MACRO-ASSEMBLER SNAP/3

User's Guide

Version 3

April, 1980

Document No. 50296

MACRO-ASSEMBLER SNAP/3

User's Guide

Version 3

April, 1980

Document No. 50296

PREFACE

The SNAP/3 assembler runs on any Datapoint processor with at least the 5500 instruction set and can assemble programs for any Datapoint processor. SNAP/3 contains all of the features of SNAP/1 and SNAP/2 but runs much faster, especially when assembling programs with many macros. SNAP/3 also assembles the additional instructions accepted by the Datapoint 6600 processor. SNAP/3 can produce either an absolute object program file or a relocatable object file; a relocatable file must be processed by the LINK utility before it can be executed.

TABLE OF CONTENTS

	page
 INTRODUCTION 1.1 Changes to SNAP/3 since version 1 1.2 Changes to SNAP/3 since version 2 1.3 Introduction to SNAP/3 	1-1 1-1 1-1 1-2
 STATEMENTS 2.1 Label field 2.2 Instruction field 2.3 Expression field 2.4 Examples of expressions 2.5 Comment field 	2-1 2-1 2-3 2-3 2-7 2-8
3. SNAP/3 DIRECTIVES 3.1 Align Address 3.2 Define Address 3.3 Define Constant 3.4 End 3.5 Equivalence 3.6 Error 3.7 IF 3.8 Include 3.9 List 3.10 Location 3.11 Macro Definition 3.12 Macro Definition End 3.13 Macro Library Include 3.14 Originate 3.15 Program Definition 3.16 Repeat 3.17 SET 3.18 SKIP 3.19 Assembly Options 3.20 Test 3.21 Title 3.22 Tabulate Maybe 3.23 Tabulate Page 3.25 XIF	3-1 $3-1$ $3-2$ $3-2$ $3-2$ $3-3$ $3-3$ $3-4$ $3-4$ $3-4$ $3-4$ $3-4$ $3-5$ $3-6$ $3-7$
4. PSEUDO-INSTRUCTIONS 4.1 HL 4.2 DE 4.3 BC	4 - 1 4 - 1 4 - 1 4 - 1

 4.4 XA 4.5 Memory Store 4.6 Memory Load 4.7 Shift Right 4.8 Shift Left 4.9 Condition Code Load 	4-2 4-2 4-2 4-3 4-3
5. MACROS 5.1 Preparing Macro Prototypes 5.2 Macro Calls 5.3 Macro Definitions within Programs 5.4 Macro Expansion 5.5 Global Labels 5.6 Local Labels 5.6 Local Labels 5.7 Macro Nesting 5.8 Forcing characters 5.9 Concatenation 5.10 Macro Directives 5.10.1 Macro IF 5.10.2 Macro IF Exit	5-1 5-2 5-3 5-5 5-6 5-6 5-7 5-8 5-8 5-9 5-9 5-10
 6. OPERATING PROCEDURES 6.1 Parameterization 6.2 SNAP/3 Pass One 6.3 SNAP/3 Pass Two 6.4 Cross-Reference Generation 6.5 Assembly Errors 6.6 DISPLAY and KEYBOARD Keys 6.7 Temporary Files 	6-1 6-2 6-3 6-3 6-4 6-5 6-5
Appendix A. ASCII-OCTAL EQUIVALENTS	A-1
Appendix B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS	B - 1
Appendix C. RESERVED MNEMONICS	C-1
Appendix D. INSTALLATION INSTRUCTIONS	D -1
Appendix E. INCOMPATABILITIES WITH SNAP AND SNAP/2	E-1

INDEX

CHAPTER 1. INTRODUCTION

1.1 Changes to SNAP/3 since version 1

- 1. Two new options, "B" and "H", were added to the command line and the SNAPOPT directive to allow numbers in the program listing to be edited in binary or hexadecimal instead of octal. See sections 3.19 and 6.1 for more details.
- 1.2 Changes to SNAP/3 since version 2
- SNAP/3 now supports text file libraries. Both source files and include files may now be assembled directly from a text library. Libraries are created and manipulated using the LIBRARY command. A member name is specified for a file by placing a period (.) after the normal DOS file specification, and then the library member name. For example:

INCLIB.DEFINE MAINLIB:DR4.INCLUDE

Also note that if a member name is given for a file, the default extension becomes "LIB" instead of "TXT". On the command line, both the source file and include (5th file spec) may specify library members. (See the LIBRARY user's guide for more information).

- Hexadecimal and Binary constants may now be specified in the expression field. A hex constant is preceeded by an ampersand (&), and a binary constant is preceeded by a percent sign (%).
- 3. For users of the ARC system, the time and date now appears on the listing. If a valid time can be found from file ARCCLOCK/TXT (See the ARC user's guide for more information), it will be printed just below the user heading on the front page, and on cross-reference pages. Note that the time is updated between cross-references and PROGs.
- 4. If the "P" or "Q" option is given without the "L" option, the program name, program address blocks, and transfer address

CHAPTER 1. INTRODUCTION

1-1

will be printed on the listing.

- 5. Many more inclusions are now possible. After inclusion "Z", the next inclusion will be "a". After "z" will be "0". After "9", more inclusions are possible, but the inclusion letter will be undefined.
- 6. The "?" option has been added. This causes the command line format and options to be displayed. No assembly will be performed if the option is given.
- 7. The INFO instruction no longer requires the "6" option. This instruction is now defined to be a 5500 instruction.

1.3 Introduction to SNAP/3

SNAP/3 may be used to generate either absolute or relocatable object code from a source program file. The file may be created using the EDITOR, and consists of mnemonic instructions, assembler directives, and comments.

The kind of object file produced is controlled by a command-line option. An absolute object file may be loaded for execution by the DOS loader, while a relocatable object program must be processed by the LINK utility to create an absolute program.

Since SNAP/3 and this manual assume many details which are inherent to the DOS and Datapoint processors, a working knowledge of both the DOS and processor is recommended before proceeding.

Basically, the SNAP/3 assembler is a program that assigns numerical values to symbols and puts out these values upon input of the associated symbols. Symbols in certain fields have preassigned values (such as instruction mnemonics) while other symbols are defined by the user (such as labels and macro names).

The value assigned to an instruction mnemonic is the binary bit configuration recognized by the processor for that instruction. For example, the following instruction mnemonics have the following octal values:

MNEMONICVALUEADBC00620201RET00070024

Predefined symbols are kept separately by SNAP/3 and recognized as reserved symbols only when they are encountered in the proper context. In context other than that where their usage is predefined, the symbol will assume whatever value the user may wish to assign. For example:

LABEL	INSTRUCTION	EXPRESSION
L1	AD	1
	JMP	CALL
L2	AD	2
CALL	CALL	SUBR 1
INPUT	INPUT	

There is no problem in differentiating the two CALL and INPUT symbols since the ones in the instruction field are predefined and the ones in the label and expression fields are user-defined.

Along with relating symbols to numbers, another major function of the SNAP/3 assembler is to enable the programmer to reference a symbol that is defined later in the program. This is called FORWARD REFERENCING, and may be handled in a variety of ways. When SNAP/3 is generating relocatable output, the forward references are resolved by the LINK utility using information in the relocatable file. When SNAP/3 is generating absolute output or a code listing is requested, it produces an intermediate internal file similar to a relocatable output file which it reads back during a second "pass" and produces the actual relocatable or absolute output file and/or the listing with the resolved forward references. A second pass may also be requested by an option on the command line; this option is necessary if the relocatable output file is to be loaded by the DOS relocatable loader function (function 15).

An optional function of SNAP/3 is that of producing a tabulated listing of all user-defined symbols, their octal value, and all references to them. This cross-reference table generation consists of recording all definitions of and references to user-defined symbols, sorting the references, and merging them with their values.

SNAP/3 maintains two internal counters called the ADDRESS COUNTER and the LOCATION COUNTER. The ADDRESS COUNTER indicates the memory address of the object code currently being generated and the LOCATION COUNTER indicates the memory address at which the object code currently being generated will be executed. Thus it is possible to assemble code which may be loaded into memory at any address, but which will execute properly only when loaded at

1-3

the address given by the LOCATION COUNTER. These counters are usually the same except in the case of Located Code which is generated by the LOC directive (see section 3.10). Each time a byte of code is generated, both counters are incremented. The values of these counters are initially set to 010000 but directives are available for changing their values either initially or dynamically (see sections 3 and 5). The content of the LOCATION COUNTER when processing of the current line is initiated is usually displayed at the left side of the listing. The dollar sign character (\$) has special meaning in that it has the value of the LOCATION COUNTER when processing of the current line began. For example:

ADRCTR	OBJECT CODE	SOURC	E CODE	
01000	10/1 000 000	VVV	SET	01000
01000 01003	104 000 002 104 003 002	XXX DOG	JMP JMP	XXX \$
01006		A	EQU	\$ \$
00001		В	EQU	1
01006	123 123		DC	0123,83
05400L			LOC	05400
05403L		C	EQU	\$+3

SNAP/3 maintains a stack of 15 dynamic Program Address Blocks (PAB's) which may be used to locate data and code at Assembly time. A PAB is actually an ADDRESS COUNTER which has been given a symbolic name. This name is not used as a dictionary entry but is used solely for the purpose of requesting an ADDRESS COUNTER swap with the current PAB (see sections 3.14 and 3.24).

An ABSOLUTE PAB is defined by SNAP/3 and is implicitly used anytime the programmer neglects to Originate (ORG) and Use (USE) additional PAB's (see section 3.14 and 3.24). When a new PAB is requested, the current PAB's ADDRESS COUNTER is stored and the next available address associated with the requested PAB is placed in the ADDRESS and LOCATION COUNTERS.

The first word address and the length of each PAB is printed at the end of pass one.

Example of PAB usage:

ADRCTR	OBJECT	CODE	SOURCE	CODE	
01000 07000			BUFFER CODE	O RG ORG	01000
00120			LTH	EQU	80

07000				USE	CODE
07000	002 000	120		DC	*BUF1,LTH
07003	002 120	120		DC	*BUF2,LTH
01000				USE	BUFFER
01000			BUF 1	SK	LTH
01120			BUF2	SK	LTH
07006				USE	×
07006	377			HALT	

Object code generated by SNAP/3 will be assumed to be non-relocatable starting at octal location 010000 until an "ORG location-zero" directive is given followed by a USE statement referencing the ORG 0 program address block. A non-zero origin for any program address block (PAB) will render the generated object code for that address block non-relocatable.

A description of the format of an absolute object file may be found in the DOS User's guide. A description of the format of a relocatable object file may be found in the LINK User's Guide.

CHAPTER 2. STATEMENTS

An assembly code statement consists of a label field, an instruction field, an expression field and a comment field. For example:

1234LABELJTCSTARTTHIS IS A COMMENT FIELDField 1 is the LABEL FIELDField 2 is the INSTRUCTION FIELDField 3 is the EXPRESSION FIELDField 4 is the COMMENT FIELD

The editor provides tabulation so that the fields may be justified to begin in a certain column for ease of reading. Tab stops at columns 11, 21 and 38 create a good appearance. However, SNAP/3 only requires the following:

A non-space in the first column means that the first field is a label except for a leading period (.), plus (+), or asterisk (*), which designate the entire line as a comment line.

Instruction mnemonics, SNAP/3 directives and SNAP/3 macro names must start at or before column 20.

Expressions must start at or before column 25.

Any statements which are blank prior to column 21 will be treated as comments.

Scanning proceeds from left to right with one or more spaces serving as field delimiters.

2.1 Label field

The label field may consist of from one to eight characters. If more than eight are used only the first seven and last will be used as a label name in the dictionary and therefore, must be unique. The first character may be any alphabetic character or a dollar sign (\$). The other characters may be any alphanumeric character or a dollar sign. A terminating asterisk (*) will

declare the label as a fixed program entry point and the label will be written to an entry point file by SNAP/3 (see section 6.1). If the label is terminated by a colon (:), the label will be declared an external definition to be used by the linkage editor in resolving external references. If SNAP/3 is producing an absolute object file, a label terminated by a colon will be treated like a label terminated by an asterisk, as a fixed entry If the label is terminated by an equal sign (=), and the point. label has been previously defined, a redefinition of the label's value will occur and the normal "D" error flag will not be Extreme care must be exercised when using this generated. redefinition capability as any reference to a multiply defined label will use the most recently defined value, or the last definition if the label has not been previously defined. No Note, however, that the colon, asterisk, or equal sign is not part of the label itself. Thus when the label is referenced in the operand, only the name, without the designator, is used. Some examples of labels follow.

VALID LABELS

LBL12
LABEL\$
LABELA*
LABELB:
LABELC=

+

INVALID LABELS

1LABEL	Starts with numer	ric.	•			
LABEL#	Non-alphanumeric	or	\$	character	(#).	
LABEL.	Non-alphanumeric	or	\$	character	(.).	
L1-2L3	Non-alphanumeric	or	\$	character	(-).	

Invalid labels will be flagged with an "E" error flag.

The following characters have special meaning when they appear in column one:

- A period in the first column will cause SNAP/3 to treat the entire line as a comment line.
- A plus sign in the first column will cause a page eject during the listing of the program. The line will be

treated as a comment line as well and printing will occur after the ejection.

¥

An asterisk in the first column will cause a page eject if the listing is within two inches of the bottom of a page. The line is treated as a comment line and printing occurs after any possible ejection.

2.2 Instruction field

The instruction field may be any of the instruction mnemonics, SNAP/3 directives, or a macro name. It has the same syntactical restrictions as the label field (up to eight characters starting with a letter or dollar sign (\$) and containing only alphanumerics or dollar signs).

Only the following instruction mnemonics and SNAP/3 directives may be abbreviated.

INPUT abbreviated as IN JUMP abbreviated as JMP LIST abbreviated as LIS RETURN abbreviated as RET SKIP abbreviated as SK

Any illegal or undefined instruction mnemonics will cause "I" error flags to be generated.

2.3 Expression field

The expression field consists of one or more expressions, delimited by commas (,), comprising any number of strings, numbers, or symbols with operators between them. Supplying more expressions than are permitted for an instruction or directive will result in in "E" error flag. A space after an operand or right parenthesis terminates the expression and expression field. Spaces are ignored after a left parenthesis or operator.

Numbers are assumed to be decimal (base 10) unless they start with a special character. If the number is octal (base 8), it must contain at least one leading zero. If the constant is to be taken as hexadecimal (base 16), it must begin with an ampersand (&). Binary (base 2) numbers begin with a percent (%) sign. 12 is 12 decimal, 023 is 023 octal (19 decimal), &F is the hex number "F" (17 decimal), and %010110 is the decimal number 22. String quantities are denoted (preceded and followed) by apostrophes ('). The DC directive allows strings containing one or more characters. All other directives and instructions allow strings of only one character in length. The numeric value of a character is its ASCII binary value with the parity bit always a zero. A null string is illegal. A forcing character (#) is used in strings to indicate that the next character should be taken as ASCII no matter what it is. This is useful for entering the characters (') and (#) themselves into the string. For example:

'#'##' is the character string '#

Expressions are evaluated from left to right and all operators have the same precedence. The order of evaluation may be modified with the use of parentheses as in arithmetic expressions. For example, the following is a legitimate expression in SNAP/3 :

(ADDRESS1<8)-ADDRESS2/8+(ADDRESS3-ADDRESS4)

The expression scanner generates a 16-bit two's complement value giving a range of -32768 through +32767. Instructions which use only eight bits will discard the most significant byte (MSB) of the value generated by the expression scanner and use ony the least significant byte (LSB) of the value. Syntax errors in expressions will be flagged with "E" error flags.

Undefined labels in the expression field of DA, DC, and statements containing instruction mnemonics will be treated as external references to be resolved by the linkage editor if SNAP/3 is producing relocatable output. The statements containing external references will be marked on listings with a pointer next to the address and will not be treated as errors. Undefined labels will produce "U" error flags if SNAP/3 is producing absolute output. Undefined or forward referenced labels in the expression fields of directives other than TESTnn in pass one, DA, and DC will always produce "U" error flags.

The expression field is omitted for instructions which require no expression. The DA and DC directives accept multiple expressions delimited by commas (see sections 3.2 and 3.3). There are twelve operators allowed in expressions:

- 2.3.1 + This means addition.
- 2.3.2 This means subtraction. Note that the minus sign may be placed at the beginning of an expression if the value of the first item is to be negated.
- 2.3.3 * When used as the first character in the expression, this operator will set the assembler's star flag, which affects the evaluation of the expression, depending upon where it occurs (see sections 3.2, 3.3, 4.5, and 4.6). It may be followed by a minus operator (e.g. *-DOG+1). When used as the first character after a left parenthesis, it is ignored.
- 2.3.4 * When used between two operands, signifies 16-bit signed integer multiplication.
- 2.3.5 / A slash indicates signed integer division. Any remainder produced by the division will be ignored.
- 2.3.6 > This means shift right. The value accumulated up to this point is logically shifted right the number of places indicated in the following operand (all bits shifted off the end are discarded and zeros are filled in on the left). Negative numbers will be treated as unsigned 16-bit values instead of two's complement 16-bit values.
- 2.3.7 < This is the same as > except shifting is to the left with zero fill on the right.
- 2.3.8 .AND. This means to perform a logical "AND" of the two unsigned 16-bit numbers.

2.3.9		These mean to perform a logical inclusive "OR" of the two unsigned 16-bit numbers.
2.3.10	.XOR.	This means to perform a logical exclusive "OR" of the two unsigned 16-bit numbers.
2.3.11	.MOD.	This means signed divide giving only the remainder produced by division.
		Note that only the first character of a logical operation is used to determine the operation type and that additional characters prior to the second period are ignored.

11

2.4 Examples of expressions

The following examples assume that the value of DOG is 1 and that the value of CAT is 2.

VALID EXPRESSIONS	VALUE	
DOG	. 1	
DOG+1	2	
1+ DOG	2	
DOG+CAT	3	
'A'+1	0102	
* -CAT+1	-1	Note that star flag will be set.
-DOG<3	-8	
-DOG>3	8191	Note that sign is not extended on right shifts.
8>3+1	2	Note that shift occurs before addition.
CAT*CAT	4	
CAT.AND.DOG	0	
DOG.OR.CAT	3	
0377.XOR.DOG	0376	

ILLEGAL EXPRESSIONS

DOG+	Terminating character not a space or comma.
DOG#1	Illegal binary operator.
1 +DOG	Will not be flagged but +DOG will not be evaluated as part of the expression.
'AB'	Illegal if not a DC atatement. Only 1 character allowed in all other expression strings.
CAT+DOG=	Illegal terminator character.
CAT.NOT.1	Illegal binary operator.
**12	Star flag set but no multiplier exists for second asterisk.
.XOR.1	No value prior to operator.

2.5 Comment field

The comment field begins anywhere after the expression field, column 25 (if the expression field is not used), or column 2 (if column 1 contains a period, plus, or asterisk as noted in section 2.1). When placed following an instruction that does not use an expression, the comment field must not start prior to column 26. The comment field may contain any character and is terminated by the end of the line. SNAP/3 puts out its listing of the source line exactly as it is provided in the source code so formatting of comments will be maintained.

CHAPTER 3. SNAP/3 DIRECTIVES

Assembler Directives are used for setting the LOCATION COUNTER, ADDRESS COUNTER, and LABEL values to other than the normal sequential assignments and for defining constants. Other Directives are used to control certain SNAP/3 functions such as input file linking, source file assembly, program listing and macro definition. <u>Note</u> that forward and external references in the expression field are only permitted in TESTnn in pass one, DA, and DC directives.

3.1 Align Address

ALIGN <exp>

Increments the LOCATION COUNTER and ADDRESS COUNTER until the LOCATION COUNTER is an even multiple of the expression value. The expression value must be a power of two (i.e. 2,4,8,16 etc.) or an "E" error will result. If the statement has a label, it will be given the value of the location counter after the ALIGN is performed. Will produce an "E" error if the LOCATION COUNTER PAB is not either absolute or required to start at the beginning of a page. If a LOC directive has specified "n" bytes per word, the ADDRESS COUNTER will be incremented by "n" times the amount the LOCATION COUNTER is incremented.

3.2 Define Address

 $DA \quad \langle exp \rangle [, \langle exp \rangle ...]$

Generates a two byte constant which is the address, LSB first, of each expression. Placing an * in front of an expression will cause the two bytes to be generated in the reverse order (MSB first, LSB second). For example:

DOG	EQU	01234
	DA	DOG, *DOG, 1

gives the following octal values:

234 002 002 234 001 000

3.3 Define Constant

DC <exp>[,<exp>...]

Generates eight bit object bytes from one or more expressions or strings found in the expression field delimited by commas. A leading asterisk (*) on any expression will produce two object bytes (LSB, MSB) and therefore addresses may be imbedded within DC directives. A special exception is made for string items found in the DC directive. All the characters of a string item are significant and as many words as necessary are generated to accommodate all the characters of the given string. This special string item is in effect only if the expression consists of only a string. String items in expressions still have only one character of significance. For example:

DC 1,2+3,'A'+2,'ABC'

generates the following octal values:

001,005,0103,0101,0102,0103

3.4 End

END [<exp>]

Indicates that there is no more source code in the program to be processed and that SNAP/3 should proceed to the next pass, if any. The expression field has special significance in the END statement in that its value is taken as the Primary Transfer Address at which program execution will begin. This is optional and if the expression field is empty or no END statement is encountered, a Secondary Transfer Address is set by SNAP/3 to the location of the first byte of object code.

3.5 Equivalence

<label> EQU <exp>

Sets the value of the label on the statement to the value of the expression field. Object code is not generated by EQU's, but dictionary labels are. One way of handling external references is by equating labels to the value of the external references and then referencing the labels. (A better way is usually to use LINK to resolve the external references.) Will produce an "E" error if

3-2 MACRO-ASSEMBLER

no label is found.

3.6 Error

ERR

Produce a "P" error flag. Usually follows a conditional assembly statement to trap a page or table overflow etc. For example:

TABLE	SK	LEN
	IFNE	\$>8,TABLE>8
	ERR	TABLE OVERFLOWS A PAGE!
	XIF	· · · · · · · · · · · · · · · · · · ·

3.7 IF

IFnn <exp>[,<exp>]

This is the conditional assembly directive. Condition "nn" (assumed to be "EQ" if not given) must be met in the signed comparison of the two expressions found separated by a comma in the expression field in order to assemble following lines of code. The second expression will be assumed zero if not given. Only an XIF directive will turn the conditional assembly back on. Any number of IF directives may occur before an XIF directive, but as soon as processing is turned off by one of the IF directives, the remaining IF directives will be ignored and processing will be turned back on by the first following XIF directive. An undefined or forward referenced expression operand is fatal and this occurrence will cause pass two to be aborted. The available condition codes are:

EQ	Field 1 must be equal to field 2
GT	Field 1 must be greater than field 2
LT	Field 1 must be less than field 2
NE	Field 1 must not be equal to field 2
NG	Field 1 must not be greater than field 2
NL	Field 1 must not be less than field 2
GE	Field 1 must be either greater than
	or equal to field 2
LE	Field 1 must be either less than
	or equal to field 2
Z	Field 1 must be zero
NZ	Field 1 must be non-zero
С	Field 1 must be clear
	(flag-testing, same as Z)
S	Field 1 must be set
	(flag-testing, same as NZ)
STR	Field 1 must begin with an asterisk (*)
NSTR	Field 1 must not begin with an asterisk
11 12 1 11	rield i muse nee segun wien un deserver

3.8 Include

INC <filename>

Includes the source from filename specified in the expression field. The file specified may be in DOS format (as a free standing file,) or in library member format (filename/ext.member). Up to 62 files may be included. Lines of source code originating from an included file are noted by a trailing alphabetic character in the line number. Unused labels in included files are omitted from the "Unused Label" listing.

3.9 List

LIST [-]<letter>[,...]

This is a directive which is used to alter the settings of SNAP/3's listing control flags. Each flag is specified by one character which turns the flag on when mentioned in a LIST statement, unless it is preceded by a minus sign (-) which will turn the flag off. Commas may be used to delimit more than one flag character. To allow nesting of listing control, a counter is associated with each flag. Whenever a LIST -x appears, the associated counter is incremented. Whenever a LIST x appears and the control flag is off, the counter is decremented, and the control flag is only turned on when LIST x has appeared as many times as LIST -x. The flag characters, their default settings,

and their usage are as follows:

- L ON Master list control. If turned off, no pass two output will be listed until this flag is turned on again regardless of other control flags.
- F OFF If-skipped lines. This flag must be on to produce a listing of all lines of source skipped by an IF<nn> statement.
- G OFF Generated lines. If turned off, this flag will suppress the listing of code lines generated by DA, DC, and RPT statements.
- I OFF Included lines. Lines of source code included from additional source files will not be listed unless this flag is on.
- M OFF Macro expansion. This flag must be on to produce a listing of macro expansion source lines.

For example, LIST M,-I would turn on listing of expanded macros, but turn off listing of includes.

3.10 Location

LOC <exp>[,<exp>] LOC *[,<exp>]

Sets LOCATION COUNTER to the value of expression field and sets the Located Mode flag. If the expression field consists of an asterisk (*), the Location flag is cleared and the LOCATION COUNTER is set to the ADDRESS COUNTER. If the statement has a label, it will be given the value of the location counter after the LOC is performed. Note that the listing will have the LOCATION COUNTER (noted by a trailing L) printed instead of the ADDRESS COUNTER while the Location flag is set. Remember that the LOCATION COUNTER indicates the address at which the code is to execute. If the expression is relocated by a relocatable PAB, then references to the current LOCATION COUNTER will be relocated by that PAB. The optional second expression is the number of bytes per word. This parameter is used when generating code for other machines whose word (address unit) size is larger than eight If the value of this parameter is "n", the ADDRESS COUNTER bits. will be incremented by "n" whenever the LOCATION COUNTER is incremented by one. A USE or SET directive resets the Location flag and resets the number of bytes per word to one.

CHAPTER 3. SNAP/3 DIRECTIVES

3-5

3.11 Macro Definition

MACRO [<exp>]

Indicates that the statements that follow are an inline definition of a macro prototype. (See Chapter 5.)

3.12 Macro Definition End

MEND

Marks the end of a macro definition. (See Chapter 5.)

3.13 Macro Library Include

MLIB <filename>

Allows access to macros in the file specified in DOS format in the expression field. (See Chapter 5.)

3.14 Originate

<PAB> ORG <exp>[,<flag>[,...]]

Initializes a new Program Address Block (PAB) and sets its first and current word addresses to the value of the expression field. A PAB is relocatable if the expression given is zero. Following the address in the expression field, page alignment for relocatable PAB's is specified by ",T", ",P" and ",C". The "T" option generates a flag in the object code that tells the linkage editor to align the PAB at the beginning of a memory page. The "P" option generates an object code flag that tells the linkage editor to align the PAB so that it does not cross any memory page The "C" option specifies that this PAB and all other boundaries. PAB's with the same name are common and should be linked into the same area rather than being appended together. The label field defines the PAB's name which is referenced in the USE directive (section 3.24). It does not generate a label for the dictionary. A "D" error flag will be issued if the PAB has been previously defined; this is a fatal error.

3.15 Program Definition

<name> PROG

This is used to define the name to be used in the object code library to identify the program that follows. The label field gives the name of the segment produced. A PROG directive must be used in all but the first program when the source file being assembled by SNAP/3 contains more than one program. All object segments produced are placed in the same library.

3.16 Repeat

RPT <exp>

Will cause the following line of source code to be processed the number of times indicated by the LSB of the expression field's value. The following line may not be a RPT directive. For example:

RPT 5 CALL INCHL

will produce the same code as:

CALL CALL	INCHL INCHL
CALL	INCHL
CALL	INCHL
CALL	INCHL

Repeating statements with labels which do not have a trailing = to signify a multiple definition will result in "D" error flags.

3.17 SET

SET <exp>

Clears the Location flag, initiates usage (USE) of the ABSOLUTE PAB (see section 3.24), and sets the ADDRESS COUNTER and LOCATION COUNTER to the value of the expression. If the statement has a label, it will be given the value of the location counter after the SET is performed.

3-7

3.18 SKIP

SKIP <exp>

Increments the values of the LOCATION COUNTER and ADDRESS COUNTER by the value of the expression field. The value may be positive or negative. If a LOC directive (section 3.10) has specified "n" bytes per word, then the ADDRESS COUNTER is incremented by "n" times the SKIP expression value.

3.19 Assembly Options

SNAPOPT <letter>[,<letter>...]

This is used to turn certain assembly options on or off during an assembly. Each option is specified by one character which turns the option on when mentioned in a SNAPOPT statement, unless it is preceded by a minus sign (-) which turns the option off. Each option is initially off at the beginning of each program unless the character was specified as an option on the command line, in which case the option is initially on. The options which may be specified on the SNAPOPT directive follow. See section 6.1 for a complete list of options.

- U Instructions and pseudo-instructions for the 2200 and 5500 processors will not be defined. This permits these names to be defined as macros.
- 2 Only 2200 processor instructions are allowed. Instructions for the 5500 processor will produce an "I" error flag but will generate the correct code. This is usefull when assembling code to be executed on a 2200 processor.
- 6 Instructions for the 6600 processor are defined.
- X This option only has effect if a cross reference listing was requested by the X option on the command line. Label definitions and references occurring while this option is off will not appear in the cross reference listing.

- R This option only has effect if a cross reference listing was requested by the X option on the command line. If a label is defined while this option is on, then no references to that label occurring after the definition will appear in the cross reference listing. This is usefull if it is desired that certain labels not appear in the cross reference listing. This option may not appear on the SNAP3 command line.
- H All numbers on the listing which are normally edited in octal will be hexadecimal instead. This option may not be dynamicly turned on and off throughout the listing; the state of the option at the end of the source code will be used throughout the listing.
- B Generated object code bytes will be edited in binary instead of octal on the listing. This option may not be dynamicly turned on and off throughout the listing; the state of the option at the end of the source code will be used throughout the listing.

3.20 Test

TESTnn <exp>[,<exp>]

This directive tests whether the specified relation "nn" holds between the two operands. It differs from most other directives in that the operand expressions may contain forward references, and also in that the assembly must be a two pass assembly if this directive is used. The assembly will be two pass if a source listing was requested by the D or L option on the command line or if absolute output was requested by the A option, or two passes may be forced by the T option. This directive will produce an "E" flag if the specified condition is not met, if the assembly is not two pass, or if the value of either expression is relocatable. The possible relations are the same as for the IF directive (section 3.7) except for omitted, STR, and NSTR. For example:

TESTGE ABC-\$,-128

TESTLE ABC-\$,127

would produce an error flag if the label ABC were not within the range [\$-128,\$+127].

3.21 Title

TITLE

Causes the program listing to page eject and print the page heading followed by text taken from the line immediately following the TITLE statement. The title will continue to print at the top of each page until changed by another TITLE directive.

3.22 Tabulate Maybe

TM <exp>

Performs a Tabulate Page (section 3.23) if the value of the expression field would cause a page overflow if added to the current LOCATION COUNTER. If the statement has a label, it will be given the value of the location counter after the TM is performed. Will produce an "E" error if the LOCATION COUNTER PAB is not either absolute or required to start at the beginning of a page.

3.23 Tabulate Page

TP

Increments the value of ADDRESS COUNTER and the the LOCATION COUNTER until the LOCATION COUNTER value is a multiple of 256 (LSB = 000). This is useful for setting up page-dependent data areas which are addressable by single precision (leaving H fixed and manipulating only the L-register). If the statement has a label, it will be given the value of the location counter after the TP is performed. Will produce an "E" error if the LOCATION COUNTER PAB is not either absolute or required to start at the beginning of a page. If a LOC directive (section 3.10) has specified "n" bytes per word, then the ADDRESS COUNTER is incremented by "n" times the amount the LOCATION COUNTER is incremented.

3.24 Usage

USE <PAB>

Initiates usage of the PAB whose name is given in the expression field. An asterisk (*) in the expression field will revert back to the last PAB used. If the statement has a label, it will be given the value of the location counter after the USE is performed. A "U" error will be issued if the PAB named has not been defined by an ORG statement; this is a fatal error.

3.25 XIF

XIF

Force the assembly on if it has been conditionally turned off.

CHAPTER 4. PSEUDO-INSTRUCTIONS

Pseudo-instructions are predefined mnemonics for commonly used instruction sequences. They cause SNAP/3 to generate a sequence of machine instructions to perform the desired function.

4.1 HL

HL	<exp></exp>	The HL pseudo-instruction generates the load H register and load L register instructions necessary to place the value of the expression field in the H and the L registers properly, so that a load to or from memory will use that address, i.e., H contains the MSB and L contains the LSB. The HL pseudo-instruction generates four bytes of object code. For example:
		OOPS EQU 02005 HL OOPS
	•	generates the following code:
		066 005 056 004

4.2 DE

DE <exp> The DE pseudo-instruction works the same as the HL pseudo-instruction except it loads the D and E registers instead of H and L.

4.3 BC

BC <exp>

The BC pseudo-instruction works the same as the HL pseudo-instruction except it loads the B and C registers instead of H and L.

CHAPTER 4. PSEUDO-INSTRUCTIONS

4-1

4.4 XA

<exp>

The XA pseudo-instruction works the same as the HL pseudo-instruction except it loads the X and A registers instead of H and L.

4.5 Memory Store

XA

MSr

[*]<exp> The Memory Store pseudo-instruction allows the user to store a given register into a given memory location. Placing an * in front of the expression causes the H-register to be loaded as well as the L. The expansion is as follows:

LL	<exp></exp>				
LH	<exp>>8</exp>	if	¥	is	present
LMr					

4.6 Memory Load

MLr

[*]<exp> The Memory Load pseudo-instruction works the same as Memory Store (MSr) with the exception that the register is loaded from memory rather than being stored into memory.

4.7 Shift Right

SRN <exp>

The Shift Right numeric pseudo-instruction allows the user to generate SRC instructions the number of times specified in the expression field. The expression must be defined in pass one and must have a value between zero and seven. For example:

SRN 3

will generate the following code:

012 012 012

4.8 Shift Left

SLN <exp>

The Shift Left numeric pseudo-instruction works the same as SRN with the exception that SLC instructions (002) are generated.

4.9 Condition Code Load

CCL[r]

The Condition Code Load pseudo-instruction generates an ADrr instruction (ADA if r is omitted) which will reload the condition code after it has been saved in register r by a CCS (condition code save) instruction or equivalent.

CHAPTER 5. MACROS

Macros are predefined sections of source code which may be used to facilitate the coding of commonly used procedures. Macro source code is modified by SNAP/3 to include labels and expressions passed as arguments by the main body of source statements.

Macro definitions are called "Macro Prototypes" and are saved for later access by the SNAP/3 assembler.

5.1 Preparing Macro Prototypes

The DOS editor is used to produce prototype statements. Macro prototypes must be entered in the following format:

MACRO [expression] [label] name [symbol[(default)]][,symbol[(default)]]..etc. [one or more assembly-language statements] MEND

Each prototype must start with a statement with "MACRO" in the instruction field and end with a statement with "MEND" in the instruction field. The optional expression on the MACRO line specifies the number of parameter lists on the second line as described below.

The second statement of each prototype is called a "Macro Prototype Header" and defines the name of the macro and any labels and symbols that may be replaced during assembly. The name may be any 1 to 8 character symbol that is not already predefined by SNAP/3 as an instruction mnemonic or assembly directive (See Appendix C). All arguments shown in brackets are optional and may be omitted if not needed.

Labels and symbols shown in the prototype header define items in the statements that follow that may be replaced at assembly time. Following each symbol in the header a default expression may be defined. The default will be used if a macro reference in SNAP/3 fails to supply a replacement expression for the preceding symbol. The operand field of the prototype header consists of one or more lists separated by blanks, with each list consisting of one or more symbols (with defaults) separated by commas (,). If more than one list is present, the number of lists must be specified as the operand field of the MACRO line. A "zeroth" list may also be supplied, separated from the prototype header name by a comma; this list is not counted in the number specified on the MACRO line.

One or more macro definitions may be defined in the same file using the DOS editor. Macro definitions may occur in line in the same program in which they are to be used, or they may be placed in macro libraries, which are created by the LIB utility.

5.2 Macro Calls

Code from a macro prototype library is included in SNAP/3 assemblies by the means of "macro calls". Each library containing macros to be included must first be made known to the assembler by means of a MLIB directive. The MLIB directive is entered in the instruction field followed by the macro library file name in the following format:

MLIB file-name

If the file-name's extension is omitted, /MPL will be assumed.

Macro calls are coded as follows:

[label] name [expression][,expression]...etc.

The name used in the instruction field will be assumed to be a macro name if is not a recognizable SNAP/3 instruction mnemonic or assembly directive (See Appendix C). The label and expression arguments in brackets are optional. Arguments defined in the expression field are positional and must be defined in the same order as related symbols in the macro's prototype header.

5.3 Macro Definitions within Programs

Macros may be defined in the same program in which they are to be used by simply defining macro prototypes prior to their first reference by a macro call in the program. The macros may be defined in the source file or an INCluded file.

When macros are defined inline, a MLIB statement is not required for their use within the assembly.

5.4 Macro Expansion

Note the similarity between the format of a macro call and macro prototype header. They are closely related and determine the final code that will be included in your assembly.

Call: [label] name [expression][,expression] [expression]..etc. Header: [label] name [sym[(def)]][,sym[(def)]] [sym[(def)]]..etc.

The label for the call will replace the occurrences of the header label in prototype code during expansion. The first expression in the call will replace the first header symbol in the prototype code, the second expression will replace the second symbol, and so forth.

Arguments may be omitted in each list of macro call expressions by coding only the trailing comma to indicate the missing expression. Trailing commas after the last expression in a list are not required.

5-3

The rules for substitution are:

<u>Macro</u> Call	Prototype <u>Header</u>	Action
Label	No Label	Label is defined normally before expanded macro code is processed.
Label	Label	Call label substituted in expanded macro code.
No label	No label	No change.
No label	Label	Prototype label is unchanged.
Symbol	No symbol	Call symbol ignored.
Symbol	Symbol	Call expression substituted for occurrences in macro code.
No symbol	Symbol but no default	Header symbol disappears in expanded code.
No symbol	Symbol with a default	Default substituted for occurrences in macro code.

Symbols within apostrophes (') are never replaced during expansion. Substitution of arguments is best shown by example:

Macro call:

LOOP CLEAR BUFFER

Macro prototype:

	MACRO				
LABEL	CLEAR	FIELD,	SIZE(8)))	
	HL	FIELD			1. A. A. A.
	LB	0		1.1	
	LC	SIZE			
LABEL	LMB		CLEAR	THE	FIELD
	INCP	HL			
	SUC	1	DECREI	MENT	COUNT
	JFZ	LABEL	CONTI	NUE	
	MEND				

Expansion:

	HL	BUFFER			
	LB	0			
	LC	80			
LOOP	LMB		CLEAR	THE	BUFFER
-	INCP	HL			
	SUC	1	DECREM	1ENT	COUNT
	JFZ	LOOP	CONTIN	NUE	

You will note in the preceding example that the symbols "LABEL" and "FIELD" in the prototype have been replaced by "LOOP" and "BUFFER" provided by the macro call. The symbol "SIZE" did not have a replacement expression in the macro call and the default "80" has been substituted.

5.5 Global Labels

Global labels are labels which can be referenced anywhere in a SNAP/3 assembly. Each global label name must be unique within an assembly since references may occur in both the main code as well as within macro expansion code.

Any label in the label field of any line of a macro prototype that is altered or replaced by a macro call argument or macro prototype default automatically becomes global.

In the preceding example, the label "LOOP" is global.

5.6 Local Labels

Local labels are labels which can be referenced only within the macro expansion in which they occur. Each macro expansion generates an identifying number which is associated internally with all local labels within the current expansion. Local label names may be duplicated many times within an assembly, however, SNAP/3 considers each unique to the macro expansion in which it occurred.

Any label in the label field of any line of a macro prototype that is not altered or replaced during macro expansion is automatically declared a local label.

For example:

Macro-prototype:

	MACRO COUNT	2 AAA,BBB(0)	CCC
	BC	BBB	
OUTER	DE	CCC	
INNER	DECP	DE	
	JFC	INNER	
AAA	DECP	BC	
	JFC	OUTER	
	MEND		

Macro Calls followed by Expansions:

NEXT	COUNT	,1000 500		COUNT	BCSET 999
NEXT OUTER INNER	BC DE DECP JFC DECP JFC	1000 500 DE INNER BC OUTER	OUTER INNER BCSET	BC DE DECP JFC DECP JFC	O 999 DE INNER BC OUTER

In the example on the left, a global label line is generated for NEXT. OUTER and INNER become local labels and the symbol AAA in the prototype disappears. In the example on the right, OUTER and INNER become local labels and the symbol AAA in the prototype becomes the global label BCSET.

5.7 Macro Nesting

SNAP/3 allows nesting of macros calls within macro calls with up to eight levels of expansion. Local labels cannot be passed as arguments to inner macros, however, passage of global labels and other arguments is unrestricted.

For example:

XXX		DC	VEL1 VEL2	ARG ARG ARG XXX			INLINE	DEFINIT	ION 1	
·		MAC LEV DC DA MEN	EL2	ARG ARG+1 XXX			INLINE	C DEFINIT	ION 2	
xxx		DC LEV DA	/EL1	0 0 17 XXX			MAINLI	NE CODE		
Expa	nds 1	to:			·					
15.	00000		000 017	•		XXX XXX	DC LEVEL1 DC LEVEL2	0 017 017 017	MAINLINE	CODE
15. 15. 15.		03 05	020 002 001 000	000 000 000		XXX	DC DA DA DA	017+1 XXX XXX XXX XXX		

In the preceding example, XXX is defined as a label three times. The first definition is a global label in the main body of code. The second and third definitions are as local labels at different levels of macro expansion.

5.8 Forcing characters

The "at" sign (@) is used in macro call and macro prototype expressions as a forcing character. Its primary purpose is to allow blanks, commas, apostrophes, and concatenation characters to be transferred to an expansion without evaluation.

Forcing characters are not transferred to the expanded code.

For example:

Macro-prototype:

MACRO STRING A,B DC A,@'B@' MEND

Macro Call and Expansion:

STRING 100@,200@,300,ERROR@ MESSAGE@ ##1 DC 100,200,300,'ERROR MESSAGE ##1'

Note that in the macro prototype, forcing characters are used to prevent evaluation of apostrophes and allow a substitution to be made between them (substitutions are normally suppressed between apostrophes). Commas and blanks have been forced in the expression field of the macro call to prevent their being interpreted as expression delimiters.

In the macro call, "100@,200@,300" is considered to be one expression and "ERROR@ MESSAGE@ ##1" is considered to be a second expression.

5.9 Concatenation

The concatenation character (;) is used in inner macro calls and macro prototype expressions to separate symbols into individually replaceable elements. During macro expansion, concatenation characters in the expression field that are not within apostrophes or preceded by a forcing character will be omitted from the generated code. For example:

Macro-prototype:

MACRO MSG AAA,BBB MSG¦AAA DA BBB¦LOC,BBB¦SIZE DC @'ERROR@ IN@ PHASE@ DCT¦AAA@' MEND

Macro Call and Expansion:

	MSG	024,PHS4
MSG024	DA	PHS4LOC, PHS4SIZE
	DC	'ERROR IN PHASE DCT024'

5.10 Macro Directives

Macro directives provide a means of conditionally generating lines of macro code depending on what replacement expressions have been specified for prototype symbols. Macro directives are evaluated and executed during macro expansion.

5.10.1 Macro IF

Macro IF directives are coded in the following format:

MIFnn string1[,string2]

Macro code following a MIF is generated only when the selected condition (nn) is found to be true:

Directive	True Condition
MIF	String1 is set (Not null)
MIFS	String1 is set (Not null)
MIFC	String1 is clear (Null)
MIFLT	String1 is less than string2
MIFEQ	String1 is equal to string2
MIFGT	String1 is greater than string2

CHAPTER 5. MACROS

5-9

MIFLEString1 is less than or equal to string2MIFGEString1 is greater than or equal to string2MIFNLString1 is not less than string2MIFNEString1 is not equal to string2MIFNGString1 is not greater than string2

A string2 should not be specified for MIF, MIFS and MIFC. If specified it will be ignored.

A string2 must be specified for MIFLT, MIFEQ, MIFGT, MIFLE, MIFGE, MIFNL, MIFNE, and MIFNG. If string2 is not specified, it is assumed to be a null string. Strings of characters specified for comparison are terminated by the first blank or comma character that is not preceded by a forcing character or within apostrophes. If the two strings are different length but otherwise equal, the shorter string is considered to be less.

For Example:

MIFEQ PAR1 PAR2, ABC! DEFG '@ COMMENT HIJKL

The second comparison string starts with the letter A and ends with the letter T.

5.10.2 Macro IF Exit

Conditional generation of macro code is terminated by a Macro-eXit-IF (MXIF) directive.

For example:

		MACRO								
		TEST	P1							
		MIFEQ	P1,1	ASCII						
•	THIS	COMMENT	WILĹ	GENERATE	IF	P1	IS	ASCI	[]	
		MXIF								
		MIFNE	P1,	ASCII						
•	THIS	COMMENT	WILL	GENERATE	IF	P1	IS	NOT	ASCII	
		MXIF								
	THIS	WILL GEI	NERATI	E UNCONDI	TIOI	IAL	LY			

MEND

CHAPTER 6. OPERATING PROCEDURES

The DOS command requesting execution of the SNAP/3 assembler should be as follows:

SNAP3 source[,object][,ept][,print][,include][;<option chars.>]

where each bracketed object and each character after the semicolon is optional.

6.1 Parameterization

The first file specification (which is required) is the source file, the second file specification is for the object file, the third file specification is for the entry point file, the fourth specification is the print file, and the fifth specification is a file which will be INCluded (see section 3.8) before the source file is processed. The source file has a default extension of TXT. The object file, if not given, is assumed to have the same name as the source file and has a default extension of REL if relocatable output is being produced, ABS if absolute output is being produced. The entry point file name, if not given, is assumed to have the same name as the program name (which defaults to the object file name if there is no PROG directive). The entry point file has a default extension of EPT and a default drive the same as the drive the object file is written on, unless the entry point file already exists. The entry point file is written after pass one only if entry points have been declared in the program. The EPT file is written in a compressed symbolic format which can be INCLUDED by a later assembly to provide a program linking capability. The print file has a default name the same as the object file name and a default extension of PRT. The include file name has a default extension of TXT.

The characters on the command line following the semicolon select SNAP/3 options. The following options may be specified:

- Causes an absolute output file to be produced, instead of a relocatable file.
- D

А

Causes a source and object code listing to be displayed on the CRT; may be specified in addition to the L option.

F,G,I,M	Turns on corresponding listing control flags (see section 3.9).
L	Produces a source and object code listing. The listing will be on the local printer if neither the P, Q, nor S option appears.
Ρ	Causes the L or X option listing to be to a print file.
Q	Same as P option, but specifies that the listing should be appended or queued after any information already in the print file.
S	Causes the L or X option listing to be to the servo printer.
T	Forces a two pass assembly. Must be specified if the relocatable output file produced is to be loaded by the DOS relocatable loader (DOS function 15).
Х	Produces a cross-reference map listing. May appear with or without the L option.
?	This causes a list of options and the command line format to be displayed. No assembly is done.
2,6,B,H,U	Turns on the assembly options described in section 3.19.

6.2 SNAP/3 Pass One

Initially SNAP/3 will validate the file specifications and the options selected. The version and revision numbers identifying the release will be displayed. If P or Q appeared on the command line but the print file was not specified, the print file specification is requested. The default file name is the object file name, and the default extension is PRT. The program will request an 80-character heading if either the L or X parameter has been specified. SNAP/3 will then read the source file and any INCLUDED files in order to build a dictionary containing all symbolic names used by the programmer and their equivalent octal value or address. A notation is printed as each INCLUDE is processed along with any lines which contain errors.

At the end of pass one, one or more of the following items

will be displayed on the CRT:

- 1) Any pass one error flags
- 2) Fatal error message if fatal error occurred
- 3) Program Address Blocks--name, origin, and length
- 4) Primary Transfer Address--octal value

If a program listing has been requested, one or more of the following items will be printed on the printer device or CRT:

- 1) Any pass one error flags
- 2) Fatal error message if fatal error occured
- 3) Program Address Blocks--name, origin, and length
- 4) Primary Transfer Address--octal value
- 5) Entry Points--name, value
- 6) External definitions--name, value
- 7) External references
- 8) Unused labels
- 9) Multiply defined labels

6.3 SNAP/3 Pass Two

If no fatal pass one errors occurred, SNAP/3 will now write the entry point file, if required, and proceed into pass two, if required. Pass two is responsible for the resolution of forward references and the generation of a program listing.

6.4 Cross-Reference Generation

At the completion of pass two, SNAP/3 will call the DOS SORT if a cross-reference listing is desired. DOS SORT will sort the label definitions and references and write a sorted label file. It will then overlay itself with SNAP/3 which will list the sorted references.

The actual listing of references will contain the symbolic name preceded by its actual octal value. Following the symbolic name is a list of all line numbers at which that symbolic name was defined or referenced. All definition lines are flagged with a leading asterisk while all Inclusions are noted by a trailing colon followed by the Inclusion file character (see section 3.8). Macro internal labels will have (M) after their name and each usage and associated references will be grouped and listed separately. Duplicate references with the same line number will be suppressed. For example:

CHAPTER 6. OPERATING PROCEDURES

11304	DECHL		*32:A	* 32:B		
00341	DISPL		*24			•
00024	IDLE		*197	212	•.	
00035	INDEX	(M)	*904	900	906	
00057	INDEX	(M)	*913	936		
10176	INCHL		*102	71	151	156
00007	MANY	· · · ·	*25:A	* 25:B	21:A	21:B

If a symbol has duplicate definitions, the octal value shown is the initial value assigned.

6.5 Assembly Errors

SNAP/3 produces error flags to indicate source program errors. Some serious errors are fatal; these cause the second assembly pass to be skipped and any active CHAIN to be aborted. The other errors set the ABTIF flag which can be tested in a CHAIN (see the DOS manual). The fatal errors are mentioned in the sections describing constructions which can cause them.

The ERROR FLAGS produced by SNAP/3 are as follows:

- 6.5.1 D The D flag means DUPLICATE DEFINITION. It is generated if an attempt has been made to define the label more than once without a trailing = mark. Note that a reference to a duplicately defined label will use the most recent previous definition, or the last definition if the label has not been previously defined.
- 6.5.2 E The E flag means that an error has occurred in an EXPRESSION or some unrecognizable character appeared in the wrong place. In this case, a zero is substituted for the expression or for whatever was unrecognizable if code generation was expected.
- 6.5.3 F The F flag means FILE error. It can be issued for an INC or MLIB directive because the specified file is not found.

6-4 MACRO-ASSEMBLER

6.5.4	I	The I flag means INSTRUCTION MNEMONIC UNDEFINED.
		The instruction was not an acceptable instruction
		and three octal zeroes are inserted for the
		instruction.

- 6.5.5 O The O flag means memory page OVERFLOW. It is issued when generated code in a page restricted Program Address Block crosses a memory page boundary.
- 6.5.6 P The P flag means PROGRAMMER PRODUCED. It is issued when an ERR directive is processed.
- 6.5.7 U The U flag means UNDEFINED LABEL. It is issued in pass two whenever a label is referenced and is not defined if absolute output is being produced. It is also issued when an assembly directive in pass one (except DA, or DC, or TESTnn) is operating on an expression containing a label not yet in the dictionary. Other undefined symbols in relocatable assemblies are assumed to be external references, and are marked with ">" on the listing.

6.6 DISPLAY and KEYBOARD Keys

The DISPLAY key may be depressed at any time to cause SNAP/3 to pause while displaying data. Normal processing will resume when the DISPLAY key is released.

The KEYBOARD key may be depressed at any time to cause SNAP/3 to abort the assembly.

6.7 Temporary Files

SNAP/3 may use up to four temporary files, plus any temporary files used by the SORT utility if a cross reference is requested. These files are placed on the same drive as the object file, and are deleted at the end of the assembly. The files are: SNPTEMPn/SYS if the assembly is two pass, SNPPAGEn/SYS if SNAP/3's working tables will not all fit in memory, and SNPXREFn/SYS and SNPSXRFn/SYS if a cross reference is requested. The character 'n' in the file names will be '0' if the Partition Supervisor (PS) is not active or the partition identifier if it is.

6-5

APPENDIX A. ASCII-OCTAL EQUIVALENTS

The standard octal equivalents for the ASCII character set. Interpretations will vary with some printers and display devices.

А	101	а	141	0	060	:	072
В	102	b	142	1	061	;	073
С	103	с	143	2	062	<	074
D	104	d	144	3	063	=	075
Е	105	e	145	· 4	064	>	076
F	106	f	146	5	065	?	077
G	107	g	147	6	066	[133
Н	110	h	150	7	067	2	176
I	111	i	151	8	070]	135
J	112	j	152	9	071	^	136
K	113	k	153	Space	040	-	137
L	114	1	154	!	041	0	100
М	115	m	155	11	042	{	173
N	116	n	156	· #	043	N	134
0	117	0	157	\$	044		174
Р	120	q	160	%	045	}	175
Q	121	q	161	&	046		
R	122	r	162	1	047		
S	123	S	163	(050		
Т	124	. t	164)	051		
U	125	u	165	*	052		
V	126	V	166	+	053		
W	127	W	167	,	054		
X	130	X	170	-	055		
Y	131	У	171	•,	056		
Z	132	Z	172		057		

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS

The following is a list of all Datapoint processor instruction mnemonics accepted by SNAP/3 with the octal code generated for each instruction.

In the instruction expression field the following abbreviations are used:

data		- immediate data
loc	• · ·	- location
disp		- displacement

In the generated code the following abbreviations are used:

vvv	-	8 bits of immediate data
lsb		<pre>least significant 8 bits of location or displacement</pre>
msb	-	most significant 8 bits of location or displacement
ndx	-	<pre>least significant 8 bits of index (msb in X)</pre>
In the description t	he	following abbreviations are used:
data		8 bits of immediate data in instruction code (vvv)

A-E,H,L,X - contents of the specified register (BC),(DE),(HL),(XA) - contents of memory pointed to by register pair

AC	data	014 vvv	Add with carry	data to A
ACA		210	Add with carry	A to A
ACA	data	014 vvv	Add with carry	data to A
ACAA		210	Add with carry	A to A
ACAB		111 210	Add with carry	A to B
ACAC		062 210	Add with carry	A to C
ACAD		113 210	Add with carry	A to D

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS

ACAE ACAH ACAL ACAX		174 210 115 210 176 210 117 210	Add Add	with with	carry carry carry carry	A to A to	H L
ACB ACBA ACBB ACBC ACBC ACBD ACBE ACBL ACBL ACBX		211 111 014 vvv 211 111 211 062 211 113 211 174 211 175 211 176 211 117 211	Add Add Add Add Add Add Add Add Add	with with with with with with with with	carry carry carry carry carry carry carry carry carry carry	B to data B to B to B to B to B to B to B to B to	A to B A C D E H L
ACC ACCA ACCB ACCC ACCC ACCC ACCC ACCH ACCL ACCL		212 062 014 vvv 212 111 212 062 212 113 212 174 212 175 212 176 212 117 212	Add Add Add Add Add Add Add Add	with with with with with with with with	carry carry carry carry carry carry carry carry carry	data C to C to C to C to C to C to C to C to	to C A B C D E H L
A CD A CD A CD A A CD B A CD C A CD D A CD C A CD L A CD L A CD X	data	213 113 014 vvv 213 111 213 062 213 113 213 174 213 174 213 115 213 176 213 117 213	Add Add Add Add Add Add Add Add	with with with with with with with with	carry carry carry carry carry carry carry carry carry	data D to D to D to D to D to D to D to D to	to D A B C D E H L
ACE ACEA ACEB ACEC ACED ACED ACEE ACEH ACEL ACEX	data	214 174 014 vvv 214 111 214 062 214 113 214 173 214 174 214 115 214 176 214 117 214	Add Add Add Add Add Add Add Add	with with with with with with with with	carry carry carry carry carry carry carry carry carry	data E to E to E to E to E to E to E to	to E A B C D E H L

ACH		215	Add with carry H to A
ACH	data	115 014 vvv	Add with carry data to H
ACHA		215	Add with carry H to A
ACHB	·	111 215	Add with carry H to B
ACHC		062 215	Add with carry H to C
ACHD		113 215	Add with carry H to D
ACHE		174 215	Add with carry H to E
ACHH			
			Add with carry H to H
A CHL A CHX		174 215 115 215 176 215 117 215	Add with carry H to L
АСПХ		117 215	Add with carry H to X
ACL		216	Add with connu I to A
ACL	data		Add with carry L to A
	uala		Add with carry data to L
ACLA		216	Add with carry L to A
ACLB		111 216	Add with carry L to B
ACLC		062 216	Add with carry L to C
ACLD		113 216	Add with carry L to D
ACLE		174 216	Add with carry L to E
ACLH		115 216	Add with carry L to H
ACLL		176 216	Add with carry L to L
ACLX		117 216	Add with carry L to X
ACM		217	Add with carry (HL) to A
ACMA		217	Add with carry (HL) to A
ACMB		111 217	Add with carry (HL) to B
ACMC		062 217	Add with carry (HL) to C
ACMD		113 217	Add with carry (HL) to D
ACME		174 217	Add with carry (HL) to E
ACMH		115 217	Add with carry (HL) to H
ACML		176 217	Add with carry (HL) to L
ACMX		117 217	Add with carry (HL) to X
ACX	data	117 014 vvv	Add with carry data to X
	ан сайтаан ал		• • • • • •
AD	data		Add data to A
ADA		200	Add A to A
ADA	data	004 vvv	Add data to A
ADAA		200	Add A to A
ADAB		111 200	Add A to B
ADAC		062 200	Add A to C
ADAD		113 200	Add A to D
ADAE		174 200	Add A to E
ADAH		115 200	Add A to H
ADAL		176 200	Add A to L
ADAX		117 200	Add A to X
ADB		201	Add B to A

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS

ADB data ADBA ADBB ADBC ADBD ADBE ADBH ADBL ADBX	111 004 vvv 201 111 201 062 201 113 201 174 201 115 201 176 201 117 201	Add data to B Add B to A Add B to B Add B to C Add B to D Add B to E Add B to H Add B to L Add B to X
ADC ADC data ADCA ADCB ADCC ADCC ADCD ADCE ADCH ADCL ADCX	202 062 004 vvv 202 111 202 062 202 113 202 174 202 175 202 176 202 117 202	Add C to A Add data to C Add C to A Add C to B Add C to C Add C to C Add C to D Add C to E Add C to H Add C to L Add C to X
ADD ADD data ADDA ADDB ADDC ADDD ADDE ADDH ADDL ADDX	203 113 004 vvv 203 111 203 062 203 113 203 174 203 115 203 176 203 117 203	Add D to A Add data to D Add D to A Add D to B Add D to C Add D to C Add D to D Add D to E Add D to H Add D to L Add D to X
ADE ADE data ADEA ADEB ADEC ADEC ADED ADEE ADEH ADEL ADEX	204 174 004 vvv 204 111 204 062 204 113 204 174 204 115 204 176 204 117 204	Add E to A Add data to E Add E to A Add E to B Add E to C Add E to D Add E to E Add E to H Add E to L Add E to X
ADH ADH data ADHA ADHB ADHC	205 115 004 vvv 205 111 205 062 205	Add H to A Add data to H Add H to A Add H to B Add H to C

ADHD ADHE ADHH ADHL ADHX	113 205 174 205 115 205 176 205 117 205	Add H to D Add H to E Add H to H Add H to L Add H to X
ADL data ADLA ADLB ADLC ADLD ADLE ADLH ADLL ADLX	206 176 004 vvv 206 111 206 062 206 113 206 174 206 115 206 176 206 117 206	Add L to A Add data to L Add L to A Add L to B Add L to C Add L to D Add L to E Add L to H Add L to L Add L to X
ADM ADMA ADMB ADMC ADMD ADME ADMH ADML ADML	207 207 111 207 062 207 113 207 174 207 115 207 176 207 117 207	Add (HL) to A Add (HL) to A Add (HL) to B Add (HL) to C Add (HL) to C Add (HL) to D Add (HL) to E Add (HL) to H Add (HL) to L Add (HL) to X
ADX data	117 004 vvv	Add data to X
ALPHA	030	Select Alpha mode
BCP BCV	041 062 021	Block compare Block convert
BETA	020	Select Beta mode
BFAC	011	Binary field add with carry
BFLRAD	111 006	Binary field left to right add
BFLRAC	111 016	Binary field left to
BFLRSU	111 026	right add with carry Binary field left to right subtract
BFLRSB	111 036	Binary field left to right subtract with borrow

BFLRND	111 046	Binary field left to
BFLRXR	111 056	right and Binary field left to
		right exclusive or
BFLROR	111 066	Binary field left to right or
BFSB	031	Binary field subtract
		with borrow
BFSL BFSR	075 111 075	Binary field shift left Binary field shift right
BP	052	Prook noint
Dr	052	Break point
BRL	072	Base register load from A
BRLA BRLB	072	Base register load from A
BRLC	111 072 062 072	Base register load from B Base register load from C
BRLD	113 072	Base register load from D
BRLE	174 072	Base register load from E
BRLH	115 072	Base register load from H
BRLL	176 072	Base register load from L
BRLX	117 072	Base register load from X
BT	021	Block transfer
BTR	111 021	Block transfer reverse
CALL loc	106 lsb msb	Subroutine call
CCS	042	Condition code save in A
CCSA	042	Condition code save in A
CCSB	111 042	Condition code save in B
CCSC CCSD	062 042 113 042	Condition code save in C
CCSE	174 042	Condition code save in D Condition code save in E
CCSH	115 042	Condition code save in H
CCSL	176 042	Condition code save in L
CCSX	117 042	Condition code save in X
CFC loc	102 lsb msb	Subroutine call if false
CFB loc	102 lsb msb	carry Subroutine call if false
CE7 100	110] = 1	borrow
CFZ loc	112 lsb msb	Subroutine call if false zero
CFE loc	112 lsb msb	Subroutine call if false
CFS loc	122 lsb msb	equal Subroutine call if false
		Sub. Outine Cull II laibe

		sign
CFL loc	122 lsb msb	Subroutine call if false less
CFN loc	122 lsb msb	Subroutine call if false negative
CFP loc	132 lsb msb	Subroutine call if false parity
COMP BC COMP DE COMP HL	062 011 174 011 176 011	2's complement BC 2's complement DE 2's complement HL
COMPS BC COMPS DE COMPS HL	113 011 115 011 117 011	2's complement BC 2's complement DE 2's complement HL
CP data	074 vvv	Compare A to data
CPA CPA data CPAA CPAB	270 074 vvv 270 111 270	Compare A to A Compare A to data Compare A to A
CPAC	062 270	Compare B to A Compare C to A
CPAD CPAE	113 270 174 270	Compare D to A Compare E to A
СРАН	115 270	Compare H to A
CPAL CPAX	176 270 117 270	Compare L to A Compare X to A
СРВ	271	Compare A to B
CPB data CPBA	111 074 vvv 271	Compare B to data Compare A to B
CPBB	111 271	Compare B to B
CPBC CPBD	062 271 113 271	Compare C to B Compare D to B
CPBE	174 271	Compare E to B
СРВН	115 271	Compare H to B
CPBL CPBX	176 271 117 271	Compare L to B Compare X to B
CPC	272	Compare A to C
CPC data	062 074 vvv	Compare C to data
CPCA CPCB	272 111 272	Compare A to C
CPCC	062 272	Compare B to C Compare C to C
CPCD	113 272	Compare D to C
CPCE CPCH	174 272 115 272	Compare E to C
CPCL	176 272	Compare H to C Compare L to C
		•

CPC	X	117	272		Compare	X t	o C	
CPD CPD CPD CPD CPD CPD CPD	A B C D E	273 111 062 113 174	074 vv 273 273 273 273 273	v	Compare Compare Compare Compare Compare Compare Compare	D t A t B t C t t t	o data o D o D o D o D o D o D	
CPDI CPDI CPDI	L	176	273 273 273		Compare Compare Compare	L t	o D	
CPE CPE CPE CPE CPE CPE CPE CPE	B C D E H L	274 111 062 113 174 115 176	074 vv 274 274 274 274 274 274 274 274	7 V	Compare Compare Compare Compare Compare Compare Compare Compare Compare	E t t t t t t t t t t t t t t t t t t t	o data o E o E o E o E o E o E o E o E	
CPH CPH CPH CPH CPH CPH CPH CPH CPH	A B C D E H L	275 111 062 113 174 115 176	074 vv 275 275 275 275 275 275 275 275	v	Compare Compare Compare Compare Compare Compare Compare Compare Compare	H t A t C t E t H t	o data o H o H o H o H o H o H o H o H	
CPL CPL CPL CPL CPL CPL CPL CPL CPL	B C D E H L	276 111 062 113 174 115	276 276 276 276 276 276 276		Compare Compare Compare Compare Compare Compare Compare Compare Compare	L t A t B t C t t t t t t	o data o L o L o L o L o L o L o L o L	
CPM CPM		277 277			Compare Compare			

CPMB CPMC CPMD CPME CPMH CPML CPML		111 277 062 277 113 277 174 277 115 277 176 277 117 277	Compare B to (HL) Compare C to (HL) Compare D to (HL) Compare E to (HL) Compare H to (HL) Compare L to (HL) Compare X to (HL)
CPX	data	117 074	Compare X to data
CTC	loc	142 lsb msb	Subroutine call if true
CTB	loc	142 lsb msb	carry Subroutine call if true
CTZ	loc	152 lsb msb	borrow Subroutine call if true
CTE	loc	152 lsb msb	zero Subroutine call if true
CTS	loc	162 lsb msb	equal Subroutine call if true
CTL	loc	162 lsb msb	sign Subroutine call if true
CTN	loc	162 lsb msb	less Subroutine call if true
СТР	loc	172 lsb msb	negative Subroutine call if true parity
DADI	rp,data	rp 110 lsb msb	Double immediate to
DACI	rp,data	rp 311 lsb msb	register add Double immediate to
DSUI	rp,data	rp 130 lsb msb	register add with carry Double immediate to
DSBI	rp,data	rp 331 lsb msb	register subtract Double immediate to register subtract with
DNDI	rp,data	rp 140 lsb msb	borrow Double immediate to
DXRI	rp,data	rp 150 lsb msb	register and Double immediate to
DORI	rp,data	rp 160 lsb msb	register exclusive or Double immediate to
DCPI	rp,data	rp 170 lsb msb	register or Double immediate to register compare
DADM	rp	rp 013	Double memory to register
DACM	rp	rp 310	add Double memory to register

			add with carry
DSUM	rp	rp 033	Double memory to register subtract
DSBM	n n	rp 330	Double memory to register
DODN	rp	r þ. 330	subtract with borrow
DNDM	rp	rp 043	Double memory to register
2	• P	. p	and
DXRM	rp	rp 053	Double memory to register
	- 12	. p 000	exclusive or
DORM	rp	rp 063	Double memory to register
	- F .		or
DCPM	rp	rp 073	Double memory to register
			compare
			. •
DADP	rp,loc	rp+1 013 lsb	Double paged to register
	· • • • • • • • • • • • • • • • • • • •		add
DACP	rp,loc	rp+1 310 lsb	Double paged to register
			add with carry
DSUP	rp,loc	rp+1 033 lsb	Double paged to register
		• • •	subtract
DSBP	rp,loc	rp+1 330 lsb	Double paged to register
			subtract with borrow
DNDP	rp,loc	rp+1 043 lsb	Double paged to register
			and
DXRP	rp,loc	rp+1 053 lsb	Double paged to register
			exclusive or
DORP	rp,loc	rp+1 063 lsb	Double paged to register
			or
DCPP	rp,loc	rp+1 073 lsb	Double paged to register
			compare
DECI	disp,index	025 lsb ndx	Decrement index
DECI	*disp,index	111 025 lsb msb ndx	Decrement index
DECD	DO		
DECP	BC	062 035	Decrement BC pair
DECP	BC,2	113 035	Decrement BC pair by 2
DECP	BC,A	062 037	Decrement BC pair by A
DECP	DE	174 035	Decrement DE pair
DECP	DE,2	115 035	Decrement DE pair by 2
DECP DECP	DE,A	174 037	Decrement DE pair by A
DECP	HL,2	035	Decrement HL pair
DECP	•	117 035	Decrement HL pair by 2
DECP	HL,A XA	037 022 035	Decrement HL pair by A Decrement XA pair
DECP	XA,2	111 035	Decrement XA pair by 2
DECP	XA,A	022 037	Decrement XA pair by 2 Decrement XA pair by A
	лпуп		Decrement AR part by A
DFAC		111 041	Decimal field add with
<i>w</i>		ודע ווו	Secting Field add wioli

DFSB		062 041	carry Decimal field subtract with borrow
DI DIDIV		040 111 031	Disable interrupts Double integer divide
DL DL DL DL DL DL DL DL DL	BC,BC BC,DE BC,HL DE,BC DE,DE DE,HL HL,BC HL,DE HL,HL	062 047 113 047 111 047 174 047 175 047 047 176 047 117 047 057	Double load BC from (BC) Double load BC from (DE) Double load BC from (HL) Double load DE from (BC) Double load DE from (DE) Double load DE from (HL) Double load HL from (BC) Double load HL from (DE) Double load HL from (HL)
DMAD	rp	rp+1 110	Double register to memory add
DMAC	rp	rp+1 311	Double register to memory
DMSU	rp	rp+1 130	add with carry Double register to memory
DMSB	rp	rp+1 331	subtract Double register to memory
DMND	rp	rp+1 140	subtract with borrow Double register to memory
DMXR	rp	rp+1 150	and Double register to memory
DMOR	rp	rp+1 160	exclusive or Double register to memory or
DPL DPL DPL	BC,loc DE,loc HL,loc	111 124 lsb 113 144 lsb 115 164 lsb	Double paged load BC Double paged load DE Double paged load HL
DPLR	BC,loc	062 114 lsb	Double paged load reversed BC
DPLR	DE,loc	174 134 lsb	Double paged load
DPLR	HL,loc	176 154 lsb	reversed DE Double paged load reversed HL
DPS DPS DPS	BC,loc DE,loc HL,loc	111 126 lsb 113 146 lsb 115 166 lsb	Double paged store BC Double paged store DE Double paged store HL
DPSR	BC,loc	062 116 lsb	Double paged store

			reversed BC
DPSR	DE,loc	174 136 lsb	Double paged store
			reversed DE
DPSR	HL,loc	176 156 lsb	Double paged store
			reversed HL
DC	DC DE	112 007	Double stone DC into (DE)
DS DS	BC,DE BC,HL	113 027 111 027	Double store BC into (DE) Double store BC into (HL)
DS	DE,BC	174 027	Double store DE into (BC)
DS	DE,HL	027	Double store DE into (HL)
DS	HL,BC	176 027	Double store HL into (HC)
DS	HL,DE	117 027	Double store HL into (DE)
20		111 021	bouble stole ne into (be)
EI		050	Enable interrupts
EJMP	loc	111 050 lsb msb	Enable interrupts and
	·		jump
EUR		062 050	Enable interrupts and
			user return
EX	ADR	121	Output address from A
EX	BEEP	151	Beep
EX	BSP	167	Backspace tape
EX	CLICK	153	Click
EX	COM1	131	External command 1 from A
EX	COM2	133	External command 2 from A
EX	COM3	135	External command 3 from A
EX	COM4	137	External command 4 from A
EX EX	DATA DECK1	125 155	Select data mode Select cassette deck 1
EX	DECK2	157	Select cassette deck 1
EX	RBK	161	Read block
EX	REWIND	175	Rewind cassette deck
EX	SB	173	Slew backward (cassette)
EX	SF	171	Slew forward (cassette)
ЕX	STATUS	123	Sense status
EX	TSTOP	177	Stop cassette tape
ΕX	WBK	163	Write block
ЕX	WRITE	127	Write data from A
EXA	ADR	121	Output address from A
EXA	COM1	131	External command 1 from A
EXA	COM2	133	External command 2 from A
EXA	COM3	135	External command 3 from A
EXA EXA	COM4 WRITE	137	External command 4 from A
LAH	WALLE.	127	Write data from A
EXB	ADR	111 121	Output address from B
EXB	COM1	111 131	External command 1 from B
		•••••••••••••••••••••••••••••••••••••••	

EXB	COM2	111 13	2		External command 2 from B	
EXB EXB EXB	COM3 COM4 WRITE	111 13 111 13 111 12	5 7		External command 3 from B External command 4 from B Write data from B	
EXC EXC EXC EXC EXC EXC	ADR COM1 COM2 COM3 COM4 WRITE	062 12 062 13 062 13 062 13 062 13 062 13 062 12	1 3 5 7		Output address from C External command 1 from C External command 2 from C External command 3 from C External command 4 from C Write data from C	
EXD EXD EXD EXD EXD EXD EXD	ADR COM1 COM2 COM3 COM4 WRITE	113 12 113 13 113 13 113 13 113 13 113 13 113 12	1 3 5 7		Output address from D External command 1 from D External command 2 from D External command 3 from D External command 4 from D Write data from D	
EXE EXE EXE EXE EXE EXE EXE	ADR COM1 COM2 COM3 COM4 WRITE	174 12 174 13 174 13 174 13 174 13 174 13 174 12	1 3 5 7	· .	Output address from E External command 1 from E External command 2 from E External command 3 from E External command 4 from E Write data from E	
EXH EXH EXH EXH EXH EXH	ADR COM1 COM2 COM3 COM4 WRITE	115 12 115 13 115 13 115 13 115 13 115 13 115 12	1 3 5 7		Output address from H External command 1 from H External command 2 from H External command 3 from H External command 4 from H Write data from H	
EXL EXL EXL EXL EXL EXL	ADR COM1 COM2 COM3 COM4 WRITE	176 12 176 13 176 13 176 13 176 13 176 13 176 12	1 3 5 7		Output address from L External command 1 from L External command 2 from L External command 3 from L External command 4 from L Write data from L	
EXX EXX EXX EXX EXX EXX	ADR COM1 COM2 COM3 COM4 WRITE	117 12 117 13 117 13 117 13 117 13 117 13 117 12	1 3 5 7		Output address from X External command 1 from X External command 2 from X External command 3 from X External command 4 from X Write data from X	
HALT		377			Halt	

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-13

IDIV	062 031	Integer divide
IMULT	111 011	Integer multiply
IN	101	Input to A
INA	101	Input to A
INB	111 101	Input to B
INC	062 101	Input to C
INCI disp,index	005 lsb ndx	Increment index
INCI *disp,index	111 005 lsb msb ndx	Increment index
INCP BC	062 015	Increment BC pair
INCP BC,2	113 015	Increment BC pair by 2
INCP BC,A	062 017	Increment BC pair by A
INCP DE	174 015	Increment DE pair
INCP DE,2	115 015	Increment DE pair by 2
INCP DE,A	174 017	Increment DE pair by A
INCP HL	015	Increment HL pair
INCP HL,2	117 015	Increment HL pair by 2
INCP HL,A	017	Increment HL pair by 2
INCP XA	022 015	Increment XA pair
INCP XA,2	111 015	Increment XA pair by 2
INCP XA,A	022 017	Increment XA pair by 2
IND	113 101	Input to D
INE	174 101	Input to E
INFO ·	111 010	System information
INH	115 101	Input to H
INL	176 101	Input to L
INPUT	101	Input to A
INX	117 101	Input to X
JFC loc	100 lsb msb	Jump if false carry
JFB loc	100 lsb msb	Jump if false borrow
JFZ loc	110 lsb msb	Jump if false zero
JFE loc	110 lsb msb	Jump if false equal
JFS loc	120 lsb msb	Jump if false sign
JFL loc	120 lsb msb	Jump if false less
JFN loc	120 lsb msb	Jump if false negative
JFP loc	130 lsb msb	Jump if false parity
JMP loc	104 lsb msb	Jump to location
JTC loc	140 lsb msb	Jump if true carry
JTB loc	140 lsb msb	Jump if true borrow

JTZ JTE JTS JTL JTN JTP	loc loc loc loc loc	150lsbmsbJump160lsbmsbJump160lsbmsbJump160lsbmsbJump170lsbmsbJump	if true zero if true equal if true sign if true less if true negative if true parity
JUMP	loc	104 lsb msb Jump	to location
LA LAB LAC LAC LAC LAC LAH LAH LAM LAM LAM	data BC DE HL XA	300 Load 301 Load 302 Load 303 Load 304 Load 305 Load 306 Load 307 Load 062 307 Load 174 307 Load 307 Load Load	A with data A from A A from B A from C A from D A from E A from H A from L A from (HL) A from (BC) A from (HL) A from (HL) A from (HL) A from (XA)
LB LBA LBC LBC LBD LBE LBH LBM LBM LBM LBM	data BC DE HL XA	016 vvv Load 310 Load 311 Load 312 Load 313 Load 314 Load 315 Load 316 Load 317 Load 062 317 Load 174 317 Load 317 Load Load	B with data B from A B from B B from C B from D B from E B from H B from L B from (HL) B from (BC) B from (DE) B from (HL) B from (XA)
LC LCA LCC LCD LCE LCH LCH LCM LCM	data BC DE	320 Load 321 Load 322 Load 323 Load 324 Load 325 Load 326 Load 327 Load 062 327	C from H C from L C from (HL)

LCM LCM	HL XA	327 022	327	•	•		Load C from (HL) Load C from (XA)
LD LDA LDB LDC LDD LDE LDH LDH LDM LDM LDM LDM	data BC DE HL XA	330 331 332 333 334 335 336 337 062 174 337	v v v 337 337 337				Load D with data Load D from A Load D from B Load D from C Load D from D Load D from E Load D from H Load D from L Load D from (HL) Load D from (BC) Load D from (DE) Load D from (HL) Load D from (XA)
LE LEA LEB LEC LED LEE LEH LEM LEM LEM	data BC DE HL XA	340 341 342 343 344 345 346 347 062 174 347	vvv 347 347 347				Load E with data Load E from A Load E from B Load E from C Load E from D Load E from E Load E from H Load E from L Load E from (HL) Load E from (DE) Load E from (HL) Load E from (HL)
LFID	BC,disp,index	062	025	lsb	ndx		Load BC from index decremental
LFID LFID	BC,*disp,index DE,disp,index	113 174	•			ndx	
LFID	DE,*disp,index	115	025	lsb	msb	ndx	Load DE from index decremental
LFID	HL,disp,index	176	025	lsb	ndx		Load HL from index decremental
LFID	HL,*disp,index	117	025	lsb	msb	ndx	Load HL from index decremental
LFII	BC,disp,index	062	005	lsb	ndx	н н н н	Load BC from index incremental
LFII	BC, [#] disp,index	113	005	lsb	msb	ndx	Load BC from index incremental

LFII	DE,disp,index	174	005	lsb	ndx		Load DE from index incremental
LFII	DE, *disp, index	115	005	lsb	msb		Load DE from index
LFII	HL,disp,index	176	005	lsb	ndx		incremental Load HL from index
LFII	HL,*disp,index	1 17	005	lsb	msb	ndx	incremental Load HL from index incremental
LH LHA LHB LHC LHD LHE LHH LHH LHM LHM LHM LHM	data BC DE HL XA		357 357				Load H with data Load H from A Load H from B Load H from C Load H from D Load H from E Load H from H Load H from L Load H from (HL) Load H from (BC) Load H from (HL) Load H from (HL) Load H from (KA)
LL LLA LLB LLC LLD	data	066 360 361 362 363	•••				Load L with data Load L from A Load L from B Load L from C Load L from D
LLDEL		111	051				Doubly linked list delete
LLE LLH		364 365					Load L from E Load L from H
LLINS		062	051				Doubly linked list insert
LLL LLM LLM LLM LLM LLM	BC DE HL X A	366 367 062 174 367 022	367				Load L from L Load L from (HL) Load L from (BC) Load L from (DE) Load L from (HL) Load L from (XA)
L MA L MA L MA L MA L MA	BC DE HL XA		370 370 370		• • •		Load (HL) from A Load (BC) from A Load (DE) from A Load (HL) from A Load (XA) from A

LMB LMB LMB LMB LMC LMC LMC LMC LMC LMC LMC LMC LMC LMD LMD LMD LMD LMD LME LME LME LMH LMH LMH LMH LMH LML LML	BC DE HL XA BC DE HL XA BC DE HL XA BC DE HL XA BC DE HL XA BC DE HL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Load (HL) from B Load (BC) from B Load (DE) from B Load (HL) from B Load (HL) from B Load (HL) from C Load (BC) from C Load (BC) from C Load (DE) from C Load (HL) from C Load (HL) from D Load (BC) from D Load (BC) from D Load (BC) from D Load (HL) from E Load (HL) from E Load (BC) from E Load (DE) from E Load (DE) from E Load (DE) from H Load (DE) from H Load (CA) from L Load (CA) from L
LML	XA	022 376	Load (XA) from L
LX	data	076 vvv	Load X with data
MIN MOUT		111 061 111 071	Multiple input Multiple output
ND	data	044 vvv	AND data to A
NDA		240	AND A to A
NDA	data	044 vvv	AND data to A
NDAA		240	AND A to A
NDAB		111 240	AND A to B
NDAC		062 240	AND A to C
NDAD		113 240	AND A to D
NDAE		174 240	AND A to E
NDAH		115 240	AND A to H
NDAL		176 240	AND A to L
NDAX		117 240	AND A to X

NDB NDBA NDBB NDBC NDBD NDBE NDBH NDBL NDBX	data	241 111 044 vvv 241 111 241 062 241 113 241 174 241 175 241 176 241 117 241	AND B to A AND data to B AND B to A AND B to B AND B to C AND B to D AND B to E AND B to H AND B to L AND B to X
NDC NDCA NDCB NDCC NDCC NDCC NDCH NDCL NDCX	data	242 062 044 vvv 242 111 242 062 242 113 242 174 242 175 242 176 242 117 242	AND C to A AND data to C AND C to A AND C to B AND C to C AND C to C AND C to D AND C to E AND C to H AND C to L AND C to X
NDD NDDA NDDA NDDC NDDC NDDD NDDE NDDH NDDL NDDL	data	243 113 044 vvv 243 111 243 062 243 113 243 174 243 175 243 176 243 117 243	AND D to A AND data to D AND D to A AND D to B AND D to C AND D to C AND D to D AND D to E AND D to H AND D to L AND D to X
NDE NDE NDEB NDEC NDEC NDEE NDEH NDEL NDEL	data	244 174 044 vvv 244 111 244 062 244 113 244 173 244 174 244 115 244 176 244 117 244	AND E to A AND data to E AND E to A AND E to B AND E to C AND E to D AND E to E AND E to H AND E to L AND E to X
NDH NDH NDHA NDHB	data	245 115 044 vvv 245 111 245	AND H to A AND data to H AND H to A AND H to B

NDHC NDHD NDHE NDHH NDHL NDHX		062 245 113 245 174 245 115 245 176 245 117 245	AND H to C AND H to D AND H to E AND H to H AND H to L AND H to X
NDL NDLA NDLB NDLC NDLD NDLE NDLH NDLL NDLX	data	246 176 044 vvv 246 111 246 062 246 113 246 174 246 175 246 176 246 117 246	AND L to A AND data to L AND L to A AND L to B AND L to C AND L to C AND L to E AND L to H AND L to H AND L to L AND L to X
NDM NDMA NDMB NDMC NDMD NDME NDMH NDML NDML		247 247 111 247 062 247 113 247 174 247 175 247 176 247 117 247	AND (HL) to A AND (HL) to A AND (HL) to B AND (HL) to C AND (HL) to C AND (HL) to D AND (HL) to E AND (HL) to H AND (HL) to H AND (HL) to X
NDX	data	117 044 vvv	AND data to X
NOJ NOP	loc	045 lsb msb 300	No jump (3 byte NOP) No operation
OR ORA ORAA ORAB ORAC ORAD ORAE ORAH ORAL ORAX	data data	064 vvv 260 064 vvv 260 111 260 062 260 113 260 174 260 175 260 176 260 117 260	Inclusive OR data to A Inclusive OR A to A Inclusive OR data to A Inclusive OR A to A Inclusive OR A to B Inclusive OR A to C Inclusive OR A to D Inclusive OR A to E Inclusive OR A to H Inclusive OR A to L Inclusive OR A to X
ORB ORB ORBA	data	261 111 064 vvv 261	Inclusive OR B to A Inclusive OR data to B Inclusive OR B to A

B-20 MACRO-ASSEMBLER

ORBB ORBC ORBD ORBE ORBH ORBL ORBX		111 261 062 261 113 261 174 261 115 261 176 261 117 261	Inclusive OR B to B Inclusive OR B to C Inclusive OR B to D Inclusive OR B to E Inclusive OR B to H Inclusive OR B to L Inclusive OR B to X
ORC ORCA ORCB ORCC ORCD ORCE ORCH ORCL ORCX	data	262 062 064 vvv 262 111 262 062 262 113 262 174 262 115 262 176 262 117 262	Inclusive OR C to A Inclusive OR data to C Inclusive OR C to A Inclusive OR C to B Inclusive OR C to C Inclusive OR C to D Inclusive OR C to E Inclusive OR C to H Inclusive OR C to L Inclusive OR C to X
O RD ORDA ORDB ORDC ORDD ORDE ORDH ORDL ORDL	data	263 113 064 vvv 263 111 263 062 263 113 263 113 263 174 263 115 263 176 263 117 263	Inclusive OR D to A Inclusive OR data to D Inclusive OR D to A Inclusive OR D to B Inclusive OR D to C Inclusive OR D to D Inclusive OR D to E Inclusive OR D to H Inclusive OR D to H Inclusive OR D to L Inclusive OR D to X
ORE ORE OREB OREC ORED OREE OREH OREL OREX	data	264 174 064 vvv 264 111 264 062 264 113 264 174 264 174 264 115 264 176 264 117 264	Inclusive OR E to A Inclusive OR data to E Inclusive OR E to A Inclusive OR E to B Inclusive OR E to C Inclusive OR E to D Inclusive OR E to E Inclusive OR E to H Inclusive OR E to L Inclusive OR E to X
ORH ORHA ORHB ORHC ORHC ORHD ORHE	data	265 115 064 vvv 265 111 265 062 265 113 265 174 265	Inclusive OR H to A Inclusive OR data to H Inclusive OR H to A Inclusive OR H to B Inclusive OR H to C Inclusive OR H to D Inclusive OR H to E

ORHH ORHL ORHX		115 265 176 265 117 265	Inclusive OR H to H Inclusive OR H to L Inclusive OR H to X
ORL ORLA ORLB ORLC ORLD ORLE ORLH ORLL ORLX	data	266 176 064 vvv 266 111 266 062 266 113 266 174 266 115 266 176 266 117 266	Inclusive OR L to A Inclusive OR data to L Inclusive OR L to A Inclusive OR L to B Inclusive OR L to C Inclusive OR L to D Inclusive OR L to E Inclusive OR L to H Inclusive OR L to L Inclusive OR L to X
ORM ORMA ORMB ORMC ORMD ORME ORMH ORML ORMX		267 267 111 267 062 267 113 267 174 267 115 267 176 267 117 267	Inclusive OR (HL) to A Inclusive OR (HL) to A Inclusive OR (HL) to B Inclusive OR (HL) to C Inclusive OR (HL) to D Inclusive OR (HL) to E Inclusive OR (HL) to H Inclusive OR (HL) to L Inclusive OR (HL) to X
ORX	data	117 064 vvv	Inclusive OR data to X
PAD	r,loc	r 106 lsb	Single paged to register add
PAC	r,loc	r 112 lsb	Single paged to register add with carry
PSU	r,loc	r 122 lsb	Single paged to register subtract
PSB	r,loc	r 132 lsb	Single paged to register
PND	r,loc	r 142 lsb	subtract with borrow Single paged to register
PXR	r,loc	r 152 lsb	and Single paged to register
POR	r,loc	r 162 lsb	exclusive or Single paged to register
PCP	r,loc	r 172 lsb	or Single paged to register compare
PIN		103	Parity checking input to
PINA		103	A Parity checking input to A

PINB	111 103	Parity checking input to
PINC	062 103	B Parity checking input to
PIND	113 103	C Parity checking input to
PINE	174 103	D Parity checking input to
PINH	115 103	E Parity checking input to
PINL	176 103	H Parity checking input to
PINX	117 103	L Parity checking input to X
PL A,loc PL B,loc PL C,loc PL D,loc PL E,loc PL H,loc PL L,loc	105 lsb 114 lsb 124 lsb 134 lsb 144 lsb 154 lsb 164 lsb	Paged load A Paged load B Paged load C Paged load D Paged load E Paged load H Paged load L
POP	060	Pop value from stack into
POP BC	062 060	HL Pop value from stack into
POP DE	174 060	BC Pop value from stack into
POP HL	060	DE Pop value from stack into
POP XA	022 060	HL Pop value from stack into XA
PS A,loc PS B,loc PS C,loc PS D,loc PS E,loc PS H,loc PS L,loc	107 lsb 116 lsb 126 lsb 136 lsb 146 lsb 156 lsb 166 lsb	Paged store A Paged store B Paged store C Paged store D Paged store E Paged store H Paged store L
PUSH PUSH data PUSH BC PUSH DE PUSH HL PUSH XA	070 051 lsb msb 062 070 174 070 070 022 070	Push HL onto stack Push data onto stack Push BC onto stack Push DE onto stack Push HL onto stack Push XA onto stack

B-23

REGL REGS	111 055 055	Register load Register save
RET RETURN	007 007	Subroutine return Subroutine return
RFC	003	Subroutine return if false carry
RFB	003	Subroutine return if false borrow
RFZ	013	Subroutine return if
RFE	013	false zero Subroutine return if false equal
RFS	023	Subroutine return if false sign
RFL	023	Subroutine return if false less
RFN	023	Subroutine return if
RFP	033	false negative Subroutine return if false parity
RTC	043	Subroutine return if true carry
RTB	043	Subroutine return if true
RTZ	053	borrow Subroutine return if true zero
RTE	053	Subroutine return if true equal
RTS	063	Subroutine return if true sign
RTL	063	Subroutine return if true less
RTN	063	Subroutine return if true
RTP	073	Subroutine return if true parity
SB data	034 vvv	Subtract with borrow data from A
SBA	230	Subtract with borrow A from A
SBA data	034 vvv	Subtract with borrow data from A
SBAA	230	Subtract with borrow A

•					from A			
SBAB		111	230		Subtract	with	borrow	А
9.0.4.0					from B	• • •		
SBAC		062	230		Subtract from C	with	borrow	A
SBAD		113	230		Subtract	with	borrow	Δ
00.00			2) 0		from D	WI OII	00110W	11
SBAE		174	230		Subtract	with	borrow	A
					from E			
SBAH		115	230		Subtract	with	borrow	А
SBAL		176	220		from H	•••• + lo	h	٨
SDAL		1/0	230		Subtract from L	With	borrow	A
SBAX		117	230		Subtract	with	borrow	Δ
			2) 0		from X	W 1 011	bor row	
SBB		231			Subtract	with	borrow	В
0.00	3 - 4		0.0.11		from A	•		
SBB	data	111	034	VVV	Subtract from B	With	borrow	data
SBBA		231			Subtract	with	horrow	B
	· · · · ·	251			from A		001104	£.'
SBBB		111	231		Subtract	with	borrow	В
					from B			
SBBC		062	231		Subtract	with	borrow	В
SBBD		112	231		from C Subtract	with	borrow	R
0000		11)	2.51		from D	WICH	DOLLOW	
SBBE		174	231		Subtract	with	borrow	В
					from E			
SBBH		115	231		Subtract	with	borrow	В
SBBL		176	221		from H Subtract		honnou	D
SDDL		ιŢŲ	231		from L	WICH	DOLLOW	D
SBBX		117	231		Subtract	with	borrow	В
					from X			
ana							1	0
SBC		232			Subtract from A	WITH	borrow	C .
SBC	data	062	034	vvv	Subtract	with	horrow	data
0.00		002		• • •	from C	WION	DOLLOW	uava
SBCA		232			Subtract	with	borrow	С
a					from A		•	
SBCB		111	232		Subtract	with	borrow	C
SBCC		062	232		from B Subtract	with	horrow	С
5500		002	عرع		from C	WI CII	DULLOW	U
SBCD		113	232		Subtract	with	borrow	C C C
1. A.								

					from D			
	SBCE		174 2	232	Subtract from E	with	borrow	C
	SBCH		115 2	232	Subtract from H	with	borrow	C
	SBCL		176 2		Subtract	with	borrow	С
	SBCX		117 2		from L Subtract	with	borrow	С
					from X			
•••	SBD		233		Subtract	with	borrow	D
	SBD	data	112 0	034 vvv	from A Subtract	with	horrow	data
	300	uata	115 0		from D			
	SBDA		233		Subtract from A	with	borrow	D
	SBDB		111 2	233	Subtract	with	borrow	D
	appa			~~~	from B		•	F
	SBDC		062 2	233	Subtract from C	With	borrow	D
	SBDD		113 2	233	Subtract	with	borrow	
	SBDE		174 2	233	from D Subtract	with	borrow	D
					from E			
	SBDH		115 2	233	Subtract from H	with	borrow	D , a b
	SBDL		176 2	233	Subtract	with	borrow	D
	SBDX		117 2	222	from L Subtract	with	horrow	ר
	SDDA		111 4	- 33	from X	WICH	DOLLOW	D
	SBE		234		Subtract	with	horrow	F
	ODL		2 77		from A	WICH	DOLLOW	
	SBE	data	174 C	034 vvv	Subtract from E	with	borrow	data
	SBEA		234		Subtract	with	borrow	E
	SBEB		111 2	1 C C	from A Subtract		honnou	- E
	SDLD		<u> </u>	234	from B	WICH	DOLLOW	L
	SBEC		062 2	234	Subtract	with	borrow	E
	SBED		113 2	234	from C Subtract	with	horrow	Ē
					from D			
	SBEE		174 2	234	Subtract from E	with	borrow	E
	SBEH		115 2	234	Subtract	with	borrow	E
	SBEL		176 2	231	from H Subtract	with	horrow	F
	בייני.		110 2		Subtract	WICH	JULIOW	بىة

D

					from L			_
	SBEX		117 234		Subtract from X	with	borrow	E
	SBH		235		Subtract. from A	with	borrow	Η
	SBH	data	115 034 vvv	,	Subtract from H	with	borrow	data
,	SBHA		235		Subtract from A	with	borrow	Н
	SBHB		111 235		Subtract from B	with	borrow	H
	SBHC		062 235		Subtract from C	with	borrow	Н
	SBHD		113 235		Subtract from D	with	borrow	Н
	SBHE		174 235		Subtract from E	with	borrow	Н
	SBHH		115 235		Subtract from H	with	borrow	Η
	SBHL		176 235		Subtract from L	with	borrow	Н
	SBHX		117 235		Subtract from X	with	borrow	H
	SBL		236		Subtract from A	with	borrow	L
	SBL	data	176 034 vvv		Subtract from L	with	borrow	data
	SBLA		236		Subtract from A	with	borrow	L
	SBLB		111 236		Subtract from B	with	borrow	L
	SBLC		062 236		Subtract from C	with	borrow	L
	SBLD		113 236		Subtract from D	with	borrow	L
	SBLE		174 236		Subtract from E	with	borrow	Γ
	SBLH		115 236	• •	Subtract from H	with	borrow	L
	SBLL		176 236		Subtract from L	with	borrow	L
	SBLX		117 236		Subtract from X	with	borrow	L
	SBM		237		Subtract	with	borrow	(HL)
					from A			

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-27

SBMA	237	Subtract with borrow (HL) from A
SBMB	111 237	Subtract with borrow (HL)
SBMC	062 237	from B Subtract with borrow (HL) from C
SBMD	113 237	Subtract with borrow (HL) from D
SBME	174 237	Subtract with borrow (HL) from E
SBMH	115 237	Subtract with borrow (HL) from H
SBML	176 237	Subtract with borrow (HL) from L
SBMX	117 237	Subtract with borrow (HL) from X
SBX data	117 034 vvv	Subtract with borrow data from X
SC	067	System call
SLC SLCA SLCB SLCC SLCD SLCE SLCH SLCL SLCX	002 002 111 002 062 002 113 002 174 002 115 002 176 002 117 002	Shift A left circular Shift A left circular Shift B left circular Shift C left circular Shift D left circular Shift E left circular Shift H left circular Shift L left circular Shift X left circular
SRC SRCA SRCB SRCC SRCD SRCE SRCH SRCL SRCL SRCX	012 012 111 012 062 012 113 012 174 012 115 012 176 012 117 012	Shift A right circular Shift A right circular Shift B right circular Shift C right circular Shift D right circular Shift E right circular Shift H right circular Shift L right circular Shift X right circular
SRE SREA SREB SREC SRED SREE	032 032 111 032 062 032 113 032 174 032	Shift A right extended Shift A right extended Shift B right extended Shift C right extended Shift D right extended Shift E right extended

SREH SREL SREX	115 032 176 032 117 032	Shift H right extended Shift L right extended Shift X right extended
STKL STKS	111 065 065	Stack load Stack save
STL	077	Sector table load
STLO	022 077	Sector table load
STLOA	022 077	starting at offset A Sector table load
STLOB	111 077	starting at offset A Sector table load
STLOC	062 077	startin g at offset B Sector ta ble load
STLOD	113 077	starting at offset C Sector table load
STLOE	174 077	starting at offset D Sector table load
STLOH	115 077	starting at offset E Sector table load
STLOL	176 077	starting at offset H Sector table load
STLOX	117 077	starting at offset L Sector table load
SILON		starting at offset X
SU data SUA	024 vvv 220	Subtract data from A Subtract A from A
SUA data SUAA	024 vvv 220	Subtract data from A Subtract A from A
SUAB SUAC	111 220 062 220	Subtract A from B Subtract A from C
SUAD	113 220	Subtract A from D
SUAE SUAH	174 220 115 220	Subtract A from E Subtract A from H
SUAL	176 220	Subtract A from L
SUAX	117 220	Subtract A from X
SUB	221	Subtract B from A
SUB data SUBA	111 024 vvv 221	Subtract data from B Subtract B from A
SUBB	111 221	Subtract B from B
SUBC	062 221	Subtract B from C
SUBD SUBE	113 221 174 221	Subtract B from D Subtract B from E
SUBH	115 221	Subtract B from H
	•	

B-29

SUB											
SUB			176 117				Subtract Subtract				
500.	Λ		1 1 1	221			SUDUI ACC	U.	1100	Λ	
SUC			222			1	Subtract	С	from	А	
SUC	data	· · · ·	062	024	v v v		Subtract	da	ata fr	om	C
SUC			222			÷	Subtract				
SUCI			111				Subtract	С	from	В	
SUC			062				Subtract				
SUCI			113				Subtract				
SUCI			174				Subtract				
SUCI			115				Subtract				
SUCI			176				Subtract				
SUC	X		117	222			Subtract	С	from	X	
SUD			223			х	Subtract	D	from	Α	
SUD	data			024	VVV		Subtract				D
SUD			223	• - •	•••		Subtract				2
SUDI			111	223			Subtract				
SUDO			062				Subtract				
SUDI			113				Subtract				
SUDI			174		•		Subtract				
SUDE			115	_			Subtract				
SUDI	, . 		176				Subtract				
SUD	X		117	223			Subtract	D	from	Х	•
OHE			221				0	F	6		
SUE			224	0.0.11			Subtract				P 1
SUE	data		174	024	vvv		Subtract	da	ata fr	om	E
SUE SUE	A		174 224		vvv		Subtract Subtract	da E	ata fr from	om A	E
SUE SUE SUE	A. B		174 224 111	224	vvv		Subtract Subtract Subtract	da E E	ata fr from from	om A B	E
SUE SUE SUE SUE	A B C		174 224 111 062	224 224	vvv		Subtract Subtract Subtract Subtract	da E E E	ata fr from from from	om A B C	E
SUE SUE SUE SUE SUE	A B C D		174 224 111 062 113	224 224 224	vvv		Subtract Subtract Subtract Subtract Subtract	da E E E	ata fr from from from from	Om A B C D	E
SUE SUE SUE SUE SUE SUE	A B C D E		174 224 111 062 113 174	224 224 224 224 224	VVV		Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E	ata fr from from from from from	Om A B C D E	E
SUE SUE SUE SUE SUE SUE SUE	A B C D E H		174 224 111 062 113 174 115	224 224 224 224 224 224	VVV		Subtract Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E	ata fr from from from from from from	OM A B C D E H	E
SUE SUE SUE SUE SUE SUE SUE	A B C D E H		174 224 111 062 113 174 115 176	224 224 224 224 224 224 224	V V V		Subtract Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E E E E	ata fr from from from from from from	Om A B C D E H L	E
SUE SUE SUE SUE SUE SUE SUE	A B C D E H		174 224 111 062 113 174 115	224 224 224 224 224 224 224	V V V		Subtract Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E E E E	ata fr from from from from from from	Om A B C D E H L	E
SUE SUE SUE SUE SUE SUE SUE SUE SUE	A B C D E H		174 224 111 062 113 174 115 176	224 224 224 224 224 224 224	V V V		Subtract Subtract Subtract Subtract Subtract Subtract Subtract	d E E E E E E E E E E E	ta fr from from from from from from	A B C D E H L X	E
SUE SUE SUE SUE SUE SUE SUE SUE SUE SUE	A B C D E H X data		174 224 111 062 113 174 115 176 117 225 115	224 224 224 224 224 224 224			Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract	d E E E E E E E E E E E E E E E E E E E	ta fr from from from from from from from	OM A B C D E H L X A	
SUE SUE SUE SUE SUE SUE SUE SUE SUE SUE	A B C D E H X X data		174 224 111 062 113 174 115 176 117 225 115 225	224 224 224 224 224 224 224 224 224			Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E E E E H da H	ta fr from from from from from from from fr	A B C D E H L X A	
SUE SUE SUE SUE SUE SUE SUE SUE SUE SUE	A B C D E H X X data A B		174 224 111 062 113 174 115 176 115 225 115 225 111	224 224 224 224 224 224 224 224 224 224			Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E E E E E E H da H H	ta fr from from from from from from from fr	OM A B C D E H L X A OM A B	
SUE SUE SUE SUE SUE SUE SUE SUE SUE SUE	A B C D E H X X data A B C		174 224 111 062 113 174 115 176 115 225 115 225 111 062	224 224 224 224 224 224 224 224 224 224			Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E E E E H da H H	ta fr from from from from from from from fr	OM A B C D E H L X A OM A B C	
SUE SUE SUE SUE SUE SUE SUE SUE SUE SUE	A B C D E H X X data A B C D		174 224 111 062 113 174 115 176 117 225 115 225 111 062 113	224 224 224 224 224 224 224 224 224 225 225			Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E E E E E E E E H d H H H H	ta fr from from from from from from from fr	om A B C D E H L X A Om A B C D	
SUE SUE SUE SUE SUE SUE SUE SUE SUE SUE	A B C D E H X X data A B C D E		174 224 111 062 113 174 115 176 117 225 117 225 111 062 113 174	224 224 224 224 224 224 224 224 224 225 225			Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E E E E E H H H H H H	ta fr from from from from from from from fr	OM A B C D E H L X A OM A B C D E E	
SUE SUE SUE SUE SUE SUE SUE SUE SUE SUE	A B C D E H X X data A B C D E H		174 224 111 062 113 174 115 176 117 225 111 062 113 174 115	224 224 224 224 224 224 224 224 224 225 225			Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E E E E E E H da H H H H H H	ta fr from from from from from from from fr	OM A B C D E H L X A B C D E H L X A H C D E H L X A H C D E H L X A A B C D E H L X A A B C D E H C C A C D E H C C D E H C D E H C D E H C C D E D E H C C D E C D E C D E C D E C D E C D E C D C C D E C D C C C C C C C C C D C C D C C C C D C C C C C D C	
SUE SUE SUE SUE SUE SUE SUE SUE SUE SUE	A B C D E H X A B C D E H L		174 224 111 062 113 174 115 176 117 225 215 211 225 111 062 113 174 115 176	224 224 224 224 224 224 224 224 224 225 225			Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E E E E H H H H H H H H	ta fr from from from from from from from fr	OM A B C D E H L X A B C D E H L X A B C D E H L X A B C D E H L X A B C D E H L X A B C D E H L X A B C D E H L C D E H A C D E H L C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E C C D E H A C C D E C D E C D E C C D E C C D E C C D C C D E C C D C C C C	
SUE SUE SUE SUE SUE SUE SUE SUE SUE SUE	A B C D E H X A B C D E H L		174 224 111 062 113 174 115 176 117 225 111 062 113 174 115	224 224 224 224 224 224 224 224 224 225 225			Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E E E E H H H H H H H H	ta fr from from from from from from from fr	OM A B C D E H L X A B C D E H L X A B C D E H L X A B C D E H L X A B C D E H L X A B C D E H L X A B C D E H L C D E H A C D E H L C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E H A C D E C C D E H A C C D E C D E C D E C C D E C C D E C C D C C D E C C D E C C C C	
SUE SUE SUE SUE SUE SUE SUE SUE SUE SUE	A B C D E H X A B C D E H L		174 224 111 062 113 174 115 176 117 225 215 211 225 111 062 113 174 115 176	224 224 224 224 224 224 224 224 224 225 225			Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract Subtract	da E E E E E E E E E E E H H H H H H H H	ta fr from from from from from from from fr	A B C D E H L X A C D E H L X D E H L X	

SUL SULA SULB SULC SULD SULE SULH SULL SULX	data	176 024 vvv 226 111 226 062 226 113 226 174 226 115 226 176 226 117 226	Subtract data from L Subtract L from A Subtract L from B Subtract L from C Subtract L from D Subtract L from E Subtract L from H Subtract L from L Subtract L from X
SUM SUMA SUMB SUMC SUMD SUME SUMH SUML SUMX		227 227 111 227 062 227 113 227 174 227 115 227 176 227 117 227	Subtract (HL) from A Subtract (HL) from A Subtract (HL) from B Subtract (HL) from C Subtract (HL) from D Subtract (HL) from E Subtract (HL) from H Subtract (HL) from L Subtract (HL) from X
SUX	data	117 024 vvv	Subtract data from X
SYNC		010	Generate sync pulse
UR		111 102	User return
XR XRA XRAA XRAA XRAA XRAC XRAD XRAA XRAA XRAL XRAL XRAX	data data	054 vvv 250 054 vvv 250 111 250 062 250 113 250 174 250 175 250 176 250 117 250	Exclusive OR data to A Exclusive OR A to A Exclusive OR data to A Exclusive OR A to A Exclusive OR A to B Exclusive OR A to B Exclusive OR A to C Exclusive OR A to D Exclusive OR A to E Exclusive OR A to H Exclusive OR A to L Exclusive OR A to X
X R B X R B X R B A X R B B X R B C X R B D X R B E X R B H X R B L X R B X	data	251 111 054 vvv 251 111 251 062 251 113 251 174 251 115 251 176 251 117 251	Exclusive OR B to A Exclusive OR data to B Exclusive OR B to A Exclusive OR B to B Exclusive OR B to C Exclusive OR B to D Exclusive OR B to E Exclusive OR B to H Exclusive OR B to L Exclusive OR B to X

B-31

X RC X RC X RCA X RCB X RCC X RCC X RCD X RCE X RCH X RCL X RCX	data	252 062 054 vvv 252 111 252 062 252 113 252 174 252 175 252 176 252 117 252	Exclusive OR C to A Exclusive OR data to C Exclusive OR C to A Exclusive OR C to B Exclusive OR C to C Exclusive OR C to D Exclusive OR C to E Exclusive OR C to H Exclusive OR C to L Exclusive OR C to X
X RD X RD X RDA X RDB X RDC X RDD X RDE X RDH X RDL X RDL X RDX	data	253 113 054 vvv 253 111 253 062 253 113 253 174 253 115 253 176 253 117 253	Exclusive OR D to A Exclusive OR data to D Exclusive OR D to A Exclusive OR D to B Exclusive OR D to C Exclusive OR D to D Exclusive OR D to E Exclusive OR D to H Exclusive OR D to H Exclusive OR D to L Exclusive OR D to X
X RE X RE X REA X REB X REC X RED X REE X REH X REL X REL X REX	data	254 174 054 vvv 254 111 254 062 254 113 254 174 254 175 254 176 254 117 254	Exclusive OR E to A Exclusive OR data to E Exclusive OR E to A Exclusive OR E to B Exclusive OR E to C Exclusive OR E to D Exclusive OR E to E Exclusive OR E to H Exclusive OR E to L Exclusive OR E to X
X RH X RHA X RHA X RHB X RHC X RHD X RHD X RHE X RHH X RHL X RHX	data	255 115 054 vvv 255 111 255 062 255 113 255 174 255 175 255 176 255 117 255	Exclusive OR H to A Exclusive OR data to H Exclusive OR H to A Exclusive OR H to B Exclusive OR H to C Exclusive OR H to D Exclusive OR H to E Exclusive OR H to H Exclusive OR H to L Exclusive OR H to L Exclusive OR H to X

X RL X RL A X RL A X RL C X RL C X RL C X RL E X RL H X RL L X RL L	data	256 176 054 vvv 256 111 256 062 256 113 256 174 256 115 256 176 256 117 256	Exclusive Exclusive Exclusive Exclusive Exclusive Exclusive Exclusive Exclusive Exclusive Exclusive	OR OR OR OR OR OR	data L to L to L to L to L to L to L to L to	to A B C D E H L	L
X RM X RMA X RMB X RMC X RMD X RME X RMH X RML X RML X RMX		257 257 111 257 062 257 113 257 174 257 175 257 176 257 117 257	Exclusive Exclusive Exclusive Exclusive Exclusive Exclusive Exclusive Exclusive Exclusive	OR OR OR OR OR OR	(HL) (HL) (HL) (HL) (HL) (HL) (HL)	た た ひ む ひ む ひ む ひ む ひ む ひ む ひ む ひ む ひ む ひ む ひ む ひ む ひ む ひ む む む ひ む む む む む む む む む む む む む	A B C D E H L
XRX	data	117 054 vvv	Exclusive	OR	data	to	Х

1

APPENDIX C. RESERVED MNEMONICS

The mnemonics in the following list are predefined for use in the instruction field as SNAP/3 directives. Macros must be assigned names which do not conflict with these predefined mnemonics.

ALIGN	IFGT	IFZ	MIFGE	ORG	TESTGT	ТМ
DA	IFLE	INC	MIFGT	PROG	TESTLE	ΤP
DC	IFLT	LIS	MIFLE	RPT	TESTLT	USE
END	IFNE	LIST	MIFLT	SET	TESTNE	XIF
EQU	IFNG	LOC	MIFNE	SK	TESTNG	
ERR	IFNL	MACRO	MIFNG	SKIP	TESTNL	
IF	IFNSTR	MEND	MIFNL	SNAPOPT	TESTNZ	
IFC	IFNZ	MIF	MIFS	TESTC	TESTS	
IFEQ	IFS	MIFC	MLIB	TESTEQ	TESTZ	
IFGE	IFSTR	MIFEQ	MXIF	TESTGE	TITLE	

C-1

The mnemonics in the following list are the Datapoint 2200 instructions, and may not be used as macro names unless the "U" option appears on the SNAP/3 command line.

AC	CFL	JFL	LDA	MLB	ORHA	SLCA
ACA	CFN	JFN	LDB	MLC	ORL	SLN
ACAA	CFP	JFP	LDC	MLD	ORLA	SRC
ACB	CFS	JFS	LDD	MLE	ORM	SRCA
ACBA	CFZ	JFZ	LDE	MLH	ORMA	SRN
ACC	CP	JMP	LDH	MLL	POP	SU
ACCA	CPA	JTB	LDL	MSA	PUSH	SUA
ACD	CPAA	JTC	LDM	MSB	RET	SUAA
ACDA	CPB	JTE	LE	MSC	RETURN	SUB
ACE	CPBA	JTL	LEA	MSD	RFB	SUBA
ACEA	CPC	JTN	LEB	MSE	RFC	SUC
A CH	CPCA	JTP	LEC	MSH	RFE	SUCA
ACHA	CPD	JTS	LED	MSL	RFL	SUD
ACL	CPDA	JTZ	LEE	ND	RFN	SUDA
ACLA	CPE	JUMP	LEH	NDA	RFP	SUE
ACM	CPEA	LA	LEL	NDAA	RFS	SUEA
ACMA	СРН	LAA	LEM	NDB	RFZ	SUH
AD	CPHA	LAB	LH	NDBA	RTB	SUHA
ADA	CPL	LAC	LHA	NDC	RTC	SUL
ADAA	CPLA	LAD	LHB	NDCA	RTE	SULA
ADB	CPM	LAE	LHC	NDD	RTL	SUM
ADBA	CPMA	LAH	LHD	NDDA	RTN	SUMA
ADC	CTB	LAL	LHE	NDE	RTP	SYNC
ADCA	CTC	LAM	LHH	NDEA	RTS	XR
ADD	CTE	LB	LHL	NDH	RTZ	XRA
ADDA	CTL	LBA	LHM	NDHA	SB	XRAA
ADE	CTN	LBB	LL	NDL	SBA	XRB
ADEA	CTP	LBC	LLA	NDLA	SBAA	XRBA
ADH	CTS	LBD	LLB	NDM	SBB	XRC
ADHA	CTZ	LBE	LLC	NDMA	SBBA	XRCA
ADL	DE	LBH	LLD	NOP	SBC	XRD
ADLA	DI	LBL	LLE	OR	SBCA	XRDA
ADM	EI	LBM	LLH	ORA	SBD	XRE
ADMA	EX	LC	LLL	ORAA	SBDA	XREA
ALPHA	EXA	LCA	LLM	ORB	SBE	XRH
BC	HALT	LCB	LMA	ORBA	SBEA	XRHA
BETA	HL	LCC	LMB	ORC	SBH	XRL
CALL	IN	LCD	LMC	ORCA	SBHA	XRLA
CCL	INA	LCE	LMD	ORD	SBL	XRM
CCLA	INPUT	LCH	LME	ORDA	SBLA	XRMA
CFB	JFB	LCL	LMH	ORE	SBM	
CFC	JFC	LCM	LML	OREA	SBMA	
CFE	JFE	LD	MLA	ORH	SLC	

The mnemonics in the following list are the additional Datapoint 5500 instructions, and may not be used as macro names unless the "U" option appears on the SNAP/3 command line.

ACAB ACAC ACAD ACAE ACAH ACAL ACAX ACBB ACBC ACBD ACBC ACBD ACBL ACBL ACBL ACBL ACBL ACBL ACBL ACCD ACCC ACCD ACCC ACCD ACCC ACCD ACCC ACCD ACCC ACCD ACCC ACCD A	ACHE ACHH ACHL ACHX ACLB ACLC ACLD ACLE ACLH ACLL ACLX ACMB ACMC ACMD ACME ACMC ACMD ACME ACMH ACML ACMX ACML ACMX ADAB ADAC ADAB ADAC ADAA ADAA ADAA ADAA	ADCL ADCX ADDB ADDC ADDD ADDD ADDE ADDH ADDL ADDL ADDL ADED ADEC ADED ADEE ADEE ADEE ADEE ADEE	BCP BCV BFAC BFSB BFSS BFSS BFSS BRL BRLA BRLB BRLC BRLD BRLE BRLL BRLL BRLL BRLL BRLL BRLL BRLL	CPAL CPAX CPBB CPBC CPBD CPBE CPBH CPBL CPBX CPCB CPCC CPCC CPCC CPCC CPCC CPCC	CPLC CPLD CPLE CPLH CPLL CPLX CPMB CPMC CPMD CPME CPMH CPML CPML CPMX CPX DECI DECP DFAC DFSB DL DPL DPS DS EJMP EUR EXB EXC EXD EXE EXH EXL EXX INB INCI INCP IND	INX LFID LFII LX MIN MOUT NDAB NDAC NDAD NDAC NDAA NDAL NDAL NDAL NDBB NDBC NDBB NDBC NDBB NDBB NDBB NDBB
ACEL	ADCE	ADME	CPAB	CPHE	INCP	NDDX
ACHD	ADCH	ADX	CPAH	CPLB	INL	NDEE

APPENDIX C. RESERVED MNEMONICS

C-3

The mnemonics in the following list are the additional Datapoint 6600 instructions on the SNAP/3 command line.

BFLRAC	DACM	DMAD	DORM	DXRI	PCP	STLOD
BFLRAD	DACP	DMND	DORP	DXRM	PND	STLOE
BFLRND	DADI	DMOR	DPLR	DXRP	POR	STLOH
BFLROR	DADM	DMSB	DPSR	IDIV	PSB	STLOL
BFLRSB	DADP	DMSU	DSBI	IMULT	PSU	STLOX
BFLRSU	DCPI	DMXR	DSBM	PXR		
BFLRXR	DCPM	DNDI	DSBP	LLDEL	STLO	
COMP	DCPP	DNDM	DSUI	LLINS	STLOA	
COMPS	DIDIV	DNDP	DSUM	PAC	STLOB	
DACI	DMAC	DORI	DSUP	PAD	STLOC	

APPENDIX D. INSTALLATION INSTRUCTIONS

Installation of SNAP/3 requires the following prerequisites:

- 1. Datapoint processor with 5500 instruction set with Disk Operating System
- 2. SORT or FASTSORT Utility
- 3. MIN Utility

The SNAP/3 Macro Assembler is installed by loading the Disk Operating System, inserting the program distribution cassette in the front deck and typing the command:

MIN ;AO

When loading is complete the following module will have been cataloged on your disk:

SNAP3/CMD SNAP/3 Assembler

The following programs will be required for library maintenance and for the conversion of relocatabe to executable (absolute) code.

1. LIBSYS Utility

2. LINK Utility (Version 2.1 or later)

APPENDIX E. INCOMPATABILITIES WITH SNAP AND SNAP/2

- The IFEQ, etc., directives use signed comparisons between their operands; SNAP and SNAP/2 used unsigned comparisons. This may cause different results if two addresses having different high bits are compared. The multiply and divide operators also use signed arithmetic.
- 2. A reference to a multiply defined label will use the most recent previous definition, or the last definition if the label has not been defined previously. With SNAP and SNAP/2, the last definition was always used during pass 2.
- 3. Any extra parameters supplied for directives, instructions, or pseudo-instructions will produce an error flag.
- 4. The ALIGN, TM, and TP directives use the location counter value to determine how much to skip, instead of the address counter. This can only cause different results if the LOC directive is used.
- 5. Under SNAP and SNAP/2, if a local label in a macro appeared on a line containing a call to a second macro, and there was no label on the prototype header of the second macro, an additional line was created at the beginning of the expansion for the second macro call, and the label therefore became global. This is undesirable, so with SNAP/3 the label remains local, no additional expansion is created, and the label is defined with the expected value before the expanded second macro is processed.
- 6. The format of the parameters for the MIFEQ, etc., directives was simplified and generalized. Each parameter is an arbitrary string terminated by the first unforced blank or comma not in quotes. Normal substitution will be made for any macro parameter appearing in either string. No special rules apply if either string is null after substitution. These changes may cause different results if the second string contains macro parameters or concatenation characters.
- 7. The T option will force SNAP/3 to make two passes, and therefore the generated relocatable file will not contain forward reference entries in the external reference table. This option must be used to generate files which are to be

APPENDIX E. INCOMPATABILITIES WITH SNAP AND SNAP/2

E-1

loaded by the DOS relocatable loader (DOS function 15).

- 8. The LIST directive is processed slightly differently to allow LIST directives to be nested. A LIST x statement will not always turn on the listing control flag if several LIST -x statements have appeared in a row (see section 3.22).
- 9. LINK version 2.1 or later must be used to link relocatable programs generated by SNAP/3.
- 10. In SNAP/2 and SNAP/3 the entry point file name defaults to the PROG name, which defaults to the object file name. In SNAP the entry point file name defaults to the source file name.

2-4 # string forcing character \$ location counter symbol 1-3, 2-1, 2-3 ' string delimiter 2-3, 5-5 2-1, 2-3, 2-5, 3-1, 3-2, 3-4, 3-5, 3-10, 4-2 * operator 2-1, 2-2, 2-4 + operator 2-3, 5-2 , delimiter 2-4, 3-4, 3-8 - operator 2-1, 2-2, 2-5 delimiter 2-5 / operator : delimiter 2-2 < operator 2-5 = delimiter 2-2 > operator 2-5 @ macro forcing character 5-8 Absolute object code file 1-1, 1-2, 1-4, 2-2, 2-4, 3-9, 6-1, 6-5 Address counter 1-2, 1-3, 3-1, 3-5, 3-8, 3-10 ALIGN directive 3-1 2-5 AND operator BC pseudo-instruction 4-1 Binary 3-9 CCL pseudo-instruction 4-3 Command line 3-8, 3-9, 6-1 2-1, 2-2, 2-3, 2-7 Comment Concatenation character 5-8 Cross-reference 1-2, 6-2, 6-32-2, 3-6, 3-7, 6-4 D error flag 2-4, 3-1, 3-5, 6-52-3, 2-4, 3-1, 3-2, 3-5, 6-5ruction 4-1DA directive DC directive DE pseudo-instruction Decimal 2-3 Definition 3-8, 3-9 2-1, 3-2, 6-2, 6-5 Dictionary 2-1, 2-3, 3-1 Directive DISPLAY key 6-5 E error flag 2-2, 2-3, 2-4, 3-1, 3-2, 3-10, 6-4 3-2 END directive 2-2, 6-1, 6-3 Entry point 3-2 EQU directive ERR directive 3-3, 6-5 Error flag 6-2, 6-4 Expansion, macro 3-5, 5-3 Expression 2-1, 2-3, 3-1

INDEX

External definition 2-2, 6-3 2-2, 2-4, 3-1, 3-2, 6-3 External reference F error flag 6-4 2-4, 5-8 Forcing character 2-4, 3-1, 3-3, 3-9, 6-3 Forward reference 5-5 Global label Header, macro 5-1 Hexadecimal 3-9 HL pseudo-instruction 4-1 I error flag 2-3, 3-8, 6-5 IF directive 3-3 INC directive 3-4, 6-4 3-4, 3-5, 6-1 Include Instruction field 2-1, 2-3 IOR operator 2-5 KEYBOARD key 6-5 LIB utility 5-2 LINK utility 1-1, 1-2, 1-4 LIST directive 3-4 LOC directive 3-1, 3-5, 3-8, 3-10 5-6 Local label 1-3, 3-5 Located mode Location counter 1-2, 3-1, 3-5, 3-8, 3-10 2-1, 2-3, 3-5, 3-6, 5-1 MACRO directive MEND directive 3-6, 5-1 MIF directive 5-9 MLIB directive 3-6, 5-2, 6-4 MLr pseudo-instruction 4-2 MOD operator 2-5 MSr pseudo-instruction 4-2 Multiply defined label 2-2, 6-3 MXIF directive 5-10 3-4. 5-7 Nesting Number 2-3 0 error flag 6-5 1-4, 6-1 Object file Octal 2-3 Operator 2-4 Option 6-1 2-5 OR operator ORG directive 3-6 P error flag 3-3, 6-5 PAB (program address block) 1-3, 3-5, 3-6, 3-10 Primary transfer address 3-2, 6-3 3-7 PROG directive Prototype, macro 3-6, 5-1 Pseudo-instruction 3-8, 4-1

Relocatable object code file 1-1, 1-2, 1-4, 2-4, 3-5, 3-6, 3-9, 6 - 1RPT directive 3-5, 3-7 Secondary transfer address 3-2 SET directive 3-5, 3-7 SKIP directive 3-8 SLN pseudo-instruction 4-3 SNAPOPT directive 3-8 Source file 6-1 SRN pseudo-instruction 4-2 Star flag 2-5 Statement 2-1 2-3, 3-2 String Substitution, macro 5-4 TEST directive 2-4, 3-1, 3-9, 6-5 TITLE directive 3-10 TM directive 3-10 TP directive 3-10 2-4, 3-11, 6-5 U error flag Undefined symbol 2-4, 3-3, 6-5 Unused label 3-4, 6-3 3-5, 3-6, 3-10 USE directive XA pseudo-instruction 4-2 3-3, 3-11 XIF directive XOR operator 2-5 5-8 macro concatenation character

Manual Name_____

Manual Number_____

READER'S COMMENTS

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

.

Name		_Date	
Organization			
Street			
City	_ State	Zip Code	

All comments and suggestions become the property of Datapoint.

Fold Here