
CHAINPLS
CHAIN FILE COMPILER

AN D EXECUTOR

User's Guide

Version 3

October, 1980

Document No. 50386

DATAPOINT

NOTICE

CHAINPLS
CHAIN FILE COMPILER AND EXECUTOR

User's Guide

Version 3

October. 1980

Document No. 50386

Datapoint strongly recommends that its customers use Datapoint

Customer supplies. These disks, diskettes, cassettes, ribbons

lnd other products are certified by Datapoint to meet all Datapoint

Haraware specifications for consistent optimum performance.

Copyright rc) 1980 Oatapoint Corporation. All Rights Reserved.

PREFACE

CHAINPLS is designed to improve and enhance the capabilities

of the CHAIN utility. It significantly improves the compile-time

and execution-time capabilities of CHAIN while accepting

CHAIN-format input files without significant ~lteration. This

manual contains documentation on the features and run-time

characteristics of CHAINPLS.

i

TABLE OF CONTENTS

1. INTRODUCTION
1.1 CHAINPLS Data Flow
1.2 "Execute" and "Compile-Only " Modes
1.3 The CHAINPLS Command Line
1.4 Compile Phase Activity
1.5 Execution Phase Activity

2. COMPILE PHASE DIRECTIVE~ OF CHAINPLS
2.1 The Data Types of CHAINPLS

2.1.1 Definition of a·Data Item
2.1.2 Boolean Data
2.1.3 Arithmetic Data
2.1.4 Character String Data
2.1.5 Literals
2.1.6 Redefinition of Data Item Types

2.2 The Expressions of CHAINPLS
2.3 The CHAINPLS Compilation Directives

2.3.1 The program block
2.3.2 The IF/ELSE Directive
2.3.3 The IFS/IFC Directives
2.3.4 The XIF Directive
2.3.5 The BEGIN Directive
2.3.6 The WHILE Directive
2.3.7 The END Directive
2.3.8 The DO Directive
2.3.9 The UNTIL Directive
2.3.10 The Command Line ~s Assignment Directive
2.3.11 The ASSIGN Directive
2.3.12 The SET Directive
2.3.13 The DEBUG Directive
2.3.14 The CLICK Directive
2.3.15 The BEEP Directive
2.3.16 The ABORT Directive
2.3.17 The KEYIN Directive
2.3.18 The INCLUDE Directive
2.3.19 The EXIT Directive
2.3.20 The STOP Directive
2.3.21 The DISCARD Directive
2.3.22 The OPTIONS Directive
2.3.23 The USERPROG Directive
2.3.24 The User File Input/Output Directives

2.3.24.1 The OPEN Directive
2.3.24.2 The CLOSE Directive

ii

page

1-1
1-1
1-2
1-2
1-5
1-5

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-5
2-5
2-5
2-5
2-6
2-7
2-7
2-7
2-7
2-8
2-8
2-8
2-9

2-10
2-10
2-10
2-10
2-11
2-11
2-12
2-12
2-13
2-13
2-14
2-14
2-15
2-16

2.3.24.3 The READ Directive
2.3.24.4 The WRITE Directive
2.3.24.5 The ENQUEUE Directive
2.3.24.6 The DEQUEUE Directive

2.3.25 The Special Statement Directives
2.3.25.1 The Compile Phase Comment Directive
2.3.25.2 The Tr~nsparent Replacement Directive
2.3.25.3 The Total Transparency Directive
2.3.25.4 The Programmer Comment Directive

2.4 The Pre-defined Data Items in CHAINPLS
2.5 Special Replacement in CHAINPLS

2.5.1 Decimal Replacement
2.5.2 Oct~l Replacement
2.5.3 Character String Replacement

3. EXECUTION PHASE DIRECTIVES OF CHAINPLS
3.1 Execution Phase Comment Directive
3.2 Operator Pause Directive
3.3 Conditional Abort Directive
3.4 Log Susoension Directive
3.5 Log Restart Directive
3.6 Date/Time Stamp Directive
3.7 The Operator ~IGNAL Directive

4. BASIC USAGE
4.1 Symbol Replacement
4.2 Statement Selection

4.2.1 The IF/ELSE/XI~ Statement
4.2.2 The WHILE Statement
4.2.3 The DO Statement

4.3 D~ta Item Value Alteration
4.3.1 The ASSIGN Statement
4.3.2 The SET Stntement

4.4 Basic Usage Example

5. INTERACTIVE USAGE
5.1 The Use of KEYIN with WHILE and DO
5.2 Displaying Data Items With KEYIN

6. CHARACTER STRING MANIPULATION
6.1 The BRsic Operations

6.1.1 Concatenation
6.1.2 Sub-stringing

6.1.2.1 Definition of Sub-stringing
6.1.2.2 Simplp. Sub-stringing
6.1.2.3 Sub-string Control Expressions
6.1.2.4 Circularization of Strings
6.1.2.5 Negati~e Numbers in Sub-stringing

iii

2-16
2-17
2-17
2-18
2-18
2-18
2-18
2-19
2-19
2-19
2-20
2-21
2-21
2-22

3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-3

4-1
4-1
4-2
4-2
4-2
4-3
4-4
4-4
4-5
4-5

5-1
5-1
5-2

6-1
6-1
6-1
6-1
6-2
6-2
6-2
6-3
6-3

6.2 The More Complex Operations
6.2.1 The "Length Of II Function
6.2.2 The Pattern Match Operation
6.2.3 The Scan Operation
6.2.4 The Scan Uneaual Operation
6.2.5 The String Replace Operation

6-4
6-4
6-5
6-6
6-7
6-7

7 . COMPLEX EXPRESSIONS 7-1
7.1 Expression Evaluation 7-1
7.2 Intermediate Results of Expressions 7-1

7.2.1 Boolean Used as Arithmetic 7-2
7.2.2 Numeric Results from Character Operations 7-2
7.2.3 Character Results Used in Numeric Operations 7-3
7.2.4 Numeric Values Used in Character Operations 7-4

7.3 Comparison Evaluation 7-4
7.4 Array Simulation and Processing 7-5
7.5 Multiple Replacement 7-6

8. DISPLAY AND PRINT OPTIONS 8-1
8.1 The General Format 8-1
8.2 The Print and Display Options. 8-1
8.3 The Print Format 8-2

9. THE SPECIAL FUNCTION OPERATIONS 9-1
9.1 The TTYPE Function 9-1
9.2 The FfILE Function 9-2
9.3 The MMEMBER Function 9-3
9.4 The UNBIT Function 9-3
9.5 The BIT Function 9-4

10. CHAINPLS EXECUTION PHASE 10-1
10.1 General Description 10-1
10.2 Execution Restart 10-2

10.2.1 Restart From Current Position 10-2
10.2.2 Restart From Last Command 10-3
10.2.3 Interactive Restart 10-3
10.2.4 Restart With Override Job File 10-5

10.3 Execution Logging 10-5

11. USER-WRITTEN SUBROUTINES 11-1
11.1 Gener~l Concept 11-1
11.2 Symbol Table Value Structure 11-2
11.3 Internal Service Routines 11-3

11.3.1 INCEXP -- Increment the Expression Array Pointer 11-3
11.3.2 DECEXP -- Decrement the Expression Array Pointer 11-3
11.3.3 CLEAREXP -- Reset the Expression Array Pointer 11-4
11.3.4 CKSTAKl -- Determine Current Symbol Type 11.4
11.3.5 CKTYPE -- Determine Operand Type 11-4

iv

11.3.6 CKITEM -- Point and Type the Next Symbol in Array 11-5
11.3.7 OPND1SET -- Set Up First Operand for COMPARE 11-5
11.3.8 OPND2SET -- Set Up Second Operand for COMPARE 11-5
1.1.3.9 COMPARE -- Compare Two Operands 11-5
11.3.10 ABORT -- Abort the CHAINPLS Compilation 11-6
11.3.11 STLOOKUP Symbol Table Lookup by Name 11-6
11.3.12 USRSPACE Obtain Work Space for User Routine 11-6
11.3.13 CVBINDEC Convert Binary Value to ASCII Decimal11-7
11.3.14 CVBINOCT Convert Binary Value to ASCII Octal 11-7
11.3.15 CVDECBIN Convert ASCII Decimal to Binary 11-7
11.3.16 CVOCTBIN Convert ASCII Octal to Binary 11-7
11.3.17 CHEKFILE Open a Disk File if Present 11-8
11.3.18 ERRORDSP display non-fatal error message 11-8

11.4 Program Assembly and Control 11-9
11.4.1 Assembly Time 11-9
1 1 . 4 . 2 E x-e cut ion Tim ell - 9

Appendix A. A CHAINPLS PROGRAMMING EXAMPLE

Appendix B. ERROR MESSAGE SUMMARY
B.l The Compilation Phase Errors

B.l.1 The Terminal Errors
8.1.2 The Syntax and Parsing Errors

B.2 Execution Phase Errors

Apnendix C. USER fILE I/O PROGRAMMING EXAMPLE

1\-1

B-1
8-1
B-1
B-3
8-6

C-1

Appendix D. USER-WRITTEN SUBROUTINE PROGRAMMING EXAMPLE D-1
0.1 Assembly Language Subroutine 0-1
0.2 CHAINPLS Input file D-3
D.3 Execution Results D-4

Appendix E. CHAINPLS RELOCATABLE SUBROUTINE LIBRARY E-l
E.l SAVEPTR -- Save the Position of a User File E-l
E.2 RESTPTR -- Restore the Position of a User File E-2
E.3 FREE -- Determine Free Memory AVailable E-2
E.4 ROLLOUT -- Save Execution State and Return to DOS £-2
E.5 STARTIME -- Start a Timing Function E-2
E.6 STOPTIME -- Stop a Timing Function E-3
E.7 POSIT -- Position a User File to a Logical Record E-3
E.8 fILENAME -- Obtain DOS filename E-3
E.9 SURNAME -- Obtain DOS Subdirectory Name E-3
E.l0 KILL -- KILL an Open User File E-4
E.l1 CHOP -- CHOP an Open User File E-4
E.12 PROTECT -- Change Protection on a User File £-4
E.13 NEXTMEM -- Obtain first/Next Member Names From Library E-5
E.14 NEXTSYM -- Obtain Next Symbol Name from Symbol Table E-5
E.15 PAUSE -- Timed Suspension of Processing E-6

v

E.16 PRINT -- User print interface E-6

vi

CHAPTER 1. INTRODUCTION

1.1 CHAINPLS Data Flow

The execution characteristics of CHAINPLS are similar to
CHAIN .. A single file is presented to CHAINPLS containing internal
t~iloring commands and an output file is generated containin~ the
DOS command lines and key in responses necessary to execute 8

desired job stream. CHAINPLS is not intended to be a total
replacement to CHAIN. However it will execute CHAIN files with d

minimum of changes while allowing extended capabilities during
file compilation for arithmetic computation, character string
manipulation, assignment of default values, structuring and
looping, and execution-time system status information. Durin~
execution, additional CHAINPLS features include system loggin~
capabilities and versatile restart control following system
failure.

CHAINPLS has two basic phases. The first nhase is the
compilation or ·'tailoring " phase in which the input file is read
and the control statements are modified according to the
directives found in the file. The outout records (command lines
and keyin responses) are written into a control file whose default
name is SYSJOB/SYS. If logging of console display/keyin activity
is requested, a log file whose default name is SYSLOG/SYS is
created.

The second phase of CHAINPLS consists of actually exp.cuting
the command lines in the SYSJOB/SYS file. All kevin responses
requested by programs executing under CHAINPLS control are taken
from the SYSJOB/SYS file. At the end of the SYSJOB/SYS file.
control is returned back to the Disk Operating System.

CHAINPLS may be run on any 5500-level processor on any of the
DOS. series operating systems. It is A.R.C. compatible. CHAINPLS
may not. however, be run in the remote partition of PS66 or the
fixed nartition of PS or U.P.S.

CHAPTER 1. INTRODUCTION 1-1

1.2 "Execute" and "Compile-Only" Modes

The normal mode of operation for CHAINPLS is to tailor the
input' file and immediately execute the results. This is "execute il

mode. On occasion, however, the user may wish to verify the
results of a CHAINPLS compilation. The "compile-onlyli mode causes
the result of the compilation phase to be written into a GEDIT
standard text file. This file will be completely tailored and
will contain any comment lines which would normally have been
displayed on the screen. Note that this output text file can
usually be executed using the normal DOS CHAIN utility. This
feature can be of value when transporting software to a Datapoint
2200 or any time when the released DOS CHAIN program must be used.

1.3 The CHAINPLS Command Line

The command line for the execution of CHAINPLS is:

CHAINPLS <input file spec>,<output file spec>,<print file spec>,
<log file spec>;<OPTIONS=options>.<chain replacement equate>,
<replacement equate>, ...

The <input file spec> is a DOS-standard file specification
describing the input text file containing the untailored text. It
may contain a member name if the input is from a library. If the
input is from a text file the default extension is fTXT. If the
input is from a library the default is ILlS.

The <output file spec> describes the output file desired. If
this entry is given for normal executions, it will be used as an
override name for the system job file SYSJOS/SYS. If CHAINPLS is
being run in "compile-only" mode, the output file generated is a
DOS-standard text file. The default extension of the <output file
spec> is ICHN if "compile-onlyil and fSYS if executing.

The <print file spec> is used if the user desires a print
file listinp, of the compilation. The default extension of the
print file is fPRl.

If compiling, the default name of the output file is the name
of the input file. The default name of the print file is the name
of the output file. The compile-only output file is in
DOS-standard, non-space-compressed format.

The <log file spec> is used to name the system log file if a
name other than SYSLOG/SYS is desired. (See IIExecution Log~ingll.)

1-2' CHAINPLS

The reserved word "OPTIONS" is used to assign compile-time
and execution-time options to CHAINPLS. The word i'OPTIONS" may be
replaced by tlOPTN" or "OPtI. For example:

CHAINPLS FILE1,FILE2;OPTIONS=LI.A=100,B=XYZ

specifies "LI" to be the execution options; A and B are data items
with values of 100 and XYZ respectively. The options available
are:

L list results on the local printer
P printer output goes to a print file
S printer output goes to a servo printer
D display output and additional lines on console
I display/list the input file
R display/list input lines after replacement
o . display outptit lines

:T activate any imbedded DEBUG statements
C co~pile-only; generate output file and ston
N ho.'output file or execution desired
G log all console messages during execution
Q log messages into existing log file
U unstack all CHAINPLS recursion

r.
The D option enables the display driver and will cause the

input and output line numbers to be displayed on the bottom of the
console screen. The P t L, and S options enable the appropriate
printer driver and will automatically cause all output lines to be
printed. For further information on the printer capabilities, see
the chapter on "Display :3nd Print Options".

The It R, and a options control the data to be listed or
displayed by the drivers selected. The I option will cause all
input statements to be listed or displayed. The R option will
cause all input to be listed or displayed after line replacement.
The 0 option will cause all output lines to be displayed.

The C option causes CHAINPLS to compile (tailor) the input
file completely, but instead of actually executing the output, the
results are written to ~ user-specified file for later use. This
option is useful for testing a complex compilation or gener~ting
multiple CHAINPLS files for later use. .

The G and Q options cause all execution-time console traffic
(displays and keyins) to be logged into the disk file specified by
the <log file spec) (which defaults to SYSLOG/SYS). This file is
in DOS-standard text file format. The G option initiates logging

CHAPTER 1. INTRODUCTION 1-3

and causes a new log file to be prepared. The Q option notifies
CHAINPLS that the lo~ file file already exists and new output
should be written onto the end of the existinR data. Note that if
CHAINPLS is invoked by CHAINPLS and logging is active at the outer
(prior) level of chaining, those options are automatically passed
through to the inner (newer) level. This is explained more fully
during discussion of the execution phase.

The U option alters the behavior of CHAINPLS when the
execution phase of CHAINPLS has called the compile phase of
CHAINPLS. This "'CHAINPLS calling CHAINPLS" is called "recursion Ii.
Nor mall y, as wit h C H A IN, iff i 1 e ., A" i s c h a in ed, an d f i 1 e II A I'
contains a command to chain another file, say "8", then the
completion of the commands in file "8 11 will result in control
returning to file "A" at.the command line just following the
com man d to c h a in f i Ie Ii 8" . There is no p r act i cal lim itt 0 the
number of times CHAINPLS can call CHAINPLS (recurse). The U
option, when set, .causes CHAINPLS to ignore All prior levels of
recursion and behave as though its command line came directly from
the keyboard. This can be useful, for example, in Allowing Rn
error procedure to run to completion and then return control b~~k
to the DOS without completing prior levels of chain files.

It is important to note that if CHAINPLS calls CHAINPLS, Any
override names for the system job file (SYSJOB/SYS) and the 0ystem
log file (SYSLOG/SYS) specified for the second CHAINPLS execution
are ignored. The output and log data will gO into the same files
as were used during the first execution.

The command line may be continued across many keyin lines by
using the dash (-) as a line continuation marker. The dash may
only 3Ppear, however, in the same position normally occupied by a
comma.

Since the comma (,) and the dash (-) cannot normally be
entered as part 01" a value string on the command line, special
provision h8s been m8de for a "forcing character." The pound sign
en), if used on the command line, tells CHAINPLS that the
chAracter immediately following is part of the value of the data
item and should not be examined for any other purpose. NOTE: the
forcing character is only applicable to the command line.

1-4 CHAINPLS

1.4 Compile Phase Activity

During the compile phase, the input file is read, all
statements are selected and tailored, and an output file is
written. If CHAINPLS is running in its normal mode (compile and
execute), the output is written into a file called SYSJOB/SYS. If
CHAINPLS was invoked by CHAINPLS, the new output is added onto the
end of the existing SYSJOB/SYS file. This added data is called An
.. extent.. . There is no pract i ca IIi mi t to the number of extent s
which can be written to the SYSJOB/SYS file. Each extent in the
SYSJOB/SYS file is the result of a compilation phase of CHAINPLS.
During execution, the user will be notified as each extent is
completed and the name of the input file used to create the extent
is displayed on the system console. Note that only command lines,
keyin response lines, and execution-time CHAINPLS directives are
allowed in the SYSJOB/SYS file.

If CHAINPLS is being run in compile-only mode. all statement
selection and tailoring is done normally, but the output is
written into the output file specified bV the user and is not
executed.

If logging is specified, the SYSLOG/SYS file is either
cre8ted or searched for its current end-of-file depending on the
option used on the command line.

1.5 Execution Phase Activity

At the end of the compilation phase, CHAINPLS makes certain
modifications to the resident DOS to allow keyin responses to be
read from the SYSJOB/SYS file and delivered to the requesting
pro~ram. If logging was specified, additional modifications are
made to cause all displayed messages (including keyin lines) to be
written to the file SYSLOG/SYS. It is common to note some
de~radation in system performance when logging is active, but the
overhead imposed by the logging facility is only present during
actual console display. The overhead is due to the disk operations
necessary to support the logging facility.

The execution phase of CHAINPLS requires the presence of
CHAINPLS/OVl and CHAINPLS/OV2 on a common on-line drive.
CHAINPLS/OVl is the command nandler and is invoked between each
program execution. CHAINPLS/OV2 is the lORger and is loaded
whenever necessary to create new records in the SYSLOG/SYS file.

CHAPTER 1 . INTRODUCTION 1-5

CHAPTER 2. COMPILE PHASE DIRECTIVES OF CHAINPLS

2.1 The Data Types of CHAINPLS

2.1.1 Definition of a Data Item

A data item as used by CHAINPLS is a name consisting of eight
characters or less beginning with an alphabetic character and
containing no imbedded special characters or blanks. Associated
with any data item is a Boolean value indicating whether the item
was specified in the command Ilne to CHAINPLS or was subsequently
SET to TRUE or used as the rec~iving field in an ASSIGN statement.
Also, all TRUE data items have an associated value which mav be
null. The value types are CHARACTER, DECIMAL, or OCTAL. This
associated value is in addition to the Boolean value of the data
item; whether the Boolean value of a data item or its associ~ted
value is used in a particular expression depends lloon the
parti9ular operation; being performed. Note that lower case
alphabetic characters are accepted as any part of data item name.

As with CHAIN, the use of the standard replacement character
CD) surrounding a data item name will cause the value associated
with the item to be inserted into any line of the input file: this
is true regardless of statement type.

2.1.2 Boolean Data

All data types used by CHAINPLS possess, at all times, ~
Boolean value. It· a data item is not specified in the command
line, .its initial Boolean value is FALSE; if it was specified its
initial value is TRUE. Subsequent ASSIGNment of any numeric vaiUe
or character value to the data item will cause it to assume a TRUE
Boolean value.

CHAPTER 2. COMPILE PHASE DIRECTIVES OF CHAINPLS 2-1

2.1.3 Arithmetic Data

Ihe association of arithmetic data with a data item causes
the data item to posess a data type of numeric. If the equated
value on the command line for the data item is numeric (consistin~
only of digits), or if subsequent ASSIGNments of values to the
data item are numeric, the data type for the item is numeric. If
the number on the command (or in the ASSIGNment) line is OCTAL
(composed of digit 0-7 and preceded by a zero) then the item is
considered OCTAL, otherwise it is considered DECIMAL. Note that a
minus sign (-) may precede any numeric value. This data tyoe
association can change during a single execution of CHAINPLS by
use of the ASSIGN and SET statements. The number base type
(DECIMAL or OCTAL) is preserved and utilized when the value of the
dat~ item is formatted into a CHAINPLS statement. That is, a
DECIMAL value is automatically converted to decimal, an OCTAL
value is automatically converted to OCTAL.

All internal arithmetic values are maintained as signed
23-bit binary values. This allows bit manipulation operations to
be performed. The ~3-bit length limits numeric range to -8388608,
+8388607. In octal the range is -040000000, +037777777.

2.1.4 Character String Data

The association of character string data to a data item
causes the data item to posess a data type of CHARACTER. If the
equated value on the command line for the data item is not numeric
or if subsequent assignments of values to the data item are
character strings, the data type for the item will be CHARACTER.
All character string values are maintained internally in standard
ASCII characters with an associated string length indicator. The
maximum length ot a character string is 80 bytes. This limit also
applies to input lines (from KEYIN or READ). The end-of-line
character counts as one of the 80 characters on input so the
actual maximum number of displayable characters is 79.

2.1.5 Literals

Three types of literals are allowed inCHAINPLS. These
literals may appear in any expression anywhere a data item name
could normally be used. Any character string enclosed in double
quotes (1/) is considered type CHARACTER and its length is
determined by the length of the enclosed string. Null length
chara cter Ii terals are allowed (" II). Any numer ic string is
considered a numeric literal. The data type of a numeric literal
is determined by the presence or absence of a leading zero. If a

2-2 CHAINPLS

leading zero is present, the literal is considered to be OCTAL;
otherwise is it considered DECIMAL. The use of a literal zero is ~
special case. If a. single zero is used as a literal, it is
considered to be a decimal literal; two or more zeroes is
considered to be an octal zero~

2.1.6 Redefinition of Data Item Types

At any time during an execution, the type of a data item may
be altered by use of the ASSIGN statement. This allows 8ny data
item to be defined as a certain type of data, and redefined as
another type later in the program. There is no limit to the number
of times a data item may be redefined, but care must be taken that
the type.of the item is clearly understood by the programmer. This
feature could be of benefit should the user encounter memory size
constraints during execution. The redefinition of a data item
does not allocate any new memory to the item unless necessary.
Each data item is given an initial allocation of 14 bytes. If
character string operations or reassignments lengthen the dat8
items, new memory will be allocated up to 80 bytes.

2.2 The Expressions of CHAINPLS

An expression in CHAINPLS can consist of any of four types of
operators: logical operators, arithmetic operators, binary
operators, or character string operators. The logical operators
all generate a Boolean result based dn the truth or falsity of a
statement. The arithmetic operators are the standard mathematical
operators used in most languages. The binary operators oerform
bit m8nipulation upon the values associated with a data item. The
character string operators are used to create new character
strings from previously existing strings, literals and the values
of other data items.

"

CHAPTER 2. COMPILE PHASE DIRECTIVES OF CHAINPLS 2-3

The ari~hmetic operators are:

+

/

addition
subtraction
multiplication
division

The binary operators are:

&& binary "and oi

•• binary "or" I I

! exclusive binary lIor"
» binary shift right
« binary shift left

The logical operators are:

logical II or ..
& logica.l "and"

logical unary .. not"
= logical equal
< lo~ic(3l less than
> logic(3l greater than
<= lop~ical less than or equal to

Thp

>= logical greater than or
= logical not equal to

char8cter string operators are:

\\ concatenation
sub-stringing
sub-string control
string length function

L oattern match
[[string scan
-L[string scan unequal
\ string replacement

equal to

Operations are evaluated in the order of their occurrence,
but parentheses to any depth may be used to alter the order of
eVrlluation.

If a data item with a data type of character string is used
in an arithmetic expression, the hiph-order 24 bits (first three
bytes) of the character string are used as a binary value.

2-4 CHAINPLS

2.3 the CHAINPLS Compilation Directives

The general form for a directive statement in CHAINPLS is:

II <directive> <data items or expression>

Any number of spaces can occur anywhere in the statement; the
"1/ 11

, however, mllst occur in column 1.

2.3.1 The program block

The conditional statements (IF/ELSE/XIF, DOIEND, WHILE
<condition>/END) and the BEGIN lEND statements create a program
block. All of the statements in a block are one logical entity.
There is. a limit on the maximum number of blocks open at one time.
In the current CHAINPLS the limit is 42.

2.3.2 The IF/ELSE Directive

The basic syntax of an IF directive is:

II IF <any expression>
.... any number of statements
II ELSE
.... any number of statements
II XIF

The first group of statements is processed if the expression
evaluated in the IF statement is TRUE; the second ~roup of
statements is processed if the expression is fALSE. The ELSE
statement and its associated statement block is optional. Note
that IFs may be nested to any depth up to the number of number of
free block levels, and BEGINs are not necessary for stacking of
IFs. This differs from CHAIN requirements.

2.3.3 The IFS/IFC Directives

The basic syntax of an IFS directive is:

II IFS <any expression>

The basic syntax of an IFC directive is:

II IFC <any expression>

CHAPTER 2. COMPILE PHASE DIRECTIVES OF CHAINPLS 2-5

The IFS and IFC directives are similar to the IF directive
but are only provided for compatibility with old CHAIN files. It
is important to note that it is not intended that they be used in
new CHAINPLS files.

The IFS and IFC directives are defined exactly as they were
in the old CHAIN; that is, the IFS is TRUE if the (expression) is
true, but the IFC is TRUE if the (expression) is false.

IMPORTANT: For compatibility, ALL commas (11,11) and periods
(II. ") in any IFS or IFC statment are TRANSLATED to if: Hand "&11
respectively. This translation is internal to CHAINPLS and does
NOT APPLY TO ANY STATEMENTS OTHER THAN IFS AND IFC! Due to the
compatibility problem, IFS and IFC should be assiduously avoided
in new CHAINPLS files. Any logical statement is possible with an
IF statement .. Note that the logical not (II-It) operation may be
performed to invert the value of any expression, thus eliminating
the need for an IFC directive.

2.3.4 The XIr Directive

The XIF directive is used to terminate a block created by an
IF or ELSE statement. Note that. unlike the older CHAIN, any XIF
only closes one block; that is, an XIF statement only affects the
block created by the last IF or ELSE statment. For example:

II IF <expression)
.... statement
II IF <expression)
.... statement
II ELSE
.... statement
II XIF
II XIF

first IF

second IF

inversion of second IF

terminate second IF/ELSE
terminate first IF

It should be carefully noted that. for compatibility with the
old CHAIN, the behavior of XIF is different with the IFS and IFC
instructions. If an old-style CHAIN file containing IFS and IFC
statements is processed by CHAINPLS, the XIF directive associated
with the IFS and IFC statements (and their ELSEs) will close all
existing blocks created by IFS and IFC statements; that is, XIF
will behave as it did in CHAIN. This feature is provided only for
compatibility with the CHAIN and ihould not be used in new
CHAINPLS input files.

2-6 CHAINPLS

2.3.5 The BEGIN Directive

The BEGIN directive has the same definition as that used in
CHAIN; that is, the BEGIN directive starts a block of statements
which, from the level in which the BEGIN statement occurs, is to
be considered one statement. The format of the BEGIN directive is:

II BEGIN

Once again, please note that BEGIN statements are NOT
necessary to create multiple levels of IF statments as they were
in the old CHAIN. The BEGIN statement is thus unnecessary and is
provided for compatibility only.

2.3.6 The WHILE Dir~ctive

The WHILE directive is used to conditionally process a block
of statements repeatedly until a condition becomes false. The
format of the while statement is:

II WHILE <any expression)

2.3.7 The END Directive
j

The END directive has the same definition as that used in
CHAIN; that is, the END directive terminates a block of statements
which, from the outer lexic level, are considered to be one
statement. END statments are used to terminate the blocks created
by BEGIN ~nd WHILE. The format of the END directive is:

II END

2.3.8 The DO Directive

The DO directive begins a block of statements which are
always executed once and will be repeated if the expression
associated with the terminating UNTIL statement is found to be
FALSE. The format of the DO directive is:

II DO

CHAPTER 2. COMPILE PHASE DIRECTIVES OF CHAINPLS 2-1

2.3.9 The UNTIL Directive

The UNTIL directive is used to terminate a block of
statements begun by a DO directive. If the expression associated
with the UNTIL directive is TRUE, the block will not be
reprocessed. If it is FALSE, execution will resume with the DO
statement. The format of the UNTIL directive is:

II UNTIL <any expression)

2.3.10 The Command Line as Assignment Directive

When a data item is entered on the command line, its
associated Boolean value is set to TRUE. If the entry is equated
to a characte~ string, decimal number, or octal number, that
string or number determines the type and value of the data value.
If no value is equated to the data item, its data type is set to
CHARACTER and its value to NULL.

2.3.11 The ASSIGN Directive

The ASSIGN directive is used to assiRn or alter the value or
the data type ot" a data item. The format of the ASSIGN statement
is:

II ASSIGN <data item name)=<expression)

If the <expression) consists only of one data item (e.g., "A=B"),
the data type of the receiving data is set to the type of the
sending data item and the value of the sending data item is
transferred to the receiving data item. To prevent data type
alteration by reassigment, a trivial expression may be used. For
example:

II ASSIGN FIELD1=FIELD2

will cause fIELD1 to assume all characteristics of FIELD2.
However:

II ASSIGN FIELD1=(FIELD2)

will reassign only the value ~IELD2 to ~IELD1.

Numeric literals are allowed in any expression. If the first
character or a numeric literal is a zero (0), the literal is
considered to be in OCTAL form; otherwise it is interpreted as

2-8 CHAINPLS

decimal. Alphanumeric literals are allowed in any expression ~nd
must be enclosed in quotes. The maximum lenth of a literal is 80
bytes. Null-length alphanumeric literals are allowed. A null
length literal is two adjacent double quotes (1111) and is typically
used to reset the length of a data item value to zero.

The ASSIGN directive can also be used to create a data item
that did not previously exist. The Boolean value of- a newly
declared data item is set to TRUE and the value and type of the
data associated with the data item is determined by the evaluation
of the expression. Since the value type of intermediate
arithmetic results is always DECIMAL if the <data item name) is
being created by the ASSIGN statement and is ASSIGNed the value of
an arithmetic expression, the data item will receive a value type
of DECIMAL. The reserved word "NULL" may be used to assign a null
value to any data item. Note that the result field of any as~iRn
statemeni is always Boolean TRUE after the execution of the .
statement. To change the Boolean value of a variable, the SET
statement must be used. Note that the Boolean value of any
undeclared data items is implicitly FALSE.

2.3.12 The SET Directive

The SET directive is the Boolean equivalent of the ASSIGN
directive. The format of the SET directive is:

II SET <data item name)=<expression)

The SET directive, like the ASSIGN directive, can be used to
create new data items. As with 'command line entry, the creation
or a new data item involves setting the new item's data type to
CHARACTER and its value to NULL. The SETting of an existing data
item to a non-existing data item-causes a value of FALSE to be
transferred to the receiving data item. The reserved words FALSE,
NO, and OFF may be used to indicate a FALSE value in the
expression while the reserved words TRUE, YES, 8nd ON maybe be
used to indicate TRUE.

Note that any previous value associated with the result
variable is lost after a SET statement.

CHAPTER 2. COMPILE PHASE DIRECTIVES OF CHAINPLS 2-9

2.3.13 The DEBUG Directive

The DEBUG directive is intended to provide the user with a
means of determining the source of error in a CHAINPLS execution.
The format of the DEBUG statement is:

II DEBUG <data item name> <data item name> •..

When, during execution, the DEBUG statement is encountered, the
contents and flags of the symbol table entries specified will be
listed or display on the media specified. The DEBUG statement has
no effect unless the "T" option is specified on the command line.
This allows the DEBUG statements to remain imbedded in the text
file.

2.3.14 The CLICK Directive

The CLICK directive allows the user to orovide a click as
audible output from ~he execution of CHAINPLS. The format of the
CLICK statement is:

II CLICK

2.3.15 The BEEP Directive

The BEEP directive allows the user to provide a beep as
audible output from the execution of CHAINPLS. The format of the
BEEP statement is:

I I BEEP

2.3.16 The ABORT Directive

The ABORT directive allows the user to discontinue the
execution of CHAINPLS due to a detected internal error condition.
The format of the ABORT statement is:

II ABORT

2-10 CHAINPLS

2.3.11 The KEYIN Directive

The KEYIN directive allows the user to display data to and
request input from the console operator. The format of the KEYIN
statement is:

II KEYIN <operand or alpha literal> <operand or literal> •...

Any alpha literals (character strings enclosed in double quotes)
which are encountered in the statement are displayed. Any operand
names encountered cause the cursor to appear in the character
position following the last displayed item. The console operator
must then keyin the data requested. The data entered is checked
against the value type of the operand. If the value type is
DECIMAL, only the characters 0 through 9 are allowed. If the
value typ~ is OCTAL, only the characters a through 7 are allowed.
If the value type is CHARACTER, any characters may be entered.
Negative numbers are allowed. Up to 80 characters may be entered
into a CHARACTER string.- However, the enter character counts as
one of the 80 characters.

Any data item can de displayed by using the repJacement
onerator e.g.

I IKE YIN 11/1 V A R 11'1

would cause the current value of var to be displayed. It is
important to remember that replacement is done before the
directive is executed. This means that "VAR" in the above example
must not contain a quote character. There is no forcing character
in the KEYIN directive.

2.3.18 The INCLUDE Directive

The INCLUDE directive is used to copy in other text files and
cause them to be interpreted as part of the input file. The
general format of the INCLUDE directive is:

II INCLUDE <data item name or alpha literal)

The value of the <data item> or literal used in the include
statement is a DOS file specification. The default extension is
ITXT if the file specification does not contain a member name.
The file specification may contain a member name. If a member
name is given the extension wi'll default to ILIB. If the CHAINPLS
input file is a library member, other members of that library may
be included by having the value of the data item or literal
contain only the member name (eg. II.MEMBER'I).

CHAPTER 2. COMPILE PHASE DIRECTIVES OF CHAINPLS 2-11

An INCLUDEd file may INCLUDE still more text files, but at no
time can the total number of outstanding inclusions exceed 14. It
is important to note that blocks created in an outer level source
text file (such as by IF, WHILE, ELSE. or BEGIN) cannot be
completed (with END or XIF or ELSE) by any statements within the
included source text file. The INCLUDEd source text file c~n
create blocks of its own, but these blocks must be closed (with
END or XIF) before the end-of-file record in the INCLUDEd file is
reached. At end of file on the inclusion, processing is resumed
with the statement following the INCLUDE statement in the earlier
file. In other words, included files are used in a last-in,
first-out (LIFO) stack basis. .

2.3.19 The EXIT Directive

The EXIT directive is designed to provide a means of
selecting the program to be executed next after CHAINPLS returns
to the operating system at the end of the job. This statement is
only effective if CHAINPLS is being run in IIcompile-only" mode.

The format of the EXIT directive is:

II EXIT <data item name or literal)

The <datA item) used in the EXIT statement must have nn associated
data type of CHARACTER. The value of the data item or literal is
olaced in the Monitor Communications Region (MCR$) of the DOS and
fl~gged to indicate that the command line is to be interpreted
before returning to the keyboard for operator instructions.

Multiple EXIT statements can be used in a single CHAINPLS
exectltion, but only the last one encountered prior to end-of-job
is active.

2.3.20 The STOP Directive

The STOP directive is used to terminate interpretation of the
input file at the current line. It also allows the user to select
the pro~ram to be executed after CHAINPLS returns control to the
operating system. The format of the STOP directive is:

II STOP <data item name or literal)

The <data item or literal) is optional, and, if specified, its
value will be placed in MCR$ in the DOS. The <data item name or
literal) is only utilized by CHAINPLS if it is being run in

2-12 CHAINPLS

i'compile-only" mode. The primary function of the STOP statement
is to facilitate program termination without the necessity of
creating specialized block exits to clear all declared blocks; no
checking is done to determine if the user has properly closed all
blocks.

2.3.21 The DISCARD Directive

The DISCARD directive is used to eliminate a previously used
data item from the symbol table. In addition, the memory areas
dedicated to it are released and become available for reuse by
other data item declarations. The format of the DISCARD directive
is:

II DISCARD <data item name>(,<data item name> ..• }

Any number of data item names may appear on the statement line.

2.3.22 The OPTIONS Directive

The OPTIONS directive is used 'during compi~ation to set or
reset certain display and print capabilities of CHAINPLS. Of the
possible execution options available to the user from the command
line, only the "Oil (display), 11:1" (input), "R" (replace), "0"
(outout), and "T" (debug) options may be used in the OPTIONS
statement. The format of the options statement is:

II OPTIONS <char data item or alpha literal>

The modified options aopear in a character string or Rn ~lpha

literal. If the option is to be set on, the character alone
appears; if the option is to be set off, the character is preceded
by a minus sign (-). For example:

II OPTIONS 'ID-OT"

will set the "D" option on, cance 1 the "0" option, and set the liT"
option on. The use of" a character variable is demonstrated as
follows:

I I ASSIGN OPZ="-I-TR'I
II OPTIONS OPZ

In this case, the "I" and IITII options are set off, and the IfRIi
option is set on.

CHAPTER 2. COMPILE PHASE DIRECTIVES OF CHAINPLS 2-13

2.3.23 The USERPROG Directive

The USERPROG directive is used to create new statement types
at user request. Basically, the USERPROG directive causes a
relocatable assembly language module to be dynamically loaded into
memory. The format of the USERPROG directive is:

II USERPROG <statement name>«library name>,<member name»

where the <library name> and <member name> are data item names or
literals.

The USERPROG directive will cause the <library name> to be
opened and searched for the <member name>. "The relocatable member
is then loaded into memory and the <statement name> is inserted
into the symbol table and marked as a directive. When a statement
is encountered which contains the <staternent name> as its
directive, control is passed to the relocatable subroutine. For
example. if the USERPROG statement were:

II USERPROG STARTIME(I'CHAINPLS/REL", "MODULE1")

the pro~ram "MODULE1" would be located in the Ii brary
"CHAINPLS/REL" Flnd loaded into memory. A symbol table entry for
the name "STARTIME" would be created and marked as though it were
a standard statement directive. The address of the processing
(parsing) routine for the statement would be set to the entry
point of "MODULE1". If a statement such as:

II STARTIME XTIMER

were encountered, then statement would be broken into symbols and
control would be passed to the relocatable subroutine "MODULE 1 I'.
further information on this feature can be found in the chapter on
"USER-WRITTEN SUBROUTINES".

2.3.24 The User File Input/Output Directives

CHAINPLS provides the ability for a user to read and write
text disk files during the execution of CHAINPLS. Any standard
TXT-format file can be read as input. The input files can be
space-compressed or non-space-compressed, record-compressed or
non-record comoressed. The output" files written by CHAINPLS are
record-compressed, non-soace-compressed text files.

2-14 CHAINPLS

2.3.24.1 The OPEN Directive

The OPEN directive is used to initialize the processing of
any input or output user files. The format of the OPEN directive
is:

II OPEN (data item name> (<data item name or literal>

The first <data item name> is the name of the data item to be used
by CHAINPLS as the internal name of the file. After the OPEN
statement is executed, this data item possesses a data type of
"file" (a sub-class of Boolean) and any previous value it may have
possessed is lost. This file data item name is used to reference
the file in READ, WRITE and CLOSE statements. If the file data
item is subsequentely used in an expression, it is interpreted as
a Boolean whose value is TRUE if the file is OPEN and FALSE if the
file is CLOSEd.

The (dat? item name or literal> enclosed in parentheses is
used as the name of the file to be opened. Thus, if a data item
is used, it must be a character string. The default extension is
ITXT unless a library member name is supplied in the data item
name or literal (see below). If a file of that name (on the
selected driv~, if specified) exists, it is opened, if not, a file
of that name is PREPared. The same OPEN directive is used for
both input and output files; subsequent use of the file determines
action to be taken at CLOSE time.

Library members can be OPEN'ed and read. It is only
necessary to include the member name in the (data item name or
literal>. Ir a member name is specified the file extension will
default to ILIB instead of ITXT. If the CHAINPLS input file is a
library member other members of that library may be OPEN'ed as
user files by having (data item name or literal> contain only the
member name (eg. ".MEMBER").

Great care should be taken to insure that a user file opened
to a library member is never used in a WRITE statememt. Any

- attempt to WRITE to a library member will destroy the library
structure leaving the file in a undetermined state.

CHAPTER 2. COMPILE PHASE DIRECTIVES OF CHAINPLS 2-15

2.3.24.2 The CLOSE Directive

The CLOSE directive is used to terminate processing of the
specified file. The format of the CLOSE directive is:

II CLOSE <file data item name>

The <file data item> must have been used in an OPEN statement or
an error will result. If any WRITE statements have been issued to
the file, a DOS-standard end-of-file mark will be written into the
proper sector of the file. Any subsequent use of the file data
item name in an expression will cause a value of Boolan FALSE to
be used.

2.3.24.3 The READ Directive

The READ directive is used to' bring data from an input file
into the value area of a character string data item for
processing. The format of the READ directive is:

II READ <file data item name>,<data item name>,<data item>, ...

The <file data item name> must have been used in a successful OPEN
statement. The data from the next sequential record in the file
becomes the value of the <d8ta item name>; this data item always
assumes a data type of CHARACTER after a READ operation. Th-e--
length of the data item value is set to the length of the record.
If the record is longer than 80 bytes, the following bytes in the
record will be stored in the Additional data items in the data
item list. If insufficient data items are listed to contain the
entire record, the remaining part of the record is discarded. If
too many data items are listed, their length is set to NULL.

At end-of-file on the input file, the variables in the list
are FALSE; that is, end-of-file may be detected by checking the
Boolean value of the first data item for FALSE. Any subsequent
attempts to read the file after end-of-file has been detected will
also return FALSE values.

2-16 CHAINPLS,

2.3.24.4 The WRITE Directive

The WRITE directive is used to place data from the v~lues of
various data items onto an output file. The format of the WRITE
directive is:

II WRITE <file data item name>.<data item name>.<d.i. nRme> ...

The <file data item name> must have been previously used in a
successful OPEN statement. There is no limit to the number of
<data item names> which may be included in a WRITE statement; in
fact, none are required (this would generate a null length
record). Character literals are also allowed in place of data
item names. The data items may be of any type and may be of NULL
(0) length. There is no limit to the size of the output record.
CRre must be taken when using NUMERIC or OCTAL data items in an
output record as the length of the values written out will deoend
on their current numeric size. The occurrence of a WRITE
directive to a file data item will cause an end-of-file to be
written to the proper sector at CLOSE time. Note that FALSe data
items are effectively ignored during WRITEs.

It may be useful to note that ·both READs and WRITEs may be
done to the same file. A file may be read to its current
end-of-file and have additional records appended to it by means of
WRITE statements. Care must be taken if this fe~ture is to be
used, however, since programs written in this manner are not
easily restarted.

2.3.24~5 The ENQUEUE Directive

The ENQUEUE and DEQUEUE directives are used under the
Attached Resource Computer (A.R.C.) system to allow exclusive use
of user files. The capabilities and limitations of the A.R.C.
"enqueue/dequeue" mechanism are fully discussed in the A.R.C.
User's Guide and should be carefully understood before using these
directives. The format of the ENQUEUE Directive is:

II ENQUEUE <num literal>,<file data item>,«f.d.i.>.~.)

The <numeric literal> is the "enqueue level ll for the request and
must be either a 2 or 3; if no <numeric literal> is specified, 3
will be used. Any <file d~ta :item> used in an ENQUEUE statement
must be currently OPEN. No more than 16 files may be included in a
single ENQUEUE statement.

CHAPTER 2. COMPILE PHASE DIRECTIVES OF CHAINPLS 2-11

2.3.24.6 The DEQUEUE Directive

The DEQUEUE directive is companion to the ENQUEUE directive
and is used to release resources obtain for exclusive use. The
format of the DEQUEUE directive is:

// DEQUEUE

The DEQUEUE directive will automatically release all file
previously ENQUEUEd. No harm can result from the use of a DEQUEUE
directive at any time, regardless of whether files have previously
been ENQUEUEd or not.

2.3.25 The Special Statement Directives

The special statement directives are designed to allow
commenting of CHAINPLS files, and to provide a means of creating
CHAIN and CHAINPLS files durin~ the execution of CHAINPLS in
compile only mode. These directives disable certain fuctions of
the CHAINPLS input scanner ~ausing data which would normally be
modified or interpreted as control statements to be ignored or
modified only sli~htly.

2.3.25.1 The Compile Phase Comment Directive

Any record beginn ing wi th a period (I •• ,,) is consi dered to be
a compile phase comment. If CHAINPLS is being run in compile-only
mode, these records are passed directly to the output file;
otherwise the are displayed on the system console and not passed
to the SYSJOB/SYS file. Any indicated replacements will be
performed on ~ comment line before it is written or displayed.

2.3.25.2 The Transparent Replacement Directive

The transparent replacement directive is designed to allow a
user to build normal CHAIN directives as output from CHAINPLS.
The format of the transparent replacement directive is:

//% <any statement)

The transparent replacement statement causes all data items
entered in the statement to be replaced by their associated
values, the 1.//%11 is replaced by the normal 11//11, but otherwise
the statement is not compiled, but passed to the output file.
Note that if CHAINPLS is not in compile only mode that when this

2-18 CHAINPLS

statement is encountered in the SYSJOB/SYS file it will cause an
error.

2.3.25.3 The Total Transparency Directive

The total transparency directive is used to force statements
to pass through CHAINPLS completely unmodified. The format of the
of the total transparency directive is:

//$ <any statement>

CHAINPLS will convert the "//$11 to ii//II but no other alterations
of any kind will be performed.

2.3.25.4 The Programmer Comment Directive

The programmer comment direc~ive allows the programmer of a
CHAINPLS file to comment the source code without affecting the
execution of the program. This directive is completely ignored
and is never printed or displayed during compilation or execution.
The format of the programmer comment directive is:

& <any statement or data>

2.4 The Pre-defined Data Items in CHAINPLS

In CHAINPLS, certain words are reserved for use by the
processing pro~ram and may not be redefined by the user. These
"keywords '• are generally used to indicate the status of the
machine at execution time. Some of the keywords return just a
Boolean value, and others return a Boolean and a data value.

CHAPTER 2. COMPILE PHASE DIRECTIVES OF CHAINPLS 2-19

KEYWORD BOOLEAN SECONDARY VALUE

none ARC
ARCDATE
ABTFLAG
ARCT1ME
BOOTDRV
CHAINACT

TRUE=ARC running
TRUE=ARC running
TRUE=ABTIF flag was on
TRUE=ARC running
always TRUE
TRUE=chainin~ already
active (recursion)
always TRUE

if TRUE, date as YY/MM/DD
at BOJ

CHNCMDFL

DOSLEVEL
DOSREV
DOSLETTR
FALSE
151800
156600
MEMSIZE

NO
NULL
OFF
ON
PRTAVAIL
PS
QQUOTE
SURO

always TRUE
always TRUE
always TRUE
always FALSE
TRUE=orocessor is 1800
TRUE=processor is 6600
always TRUE

always FALSE
always TRUE
always FALSE
always TRUE
TRUE=line printer avail
TRUE=PSrunning
always TRUE
TRUE=drive 0 on-line
TRUE=drive lon-line

- SUR31 defined identically)
always TRUE

SUR1
(SUR2
TRUE
VOLIDO
VOLID1
(VOLID~ -
YES

TRUE=drive 0 on-line
TRUE=drive 1 on-line

VOLID31 defined identically)
always TRUE

2.5 Special Replacement in CHAINPLS

if TRUE, time as HH:MM
numeric; DOS booted drive #

char. name of the chain
file being compiled.
numeric; usually 2
numeric; usually 4
char, DOS. letter
none
none
none
numeric; memory size in K
as returned by DOSFUN 10.
none
null character string
none
none
none
none
char = double Quote (I')
char=subdirectory name
char=subdirectory name

none
char=volume name if true
char=volume name if true

none

Thp. standard CHAIN replacement symbols #<data item nam;)# are
the primary means of data replacement in CHAINPLS. However, the
results of the replacement are dependent upon tbQ Boolean and
associated data types of the <data item name>. If the Boolean
value of a data item is FALSE, the replacement is NOT done. If
the Boolean value is TRUE but the data val~e is null, the ~ymbol
is replaced with a zero length string and disappears from the
statement. If the Boolean value is TRUE and the data value is not
null, the replacement ~ction taken depends upon the data type

2-20 CHAINPLS

associated with the data item.

If the data type is CHARACTER, the replacement is made by
inserting the ASCII characters of the current value of the
character string into the statement. If the data type is DECIMAL
or OCTAL, the internal binary value of the data item is converted
to ASCII decimal or octal representation. If the data item is
numeric and its value is less than zero, a minus sign (-) will
precede the digits of the value. The value type of an item is
changed only by use of the "ASSIGN A=B" form of the ASSIGN
statement.

Special prOVISIon has been made to allow any type of
insertion allowed by the program to be directed.

2.5.1 Decimal Replacement
t.

To force a symbol to be replaced by the decimal value of the
data item, the format is:

$<data item name>$

For example:
I

il ASSIGN A=0101
/ / ASSIGN B=A

would result in B having a boolean value of TRUE and a data value
of 65.

2.5.2 Octal Replacement

To force a symbol to be replaced by the octal value of the
data item, the format is:

%<data item name>%

For example:

II ASSIGN A=65
I I ASSIGN B=%A%

would result in B having a boolean value of TRUE and a data value
of 0101.

CHAPTER 2. COMPILE PHASE DIRECTIVES OF CHAINPLS 2-21

2.5.3 Character StrinR Replacement

To force a symbol to be replaced by the character value of
the data item, the format is:

@(data item name>@

If the data type of the variable is character this option
forces the exact first three bytes of a variable into the output
line. If the variable is NUMERIC, the exact binary values are
used. This can result in the insertion of unusable or
unrecognizable characters into an output stream. Consequently,
this option should not normally be used except when such binary
output is desired.

For example:

II ASSIGN N=65
II ASSIGN B="@N@if

would result in B having a boolean value of TRUE and a data type
of char and value of "A".

2-22 CHAINPLS

CHAPTER 3. EXECUTION PHASE DIRECTIVES OF CHAINPLS

The execution phase directives are statements which are
processed by CHAINPLS and passed directly to the output file. They
take effect only during actual execution of the command statements
from a SYSJOB/SYS file. They are allowed only between program
executions (job steps).

3.1 Execution Phase Comment Directive

The format of the execution phase comment is:

II. <any comment)

This statement, when encountered in the SYSJOB/SYS file, will
be displayed exactly as written onto the system console.
Execution will continue without pause.

3.2 Operator Pause Directive

The format of the operator pause directive is:

11* <any comment)

This statement, when encountered in the SYSJOB/SYS file, will
be displayed as is on the system console. Processing will then be
suspended pending the depressin~ of the display key by the system
operator.

3.3 Conditional Abort Directive

The format of the conditional abort directive is:

II ABTIF <string)

This st~tement, when encountered in the SYSJOB/SYS file, will
test the "abort'· bit in the DOS system flag byte. If .the bit is
on, the entire execution will terminate with an error message.
Most Datapoint software will set the "abort" bit on if serious
errors were encountered durini their execution. The user should
utilize the DOS "ABTONOFF" utility to guarantee the status of the
abort bit to avoid spurious errors.

CHAPTER 3. EXECUTION PHASE DIRECTIVES OF CHAINPLS 3-1

The string can be any sequence of characters. It is treated
as a comment by CHAINPLS. However, it must not contain any
CHAINPLS reserved words.

3.4 LOR Suspension Directive

The format of the log suspension directive is:

II LOGOFF

This statement will suspend logging until a log restart
directive is encountered. This allows a user to selectively log
only parts of a CHAINPLS execution. This feature can be useful
when running utilites which display large amounts of non-critical
data or which are virtually always error-free.

This statement has no effect if logging is not active or has
already been suspended.

3.5 Log Restart Directive

The format of the log restart directive is:

II LOGON

This statement will restart logging after a temporary
suspension. It has no effect if logging is not active or has not
been suspended.

3.6 DatelTime Stamp Directive

The formAt for the dateltime stamp directive is:

II STAMP

-The dateltime stamp directive is used to display the current
c~lendar date and time on the system console. It has no effect if
the Attached Resource Computer system is not being used or if no
file Processor possesses an available ARCCLOCK/TXT file. The
message displayed on the console screen appears as:

STAMP: yy/mm/dd hh:mm

for example:

3-2 CHAINPLS

STAMP: 79/03/21 10:04

is March 21, 1979, 10:04 AM. If logging is active, the date/time
stamp record will be written to the system log file.

3.7 The Operator SIGNAL Directive

The format of the operator signal directive is:

II SIGNAL <noise time> <wait time> <noise time> <wait time> ...

The SIGNAL directive causes the processor click to sound rapidly,
producing a distinctive tone. The numbers which occur in the
statement are considered in pairs: the first number specifies the
number of seconds to produce the noise, the second number
specifies the number of seconds of silence. For example:

/1 SIGNAL 5 30 10 30 1 1 1 1

will produce th~ following:

5 seconds of noise
30 seconds of silence
10 seconds of noise
30 seconds of silence
1 second of noise
1 second of silence
1 second of noise
1 second of silence

The use of the keyboard or display keys on the processor will
cause the execution of the SIGNAL statement to terminate following
the current time segment. Note that any nonnumeric data beyond
the keyword SIGNAL is ignored.

CHAPTER 3. EXECUTION PHASE DIRECTIVES OF CHAINPLS 3-3

CHAPTER 4. BASIC USAGE

4.1 Symbol Replacement

It is often necessary to execute a particular set of programs
with only minor modifications from execution to execution. As
with CHAIN, CHAINPLS may be used to specify such variables as date
and time of execution or print disposition in a single keyin line.
For example, consider this "compile-only" CHAINPLS command line:

CHAINPLS INCHAIN,OUTCHAIN;OPTIONS=C,DATE=25FEB78,TIME=20:23

This command will cause CHAINPLS to read a file called INCHAIN/TXT
and create a file call OUTCHAIN/CHN. If INCHAIN/TXT consisted of
these lines:

DBCMP TESTPROG;C
TEST PROGRAM COMPILATION #OATE# #TIMER

the output file OUTCHAIN/CHN would appear as follows:

DBCMP TESTPROG;C
TEST PROGRAM COMPILATION 25FEB78 20:23

When OUTCHAIN/CHN is CHAINed, the resulting compiler listing
will have the correct date on the heading.

If a data item is specified on the command line but no value
is assigned to it, all references to the item disappear from the
generated output. For example, if the command line in the example
above had been:

CHAINPLSINCHAIN,OUTCHAIN;OP=C,OATE=25FEB78,TIME=20:23.PRINT

and the file INCHAIN/TXT had appeared as:

DBCMP TESTPROG;#PRINTH
TEST PROGRAM COMPILATION #OATE# HIIME#

the output file would appear:

DBCMP TESTPROG;
TEST PROGRAM COMPILATION 25FEB78 20:23

CHAPTER 4. BASIC USAGE 4-1

In other words, the data item would have been replaced with
nothing.

4.2 Statement Selection

4.2.1 The IF/ELSE/XIF Statement

CHAINPLS also allows a user to determine if a data item was
specified on the command line and include or exclude statements
from the output file based on the result. The primary means of
selecting statements to be included is the IF statem~nt. Consider
the:command line:

CHAINPLS INFILE,OUTFILE;OP=C,DAILY

The IF statement could be used as follows:

II IF DAILY
st~tement

statement
II ELSE
statement
statement
II XIF

(if DAILY is TRUE)
(statments to be included if DAILY)

(otherwise, if DAILY is FALSE)
(statements to be included if not DAILY)

(end of conditional selection)

If statements may be used inside the range of other IF
statments to further control the selection of lines for the output
file.

4.2.2 The WHILE Statement

The WHILE statement is similar to the IF statement in that ~
conditional expression controls inclusion of a set of statements;
however the WHILE statement allows for a set of statements to be
included repeatedly as long as the control expression is TRUE.
For example, if the command line entered were:

CHAINPLS INFILE,OUTFILE;OP=C,DAY=12

4-2 CHAINPLS

and the input file were:

II WHILE DAY> 5
LISTING ~OR DAY HDAYH
II ASSIGN DAY=DAY-1
II END

the output file would be:

LISTING FOR DAY 12
LISTING FOR DAY 1 1
LISTING fOR DAY 10
LISTING FOR DAY 9
LISTING FOR DAY 8
LISTING FOR DAY 7
LISTING leOR DAY 6

(statment to evaluate each time)
(statements included)
(assign a new value to DAY)
(end of group; go back to II WHILE)

In other words, CHAINPLS will go back to the WHILE statement and
re-evaluate it over and over again until it is FALSE. Any
statements within the WHILE block will be included as many times
as the statement is evaluated and found to be TRUE. The use of
WHILE should be carefully tested. An erroneous WHILE statement
could be evaluated as always TRUE and thus cause an infinite loop.

4.2.3 The DO Statement

The DO and UNTIL statements are very similar to the WHILE and
END statements. The basic difference is that the DO loop is always
executed at least once. If this condition is fulfilled, the
DOIUNTIL syntax is generally faster than WHILEIEND due to the fact
that exit is made from the bottom of the loop; that is, when a
WHILE statement is found to be false all statements up to and
including the END must be read by CHAINPLS but are effectively
ignored.

For example, consider a KEYIN loop to enter a valid option:

II ASSIGN GOODIE=""
II DO
II KEYIN "Enter I,N,X,Z for run option: " GOODIE
I I U N TIL (. GOO DIE = 1) & (" r"N X Z II [GOO DIE)

The UNTIL expression says "repeat the loop until the length of
GOODIE is 1 byte and GOODIE is an "1", "N", "X", or liZ". If the
key operator enters a null string, the test will fail and reentry
will be requested; too long a string will cause the same action.

CHAPTER 4. BASIC USAGE 4-3

This is a simple yet powerful method for data entry control.

4.3 Data Item Value Alteration

4.3.1 The ASSIGN Statement

Since a data item in CHAINPLS has both a Boolean and an
associated data value, two statements are used to control these
values: a SET statement for the Boolean value and an ASSIGN
statement for the data value. For example, consider the following
command line:

CHAINPLS INFILE;DAILY

If the file INFILE were to contain:

/1 IF DAILY .
/ I ASSIGN P RNTOPT=" ; L"
II ELSE
I I ASSIGN PRNTOPT="; Pl'
II Xlf

(if DAILY is true)
(assign a literal to PRNTOPT)
(otherwise)
(assign different value to PRNTOPT)

Notice that any data item that is used as the receIvIng field of
an ASSIGNment statement is automatically set to TRUE; its value,
however, may be NULL.

The expressions used in an ASSIGN statement can be very
complex. For example, consider these statements:

II ASSIGN NUM1=350
II ASSIGN NUM2=600
II ASSIGN RESULT= (NUM2-NUM1)*3

The result of these statements would be to assign the value of 750
to RESULT .. Any type of operator can be used in an ASSIGNment
statement, but care must be taken that the results of the
operation are understood by the user.

4-4 CHAINPLS

4.3.2 The SET Statement

The SET statement is used to control the Boolean value of a
data item. Any data item that is used as the receiving field in a
set tatement has its associated value set to nUll. It is
impo~tant " Of the Boolean value of a dati item is
FALSE, no replacement will be done on any occurrences of that data
item in an input line.

Consider the following example:

II SET RESULT=DAILY : WEEKLY

If either DAILY or WEEKLY were TRUE, RESULT would be .set to TRUE;
otherwise RESULT would be set to FALSE.

Very complex logical statements can be used in a SET
statement, but, again, a user must be careful to understand the
results of ,the use of a particular operator. For example, the
statement:

II SET RESULT= (DAILY : WEEKLY) & PRINT

RESULT would be SET to TRUE if either DAILY or WEEKLY are TRUE and
PRINT is TRUE. RESULT would be SET to FALSE if PRINT were FALSE
regardless of the ~alues of DAILY and WEEKLY. Note again thAt any
expression which 6an be used in a SET statement is valid in an IF
or WHILE statement.

Note that the spaces shown in the example expressions are not
required and are for readability only.

4.4 Basic Usa~e Example

A common problem with CHAIN files is that the user cannot
guarantee that a certain data item was assigned a resonable value.
Another problem is that often a user may want to default the value

. ot" a data item that is not entered in the command line because the
item will nearly always have the same value. In the following
example, the DRIVE number cannot be greater than four (4) and the
LIST option will be defaulted to if PRINT or LIST is not
specified.

II IF - DRIVE (if DRIVE is FALSE)
.DRIVE MUST BE SPECIFIED (display a comment)
II ABORT (ABORT the run)
II XIF (end the IF)

CHAPTER 4. BASIC USAGE 4-5

I I IF' DRIVE>4
.DRIVE MUST NOT BE > 4
II ABORT
II XIF
II IF -(PRINT: LIST)
II SET LIST=TRUE
II XIF

(if DRIVE was greater than 4)
(display a comment)
(ABORT the run)
(end the IF)
(if PRINT and LIST are FALSE)
(default to LIST option)
(end the IF)

.... statements to be included in output file

4-6 CHAINPLS

CHAPTER 5. INTERACTIVE USAGE

5.1 The Use of KEYIN with WHILE and DO

A major problem assoicated with CHAIN files is the inability
to correct simple errors in keying the instructions to the CHAIN
utility. The only facility possessed by CHAIN is the ABORT
statement which forces the user to restart all CHAIN activity. In
CHAINPLS, the KEYIN statement can be used to interact with the
user to correct errors. In fact, CHAINPLS files can be written in
such a manner that they need no command line specifications at
all; questions are asked by KEYIN statements, the answers are
validated, and the execution continues.

A major tool in validation of KEYIN responses is the WHILE
statement. The basic approach is to enclose a KEYIN statement in
a WHILE block and not discontinue execution of the block (set the
expression to FALSE) until a correct answer has been given to the
question. A data item is declared and SET to fALSE; a correct
entry to the KEYIN statement causes the data item to be SET to
TRUE. For example:

II SET VALID=FALSE (declare a FALSE data item)
II WHILE - VALID (do until VALID is TRUE)
II KEYIN "ENTER PRINTOUT OPTIONS: \I POPTION

(display message and ask for a response)
II IF (POPTION=IILIST") : (POPTION="PRINT")

(if the keyin was IILIST" or i. PRINT")
II SET VALID=TRUE (set VALID to TRUE)
II XIF
II END (qO back and see if VALID is TRUE)

In this example, the question "ENTER PRINTOUT OPTIONS:" would
~ppear repeatedly until the console operator had entered either
"LIST" or "PRINT"; at that time the execution would continue wi th
the statement beyond the "II END".

CHAPTER 5. . INTERACTIVE USAGE 5-1

5.2 Displayin~ Data Items With KEYIN

Any data item may be displayed with the KEYIN statement by
including the item as a replacement item within a literal. For
example:

I I KEYIN "DATE IS IIDATEII. CORRECT? If YESNO

If DATE was entered on the command line as "03/17/79 11
, the line

would appear on the display screen as:

DATE IS 03/17/79. CORRECT?

Note that the KEYIN statement may be composed of all literals; no
responses are necessary to a KEYIN statement that does not contain
data item names. Consider the following example:

I I IF .- D ATE (i fDA T E was not s pee i fie d)
II KEYIN "DATE NOT SPECIFIED. ENTER DATE: " DATE

(ask the operntor for the date)
II XIF
II SET DATEOK=FALSE
II WHILE - DATEOK (while DATEOK is FALSE)
I I KEYIN "DATE IS IIDATEII. CORRECT? II YESNO

(ask the operator if DATE correct)
II IF (YESNO='IYII):(YESNO="YESiI)

(if the response was ,'y.' or "YES")
II SET DATEOK=TRUE (date is correct)
II ELSE (they want to correct the date)
I I KEYIN "ENTER CORRECT DATE: I' DATE

(re-enter the date)
II XIF
II END (back to the WHILE if DATEOK FALSE)
I I KEYIN lITHE DATE IS IIDATEII"

Note that in the final KEYIN statement, there are no data items
specified. This KEYIN will merely display the entered and
approved date on the console.

Many more sophisticated routines could be desiRned, including
such things as table validation of options, ~Ihelpll options to tell
the opprator of possible choices, conversion of dates and times
from one forrnnt to another, and so. on. A good ~eneral approach
would be to design the CHAINPLS file to run without any operator
intervention if the necessary options are specified on the command
line and to ask for options if not. This allows the more
sophisticated user to completely specify a CHAINPLS execution,
while a novice can still correctly run the file and be informed of

5-2 CHAINPLS

all options and have all responses validated.

The DO statement can be used in place of the WHILE statement
in most applications. Refer to the example in the chapter on
BASIC USAGE.

CHAPTER 5. INTERACTIVE USAGE 5-3

CHAPTER 6. CHARACTER STRING MANIPULATION

6.1 The Basic Operations

CHAINPLS allows various types of expressions: logical,
arithmetic, and character string. To most users, the character
string operations will be the most unfamiliar, and yet, after
exposure, could prove to be the most useful.

The basic char~cter string operations are concatenation ~nd
sub-stringing. Concatenation merely means appending one character
string onto the end of 8nother to create a new character string.
Sub-stringing is the extraction of part of an existing ch~racter
string to create a new string.

6.1.1 Concatenation

The form of the concatenation operation is

<input string 1> \\ <input string 2>

The output of this ooeration is a string consisting of <input
string 1> followed by <input string 2>. Consider the following
example of concatenation:

I I ASSIGN CHAR 1 = tlTODAY IS II

II ASSIGN CHAR2=,IFEBRUARY 28, 1979"
II ASSIGN NEWDATE= CHAR1 \\ CHAR2

The result string NEWDATE would be:

TODAY IS FEBRUARY 28, 1979

6.1.2 Sub-stringin~

CHAPTER 6. CHARACTER STRING MANIPULATION 6-1

6.1.2.1 Definition of Sub-stringing

The sub-string operation is, in a way, the reverse of the
concatenation operation. Instead of combining two strings, a
niece of an existing string becomes a new string. The simple form
of a sub-string operation is:

<old string) ~ <control expression)

6.1.2.2 Simple Sub-stringin~

If the <control expression) is a single number, that number
is used as an index into the <old string) and the pointed
character is extracted from the old string. For example:

II ASSIGN OPTION="LBFTQP"
II ASSIGN CHOICE= OPTION ~ 3

The result string CH0ICE would be the single letter "F'!.

6.1.2.3 Sub-string Control Expressions

The more general form of the sub-string operation allows for
specification of the length of the result string. This form is:

<old string) ,. <start expression) : <length expression))

The result of this type of sub-string operation is the string of
characters in the <old string) starting with the character pointed
to by the <start expression) and continuing for <l~ngth
expression) characters. For example:

II ASSIGN MONTHS=IIJANFEBMARAPRMAYJUNJULAUGSEpll
II ASSIGN THISMON = MONTHS ~ (7:3)

The value of THISMON after the operation would be ilMAR"; that is,
starting with the seventh character and taking three. Note that
the items used in ~ sub-string operation can be expressions. For
example, here is a conversion routine from st~ndard "mm/dd/yy"
format to the format required by the MOUT utility:

II ASSIGN TODAY="10/17/78"
II ASSIGN MONTHS=IIJANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"
II ASSIGN MM=TODAY~(1:2)

II ASSIGN NUMMON=#MMU
II ASSIGN ALPHMON=MONTHS~(NUMMON*3-2 3)

6-2 CHAINPLS

II ASSIGN MOUTDATE=(TODAY-(4:2») \\ ALPHMON \\ (TODAY~(7:2»

In the third line of the example above, the value· il10l' is assigned
to the data item MM. In the fourth line, the v81ue of MM is
substituted into the line so that a numeric variable containing a
value of 10 is created. In the fifth line, the value of NUMMON
(now = 10) is used as part of an arithmetic express~on which
computes the starting address of the substring operation. The
result of the sub-string operation is the value 'IOCT", which is
the alphabetic equivalent of the 10th month. In the sixth line of
the example the day of the month is extracted from TODAY, the
ALPHMON is appended onto the b8ck of the day of the month, and the
year is extracted from TODAY and appended onto the previous
result. Thp, value assigned to MOUTDATE would be "170CT78".

6.1.2.4 Circularization of Strin~s

Character strings in CHAINPLS are considered to be
"circular"; that is, the last character of the string is
considered to be logically adjacent to the first character of the
string. If a "length expression io greater than the length of the
string is specified in a control expression, the string characters
~re repeated until the desired length is satisfied. For example:

I I ASSIGN ONETEN="12345267890"
II ASSIGN fIfTEEN=ONETEN~(1:15)

The resulting data item FIFTEEN would have a value of
"123456789012345".

6.1.2.5 Negative Numbers in Sub-stringin~

In the above description of a substring "control expression!!,
only positive numbers are used as "start expressions" and "length
expressions". CHAINPLS also allows these values to be negati ve
(i.e., less than zero) and assigns a special meaning to such
values.

In CHAINPLS, the last character of a string is considered to
be position "-111. By this example, the next to the last position
would be "-2". Usin~ the data item ONETEN defined in the above
example:

II ASSIGN ENDTEN=ONETEN-(-3:3)

The result field ENDTEN would have a value of "890", since "-3 11

CHAPTER 6. CHARACTER STRING MANIPULATION 6-3

implies starting the operation with the third character from the
end of the string.

If negative numbers are used in the len~th expression, they
are interpreted as meaninp; a libackwards" direction for the
sub-string operation. For example:

II ASSIGN ENDBACK=ONETEN~(-3:-3)

The result would be 1'876". This facility allows strings to be
inverted easily.

Note that sub-stringing in either the forward (positive
length) direction or backward (negative length) direction which
p~sses the end or the beginning of the string merely causes the
operation to continue at the opposite end of the string. For
example:

II ASSIGN DUMMY:ONETEN~(-3:-15)

The result field DUMMY will have a value of 1'876543210987654".
This result starts at the third character from the end of the
field and continues backwards until 15 characters have be
extracted.

6.2 The More Complex Operations

6.2.1 The "Length OC" Function

It is often important in character string manipulation to
know the length of a string. This is especially useful in
sub-stringing when the output strinR is to be the lenRth of the
input string starting at some intermediate position through the
rest of the string. The "length of" function always returns a
numeric value equal to the length of the string. for example:

I I ASSIGN NUMBERS:" 1234567890 "
II ASSIGN LENGTH= .NUMBERS

The value of LENGTH after the second ASSIGN statement is 10. The
'Ilength of " function can be used to obtain the length of character
string expressions also. For example:

II ASSIGN LENGTH= .(NUMBERS \\ NUMBERS)

6-4 CHAINPLS

The value of LENGTH after the above statement would be 20, since
it represents the length of NUMBERS concatenated with itself~
Note that the value of NUMBERS is NOT changed by this statement.

6.2.2 The Pattern Match Operation

The "pottern match il operation finds the first location (if
any) of a small string in a large one. The general form of the
"pattern match" operation is:

<operdnd string) [<search string)

If the <search string) is found in the <operand string) the value
of the pattern match expression is the location (relative to 1) of
the search string in the operand string. If the search string is
not found in the operand string the result of the expression is
zero. Additionally, if the pattern match operation is used as a
Boolean (only for TRUEIFALSE purposes), the expression will be
TRUE if the search string is found, and FALSE if it is not. For
example:

I I ASSIGN TABLE="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC,I
I I ASSIGN MONTH= II AUG"
II SET FOUND= TABLE [MONTH
II ASSIGN POSITION= TABLE [MONTH

The data item FOUND will be SET to TRUE, and POSITION will be
ASSIGNed the value 21. If MONTH had not been found in TABLE,
FOUND would have been false and POSITION would have been zero.

The "pAttern match" operation is so named because it cc=m also
be used to find a particular pattern of characters in an ooerand
string. The special character "?" is used as a "don It Cdre 'l

character; that is, all characters will always compare as eQlldl to
Ii?" during a pattern match scan. For example:

I I ASSIGN TABLE=IIA32ZBOOMC256D77PE999 ,1

II ASSIGN POSITION= TABLE ["B??M"

The value of POSITION after the ASSIGN statement would be 5. The
pattern match instruction can be used to search tables and extract
values. For example:

I I ASS I G N V A LID 1-1 0 N = " 0 1 JAN 02 F E 803M A R 0 4 APR 0 5 MAY 06 J UN II

I I ASSIGN DATE="041 17/78.1

II ASSIGN MONTH= DATE ~ (1:2)
II ASSIGN POSITION= VALIDMON [MONTH

CHAPTER 6. CHARACTER STRING MANIPULATION 6-5

II ASSIGN ALPHMON= VALIDMON~(POSITION+2:3)

The routine first extracts the sub-string MONTH from the string
DATE. Then the position of MONTH in VALIDMON is found. Then that
position is used to extract the sub-string from VALIDMON
containing the alphabetic name of the current month. Note that
since character string expressions are allowed, the above example
could have been coded as:

I I ASSIGN VALIDMON="01JAN02FEB03MAR04APR05MAY06JUNI'
II ASSIGN DATE=I'04/17/78"
II ASSIGN ALPHMON= VALIDMON~«VALIDMON [(DATE~(1:2»)+2:3)

It is easy to see that character string expressions can get very
complex and unreadable. There is also the danger that, for
p-xample, the first two char~cters of the string DATE will not be
found in VALIDMON and the resulting answer to the expression would
be meaningless.

6.2.3 The Scan Operation

The scan operation is used to find the first occurrence in 8n
opp-rand string of ANY of the characters in a search string. The
general form of the scan operation is:

<operand string) [[<search strin~)

The result of the scan operation is similar to the pattern match
oper~tion: if the scan is successful the result is TRUE and equal
to the position of the first matching character; if unsuccessful,
it is FALSE 8nd will be interpreted as zero. For example:

II ASSIGN FILESPEC="WORKFILE/TXT:DR5"
I I ASSIGN POSITION= FILESPEC [[II I: "
II ASSIGN fILENAME= FILESPEC ~ (l:(POSITION-l»

The second ASSIGN statement in the example will return the numeric
position of the first slash (I), colon (:), or blank in the string
FILESPEC. The third ASSIGN statement creates a new string
cont~ining all the characters in FILESPEC up to but not including
the slash (I).

6-6 CHAINPLS

6.2.4 The Scan Unequal Operation

The scan unequal operation is very similar to the scan
operation with the exception that the scan unequal is used to find
the first occurrence in an operand string of any character that is
not in the search string. The general form of the scan unequal
operation is:

<operand strin~> -[[<search string)

The value returned by the scan unequal operation is the position
in the operand string of the first character which does not match
any of the characters in the search string.

6.2.5 The Strin~ Replace Operation

The string replace operation allows selected characters in 8

string to be replaced by other characters. The general format of
the string replace operation is:

(operand string) \ (replacement string)

The value returned by the string replace operation is a character
string whose length is the same as the operand string; its
contents are the same as the operand string except for those
characters whose replacements occur in the replacement strinR.

The replacement string is interpreted as a (possibly null)
series of character pairs. The first character of each pair
specifies the character to be replaced; the second specifies the
character to be inserted into its place. For example:

II ASSIGN REPL="OA1B2C"

I I ASSIGN SOURCE="Q 123456189"

II ASSIGN RESULT=SOURCE \ REPL

The string RESULT would contain "ABC3456189". This feature can be
useful in eliminating such problem characters as double quotes (II)
from kevin input:

I I ASSIGN fIXER=QQUOTE \ \ "1,1

II KEYIN "Enter error response:" RESPONSE

II ASSIGN RESPONSE= RESPONSE \ FIXER

CHAPTER 6. CHARACTER STRING MANIPULATION 6-7

The string FIXER is created containing a double quote and a single
quote; this string is then used to replace any double quotes in
the RESPONSE string with single quotes.

6-8 CHAINPLS

CHAPTER 7. COMPLEX EXPRESSIONS

In CHAINPLS, the basic operation types can be intermixed in
almost any manner to produce results desired by the user. In some
cases, certain defaults must be assumed and definitions used that
may cause confusion if not clearly understood. There are many
adavantages, however, in the use of mixed expressions.

1.1 Expression Evaluation

CHAINPLS does not use operator precedence; that is, no
operation is always performed before any other. If the user
desires that operations be performed in a particular manner,
parentheses can be used to any depth to indicate the order
desired. The expression evaluation takes place from left to
right. For example:

II ASSIGN RESULT=ADD1+ADD2 wMULT1

The expression evaluation would take place as follows: ADDl would
be added to ADD2 and the result would be multiplied by MULT1.
Parentheses could be used to force normal FORTRAN-type evaluation:

II ASSIGN RESULT= ADD1+(ADD2*MULT1)

1.2 Intermediate Results of Expressions

In the evaluAtion of any expression more complex than IIA=B"
it becomes necessary to execute the requested operations in a
step-by-step manner. This meAns that intermediate results are
created at one level of evaluation, utilized at the next, and
discarded. These intermediate results can safely be i~nored if
the expression being evalu8ted consists completely of the same
class of operators; in hybrid expressions, however, it is
important to note the class and use of these intermediate results.

CHAPTER 7. COMPLEX EXPRESSIONS 7-1

1.2.1 Boolean Used as Arithmetic

The basic operation types are Boolean, arithmetic, and
character string. All of the arithmetic and binary operators
generate an arithmetic result. The logical operators generate
Boolean results, that is, the result of the evaluation of a
lo~ical operation is always either TRUE or FALSE. The character
string operations generate either character results, arithmetic
results, or Boolean results, depending upon the particular
operation. If an arithmetic operation is performed upon a Boolean
value or result, the Boolean is interpreted as being zero if FALSE
and one if TRUE. for example:

II ASSIGN FIVE=5
II ASSIGN THREE=3
II ASSIGN ANSWER1=(FIVE>THREE)w6+9
II ASSIGN ANSWER2=(fIVE<THREE)w6+9

The result of evaluating 'lfIVE>THREE" is a Boolean value of TRUE.
In the subsequent muitiplication, the value one (1) is used as the
Arithmetic equivalent of TRUE; the result of the expression is 15.
The evaluation of "FIVE<THREE" results in FALSE, and the value
zero (0) is used as its arithmetic equivalent. The value assigned
to ANSWER2 is 9.

If a number or intermediate arithmetic result is used in a
Boolean expression, the result is always TRUE. For example:

II WHILE 7

This expression is equivalent to "WHILE TRUE" and thus will be
executed indefinitely.

7.2.2 Numeric Results from Character Operations

In character string manipulation, it is common for results of
intermediate evaluations to vary between arithmetic and character
type at different stages in the evaluation. Here is a list of the
ch8racter string operators and the types of results they produce:

7-2 CHAINPLS

\\

.
[

[[

- [[

\

concatenation; character string
sub-string; character string
sub-string control; numeric
string length function; numeric
pattern match; numeric

(also FALSE/TRUE if used as Boolean)
string scan; numeric

(also FALSE/TRUE if used as Boolean)
string scan unequal; numeric

(also FALSE/TRUE if used as Boolean)
string replacement; character string

It is common in table-type manipulation to match a small
string to a large one and use the position of the small string in
the large one as part of a sub-string control expression.
Consider the example given in the chapter on character strin~
manipulation: .

1/ ASSIGN VALIDMON= /I 0 1 J AN02fEB03MAR04APR05MAY06JUN "
// ASSIGN DATE= ,i 04/17/78"
1/ ASSIGN ALPHMON= VALIDMO~-«VALIDMON [(DATE-(1:2»)+2:3)

The innermost expression in the above statement is the "(1:2)"
sub-string control expression. The order of evaluation of this
statement is:

(1 : 2)
DATE"Nl
VALIDMON [Cl
N2+2
(N3:3)
VALIDMON-N4
ASSIGN ALPHMON=C2

creates arithmetic result Nl
creates character result Cl
creates arithmetic result N2
cre8tes arithmetic result N3
creates arithmetic result N4
creates character result C2
transfers C2 to ALPHMON

7.2.3 Character Results Used in Numeric Operations

If a character result is used in an arithmetic operation, the
binary value of the first three characters (right-justified) of
the character string are used as the arithmetic value. Obviously,
this could lead to unpredictable results and is not advised.

CHAPTER 7. COMPLEX EXPRESSIONS 7-3

1.2.4 Numeric Values Used in Character Operations

If a data item with a data type of NUMERIC or OCTAL is used
in a character string operation, the value is first converted by
type into a character string. For example:

II ASSIGN NUM1=230
II ASSIGN OCT1=0377
II ASSIGN CHARESLT=NUM1\\OCTl

The value assigned to CHARESLT would be "2300377 1i
, which is the

result of concatenation of the character equivalents of NUM1 and
OCT 1 .

Intermediate arithmetic results can also be used in character
string operations. Since all intermediate arithmetic results are
implicitly considered to be NUMERIC (i.e., decimal), the
intermediate result is converted into a character string and
utilized in the operation. Consider:

II ASSIGN CHARESLT= "VALUE:"\\(150/5)

The value Assigned to CHARESLT would be "VALUE: 30". Note that
without the parentheses the result of the expression would be
meaningless, since th~ character string result of concatenatin~
"VALUE: II with" 150" would then be divided by 5, rp.sulting in
gClrbage.

1.3 Comparison Evaluation

In any comparison, an ex~mination of the operands in the
comparison is made and adjustments are made for value type. If
both of the operands in a comparison are of type NUMERIC or OCTAL,
a comparison the binary equivalent of their values is made. If
either of the operands are of type character, the NUMERIC or OCTAL
operands are converted to character strings and the comparisons
are made on a character-by-character basis. For example:

II ASSIGN NUM1=255
II ASSIGN OCT1=0311
II SET VALUE1= (NUM1=OCT1)
II SET VALUE2= (NUM1\\" II) = ~OCT1\\1I If)

In the first SET statement above, the binary equivalents of 255
and 0371 are equal and therefore VALUE1 would be SET to TRUE. In
the second SET statement a space (II II) is concatenated on the end
of the values NUM1 and OCT1. This forces them to be converted to

1-4 CHAINPLS

character strings and the comparison is made on the resulting
intermediate character string values; the results of comparing
11255 II to "0377 ., is that they are not equal, thus VALUE2 is SET
to FALSE.

In general, if a value is a pure Boolean it is of type
CHARACTER with an associated value of NULL. This is not always
true, consequently doing comparisons on pure Booleans or
intermediate Boolean evaluations may generate unpredictable
results.

In comparing strings, CHAINPLS does a left-to-right character
match. If one string is shorter than another, the shorter is
padded with trailing spaces. A null (zero length) string is
considered to be iiless" than anything but another null string; in
such cases they are considered equal.

1.4 Array Simulation and Processing

One of the more esoteric features of CHAINPLS is the ability
to create dynamic variable names. This is done by doing string
replacement in the middle of a data item name. for eX8.mple:

II ASSIGN INDEX=1
II ASSIGN LIMIT=10
II DO
II ASSIGN VARliINDEX#='I,'
II ASSIGN INDEX=INDEX+1
II UNTIL INDEX>LIMIT

The Above example creates a series of 10 variables named "VAR1"
through "VAR10". The fourth line of the eXCImple forces the value
for the s yrn b 0 1 I. I N D EX if tab e ins e r ted in tot h eli n e ins u c h man n e r
that the value of INDEX becomes part of the data item name. This
causes no problem since CHAINPLS always does symbol replacement
prior to line scanning and parsing.

Considering the Clbove example, it is easy to see that INDEX
is being used in the same manner as a subscript would be used in
FORTRAN or COBOL. The fact that the data items thus created are
not really part of the same data structure is not really CI
limitation, since this would only affect the ability to move the
entire arrClY by referencing a sinRle name. Double subscripting
could be done similarly. For. example:

II ASSIGN SUB1=1
II DO

CHAPTER 7. COMPLEX EXPRESSIONS 1-5

II ASSIGN SUB2=1
II DO
I I ASSIGN VARflSUB11IXIISUB211="data for variable li

II ASSIGN SUB2=SUB2+1
II UNTIL SUB2)10
II ASSIGN SUB1=SUB1+1
II UNTIL SUB1)10

This example creates a 10 by 10 array of items named "VAR2X4 11
,

"VAR10X5", etc.

7.5 Multiple Replacement

CHAINPLS allows the user to perform multiple "recursive"
replacement into statements. This allows the user to fully
utilize arrays and other associated data items. Consider the data
items IIVAR1" through "VAR10 j

, created in the first array example
abo ve:

II ASSIGN INDEX;l
II ASSIGN LIM=10
II DO
KILL UVARUINDEXU#
y
II ASSIGN INDEX=INDEX+l
II UNTIL INDEX)LIM

The "KILL" command issued Flbove will be processed twice by the
replacement routine. CHAINPLS will note the "#VAR#" name, but
will be unable to find such an item in the symbol table. The next
item found is "#INDEX/I", which does exist. The line would then
read, for example, "KILL IIVAR3#". Another iteration of the
replacement routine causes the value of "'VAR3 I

, to be inserted into
the line.

1-6 CHAINPLS

CHAPTER 8. DISPLAY AND PRINT OPTIONS

8.1 The General Format

If the liD" option is specified on the command line, the
CHAINPLS display driver is enabled; if the I,P", "Li., or liS"
options are specified, the proper printer driver is enabled. All
data lines displayed or printed by the display and print drivers
of CHAINPLS are formatted in a similar manner. Each line begins
with a single character identifying the line type followed by a
colon (:) or an asterisk (*). The asterisk implies that the block
in which the statement is contained was actually interpreted by
CHAINPLS; if the asterisk is absent, the block was bypassed due to
an evaluated expression on an IF or WHILE statement being FALSE.
The line identifiers are:

I: input line as read from input file
R: input line after symbol replacement
0: output line written to output file
K: line displayed from KEYIN statement
D: line displayed from DEBUG statement
E: error message (always double spaced)

These same line identifiers appear on any requested printer output
along with a run-time trace data.

I f the display dri ver is not enabled (.1 Dil option not set),
any keyin lines will ~ppear on the screen without the precedeing
.. K : , ••

8.2 The Print and Display Options.

If the ilL", liS II , or "P" options are given on the command
line, the "K:" and "0:" lines are always printed. The "I:", "0: 11

and IIR:II lines are printed or displayed if the "1 1
', "Ollar IIH"

options ~re specified on the command line along with the "D"
option. The DEBUG output only apnears if the "Tli ootion is
specified. Any errors are alw8ys displayed on the console. Error
lines cause the processor console to emi t a I'beep" and the screen
display is double-spaced. All error messages also appear on any
selected print media.

CHAPTER 8. DISPLAY AND PRINT OPTIONS 8-1

At any time during the compilation, the console "display" key
will suspend compilation temporarily and the "keyboard" key will
terminate the compilation.

Note that the I'p.t, ilL", and "S" options require the presence
of the "UTILITY/RELI, file on a ready drive.

8.3 The Print Format

Along with the selected data lines, the CHAINPLS printer
driver will also print the contents of the block I'stacki'. The
block stack is the list of currently active IFs, ELSEs. BEGINs and
WHILEs. This data will appear at the far left of the printed
page. Each level of the stack is represented by a sin~le

character: I=IF, B=BEGIN, E=ELSE, and W=WHILE. The oldest levels
are the left-most levels on the listing. In addition, an asterisk
will appear to the immediate right of the stack levels if the
block was being interpreted; i.e., if the block was not being
bypassed due to an earlier FALSE condition. For example:

* II IF FALSE
I II BEEP
I II CLICK
I II ELSE
E- Ii KEYIN "THIS IS CORRECT"
E* II WHILE 1<0
EW II BEEP
EW II END
E'ir II IF TRUE
EI* II KEYIN "THIS IS CORRECTi'
EI" II XIF
E* II XIF
;r etc

8-2 CHAINPLS

CHAPTER 9. THE SPECIAL FUNCTION OPERATIONS

Certain special function operations exist in CHAINPLS to
allow a greater variety of statement than would be possible with
operator-format statements. The general form of the function
operations is:

<function name> (<operand list>)

The <operand list> always contains at least one operand. Operands
may be data item names, alpha literals or numeric literals. They
may not be expressions. Every function call returns a single
answer which is of the same form as a normal data item.

9.1 The TTYPE Function

The TTYPE function is used to check the secondary data type
of a variable. Problems which result from manipulation of
character strings containing only numeric data or from command
line entry of data items can be easily resolved with the TTYPE
function. The operand of the TTYPE function is any legal data
item name or literal; the result is a character string describing
the data type of the operand. If the operand is a Boolean FALSE
data item the result is Boolean FALSE. The general format is:

TTYPE (<data item name or literal>)

If the <data item name> is a character string, the result will be
the string "CHARACTER", a decimal operand will result in
"DECIMAL", and octal operand will produce "OCTAL", and a user file
variable will generate "FILE". For example:

II ASSIGN XX="SEPTEMBER 30, 1978 11

II ASSIGN YY=1978
II ASSIGN TYPE1= TTYPE(XX)
II ASSIGN TYPE2= TTYPE(YY)

TYPE1 would be a character string of value "CHARACTER"; TYPE2
would be a character string of value "DECIMAL".

All functions, including the TTYPE function, may be imbedded
into expressions. For example:

I I IF (TTYPE(XX)-="CHARACTER"): (TTYPE(YY) -=i'OCTAL")

CHAPTER 9. THE SPECIAL FUNCTION OPERATIONS 9-1

II KEYIN IIINVALID DATA ENTRy!n
II XIF

9.2 The FFILE Function

The FfILE function is used to determine if a file is
available (on-line) and to return the drive number of the drive on
which the file is located. The argument of the FFILE function is a
character string data item or an alpha literal containing a
DOS-standard file specification. The general form of the FFILE
function is:

FFILE «character string data item or literal»

The argument of the FFILE function must have the general form:

<file name>l<extension>:D<drive number>

or: <file name>l<extension>:<volume name>

The FFILE function may be used in any expression. If the file is
not found, the value of the function is FALSE if the expression is
Boolean and zero if the expression is arithmetic. If the file is
present, the value is TRUE if the expression is Boolean and equal
to the drive number of the file if the expression is arithmetic.
For example:

II ASSIGN FILESPEC="MYSPEC/TXT"
II SET GOTFILE=FFILE(FILESPEC)

The value of GOTFILE will be TRUE if the file is available and
FALSE if the file is not available.

I I ASSIGN DRIVENUM= FFILE("MYFILE/TXT")

The value of DRIVENUM will be zero if the file is not available
and equal to the drive number of the file if available. Note that
the FFILE function should always be used in a Boolean expression
first to determine if it exists before determination of the drive
number. This is because it is impossible to distinguish in an
arithmetic usa~e between the file not being present and the file
being on drive zero.

9-2 CHAINPLS

9.3 The MMEMBER Function

The MMEMBER function is used to determine if a certain member
exists in a library file. The FFILE function should be used first
to ~uarantee that the library file actually exists. The general
form of the MMEMBER function is:

MMEMBER (<library file spec) , <member name>) .

Note that the <member name> must be a character string data item
or a literal and must have no special characters or imbedded
blanks.

The result of the MMEMBER function is Boolean FALSE if the
member does not exist, and is TRUE if it does. Additionally, if
the result is TRUE and the library is a relocatable program
library, the arithme~ic value is the size of the relocatable
member. For example:

I I SET GOTMEM= MMEMBER (II UTILITY IREL" , \j SERVOII)

The result of this operation would be TRUE if the member SERVO
exists in the file UTILITY/REL, and FALSE if it does not.

9.4 The UNB.IT Function

The UNBIT function is used to convert a numeric variable or
literal into a character string of 110. 1 and 11111 characters
according to its binary equivalent. The result of UNBIT will never
been less than a single 1'0" nor greater than a string of 24 "111
characters. The operand of UNBIT should be Boolean TRUE. For
example:

II ASSIGN NUMBER=255
II ASSIGN BITNUMR= UNBIT(NUMBER)
II KEYIN Ilbits are IIBITNUMRIII.

The line as displayed on the screen would be:

bits are 11111111

CH APTER 9. THE SPECIAL FUNCTION OPERATIONS 9-3

9.5 The BIT Function

The BIT function is used to convert a string of 1'0" and "1"
characters into its binary equivalent. For example:

II ASSIGN CONVERT=BIT(1f 101000000")

The value of CONVERT would be 640.

9-4 CHAINPLS

CHAPTER 10. CHAINPLS EXECUTION PHASE

10.1 General Description

At the start of the compilation phase, CHAINPLS attempts to
open (or PREPare) the SYSJOB/SYS file on the booted drive. If
this attempt fails (for example, due to FILE SPACE FULL), ~ ~lobal
PREPare is executed.

After the compilation phase of CHAINPLS, the file SYSJOB/SYS
has been created or extended by the inclusion of all statements
selected during compilation. The module CHAINPLS/OV1 is then
called to actually execute the commands and keyins from the
SYSJOB/SYS file. The first record is read from the SYSJOB/SYS
file and is placed into the Monitor Communiations Region of the
DOS. The job file is then modified to indicate the last record
delivered to the DOS as a command line for restart purposes. The
resident DOS is modified to convert the KEYIN$ routine to read the
proper responses from the job file.

If logging is active, the DSPLY$ routine is modified to call
the CHAINPLS/OV2 module to log all console displays into the log
file. Since all lines read from the job file are displayed, all
command lines and keyin responses are also logged.

As each executed program returns control back to the DOS, the
CHAINPLS/OV1 overlay is reloaded automatically and the above
procedure is performed ~gain. When the end of the current extent
is reached, the job file is examined to see if any prior extents
exist. That is, if the current chain was called from a chain,
then execution will pick up from the statement following the
statement which invoked the currently active CHAINPLS .. There is a
system of pointers inside the job file which indicates to
CHAINPLS/OVl the p~oper pickup ooint for each level of execution.

As each extent (file) within the job file is completed, a
message is disolayed on the system console:

CHAIN rILE COMPLETED: <file name>/<extension>:<volid>.<member>

When the entire job file has been executed, the message:

CHAINING COMPLETED

CHAPTER 10. CHAINPLS EXECUTION PHASE 10-1

appears on the system console and the SYSJOB/SYS file is removed
from disk. The DOS is then reloaded and the familiar \I READY"
message appears.

Note that as each extent (file) within the job file is
completed, the disk space which that extent occupied is re-used by
~ny subsequent nested chaining, thus reducing the size or the job
file.

One additonal feature can provide increased compilation speed
and greater restart capability: if the user BUILDs a SYSJOB/SYS
file and delete-protectes it (via CHANGE), CHAINPLS will not KILL
the file after the chaining is completed. This allows the user to
restart even a completed file. In addition, the PREPare time for
the SYSJOB file is saved during subsequent chaining.

10~2 Execution Restart

Serious errors can often cause chaining to be aborted during
a pro~ram's execution. By use of the ABTIF statement, a user can
test the system status after a job step and conditionally abort
the chain. CHAINPLS possesses a variety of means to restart the
system after a failure. These means should be clearly understood
by the user.

10.2.1 Restart From Current Position

If the system operator keys in:

CHAINPLS/OVl (enter)

execution will resume with the next sequential record following
the last record which aopeared on the screen. This method is
generally used to skip over erroneous or unnecessary statements in
the job file. If the next line in the job file is not a valid
command line, CHAINPLS/OVl will abort again. The restart message
may then be reentered and the next record will be used to restart.
This may be done as often as is necessary to find a proper restart
point. Other techniques exist, however, which allow more versatile
restart.

10-2 CHAINPLS

10.2.2 Restart From Last Command

If the system operator keys in:

CHAINPLS/OVl * (enter)

execution will resume after repositioning the job file back to the
last command line delivered to the DOS. This is probably the most
commonly used restart. For example, an INDEX function may have
failed because the file selected to be indexed was on a pack not
currently mounted. The system operator can then mount the oack,
wait for it to come ready, and issue the restart. Execution will
resume at the INDEX command and system operation will be
unimpaired.

10.2.3 Interactive Restart

If the system operator keys in:

CHAINPLS/OVl ? (enter)

then CHAINPLS will enter a mode of-question/answer interaction
which allows the system operator to restart the job file from ANY
POINT. The interactive restart displays a number of informative
messages about the options available and the status of the
SYSJOB/SYS file.

After the initial descriptive message, the user will be
asked:

START AT THE CURRENT POSITION?

If "YES" (or "ylI) is entered, the last command line delivered to
DOS will be displayed. As this and each subsequent line are
displayed, the user can choose to resume processing at the
currently displayed line. The cursor will appear below the current
line and the operator can enter a "YES" or just the lIenter" key.
During this procedure, the entire extent (file) will be displayed
starting at the curient position and continuing through to the end
of the file. If the operator enters a "YES" to the cursor,
execution will resume starting with the record just displayed. If
a I'NO" or just the "enter" key is entered, the next record in the
file is displayed.

At the end of the current extent (file), the system console
will display:

CHAPTER 10. CHAINPLS EXECUTION PHASE 10-3

THIS FILE WAS <name>l<ext>
START AT THE BEGINNING OF THIS FILE?

If the operator answers ·'YESII, the current extent will be
redisplayed. If not, the job file will be repositioned to the
prior extent. The message:

REPOSITIONING TO PRIOR FILE

will be displayed. If there is an earlier extent, the same
procedure as above will be invoked; that is, the program will
inquire if it should start at the beginning of the current extent,
and a positive answer will cause the entire extent to be displayed
one record at a time. If there is no earlier extent, the program
will reposition the job file back to the end of the newest
(current) extent and the entire procedure will start over.

By using the above procedure, the user can examine the entire
job file as often as is desired and a restart point may be chosen
from anywhere in the· file. Any record in any extent may be chosen
as a re~1tart point by entering I'YES" to the fl8shing cursor
positioned under the line.

During examination of the contents of 8n extent, the keyboard
and display keys can be used to scan the file Quickly. If the
display key is depressed records will be read in the forward
direction from the SYSJOB/SYS file displayed rapidly on the
screen. The message "==FORWARDS==" will appear on the bottom of
the screen indicating the direction in which the file is being
read. This rapid display will cease when the display key is
released.

The keyboard key functions identically but causes the
SYSJOB/SYS file to be read and displayed in the reverse direction.
The message "==BACKWARDS==I' is displayed to indicate the current
direction. If the user attempts to backspace beyond the st8rt of
the file, the first record of the file will be re-displayed and
the processor "beep" will sound.

Use of the keyboard and display keys allows quick but
8ccurate scans of an extent without having to strike the enter key
once for every record displayed.

10-4 CHAINPLS.

10.2.4 Restart With Override Job File

Since the user can specify the name of the job file to be
used instead of SYSJOB/SYS, a serious failure (e.g., one requiring
system re-booting) will require reentry of the job file name. The
generalized format for the restart command line is, therefore:

CHAINPLS/OV1 «job file name» «->/<?»

Note that only the "last command li and "interactive'l restarts
are available after serious failure. The record of the exact
position of the job file is kept in core during execution; the
position of the last command is updated on disk between job
executions.

10.3 Execution Log~ing

All system console activity' which takes place while 10gginR
is active is written into the SYSLOG/SYS file. This file is in
standard text file for~at and may be copied and saved usin~ normal
utilities. f

It is important to note the effect of logging on nested
chaining. If logging is specified at an outer (older) level of
chaining, then loggin~ is active and the OPTIONS specifications of
any inner (newer) level of chaining are set to cause logging to
occur. The only method for suspending logging once specified is
through use of the "LOGOFF" and "LOGON" statements.

If an outer level of chaining does not specify lopging but dn
inner level does, only the inner level chain activity is logged.
In this case, it is important to note the use of the IIQII option
for logging. If, for example, a user wished to b~ild a CHAINPLS
file to run three other CHAINPLS files, but only wanted to lo~ the
first and third of these into SYSLOG/SYS, the OPTIONS
specifications on the first file should specify the "G" option.
If, however, the third file also specified the "G'I option the log
file would be reinitialized and all prior log information would be
lost. The function of the IIQII option is to notify CHAINPLS that
new log information is to be stored at the end of any existing log
file.

Use of the "Q" option when no previous log file exists causes
the log file to be created and is identical to the I'G" option.

It is also important to note that certain DOS utilities and
other software will not function properly if the logging facility

CHAPTER 10. CHAINPLS EXECUTION PHASE 10-5

is active. The reason for this is the dependence of these
programs on the contents of the LFO disk buffer or the DOS overlay
area. If problems are encountered with the use of lo~ging for a
particular program, the LOGOFF function can be used to temporarily
disable logging and allow these programs to run normally. Logging
could then be resumed immediately afterwards.

10-6 CHAINPLS

CHAPTER 11. USER-WRITTEN SUBROUTINES

11.1 General Concept

Within the CHAINPLS compilation phase assembly language code
there exist many utility-type service routines. These service
routines are used by CHAINPLS to perform the parsing of ;:]11
directives read in from the input file. A facility has been
included into CHAINPLS to allow assembly language level
programmers to write their own CHAINPLS directives and aV8il
themselves of these simple yet powerful internal routines.

When a statement is read in from the CHAINPLS input file, 8

number of actions occur almost automatically. first, the
statement is scanned for any "replacement" characters such as "#11,
1'$", or ,'%". I f any are found, the proper replacement is made.
Second, the statement is scanned again and if it begins with "11"
(control statement) and the current block is active ("true") the
statement is broken into "symbols", that is, individual items such
as data names, operators, and numeric and alphabetic literals.
The results of this scan are placed into an ~rray called the
"expression arrayl,. Each item in the array is coded to indicate
what its original nature was. All data items are looked up in the
symbol table. If they are found, the location of the proper entry
is placed into the expression array; if they are not found, an
entry is created for them and marked as Hcharacter string, false l' •

The address of this new entry is then placed into the expression
array.

This "expression array" is utilized by all pClrsing routines
within CHAINPLS and greatly simplifies all further processing of
the input line. The first symbol in the expression array is the
pointer to the "keyword" or directive, such as "IF" or "ASSIGN".
Within the symbol table entry for a directive is the address of
its parsing routine. After all symbol scanning has been
completed, control is passed to the p~rsing routine. When parsing
is comolete, the parsing routine simply does an assembly language
'iRETURN" back to the input read routine to continue execution.

When a user declares a "USERPROG", a new directive is created
within the symbol table. There is no difference whatever between
the directives which are a permanent part of CHAINPLS and the
directives which are created by the USERPROG statement. The newly

CHAPTER 11. USER-WRITTEN SUBROUTINES 11-1

created directives can look into the symbol table, do disk I/O ~nd
keyin/display, and have access to all significant service
routines. It is obvious that a user must be very careful in
creating a IIUSERPROG", because there is no easy debuggin~ tool
~vailable for assembly language modules. It is recommended that
only those users with significant Datapoint assembly language
experience attempt to utilize the "USERPROGI' facili ty.

11.2 Symbol Table Value Structure

All data items used by CHAINPLS are contained in a symbol
table. This table has the name of the item, is data type, current
status and value, and links to other entries within the symbol
table. Any user wishing to create his own directive should be
familiar with the data item value formats within the symbol table.
It is not necessary for a user to be concerned with the status
byte formats and symbol linkage structures of the symbol table
because adequate service routines exist to obtain all the
information needed;

The basic format for 8 symbol table value is:

If the item is NUMERIC or OCTAL, the (length) will alwRYs be three
(3) bytes; all numeric items are kept internally in binary form.
If the item is a CHARACTER string, the length can vary from zero
(0) to eiRhty (80). If the item is a FILE variable, the length
will be zero (0) and the following 16 bytes will be the current
Logical File Table entry for the file.

When a variable first appears in the input stream, it is
inserted into the symbol table and given a value area of 14 bytes;
the length indicator is set to zero. When a value is ASSIGNed to
the variable, the length indicator is adjusted to the new lenp,th
and the data is inserted into the value area. If the value area is
not large enough, a new value area is allocated and linked into
the symbol table entry for the variable. The trailer byte (0311)
of the value area determines the maximum allowable size of the
value. When inserting new values into variables, care must be
taken not to overstore the 0317 byte or attempt to store data
beyond it.

Care should be taken that all data items are checked for
Bo ole anT RUE be for e t4rl e i r val u e s are use d . A s e r vic e r 0 uti n e

11-2 CHAINPLS

exists for this purpose. Note that in many cases it is
unnecessary to know the value type of a data item since a service
routine exists which will move the value string to any location in
memory and convert numeric items from binary to decimal or octal
character strings as necessary.

It is not necessary for a user-written subroutine to process
all items in a statement. No harm will come from failing to
access all symbols in a statement. The final position of any of
the internal pointers mentioned in the following routines is
ignored and reset by the input read routines once control has
passed back to the mainline logic of CHAINPLS.

11.3 Internal Service Routines

11.3.1 INCEXP -- Increment the Expression Array Pointer

This routine sets internal pointers to the next symbol which
was scanned from the input line.

ENTER:
EXIT:

nothing
TRUE ZERO: end of expression
FALSE ZERO: expression pointer updated

HL==> array entry

When INCEXP returns TRUE ZERO the expression symbol pointer
is pointing beyond the last symbol; that is, the statement is
over.

11.3.2 DECEXP -- Decrement the Expression Array Pointer

This routine is identical to INCEXP except that is decrements
the array pointer.

ENTER: nothing
EXIT: HL==> array entry

This routine is useful when a preliminary examination of the
expression array is necessary to determine validity before
execution. INCEXP can be used to examine the items in the
statement for syntax or context and DECEXP can be used to
reposition pointers for actual processing. Each call to DECEXP
will lower the pointer by one symbol.

CHAPTER 11. USER-WRITTEN SUBROUTINES 11-3

11.3.3 CLEAREXP -- Reset the Expression Array Pointer

This routine is used to reset the array pointer back to the
first symbol in the statement (the keyword or directive).

ENTER: nothing

EXIT: nothing

This routine is useful if a syntax check of the symbols in
the statement is necessary before processing.

11.3.4 CKSTAK1 -- Determine Current Symbol Type

This routine sets the condition codes to indicate the type of
the currently pointed entry in the expression array_ CKSTAKl does
not affect the expression array pointer.

ENTER:
EXIT:

nothing
TRUE CARRY: numeric literal;

HL==> 3-byte (24 bit) value area
TRUE ZERO: operator
TRUE PARITY: reserved word
TRUE SIGN: operand; item in symbol table

HL==> value area length byte and value
A = symbol table status byte

11.3.5 CKTYPE -- Determine Operand Type

This routine is used after a call to CKSTAK1 has returned
TRUE SIGN indicating that the current symbol in the expression
stack is an operand.

ENTER:
EXIT:

A = symbol table status byte (from CKSTAK1)
HL unchanged
A = 1; operand Boolean TRUE
A = 0; operand Boolean FALSE
TRUE CARRY: operand is user file
TRUE ZERO: operand is character string
TRUE SIGN: operand is decimal number
TRUE PARITY: operand is octal number

11-4 CHAI NPLS

11.3.6 CKITEM -- Point and Type the Next Symbol in Array

CKITEM is a composite routine resulting from calls to INCEXP,
CKSTAK1, and CKTYPE. It is used to avoid successive calls to each
of the three routines. The results of the calls are stored by
using the hardware Condition Code Save eCCS) instruction. The
result of a CCS instruction is an 8-bit value which" when added to
itself, will regenerate the current condition codes.

ENTER: nothing
EXIT: A, added to self, is result of INCEXP

S, added to self, is result of CKSTAK1
C , added to self, is result of CKTYPE
note: if ADBB gives TRUE SIGN, HL==> value are~

It should be noted that if adding A to A results in TRUE
ZERO, then no other results are meaningful. Likewise, if adding B
to S does not result in TRUE SIGN, then adding ~ to C is
meaningless.

11.3.7 OPND1SET -- Set Up First Operand for COMPARE

OPND1SET is used to prepare the first operand for a
comparison operation. The operand ina comparison can either be a
symbol table operand or a numeric or,characer literal.

ENTER:
EXIT:

nothing; current array pointer used
nothing

11.3.8 OPND2SET -- Set Up Second Operand for COMPARE

OPND2SET is used to prepare the second operand for a
comparison operation.

ENTER:
EXIT:

nothing; current array pointer used
nothing

11.3.9 COMPARE -- Compare Two Operands

COMPARE is used to compare to operands which have been set up
with OPND1SET and OPND2SET ..

ENTER:
EXIT:

nothing
TRUE CARRY: operand 1 > operand 2
TRUE ZERO: operand 1 = operand 2

CHAPTER 11. USER-WRITTEN SUBROUTINES 11- 5

11 .3. 10 ABORT

FALSE CARRY, FALSE ZERO: operand 1 < operand 2
fALSE ZERO: operand 1 -= operand 2

Abort the CHAINPLS Compilation

ABORT is used when a terminal error condition has been
detected.

ENTER: HL==> error message
EXIT: does not return; exits to DOS

11.3.11 STLOOKUP -- Symbol Table Lookup by Name

STLOOKUP is used to set pointers to an entry in the symbol
table when its ASCII character name is known.

ENTER:
EXIT:

HL==> 8 character name (blank filled)
~RUE CARRY: item not found
fALSE CARRY: item found

HL==> symbol table value string
A = symbol table status byte

Note that because the symbol table status byte is returned in
the A register the CKTYPE routine may be called to determine the
operand type.

11.3.12 USRSPACE -- Obtain Work Space for User Routine

USRSPACE is used to get work space for use by a user routine.
There is no limit to the number of times that USRSPACE may be
called. CHAINPLS utilizes all available processor memory and will
allocate it until it is expended.

ENTER:
EXIT:

BC = amount of space desired
TRUE CARRY: soace unavailable
FALSE CARRY: HL==> space obtained

11-6 CHAINPLS

11.3.13 CVBINDEC -- Convert Binary Value to ASCII Decimal

CVBINDEC is used to convert any numeric symbol table item
value to its decimal equivalent. Note that CVBINDEC and CVBINOCT
can convert the low-order 24-bits of any four byte field.

~NTER:
EXIT:

HL==> value area of operand (from CKSTAK1)
HL==> leftmost byte of result field
C = length of result

The result is created in a separate memory area and must be
moved from (HL) to the desired location. Note that any 24-bit
(three byte) binary value may be converted if it has the gener81
form of a symbol table value entry.

11.3.14 CVBINOCT -- Convert Binary Value to ASCII Octal

CVBINOCT is identical to CVBINDEC except that its result is
in ASCII octal.

11.3.15 CVDECBIN -- Convert ASCII Decimal to Binary

CVDECBIN is used to convert standard ASCII decimal char8cter
strings into their binary representation.

ENTER:
EXIT:

HL==> character string delimited by space
CDE = value
TRUE CARRY: invalid character in string
FALSE CARRY: string was valid

Although CVDECBIN returns a 24-bit answer, it has Rn internal
limit of 16 bits of accuracy (65K).

11.3.16 CVOCTBIN -- Convert ASCII Octal to Binary

CVOCTBIN is identical to CVDECBIN except that it converts ~
full 24-bit binary number to ASCII octal.

.CHAPTER 11. USER-WRITTEN SUBROUTINES 11-7

11.3.11 CHEKFILE -- Open a Disk File if Present

CHEKFILE utilizes a character strin~ containing a file
specification and attempts to open the file. If successful, the
DOS LF3 Logical File Table will contain the opened LFT entry. If
unsuccessful, LF3 will contain the result of SCANFS (Scan File
Specification) and can be used for a PREP$ call if desired.

ENTER:
EXIT:

nothing; current array pointer used
TRUE CARRY: file not found; LF3 in SCANFS form
FALSE CARRY: LF3 has opened LFT entry

It is important to remember that the contents of LF3 and its
associated disk buffer are transient. The LFT entry resulting
from a call to CHEKFILE must be saved into a private work area if
the file is to be used in later calls. Also, when the file is used
the sector de~cribed by the LFT entry must be re-read into the
disk buffer.

11.3.18 ERRORDSP -- display non-fatal error message

ERRORDSP will display a non-fatal error message and return to
the CHAINPLS parsing routines.

ENTER:
EXIT:

HL==)user's error message
Does not return

This routine is useful when a USERPROG detects an error
condition and needs to inform the operator, but does not need to
terminate compilation. The user's error message will be displayed
in the following format:

E: (nnnn) USER'S ERROR MESSAGE

The message should be terminated by ~n EOL (015) byte. After the
message is displayed the rest of the CHAINPLS file will be
compiled; however, the output file will not be executed. (See
appendix B Terminal Errors "ERRORS FOUND; OUTPUT NOT EXECUTED".)

11-8 CHAINPLS

11.4 Program Assembly and Control

11.4.1 Assembly Time

If the SNAP/3 assembler is used, the command line option liT"
must be used during assembly to ~uarantee that no forward
references are left in the output relocatable library member.
This is not necessary if the SNAP/2 assembler is used.

The file DOS/EPT should be included at assembly time if any
of the DOS entry points are used by the module be assembled. Only
the specified CHAINPLS service routines may be left undefined by
the assembly.

11.4.2 Execution Time

When the IIUSERPROG" module is relocatably loaded, the entry
point for the module is used as the main entry point each time the
~odule is entered. The programmer should be aware that the module
is only loaded once, at the execution of the "USERPROGi' statement,
regardless of the number of times it is used.

The user module returns to the mainline CHAINPLS compilation
logic by executing a "RETURN" operation. Care should be taken
that the stack is not disturbed in such a way as to accidentally
discard this return address. All registers including the 'IX"
register can be used if needed. The user may use as many as six
stack levels.

If the user wishes to perform disk I/O operations, DOS
Logical file Table number three (Lf3) may be used for this
purpose. Note that the contents of this LFT are transient and
thus a user must save any opened LFT entry into a private area and
must r~read Any disk sectors currently in use between invocations.
LF3 is used by all CHAINPLS user file I/O (READ, WRITE, OPEN,
CLOSE) .

The same external reference and definition table is used
throughout a CHAINPLS executi"on. Thus a module may be loaded via
a USERPROG statement that contains external definitions which are
necessary for a later module. This should be avoided whenever
possible, since improper use can cause modules to fail to load for
no apparent reason.

CHAPTER 11. USER-WRITTEN SUBROUTINES 11-9

APPENDIX A. A CHAINPLS PROGRAMMING EXAMPLE

The following example is a text file of CHAINPLS statements
which ask the console operator for numbers and dete~mine the
divisors of the entered number. The program ends when the number
zero is entered.

II ASSIGN NUMBER=1
II WHILE NUMBER>O
II KEYIN "ENTER NUMBER TO BE TESTED: H NUMBER
II ASSIGN LOOP=2
II ASSIGN LIMIT=NUMBER/2
II SET FLAG=fALSE
1/ WHILE LIMIT>=LOOP
I I CL I CK .
II ASSIGN REM=NUMBER/LOOP
II ASSIGN XREM=REM*LOOP
II DEBUG NUMBER LOOP REM XREM
II IF XREM=NUMBER
II KEYIN;. liTHE NUMBER flNUMBERfI IS DIVIDED BY IILOOP/I'I
I I SET FiAG=TRUE
II XIF
II ASSIGN LOOP=LOOP+1
II END
II IF -fLAG
I I KEYIN "SORRY, THE NUMBER IINUMBERfI HAS NO INTEGER DIVISORS'I
II BEEP
II XIF
II END

APPENDIX A. A CHAINPLS PROGRAMMING EXAMPLE A-1

Here is some sample output from the given example:

K:ENTER NUMBER TO BE TESTED: 123
K:THE NUMBER 123 IS DIVIDED BY 3
K:THE NUMBER 123 IS DIVIDED BY 41
K:ENTER NUMBER TO BE TESTED: 8
K:THE NUMBER 8 IS DIVIDED BY 2
K:THE NUMBER 8 IS DIVIDED BY 4
K:ENTER NUMBER TO BE TESTED: 60
K:THE NUMBER 60 IS DIVIDED BY 2
K:THE NUMBER 60 IS DIVIDED BY 3
K:THE NUMBER 60 IS DIVIDED BY 4
K:THE NUMBER 60 IS DIVIDED BY 5
K:THE NUMBER 60 IS DIVIDED BY 6
K:THE NUMBER 60 IS DIVIDED BY 10
K:THE NUMBER 60 IS DIVIDED BY 12
K:THE NUMBER 60 IS DIVIDED BY 15
K:THE NUMBER 60 IS DIVIDED BY 20
K: THE NUMBER 60· IS DIV IDED BY 30
K:ENTER NUMBER TO BE TESTED: 23
K:SORRY, THE NUMBER 23 HAS NO INTEGER DIVISORS
K:ENTER NUMBER TO BE TESTED: 101
K:SORRY, THE NUMBER 101 HAS NO INTEGER DIVISORS
K:ENTER NUMBER TO BE TESTED: 0
K:SORRY, THE NUMBER 0 HAS NO INTEGER DIVISORS

Note that the DEBUG statements in the file had no effect on
the output since the 'tT" option was not specified on the command
line.

A-2 CHAINPLS

APPENDIX B. ERROR MESSAGE SUMMARY

B.1 The Compilation Phase Errors

B.l.1 The Terminal Errors

Terminal compilation time errors cause program suspension And
turn on the DOS "ABORT" flag. The messages all appear near the
bottom of the screen and do not be~in with a CHAINPLS display line
indicator (i.e., liE: .,). These are the terminal error messages
possible:

INVALID COMMAND LINE SPEC
The command line entered contains a duplicate definition of a

data item or attempts to define the value of a reserved word.

INVALID LITERAL ON COMMAND LINE
The command line contained an octal literal (beginning with a

zero) which contained an 8 or 9.

INVALID OPTION SPEC
The "OPTIONS=xxxxx 'l statement from the command line contains

an undefined option.

ERROR IN RELOCATABLE LOAD
An unrecoverable error was encountered while attempting to

load a printer driver from the file UTILITY/REL. Primary reason
for this would be the absence of UTILITY/REL or an obsolete
version.

SYSTEM ERROR IN CHAINING
Chain file execution was requested while chaining was already

active but control information within DOS has been destroyed.

DOS SYSTEM ERROR
The DOS has found an unrecoverable error in the DOS function

loader mechanism.

PS ACTIVE; CHAINING ABORTED
CHAINPLS cannot be run from the remote or fixed partition

under PS, PS66, or U.P.S.

APPENDIX B. ERROR MESSAGE SUMMARY B-1

SYSJOB/SYS MISSING OR INVALID
CHAINPLS w~s invoked while chaining was active and the job

file cannot be found or is ~nvalidly structured.

SYSLOG/SYS MISSING OR INVALID
Queued logging was requested and the log file is in an invalid

format.

OVl OR OV2 MISSING FROM COMMON DRIVE
The execution control overlays must be present and on the same

drive.

SYSTEM DATA AREA DESTROYED
Control areas within DOS are destroyed and the operating

system must be reloaded.

USERPROG LOAD ERROR
A USERPROG directive specifed the loading of a member which

was either not found in the library file, the library file itself
was not found, or the module was too large for the remaining free
space. In addition, this error could be caused by either forward
references in the relocatable module or by unresolved external
references.

COMPILATION ABORTED BY KEYBOARD KEY
The user has voluntarily terminated execution of the

compilation phase by pressing the keyboard key on the processor
console.

EXECUTION ABORTED BY ABORT STMT
The execution was terminated due to encountering an "ABORT"

statement in an active block.

SYMBOL TABLE MEMORY OVERFLOW
The processor/partition memory area available to CHAINPLS has

been filled completely by symbol table values and definitions.
DEBUG statements can be helpful in determining unused or re-usable
data items to circumvent this condition.

INPUT FILE OVERWRITE REQUESTED
The name of the output file is the same as the name of the

input file; CHAINPLS prevents destruction of the input file.

ERRORS FOUND; OUTPUT NOT EXECUTED
CHAINPLS is running in execute mode and the compilation phase

detected errors in execution. No chaining takes place.

INPUT FILE PARITY/OFF-~INE ERROR

B-2 CHAINPLS

The input file specified contained a parity error or the drive
containing it went off-line during processing.

INPUT FILE FORMAT/RANGE ERROR
The input file specified contained a format error or did not

contain an EOF marker.

UNKNOWN RECORD IN INPUT FILE
The input file contained a record with unrecognizable binary

data.

INPUT FILE IS LIBRARY. NO MEMBER SPECIFIED.
The input file is in library format, but no member name was on

the command line. The member name is required.

B.l~2 The Syntax and Parsing Errors

These errors of CHAINPLS are errors ~n syntax or expressions
that can be ignored to allow the execution to continue. The error
me s sag e s will a p pea ron any ou t put p r in t de vic e ~:{e 1 e c ted and 0 n
the console display. Each message is preceded b1 an indicator
(" E: Ii) followed by the line number ~ The console display is double
spaced after error messages.

As usual with language processors, the occurrence of certain
errors can cause a I'cascade'l of other error condltions. For
example, an erroneous IIIFII statement will cause, due to its
r e j e c t ion. the ass 0 cia t ed II X I F Ii to res u 1 tin add i t io n ale r r 0 r .

CHAINPLS sets an internal flag after detection of any
run-time error. This flag will prevent execution of the output.
Additionally, the DOS "ABORT'I flng is set by the occurrence of any
of these errors. The syntax errors are:

E: (line) INVALID SET STATEMENT
A SET statment was encountered which lacked an operand, an

equal si~n, or an expression; or the items were misplaced.

E: (line) INVALID EXPRESSION
An expression was found with mismatch parentheses,

unidentified operators, or invalid operator usage.

E: (line) INVALID IF STATEMENT
An IF statement was encountered which did not contain an

expression.

E: (line) INVALID ELSE STATEMENT

APPENDIX B. ERROR MESSAGE SUMMARY B-3

An ELSE statement was encountered and the last block control
statement was not an IF.

E: (line) INVALID END STATEMENT
An END statement was encountered and the last block control

statement was not a 'iBEGIN" or an I'END".

E: (line) INVALID WHILE STATEMENT
A WHILE statement was encountered without an expression.

E: (line) INVALID ASSIGN STATEMENT
An ASSIGN statement was encountered which lacked an equal

siRn, an operand, or an expression.

E: (line) INVALID XIF STATEMENT
An XIF statement was encountered and the last block control

stAtement was not an ELSE or IF.

E: (line) INVALID BEGIN STATEMENT
A BEGIN statemerit was encountered which contained something

beyond the word BEGIN.

E: (line) INVALID LITERAL
A numeric literal was encountered which was either non-numeric

or- contained digits not allowable in the given bAse.

E: (line) INVALID USE OF RESERVED WORD
A statement identifier or some other reserved word was used in

an expression.

E: (I ine) INVAL ID READ STATEMENT
A READ statement was encountered whose first operand was not

an OPENed file, or which lacked a first operand.

E: (line) INVALID WRITE STATEMENT
A WRITE stAtement was encountered whose first operand was not

an OPENed file. or which lacked a first operand.

E: (line) INVALID OPEN STATEMENT
An OPEN statement was encountered which was of improper form

or whose file name specification was not found on a ready drive or
w~s a numeric data item.

E: (line) INVALID CLOSE STATEMENT
A CLOSE statement was encountered which did not contain a

first operand or whose first operand was not an OPENed file.

E: (line) INVALID STATEMENT

B-4 CHAINPLS

A control statement was encountered which was erroneous or
unrecognizable.

E: (line) DIVIDE BY ZERO ATTEMPTED
A division operation during expression evaluation had a zero

as a divisor.

E: (line) INPUT RECORD TOO LARGE
An input record whose length was 100 bytes or greater was

either read from the input file or generated by symbol
replacement.

E: (line) CIRCULAR REPLACEMENT IN INPUT RECORD
Replacement symbols in input record cause recursive

replacement to be invok~d more than 256 times.

E: (line) OUTPUT RECORD LENGTH> 80
An output record after symbol replacement was longer than 80

bytes; CHAIN will not accept such a record.
j

E: (line) INVALLD OUTPUT STRING LENGTH/INDEX
A substring ."operation resulted in a zero index, or a length or

index beyond the range of the operand string.

E: (line) INVALID KEYIN STATEMEN.T
A KEYIN statement was encountered which contained something

beyond the word: "KEYIN" that was not an operand or a literal.

E: (line) INVALID FUNCTION CALL
A ffILE or MMEMBER operation was lacking parentheses,

operands, the proper number of operands, or the operands were not
character strings.

E: (line) INVALID OPERAND fOR BIT FUNCTION
The operand for a BIT function must be a TRUE character

string.

E: (line) INVALID OPERAND FOR UNBIT fUNCTION
The operand for a UNBIT function must be a TRUE numeric

variable.

E: (line) INVALID OR UNKNOWN INCLUSION
An INCLUDE statement was processed whose argument could not be

found or was not a character string.

E: (line) IF/BEGIN/WHILE STACK OVERFLOW
The number of active block control statements (IF, ELSE,

BEGIN, WHILE) exceedes the number allowed.

APPENDIX B. ERROR MESSAGE SUMMARY 8-5

E: (line) EXPRESSION STACK OVERFLOW
The number of operands, literals, and operators in an

expression exceeds the number allowed.

E: (line) INVALID ITEM IN DISCARD STATEMENT STATEMENT
Literals are not allowed in DISCARD statements.

E: (line) INVALID OPTION MODIFICIATION
Only the R,I,D,T, and 0 options can be dynamically set and

r ese t.

B.2 Execution Phase Errors

The execution phase errors are those that occur after the
input text file has be processed (compiled) and the execution of
the resulting commands has begun. These errors result in the
CHAINPLS execution control overlay (CHAINPLS/OV1) returning
control to the DOS.

ABORT BIT SET; CHAINING ABORTED
This message will appear upon the execution of an ABTIF

st8tement if the "abort flag" is set on in the DOS control flag
(DOSFLAG). The system utility ABTONOFF can be used to guarantee
that this condition is clear prior to execution of utilities which
can set it.

EXIT OR EOF ERROR; CHAINING ABORTED
This messa~e can occur in one of three ways: 1) An executinr:

pro(lram makes an ·'error" return to the DOS. This condition
generally implies 8 serious f8ilure in a program, e.g., a ·'format H

trap. 2) A running pro~ram requests a keyin and the SYSJOB/SYS
file contains no more records. 3) A keyin response within the
SYSJOB/SYS file is longer (contains more bytes) than the pro~ram
requesting the key in allows.

EXECUTION ABORTED BY KEYBOARD KEY
CHAINPLS will terminate the execution of a job stream if the

keyboard key is depressed between program executions. This
message is merely documentation of an action taken at user
request. Note thRt the pointers in SYSJOB/SYS are left indicating
the last command executed.

SYSJOB/SYS FILE MISSING OR INVALID
The SYSJOB/SYS file was not found during when opened or the

control information within the file is contaminated. This error
commonly occurs when a restart is attempted on a job file that has
been completed and de1sted.

8-6 CHAINPLS

SYSTEMO/SYS MISSING OR UNLOADABLE
The primary operating system resident program on the "booted"

drive is unusable.

RESTART DISCONTINUED AT USER REQUEST
At tiny time during "interactive restart", the user may respond

to a kevin with an asterisk (11*"); this response causes immediate
return to DOS.

CHAIN FILE COMPLETED: nnnnnnnn/ext
Information only: the named chain file has successfully

completed.

COMMAND LINE/NAME INVALID
The "override job file name" is invalid or was not found.

CONTROL AREA DESTROYED; CHAINING TERMINATED
The resident SYSJOB/SYS control area has been modified by

another program and is thus unusable by CHAINPLS/OV1. The chain
file may be re~tart from last command or interactively.

CONTROL AREA DESTROYED; CHAINING RESUMED AT LAST COMMAND
A "next line" restart request cannot be fulfilled because the

resident file control area is not intact; chaining is resumed At
the last executed (but not completed) pro~ram.

APPENDIX B. ERROR MESSAGE SUMMARY B-7

APPENDIX C. USER FILE I/O PROGRAMMING EXAMPLE

The following example is a text file of CHAINPLS statements
which processes two input files previously created by the FILES
utility. The purpose of the program is to match the two files and
write an output file which specifies which file names are missing
from which files. Note that both of the input files are sorted
into ascending sequence by file name (whole record).

& •••
& ... First ~et the names of the input
& ... files from the operator
& •••
II KE'tIN I'ENTER FIRST 'FILES' FILE: II FILE1NAM
II KEYIN "ENTER SECOND 'FILES' FILE: " FILE2NAM
& •••
& ... Now get the name of the output file and
& ... verify the existence of the input files.
& •••
II KEYIN "ENTEROUTPUT FILE: II OUTNAME
II IF -«FFILE(FILE1NAM))&(FFILE(FILE2NAM)))
II BEEP
II KEYIN "EITHER flFILE1NAM# OR IIFILE2NAMII DOESN'T EXIST!"
II ABORT
II XIF
& •••
& ... Now open the files and read a record from each
& ... (standard matchlmerge technique)
& •••
II OPEN FILE1(FILE1NAM)
II OPEN FILE2(FILE2NAM)
II OPEN OUTFILE(OUTNAME)
II READ fILE1,FILE1REC
II READ FILE2,FILE2REC
& •••
& ... Now create a main block of statement to be
& ... executed as long as either file is open.
& ... Note the use of th~ file names as Boolean
& ... values.
& •••
II WHILE FILE1:FILE2
& •••

APPENDIX C. USER FILE liD PROGRAMMING EXAMPLE C-1

& ... Now a nested block to be processed if either
& ... FILEl or FILE2 is no longer open.
& •••
II IF -(FILE1&FILE2)
& •••
& ... Now. a nested block to be processed if
& ... FILEl is no lon~er open.
& •••
II IF -FILEl
II ASSIGN MISSFILE=FILE2REC"(1:12)
I I KEYIN "FILE IIMISSFILEII MISSING FROM FILE' I'
II WRITE OUTFILE,MISSFILE,il<== FROM ",FILE1NAME
II READ FILE2,FILE2REC
II ELSE
& •••
& ... Now a nested block to be processed if
& ... FILE2 is no longer open.
& •••
II ASSIGN MISSFILE=FILE1REC~(1:12)
I I KEYIN "FIL.E IJMISSFILEII MISSING FROM FILE21l
II WRITE OUTFILE,MISSFILE."<== FROM ",FILE2NAME
II READ FILE1,FILE1REC
II XIF
& •••
& ... Now a block if both files are still open.
& •••
II ELSE
& •••
& ... If the records match, read a record
& ... from both files, otherwise read the file
& ... whose record is lower in alphanumeric value.
& •••
II IF (FILE1REC~(':12»=(FILE2REC~(1:12»
II READ FILE1,FILE1REC
II READ FILE2,FILE2REC
II ELSE
II IF (FILE1REC-(1:12»«FILE2REC~(1:12»
II ASSIGN MISSFILE=FILE1REC~(1:12)
II KEYIN 'lfILE IItv1ISSFILEII IS MISSING FROM FILE2"
I I WRITE OUTFILE. MISSFILE, 1'<== FROM II ,FILE2NAM
II READ FILE1,FILE1REC
II ELSE
II ASSIGN MISSFILE=FILE2REC~(1:12)
II KEYIN "FILE IIMISSFILEII IS MISSING FROM FILE1"
II WRITE QUTFILE,MISSFILE,"<== FRON ",FILE1NAM
II READ FILE2,FILE2REC
II XIF
II XIF

C-2 CHAINPLS

II XIF
& •••
& ... Now check if an end-of-file was detected
& ... during any recent reading
& •••
II IF (.FILE1REC=O)&(FILE1)
II CLOSE FILE1
II XIF
II IF (.FILE2REC=O)&(FILE2)
II CLOSE FILE2
II XIF
II END
& •••
& ... Since the input files are closed
& ... automatically by the main read
& ... loop, all that remains is to
& ... close the output file."
& •••
II CLOSE OUTFILE
& •••
& ... Now cause CHAINPLS to exit to the LIST program
& ... to list the resulting output file.
& •••
II EXIT "LIST IIOUTNAMEII"

APPENDIX C. USER FILE 1/0 PROGRAMMING EXAMPLE C-3

APPENDIX D. USER-WRITTEN SUBROUTINE PROGRAMMING EXAMPLE

The following example consists of three parts: the assembly
language program, the CHAINPLS input file which executes it, and
the log of keyin/display activity associated with running the
input file.

0.1 Assembly Language Subroutine

The following program existed in a text file called
"COMPARE/TXT". It was assembled wi th the command line:

SNAP3 COMPARE,CHAINPLS/REL;T

This command line put the relocatable output file into A library
called i'CHAINPLS/REL"; the liT" option forces the assembly to
perform two passes to eliminat~ forward references.

THIS PROGRAM PARSES A STATEMENT Of THE FORM:

II COMPARE (operand 1>,(operand 2)

AND DISPLAYS THE RESULTS ON THE SCREEN

COMPARE PROG
INC

COMPARE ORG
USE

PREP DC
GTR DC
LSS DC
EQL DC

START CALL
ADA
RTZ
ADBB
RTZ
RTP
CALL

DOSIEPT
o
COMPARE
H,LC,V,BL,ECL,EOS
I GREATER' ,EOL
'LESS' ,EOL
'EQUAL',EOL

CKITEM

OPND1SET

THE MEMBER NAME WILL BE "COMPARElf
INCLUDE THE DOS. ENTRY POINTS
THE PAB MUST BE RELOCATABLE

MESSAGE POSITIONING STRING

GET THE FIRST SYMBOL
CHECK FOR OVER ALREADY
BACK IF NOTHING
CHECK FOR OPERAND OR DATA
BACK IF OPERATOR

OR RESERVED WORD
SET UP THE FIRST OPERAND

APPENDIX D. USER-WRITTEN SUBROUTINE PROGRAMMING EXAMPLE 0-1

CALL CKITEM GET THE NEXT ITEM
ADA CHECK FOR OVER ALREADY
RTZ BACK IF NOTHING
ADBB CHECK FOR OPERAND OR DATA
RTZ BACK IF OPERATOR
RIP OR RESERVED WORD
CALL OPND2SET SET UP THE SECOND OPERAND
HL PREP PREPARE THE SCREEN
CALL DSPLY$
PUSH DE SAVE THE SCREEN POSITION
CALL COMPARE COMPARE THE TWO
POP DE RESTORE THE SCREEN POSITION
HL GTR ASSUME GREATER
JTC SHOW YES, GREATER
HL EQL TRY EQUAL
JTZ SHOW YES,EQUAL
HL LSS ALL THAT'S LEFT IS LESS

SHOW EX CLICK
JMP DSPLY$ RETURN TO MAINLINE AFTER DISPLAY
END 'START

D-2 CHAINPLS

D.2 CHAINPLS Input File

The followin~ records were contained in a text file called
ICTEST/TXT". Its only function is to exercise assembly languc=lge
"COMPARE" program.

& •••
& ••• this statement will load member I'COMPARE"
& ••• from library I'CHAINPLS/RELtI
& •••
I I USERPROG COMPARE(I'CHAINPLS/RELI', "COMPARE")
& •••
& ... now declar~ some numeric and alpha fields
& •••
II ASSIGN NUMR1=1
II ASSIGN NUMR2=2
II ASSIGN ALPHA1="AIi
I I ASSIGN ALPHA2= II B"
& •••
& ... prepare ~ loop which will execute
& ••• until an "WI. is entered
& •••
II SET READY=TRUE
II WHILE READY
II KEYIN "FIRST OPERAND NUMERIC OR ALPHA? A/N 1/ AN
II IF AN="if ll

II SET READY=FALSE
II ELSE
II IF AN="N"
II KEYIN "ENTER NUMERIC: It NUMRl
II ASSIGN OP1="NUMR1"
II ELSE
I I KEY IN I. ENTER ALPHA: 1/ ALPHA 1
II ASSIGN OP1=hALPHA1 11

II XIF
II KEYIN "SECOND OPERAND NUMERIC OR ALPHA? A/N I. AN
II IF AN="N"
II KEYIN "ENTER NUMERIC: 1/ NUMR2
II ASSIGN OP2="NUMR2"
II ELSE
II KEYIN "ENTER ALPHA: " ALPHA2
I I ASSIGN OP2="ALPHA2"
II XIF
& •••

APPENDIX D. USER-WRITTEN SUBROUTINE PROGRAMMING EXAMPLE D-3

& ... note that by assigning the names of
& ... of the fields to other string variables,
& ... the need for a series of four IF
& ... statements and COMPAREs is eliminated.
& •••
II DEBUG nOP1# nOP2#
II COMPARE HOP1H,#OP2#
II XIF
II END

D.3 Execution Results

The lines below are the results of a short execution of the
above CHAINPLS input file.

CHAINPLS TEST;OP:C
CHAINPLS 1.1.B CHAIN FILE COMPILATION

FIRST OPERANO NUMERIC OR ALPHA? A/N A
ENTER ALPHA: AABB
SECOND OPERAND NUMERIC OR ALPHA? A/N A
ENTER ALPHA: AACC
LESS
FIRST OPERAND NUMERIC OR ALPHA? A/N N
ENTER NUMERIC: 123
SECOND OPERAND NUMERIC OR ALPHA? A/N N
ENTER NUMERIC: 123
EQUAL
FIRST OPERAND NUMERIC OR ALPHA? A/N A
ENTER ALPHA: 1234
SECOND OPERAND NUMERIC OR ALPHA? A/N N
ENTER NUMERIC: 1324
LESS
FIRST OPERAND NUMERIC OR ALPHA? A/N A
ENTER ALPHA: GOGO
SECOND OPERAND NUMERIC OR ALPHA? A/N A
ENTER ALPHA: GOGOA
LESS
FIRST OPERAND NUMERIC OR ALPHA? A/N w

CHAIN fILE COMPLETED: TESTX/TXT
CHAINING COMPLETED

D-4 CHAINPLS

JUNE 15, 1978

APPENDIX E. CHAINPLS RELOCATABLE SUBROUTINE LIBRARY

Supplied with the release tapes of CHAINPLS is a file called
CHAINPLS/REL. This file is a DOS-standard relocatable library file
created by the SNAP3 assembler. It contai~s various utility
parsing routines designed to be used by programmers with unusu81
requirements for system control.

Routines from the library are
the USERPROG statement. It is the
the routines which are to be used.
dynamically, there is no certainty
loading can actually be loaded.

loaded into memory by use of
user's responsibility to load

Since memory is allocated
that all routines specified for

It is important to note that the use of the USERPROG facility
FInd the subroutine library should be limited to those with Rn
extensive assembly language background and an in-depth
understanding of Datapoint processor architecture and disk
structures. No support will be given to use of the USERPROG
facility or the use of the relocatable subroutine library.

Each subroutine in the library, when loaded. becomes a new
statement type. It may, after loading, be invoked as needed And
no additional load-will take olace. The following descriptions are
brief and contain only syntactic definitions. It is recommended
that a user avoid the use of any subroutine whose definition or
function is not fully understood.

E.l SAVEPTR -- Save the Position of a User File

Format:

II SAVEPTR (file var>,(octal var>

SAVEPTR will save the position (LRN, BUFADR) of a user file
into an octal variable. It must be called PRIOR to reading the
record whose position is to be saved.

APPENDIX E. CHAINPLS RELOCATABLE SUBROUTINE LIBRARY E-l

E.2 RESTPTR -- Restore the Position of a User File

Format:

II RESTPTR <file var>,<octal var>

RESTPTR will reposition a user file back to the same position
it possessed when the SAVEPTR statement was executed.

E.3 FREE -- Determine Free Memory Available

format:

II FREE <numeric var>

FREE will return into the numeric variable the Rmount of free
memory, in bytes, remainin~ in the processor in use.

E.4 ROLLOUT Save Execution State and Return to DOS

format:

II ROLLOUT <char var l>.<chRr var 2>

ROLLOUT will create a command file in standard object file
format containing all memory in use by the execution of CHAINPLS.
The name of this command file will be <char var 1>. Optionally, a
second D8rameter may be specified «char var 2» which contains ~
command line to be inserted into MCR$ preceded by "»" for use by
NXTCMD. Note: the CHAINPLS execution may be restarted by keyinR in
the name of the command file created to DOS.

E.5 STARTIME -- Start a Timing Function

format:

1/ STARTIME <numeric var>

STARTIME uses a DOS four millisecond interrupt vector to
count milliseconds into the <nume~ic var>. The variable is
automatically zeroed by the operation. Note: only ONE timer
operation may be done at any time.

E-2 CHAINPLS

E.6 STOPTIME -- Stop a Timing Function

Format:

II STOPTIME

STOPTIME discontinues the timing process started by the
STARTIME statement.

E.7 POSIT -- Position a User File to a LORical Record

Format:

II POSIT <file var>,<numeric var or literal>

The POSIT subroutine will position a user file to the LRN
specified in the <numeric var or literal>. It is the user's
responsibility to validate the LRN; this subroutine will cause
space to be allocated to the file to allow pOSitioning to the LRN
given.

E.8 FILENAME -- Obtain DOS Filename

Format:

II fILENAME <PON num var>,<PFN num var>,<char var>,
«subdirectory num var»

FILENAME will return the 11-character DOS file name of the
file whose PDN is given in the first <numeric var> and whose PfN
is given in the second <numeric var>. If the file does not Axist,
a NULL string will be returned. In addition, if a final numeric
variable is Riven, the subdirectory number will be delivered into
it.

- E.9 SURNAME -- Obtain DOS Subdirectory Name

format:

II SURNAME <PDN numeric var>.
<subdir nDmeric var>,<subdirectorV char v8r>

SURNAME will utilize the numeric variable containing the PDN
and the numeric variable containing the subdirectory number and
return the subdirectory name into the <character variable>. Note

APPENDIX E. CHAINPLS RELOCATABLE SUBROUTINE LIBRARY E-3

that the SYSTEM subdirectory is 0377.

SURNAME is retained for compatability only. Pre-defined data
items SURO-SUR31 contain the names of the current subdirectories
of all on line volumes.

E.10 KILL -- KILL an Open User File

Format:

II KILL <file var>

KILL will remove all record of an open file from the disk
directory via the standard DOS mechanism of CHOP/CLOSE.

E.11 CHOP --' CHOP an Open User File

Format:

II CHOP <file var>,<LRN numeric var>

CHOP will cause all space beyond the logical record number
given in the numeric variable to be deallocated from the file and
rp.turned to the free space on the disk. If the LRN specified is
not in allocated space, space is allocated for it and the CHOP
occurs afterwards. In accordance with the standard DOS interface,
deallocation only occurs at CLOSE time; thus for CHOP to take
effect, the file must eventually be explicitly CLOSEd.

E.12 PROTECT -- Chan~e Protection on a User File

Format:

II PROTECT <file var>,<char var or lit>

The <char var> can contain only the following characters:

D Delete-nrotect the file
W Write-protect the file
X Remove all protection frbm the file

In accordance with the standard DOS interface, protection changes
only occur at CLOSE time; thus for PROTECT to take effect, the
file must eventually be explicitly CLOSEd.

E-4 CHAINPLS

E.13 NEXTMEM -- Obtain First/Next Member Names From Library

Format:

Where:

II NEXTMEM <file var>,<type var>,<name var>,<LRN var>

<file var> is an OPENed library file
<type var> is a NUMERIC variable
<name var> is a CHARACTER variable
<LRN var> is a NUMERIC variable

This routine will deliver all member names from a library. No
1/0 operations can be executed on the library (READ, WRITE, etc.'
during the course of the NEXTMEM processing. The file must be ~
library file which has been opened but has had no other 1/0
operations performed upon it. When NEXTMEM returns a null (zero)
length string as the name, there are no more member names in the
library. The type variable ~eturns the library types as
documented in the DOS User1s Guide. The LRN returned is the
logical record numher of the start of the member.

E.14 NEXTSYM Obtain Next Symbol Name from Symbol Table

Format:

II NEXTSYM <char var>

This routine allows a CHAINPLS programmer to obtain the names
of all user symbols which have been declared and stored into the
symbol tRble. This can be very useful for extensive debugging or
in determination of memory usage. After the execution of NEXTSYM.
the character string variable contains the nRme of the next
physical item in the symbol table. The items are not returned in
any particular order, but iterated calls to NEXTSYM will deliver
all user symbol names once and only once. When no more user
symbols exist, the character variable will be given a length of
zero (null). Note that variables declared between calls to
NEXTSYM are not guaranteed to be returned.

APPENDIX E. CHAINPLS RELOCATABLE SUBROUTINE LIBRARY E-5

E.15 PAUSE -- Timed Suspension of Processing

Format:

II PAUSE <numeric var or literal>

This routine is used when a suspension of all CHAINPLS
processing is desired for a time. The numeric variable or literal
must contain the number of milliseconds to wait; this value must
be greater than 4. The display key will be checked every 5
seconds, and, if depressed, will cause the PAUSE to be exited.
This routine utilizes, through the DOS Function interface, n 4
millisecond DOS FIG process.

E.16 PRINT -- User print interface

II PRINT <variable or literal>,<variable or literal> •...

This routine allows user printing during the compile phase of
CHAINPLS. Before PRINT can be USERPROG'ed one of the drivers from
UTILITY/REL (LOCAL, SCREEN, SERVO or FILE) must be USERPROG'ed.
If one of thp. drivers is not USERPROG'ed first a load error will
occur.

The first chRracter of the first variable or literal is used
for format and operation control. If it is one of the standard
ASCII control characters the indicated function will be performed:

1 = Skip to top of page
o = Double space.

= Triple space.
<blank> =Single space.

In addi tion the characters '0', 'Q' and 'C' are defined rlS

follows:

o Open a new file.
Q Queue the print information to the end of an existing file.
C Close the print file.

If the FILE driver is used then the 110" (open) or IIQII (queue)
control character must be in the first line printed. The rest of
the print line containing the open or queue control character is
11 sed a s a f i 1 e n a me too pen. T he II C .. (c los e) con t r ole h a r act e r

E-6 CHAINPLS

should be the last line printed. This writes the end of file and
updates the file control sector. If a file is started with the
queue command and is not closed the data printed to the file will
be lost.

If the LOCAL, or SERVO driver is used the open or queue
command check that a printer is on line and acquires the printer
for use by CHAINPLS. The close command releases the" printer and
assures even page parity.

If the SCREEN driver is used the open, queue, and close
command characters have no effect and the line is ignored.

It is recommended, but not necessary, that the first variable
of the line be reserved for command control and be , character in
length.

A print line is built consisting of all specified variable
and literals up to a maximum of '34 bytes. Zero length v~r8bles
are handled properly. Only character and numeric varia.bles can be
printed. Octal and decimal data is converted to ASCII for output,
hnwever the length of the resulting line is indeterminate.

An example of useing the file print driver follows.

II USERPROG DRIVER ("UTILITY/REL","FILE")
I IUS E R P R OG P R I N T (II C H A I N P LSI R E L " , I' P R IN T If)
I I PRINT "0 PRTFILE/PRT"
II PRINT "''',IITOP OF FORMI'
1/ PRINT "011, "DOUBLE SPACE"
I / PRINT I' ", IISINGLE SPACEII
1/ PRINT "CII

No reference should be made to the directive DRIVER. By changing
the member in the first USERPROG directive (to "LOCALI! or
IISCREEN") the print could bp. sent to the display screen of local
printer. .

The PRINT userpro~ should not be used if the command line
options L or P are used. If used in this manner the lines from
the CHAINPLS compilation will be intermixed with the user outout
on one of the selected output devices.

APPENDIX E. CHAINPLS RELOCATABLE SUBROUTINE LIBRARY E-1

Manual Name __ __

Manu~1 Number ______________________ ~ ________________ _

READER'S COMMENTS

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement.

Name ___ Date __________________________________ _

Organization __ _

Street __ __

C ity _____________________ State _____________ Zip Code ___________________________ _

All comments and suggestions become the .property of Oatapoint.

Fold Here

______________________________ ~.£I~ ~e~ ~n~ ~t~~ ______________________________ _

BUSINESS REPLY MAIL
No Postage Necessary if mailed in the United States

Postage will be paid by:

DATAPOINT CORPORATION
DIRECTOR OF SOFTWARE SUPPORT
8550 Datapoint Drive, Mail Station# N60
San Antonio, Texas 78284

IIIII FIRST CLASS
Permit
5774

San Antonio
Texas

CHAPTER 7. ABTONOFF COMMAND

7.1 Purpose

The ABTONOFF command is used to manually modify the ABTIF bit
in DOSFLAG (see the description of IIABTIF in the chapter on the
CHAIN command.)

7.2 Use

The com~and line for ABTONOFF is:

ABTO~OFF [<condition>]

Hhere <condition> is one of "ON" or "OFF", specifying the desired
condition of the bit. The command will display the prior
condition of the bit before modifying its status. If it is
desired to just manually inspect the bit without modifying it,
specify no <condition>.

CHAPTER 7. A B TON 0 F F CO l'1('"1 AND 1-1

CHAPTER 16. CHAIN COMMAND

16.1 Purpose

The CHAIN command executes a series of programs as defined by
a procedure file created by the user. The procedure file
contains the commands to invoke all required programs, and all
inputs for those programs. Basically, CHAIN replaces the DOS
keyboard entry routine with a routine that reads lines from a work
file when the keyboard entry routine is called. Each time any
program would normally request a line to be entered from the
keyboard, it will read from the work file instead. When the last
line of the work file has been read, DOS is reloaded and commands
are again accepted from the keyboard.

CHAIN features several directives to control the procedure
executed. Tags defined on the CHAIN command line can be specified
to modify lines of the procedure file. CHAIN provides procedure
restart capabilities via "CHAIN *" and "CHAIN/OV1". When used
with AUTO and AUTOKEY, CHAIN provides an extensive automatic
procedure facility, as described in the AUTOKEY chapter.

The procedure file is a normal DOS text format file.
Procedure files are generally created using the DOS editor or the
BUILD command, but may also be created by any means producing a
suitable text file (a DATABUS program, for example).

16.2 Use

The command line to invoke a CHAIN procedure is of the form:

<procedure) is the user-defined chain procedure file. This file
must already exist and must be specified on the command line. The
default extension is ITXT. The <tag n> and <vale> entries in the
option field are chain tags and their substitutlon values,
described fully below. The substitution value for a tag may be
specified in the.forrn <tagn)lI<valn>1I as well as in the form
<tagn>=<val n)·

The CHAIN command line can be extended to more than one line

CHAPTER 16. CHAIN COMMAND 16-1

by placing a hyphen (-) at the end of the option field. After
scanning the current line of the command, CHAIN will display a
colon as a prompt for the operator and wait for entry of another
line of tags and substitution values. The command can be
continued for several lines by repeated use of the hyphen.

16.2.1 CHAIN Compilation

CHAIN executes two phases, the first of which is co~pilation.
During compilation the specified procedure file is read and
compiled into a chain work file. Compilation consists of
evaluating and executing CHAIN directives and performing tag
substitution. The output of compilation is placed in a file
called CHAINP/SYS, which directs the operation of the program
chain during execution phase.

The chain work file is always placed on the same logical
drive as CHAIN/CMD and CHAIN/OV1, the CHAIN program files. When
operating under PS (Datapoint Partition Supervisor) the partition
ID is used in the· work file name instead of "p" to assure unique
identification of the chain work file for each partition. The
work file is placed in subdirectory SYSTEM no matter what the
current sUbdirectory is, so the current subdirectory can be
changed during the chain and the work file will still be
accessible. If the work file is created on an ARC (Attached
Resource Computer) remote volume it is placed in the current
subdirectory (rather than SYSTEM) to avoid work file usage
conflicts among different applications processors.

When CHAIN is used recursively (that is, when CHAIN is
invoked from within a chain procedure) the same work file is
re-used, the additional compiled information being added to the
end of the file. The extent of recursive nesting of chain
procedures is limited only by the amount of space available for
the work file.

16.2.2 CHAIN Execution

Execution begins following compilation, when the 'first line
of the chain work file is read and given to DOS as a command line
input. Execution continues until the work file is exhausted or a
fatal error occurs. During CHAIN execution the DOS keyboard entry
routine is replaced by a disk read routine so that any entry
normally read from the keyboard will be read instead from the
chain work file. For details on this execution interface see the
sec t ion 0 n "C H A IN Pro g r a Hun i n g Con sid era t ion s" .

16-2 DISK OPERATING SYSTEM

CH~IN execution is aborted when:

1. A line from the chain work file is longer than allowed. DOS
command lines within the chain procedure can be 80 characters
long. The allowable length of lines for input to different
programs depends on the programs used. For example, when a
program requests a file name it generally allows about 20
characters to be entered. If a chain procedure gave a line of
30 characters in response to such a request the chain would
abort.

2. The end of the work file is reached while a program is
requesting input. The Hork file must provide all responses
needed for execution of the programs used; it cannot invoke a
program then end without supplying all required inputs.

3. An //ASTIf directive is executed when the ASTIF bit is set.
See the section on "ABORT Directives".

4. A program executing during the chain procedure terminates in a
fatal error. Each program can control whether it aborts or
continues a chain upon termination. For details see the
section on "CHAIN Programming Considerations".

16.3 Tag Definition

The CHAIN command line can contain both tag names and
substitution values for the tags. The tag naines can be from one
to eight characters in length and may have values from one to
seventy characters in length. A tag must contain only letters or
digits. The value of a tag may contain any valid character except
comma (,), equals (=) or pound sign (II). The character
restriction depends on the syntax being used.

A ta6 is defined by just its presence on t~e CHAIN command
line. Tags may have a value given to them by one of the following
syntaxes:

CHAIN DOIT;LIST,DATE=30NOV76,TIME=1500hr

CHAIN DOIT;LIST,DATE#30NOV76#,TIME#1500hr#

(New Syntax)

(Old Syntax)

Both syntax ·structures are supported and the result of the
two CHAIN commands is identical. The tag LIST has been defined
but has a null value; DATE has the value of 30NOV76 and TIME has
the value of 1500hr.

CHAPTER 16. CHAI N COMf-1AND 16-3

CHAIN allows two uses to be made of tags:

1. A tag can be tested to determine whether it was defined
on the CHAIN command line.

2. The value of the tag can be substituted on CHAIN input
statements before the line is written to the work file.

16.4 CHAIN Directives

All CHAIN directives are denoted by the characters "II" at
the beginning of a line. Any number of spaces (including zero)
are scanned until the CHAIN directive is reached. The first thing
after the "II" must be a valid CHAIN directive else an error
message is issued and CHAIN is aborted. The following is a list
of these statements.

IIIFS
IIIFC
IIXIF
IIELSE
IIBEGIN
IIEND
II.
11*
IIABORT
IIABTIF

16.4.1 IF Directive

IF SET (TAG DEFINED)
IF CLEAR (TAG NOT DEFINED)
EUD OF IF
REVERSE EFFECT Of IF
BRACKETS A GROUP OF

IF/ELSE/XIf STATEMENTS
EXECUTION TIME COMMENT
EXECUTION TIME BREAKPOINT
ABORT CHAIN COMPILATION
CONDITIONALLY ABORT CHAIN
COMPILATION TIME COMMENT.

are not present)

EXECUTION
(Note that the II's

The IF directive has two variations, IFS and IFC, which are
IF SET and IF CLEAR. The IFS directive proves positive if the tag
named appeared on the CHAIN command line, and negative if the tag
was omitted.

For e x a Lfl pIe :

IIIFS LIST

will prove positive if LIST was mentioned in the CHAIN command
line, and negative if the tag does not exist, and

IIIFC LIST

16-4 DISK OPERATING SYSTEM

will prove positive if LIST was omitted and negative if it
appeared on the CHAIN command line.

When an IF directive tests negative, it causes the chain
compilation to skip all following lines of the procedure file
until a directive is reached which clears the effect of the IF (an
ELSE or Xlf). When an IF directive tests positive it has no
effect on the chain compilation. Normally the chain compilation
is said to "include" lines from the procedure file; inclusion is
inhibited by a negative evaluation of an IF directive.

Simple logical operations can be performed by IF directives.
The tags to be used are separated by logical operators. The
logical OR is indicated by ,:, (vertical bar) or ',' (comma). The
10 g i cal AND i sin d i cat ed by' & ' (a m per san d) 0 r '.' (p e rio d) . For
example the following lines are in the file DOlT:

IIIFS DATE&TIME:QUICK
DB C 1"1 PTE S T ; L
SAMPLE COMPILE

or IIIFS DATE.TIME,QUICK
DBCt"1P TEST;L
SAM PLE CO~1 PI LE

If DATE and TIME or QUICK are defined on the CHAIN command line
the DBCMP lines will be included in the work file.

CHAIN DOIT;DATE=30NOV76,TIME=1500hr
or

CHAIN DOIT;QUICK
or

CHAIN DOIT;DATE,TIME

will all result in a true logical condition and the DBCMP lines
will be included.

IF directives are only evaluated if lines are being included.
If one IF directive has proven negative and has inhibited the
inclusion of lines, all following IF directives will be ignored
until either an ELSE or XIF statement is found .• For example~

IIIFS DATE
IIIFS TIME
DBCMP TEST;L
SAMPLE COMPILATION
IIXIF

If DATE was not defined, all lines until the IIXIF will be
ignored. In this example, if DATE were not defined the IIIFS TIME
statement would not be evaluated and the DBCMP TEST;L would not be
included even if TIME was defined.

CHAPTER 16. CHA I N COtv1MAN 0 16-5

16.4.2 ELSE/XIF Directives

CHAIN has two directives that will alter the inclusion of
lines from an IF directive. The first is the XIF directive. It
wi 11 un con d i t ion all y t e r to ina t e the r an g e 0 f the 1 a s t IF d ire c t i v e .
The second is the ELSE directive; it will reverse the results of
the last IF directive; that is to say, if lines were being skipped
because the last IF proved negative, an ELSE would cause lines to
be included.

For example, the DOlT file contains the following lines:

IIIFS LIST
DBC~1P TEST; L
SAMPLE COMPILATION
IIELSE
DBCMP TEST
IIXIF
IIIFS TAPE
MOUT;D,30NOV76,V
TEST/DBC

*
IIXIF

If CHAIN is invoked by 'CHAIN DOIT;LIST' the work file will
contain

DBCMP TEST;L
SAMPLE COr-1PILATION

If invoked by 'CHAIN DOIT;TAPE', the work file will contain

DBCMp· TEST
MOUT;D,30NOV76,V
TEST/DBC
*

16.5 Tag Value Substitution

A tag value is substituted whenever a pair of '#~ symbols are
found with a syntactically valid tag name between them. The value
substituted is the tag value given in the CHAIN cOffimand line.

For example, contents of a file called DOlT:

16-6 DISK OPERATING SYSTEM

DBCMP TEST;XL
TEST PROGRAM COMPILED ON #DATE# -- HTIME#
DBCMP #NA~E#;XL
#NAME# PROGRAM COMPILED ON #DATE# -- OTIME#

If CHAIN is invoked by

CHAIN DOIT;TIME=2400hr,DATE=29NOV76,NAME=TEST2

the work file will contain

DBCMP TEST;XL
TEST PROGRAM COMPIL~D ON 29NOV76 -- 2400hr
DBCMP TEST2;XL
TE3T2 PROGRAM COMPILED ON 29NOV76 --2400hr

If a tag is mentioned in the CHAIN command line but given no
value and if the value is to be used for substitution, a null
value is substituted for the OtagH within the line. The effect is
that the #tag# characters disappear from the line. Continuing the
above example, if CHAIN was invoked by

CHAIN DOIT;DATE=29NOV76,NAME=TEST2

the work file will contain

DBCMP TEST;XL
TEST PROGRAM COMPILED ON 29NOV76 -
DBCMP TEST2;XL
TEST2 PROGRAM COMPILED ON 29NOV76

16.6 BEGIN/END Directives

The BEGIN and END statements allow groups of IF/ELSE/XIF
statements to be parenthesized. A counter called the BEGIN/END
counter is initialized to zero when compilation of a procedure
begins. If the use of procedural lines is turned off and a BEGIN
operator is encountered, then the BEGIN/END counter is
incremented. If an END operator is encountered, then the
BEGIN/END counter is decremented unless it is already zero. The
ELSE and XIF operators have no effect if the BEGIN/END counter is
not equal to zero. For example:

CHAPTER 16. CHAIN COM~AND 16-7

IIIFS FLAG1
DBCMP TEST1;XL
TEST PROGRAM ONE
IIELSE
IIBEGIN
IIIFS FLAG2
DBCMP TEST2;XL
TEST PROGRA['v1 TWO
IIELSE
DBCMP TESTTEST;XL
TEST TESTER
IIXIF
I/END
IIXIF
IIIFS FLAG3.FLAG27
LIST SCRATCH;L
THE SCRATCH FILE AT FLAG 27
IIXIF

The 6th through the 12th lines will not be used if FLAG1
exists, notwithstanding· the fact that there is an ELSE and XIF
operator within those lines, because the BEGIN/END pair prevented
these statements from having any effect.

16.1 ABORT Directives

The IIABORT statement will cause CHAIN to return to DOS if it
is processed. For example:

IIIFC TIME:DATE
**** TIME AND DATE ARE 80TH REQUIRED

IIABORT
IIXIf

If the procedure file is invoked with TIME or DATE missing, the
error message comment line would be displayed, and the compilation
of the input file would ABORT.

The IIABTIF statement will conditionally cause the execution
phase of CHAIN to ABORT. This statement causes DOSFLAG to be
examined and if bit 7 (ABTIF) is on, the chaining will abort. Bit
'1 of DOSfLAG is the abnormal program completion bit. If non-fatal
errors have been found during the execution of the last program

16-8 DISK OPERATING SYSTEM

the ABTIf bit should be set. For example, the procedure file
contains:

ABTONOFF OFF
KILL TESTFILE/CMD
Y
IIABTIF
KILL OUTPUT/TXT
'[

If the file TESTFILE/CMD is not found by KILL, it will set the
ABTIF bit. When the IIABTIF statement is processed the abnormal
program completion bit will be checked, and in this case it will
be on, so the CHAIN will be aborted.

The ABTONOFF command should always be used to turn the ABTIF
bit off prior to execution of a prograro which will be tested using
IIABTIF. Once ABTIf is set on by some error, it is not cleared
except by ABTONOFF or by an abort caused by an IIABTIF directive.

16.8 Comments

CHAIN allows for t~o types of comment lines within the
procedural file. One type is the execution time comment. This
type may appear only before a DOS command entry and will not
appear until just before that command is to be executed. An
execution time comment can appear only just before a command
because at any other place in a procedure file, the comment would
be presented as keyboard response to an executing program.
Comments can be placed at the end of a procedure, since this
location is equivalent to immediately prior to a command. For
ex aII1ple, the proc ed ure fi Ie con ta in i ng :

II. COMPILATION OF THE TEST PROGRAM
DaCMP TEST;XL
TEST PROGRAM

would cause the first line to be displayed before the assembly was
executed. A variation on the execution time comment is the
operator break point. For example, the procedure file containing:

CHAPTER 16. CHAIN COMMAND 16-9

//* INSERT TAPE Z12548 INTO THE FRONT CASSETTE DECK
HOUT ;LV
TEST/TXT
DATA/TXT
*

would cause a BEEP and the first line to be displayed. At this
point the machine would wait for the operator to depress either
the KEYBOARD or DISPLAY key and then continue with the MOUT
process.

The second type of comment line is a compilation time
COlTIinent. This line is not included in the work file but is
displayed on the screen immediat~ly after it is read from the
procedural" file. This is useful in communicating to the operator
what procedure is about to be followed by CHAIN.

Both types of comment lines will be ignored (not displayed or
written) just as other procedure lines if a test has proven
negative and an ELSE or XIF operator has not been reached. For
example, if the following procedure file MAKETEST was created:

COMPILATION OF TEST PROGRAM
//IfS LIST

YOU ARE GOING TO GET A LISTING
DBCMP TEST;XL
TEST PROGRAf'.1
//ELSE

YOU AREN'T GOING TO GET A LISTING
DBCMP TEST

and the CHAIN command:

CHAIN MAKETEST;LIST

was given, then only the lines:

. COMPILATION OF TEST PROGRAM

. YOU ARE GOING TO GET A LISTING

will appear on the screen before the procedure is executed. If,
hOHever, the CHAIN command:

CHAIN MAKETEST

was given, then only the lines:

16-10 DISK OPERATING SYSTEM

. COMPILATION OF TEST PROGRAM

. YOU AREN'T GOING TO GET A LISTING

will appear on the screen before the procedure is executed.

16.9 Complex CHAIN Examples

The chapter on the AUTOKEY command contains an example of the
use of AUTO and AUTOKEY combined with the use of CHAIN directives
using tag existence testing to set checkpoints for automatic
restart of a lengthy automated procedure. The example below uses
BUILD within a chain procedure to create a procedure file for
later execution by another chain. It uses several tags for both
existence testing and value substitution.

The procedure file below, "RUNTEST", is part of a series of
CHAIN procedures for program generation and testing. RUNTEST
builds a procedure file for program compilation; the resulting
procedure file would be run by a later CHAIN.

RUNTEST recognizes several tags:

PLUS

XTR

fLAG

PROG

DATE

mention of this tag indicates the compilation
should use the DBCMPLUS compiler instead of the
older DBCMP compiler.

mention of this tag causes use of the additional
list output cotnmands (C and R) available in
DBCMPLUS.

the substitution value for this tag will be tag
existence tested for list control on the output
procedure file.

the substitution value for thi2 tag will be a tag
to provide program name in the output procedure
file.

the substitution value for this tag will provide
the compilation date in the output procedure
fil e.

CHAPTER 16. C H A I NC 0 ,'1 rvl AND 16-11

RUNTEST contents:

· TEST FOR DBCMPLUS COMPILER FLAG

IIIFC PLUS
IIBEGIN

~

· BEGIN PROCEDURE FOR DBCMP COMPILATION

BU.D COMPIT;!

· NOTE HOW BEGINNING INPUT LINE TO BUILD/CMD WITH THE TERMINATION CHARACTER
· ALLOWS ENTERING CHAIN COMMANDS TO THE OUTPUT FILE. THE LINE IMMEDIATELY
· BELO~~ IS WRITTEN OUT AS IfIIIFS IIFLAGfI"; IF IT HAD NOT BEGUN TtiITH "! It, IT
· WOULD HAVE BEEN INTERPRETED AS A CHAIN DIRECTIVE FOR THE CURRENT CHAIN.

· !IIIFS IIFLAGII
!II* COMPILATION LISTING BE SURE PRINTER IS READY
DBCMP IIIIPROGIIII;LX
IIJPROGII# COMPILATION #DATE#
!IIELSE
DBCMP ##PROG##
!IIXIF

IIEND

· THIS "IIELSE" INSTRUCTION REVERSES THE EFFECT OF THE I'IIIFC PLUS" ABOVE

ilaE
IIBEGIN

· BEGIN PROCEDURE FOR D8CMPLUS COMPIL~TION USING OPTIONS OF DBCMPLUS
· BASED ON "XTRlI FLAG.
· THE "BEG I N" ABOV E CA US ES THE "XIFIf S AN D "ELSE If S IN THE FOLLOWING SECTION
· TO AFFECT Ol~LY DIRECTIVES AT THE SAME BEGIN/END LEVEL, AND NOT THE
· "I I ELSE" DIRECTIVE ABOVE, WHICH CONTROLS THE ENTIRE "PLUS" CONDITIOHAL
· SECTION.

BUILD CMPLIT;!
!IIIfS #fLAGiI
!II* COMPILATION LISTING BE SURE PRINTER IS READY

· THE FOLLOWING DIRECTIVES ARE RECOGNIZED DURING CHAIN COMPILATION AND
· CONTROL SELECTION OF LINES TO FOLLOW THE BUILD COMMAND ABOVE.

IIIFS XTR

16-12 DISK OPERATING SYSTEM

DBCMPLUS ##PROG##;LXCR
IIELSE
DBCMPLUS ##PROG##;LX
IIXIF
##PROG## COMPILATION #DATER
IIIELSE
DBCMPLUS ##PROG##
!IIXIf

· PROCEDURE IS EFFECTIVELY FINISHED AT THIS POINT, BUT IT IS ESSEN;&AL
· PROVIDE Al~ "END" DIRECTIVE TO MATCH THE UNr~ATCHED "BEGIN" ABOVE, .ND
· AN" X IF" TOT E R ~1 I NAT E T rl E I' E L S E It I M fv1 ED I ATE L Y P RIO R TOT HE" BEG IN" .

IIEND
IIXIF . . END OF RUNTEST SAMPLE FILE .

Entering the command

CHAIN RUNTEST;PLUS,XTR,FLAG=LIST,PROG=NAME,DATE=210CT78

produces a procedure file CMPLIT/TXT with the following contents:

IIIFS LIST
11* COMPILATION LISTING BE SURE PRINTER IS READY
DBCMPLUS HNAME#;LXCR
#NAME# COMPILATION 210CT78
IIELSE
DB CM PL US II NAf-1EII
IIXIF

Entering the command

CHAIN RUNTEST;FLAG=PRINT,PROG=PROG,DATE

produbes a procedure file COMPLY/TXT with the following contents:

CHAPTER 16. CHA IN COHr"1AND 16-1

IIIFS PRINT
11* COMPILATION LISTING
DB C M P II PRO G II ; LX
#PROG# COMPILATION
IIELSE
DB Cf-1P IIPROGII
IIXIF

BE SURE PRINTER IS READY

16.10 Resuming An Aborted CHAIN

Before the CHAIN overlay fetches the next DOS command it
stores in the CHAINP/SYS file pointers for the line to be used.
If something goes wrong during the DOS command which follows and
the procedure is aborted, CHAIN still knows where it was in the
CHAINP/SYS file when the problem occurred. Since CHAIN does not
delete the CHAINP/SYS file unless the procedure completes
successfully, it can pick up where it stopped in the CHAINP/SYS
file if the operator can correct the condition which caused the
procedure to abort in the first place. Often, the reason for the
abort is something correctable like the disk running out of files.
In this case, the operator need only correct the condition and
then enter:

CHAIN *
and the procedure will pick up with the command which failed
before. This action can generally be applied even if the RESTART
key has been depressed. Thus, one can recover from jammed paper
in a printer half way through a listing by simply depressing
RESTART, fixing the printer, and then entering the CHAIN *
command.

If the failing command cannot ever succeed, it may be
bypassed by entering the command:

CHAIN/OVl

This simply restarts the chain with the next available line in the
procedure. If the next line had been intended as a keyin line for
the failed program (as opposed to a DOS command line) the chain
will generally immediately abort again. HOvJever, by restarting
the chain in this manner, repeatedly if necessary, the invalid
step can usually be bypassed and chaining resumed. Use of
CHAINIOVl will not always work, since it depends on information in
processor memory to function. If the area from MCR$+80 to
MCR$+100 is disturbed, CHAIN/OVl will fail, usually causing a
range error or perhaps a .syste~n data failure.

16-14 DISK OPERATING SYSTEM

16.11 CHAIN Programming Considerations

CHAIN only replaces the DOS keyboard entry routine (KEYIN$).
Therefore, only programs that use this routine for input will
receive their input from the chain file. Programs which have
their own input routines, like the DOS editor, can be invoked from
a chain file but editing must be done manually by the operator.
Sometimes programs will use a different keyin. routine based on DOS
Function 6 to request operator action for special circumstances
when it is desired to avoid using lines from the chain procedure.

When a program exits via EXIT$ or NXTCMD the chain continues
normally. If a program exits via ERROR$ or CMDAGN the chain is
aborted. Generally the terminating error message displayed by an
aborting program will remain visible on the screen following the
CHAIN abort.

Some programs can go through a rather complex set of requests
for input, which can make them difficult to use with the CHAIN
program. For this reason, most DOS programs allow almost all
options to be specified on the command line and keep the variation
in the number of keyin requests to a minimum. It is good practice
for all programs to be written with this concern in mind to
facilitate their use with CHAIN.

CHAPTER 16. CHAIN COMMAND 16-15

