINT instruction at the
given or current address. Upon BP
execution the state of the machine is
saved, the memory location at which the
BP was set is restored to ils original
value and the corresponding BP table
entry 1S cleared

The following noles reference the use of
the ‘B’ command

Overlay BREAKPOINT will notioop. That
is: Itis not possible to successfully set a
BREAKPQOINT in the same memory loca-
uon in order Lo terate 1he execution of a
program loop. To iterate BREAKPOINT
through a looping sequence requires
‘double BREAKPOINTING'

Ten BREAKPOINTS can be active at any
one time. Note that BP's DISABLE inter-
rupts and leave them disabled prior to
resuming execution through CALL,
EXECUTE, JUMP or USER RETURN
commands. This ts done to enable test-
ing of foreground routines with DEBUG
(i it becomes necessary to use DEBUG
wilh interrupts enabled, the user can en-
able intenupts on return with the “i”
command.) Note that it is impossible for
the machine 1o determine its current re-
gister (ALPH/BETA) mode. Theretore the
‘A" command mode flip-flop is set to
ALPHA when a BP is encountered If the
user wishes 1o test code written in BETA

nnannnC

annnnnD

nnnnnnE

nnnf

nnnG

H

nnannnl

nnnanng

12345K

Mode it is necessary that he manually
put the 6600 in BETA Mode {with the ‘R’
command) prior to resumption of execu-
tion through CALL, EXECUTE, JUMP or
USER RETURN commands. Similarly,
the USER may have to address the
proper /O device (with A) and perhaps
put it into DATA Mode (with G} before
continuing execution trom a BREAK-
POINT. Note that DEBUG wilt not set a
BREAKPOQINT over another BREAK-
POINT.

Call the given or current address. The
Machine State is restored bafore execu-
tion conirol is passed to the Subroutine.
A RETURN from the Called Subroutine
causes re-entry into DEBUG and hence,
for the Machine State to again be saved.

Decrement the current address value by
one or value (nannna).

Continue execution from a forced or
BREAKPOINT entry into DEBUG.
Machine Siate is restored prior to re-
suimption of execution. The interrupts
are left disabled. The register mode is set
1o the iast R value (initialized to ALPHA
Mode upon BP or forced entry), the base
register and sector table are not
changed, and the HO device is addressed
and optionally set to DATA Mode. #f a
new execulion address is given (n), the
top Stack location will be changed to (n)
prior lo continuation of execution.

Fetch next data byte from current of
given VO device. The F Command will
automatically put device in DATA Mode
and the device will subsequently be put
in DATA mode when the E command is
given

Goto DATA mode in the cufrent or given
/O device when the E command s given.

Not used

increment the current address value by
one or value (nnnannj.

Jump to the given or current address.
Mactune State is restored prior to re-
sumption of execution.

Sel ASCIl keyin mode. Wil allow ASCH
dala to be entered into CURADR in auto-
increment mode (i.e. will update
CURADR). BACKSPACE moves
CURADR back and displays its contents
DELete moves CURADR forward and
displays its contents. CANCEL causes a

{nnn) nnnM

nnnnnniN

[¢)

nnnnanP

123450

return to normat mode.

Link 1o the address pointed to by the
Current Address. CURADR is replaced
by tine 3 {the 16-bit 1.58, MSB address
formed at CURADR, CURADR+1). The
remaining display parameters are upda-
ted appropriately. Note that initiat dis-
play state upon entry into DEBUG can be

regenerated by performing the 'S’ com-

mand, followed immediately by the 'L’
command.

Modify the contents of the current ad-
dress location. If the value of the Input
Argument exceeds eight significant bits,
two memory locations will be modified.
treating the input argument as an ad-
dress in LSB, MSB Format for JMP and
DA. (A CLICK is sounded to notify the
operator if an MSB is stored).

Set physical address to nnannn.

Origin mode (uselul for debugging re-

focatable code) — performs the foliow-

ing four functions. (Utilizes upper and

lower case O).

1. O clears Origin mode.

2. nnO Sets Origin table
pointer. The Origin
table is 10 entries
deep and entries of
0-011 are valid.

3. o Sets addressing
bias to selected
table entry
{2 above)

4. nnnnrno Modifies setected table
entry to (n) and sets
address bias to that
value.

NOTE: Setting Origin mode
also displays top add-
ress tine {Logical
Address).

Load the Base Register with the 8-bit
value = (nnnnnn - 0100000)>8

Load the Sector Table. CURADR = > Ta-
ble whose first byte equals the number of
entries to be loaded. The following byles
contain arguments to be loaded into the
Sector Table.

Switch ALPHA/BETA Mode register dis-
play. The ASCH character dispiayed after
command execution tells the current
display mode: A~ ALPHA, B -BETA.

Display the specified Stack item (up to

015 Octal}. Note: Entry into DEBUG
pushed P onto:the top of the Stack.
" 0y L -

123457 Stavt;grimqsy memory test. Displays
Memory Sizg,and Pass Counter in right-
bottom corner of screen. Maintains run-
ning display of test faitures,

annnnnU User modg,execute with optional return
to (n) addgess. Command sets USER
mode ands then executes i Command.
(interrupts;enabled)

nnnV EX COMA .., The /O device must be add-
ressed with A command.
nnnW EX WRITE STATUS is displayed.
nnnX EX COM1 after the command is
issued.
nnnY EX COM2 ‘nnn’ is the current
output byte.
nnnZ EX COM3 The previous nnn value is
used if none is given.
7 Displays the processor version, the re-
vision level of the Micro-Code and there-
vision level of the Macro-Code.

SHIFTED COMMAND CHARACTERS
nnn x Display ‘X' register or modify to {(nnn)

{nnn) nnn a ‘A’ modify register pair if input
nnn b ‘B argument exceeds eight bits
{nnn) nnn ¢ Ko
nnn d ‘D" the LSB register specifies the
(nnnjnnn e ‘E' pair(ie. LforH&L)
nnn h H
(nan) nnn | kN
nnn { Displays or modifies the condition flag
byte.
Flag bits: 7=>C; 6=>81=>-Z & - S: 0
=>-Z8&-P.

The bit pattern which disptays the condi-
tion flags will replicate the previous state
when added to itself.
o See Origin mode.
annnnn i Same as 'E’, but with interrupts enabled.
nannnn s PUSH value (n) onto Stack.
nnr POP Stack (nn) times.
nrn p Load Base register direct with value
{nnn).
12345t Start Pseudo-random memory test.
nnny EX DATA with (nnn} on cutput Bus.
nnn z EX STATUS. with (nnn) on output Bus

annnnnENTER Set Logical Address (physical if no ori-
gin) to nnannn. Command has no effect
unless it is preceded by an input Argu-
ment.
CANCEL Cancel entry line.
BACKSPACE Backspace on entry line.

{rinn) nnn. Maodify the contents and then increment
the current address. If Input Argument
has more than eight significant bits. two
memory locations are modified. treating

51

the argument as an addiess 1 LSB, MSB SHIFTED COMMAND CHARACTERS
Format. (a CLICK is sounded)
ana x Display X registes or modify to {nnn)

(nnn) nanA° - Modity the conlents and then increment (nan) ann a A modify register pair if
the current address. it input Argument is naa b 8 argument exceeds eight bits.
null, the last noa-nult value giveris used. {nnn) nan ¢ C
it “tast value' exceeded eight bits o? sig- Ann o O The LSB register specifies
nificance, t?/vo memory focations will be (nnn) ann e € the pair. tie. L for H&L)
moditied. (a CLICK is sounded). nan by
ann) pank L
#. Clear alt active {DEBUG set) break- onn { Displays or updates the condition Hags.
points, restoning vatues pan ana i Same as '€ above with interrupts ena-
bled. :
ann nnn b PUSH value (Ann nnn) onto Stack. -
6600 ROM DEBUG COMMAND SUMMARY nn s POP Stack (nn) times.]
A Address the {(n) or current HO device nnnp Load Base register direct wilh value
nnn } i . {nnn). ‘
nnn nnn B S:‘:jj breakpoint 1o the (n) or current 123451 Alternate 6600 memory test. i
ress. ann £X DATA (nnn) on output bus. ‘
nann ann G Call the (n) or current address nnni EX STATU(S (n)nn) on :ulpul bus. !
nnn nnn D D:C‘e"‘“'“ the current address by (n) or annnnn ENT Set Logical address 1o ‘nnnnnn’. ‘
. CAN. Cancel entry line. ‘
(nnn nany € Centinue execution or replace top stack BKSP Backspace :/)ne on entry line.
tocation with {n} and continue execu- (nnm) nan. Modify and increment
tion. a byt | or current nnn (nAnjA Modify and increment using the iast
noan £ Felch next data byte from {n} non-null value.
device.

nn G Go'lo DATA mode in (n) of current de-
vice on 'E', ‘U or i’ command.
(nnn) anad_Increment the current address by (n) of
1.
nnn nan b Jumpto the given(r) or current address.
12345 K Set ASCH keyin mode.
L Link to address pointed to by current
address. .
(Ann) nnn M Modity the contents ot the current ad-
dress.
nnninn N Set physical address to nnnnnn.
nn O Select Origin table entry.
{ 1 (ENTER) Set Origin addressing lo entry value and
display
{1 (nAn) Set Origin addressing to (n), enter in ta-
ble, and display.
{nnn) non P Load Base register with (hnnann -
0100000)>8
12345 Q Load the secior table.
A Switch ALPHA/BETA mode and display.
nn S Display the {Nth) Stack location item.
12345 T Start the primary 6600 memory test.
ann nnnn U Continue execution as in ‘E’ command
but in USER mode. (Interrupts enabled)

nanV. EX COM4 Device must be
addressed for YO
commands.

nnW EXWRITE Status is displayed after
command issue.

nna X EX COM1 ‘nin’ is the oulput byle.

nnnY EX COM2 "

annZ EXCOM3

7 Displays processor version, Micro-Code
and Macro-Code revision levels.

52

ErLE

LY

L B

S ek H

S herus b

G

$hup o b
i

NERT? o

Harng

sery

-
; ¢
Voo,

A M

fir oty ae oy
dage x

,

Bacn

Sl

see enial Uidid

L £ RIF RN - TR S)

P O T

ot s
skt L TP
iy

SO

PO

R N O N I 1

ERILR Y AT

i
iin Byt

