
OAT APOINTDOS BASICPLUS
BASICPLS .

. User's Guide

Version 2

April, 1980

Document No. 50335

DATAPOINT

PREFACE

BASICPLUS is an interactive, interpretive processor for the

BASIC language.

BASICPLUS is available for two types of processors in the

Datapoint product line. The first runs on any 5500 instruction

set processor with at least 36K of memory, and requires any DOS

version 2.4 or highe~. The other version executes only on the

1~UO processor with the 64K memory option. This version requires

DOS.h version 2.5 or higher. BASICPLUS is structurally similar to

and upwards compatible from DOSBASIC for the Datapoint 2200 DOS

and Datapoint Diskette 1100. It is also upwards compatible from

the 5500 DOS BASIC, BASIC55.

NOTICE

Datapoint strongly recommends that its customers use Datapoint

Customer supplies. These disks, diskettes, cassettes, ribbons

and other products are certified by Datapoint to meet all Datapoint

Hardware specificatio.s for consistent optimum performance.

i Copyright @ 1980 Datapolnt Corporallon. All Rlghls Res8lVed.

TABLE OF CONTENTS

page

1. INTRODUCTION TO DOS BASICPLUS 1-1
1.1 History and Purpose of BASIC 1-1
1.2 Datapoint BASICPLUS 1-1

1.2.1 Relationship to the Proposed National Standard 1-2
1.2.2 Features 1-2
1.2.3 Differences from Previous Datapoint BASICs 1-3

1.2.3.1 Multiple-Statement Uelimiter 1-3
1.2.3.2 The TAB Function 1-4
1.2.3.3 Processor and Memory 1-5
1.2.3.4 Write-Enable During Loading 1-5

1.3 The Notation Used in This Guide 1-5

2. USING BASICPLUS
2.1 Installing BASICPLUS
2.2 Loading BASICPLUS
2.3 Printer Configuration
2.4 BASICPLUS With Overlays

3. AN INTRODUCTION TO DATAPOINT BASICPLUS

4. MODES
4.1 Command Mode
4.2 Input Mode
4.3 Running Mode
4.4 Changing Modes and ~topping the Display

. 5. CONSTANTS ANU VARIABLES
5.1 Constants

5.1.1 Numeric Constants
5.1.1 .• 1 Integer Constants
5.1.1.2 Real Constants
5.1.1.3 Values of Numeric Constants

5.1.2 String Constants
5.2 Variables
5.3 Advanced Naming Techniques
5.4 Implementation Limits on Values

6. STATEMENTS
b.1 Spacing
0.2 Remark Statements
6.3 Multiple-Statement Lines

2-1
2-1
2-1
2-1
2-3

3-1

4-1
4-1
4-1
4-1
4-2

5-1
5-1
5-1
5-1
5-1
5-2
5-2
5-3
5-5
5-5

6-1
6-1
6-2
6-2

7. NUMEHIC EXPRESSIONS AND THE ASSIGNMENT (LET) STATEMENT 7-1

ii

7.1 Numeric Expressions
7.2 Precedence of Operations

7.2.1 Examples
7.3 Functions

7.3.1 Numeric functions
7.3.2 Transcendental functions

7~4The Assignment (LET) Statement
7.5 The RANDOMIZE Statement

b. USER-DEFINED FUNCTIONS

9. C0NTROL'STATEMENTS
9.1 The GOTO Statement

9.1.1 GOTO Without A Line-Number
9.2 The UOSUB and RETUR~ Statements I

9.2.1 GOSUB Nesting
9.2.2 GOSUB Without a Line-Number
9.2.3 Debugging With GOSUB

9.3 ~he IF Statement
9.3.1 Testing for Exact Equality
9.3.2 Boolean Expressions

9.3.2.1 The KEY Condition
9.3.2.2 Boolean Expressions in Command Mode

9.~ The ON GOTO Statement
9.5 The ON GOSUB Statement

10. ThE FOR AND NEXT STATEMENTS
10.1 Forward Loops and Backward Loops
10.2 Modifying Loop-Controlling Variables
10.3 Nested FOR-NEXT Loops
10.4 Active and Inactive FOR-NEXT Loops
10.5 Examples of FOR-NEXT Loops

11. OUTPUT STATEMENTS: ~RINT, BEEP, AND CLICK
11.1 The fRINT Statement

11.1.1 The TAB Function
11.1.2 Advanced Display Techniques

11.2 The BEEP and CLICK Statements

12. ThE INPUT STATEMENT
12.1 Strings in INPUT

13. THE READ AND DATA STATEMENTS, AND RELATED MATTERS
13.1 Strings in DATA Statements

14. THE STOP AND END STATEMENTS

15. ARRAYS, ThEIR DECLARATION AND MANIPULATION

iii

7-1
7-2
7-2
7-3
7-3
7-4
7-4
7-5

6-1

9-1
9-1
9-2
9-2
9-2
9-3
9-3
9-3
9-5
9-5
9-6
9-6
9-6
9-7

10-1
10-1
10-2
10-2
10-2
10-3

1 1- 1
1 1 - 1
11-3
11-3
11-5

12-1
12-2

13-1
13-2

14-1

15-1

15.1 The DIM Statement
15.1.1 Use of Arrays

15.2 Matrix Operations - The MAT Statement
15.2.1 The Matrix Assignment Statement
15.2.2 The Matrix Arithmetic Statements
15.2.3 Scalar Multiplication of a Matrix
15.2.4 The MAT INPUT Statement
15.2.5 The MAT READ Statement
15.2.6 The MAT PRINT Statement
15.2.7 The MAt Z~R Function
15.2.8 The MAT CON Function
15.2.9 The MAT IDN Function
15.2.10 The MAT TRN Function
15.2.11 The MAT INV Function
15.2.12 The DET Function

16. STRINGS
1b.1 String Constants
16.2 String Variables

16.2.1 Simple String Variables
16.2.2 String Lists

16.3 Substrings
16.3.1 The Equivalence of Characters and ASCII Values

16.4 Assignment to Strings and Substrings
. 16.4.1 String Input and Output

16.5 String Expressions
10.5.1 String Comparison
16.5.2 String Concatenation
16.5.3 String Editing (The USING Operator)

16.5.3.1 Numeric Fields
16.5.3.1.1 Integer Field
16.5.3.1.2 Fixed Point Field
16.5.3.1.3 Zero-Filled Field
16.5.3.1.4 Asterisk-Filled (Check Protect) Field
10.5.3.1.5 Comma Insertion Field
16.5.3.1.6 Floating Dollar Sign Field

16.5.3.2 Scientific and Engineering Notation Fields
1b.5.3.3 Character Field
1b~5.3.4 Values Too Large for Their Formats
16.5.3.5 Composite Formats
16.5.3.6 Additional Precision Displayable

16.5.4 The MIN and MAl Operators
16.5.5 The INSTH Operator

16.5.5.1 Examples of String Search (INSTR)
16.5.6 The LEN Function

16.5.6.1 Examples of LEN in Use
16~5.7 The VAL Function

Iv

15-1
15-3
15-3
15-3
15-4
15-5
15-5
15-6
15-7
15-~
15-8
15-9
15-9

15-10
15-10

16-1
16-1
16-1
16-2
16-2
16-2
16-3
16-4
16-5
16-5
16-6
16-7
16-7
16-8
16-b
16-b
16-9
16-9

16-10
16-10
16-11
16-11
16-12
16-12
16-13
16-13
16-13
16-14
16-14
16-15
16-15

17. FILE INPUT AND OUTPUT
17.1 Disk File Structure

17.1.1 Record Structure
17.1.2 End-of-File Mark

17.2 File Accessing Methods
11.2.1 Physical Record Access (Direct Acoess)
17.2.2 Logical Record Acoess (Sequential Aooess)
17.2.3 Indexed Sequential Reoord Aooess (lSAM) .

17.3 General File 1/0 Operations
17.3.1 The OPEN and TOPEN Statements
17.3.2 The END# Statement
17.3.3 The EOF Condit~on
17.3.4 The NOFILE Condition
17.3.5 The SIZ Operator

17.4 Sequential File 1/0
17.4.1 The File PRINT Statement
17.4.2 The File INPUT Statement
17.4.3 Example of Sequential File 1/0

17.5 Direot Aooess File 1/0
17.5.1 The Rt:-STORE iJ Statement

17 .6 ISAfii Files
1~.b.1 The IOPEN Statement
17.0.2 The RES10R~ by Key Statement
17.0.3 The NEXTKEY Statement
17.6.4 The NOKEY Condition
17.6.5 The I~SERT Statement
17.6.6 The UPDATE Statement
17.6.1 The DELETE Statement
17.0.~ The Struoture of Index Files

17.7 File hints

lb. PRINTER O~TPOT
lb.l ~he @ Function
lb.2 General Remarks od ~rinter Usag~
1ti.3 Formatting Printer Output
1d.ij Plotting With The Servo Printer

lY. ~ROGRAh EDITI~G
lY.1 Statement Modifioation
19.2 Statement Deletion

20. uTILITY COMMANDS
20.1 Program Manipulation and Termination

20.1.1 The RUH Command
20.1.2 The REhumber Command
20.1.3 The AUTO Command
20.1.4 The ERASE Command
20.1.5 The SCRATCH Command

v

17-1
17-1
17-1
17-3
17-3
17-4
17-4
17-4
17-5
17-5
17-6
17-7
17-7
17-8
17-8
17-b
17-9

17-10
17-10
17-10
17 -11
17-12
17-12
17-13
17 -"1 3
17-14
17-14
17-15
17-16
17-18

18-1
18-1
lb-2
1b-2
18-3

19-1
19-1
19-2

20-1
20-1
20-1
20-2
20-3
20-4
20-4

20.1.6 The DOS Command
20.2 Program Investigation

20.2.1 The LIST Command
20.2.2 The FREE Command
20.2.3 The CATalog Command
20.~.4 The VARS Command

20.3 Program Libraries
20.3.1 The SAVE Command
20.3.2 The GET Command
20.3.3 The APPend Command
20.3.4 The ROLLOUT Command
20.3.5 The SCRATCH Command for Files

I
21. PROGRAM CHAINING

21.1 Chaining Within BASICPLUS
21.2 Chaining With DOS CHAIN

22. hINTS ON WRITING PACKAGES

23. OPTIMIZING USAGE OF WORK SPAt~

Appendix A. INSTRUCTION SUMMARY

Appendix B. RESERVED NAMES

Appendix C. NUMERIC VALUES OF ASCII CHARACTERS

Appendix D. ERROR MESSAGES

Appendix E. VALID ALPHABETIC CHARACTERS

vi

20-5
20-5
20~5

20-6
20-6
20-7
20-7
20-7
20-8
20-9
20-9

20-10

21-1
21-1
21-2

22-1

23-1

A-1

6-1

C-1

D-1

B-1

CHAPTER 1. INTRODUCTION TO DOS BASICPLUS

1.1 History and Purpose of BASIC

BASIC, Beginner's All-purpose Symbolic Instruction Code, was
initially developed at Dartmouth College in 1963-64 under the
direction of Professors John G. Kemeney and Thomas E. Kurtz, with
partial support from a National Science Foundation grant.

BASIC is distinguished from other programming languages in
its concern for the unsophisticated or novice user. While BASIC
is a general-purpose p~ogramming language, it is designed
primarily to be easy to learn, easy to use and easy to remember.

BASIC programs are meant to be transparent; that is, they
should do what would be expected of them on the basis of
examination. Only a little knowledge of BASIC is needed to solve
simple problems. Default conventions handle programming details
for the beginner, enabling one to print before learning about
formatting, and to use subscripted variables before learning about
dimensioning. More advanced features of the language allow
programmers to accomplish more sophisticated tasks and to override
defaults.

1.2 Datapoint BASICPLUS

Datapoint BhSICPLUS is an enhancement of tand is upwards
compatible from) previous Datapoint BASICs: DOSBASIC for the
Datapoint 2200 DOS and Datapoint Diskette 1100, as well as the
Uatapoint 5500 version of DOS BASIC, BASIC55.

Since an interactive environment facilitates learning,
BASICPLUS is fully interactive. statements can be entered
directly to bASICPLUS and be individually checked for syntactic
correctness. Any syntax errors are reported to the user
immediately, thereby assistin~ both the programming and the
learning process.

BASICPLUS can GET program text from (and SAVE· program text
to) disk files. While BASICPLUS has some editing facilities, the
GET/SAVE feature enables the use~ tocre~te or ~odify programs
under EDIT and also to transfer BASIC programs from other systems.

CHAeTER 1. INTRUDUCTION TO DOS BASICPLUS 1-1

1.2.1 Relationship to the Proposed National Standard

In the period from 1964 to 1974, many computer manufacturers
and educational institutions produced implementations of BASIC,
each differing slightly from the other. In January, 1974, the
American National Standards Institute convened a subcommittee
(X3J2) to produce a standard for BASIC. By 197ti, the subcommittee
produced a proposed standard, BSR X3.60 -- Programming Langua~e
Minim'al BASIC. 'l'his proposed standard has not yet been ratified
byA~Sl. The subcommittee has continued its work, and is
developing a substantially more comprehensive standard for BASIC
at this time.

Some of the new features of BASICPLuS reflect the proposed
standard; others are enhancements beyond the features of ANS
tviinimal BASIC.

After the Proposed National Standard is ratified, Datapoint
intend~ to revise BASICPLUS to be in conformance with ANS Minimal
BASIC. Programs written in BASICPLUS (or any of its predecessors)
may require modification in order to be run on such a later
version.

1.2.2 Features

the features of BASIC PLUS provide a complete integration of
Datapoint BASIC with all other Datapoint systems and offer the
user not only an attractive independent BASIC system, but a
powerful additional tool to enhance existing Datapoint systems.
These features include:

• Numeric operations (+, -, *, I, ., MIN, MAX)

• Numeric functions (SQR, INT, RND, ABS, SGN)

~ Transcendental functions (EIP, LOG, SIN, COS, TA~, ATN)

~ Helational operators «, =, >, <=, >=, <>, IF)

• Logical constants and operators (TRuE, FALSE, ANU, OR, NOT)

* Chaining and keyboard-controlled execution

• Disk input lout put in standard Datapoint file format

~ Local, remote, or servo printer ~upport confijured
automatically. or by specification .

1-2 DATAPOINT'DOS BASICPLUS

~ Printer column width configured automatically or by
specification

* Unused printer support area released and added to user's
work area

• Desk calculator execution of expressions

• Complete error messages and built-in debug aids

• Workspace save and restore on disk in compatable Datapoint
file format

• Built-in program editor

• Long variable names to improve readability

* Multiple statements per line

• String and string array processing

~ Co-ordinate micro positioning of servo printer for plotting

1.2.3 Differences from Previous Datapoint BASICs

BASICPLUS is upwards compatible from DOSBASIC and BASIG55
with a few exceptions.

1.2.3.1 Multiple-Statement De~1miter

Although in most cases, semicolons were interchangeable with
commas (e.g. READ A;B) in previous versions of BASIC, BASICfLUS
uses the semicolon as a multiple-statement separator; therefore,
existing programs which use semicolon in place of comma must be
modified before they will run on BASICPLUS. This change was
necessary in order to make full use of the multiple-statement
delimiter.

The PRINTs in a multiple-statement line must tiot use the
comma as the multiple-statement delimiter. For example:

PRINT I,NEXT I

must be changed to:

CHAPTER 1. INTRODUCTION TO DOS BASICPLUS 1-3

PRINT I,jNEXT I

where the comma causes the PRINT statement to use zoned printing,
and the semicolon is the mUltiple-statement separator. The
semicolon has no effect on the PRINT statement except to separate
it from its successor. Statem~nts such as:

PRINT IjNEXT I

must be changed to:

PRINT Ij;NEXT I

if the user wishes to use unzoned output •. Again, the first
semicolon causes the PRINT statement to use compre,sed printing
and the second semicolon is the multipLe-statement character.

It is important to note that:

PRINT I;NEXT I

and

PRINT I;;NEXT I

are not equivalent in BASICPLuS, in that the first example will
output a single value per line, while the second will print
multiple values per line.

1.2.3.2 The TAB Function

In previous versions of Vatapoint BASIC, the PRINT
statement's TAB function"was defined in terms of "offset from
leftmost print position" (i.e. 0-79). Because the standard BASIC
print statement's TAB function is defined in terms of "addressing
the n-th print position" (i.e. 1-&0), BASICPLUS has been changed
to impl~ment tabbing in this fashion. The HP function can be used
to position the cursor in the "offset" manner, and also to tab
backwards as previous versions of DOS BASIC allowed (see chapter
11). In addition, previous versions of BASIC allowed any type of
separator after the TAB function te.g. PRINT "HELLO";TAB
1U;"T~~RE")~ BASICPLUS requires that a comma follow the function.
The last example must be changed to: PRINT "HELLO";TAB 10,"THERE".

1-4 DATAPOINT DOS BASICPLUS

1.2.3.3 Processor and Memory

BASIC PLUS ii available for two different Datapoint processor
types. One version requires a 5500 instruction set processor with
at least 3tiK of memory. If more memory is available, then the
user's work space and number of dictionary entries will be
noticeably increased. The other version executes only on the
Datapoint 1500, and requires the 64K memory option. It will run
with or without concurrent jobs active. The user's workspace will
be about 4095 words larger if concurrent jobs are not active.

1.2.3.4 Write-Enable During Loading

When loading BASIC 55 and DOSBASIC, the user was required to
write-enable the disk to allow the program to write a necessary
scratch file. Under BASICPLUS this is no longer necessary. The
disk may be left write-protected.

1.3 The Notation Used in This Guide

The syntax of BASIC PLUS is displayed using a few fundamental
conventions:

• Yords in all capital letters stand for themselves. Words
in lower case letters are the names of other constructs.

• Corner brackets "(" and ">" are placed around words (in
lower case) which name a class of items which can occur
in place of the corner-bracketed name. For example, the
manual specifies the item (digit>"in a place where the
user can enter any digit. Thus,

<letter> (digit>

ceans "any letter followed by any digit".

• Square brackets "C" and "]" are used to enclose optional
items or groups of items. For example, if a digit may
optionally be included, the notation would be [(digit».
As another example, if the word "TO" may optionally be
included, the notation is [TO].

• Ellipsis (that is, three consecutive periods " .•• ")
indicates "more of the same~. For example:

CHAPTER 1. INTRODUCTION TO DOS BASIC PLUS 1-5

INPUT <variable> (,<variable> J •••

means "the word 'INPUT', followed by a variable name,
followed optionally by one or more variable names
separated from their predecessors by commas".

• The vertical bar "I" indicates an ~ither-or chbice.
Thus,

<letter> [<letter> I <digit> J •••

means "a letter, followed optionally by a series of one
or more letters or digits".

A group of definitions listed one above another also
indicates an either-or"choice.

1-6 DATAPOINT DOS BASICPLUS

CHAPTER 2. USING BASICPLUS

2.1 Installing BASICPLUS

bASIC PLUS for 5500-type processors is distributed on both
cassettes and diskettes. The 1500 version is available only on
diskette. If BASIC PLUS is received on a diskette, the program is
ready to execute simply by inserting the disk~tte into an
available drive. If BASICPLUS is received on a cassette, however,
the following procedure must be used to catalogue the program onto
a Disk Operating System disk:

·1. Load the DOS system.

2. Place the cassette in the front deck.

3. Type: MIf.l ; A

when the MIN utility terminates, BASIC PLUS is fully installed
and ready for use. If you wish to rename BASICPLUS, type:

NAME BASICPLS/CMD,<n.me>

2.2 Loading BASICPLUS

To activate BASICPLuS, enter:

BASIC£lLS

2.3 Printer Configuration

BASIC PLuS configures the on-line printer having the lowest
address lservo, local, or remote). If no printer is found to be
on-line, then no printer will be enabled.

To configure a specific printer (or to configure a servo
printer for micro-plotting), type the command with additional
options:

BASICPLS;<p> [<line width)]

ChAPTER 2. USING BASICPLUS 2-1

where <p> is L, R, S, M, or N, ~nd <Line width> is the width of
the printer line.

"L" configures a local printer, default width: 132
"fin configures a remote printer, default width: 79
US" configures a servo printer, default width: 132
"M" configures a servo printer for micro-plotting, default

width: 132
"N" specifies that no printer shall be configured.

For example, if

BASICPLS;S100

was entered, a servo printer would be configured with a line width
of 100 characters.

If a specific printer is requested, but is not on line, then
a message to this effect will be displayed and no printer will be
configured.

11' no printer is configured, then the PRINT #4 command
becomes illegal. Unused printer support area is automatically
added to the user's work area.

No printing is allowed in columns beyond the line-width
configured.

A remote printer is assumed to be 30 cps and 80 columns wide
through the 'BS-232 connection of a 9400. When using a local or
servo printer, make sure it is .S2.n. and .Q.n-~ during load.

Note: The 1500 version of BASICPLUS supports only serial
printers connected to the processor printer channel. The program
will not configure a printer unless specified by the "L" option
(see above). The printer is assumed to be 132 columns wide. The'
printer does not need to be on-line during initializaton, but if
PRINT statements are executed to a non-existent printer, BASICPLUS
may hang.

2-2 . DATAPOINT DOS BASIC PLUS

2.4 BASICPLUS With Overlays

In order to allow more user space for larger programs, the
user can load a special version of BASICPLUS which has overlays.
The first overlay consists of the line scanner and the error
messages. The second overlay consists of the execution routines.

While a program is being loaded from disk or typed in from
the keyboard, the part of BASICPLUS which executes the program is
not needed. While a program is being RUN, the part of BASICPLUS
which scans lines is not needed. By having these two parts of
BASICPLUS as overlays, the user acquires the extra space saved by
not having both parts in memory at the same time.

Tne only disadvantage to using BASIC PLUS with overlays is
that loading overlays takes time. This version of BASIC PLUS will
load and execute programs with exactly the same speed as BASICPLUS
without overlays, but there will be a noticeable pause when
changing from scanning to executing or vice-versa, due to overlay
loading.

To select the overlay version of BASICPLUS, type "0" after
the semicolon on the command line in DOS. The "0" option may
either precede or follow the printer configuration option, if one
is required. Normal ways of loading the overlay version of
bASIC PLUS are:

BASICPLS;O
BASICPLSjOL
BASICPLSjNO
BASICPLSjOS115
BASICPLSjR1250

The message "OVERLAY VERSION" is displayed on the screen when
that version of BASICPLUS is loaded.

CHAPTER 2. USING BASIC PLUS 2-3

CHAPTER 3. AN INTRODUCTION TO DATA POINT BASICPLUS

Although this User's Guide is designed primarily as a
reference tool, this chapter is an introductory tutorial to
BASICPLUS. Ideally, the novice should be s~ated at a processor,
keying text in and observing the response of BASICPLUS.

Type the command "BASICPLS" and press the ENTER key. This
cau~es the Disk Operating System to load BASICPLUS. There will be
a noticeable pause as BASICPLUS is being loaded and working areas
are initialized.~hen the program is loaded, it displays a messa~e
identifying the version of BASICPLUS that you have loaded. Any
messages to remind you of release changes are also displayed here .

. The next line tells which printer, if any, has been enabled. The
next to the last line is a reminder that you are starting out with
a clear workspace--that is, a workspace in the computer that
contains no variable or programs.

The message "READY" indicates that BASIC is ready to accept a
new command. Then the cursor, a little block of light that
flashes on and off, appears on the screen. The presence of the
cursor is your cue that BASIC is waiting for you to type
something. When it says "R~ADY" and flashes the cursor, it means
that it wants you to type some command to the BASIC system.

Try typing

and finish by pressing the ENTER key. BASIC interprets this as a
command to calculate 217 multiplied by 0.06 and print the result.
The answer can be interpreted as the interest on $217 at 6) for
one year. This is an example of the desk calculator mode of
BASIC •. Any numeric expression typed in as a BASIC command will
print the evaluated answer.

If you followed the above instructions, BASIC will have
printed "READY" again and is flashing the cursor. To demonstrate
the natural logarithm function, try typing

LOG (10)

which will print out the value of the natural logarithm of ten.

CHAPTE~ 3. AN INTRODUCTIONT0 DATA POINT BASICPLUS 3-1

BASIC has many operations and functions, including:

+ Add
- Subtract
it Multiply
/ Divide

Raise to a power
SIN Sine
COS Cosine
TAN Tangent
ATN Arctangent
INT Largest integer
EXP Exponential
LOG Natural logarithm
SQR Square root
RND Random number
ABS Absolute value
SGH Sign
MIH Select the minimum of two expression values
MAl Select the maximum of two expression values

Numeric values can be "remembered" by assigning those values
to numeric variables. A numeric variable is a named entity whose
value can be a number. If, for instance, you type

LET PI=3.1415927

you assign "the value 3.1415927 to the variable named PI. The
variable name PI can then appear any place that numbers could
appear. Try typing

2*PI

to print out the value of two pi. A variable named PI need not
have 3.1415927 as its value. Type

L.I!;T PI=-7

and the variable named PI has taken on the value -7. To prove it",
type

PI

and BASICPLUS should print out -7.

Instructions to BASIC can also be stored as programs. Type

3-2 DATAPOINT DOS BASICPLUS

10 P*{1+R/N)"N

and you have stored an instruction to calculate compounded
interest. ~ is the name of a variable representing the principal,
R is the name of a variable representing the yearly interest rate,
and N is the name of a variable representing the. number of times
in a year the interest is compounded. The number 10 and the space
at the beginning of the line tell BASIC that this is statement
number ten. The actual number in this case is not important, but
when there are many statements, the statement numbers specify the
order in which they will be executed. Note that BASIC did not say
"READY". This happens becaJse BASIC is expecting another line of
the program and it would be a nuisanc~ to have the "READY"
messages interspersed. Never fear, because commands are still
legal.

lou can now set up the values of the variables to be used.

LE'1' P=187
LET R=.0575
LET N=4

for a ·$187 principal at 5 3/4~ interest compounded quarterly. IOU
could now type

P*(1+R/N)"N

and get the answer; but because you have stored that program you
need only type

RUN

and the processor will execute all the stored statements in
numerical order. Since ten is the only stored statement, BASIC
will evaluate the expression np*l1*R/N)ft N" and print the result.

'1'0 see what the result would be for 6) interest, merely
change R by typing

LE'I' R=. 06

and get the new result out by typing

RUh

,CHAPTER 3. AN INTRODUCTION TO DATAPOINTBASICPLUS 3-3

You might want to try changing the principal or the compounding
frequency as well.

At this point you should feel in command of the desk
calculator portion of BASIC. You have also written and stored a
one-line program.

Prepare to start a whole new program by typing

SCRATCH

This erases the current program and variables and leaves you with
a clear workspace. Into this clear .workspace you will place a
program that computes the time necessary for an object that falls
off a desk to hit the floor. Remember, since these statements are
numbered, they are only stored for later execution.

10 REM COMPUTE TIME NECESSARY FOft AN OBJECT FALLING
20 REM OFF A DESK TO HIT THE FLOOR

These lines, 10 and 20, are REMark statements that are used to
document the program. A statement cannot be longer than one line,
so the comment had to be divided into the two lines 10 and 20.

30 PRINT "THIS PROGRAM CALCULTES THE ELAPSED TIME"

Line 30 is a direction to print, when the program is RUN, the
phrase between the quote marks.· Unfortunately, "tALCULATES" was
misspelled. This can be corrected by re-typing the line, then
continuing:

30 PRINT "ThIS PROGRAM CALCULATES THE ELAPSED TIM£"
40 PRINT "REQUIRED FOR A HEAVY OBJECT TO FALL"
50 PRINT "FROM A DESK TO THE FLOOR."

Note that three separate PRINT statements were necessary to type
out the entire message. If you make a mistake, re-type the line
correctly. You can delete an entire line by typing only the line
number. Continuing:

60 PftINT

will print only a blank line .when it is run.

70 PRINT "WHAT IS HEIGHT OF THE DESK (FEET) 1";

will print out the material between the quotes (including the·

3-4 DATA~OINT DOS BASIC PLUS

parentheses and question mark) when it is run. After it has done
so, it will leave the cursor positioned at the end of the
questiori. This is due to the semicolon at the end; without the
semicolon, the cursor would appear on the line below the question.

~O I~PUT HEIGHT

This statement, when RUN, will start flashing the cursor and wait
for you to type in a value for the variable named HEIGHT. The
value you type in will become the value of the variable.

90 LEl TIME = SQR (2~HEIGHT I 32.2)

This LET statement will compute a value for the variable named
TIM~. It will arrive at that value by multiplying the height in
feet by 2, dividing by 32.2 (the gravitational constant in ft/sec
squared) and then taking the square root of the entire quantity
enclosed by the parentheses. Now there are two different
variables: HEIGHT and TIME.

100 PRINT TIME;" SECONDS"

Line 100 will print out the value of the variable TIME and then
the literal n SECONDS" right next to it. The yaly~ of the
variable named TIME is printed instead of the letters T,I,M, and E
becaUse there are no quote marks around it. The literal
" SECONDS", on the other hand, is printed as such (blank, S, E,
C, 0, N, D, S) because it does have quote marks around it. The
semicolon in the middle says to print the two items next to each
other.

110 END

The END statement identifies the end of the program.

You can get a listing of everything stored by typing

LIST

Because that line does not begin with a line number it is executed
immediately, producing a listing of the stored statements. Note
that the program is listed in order of increasing line numbers
even if you had to go back and correct some statements.

CHAPTBR 3. AN I~TRODOCTION TO DAlAPOINT BASIC PLUS 3-5

The listing of the program should be:

10 REM COMPUTE TIME NECESSARY FOR AN OBJECT FALLING
20 REM OFF A DESK TO HIT THE FLOOR
30 PRINT "THlS PROGRAM CALCULATES THE ELAPSED TIME"
40 PRINT "REQUIRED FOR A HEAVl OBJECT TO FALL"
50 PRINT "FROM A DESK TO THE FLOOR."
60 PRINT
70 PRINT "WHAT IS HEIGHT OF THE DESK (FEET) ?";
bO INPUT HEIGHT
90 L~T TIME=SQR(2*HEIGHT/32.2)
100 PRINT TIME;" SECONDS"
110 END

This program is now ready to go. To start it, type

RuN

lf everything is in order, it will print out the three lines of
introduction, a blank line, and then ask the question of how high
the desk is. As a good test, try

16.1

as the response because that is the height at which it should take
a full second. After BASIC prints the answer, it will show you
that the execution ended at the END statement and that it is
READY. All of this is normal. The values of variables are still
available for inspection. Type

HEIGHT

and BASIC will reply witfi 16.1 showing that 16.1 is the value of
the variable named HEIGHT.

This program can be used to find out the fraction of a second
needed for a penny to falloff your desk. Measure (or guess) the
height of your desk in feet. RUN the pro~ram and enter the
height. The answer shows how long it would take for the penny to
fall from your desk to the floor.

The program can be made more convenient to use with a few
changes in the input and output formats. For example, it would be
much more convenient to specify the desk height in inches. ~ou
can do this with additional statements:

~O INPUT HEIGHTININCHES

3-b DATAPOINT DOS BASICPLUS

85 LET HEIGHT = HEIGHTININCHES 1 12

Note that you can put in spaces between parts of the statement,
such as before and after the replacement sign (=) and the division
symbol (I). These spaces are removed when BASIC reduces the
statement to the most compact form possible for storage in the
processor. You cannot, however, put spaces in a variable name
like HEIGHT IN INCHES. Retype the query statement as:

70 PRINT "WHAT IS HEIGHT OF THE DESK ~INCHES) 7";

Now, RUN the program with this new change.

Because (for most desks) the time taken is a small fraction
of a second, you might prefer to have it expressed in milliseconds
(thousandths of a second).

100 PRINT INT(TIME*1000);" MILLISECONDS"

This statement will (1) convert the TIME to milliseconds by
multiplying by 1000; (2) use the INT function to eliminate the
rractional part left after multiplication, leaving an integer,
hence the name I~T; and (3) print out the literal" MILLISECONDS"
after the number of milliseconds. Note that the PRINT statement
can print the result of a calculation.

If you now use

LIST

to list this version of the program, you will see that the
re-typed lines have been replaced. Try typing

RUN

to see how this version works.

If there were several desks for which you needed this
calculation, it might be handy to have a table of the results for
common desk heights. One way to do this would be to RON the
program over and over again and write down the results. You can
program BASIC to make the program work over and over again. After
the last statement of the algorithm, you can place

105 GO TO 70

CHAPTER 3. AN INTRODUCTION TO DATAPOINT BASIC PLUS 3-7

and the program will go back to line 70 after printing out each
answer. Therefore you can just type in desk heights and write down
answers without typing RUN again and again. Try this out by
typing:

RUN

khen you want to stop the p~ogram, the KEYBOARD key on the far
right of the keyboard will do the job. Hold it down until the
message "INTERRUPTED" is displayed. Pressing the KEYBOARD key
will always enable you to interrupt a BASIC program .. (See chapter
4 for futher information on the use of this key.)

The GOTO technique just demonstrated will allow you to print
out as many values for the time as the number of heights you type
in. Shouldn't a computer be able to make an entire table?
Certainly. Type in these three lines:

70 FOR HEIGHT IN INCHES = 30 TO 40
bO
105 NEXT HEIGHTININCHES

Typing 80 alone deletes line 80 which used to ask for the input.
The other two lines enclose an area of the BASIC program which
will be repeated for values of hEIGHTININCHES from 30 to 40.
Statement 105 indicates that it is time for BASIC to repeat the
section with the next value for HEIGHTININC~ES. Run this by typing

RUN

fhere is only one problem remaining.
goes with which value of the height. .

We don't know which answer
This can be fixed with

100 PRINT hEIGHTININCHES,I~T(TIME.1000)

which will print each height and its time together on one line
when executed. The comma in between the two values indicates that
they should be placed in two columns (rather that one right after
the other, as a semicolon would do). You can label the columns by
adding:

b5 PRINT "HEIGHT","TIME"
b7 PRI~T "INCHES","MSECS"

which will put headings at the top of the columns. Try this
version by typing:

3-b DATAPOINT DOS BASIC PLUS

RUN

Would you like your answers on paper? Just change the PRINT
statements to refer to the printer, device number 4.

65 PRINTI4,"HEIGHT","TIME"
67 PRINT'4,"INCHES",nMSECS"
100 PRINT*4,HEIGBTININCHES,INT(TIME*1000)
RuN

You can also list a copy of the program on the printer by typing
LIST'4. Note that the printer must be ON (and ON-LINE if a Local
Pr~nter) during initial loading of BASIC since this is when BASIC
recognizes that there is a printer available. If you are using.
1500 processor, you must have specified the "L" option on the
command line.

Welcome to BASIC programming, former novice! Of course,
there's more to be learned. There are many other statements and
operators avaiable in &ASICPLUS. The remainder of this User's
Guide discusses them all.

ChAPTER 3. AN INTRODUCTION TO DATAPOINT EASICPLUS 3-9

CHAPTER 4. MODES

BASIC may be waiting for a command, executing the
instructions in a program, or requesting data for a program which
it is executing. "Mode" refers to the state which BASIC is in
during these activities.

4.1 Command Mode

BASIC enters the command ~ when it has nothing further to
do in order to accommodate the last command. BASIC is awaiting a
comcand from the user (such as RuN, LIST, SCRATCH, or a desk
calculator command) directing it to perform another task. This
mode is indicated by the word "READY" and a flashing cursor.

BASIC is also in command mode after accepting a numbered
statement t6 be stored. In this instance, BASIC does not prompt
with "R~AD1".

4.2 Input Mode

The input ~ occurs during the execution of an INPUT
statement in a RUNning program, when values for variables are
requested from the operator. The cursor is flashing. Before an
INPUT statement is executed, one or more PRINTstatements should be
executed, specifying precisely what information is to be entered.

4.3 Running Mode

While BASIC is executing statements other than INPUT, the
cursor is not visible and any keystrokes except KEYBOARD and
ulSPLAY are ignored. This is known as the running~. If
necessary, the KEYBOARD key may be used to interrupt the execution
of the stored program (see the next section).

CHAPTER 4. MODES 4-1

4.4 Changing Modes and Stopping the Display

Pressing the KEYBOARD key at any time will cause BASIC to
re-enter command mode regardless of its current mode. Therefore,
pressing KEYBOARD can be used to terminate inpbt or to regain
control from a runaway program. Rold down the key until BASIC
responds with "INTERRUPTED". If BASIC was not in command mode
already, the last statement executed in the current program is
displayed.

lhe program can be continued by use of the GO TO command (See
chapter ~).

holding down the DISPL1y key at any time will suspend the
program and prevent the screen from "rolling up", thereby
"freezing" the display for examination. When the DISPLA~ key is
released, the program resumes and output continues.

4-2 DATAPOINT DOS BASICPLUS

CHAPTER 5. CONSTANTS AND VARIABLES

The most useful values in BASIC programs are those associated
with variables. The value associated with a variable can be
changed during the execution of a program. Some values in a BASIC
program remain unchanged in all applications of the program. Such
values are termed "constants".

5.1 Constants

Constants are values that do not change. There are two
varieties: (1) Numeric constants, whose values are numbers and (2)
String constants, whose valUes are "strings" of characters.

5.1.1 Numeric Constants

Numeric constants may be entered as integers or as real
(decimal) numbers. Real numbers may also be specified in
"scientific notation".

5.1.1.1 Integer Constants

Numbers may b~ entered in the form of signed or unsigned
integers; however, all integers are converted by BASIC to floating
point.

Form: l <sign)] <digit) [<digit) J •••

5.1.1.2 Real Constants

Real (decimal) numbers may also be specified. There is no
restriction on placement of the decimal point in the real numbers.

Form: l <sign)] <digit) (<digit) ..•]
l <sign)] • <digit) l <digit) ••.]
l <sign)] <digit) [<digit) ...] . digit [<digit) ...]

CHAPTER 5. CONSTANTS AND VARIABLES 5-1

In scienti~ic notation, the decimal number (usually between 1
and 10) is followed by 10 to some power. The letter E replaces
the "x 10" and the power of 10 follows theE.

Form: <decimal number> E [<sign>] <digit> [<digit> •••)

5.1.1.3 Values of Numeric Constants

Any number ~ay have as many digits as can fit on a line as
long as the magnitude of the number is not greater than 1E3&.
~hen BASIC scans a nu~ber, however, it stores only the twelve most
significant digits. In this way, the six digits that are
displayed as output are correct. (See section 5.3 on
implementation limits to values).

Examples of numeric constants:

1 has the value +1.0
+1 has the value + 1 .0
1.0 has the value + 1 .0
-1 has the value -1.0
-1 .01 has the value -1.01
2345 has the value 2,345.

Note: Commas are never used in numbers in
12£2 has the value 1,200

'1' be E; is read "times 10 to the"
5E+2 has the value 500
1 .2E6 bas the value 1,200,000

r' 1i;-2 has the value 0.01
-2.3E-4 has the value -0.00023

5.1.2 String Constants

String constants are quoted strings of characters: any
sequence of characters lexcept the quote itself) delimited by
quotes.

form: " [<character> •••] "

Note that the string of .n.2. characters is also allowed: ""

BASIC

Because a statement cannot be continued on another line, the
string length 1s limited only by the number of characters in the
line.

5-2 DATAPOINT DOS BASIC PLUS

Spaces within the quotes are treated the same as any other
character in the line. For example, the string" Hi" is different
from the string "Hi".

Examples of string constants:

"R" has as its value, the letter R
"RS" .has as its value, the letters R and S
"1" has as its value, the symbol known as "one"
"YES" is the string constant for the

3 symbols that make up the word "YES"
"WHAT IS THE NAME OF THE 2ND BASEMAN?"

is a rather long string constant

String constants are totally defined by the characters they
contain and the positions these characters occupy. That is, the
constant "YES" can be analyzed by a BASIC program to determine the
fact that it is 3 characters in length, that the first character
is a "Y", that the second is an "E", and that the last is an "S".

5.2 Variables

Variables are associated with either numeric or string
values. The value associated with a given variable can change as
a program is executed. Because of their changeability, variables
are referred to by names. BASIC variable names begin with a
letter. Other consecutive letters and digits can follow, but
embedded spaces are not allowed.

Form: <letter> [<letter> I <digit> J •••

String variable names are distinctive: they begin with a letter,
continue with letters ana digits, and ~ ~ a gollar ~&n (see
chapter 12).

Variable names cannot begin with REM because those letters
are reserved for inserting REMarks in programs. Any variable
which'starts with the letters "FN" and is followed by a single
alphabetic character (See appendix E) is reserved for naming a
user-defined function and is not allowable as a possible variable
name.

CHAPTER 5. CONSTANTS AND VARIABLES 5-3

All names reserved by BASIC for operators, functions, and
commands are prohibited from being used as va~iable names. The.e
reserved names are:

t! EF IF OPEN
ABS EL INPUT OR
AND END INSERT PRINT
APF EOF INT RANDOMIZE
ATN ERASE INV RD
AUTO ElP IOPEN READ
Bl!:EP FALSE LEN REM
bl: FF LET REN
CAT FNn LF RESTORE
CLICK FOR LIST RETURN
CON FREE LOG RND
COS GET MAT RU
Cll GO MAX RUN
DATA GOSUB· MIN SAVE
DEi" GOTO NEXT SCRATCH
DEL!!;TB HD NEXTKE:i SGN
DE'! HP NOKEY SIN
DIM au NOT SIZ
DOS IDN ON SQR

Reserved names new to version 2 of BASICPLUS are:
INSTR KEY NOFILB TOPIN

(See Appendix B, "RESERVED NAMES").

Examples of legal names for variables:

A
B4
&Q
CLASS.
f'OItEVER73
YEARTODATEEARNINGS
YTDEARNINGS
CODr;ZEBRA9

the following are illegal variable names in BASIC:

5-11

7A
N~G
LET

does not begin with a letter
cannot have a dash
cannot have a variable nam~d the
same as a BASIC operator or command

DATAPOINT DOS BASICPLUS

STEP
STOP
SUB
TAB
TAN
THEN
TO
TRN
TRUE
UPDATE
USING
VAL
VARS
V·P
ZER

ROLLOUT

cannot begin with REM (special rule)

5.3 Advanced Naming Techniques

BASIC variable names may be of any length but are implicitly
limited because a statement cannot be broken over lines. the
following symbols are also considered alphabetic for use in
variable names: $ and _ (dollar and underline). See appendix E
for a list of valid alphabetic characters. If a variable name
~ with a $, it is considered to be a string variable (see
chapter 12).

Lower case letters may be used in variable names, but the
names so formed are distinct from those with different casing
(i.e., A1 and a1 are the names of two different variables). In
the same way that many BASIC implementations restrict variable
names to <letter> [<digit>], many also treat upper- and
lower-case letters as identical in variable names.

Since all BASIC reserved words are composed solely of
upper-case letters, variable names which include lower-case
letters or digits or both will never confict with them.

5.4 Implementation Limits on Values

All numeric values are stored internally in Datapoint BASIC
as floating-point numbers with one byte (8 bits) of characteristic
and five bytes (40 bits) of mantissa. All floating point numbers
are kept normalized at all times and the sign is therefore taken
to be the complement of the most significant bit of the mantissa.
~ero is the only unnormalized number permitted. As a result of
this representational scheme, very small numbers which could
ordinarily be expressed as an unnorma1ized number with the
smallest exponent cannot be represented in BASIC.

Since all numbers (including integers) are converted by BASIC
to floating pOint, it is the user's responsibility to convert the
results of calculations to integers if integer values are
required. To guarantee integer results, the program should round
values:

240 ~UM=INT(1+.5)
250 PRINT NUM~"CHILDREN IN AVERAGE CLASSROOM"

The largest number representable is approximately 1E+3H. The
smallest positive number representable is approximately 1E-38.

CHAPTER 5. CONSTANTS AND VARiABLES 5-5

Precision is ideally 40 ·(log'base 10 of 2) or 12.04 digits.
however, values, are rounded to 6 digits on output to conform to
previous versions of Datapoirit BASIC. Note that subtracting
similar numbers will lead quickly to a loss of precision. Zero
fill is used in normalization.

Overflows during numeric expression evaluation are reported
with the message "OVERFLOW". The characteristic has exceeded the
maximum size. Underflow is not announced, and the result is set
to zero.

5-6 DATAPOINT DOS BASICPLUS

CHAPTER 6. STATEMENTS

BASIC statements can be stored for later execution or
executed immediately. If a BASIC statement is preceded by a line
number (between 1 and 38399) followed by a space, that statement
will be stored under that line number. If the statement begins
without a line number, BASIC will attempt to execute the statement
immediately. This latter mode is useful for commands and desk
calculator operations.

6.1 Spacing

Spaces are important in BASIC programs; they are used to
delimit the elements of statements. For example~

LETCOUNTER=7

sets the value of LETCOUNTER to 7 (the assignment verb, LET, being
implied) but

LET COUNTER=7

sets the value of COUNTER to 7.

Where one space can appear, many may. Spaces are also legal
between parts of statements as in

L~T COUNTER = 7 + 9 * (2 * 8)

Spaces may not appear within a single variable name or within a
BASIC reserved word. The following is ILLEGAL:

LB T COUNT ER = 0

because spaces occur in the middle of LET and COUNTER.

If a BASIC program is created using EDIT, it is stored "as
is," blanks and all. A program is more readable when its
~OR-NEXT loops are indented, for example. When such a program is
loaded by BASICPLUS (see the GET Command in chapter 20), spaces
around operators and spaces in excess of one are removed (except
within quoted strings) to increase storage capacity within the
interpreter.

CHAPTER 6. STATEMENTS 6-1

When a program held by BASIC is copied out to disk (see the
SAVE Command i~ chapter 20), it is copied "as is," in
blank-stripped form.'

6.2 Remark Statements

Form: REM [{any sequence of characters}]

~xamples: REM THIS PROGRAM CALCULATES THE INNER PRODUCT
REM THE NEXT SECTION CALCULATES THE INTEREST
REMBRANT WAS A GREAT PAINTER
R~M RRI~T "HI THERE"

The REM statement allows comments within a BASIC program.
Comments make the program more readable. They do, however, take
up space that could otherwise be used for active statements.

The REM statement is completely ignored when it is executed.
Even the PRINT in the last example will have no effect. Putting
valid BASIC characters inside a REM comment is as effectively
ignored as any other information.

Only the first three letters need be REM. NO space is
necessary after the REM. This is an exception to the general rule
that spaces must be present between statement parts.

6.3 Multiple-Statement Lines

A mUltiple-statement line is a line which contains more than
one instruction, with the instructions separated by semicolons.
Multiple statements are useful at the beginning of a stored
program to give initial values ,to the variables:

10 L~T A=O; B=O; Pl=3.1416; 1=1

In this case, the multiple statement is equivalent to:

10 LhT A=O
20 LET B=O
30 LET PI=3.1416
40 LET 1=1

Another particularly useful feature of multiple statem~nts is in
the IF statement:

6-2 DlTAPOINT DOS BASIC PLUS

40 IF A=B THEN C=C.1;D=D.1;PRINT "FOUND A MATCH"

This statement is ~ equivalent to the three separate
statements: 'IF A=B THEN C=C.1', 'D=D.1' and 'PRINT "FOUND A
MATCH"'. If these three statements were on three successive
lines, D would be incremented and the message printed regardless
of whether A and B were equal. Using the multiple statement, C
and D will be incremented and the message printed only if A=B. It
A does not equal B, the rest of the line is ignored.

If any of the following statements (or commands) occurs in a
muLtiple-line statement, it must be the last element of that line:

I
GOTO, GOSUB, SCRATCH, DOS, RUN, APP, GET, STOP, END, RETURN, REM

The following are correctly formatted:

L~T OneMore=OneMore+1;A=1;B=2;C=3;D=4
10 LET OneMore = OneMore +,1; A=B=C=O
20 DIM String$[3];LET String$[1]=9;String$[3]=12
Pi=355/113;A=A+1;IF A(12 THEN B=B-1

CriA,TER 6. STATEMENTS 6-3

CHAPTER 1. NUMERIC EXPRESSIONS AND THE ASSIGNMENT (LET)
STATEMENT

Numeric expressions in BASIC are combinations of numeric
operators, numeric functions, and numeric variables and constants.
Numeric operators and functions can operate upon:

Numeric constants
Numeric variables
Parenthesized numeric expressions

and to be discussed later:

Fully subscripted vectors and arrays
FullY'subscripted strings or string vectors
Substrings or substrings of string vector elements

1.1 Numeric Expressions

The numeric operators

+

•
I ,.

MIN--arithmetic
MAX--arithmetic

are:

Addition
Subtraction
Multiplication
Division
Exponentiation (Raising to a power)
Select the minimum of two values
Select the maximum of two values

The numeric functions lincluding the transcendentals) are:

I~T Select the largest integer below argument
LOG ~atural logarithm
EXF Exponential
SIN Sine
COS Cosine
TA~ Tangent
ATN Arctangent
SQR Square root
RND Random number
ABS Absolute value
SGN Sign

CHAPTER 1. NUM~RIC EXPRESSIONS A~D THE ASSIGNMENT (LET) STATE~EN~

7-1

1.2 Preoedenoe of Operations

The preoedenoe of numerio operations, from greatest to least,
is:

7.2.1 Examples

,!l",

~(!+ll)

~t!l,)+ll

(<numerio expression>)
numerio functions
"
* and I
MAX and MIN
+ and -

Note that the multiplication is carried out before
the addition. If in doubt, use parentheses to force
order of evaluation. Result ~ ~.

Parentheses forced 2+3 to be evaluated first.
Result ~ ZJl..

Illegal because a right parenthesis is missing.

~. INT finds the largest whole number that is
less than or equal to the value of its argument.
INT(1) is 1. INT(1.253) is 1. INT(-1.9) is -2.

bL2,.

~. 98334E-Z. "(Ull close .t.2. .Q..~). Argument of SIN and
COS is in radians. Likewise, ATN returns a restilt
in radians. To convert degrees to radians, multiply
by 3.14159/180.

~ sQuared. Four is raised to the second power.

~, the square root of 16.

Fourteen. The square root is taken first and then
twelve is added.

Random decimal fraction between .Q. ~~. A dummy
argument is optional, but not required. It is
ignored if present.

7-2 DATAPOINT DOS BASICPLUS

.s..a.ti(-.,l) Negative~. SGN(X)=O if X=O; SGN(X)=1 if X is
positive and SGN(X)=-1 if X is negative.

Positive ~-~.

~. The minimum of the two arguments is taken.

twentv-~. The maximum of the two arguments is
taken.

Sixtv-~. The two is cubed, then the result is
squared.

~ hundred twelve. The Jhree is. squared, then the
two is raised to the ninth power.

7.3 Functions

Form: <function) (<numeric expression))

7.3.1 Numeric functions

INT Gives the largest integer that is less than or equal
to the value of the numeric expression. Unlike
previous Datapoint BASICs, BASICPLUS places no limit
on the value of the argument.

SQR Gives the non-negative square root of the numeric
expression.

RND Gives the next pseudo-random number in a sequence of
pseudo-random numbers uniformly distributed in the
range 0 <= RNO < 1.

The numeric expression is a dummy argument, which is
optional, and is ignored if present. The random
number sequence is reset to the first number in the
sequence each time a RUN command is given.

ABS Gives the absolute value of the numeric expression.

SGN 'Gives the sign (-1, 0, +1) of the numeric
expression.

CHAPTER' 7. NUMERIC EXPRESSIONS AND THE ASSIGNMENT (LET) STATEME~

7-3

1.3.2 Transoendental funotions

Note that the argument of the trigonometric transoendental
funotions is given ~ radians.

LOG

ElP

SIN

COS

TAN

AT~

Gives the natural logarithm of the numeric
expression value.

Raises e (e=2.11828182846) to the power of the
numeric expression value.

Gives the sine of the numeric expression value.

Gives the cosine of the nu,eric expression value.

Gives the tangent of the numeric expression value.

Gives the arctangent of the numeric expression
value.

1.4 The Assignment (LET) Statement

Form: [LET) <variable> = <numeric expression>

Examples: LET A=19
LET TOTAL=PIECE1 + PIECE2
MANE = LION / FUR

An assignment or replacement statement is used to assign a
value to a variable. The value may be a constant or it may be
computed as a numeric expression involving any of the numeric
operations. Parentheses may, of course, be used to form a
complicated expression.

There is only one case where the word "LET" must appear: if
a multiple statement contains an assignment following a PRINT
statement, the word LET must follow the semicolon. Otherwise, the
word LET is optional. For example:

PRINT AjB;LET C=1

would print the values of A and B, after which C would be assigned
a value of one.

PRINT AjB;C=1

1-4 DATAPOINT DOS BASICPLUS

would print the values of A and B, followed by either TRUE or
FALSE depending on whether or not C equals one (see boolean
expressions, section 9.3.2).

1.5 The RANDOMIZE Statement

Form: RANDOMIZE

Example: RANDOMIZh

As noted before, each time the RUN command is used, the
random number generator is reset to the first number in the
sequence. This is useful for debugging programs which use the RND
function, so that the same random number sequence may be used over
and over again. However, once a program has been debugged it is
often desirable to use a different random number sequence (or, at
least, start at a different spot in the same random number
sequence). This is the purpose of the RANDOMIZE statement. This
command resets the random number seed to a random value. If this
statement is used at the beginning of each program, then the
random number sequence will not be the same each time the RUN
command is given.

The RANDOM~ZE statement consists solely of the word
"RANDOMIZE" with no parameters.

ChAPTER 1. NUM~RIC EXPRESSIONS AND THE ASSIGNMENT (LET) STATEMEN

7-5

CHAPTER 8. USER-DEFINED FUNCTIONS

Form: DEF <function name> = <numeric expresssion>

where <function name> is defined as:

FN <letter>

~xamples: DEF FNA= SIN(X)/l
DEF FNZ=FNA+FNB

The user-defined functions are very similar to subroutines,
except that in many cases, they are easier to use. They are arso
similar to the system-defined functions discussed earlier, but
they cannot have true parameters. Once a function is defined
using a DEF statement, it may be used anywhere a numeric
expression can be used~ When a numeric expression contains a
function reference, the value of the function is computed
(according to the definition) and is "substituted" for the
reference in the expression. The function may call other
functions, up to a limited depth. For example:

10 DEF FNA=X~2

20 FOR 1=1 TO 10
30 LET X=I
40 PRINT I,FNA
50 NEXT I

will display:

1 1
2 4
3 9

10 100

The above program is equivalent to the following one:

CHAPTER ij. USER-DEFINED FUNCTIONS

10 FOR 1=1 TO 10
20 GOSUB 60
30 PRINT I,X
40 NEll' I
50 END
60 X=I"2
70 RETURN

If a function is referenced without ever having been defined,
the message "UNDEFINED FUNCTION" is displayed.

b-2 DATAPOINT DOS BASIC PLUS

CHAPTER 9. CONTROL STATEMENTS

Control statements allow for the interruption of the normal
sequence of execution of statements by causing execution to
continue at a specified line, rather than the one with the next
higher line number.

9.1 The GOTO Statement

Form:

Examples:

GO TO <line number>
GOTO <line number>
GO <line number>
TO <line number>

GO TO 120
GOTO 90
GO 65
TO AbC
GOTO (100*1)

The GO TO statement transfers control of execution
unconditionally. Ordinarily, the BASIC program is executed"in
line number order. Encountering this statement changes that
order; execution continues at the specified line.

lhe <~ine number> can be specified as a number which
represents a line. If, upon execution, no such line exists, the
message "NO SUCH LINE" will be printed and execution will halt.
(line number> can also be a variable which has as its value the
number of the line to be executed next. Expressions are also
legal if they are enclosed in parentheses as in the last example.
If a numeric expression is used, its value is truncated to an
integer before examination.

CHAPTER 9. CONTROL STAl~MENTS 9-1

9.1.1 GOTO Without A Line-Number

If <line number> is omitted, the first line of the program is
executed. Thus, the command "GO" is useful to start programs if
the initialization performed by the "RUN" command is not desired.
This is often the case if one is working extensively in command
mode and enters running mode only as a aid to the direct
execution.

9.2 The GOSUB and RETURN Statements

Form: GOSUB [<line number>]
GO SuB [<line number>]
SUB [<line number>]
RETURN

Examples: GOSUB 19
GOSUB (10-1)
GO SUB 11
SUB
RETURN

The UOSUB and RETUR~ statements can be used to access
subroutines in BASIC. The GOSUB behaves exactly like a GO TO
except that the statement number of the GOSUB is recorded. When a
RETURN statement is executed, execution continues at the line
following the one containing the GOSUB.

9.2.1 GOSUB Nesting
.

GUSUBs can be nested so that subroutines call subroutines to
a limited depth. The execution of the GOSUB and RETURN statements
can be described in terms of a stack of line numbers. Prior to
the execution of the first GOSUB by the program, this stack is
empty. Each time a GOSUB is executed, the line number of the
GOSOB is placed on top of the stack and execution of the program
is continued at the line specified in the GOSOB. Each time a
RETU~N is executed, the line number on top of the stack is removed
from the stack and execution continues at the line following the
one with that line number. It is not necessary that equal numbers
of GOSUb and RETURN statements be executed before termination of
the program.

9-2 DATAPOINT DOS BASIC PLUS

9.2.2 GOSUB Without a Line-Number

GuSUB without an argument will GOSUB to the first statement
of the program.

9.2.3 Debugging With GOSUB

GOSUB can be used in direct execution mode to debug a
subroutine. Set up applicable variables. GOSUB <line number> in
direct execution mode will cause the subroutine to be executed.
At the RETURN statement, control is returned to the user.
Variables and/or output can be examined for correct operation.

RETURN executed as a direct command will remove memory of the
last GOSUB from BASIC and otherwise act as a no-operation.

9.3 The IF Statement

Form:

IF <condition> THEN <line number> [;ELSE <line number>]
if <condition> THEN <BASIC statement> [;ELSE <BASIC statement>]

<condition> is defined as:

<relation>
«relation»
NOT <relation>
<relation> AND <relation>
<relation> OR <relation>

<relation> is defined as:

<expression> <relational operator> <expression>
(expression>

<relational operator> is defined as:

< (less than)
<= (less than or equal to)
= (equal to)
>= (greater than or equal to)
> (greater than)
<> (not equal to)
Ii (not equal to)

CHAPTER 9. CONTROL STATEMENTS 9-3

I

Examples:

IF COST>10000 THEN 50
IF COST>10000 THEN PRINT "Cost too high"
IF A THEN PRINT "A IS NON-ZERO"
IF NOT A THEN PRINT "A EQUALS ZERO"
IF 1-1=B+9 THEN A=B;D=E;ELSE A=A-1;BEEP
IF A THEN C=1;D=2;ELSE 50
IF A=B THEN (23+C)
IF A(B AND A<C THEN 19
IF NOT A<=8 THEN PRINT "A greater than B"
IF N1=1 AND N2=2 OR N3=(1+2) THEN LET FOUR=4
IF lA=B OR C=«SIN 5)/0» THEN PRINT TAB(9);
IF A<1 THEN IF 8>=2 THEN IF C=3 THEN ENOl

The IF statement allows the programmer to make a decision
based on the values of boolean expressions composed of variables
and constants. Comparisons can be made using the operators <, <=,
=, H, <>, >=, and >. These conditions can be compounded using the
operators NOT, AND, and OR. Parentheses may be used to specify
the order ot complicated conditions. .

Decisions can also be based on a zero/non-zero value. A zero
value is interpreted as a FALSE condition, whereas a non-zero
value is interpreted as a TRUE condition.

If the condition is true, BASIC examines the part of the
statement after the word THEN. If the word THEN is followed by
what could be a line number, execution continues at the line
specified by the line number. If BASIC determines that the
construction is not a line number, the remainder of the statement
up to an ELSE or the end ~f the line is executed and (if no
control statements in the THEN clause direct otherwise) execution
then continues at the line following the IF statement.

When the condition is false, BASIC searches the line for an
ELS~ clause. If an ELS~ clause is found, BASIC inspects the item
following the ELSE. If this is a line number, execution continues
at the line specified by the line number. If the item following
the'ELSE is not a line number, then the remainder of the statement
is executed and (if no control statements in the ELSE clause
direct otherwise) execution continues at the line following the
IF.

9-4 DATAPOINT DOS BASIC PLUS

9.3.1 Testing for Exact Equality

Because of the limited precision of computer representation.
for numbers two expressions which, in absolute precision, produce
equal results may produce slightly unequal results in BASIC. If
the results are compared as:

IF A = B

.BASICPLUS will determine that they are unequal. Therefore, it is
more advisable to compare for equality within a given tolerance,
1 . e • :

IF ABd(A-B) < .000005 THEN <statement>

9.3.2 Boolean Expressions

Boolean algebra is the algebra of logic. Boolean expressions
have only two values: TRUE and FALSE. In BASICPLUS, TRUE is
equivalent to 1 and FALSE is equivalent to O. All of the
comparison operators used in the IF statement

=, <, >, <=, >=, <>, II, NOT, AND, OR

can be used in building boolean expressions. Boolean expressions
evaluate to TRUE or FALSE (i.e., 1 or 0). An example or two can
eliminate much explanation:

(7=43) has the value 0
(84 > 1) has the value 1
TRUE has the value 1
FALSE has the value 0

Boolean expressions can be used in place of any numeric
expression. For example:

LET C=lA=B)

would set C to 0 if A<>B and set C to 1 if A=B.

Values can also be assigned using other operators:

would increment C by A if A<B, but would leave C untouched if
A>=B.

CHAPTER 9. CONTROL STATEMENTS 9-5

9.3.2.1 The KEI Condition

The KEY condition is set true when a key has been depressed
on the keyboard and has not been read in. This flag may be used
dur~g tight loops to determine if the user wishes to enter data.
This flag has a boolean value of TRUE or FALSE (1 or 0) depending
on whether or not a key has been pressed. Note that the key is
not removed from the keyboard buffer and will be echoed when an
INPUT statement is executed. Examples of the use of KEY are:

IF KEY THEN INPUT A1,A2,A3
KEYREADY = KEY
IF NOT KEY THEN 10

9.3.2.2 Boolean Expressions in Command Mode

Conditions can be te~ted for truth in Command mode. Type the
boolean expression; BASICPLUS will reply with "TRUE" or "FALSE" as
appropriate. The words "TRUE" and "FALSE" are also valid
conditions in themselves. Therefore, typing "NOT TRUE" prints out
"FALSE". IF statements can often be debugged using this
capability.

Restrigtion: the "=" relation is not available for this use
unless the relational condition is enclosed in parentheses because
it conflicts with the use of "=" in direct assignment statements.
(This is because, in Command mode, the command A=B is an
assignment statement, not a condition.) Use "(I=B)" or an
equivalent relational condition like "NOT A<>B" instead .

.
9.4 The ON GOTO Statement

¥orm: ON <nuo exp> GOTO <line number list> (

<line number list> is defined as:

Examples~

<line number> [, <line number> J •••

ON A GOTO 10,20,30
ON (C.1) GOTO 1,2,3,4;PRINT "~.·ERROR***"
O~ 3 GOTO 300,200,100,400,500

<stmt>]

In the ON GOTO statement (sometimes referred to as the
multi-branch GOTO), <num exp> indicates which of the specified

9-6 DATAPOINT DOS BASIC PLUS

statements will be executed. For example statement,20, above,
transfers control to statement 100 because 100 is the third line
number in its list.

The value of the <numeric expression> is truncated to an
integer, which is then used to select a line number from the list
following the GOTO. The line numbers in the list are indexed from
left to right, starting with one. Execution of the program
continues at the line with the selected line number.

If the expression evaluates to a number greater than the
number of line numbers specified, or less than one, the GOTO is
ignored unless a semicolon is present following the list. In this
case, the statement following the semicolon will be executed. For
example, "*.*ERROR*.*n would be printed in the second example if
(C+1) evaluated to a number greater than four or less than one.

9.5 The ON GOSUB Statement

Form: ON <num exp> GOSUB <lirie number list> [<stmt> J

<line number list> is defined as:

<line number> [, <line number> J •••

~xamples: ON (Z+1) GOSUB 5,3~47,26
O~ Z9 GOSUB 10,20;PRINT "* ILLEGAL Z9 -"

The ON GOSUB statement (sometimes referred to as the
multi-branch GOSUB) is identical to the ON GOTO statement except
that, instead of a GOTO being executed to the specified statement,
a GOSUB is executed. As in the ON GOTO, all expressions are
truncated.

If the numeric expression evaluates to an integer less than
one, or greater than the number of statements specified, the
optional statement following the list, separated by a semicolon
will be executed. If this statement is not present, the GOSUB
will be ignored.

A statement to trap indexing errors in the ON GOSUB (i.e., an
executable statement following the list of expressions) should
almost always be used, because there is no other way to detect
~uch errors. For example, if an indexing error did occur, then
execution would fall through to the next line. However, if an

CHAPTER 9. CONTROL STATEMENTS 9-7

indexing error did not occur, then execution would transfer to ~he
specified subroutine and when the RETURN statement was executed
control would then return to the statement following the ON GOSUB.
Thus if the error did occur, it could not be detected. The
execution would continue at the line following the ON GOSUB line
in elthercase.

9-8 DATAP01NT DOS BASICPLUS

CHAPTER 10. THE .FOR AND NEXT STATEMENTS

Form: FOR <simple num var> = <start> TO <final> [STEP <incr>j
FOR <simple num var> = <start> TO <final> [BY <incr>]

NEIT <variable>

<start>, <final>, and <incr> are <numeric expression>s.
I

~xample: FOR ZZ=1 TO 19

NExT ZZ

The FOR and NEXT statements allow repeated execution of the
statements between the FOR and the NEXT. The group of statements
from a FOR to its NEXT is sometimes referred to as a FOR-NEXT
loop.

The <simple num var> is a simple numeric variable (i.e., a
scalar numeric variable, not a subscripted array name) which will
be changed each time the statements contained in the loop are
executed. It will commence at <start>. It will grow by 1 every
time through the loop unless the STEP clause is used to specify
another value for <incr>. As soon as the value of the <variable>
exceeds the value of <final>, the loop will end and execution will
~ontinue with the statement following the NEXT statement. The
index <variable> retains its (incremented) value.

10.1 Forward Loops and Backward Loops

LOOpS can run either "forwards" or "backwards". The default
value for <incr> is +1 and the loop runs forwards with the
<variable> getting larger every time. If the value of <incr> is
negative, <variable> gets smaller each time.

On forward-running loops, iteration continues until the value
of <variable> exceeds that of <final>. When the loop is exited,
<variable> contains this value. If the loop runs backwards, the
loop iterates until <variable> becomes smaller than (final>.

CHAPTER 10. THE FOR AND NEXT STATEMENTS 10-1

10.2 Modifying Loop-Controlling Variables

Both (final> and <incr> can be modified by the statements
within the loop during the execution of the loop. For example:

FOR K=1 TO 50 STEP K

will execute the loop 6 times, as K takes on the values 1, 2, 4,
8, 16, and 32 •. At the exit of the loop, K will have the value 64.
The value of <final> may be similarly manipulated within the loop.
The value of <variable> may also be changed within the loop with
predictable results. Note that it is possible to have a loop that
runs forward at some times and backward at other times if the sign
and value of· the STEP and <final> expressions are changed.

10.3 Nested FOR-NEXT Loops

FOR-NEXT loops may be nested. The innermost loops are
completed first. A transfer of control out of the range of FOR is
legal.

Executing a corresponding NEXT statement (i.e., a NE1T whose
<variable> is the same as that of the most recent FOR) will oause
the loop to be repeated regardless of the lexical context of the
NB1T. If the loop is eXhausted, execution will continue at the
NEXT which most immediately follows the FOR in ~exical order
regardless of the position of the NEXT which caused the loop to be
iterated.

10.4 Active and Inactive FOR-NEXT Loops

The number of active FOR loops is limited. A FOR loop is
'active if a NEXT statement is legal for that loop. This is true
for every loop entered unless it was exited by exhaustion or
another loop utilizing the same loop variable was entered.
Therefore, problems may be encountered if many FOR loops are
exited with GO TOs. These problems can be avoided by coding new
loops with the same iteration variable as loops exited. with GO
TOs. This precaution is not needed except in extraordinary
programs.

10-2 DATAPOINT DOS BAS1CPLUS

·10.5 Examples of FOR-NEIT Loops

The loop below will print 1, 1.5, 2, 2.5, 3, 3.5 •••••• to 10.

10 FOR LOOPVARIABLE=1 TO 10 STEP .5
20 PRINT LOOPVARIABLE
30 NBAT LOOPVARIABLE

The loop below will print nothing because the loop is vacuous.
See also the next example.

10 FOR B=10 TO 1
20 PRINT B
30 NEoXT B

The loop below will print out the values from 10 down to 1.

10 FOR 8=10 TO 1 STEP -1
20 PRINT B
30 NE>'T B

the loop below will only print the value 10.

10 FOR B=10 TO 10
20 PRINT B
30 NElT B

CHAPTER 10. THE FOR AND NEXT STATEMENTS 10-3

CHAPTER 11 •. OUTPUT STATEMENTS: PRINT, BEEP, lND CLICK

These three statements are used to communicate to the
keyboard operator.

11.1 The PRINT Statement

Form: PRINT [<print list>] [<separator>]

<print list> is defined as:

[[<print item>] <separator>] ••. [<print item>)

<print item> is defined as:

<expression> TAB (<numeric expression>)

and <separator) is defined as:

Examples:

<comma> I <semicolon>

PRINT "THE TABLE OF PRIME IMPLICANTS FOLLOWS:"
PRINT SINlANGLE1)
PRINT COUNTER;" TIMES"
PRINT "ENTER THE PRINCIPAL· AMOUNT: ";
PRINT 4+5,(9~SQR(2»,'4
PRI~T "SOURCE","RESULT",X,Y,Z

This form of the PRINT statement is used to print information
on the CRT display. (Another form of the PRINT statement can
output to disk or printer.) The statement specifies a list of
variables, constants, ana expressions whose values are to be
printed. Both numeric and string values are permitted. lhe word
PRINT by itself produces a blank line. All 80 columns of each
screen line are accessable to the PRINT statement.

The separators between the values to be printed determine the
format of the output:

CHAPTER 11.

, Comma means "next zone"
Semicolon means "no spacing"

OU1PUT STATEMENTS: PRINT, BEEP, AND CLICK 11-1

\

The print line is divided into 5 zones, each 16 spaces wide.
Separating items with commas tells BASIC to move into the next
available zone to output the next value. Even if the next print
item is a TAB, the "move to next zone" is acted upon before the
TAB is considered. Semicolon means no spacing; the next vaiue
will be printed adjacent to the current value.

Each PRINT statement causes one line to be printed unless:

~ the values will not all fit on one line, in which case
extra lines will be used; or

* a comma or semicolon terminates the statement, in which
case the next PRINT statement will continue where the
Furr~nt one stopped.

'. In order to use the trailing-separator form of the PRINT
statement in a multiple-statement line, the terminating separator
(, or ;) must be followed by a semicolon before the next operator.
Example:

PRINT; PRINT; PRINT

will print three blank lines, whereas:

PRINT "A=";;LET A=3*3;PRINT A

will print:

A= 9

If the screen is full and an attempt is made to PRINT more
lines, the display "rolls up"--the top line di~appears, the
remaining lines move up, end the new line appears at the bottom.
Pre~sing the DISPLAY key "freezes" the display, stopping any more
PRINTing until the key is released.

Other forms of the PRINT statement are described in chapter
17, "File Input and Output".

11-2 DATAPOINT DOS bASIC fLUS

11.1.1 The TAB Function

Form: TAB (<numeric expression))

Examples: PRINT TAB (4),"Name";TAB (26),"Address"
PRINT TAB (66);
PRINT 5+6;TAB(LOG(A»,EXP(1.02+A)

The TAB function can be used only within a PRINT statement.
It causes the next value to be pritited beginning in a specified
column number. The columns are numbered froml1 to 80.

If TAB is preceded by a comma separator, the current print
position is ~ beginning .2.! ~ ~ print.z..Q.Wt. Therefore, if
the PR1NT statement was:

PRINT A,TAB (8),B

the value of B would begin at column 17 rather than at column 8.

The TAB reference must be followed by a separator if more
instructions follow on the same line. The output need not be done
in the same PRINT statement; see the second example. The last
example shows TAB being used to squeeze output together while
still leaving more spaces than a plain semicolon would have left.

If the~rgument to TAB is less than one or greater than ~O,
the message "1/0 ERROR II is displayed. H..Q. aQtion II taken II ~
IAa position speQified II ~ ~ ~ Qf ~ ~urrent print
position, ~ greater ~~. Note that a comma follows the tab
function it more expressions follow in the same PRINT statement.
This ~ ~ cause zonzed output to be used, and is required by
the syntax of the PRINT statement.

11.1.2 Advanced Display Techniques

The contents of the Datapoint processor display can be
manipulated and randomly accessed with BASICPLUS. For this
purpose, special formatting functions are used within the PRINT
statement. These functions are, like the TAB, valid only within
the PRINT statement.

hP (X) - Position to the specified horizontal position
VP (X) - Position to the specified vertical line
~F - Erase from the cursor to the end of the screen

CHAPTER 11. OUTPUT STATEMENTS: PRINT, BEEP, AND CLICK 11-3

EL - Erase from the cursor to the end of the line
RU - Roll the screen up one line
RD - Roll the screen down one line
HU - Home up (position to upper left corner)
HU - Home down (position to lower left corner)

The argument to HP may range from 0 (left edge) through 79
(right edge). The argument to VP may range from 0 (top of twelve
line screen) to 11 (bottom of twelve line screen), or from -12
(top of twenty-four line screen) to 11 (bottom of twenty-four line
screen).

All of the above instructions must be followed by a comma if
more instructions follow on the same line. HP and VP may be
followed by a semicolon if on the end of the line. All other
functions ma~ be followed by either a semicolon or nothing at th~
end 6f a line depending on the type of form~tted output desired.

For example, the following will clear the screen and position
a message in the middle:

10 PRINT HU,EF,H~ (30),VP (5);
20 PRINT "D a tap 0 i n t Bas i c p 1 u s"
30 GO TO 30

The method of·cursor positioning used under DOSBASIC is still
valid in BASICPLUS. In this method, special code values in
strings are used to direct special actions.

08 - A new horizontal position follows
Note: For the 1500 version, this value is 9.

11 - A new vertical position follows
17 - Brase to the end of the screen
18 - Erase to the end of the line
19 - Roll up one line
20 - Roll down one line
03 - End of string
13 - End of string with return and line feed

For example, the following will clear the screen and position
a message in the middle:

11-4

10 DIM CLR$(5)
20 CLh$(1)=11;CLR$(2)=0;CLR$(3)=8;CLR$(4)=0
30 CLR$(5)=17
40 PRINT CLR$
50 CLR$(2)=5;CLR$(4)=30
60 PRINT CLR$;"D a tap 0 i n t Bas i c n

UATAPOINT DOS .BASICPLUS

Note: It is the user's reiponsibility to be sure that
formatted output uses valid control characters and cursor
positioning for the type processor the program is being executed
on. For example, roll downs are not legal on a terminal running
under PS, and while vertical position -1 may be legal for a
twenty-four line screen, it is not legal for a twelve line screen.

11.2 The BEEP and CLICK Statements

Form: BEEP
CLICK

The B~EP and CLICK statements cause the processor to beep or
click,respectively. These are used for signalling the keyboard
operator that a certain point in the program has been reached,
that an error has occurred, or that an input response is expected.
The click is preferred in situations where the beep would be
annoying.

CHAPTER 11. OUTPUT STATEMENTS: PRINT, BEEP, AND CLICK 11-5

CHAPTER 12. THE INPUT STATEMENT

Form: INPUT l <variable> ,] ... <variable>

Examples: Program specifies: Operator Keys In:

INPUT A 3.14159
INPUT A,B,CCC 2 -3,4.526
INPUT X, Y $, Z(4) 15 HELLO 3
INPU! TRIALNUMBER 345

The INPUT statement is used to request information from the
operator. The cursor on the CRT display begins flashing and the
keyboard is activated for input. Values are taken from the line
typed in by the operator and assigned sequentially to the
variables in the INPUT statement.

Each
operator.
variables
given the
excess is

INPUT statement accepts one line of input from the
If the operator types in fewer values than there are

in the INPUT list, the remainder of the variables are
value zero. If too many numbers are typed in, the
discarded.

Numeric input is free-format; any preceding blanks are
ignored. Any character that cannot appear within a number (such
as blank or comma) terminates the number and the next number
begins in the position after the terminating character, if the
terminating character was a comma.

The calculation of subscripts is done "on the fly," so that
if the program:

10 DIM A(20)
20 LET I = 3
30 INPUT I,A(I)

is executed, the element of array A that is inputted depen~s not
on the previous value of I (namely 3), but the value of I just
inputted before the element A(I}. This feature simplifies the
'en~ry of elements into relatively sparse arrays.

CHAPTER 12. THE INPUT STATEMENT 12-1

12.1 Strings in INPUT

String data is entered without quotes. If quotes are
entered, they are included as part of the string value.
Furthermore, INPUT ~ n.su. ignore preceding blanks which are
input to strings; these are assigned as characters in the string
variable.

Use caution when mixing numeric and string data.
instance: The number of characters that are considered
the string variable is determined by the length of the
given in its DIM statement.

10 DIM S$(10)
20 INPUT A, S$, C

If the operator keys in:

5,HELLO,7

For
as input to
string

then the values received are: A=5, S$="HELLO,7 ", and C=O. In
order to input a value to C, the operator should have keyed in:

5,HELLO 7

The best way to avoid confusion during string input is to
have separate INPUT statements for each string variable. For
example:

10 DIM S$(10)
20 INPUT A,C
30 INPUT S$

.
In this way, no mistake can be made as to what is numeric and what
is string input.

Other forms of INPUT statements are described in chapter 17,
"File Input and Output".

DATAPOINT DOS BASIC PLUS

CHAPTER 13. THE READ AND DATA STATEMENTS, AND RELATED MATTERS

Form: READ <variable> [, <variable> J •••
DATA <value> [, <val~e> J •••
RESTORE
EOF

Examples: READ A,B,C
DATA 10.32,-4,19E5
RESTOR~

IF EOF THEN PRINT "NO MORE DATA"

The READ statement behaves much like the INPUT statement
except that data is retrieved from DATA statements rather than
from the keyboard.

The values in all the DATA statements in a program, taken in
line number order, constitute a single sequence of data for the
RbAD statements of the program. Each READ obtains one value from
the sequence for each variable in its list. The values in the
DATA statements match the type of the variable used in reading.
In other words, if the variable in the READ list is a numeric
variable, the next value in the DATA sequence must represent a
numeric value; if a string variable (see Chapter 16), then a
string value. The individual DATA statements are not directly
associated with the individual READ statements, therefore there
need not be any correspondence between the number of variables
named in a particular READ statement and the number of values in a
particular DATA statement. Expressions are not allowed in DATA
statements.

The RESTORE statement causes the data to be re-read from the
beginning.

If the user READs beyond then end of the DATA sequence, the
error message "NO MORE DATA" will be displayed. The user may test
for this situation. EOF is a condition which can be tested in the
IF statement. It returns TRUE if the DATA sequence has been
exhausted, and FALSE otherwise. A READ executed which cause EOF
to come TRUE will receive zeros for numeric items and the null
string for string items.

CHAPTER 13. THE H~AD A~D DATA STATEMENTS, AND RELATED MATTERS 13-1

Example:

DATA 1,2,3,4.5,040,45E3
READ X,I,Z X gets the value 1, Y=2, Z=3
READ Q,R Q gets the value 4.5, R gets the

value of 40
RESTORE
READ Z
RBAD X,Y,Z,A,B
IF EOF THEN 20
READ A
IF EOF THEN 20

Now Z gets the value 1

No action is taken
A gets the value 0
Transfer is made to line 20

13.1 Strings in DATA Statements

String values may be specified in the DATA statement in
quoted form.

DATA "JOHN","DOE","JANE","TEXAS",3.4,"234-89-3678"

If the quotes are absent, BASICPLUS perceives a sequence of
letters as a variable name.

13-2 DATAPOINT DOS BASICPLUS

Form:

CHAPTER 1_. THE STOP AND END STATEMENTS

STOP l " <comment> "]
END [" <comment> "]

Examples: STOP
STOP "ABC is out of range"
END
END "ALL DONE"

The STOP and END statements are used to signal the end of
stored program execution. Control reverts to the keyboard
operator. If a comment in quote marks follows the STOP or END, it
will be printed with the STOP or END when encountered. This
provides a means of assuring the operator of proper completion.
It can also be used as a fatal error message indicating why the
program stopped early. Good programming form dictates that the
last statement of every program must be an END statment (unless
the program is to be used in a DOS chain; See Program Chaining,
Chapter 21).

The END statement is also used to signal that transactions
with a file are completed and to free the file number to be used
with another file lsee File Input and Output, Chapter 17).

Executing the STOP statement is equivalent to pressing the
keyboard key, in that BASIC PLUS stops running the program and
enters COMMAND mode. ~xecution can be resumed with the GOTO
<linenumber> command. E~D performs the functions of STOP, but it
also forces input or output from or to disk files to be completed
and the files to be closed.

CHAPTER 1_. THE STOP AHD END STATEMENTS 14-1

CHAPTER 15. ARRAYS, THEIR DECLARATION AND MANIPULATION

In addition to ordinary (scalar) variables, each of which
represents a single value, BASIC provides for lists and tables
(array variables).· A list, or vector, can be thought of as a
column of numbers. A table, or matrix, can be regarded as
consisting of entries having both rows and columns.

15.1 The DIM Statement

Form: DIM <variable> <bounds> [, <variable> <bounds> J •••

<bounds> is defined as:

(<bound1> [, <bound2> J)

and both <bound1> and <bound2> are <numeric expression>s.

Examples: DIM A(19)
DIM B(24,4)
DIM C(5),D(b,7),E(99)
DIM FFF(4~C),GGG(EXP(Q1»

The DIM statement is used to indicate:

1. that the variable named is an array
2. the number of dimensions the array has
3. the maximum extent of each dimension of the array.

The <bounds> specify the number of dimensions and the extent of
each. The first example above allocates storage for a
singly-dimensioned array named A having 19 elements. When two
bounds are specified, they designate the number of rows and
columns in the array. The second example dimensions an array of
24 rows by 4 columns.

In a one-dimensional array, numbers are stored and referenced
as indexed (or subscripted) members of a list. For example, to
designate the third element of the array A, use A(3). The

. parentheses are used to enclose the subscript.

In a two-dimensional array, numbers are 'stored and referenced

CHAPTER 15. ARRAYS, THEIR DECLARATION AND MANIPULATION 15-1

via two indices, the row and the column respectively. The
subscripted variable D(2,5) references the number in the second
row, fifth column of arrayD.

BASIC PLUS converts "(" and ")" to "[" and "]", to aid in
distinguishing the parentheses of subscripts from the par~ntheses
of numeric expresaions and of function arguments. The user may
subscript with parentheses or brackets, but BASIC PLUS always
performs this conver.sion. When BASIC PLUS GETs a program from a
file, it performs this conversion. If th~ program is SAVEd to a
file, the subscripts are delimited by brackets regardless of how
they were entered.

The value of the <bound>s can be any numeric expression which
can be evalua~ed at the time the DIM is performed./ This includes
expressions involving the results of previous calculations. If
the value of the numeric expression is not an integer, it is
truncated to an integer.

A scalar variable which has previously contained a value
cannot be redefined as an array and vice-versa. BASICPLUS reports
an error when the programmer uses the same name for what must be
different and independent variables (since they are of different
types). The message "VARIABLE ALREADY DEFINED" will be displai if
the user tries to DIM a already define variable, and the message
"ARGUMENT NOT NUMBER" will be displayed if the user tries to use a
DIMed variable in a scalar application .

• 4

Som~ BASIC implementations do not allow dimensioning of
arrays by expressions, requiring instead constant dimensions.
E~SICPLUS allows dimensioning of array. by exrrc9sions, provided
that the array has not already been dimensioned. Executing the
same ~IM statement more than once in a program or executing
another DIM statement naming the same array will cause the error
message "VARIABLE ALREADY DIMENSIONED" to be printed. If this
occurs, the program must be modified so that the array is
dimensioned only once. An arriX which ~ .luu:.n DIMed 9innot II
DIMed iSiin until ~ ~ progrim ~ ~ ~ A ~ ~~ ~ ~n.
If an array must be re-DIMed during the execution of a program,
th~ HUN command with a non-existant line number for an argum~nt
will re-initialize array storage and allow new DIM statements.

The message "NO ROOM" occurs when there is no space in the
processor memory to allocate space for an array or a program.
Occasionally, enough space can be recovered by a SAVE and GET to
allow execution. Alternatively, removing other arrays from array
spaoe by executing the RUN command to a non-existent line will
give enough space to allocate the ourrent array.

15-2 DATA POINT DOS BASICPLUS

The DIM statement is legal as a direct execution statement.
To procede with execution of the stored program, use GOTO
<linenumber> rather than RUN, since RUN deletes DIM-allocated
storage. Make sure, however, the <linenumber> is past the DIM
statement.

In BASICPLUS, unlike some other BASIC implementations, the
DIM statement must be executed before the array is actually
created.

15.1.1 Use of Arrays

A subscripted variable can appekr any place where a variable
can appear except as the index for a FOR-NEXT loop. The subscript
may involve any numeric expression evaluable at the time the
subscripted variable is encountered. Here are some examples:

10 DIM A(20),B(4,5)
20 LET A(2)=10
30 DIM C(A(2)-1)
40 A(A(2))=A(2)·
50 IF A(2) <> A(SQR(100» THEN PRINT "Oops!"
60 B(1,1)=5
70 FOR I=C(1) TO B(1,1)
60 C(1+I)=B(I,I)+I
90 NEXT I
100 PRINT A(2),B(1,1),C(6)

15.2 Matrix Operations - The MAT Statement

Many useful funotions for array processing can be done in
BASICPLUS using built-in matrix operations to set all elements of
an array to zero or one, to set up an identity matrix, to copy
arrays, and so on.

15.2.1 The Matrix Assignment Statement

Form: MAT <matrix1> = <matrix2>

Examples: MAT A=B
MAT MATRIX1=MATRIX2

The matrix assignment statement copies each element of

CHAPTER 15. ARRAYS, THEIR DECLARATION AND MANIPULATION 15-3

<matr1x2> to the corresponding element of <matrix1>. The two
matrices ~ have the same dimensions (previously defined in a
DIM statement) or an error will occur. If the two matrices have
the same dimensions, then <matrix1> will become an exact copy of
<matrix2>.

15.2.2 The Matrix Arithmetic Statements

Form: MAT <matrix1> = <matrix2> <operator> <matrix3>

<operator> is defined as:

+ for matrix add~tion
- for matrix subtraction
* for matrix multiplication

Examples: MAT A=B+C
MAT Z9=A1*Bl
MAT X=Y-Z

The matrix arithmetic statements are used to perform
arithmetic operations on matrices: addition, subtraction, and
multiplication (+,-,*).

Under addition and subtraction, all matrices ~ have the
same dimensions.

The rules of matrix multiplication are:

If <matrix2>.is a P x Q matrix,
then <matrix3> is a Q x N matrix,
and 'the resulting <matrix1> is a P x N matrix.

Thus, for MAT C = A * B,
if matrix A is 5 x 3, then
matrix B must be a 3 x n matrix.
If, for example, it is 3 x 7,
then the resulting matrix will be 5 x 7.

If these conditions are not met, an error results. The same
matrix ~i ~i appear on both sides of the equal sign for
multiplication or an error will result.

15-4 DATAPOINT DOS BASIC PLUS

15~2.3 Soalar Multl~lloatlon ot a Matrix

Form: MAT <matrix1> = (<~oalar>) • <matrix2>

Bxamples: MAT A=(5)*B
MAT Z=(A+B)·Z

This operation faoilltates multiplioation of~a matrix by a
soalar value (possibly a numerio expression value). Both
<matrix1> and <matrix2> must have the same dimensions or an error
will result. Eaoh element of <matrix2> is set equal to the
oorresponding element of <matrix1>, multiplied by the soalar. The
same matrix may appear on both sides of the equals sign.

15.2.4 The MAT INPUT Statement

Form: MAT INPUT [# <num expr> ,] <matrix> [, <matrix>] ••.

Examples: MAT INPUT A
MAT INPUTI2,Z

The MAT INPUT statement is used to obtain values for one or
.more entire matrioes from the keyboard or a disk file (see ohapter
11, File Input and Output). The absenoe of a file number
expression or the file number being equal to 0 indioates that the
MAT INPUT is to obtain its matrix values from the keyboard.

Eaoh matrix is entered in row-major order, the seoond
subsoript varying most rapidly [e.g., A(1,1), A(1,2), A(2,1),
A(2,2), B(1,1), 8(1,2), eto.] Note that a MAT INPUT statement
reads only entire matrioes. If a matrix is dimensioned to have 50
elements, a MAT INPUT of that matrix de~ands all 50 elements.

If not enough data is entered from the keyboard to fill the
matriX, the message "NOT ENOUGH DATA, ENTER MORE:" will be
displayed and a new line of data will be request~j.

If not enough data is present in a file to fill the oatrt~, ~
"NO MORE DATA" statement will be displayed.

If the format of the data is inoorreot, the message "BAD
INPUT, RETYPE FROM ITEM:" will be displayed. This message does
not mean that the entire l1ne was rejeoted, it simply means that

CHAPTER 15. ARRAYS, THEIR DECLARATION AND MANIPULATION 15-5

the usar ~ust recognize. his mistake and re-enter data from that
pOint. For example:

DIM A{5)
MAT INPUT A
1,2,3,4,5
MAT INPUT A
1,2
NOT ENOUGH DATA, ENTER MORE:
3,4
NOT ENOUGH DATA, ENTER MORE:
5·

. MAT INPUT A
5,6,7M8,9
BAD INPUT, RETYPE FROM ITEM:
8,9
MAT PRINT Ai
56789

15.2.5 The MAT READ Statement

Form: MAT READ [# <num expr> ,] <matrix> [, <matrix>] •.•

Examples: MAT READ A
MAT READ B,D,C9

The MAT READ statement is used to obtain values for one or
more entire matrices from DATA statements or a disk file (see
chapter 17, File Input and Output).

The absence of the file number expression or a file number
being equal to 0 indicates that values are to be obtained from the
DATA sequence (see chapter 13).

ls with the MAT INPUT statement, matrices are entered in
row-major order and only entire matrices are read. If not enough
data is present in DATA statements to fill the ~atrl~, the !~atrl~

will be filled with as much data as is available, and the ~esiaS9
"NO MORE DATA" will be displayed. The remainder of the matrix
will be left untouched. As in the READ statement, if an attempt
is ~ade to read invalid data into the ~atrL~, a~ error will
result.

1.5-6 DATAPOINT DOS BASIC PLUS

Example:

10 DATA 1,2,3,4,5,6,7,8,9,10
DIM A(5)
MAT READ A
MAT PRINT A;
12345
MAT READ A
MAT PRINT A;
6 7 8 9 10
RESTORE
READ B,C,D
MAT READ A
MAT PRINT A;
4 5 6 7 8
MAT READ A
NO MORE DATA
MAT PRINT A;
9 10 6 7 8

15.2.6 The MAT PRINT Statement

Form: ~AT PRINT (, <num expr> ,] <mat print list>

where <mat print list> is:

<matrix> [<sep> <matrix>] ••• [<sep>]

Examples: MAT PRINT A
MAT PRINT A;
MAT PRINT A,B,C
MAT PRINT A;B,C

The MAT PRINT statement is used to output one or more
matrices to the CRT display or to a disk file. The absence of the
file number or the file number being equal to 0 indicates that the
output is to be to the CRT display. The separators (comma or
semicolon) control the formatting, as in the PRINT statement. The
program:

10 DIM A(5,5)
20 MAT A=IDN
30 MAT PRINT A

CHAPTER 15. ARRAYS, THEIR DECLARATION AND MANIPULATION 15-7

is equivalent to the program:

10 DIM A(5,5)
20 MAT A=IDN
30 FOR 1=1 TO 5
40 FOR J = 1 TO 5
50 PRINT A(I,J),
60 NEXT J
70 PRINT
80 PRINT
90 N.EXT I

If a semicolon follows the matrix name, the matrix will be printed
in a compressed format. This would be comparable to a change in
the second program of:

50 PRINT A(I,J);

More than one matrix may be printed with the MAT PRINT statement.
They may be separated by either commas or semicolons, depending on
the format desired.

15.2.7 The MAT ZER Function

Form: MAT <matrix> = ZER

Examples: MAT A=ZER
MAT MATRIX1=ZER

The MAT ZER function is used to set all elements of a matrix
to zero. This is often useful in logical operations, as FALSE is
a logical zero. The matrix specified must already be DIMensioned.

15.2.8 The MAT CON Function

Form: MAT <matrix>=CON

Examples: MAT Z9=CON
MAT MATRIX2=CON

The MAT CON function is similar to the MAT ZER function,
except that all elements of the matrix are set to one. This is

15-b DATAPOINT DOS BASIC PLUS

useful for setting all elements of a matrix to a logical TRUE.
The same rules that apply for MAT ZER apply for MAT CON.

15.2.9 The MAT IDN Function

Form: MAT <matrix>=IDN

Examples: MAT A=IDN
MAT MATRIX3=IDN

The MAT IDN function returns an identity matrix. An identity
matrix is a square matrix with all diagonal elements equal to one
and all off-diagonal elements equal to zero. Any matrix
multiplied by an identity matrix equals itself. The same rules
that apply to MAT ZER and MAT CON apply to this function, except
that only a square matrix may be defined as an identity matrix.

Example of MAT IDN:

10 DIM A(4,4)
20 MAT A=IDN
30 MAT PRINT A;

Running this program produces:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

15.2.10 The MAT TRN Function

Form: MAT <matrix1> = TRN l <matrix2>)

Examples: MAT A=TRN B
MAT Z =TRN(Z)
MAT X9=TRN(A)

The MAT TRN function returns the transpose of a matrix. The
argument, <matrix1>, must have the same number of rows as
<mat~ix2> has columns, and the ·same number of columns as <matrix2>
has rows. For example, if <matrix1> is 4 x ~, then <matrix2> ~

CHAPTER 15. ARRAYS, THEIR DECLARATION AND MANIPULATION 15-9

be 8x 4.

A square matrix may be transposed into itself.

Example:

Original Matrix:

1
5
9

2
6

10

3
7

11

Transposed matrix:

1
2
3
4

5
6
7
d

9
10
11
12

15.2.11 The MAT INV Function

4
8

12

Form: MAT <matrix1> = INV (<matrix2))

Examples: MAT A=INV B
MAT X1=INV(X1)
MAT Z9=INV(AO)

The MAT INV function returns the inverse of a ~guare matrix.
If the matrix is not square, or <matrix1> does not have the same
dimensions as <matrix2>~ an error will result. A matrix may be
inverted into itself, as in the second example.

15.2.12 The DET Function

Form: <variable> = DET (<matrix>)

Examples: A=DET(B)
Z(1)=DET(MATRIX1}

The DET function returns the determinant of a square matrix.
A single value is returned as the determinant of the matrix.

15-10 DATAPOINT DOS BASIC PLUS

Note: The determinant and inverse routines require a
temporary workspace the size of the matrix plus the size of one
column. The error message "INSUFFICIENT CALCULATION SPACE" will
be displayed if not enough workspace can be found.

CHAPTER 15. ARRAYS, THEIR DECLARATION AND MANIPULATION 15-11

CHAPTER 16. STRINGS

Preceding chapters have discussed the use of BASIC with
numeric data. This chapter describes the string-handling
capabilities of Datapoint BASICPLUS. A string of characters can
represent a name, a heading, a sentence, or any other kind of
character data •

. 16.1 String Con~tants

A string that does not change is called a string constant. A
string constant is written in BASIC by enclosing it in quotation
marks.

PRINT "THIS IS A CONSTANT STRING"

The FRINT statement above prints the constant string consisting of
the 25 characters beginning with the "T" (of "THIS") and ending
with the "G" (of "STRING").

16.2 String Variables

BASIC programs do not deal solely in numeric values; the
ability to manipulate string values is integral to BASIC. The
presence of string variables enables the user to write programs
which accept, manipulate, and output character text. The names of
numeric variables begin with a letter and continue with letters
and digits. String variable names have the distinguishing mark of
~lways ending with a dollar sign "$".

In BASIC, numeric values always occupy the same amount of
storage (twelve digits, plus exponent). Since string values can
range from no characters (the null string) to 251 characters, the
user must specify how much space is to be allocated for each
string variable. This is done using the DIM statement.

CHAPTER 16. STRINGS 16-1

16.2.1 Simple String Variables

BASIC PLUS treats simple string variables as arrays of
characters. The DIM statement specifies the number of characters
a string may hold. The value associated with a string variable
cannot exceed its dimensioned maximum length. The program:

10 DIM MESSAGE$(80)
20 LET MESSAGE$="NOW IS THE TIME FOR STRINGS"
30 PRINT MESSAGE$

will print out the value of MESSAGE$, namely:

NOW IS THE TIME FOR STRINGS

Note that the quotes are not part of the string value.

16.2.2 String Lists

A one-dimensional array (a list) of strings is represented as
a two-dimensional array of characters. When a string is given two
dimensions in the DIM statement, the first dimension specifies t~e
number of strings and the second specifies the maximum number of
characters in each string. For example:

DIM A$(15), B$(11,20)

specifies that A, is a string of up to 15 characters and B$ is a
list of 11 strings, B$(1) ••• B$(11), of up to 20 characters each.

16.3 Substrings

Form: <string name> (<num exp> , <num exp> [, <num exp>])

Exampl~s: B$(4,10)
C$(1,4,7)

A substring is a' portion of the string associated with a
string variable. BASICPLUS provides a notation for designating
substrings, making their use more convenient in both string
expressions and string assignments.

The notation for the substring of a simple string is its n~me
followed by a parenthesized pair of values deSignating the
starting and ending pOints in the named string. The first example

1t-2 DATAPOINT DOS BASICPLUS

above shows a reference to the fourth through tenth characters of
string B$.

The notation for a substring of a member of a string list is
the name of the string list followed by a parenthesized list of
three values designating first the member of the list, and then
the starting and ending pOints in that member. The second example
above designates the substring of the first member of string list
C$, from its fourth through seventh characters.

If the beginning and ending points are equal, a one character
substring is being specified. Here are some examples of the
substring in use: I

R$=F$(2,M)
AH$(S(1),S(2»="SUBSTRING"
PRINT C$(1,3,10);" IS THE VALUE."

BASICPLUS allows a shorthand way of specifying a single
character substring. Instead of specifying equal beginning and
ending points, a single value may be specified. Thus, if A$ is a
simple string variable then A$(3) is equivalent to A$(3,3).
Similarly, if L$ is a string list then L$(4,8) is equivalent to
L$(4,8,8). Since simple strings cannot have the same names as
string lists, no confusion arises from this shorthand.

The values for the starting and ending points must be greater
than or equal to one, and less than or equal to the dimensioned
length of the string, respectively. If the value for the starting
point is less than one, or the value for the ending point is
greater than the dimensioned length of the string, or the value
for the starting point exceeds the value for the ending point, a
subscripting error occurs.

16.3.1 The Equivalence of Characters and ASCII Values

Computers store strings in a coded form. Each character of a
string is represented by a numeric code from a code table. In
Datapoint computers, the ASCII (American Standard Code for
Information Interchange) code is used. For example, the letter
"A" is stored as 65 and the character" " (blank) is stored as 32.
Appendix C gives the ASCII code values of the commonly used
characters. BASICPLUS handles all the conversions between codes
and characters.

CHAPTER 16. STRINGS 16-3

BASICPLUS allows the user to manipulate the individual
characters of a string as numeric values. A one-character
substring can be assigned a numeric value, or participate ~n a
numeric expres~ion. Thus E$(1,1) = 65 would set the first
character of string E$ to "A". As another example,

R$(1,1) = G$(2,2) + 5

would set the first character of R$ to the value of the character
from the ASCII table which is five positions beyond that of the
second ~haracter in string G$. If G$ had the value "THANKS", and
R$ had the value "WASHING", executing the above statement would
take the "H" of "THANKS", compute the character "M" from it, and
give R$ the value "MASHING". I

16.4 Assignment to Strings and Substrings

When a string is assigned a value having more characters than
its dimensioned length, the excess characters are~. When a
string is assigned a value with fewer characters than its
dimensioned length, a special character is assigned to the next
position of the string. This special character is called ETX (End
of TeXt) an~ has the ASCII code value of 003.

The ETX serves BASICPLUS as an end-of-string marker. The
PRINT statement stops printing a string value when it encounters
an ETX or a CR (Carriage Return = 13). The LEN function (below)
measures string length up to an ETX or the end of the allocated
space, which ever comes first. Under string concatenation
(below), each string value being concatenated ends with the
character before any E~X or at the end of the allocated space.

Bebause of this convention the assignment of values to
substrings, such as in LET or INPUT statements, may produce
results which are not at first obvious. For example, the program:

prints out:

10 DIM A$(10)
20 LET A$="HELLO THERE"
30 PRINT A$
40 LET A$(1,3)="999999999"
50 PRINT A$
60 LET A$(1,3)="22"
70 PRINT A$
80 END

16-4 DATAPOINT DOS BASICPLUS

HELLO THER
999LO THER
22

In line 20, the final "E" was lost. In line 40, only three of the
"9"s were inserted. In line 60, an ETI was inserted because only
two characters were replacing three. Thus statement 70 stopped
printing after the "22". Actually, the "LO THER" remains in
memory. If a single character (say, "~") were inserted at
A$(3,3}, a subsequent PRINT statement would again display the full
ten characters.

The same string variable can appear on both sides of the
assignment operator "=". For example, it is legal to concatenate
a blank onto the front of a string or concatenate a string with
itself using the LET statement (see String Concatenation below).

16.4.1 String Input and Output

Strings of no more than 80 characters can be entered or
displayed via the CRT. Any string may be output to a printer.
Strings of not more than 249 characters may be input from (or
output to) disk files.

On output, a string is written up to its dimensioned length
unless a CR character (Carriage Return = ASCII value 13) or an ETX
character (End of TeXt = ASCII value 3) occurs in the string, in
which case the output ends with the character preceding the CR or
ETX.

The INPUT statement will accept as many characters as are
specified by the string or substring argument. If fewer
characters are entered than specified, an ETX is appended to the
characters. If more characters are entered than specified, the
excess characters are ignored. Chapter 12 (The INPUT Statement)
further discusses the behavior of strings in the INPUT statement.

16.5 String Expressions

As numeric constants and variables may be combined with
arithmetic operators to form numeric expressions, so may strings
and substrings be combined with string operators to form string
expressions.

The string operators and their effects are:

ChAPTER 16. STRINGS 16-5

+ --string Concatenates two strings together
USING Edits one or more values into a str~ng

MIN--string Selects the lesser of two strings
MAX--string Selects the greater of two strings
INSTR--stringSearches for one string within another

There are two functions which accept string expressions as
arguments and return numeric values:

LEN (A$)
VAL (A$)

Returns the number of characters in A$
Returns the numeric value for which A$
contains the numeric representation.

A string ~onstant or variable or some combination of strings,
substrings, and string operators constitutes a string expression.
The functions, since they return numeric values, participate only
in numeric expressions even though they have string expressions as
arguments.

16.5.1 String Comparison

The values of two (or more) string expressions may be
compared in the IF statement or with the string MAX and string MIN
operators. The two string values are compared, character by
character.

If the Nth character of the first string is not identical
to the Nth character of the second, the values of the
codes of the two characters determine which is the
greater.

If one string ha's fewer characters than the other, but
the characters of the shorter match the characters of the
longer up to the end of the shorter, then the longer one
is the greater.

If the strings have the same number of characters and
have the same characters in corresponding positions, then
they are equal.

For example:

16-6

"CART" < "CART "
"CAT" < "DOG"
"CAT" < "DO"

DATAPOINT DOS BASICPLUS

"CART" MIN "CART " = "CART"
"CAT" MAX "DOG" = "DOG"
"CAT" MIN "DO" = "CAT"

16.5.2 String Concatenation

Form: <string expr> + <string expr> [+ <string expr> l •••

Examples: PRINT "HELLO"+"THERE."
STRING$="YOU ENTERED "+NAM$+"IN 'NAME'."

The "+" operator, when used with entire strings in this
manner, is not the arithmetic addition operator but rather the
concatenation operator. Concatenation is the jOining together of
a series of strings in sequence. If A$ contains "CAT" and B$
contains "ALOG~, then:

A$ + B$

yields "CATALOG". No other arithmetic operators may be applied to
entire strings.

16.5.3 String Editing (The USING Operator)

Form: <format string> USING <exp1> [, <exp2>l •••
PRINT USING <format string>, <exp1> [, <exp2>l ••.

<format string> is defined as:

<string expression>

Examples: A$="THE COST WAS $11111.11." USING COST
PRlNT USING A$,VAR1,VAR2,VAR3
B$=l"~111 $II,II@.II USING A,B)+A$
OPENI1,"FILEI/SRC" USING N

The USING operator enables the BASIC PLUS programmer to edit a
series of values to produce a string of characters. This feature
is most useful for generating neatly formatted output. The USING
operator may occur in any string expre~sion. Another form of the
OSING, shown in the third example above, is provided for
compatibility with other BASIC systems.

Editing is governed by the formatting fields in the format
string. These fields consist of combinations of the following
characters:

I $ • @ A - , •

CHAPTER 16. STRINGS 16-1

Other characters are printed exactly as they appear in the string.
Each character in a format string reserves space for one character
in the resulting string value.

16.5.3.1 Numeric Fields

16~5.3.1.1 Integer Field

The first of the two fundamental numeric formatting fields is
the integer field, specified by.a series of two or more number
signs. Each number sign reserves space in the resulting character
string for one digit of the integer. The value being edited is
rounded to an integer and right-justified in the field. In other
words,

"III" USING 46.58

produces:

41

that is; a blank, a tour, and a seven. The blank indicates a
positive value. For a negative value, a minus sign (-) is used in
place of the blank. The minus sign is placed directly to the lert
of the lett-most digit. A plus sign is never actually printed.
Thus, the string expression:

"""'11"'" USING -1

yields "-1" preceded by & blanks.

16.5.3.1.2 Fixed Point Field

The other tundamental numeric formatting tield is the
decimal, or tixed pOint, field. As in the integer field, number
signs specity the positions where decimal digits are to appear in
the result string. The character "." indicates the position of
the decimal point in the field; that is, the decimal point
determines the justification. The value being edited is rounded,
if necessary, to fit the tield. For example,the string
expression

"'#11.#1###" USING 41.2

10-6 DATA POINT DOS BASICPLUS

produces the character string

47.20000

Trailing zeros are generated as needed to the right of the decimal
pOint, but leading zeros are replaced by blanks (that is,
"blank-filled"). The sign is generated as in the integer field:
in the character position preceding the left-most digit, a blank
for a positive value or a minus sign for a negative value.

16.5.3.1.3 Zero-Filled Field

The commercial-at "~" is used tJ retain leading zeroes.
the "@" is used .in place .Q.t any number sign of an integer or
point field, for example:

PRINT USING "@IIIII.II", 75

If
fixed

then leading zeroes will be edited into the field positions which
would otherwise be blank-filled:

000075.00

The leading position contains "0" if the value is positive, and
"-" if the value is negative.

If the "@" is imbedded in the field, then the zero filling will
begin at the place of the "@".
For example

PRINT USING "II@II.II", 7.5

will cause leading zero suppression to stop and zero filling to
begin at the position of the "@".

007.50

16.5.3.1.4 Asterisk-Filled (Check Protect) Field

The asterisk "." is often used in check protection. The
asterisk-filled field is similar to the "@" field discussed above,
but instead of generating leading zeros, it generates leading
asterisks. For example, the result of:

"*11###1114.11" USING 4765.99

CHAPTER 16. STRINGS 16-9

is

*·****4765.99

The leading position contains "*" if the value is positive, and
"-" if the value is negative.

This is used for formatting negotiable items, in order to
prevent numbers from being inserted in front of the original
am6unt ("4765.99" could be changed to "994765.99").

16.5.3.1.5 Comma Insertion Field

Formatting can also place commas in large numbers to aid
readability. If commas are included in integer, decimal,
zero-filled, or asterisk-filled fields, they will be edited into
the formatted value. Fo~ example, the statement:

PRINT USING ""',1'1,"'",45636477

will cause" 45,636,477" to be displayed. If a digit does not
prec~de a comma in the formatted field, then a blank (or zero or
asterisk, as appropriate) is inserted instead of a comma.

16.5.3.1.6 Floating Dollar Sign Field

A numeric field preceded by a dollar sign "$" is said to have
a "floating dollar sign"; that is, a dollar sign is generated
immediately to the left of the left-most digit of a positive value
or immediately to the left of the minus sign of a negative value.
For example:

PRINT USING "$"""."",4721.42

displays:

$4721.42

with two leading blanks.

The dollar sign can be prefixed to the integer, fixed point,
zero-filled, aster1sk-f1l1ed., or comma-insertion fields. The
statement:

PRINT USING "$t',.I","'."",AMOUNT

16-10 DATA POINT DOS BASICPLUS

with AMO~NT equal to 47521.7 will display:

$47,521.70

on the screen.

16.5.3.2 Scientific and Engineering Notation Fields

The "----" appended to an integer or fixed point field
specifies that the value shall be edited in scientific (that is,
powers of ten) notation. For example:

displays

4.5621E+04

The format "----" is almost identical to the "---An, except
that it produces engineering notation. In engineering notation,
the exponent is always a multiple of three (e.g. 0, 3, 6, 9, and
so on). Note that exactly four (4) carets or tildes are used.
These are replaced by "E+nn" or "E-nn". If the caret or tilde
occurs in any other manner in a format string, it is treated as a
iiteral, to be copied verbatim.

1&.5.3.3 Character Field

Numeric values need not be the only type of data that is
formatted. String values can also be formatted using a series of
number signs. For example:

PRINT USING "I" IS YOUR NAME","JOE"

displays:

JOE IS YOUR NAME

Unlike numeric values, string values are left-justified in their
fields with blank-fill to the right.

CHAPTER 16. STRINGS 16-11

16.5.3.- Values Too Large for Their Formats

If a numeric value to be formatted is too large for the field
specified, BASICPLUS indicates this problem with a question mark
in the sign position. Here is an example:

PRINT USING "1#1.11",-75623.495

displays: "?47562". As much of the number as the format permits
is generated in the field following the tell-tale question mark.
The high-order digits are generated at the expense of the
low-order digits.

If a string value to be formatted is too large for the field
specified, it is truncated on the right, and no indication of the
overflow is provided.

16.5.3.5 Composite Formats

A format string may consist of a sequence of fields. For
example:

"III 111.111 1#111##" USING 1,2.4,6

yields

1 2.400 6

The number of items in the USING list must exactly equal the
number of fields in the format string; Any characters present in
a format string which are not part of a field, are taken
literally. Any characters except the number sign (I) or
commercial at (@) (blank~, or even the formatting symbols ".",
"$", "*", "-", and "-H) may be placed anywhere in the format
string and thus be edited into the resulting string value. The.
formatting symbols are treated as formatting symbols only ~f they
appear within an integer or fixed point field (the "$", "*", and
"."), or"scientific notation or engineering notation field (the
"-" "-n or "."). For example:

PRINT USING "$ • • V = #11#1",12.45

will display:

$ • • V = 12

and

16-12 DATAPOINT DOS BASIC PLUS

PRINT USING "I BOUGHT '" CARS at $#"'." EACH.",37,4751.8

will print:

I BOUGHT 37 CARS at $4751.80 EACH.

16.5.3.6 Additional Precision Displayable

All calculations are carried out to twelve decimal places of
accuracy, however values are only displayed to six places in an
ordinary PRINT statement. The numbers may be edited to display
all 12 places by using formatted printing. For exampl.~

PRINT USING "'.""""""",2/3
will cause

.666666666667

to be displayed.

16.5.4 The MIN and MAX Operators

Form: <string expression> MIN <string expression>
<string expression> MAX <string expression>

~xamples: A$[1]=X. MIN "A"
PRINT F$ MAX "DATUM"
A$="UN"+(C$(2,5) MAX Z$)

String values may be compared with one another with the MIN
and MAX operators, as mentioned above under String Comparison.
The MIN and MAX operators are used to compare two strings and
select the greater or lesser, respectively.

16.5.5 The INSTR Operator

Form: <string expression> INSTR <string expression>

Examples: IF A$ INSTR B$ THEN 10
C="LOCATE" INSTR COMMAND$
D=DATE$ INSTR "JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"

CHAPTER 16. STRINGS 16-13

The INSTR operator searohes the right-hand string expression
for an ooourane of the left-hand string expression. The result
obtained is the oharaoter position of the right-hand (searohed in)
string. If the left-hand (searoh) string does not appear anywhere
in. the searohed in string, a value of zero is returned.

16.5.5.1 Examples of String Search (INSTR)

"." INSTR "ABCDEFGHIJ*KLMNOP"

~ould return a value of 11.

"HELLO" INSTR "NOW IS THE TIME TO SAY HELLO TO SOMEONE."

would return a value of 24.

WHERE="NOTIN" INSTR "THIS STRING IS SEARCHED."
PRINT WHERE

would print the value "0".

16.5~6 The LEN Funotion

Form: LEN (<string expression))

Examples: PRINT A$L3,LEN(A$)]
L=LEN (STRING1$ + STRING2$)

The LEN funotion returns a oount of the number of oharaoters
in a string expression up to the first ETX (ASCII oode 3) or the
dimensioned length of the string, whioh ever oomes first. When a
string is first dimenSioned, its length is zero; that is, the DIM
puts an ETX in the first allooated position of the string. If
fewer oharaoters are assigned to a string than its DIM allooates,
an ETX is plaoed after the last oharaoter assigned.

16-14 DATAPOINT DOS BASICPLUS

16.5.6.1 Examples of LEN in Use

10 DIM ANSWER$(3},~AME$(10)
20 PRINT "This program prints backwards."
30 PRINT "Type in the name: ";
40 INPUT NAME$
50 FOR I=LEN (NAME$) TO 1 STEP -1
60 PRINT NAME$(I};
70 NEXT I
~O PRINT " Do you want to try another? ";
90 INPUT ANSWER$
100 IF ANSWER$="YES" THEN 30
110 IF ANSWER$="NO" THEN END
120 PRINT "Please answer YES
130 GO TO 80

. I
"Wasn't that fun?"
or NO."

140 END

10 REM FOUR LETTER WORD DETECTOR
20 DIM S$(10)
30 PRINT "I detect four letter words."
40 PRINT "Try typing in a word"
50 INPUT S$
60 IF LEN (S$}=4 THEN 90
70 PRINT "That's fine. Feed me another."
bO GO TO 40
90 PRINT "You typed a four letter wordl"
100 FOR 1=1 to 100
110 BEEP
120 NEXT I
130 END "I QUIT III"

16.5.7 The VAL Function

Form: VAL ((string expression) }

Examples: X=VAL (A$)
PRINT VAL (STR$)

The VAL function accepts a string argument. If the string
consists of a valid numeric representation (a series of characters
representing a numeric constant), the numeric value represented by
the string is returned; otherwise, a value of zero is returned.
For example:

CHAPTER 16. STRINGS 16-15

10 DIM S$(5}
20 S$="47.5"
30 PRINT VAL (S$)
40 S$="???"
50 PRINT VAL (S$)

will display:

47.5
o

This function enables the user to write a program which can
accept text containing numeric representatio~s, isolate these
n~merics, and directly convert them for computational use •

. 1b-1b DATAPOINT DOS BASICPLUS

CHAPTER 17. FILE INPUT AND OUTPUT

Chapters 11 and 12 discussed input from the keyboard and
output to the display. BASIC PLUS can also accept input from and
deliver output to disk files. Sequential Access, Direct Access,
or ISAM disk files created by programs written in other Datapoint
languages (space compressed or not) are acceptable to BASICPLUS.
For a more detailed explanation of the Datapoint disk file
structure, consult the DOS User's Guide.

17.1 Disk File Structure

The smallest unit of disk storage is the sector; all disk 1/0
(input/output) hardware instructions operate on entire sectors.
Each sector can hold 256 bytes (characters) of which 5 are
pre-empted by DOS for system use, leaving 251 available.

A group of sectors is called a~. Each file has a name
associated with it. Dds provides the ability to manipulate files
by name. On a system with more than one disk drive, the
drive-number or ~ volume identifier can also be used a part of
a file name.

17.1.1 Record Structure

Although the smallest phvsical unit of disk storage is the
sector, there are also logical units involved in .disk files.
BASIC PLUS file I/O deals in both physical and logical records.

A physical record corresponds to exactly one sector on the
disk. It starts with the first character of the sector and ends
with an octal character 003. ThUS, for compatiblity with DOS,
there are at most 250 usable data characters in a physical record.

A logical record is a series of characters terminated by an
octal 015, therefore a logical record within a single physical
record can contain only 249 data characters.

However, logical records are superimposed on physical
records: several logical records may be stored in one physical
record, or a single logical record may span two physical records.

CHAPTER 17. FILE INPUT AND OUTPUT 17-1

Example: Four logical records could appear on the disk as:

asc asc asc asc asc asc oct asc asc asc asc asc asc oct asc oct
LIN E 1 015 LIN E 2 015 L 003

asc asc asc asc asc oct asc asc asc asc asc asc oct oct
I N E 3 015 LIN E 4 015 003

Note.that the first physical record contains two logical
records as well as the first letter of a third. The octal 003
ends the physical record; the remaining. 235 characters of the
sector are ignored by BASICPLUS. The third logical record starts
in the first physical record and continues into the second
physical record. At this pOint the fourth logical record starts
and continues to the end of the physical record.

If the same four logical records were written to the disk,
one per physical record, they would appear as:

asc asc asc asc asc asc oct oct
L I N E 1 015 003

asc asc asc asc asc asc oct oct
L I N E 2 015 003

asc asc asc asc asc asc oct oct
L 1 N E 3 015 003

• asc asc asc asc asc asc oct oct
L I N E 4 015 003

Note that the first example took 2 sectors to store 4 logical
records, while this second example took 4 sectors to store the
same amount of information. The latter style of disk formatting
is sometimes preferred over the former style, because the user may
be able to gain faster and easier access to the logical record of
his choice at the expense of storage space.

11-2 DAtAPOINT DOS BASICPLUS

17.1.2 End-of-File Mark

The end-of-file mark (EOF) is a special type of physical
record which is written to the disk as the last physical record of
a file. It always starts at the beginning of a physical record
and has the following format:

oct oct oct oct oct oct oct
000 000 000 000 000 000 003

The rest of the characters in the sector are of no significance.

All records betw~en the beginning of the file and the EOF
must be in acceptable physical record format. Any record that is
not in this format will cause an I/O or FORMAT trap. An empty
file is acceptable; that is, any file which has an EOF as its
first physical record is acceptable.

17.2 File Accessing Methods

All disk I/O in BASICPLUS is based on establishing a position
within a file. Once this position is established, all accesses
are performed by moving this position within the file. This
position within the file is completely described by two values
maintained by BASICPLUS: the record number and the conceptual
character pointer.

The record number specifies which sector is currently being
referenced. The value zero (0) specifies the first sector.

The character pointer specifies the byte currently being
referenced within the sector. The value one (1) specifies the
first byte of the sector. The only control the user has over this
character pointer in BASICPLUS is that each character printed out
and each TAB function reference advances the pOinter along the
record, and a RESTORE sets the pOinter to the first character of
the record to which the RESTORE refers.

CHAPTER 17. FILE INPUT AND OUTPUT 17-3

17.2.1 Physical Record Access (Direct Access)

Physical record access is the fastest and simplest method of
acc~ssing information within a file. Physical record accessing
may be used to randomly access information on the disk.

Each physical record in a file is associated with a positive
integer value starting with zero (Ole To access a given physical
re~ord, the user must specify the record number of the physical
record desired. The position in the file is altered such that the
record number of the file is set to the specified value and the
character pOinter is set to the value one (1). Once the position
has been established, the access continues as if it had been a
logical record access.

17.2.2' L~glcal Record Access (Sequential Access)

This is the access method used to read and write logical
records. This access method allows only sequential processing of
disk records. If the programmer requires random access to logical
records, he must either use a combination of direct access and
sequential access or use the slower but more powerful indexed
accessing (see below).

In reading a logical record, all characters in the file from
the current position of the record number and character pointer up
to (but not including) the next octal 015 are read.

17.2.3 Inde~ed Sequential Record Access (ISAM)

An indexed sequential file is a sequential file in which each
record contains a ~--an alpha-numeric field which uniquely
identifies that record. Using ISAM, a program can access records
by key rather than by position withiri the file. All keys must be
the same length and each must be located at the same offset from
the beginning of its record.

An indexed sequential file alone is indistinguishable from an
ordinary sequential file. What makes it indexed sequential is the
presence of another file containing an index to the sequential
file.

The index file contains the name and extension of the file
which it indexes, copies of the keys, and the pointers necessary
to associate the keys with the logical records of the indexed file
in a sorted order. Index files may be created only by the DOS

17-4 DATAPOINT DOS BASICPLUS

utility "INDEX", which is described in the DOS User's Guide.
There ..IIl.iU. ll.2.t. be more than one index file associated with a single
indexed sequential file. The keys in an index file are stripped
of trailing spaces, since unnecessary spaces cause larger index
files and longer access times. .

Since ISAM files are handled quite differently from Direct
Access and Sequential Access files, they are described separately
below in section 17.6.

11.3 General File 1/0 Operations

BASICPLUS I/O statements specify files/bY device number (1-3
for disk, 4 for printer). DOS manipulates files by name. The
OPEN or TOPEN statement is used to associate a device number with
a named DOS disk file. (The printer is always associated with
device number 4; No OPEN is used.) The device number is then
used to specify the file in PRINT, INPUT, LIST, CAT, FREE, NOFILE,
RBSTORE, VARS, and END statements.

File 13 should never be in use when a SAVE, ROLLOUT, SCRATCH,
GET, or APP command is executed, since these commands "close" file
ti3.

A handy way of specifying an output device is to use a
variable. Suppose ~ is used throughout the program to denote the
output device. Then during debugging, Q can be set to zero to
direct output to the display; and during production, Q can be set
to the numeric value of the proper output device.

17.3.1 The OPEN and TOPER Statements

Form: OPEN f <numeric expression> , <string expression>
TOPEN I <numeric expression> , <string expression>

Examples: OPEN 12, "PAYMENTS/MST:DRO"
OPEN IN, A$
TOPENI3,"DATAFILE"
OPEN 11, P$ + ":DR" + ("I" USING D)

The string specified in the OPEN or TOPEN statement gives the
file-name, file-extension and drive-number or disk volume name.
If no file-extension is specified, the default extension is
"/TXT". If no drive-number or disk volume name is given, all
drives on line are searched for a file with the specified name and

CHAPTER 17. FILE INPUT AND OUTPUT 17-5

extension. The search commences at the lowest numbered drive and
continues in ascending numeric order. The first one found is
opened. rf the OPEN statement is used, and the file is not found,
it will be created and opened on the lowest.-numbered available
drive which contains room in its directory and enough space to
allocate at least one segment for the file (This size depends on
the DOS in use, and varies from three to 24 sectors). If the
TOPEN statement is used and the file does not exist, it will not
be created, and no file will be opened. The success of the TOPEN
statement may be tested with the NOFILE condition (see below).

Once a disk file has been opened and used for input, it is in
"re.d status". It can be used for INPUTs indefinitely. When the
end-of-file mark is encountered, the EOF condition becomes true
for that file, the values returned from the INPUT are zeros o~
null strings, as appropriate, and the file is placed in "write
mode" (i.e., it may be PRINTed on). Any INPUT performed after the
EOF condition becomes true will cause a "NO MORE DATA" message,
and:the values of the variables of the input list will remain
unchanged.

11.3.2 The END' Statement

Form: END I <numeric expression>

Example: END:fi:2

The END statement· with an I/O device number causes the
specified disk file to be "closed". The disk file named in the
OPEN statement for the specified device number is disassociated
from the device number, releasing the number for reassignment. If
the file was a sequential output file, an end-of-file mark is
written after the last data record. This is useful for changing a
unit from reading to writing, or vice-versa.

For example, assume that an intermediate disk ·file
"WOhKl/TXT" has been written, and it should next be read. It must
be closed and re-opened for reading. ENDI2 will close the disk
file, and OPENI2,"WORK1" will reopen the file allowing it to be
read from the beginning without stopping the program.

END li.1lc.h '<numeric expression> does not stop execution. END
withgut '<numeric expression) implies all devices and in addition,
stops execution. The ENDI<numeric expression) is particularly
useful if the BASIC program is run under chaining with DOS. The

17-6 DATAPOINT DOS BASIC PLUS

DOS command (see section 20.1.6) can follow an ENDI<numeric
expression> but not END alone.

17.3.3 The EOF Condition

Form: EOF , <numeric expression>

Examples: IF EOFI1 THEN 17
IF EOFIO THEN PRINT "END OF DATA."

This condition is used to test whether an INPUT (or a READ,
in the case of 10) has encountered an end-of-file mark. When the
program attempts to read beyond the end-of-file mark, the "NO MORE
DATA" message is displayed and the values of the variables in the
input list remain unchanged. The EOF condition may be used in
conditionals to cause a specified operation if end-of-file has
been encountered. EOFIO (or just EOF) is used to detect the end
of the DATA sequence (see chapter 13).

The EOF condition can be used to position to the end of a
file so that new data can be added. This is done by INPUTting
until EOF becomes true, at which point BASICPLUS places the file
in "write mode", and the PRINT command can be used to append the
new data.

17.3.4 The NOFILE Condition

Form: NOFILE I <numeric expression>

Examples: IF NOFILEI1 THEN 17
IF NOFILEI2 T~EN PRINT "NO SUCH FILE!"

The NOFILE condition is used to test whether or not a
specific file number is currently open. If '0 is used, TRUE will
always be returned. NOFILEI4 will return FALSE only if the
printer is available for exclusive use by BASICPLUS, and has not
been released (This is true from the time a PRINTI4 is executed,
until some type of file-closing statement is executed). For all
other files, it returns TRUE if the file is closed, or FALSE if
the file number is currently open. This statement has particular
value in testing the success of a TOPEN statement:

CHAPTER 17. FILE INPUT AND OUTPUT 17-7

10 TOPENI1,"DATAFILE"
20 IF NOFILEI1 THEN PRINT "DATA FILE MISSINGI";STOP
30 PRINT "DATA FILE HAS BEEN OPENED."

17.3.5 The SIZ Operator

Form: SIZ 1 <numeric expression)

Examples: .SIZIO
SIZI3
SIZ#1
A=INT(SIZI1/2}

The SIZ # operator is used to determine the width of the
specified output device. The size of disk files is. normally 249.
The size of the .CRT display will normally be returned as 80. The
size for printers varies depending on the size with which the
printer was configured (typically 132 or 79). If no number sign
and device number are specified, 10 is assumed. The value
returned by the SIZ operator may be used 1n any numeric
expression, as in the fourth example.

17.4 Sequential File I/O

17.4.1 The File PRINT Statement

Form: PRINT I <numefic expression) , <print list)

Examples: PRINT 13,VAL1,VAL2,VAL3
PRINT fF,PAYMENT

The file PRINT statement is used to write a logical record to
the processor CRT screen (IO), a disk file (11-13), or the printer
(.4, see chapter 1b). The separators in the print list may be
commas or semicolons. The separators have the same effects that
they have in the ordinary PRINT statement (see chapter 11):
commas cause zo~ed output and semicolons cause directly appended
out~ut.

A separator following. the last item in the print list

17-8 DATAPOINT DOS BASICPLUS

indicates that more data will be added to the display or print
line or disk file logical record by another PRINT statement. In
the case of disk files, this means that no octal 015 (end of
logical record) will be written. If an item is to be written into
a file and there is not enough space remaining in the sector to
write the entire item, as much of the item as will fit is written
followed by an octal 003 to mark the end of the physical record.
The remainder of the item is then written at the beginning of the
next sector. The END' and RESTORE I statements also cause an
octal 003 (ETX character) to be written after the last character
written in the current record.

17.4.2 The File INPUT Statement

Form: INPUT' <numeric expression) , <input list)

Examples: INPUT 12,A,B,C
INPUT II,FORCE,TIME

The file INPUT statement is used to input a logical record
from the keyboard (10) or disk file (11-13). Input from the
printer (14) is, of course, illegal. One line of input from the
keyboard or one logical disk record corresponds to one INPUT
statement. If there is less data available then there are
corresponding variables in the INPUT statement, the remaining
variables will be set to zero. If there is too much data in the
line or record, the excess will be ignored. When a disk file
INPUT statement has been completed, the character pointer
associated with that file is advanced to just beyond the ending
octal 015.

CHAPTER 17. FILE INPUT AND OUTPUT 17-9

17.4.3 Example of Sequential File I/O

The following program reads a source file from the disk and
prints it on device Q.

10 PRINT "List a source file on device Q"
20 DIM 8$(80)
30 PRINT "Enter File Name: " . ,
40 INPUT 8$
50 TOPEN#2,8$
60 IF NOFILE#2 THEN PRINT "No such namel";BEEP;GOTO
70 N=O
80 PRINT "List on Display or Printer? ,j • ,
90 Q=-1
100 INPUT 8$
110 IF 8$="D" THEN Q=O

.; 120 IF 8$="P" THEN Q=4
130 IF Q<O ThEN 70
140 INPUTI2,S$
150 IF EOFI2 THEN 190
160 N=N+1
170 PRIN'rIQ, S$
180 GO TO 130
190 PRINT "End of file after ";N;" records. "
200 END

17.5 Direct Access File I/O

17:5.1 The RESTORE # Statement

Form: RESTORE I <numeric expr) [, <numeric expr)]

Examples: RESTOREI2
RESTOREI2,37
RESTOREI1,A

30

This form of the RESTORE statement is used to provide direct
access capability for processing disk files. The first num"ber
specified i~ the device number used in the OPEN statement. The
second number is optional and is used to position the file pOinter
to the first character of a specific disk f1le physical record

17-10 DATAPOINT DOS BASICPLU8

(sector). If the second number is omitted, the file pOinter will
be positioned to the first character of physical record 0 (the
first record of the file).

To write a simple direct access file, precede each PRINT
statement with a RESTORE # statement. This will write one logical
record beginning at the first character of the specified physical
record, and continuing for as many physical records as necess~ry.
A subsequent RESTORE , statement will insert an octal 003
(end-of-physical-record) after the last character written in the
current record, write the record to disk, then position to the
first character of the physical record (sector) specified.

I
To input records from a simple direct access file, precede

each INPUT statement with a RESTORE f statement specifying the
record number. The INPUT will then fetch one logical record
beginning at the first character of the specified physical record.

When direct access files are closed by the END statement,
BASICPLUS does not write an end-of-file mark. If an end-of-file
mark is required, the user must write a 6 character string
containing all binary zer~s after the last data record and then
END the file. For example:

100 DIM A$(6)
110 A$(1)=A$(2)=A$(3)=A$(4)=A$(5)=A$(6)=0
120 PRINT'1,A$; .
130 ENDI1

The semicolon is used to prevent output of a (015) in statement
120.

17.6 ISAM Files

BASIC PLUS has the ability to manipulate ISAM (Indexed
Sequential Access Method) files. The records of an ISAM file are
organized on the basis of a collating sequence determined by a
specific "key" within each record. The key is a portion of the
record which uniquely identifies that record from all others in
the file. Within one file, all keys must have the same length and
each must be located at the same position of its record.

The ISAM file actually consists of two files, an index file
and an ordinary sequential text file. The index file is used to
locate the text file record which contains a given, unique key.

There mAX ~ be more than one index file associated with a

CHAPTER 17. FILE INPUT AND OUTPUT 17-11

single indexed sequential file.

The text file may be created by any of the stan4ard text
editors (i.e., EDIT, BASICPLUS, BASIC55, DOSBASIC, DATABUS,
DATAFORM, and so on). The index file is created by using the
INDEX utility (see the DOS User's Guide). Using this index file,
BASICPLUS can index to the record associated with a specific key,
update records, delete and inse~t record~~ and perform Several
other lSAM functions. '

17.6.1 The IOPER Statement

Form: IOPER I <numeric expression> , <string expression>

Examples: IOPEN 11,"SCRATCH"
IOPEN 13,A$

The 10PEN statement is used to open an index file. Opening
the index file also causes the indexed file to be opened
implicitly. Since the indexed file does not use a device number,
a program may OPEN files 12 and 13 as ordinary disk files and
still lOPEN 11 as an ISAM file, since the indexed file itself does
not use a device number.

The default extension for file names is "lSI". If the
specif~ed index ~ile does not exist, the error message "FILE DOES
NOT EXIST" will be issued. An index file must be opened before
any other ISAM file commands are given. If the format of the
index file is not correct, the message "BAD ISAM FILE" will be
displayed, and the INDEX utility should be run (See DOS User's
Guide).

17.6.2 The RESTORE by Key Statement

Form: RESTORE I <numeric expr) , <string expr>

Examples: RESTORE 11,"HELLO"
RESTORE 12,KEY$
RESTORE IN,U"

This special 'form of the RESTORE statement is used to
position the specified ISAM file to a specific key. If the file

17-12 DATAPOINT DOS BASICPLUS

specified was not previously opened in an IOPEN statement, the
error message "FILE NOT ISAM" will be issued. The program may
return to the beginning of the index file by specifying a null
key, as in the third example. If the specified key can not be
found, the file will be positioned to the next key in the sorted
index.

Care must be taken in using the RESTORE by Key statement.
Suppose the user wishes to locate and update the record associated
with a certain key. The user must RESTORE by key to locate the
record and INPUT to get the record. The record can then be
inspected and modified. The INPUT, however, advances the
character pOinter to the next logical record just as it would in
an ordinary sequential file INPUT. To correct for this, the user
must RESTORE J:u .ku again to back up the character pointer to the
beginning of the record, and ~ UPDATE to store the new version
into the file.

17.6.3 The NEXTKEY Statement

Form: NEXTKEY I <numeric expression)

Examples: NEXTKEY I(A+1)
NEXTKEY 13

The NEXTKEY statement is used to position an ISAM file to the
next sequential key. If the file specified was not opened in an
IOPEN statement, the message "FILE NOT ISA~" will be displayed.

17.6._ The NOKEY Condition

Form: NOKE~ • <numeric expression>

examples: IF NUKEY 11 THEN END; ELSE 10
IF NOKEY IA THEN BEEP; GO 80

The NOKEY condition is used to detect that an ISAM file has
been positioned to a non-existent key. This condition works the
same way as the EOF condition, except that it tests if the file
was positioned by a key. For example:

CHAPTER 17. FIL~ INPUT AND OUTPUT 1.7 -13

10 DIM A$(80)
20 IOPENI1,"NAMES"

.30 PRINT "FIND: h;
40 INPUT A$
50 RESTORE#l,A$
60 IF NOKEY#1 THEN 90
70 INPUT#1,A$
80 GO 30
90 PRINT "KEY NOT FOUND."
100 GO 30

would display user specified data from the index file "NAMES".

17.6.5 The INSERT Statement

Form: I~SERT # <numeric expression> , <string expression>

Examples: INSERT #2,"NAME"
INSERT #3,INS$

The INSERT statement is used to insert a new key in the list
of keys. The new key will point to where the next data line will
be written upon the execution of the next PRINT statement. If the
file referenced is not an ISAM file, then "FILE NOT ISAM" will be
displayed. If the specified key already exists, the message "KEY
ALREADY EXISTS" will be displayed and no insertion will be done.

17.6.6 The UPDATE Statement

Form: UPDATE I <num expr> [, [<expr> <sep> J ••• <expr> J

Exa~ples: UPDATE #2,"NAME: ";NAME$
UPDATE ~Q,"EMPLOYEE #: ";EMP

The UPDATE statement work. like the PRINT statement, except
that instead of appending to the file, it prints in place. That
is, the record that the file is currently positioned to will be
overwritten by whatever is printed via the UPDATE statement. Note
that the length of the data which is updated must be exactly the
same as the length of the data which was previously in the file
(i.e., a line which is 67 characters long may not be updated over
a line which was previously 40 characters long).

17-14 DATAPOINT DOS BASICPLUS

11.6.1 The DELETE Statement

Form: DELETE 1 <numeric expression)

Examples: DELETE 11
DELETE IQ

The DELETE statement deletes the key and the text that the
key points to, after which a NEXTKEl is performed. The key and
text will then be igrt6red by subsequent text handling statements
and ISAM statements. After a time, the file may become cluttered
and quite large if many deleted records are present. Use REFORMAT
(See DOS User's Guide) to reorganize the file.

CHAPTER 17. FILE INPUT A~D OUTPUT 17-15

17.6.8 The Structure of Index File8

This section is included as a reference for those users who
want more insight into the structure of ISAM index files.
Mastery of this section is not a prerequisite to the successful
use of ISAM files.

The index structure is an N-ary tree. N is determined by the
number of keys that will fit within a disk sector. Each node of
the tree is contained within one disk sector. The tree has enough
levels so that the uppermost node will fit within one disk sector.

The lowest level of the tree is a linked list. The keys in
the linked lisJ .re arranged sequentially accord~ng to their ASCII
values.

Depending on the length and path of this linked list, the
time spent in traversing this list can lead to considerable
overhead. The INDEX utility may be used to reorganize this list
to minimize the time spent in traversing it. USE THE INDEX
UTILITY FREQUENTLYI

17-16 DATAPOINT DOS BASIC PLUS

The simplified diagram below demonstrates the manner in which
the keys are associated with the ~ogical records. The diagram
assumes that only 3 keys will fit per sector and that the data
file was indexed on column 6. The upper half models the index
file; the lower half, the indexed file. The character "*" denotes
a pointer. The character "0" denotes a null poInter. The
character "$" denotes a non-existent key value. Sector boundaries
are denoted by "I". .

/
/

V
I
I

A If

/

I A It

/
/

/
/

J If $ 0 , , , , ,
v v

A*D*GIf J It $ 0 $ 0 I
I
I

/ , , ,
/ , '-'-, ,

--'-I I I
I I I

V I V
I V I V I

I I I I
It B It It C It If I D It It E •

, , , , , , ,
-'- --'-I I I I

I I I I

V I V I V I V I V I I I I

* F It It G It It H It .. I It It ! J It $ 0 ... I

index file

-----------------------------~------------------------ -----------------------

v
v LINE F.

v LINE E.
v LINE D.

v LINE C.
v LINE B.
LINE A.

I
I
I
I

I
v
LINE

I indexed fil
v

v LINE J.
v LINE 1.
LINE H.

G.

CHAPTER 17. FILE INPUT AND OUTPUT 17-17

11.1 File Hints

The files used by Datapoint BASICPLUS are written so that
they are compatibl~ with the DOS and CTOS editors. Therefor~,
data and programs can be prepared using DOS or CTOS editors
(transfer to and from disk with MIN and MOUT). Files in editor
format are also accepted by ~ other Datapoint software systems.
Numbers and strings are kept in the same format--as edited
characters. Therefore, output can·be written as strings and read
ba~k as numbers and vice versa.

Input and output can be formatted using BASIC strings since
the strings are of constant length. For example, if input has
first name in columns 1-10 and last name in 11-20, the following
will handle it:

10 DIM FIRSTNAME$(10), LASTNAME$(10)
20 INPUTI1, FIRSTNAME$, LASTNAME$

Numeric and string fields can be mixed. The numeric field
will end with the first character that cannot belong in the
number. The string field will end after getting enough characters
to fill the string.

To get right-justified, columnar output use formatted
printing (see section 16.5.3, String Editing).

tY-18 DATAPOINT DOS BASIC PLUS

CHAPTER 18. PRINTER OUTPUT

BASICPLUS allows the user to print output directly to a
printer. Local, remote, and servo printers are accessible in this
manner. Chapter 2 describes how to configure any available
printer at the beginning of a BASIC PLUS session.

Just as the disk files are accessed by device numbers 1
through 3, and the display can be accessed by device number 0, the
printer is always accessed by device number 4.

18.1 The @ Function

The dummy function "@" will return, at any time, a value
which informs the program (or the user) which printer has been
enabled. The values for the different printers are:

o No printer enabled
4.1 Remote printer enabled
4.2 Local printer enabled
4.3 Servo printer enabled
4.4 Microplotting servo printer enabled

Note that the use of a fractional part for the representation
allows the user to use PRINTH@ (since the value of the @ is
rounded back to 4), and also allows the program to test which
printer has been enabled. This would be useful in a program which
uses microplotting, since it could inform the user if it had not
been properly invoked with the "M" option.

The @ may also be used anywhere a numeric expression can be
used, for example:

LET A = @

CHAPTER 18. PRINTER OUTPUT 18-1

18.2 General Remarks on Printer Usage

Unlike dis~ files, the printer cannot be explicitly OPENed.
The initiation of a BASIC PLUS session will open the printer that
is configured.

The printer cannot be closed (such as with an END 14
statement).

The printer never reaches end-of-file, so the testing of EOF
#4 is not valid.

The SIZ #4 operation will return the printer record size.

The PRINT 14 statement will send its output to the pr~nter.
The comma and semicolon separators have the same significance that
they have on the display. Commas provide left-justified columnar
output; semicolons provide close-packed output.

The trailing comma and semicolon on PRINT #4 statements also
haye the same significance that they have on the display: the
next PRINT #4 will continue where the current one ended.

18.3 Formatting Printer Output

Special functions in a PRINT#4 statement allow paging and
overprinting on the printer:

LF - Line Feed
FF - Form Feed (page eject)
CR - Carriage return and suppress line feed

These functions are"the same as the display formatting
functions, except that they may only be output to the printer.
These functions must also be followed by a comma if more print
items follow on the same line. If used on the end of the line,
they may be followed by either a semicolon or nothing, depending
on the formatted output desired. For example, the following will
overprint one line and page eject:

10 PRINT#4."ABCDEFGH";CR,"01234567b";FF
20 END

The older method of the print formatting instructions is
. still valid. In using this method, special code numbers in
strings allow paging and overprinting:

18-2 DATAPOINT DOS BASICPLUS

10 - Line Feed
12 - Page Eject
14 - Carriage return and suppress line feed

The following program is equivalent to the above example:

10 DIM CR$(1),PG$(1)
20 CR$(1)=14;PG$(1)=12
30 PRINT '4,"ABCDEFGH";CR$;"01234567";PG$
40 END

18.4 Plotting With The Servo Printer

The servo printer can be micro positioned for plotting by
using the special co-ordinate positioning feature of BASICPLUS.
The micro co-ordinate feature allows direct positioning to any of
5~9,824 micro positions on a page before printing. To use this
feature a ";M" must be entered in the command line when loading
BASIC.

Type "BASICPLS;M" and the message "MICRO PLOTTING ENABLED"
will appear during initialization if your processor has a servo
printer attached and ready. If the feature is not selected, the
memory used to support micro plotting will be added to the users
work space. .

Micro positioning co-ordinates are defined as follows:

10 DIM A$(5)
20 A$(1)=15
30 A$(2)=HORIZ/256
40 A$(3)=HORIZ
50 A$(4)=VERT/250
60 A'(5)=VERT

Statemerit 10 defines a five character string that will direct
the servo printer to position to a micro co-ordinate. Horizontal
and vertical co-ordinates must be in the range 0 to +768. A$(1)
contains the special function code 15 that indicates to the servo
printer driver that co-ordinates follow. A$(2) and A$(3) contain
the horizontal co-ordinate. A$(4) and A$(5) contain the vertical
co-ordinate. Statement 30 causes BASIC to take the floating point
variable "HORIZ" and divide it by 256, convert the result to an
integer and store the result in A$(2). Statement 40 causes BASIC
to take the same variable and convert it to an integer and store
the least significant byte (value 0-255) in A$(3). Statements 50
and 60 store the vertical co-ordinate.

CHAPTER 16. PRINTER OUTPUT 18-3

Mlcro positioning moves the print carriage and printer platen
simultaneously along the most direct path to reach the desired
position. Horizontal co-ordinate 0, vertical co-ordinate 0 is the
position of the carriage and platen following the last carriage
return executed. When BASICPLUS is loaded with the M option, a
carriage return is done immediately. Since 768 vertical
micropositions equals some 16 inches, and the coordinate origin is
"bottom left", remember to advance the paper at least 2 sheets
before beginning a plot.

When generating co~ordinates, consideration should be given
to the fact that five horizontal micro increments equal four
vertical micro increments on a servo printer. The printer can
position to 60 micro positions per inch horizontally and 48 micro
positions per inch vertically. Fof example:

10 DIM S$(5)
20 S$(1)=15;TWOPI=6.28319iI=2.32711E-2
30 FOR A=I TO TWOPI STEP I
40 X=SIN(4*A)
50 H=160+100*COS(A).XiV=80+80*SIN(A)*X
60 S$(2)=H/256;S${3)=H
70 S$(4)=V/256iS$(5)=V
80 PRINT 14,S$;"*";
90 NEXT A
100 END

will produce this star-like pattern:

r-.. .1')
• • • • • • • • • • * •• • • ••

, ••••• ••• -.: ••• *) ... - •• .** .*
*.. --..... * .* - •• * •• *..... . * *., • * ~ •• - ..)

(.*
• ••••• ••• *...

18-4

• •• • • •• • • • • • • • • • v· .. .J
DATAPOINT DOS BASICPLUS

IMPORTANTl

Co-ordinate positioning .strings must not be output to any device
except the servo printer or the result will be unpredictable. All
five elements of the string must be output as a single element or
loss of sychronization will occur. Note the semicolon terminating
statement 80 to prevent the printer from doing a carriage return
after printingl

Note: The 1500 does not have the capab~lity to drive a servo
printer, and micro-positioning should not be attempted on this
processor.

CHAPTER 18. PRINTER OUTPUT 18-5

; ;

CHAPTER 19. PROGRAM EDITING

BASICPLUS provides editing commands similar to those in EDIT
to allow modification and deletion of program statements.

19.1 Statement Modification

Form: :M <line number> <old text> <modifier> [<new text>]

~xamples: :M 120 ABCD<XIZ
:M 20 20<25
:M 80 1234>567890
:M 80 121567890
:M 20 ABC<

Modifiers:

< Replace first occurrence of <old text> with <new text>
> Append <new text> to first occurrence of <old text>
1 Concatenate <new text> to first occurrence of <old text>
\ Concatenate <new text> to first occurrence of <old text>

The :M command is used to modify statements.

In the first example, the characters "ABCD" in statement 120
are replaced by the characters "XIZ" and statement is re-entered.

In the second example, the statement number portion of
statement 20 is changed to "25" and a new copy of the statement is
entered as statement 25. If statement 25 already exists then it
will be replaced. The original statement 20 is ~ deleted.

In the third example, the characters "567890" are inserted
following the characters "1234" in statement 80 and the statement
is re-entered.

In the fourth example, the characters "567890" are appended
to the characters "12" in statement 80. Any characters that
followed "12" previously are deleted. The modified statement is
.re-entered.

In the last example, the characters "ABC" in statement 20 are

CHAPTER 19. PROGRAM EDITING 19-1

deleted (old-text r~placed by no new-text> and the statement is
re-entered.

Notice that in the examples a new statement is created from
an existing statement in exactly the same way.it would be entered
from the keyboard. If the statement number is changed, the
statement will be entered as a new statement and the old statement
will still be present and unchanged. If all of the characters
following the statement number are deleted, the statement will "be
deleted. If characters to the right of the statement number are
changed, the new statement will replace the old statement.

The :M command can only be entered from the keyboardl It can
not be embedded in programs read from the disk. Exactly one space
must precede and exactly one space must follow the line number for
correct interpretation by the BASICPLUS editor.

19.2 Statement Deletion

Form: :0 <line number> [- <line number>]

Examples: :0 125
:D 30-100

The :0 command is used to delete statements.
example, statement 125 is deleted (if it exists).
example, all statements with line numbers between
inclusive are deleted.

In the first
In the second

30 and 100

Exactly one space must precede the first line number.

The :0 command can be entered from the keyboard or embedded
in programs and program overlays stored on disk. This is used in
conjunction with program chaining (see chapter 21). This command
will not produce a diagnostic if a matching line number is not
found.

19-2 . DATAPOINT DOS BASIC PLUS

CHAPTER 20. UTILITY COMMANDS

This group of commands enables the user to manipulate and
investigate the BASIC program ~n memory, identify the files stored
in the DOS disk directory, and maintain and access program
libraries. Some of the commands may also be used as statements in
a stored BASICPLUS program.

20.1 Program M~nipulation and Termination

, 20.1.1 The RUN Command

Form: RUN [<line number>]

Exampl es: RUN
RUN 40

The RUN command is used to initialize BASIC PLUS and execute
the stored program. If a line number is supplied, execution
begins with that line number.

Specifically, the initialization steps performed include:

· Write any incomplete output on disk

· Close any open disk files

· Clear any arrays previously in use

· Clear any memory of previous GOSUBs

· Clear any memory of previous FOR loops

· Clear any memory of previous defined functions
• ' Cause any READ statements to read from the

first DATA statement

· Reset the RANDOM NUMBER generator to the first value

Note that simple variables retain their values and are NOT reset
to zero or undefined. This enables the user to run one program
computing certain values, and then chain to another program
passing the computed values along (see chapter 21, Program
Chaining).

CHAPTER 20.' UTILITY COMMANDS 20-1

20.1.~ The RENumber Command

Form: REN [<line number>] [, <incr>]

Examples: REN
REt~ 5
REN 10,10

The REM command renumbers the entire program currently in
memory, changing both the line numbers at the beginning of each
line and the referenc~s to line numbers in control statements.
This command is useful when the program is being modified and it
becomes necessary to insert a block of lines between two lines
whose line numbers are too close together to permit that. The
comm~nd is also useful to enhance the appearance of completed
programs. The REN command may not be used in a program. It is
only to be entered from the COMMAND mode, and it cannot be
embedded in programs read from the disk.

The program is renumbered to start with a line number of
<line number> and incremented by <incr>. These values both
default to 10. For example, if the following program were typed
in:

10 PRINT "HELLO THERE."
20 GO TO 47
27 GOSUB 99
32 STOJ?
47 PRINT "HOW ARE YOU?"
54 GO 27
95 END

If the command "REN 5,5" were entered, BASIC PLUS would
renumber the program starting with a line number of 5, and
incrementing by fives:

5 PRINT "HELLO ThERE."
10 GO TO 25
15 GOSUB 99
20 STOP
25 PRINT "BOW ARE: YOU?"
30 GO 15

,

35 END

Note that the GO TOs and GO SUBs ,were also changed to pOint
to the appropriate lines. Also note that line 15 with a GOSUB to
line number 99 (which is a n~n-existant line) was not changed.

20-2 DATAPOINT DOS BASICPLUS

The KEIBOARD key may be used to stop REN at any time. When a
given line's line number is changed, all references to that line
number are also changed. Therefore all references to line numbers
which have been resequenced, and all references to line numbers
which have not, are correctly handled. The program may then be
resequenced with another REN command.

Errors which may occur during renumbering are:

LINE NUMBER > 38399

This means that in renumbering the program, a line number
of greater than 38399 was created. Renumber the program
again using a smaller <line number> and/or <incr>.

NO ROOM

It is possible that a program may become larger during
renumbering if a GOTO line number becomes greater in
length (i.e., GOTO 100 changes to GOTO 2000). The only
way to solve this is to RENumber the program again using
a smaller <line number> and/or <incr> so as to assure a
GOTO line number of remaining the same length. REN 1,1
will always work on an existing program.

It is possible for renumbering to lengthen a line of text
more than seventy-nine characters, such as when an ON GOTO with
several two-digit line numbers is changed to have several
four-digit line numbers. BASICPLUS cannot ~ ~ ~ about
~. If such a line is SAVEd and then fetched with a GET, text
will have been lost.

20.1.3 The AUTO Command

Form: AUTO [<line number>] [, <incr>]

Examples: AUTO
AUTO 5,5

The AUTO command causes BASIC PLUS to automatically generate
line numbers, allowing the user to type in the statements on the
pr~-numbered lines. The line numbers start at <line number> and
are incremented by <incr>. Both <line number> and <incr> default

CHAPTER 20. UTILITI COMMANDS 20-3

to 10 ·if not specified. AUTO will terminate ~f a line ntimber is
created which already exists, a line number greater than 38399 is
created, or a null line is ~ntered. The AUTO command may not be
us.d i~ a program. It is only to be entered in the COMMAND mode,
and it connot be embedded in programs read from the disk.

20.1.4 The ERASE Command

Form: ERASE [<variable> [, <variable>] •••]

Examples: ERASE
ERASE A,B,C
ERASE VAR1,VAR2,NEXTVAR

The ERASE command resets a variable to the undefined
condition. It can be used to erase the contents of single
variables (as in the second and third examples), or to erase the
content~ of all variables currently in memory (as in the first
example). This command ~ ~ release the memory space
allocated to the variable.

Note: erasing an array does not release the space allocated to
that array.

20.1.5 The SCRATCH Command

Form: SCRATCH

Example: SCRATCH

: The SCRATCH command causes everything BASIC PLUS knows to be
erased. If disk files are being accessed, file processing is
terminated and the files are "closed". The workspace is cleared.
The. stored program is erased. All variables are erased, their
names forgotten, and their allocated space released. This command
is useful to get a clean workspace for new work. See the "Program
Libraries" section below for another form of SCRATCH.

20-4 DATAPOINT DOS BASICPLUS

20.1.6 The DOS Command

Form: DOS [<string expr)]

Examples: DOS
DOS "EDIT PROGRAMX/ABC"

The DOS command forces input or output from/to disk to be
completed, closes the files and exits to the Disk Operating
System. Ifa string is specified, then when the Disk Operating
System is reloaded, the program specified will be executed.

20.2 Program Investigation

20.2.1 The LIST Command

Form: LIST [I <numeric expr) ,] [<line number>]

t:xamples: LIST
LIST #4, 120

The LIST command lists a copy of the current stored
statements on the device specified by the numeric expression. If
no device is specified, the display is assumed.

If <line number> is included, the listing begins at that
line. If the <line number> does not eXist, then the listing will
begin at the line with the next line number greater than that
specified. If the <line number> is greater than the last line
number of the program, BASICPLUS will return to command mode
("READY").

Use the DISPLA~ key to hold output on the screen. Use
KEYBOARD to cut a LISTing short.

CHAPTER 20. UTILITY COMMANDS 20-5

20.2.2 The FREE Command

Form: FREE [# <numeric expr>]

Examples: FREE
FREE #4

The FREE command lists the remaining program space on the
device specified. The first number listed is the number of bytes
of program space remaining and the second number is the number of
dictionary name entries available.

20.2.3 The CATalog Command

Form: CAT [# <numeric expr> ,] [<string expr)]

Examples: CAT
CAT "ORBIT/PLT"
CAT 14, "A:DR2"

The CAT command selectively lists the names of files found in
the DOS disk directory on the device specified. If no device is
specified, the display (device 10) is assumed. If the string
expression is present to specify a name (possibly qualified by
ext~nsion, drive-number, or disk volume identifier), then the
print out will contain only the specified names.

A comple~ely qualified file name consists of three parts:
file name (8 characters), extension (slash followed by 3
characters), and drive specifier (colon followed by either "DR"
<digit> <digit> to specif~ the drive-number or by up to eight
characters to specify the disk volume identifier). If the
completely qualified file name is specified in the CAT command,
and a file of that name is present in the DOS directory, the CAT
command will display the name.

If'onlya partially qualified file name is specified, then
the CAT. command will list the names of ~ files which match the
portions of the name which were specified. In fact the file name
and extension parts can, themselves, be partially specified.
Thus, the command CAT "REF" will display the names of all files
which begin with "REF", having any extension, and located on any
drive on-line; CAT "IT" will display the names of all files whose
extensions begin with "T", on any drive on-line; and CAT "REFIT"
will display the names of all files whose names begin wi~h "REF"

20-6 DATAPOINT DOS BASICPLUS

~ have extensions beginning with "T", on any drive on-line. (see
the DOS User's Guide).

20.2.4 The ViRS Command

Form: ViRS l I <numeric expr>]

Examples: VARS
VARS #4

The VARS command lists, on the specified device, all variable
names currently in use. If no device is specified, the display
(device 10) is assumed. The variable names are packed on a line
with one space following each name. Variables which are currently
undefined are marked with an asterisk (-). Array names and string
names are followed by their dimensions enclosed in brackets. If a
variable name appears by itself, then it is a scalar variable
which is currently defined.

Here is a sample VARS command output:

*A ABC XYZ[3,4] A$[1] CC[5]

Variable A is an undefined scalar variable. Variable ABC is
a defined scalar variable. XIZ is an array with dimensions 3 by
4. A$ is a one-character string array. CC is a one-dimensional
array containing 5 elements.

20.3 Program Libraries

BASIC program libraries may be created, accessed, and
maintained on disk by using the BASIC commands; SAVE, GET,
ROLLOUT, APf and a special form of the SCRATCh command.

20.3.1 The SAVE Command

Form: SAVE l <line number> , J <string expr>

Examples: SAVE "PROG1"
SAVE "PROGNAME/B11:DR1"
SAVE 9000,"PROG2"
SAVE P$

ChAPTER 20. UTILITI COMMANDS 20-7

The SAVE command copies the program currently in memory to
disk, giving it the name specified by the string expression. The
string expression must specify the file-name, file-extension and
drive-number or volume identifier. The default extension is
"/BAS". If no drive-number or volume identifier is provided, the
program will be stored on the first disk that has room (beginning
the search with the lowest drive-number on-line). If a line
number is specified, then only the portion of the ~ogram from the
line with that number to the end will be SAVEd.

20.3.2 The GET Command

Form: GET (string expr)

Examples: GET "PROG1"
GET "PROGNAME/B11:DR1"
GET P$

To recover a program saved with the SAVE command or created
using EDIT, use GET followed by a string expression giving the
file-name, file-extension, and drive-number or volume identifier
The default extension is "/BAS". If no drive-number or volume
identifier is provided, the program will examine each drive
on-l~ne, starting with the lowest drive number and continuing in
asce~ding numeric order.

When a GET command is issued, the current stored program and
the values and names of all variables will be SCRATCHed. If GET
is entered in the COMMAND mode, as the program specified is being
read, the line number of the line currently being read is
displayed. This informarion is useful for knowing what the last
line n~mber of a program is, or for knowing at which lirie an error
occured if an error message is displayed. After a program is
completely read in, the "READY" message is displayed.

GET does not close any open files except file number three.

Sometimes the processor memory can become cluttered with
variables and values no longer needed. The space wasted in this
manner can be reclaimed by performing a SAVE and a GET on the
program.

Complex editing can be performed on the program by SAVEing it
and using EDIT on the file produced. Once edited, the program can
be reloaded with GET.

20-8 DATAPOINT DOS BASICPLUS

20.3.3 The APPend Command

Form: APP <string expr>

~xamples: APP "SEGMENT2"
APP "SEG3/PRG:DR3"
APP SEGMENT$

The APP command is used to indicate that the contents of a
disk file is to be appended to the current program. As in the GET
command, if APP is entered in the COMMAND mode, while the program
is being APPended the line number of the lipe currently being read
will be displayed. The file specification string is in the same
form used in the SAVE and GET commands.

When SAVE, ROLLOUT, GET, SCRATCH and APP commands are
executed, processing of any file using file#3 is terminated and
the file is "closed" (see chapter 11, File Input and Output).
Note that GET and APP end execution of the currently running
program and return to Command ("READ!") mode.

20.3.4 The ROLLOUT Command

Form: ROLLOUT [<line number>,] <string expr>

Examples: ROLLOUT "PAYROLL"
ROLLOUT 100,"SUBROUTN/ABS:SC~ATCH"

ROLLOUT NAME$

The HOLLOUT command is similar to the SAVE command, in that
it writes the program currently in memory to disk. This command,
however, writes a directly loadable object program on disk. The
default extension for this file name is "ICMD". This is useful
when loading a very large program to reduce the time it takes to
perform a "GET". The file will contain a copy of the entire
BASIC PLUS interpreter, along with the BASIC program that was
currently in memory. This filename may then be specified from DOS
directly from the command line. When the program is loaded, the
screen will be rolled up, and a "RUN" statement is executed. If
<line number> was not specified in the ROLLOUT command, the RUN
will be to the first line of the program. Otherwise, a "RUN (line
number>" is executed.

This command may be executed with or without the overlay

CHAPTER 20. UTILITY COMMANDS 20-9

versiori of BASICPLUS. Note, however, that extreme care must be
exercised when rolling out when using the overlay version. When
the program is reloaded, the environment must be exactly the same
as when the ROLLOUT was executed. This is because the program .
must look for the BASICPLUS library containing the necessary
over~ays. When the ROLLOUT occurs, BASIC stores the drive number
and physical disk location of the library, so that it may be
checked upon reload. It is very easy to accidentially modify the
physical drive numbers of specific volumes under an ARC
environment, since drive numbers become entirely logical. The
output file will usually be well over 100 ~ectors long, so make
sure that there is a disk with enough available space to hold the
command file (especially on a diskette systeml).

20.3.5 The SCRATCH Command for Files

Form: SCRATCH <string expr>

Examples: SCRATCH "PROGRAM1/BAS:DR2"
SCRATCH "WORK"
SCRATCH FILENAME$

A special form of the SCRATCH command is used to delete
unneeded files from the disk. It is identical in meaning to the
KILL command under DOS (see the DOS User's Guide). The SCRATCH
command must be followed by a string specifying the file-name.
The extension is assumed to be "/BAS" if one is not specified.
All drives on-li~e are searched unless a drive is specified.

When this form of the SCRATCH command is executed from the
keyboard, BASICPLUS asks.the question:

"DO IOU REALLI WANT TO KILL <string>?"

This gives the user a chance to verify that the file is indeed to
be deleted. If the user enters "I", the file is deleted. Any
other response will be ignored and the file is preserved. Note:
If the file is protected in any way, BASICPLUS will not ask any
questions. It will only display "NOI".

Note: If this form of the SCRATCH command is used within a
program (i.g., 10 SCRATCH "PROGNAME"), the question "DO YOU REALLY
WANT TO KILL PROGNAME?" will not be asked, and the file, if it
exists, will be deleted unconditionally.

20-10 DATAPOINT DOS BASIC PLUS

CHAPTER 21. PROGRAM CHAINING

Chaining is the term used for the serial execution of a
series of programs with no user intervention required. If a BASIC
program is too large to be executed at once, it may be possible to
break it into smaller parts that run sequentially one after
another. If necessary, data can be passed from one program to the
other using disk fil.s for intermediate storage.

21.1 Chaining Within BASICPLUS

Scalar data can be passed in memory between overlays that are
appended to the main program. The:D command should be used to
delete statements that are to be overlaid by new ones.

The :D command and the immediate command "RUN" must be
inserted using EDIT.

Example: (PROG1/BAS)

10 PRINT "FIRST SEGMENT"
20 GET "PROG2"

Example:· (PROG2/BAS)

10 ~RINT "SECOND SEGME~T"
20 PRINT "ENTER 3 NUMBERS: ";
30 INPUT A,B,C
40 APP "OVERLAY"
RUN

Example: (OVERLAY/BAS)

:0 10-40
10 PRINT "OVERLAY"
20 PRINT A,a,C
30 END
RUN

Use EDIT to create file "PROG1/BA~" containing the first
three lines of code,file "PROG2/BAS" containing the next five
lines of code, and file "OVERLAI/BAS" containing the last five
lines of code. Load BASICPLUS and type GET "PROG1". The first

CHAPTER 21. PROGRAM CHAINING 21-1

segmeht will be read in and "READY" will be displayed. Type RUN
and the first segment will be exeouted. When line 20 is exeouted,
the next segment will be read in, soratohing the segment exeouting
the GET. The RUN at the end of the seoond segment will oause it
to exeoute as soon as it has been read. Enter three numerio
values when requested. They will be passed to the overlay that is
appended when statement 40 is exeouted. When the overlay is
loaded, it will exeoute immediately and display the numbers you
entered to demonstrate passage of parameters to appended oode.

You oan also chain to oode generated by your program. For
example:

10 DIM N$(4)
20 OPENI2,"MYPROG"
30 PRINT "ENT~R N: ";
~O INPUt N$
50 PRINTI2,"10 A=SIN (";N$;")+COS (";N$;")"
60 PRINTI2,"20 PRINT A"
70 PRINTI2,"30 END"
ijO PRINTI2,"GO"
90 ENDI2
100 GET "MYPROG/TXT"

When you type RUN, the program will request a number that
will be used in the generated program. When you enter the number,
the new program will be generated, and automatically loaded and
executed.

21.2 Chaining With DOS CHAIN

An extended form of.the BASIC PLUS command permits the
activation of BASICPLUS programs using the DOS CHAIN utility (see
the DOS User's Guide). The name of the file oontaining the
program to be loaded into BASICPLUS is specified as a parameter
following the oommand. For example the command:

BASICPLS MYPROG;M

oauses the first program (MYPROG) to be loaded. When BASICPLUS is
initialized it will automatioally generate a 'GET "MYPROG"'
command. Sinoe the oommand oontains a ";M", mioro plotting will
also be enabled, if a servo printer is on-line.

BASIC PLUS Hill ~ aooept statements from the DOS CHAIN file
and must obtain all of its oommands with dETs and APPs. Any
INPUT(IO) statements will have to be repla6ed by either INPUTI

21-2 DATA POINT DOS BASICPLUS

(file number> (with the input data stored in a disk file) or by
READ and DATA statements written into the program. A GO or RUN
statement should be edited onto the end of each BASIC PLUS program
of the chain to allow its execution without operator intervention.
For example:

DOS CHAIN file (CHNFIL):

SNAP PROG1,/CMD
PROG1
~ASICPLS PROG2
LIST NEWFILE

BASIC PLUS Program (PROG2):

100PEN'1,"OLDFILE"
20 OPEN'2,"NEWFILE"
30 DIM A$(BO)
40INPUT#1,A$
50 IF EOFlt THEN 80
60 PRINT'2,A$
70 GOTO 40
~O END'2
90 DOS
RUN

Type "CHAIN CHNFIL" to execute the DOS CHAIN file. It will
assemble and execute "PROG1". BASICPLUS will be loaded and
"PROG2" will be ex.cuted. When statement 90 is executed, control
will return to DOS CHAIN and the LIST command will be executed.
Notice that the input/output form of the END statement must be
used. If no number appeared after the END, the program would stop
execution and go into Command ("READY") mode awaiting a keyboard
command rather than performing the DOS command.

The user can start a program in the Operating System by using

DOS <s~ring expression>

Fo r exampl e:

DOS "LIST NEWFILE"

will return to the Operating System and the LIST command will be
executed.

CHAPTER 21. PROGRAM CHAINING 21-3

The user mat want to exit BASIC PLUS in order to edit his
program, using the EDIT command, then return to his p~ogram. The
following example shows ho~ this can be done.

OPEN 11, "CHAINFIL"
PRINT 11, "EDIT BASICPRG/BAS"
PRINT 11, "BASICPLS BASICPRG"
END I'
DOS "CHAIN CHAINFIL"

21-4 DATAPOINT DOS BASICPLUS

CHAPTER 22. HINTS OR WRITING PACKAGES

BASICPLUS has been designed so that packages that perform
useful functions can be written in BASIC. Programs can request
that the name of the next program be entered from the keyboard and
the string can then be used to GET the next segment or overlay.

If the word RUN or GO is added to the end of the program file
with EDIT, the program will be ~un immediately upon conclusion of
loading. If the program is segmented or overlayed, GO should be
used to prevent re-initializing everythingl

Example of self-starting program:

10 PRINT "THIS PROGRAM STARTED IrSELF WHEN"
20 PRINT "IT WAS RETRIEVED FROM THE DISK."
30 END
RUN

All user parameters should be checked as closely as possible.
Any STOP or END statements should have comments indicating
disposition. Be sure that an END is the last statement in the
program. Give any directions possible.

Self-destructing programs are also possible. The following
is an example:

10 PRINT "PROGRAM SELF-DESTRUCTS IN 10 SEC."
20 FOR 1=1 TO 500
30 BEEP
40 NEXT I
50 SCRATCH

CHAPTER 22. HINTS ON WRITING PACKAGES 22-1

CHAPTER 23. OPTIMIZING USAGE OF WORK SPACE

The program capacity of Datapoint BASIC can be greatly
increased by using a few simple space saving techniques when
generating programs.

Use FREE to determine the most efficient forms of coding.

Use multiple statements per line when ever possible. (See
section 6.3, "Mulitiple-Statement Lines" for restrictiods!)

Avoid use of unnecessary REM statements. While REM
statements are important for documentation, they do take up space.
They should therefore be kept concise.

Keep variable names short', while still intelligible.

Use string characters for storing small positive integers
(0-255).

Use GO or GOTO instead of GO TO.

Use "IF <condition> THEN <BASIC statement>" form of IF
statement.

Keep message strings in PRINT statements as conCise as
possible.

Do not use the optional word "LET" in assignment statements
unless required.

ChAPTER 23. OPTIMIZING USAGE OF WORK SPACE 23-1

APPENDIX A. INSTRUCTION SUMMARY

Page Defined

:D <line number> [- <line number>]
:M <line number> <old text> <modifier> [<new text>]
@

ABS (<numeric expression>)
AND
APP <string expr>
ATM (<numeric expression>)
AUTO [<line number>] [, <incr>]
BEEP
BY
CAT (# <numeric expr> ,] [<string expr>]
CLICK
COS (<numeric expression>)
Cft
DATA <value> (, <value> J •••
DEF FN <function name> = <numeric expression>
DELETE t <numeric expression>
<variable> = DET (<matrix>)
DIM <variable> <bounds> [, <variable> <bounds> J •••
DOS [<string expr> J
I::F
EL
ELSE
END [" <comment> "]
END # <numeric expression>
EOF
EOF # <numeric expression>
ERASE [<variable> [, <variable>]...]
EXf (<numeric expression>)
FALSE
FF
FNn
FOR <simple num var>=<start> TO <final> [STEP <incr»
FREE [# <numeric expr>]
GET <string expr>
GO <line number>
GOSUB [<line number>]
GOTO <line number>
liD

19-2
19-1
18-1
7-3
9-5

20-9
7-4

20-3
11-5
10-1
20-6
11-5
7-4

18-2
13-1

8-1
17-15
15-10
15 -1
20-5
11-4
11-4

9-3
14-1
17-6
13-1
17-7
20-4

7 -4
9-5

18-2
8-1

10-1
20-6
20-~

9-1
9-2
9-1

11-4

APPENDIX A. INSTRUCTION SUMMARY A-1

HP (x)
au
IF <cond> THEN <line num> [;ELSE <line num>]
IF <cond> THEN <stmnt> [;ELSE <stmnt>]
INPUT [<variable> ,] ••• <variable>
INPUT I <numeric expression> , <input list>
INSERT I <numeric expression> , <string expression>
INSTR {string}
INT (<argument>)
IOPEN ¥ <numeric expression> , <string expression>
KEY
LEN (<string expression>)
LET <variable> = <expression>
LF

. LIST [i <numeric expr> ,] [<line number>]
LOG (<numeric expression>)
MAT <matrix1> = <matrix2>
MAl <matrix1> = (<scalar>) • <matrix2>
MAT <matrix> = CON
MAT <matrix> = ION
MAT <matrix> = ZER
MAT <matrix1> = INV <matrix2>
MAT <matrix1> = TRN (<matrix2>)
MAT <matrix1> = <matrix2> <operator> <matrix3>

"MAT INPUT [, <num expr>] <matrix> [, <matrix>] •••
MAT PRINT l I <num expr>] <mat print list>
MAT READ [# <num expr>] <m~t~ix> [, <matrix>] •••
MAX {arithmetic}
MAX {string}
BIN {arithmetic}
MIN {string}
NEXT <variable>
NEXTKEY , <numer ic ex-pression>
~OFILE I <numeric expression>
NOKEY I <numeric expression>
NOT ,
ON <num expr> GOSUB <line num list> [;<stmt>]
ON <num expr> GOTO <line num list> [;<stmt>]
~PEN , <numeric expression> , <string expression>
OR
PRINT [<print list>] L <separator>]
PRINT , <numeric expression> , <print list>
PRINT USING <format string> , <exp1> l , <exp2>]. ..
'RANDOMIZE
RD
READ <variable> [, <variable>] •••
REM L {any sequence of characters}]
HEN [<line number>] [, <incr>]

A-2 DATAPOINT DOS BASICPLUS

11-3
11-4
9-3
9-3

12-1
17-9
17-14
16-'13

7-3
17-12
9-6
16-14

7-4
18-2
20-5

7-4
15-3
15-5
15-8
15-9
15-6
15-10
15-9
15-4
15-5
15-7
15-6

7-1
16-13

7-1
16-13
10-1
17-13
17-7
17-13

9-5
9-7
9-6

17-5
9-5

11 .. 1
17-8
16-7

7-5
11-4
13-1
6-2

20-2

RESTORE
RESTORE i <numeric expr> [, <numeric expr>]
RESTORE , <numeric expr> , <string expr>
RETURN
ROLLOUT [<line number> ,] <string expr>
RND
RU
RUN [<line number>]
SAVE [<line number> ,] <string expr>
SCRATCH
SCRATCH <string expr> .
SGN (<numeric expression>)
SIN (<numeric expression>)
SIZ , <numeric expression>
SQR (<numeric expression>)
STEP
STOP [" <commeht> "]
SUB (<line number>]
TAB (<numeric expression>)
TAN (<numeric expression>)
ThEN
TO
TO <line number>
TOPEN # <numeric expession> , <string expression>
TRUE
UPDATE' <num expr> [, [<expr> <sep>] ••• <expr>]
<format string> USING <exp1> [, <exp2>] •••
VAL (<string expression>)
VARS [, <numeric expr>]
VP (X)

13-1
17-10
17-12

9-2
20-9

7-3
11-4
20-1
20-7
20-4
20-10

7-3
7-4

17-8
7-3

10-1
14-1
9-2

11-3
7-4
9-3

10-1
9-1

17-5
9-5

17-14
16-7
16-15
20-7
11-3

APPENDIX A. INSTRUCTION SUMMARI A-3

APPENDIX B. RESERVED NAMES

:D FOR PRINT
:M .. FREE RANDOMIZE
@ GET RD
ABS GO READ
AND GOSUB REM
APP GOTO REN
ATM HD RESTORE
AUTO HP RETURN
BEEP HU RND
BY IDN RU
CAT IF RUN
CLICK INPUT SAVE
CON INSERT SCRATCH
COS INT SGN
CR INV SIN
DATA IOPEN SIZ
DEF LEN SQR
DELETE LET STEP
DET LF STOP
DIM LIST SUB
DOS LOG TAB
EF MAT TAN
EL MAX THEN
ELSE MIN TO
END NEXT TRN
EOF NEXTKE~ TRUE
ERASE NOKEY UPDATE
EXP NOT USING
FALSE UN VAL
FF OPEN VARS
FNn OR VP

ZER

Reserved names new to version 2 of BASICPLUS are:

INSTR NOFILE ROLLOUT
KEY TOPEN

APPENDIX B. RESERVED NAMES B-1

APPENDIX C. NUMERIC VALUES OF ASCII CHARACTERS

A 65 a 97 0 48 58
B 66 b 98 1 49 . 59 ,
C 67 c 99 2 50 < 60
D 68 d 100 3 51 = 61
E 69 e 101 4 52 > 62
F 70 f 102 5 53 ? 63
G 71 g 103 6 54 [91
H 72 h 104 7 55 \ 92
1 73 i 105 8 56] 93
J 74 j 106 9 57

..
94

K 75 k 107 Blank 32 95
L 76 1 108 I 33 @ 64
M 77 m 109 " 34 { 123
N 78 n 110 , 35 I 124 I

0 79 0 111 $ 36 } 125
P 80 p 112 % 37 - 126
Q H1 q 113 & 38 Delete 127
R 02 r 114 • 39
S t)3 s 115 (40
T 84 t 116) 41
U 85 u 117 .. 42
V 86 v 118 + 43
w H7 w 119 44
X 88 x 120 - 45
y 89 y 121 • 46
Z 90 z 122 I 47

APPENDIX C. NUMERIC VALUES OF ASCII CHARACTERS C-1

APPERDIX D. ERROR MESSAGES

" " UNMATCHED

() UNMATCHED

l] UNMATCHED

() TOO DEEP
The nesting ~evel of parentheses is too deep.

ARGUMENT NOT MATRIl
The argument specified in a MAT statement is not a matrix.

ARGUMENT NOT NUMBER
The argument specified is either a matrix or a string.

ARGUMENT NOT STRING
The argument is not a string.

ARIThMETIC ERROR
The argument of a BASIC function is illegal; .i.e., SQR(-4).

BAD FORMAT STRING
The amount of formatted locations and the number of
expressions are not the same.

BAD FUNCTION
The function specified in not defined properly.

BAD ISAM'FILE.
The file used in an IOPEN statement is not properly indexed.
,INDEX/CMD should be performed.

APPENDIX D. ERROR MESSAGES D-1

; '-.

BAD STATEMENT
A BASIC statement is syntactically incorrect.

CAN'T FIND MATCH
A match for the <old-text> used in a :M statement can not be
found.

CAN'T OUTPUT THAT
The user attempted to output something which can not be output
by the normal PRINT statement.

DICTIONARY FULL I
The dictionary of variable names is filled up. Try SAVEing
your workspace and GETting it back to clear memory of
variables you no longer need.

DIMENSIONS NOT COMPATIBLE
The dimensions of the matrices are not correct for matrix.
multiplication, or matrix transposition.

DIMENSIONS NOT SAME
The .dimensions of the matrices are not the same for matrix
addition, scalar multiplication, subtraction, copying, or
inversion. .

DIVIDE BY ZERO
Division by zero was. attempted.

DRIVE OFFLINE
A reference was made to a drive that is not on line.

FILE DOES NOT EXIST
A reference was made to a.non-existant file; i.e., the user
tried to SCRATCH a file which did not exist.

FILE IS READ STATUS
An attempt was made to write to a sequential file which has
been read from. The user must RESTORE the file, or END the
file and re-OPEN it.

D-2 DATAPOINT DOS BASICPLUS

FILE IS WRITE STATUS
An attempt was made to read from a sequential file which has
been written to. The user must RESTORE the file, or END the
file and re-OPEN it.

FILE NOT ISAM
A NEXTKEY, RESTORE by key, UPDATE, INSERT, or DELETE was
executed on a file that is not an ISAM file.

FILE NOT OPEN
A reference was made to.a file number which had not previously
been assigned in an OPEN,TOPEN, or IOPEN statement.

FILE NUMBER IN USE
The user tried to open a file using a file number which is
currently assigned to a different file.

FILE SPACE FULL
There is no more, room on the disk selected for either another

, file name or more space for a file.

FO~ WIThOUT MATCHING NEXT
A matching NEXT was not found for an exausted FOR loop.

FOR TOO DEEP
A FOR statement has exceeded the maximum nesting level.

FUNCTION TOO DEEF
A user defined function has exceeded the maximum nesting
level.

GOSUB TOO DEEP
A GOSUB statement has exceeded the maximum nesting level.

I CAN'T DO THAT
A matrix operation is not in the proper format •

. APPENDIX D. ERROR M~SSAGES D-3

I/O ERROR
The output device has received too many characters for one
line, or an illegal devic~ was requested.

INSUFFICIENT CALCULATION SPACE
The matrix inversion or determinant routine could not find
enough temporary space to perform its calculations.

INTERRUPTED
The KEYBOARD key was pressed. If a program was executing, the
line number of the statement that was interrupted is printed.

INVALID FILE SPEC
The file name used in an OPEN, TOPEN, IOPEN, SCRATCH, SAVE,
ROLLOUT, GET, APP, or CAT statement is illegal.

KEY ALREADY EXISTS
The key of an ISAM file used in a INSERT statement already
exists.

LINE NUMBER > 38399
The user typed in a line number greater than 38399 or a line
number became greater than 38399 during renumbering.

LINE OVERFLOW
The replacement,created a The replacement, insertion, or
concatenation in a :M statement, created a new line over 79
characters long.

MATRI~ HAS NO INVERSE
The matrix specified in a MAT IHV statement has no inverse.

MATRIX NOT SQUARE
The matrix specified in a MAT IDN, DET, or MAT INV statement
is not a square matrix.

MISSING OPERATOR
:A BASIC statement contains no operator •

. D-4 DATAPOINT DOS BASICPLUS

TOO C'OMPLICATED
The user has attempted to have BASIC evaluate an expression
which contains too many operators in sequence.

UNDEFINED FUNCTION
The user defined function specified can not be found.

UNDEFINED VARIABLE
The user has attempted to reference a variable which has not
yet been assigned a value.

VARIABLE ALREADY DEFINED I
The user has attempted to dimension a variable which is
already defined as a number.

VARIABLE ALREADY DIMENSIONED
The user has attemented to dimension a variable which has
already been dimensioned.

Note: The following error messages occur during input/output
opetations. The referenced file will be "closed" with no
end-of-file mark written. See the DOS User's Guide for
explanation of these system errors.

FILE PROTECTION VIOLATION

SYST.EM DATA PARITY FAILURE

RhCORD FORhAT ERROR

RECOBD NUMBER OUT OF RANGE

D-b DATAPOINT DOS BASIC PLUS

NEXT WITHOUT MATCHING FOR
A NEXT statement -was executed without a corresponding FOR
statement.

NO MORE DATA
The user attempted to read past the end-of~file mark·of a
file, or tried to READ past the end of DATA statements.

NO ROOM
The user space is full. Try SAVEing your program and then
GETting it back. This will clear the work space of variables
you no longer need.

NO SUCIi LINE
The user attempted to reference a non-existent line number.

OV'ERFLOW
A number greater than 1E+38 was created.

RETURN WITH NO PRIOR GOSUB
A RETURN statement was executed without a prior GOSUB
statement being executed.

SAME MATRIX ON BOTH SIDES
The same matrix was specified on both sides of the equal sign
in a matrix multiplication statement.

STACK UNDERFLOW
BASIC tried to execute an illegal statement.

STHING ERROR
The user attempted to read a string into a numeric variable.

SUBSCRIPTING ERROR
The expression used to subscript a matrix or string variable

: is out of the range of the bounds used to DIM the variable.

APPENDIX. D. 'ERROR MESSAGES D-5

'The following error messages will occur while loading BASICPLS and
will terminate the loading of BASICPLS. For the 5500 version they
are:

WRONG PROCESSOR TXPEI
The processor being used dpes not have a 5500 instruction set.

·WRONG DOSI
The D.O.S. is not at least D.O.S. 2.4.

I NEED AT LEAST 36K TO LOAD!
The processor being used does not have 36K of available
memo~y.

For the 1500 version they are:

WRONG DOS!
The D.O.S. is not at least D.O.S. 2.5 •

. I NEED AT .LEAST 48K TO LOADI
The processor being used does not have 48K of available
memory.

lf the overlay version of BASICPLS is used, the message:

FAlLURE DURING OVERLAl LOAD!

means that the B'SICPLS library file is defective and BASICPLS
cannot load one of the overlay members. The following error
messages occur while rolling-in a BASICPLS object file.

MEMORY SIZE TOO SMALLI
The processor being used has less memory~han the processor
used to ROLLOUT the program.

OVERLAY LIBRARY MISSING! !
BASICPLS is not on the same drive and physi~al disk location
as it was when ROLLOUT was performed.

APPENDIX D. ERROR MESSAGES D-7

APPENDIX E. VALID ALPHABETIC CHARACTERS

The following characters are considered alphabetic by BASIC.

A a
B b
C c
U d
E e
F f
G g
H h
I i
J j
K k
L 1
M m
N n
0 0
p P
Q q
R r
S s
T t
U u
V v
W w
X x
y y
Z z
$ (underline)

APPENDIl E. VALID ALPHABETIC CHARACTERS E-1

