

• •

engineering
a compiler
VAX-11 CODE GENERATION
AND OPTIMIZATION

Patricia Anklam
David Cutler
Roger Heinen, Jr.
M. Donald MacLaren

~amaDmD

Copyright © 1982 by Digital Equipment Corporation

All rights reserved. Reproduction of this book, in part or in whole, is prohibited. For information
write Digital Press, Educational Services, Digital Equipment Corporation, Bedford, Massachu
setts 01730.

Printed in U.S.A.
10 9 8 7 6 5 4 3 2

Documentation number EY-00001-DP

The manuscript of this book was created using generic coding and, via a translation program, was
automatically typeset on DIGITAL's DECset Integrated Publishing System.

VAX-ll, VAX/VMS, PDP-ll are trademarks of Digital Equipment Corporation; MULTICS is a
product of Honeywell Inc.

Aho/Ullman, Principles of Compiler Design, © 1977. Addison-Wesley, Reading Massachusetts.
Figures 12.12 and 13.8. Reprinted by permission.

Library of Congress Cataloging in Publication Data
Main entry under title:

Engineering a compiler.

Includes index.
1. VAX-ll (Computer)-Programming.

2. Compiling (Electronic computers)
3. Code generators. 4. PL/I (Computer program
language) I. Anklam, Patricia, 1949-
QA76.8.V37E53 1982 001.64'25 82-9633
ISBN 0-932376-19-3

Preface

This book is for students, for computer scientists, and for practicing soft
ware engineers who have a special interest in compiler design and implemen
tation. It describes practical experiences in the development of a production
quality compiler with a code generator capable of generating highly optimized
object code for multiple source languages. In examples and discussions of
source language issues, we generally refer to a specific compiler implementa
tion-a PL/I General Purpose Subset compiler for Digital Equipment Cor
poration' s VAX-II machines. However, the methods used in the compiler are
applicable to most languages; thus this book should prove useful to anyone
interested in the field.

Chapter 1 describes how the project got started and how we acquired the
excellent compiler we started with: the PL/I compiler developed by Robert A.
Freiburghouse and originally marketed by him through his former company,
Translation Systems, Inc. This chapter also discusses the overall structure of
the compiler as it existed when we acquired it.

Chapter 2 discusses our experiences in bootstrapping the original compiler
onto our VAX-II machine. It provides some insights about bootstrapping in
general and describes the decisions we had to make and the tools we had to
create in order to debug the compiler early in its development. The chapter
concludes with a description of the overall structure of the compiler in its cur
rent state.

One of the tools introduced in Chapter 2 is TBL, a table-building language
that is used to describe local code generation in a procedural fashion. TBL is
actually very flexible and we use it in several places in the compiler, not just in
the local code generator. TBL and its compiler are discussed in Chapter 3.

The backbone of our compiler's design is the Intermediate Language, which
serves as the boundary between the language-specific "front end" and the
machine-specific common code generator (the "back end"). Chapter 4 de
scribes the steps the front end must perform to transform a program's source
statements into semantically correct trees and to accumulate symbol table in
formation required by the back end. Chapter 5 presents the Intermediate Lan
guage itself. It is worth noting that the symbol table structure and the
intermediate language have a long history, going back at least to 1970, when
Freiburghouse designed version 2 of the MUL TICS PL/I compiler ("The In-

v

Engineering a Compiler

ternal Representation of PLjl Programs," Internal Memorandum, October
1970). Although the design has evolved over the years, the operators and
symbol table nodes of the VAX-II PLjI compiler are still very similar to those
of the MUL TICS compiler, with one major difference. The PLjI compilers de
veloped at Translation Systems, Inc., keep the internal program representa
tion in a linear file of operators representing a sequence of trees, rather than
as a complete tree in memory. We discuss the advantages of this approach in
Chapter 5.

Chapters 6 through 10 provide detailed technical discussions of VAX-II
specific phases of the compiler, including tree writing and reduction, global
optimization, code generation and the allocation of temporaries, register allo
cation and assignment, and peephole optimization. Although these chapters
are ordered according to the sequence in which the phases execute during a
compilation, they may also be read individually.

In these chapters, we discuss some topics in greater detail than others, and
some topics generally found in books on compiler design are not discussed at
all. For example, we tend to emphasize optimization and code generation tech
niques but make little mention of parsing. Our aim is to present information
on aspects of the design that we feel are especially interesting or that we feel
we executed particularly well. The technical content of these chapters is occa
sionally somewhat dense, and we assume that readers have some prior ac
quaintance with compiler design topics or some experience in software
engineering, or both. The glossary provides some explanations of PLjI terms
used in the text and should help fill any gaps.

Chapter 11 summarizes our experiences in taking the common back end and
writing a second front end-for a C compiler-for it and compares these dif
ferent front ends. Chapter 12 offers some brief conclusions about the process
of compiler design in general. In the appendix we present some examples of
code optimization.

Although this book is neither a textbook nor a scholarly survey of compiler
design techniques, students should find much material of practical value in it.
We have discussed engineering issues that are not covered in the academic
literature, and we have tried to do so with a minimum of technical jargon and
abstraction.

We would like to acknowledge the participation and contributions in the de
velopment work of the PLjI compiler and documentation of William Brown,
Charles Spitz, Catherine Pacy, Peter Baum, and Thomas Diaz.

Successive drafts of this manuscript were edited, reviewed, and aided by
Ann Staffeld, Jonathan Ostrowsky, Jay Palmer, Rodger Blair, Andrew Bodge,
Larry Jones, and Myles Connors. For help in preparation of early drafts, we
owe thanks to the Graphic Services group at Digital's Spit Brook facility, in
particular Deborah Malone and Paul King, and the library staff, Charlie Mat
thews and Dottie Mamos.

Preface

Special thanks for help and assistance go to the Digital Press staff for su
perb editorial support. This manuscript was produced by Digital's Educational
Services Development and Publishing in Bedford, who accepted generically
encoded, machine-readable text from the authors and translated it on a
DECset typesetting system. We are thankful to Rudolf Riess and Mary Ann
Cotter for undertaking the translations, to Jane Blake for the careful final
editing of the manuscript, and to Gillian Cowdery and Frances Giannopoulos
for the book and cover design.

We appreciate the support and encouragement of C. Gordon Bell, William
Heffner, Bill Johnson, and Armen Varteressian, who gave us time to work on
this project.

Finally, we acknowledge once again the engineering achievements of Rob
ert Freiburghouse, whose early compilers and compiler-writing techniques
provide the groundwork for the compiler we describe here, and whose en
couragement of our project and thoughtful readings of early drafts are greatly
appreciated.

Patricia Anklam
David Cutler

Roger Heinen, Jr.
M. Donald MacLaren

vtt

Contents

Where We Began, and Why
Background /1
Building the PL/I Team /2
The Original Compiler /2
Armed for the Dragon /3

Getting Started: Design Decisions
A Code Generation Method /5
Bootstrapping /6
A Project Plan /10
Tools We Needed /11
How We Changed the Compiler /12
Introducing ... The VAX-ll Compiler and Common Code Generator /12

The TBL (Table-Building Language)
How TBL Programs Are Constructed /18
The "Language" /20
Sample TBL Program and Its Interpreter /24

What the Front End Must Do
Parsing and Semantic Analysis /36
The Symbol Table /37
Trees /45
Block Activations and Stack Management /47

The Intermediate Language
Design Considerations /52
Summary of Operators /54
Data Types of Operators /57
References to Data /59
Computation of Offsets and Extents /64
Procedure Calls /66

ix

1

5

18

35

52

x

Writing and Reducing Trees
The Evolution of Write Tree /70
Overview of Functions /72
Reduction of Integer Expressions /76
When a Tree Is Not a Tree /80

Global Optimization
Background: Engineering an Optimizer /86
Underlying Concepts and Assumptions /88
Structure and Control Flow in the Optimizer /96
Selecting Variables for Assignment to Registers /99
Optimizing Boolean Branch Expressions /100
Constructing the Flow Graph /105
Live Variable Analysis /111
Value Propagation and Register Assignment /113
Loop Invariant Removal /125
Common Sub expression Elimination /134
Result Incorporation /145
Conclusions /146

Engineering a Compiler

70

86

Operator Transformation and Code Generation 152
Background /152
Overview /153
Temporaries /156
Building Code Blocks /159

The Register Allocator
Background /169
Overview /172
Register Assignment /175
Updating Operand Specifiers in Code Blocks /187
Effects of Register Allocation on a Sample Program /191
Conclusions /194

Peephole Optimization
Objectives 1196
Design /197
Scanning the Intermediate Code List /198
Some Peepholes /199
Conclusions /202

169

196

Contents

Beauty and the Beast
Background /204
The Beast /205
The Beauty /213
What Is the Moral? /217

Concluding Remarks

Appendix: Optimized Code Examples

Glossary

Index

Xl

204

219

223

239

253

Figures

1 Bootstrapping backward /10
2 Overview of the VAX-II Code Generator /14
3 Using the VAX-II Code Generator for different compilers /17
4 Files required to build a TBL-driven program /19
5 A sample TBL program /24
6 Interpreter for the sample TBL program /26
7 A tree produced by the front end /36
8 Memory allocation in the Symbol Table /40
9 Block nodes /41
10 Symbol nodes /42
11 Symbol nodes for structure declaration /43
12 Array nodes /44
13 Token nodes /45
14 A VAX-11 stack frame /49
15 An operator node /53
16 A tree (DAG) containing a common subexpression /81
17 A tree representing i++ /84
18 Sequence of optimizations /97
19 The Optimizer's position and pointer arrays /98
20 Successors and predecessors /107
21 Flow graphs charting hidden control flow /108
22 Data in a flow graph node /110
23 Computing the depth-first order /112
24 Nodes in depth-first order /113
25 Equations for live variable analysis /113
26 Computing the in and out sets /114
27 Operators divided into nodes /114
28 The flow graph of a program's nodes /116
29 Bit vectors for live variable analysis /117
30 Flow graph for a program containing a register temporary /118
31 A subgraph for a variable selected for assignment to a register /121
32 Effect of value propagation on operators /124
33 Operators changed by assignment of locals to registers /126
34 Intermediate Language representation of loops /128

xiii

XlV Engineering a Compiler

35 Computation of loop dominators /129
36 Operators for an array indexed within a loop /131
37 Introduction of autodecrement addressing /135
38 Optimized code using autodecrement addressing /136
39 Determining unique backward flow /138
40 Hash table for eliminating common subexpressions /139
41 Modified hash table /140
42 Flow graphs for eliminating common subexpressions /142
43 Removing common sUbexpressions in an IF-THEN-ELSE flow /145
44 Effect of optimization on Benchmark 1 /148
45 Effect of optimization on Benchmark 2 /149
46 Effect of optimization on Benchmark 3 /149
47 Effect of optimization on Benchmark 4 /150
48 Effect of optimization on Benchmark 5 /150
49 Effect of optimization on Benchmark 6 /151
50 Processing the operator file /155
51 Recursion levels in code generation /157
52 T-reg node allocation /158
53 T -reg identification /158
54 T-reg nodes for ASSIGN-REGTEMP operators /160
55 Code blocks emitted for a simple program /162
56 Code block operand specifier format /164
57 Operand specifiers for a two-operand ADD instruction /165
58 Operand specifiers for instruction using indexed addressing mode /165
59 Operand specifiers for an instruction in the load base code block /166
60 Operand specifiers for a BBC instruction /167
61 Operand specifiers for instruction using autoincrement addressing mode /167
62 Operand specifiers for a complex reference /168
63 Data structures at the start of register allocation /174
64 Control flow in the Register Allocator /176
65 T-reg usage spans /178
66 Marking registers from the register kill list unavailable /179
67 Register temporaries within allocation partitions /180
68 Register use masks /182
69 Register selection /183
70 Stack allocation for register temporaries /185
71 Addressing temporaries by FP and SP /186
72 Updating the code block operand specifiers /187
73 Emulating base register usage on the stack /190
74 Disjoint register allocation example /191
75 Peephole tables and pattern-matching routines /198
76 Control flow in the Peephole Optimizer /200
77 PL/I compiler execution-time summary /220

Figures

78 C compiler execution-time summary /221
79 A binary search program, optimized /223
80 Strength reduction /227
81 relax2, optimized /230
82 The towers of Hanoi, optimized /232
83 A shell sort, written in PL/I, optimized /235
84 A shell sort, written in C, optimized /237

Selected project notes, taken by David Cutler, appear on pages 91, 93, 120, 123, 133,
and 154.
Cartoons by Stanley Roberts, Digital Equipment Corporation, appear on pages 37, 39,
72, 77, and 96.

xv

1
Where We Began,

and Why

When we began the compiler development project, as a team, we had few pre
conceived notions of how certain tasks within a compiler ought to be done.
Two of us had participated in the design of operating systems for Digital
Equipment Corporation's PDP-II and VAX-II computers. One, a technical
writer, had previously documented operating systems. The fourth member of
our team had experience in compiler design and language theory but had
never worked on code optimization.

Background
The VAX-II, a computer architecture developed by Digital Equipment

Corporation in the mid- to late seventies, is a 32-bit machine with memory
management capabilities to support multiprogramming. One of the fundamen
tal design goals of the V AX-II architects was to implement an instruction set
that would enhance the performance of code produced by high-level language
compilers. Therefore, constructs such as case, call, and array accessing by
register incrementation are built into the instruction set and map conve
niently into single instructions or addressing modes on the VAX-II proces
sors. In mid-1977, before the first release of the machine and its virtual
memory operating system (VAX/VMS), plans for VAX-II language products
emphasized the development of languages that were already available on the
company's PDP-II processors: initially (and especially) FORTRAN but even
tually COBOL and BASIC. There was also some interest in PL/I, particularly
because at this time two ANSI subcommittees were working on it. One was
defining a subset of the full PL/I language, and many of Digital's competitors
either had or were readying implementations of this subset. Another subcom
mittee was defining real-time extensions to the language to support process
control environments.

Consequently, a task force appointed to study the market for a PL/I com
piler recommended that Digital try to make a PL/I subset available within
three to five years. To minimize the risk of designing and implementing a
compiler from scratch, the task force recommended purchasing an existing
compiler and modifying it to produce code for VAX-II machines. The market
ing report was reinforced by another Digital study evaluating the VAX-II de-

l

2 Engineering a Compiler

sign and its suitability for compiler implementation. The latter report
concluded that many features of both the architecture and the operating sys
tem seemed especially well designed for the PL/I real-time extensions. This
finding was not surprising given that the VAX-II architecture was designed
with high-level languages like PL/I in mind.

There was never much discussion about which PL/I compiler to buy: the
obvious choice was the one designed by Robert Freiburghouse and marketed
through the company he founded, Translation Systems, Inc. His compiler was
designed so that a PL/I front end, written in PL/I, transformed the source
program into a common intermediate representation that could subsequently
be read by different code generators that would produce instructions for var
ious machine architectures. This compiler has also been successfully adapted
by Wang, Data General, Prime, Control Data Corporation, Honeywell-Bull
ell, and Stratus Computer, Inc.

Building the PL/I Team

In January 1978, the contract had been signed to purchase the compiler and
to obtain its sources and documentation. Later that same year two of us (Dave
and Roger), who had recently completed work on the first release of the VAX/
VMS operating system software, expressed interest in doing the PL/I com
piler project. Our motivation was twofold: first, we were tired of operating
system development and wanted to take on a different, challenging project;
second, we knew nothing about compilers (nor even of PL/I) and wanted to
learn about them. We were confident that, given our intimate knowledge of
the VAX-II instruction set, we could write a compiler that would produce
very efficient code.

We were soon joined by the PL/I language expert of the team (Don), whose
concern throughout the project was the semantic and language-specific
phases of the compiler. His extensive experience with PL/I and with compiler
design in general ensured the conformity of the compiler (and its
implementors) to the PL/I standard, both in fact and in spirit.

Documentation support was provided throughout the project by Patti, who
joined the project to document the PL/I language and stayed to document the
compiler and common code generator.

The Original Compiler

The compiler was "delivered" to us by way of an account on a MULTICS
machine at the Massachusetts Institute of Technology. The account contained
the compiler's sources and an executable version that ran on MULTICS. The
compiler executed in five phases:

Where We Began, and Why

1. In a first pass over the source file, the compiler parsed the PLfI state
ments, created a symbol table from information in the source file decla
rations, and transformed the program into an intermediate form, a
linear file of operators.

2. Next, a declaration validation phase read the symbol table and applied
PLfI rules to declarations by filling in default attributes, checking for
conflicting attributes, and so on.

3. In a second pass over the program, the compiler read the symbol table
and the intermediate representation to apply PLfI-specific semantics,
resolve references, calculate array extents, and so on.

4. In an optional pass over the operator file, the compiler performed global
optimizations, including loop invariant removal, common subexpression
elimination, and limited optimization of Boolean expressions.

5. Its storage allocation phase assigned static variables to memory loca
tions, automatic variables to stack locations, output the storage map of
the program, and wrote the initial object module records.

The compiler did not contain a code generator; we would provide that.
Each pass read a file created by a previous pass and output a new file.

Because the compiler was developed initially for machines with limited ad
dress space, these intermediate files were true "files" in that they were writ
ten temporarily to disk space. Moreover, each pass executed independently of
the others and, upon its own completion, transferred control to a utility rou
tine that saved global variables in memory and loaded the next pass.

The compiler was almost machine independent. Machine dependencies (rel
ative to source or target computer) were isolated in tables of constants speci
fying size and alignment requirements for data, a general-purpose data
conversion routine, and some small routines in the storage allocator that emit
ted object records. The constant tables were built to be used on MDL TICS to
generate code for a computer with 16-bit integers and 32-bit addresses.

The great value of this compiler was that it correctly and efficiently handled
the syntax and semantics of the PLfI General-Purpose Subset. In addition, it
featured a very nice intermediate language and was programmed in such a
way that it was easy to modify. We have extended and modified the compiler
in many ways, but the treatment of PLfI syntax and semantics has changed
very little.

Armed for the Dragon

When we approached our task we had, by way of technical information on
the compiler itself, its sources and a set of design notes. We were able to
compile examples on MDL TICS and examine the intermediate language out-

3

4 Engineering a Compiler

put. Consulting was available from Freiburghouse, but in the end we used only
about two hours of telephone consultation.

Collectively, our team possessed PL/I expertise and a depth of experience
in software engineering. And, of course, we had begun familiarizing ourselves
with the literature on the subject. Our principal source was the classic by
Alfred V. Aho and)effrey D. Ullman, Principles of Compiler Design
(Reading, Massachusetts: Addison-Wesley, 1979). We used this source fre
quently, especially to understand the state-of-the-art theories on optimization.

Thus armed, we began our project.

2
Getting Started:
Design Decisions

With the compiler sources available to us on the MULTICS machine at MIT,
our first task was to get a version of the compiler running on our VAX-II
machine, which was at Digital's software engineering facility in Tewksbury,
Massachusetts. This entailed, first, designing and developing a code gener
ator for the V AX-II. The second task was to bootstrap the compiler.

A Code Generation Method

Although the original compiler did not contain a code generator, we had ac
quired with the compiler an intangible asset: the knowledge that
Freiburghouse used a procedural form of table-driven code generation in his
own PL/I compilers. In this method, one extends a simple procedural lan
guage, called TBL (Table Building Language), by adding primitive actions spe
cifically related to code generation. The code generator is written in the
extended TBL and compiled into a table by a TBL compiler. One must write
an interpreter to interpret the TBL program contained in the table. The com
bination of TBL program and its interpreter is the code generator. We had no
examples of TBL-style code generators to study, but Freiburghouse gave us a
short lecture on the topic. We defer a detailed discussion of TBL to Chapter 3,
but we will try here to explain the origin of the approach.

The concept of table-driven code generation is part of the folk knowledge of
compiler writers. Most table-driven code generators work along the following
lines. The table contains templates or patterns representing short sequences
of machine instructions. To generate code for an instance of an operation, the
code generator uses an algorithm to select the pattern that appears most suit
able in the current context. A relatively simple routine then substitutes
operands for parameters in the template and generates actual machine
instructions. There are many possible variations on this theme; but the point
of table-driven code generation is always to use templates to systematically
represent a mass of code generation details. Another advantage is that the
method is generally very space efficient.

The disadvantage of traditional table-driven code generation is that even
with a complicated pattern selection algorithm the method is not very flexible.
In particular, it is difficult to make use of information about language data
types and sizes. The development of TBL may be regarded as a reaction to

5

6 Engineering a Compiler

this problem. Instead of having a table that contains code patterns, we have a
table that contains procedures that generate code patterns. In the simplest
case-an operation that always translates into the same single in
struction-there is no practical differentiation between the two approaches.
In the traditional method, a table contains just a template for that instruction.
With TBL, the table contains just a single action that emits the instruction.

The advantage of the TBL approach is felt when, in order to generate good
code, a decision must be based on many factors. Then the TBL method gener
ates code one step at a time with all the flexibility of a procedural language
available to control the generation. The TBL approach is still very systematic
because the TBL dialect used is tailored specifically to code generation for the
target machine.

The TBL approach described in this book was first tried experimentally by a
student at MIT under the direction of Freiburghouse. MacLaren used it for a
FORTRAN compiler on MULTICS in 1975, and Freiburghouse used it in all
the PL/I compilers produced while he owned Translation Systems, Inc. We
made our TBL a syntactic extension of Freiburghouse's TBL so that a single
TBL compiler could be used for all the TBL programs in our PL/I compiler.
The whole TBL approach seems so natural that we would not be surprised to
hear that it has been used before, but we have not been able to find documen
tation of such use.

We did not decide at the outset to use TBL for our code generator (we
were, for that matter, skeptical of any technique that depended on running an
interpreter at compile time). However, we had no other approach in mind. We
therefore decided to use TBL initially so we could get on with the bootstrap
and to rewrite the code generator later, if necessary. The decision to use TBL
proved a good one; we never modified the design. Our Local Code Generator
(described in detail in Chapter 8) uses a TBL program to generate instruc
tions on an operator-by-operator basis.

Using TBL requires a TBL compiler. We needed to write our own version
of a TBL compiler mainly because the one on the MUL TICS machine was
written in PL/I and we did not have a PL/I compiler on our VAX-II machine.
And because we decided (for reasons explained below) not to perform the
bootstrap on MUL TICS, we could not use the TBL compiler there. So, one of
our first tasks was to write a compiler so that we could write a compiler. The
resulting TBL compiler is the first, the fastest, and most bug-free-albeit the
simplest-of the three compilers we have written.

It was when we encountered problems in bootstrapping the compiler that
we formally decided to use TBL.

Bootstrapping

The PL/I compiler we bought was written in PL/I. Writing a compiler in its
own language is quite a common practice, and one nice thing about it is that

Getting Started: Design Decisions

the developers immediately benefit from improvements in the compiler.
Another advantage is that the compiler provides a substantial test program
for checking its own correctness and performance. The principal reason for
writing a compiler in its own language, however, is that it makes transferring
the compiler to a different computer architecture relatively easy. This trans
fer process is generally referred to as bootstrapping the compiler.

A typical bootstrap proceeds as follows:

1. Start with a complete compiler running on a host computer.

2. Replace its code generator with a code generator for the new, target
machine. This code generator has to implement only the parts of the
language used by the compiler, and it can cut corners in other ways that
will be corrected later.

3. Build the new compiler by using the original compiler on the host ma
chine. This produces a cross-compiler running on the host computer and
generating code that will execute on the target machine.

4. Debug the cross-compiler by using it to compile test programs on the
host computer. Take these compiled test programs to the target compu
ter and execute them there.

5. Build the new compiler by using the cross-compiler. This produces a
compiler that runs on the target computer.

6. On the target computer, debug the compiler by compiling and executing
test programs there. Making changes and corrections requires
recompilation using the cross-compiler on the host computer, and this
may require backing up to step 3.

7. Finally, use the new compiler on the target machine to compile itself.
Test it by checking that the two compilers produce exactly the same
output on all test programs, including using the compiler itself as a test
program.

This process sounds confusing, but the only step that is actually complicated
is the development of the new code generator.

Our initial inclination was to bootstrap the compiler roughly as outlined
above, using the MUL TICS PLfI compiler as the host compiler. The code gen
erator would produce output in VAX-II MACRO, the VAX-11 assembly lan
guage, rather than in object code. This shortcut would save work initially and,
we hoped, would avoid problems connected with differing data representa
tions on MULTICS and VAX-II's.

A bit of experimentation with MUL TICS caused us to change our plans. We
found that the MUL TICS system was heavily loaded. Compared with our local
VAX-II system, response time was slow, especially in compiling large pro
grams. Because the MUL TICS machine was located some distance away (in
Cambridge, Massachusetts), we could use only slow-speed printing terminals,
not the high-speed video display terminals we were used to. Moreover, there

7

8 Engineering a Compiler

was no way to quickly obtain listings of any size. Even worse, we could see
that the cycle of compiling a test program on MUL TICS, getting it to V AX,
running it on V AX, and modifying the Local Code Generator on MDL TICS
would be painfully slow. For these reasons, we adopted an approach that star
tled many people.

From the very start, we developed the Local Code Generator on the
VAX-II. Our cross-compiler ran on two machines, the front end on the
MULTICS in Cambridge and the back end on our VAX-II in Tewksbury.
Transfer of data between the two was accomplished via a magnetic tape con
taining the front end's output. A courier transported tapes between
Cambridge and Tewksbury once a day. The result was a compiler with unusu
ally quick turnaround on code generation modifications: to modify the
compiler's code generator and retry it with all the test programs required
only a few minutes because there was no need to run it through a front end
again. However, the compiler's performance statistics were also unusual:
complete compilation of a test program required from 12 to 24 hours.

To write the Local Code Generator on the VAX-II we used TBL and as
sembly language. Our choice of assembly language caused some controversy,
but it was the obvious choice. No really suitable high-level language was avail
able on the VAX-II at that time, and we were very familiar with VAX-II's
MACRO language. MACRO also seemed the logical choice for the compiler's
"kernel," the interpreter for the very large code generation TBL program,
which has much code that manipulates data at the bit level.

On MUL TICS, we changed the PL/I compiler to generate three output
files:

• One file contained the symbol table contents (after execution of the
storage allocation phase).

• The second file contained the operators (after global optimization).

• The third file contained storage allocation information for the VAX-II
Linker.

The files were written to tape using ANSI tape formats, despite the fact
that the files contained only binary information.

At this point, we encountered the stumbling block we had hoped to avoid by
doing a traditional bootstrap: we had to deal with the machine-specific binary
representation of the data. MUL TICS, a 36-bit machine, stores bit strings and
character strings from left to right within bytes or words, depending on the
size of the data structure being written; whereas the VAX-II stores them
from right to left. For example, on MULTICS the first addressed byte of a
36-bit integer is the byte containing the sign bit. On the V AX-II, the first
addressed byte contains the integer's low-order bit. Therefore, the program
we used to write the tape not only had to convert data from 36-bit words to
16-bit or 32-bit words (depending on the precise data structures) but also si
multaneously had to swap bit strings.

Getting Started: Design Decisions

For most of our debugging of the Local Code Generator, we used six small
test programs, which we compiled each time we made changes to the code
generator. In this case, compiling required merely reloading the three files
from tape and running the new versions of the Local Code Generator to
produce a machine code listing and a VAX-II object module. We did not ex
ecute these programs. To verify the code, we looked at the machine code list
ing and ran the module through a VAX/VMS software utility program called
the object module analyzer. This program reads object code and flags incor
rect records. It was invaluable to us for debugging the compiler because we
could easily tell whether the compiler was producing syntactically
valid-though not necessarily semantically correct-object code.

At this early stage, we felt we needed to do only enough code generation to
support the portions of the compiler that were written in PL/I (a common
shortcut in bootstrapping). Because all compile-time data conversions were
done by a separate machine-dependent conversion routine, we assumed that
the compiler used only pointers, strings, and simple integer arithmetic. Thus,
we wrote only enough of the code generator to handle these language func
tions. We were surprised to discover later that the compiler used fixed-point
decimal arithmetic. This arose from an expression with integer constant
operands. Unlike most such expressions, this one was not evaluated at com
pile time, and so it appeared in the compiler's object code.

Eventually, satisfied with our few artificial test programs, we tried a real
program, HANOI. This entailed transliterating to PL/I a FORTRAN program
that solves the Towers of Hanoi puzzle. It was the first PL/I program we com
piled and executed successfully on VAX-II and has remained one of our favor
ite benchmarks. The success of HANOI marked the approximate end of
debugging our cross-compiler.

The next step was to get the front end running on the VAX-II. The organi
zation of the cross-compiler permitted a novel approach. Instead of starting
with the first phase (the parser), we started with the last one (the storage
allocator). We compiled it with the cross-compiler and linked it with the code
generator to produce an allocator plus a code generator on the VAX-II. We
then changed the front end on MUL TICS to dump the symbol table and opera
tors to tape before the storage allocation phase. Thus, more of our new cross
compiler existed on the VAX-II, less of it on MULTICS. The arrangement is
illustrated in Figure 1.

To test the compiler, we used our original six test programs and parts of
the compiler. We compared the operator file and symbol table file produced
on MUL TICS by the original cross-compiler with the corresponding files pro
due ~d on the V AX-II by the new cross-compiler. We also compared object
code from the two compilers. It took many iterations before the outputs
matched.

We continued our backward bootstrap with the global optimization routine,
then the second pass, and finally the remaining front end phases combined.

9

10 Engineering a Compiler

Original idea:

Cambridge

MULTICS MULTICS

Front end Back end

Actual method:

Cambridge Tewksbury

MULTICS VAX

Front end Back end

Figure 1. Bootstrapping backward.

Each stage of the bootstrap brought different problems to light. For example,
while bringing over the large and complicated semantic analysis phase, we dis
covered that our register allocation scheme was inefficient and inadequate. In
this initial design, we performed register allocation within the Local Code
Generator in such a way that the Local Code Generator had to make special
allowances each time it wrote an instruction that destroyed registers. It was
messy. Our much more efficient, final version of the Register Allocator is de
scribed in Chapter 9. We also discovered that we had overlooked some of the
symbol table that was required only by the compiler's first two passes.

The entire bootstrapping took about a month from the time the code gener
ator we wrote seemed to produce valid code for the six test programs until all
passes were running together on the VAX-II. Before that, we had spent
about five months studying the compiler and writing the code generator and
the TBL compiler. The completion of bootstrapping marked the end of the
"risky" phase of our project; we had succeeded in getting a PL/I compiler to
run on a VAX-II. Next, we had to define the kind of product we wanted to
build.

A Project Plan

By the time we had finished the bootstrap, we had a much better idea of the
complexity of the compiler. We therefore decided to begin by writing a PL/I
product for the proposed subset standard (called the General-Purpose Subset)

Getting Started: Design Decisions

rather than for the real-time extensions. We also set a quality goal for our
selves: we wanted our PL/I compiler to be comparable in performance of gen
erated code to the VAX-II FORTRAN compiler. Later, we decided that even
this goal was not sufficiently ambitious. As development continued, we
learned new ways to make the compiler produce faster, better code, and we
added optimizations in almost every phase.

It took another year-and two additional programmers-to prepare the
compiler for product field testing. During this time, we sharpened our diag
nostic and development tools; implemented a run-time system and a self
checking test system; designed, wrote, and reviewed a set of user manuals;
and rewrote or modified more than half of the compiler. Among the major
time-consuming tasks during this phase were changes to the compiler re
quired for conformance to the VAX-II language standards (in particular, the
calling standard) and enhancements to the I/O routines to take advantage of
the V AX-II Record Management Services (RMS) file system routines.

Tools We Needed

One of the things we needed right away were some good diagnostic tools.
The original compiler had a routine called PRINTOPS that output the opera
tor file. We had already modified this routine so that it would dump the opera
tor and symbol table files from the MULTICS machine onto tape. We further
modified it to get a routine that we could use to verify the intermediate repre
sentation of the program. When we had completed the external command in
terface to the compiler, we simply added the necessary option to the
command data base so that we could selectively print different internal data
structures during different phases of the compiler. Thus, to output the opera
tors in the parse trees after the compiler's first pass over the program, we
would invoke the compiler using a command like:

PLI/DIAG=(OPERATORS,PASS1)

(Subsequent chapters present examples of the output from dumping the oper
ator file. Although it is not always easy to look at trees in linear form, this
output helped us understand what the compiler was producing.)

In addition to PRINTOPS, we added a debugger (modifying the debugger
used by the VAX/VMS operating system development team) and wrote
routines to dump the Symbol Table (DUMPSYM) and the code blocks pro
duced by the Local Code Generator (DUMPCODE).

When the goal is a very high-quality compiler, continual verification of out
put is essential. We decided very early on that we wanted a thorough test
system, and we hired a programmer to work full time developing one. The
resulting test system, which is still in use, is totally self-checking; that is, it
does not depend on hand checking of output, but instead keeps a data base of
expected output and runs the same programs against each new version of the

11

12 Engineering a Compiler

compiler. This approach ensured that we never introduced a bug that made a
previously valid test program invalid without the bug being detected.

We also wanted a test system to which we could add test programs easily.
Once our system was developed and under control, we added a test program
each time we detected a bug, even if the bug and its fix seemed trivial. By the
time we completed the project, the test system consisted of over 500 pro
grams. Of these, 90 percent were test programs introduced to test features of
the compiler; the balance were introduced as a result of reported bugs.

How We Changed the Compiler

During the year of compiler development following completion of the boot
strap, no phase of the compiler was left unmodified: some things were com
pletely rewritten, some were modified gradually, and some new phases were
invented. For example, we wrote a new lexical analysis routine, wrote the
underpinnings of the Local Code Generator, pulled register allocation out of
the Local Code Generator and introduced it as a unique phase of its own, and
completely rewrote the Optimizer phase. We always, however, kept a version
of our "bootstrap" compiler with which to test and compare new versions as
we went along. It was our private benchmark.

A major change that we had not foreseen at the outset of development came
about when we made the decision to structure the compiler so that the code
generation phases (collectively, the "back end") could be used in common by
compilers for different languages (individual "front ends"). In 'fact, before the
first version of our PL/I compiler was shipped as a product, we had begun
work on our second compiler, an implementation of the C programming lan
guage. Achieving the goal of a truly common back end required restructuring
the front end to simplify tree management and introducing a routine (actually,
a coroutine) called Write Tree to serve as the interface between the front and
back ends. Eventually, this design resulted in a more comprehensive shell, or
envelope, of common routines, including compiler initialization, source file
input/output, and listing file output.

Introducing . . . The VAX-II Compiler
and Common Code Generator

Before discussing specific aspects of the compiler design or individual ex
ecutable phases in the next chapters, we present an overview of the structure
and control flow of the VAX-II Code Generator. (One of the phases of the
VAX -11 Code Generator, in which the intermediate program representation
is transformed into machine language code, is called the Local Code
Generator. To avoid confusion, we consistently refer to the entire shell as the
VAX-ll Code Generator and to the code generation phase as the Local Code
Generator.)

Getting Started: Design Decisions

Each numbered step, or phase, shown in the overview (Figure 2) is de
scribed below. Most phases are language and compiler independent; that is,
the routines that execute them can be incorporated with little or no modifica
tion into a compiler for any programming language. The shaded blocks in
Figure 2 show phases that are language and compiler specific. The designer
of a front end for a specific language compiler must provide the routines to
execute these phases.

The explanations of the numbered steps in the diagram follow:

1. Compiler invocation and initialization normally involves the specification
of an input file or files, libraries, and compiler options. These are
processed through an interface to the VAX/VMS command language.

2. The steps of parsing and semantic analysis represent the primary
language-specific work to be provided by a front end.

3. As it parses and transforms a source program, the front end builds the
Symbol Table and creates trees of what we call, simply, operators. To
output the trees, the front end calls the VAX-II Code Generator rou
tine called Write Tree. Write Tree is a language-independent procedure
that accepts the trees and writes them into a linear file of operators.
The operator file is itself a representation of a sequence of trees.
However, in the operator file the trees have a modified form. Write
Tree changes some trees into a more restricted canonical form required
by the Local Code Generator and the Optimizer and it reduces trees by
performing optimizations-such as constant reduction-whenever pos
sible. It also adds information about operand usage to the Symbol Table,
contributing information needed by the Optimizer and Local Code
Generator phases.

4. The Optimizer performs standard global optimizations such as removal
of invariant expressions from loops, elimination of common
subexpressions, and selection of local variables that are candidates for
assignment to registers. To perform these optimizations, it does ex
haustive program control and data flow analyses of the program on a
block-by-block basis. It also performs a few optimizations that are
targeted for the V AX-II instruction set but that are in fact machine
independent. Execution of the Optimizer can be suppressed by a
compile-time option.

5. The implementor of the front end must write a storage allocation rou
tine. The storage allocation routine must, according to the requirements
of the source language and information provided by the front end, select
static or dynamic allocation for variables and generate object language
to allocate and assign initial values to static and external variables.

6. The Local Code Generator reads the operator file created by Write
. Tree or the Optimizer. As it processes operators, it allocates data struc-

13

14

~
Command
input

®

Command
interface

CD Phase keyed to text

==> Input or output

- Transfer of control

- Coroutine

~ Data referenced and modified

I ~~':I Language-dependent and
';::: compiler-specific phase

Command
option table

range

listing

enable

Write Tree

Engineering a Compiler

®®
®@~@@

®@@

®®
0®
®®0®

Symbol table

Figure 2. Overview of the VAX-II Code Generator.

Getting Started: Design Decisions

®

®

Local
Code
Generator

Register
Allocator

Peephole
Optimizer

Code
Binder

Prologue

Ph
descriPtors ===>@

I====~> Object Module
and Listing U U File Writer

Intermediate
code list

Macro
listing

Alfocation
map,ang,,;
cross~r~fer:ence
lis~ing "

Compiler
statistics

15

16 Engineering a Compiler

tures to represent temporaries and maintains information about these
structures on a block-by-block basis. It also builds skeletal machine
language instructions, called code blocks, that reference the operators
used as instruction operands.

7. The Register Allocator uses the data structures built by the Local Code
Generator to assign temporaries referenced in instruction operands to
specific hardware registers and updates the code blocks with the regis
ter numbers. Depending on the requirements of register usage for ad
dressing, the Register Allocator adds code blocks as needed to the list of
code blocks-the intermediate code list-to generate correct address
ing sequences.

8. The Peephole Optimizer scans the code blocks in the intermediate code
list and replaces selected code sequences with shorter or faster code
sequences that produce equivalent results. The peephole optimizations
can also be suppressed by a compile-time option.

9. Following peephole optimization, the branch/jump resolution phase (the
Code Binder) resolves the virtual memory addresses of program labels
and determines the appropriate machine instructions for transfers of
control. It updates the code blocks with the correct information.

10. The Object Module and Listing File Writer reads the final code list and
adds object module records to the object module file created by the
Storage Allocator. It also reads the intermediate listing file created by
the language front end and opens the listing file for output.

11. The MACRO listing is optionally written by a procedure that executes
only if requested at compile time. It merges the machine language re
presentation of the program into the source program listing during
object module generation.

Generation of a listing file is delayed until this time in the compilation so
that the machine language code can be written in line-that is, the
instructions generated for each source language statement are output in
the listing immediately following the source language statement. (This
output proved very useful during the development and debugging of the
compiler.) This delay also permits incorporation of all diagnostic mes
sage text in the listing following the line number at which the condition
occurred, even for conditions that are not detected until operator pro
cessing.

12. The writer of the front end must supply routines to be invoked during
compilation that will write a storage map and cross-reference listing, if
any, to the listing file.

13. Finally, the VAX-II Code Generator shell gathers statistics during com
pilation if requested, including statistics on the performance of the back
end, and prints these in the listing.

Getti ng Started: Design Decisions

Figure 3 shows a more compact illustration of the possibilities for folding
front ends into the shell, or envelope, of the VAX-II Code Generator. It
shows how we have used the back end in conjunction with both the VAX-II
PL/I and the VAX-II C compilers.

This shell has proved to be quite flexible; in addition to our two compiler
projects, the back end has been successfully adapted at Digital to two other
compilers. One of these, an implementation of the PEARL language, was de
veloped in Reading, England, with an early version of the back end (and with
limited access to technical assistance and documentation).

Compiler
shell

Initialization Write
Tree Optimizer

-
Common data and utility routines for 110, error messages,

and memory allocation

PUI front end

D
PASS1 E

C
L PASS2

Lexical
A
R

analysis E

C front end

LALR(1) parse P
H

Semantic A
actions S

E

Lexical analysis
2

Stor
age
Alloc
ator

Stor
age
Alloc
ator

Local
Code
Generator

Figure 3. Using the VAX-II Code Generator for different compilers.

17

3
TheTBL

(Table-Building
Language)

The logic of four phases in our compiler-PASSl, PASS2, Write Tree, and
the Local Code Generator-is encoded by means of the table-building pro
gramming technique we call TBL, or Table-Building Language. (We also use
the acronym to refer to the TBL compiler, to source programs written in
TBL, and to the TBL output file.)

TBL is not a programming language like FORTRAN, BASIC, or PASCAL.
It is a general syntax shell into which a user can place an individualized reper
toire of instructions. To avoid confusion with other language terminology, we
call the user-defined instructions in a TBL program actions. The result is a
very high-level language tailored to solve a particular programming
problem-in the case of our compiler, four different problems: parsing, se
mantic analysis, semantic reduction, and code generation. Looked at another
way, each user's set of TBL actions represents an abstract machine.

The purpose of this chapter is twofold: to introduce TBL in order to provide
a better understanding of our implementation techniques in certain phases of
the compiler and to demonstrate that a broad range of programming problems
are candidates for TBL-style solutions. At the end of the chapter, we include a
detailed, annotated TBL program and its interpreter.

How TBL Programs Are Constructed

A TBL compiler combines the action definitions of the user's abstract ma
chine and a source program that references these actions, producing a table of
numeric data. To execute the statements in the user's TBL program, an
interpreter reads the numeric data treating specific numeric values as in
struction opcodes. Figure 4 illustrates the steps and files required to build a
TBL-driven program.

Each TBL-driven phase in our compiler has a small, unique interpreter. The
interpreter can be viewed as the microcode in the user-defined machine; the
TBL compiler's output is the assembly-language code.

The syntax of TBL provides for references to user actions with arguments
and constant identifiers. Common programming constructions such as call,
goto, case, if, and if_not are part of the user's repertoire only if they are
defined in the TBL program along with the necessary underlying interpreta-

18

The TBL (Table-Building Language)

TBL
compiler

Compiler
or
assembler

SAMPLE.TBL

driver_table::

action output, 1 ;

let x = 24;
output(X);

SINTERPRT.PLI

%replace output_action by 10:

19

declare (driver_table(O:65537)globalref
fixed binary(7),

'table_pc fixed binary (7)) ;

table_pc = 0;

next_action:
goto(case(driver_table(table_pc)));

case(output_action):
put skip list(driver_table(table_pc+1));
table_pc = table_pc + 2;
goto next_action;

Figure 4. Files required to build a TBL-driven program.

tion. (For example, use of these constructions requires that the names call,
go to, case, if, and if_not be defined as TBL actions and processed by the
interpreter.) Before discussing in detail how TBL programs are constructed
and encoded, we can illustrate the elegance of a high-level TBL program by
showing a program fragment taken directly from the PL/I compiler's parser:

LET left __ paren = 2;

LET right __ paren = 3;

LET current __ token = 128;

LET bad __ syntax = base __ error+22;

20 Engineering a Compiler

if is __ token __ type(left __ paren,current __ token)

THEN [

ELSE

RETURN;

call(expression __ parse);

match __ token(right __ paren);

emit __ error(bad __ syntax);

At first glance, this example looks very much like PL/I or PASCAL; in fact,
the logical function of the fragment can be accomplished by a PL/I or PASCAL
program combined with many subroutines. The important and less evident
difference is in performance. The TBL scheme does not require a procedure
invocation each time an action is referenced but simply a trip around a loop in
the interpreter that determines which action to process. TBL is also a very
space efficient method for representing the sort of complex decisions that
must be made in code generation.

Since the user is free to define the actions of a TBL program, the languages
may look somewhat bizarre. For example, they do not have anything resem
bling proper variables, and some do not even have assignment actions.

The "Language"

The requirements for constructing syntactically valid TBL source programs
are quite simple. The language consists of:

• A set of rules defining language elements, including valid names, com
ments, and punctuation

• TBL compiler directives and constructs that permit definition of names,
actions, and locations

• Statements using the directives and user-defined actions for which TBL
writes an opcode and arguments to its output file.

All TBL statements have optional labels and are terminated by semicolons.
Identifiers specify labels, constants, and actions. All identifiers used in a TBL
source program that are not defined in the TBL source file are assumed to be
names whose values will be resolved at link time.

Numeric values can be expressed as decimal integer constants or as con
stant identifiers defined with LET directives. Because all values are encoded
into bytes, numbers must be in the range 0 through 255.

In our implementation, TBL programs begin with the specification of a
name representing an external address. This allows the program's interpreter
to reference the start of the TBL program by using this name. A comment
begins with the /* character pair and terminates at the end of the line on
which it appears.

The TBL (Table-Building Language)

Constant Identifiers
A LET directive defines a constant identifier and assigns it a value so that it

can be used in future statements. For example, the LET directives:

LET true = 1;

LET false = 0;

define the names true and false with the constant values 1 and o. Thereafter,
references to these names cause the compiler to output the corresponding
values.

Defining Actions
The ACTION directive declares an action, that is, an instruction for the TBL

machine. For example, the actions illustrated in the parser fragment above
are defined as:

ACTION is __ token __ type,2;

ACTION call,1;

ACTION match __ token,1;

ACTION emit __ error,1;

The numbers in these ACTION statements represent the number of argu
ments that must be specified for the action. Depending on the sophistication
of the interpreter, arguments to actions are specified as any of the following:

• Decimal integer constants in the range 0 through 255, or constant iden
tifiers (defined with LET directives) equated to integers with values in
this range

• The names of user-specified labels in the TBL source file

• Names that are passed through by the TBL compiler and assumed to be
resolved at link time.

Each interpreter is responsible for evaluating and processing argument val
ues in a way consistent with the functions being performed by the actions. For
example, if the TBL program defines an add action, the interpreter would
probably treat its arguments as numeric data. Similarly, the interpreter would
most likely treat the argument of a goto action as a location or a displacement
from a location.

References to Actions
Once defined, an action is referenced by specifying its name and arguments,

if any. The TBL compiler does not produce any output for an ACTION direc
tive; instead, it assigns a number to each action according to the position of its
corresponding ACTION directive in the source file. It then uses the action num
bers as opcodes in the creation of the output file. For example:

ACTION set __ token __ type,2;

21

22 Engineering a Compiler

Assume that this ACTION directive assigns the opcode 23 to the action
set_token_type. Then, if a statement such as

set __ token __ type(constant,current __ token);

were encountered and the values of the constant identifiers constant and
current_token were defined by LET directives as 10 and 130, the TBL output
for this statement would consist of consecutive bytes containing the values
23, 10, and 130.

In our original design, all actions were expected to have a fixed number of
arguments. However, we encountered instances in which actions needed to
have variable numbers of arguments. We therefore modified the TBL com
piler to interpret any argument count greater than 127 as meaning "a vari
able number of arguments," with the result that the first argument in a
reference to the action specifies the number of arguments that follow. For
example, a call action must be defined as

ACTION call,128;

so that it can be used to invoke subroutines with different numbers of argu
ments.

Recognized Actions

In addition to the user-defined actions, the TBL compiler recognizes several
common programming actions and processes them in a predefined way. These
actions represent the basic primitives of program control flow. Some users of
TBL may not need them; thus, they are not processed by the TBL compiler
unless specifically defined by the user. It is still the responsibility of the user
written interpreter to give the appropriate meaning to the underlying actions.
For example, the syntax for a reference to a goto action is:

goto(target __ label);

The TBL compiler has to recognize this construction and calculate the dis
placement from the reference to the goto action to the target_label. For our
implementation of the TBL compiler and its interpreters, the targets of goto
actions are signed 16-bit values. If the compiler did not calculate the displace
ment, the interpreters would be restricted to byte displacements since that is
the size of arguments. This approach would have seriously restricted our TBL
capabilities. (The displacement is calculated by the compiler, but the
interpreter must still know what to do with it.) This implementation satisfies
our requirements, but someone writing another TBL compiler might want to
do it differently. In fact, we considered adding argument-size specifications to
the ACTION directive to permit more general argument interpretation.
Although this approach might have been more flexible, we decided it would be
costly in terms of execution time; moreover, we have never had an absolute
need for the capability.

The TBL (Table-Building Language)

The syntax for a reference to a call action is as follows:

call(target __ label(arguments ...));

For these actions, the TBL compiler generates a reference to the opcode for
the call action, followed by the target address as if it were the target of a goto
action, the number of arguments, if any, and the optional formal arguments
themselves. Full implementation of the call action requires a return action,
but there is no need for the TBL compiler to recognize it because there is no
special processing required.

The syntax for the recognized case action is as follows:

case(selector, target-list ...);

For this, the TBL compiler outputs the case action opcode, a byte containing
the number of targets, the selector argument, and the specifications in the
target-list. Each item in this list is treated as a target_label in a goto action.

The general syntax of if constructions recognized by our TBL compiler is
as follows:

if test __ action THEN [then __ actions ...]

ELSE [else __ actions ...]

(The else clause of this construct is optional and may be omitted. Brackets
delimit the then and else clauses, serving as syntactic markers as in a begin/
end construct in a block-structured language.) The if a'nd if_not actions re
present more structured forms of branch-true and branch-false constructions.
These constructions are transformed to the following:

test __ action;

if(labe11);

then __ actions;

goto(labe12);

labe11: else __ actions;

labe12:

The test_action is executed first; it stores status information in a Boolean
variable in the interpreter. Then the if action executes and branches if the
Boolean variable is false. Thus, the if and if_not actions depend on the user
to implement them in the interpreter. The arguments of an if or if_not action
are the same as target labels in a goto action.
In addition to these common forms, our TBL compiler uses if and if_not

actions in constructing sequences of and and or clauses. For example:

IF action1 AND

action2 OR

action3 THEN [then __ actions] ELSE [else __ actions ...]

23

24 Engineering a Compiler

Sample TBL Program and Its Interpreter

The best illustration of TBL is a sample program complete with its in
terpreter. The sample program is shown in Figure 5. The output of compila
tion of sample is a sequence of bytes.

Figure 6 shows the interpreter, written in PL/I, for this output.

Figure 5. A sample TBL program.

NOTE The label driveL table marks the beginning of the TBL program; the compiler
passes the name through to the output file. The interpreter uses this name to locate the
beginning of the TBL program.

driver_table: :

NOTE The program sample defines the recognized TBL actions call, case, if, if_not,
goto, and return described in this chapter, as well as actions that permit simple arith
metic operations and comparisons- add, sub, eql, neq, and assign.

1* define actions ...

action call,1;

action case,2;

action if,O;

action if_not, 0;

action goto, 1;

action return,O;

action add,2;

action sub,2;

action eql,2;

action neq,2;

action assign,2;

action output, 1;

action finish,O;

NOTE In this TBL program, constant identifiers with values greater than 127 repre
sent variables; when the interpreter reads an argument whose absolute value is greater
than 127, it uses the value as an index into an array of variables.

1* variables

let x 128;

let y = 129;

The TBL (Table-Building Language)

Figure 5 (conci uded)

NOTE These directives define the constants alpha, beta, and gamma, with values less
than 127.

1* some numbers with names

let alpha = 66;

let beta = 33;

let gamma = 99;

NOTE References to the assign action give constant values to the variables x and y.
The add action adds the value of y to x.

1* assign values to x and y and add them

assign(alpha,x);

assign(beta,Y) ;

add (y, x) ;

NOTE In the if action, the reference to the eql action sets or clears an interpreter state
bit. If these arguments have equal values, the bit is set, the if action is true, and its then
clause is executed. Otherwise, the bit is cleared, the if action is false, and the actions in
the else clause of the if action are executed.

1* check result

if eql(x,gamma)

then

else

output(x);

output(x);

output(gamma);

NOTE The finish action terminates the sample TBL program.

1* Terminate sample TBL program

finish;

25

26 Engineering a Compiler

Figure 6. Interpreter for the sample TBL program.

1 1*

2 This program implements a simple TBL interpreter.

3 *1

4 interpreter: PROCEDURE OPTIONS(MAIN);

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

NOTE There is a one-to-one correspondence between the action numbers assigned by
the TBL compiler to the actions and the label subscripts used to designate the action
interpretation routines. Thus, the add action defined in position 7 of the ACTION direc
tives in sample is equated in the interpreter with the constant identifier 6. This defini
tion is then used as a subscript in the label array case such that case(add_action) (line
148) represents the interpretative routine for addition.

1*

define names for known actions

*1

%REPLACE call_action BY 0;

%REPLACE case_action BY 1 ;

%REPLACE if_action BY 2;

%REPLACE if_not_action BY 3 ;

%REPLACE goto_action BY 4 ;

%REPLACE return_action BY 5 ;

%REPLACE add_action BY 6;

%REPLACE sub_action BY 7 ;

%REPLACE eql_action BY 8;

%REPLACE neq_action BY 9 ;

%REPLACE assign_action BY 10;

%REPLACE output_action BY 11 ;

%REPLACE finish_action BY 12 ;

1*

define error codes

*1

%REPLACE stack_error BY 0;

%REPLACE inv_write_arg BY 1 ;

%REPLACE max_error~essage BY 1 ;

The TBL (Table-Building Language)

Figure 6 (continued)

NOTE The TBL output file-or object program-is declared by a global reference to
its starting address, driveL table. This is the global label defined at the beginning of the
TBL source file. The table itself is declared as an array of bytes so that the interpreter
can move through it referencing locations by subscripts.

31 1*

32 define the driver table starting address

33 *1

34 DECLARE driver_table(0:65535) CHARACTER GLOBALREF;

35

NOTE The variables defined in the TBL source file are maintained in an array whose
elements are subscripted from 128 to 255.

36 1*

37 define variable space for TBL arguments

38

39 0 = < x < = 127 - numeric value

40 128 = < x < = 255 - index into variable array

41 *1

42 DECLARE variable __ values(128:255) FIXED BINARY(31);

43

NOTE The variable table_pc is the program counter that references locations in the
array driveL table.

44 1*

45 define local variables

46 *1

47

48 DECLARE table_pc FIXED BINARY(31);

49 %REPLACE max __ stack BY 1000;

NOTE The variables interpreter_stack and cur_sp are used to save the interpreter's
state when call actions are executed.

50 DECLARE interpreter __ stack(max __ stack) FIXED BINARY(31);

51 DECLARE cur __ sp FIXED BINARY(31);

52 DECLARE (i,j) FIXED BINARY(31);

27

28 Engineering a Compiler

Figure 6 (continued)

NOTE The variable tesLstate is the bit that is set or cleared by the actions that have a
true/false result, such as eq and neq.

53 DECLARE test __ state BIT(1) ALIGNED;

54

55 1*

56 interpreter start

57 *1

58

59

60

61

table __ pc = 0;

cur __ sp = 0;

test __ state = 'O'B;

1* start program at 0 *1

1* initialize stack *1

1* assume test state false *1

NOTE In the main interpreter loop, the interpreter reads the unsigned byte in the
driver table and uses that value as the subscript of a label array reference in a PL/I
GOTO statement. Thus, the first action executed in the sample TBL program, an assign
action, results in a branch to case(assign_action), or case 10 (line 186).

62 1*

63 main interpreter loop

64 *1

65 next __ action:

66 GO TO case(RANK(driver __ table(table __ pc)));

NOTE Each action increments the tbLpc variable depending on the number of argu
ments it processes for each action and whether the action has a branch label or a vari
able number of arguments. For example, the call action's interpreter must save the
return address of the next byte following the call action and its arguments.

67 1*

68 call __ action - implement a TBL call

69 *1

70 case(call __ action):

71

72 1* save pc of next instruction *1

73

74 cur __ sp = cur __ sp + 1;

75 IF cur __ sp > max __ stack THEN CALL error(stack __ error);

76 interpreter __ stack(cur __ sp) = table __ pc + 3;

77

78

79

NOTE The function evaluate_goto_target (see line 272) returns the new value of
tbLpc based on the two-byte argument of a target label in the call (which, like a goto
action's target label, has a two-byte displacement).

table __ pc = evaluate __ goto __ target(table __ pc+1);

GOTO next __ action;

The TBL (Table-Building Language)

Figure 6 (continued)

80 1*

81 case __ action - implement case action

82 *1

83 case(case __ action):

84

NOTE The function geLargumenLvalue (see line 217) returns the value of anargu
ment, whether the argument is an immediate value (in the range 0 through 127) or a
variable (in the range 128 through 255).

85 1* get value of argument to case on *1

86

87

88

89

90

91

92

93

94

95

96 1*

i = get __ argument __ value(table __ pc+1);

IF i <= RANK(driver __ table(table __ pc+2»

THEN table __ pc =

evaluate __ goto __ target(table __ pc+3+(i*2»;

ELSE table __ pc = table __ pc +

3 + (RANK(driver __ table(table __ pc+2»*2);

GOTO next __ action;

97 if __ action - implement a branch false action

98 *1

99 case(if __ action):

100

101 1* perform a GOTO if the state of test __ state is false *1

102

103

104

105

106

107

108

THEN table __ pc

evaluate __ goto __ target(table __ pc+1);

ELSE

table __ pc = table __ pc + 3;

GO TO next __ action;

29

30 Engineering a Compiler

Figure 6 (continued)

109 1*

110 if __ not action - implement a branch true action

111 *1

112 case(if __ not __ action):

113

114 1* perform a GOTO if the state of the test __ state is true *1

115

116

117

118

119

120

121

122

123 1*

IF test __ state

THEN table __ pc

evaluate __ goto __ target(table __ pc+1);

ELSE

table __ pc table __ pc + 3;

GOTO next __ action;

124 goto __ action - transfer control

125 *1

126 case(goto __ action):

127

128 table __ pc = evaluate __ goto __ target(table __ pc+1);

129 GOTO next __ action;

130

131 1*

132 return action - implement subroutine return

133 *1

134 case(return __ action):

135

136

137

138

139

140

141

142

143

144

IF cur __ sp = 0

THEN

CALL error(stack __ error);

ELSE DO;
table __ pc = interpreter __ stack(cur __ sp);

cur __ sp = cur __ sp - 1;

END;

GOTO next __ action;

The TBL (Table-Building Language)

Figure 6 (continued)

145 1*

146 add __ action - implement a two address add operation

147 *1

148 case(add __ action):

149

150 i get __ argument __ value(table __ pc+1) +

151

NOTE The subroutine seLvalue (see line 234) sets the value of a variable.

152

153

154

155 1*

CALL set __ value(table __ pc+2,i);

GOTO two __ arg __ action __ done;

156 sub __ action - a two-address subtract operation

157 *1

158 case(sub __ action):

159

160

161

162

163

164

165

166 1*

i get __ argument~value(table __ pc+2)

get __ argument __ value(table __ pc+1);

CALL set __ value(i,table __ pc+2);

167 equal __ action - implement a test for equal

168 *1

169 case(eql __ action):

170

171 test __ state = (get __ argument __ value(table __ pc+1) =
172 get __ argument __ value(table __ pc+2));

173 GOTO two __ arg __ action __ done;

174 1*

175 not __ equal action - implement a not __ equal action

176 *1

177 case(neq __ action):

178

179

180

181

182

test __ state = (get __ argument __ value(table __ pc+1) A=

get __ argument __ value(table __ pc+2));

GOTO two __ arg __ action __ done;

31

32 Engineering a Compiler

Figure 6 (continued)

183 1*

184 assign __ action - implement an assign action

185 *1

186 case(assign __ action):

187 CALL set __ value(

188 table __ pc+2,get __ argument __ value(table __ pc+1»;

189 GOTO two __ arg __ action __ done;

190 1*

191 action completion routines

192 *1
193 two __ arg __ action __ done:

194 table __ pc = table __ pc + 3;

195

196 1*

GOTO next __ action;

197 output variable routine

198 *1

199 case(output __ action):

200

201 i = get __ argument __ val ue (table __ pc+1) ;

202 PUT SKIP LIST(i);

203 table __ pc = table __ pc + 2;

204 GOTO next __ action;

205

206 1*

207 finish TBL and clean up

208 *1

209

210 case(finish __ action):

211

212 RETURN;

213

The TBL (Table-Building Language)

Figure 6 (continued)

214 1*

215 get __ argument __ value - get value of argument using table __ pc

216 *1

217 get __ argument __ value: PROCEDURE(index) RETURNS (

218 FIXED BINARY(31»;

219 DECLARE index FIXED BINARY(31);

220

221 1* get argument value *1

222

223 IF RANK(driver __ table(index» < 128

224 THEN

225 RETURN(RANK(driver __ table(index»);

226 ELSE

227 RETURN(variable __ values(RANK(driver __ table(index»»;

228

229 END get __ argument __ value;

230

231 1*

232 set __ value - set value of an interpreter variable

233 *1

234 set __ value: PROCEDURE(index,value);

235

236 DECLARE (index,value) FIXED BINARY(31);

237

238 IF RANK(driver __ table(index» < 128

239 THEN

240 CALL error(inv __ write __ arg);

241 ELSE

242

243

244 RETURN;

245

variable __ values(RANK(driver __ table(index»)

246 END set __ value;

247

value;

33

34 Engineering a Compiler

Figure 6 (conci uded)

248 1*

249 error - output error routine

250 *1

251 error: PROCEDURE(number);

252

253 DECLARE number FIXED BINARY(31);

254

255 1* declare error messages *1

256

257 DECLARE messages(O:max __ error~essage) CHARACTER(100)

258 VARYING STATIC READONLY INIT(

259 'Stack overflow or underflow at:',

260 'Invalid write argument at:');

261

262 PUT LIST(messages(number),table __ pc) SKIP;

263

264 STOP;

265

266 END error;

267

268

269 1*

270 evaluate __ goto __ target - returns branch displacement value

271 *1

272 evaluate __ goto __ target: PROCEDURE(index) RETURNS (

273 FIXED BINARY(31»;

274 DECLARE index FIXED BINARY(31);

275

276 RETURN(RANK(driver __ table(index+1» * 256

277 + RANK(driver __ table(index»);

278

279 END evaluate __ goto __ target;

280

281 END interpreter;

This short introduction to TBL should prove helpful for understanding later
examples of TBL programs developed for specific purposes in the compiler. In
fact, two of the first three PL/I-specific phases of the front end of the PL/I
compiler are written in TBL.

4
What the Front

End Must Do

The job of the compiler's front end is to read the source program statements
from one or more files and assign them semantic meaning. It must then build,
in memory, data structures that represent this meaning in a form that will be
understood by the back end. Traditionally, compilers express this semantic
information in a symbol table, which describes the objects that the program
manipulates, and in trees, which describe operations on those objects. In this
chapter we describe our Symbol Table and trees and how they are built. We
also discuss the architecture of the machine for which our compilers are
written-the VAX-II-as it is seen by the front end. We assume that our
readers are already somewhat familiar conceptually with the requirements for
building symbol tables and trees. But before describing our implementation of
them, we summarize their basic requirements.

The Symbol Table contains entries giving information about the proce
dures, names, and constants used in the program. The trees give an explicit,
convenient-to-manipulate representation of the program's statements. For
example:

DeL x FLOAT (51), i FIXED;

x=3*i-1;

The Symbol Table entry for x specifies that x is a variable, has a data type of
floating-point binary with a precision of 51 binary digits, and has the storage
class automatic (this default PL/I storage class indicates that the storage for
the variable will be allocated dynamically). Similarly, the Symbol Table entry
for i specifies that i is an integer variable, is automatic, and has the default
precision of 31 binary digits. The Symbol Table entry also specifies a storage
location for each variable that requires storage in memory.

Figure 7 shows the tree resulting from the assignment statement. In gen
eral, the leaves of a tree denote basic data items either by referencing the
Symbol Table (such as references to x and i); or by specifying immediate data
(in this case, the integers 3 and 1). The other nodes specify operations on the
data. The tree produced by the front end may contain operations not explicitly
written in the source. Here, the tree explicitly specifies taking the value of
the variable i and converting the value of the expression 3X i-I from integer
to floating point for its assignment to x.

35

36

ASSIGN

x

IMMEDIATE (3)

Engineering a Compiler

CONVERT

IMMEDIATE (1)

VALUE

REF

Figure 7. A tree produced by the front end.

Parsing and Semantic Analysis

Discussions of compilers usually distinguish between parsing and semantic
analysis. Parsing is the process of converting a source program to trees (or
one very big tree) in accordance with a grammar. The resulting tree is not
very explicit because, for one thing, the data types of expressions will be un
known at this point. Semantic analysis transforms the parsed trees into more
explicit forms as required by the back end, or code generator, of the compiler.
For the tree in Figure 7, the semantic analysis routine has filled in data types
(not shown in the figure) and has inserted the operator that performs the con
version from integer to floating point.

Semantic analysis and parsing may be separated or combined, depending on
the language being compiled and the preferences of the compiler writers. In
our PL/I compiler, the front end is divided into four phases. PASS! reads the
source text, parses it, and builds an initial Symbol Table. The Symbol Table
contains only information explicitly given in declarations. Thus, in our exam
ple in Figure 7, PASS! does not set the automatic attribute in the Symbol
Table entry for i because that attribute was not explicit in the declaration.

Following PASS!, the DECLARE phase fills in all missing details in the
Symbol Table. PASS2 then performs semantic analysis a few statements at a
time and calls Write Tree to transform the resulting trees into the operators
of the Intermediate Language. Finally, the Storage Allocator assigns storage

What the Front End Must Do

locations for level-one static and automatic variables and outputs the object
language records necessary to allocate and initialize the static variables. The
Storage Allocator phase executes after Write Tree and the Optimizer so that
it need assign locations only for variables that are found to require storage
(for example, an automatic variable that is never referenced will not be as
signed any storage).

Because parsing is discussed in many oiher books, we note in Chapter 11
only the interesting differences between the approaches we took in the two
compilers we have written. In Chapter 5, we discuss the specific semantics of
references and procedure calls and the run-time treatment of block activation
and variables.

The Symbol Table

Subsequent phases of the VAX-II Code Generator reference and add to the
Symbol Table. The Symbol Table contains much information that is used only
by the front end and some that is required by the back end. Exactly how the
front end builds and uses the Symbol Table is irrelevant as long as it accu
rately accumulates the information required. (Our Optimizer, in particular, re
lies on the completeness and accuracy of the Symbol Table information. The
implementors of the PEARL compiler who used our common back end, how
ever, chose not to accumulate information required by the Optimizer and did
not use the Optimizer at all.)

37

38 Engineering a Compiler

The structure of the Symbol Table resembles the declarative and semantic
structure of the source program in that its primary data structures are block
nodes, symbol nodes, and token nodes. Block nodes contain information about
structural program units, such as procedures, for which a separate set of dec
larations and temporaries is required (in PL/I and similarly block-structured
languages, block nodes are required for begin blocks as well). Symbol nodes
contain information about user-defined and compiler-generated variables, pro
cedure parameters, function return values, labels, and language-specific enti
ties such as PL/I format and file constants. Token nodes represent source
program identifiers, keywords, and constants and contain the spellings of
these objects.

Memory Allocation in the Symbol Table
The front end builds the nodes in virtual memory, using common utility

routines. The allocation utility provides as much memory as is required for a
node of a given type and returns the location of the node to the front end.
Within the Symbol Table, and within the operators for the Intermediate
Language, nodes are denoted by signed 15-bit node identifiers, each of which
uniquely identifies the memory associated with a node. This identifier can be
thought of as an address, and it is in fact encoded for easy transformation to a
VAX-II 32-bit virtual address. The calculation is:

virtual-address = (node-identifier X unit size) + base-address

The unit size in our implementation is 16 bytes. Each type of node is allo
cated in terms of these units; for example, a symbol node requires 3 units, a
token node 1, and so on. Using different unit sizes changes the amount of
memory that can be represented. Thus, with a unit size of 16 we can repre
sent approximately 215 X24 or 219 bytes, whereas a unit size of 1 would allow
a maximum addressing space of 215 bytes. During compiler initialization,
space for the Symbol Table is reserved with enough virtual memory to occupy
215 node identifiers. As the front end requests space for nodes, memory utility
routines allocate space starting at the low end (that is, with lower node identi
fiers) and moving to the higher. As nodes are built, the utility routines allocate
the memory required to hold them.

Nodes are never allocated for the first 64 node identifiers, thus making
identifiers 0 through 63 invalid and providing an excellent bug catcher. (The
VAX/VMS operating system uses a similar approach to memory allocation,
always reserving the first 512 bytes of the virtual address space.)

Although node identifiers are limited to 15 bits, they are actually stored as
positive integers in 16-bit fields. The sixteenth bit is used in fields that occur
in trees and in operators of the Intermediate Language. If this bit is 1, that is,
if the field is negative, the field denotes another tree or operator.

What the Front End Must Do

{

The Symbol Table is completed during PASS2, after which no more nodes
are allocated. However, we have reserved enough space for all possible node
identifiers so that the remainder of the Symbol Table virtual memory is avail
able for use by P ASS2 and the Local Code Generator. PASS2 uses this stor
age space for temporary trees during semantic analysis. The space at the
upper end of the Symbol Table storage is easily allocated and deallocated by
the Symbol Table memory allocation routines. Figure 8 illustrates the alloca
tion scheme.

Denoting Symbol Table nodes using node identifiers rather than pointers is
necessary if the compiler is to run on a computer wit.h a limited address space.
However, we have found the design advantageous even with t.he large address
space available on the VAX-1l. It increases performance because the Symbol
Table remains in a small, localized region of compiler memory; this decreases
paging during the compiler's execution. Second, this design decreases the to
tal amount of memory required to hold the Intermediate Language represen
tation of the program. Moreover, the 15-bit Symbol Table node identifiers are
somewhat machine independent-an advantage that was crucial during boot
strapping. Of course, we do have to perform the computations to convert the
node identifiers to virtual addresses, but the overhead required for these com
putations is inconsequential compared with the potential size of a symbol table
that uses 32-bit addresses.

The number of possible node identifiers is limited to 215. Since a given node
usually occupies more than one allocation unit, there are actually fewer than
215 nodes. However, we have never encountered a program large enough to

39

40 Engineering a Compiler

Temporary trees

Symbol table nodes
and permanent trees

~--------------------------~o

1
Indicates direction in
which storage is allocated

Figure 8. Memory allocation in the Symbol Table.

overflow this space. If such a program were devised in an effort to exhaust
the space, we suspect it would fail in some other compilation error before it
ran out of Symbol Table space.

Block Nodes

The front end builds a block node to represent each program block, includ
ing an imaginary outer block that envelops all external procedures and
variables declared outside the external procedures. This block provides pro
gram symmetry by supplying a place to which to move external declarations.
Depending on the structure of the language and the implementation chosen,
block nodes may also be required for other program entities. For example, the
PL/I compiler builds block nodes for all begin blocks and ON-units as well as
for GET and PUT statements.

What the Front End Must Do

The block nodes for a program are linked by node identifiers. The first
block node in the chain is the node describing the imaginary outer block.
Fields within a block node describe the structure of the program by indicating
the lexical nesting level and specifying the parent block. Figure 9 illustrates a
chain of blocks for a program with one external procedure (the outermost)
and one internal procedure.

Although PLfI has both procedure blocks and begin blocks, the compiler
treats a begin block as a special case of procedure block, so we can ignore the
distinction between the two. The block structure of a program also defines
the run-time stack requirements for each block and the scope of all variables.
Thus, a block node contains accumulated information about the stack require
ments, entry points, and parameters and a list of variables declared in the

Start

next t-----r-O--I

Block node for
imaginary block

o nesting level

.----____ ~A

'--____ --' nesting level

r---__ -;B

o

2 nesting level

Figure 9. Block nodes.

~
A: PROCEDURE;

[B: PROCEDURE

END;
END;

41

42 Engineering a Compiler

block. The front end is responsible for filling in basic information in the block
node, such as the nesting level. The back end accumulates much of the stack
usage information and reference information and uses this information during
optimization.

Symbol Nodes

Each block node contains a pointer to a list of variables declared in the
block. The list consists of a chain of symbol nodes. A symbol node typically
represents a user-defined program variable. The attributes specified in the
source file declaration are encoded in the symbol node along with attributes
derived by the language's default rules and information about the variable's
relationship to other variables. The node describes the variable's data type
and size, its storage requirements (such as automatic, static, external, or
based), extent information (the size of an array or the length of a string), and
so on. The extent information always indicates whether the extent is a con
stant size or must be dynamically evaluated at every reference. In the latter
case, the extent is kept as a tree specifying how it is to be computed.

Figure 10 illustrates a chain of symbol nodes linked to a block node.

Imaginary
.------~ outer block

o

Figure 10. Symbol nodes.

Symbol nodes for
variables declared
in Block A

Symbol nodes for
variables declared
in Block B

What the Front End Must Do

In addition to variables, the front end also builds symbol nodes for such pro
gram entities as formal parameters if the block has parameters, return values
if the block represents a function, and internally generated local variables, la
bels, or other symbols.

For certain categories of data, such as aggregates, the symbol node also
contains node identifiers of additional nodes. For example, structures are re
presented by a chain of symbol nodes in which the first symbol node is the
topmost structure member; symbol nodes for subsequent members are linked
from this chain. Figure 11 illustrates a chain of symbol nodes for a structure
declaration.

Array Nodes

Closely related to the symbol nodes are array nodes, shown in Figure 12,
which are linked from the symbol node definition for the array declaration.
The array node contains information such as the number of dimensions (our
implementation allows a maximum of eight), the bounds of each dimension,

o

NAME

o

DECLARE 1 NAME,
2 FIRST CHAR (10),
2 LAST CHAR (10);

FIRST

Figure 11. Symbol nodes for structure declaration.

LAST

43

44 Engineering a Compiler

DECLARE A (10) FIXED;

~------,A

array node

krd forA

1 lower bound
10 upper bound

Figure 12. Array nodes.

and the multipliers used to calculate the offset of a given element. As with
variables in the symbol node, information in the array nodes indicates whether
the bounds or extents of array elements are constant or variable. If variable,
the extent is specified as a tree.

Token Nodes
Token nodes hold the spellings of objects, such as the user-specified identi

fiers for procedure, block, or variable names, constants, and program
keywords (in PL/I, keywords are not reserved words). Each block or symbol
node contains a link to the token that holds its name, if any. Each token node
representing a symbol name also contains a list of all symbols with that name
(linked by a field in the symbol nodes). During semantic analysis, PASS2 uses
this list to match each instance of a variable name in the source program with
the particular symbol it represents. In PL/I, multiple declarations of the same
name are allowed as long as they can be distinguished by the language's block
structure or by explicit qualification using the names of containing structures.
We represent this in the Symbol Table by linking symbol nodes with the same
name on a list rooted in the token node containing the name.

What the Front End Must Do

Token nodes mayor may not be linked, depending on the requirements of
the front end; however, all token nodes representing constants must be linked
so that they can be found by the Storage Allocator. Figure 13 illustrates token
nodes for a block node, the symbol nodes for names declared within it, and a
constant token node.

Trees

A tree node specifies an operation to be performed on zero or more
operands. Each operand can be another tree node, a Symbol Table node, or a
nonnegative integer value. If the operation represented by the tree is one that
produces a result (say, addition), the tree may occur as an operand (subtree)
of another tree node.

The principal components of a tree node are fields that specify the number
of operands, opcode, the operands themselves, data type, size, and size units
(the bits, bytes, and so on in which the size is expressed).

name

Figure 13. Token nodes.

A: PROC;
DCL(x, y, z) FIXED;

x = 1;

}
Symbol
nodes

45

Token
nodes

46 Engineering a Compiler

Data type and size are present only in trees representing operations that
produce results. The size is the precision of an arithmetic item, the length of a
string, and so on. For string and aggregate data, the size may itself be a tree
and may have associated size units. In this case, the size is determined at run
time.

The rules relating opcode, operands, data type, and size of a tree node are
generally the same as the rules for operators in the Intermediate Language
(all discussed in more detail in Chapter 5). Frequently, however, we use the
term operator to mean either a tree node or the entire tree. Some opcodes are
reserved for use within the front end and are eliminated before getting to
Write Tree. Write Tree will accept more flexible forms of some trees and
transform them as required by the rest of the back end.

Tree nodes are kept in the Symbol Table (as shown in Figure 8) and de
noted by node identifiers. However, an identifier that denotes a tree node is
always stored as its negative (in a 16-bit field). Thus there is an easy way to
distinguish operands that denote trees from those that denote other sorts of
nodes or nonnegative integers.

The compiler's storage management for trees distinguishes between tem
porary and permanent trees. Temporary trees are needed only during seman
tic analysis of a statement and output of the result by Write Tree; when the
latter finishes processing a statement, it frees all temporary tree nodes. To
allocate a temporary tree node, the compiler simply adjusts the current limit
of the space used for these nodes in the upper part of the Symbol Table. This
method of storage management significantly improves the front end's perfor
mance in comparison with the common technique of individually freeing tree
nodes and allocating subsequent nodes from free space lists.

Permanent tree nodes are used for the extent expressions in the Symbol
Table and in other cases where semantic analysis requires that a tree be kept
beyond the processing of a single statement. An example from PLII is trans
lating an entire DO-group:

DO WHILE (x(i) < 2);

END;

In the interest of efficiency, the front end of the compiler generates code
for this test at the end of the loop. To do this, it has to make a permanent copy
of the tree for the test expression x(i)<2 when it analyzes the DO statement
and then use that copy when it encounters the END statement.

Permanent trees can be allocated and freed by the front end's own routines,
but the memory used is not returned to the compiler's general pool until the
front end has finished.

What the Front End Must Do

Keeping tree nodes in the Symbol Table and denoting them by node identifi
ers is not advantageous unless the compiler must run in a restricted address
space. This design leads to cumbersome coding and is a definite compile-time
performance penalty. For example, translating the statement i=i+ 1 causes
P ASS2 and Write Tree to make over 40 calls to the routine that obtains the
address of a node; almost all of these calls are for tree node addresses. We
considered changing the front end to use pointers in trees, but we decided
that it would have required too many detailed changes to the front end's code.

Block Activations and Stack Management

This section describes in general how procedure calls and data addressing
work on the VAX-II and summarizes some adjustments we had to make in
the compiler, mostly in the front end, to support PL/I on the VAX-II.

Most data are associated with an activation of a block. These include
constant-sized automatic variables, constant-sized temporaries, procedure
arguments, dynamically sized automatic variables, information about ON-units
in the block, and dynamically sized temporaries (such as the result of
SUBSTR(s,m,n) II'ABC').

In addition to accessing the data of the current block activation, it may also
be necessary to access variables belonging to the activation of containing
blocks, as the following example shows.

p: PROCEDURE(a);

DECLARE (a,b) FIXED;

q: PROCEDURE;

CALL r;

END q;

r: PROCEDURE;

a = b;

END r;

CALL q;

Here, p calls q, which calls r, which makes references to the parameter a
and the automatic variable b, both of which are declared in the procedure p.
These are known as uplevel references; to manage them, the code for r must
be able to find the parent block activation, that is, the activation of the proce
dure p in which r is declared. Because of recursion, several activations of a
single block may exist at one time, and the most recent activation (highest on
the stack) need not be the parent activation required by the language defini
tion. Fortunately, the VAX-II architecture provides a natural starting point
for managing block activations.

The Architectural Base

On the VAX-II, four registers have an architecturally specified function:
Register 12, the Argument Pointer (AP); Register 13, the Frame Pointer

47

48 Engineering a Compiler

(FP); Register 14, the Stack Pointer (SP); and Register 15, the Program
Counter (PC). The PC is used to address instructions during a program's ex
ecution. SP points to the top byte of data on the stack-the last byte of data
associated with the current block activation. FP points to the last longword in
a data structure known as a call frame. AP points to the argument list for the
block activation.

The longword of data pointed to by FP is defined as the block activation's
condition handler address. It contains the address of a condition handling rou
tine for the block activation, or zero (null) if there is no condition handler for
that block. When an exception occurs, the system software searches for the
topmost stack frame (see below) with a nonnull condition handler address and
invokes that routine to handle the exception. This tailors the condition han
dling mechanism to the requirements of the current block activation so that
procedures written in different languages may call one another with reason
able behavior.

The four registers, PC, SP, FP, and AP, and the condition handler are all set
by the VAX-II call instructions. After a call instruction, both FP and SP point
to the top of the block activation call frame, AP points to the argument list,
and the condition handler address is null. The call instructions also save
enough information to restore the state that existed immediately before the
call; execution of a return instruction will accomplish this. This information is
stored immediately above the condition handler address in the call frame (that
is, just above FP). The piece of the stack from the beginning of the call frame
through SP is called a stack frame and it is the VAX-II realization of a block
activation. Figure 14 illustrates a VAX-II stack frame with the extended in
formation introduced to support PLfI requirements.

The call frame is used as follows: each time a call instruction is executed,
the word-size mask at the call destination is interrogated for the list of regis
ters to save. The registers specified in the mask are then pushed onto the
stack. The address of the next instruction (the saved PC), FP, AP, the current
program status word, mask of saved registers, and then a null longword are
pushed onto the stack. FP is loaded with the updated SP, AP with the effec
tive address of the argument list, and PC with the destination address plus 2
(that is, the address of the first instruction past the register save mask).
Because the call instructions save the previous Frame Pointer, all dynamic
predecessor stack frames can be found by starting at the current value of FP.

PL/I Elaborations

The basic VAX-II call frame, though complete in most regards, is not ade
quate for all the semantics of PLfI block activation. The compiler must there
fore generate code to acquire the additional information. This code is
executed when the block is activated but before the execution of any code that
is associated with the user program. We call this code sequence a procedure
prologue.

What the Front End Must Do

One of the critical pieces of information gathered during the prologue code
sequence is used for uplevel addressing. A VAX-II software convention
specifies that on entry to internal procedures, register Rl contains a copy of
the Frame Pointer for the block activation in which the current block is de
clared. This is the new block's parent pointer, and it is saved in a fixed loca
tion in the stack frame. When it generates code for the procedure, the Local
Code Generator uses the parent pointer in Rl and the saved parent pointers
in containing block activations to construct a set of temporaries containing the
Frame Pointers for all ancestor block activations. Any uplevel data reference
will be based on one of these temporaries. This set of pointers is called a dis
play. Because uplevel references may be made to arguments, the value of AP
is also saved in a fixed location in the stack frame.

For condition handling, PL/I generates prologue code to set the stack
frame's condition handler to a PL/I-specific run-time routine. Another fixed
location in the stack frame points to a linked list of ON-unit descriptors for
ON-units established in the block. This list is initially empty; an entry is added

Direction
of
growth

~r--

--

I

Saved Registers

Saved PC
Previous FP

Previous AP

Mask I PSW

Condition handler address

Saved parent pointer

Saved AP

ON·unit list pointer

Constant-sized
automatic
variables

Constant-sized
compiler
temporaries

Dynamically sized
automatic
variables

ON-unit
descriptors

Dynamically sized

1 '--

--

I' compiler I'

Call frame

- Frame pointer (FP)

}

Size known
at compile
time

-Stack base

I temporaries I
'-__________ ---1 -Stack pOinter (SP)

Figure 14. A VAX-II stack frame.

49

50 Engineering a Compiler

each time an ON statement is executed (and deleted by a corresponding
REVERT statement). Storage for the entries is allocated by extending the
stack frame as needed.

Nondynamic local (that is, automatic) storage is allocated by a simple sub
traction of the size of the needed space from the value of SP; the code to do
this is also in the prologue.

In general, a dynamically sized temporary cannot be allocated until the mo
ment it is needed. To allocate such a temporary, the compiler simply extends
the stack. Freeing these temporaries is much trickier. One method, freeing
them at the end of a statement, is unsatisfactory because it could allow
temporaries to accumulate, unfreed, when statements do not reach their ends
(as when a function invocation terminates with a GOTO). Because the span of
a dynamic temporary is never more than a statement, we use the opposite
approach: the Local Code Generator maintains a special temporary called the
stack base, or the value the stack pointer should have at the beginning of a
statement when there are no more dynamic temporaries in the stack. If any
dynamic temporaries are used in a statement, the Local Code Generator
resets SP to equal the stack base just before allocating the first temporary.
Thus the stack frame will never contain dynamic temporaries produced by
more than one statement. Freeing dynamic temporaries in this way is simpler
(and much more efficient) than freeing them at the end of a statement.

Figure 14 illustrated the complete layout of a PL/I stack frame along with
the basic VAX-II call frame information. The stack frame is built in a
procedure's prologue code at run time in the following order:

1. Extend the stack by the number of longwords required to hold the nec
essary prologue values and up level display information (saved parent
pointer and so on), all constant-sized automatic variables, and all
constant-sized temporaries. (The total number is known at the end of
local code generation.)

2. Set the ON-unit list pointer to null and set the condition handler address
to the PL/I-specific routine.

3. Save AP and the parent pointer.

4. Generate the complete set of ancestor pointer temporaries (the dis
play).

5. For each dynamically sized automatic variable, compute its size, round
the size up to longwords, and allocate space for the variable by extend
ing the stack. The variable's address is saved in a compiler-generated
automatic variable (which occupies part of the space allocated in step 1).

6. Set the stack base equal to the current value of SP.

In contrast, to leave a block we simply execute the VAX-II return instruc
tion. The run-time routine implementing GaTOs that transfer control out of

What the Front End Must Do

the current block executes the return instruction for each block activation
terminated by a GOTO. This ensures proper restoration of the registers and
stack in the block activation that is the target of the GOTO.

Opti m iza tions

The overhead in setting up a PLfI procedure can be substantial. However,
the compiler reduces the overhead by checking for the usage of various lan
guage features and by generating only the prologue code that is necessary. In
particular:

• The parent pointer is passed in Rl to a procedure only if it or one of its
subprocedures needs it.

• The parent pointer is saved in a fixed stack frame location only if a
subprocedure needs it.

• The AP is saved in a fixed location only if a subprocedure needs it (that
is, if the subprocedure makes an uplevel reference to a parameter of
this procedure).

• The condition handler address and ON-unit list are set only if the proce
dure contains an ON statement.

• The stack base temporary is introduced only if the procedure requires
dynamically sized temporaries.

General optimizations in the back end further reduce overhead. These opti
mizations include the replacement of automatic variables by register
temporaries and global register assignment. Thus, each display pointer is
treated as a separate temporary and is assigned to a register on the basis of
its own usage. For many procedures, all variables and temporaries end up in
registers, no stack storage is used, and there is no overhead beyond the hard
ware call and return instructions.

51

5
The Intermediate

Language

In the compiler's Intermediate Language, a program is represented by a lin
ear sequence of operators. These operators are similar to the tree nodes used
in PASS2 and Write Tree. The Intermediate Language is used for the output
of Write Tree and the input of the Local Code Generator. When the Optimizer
runs, it transforms the Intermediate Language from Write Tree into a more
compact version that will run faster. We think of the Intermediate Language
as the backbone of the compiler's design because all work in the front end is
directed to expressing the program in it and all work in the back end is di
rected to translating it into an executable program.

The Intermediate Language in the bootstrap compiler defined the interface
between a single PL/I front end and multiple back ends, these being imple
mented on a variety of computers. The Intermediate Language described
here defines the interface between multiple front ends, each for a different
language, and a single back end. The language has evolved to accommodate
this change in aim, and it has also evolved to better support some of the
compiler's optimizations. However, this evolution affected only details of the
the Intermediate Language; its general structure has remained the same.

In the first part of this chapter, we discuss considerations in the design of
any such intermediate language and suggest the range of operators it must
include. In the second part of the chapter, we provide some details about our
use of the Intermediate Language to solve one of the most complex aspects of
the design of any compiler-the manner in which it resolves references to
data and passes data from one procedure to another.

Design Considerations

The basic components of an operator are the same as those of a tree node
(although the actual representation is more compact): operands, operand
count, opcode, data type, size, size units, and offset units (which are present
only for operators representing references). Figure 15 is a simplified illustra
tion of the structure of an operator node.

Each operator contains an identifier, a negative integer value that is unique
within a block. Other operators that reference this operator, either as an
operand or as a size, specify it by this identifier. In addition, the operator con-

52

The Intermediate Language

tains a reference count specifying the number of times the result of that oper
ator is used as an operand or size in a subsequent operator. This information
tells the Local Code Generator, which processes operators sequentially, when
it has encountered the last use of an operator.

The general form of the Intermediate Language allows flexibility in engi
neering both front and back ends. The specific choice of operators shapes the
TBL-driven code generation and defines the target for semantic analysis and
Write Tree. Fine details of the language affect semantic analysis, Write Tree,
the Optimizer, and the Local Code Generator.

Many compilers simply use trees as the intermediate language, in which
case the entire program is kept as one big tree. Others use triples or quads,
operators that have precisely three or four operands, respectively. In a triple,
the operands are operator, operand, operand. In a quad, a third operand is
added, a destination. All intermediate forms of the programs using triples or
quads are forced to these rigid (though regular) structures. As a result, sev
eral triples or quads may be required in cases when our Intermediate
Language needs only a single operator.

Variable-length operators (sometimes called n-tuples) are far more flexible
than triples or quads and have two distinct advantages over trees. First, the
order in which operations are performed is explicit. Second, they are space
efficient and can be processed sequentially in a small amount of working stor
age.

The operators in an intermediate language must satisfy two requirements.
First, they must express the basic constructs of either a machine architecture
or the general rules for programming languages, or of both. Thus, an interme
diate language has to have operators for such constructs as addition, assign
ment, procedure calls, and branches. Second, the set of operators must be

ch Units in whi
size, offset
are expresse

Variable size
indicator

d,

Figure 15. An operator node.

Operator identifer

Reference count

Result size

Data type

Number of operands

V I Opcode

Operands

• • •

53

54 Engineering a Compiler

capable of expanding to handle specific operators that may be required for a
single source language. The latter requirement can be handled in either of
two ways. The first is to provide for the addition of operators to the language.
For example, we introduced an operator called ASSIGN-REPEAT to implement
the PL/I assignment

array-name = scalar ;

to assign the given scalar value to each element of the given array.
The other method for implementing a language-specific construct is to ex

pand it during semantic analysis into a series of existing operators, in a sort of
subroutine. If an intermediate language has an adequate basic set of opera
tors, this type of expansion can accommodate almost all language-specific con
structions. (This is what the PEARL implementors did.)

All operators-including language-specific ones-are ultimately inter
preted by individual TBL routines in the common back end. Thus, we fre
quently found it easier to introduce a language-specific operator and to do the
expansion in TBL.

In general, we tried to make the front end and the back end as distinct as
possible. Except when TBL routines are introduced to process language
specific operators, the back end knows almost nothing about the semantics of
the programming language. By the time the back end sees the program, it has
been reduced to a canonical representation in the Intermediate Language that
conveys just the right amount of information. For example, the front end
makes all addressing computations explicit primarily so that the Optimizer can
work on them. Whenever we have compromised the distinction between the
front end and the back end, we have done so in the interests of optimization.

Summary of Operators

The Intermediate Language is best and most simply described by a presen
tation of its operators. We have categorized the operators according to re
lated functions. In the subsections that follow, we introduce all the operators
by name but describe only those whose functions are not self-explanatory
(such as mathematical and logical operators) or that are not described else
where in this book.

. Statement Identification Operator

The front end must precede all operators for a given source statement with
the STATEMENT operator, which identifies the line number in the source pro
gram of the statement. This information preserves the program's lexical or
der and is used both to write the listing file and to provide line numbers for
debuggers.

The Intermediate Language

Reference Operators
Four operators-CONSTANT, IMMEDIATE, VALUE, and REF-are used to ref

erence data items. The REF operator denotes a variable's address (that is, the
storage containing its value); while the others denote the actual value itself. In
its simplest form, the REF operator's only operand is the node identifier of the
symbol node representing a variable.

A CONSTANT operator has a single operand, the identifier of the token node
containing the constant whose value the CONSTANT operator represents. The
constant token can be either in its original source form or in the machine's
internal representation. In general, the compiler delays changing the constant
to the internal representation until absolutely necessary.

The IMMEDIATE operator has no operands in the normal sense. It denotes a
value that is stored immediately in the operator. We use the operand count
field in the node to specify the amount of space required to hold the value.

The VALUE operator denotes the value of a variable. Its operand is always a
REF operator that specifies the address of the variable whose value is to be
taken. For example, to reference the value of the variable i the Intermediate
Language requires:

-32 REF(i)

-33 VALUE(-32)

In a later section, we expand on the requirements for specifying references
and discuss the PARAMJTR and ADD_OFFSET operators; these operators de
note the addresses of parameters and offsets within the storage of aggregates
or strings, respectively.

Program Structural OPerators
Structural operators such as BEGIN, ENTRY, PROCEDURE, and BLOCILEND let

the front end define the block structure of a program to the back end. The
structural operators define the limits of blocks and the primary and secondary
entry points of procedures.

The END_OFJROLOGUE operator delimits the end of operators for a
procedure's prologue code generated by the front end. (This is discussed in
Chapter 4.) The operators between the ENTRY operator and the
END_OFJROLOGUE operator represent the procedure's prologue code.

Procedures with multiple entry points require the execution of all the pro
logue code when any of the entries is used. To avoid duplicating the prologue
at each entry point, the prologue code is gathered in a special subroutine de
limited by the SAVE and EXIT operators. This sequence does not represent a
block activation. A BRANClLSAVE operator, inserted at each entry point,
"calls" this special subroutine to set up the prologue.

55

56 Engineering a Compiler

Assignment and Definition Operators
Assignment is accomplished by the ASSIGN operator. All elements of an ar

ray may be assigned the same scalar value with the ASSIGN-REPEAT operator
mentioned above.

The SETS operator lets the front end give special information to the back
end. It provides a way for the front end to specify that a variable has been
modified in cases that the back end might not be able to detect. We discuss
this operator in Chapter 7.

Program Control Operators
The Intermediate Language contains the usual program call operators:

CALL invokes a procedure; CALL-BEGIN, a begin block; CALL.FUNCTION, a
function; CALL-FUNCTION_STORAGE, a function whose return value is re
turned to storage rather than to a register; and RETURN specifies a return
from any of these.

The branch operators include GOTO, BRANCH, BR--FALSE, BILTRUE, BlLEQ,

BlLNE, BILGT, BILGE, BILLT, BILLE, and BILSWITCH, which is used to set up
computed branches to elements in a label array or a case construction. The
significant difference between the GOTO operator and the branch operators is
that a GOTO operator may transfer control to a label in another block or to a
label variable, whereas branch operators must have labels in the current block
as destinations.

Loop control is accomplished with a special sequence of operators that must
be specified in a particular order: LOOP_TOP, LOOP-BODY, and LOOP-BOTTOM.

Two operators are of special use in loops and loop control. These are
ADD_COMPARE-AND-BRANCH, which can be used to increment a control vari
able, compare it with a limit variable, and consequently either continue or exit
the loop, and SAVE-RESULT, which preserves the initial value of a limit vari
able. The SAVE-RESULT operator and its related INCREMENT_USAGE operator
are described in Chapter 6; the loop control operators, in Chapter 7.

The LABEL operator defines both source program labels and compiler
generated labels. It accepts a subscript operand to permit implementation of
label arrays.

Logical and Mathematical Operators
The relational and logical operators supported by the Intermediate

Language consist of EQ, GE, GT, LE, LT, and NE, which produce Boolean results,
and AND, NOT, OR, and XOR, which perform operations on bit strings.

The mathematical operators are: ABS, ACOS, ADD, ATAN (including ATAND

and ATANH), CEIL, COS (including COSD and COSH), DIV (with a special DIVIDE

for PL/I), LOG (including LOG2 and LOGlO), MAX, MIN, MINUS, MULTIPLY, PLUS,

SIN (including SIND and SINH), SUBTRACT, and TAN (including TAND and TANH).

The Intermediate Language

The mathematical operators require that the operands be of the same data
type; conversions are handled by the CONVERT and CONVERT_UNITS operators.

Memory Allocation
Three operators control the allocation and de allocation of run-time storage.

ALLOC-AUTO allocates stack space for dynamic extents and automatic
variables; ALLOC~EM allocates heap storage. The FREE operator frees mem
ory allocated for heap storage.

Error-Handling Operators
Special operators for error control are the ERROR operator, which gener

ates an error signal, and the RANGE operator, which implements run-time
checking of array bound specifications.

Operators Produced by the Optimizer
A number of operators in the Intermediate Language are present to per

form specific optimizations. Most of these are introduced by the Optimizer.
For example, the ASSIGN-REGTEMP operator indicates that a variable is a can
didate for assignment to a register. The Optimizer also detects loop address
ing of array elements by increments of one and introduces the
AUTO-DECREMENT and AUTO-INCREMENT operators to speed up the address
ing. It introduces USE and ADDlLBASE operators, as required, in the optimiz
ation of references. These are all described in Chapter 7.

Language-Specific Operators

A number of operators exist to perform functions specific to PLfI. Some
actually map to PLfI built-in functions; these include the string functions
CONCAT, COPY, LENGTH, and TRANSLATE, and the RANK, SIGN, BOOL, and BYTE
functions. These functions can easily be adapted for use by other front ends.
The ON and SIGNAL operators implement PLfI's error signaling and condition
handling.

Completing the list of language-specific operators are the bit-field operators
we added during our implementation of the C compiler and included in a sub
sequent release of PLfI: EXTRACT (Extract Sign-Extended Field), EXTRACTZ
(Extract Zero-Extended Field), INSERT (Insert Field), SHIFT (Shift Signed
Value), and UDIV (Unsigned Division).

Data Types of Operators

Many operations within the V AX-II Code Generator depend on the data
type and size of an operand. The data types supported by the VAX-II Code
Generator reflect the V AX-II architecture and some generally useful data

57

58 Engineering a Compiler

types defined in the PL/I language (such as varying-length strings). We expect
that most language-specific data types can be easily mapped onto the VAX-II
Code Generator's basic data types. However, for historical reasons, the
VAX-II Code Generator also supports PL/I-specific data types (such as offset
and format) and makes some distinctions meaningful only in PL/I (such as be
tween floating-point decimal and floating-point binary). In our discussions
here, we generally ignore the PL/I-specific details.

The basic data types supported are:

• The arithmetic data types integer, decimal, and floating point (the PL/I
specific data types offset and pointer are treated as integers by the back
end)

• Character strings and varying-length character strings

• The bit data types bit and bit-aligned.

The VAX-II Code Generator supports both scalar and aggregate data of
these types, but operations on aggregates are limited. In general, aggregate
operations must be expanded by the front end.

Most data types come in more than one size. For some types, the size must
be a constant, that is, known to the compiler's front end. For others, the size
may be variable, that is, computed in some way during program execution.
The following list summarizes the data types we have implemented and the
way in which we represent their sizes.

• Integers are constant sized in sizes of byte (8 bits), word (16 bits), or
longword (32 bits). Signed integers are represented in two's comple
ment form.

• Decimal numbers are constant sized. The size is the number of digits,
which must be less than or equal to 31. The data is packed into P/2+ 1
bytes, where p is the number of digits. In operators, both the size and
scale factor (number of fractional digits) are packed into the size field.

• Floating-point data are constant sized: longword (precision 24),
quadword (precision 53), or octaword (precision 113).

• Character data may have either a constant or a variable size. The size
(or length) is the number of bytes in the string.

• Varying-length character data may be constant or variable in size. The
size is the maximum length of the string. The data occupies size+ 2
bytes of storage. The first two bytes hold a word-sized integer giving
the string's current length.

• Aligned bit data may be constant or variable in size. The size is the num
ber of bits in the string. The data occupy (size+ 7)/8 bytes. When the
data have a value, any fill bits will be zero.

• Bit data may be constant or variable in size. The size is the number of
bits in the string. The data occupy exactly size bits, and the storage of

The Intermediate Language

data may begin at any bit location. Thus bit data cannot be "addressed"
by a VAX-II address (which always denotes a byte location in storage).

In references to aggregate data, the size field of the respective REF or
VALUE operator specifies the total storage size occupied by the data.

References to Data

As we have noted, a VALUE operator must be inserted whenever an opera
tion uses (or may use) the value of a variable. Consider the simple declaration
and reference:

DECLARE (i,j) FIXED BINARY(31);

i = j;

To assign the value of the variable j to i, we need the operators:

-30 REF(j)

-31 REF(i)

-32 VALUE(-30)

-33 ASSIGN(-31,-32)

The treatment of the VALUE operator in the Intermediate Language permits
the Optimizer to distinguish systematically between uses of a variable that
require its value and uses that require only its location. For example, assign
ment to a variable, x, will not prevent the Optimizer from detecting the equiv
alence of two occurrences of ADDR(x) and eliminating one of them. It is
interesting to note that the VALUE operator appears explicitly in the BLISS
language as the dot (.) operator. (The only exception to the rule for inserting
VALUE operators is in passing a variable by reference as a procedure argu
ment. The Optimizer understands this special usage.)

A VALUE operator, v, denotes the value of the referenced variable at the
point where it occurs in the operator sequence. Suppose a later operator that
uses v (that is, that has vas an operand) is separated from v by other opera
tors. None of these operators is allowed to modify the value of the variable
referenced by v. Thus the Local Code Generator is not required to capture
the value of v in a temporary. Sometimes it is necessary for the front end to
capture explicitly the value of a variable; this case is discussed in the next
chapter.

A REF operator tree denotes the storage of a variable or part of a variable
(as in a substring of a string). The most general form of a REF operator has
three operands, listed below. Usually some of the operands are null or im
plied, and the most common REF operators (as in the example above) contain
only the first operand. The operands are:

1. The symbol node identifier of the variable being referenced

2. The offset within the variable's storage (this operand may be null)

3. A base pointer for the variable.

59

60 Engineering a Compiler

Before describing these operands and some of their properties, uses, and
pitfalls, we discuss some comparatively simple declarations and the REF oper
ators that must be generated for them. We have seen a simple reference in
the example above. Here is an array variable and a reference to one of its
elements:

DECLARE A(100) FLOAT BINARY(24);

a(5) = 10;

To specify the offset of the array element 5 from the beginning of the array,
we introduce operators to compute the offset. The operators are:

-49 IMMEDIATE(16)

-50 ADD __ OFFSET(-49,0)

-51 REF(a,-50)

Here we have an easy case, since both the array element reference and the
element size are known values. The integer value, 16, referenced in the
ADD_OFFSET represents the element size of four bytes multiplied by the ele
ment position. Later in this chapter we discuss some of the trickier details of
calculating offsets and multipliers when (as commonly happens) the element
references are specified as variables.

The next example requires a base pointer for a reference:

DECLARE C CHARACTER(10) BASED(p);

c = 'string';

Here, p is a pointer. The operators for this reference are:

-55 REF(p)

-56 VALUE(-55)

-57 REF(c,0,-56)

Thus, we must first reference the pointer, obtain its value, and use this base
pointer as the third operand in the reference to c. The last case illustrates an
array reference made with a variable and a base pointer:

DECLARE b(100) CHAR(1) BASED(P);

b(i) = 'e';

The operators for this reference are:

-61 IMMEDIATE(-1)

-62 REF(i)

-63 VALUE(-62)

-64 ADD __ OFFSET(-61,-63)

-65 REF(p)

-66 VALUE(-65)

-67 REF(b,-64,-66)

First, we reference i (operator -62) and obtain its value (-63). This value is
referenced in the ADD_OFFSET operator, which needs both the base bias (ex-

The Intermediate Language

pressed in the IMMEDIATE operator, -61) and the element offset. Then, we
have a reference to p (-65), we take its value (-66), and we have a resulting
REF that has all three operands.

Some Properties of REF Operators

A REF operator node always has a data type and size. Usually, these are the
same as the data type and size of the respective VALUE operator specifying the
REF operator, but they can be different. For example, in a REF operator denot
ing a varying-length string, the size gives the maximum length of the string; in
the corresponding VALUE operator, the size gives the current length of the
string. Not all uses of a REF operator require knowledge of its type and size
(as when we reference it to obtain its address, as for p in the example above),
but the redundant information is normally harmless. However, if the size is a
tree in one of these cases, the front end replaces it with zero to avoid a point
less computation at run time. For references to entire arrays and structures,
the size may be in units of bits, bytes, and so on. The units are specified in a
field in the operator node.

REF operators may also be used to reference labels, file constants, and
other forms of named data. Some of these (such as a PL/I file constant) are
variables as far as the back end is concerned. Others (such as labels) will even
tually be recognized as special cases. In this book, we ignore the complications
of handling these data types.

The Symbol Node Operand

The first operand of a REF operator is the identifier of the symbol node re
presenting the variable referenced by the REF operator. Thus, the Optimizer
considers an assignment to the REF operator to be an assignment to the sym
bol node; this fact governs common subexpression recognition and the re
moval of invariant computation from loops.

A complication in references occurs when variables are not distinct objects
bearing no relation to each other. In fact, variables can share storage in var
ious ways; we call such variables aliased. Thus, an assignment to one of these
variables may modify another variable in a program, as in this example taken
from PL/I:

DECLARE a FIXED BINARY;

DECLARE b DEFINED(a);

b = 1;

The assignment to b modifies a, which has the same storage.
The Optimizer divides variables into various classes according to how they

can overlap. The most difficult cases to deal with belong to the aliased class.
The front end must mark a symbol node as aliased if the variable shares stor
age with other variables in some way that we cannot always predict. In the

61

62 Engineering a Compiler

example above, the front end could mark a and b as aliased. This is the safe
thing to do, but it unnecessarily inhibits optimization. The front end itself can
see that a reference to b is really a reference to a, so it generates a REF opera
tor whose first operand is a. This does not occur immediately, however. First,
PASS2 generates a four-operand REF tree node whose first operand is band
whose fourth is a. Write Tree then makes a the first operand when it pro
cesses the tree. Both a and b are kept in the REF tree node during semantic
analysis so that any error messages about the REF tree node will use the name
b from the original source text.

The PL/I front end does the same thing for constructions such as
ADDR (x) ->y. This will translate into a REF operator for x, which will not be
marked as aliased. Unions (structures in the C language in which data declara
tions explicitly define variables whose storage is to be overlaid) are handled in
a similar way.

The Offset Operand

The second operand in a REF operator specifies an offset within an array,
structure, or string. The offset has units (such as bits and bytes) that depend
on the properties of the data aggregate. For example:

DECLARE a(O:9) FIXED BINARY(31);

DECLARE 1 s,

2 x BIT(3),

2yBIT(13);

a(2) = BINARY(s.y);

The reference a(2) has an offset of two in units of longwords. The reference
s.y has an offset of three in units of bits.

Here is another example:

DECLARE s CHARACTER(10);

SUBSTR(s,k, 1) = 'A';

The SUBSTR reference results in a REF operator whose offset operand has
the value k-l bytes.

During semantic analysis, the offset operand of a REF operator is developed
as a general tree, the only restriction being that its value must be a longword
integer. Write Tree changes this tree to a more restricted form that facili
tates optimal code generation. In the Intermediate Language, the offset
operand (if present) must be an ADD_OFFSET operator. This operator has two
operands: the first, an IMMEDIATE operator, specifies a constant offset in
bytes; the second (if present) is a longword-valued operator that specifies a
variable offset. This variable offset is expressed in units of bits, bytes, and so
on and can actually be a constant (that is, it can be specified by an IMMEDIATE
operator) if the offset is a bit offset not divisible by eight.

The Intermediate Language

The Base Pointer Operand

The base pointer operand is required for references to data that must be
located through other items, such as variables that share storage and proce
dure parameters. In the latter case, the base pointer is specified using the
PARAM-PTR operator, which has two operands: the identifier of a block node
in the Symbol Table and a positive integer such that the value of

PARAM_PTR(b,n)

is the address of the nth parameter of block b. In the current block activation,
this is the (nth + 1) longword in the argument list pointed to by AP. If b is a
parent block of the current block, the saved AP in b's stack frame points to
the argument list, and one of the display temporaries in the current block acti
vation points to b's stack frame.

The base pointer of a REF operator referring to a variable, x, is generated as
follows:

1. If x is static, there is no base pointer; the base address can be consid
ered zero.

2. If x is a constant-sized automatic, the REF operator does not contain a
base pointer. Instead, the Local Code Generator provides either the cur
rent frame pointer or a display temporary as the REF operator's base
pointer.

3. If x is a dynamically sized automatic variable, the base pointer is a
VALUE operator that specifies the value of the local variable in which x's
address was stored during the procedure prologue. (The REF operator
denoted by this VALUE operator will fall into case 2, above.)

4. If x is a parameter, the base pointer operand will be either a PARMLPTR

operator or a VALUE operator denoting an address in a descriptor. (We
are ignoring the complications that can arise with multiple-en try-point
procedures.)

5. If x is a based variable, the base pointer operand will be a pointer-valued
operator representing the base pointer expression from the source pro
gram. For example, in the reference 1(3)->x, the operand will give the
value of 1(3).

The Complete Address Denoted by a REF Operator

In the Intermediate Language (leaving aside operand specifiers for V AX-1I
instructions and the mechanics of code generation), the storage location de
noted by a REF operator is determined as follows:

1. Take the value of the base pointer operand, explicit or implied, as ex
plained above.

63

64 Engineering a Compiler

2. For static and automatic variables in which the base address was im
plied, add the location assigned by the Storage Allocator for the variable
if it is a level-one variable. If the symbol node in the REF operator is the
node identifier of a structure member, obtain the location from the
Symbol Table of the containing level-one structure.

3. Add the constant byte offset.

4. Add the variable offset, changing its units to bytes if not already in
bytes.

This process gives the byte address of the referenced storage and can usu
ally be represented by a single VAX-II operand specifier. A REF operator
with a variable bit offset cannot incorporate the offset directly in the operand
specifier. Instead, the Local Code Generator must insert special instructions
to extract and insert data beginning at the specified bit offset from the byte
location.

Computation of Offsets and Extents

Determining the correct offset for a variable reference is one of the front
end's more complicated jobs. An offset may depend on a string length or array
bound that is specified as an expression. The extent expressions for automatic
variables can be evaluated in the procedure's prologue, and the values can be
saved. The extents of based variables must be evaluated each time the vari
able is referenced. Consider the following:

n = 3;

BEGIN;

DECLARE 1 a,

2 b CHAR(n),

2 C CHAR(8);

DECLARE 1 x BASED (ADDR(a»,

2 y CHAR(n),

2 z CHAR(4);

n = 5;

a.c = x.z;

The offset of a.c is 3 bytes; the offset of X.z is 5 bytes.
The extents of parameters may be specified as asterisks, in which case the

extent is determined by the actual argument passed to the procedure. The
extent value is passed in a descriptor (in some texts, these are called "dope
vectors") associated with the parameter. If an offset depends on the extent,
the tree for the offset will include a VALUE operator whose operand is a REF
operator denoting the appropriate field in the descriptor.

To manage this, the DECLARE phase builds a permanent tree for each
nonconstant extent expression. Evaluation of the tree at any point in the block

The Intermediate Language

after the prologue will yield the extent value. For extents of an automatic
variable, a, the tree will denote the value of a compiler-generated variable, t.
DECLARE also builds trees to save the original extent value in t, to allocate
storage for a, and to save a's address in another compiler-generated variable.
The PASS2 phase emits these trees so that the evaluation will be executed as
part of the procedure's prologue code.

DECLARE also builds trees representing the multipliers and virtual origins
of an array (explained below) and the offset of a structure member from the
beginning of a level-one structure. PASS2 then incorporates these trees as
required to build a complete tree for the offset. This tree also contains the
trees for index values or substring positions specified in the reference. This is
illustrated in the following example:

DECLARE 1 s BASED (p),

2 a CHAR(n),

2 b FIXED,

2 c CHAR(S);

SUBSTR(s.c,k,1) = 'A';

For this reference, PASS2 generates a REF operator whose offset operand
(in bytes) is the tree corresponding to (n+4)+ (k-l), n+4 being the struc
ture member offset built by DECLARE. After being processed by Write Tree,
the offset operand is an ADD_OFFSET operator whose second operand is a tree
for n+k.

Calculating the offset of an element in an n-dimensional array uses multipli
ers whose values are determined as follows:

multiplier(n) = element_size
multiplier(k) = (higLbound(k+ 1)-low_bound(k+ 1)+ I)Xmultiplier(k+ 1)

Thus, for a two-dimensional array (which we usually think of in terms of
rows and columns), multiplier(1) is the row size. The multipliers have units:
bits, bytes, and so on. Normally, all the multipliers have the same units, and
these are natural to the size of the array (such as longword units for longword
integer data). In this case, the first multiplier is 1, rather than the element
size.

Given the multipliers, the offset of an array element can be expressed as:

~ multiplier(k) X [index(k) -low_bound(k)], k = 1, ... n

This can be rewritten as

[~ multiplier(k) X index(k)] - virtuaLorigin

where

virtuaLorigin = ~ multiplier(k) X low _bound(k)

65

66 Engineering a Compiler

This form is more efficient when the virtual origin is constant or when it
needs to be computed only once, as with an automatic array. Our PLfI com
piler uses the virtual origin method in most cases. If the offset units are not
bits, the virtual origin for the offset may be combined with the array's address
(that is, the address of its first element) to give a virtual base address. In this
case, the offset operand tree will compute only

~ multiplier(k) X index(k)

Using the virtual origin this way can introduce overflow. Consider:

DECLARE A(2**20:2**20+3,2**20:2**21-1) FIXED BINARY(31);

The array a has multiplier(2) equal to 1, multiplier(1) equal to 220, multi
plier units that are longword, and a total of 222 elements. However, the virtual
origin is

virtuaLorigin = 220 * 220 + 220

which causes overflow on a 32-bit computer. Fortunately, experience with the
VAX-II FORTRAN compiler suggests that this is not a problem in practice.

Procedure Calls

Our next topic is the relationship between a PLfI procedure call and the
hardware call instruction and argument list. The hardware call instructions
(mentioned in Chapter 4) set AP to the address of an argument list. This list is
a block of n + 1 longwords. The first longword contains the value n.
Longword k+ 1 specifies the kth argument of the procedure call. This can be
an actual value (say the integer 5), the address of a variable or constant, or
the address of a descriptor describing a variable or constant.

The key Intermediate Language operator is the CALL operator, which has
n+ 1 operands. The first operand specifies the procedure entry point to be
called; the remaining operands specify the longwords in the argument list (ex
cluding the argument count). The Local Code Generator emits instructions to
push a longword onto the stack for each operand and then to execute a
VAX-II call instruction. The call instruction pushes the argument count onto
the stack and then executes the rest of the hardware procedure call. Return
from the procedure automatically removes the argument list from the stack.
The following subsections discuss the operands of the CALL operator in more
detail.

The Entry Point Operand
The entry-point operand is a value-producing operator whose data type is

entry. In the general case, this value has two components: the address of a
procedure entry point and the frame pointer for the parent block activation.

The Intermediate Language

(This general case arises from PLfI usage, which permits both entry variables
and entry parameters.) Usually, the entry-point operand is a VALUE operator;
the operand of the VALUE is a REF operator denoting the entry-point constant,
that is, the entry point's symbol node. The Local Code Generator provides the
parent frame pointer if it is needed.

The A rgument Operands

An argument operand can be a REF, BUILD_STRUCTURE, ARG_ VAL, or other
value-producing operator whose size is less than or equal to a longword. In the
first two cases, the Local Code Generator pushes an address onto the stack.
For an ARG_VAL, it pushes the actual value. This usage does not arise in stan
dard PLfI, but it is implemented in our compiler to enable us to conform to the
VAX -11 calling conventions. It is also the normal method for passing argu
ments in C.

In standard PLfI, all procedure arguments are passed by reference, that is,
the actual argument passed to the procedure is a variable (not a value), and a
reference to the parameter is a reference to this variable. This is not as sim
ple as it may sound. Consider the following:

p: PROCEDURE (a);

END p;

CALL p(arg);

If arg is a variable reference whose data type and size exactly match those
of a, then arg is passed directly to p. A reference to a within p denotes the
same storage as argo In this case the argument operand in the CALL operator
is the REF operator for argo

If arg is not an exactly matching reference, it is treated as an expression
whose value is to be passed. The value is converted to a's data type (if neces
sary) and assigned to a dummy variable, which is passed to p. In the
Intermediate Language, the dummy variable is represented by an ARG_VAL
operator whose single operand is the converted value. The Local Code
Generator creates a temporary in storage for the ARG_VAL operator and as
signs the value to it. The ARG_ VAL operator produces the address of this tem
porary, and this address is pushed onto the stack. Expressions, label
constants, entry constants, and file constants are also passed in this way.

If associating the parameter a with an actual argument requires more than
passing an address, then the address of a descriptor is passed. In the
Intermediate Language, the argument operand of the CALL operator is a
BUILD_STRUCTURE operator, with a variable number of operands. The first
operand specifies the size in bytes of a storage temporary. The remaining
operands occur in pairs (displacement, value), where displacement is a byte

67

68 Engineering a Compiler

displacement within the temporary and value denotes the value to be stored
at that displacement. (If the value is a REF operator, it is the address that is
stored.) In this way, the construction of an elaborate descriptor is represented
by a single tree. The BUILD_STRUCTURE operator is also used to build the
elaborate data structure passed to the run-time routine that implements the
PL/I OPEN statement.

Descriptors are required in PL/I in the following cases:

1. The parameter is a string whose length is specified as * (or is an aggre
gate containing such a string).

2. The parameter is an array whose bounds are specified as * (or is a struc
ture containing such an array).

3. The parameter is an unaligned bit string (or is an aggregate composed
entirely of such strings).

In the third case, the descriptor contains a base address (in bytes) and an
offset in bits; the combination gives the location of the first bit in the data.
Array descriptors contain upper and lower bounds, multipliers, and the virtual
origin as well as the address of the array. String descriptors contain the ad
dress and length of the string. In addition, the descriptor contains codes that
specify a descriptor class and data type. These are not needed by PL/I but are
specified as part of the VAX-II calling conventions to facilitate interlanguage
calls.

The address in a descriptor can be the address denoted by either a REF op
erator or an ARG_VAL operator. If the BUILD_STRUCTURE operator denotes a
variable being passed by reference (in the PL/I sense), the variable's symbol
node identifier is stored in the BUILD_STRUCTURE operator's size field. The
purpose of this ad hoc device is to enable the Optimizer to identify easily the
variables passed by reference in a CALL operator.

Returned Value of a Function

It is a VAX-II convention that function values of suitable data type are re
turned in register RO or the register pair RO and R1. A function call of this
type is represented by a CALLJUNCTION operator, which differs from a CALL

operator only in returning a result. If the data type is one whose size is too
large for a double register (such as a I6-byte floating-point number) or if the
data type is not natural for use in registers (such as a character string), then
the function value is returned in storage provided by the calling routine. The
address of this storage is the first argument in the argument list. In this case,
the front end generates a CALLJUNCTION_STORAGE operator whose second
operand (or first argument) is null, and the Local Code Generator allocates
the temporary and pushes its address onto the stack.

The Intermediate Language

Procedure Arguments in the Bootstrap Compiler

The treatment of argument passing described above conforms to the
VAX-II calling conventions that facilitate calls between procedures written in
different languages. The bootstrap compiler treated descriptors differently.
The descriptor was passed as an extra argument and did not contain the data's
address. If a bit offset was needed, the item in the argument list was the ad
dress of a pointer/offset pair, and the Local Code Generator had to separate
the two components. Thus a descriptor of data with constant extents was
itself constant. This treatment works perfectly well on a VAX-II; we did not
in fact change it until several months after we completed the bootstrap.

69

6
Writing and

Reducing Trees

Write Tree is a procedure that accepts a tree and either returns a "reduced"
tree or writes it out, transforming the tree to a sequence of operators. While
writing out the tree, it collects information about the usage of variables, la
bels, and so on and stores this information in the Symbol Table for use by the
Optimizer and Local Code Generator.

Reducing a tree entails transforming it to a semantically equivalent tree
that satisfies all the requirements of the Intermediate Language. The reduced
tree may be larger than the original, but it is always in a form that appears
more desirable for code generation or global optimization.

Write Tree performs many functions, most of them simple in themselves
but all related by a complicated recursive control flow. In this chapter we dis
cuss what Write Tree does and our motivation for making it part of the com
mon back end. Two topics are covered in detail: the optimization of integer
expressions and the differences between the trees used in the front end and
trees in the strict mathematical sense of the term.

The Evolution of Write Tree

In the bootstrap compiler, Write Tree was a simple subroutine that trans
formed a tree into Intermediate Language operators representing exactly the
same tree. The tree nodes contained reference counts, just like the operators,
and the reference counts were also used in storage management for trees. A
tree node was placed on a free list (one list for each size of node) when its
reference count was decremented to zero. P ASS2 had to spend a fair amount
of time incrementing and decrementing reference counts and allocating,
initializing, and freeing tree nodes. The only tree optimizations done in PASS2
concerned integer expressions, and these were not applied in all contexts
where they were called for.

After considering the performance of PASS2, the possibilities for tree opti
mization, and the Optimizer's need for usage information, we decided to de
lete reference counts from trees and to expand Write Tree into a separate,
substantial procedure with a coroutine relationship to PASS2. Our primary
motivation was to have a better place to collect usage information and per
form tree optimizations. We could have implemented these features in

70

Writing and Reducing Trees

PASS2, but PASS2 was already complicated enough. Moreover, we expected
that a change in the storage management of tree nodes would improve perfor
mance. This proved to be the case, and the technique we now use (as de
scribed in Chapter 4) is more efficient. Even with Write Tree doing a lot of
new work, the combined execution time of PASS2 and the new Write Tree is
much less than that of their counterparts in the bootstrap compiler.

Two other considerations influenced the decision to make Write Tree a sep
arate routine. The first was our growing interest in a common back end. By
making Write Tree separate, we could put more functions in the common
part. This seemed especially important in regard to collecting usage informa
tion and processing REF operators, functions that might (and did) change fre
quently as the Optimizer developed. Also, by collecting usage information
after preliminary optimizations performed by PASS2 and Write Tree, we had
more precise information and hence better optimization later in the compiler.

The second consideration was the desirability of separating optimizations
related to the Intermediate Language and VAX-II hardware from PLfI
specific semantic details. For example, in PLfI the precision of arithmetic ex
pressions must be computed exactly according to the language standard's
rules; an integer variable declared as FIXED BINARY(15), when added to an
other variable of FIXED BINARY(15), must yield a result of FIXED
BINARY(16). The exact PLfI precision must be maintained within PASS2,
and it is also relevant to code generation for some language-specific opera
tors. On the other hand, the VAX-II hardware requires only that we distin
guish among byte, word, and longword integers; so Write Tree optimizes
integer expressions on this basis, ignoring the PLfI precision.

Initially, our new Write Tree dealt only with the new tree management, col
lection of some usage information, and conversion of constants. The routine
was structured as a large case table based on the tree node's opcode. This
worked well enough, but many subroutine calls (and jumps to small pieces of
code) resembled the style of a TBL program. For this reason, when we reor
ganized Write Tree we used TBL. The amount of TBL is modest compared
with that in the Local Code Generator or in PASSl, but it neatly organizes the
application of the many rules used within Write Tree.

Write Tree and the language-specific front end interact as coroutines but in
a very simple arrangement. In the VAX-II PLfI compiler, Write Tree inter
acts with PASS2. Each routine has an internal state. For example, each rou
tine maintains its own current source line number for diagnostic messages.
PASS2 is the master routine. Its first action is to initialize its own state and
call an initialization entry in Write Tree. Then PASS2 reads operators, builds
trees from them, and translates the trees until it has processed a group of one
or more source statements. At this point, PASS2 calls Write Tree which
writes out the group of trees and returns. This process of reading operators
and writing trees continues until the entire program is processed. Then

71

72 Engineering a Compiler

PASS2 calls a routine to finish the processing of usage information collected
by Write Tree. This routine is considered to be a part of Write Tree, although
syntactically it is a free-standing procedure.

At a few points during Write Tree's execution, it may call certain routines
that are logically part of PASS2, for example, to free permanent tree nodes
after Write Tree has processed the end of a DO-group. This is the closest we
get to a true coroutine call.

Most of the functions incorporated in Write Tree could be done by a sepa
rate pass running between PASS2 and the Optimizer. The coroutine arrange
ment leads to simpler code and better compiler performance. However, with a
restricted address space, the coroutine approach might make the total code
size of PASS2 combined with Write Tree too great.

Write Tree itself normally initiates tree reduction, but in a few cases the
front end invokes Write Tree to reduce a tree during semantic analysis. For
example, PASS2 calls Write Tree with the trees for the TO and BY options of
a DO statement to see if they reduce to IMMEDIATE operators, that is, to
constants.

Overview of Functions

The following list provides a reasonably complete picture of Write Tree's
functions. Write Tree:

Writing and Reducing Trees

1. Writes out trees, assigning operator identifiers sequentially within each
program block and calculating the correct reference count for each op
erator.

2. Reduces REF operators from the flexible form allowed by Write Tree to
the restricted form required by the Intermediate Language. In doing so,
Write Tree performs the following optimizations:

• Separates the constant part of an offset expression from the variable
part (described in the section "Collection of the Constant Part of an
OHset").

• If a REF operator has an offset in units of bits, divides the constant
part into a byte offset (the first operand of the ADD_OFFSET operator)
and a remaining bit offset, which is incorporated in the second
operand of the ADD_OFFSET operator. This split is optimized with re
spect to the special properties of the bit field instructions.

• When a nonbit variable offset is present, Write Tree checks the units
of the offset against the natural VAX-II context of the REF

operator's data type. (For example, it checks that a longword integer
REF operator has an offset in longwords.) If they do not match, Write
Tree tries to change the units without cost to get a match. For exam
ple, if a longword REF operator has a byte offset of 16 X i, Write Tree
changes this to a longword offset of 4 X i. In most cases, the front end
will have already arranged that the offset will be in natural units, but
arrays of structures can generate unnatural units. For example, in

DECLARE 1 s(20),

2 a FLOAT BINARY(53), 1* quadword *1

2 b FIXED BINARY(31), 1* longword *1

2 c CHARACTER(8); 1* bytes *1

after offset collection, a(i), b(i), and c(i) will all have a variable off
set of 20 X i with units in bytes. This is fine for c, but it cannot be
changed to a quadword offset for a, because 8 does not divide evenly
into 20. However, the offset for b will be changed to 5 X i in units of
longwords.

3. Marks the symbol node of each variable in accordance with the
variable's usage in emitted operators as follows:

• Marks the node's referenced attribute if it occurs in any REF opera
tor.

• Marks the uplevel attribui:e if a REF operator specifying the variable
is emitted in any subblock of the block of declaration.

• Marks the requires_storage attribute if a REF operator specifying the
variable is such that the variable must be in storage even though that
is not implied by the variable's own data type. For example, in

73

74 Engineering a Compiler

DECLARE i FIXED BINARY,

s CHARACTER(4) BASED(ADDR(i));

s = 'j';

the assignment generates a character-string assignment to i and this
operation requires that the variable be in storage.

4. Accumulates usage information for each block for the Optimizer and the
Local Code Generator:

• Marks a block node as having dynamically allocated automatic stor
age if it detects an ALLOC-AUTO operator in that block.

• Marks a block node as having stack temporaries if it emits any opera
tor that produces a nonconstant-sized result (excluding REF or VALUE

operators).

• Marks a block node as using the AP (Argument Pointer) if it writes
out a PARMLPTR operator specifying the block. If this operator is
emitted in a subblock, the block node (of the parameter) is also
marked as save_ap, meaning that the value of AP must be saved in
its fixed stack frame location for access by the subblock. (If AP is not
required for argument passing, it can be used as a general register.)

• Determines the block's display level. Each REF operator denoting an
automatic variable has a display level. (This is the difference between
the current block's nesting level and the nesting level of the block in
which the REF operator's variable was declared.) The display level of
a PARAMJTR operator is determined in a similar way. The block's
display level is the maximum of all such REF operators and
PARAMJTR operators emitted in the block.

• Marks the block as save_parent_pointer if a subblock has a display
level extending above this block. This block's parent pointer will be
saved in its fixed stack frame location so that the subblock can access
it.

• Marks the block as needs_parent_pointer if it has a display level
greater than zero or if save_parent_pointer is set. A procedure call
to an internal procedure passes a parent pointer only if this attribute
is set in the procedure's block node.

• Marks a block as has_local_on_unit if an ON-unit in the block does
a GOTO to a label in the block. (This is the worst sort of ON-unit for
optimization.)

• Marks the block as flush-on-call if calls to external procedures, pro
cedure parameters, or entry variables can result in uplevel
references to variables, labels, or procedures in this block. This can
occur if an internal procedure name is passed as a parameter or as-

Writing and Reducing Trees

signed to an entry variable. (This attribute has special significance to
the Optimizer and is described in Chapter 7.)

5. Marks the symbol node of each label in accordance with its usage as
follows:

• Marks the label alias if the label is assigned to a label variable or
passed as a parameter.

• Marks the label used_in_comparison if the label is used in a com
parison operator (say, EQ, NE, or LE) or is aliased.

• Marks the label uplevel if it is the target of a GOTO operator in a
subblock.

6. Counts the approximate number of nodes and edges in the flow graph.
The Optimizer uses these numbers to determine the amount of storage
required for its data structures.

7. Reduces a GOTO operator to a BRANCH operator if the target is a label in
the current block.

8. Reduces a reference to a subscripted label with a constant subscripted
expression-such as GOTO LAB(3*7)-to a reference to the specific
scalar label.

9. Converts CONSTANT and IMMEDIATE operators (of any data type) used in
floating-point, binary-integer, or bit contexts (with a length less than or
equal to 32) to IMMEDIATE operators of the correct data type. (The dif
ference between these operators is that CONSTANT operators are
references to ASCII tokens and IMMEDIATE operators hold the encoded
binary representation of a value.) This ensures that all frequently occur
ring cases of constant conversion are done at compile time. Moreover,
the result is in a form (as an IMMEDIATE operator) that can participate in
further reductions, such as arithmetic reductions (described in the next
section). Converting constants at this point also ensures the best possi
ble numeric result (within the language's constraints) for floating-point
constants. Consider a constant without an exact binary representation
such as:

x = 3.14159 ..• EO;

where x is a FLOAT BINARY(24), that is, a longword. If the constant
were converted to an internal quadword or octaword representation
earlier in the computation (say, during lexical analysis) and subsequently
converted to a floating-point longword, accuracy could be lost as a result
of the double conversion. (Depending on the method used, the loss oc
curs due to premature truncation of fractional digits or double round
ing.) A MINUS operator whose operand is an integer or floating-point
constant reduces to an IMMEDIATE operator in the same way.

75

76 Engineering a Compiler

10. Replaces IMMEDIATE operators not acceptable to the back end with
CONSTANT operators. Write Tree always performs this replacement
after the conversion described in step 9.

11. Reduces integer expressions (discussed in detail in the next section).

12. Reduces short bit logical expressions involving constants. For example,
x AND '0'8

reduces to the equivalent of 'O'B.

13. Reduces comparison operators (such as EQ, NE, and LE) whose operands
are constants.

14. Reduces BILTRUE, BlLFALSE , and relational branch operators in line
with steps 12 and 13 above.

15. Reduces RANGE operators (the workhorse of subscript-range checking)
when the test value and one or both limits are constants.

16. Reports any errors detected during reduction. For example, Write Tree
can detect division by zero as it performs reductions.

One important traditional tree reduction, the short-circuiting of the evalua
tion of Boolean expressions, is not in the list above. The bootstrap compiler
included a form of this optimization. Before we developed Write Tree, we re
placed this algorithm with the more general algorithm now used in the com
piler. Although coding Boolean optimization in the Optimizer was not
convenient (because of the linear representation of trees on entry to the
Optimizer), getting the general algorithm into the compiler quickly was well
worth the trouble.

Reduction of Integer Expressions

Write Tree performs several optimizations on integer expressions built
from the basic operators ADD, SUBTRACT, MULTIPLY, and DIVIDE. The most
obvious optimization is evaluating an operator whose operands are constants
(sometimes referred to as "constant folding"). In this context, being a con
stant can simply mean being an IMMEDIATE operator. But constants in the
source program are not so easily dealt with. In PLjI, integer constants have
the data type fixed decimal and an exact decimal precision (for example, the
constant 01 would have a precision of two). This information must be saved
until the back end knows exactly how the constant will be used. Therefore,
integer expressions coming into Write Tree contain many CONVERT operators
that convert operands from decimal to integer. The code that reduces such
operators not only converts decimal CONSTANT operators but also evaluates
expressions in which all of the operands are decimal integer constants.

Writing and Reducing Trees 77

,(.,
~.

A'

II , I ..

78 Engineering a Compiler

Write Tree also applies the following identities to simplify integer computa
tions:

x - 0 = x

o - x -x

o * x = x * 0 = 0

1 * x = x * 1 = x
x / 1 = x

o / x 0 (x A= 0)

Opportunities to apply these identities arise mostly in the trees that PASS2
builds for offsets.

Conversion of Integer Expressions
The fact that integers come in three sizes on the VAX-II creates interest

ing situations. An integer ADD operator and its two operands coming into
Write Tree all have a data type of integer, and each is byte-, word-, or
longword-sized. These sizes need not be the same for all three, but each
operand size must be less than or equal to the size of the result of the ADD
operator. The compiler must produce instructions that will convert each
operand to the result size, if needed, then add them using signed integer addi
tion in the result size.

To convert an operand to the result size, Write Tree inserts the CONVERT
operator in the operator file. In the bootstrap compiler, the conversion was
performed in the back end; the Local Code Generator added the conversions
and the Peephole Optimizer reduced them. In what we feel is a better ar
rangement, given the VAX-II architecture, Write Tree inserts the CONVERT
operators and the Optimizer detects redundant ones and removes them from
the operator file.

In some cases, however, the conversion can be avoided without changing
the program's behavior. Suppose x and yare integer variables with a precision
of 15, and consider the following:

x = x + y;

By PLfI rules, the expression x+ y has a precision of 16; hence, the result size
of its ADD operator is longword. Literal translation of this statement would
yield the following intermediate instructions:

CVTWL x/temp1

CVTWL Y/temp2

ADDL3 temp1/temp2/temp3

CVTLW temp3/x

These instructions convert x and y from word to longword, add them using
longword addition, and convert the result back to word. In this case the size
conversions are unnecessary; the same result can be produced by:

Writing and Reducing Trees

ADDW3 Y,x,x

This instruction will overflow only if the CVTL W instruction in the preceding
fragment also results in an overflow. To eliminate the unnecessary conver
sions, Write Tree changes the result size of the ADD operator for x+ y to
word.

This sort of precision reduction applies to SUBTRACT and MULTIPLYopera
tors and also when the operands and target are byte sized. For integer DIVIDE
operators, precision is adjusted in a different way: the result size is set to the
maximum of the two operand sizes to produce the correct arithmetic result.

Collection of the Constant Part of an Offset

The reductions described above are performed on all integer expressions.
Another important optimization is currently performed only on expressions
that occur as the offset operand of a REF operator. This is the collection of a
constant part. Consider:

DECLARE x(1:100) FIXED;

int = x(3*(i-5));

Here, the offset operand of the REF operator is the tree for (3X (i-5)-1),
which is equivalent to 3 X i -16. The latter expression is simpler, and the off
set of -16 will materialize as a byte displacement of -64 in an operand
referencing x(3X (i-5», so the only explicit calculation required is the mul
tiplication 3 Xi.

Collecting the constant part of an offset in this way also increases the
chances that the Optimizer will detect a redundant expression and therefore
eliminate it. This example

x(2*i) = x(2*(i+1)) + x(2*(i-1))

will yield three REF operators, with ADD_OFFSET operators specifying differ
ent byte displacements, but all with 2 X i as the variable part of the offset.
Again, the fact that the constant byte displacement can be incorporated in the
operand specifier of an instruction means additional code improvement as a
result of constant collection. The following is typical code for the preceding
statement (unless the autoincrement optimization occurs; see Chapter 7):

ADDL3 i,i,R3

ADDL3 4 (R2) (R3] , - 12 (R2) [R3) , - 4 (R2) [R3)

The only possible problem with rewriting an arithmetic expression in this
way is that overflow may occur. For example, if x has the value 230, then
4 X (x _230) is 0 but 4 X x will overflow. However, if we know a suitable bound
for the expression, we can rewrite it without causing overflow. Suppose a and
b are constants. We can test in Write Tree to see if ABS(aX b)<2n. Suppose
further that in some way we know that ABS(aX (x+b))<2n.1f so, it follows
that ABS(aXx)<2 (n+l). This means that for any value of n<30, we can

79

80 Engineering a Compiler

change a X (x+ b) to (a X x) + (a X b) without causing overflow on a
VAX-II. If n<30, the rule can be recursively applied to a subexpression. For
example, if n is 29, then we know that ABS (a X x)<230• If x is actually the
expression z+ c, we can write a X x as a X z+ a X c.

For offset collection in our compiler, we make the assumption that all off
sets are less than 228 in magnitude. For an offset within a given variable, this
will be true if the variable's size does not exceed 228 in the units for the offset.
The total VAX-II address space contains 232 bytes, but this is divided into
four equal regions;' each contains 230 bytes, and a variable must be allocated
entirely within a region. Therefore the maximum possible size of a variable is
230 bytes. Thus, for an array of longword integers or single-precision floating
point numbers, all offsets must be less than 228 in longwords.

We consider the bound of 228 reasonable for all data types, and it does allow
Write Tree to collect constant offsets from trees of some complexity. The
bound could be sharpened greatly for offsets within variables declared with
constant sizes or for expressions whose magnitudes can be bounded based on
the values of constants and the exclusive use of word- and byte-sized
variables. We did not, however, do this.

Although Write Tree collects the constant part of an integer expression
only for an expression that occurs as a REF operator's offset, it could do so for
any integer expression whose value is known to be less than 230 in magnitude.
Thus any expression assigned to a byte- or word-sized variable or used as a
string length could be collected. It does not seem sensible, however, to collect
something as simple as 5 X (i+ 1) unless one knows (or suspects) that it also
occurs in an offset expression. Changing 5 X (i + 1) to 5 X i + 5 in an ordinary
expression still requires addition, and the expression is farther from that in
the original program.

When a Tree Is Not a Tree
As we have described things so far, Write Tree accepts a list of trees and

writes them out in order. We have not said what order means for the subtrees
of a tree, and we have talked about trees as though they really are trees in the
strict mathematical sense of the term. That is, we have implied that:

1. A tree node is either the root of a tree or else it occurs as a subtree of
exactly one other tree node.

2. The only trees related to a particular tree node are its parent (if it is not
a root node) and its subtrees (size and/or operands).

In fact, the order in which things are written out can be important, and the
structures used in PASS2 and Write Tree are not always as simple as trees. A
tree node may occur more than once; indeed the same node can occur in dis
tinct trees. Also, a tree node may be adorned with lists of trees to be written
out before or after the node itself.

Writing and Reducing Trees

In this section, we discuss some of the circumstances that lead to deviations
from purity in our tree structures and we explain what Write Tree does when
it encounters these deviant structures.

Common Subexpressions and DAGs
In expanding certain source language constructions, the front end may gen

erate a tree in which the same subexpression occurs more than once.
Consider:

DECLARE (j,k) FIXED BINARY;

DECLARE S CHARACTER(10);

SUBSTR(s,j+k) = ";

The REF operator generated by PASS2 for the SUBSTR reference has for its
size operand the tree representing 11-(j+kJ. Its offset operand is the tree
representing (j+ k J -1. The subexpression (j+ k J occurs in both operand
subtrees, as illustrated in Figure 16.

The correct technical term for this sort of structure is directed acyclic
graph, and the abbreviation DA G is used in compiler theory literature. The
literature related to the use of DAGs in compilers is extensive, so we should
explain why DAGs are not discussed as such in this book. There are two rea
sons. First, in almost all places in the front end and Write Tree, the tree-like
structures that we use are treated as though they were trees in the strict
sense. Second, the theoretical work based on DAGs does not have much rel-

IMMEDIATE (11) IMMEDIATE (1)

REF

j k

Figure 16. A tree (DAG) containing a common subexpression.

81

82 Engineering a Compiler

evance to our compiler. The normal use of a DAG in compiler theory is to
represent the operations to be performed in a block of code (usually called a
"basic block") in which no control-flow operators occur. The DAG does not
specify a complete ordering for performing the operations; instead it gives the
order relations that must be satisfied to produce a correct interpretation of a
program. Much of the theory involves determining a compatible, complete or
dering that is optimal according to some measure related to local code genera
tion and register allocation.

By the time we get to code generation and register allocation in our com
mon back end, we have imposed a complete ordering on the operators. DAGs
are no longer visible, although they could be reconstructed. In Write Tree,
the appropriate DAGs are not available. The list of trees given to Write Tree
is not related to the division of a program into basic blocks. A common
subexpression tree node may actually occur in trees separated by a control
flow operator. Even if Write Tree had a list of trees corresponding to a basic
block, it would have to assemble them into a rather conservative (overly re
strictive) DAG because information about aliasing of variables is not yet com
plete. (Write Tree itself collects this information as it scans the entire
program.) Write Tree could treat each tree after reduction as a DAG and try
to write out the nodes in an optimal order. However, it simply writes subtrees
out in left-to-right order, first the size, then operand one, and so on. We have
not felt any pressure for optimization here, perhaps because of the VAX-II's
generous number of registers.

Returning to the actual operation of Write Tree, we note that it correctly
handles multiple occurrences of a tree node anywhere in the list of trees given
to it by PASS2. (The occurrence of a tree node in more than one list-that is,
in distinct calls to Write Tree-is only allowed for SAVE-RESULT operators,
which are discussed later.) A tree node is written out only at its first occur
rence, along with any subtrees not already written. Subsequent occurrences
increment the reference count of the corresponding operator. If reduction of
a tree modifies it or has no effect at all, the tree is marked reduced and will
not be reduced if it occurs again. However, if reduction replaces a tree (for
example, replaces x+O with x), the tree is not marked reduced. Thus the re
placement can take place at every occurrence of a tree. This occasionally
leads to better code because further reductions may depend on the particular
context.

EXPlicit Side Effects

Many language constructions that produce a result can have side effects.
For example, a function invocation may have the side effect of modifying pa
rameters or global (external) variables. Even such a simple operation as inte
ger addition may have the side effect of causing overflow. In general, these
natural side effects can be ignored by the front end and Write Tree. (A com-

Writing and Reducing Trees

piler that uses DAGs, however, may have to take account of such side effects
when constructing the DAGs.) There are other cases where the front end
needs to generate operators that explicitly accomplish the side effect. An ex
ample from PLfI is subscript range checking. When this compiler option is
enabled, PASS2 generates a RANGE operator whose operands are the sub
script value and the high and low bounds. This operator does not produce a
result, but it will cause a run-time exception (or an error message from Write
Tree) if the SUbscript value is out of bounds.

PASS2 generates the RANGE operators for a particular SUbscripted array
reference while generating the REF operator. Where should it put the RANGE
operators? If it emits them as they are generated (that is, if it puts them on
the list of trees for the next invocation of Write Tree), they may end up far
from the REF operator. Indeed, the REF operator might be eliminated entirely
by optimization, leaving only the RANGE operators.

Language definitions seem to allow great flexibility in the placement of side
effect code, but we feel that it is best placed close to the code for the main
construction: that is, the RANGE operators for subscript checking should be
close to the REF operator that uses the subscripts. To accomplish this, we
have included a pretree field and a posttree field in tree nodes. Each can de
note a tree or a list of trees. If a tree node x contains a nonnull pretree field,
the trees denoted by it are written out before x and its subtrees. The RANGE
operators for a REF operator go on a list denoted by the REF operator's
pre tree field.

If a tree node x contains a nonnull posttree field, its contents are written out
after x and its subtrees. For an example of using the posttree field, we turn to
the C language, a language rich in explicit side effects. The operator ++ used
as a postfix operator means "increment the value of a variable after taking its
value." Thus, in

y = i++;

i is incremented but y is assigned the value of i before the incrementation
takes place. Figure 17 shows the tree we produce for i++. The SAVE-RESULT

operator captures the value of i before it is modified by the ASSIGN operator.
Use of the posttree field ensures that the operators are emitted in the correct
order. Note that although the REF operator for i could be equivalent to an
other (and thus eliminated by the Optimizer), two distinct VALUE operators
are required. Otherwise we would violate the Intermediate Language rule
that at all points where a particular VALUE operator is used the referenced
variable must have the same value. One must be careful about this when doing
elaborate semantic expansions in the front end.

Capturing Values

If it is necessary to hold the value of a variable over a span of code that
might modify the variable, a SAVE-RESULT operator is used. This use has al-

83

84 Engineering a Compiler

Posttree link

PLUS

CONSTANT(1)

Figure 17. A tree representing i + + .

ready been illustrated from the C language, as shown in Figure 17. In PLfI,
the SAVE-RESUL T operator may be needed to save the values of the increment
and limit variables in a DO-loop. For example:

m = 2;

n = 20;

DO i = 1 TO n BY m;

m = 1;

n = 0;

END;

This loop means

DO i = 1 TO 20 BY 2;

that is, the assignments to m and n inside the loop are required to have no
effect on the loop-increment and loop-limit values.

In the DO-loop case, we put the identifier of the SAVE-RESULT operator in
the LOOP -BOTTOM operator so that the captured reference will be saved for
the duration of the entire loop and will be released when the LOOP -BOTTOM

operator is processed. Because a loop can contain an arbitrary amount of
code, the SAVE-RESULT operator may occur in the trees processed by more
than one call to Write Tree. This has two consequences. First, the

Writing and Reducing Trees

SAVE-RESUL T operator has to be a permanent tree node rather than a tempo
rary tree node. It is explicitly freed when it occurs in the LOOP -BOTTOM oper
ator for the DO-loop. Second, instead of incrementing the operator's
reference count at each occurrence of the SAVE-RESULT, Write Tree emits an
INCREMENT_USAGE operator. This intervention keeps the reference count
correct without violating the principle of local processing of trees and opera
tors in Write Tree.

In the Intermediate Language, the operand of a SAVE-RESULT operator
must be a VALUE operator with a constant size. Write Tree allows more flexi
bility: the operand may be any value-producing operator with a constant size.
The various· cases are handled as follows, where x is the SAVE-RESUL T

operator's operand after reduction:
Case 1: x is a VALUE operator, as in the case of a SAVE-RESULT operator,

discussed above.
Case 2: x is a CONSTANT or IMMEDIATE operator. At each occurrence, the

SAVE-RESULT operator is replaced by a CONSTANT or IMMEDIATE operator that
is reduced and written in the normal way.

Case 3: x is any other value-producing operator. Each occurrence of x is
replaced by the identifier of the operator for x. (No reduction is possible at
these occurrences.) INCREMENT_USAGE operators are emitted for x just as
they would be for a SAVE-RESULT operator.

Flow analyses by the Optimizer may detect that a SAVE-RESULT operator is
unnecessary if the variable's value does not change in the SAVE-RESULT

operator's span. If so, the Optimizer then eliminates the SAVE-RESULT opera
tor. As a consequence, the front end can generally introduce a SAVE-RESULT

operator wherever it might be needed without worrying about details.
In PL/I, it is also necessary to capture the reference for the control variable

of a loop. For example:

p = ADDR(Yl;

DO p->x = 1 TO 10;

p = q;

Because the assignment to p must not affect the loop control, the offset and
base pointer of the reference (or its entire address) are captured, and a new
reference is made with the same symbol nodes and the captured offset and
base pointer. Capturing references could be done instead in the Local Code
Generator, but that approach is not advantageous when index variables and
pointer variables can be held in registers.

85

7
Global

Optimization

Although we use the name Optimizer to refer to a specific phase of the
VAX -11 Code Generator, program and code optimization are by no means re
stricted to this phase. The Optimizer is, however, the phase in which we per
form the classic global optimizations, which include the removal of invariant
expressions from loops, elimination of common subexpressions, and propaga
tion of values. All these involve analysis of the program, followed by the re
moval, shortening, or rearrangement of statement operators or expressions.
This chapter describes how we perform these optimizations on the
Intermediate Language and how the Optimizer selects local variables that are
candidates for assignment to registers and performs certain optimizations
that are targeted for specific features of the VAX-II instruction set.

We agree with those (Aho and Ullman, among others) who find the term
code improvement more accurate than optimization. Few programs can ever
be fully optimized; but a compiler can be developed so that the code it gener
ates is continually better. Each improvement in the code generates new possi
bilities for further improvement. Ideas for improvement come from close
scrutiny of the code generated, from the application of data collected for one
purpose to another purpose, and at times from simple wishful thinking. Once
begun, a commitment to optimization can become an obsession never to be
laid aside. Even in the conclusions we draw at the end of this chapter, we
suggest areas in which we could further optimize our code.

Background: Engineering an Optimizer
The Optimizer was neither designed nor implemented all in a piece. The

bootstrap compiler contained an optimization phase, but we had no specific
goals for improving it. Because that compiler was designed to run on ma
chines with a limited address space, its optimizer did not collect the poten
tially large amounts of data needed to obtain detailed information about
program flow and variable use. Moreover, this optimizer operated within a
limited range of operators in the program and did not adequately handle PL/I
complications like lexically nested procedures (occurring within the text of
other procedures). The optimizations it performed were common
subexpression elimination, removal of invariant computations from loops,

86

Global Optimization

partial optimization of Boolean branches, and replacement of selected
patterns of operators with equivalent but shorter patterns.

Our development of the Optimizer phase started just after we had written
the new Register Allocator, which had a comprehensive algorithm for allocat
ing registers for temporaries representing the results of operators. It seemed
clear that we could apply the same allocation method to local variables and
that the payoff from doing so would be high. We therefore added data collec
tion facilities to Write Tree to determine which variables were candidates for
holding in registers. Then, we extended the Optimizer to select up to 32
variables per block from these candidates and perform data flow analysis over
all the operators in each block. The analysis gave the Register Allocator the
freedom to assign different instances of a variable to different registers in
cases where it was advantageous to do so.

The next areas we targeted for code improvement were Boolean branches
and what we call result incorporation. The optimization of Boolean branches
is nothing more than short-circuiting the evaluation of a Boolean expression as
soon as the final result can be determined. We replaced the original algorithm
with one that optimizes more cases. Our version of result incorporation takes
advantage of the availability, on the VAX-II, of both two- and three-operand
forms of many instructions. This optimization combines an assignment opera
tor with the operator computing the value that gets assigned, and thus re
places two-operand operators followed by ASSIGN operators with a single
three-operand operator.

When we had completed work on these three optimizations, we looked for
additional ways to use the flow graph constructed for register assignment. At
this stage of development, we essentially threw the flow graph away when
register assignment was complete. We had continued to use the old algo
rithms to eliminate common subexpressions and to remove invariant values
from loops. Thus, our next step was to use the flow graph to eliminate com
mon subexpressions. While rewriting this routine, we changed the algorithm
from an n-squared algorithm to a linear one. The result was a faster and more
comprehensive subexpression eliminator.

Lastly, we replaced the routine that removed invariant values from loops.
Our prime considerations in reworking this routine were twofold: to use a lay
out for loop code that takes maximum advantage of the VAX-II architecture,
and to change the algorithm so that it conformed to the PLjl standard.
Changing the algorithm required modifying the front end so that we would
always have a safe place to move the invariant computations of a loop.

This modification was the last improvement we made to the Optimizer be
fore releasing the first version of the VAX-II PLjl compiler. It was a very
good Optimizer; but while trying to discover ways to improve the generated
code further, we realized that we had already collected the information neces
sary to do value propagation (sometimes called "copy propagation" or "sub-

87

88 Engineering a Compiler

sumption") for variables that were selected as candidates for assignment to
registers. Value propagation, as we implement it, is simply the elimination of
local variables not required for the correct execution of the program.

A final optimization we implemented is one we had thought about doing for
some time: the improvement of array addressing within loops. The Optimizer
moves the base address of an array (the address of the first element ad
dressed in the initial trip through the loop) outside the loop if the array is
being addressed through the control variable of the loop. This optimization, an
addressing strength reduction, allows us to use the autoincrement and
autodecrement addressing modes of the VAX-II; these addressing modes are
both faster and shorter than the conventional context-index mode used in
most other VAX-II compilers. (Few other machine architectures provide
context indexing at all.)

We are very pleased with the results of our optimization. The original opti
mization phase consisted of approximately 1,500 lines of PL/I source code and
required approximately 12K bytes for the program as compiled by the PL/I
bootstrap compiler. Our Optimizer consists of approximately 6,000 lines of
source code, requires approximately 24K bytes (as compiled by our latest PL/I
compiler), and runs much faster.

Underlying Concepts and Assumptions

The rules and assumptions applied during optimization provide a framework
for understanding the program and the ways in which it can be improved. The
application of a specific set of rules to the elements of a program results in:

• Understanding what a variable is, when its value is defined, and when
that definition is consumed

• Being able to calculate the furthest backward point in a program to
which an operator can be moved

• Knowing the ways in which nonsequential program flow may possibly
alter the modification of variables, and being able to devise a mechanism
for recording and dealing with this flow.

What Is a Variable?
A variable is a data entity that is manipulated by the program being com

piled. In the source program, a variable is declared and given a name and a set
of attributes. The front end of a compiler inserts this name and these attri
butes in the Symbol Table and directs all references to the variable to the
Symbol Table. In the Intermediate Language, we subsequently access the
variable's attributes in the Symbol Table by· using REF operators. The struc
ture of the Symbol Table and the manner in which variables' attributes are
recorded reflect the scope of the variables in the source program.

Global Optimization

Definition and Use

A reference to a variable can mean one of two things: a definition of the
variable or a use of its value. In terms of the Intermediate Language, a defini
tion (or definition point) is the occurrence of an operator that modifies the
value of a variable. The Optimizer knows what these operators are and uses
its knowledge to keep track of places in the program where a variable is
defined. An obvious example of a definition of a variable is an assignment such
as:

x = 5;

In a less obvious example, a variable is specified as an argument passed by
reference in a call:

CALL invert(x);

The Intermediate Language also includes an operator, SETS, which lets a
front end tell the Optimizer about definitions the latter could not otherwise
detect. For example, our PL/I compiler's WRITE statement has an option
called RECORD_ID_ TO, which causes the internal identifier of the record
being written to be returned to a specified variable. The Optimizer has no way
of discerning that this variable is modified by the operation. Thus, the front
end must follow the operators expressing the write operation with a SETS op
erator that specifies that the previous operator represents a definition point
for the specified variable. (We could have made the Optimizer know about this
case and other special cases; however, we wanted the Optimizer to be as lan
guage independent as possible.)

Use of a variable in a reference is merely a reference to its current value.
In the Intermediate Language, there are only two ways to represent a use of a
variable-its occurrence as an operand of a VALUE operator or its occurrence
as an operand passed by reference in a CALL operator. Both of the following
examples show the use of a variable, x:

y = x;
z = comp(x);

The second use of x is also a definition, since the occurrence of a variable
passed by reference in a call always represents both a use and a definition.

The Limit of an Operator

During both removal of invariant expressions from loops and elimination of
common subexpressions, the Optimizer constantly calculates the limit of an
operator to determine whether an optimization can be performed, such as
whether it is safe to move a given operator outside a loop or to combine oper
ators. The limit of a given operator is defined as the operator identifier of the
most recent definition point of any of its operands. The Optimizer performs
the limit computation recursively, computing the limits of the operands and

89

90 Engineering a Compiler

then of the operands of the operands, until all the leaves of the tree have been
traversed. The Optimizer then uses the resulting limit value to determine how
far backward on the flow path in question the operator can be moved.
Consider the following program fragment and resultant Intermediate
Language representation:

Source Program Fragment

P b + c;

b = b + 1;

q = b + c;

Intermediate Language Operators

-50 REF(p)

- 51 REF(b)

-52 VALUE(-51)

-53 REF(c)

-54 VALUE(-53)

-55 ADD(-52,-54)

-56 ASSIGN(-50,-55)

-57 REF(b)

-58 REF(b)

-59 VALUE(-58)

-60 IMMEDIATE(1)

- 61 ADD(-59,-60)

-62 ASSIGN(-57,-61)

-63 REF(q)

-64 REF(b)

-65 VALUE(-64)

-66 REF(c)

-67 VALUE(-66)

-68 ADD(-65,-67)

-69 ASSIGN(-63,-68)

In this example, the ASSIGN operator -56 is a definition point of p, -62 is a
definition point of b, and -69 is a definition point of q. During the elimination
of common subexpressions, the Optimizer attempts to combine the two
references to the expression b+ c by changing the ADD operator -68 to a ref
erence to the previous (identical) ADD operator, -61. This proves to be impos
sible, however, because in computing the limit of ADD -68 the Optimizer finds
that the limit is -62, the last definition point of one of its operands, b. Thus,

Global Optimization

11.- J"", -11 @
t· ~~~~c..Q'.~

2. ~~ltr~ ~~~
~'~~*'~~~
~~~~~~~. 
~~ rJ- I--I-~ ~ d. It:. 
~ Or ~t u . 

4. '~~-4 J,J A.o~~ ~~ 
~w~~~~~. 

'5. tL. ~-~ ~,..;..o.vt-~ ~~ ~ 
~;w~w.~ 

c,. ~~~~.~~~ 

91 



92 Engineering a Compiler 

the farthest point backward in the program to which ADD -68 can be moved is 
-62, which is not far enough backward to encompass the ADD operator -61. 

Classes of Variables 
Although the Optimizer has precise information about variable definition in 

some cases (such as the ASSIGN operator), it cannot, in general, know whether 
it has complete and explicit information about all the definition points of a 
variable. A good example is the case of a procedure that has declared an ex
ternal variable. Each time the procedure calls an external procedure, the ex
ternal variable might be modified by some action within the external 
procedure. The Optimizer cannot know whether it actually was modified be
cause that information is not available at compile time. The same type of situ
ation occurs with a variable whose address has been assigned to a pointer 
(that is, has been aliased). To cope with these problems we have classified 
variables as follows: 

• External class. A variable that is defined or referenced in modules that 
are not a part of the current compilation. 

• Static class. A variable that has the static (as opposed to automatic) at
tribute. A variable in this class must retain its value across block activa
tions, including recursive activations of the current block. 

• Uplevel class. A variable that is referenced from a block contained in its 
block of declaration (a lexically nested block). 

• Alias class. A variable that may be modified by something that we can
not know about in the current compilation, in particular, one that may be 
referenced elsewhere by some other name. Parameters that are passed 
by reference as well as based variables are in this class, since we have 
no way of knowing whether they might be modified under some other 
name. 

• Ordinary class. A variable that is not a member of any of the other 
classes. In general, these are the variables for which we can exactly de
termine all definition points. 

The Optimizer maintains a record of the last explicit definition point for all 
variables. The last explicit definition point is represented as the identifier of 
the operator that last defined the variable. In addition, the Optimizer records 
the last definition point for each of the classes external, static, uplevel, and 
alias in what we call class definition points. The last definition point for any 
of these classes is the most recent point in the program at which any variable 
belonging to that class was assigned a value. When the Optimizer computes 
the limitof an operator, it also considers class definition points. For example, 
the limit of a reference to an aliased variable is the most recent explicit defini-



Global Optimization 

/. ~~~A~4~~tk/ 

;~~~+4-~.~ 

Z. at£ U~~ (J.dR4) ,ad- tt. dlra--· ~ r 
~~ 

3, ~ ",1I.c;""'ut ~ ~ ~r ~ ~ 
'~~A~~ 

93 



94 Engineering a Compiler 

tion of the variable itself or the most recent definition point of the alias class, 
whichever is more recent. 

Rules for Determining Definition Points 
An explicit definition point of a variable occurs when an operator directly or 

indirectly assigns a value to the variable. This occurs as a result of any of the 
following events: 

• An ASSIGN operator specifies the variable as the target of the assign
ment. 

• The variable is specified as the argument of a CALL operator and is to be 
passed by reference. 

• The variable is specified as the operand of a SETS operator. 

• The variable is used as the control variable of a loop in an 
ADD_COMPARE-AND-BRANCH operator. 

Explicit class definition points occur when any variable belonging to the 
class is assigned a. value as a result of any of the above. However, class defini
tion points also occur as a side effect of assignment to variables of other 
classes according to the following rules: 

• A definition point for any variable of the alias class is also a definition 
point for the uplevel, static, and external classes. This rule is necessary 
when an external, static, or uplevel variable is passed to a procedure by 
reference and the target procedure may address the variable either di
rectly by name or indirectly via the parameter list. 

• A definition point for a variable of the external, static, or uplevel class is 
also a definition point for the alias class. This follows from the case 
above (that is, when a variable is referenced both directly by name and 
indirectly via the parameter list). 

• All procedure and function calls are definition points for the alias, exter
nal, and static classes. This rule is necessary because the information 
needed to determine exactly what variables are and are not modified is 
either not computed (we do not do inter procedural analysis) or is not 
available at compile time (in the case of calls to external procedures). 

• All procedure and function calls to internal procedures or from blocks 
that have the flush-on-call attribute are definition points for the uplevel 
class. This rule is necessary because internal procedures may directly 
address uplevel variables by name. 

A block with the flush-on-call attribute is a block in which a call to an exter
nal procedure could result in a call back into a contained internal procedure 
because the entry constant of the internal procedure has been assigned to an 
entry variable or has been passed by reference to another procedure. An ex
ample of a program containing such a construct is: 



Global Optimization 

flush: PROCEDURE; 

DECLARE ecalc ENTRY (ENTRY), 

a( 10) FLOAT BINARY(24); 

CALL ecalc(icalc); 

RETURN; 

icalc: PROCEDURE; 

DECLARE i FIXED BINARY(31); 

DO i = 1 TO 10; 

a (i) = i; 

END; 

RETURN; 

END; 

END; 

ecalc: PROCEDURE (routine); 

DECLARE routine ENTRY; 

END; 

CALL routine; 

RETURN; 

Along with these rules for definition points of classes of variables, the fol
lowing rules are required for definition points in structure and procedure pa
rameters: 

• A definition point for any member of a structure constitutes a definition 
point for all containing structures. 

• A definition point for an entire structure constitutes a definition point 
for all members of the structure. 

• A definition point for any element of an array is considered to be a defi
nition point for the entire array. 

• A definition point for an entire array is considered to be a definition 
point for all elements of the array. 

• Whenever a variable is passed by reference in a procedure or function 
call, that reference constitutes a definition point for the variable. 

All of this information and the formalization of these rules are extremely 
important in computing the limit of an operator. This critical information lets 
us perform optimizations across longer spans of the program (for example, 
across branches and procedure calls) and has increased our ability to optimize 
aggregates. 

95 



96 Engineering a Compiler 

Structure and Control Flow in the Optimizer 

The front end of a compiler is responsible for producing a linear representa
tion of a program by passing trees to Write Tree. The Optimizer is an optional 
phase of the compiler that is responsible for performing reductions on this 
linear form (the operator file) in a machine-independent fashion. 

Before the optimization process begins, the Optimizer scans the entire 
Symbol Table. For each variable, whether it be external, static, automatic, or 
scalar or an aggregate, the Optimizer assigns a definition point number and 
stores this number in the variable's symbol node. It subsequently uses this 
number throughout optimization as an index into arrays that contain informa
tion about variables, such as the array that contains the most recent definition 
point of each variable. Figure 18 illustrates the order in which the Optimizer 
performs optimizations on the program. The Optimizer scans the linear pro
gram representation to segregate the program into procedure and begin 
blocks and performs optimizations on each individual block. 

For each block, the Optimizer constructs an array of pointers (the pointer 
array) to the operators in that block and a position array that is indexed by the 
negated values of the operator identifiers. The pointer array is itself indexed 
by the position array; the value in the position array is the index of the respec
tive pointer to the operator in the pointer array. Figure 19 illustrates these 



Global Optimization 

Scan symbol table 
and assign 
definition 
point numbers 

Get pointer to next 
operator in operator 
file 

BEGIN or 
PROCEDURE? 

yes 
Initialize dynamic 
data for this 
block and select 
32 variables 

Construct flow 
graph and perform 
live variable 
analysis 

no Record pointer and 
>--'----'----+1 position of operator 

Perform loop 
invariant removal 

Perform common 
su bexpression 
elimination 

yes 

Figure 18. Sequence of optimizations. 

no 

no 

yes 

Optimize Boolean 
expressions 

ADD or 
MULTIPLY? 

97 



98 Engineering a Compiler 

Operator 
buffers 

flink 

flink 

Pointer 
array 

PROCEDURE 

Opa 

Opb 

Ope 

Opd 

Ope 

Opt 

Opg 

BLKEND 

--------

Figure 19. The Optimizer's position and pointer arrays. 

Position 
array 

1 

2 

3 

4 

5 

6 

7 

8 

9 

arrays. The Optimizer makes several passes over the operator file, the exact 
number depending on the optimizations it is performing. Once it has built the 
pointer and position arrays during the first scan, it uses only these arrays in 
subsequent scans and locates specific operators (when it needs to modify 
them) by using the position array to locate the corresponding pointer in the 
pointer array. 

As it constructs the position and pointer arrays, the Optimizer optimizes 
Boolean conditional expressions and performs various small reductions on the 
Intermediate Language. (For example, it commutes the operands of MULTIPLY 
and ADD operators to a canonical form for common subexpression elimination 
so that expressions such as a+ band b+ a will be found to be equivalent.) It 
selects up to 32 variables as candidates for assignment to registers based on 
their usage within the program and builds a flow graph of the block. After 
completing the flow graph, the Optimizer performs its optimizations in the 
following order: 

1. Value propagation 

2. Assignment of automatic variables to register temporaries 

3. Removal of invariant expressions from loops 



Global Optimization 

4. Elimination of common subexpressions 

5. Result incorporation. 

Any of these optimizations can be suppressed at compile time by individual 
command options. Although users of the compiler rarely suppress individual 
optimizations (and our compiler requires suppression of few opti
mizations-notably value propagation and the computation of disjoint 
lifetimes-in order to do interactive debugging), we found it useful while iso
lating bugs in the Optimizer to be able to be selective about which optimiz
ations were being done. 

Throughout its execution, the Optimizer records removal or reordering of 
operators so that it can write out the final optimized form of the operators in 
the correct lexical order. For operators that it eliminates, it zeros its pointer 
in the pointer array. For operators that it moves, the Optimizer moves the 
corresponding pointer in the pointer array and updates the respective element 
in the position array to signify the new pointer position; thus, the pointer ar
ray is constantly shuffled during the removal of invariant expressions. Finally, 
when it has processed all the blocks in the program, the Optimizer uses the 
resultant pointer array to write the optimized set of operators into an internal 
file that will be read by the Local Code Generator. 

In the remaining sections of this chapter, we discuss in detail each optimiz
ation we implemented in this phase of the VAX-II Code Generator. We de
scribe the optimizations and the data collection procedures in the order the 
Optimizer executes them. Figure 18 provides a guide to how these pieces fit 
together. 

Selecting Variables for Assignment to Registers 

The Optimizer does not actually assign variables to registers. Final selec
tion and assignment of variables to specific hardware registers does not occur 
until aft.er code generation and is performed by a distinct phase of the com
piler, the Register Allocator. The Optimizer scans the Symbol Table, select
ing up to 32 variables as candidates for assignment to registers. (The number 
of variables is not arbitrary. We felt that, given a 32-bit architecture with 16 
registers, 32 was a reasonable number if as a result of the computation of 
disjoint lifetimes we could use the same register for more than one variable. 
Moreover, using 32 variables lets us perform efficient bit-string operations on 
sets representing the variables we selected.) 

The Optimizer determines which variables are eligible by making some spe
cific tests. If more than 32 variables in the block meet the test, it chooses 
those that are more frequently referenced by looking at the reference infor
mation accumulated by the front end. To be eligible, the variable must be: 

• One of the data types floating point, integer, bit aligned (and less than or 
equal to 32 bits), pointer, offset, or file 

99 



100 Engineering a Compiler 

• Scalar 

• Referenced 

• Automatic. 
A variable is ineligible if it does not meet all these conditions, or if Write 

Tree has set the attribute requires_storage in the variable's symbol node. 
Write Tree sets this attribute if the variable's address has been taken or is 
used in some peculiar way, for example as the operand of a SUBSTR 
(substring) function. 

(In the current version of the compiler, being passed by reference or being 
uplevel addressed does not automatically make a variable ineligible for regis
ter assignment, as was the case in the first version. After the first version 'was 
released, we realized that if we could segregate uses of a variable-that is, if 
we could tell whether over some period it was not being passed by reference 
or being uplevel addressed-we could put it in a register during the times 
when it was safe to do so. We were able to accomplish this by letting the 
Optimizer delay its decision about the variable's eligibility until after it has 
built the flow graph. To do this, the Optimizer constructs a 32-member set 
signifying which variables that are candidates for register assignment are also 
uplevel addressed at some point in the program. We refer to this as the 
uplevel set. The Optimizer sets the requires_storage attribute for these 
variables so that the Storage Allocator phase will allocate memory for them in 
the stack frame. While it is building the flow graph, the Optimizer also sets 
the -requires_storage attribute for variables passed by reference.) 

As it selects variables by using these criteria, the Optimizer assigns them 
numbers from 1 to 32. It uses these numbers thereafter to access information 
about the variables stored in various arrays (such as an array containing the 
symbol node identifiers of the 32 variables) and as an index into various bit 
arrays (such as various sets required for data flow analysis). It stores the as
signed number in the variable's symbol node and sets the register_temporary 
attribute in the symbol node to indicate that the variable may be assigned to a 
register. 

Optimizing Boolean Branch Expressions 

The optimization of Boolean branch expressions (sometimes called "Bool
ean minimization") occurs during the initial scan of the operators. We wanted 
to perform this optimization as early as possible because the resultant intro
duction of different branch operators into the file will modify the flow graph of 
the program. This optimization modifies the computation of Boolean branches 
so that the generated code will at run time evaluate only as much of the ex
pression as is needed to determine the final result. 

The Optimizer tests for seven specific code patterns and performs a specific 
optimization for each. The patterns are 



Global Optimization 

1. NOTa 

2. a ORb 

3. NOT (a AND b) 

4. aANDb 

5. NOT (a OR b) 

6. x RELATIONy 

7. NOT (x RELA TION y) 

where a and b are Boolean expressions and x and yare arithmetic expressions. 
The following code fragment and generated operators illustrate the first pat
tern listed above: 

Source Program Fragment 

IF NOT a 

THEN conditional statements 

Intermediate Language Operators 

-50 REF(a) 

-51 VALUE(-50) 

-52 NOT(-51) 

-53 BR __ FALSE(labe11,-52) 

-54 

. conditional statements 

-70 LABEL(labe11) 

This code sequence specifies that the conditional statements be executed if 
a is false. Thus, we can modify the operators so that the conditional state
ments are not executed if a is true. The following set of operators shows how 
the Optimizer replaces operators -52 and -53 with a single operator: 

-50 REF(a) 

-51 VALUE(-50) 

-52 BR __ TRUE(labe11,-51) 

-53 

. conditional statements 

-70 LABEL(labe11) 

The second pattern optimizes the OR case shown in the following code frag
ment and generated operators. 

Source Program Fragment 

IF a OR b 

THEN conditional statements 

101 



102 

Intermediate Language Operators 

-50 REF(a) 

-51 VALUE(-50) 

-52 REF(b) 

-53 VALUE(-52) 

- 54 OR ( - 5 1 , - 53 ) 

-55 BR __ FALSE(labe11,-54) 

-56 

. conditional statements 

-70 LABEL(labe11) 

Engineering a Compiler 

This code sequence specifies that the conditional statements be executed if 
a or b is true. Thus, we can modify the operators so that the conditional state
ments are executed if a is true or so that the conditional statements are not 
executed at all if a is false and b is also false. The optimized set of operators is 
as follows: 

-50 REF(a) 

-51 VALUE(-50) 

-52 BR __ TRUE(labe12,-51) 

-53 REF (b) 

-54 VALUE(-53) 

-55 BR __ FALSE(labe11,-54) 

-56 LABEL(labe12) 

-57 

. conditional statements 

-70 LABEL(labe11) 

The third pattern can be optimized with a similar modification, by removing 
the NOT operator and substituting BR-TRUE operators for each occurrence of 
a BILFALSE operator, and vice versa. Thus, the conditional statements are ex
ecuted if a is false, or they are not executed at all if both a and b are true. The 
fourth and fifth patterns can be treated similarly. 

The sixth pattern is used to optimize relational operators such as EQ (equal), 
GT (greater), and so on. The following code fragment illustrates the operators 
generated for relational expressions. 

Source Program Fragment 

if x RELATION y 

then conditional statements 



Global Optimization 

Intermediate Language Operators 

-50 REF(x) 

-51 VALUE(-50) 

-52 REF(y) 

-53 VALUE(-52) 

-54 RELATIONAL __ OPERATOR(-51,-53) 

-55 BR __ FALSE(label1,-54) 

-56 

. conditional statements 

-70 LABEL(label1) 

This code sequence specifies that the conditional statements be executed if 
the relationship between x and y is true. We can therefore optimize the opera
tors by replacing the relational operator that is followed by a BlLFALSE opera
tor (-54 and -55 above) with an inverse relational branch operator as follows: 

-50 REF(x) 

-51 VALUE(-50) 

-52 REF(y) 

-53 VALUE(-52) 

-54 INVERSE __ RELATIONAL __ BRANCH(label1,-51,-53) 

-55 

. conditional statements 

-70 LABEL(label1) 

The seventh pattern is optimized in the same way as the sixth except that a 
relational branch is used instead of an inverse relational branch. 

All Boolean branch optimizations are performed recursively so that each 
transformation opens new opportunities for further optimization. Consider the 
following code fragment and intermediate code: 

Source Program Fragment 

if (a OR b) AND (c AND d) 

then conditional statements 

Intermediate Language Operators 

-50 REF(a) 

- 51 VALUE(-50) 

-52 REF(b) 

-53 VALUE(-52) 

-54 OR ( - 5 1 , - 5 3 ) 

103 



104 

-55 

-56 

-57 

-58 

-59 

-60 

-61 

-62 

REF(c) 

VALUE(-55) 

REF(d) 

VALUE(-57) 

AND(-56,-58) 

AND(-54,-59) 

BR __ FALSE(label1,-60) 

. conditional statements 

-70 LABEL(label1) 

Engineering a Compiler 

The first pattern selected for optimization is pattern (4), an AND operation. 
We replace the AND (-60) and the BILFALSE (-61) with two BILFALSE opera
tors, because the conditional statements will not be executed if either operand 
of the AND (-60) is false. The operators resulting from this optimization are 
(note the insertion of the BILFALSE (-55) before the REF of c): 

-50 REF(a) 

-51 VALUE(-50) 

-52 REF(b) 

-53 VALUE(-52) 

-54 OR(-51,-53) 

-55 BR __ FALSE(label1,-54) 

-56 REF(c) 

-57 VALUE(-56) 

-58 REF(d) 

-59 VALUE(-58) 

-60 AND(-57,-59) 

-61 BR __ FALSE(label1,-60) 

-62 

conditional statements 

-70 LABEL(label1) 

We have now created the opportunity to apply further optimization to the 
operators -55 and -61. The completely optimized set of operators is: 

-50 REF(a) 

-51 VALUE(-50) 

-52 BR __ TRUE(label2,-51) 

-53 REF (b) 

-54 VALUE(-53) 

-55 BR __ FALSE(label1,-54) 

-56 LABEL(label2) 

-57 REF(c) 



Global Optimization 

-58 VALUE(-57) 

-59 BR __ FALSE(label1,-58) 

-60 REF(d) 

-61 VALUE(-60) 

-62 BR __ FALSE(label1,-61) 

-63 

. conditional statements 

-70 LABEL(label1) 

We now skip evaluation of b if a is true and proceed immediately to evaluate 
c. If c is false, we exit the sequence entirely. 

Constructing the Flow Graph 

A flow graph, in visual terms, shows us what happens in the program and as 
such is similar to a flowchart. However, because it is constructed according to 
well-defined rules developed to chart possible control flow, it enables us to 
describe formally the relationship and flow of control among the various units 
of a program. 

To build a flow graph, the Optimizer simply scans the operators for a given 
block and generates graph nodes and list entries describing the relationships 
among the nodes. (In some books, these nodes are called "basic blocks." To 
avoid confusion with procedure and begin blocks in our text, we call them 
nodes.) When this graph is complete, each node represents a sequence of 
instructions that will always be executed in their entirety if at all. Moreover, 
each node can be entered at only one place in the control flow, although it can 
have more than one place at which it exits. 

We defined a very basic set of rules for constructing the flow graph. These 
are: 

• There is an initial node from which all other nodes can be reached. This 
node is generated mostly for convenience and provides a place from 
which all flow paths emanate. 

• A label is the start of a node. 

• A conditional branch is the end of a node. The operator following the 
conditional branch is the start of a new node even though it may not be a 
label (since control can fall through the test). 

• A procedure or function call is the end of a node. The operator following 
the procedure or function call operator is the start of a new node even 
though it may not be a label (since control normally returns from the 
called procedure or function). 

• An unconditional branch is the end of a node. Unconditional branches 
include Intermediate Language operators for returning from a proce-

105 



106 Engineering a Compiler 

dure, for signaling an error condition, and for resignaling an error, and 
the obvious case of the GOTO operator. 

Generally, for each new node that it generates the Optimizer constructs 
two edges. The edges represent the flow of control from the previous node to 
the new node. One edge is inserted in the successor list of the previous node, 
the other in the predecessor list of the new node. Two edges are also gener
ated for the target node of a conditional or unconditional branch. These edges 
are entered in the predecessor and successor lists of the previous and target 
nodes, respectively. Figure 20 illustrates successor and predecessor edges 
for a flow graph whose nodes represent some basic programming construc
tions. 

The rules listed above for generating edges do not allow for the generality 
required to optimize languages that have such concepts as label variables, 
multiple entry points to a procedure, and exception handling. Thus, in devel
oping the flow graph logic for analyzing PL/I programs we had to introduce 
rules that allowed us to represent-and safely optimize-a program contain
ing these more complex constructs. We also had to introduce two fictitious 
nodes that let us represent hidden or unknown flow, such as uplevel GOTO 
statements and alia sed labels. These nodes are called the upleve! and alias 
nodes. The extended rules are: 

• An alternate entry point is the start of a new node; its immediate prede
cessor is the initial node. Thus, we can represent that control flowing 
into the block at any of its entry points must come through the initial 
node. 

• A call to an external procedure has an additional successor node: the 
alias node. 

• A call to an external procedure from a procedure with the flush-on-call 
attribute has an additional successor node: the uplevel node. 

• A call to an entry variable has both the uplevel and alias nodes as addi
tional successors. 

• A call to an internal (contained) procedure has both the alias and uplevel 
nodes as additional successors. 

• A block that contains a condition handling routine (such as a PL/I ON
unit) with an uplevel GOTO into the containing block has an additional 
successor to its initial node: the uplevel node. 

• A CASE or SELECT statement has a successor node that is generated 
for the label array. 

• A label constant assigned to a label variable or passed to a called proce
dure heads a node that has the alias node as an additional predecessor. 



Global Optimization 

I Successor 

r Predecessor 

Figure 20. Successors and predecessors. 

• A label constant that is uplevel addressed (that is, referenced by an 
uplevel GOTO) heads a node that has the uplevel node as an additional 
predecessor. 

• A subscripted label constant heads a node that has the node generated 
for the label array as an additional predecessor. 

• A GOTO with a label variable as its target has the alias node as a succes
sor. 

Collectively, these rules permit construction of a flow graph for any lan
guage. Figure 21 illustrates what the flow graphs would look like for a few of 
these more complicated cases. 

These rules do not allow us to model exactly the control flow in a program. 
They do, however, enable us to construct a conservative model in which the 
representation will always allow us to perform correct, albeit not all possible, 
optimizations. 

Collecting Use and Definition Information 

While scanning the operator file to build the flow graph, the Optimizer col
lects the use and definition information for each variable selected as a candi
date for assignment to a register. The information is collected for each node 
and includes: 

• A use set, containing a true value for each variable whose value was 
used in the node before it was assigned a value. 

107 



108 

The Uplevel Case 

r--_---,initial 

s 

uplevel 

S 

p 

p 
RENEGE: 

S 

uplevel: PROCEDURE; 
DECLARE anyproc ENTRY(ENTRY), 

x FIXED BINARY; 

renege: 

END; 

ON ERROR GOTO renege; 
CALL anyproc(clubs); 

clubs: PROCEDURE; 
x = x+1; 
RETURN; 
END;I*clubs*1 

RETURN; 

anyproc: PROCEDURE (which); 
DECLARE which ENTRY VARIABLE; 

CALL which; 
END; 

Engineering a Compiler 

The AI ias Case 

.---_---, in it i a I 

S 

S S alias 

.Kp 

S 

alias: PROCEDURE; 
DECLARE decider ENTRY(LABEL); 

CALL decider(here); 
here; 

END; 
decider: 
DECLARE 

END; 

RETURN; 

PROCEDURE (where_to); 
where_to LABEL VARIABLE; 
GOTO where_to; 

Figure 21. Flow graphs charting hidden control flow. 

• A def, or definition, set, containing a true value for each variable that 
was assigned a value before its value was used in the node. 

• A ref, or referenced-by-address, set, containing a true value for each 
variable that was either (1) passed by reference within the node or (2) is 
uplevel addressed and the node contains either a call to an internal pro
cedure or a call to an external procedure and the containing block has 
the flush-on-call attribute. This set signifies variables that must have a 
memory address within that node. 



Global Optimization 

• A use-definition list for each variable, containing the operator identifi
ers of the operators in the node that either reference or define the va
riable's value. 

The respective set member and list for a specific variable are determined 
from the number assigned when the variable was selected as a candidate for 
assignment to a register. Each set is maintained in a 32-bit variable, or bit 
vector. 

What We Keep in a Node 

Conceptually, a node represents a distinct sequence of instructions in a pro
gram. Each node holds information about a consecutive set of Intermediate 
Language operators. The compiler's data structure summarizing the informa
tion collected to represent a node contains: 

• The operator identifiers of the first and last operator in the node (the 
id_first and id_Iast identifiers). 

• A listhead for a list of all nodes in the graph that may precede the node 
(the predecessor list). 

• A listhead for a list of all the nodes in the graph that may follow the node 
(the successor list). 

• Set variables (use, del, in, out, and ref), used for collecting data flow 
information about the variables selected as candidates for assignment to 
registers. 

• Thirty-two listheads for the use-definition lists for each of the variables 
selected as candidates for register assignment. These lists contain the 
identifiers of all operators in the node that represent either a use or a 
definition of the respective variable. 

• A Boolean variable, used during various graph analyses to determine if 
the node has been visited or not. 

There are set variables and use-definition lists in each node in the graph. 
That is, each node of the graph carries all necessary information about each of 
the 32 variables that are candidates for assignment to registers. Figure 22 
summarizes the information in a flow graph node. 

Special Cases of Data Collection 

To collect use information for the use set, the Optimizer scans the operator 
file forward looking for the occurrence of VALUE operators whose operands 
are REF operators referring to variables selected for register assignment. 
That is, if x is a variable that is a candidate for assignment to a register, the 
Optimizer looks for sequences of operators like the following: 

-88 REF(x) 

-89 VALUE(-88) 

109 



110 

Lists of { 
graph 
nodes 

Lists of 
operator 
identifiers 

IN 

OUT 

DEF 

USE 

REF 

ID_FIRSTIID_LAST 

~ Predecessor_ 
listhead 

Successor_ 
-listhead 

Engineering a Compiler 

} 32·member set variables 

First and last 

1 

2 

3 

operator identifiers 

One listhead for use-definition 
I ist for each of 32 variables 
selected as candidates for 
assignment to registers 

'-------,~--;. 32 Visited 

Figure 22. Data in a flow graph node. 

Collecting definition information for this set entails special processing of as
signment, call, and looping operators. 

To obtain use information for a given variable, the Optimizer interrogates 
the de! set with the variable's assigned number. If the respective member of 
the de! set is false, then the respective member of the use set is set true; that 
is, the value of the variable was used in the node before it was assigned a 
value. The operator identifier of the VALUE operator is inserted in the appro
priate list of references within the current node. 

Collecting definition information entails explicit treatment of the different 
types of assignment operators. In each case, the Optimizer interrogates the 
respective member of the use set with the variable's assigned number. If the 
respective member of the use set is false, then the respective member of the 
de! set is set true; that is, the value of the variable was defined in the node 
before it was used. 

Loop control and call operators specifying variables passed by reference in
dicate both uses and definitions of their operands. In a loop control operator, 
the control variable is used, augmented, and then assigned a new value. The 
Optimizer detects the usage of the control variable in a loop control operator 
when it scans the operator for VALUE operators. Call operators, however, 
must be treated specially. If the call is to an internal procedure or from a pro
cedure that has flush-an-call set, then the call is considered to be an implicit 
use of the values of all uplevel-addressed variables selected as candidates for 



Global Optimization 

register assignment. The Optimizer replaces the ref set with the union of the 
ref set and the uplevel set, thus signifying that all uplevel variables must be in 
memory during the execution of the node. Then the Optimizer replaces the 
use set with the set formed by taking the union of the use set and the inter
section of the complement of the def set and the uplevel set, thus signifying 
that all variables that are uplevel-addressed and have not been defined in the 
node before being used are considered to have been used in the node before 
being defined. 

The Optimizer scans each operand of the CALL operator to determine 
whether it is a reference to a variable selected for register assignment. For 
each such reference, it sets the requires_storage attribute in the variable's 
symbol node and sets its respective member true in the ref set. If the respec
tive member in the def set is false, then the respective member in the use set 
is set true. Variables that are passed by reference must be in memory during 
execution of the node. 

Assignment and loop control operators are also inserted in the appropriate 
list of references within the current node. The operator identifiers of these 
operators are inserted in the use-definition lists. 

Computing the Depth-First Order 

To use·the completed flow graph, the Optimizer uses depth-first ordering 
as a systematic way to visit the nodes in the graph. Depth-first ordering is the 
reverse of the order in which the nodes were last visited in preorder tra
versal, and thus the Optimizer can use it to visit nodes both from the root of 
the graph to its outermost levels, and vice versa. The algorithm for computing 
depth-first order, shown in Figure 23, is taken directly from Aho and Ullman's 
Principles of Compiler Design. 

Figure 24 illustrates a flow graph and indicates the depth-first ordering of 
the nodes in the graph. 

Mter constructing the graph, the Optimizer first performs live variable ana
lysis and adds this information to the nodes in the graph. 

Live Variable Analysis 
Live variable analysis enables the Optimizer to determine which values of 

variables are valid at each node in the graph. The value of a variable is said to 
be live at a point in the graph if that value is used before it is defined along 
some flow path emanating from the specified point in the graph. Otherwise, 
the value is considered to be dead because there is no further use. 

Live variable analysis requires the solution of two data flow equations. The 
equations are solved only on the candidates for register assignment; their so
lutions employ the use and def sets that were collected during the building of 
the flow graph for a procedure or begin block. 

111 



112 Engineering a Compiler 

Figure 23. Computing the depth-first order. 

FOR index = all nodes in the graph; 

node(index).visited = FALSE; 

END; 
CALL compute ___ depth ___ first(1); 

Compute ___ depth ___ first PROCEDURE(new ___ node) RECURSIVE; 

node (new ___ node ) . vis i ted = TRUE; 

FOR next ___ node = each successor of node(new ___ node); 

IF node(next ___ node).visited = FALSE 

THEN CALL compute ___ depth ___ first(next ___ node); 

END; 

depth ___ order(index) = new ___ node; 

index = index - 1; 

END; 

The information derived from the calculations tells the Optimizer which val
ues are live on entrance to a node and which are live on exit from a node. 
These two sets are called the in and out sets, respectively. The in set repre
sents those variables whose values are valid on entry to a node. The out set 
represents those variables whose values are live on exit from the node. The 
formal equations used to calculate these sets are shown in Figure 25. 

Intuitively, we can see the following relationships between the in and out 
sets: 

• A variable's value is valid coming in to a node if it is used before being 
defined in that node. 

• A variable's value is valid coming out of a node if it comes in to any of 
that node's successors. 

• A variable's value is valid coming in to a node if it comes out of the node 
and is not defined before being used within the node. 

Live variable analysis represents a backward flow problem: the Optimizer 
must compute what values come in to the successors of a node before it can 
compute its in and out sets. It therefore examines the nodes in the graph in 
depth-first order and computes both the in and out sets iteratively until there 
are no changes in the computed out sets. The algorithm for these computa
tions, also taken directly from Aho and Ullman, is shown in Figure 26. 

Figures 27 through 29 illustrate the operators, flow graph nodes, and the 
solution of the data flow equations on the variables in the following simple 
program: 



Global Optimization 

4 5 

Depth-first order = 4, 5, 2, 3, 1 

Figure 24. Nodes in depth-first order. 

check: PROCEDURE (y); 

DECLARE (x,y) FIXED BINARY; 

IF Y > 0 

END; 

THEN x = 1; 

ELSE x = 2; 

y = x; 
RETURN; 

3 

Figure 27 illustrates the operators; horizontal lines indicate the divisions 
between the nodes. 

Figure 28 shows the flow graph nodes for this program. 
Figure 29 shows the solutions of the data equations and the values of the bit 

vectors for the variable x in the program. 

Value Propagation and Register Assignment 

Mter performing live variable analysis for all nodes in the graph, the Opti
mizer begins individual processing of the variables selected as candidates for 
assignment to registers. First, the Optimizer computes a region or subgraph 

Figure 25. Equations for live variable analysis. 

OUT(node) = U IN (successor-nodes) 

IN(node) = OUT(node)-DEF(node) U USE(node) 

U indicates set union 
- indicates set difference 

113 



114 Engineering a Compiler 

Figure 26. Computing the in and out sets. 

changes = TRUE; 

DO WHILE (changes); 

changes = FALSE; 

FOR loop_index = graph nodes in depth-first order; 

new_out = null; 

FOR next_node = each successor of node(loop_index); 

new_out = new_out U node (next_node) . in; 

END; 

END; 

IF new_out A= node(loop_index).out 

END; 

THEN DO; 

END; 

changes = TRUE; 

node(loop_index).out = new_out; 

node(loop_index).in = new_out -

node ( loop_index) . def U 

node(loop_index).use; 

Figure 27. Operators divided into nodes. 

-33 

-33 

-34 

-35 

-36 

-37 

-38 

-39 

-40 

-41 

-42 

o 
o 

o 
o 

0 

1 

0 

STATEMENT(1) 

PROCEDURE(174,169) 

ENTRY(CHECK) 

END_OF_PROLOGUE 

STATEMENT(6) 

PARAM_PTR ( y) 

REF(y,0,-37) 

VALUE(-38) 

IMMEDIATE(O) 

GTR(-39,-40) 

BR_FALSE ( 195) 

Node 2 



Global Optimization 

Figure 27 (concluded) 

-43 

-44 

-45 

7 

-46 

-47 

-48 

-49 

-50 

-51 

-52 

8 

-53 

-54 

-55 

-56 

-57 

-58 

9 

-59 

-60 

10 

-61 

-62 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

end; 

o 
o 

REF(x) 

IMMEDIATE(1) 

ASSIGN(-43,-44) 

else x = 2; 

STATEMENT(7) 

BR( 199) 

LABEL(195) 

REF(x) 

IMMEDIATE(2) 

ASSIGN(-49,-50) 

LABEL(199) 

Y = x; 

STATEMENT(8) 

PARAM_PTR(Y) 

REF(y,0,-54) 

REF(x) 

VALUE(-56) 

ASSIGN(-55,-57) 

return; 

STATEMENT(9) 

RETURN 

STATEMENT(10) 

BLOCK_END ( 169 ) 

115 

Node 3 

Node 4 

Node 5 



116 Engineering a Compiler 

0.--------. 

p 

® s 
p 

Figure 28. The flow graph of a program's nodes. 

for the instance or a discrete lifetime of a variable. Then it attempts value 
propagation; failing that, it assigns the variable to a register temporary. If the 
value of the variable can be propagated over the entire region, there is no 
need to assign the variable to a register because value propagation effectively 
eliminates the particular instance of the variable from the program. If the va
riable's value cannot be propagated, the Optimizer assigns it to a register. 
The assignment is accomplished using an operator we invented specifically for 
this purpose: ASSIGN-REGTEMP, for Assign Variable to Register Temporary. 
Mter introducing an ASSIGN-REGTEMPfor the variable into the operator file, 
the Optimizer replaces all references to the variable within the region with 
references to the ASSIGN-REGTEMP operator. 

In the next subsections, we discuss how the Optimizer defines an instance of 
a variable, how it computes regions within the program, how it determines 
whether a variable's value can be propagated, and some of the mechanics of 
the ASSIGN-REGTEMP operator. 

Computing the Instance of a Variable 

An instance of a variable is defined by a set of interconnected graph nodes. 
The nodes at the tails of successor edges in the graph have the variable live 
on exit (its value comes out of the node) and the nodes at the heads of succes-



Global Optimization 

® S 

DEF = 1 then x = 1 
USE = 0 
IN = 0 -43 
OUT = 1 -47 

P 

@.-S;;:...L..._--L----. 

DEF = 0 
USE = 1 
IN = 1 
OUT = 0 L....-__ ----' 

0.--------, 

p 

® .-S~_---"--....., 
if Y > 0 

-34 
-42 

p DEF = 0 
USE = 0 
IN = 0 
.OUT = 0 

Figure 29. Bit vectors for live variable analysis. 

DEF = 1 
USE= 0 
IN = 0 
OUT = 1 

sor edges in the graph have the variable live on entrance (its value comes in to 
the node). The set of nodes that form the instance or discrete lifetime of the 
variable is called a region. Consider the following program fragment: 

IF Y < 0 

THEN RETURN; 

x = 5; 

IF Y = 2 

THEN DO; 

x = x + 1; 

RETURN; 

END; 

x = y; 

IF x > 4 

THEN x = x + 1; 

ELSE x = x - 1; 

Assume that this program has a single variable, x, that is a candidate for 
assignment to a register. Figure 30 illustrates the flow graph for this program 
fragment. The first assignment shown above, x=5, occurs in node 2. 

117 



118 

o 
DEF = 0 
USE = 1 
IN = 1 
OUT = 0 

® 
DEF = 1 
USE = 0 
IN = 0 
OUT = 1 

/ 
x = x + 1; 
return; 

® 
DEF = 0 
USE = 1 
IN = 1 
OUT = 0 

1 

/ 
x = 5; 
if Y= 2 

Engineering a Compiler 

DEF = 0 

if Y < 0 
USE = 0 
IN = a 
OUT = 0 

®~ 
retu rn; 

DEF = a 
USE = 0 
IN = 0 
OUT = 0 

@~ 
DEF = 1 

/ 
x = x + 1; 

x = Y; USE = a 
if x> 4 IN = a 

OUT = 1 

0~ 
x = x - 1; 

DEF = 0 
USE = 1 
IN = 1 
OUT = 0 

Figure 30. Flow graph for a program containing a register temporary. 

Two regions in the graph describe discrete lifetimes of the variable. One is 
the set of nodes 2 and 4; the other is the set 5, 6, and 7. Nodes 1 and 3 do not 
use or define the variable's value and thus are not part of a region. 

The Optimizer computes regions by examining nodes in reverse depth-first 
order, starting with the initial node. For each node, it computes the set of 
variables that are used, defined, or that come out of the node. Using the bit 
vectors that correspond to these sets, we express this computation as: 

use_or_def = defCnode) U useCnode) U outCnode) 

CWe include the use and out sets, even though they might not be expected to 
play a part in this computation, in order to take into account programs that 
use the value of a variable before the variable is defined.) 

The Optimizer now scans the resulting set, looking for true entries. If there 
are none, it simply moves to the next node in reverse depth-first order. The 
bit number of a true entry specifies the index into the array of symbol node 
identifiers for variables selected for assignment to registers. It is also used to 
interrogate members of the in and out sets of subsequent nodes. 

Finding a true entry signals the start of a region for a discrete instance of a 
variable. The current node becomes the first node in the list of nodes that 
form the region, and the true entry is cleared in the use_or_def set. The 
minimum and maximum operator identifiers are recorded from the current 
node, a Boolean variable called cycles is initialized to false, and a Boolean vari-



Global Optimization 

able called referenced is initialized from the variable's member (specified by 
the bit number) of the current node's ref set. The Optimizer also initializes a 
set called node_visited, a bit vector that has a member for each node in the 
graph for the block. The bit vector is initialized so that the only true member 
is the one corresponding to the first node in the region. 

If the value of the variable comes out of the current node, then the Opti
mizer searches all the successors of the current node. Each time it finds a 
successor that the variable's value comes in to, the Optimizer performs the 
following operations: 

1. Adds that successor node to the region list 

2. Sets true its member in the node_visited set 

3. Updates the minimum and maximum operator identifiers to keep track 
of the minimum and maximum identifiers in the region 

4. Computes the union of all members of the ref sets for the variable 
across the region in referenced 

5. Checks the graph for cycles (any backward branch along any flow path in 
the region) 

6. If a cycle is detected, indicating a backward branch in the region to a 
node that has already been visited, sets the variable cycles to true. 

Next, the Optimizer searches the predecessors of each successor node that 
was added to the region list for nodes that the variable's value comes out of. 
Both predecessors and successors are searched recursively until no more can 
be added to the region list. During this recursive search, the Optimizer contin
ually interrogates the respective member in the node_visited set to ensure 
visiting each node only once during the recursive search. 

As it adds each node to the region list, the Optimizer sets the respective in, 
out, de/, and use members false for the variable in question. This ensures that 
the node will not also be added to another region for the same variable. Figure 
31 illustrates a subgraph list for the variable x, whose operators and flow 
graphs are shown in Figures 27 through 29. 

Value Propagation 
Very simply, value propagation is the elimination of local variables by re

placing references to them with references to their assigned values. As an 
example, 

a = b; 

c = a; 

can be reduced to 

c = b; 

without losing meaning. (We could do this for any automatic variable that does 

119 



120 Engineering a Compiler 

1,~~iD.. .~ .. !;(.t44...~~ 
~~" " 

2'.,."~""."""".""""""""""""."",,,",d"",""',""".~"".,',',,,",,'~', ""'"",,":,,",,,""':',':",,~,,"",,',~,',,",,',"'~":,'",.""".' •• ",',~,.'",, ."". ",,' '.ib:',,'~'!1" ~ ~~{L.'~ 
~~:""~~","~.,',""~IJfJ~'~",'~ 
~~~.~.~r~~ 
M~~.f~~LW-:f.fL~
/Wk~~"~-~'<

'?>~,""'~""'"',',',:".",'""",,,.',,,,,,:,",,,~~,.',',','.,.',''''',',''."''',-tL",."',,','',,~,',,,,",;"",:,.'"'~"",""'.'",."""",~,A.,,,,,,"~"',""""~-tl...,'"'",,,"'."',,,"., ~ .. ~~~-f!..~

'~".' .~.' ~ •.. ~ .• ~'.~ ..• ~ •... ~
... ~, " ~~~~,'~, •• " •• ',.~,',"""~,'~<
~~"~'~'~,~.
-!L.J.u--~ ,~W~,~
~~~"Uk..~ .. *' .... ~ 

. 'tCo ~~,~ ~ d~ 

~~~~. 


Global Optimization

Subgraph list

First operator -43
Last operator -47
Use-definition list (x) _+-....--_-----.

First operator -48
Last operator -51
Use-definition list (x) _+-....----:-:~

First operator -52
Last operator -60
Use-definition list (x) _+-.,..--_----,

Figure 31. A subgraph for a variable selected for assignment to a register.

not require storage-not just the candidates for register assignment-but we
do not do so because we think that 32 is a realistic number of variables. Fur
thermore, we would have to collect all the flow graph information about all the
extra variables as well.)

After completely isolating a region, the Optimizer has the following infor
mation about it:

• A list of the nodes in the region

• The minimum and maximum operator identifiers that lexically define
the region

• Whether there are cycles in the region

• Whether the value of the variable must be in memory for any part of the
region.

If the variable must be in memory, then it is not eligible for either value
propagation or assignment to a register. The original REF operators are left in
place and the requires_storage attribute is set in the variable's Symbol Table
node so that the Storage Allocator will allocate storage for the variable even
though its register_temporary attribute is also set. (Registers do not have
memory addresses, and a propagated value would have to be explicitly materi
alized in memory by the addition of an operator.)

The Optimizer next computes the following information:

• The operator identifier of the last definition within the first node of the
region

• Whether multiple definitions exist within the region (multiple definitions
in the first node do not count)

121

122 Engineering a Compiler

• Whether there is a data type mismatch among uses and definitions of
the variable (as when a variable is the target of a PLII UNSPEC built-in
function, in which a variable is interpreted as a bit string).

U sing this information, the Optimizer determines whether value propaga
tion can be performed. The determination is made using the following test:

IF

the first node in the region contains the minimum

operator identifier (that is, it is lexically first)

AND

the first entry in the use-definition chain points

to an assignment operator

AND

the compiler option DEBUG=SYMBOLS is not selected

AND

no type mismatch is detected

THEN

value propagation can be performed

The rules underlying this test are as follows:

• The first node in the region must contain the lexically first occurrence
of the value to be propagated, because a propagated value must have an
operator identifier that is greater than all its uses. (In the operator file,
all operands must appear lexically before the operator that uses them;
because the operator identifiers are negative, the operand identifiers
therefore have higher numeric value.)

• The existence of an assignment operator indicates that there is a value
to be propagated.

• A user debugging a program needs to be able to display the values of all
variables so we must not eliminate any of them.

• The maintenance of data type information is necessary to preclude later
generation of erroneous code.

Value propagation can always be performed on the first node in the graph
up to the last definition point within that node, as long as all the tests listed
above hold true. If other nodes in the region contain definitions of the value,
or if there are cycles and the value being propagated is not a constant, then
value propagation ends at this point.

As values are propagated, the Optimizer removes entries from the use
definition lists. If values can be propagated over the entire region, there will
be no references or assignments left in the region. However, if the value of a
variable cannot be propagated or is only partially propagated, the remaining

Global Optimization

~h ~, 1J.I-.I.4~l ~ •• t--o~ ~
to,.t'Jd .tu4.J.~ ~ ~ .. .w wk. t:L-
~~~0"1-~. 

2·1:L~~~~,~e...~ 
I 

~()..~~~ B...~. 

123 



124 Engineering a Compiler 

references to the variable can be assigned to a register temporary. Figure 32 
illustrates operators before and after value propagation. 

Assignment of Variables to Register Temporaries 
If the Optimizer cannot propagate the value of a variable that has been se

lectedas a candidate for assignment to a register, it takes all the information 
it has about the variable and writes this into the operator file using an 
ASSIGN-REGTEMP operator. This operator tells the Local Code Generator to 
create a temporary to hold the value of the variable; we call this temporary a 
register temporary, or aT-reg. 

The first step in assigning variables to T -regs is to find a free operator iden
tifier that lexically precedes the minimum operator identifier of the region. 
The Optimizer can easily locate free operator identifiers by looking for null 
pointers in the pointer array. There are 32 null pointers to start with (initially 
reserved by the front end). As value propagation and register assignment pro
ceed, more and more operator identifiers become available as the Optimizer 
eliminates reference operators. 

Figure 32. Effect of value propagation on operators. 

Before Initial After value 
optimization transf orma tion propagation 

5 )("'"'1; 5 '!Ii 5. x=Y; 
-37 STATEMENT(5) -37 STATEMENT(5) -37 STATEMENT(5) 
-38 REF(x) 
-39 PARAM_PTR(y) -39 PARAM_PTR(y) -39 PARAM_PTR(y) 
-40 REF(y,0,-39) -40 REF(y,0,-39) -40 REF(y,0,-39) 
-41 VALUE(-40) - 41 VALUE(-40) - 41 VALUE(-40) 
-42 ASSIGN(-38,-41) -42 SAVE_RESULT(-41) -42 SAVE_RESULT(-41) 

6 z ",,:'.x*2; 6 z=.X:.lI<2; 6 Z =x;*2; 
-43 STATEMENT(6) -43 STATEMENT(6) -43 STATEMENT(6) 
-44 REF(z) 
-45 REF(x) 
-46 VALUE(-45) -46 USE(-42) 
-47 IMMEDIATE(2) -47 IMMEDIATE(2) -47 IMMEDIATE(2) 
-48 MULTIPLY(-46,-47) -48 MULTIPLY(-46,-47) -48 MULTIPLY(-42,-47) 
-49 ASSIGN(-44,-48) -49 USE(-48) 

7 R.ETUR~ <z) ; 7 RETURN(zl; 7 RETURN.! z); 
-50 STATEMENT(7) -50 STATEMENT(7) -50 STATEMENT(7) 
- 51 REF(z) 
-52 VALUE(-51) -52 USE(-49) 
-53 RETURN(-52) -53 RETURN(-52) -53 RETURN(-48) 



Global Optimization 

An ASSIGN-REGTEMP operator has the following operands: 

• The first operand contains the Symbol Table node identifier of the vari
able whose value is to be held in aT-reg. The symbol node identifier is 
obtained by indexing the array of symbol node identifiers using the bit 
number of the variable that was determined when the use_or_def bit 
vector was scanned. 

• The second and third operands are negated operator identifiers of the 
minimum and maximum operator identifiers of the region and thus de
fine the lexical span of the program over which the value must be re
tained in the register. 

• The fourth operand is zero. We do not use this operand but have re
served it for future use by compilers that want to use it to hold a regis
ter number (say to provide explicit register assignment). 

After allocating the operator node and setting the operands in the ASSIGN_
REGTEMP operator, the Optimizer sets its identifier to that of the free opera
tor and fills in the corresponding position in the pointer array with the address 
of the allocated ASSIGN-REGTEMP operator. 

Next, the Optimizer examines the use-definition lists of all nodes in the re
gion, replacing the operand in each VALUE operator that references the vari
able with a reference to the new ASSIGN-REGTEMP operator. Similarly, all 
targets of assignments and all ADD_COMPARE-AND-BRANCH operators are re
placed with the operator identifier of the ASSIGN-REGTEMP operator. The Op
timizer decrements the reference count of the REF operators previously used 
as operands as it replaces the references; if a reference count reaches zero, 
the Optimizer releases the operator by zeroing its pointer in the pointer array, 
thus freeing its operator identifier for use with an ASSIGN-REGTEMP operator. 
This process continues until all regions of the graph have been explored. Fi
gure 33 illustrates the operators from Figure 27 after introduction of the 
ASSIGN-REGTEMP operator. The ASSIGN-REGTEMP introduced with an identi
fier of -2 is referenced in operators -45, -51, and -57. Its span is set to in
clude all the nodes containing these three operators. Previous REF operators 
(-43, -49, and -56) denoting the variable have been removed. 

Loop Invariant Removal 

The purpose of loop invariant removal is to move outside of a loop all 
invariant computations that lie on a path of certain execution in the loop. To 
explain how the Optimizer performs this, we must review both the manner in 
which the Intermediate Language represents loops and our concept of the 
limit of an operator; we must also describe the computation of dominators. At 
this point in the compilation, the Optimizer also uses the information it now 

125 



126 Engineering a Compiler 

Figure 33. Operators changed by assignment of locals to registers. 

-33 

- 1 

-2 

-34 

-35 

2 

3 

4 

-36 

-37 

-38 

-39 

-40 

- 41 

-44 

-45 

-46 

-47 

-48 

-50 

- 51 

-52 

8 

-53 

-54 

-55 

-57 

-58 

" "" 

check,: pr~c~ct"'qte"(y); 

o 
o 
3 

o 
o 

STATEMENT(1) 

PROCEDURE(174,169) 

ASSIGN __ REGTEMP(x,43,60,0) 

ENTRY(CHECK) 

END __ OF __ PROLOGUE 

declare" (x, y) fixed b.i:nary; 

"i'?: 0 

then l!\"""":;=". 1; 

0 STATEMENT(6) 

PARAM __ PTR (y) 

REF(y,0,-37) 

VALUE(-38) 

IMMEDIATE(O) 

BR __ LE(195,-39,-40) 

1 IMMEDIATE(1) 

0 ASSIGN(-2,-44) 

else x = 2; 

0 STATEMENT(7) 

0 BR( 199) 

0 LABEL(195) 

1 IMMEDIATE(2) 

0 ASSIGN(-2,-50) 

0 LABEL(199) 

Y = xi 

0 STATEMENT(8) 

PARAM __ PTR(Y) 

REF(y,0,-54) 

VALUE(-2) 

0 ASSIGN(-38,-57) 



Global Optimization 

Figure 33 (cone! uded) 

9 return; 

-59 0 STATEMENT(9) 

-60 0 RETURN 

10 end; 

- 61 0 STATEMENT(10) 

-62 0 BLOCK_END ( 169 ) 

has to see if conditions are right for an additional optimization, a strength re
duction in which an addressing computation is replaced by a shorter, faster 
computation. 

Loop Representation in the Intermediate Language 

The general form of a loop is shown in Figure 34. This representation of 
loops lets the Optimizer move all invariant computations to a point just pre
ceding the LOOP_TOP operator. The operands of the LOOP -BOTTOM operator 
are the identifiers of all operators whose values are being held until the end of 
the loop. (This includes the invariants that were removed from the loop as 
well as the SAVE-RESULT operators described in Chapter 6.) 

It is important to remember that the limit of an operator is the identifier of 
the most recent definition point of any of its operands. In invariant removal, if 
the limit of an operator lies within a loop, the operator (or one of its operands) 
i~ defined within the loop and therefore cannot be invariant. 

Computation of Loop Dominators 

When the Optimizer enters its loop invariant removal phase, it first com
putes the dominators for the entire flow graph. A dominator of a node in the 
graph is a node that is always executed prior to execution of the node being 
dominated. The algorithm (derived from Aho and Ullman) used to compute 
the dominators of the nodes in the graph is shown in Figure 35. For each node 
in the graph, there exists a set of all other nodes which dominate the given 
node. 

Scanning the Operators to Remove Invariants 

The Optimizer performs loop invariant removal in a single forward pass 
through the operators. During this scan, it computes definition points for va
riables and the limits of all operators that are considered immovable (such as 
DATE and TIME operators). The limits of these operators are their respective 
identifiers. At the same time, the Optimizer looks for the loop control opera
tors. When it encounters a LOOP_TOP operator, it saves the current loop sta
tus and initializes variables to hold the new loop state. When it encounters the 

127 



128 

Not present if 100P{ 
will be executed 
at least once 

no 

Engineering a Compiler 

no 

}nvariants 
1+---------1-- moved here 

• • • 

Figure 34. Intermediate Language representation of loops. 

bottom of a loop, it does a backward scan within the loop, computing the limits 
of all the operators inside the loop to see if they can be moved outside it. 

Because the scan is occurring backward, entire trees of operators may be 
moved. For each operator that it moves, the Optimizer increments the opera
tor's reference count and adds its identifier to the list of operands of the 
LOOP -BOTTOM operator so that its value will be held until the end of the loop. 
When the backward scan is complete, the state of the next outer loop is 
unstacked and the forward scan resumes. This procedure guarantees scan
ning from the inner loops outward. When it encounters nested loops, the Opti
mizer always examines and removes invariants from the innermost loop 
outward, thus allowing invariants to migrate to the farthest possible outward 



Global Optimization 

Figure 35. Computation of loop dominators. 

FOR index = all nodes in the graph; 

node(index).dominators = set of all nodes; 

END; 

node(1).dominators = set of initial node; 

changes = TRUE; 

DO WHILE (changes); 

changes = FALSE; 

FOR next __ node = all graph nodes in depth-first order; 

new __ dominators = node(next __ node).dominators; 

FOR last __ node = each predecessor of node(next __ node); 

new __ dominators = new __ dominators n 
node(last __ node) .dominators; 

END; 

new __ dominators new __ dominators U set of next __ node; 

IF new __ dominators A= node(next __ node).dominators 

THEN DO; 

END; 

END; 

changes = true; 

node (next __ node).dominators 

END; 

new __ dominators; 

point. Only nodes within the loop that are certain to be executed if the loop is 
executed are considered for removal of invariant computations. This set of 
nodes (called exit dominators) is computed by taking the intersection of the 
dominators of all nodes in the loop that cause control to leave the loop and the 
node that contains the LOOP-BOTTOM operator. In other words, it is the set of 
nodes that dominate all exits from the loop (those that are sure to be executed 
before any exit from the loop can occur). 

The Optimizer visits all nodes in the loop, starting with the LOOP -BODY 
node. It scans each node backward, checking first for array references that 
can be changed to based references with constant offsets (this is a shorter 
address specifier than for context indexing) and, second, for invariant compu
tations. An invariant computation must also lie within a node that is contained 
within the exit set (the set of exit dominators) before the computation is con
sidered for removal from the loop. The entire operator tree of the invariant 
computation is moved to a point just before the LOOP_TOP operator. As the 
Optimizer moves the tree, it shuffles pointers in the pointer array and updates 
the position array. Array references that can be replaced are changed to a 
based reference, which is the base address of the array that was previously 
moved when the LOOP -BOTTOM operator was discovered (see below). This 

129 



130 Engineering a Compiler 

process continues until all loops in the block have been examined. When one 
loop is finished, the forward scan continues. 

Autoincrement and Autodecrement Addressing 
After scanning a loop forward and just before beginning the backward scan, 

the Optimizer generates AUTO-INCREMENT and AUTO-DECREMENT operators, 
if possible. These Intermediate Language operators are produced by the Opti
mizer in an attempt to reduce the addressing requirements of arrays that are 
referenced in loops. The Optimizer determines that this optimization is possi
ble if all of the following are true: 

• The loop control variable has a data type of integer. 

• The loop increment is + 1 or -1. 

• The loop control variable is not reassigned within the loop. 

• There is an array reference of the form a( iJ in the loop compare node 
(the node within the loop that contains the end test) and the loop incre
ment is +1 (or the same reference occurs in the loop body node and the 
increment is -1), and i is the control variable of the loop. This test en
sures that the variable reference lies on a path of certain execution for 
each complete loop iteration and that the reference is either the first or 
the last reference to the variable within the loop. 

• The array, a, has a data type of floating point, integer, or pointer. 

• The offset units of the variable offset match the context of the refer
ence. 

• The array has not already had its base address moved outside the loop. 

If all these requirements are met, the Optimizer moves the base address of 
the array reference out of the loop and makes the actual reference to an AU

TO-INCREMENT or AUTO-DECREMENT operator. This process can be thought 
as a special invariant removal in which the address of the first element of the 
array to be accessed is moved out of the loop. In reality, it is an addressing 
mode strength reduction in which the addressing mode normally used to ac
cess successive array elements (indexed) is replaced by a shorter and faster 
addressing mode (autoincrement or autodecrement). 

The Optimizer selects the candidate reference operators by scanning for
ward from the first node in the loop (if the loop increment is -1) or backward 
from the loop-compare node (if the loop increment is + 1). The direction of the 
scan reflects the way in which the VAX-II autoincrement and autodecrement 
addressing modes work. 

Autodecrement is a pre decrement and therefore must occur on the first 
reference to the array within the loop. Autoincrement is a postincrement and 
therefore must occur on the last reference to the array within the loop. Each 
trip through the loop causes successive elements of the array to be addressed 
in either a forward or backward direction. Only one reference to a specific 



Global Optimization 

array will be converted to one of these operators. All other references to the 
same array within the loop are replaced with a reference to the base address 
that was moved out of the loop, since it is the base address that is automati
cally incremented or decremented. The result is a further address strength 
reduction for the references that were not the first or last within the loop. 
The following example uses the autodecrement case: 

autodec: PROCEDURE(sum); 

DECLARE i FIXED BINARY(31), 

a(0:100) FLOAT BINARY(24), 

sum FLOAT BINARY(24); 

END; 

DO i = 99 TO 1 BY -1; 

sum = sum + a(i-1) * a(i+1); 

END; 

In this example, the array a is indexed with a loop increment of -1. The 
operators generated by the front end for this program would be as shown in 
Figure 36. 

Figure 36. Operators for an array indexed within a loop. 

-33 

-33 

-34 

-35 

2 

3 

4 

5 

6 

7 

-36 

-37 

-38 

-39 

-40 

- 41 

-42 

autodec: procedure(sum); 

o 
o 
o 
o 

STATEMENT(1) 

PROCEDURE(175,170) 

ENTRY(AUTODEC) 

END __ OF __ PROLOGUE 

declare i fixed binary(31), 

a(0:100) float binary(24), 

sum float binary(24); 

do i = 99 to 1 by - 1 ; 

0 STATEMENT(7) 

1 REF(i) 

2 IMMEDIATE(99) 

0 ASSIGN(-37,-38) 

0 LOOP __ TOP( 1, -38) 

0 LABEL(210) 

0 LOOP __ BODY ( 1 ) 

131 



132 Engineering a Compiler 

Figure 36 (concluded) 

8 sum = sum + a(i-1) * a(i+1); 

-43 

-44 

-45 

-46 

-47 

-48 

-49 

-50 

-51 

-52 

-53 

-54 

-55 

-56 

-57 

-58 

-59 

-60 

-61 

-62 

-63 

9 

-64 

-65 

-66 

-67 

-68 

-69 

-70 

-71 

10 

-72 

-73 

° 

° 

o 
2 

1 

° 
° 
° 

o 

° 

STATEMENT(8) 

PARAM __ PTR(175,1) 

REF(sum,0,-44) 

PARAM __ PTR(175,1) 

REF(sum,0,-46) 

VALUE(-47) 

IMMEDIATE(-4) 

REF(i) 

VALUE(-50) 

ADD __ OFFSET(-49,-51) 

REF(a,-52) 

VALUE(-53) 

IMMEDIATE(4) 

REF(i) 

VALUE(-56) 

ADD __ OFFSET(-55,-57) 

REF(a,-58) 

VALUE(-59) 

MULTIPLY(-54,-60) 

ADD(-48,-61) 

ASSIGN(-45,-62) 

end; 

STATEMENT(9) 

REF(i) 

VALUE(-65) 

IMMEDIATE(-1) 

IMMEDIATE(1) 

ADD __ COMPARE--AND __ BRANCH(-65,-66,-67,-68,210 

LOOP __ BOTTOM ( 1 ) 

LABEL(214) 

end; 

STATEMENT(10) 

BLOCK __ END ( 1 7 ° ) 



Global Optimization 

~' 

,12~~~.t-~ 

.~.~~.~~--~.~~ 
il...~~..K~~.1~ 

~~~.it-i~t:~ 
wL.-- ~~ ~ ,;., .~ ~ J" ~
~ .;"1, .1t.f-."-~ ~
~.~~~~~.

-r~.~. ~AM:) ~ ~ .. r1~ ~
~~i:L..I~· ~~ 4--tL
.AA~(~.~ ~ .. (~'J-.a1-

~o.J,J.,.~a.vL ~ .. ~'). Tt..

~.k~~~~.~~
~~.~~~~.~~~
~~~. 

~~~~:K: 
O""\t..t ~.~ ~ ~ ~

~t-.~~~~.

133

134 Engineering a Compiler

As the Optimizer scans the operators forward, it is interrupted by the
LOOP -:-BOTTOM (-70). The occurrence of this operator causes the Optimizer to
start scanning the loop body beginning at the first node in the loop (-42) in
order to look for possible candidates for conversion to AUTO-DECREMENT op
erators. The first array reference it encounters is the MULTIPLY (--61), which
refers to the value a(i-l). Because all criteria for conversion to an AUTO_
DECREMENT operator are met, the REF (-53) is converted to an AUTO-DECRE
MENT operator. To do this, the Optimizer generates an ADDR-:-BASE operator
that refers to the original REF operator (-53). Then it removes the variable
part of the ADD_OFFSET operator referenced by this REF and adjusts the con
stant part so that it refers to the next to last element of the array. The vari
able part is no longer needed because it is a reference to the loop control
variable. The ADDR-:-BASE, REF, ADD_OFFSET, and IMMEDIATE operators are
resequenced (that is, their identifiers are changed) and the resulting operator
tree is moved outside the loop. (See the operators with identifiers 49, 50, 51,
and 52 in the optimized operators shown in Figure 37; the positive identifiers
represent the loop invariant values.) The first time through the loop, the
VALUE operator (-53) will refer to a(98), the second time to a(97), and so on.

Whenever a base address is moved out of a loop, the Optimizer makes an
entry in a table listing references that have been removed from the loop. Fur
ther attempts to remove a reference to the same array will fail. Thus, when
the VALUE operator (-60) is discovered, it will not be converted to an auto
decrement reference because the array a has already had its base address
moved outside the loop.

The Optimizer uses the same table information during its backward scan of
the loop to remove invariant computations. At this time, it transforms other
references to the same array to references to the ADDR-:-BASE operator. The
array reference must be identical in form to the original reference; only the
constant part can be different. The Optimizer adjusts the constant part of the
ADD_OFFSET operator of such a reference and eliminates the variable part
(the reference to the loop control variable). Thus, the REF (-60) to the value
of a(i+ 1) will be converted to a based reference to the ADDR-:-BASE operator
(52). The ADD_OFFSET operator is modified so that its constant part is 8 (that
is, two elements forward in the array from the base address), and the variable
reference to the loop control variable i is eliminated.

Figure 37 shows the optimized operators (the AUTO-DECREMENT operator
is at identifier -53). The generated code follows in Figure 38.

Common Subexpression Elimination

The purpose of eliminating common subexpressions is to remove redun
dancy in the operators. Thus, this optimization includes not only the removal
of common subexpressions but also removal of any operator that is equivalent

Global Optimization

Figure 37. Introduction of autodecrement addressing.

-33

- 1

-33

-34

-35

2

3

4

5

6

7

-36

-38

-39

49

50

51

52

68

67

55

58

46

47

-40

-41

-42

8

-43

-48

-53

-54

-59

-60

-61

-63

autodec: procedure(sum);

o
o
5

o
o

STATEMENT(1)

PROCEDURE(175,170)

ASSIGN __ REGTEMP(i,34,69,0)

ENTRY(autodec)

END __ OF __ PROLOGUE

declare i fixed binary(31),

a(0:100} float binary(24),

sum float binary(24);

do i = 99 to 1 by -1;

o STATEMENT(7)

2 IMMEDIATE(99)

o ASSIGN(-33,-38)

IMMEDIATE(396)

ADD __ OFFSET(-49,O)

REF(a,-50)

3 ADDR--BASE(-51)

2 IMMEDIATE(1)

2 IMMEDIATE(-1)

IMMEDIATE(8)

2 ADD __ OFFSET(-55,0)

PARAM __ PTR(175,1)

3 REF(sum,O,-46)

o LOOP __ TOP(1,-38)

o LABEL(210)

o LOOP __ BODY (1)

o

1

o

sum

STATEMENT(8)

VALUE(-47)

sum + a(i-1) * a(i+1);

AUTO __ DECREMENT(a,O,-52)

VALUE(-53)

REF(a,-58,-52)

VALUE(-59)

MULTIPLY(-54,-60)

ADD(-48,-61,-47)

135

136 Engineering a Compiler

Figure 37 (concl uded)

.9

-64

-66

-69

-70

10

-72

73 ° °

°
1

°
°

STATEMENT(9)

VALUE(-33)

ADD __ COMPARE--AND __ BRANCH(-33,-66,-67,-68,210

LOOP __ BOTTOM(1,-47,0,-58,-67,-68,-52)

STATEMENT(10)

BLOCK __ END (170)

Figure 38. Optimized code using autodecrement addressing.

2

3

4

5

6

7

8

AUTODEC:

.entry AUTODEC,<r2>

movab -404(sp),sP

deal~re·· ~ •.• tixedbi~ar¥f31J,
a(O:JOO) .flo.at. bi~arY(24) t

sum. float b.i:naryC~4);

do i = 99 ~o 1 by~-1;

movzbl *99,r2

NOTE The address of a(99) is computed outside the loop and held in Register 1.

moval -08(fp) ,r1

vag.1 :

2 sum + a (i -1). * a (i+1) ;

NOTE The element a(i-I) is addressed by the autodecrement reference -(Rl). The
element a(i+ 1) is addressed by the based reference 8(Rl).

Global Optimization

Figure 38 (concluded)

mulf3 -(r1),08(r1),rO

addf2 rO,@04(ap)

9 2 end;

sobgtr r2,vcg.1

10 end;

ret

to another. For example, if the Optimizer detects REF or VALUE operators that
are absolutely equivalent, it removes the redundant operator and updates
references to it .

. Eliminating common subexpressions really involves two distinct steps: path
formation, followed by redundancy elimination. The objective is to scan the
graph in depth-first order, develop the longest unique backward flow path,
and then scan that path forward, looking for redundant computations. Con
sider the flow graph in Figure 39 and the three indicated unique backward
flow paths through the nodes.

Paths start only with nodes that have not already been visited. (Initially, all
nodes are marked "not visited.") Once started, however, a path may include
nodes previously visited. A node is considered to have been visited if it was
included in a previous path list.

Optimization for the paths shown in Figure 39 would occur in reverse order;
that is, nodes 1, 2, 3, and 4 in path 1 would be optimized in that order; nodes
1, 2, 3, and 5 in path 2, in that order; and 1, 2, and 6 in path 3, in that order.
As the Optimizer scans the operators in the nodes in a flow path, it tries to
reduce identical value-producing operators to a single operator. (Only opera
tors with fixed-length results are eligible for this optimization because opera
tors whose results are variable length must be allocated on the stack.)

As it considers each value-producing operator, the Optimizer computes its
limit and a hash table index. The limit is as described for loop invariant re
moval and is the operator identifier of the most recent operator that defined a
value upon which the current operator depends. The Optimizer computes the
hash table index by adding the operator opcode to the sum of its operands and
truncating the value to the size of the hash table.

The hash table index is used to select a list of operators that could contain
an equivalent operator (this is the only list that can contain an equivalent oper
ator). Because the list is in LIFO order, the first operator is the one most
recently put in the table; so sorting occurs in ascending order of operator

137

138

Path 1: 4, 3, 2,1
Path 2: 5, 3, 2, 1
Path 3: 6, 2, 1

4

2

5

Figure 39. Determining unique backward flow.

Engineering a Compiler

6

identifier, with the most negative at the front of the list. By comparing the
limit of the current operator with the operator identifier of the next entry in
the list, the Optimizer can immediately tell whether a match is possible with
out examining any more entries in the list.

For a match to exist, the operators must match bit for bit on operands, data
type, size, and opcode. Moreover, the operator identifier of the matching op
erator must be less than the limit of the current operator (that is, it lexically
follows the limit).

If a match occurs, the Optimizer replaces the current operator with a USE

operator. This operator signifies that its value is really the value produced by
a previous operator, an operator already on the list. The reference count of
the current operator is added to the reference count of the operator in the
list. The reference counts of all the operands of the current operator are decr
emented; if the count goes to zero, the Optimizer deletes the operands by
zeroing their respective entries in the pointer array. If a match does not oc
cur, the operator is entered in the appropriate hash list in LIFO order. A mis
match is considered to have occurred if the operator identifier of the next
entry in the list is greater than the limit of the current operator (that is, it
lexically precedes the limit).

In addition, if the node that is currently being scanned has been scanned
previously, the Optimizer computes the hash indexes of the operators and en
ters the operators directly in the hash table in LIFO order; the Optimizer al
ready knows that there are no identical operators or it would have already
found one. Consider the program fragment

Global Optimization

p = a + b;

q = a + b;

and its corresponding operators:

-20 REF(p)

-21 REF(a)

-22 VALUE(-21)

-23 REF(b)

-24 VALUE(-23)

-25 ADD(-22,-24)

-26 o ASSIGN(-20,-25)

-27 REF(q)

-28 REF(a)

-29 VALUE(-28)

-30 REF(b)

-31 VALUE(-30)

-32 1 ADD(-29,-31)

-33 0 ASSIGN(-27,-32)

At the point in the scan just past the first ASSIGN (-26), the hash table and
its entries might appear as shown in Figure 40 (the ASSIGN operator is not in
the hash table because the hash table contains only value-producing opera
tors).

The next operator is:

-27 REF(q)

Suppose this operator hashes to index 5 in the hash table. There is no limit for
REF operators that do not reference any values, because the reference yields

o
1t----

O
:-i

2 0
3~_-=-=i--------____ ~_~
4 0 ~----~~----~

5.~_----,
6 0
7'--_---'

Figure 40. Hash table for eliminating common subexpressions.

139

140 Engineering a Compiler

only the address of the variable which is constant. Thus we have a value
producing operator with a limit of 0 and a hash index of 5.

The Optimizer now starts searching the list whose listhead is at position 5
in the hash table. The operator identifier of the first operator (-23) is less
than the limit, so it compares the operators. The comparison fails, so it moves
to the next entry in the list. The operator identifier is -21, which is also less
than the limit, so the Optimizer compares the operators. The comparison
again fails, so it tries the next entry in the list and finds the list is empty.
Thus, the Optimizer must insert the current operator at the head of the list.
The result is the modified hash table shown in Figure 41.

The next operator is:

-28 REF(a)

The hash index is computed and turns out to be 5. The scan starts with -27
and finally finds a match at -21, which is an identical operator. The -21 opera
tor is changed to:

-21 2 REF(a)

That is, its reference count is incremented. The current operator is changed
to:

-28 USE(-21)

This operator signifies "the value of this operator is really operator -21."
Because the Optimizer has already identified the operator -28 as being identi
cal to another and therefore one it can eliminate, it does not have to add a new
entry to the hash table.

The next entry is:

-29 VALUE(-28)

0
1 0
2 0
3
4 0
5
6 0
7

Figure 41. Modified hash table.

Global Optimization

Remember that the limit of a value of a variable is the identifier of the opera
tor that last explicitly or implicitly assigned a value to the variable. Because
we are dealing with a small program fragment, we will assume that the as
signment to p did not implicitly cause an assignment to a or b and that there
fore their limits are before the program fragment.

First, the Optimizer replaces the USE operator reference with a reference
to its operand, which is -21. Thus, the VALUE operator becomes

-29 VALUE(-21)

with a limit that is greater than -21. As before, the Optimizer computes a
hash index, which turns out to be 3. Searching the list, the Optimizer finds
that operator -22 matches; thus, -29 becomes:

-29 USE(-22)

The Optimizer continues the process until it ends up with the operators:

-20 REF(p)

-21 REF(a)

-22 VALUE(-21)

-23 REF(b)

-24 VALUE(-23)

-25 2 ADD(-22,-24)

-26 0 ASSIGN(-20,-25)

-27 1 REF(q)

-33 0 ASSIGN(-27,-25)

The thoroughness of this removal algorithm increases as the lengths of th·e
flow paths increase; that is, the more nodes that can be looked at in a single
path, the better. In most programs, control flow is most often altered in struc
tured ways. Therefore, the Optimizer extends the flow paths if, during back
ward flow analysis, it recognizes the traditional programming constructions:

• IF-THEN

• IF -THEN-ELSE

• CASE.

Figure 42 illustrates the flow graphs for these constructs.
To build the backward flow path, the Optimizer uses the following rules:

1. If the backward flow is unique, it inserts the positive value of the node
number in the flow path list.

2. If the backward flow is nonunique, it inserts the negative value of the
node number in the flow path list.

3. A flow path always starts and ends with a positive node number.

141

142 Engineering a Compiler

IF-THEN 2

3

IF-THEN-ELSE 2 3

4

CASE 2 3 ••• n n+1

Figure 42. Flow graphs for eliminating common subexpressions.

Global Optimization

Thus, the three special cases yield the following paths:

path 1 = 3, - 2, 1
path 2 = 4, -3, -2, 1
path 3 = m, -n+l, -n, ... , -3, -2,1

These paths are, of course, scanned in reverse order.
To process these more complicated backward flow structures, we intro

duced additional data structures:

• An array to save the definition point array

• An array to save the hash table, which is really a set of list heads of
LIFO lists

• A set variable to record which variables have been defined

• Four variables to save the alias, uplevel, static, and external class defini
tion point values and four corresponding Boolean variables that indicate
whether these classes have been defined.

When it first scans a flow path forward (that is, the list of nodes), the Opti
mizer clears the definition point array, the hash table, the limit array, the last
node number, and the definition points for the alias, uplevel, static, and exter
nal class variables. It then begins examining nodes in order, making the fol
lowing decisions:

1. If the next node number is positive and the last node number was also
positive, then the previous node was on a unique backward flow path and
the next node can be optimized using the current values of the pertinent
variables (that is, it removes common subexpressions as described
above).

2. If the last node number was positive and the next node number is nega
tive, then the previous node is on a nonunique backward flow path from
the next node. This represents a transition from a unique flow to a nonu
nique flow. The Optimizer saves the definition point array and the hash
table, sets the entire de! set to false, and saves the alias, uplevel, static,
and external class variables. In effect, it saves its current state so that it
can tell what changed. Using the current values, it optimizes the node.

3. If the last node number was negative and the next node number is nega
tive, then the next node also represents a non unique backward flow
path. The Optimizer resets the definition point array and the hash table,
using the information saved whe'n decision 2 occurred, and then opti
mizes the node.

4. If the last node number was negative and the next node number is posi
tive, then the next node again represents unique backward flow. The
Optimizer scans the set that signifies which variables were defined

143

144 Engineering a Compiler

within the nonunique flow region. Each true variable represents a defini
tion that occurred in the nonunique region; therefore, the Optimizer
sets its corresponding entry in the definition point array to the starting
operator identifier of the next node. The Optimizer then resets the hash
table from the saved information and optimizes the node.

An IF-THEN-ELSE construct can serve as an example for the rules above.
The flow graph is shown in Figure 43.

The flow path in this example is 1, -2, -3, and 4. In scanning the nodes and
eliminating redundant operators, the Optimizer would apply these rules:

1. Rule 1 (positive to positive) is applied to node 1: initialize the state va
riables and optimize the node.

2. Rule 2 (positive to negative) is applied to node 2: save the current state
variables and optimize the node.

3. Rule 3 (negative to negative) is applied to node 3: restore the state to
what it was at the end of node 1 and optimize node 3.

4. Rule 4 (negative to positive) is applied to node 4: restore the hash table
to its state following the optimization of node 1, set definition points for
variables that were defined in the nonunique backward flow region, and
optimize node 4.

During these steps, the hash table reflects only those operators that are
eligible for comparison and hence removal if they are found to be equivalent.
In this example, the operators in node 4 are eligible for comparison only with
the operators in node 1. Even if there were redundant operators in nodes 2
and 3, those nodes would already have been optimized by the time node 4 is
scanned.

The fact that the hash table is built in LIFO order makes it convenient to
ensure that operators not eligible for comparison are removed from the list.
When the Optimizer has completed processing in node 1, all its operators ex
ist on the hash table in LIFO order. Before starting on node 2, the Optimizer
saves the hash table. During the scanning of node 2, it keeps adding operators
-always in LIFO order. When it starts on node 3, it simply restores the
saved hash table so that it again contains only the operators that were in it
when processing of node 1 was finished: Effectively, it trimmed the list of any
operators added during processing of node 2. It does the same thing again
when it starts on node 4. The Optimizer continues building backward flow
paths and optimizing them until no more paths can be constructed. At that
point it goes on to the next optimization.

Although this algorithm does not find all possible common subexpressions,
it does find all those that occur within structured flow paths; because a large
percentage of programs consist of these paths, the technique works ex
tremely well.

Global Optimization

2 3

Flow path: 1, -2, -3,4

4

Figure 43. Removing common sub expressions in an IF-THEN-ELSE flow.

Result Incorporation
The purpose of result incorporation is to eliminate the allocation of unnec

essary temporaries. This optimization is possible on the VAX-II because the
architecture of the machine provides both three- and two-address forms of
most machine operations. Result incorporation combines an assignment oper
ator with the operator producing the value that gets assigned, thus eliminat
ing the assignment operator and the need to generate a temporary to hold the
intermediate result. Result incorporation could be done much earlier in the
compiler, but in that case the Optimizer would have to provide special-case
tests for a multitude of different kinds of assignment operators. Moreover,
some common sub expressions would not be recognized. On the other hand,
doing this optimization later, during local code generation, would require a lot
of extra temporaries to hold the intermediate results.

The Optimizer performs result incorporation by making a single forward
scan through the array of pointers to operators. The objective is to discover
assignment operators referencing value-producing operators that have a ref
erence count of one (operators that produce values used only once, in the as
signment operator itself). Consider the following program fragment and the
operators as they would appear at this point during optimization.
Source Program Fragment

a = b * c;

d = b * c + e;

Intermediate Language Operators
-20 1 REF(a)

-21 REF(b)

-22 VALUE(-21)

-23 REF(c)

-24 VALUE(-23)

-25 2 MULTIPLY(-22,-24)

-26 0 ASSIGN(-20,-25)

145

146 Engineering a Compiler

-27 REF(d)

-32 REF(e)

-33 VALUE(-32)

-34 ADD(-25,-33)

-35 0 ASSIGN(-27,-34)

During the forward scan of the operators, the first assignment encountered
is ASSIGN -26. The value for this assignment is MULTIPLY -25, which has a
reference count of two and is therefore ineligible for result incorporation.
Continuing the scan, the Optimizer next encounters ASSIGN -35. This time the
value being assigned has a reference count of one; it is eligible for result
incorporation because the result of the ADD is used only to provide a value for
the target of this ASSIGN. Result incorporation involves adding the identifier of
the target reference operator as a third operand to the ADD operator and
eliminating the assignment operator altogether. The reference count of the
ADD operator is set to zero because the operator no longer produces a value.
The final operator would be the following:

-34 0 ADD(-25,-33,-27)

As might be expected, not all value-producing operators can participate in
result incorporation. We have limited the set to those that have analogous
hardware operations and whose lengths or sizes are conducive to in
corporation in other operators. These include:

1. ADD, SUBTRACT, MULTIPLY, and DIVIDE operators of data type integer,
decimal (only if size and scale match), and floating point

2. Conversions to and from integer and floating point

3. Character-string copy operations in which the destination is a varying
length character string larger than the copied value or is a fixed-length
character string equal in size to the copied value

4. The ABS operator with a result data type of integer, fixed decimal (only
if scale and size match), and floating point

5. The ADDR built-in function

6. Character-string concatenation with the same rules as 3 above

7. Mathematical built-in functions whose result cannot be returned in two
hardware registers (that is, for results whose precision is greater than
53).

Conclusions

In this chapter we have descdbed the implementation of global optimization
in the VAX-II Code Generator. Throughout the evolution of the Optimizer
our philosophy was to concentrate on those improvements that resulted in the

Global Optimization

highest payoff for the least cost. Thus, we strove to select optimizations that
significantly reduced the running time of the object program without so much
compile-time cost that their implementation became impractical. (The record
shows that we met this goal: the PL/I compiler produces code that is as highly
optimized as any other Digital compiler for VAX-II machines, and it has a
compilation rate of between 2,000 and 4,000 lines per minute, which is sig
nificantly better than that of other competing compilers. Our VAX-II C com
piler, which uses the VAX-II Code Generator, produces code of equivalent
quality and its compilation rate is between 4,000 and 7,000 lines per minute.)

Our experience shows that more and more optimization can be added with
out significantly affecting the amount of time it takes to compile a program. In
fact, because many parts of the PL/I compiler are written in PL/I, more opti
mization reduces the overall compilation time. We have tried not only to im
plement optimizations that have the highest payoff but also to select those
implementation algorithms that run the fastest; in some cases, this meant that
we opted for those that were fast but imperfect.

Figures 44 through 49 illustrate the effect of various optimizations on the
run time for each of a series of benchmarks. Each column shows the effect on
the total run time of the program when the indicated optimization is not per
formed (and all other optimizations are performed) using the totally unopti
mized program as the point of comparison. For example in Benchmark 1 when
all optimizations are performed, the running time is about 20 percent of what
it would be if no optimizations were performed; if the assignment of local va
riables to registers is suppressed (and all other optimizations are performed),
the running time is 80 percent of what it would be if no optimizations we.re
performed. We have selected a variety of benchmarks; some show that cer
tain optimizations have a significant effect on the running time, and others
show a more equitable distribution. Thus, in Benchmark 3, the running time is
more significantly affected by the assignment of variables to registers and the
removal of invariant expressions from loops than it is by the elimination of
common subexpression and peephole optimization. However, in Benchmark 4,
the suppression of the assignment of local variables to registers barely affects
run time at all. (We include the effects of peephole optimization in these fig
ures as a matter of interest; the Peephole Optimizer executes as a distinct
phase following register allocation and is described in Chapter 10.)

The optimization phase can never be totally finished. We are constantly try
ing to discover new ways to improve code generation. Listed below are sev
eral optimizations that we would like to perform in future generations of the
VAX-II Code Generator.

• Better use of the graph during common subexpression elimination would
allow us to perform this optimization along longer and irregularly struc
tured flow paths. We could do this by using the dominance information
computed during the removal of invariant computation from loops.

147

148 Engineering a Compiler

• The calculation of discrete lifetimes over actual flow paths rather than
lexically over regions would provide better information about the impor
tance of variables and would tell us more specifically the parts of the
graph where the value is live.

• Interprocedural analysis of external as well as internal procedures
would allow us to compute exactly (or more exactly). the variables that
are actually assigned through aliases and those that are uplevel ad
dressed by specific internal procedures.

Even without these, we have extended and invented a considerable number
of optimizations. In fact, we spent a lot of development time implementing
optimizations in other phases of the compiler-in Write Tree, in the Register
Allocator, and in the Peephole Optimizer. The empirical result has been that
once we have made an optimization in one part of the compiler-say, the code
generation logic-we have opened up the possibility of more optimization in
another part of the compiler-say, in peephole optimization.

We next look at these later phases of compilation, including the transforma
tion of operators into instructions and the subsequent optimizations on the
program.

No optimizations

With all optimizations

Without local variables
in reg isters I-----,--,...---;-----,.--,----,--..,..----!

Without computation of
disjoint lifetimes I---,-----,_-,-----,-_..,.--_~--.J

Without loop invariant
removal

Without common
subexpression elimination

Without peephole

1--_---'

optimization 1--__ _

o 10 20 30 40 50 60 70 80 90 100

% run time

Figure 44. Effect of optimization on Benchmark 1.

Global Optimization

No optimizations

With all optimizations

Without local variables
in registers

Without computation of

f----:--.,.----,-----'

dis jo i n t Ii fet i mes f----,--.,.----,--'

Without loop invariant
removal

f----:--~---~__:_I ~I

Without common I
subexpression elimination I

I
Without peephole I

optimization I
I

o 10 20 30 40 50

% run time

Figure 45. Effect of optimization on Benchmark 2.

No optimizations

With all optimizations

Without local variables
in registers

Without computation of
disjoint lifetimes

Without loop invariant
removal

I I
Without common I I

subexpression elimination I I
I I

Without peephole I I
optimization I I

I I
0 10 20 30 40 50 60

% run time

Figure 46. Effect of optimization on Benchmark 3.

149

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I
I I
I I
I I
I I
I I

70 80 90 100

150 Engineering a Compiler

No optimizations

With all optimizations

Without local variables
in registers

Without computation of
disjoint lifetimes

Without loop invariant
removal

Without common
subexpression elimination

Without peephole
optimization

0

I
I
I
I
I
I
I

10 20 30 40 50 60

% run time

Figure 47. Effect of optimization on Benchmark 4.

No optimizations

I I I I I I
With all optimizations

I I I I I I
Without local variables

in registers

I I I I I I
Without computation of

disjoint lifetimes

I I I I I I
Without loop invariant

removal

I I I I I I
Without common

subexpression elimination

I I I I I I
Without peephole

optimization

I I I I I I

I
I
I
I
I
I
I

70 80 90 100

I I I

I:
I

I
I

I
I

I
I

I

I
I

o 10 20 30 40 50 60 70 80 90 100

% run time

Figure 48. Effect of optimization on Benchmark 5.

Global Optimization

No optimizations

With all optimizations

Without local variables
in registers

Without computation of

~-T--~--~-'--~~

disjoint lifetimes ~-T--~--~-'--~-'

Without loop invariant
removal

Without common
subexpression elimination

r--.---r--.--.---r~

Without peephole
optimization ~-T--~--"---'--~~

o
% run time

Figure 49. Effect of optimization on Benchmark 6.

151

8
Operator

Transformation
and Code

Generation
Mter execution of the front end's storage allocation routine, the VAX-II
Code Generator enters its pure code generation phases in which the operators
are transformed into VAX-II instructions and operand specifiers. The first of
these phases is the Local Code Generator, so named because it processes a
single operator at a time and generates instructions without regard to the
structure of the program as a whole. In this chapter we discuss our philosophy
of local code generation and present some detailed information on how this
phase of the VAX-II Code Generator creates instructions for the VAX-II
machine.

Background

When we started bootstrapping the compiler, we had neither a code gener
ator nor access to sources for any of the code generators Freiburghouse had
written, although we knew they were written in TBL. We did not at that time
have any real inclination to use TBL to write our code generator. However, in
the interests of getting the compiler up and running, we decided to use TBL
to write the code generator, assuming that we would later rewrite it using
some more efficient technique. In fact we never did rewrite it, and that hasty
decision proved to be one of our best.

When we wrote our own TBL compiler for the VAX-II, we changed it to
suit our needs and our own style of programming and code generation. We
added the notion of explicit variables, a case action, an if_not action, and we
made it possible for any action to have a variable number of arguments. A
more subtle and (in conceptual terms) more important change was to make
the output of all actions explicit in the TBL. In designing our TBL for the
Local Code Generator, we provided known variables and let actions modify
them explicitly. For example, we defined a variable, result, that always holds
the address of the current operator, and we defined a number of temporary
variables that may be used to hold pointers to operators or operands as we
process them.

To give you an idea of the simplicity and elegance of a TBL scheme, we
have chosen a fragment from the routine in the Local Code Generator that
processes ADD operators:

152

Operator Transformation and Code Generation

add_op:

get_data_type(result,temp1);

case (temp1,

add_long:

add_fixed,

add_fIt,

add_decimal,

Here, the first actions performed for the interpretation of an ADD operator
are obtaining the data type of the value produced by the current operator (as
represented by result) and storing the numerical value in the variable templ.
Subsequently, the case action uses the value of templ to determine which
TBL routine to branch to. Separate routines exist for add operations involving
operands of various data types.

The benefits of the TBL style of code generation soon became obvious.
First, it provided much greater flexibility than did the traditional pattern
matching code generation techniques, especially in generation of code for
complex coding sequences. Second, it allowed us to elaborate on our code gen
eration scheme as we went along; had we used a pattern-matching scheme,
we would have felt compelled to define all possible patterns before we began.
(At the very least, we would have had to describe patterns for all possible
operand sequences.) For our purposes (and given our prior experience), the
latter approach would not have been at all feasible, especially since pattern
matching cannot begin to handle such semantic problems as precision and
alignment.

Another advantage of our design approach is that it lets us generate code
for special cases in a very straightforward fashion. No cross-coupling is neces
sary between the Optimizer and the Local Code Generator: the Optimizer
does not need to know what the Local Code Generator will generate, and the
Local Code Generator does not need to know anything about optimization.

Overview

The Local Code Generator reads an operator, transforms the information in .
it into a data structure called an operator node, determines the opcode of the
operator, locates the appropriate TBL interpretative routine to process the

153

154 Engineering a Compiler

Operator Transformation and Code Generation

operator, and passes control to that routine. The TBL routine processes the
operands and writes (emits) code blocks to the intermediate code list. Code
blocks are skeletal machine-language instructions; they contain machine
opcodes and operand information, but do not necessarily contain bound ad
dressing information nor (in most cases) any specific register numbers for
operands that are to be addressed using registers.

The intermediate code list itself is always built in a strictly linear fashion,
with code blocks always added at the end. Thus, it represents the source pro
gram from start to finish. However, the Local Code Generator must also re
present the structure of the program-which may not be strictly linear-and
create and maintain a distinct environment for each nested block or proce
dure. On the outer processing level, it simply initializes the code list listhead,
gets a pointer to the operator file, processes each operator until it reaches the
end of the file, and calls the Register Allocator when it has finished. This level
of control, shown in Figure 50, is what results in the linear code list.

On the inner level of execution, there is a distinction between two routines:
operator processing and block processing. On initial entry to the Local Code
Generator, the block processing routine initializes a set of local variables and a
data structure called a prologue descriptor. Throughout code generation and
register allocation, the prologue descriptor will accumulate information about
the use of temporaries in the block. The block processing routine then calls
the operator processing routine.

The operator processing routine continues reading operators and emitting
code blocks until it encounters a PROCEDURE, BEGIN, or BLOCILEND. Then, the
following things can happen:

From Storage [Allocator

Initialize each
block listhead
and operator file
read pointer

Call code
generation
routine

Figure 50. Processing the operator file.

155

156 Engineering a Compiler

• A PROCEDURE or BEGIN operator causes the operator processing routine
to invoke the block processing routine recursively to create a new block
environment.

• A BLOCILEND causes the operator processing routine to return either to
the block processing routine or to its own earlier incarnation.

The alternate possibilities in the BLOCILEND case enable us to distinguish
external procedures from internal (contained) blocks and procedures and to
generate code for them properly. Consider a source file that contains:

a: PRoe;

END a;
c: PROe;

END c;

b: PROe;

END b;

At the end of b, the operator processing routine must return to processing
operators in procedure a. That is, it returns to its previous incarnation. At the
end of a, however, it must return to the outer control routine so that c is
properly recognized as a level-one external procedure and not as a procedure
internal to a. Figure 51 illustrates the levels of recursion for this control flow.
The recursion has no effect on the order of the code list, which remains in
strictly linear order with respect to the source program.

Temporaries

The prologue descriptor created for each block activation by the block pro
cessing routine accumulates information about temporary usage within the
block. When we refer to temporaries, we are not altering the conventional
notion of a compiler temporary as a variable allocated to hold an intermediate
result during code generation. We have, however, expanded the notion to in
clude the assignment of the values of local variables to temporaries.

Compiler Temporaries as T-Regs
One of our goals in the design of the Local Code Generator (made possible

by the register allocation technique we developed) was to make the Local
Code Generator freely assign temporary results to register temporaries, or
T-regs. The fact that not all values will necessarily be assigned to registers in
the generated code is of no concern to the Local Code Generator. It merely
assumes that anything that can possibly be assigned to a register should be

Operator Transformation and Code Generation

Initialize external
environment

Process
operators

BLOCK

Initialize block
environment

Process
operators

BLOCK

Process
operators

END

Figure 51. Recursion levels in code generation.

Initialize block
environment

Process
operators

END

treated as if it will be, and so it assigns results to register temporaries without
regard to register numbers, usage spans, the number of registers already allo
cated to hold results, and so on.

To represent a result assigned to a register temporary, the Local Code
Generator allocates an operator node and indicates that it is a register tempo
rary node using the opcode field. It then fills in an allocation descriptor in the
T -reg node and copies the descriptor to the operator node for the value the
T -reg represents. Figure 52 shows the operator node for an ADD operator
whose result the Local Code Generator has assigned to aT-reg and illustrates
the T -reg node and the allocation descriptors in each.

Each T -reg node has a unique identifier consisting of 12 bits that locate a
pointer in an array of pointers. The array is accessed through the prologue
descriptor for the block in which the T -reg node is allocated, as illustrated in
Figure 53. The prologue descriptor contains a maximum of 64 pointers to
these pointer arrays, each of which can hold a maximum of 64 pointers to
T -regs. Thus the maximum number of T -reg nodes that can be allocated for a
single block during compilation is 4,096. (This has not proved to be a real
limit; we have never had a program-or received one from a user-that ran
out of space for temporary allocation.)

In the T-reg node, the 12-bit identifier consists of two 6-bit parts. The high
order, base field provides an index to the list of pointers in the prologue
descriptor. The low-order, index field gives an index into the array of T -reg
node pointers.

The first 16 T -reg nodes in each block are nodes allocated for the 16 hard
ware registers. Since these nodes are always allocated first, the base portion
of the identifications for these registers is ° and the index portion contains the

157

158

T-reg node for the //
result of the ADD /

opr_in_reg

/

/
/

/

Allocation {~--"'::-'~~~
descriptor

Engineering a Compiler

flink

blink

~~~~~} Allocation 
descriptor 

~....:....:........:....:.....:...c:...~ 

/ 
/ 

/ 
/ 

Opcode = ADD 

Opcode = register tem porary 

Figure 52. T -reg node allocation. 

Array 
pointers 

Prologue 
descriptor 

n 
(0) 

(1) 

(2) 

11 6 5 0 

Register temporary 
pointers 

(0) 

(1) 

(2) 

(10) 

T-reg node 

1 2 110 Iidentifier _______ 

Base Index ~--~ 

Figure 53. T -reg identification. 

Identifier 



Operator Transformation and Code Generation 

values 0 through 15; thus, these nodes can be accessed through their hard
ware register numbers. 

Local Variables as Compiler Temporaries 

In our discussion of the Optimizer in Chapter 7, we mention the 
ASSIGN-REGTEMP (Assign Value to Register Temporary) operator. We de
scribe only the criteria used by the Optimizer to select variables that are eligi
ble for assignment to registers and the modifications the Optimizer makes to 
the operator file to reflect the selection of a variable. For each of these 
variables, the Optimizer introduces into the operator file an ASSIGN-REGTEMP 

operator, whose first operand is the Symbol Table node identifier of the va
riable's symbol node. The next two operands represent the operator identifi
ers of the first and last operators that define a given instance of the variable, 
that is, a determined span of the program over which a particular value that it 
holds remains valid. 

When the Local Code Generator processes these ASSIGN-REGTEMP opera
tors, it allocates T -reg nodes and copies the allocation descriptor from the 
T -reg node into the ASSIGN-REGTEMP operator node, as it does for other oper
ators when it assigns temporary results to T-regs. Moreover, the Local Code 
Generator detects when a VALUE operator is referring to an ASSIGN-REGTEMP 

operator, and in these cases it also copies the allocation descriptor from the 
T -reg node into the VALUE operator. Consider the following: 

-2 ASSIGN __ REGTEMP(x,34,49,O) 

-3 ASSIGN __ REGTEMP(z,34,49,O) 

-43 VALUE (-2) 

-45 VALUE (-3) 

-46 ADD(-43,-45) 

Figure 54 shows the operator and T -reg nodes for these operators. 

Building Code Blocks 

Each of the code blocks emitted by the Local Code Generator to the inter
mediate code list consists of a fixed header portion followed by operand speci
fiers, if any. The fixed portion contains fields describing the type of code 
block, the opcode of the instruction represented by the code block, the num
ber of operands, and so on. The operand specifiers contain specific informa
tion about the size and context of the operands and the manner in which they 
are addressed. In this section, we describe the types of code block created by 
the Local Code Generator and provide examples of how the Local Code 
Generator determines the addressing modes of operands. 

The code blocks output by the Local Code Generator describe the instruc
tions and control information needed to write the object file for the program 

159 



160 Engineering a Compiler 

-2 ASSIGN_REGTEMP -43 VALUE ADD 

Allocation { 
descriptor t---->---i 

t----,---i 

op 1 
'-----' 

T-reg for the result of ADD 

Figure 54. T -reg nodes for ASSIGN-REGTEMP operators. 

being compiled. Table 1 summarizes the types of code block and how each is 
used. Figure 55 illustrates the operators for a simple program and shows 
which operators result in code block generation and the type of code block 
generated for each. 

Operand SPecifiers 
Code block operand specifiers are analogous to operand specifiers in 

VAX -11 instructions. They describe both how the operand is to be addressed 



Operator Transformation and Code Generation 

(the addressing mode) and the operand's location-which may be in a regis
ter, in memory, or in the operand specifier itself. However, a code block 
operand specifier has a single format for expressing all possible addressing 
modes, whereas there is a distinct operand specifier format for each VAX-II 
addressing mode. 

The V AX-II addressing modes and operand specifier formats are defined in 
detail in Digital Equipment Corporation's VAX-il Architecture Handbook 
(Maynard, Mass., 1981). Table 2 summarizes the basic addressing modes and 
the numeric encoding for each. These codes are also used in the code block 
operand specifiers and the examples in the rest of this chapter. 

Code Block Operand SPecifier Format 
Figure 56 illustrates a code block operand specifier. The context field con

tains information related to the use of index registers; the flags field indicates 
the type of operand and how other fields are used. For example, if the flag 
base_use is set, it indicates that the addri field contains a T-reg identifier. 
Similarly, the flag external, when set, indicates that the operand is repre
sented by a reference to an external symbol; in this case, the psect field must 
contain the program section number. 

Type 

Instruction 

Branch 

Prologue 

Label 

Statement 

Block end 

Literal 

Conditional move 

Load base 

Table 1. Code block types. 

Usage 

Represent machine-language instructions, such as ADD, 
MOV, CLR, and PUSH 

Represent branch instructions 

Represent the beginnings of blocks 

Represent program labels 

Represent source program statements 

Represent the ends of blocks 

Represent immediate data, for example, constants 

Represent move instructions introduced by the Local Code 
Generator for operand specifiers that must be in registers 

Represent instructions required to load the base addresses 
of program sections into registers 

161 



162 

-33 
- 1 
-2 
-3 

-34 
-35 

2 
3 
4 
5 

-36 
-38 
-39 

eO 

-40 
-43 
-45 
-46 

7 

-48 
-49 

8 

-50 
51 

1 
1 

0000 
0001 
0002 
0003 
0004 
0005 

0006 
0007 
0008 

0009 
OOOA 
0008 
oooe 

OOOE 
OOOF 

enp; 

0010 
0011 

o 
o 
3 
3 
o 
o 

o 
1 
o 

o 

o 
o 

o 
o 

Engineering a Compiler 

Operators 

~ 

~ p (Z 

statement ( 1 ) 
procedure 
assign_regtem 
assign_regtem 
entry (ADD10) 
end_of_prolo gue ~ 

n; 

Z= 10; 

~ statement (5) 
integer (10,0 
ass i gn ( - 3, - 3 )8 )---------------

x=:xo+,io;o 

statement (6) 
value(-2) 
value(-3) 
add(-43,-45 

statement (7) 
return 

statement (8) 
block_end ( 16 

~ 

~ 
~ 9)~ 

Code blocks 

Statement 1 

Label ADD10 

Prologue 

Load base 

Statement 5 

Instruction MOVL 

Statement 6 

Instruction ADDL3 

Statement 7 

Instruction RET 

Statement 8 

Instruction RET 

Block end 

Figure 55. Code blocks emitted for a simple program. 

The addrl field contains addressing information. The high-order four bits 
of this field contain the addressing mode code; low-order bits contain a regis
ter number, aT-reg identifier, or other information depending on the address
ing mode. 

The addr2 field is used only when the indexed addressing mode is used; the 
high-order four bits always contain the value 4, indicating that indexing is 
used. It specifies the register (or T -reg) that is the index register for the 
operand. 

The displacement field contains a variety of information, depending on 
other data. For example, it may contain the displacement of an operand from 
its base, which may be a register or the base address of a program section. 
Or, it may contain a pointer to a label node, an external symbol descriptor, or 



Operator Transformation and Code Generation 

Table 2. VAX-II addressing modes. 

Mode Code Usage 

Literal 0-3 The operand's value is specified in the operand specifier 
itself. 

Indexed 4 (U sed in conjunction with other addressing modes.) The 
index register specifies an offset from the beginning of a 
data structure whose base address is also in the operand 
specifier. 

Register 5 A register contains the value of the operand. 

Register 6 A register contains the address of the operand. 
deferred 

Autodecrement 7 The address of the operand is determined by 
subtracting the size of the operand from the contents of 
a register. 

Autoincrement 8 The register contains the address of the operand and is 
incremented by the size of the operand following 
evaluation of the operand specifier. 

Autoincrement 9 The register contains the address of a location 
deferred containing the address of the operand and is 

incremented by four (the size of an address) following 
evaluation of the operand specifier. 

Displacement A,C,E A byte, word, or longword value is added to the 
contents of a base register to determine the address of 
the operand. 

Displacement B,D,F A byte, word, or longword value is added to the 
deferred contents of a base register to determine a location 

containing the address of the operand. 

an immediate (as distinct from a literal) value. The VAX-II Code Generator 
optimizes the displacement of an operand specifier whenever possible, using 
byte, word, or longword displacements. 

Examples of Operand Specifiers and Addressing Modes 

In the remainder of this chapter, we present examples of operand specifiers 
for different types of instructions and addressing modes. Information in these 
operand specifiers does not, at this phase of code generation, represent the 

163 



164 Engineering a Compiler 

Operand specifier fields 

I I I I 

o Context: Undefined(O), byte(1), word(2), longword(3), 
quadword(4), or octaword(5). 

o Flags: External(1), relocatable(2), label(4), temporary(8), 
unbound(10), index_use(20), and base_use(40). 

o Psect: Program section number if relocatable and 
external are specified in flags field. 

Imlr~ Addr1: Address mode and register number if 
base_use is not specified in flags. 
Mode and register number form literal 
value if mode is 0, 1,2, or 3. 

1m I ident I Addr1: Address mode and T-reg identifier if 
. base_use is specified in flags. 

lo~ Addr2: Indexing not specified. 

Addr2: Indexing specified with a specific 
register number if index_use not 
set in flags. 

Addr2: Indexing specified with T-reg identifier 
if index_use is set in flags. 

data value Displ: Displacement or actual data 
value if label and external 
not specified in flags. 

pointer I Displ: Descriptor pOinter if label 
'--_____ ---.J or external specified in flag. 

Figure 56. Code block operand specifier format. 

final form of the program. Most of the registers in these examples are speci
fied using T -reg identifiers. (The Register Allocator, described in the next 
chapter, updates the operand specifiers with actual register numbers.) 
Moreover, the Local Code Generator does not make any attempt to bind 



Operator Transformation and Code Generation 

branch instructions to their target labels. The Code Binder performs this task 
in a later phase. 

Figure 57 shows the operand specifiers for a two-operand ADD instruction 
in which both operands are in registers: 

ADDL2 Rn,RO 

The context field in each operand specifier indicates that the operand con
text is longword (3). The flags field in the first operand specifies the base_use 
flag (40); thus, the addrl field contains a T-reg identifier (011). The flags 
field of the second operand specifier does not specify the base_use flag; thus, 
the actual register number (0) is specified in the addrl field along with the 
addressing mode code (5). 

The next example, shown in Figure 58, is an instruction that uses the in
dexed addressing mode. The instruction is 

MOVL RY,-displ(FP)[Rx] 

where the value in the T -reg Ry is to be moved to a location whose base ad
dress is specified as a negative displacement from the FP and whose index is 
specified by the T -reg Rx. The flags field in the first operand specifier has 
base_use set (40); thus, addrl contains a T-reg identifier. In the second 
operand specifier, the flags field has index_use set (20); thus, addr2 contains 
a T-reg identifier. The addrl field contains the addressing mode code indicat
ing a byte displacement (A) from register D (the FP). The addr2 field speci-

displacement 

L..-_-'---_-L.-_-'--__ -'-__ --'-__ x ___ ----l0perand specifier 1 

<----3_-'---_0 ---'-_---L_5_0_xx----''--0_X_xx_-'--___ x ___ ----l1 0 perand spec if i er 2 

Figure 57. Operand specifiers for a two-operand ADD instruction. 

displacement 

'--_L-_~_-'--__ -'-__ ~ _____ ~ Operand specifier 1 

FFFFFFD4 I Operand specifier 2 
'--_L-_~_-'--__ -'-__ ~ _____ ~ 3 20 ADxx 4011 

Figure 58. Operand specifiers for an instruction using the indexed address
ing mode. 

165 



166 Engineering a Compiler 

fies indexed mode (addressing mode 4) and the T -reg identifier of the index 
register (011). The displacement field indicates a negative displacement from 
the FP. 

The next example shows how a static variable is addressed by generating a 
load base code block. Figure 59 illustrates the instruction in the load base 
code block. 

MOVAB psect,Rx 

Operand 1 represents an external variable, assigned to the program section 
numbered 2 by the Storage Allocator. The displacement value of 0 indicates 
that the variable is located at the beginning of that program section. Operand 
2's flags indicate a T-reg destination; thus, the addrl field contains aT-reg 
identifier. 

The BBe (branch on bit clear) instruction tests a bit in a bit-string variable 
and branches if the bit is clear. Figure 60 shows one possible configuration. 

BBC pos,(Rx),label 

Here, a test is being made to a one-bit, external variable. Thus, the operand 
specifier for the bit position to be tested consists of a literal operand whose 
value is O. The result is an addressing mode code of 0 and an operand value of 
o. Operand specifier 2 contains the program section number of the external 
variable; the context is byte 0); the flag (41) indicates that aT-reg is used for 
an external reference. The addrl field indicates register deferred addressing 
(mode 6); the T-reg node whose identifier is 012 contains the base address of 
the program section. Operand 3 specifies the target branch label. Its flag (14) 
indicates that it is an unbound label; that is, it is not yet bound to a permanent 
location. The displacement field contains the address of a label descriptor 
record. 

An instruction using auto increment addressing mode might look like the 
one shown in Figure 61. 

MOVL Rn, (Rm)+ 

Here, operand 1 specifies the register containing a source value, which is in a 
T-reg. In operand specifier 2, the addrl field specifies autoincrement mode 

displacement 

o Operand specifier 1 
~--~--~--~----~----~----------~ 

Figure 59. Operand specifiers for an instruction in the load bases code 
block. 



Operator Transformation and Code Generation 

displacement 

Operand specifier 1 

41 2 6012 Oxxx I Operand specifier 2 

0 14 xxxx Oxxx 000F45CC I Operand specifier 3 

Figure 60. Operand specifiers for a BBC instruction. 

(mode 8) and the T -reg identifier (012) of the register whose value is to be 
incremented following evaluation of the operand specifier. Since the context 
of this operand specifier is longword (as specified in the context byte), the 
value is incremented by 4 each time the operand specifier is evaluated. 

Our last example, which shows a complex reference, comes from the source 
code: 

example: PROCEDURE (y); 

DECLARE Y POINTER, 

x FLOAT BASED; 

y->x = 5; 

In this example, the location of x is derived from the value of a pointer y, 
whose value is passed as a parameter (we assign this floating-point variable a 
constant value to simplify the example). When the Local Code Generator 
reads the operator file, there is a single ASSIGN operator to express this as
signment. However, the Local Code Generator determines that the reference 
to x requires an additional instruction to load its effective address into a regis
ter. It allocates a T-reg node and emits a MOVL instruction to load the ad
dress into the T -reg. The instructions are as follows: 

MOVL @04(AP) , Rn 

MOVF 1+ 1 A, (Rn ) 

displacement 

~--~--~--~----~----~----------~ 
Operand specifier 1 

~_3 ~_4_0----'-__ ---1 __ 8_0_12 __ ~0_x_x_x ~ __________ ----,l Operand spec if ie r 2 

Figure 61. Operand specifiers for an instruction using the autoincrement 
addressing mode. 

167 



168 Engineering a Compiler 

displacement 

L.-_.l.....-_..J..;;.:..;....:..:-.-....I.-__ ----1-__ --L... __ O_O_OO_O_O_04_---l Operand specifier 1 

,--3_",--4_0--,-,-1,=', =='<....L1_5_0_11----''--0_x_xx_..L:..:r;.:...;,.,,~'''_'''_____~==__'~:, I Operand specifier 2 

displacement 

L.-_.l.....-_..J..;;.:..;....:..:-.-....I.-__ ----1-__ --L... ___ ~:.._.:_---l Operand specifier 1 

L--_3 --'-_4_0----""t.:.... _-L-_6_0_11_,--0_x_x_x --'-_'--_-----'-_'----'1 0 perand specifi er 2 

Figure 62. Operand specifiers for a complex reference. 

Figure 62 shows the code block operand specifiers. Operand specifier 1 for 
the MOVL instruction specifies the contents of the parameter y. It specifies 
the position of the argument as a displacement from the AP register C. 

The second instruction generated by this sequence is MOVF, which moves 
the literal floating-point datum 5 (expressed as a short floating-point literal in 
operand specifier 1) to the address contained in the T -reg node that was allo
cated to hold the address of the variable in the MOVL instruction. 

In this chapter, we presented an overview of how the Local Code Generator 
transforms the optimized operator file into a sequence of code blocks that will 
ultimately be VAX-II instructions. We also gave some detailed examples that 
illustrate the mechanics of generating code for specific machine instructions. 

We have designed a strict, canonical format for operand specifiers that is 
easy to reduce and-more important-easy to modify as code generation pro
ceeds. The "incompleteness" of the operand specifiers at this point in code 
generation has its advantages. The T -reg node identifiers are not bound to 
specific registers. The explicit allocation is performed by the Register 
Allocator after it decides which uses of T -regs are more important. The 
Register Allocator is in a much better position than the Local Code Generator 
to know which instances of temporaries should go into registers. Similarly, 
branch displacements are not bound, nor is the final addressing of external 
variables. These bonds are also reserved for later phases of code generation. 



9 
The Register 

Allocator 

Most compiler implementations must deal with a fundamental, two-part, 
hardware-specific problem: register allocation (selecting temporaries and lo
cal variables that can be held in general-purpose registers) and register as
signment (specifying which register to use for each selected variable or 
temporary). Instructions that use registers are generally shorter and faster 
than those that do not; therefore, register allocation/assignment seeks to 
place as many temporary values and local variables as possible into registers. 

Background 
The bootstrap compiler used a localized register allocation scheme within 

the code generator phase. Whenever the code generator generated a compu
ted value, it would assign it to a register. Each value had a usage count, which 
always reflected the number of references to the value. When the usage count 
was zero, the value was dropped. . 

Usage counts provided a good basis for deciding which values to retain 
when there were insufficient registers and a register was required (say, for a 
base pointer). In these cases, the code generator simply copied the value with 
the lower usage count to memory and allocated the freed register (R. A. 
Freiburghouse, "Register Allocation Via Usage Counts," Comm. ACM 17, 
no. 11, [1974] pp. 638-642). 

Although this technique provided a reasonable way to perform register allo
cation, our assembly-language bias prompted us to modify it. We wanted a 
register allocator that would use registers as efficiently as any good assembly
language programmer could when coding by hand. Our solid understanding of 
the VAX-II architecture and instruction set made us confident that we could 
design. such an allocator. 

Register usage on the VAX-II machines is summarized below. 

1. There are 12 general-purpose registers, RO through Rl1. 

2. There are 4 special-purpose registers, R12 through R15: 

• An Argument Pointer register, AP (RI2), used to pass the address of 
the parameter list to a procedure on invocation. If a procedure has no 
parameters, AP may be used as a general register. 

169 



170 Engineering a Compiler 

• A Frame Pointer, FP (R13), containing the address of the beginning 
of the stack frame for the current block activation. 

• A Stack Pointer, SP (R14), containing the address of the current 
stack location (the "top" of the stack). 

• A Program Counter, PC (R15), containing the current program (in
struction) counter. 

3. Some instructions have as a side effect the destruction of the contents 
of specific registers. For example, procedure invocations are always as
sumed to destroy registers RO and R1 because they may be used to pass 
return values; string instructions always destroy certain registers; and 
so on. 

4. Some compiler-generated instructions have operands that should, if pos
sible, be addressed with base registers and/or index registers. 

Initially, we decided to confine all register allocation, including assignment 
of temporaries to specific register numbers, to the local code generation 
phase. Thus, the Local Code Generator, mimicking an assembly-language pro
grammer, would assign registers on an ad hoc basis: each time it encountered 
a value that could be put in a register, it allocated a register (or registers, as 
required), beginning with R2. 

The two principal problems of this approach are: when a specific register 
that is required or destroyed by an instruction is active, that register's cur
rent contents must be saved, the instruction generated, and then the register 
contents restored; and when all 12 registers are allocated and a register is 
required to hold a base or index value in an operand address, a register must 
be freed to hold the value. 

These were the problems we encountered with our first register allocator. 
Within the Local Code Generator's TBL, we frequently had to generate code 
sequences that copied the list of active registers, pushed those registers onto 
the stack, emitted an instruction that destroyed one or more registers, and 
then restored the registers that had been pushed onto the stack. For example, 
a MOVC (move character) instruction uses registers RO through R5. If all 
these registers were already allocated when the the move character instruc
tion was needed, the assembly-language programmer would write something 
like 

PUSHR 

Move3 
POPR 

HA <RO,R1,R2,R3,R4,R5> 

... , ... , ... 
HA

<RO,R1,R2,R3,R4,R5> 

I Push RO to R5 

I Do the Move Instruction 

I Get the registers back 

where the respective instructions PUSHR and POPR push onto the stack and 
restore the contents of the specified registers. When confronted with this 
same situation, the Local Code Generator in our first register allocation 
scheme would execute a set of TBL actions such as 



The Register Allocator 

get __ inuse--ffiask (temp1); 

emit __ instr (PUSHR,temp1); 

emit __ instr (MOVe3, ... , ... , ... ); 

emit __ instr (POPR,temp1); 

where templ is the variable in which the Local Code Generator stores the 
mask of all registers currently allocated for instructions. 

Clearly, this design resulted in inefficient code sequences and did not 
closely reproduce the assembly-language code that a good programmer would 
write. We needed a register allocator smart enough to look at variable and 
temporary use throughout a single block or section of code, decide which 
temporaries were referenced more frequently, and assign them to registers. 
We concluded that we had to separate the distinct actions of register alloca
tion and register assignment and to perform the assignment after code gen
eration rather than before or during it. 

Compilers that allocate and assign temporaries and local variables to regis
ters prior to code generation do so based on the frequency of estimated use of 
the variable or temporary. This approach may require that once a variable or 
temporary is assigned to a register it remains bound to that register even 
though the values held by the variable or temporary may have distinct, or dis
joint, usages. This is, in fact, true in most implementations. 

Although our initial method assigned only compiler-generated temporaries 
to registers, the change to postcode-generation assignment enabled us to in
clude local variables in register assignment. Moreover, it was clear that the 
generated code could provide a more realistic picture of a temporary's or a 
variable's actual usage; the generated code shows exactly how many times the 
variable is referenced in instructions, not just in the source program. We also 
knew that from flow analysis within the Optimizer phase we could determine 
when a variable's or temporary's value ceased to be live, or valid. Thus, we 
could assign that variable to a register only for that distinct usage and assign 
it to a different register or to memory for a different usage. 

Lastly, we knew that, given the architecture of the VAX-II instruction set, 
we could generate instructions using temporary addressing.modes and modify 
them to specify register or memory addressing after we had made final regis
ter assignments. We were also confident that, even though we would have to 
execute another distinct pass over the generated code, we could write a 
Register Allocator that not only would be efficient in terms of register assign
ments but also would require a minimum of execution time. 

The decision to rewrite the register allocation scheme as a separate phase 
required a major revision of the Local Code Generator to make it keep track 
of all instructions that allocated specific registers or destroyed specific regis
ters and to make it compute the usage span of temporaries targeted for as
signment to registers. Later, we introduced the necessary logic into the 

171 



172 Engineering a Compiler 

Optimizer to enable us to include local variables in register assignment and to 
treat them exactly as we treat temporaries introduced by the Local Code 
Generator. 

Overview 

Mter processing the operator file, the Local Code Generator transfers con
trol to the Register Allocator. At this point the Local Code Generator has built 
not only data structures to describe the program's block structure and to 
track usage of all temporaries allocated within those blocks, but also a series 
of code blocks representing statements, instructions, labels, and so on. 

The temporaries for each block are represented by data structures, or 
nodes (which we call T -reg nodes), allocated by the Local Code Generator. 
The Local Code Generator allocates aT-reg node for: 

• Local variables selected by the Optimizer as candidates for assignment 
to registers 

• Temporaries selected by the Local Code Generator to hold intermediate 
results 

• Temporaries associated with specific hardware registers by the Local 
Code Generator for specific code sequences. 

Each code block contains a header and operand specifiers. Within the 
operand specifiers, the addressing information remains skeletal. Temporaries 
representing instruction operands are specified by identifiers of the T -reg 
nodes allocated by the Local Code Generator. 

The Register Allocator uses a heuristic approach to assign a value to each 
temporary. Then, taking each temporary in order of its value, it assigns the 
temporary to a register if an eligible one exists. If no register is available, the 
Register Allocator must allocate the temporary to memory. Mter determin
ing, for each temporary, the availability of a register, the Register Allocator 
must fill in the operand specifiers in the code blocks with either the register 
number (if a register is assigned) or a memory address (if no register is avail
able). This scheme requires keeping track of all register usage in the program 
on a block-by-block basis. To do this, it manages a number of data structures, 
each representing a discrete type of information-including program struc
ture, temporary allocation, and register usage. We describe these structures 
in detail in the following subsections. 

Prologue Descriptors 
During local code generation, the Local Code Generator allocates a pro

logue descriptor each time it processes a new block, providing backward and 
forward links with the previous block. Thus, this prologue descriptor list al
lows the back end to recreate the program's block structure, which was re
duced to a linear form in the operator file. The prologue descriptors contain 



The Register Allocator 

cumulative information about T -reg use gathered during local code genera
tion, including: 

• A count of all T-reg nodes allocated for the block 

• Pointers to tables containing pointers to the T-reg nodes (these pointers 
locate and uniquely identify all T -reg nodes) 

• A pointer to a list of T -reg nodes specifying registers specifically allo
cated for particular operations (the explicit allocation list) 

• A pointer to a list of T -reg nodes specifying registers whose contents 
were destroyed at various points in the program as the side effect of an 
instruction or a procedure call (the register kill list). 

Throughout its operation, the Local Code Generator updates an operand 
counter in the prologue descriptor each time it emits an instruction to the 
intermediate code list. Figure 63 summarizes the register control information 
available through the prologue descriptors. 

Register Temporary (T-Reg) Nodes 

Each T-reg node, whether it represents a compiler temporary or a local 
variable, contains allocation and control information as well as specific infor
mation, accumulated and set by the Local Code Generator, about the T -reg 
node's usage priority and its usage span. The usage priority is represented by 
an integral that is a summation of the individual usages of the temporary. 
Each time the temporary is referenced in an instruction, the Local Code 
Generator updates the usage integral (maintained in the T-reg node), using 
the formula: 

n 
usage~ntegral = ~ prioritYi * (10 min(6, !oopdepthi») + loopdepthi 

i = 1 

where priority is 1 or 4, each i is a use of the operand represented by the 
T -reg node, and loopdepth is the current loop nesting level. A priority of 1 
indicates that the value can be held either in a register or in memory; a prior
ity of 4 indicates that the value must be in a register. For example, when a 
temporary is used in the context-index field of an operand specifier, its prior
ity is 4 because if it is not in a register, the Register Allocator will have to 
generate an additional instruction to load the value into a register when it is 
needed in the instruction. 

The other critical piece of information accumulated by the Local Code 
Generator is the usage span. The usage span of a temporary represents the 
time (in terms of first and final use, or reference) over which the value repre
sented by the temporary is valid. The Local Code Generator sets these values 
by using the current value of the operand counter from the prologue 
descriptor when it detects the first and final references to a temporary. Thus, 
the usage span indicates how long the temporary must remain lexically valid. 
Information from the explicit allocation and kill lists also helps the Register 

173 



174 

Explicit EJ 
allocation 
list 

Engineering a Compiler 

T-reg 
nodes 

~ · · · 

Figure 63. Data structures at the start of register allocation. 

Allocator in almost all cases to select a hardware register that will be available 
for the required span and thus eliminates the need to push and pop register 
contents. 

The Explicit Allocation List 
The Local Code Generator makes an entry in the explicit allocation list each 

time instruction generation requires specific hardware registers. For exam-



The Register Allocator 

pie, run-time routines generally require that arguments be passed in certain 
registers. When the Local Code Generator emits an instruction for a call to 
any of these routines, it makes an entry in the explicit allocation list specifying 
the register numbers required and the usage span of the program for which 
they are required. Thus, each entry in this list represents a set of registers 
that cannot be assigned to variables or temporaries during a specific span of 
the program. 

The Register Kill List 
Like the explicit allocation list, the register kill list contains information 

about specific register usage. The Local Code Generator makes an entry in 
the register kill list each time it emits instructions or actions that destroy the 
contents of specific hardware registers. For example, a character-string in
struction such as MOVC or CMPC (compare characters) uses specific regis
ters; after the instruction, the previous contents of these registers are no 
longer valid. Each entry in the register kill list specifies the register(s) whose 
contents are destroyed and the value of the operand counter at the time the 
registers are killed. 

The Intermediate Code List 
In Chapter 8, we described the data structures that constitute the interme

diate code list and the information they contain. Holding instructions in the 
the intermediate code list lets us exploit a fundamental aspect of the VAX-II 
architecture, namely, the flexibility of operand addressing. Instruction 
operands may be held in registers or in memory. The choice of addressing 
mode does not affect the instruction opcode itself or the number of operands 
in the instruction. Thus, by generating skeletal machine-language instructions 
in the Local Code Generator, we can delay the actual binding of operands 
to specific registers or memory locations until we have looked at the entire 
program. 

The intermediate code list also contains conditional move code blocks. 
These code blocks represent instructions that load base addresses (either for 
display pointers or for program sections containing external variables) into 
registers. The Local Code Generator freely adds these code blocks to the list 
without regard to the frequency of reference; it lets the Register Allocator 
make the ultimate decision about whether these addresses need to be held in 
registers. 

Register Assignment 

The Register Allocator applies all of the information in these struc
tures-the prologue descriptors, T -reg nodes, explicit allocation list, register 
kill list, and intermediate code list-during register assignment. Beginning 

175 



176 

no 

no 

no 

Engineering a Compiler 

Process the next prologue 
descriptor 

Build an array of pointers to 
T-reg nodes in chronological 
order of first use in this block 

Select a group of T-regs for 
allocation by locating a 
partition window 

Process a T-reg, assigning 
it to a specific register or 
registers or to memory 

Update operand specifiers in 
the code blocks 

Figure 64. Control flow in the Register Allocator. 

with the prologue descriptors built by the Local Code Generator, it performs 
register assignment a block at a time. Figure 64 summarizes the control flow 
through the Register Allocator. Each step and each action described in the 
remainder of this section are performed for each program block. 

Register Characterization 
U sing the pointers in the prologue descriptor, the Register Allocator scans 

each T -reg node allocated for the current block and captures all the informa
tion it has about the temporary's use. As it looks at T -reg nodes, it builds an 
array of pointers to them. In this array, the pointers are arranged in 
chronological order according to each T-reg's first (that is, lexically first) use 



The Register Allocator 

in the program. Concurrently, it calculates a weight factor for each T -reg 
node and determines which registers are available and which are unavailable 
for assignment during the temporary's span. 

Figure 65 illustrates the chronological array and T -reg nodes. The quadran
gles representing T -reg usage spans indicate typical instances of lexical ex
ecution, during which the values assigned to T -regs remain valid (as 
determined by the Optimizer or the Local Code Generator). The T-reg nodes 
in this figure are numbered according to their identifiers (obtained using the 
pointers in the prologue descriptors and the pointers in the T -reg node lists) 
and their order in the chronological array. 

Register characterization also entails calculating the T-reg's weight and de
termining which registers are available for assignment to that T -reg. 

Calculating the Weight: Because a T-reg's weight factor indicates the 
frequency of use of the T -reg, it is very important in the allocation procedure: 
temporaries with higher weights are given higher priority during the alloca
tion process. The weight is calculated 

. usage_integral weIght = ---------=------'='----------
(final_use - first_use) X number_of_registers 

where usage-integral is calculated as described earlier (in the subsection on 
T-reg nodes), the final_use and first_use are the saved values of the 
operand counter at the final and first references to the T-reg's value, and 
number_of_registers is the number of hardware registers required to hold 
the temporary value. 

Determining Register Availability: Each T -reg node contains a field 
specifying which hardware registers can be assigned to the T-reg. In this 
field, each bit corresponds to a hardware register number: if the bit is set, it 
indicates that the corresponding register is available; if clear, that the register 
is not available. 

During final register assignment, the Register Allocator continually modi
fies this field to reflect availability. To initialize this field, the Register 
Allocator first sets all bits to ones, indicating that all registers are available. 
(It also sets AP if that register is not needed for parameter access.) Then it 
scans the explicit allocation and register kill lists to find any registers whose 
usage spans overlap that of the temporary. 

Figure 66 illustrates the register available mask in aT-reg node and in a 
node in the register kill list. (The Register Allocator takes similar action for 
each entry in the explicit allocation list.) The mask in the register kill list node 
(point 1 in the figure) indicates that registers RO and Rl are killed at a spe
cific program location, as would be the case if a function or procedure call 
occurred at this point in the program. In the T -reg node (point 2 in the figure), 
the first and final uses of the temporary specify the span over which the value 

177 



178 

Ch ronological 
Index pointer array 

o 

2 

3 

4 

5 

6 

1------""-

1------""-

T-reg 
nodes 

15 
5 

16 
6 

Figure 65. T -reg usage spans. 

/ 

Engineering a Compiler 

Program 
span 

T-reg 
usage 
spans 

11 

14 

/' 15 

-----=':,--:-:----. L/' 16 
-/-,...."-----t----

/ 
/ 

0/ 
0/ 
/ 

/ ; 

- - -"---- - - - -->-'-----



The Register Allocator 

Program 
span 

----- first use ® 
final use 

Register 
kill list 
node 

first use 

final use 

Register 
available0 

--'------~rr-' mask 

II 
II 
II 
II 
II 
1\ 
II 
\I 

Register 
0000000000011 kill CD 

__ '--____ --' mask 

Figure 66. Marking registers from the register kill list unavailable. 

the temporary represents must be maintained. Because the program location 
specified by the kill list node occurs within this span (shown at point 3 in the 
figure), the Register Allocator clears the bits corresponding to RO and Rl in 
the available mask for the T -reg node (point 4), marking these registers un
available. 

Selecting Groups of Register Temporaries for Allocation 

Mter initializing the chronological array and all T -reg nodes, the Register 
Allocator finds allocation partitions within the chronological array to locate 
points in the program at which no register temporaries are active. An alloca
tion partition is a span of program execution during which some values must 
be maintained in register temporaries. A point between two partitions indi
cates a program location at which there are no active temporaries. The 
Register Allocator uses these partitions as logical breakpoints so that each 
time it locates a partition point it processes the T -regs in the previous 
partition. 

For each allocation partition, the Register Allocator allocates an array to 
hold pointers to the T-reg nodes in that partition. In this array, the pointers 
are arranged according to the weight value assigned to each T -reg: the first 

179 



180 

Chronolog ical 

Index pointer array 

0 10 

11 

2 13 

3 12 

4 14 

t 

T-reg 
nodes 

14 
4 

2 

Engineering a Compiler 

Weighted 
pointer array Weight 

5 

4 

3 

2 

Figure 67. Register temporaries within allocation partitions. 



The Register Allocator 

pointer points to the T -reg with the highest weight value, and hence with the 
highest priority in allocation, and so on. Figure 67 illustrates the relationships 
between the T -reg nodes, the chronological array, and the sorted pointer ar
ray at this point in register allocation. 

Selecting a Register and Marking It Used 
After reaching an allocation partition point and sorting the T -reg nodes in 

that partition by weight, the Register Allocator attempts to choose a specific 
hardware register for each T -reg in the sorted pointer array for that partition. 
When it selects registers, the Register Allocator uses two masks, one repre
senting register usage and the other register availability. The register use 
mask in the prologue descriptor for the block indicates which registers have 
previously been used; this includes all registers previously assigned to a 
T -reg, explicitly "allocated, or destroyed within the current block. The register 
available mask in the T -reg node indicates which registers are available for 
that temporary. Figure 68 shows a register use mask indicating that RO and 
RI are the only registers that have been previously used within the current 
block. Since these registers are not available to the T -reg, the Register 
Allocator must use another register for the block and accordingly assigns R2 
to the T -reg. The number of this register is then added to the register use 
mask. The Register Allocator sets the available register, number R2, in the 
T-reg. 

Figure 69 summarizes the algorithm for assigning registers to T -regs. 
The following list of notes, which are keyed to the diagram in Figure 69, 

provides some additional explanation. 

1. The number of registers needed must always be one, two, or four. (Four 
is the maximum needed for the largest floating-point value that can be 
represented on the VAX-II.) 

2. If a temporary is used as the base register for an external variable, and 
if the usage of the temporary is less than three, the Register Allocator 
sets the base register to PC instead of allocating a base register. (Three 
or fewer usages of the temporary indicate that it is not worth generat
ing another instruction to load the base address into a register. More 
usages indicate that it warrants the extra instruction so that in 
references to external variables we can use the shortest possible dis
placements.) 

3. Certain T -regs (such as those representing values that are passed by 
reference as arguments to procedures) are marked by the Local Code 
Generator as requiring memory. When the Register Allocator processes 
these, it immediately assigns them to memory. 

4. When allocating a T-reg, the Local Code Generator may specify a pref
erence for a particular register. When it does, the Register Allocator 

181 



182 

T 

Prologue 
descriptor 

1 

T 

15 

T-reg 
node 

Figure 68. Register use masks. 

Engineering a Compiler 

Register 
... 0001 1 use 

mask 

R2 

15 
Register 

... 1 1 1 1 1 00 available 
mask 

tries to allocate that register if possible. (For example, when a function 
return value is assigned to aT-reg, the Local Code Generator will 
specify a preference for RO because all function returns must be made 
using that register.) 

5. To find an assignable register, the Register Allocator tries to find one 
that has already been used within the respective block. To do this, it 
computes the intersection of the set of registers that are available for 
allocation (from the T-reg node's register available mask) and the set of 
registers that have already been used (from the prologue descriptor's 
register use mask). The Register Allocator then attempts to allocate the 
required registers from the resulting set. If this set is empty or insuffi
cient, the Register Allocator next computes the intersection of the total 
set of registers that could possibly be allocated and the available 
set-that is, it looks beyond those that have been used previously within 
the current block. 

6. After selecting a register, the Register Allocator adds it to the register 
use mask in the prologue descriptor and places its number in the T -reg 
node. Thus, the prologue descriptor always reflects the usage of all allo
cated registers. 

7. When a specific hardware register or set of registers has been allocated 
to a T-reg, the Register Allocator locates the T-reg's pointer in the 



The Register Allocator 

yes 

Get next pointer 
from weighted 
pointer array 

Compute number of 
registers needed 

Allocate the T-reg 
to memory and store 
offset information 
in the T-reg node ® 

Figure 69. Register selection. 

Assign the T-reg to 
register PC 

Set the register 
number in the 
T-reg node 

Scan T-regs in the 
group for overlapping 
usages and mark this 
register unavilable CD 

183 



184 Engineering a Compiler 

chronological pointer array. From that pointer, it scans both backward 
and forward within the allocation partition containing this T -reg and 
marks the allocated register as unavailable in all T-reg nodes whose us
age spans overlap that of the current T -reg. 

8. When no registers are available, the Register Allocator allocates mem
ory for the temporary in the stack frame for the current block, deter
mines the location, and stores this information in the T -reg node. 

At the end of register allocation for a block, the prologue descriptor's regis
ter use mask contains a cumulative total (that is, the union) of all registers 
allocated within that procedure or begin block, as well as all registers that 
have been explicitly allocated or killed within the block. The Object Module 
and Listing File Writer-the phase that outputs the final object re
cords-uses this mask as the procedure's entry mask. An entry mask is the 
set of registers that are used within the procedure and whose contents must 
therefore be preserved. (RO and RI are never part of this set because they 
are never saved.) 

Memory Temporary Allocation 
If the Register Allocator finds that no registers are available for allocation, 

it must allocate memory space to hold the temporary value. Then, it must also 
modify the operand specifier information in the intermediate code list to re
flect the change in the addressing mode. 

On the VAX-II machine, all information associated with the current proce
dure invocation is contained in a unique data structure, the call frame, which 
is allocated on the stack by the VAX-II hardware. For a given procedure in
vocation, the register designated as the FP points to the beginning of the 
frame. Thus, FP can be used to address temporaries allocated within the 
frame. 

When register allocation begins, the front end of the compiler must already 
have calculated, for each block, the amount of stack space required to hold the 
automatic variables (including arrays, structures, and scalar variables not se
lected as candidates for allocation to registers) and string and decimal 
temporaries whose sizes were known at compile time. The Register Allocator 
uses this computed value as a starting point each time it begins allocating 
memory for T -regs within an allocation partition and maintains an adjusted 
value indicating the maximum additional allocation. Thus, it overlays the stack 
requirements of each partition with the allocation requirements for previous 
partitions. Figure 70 illustrates the stack layout with overlapping allocations 
for temporaries. 

When it has allocated memory for an operand that was assigned to aT-reg, 
the Register Allocator updates the T-reg node to indicate that the value is in 
memory. Then, it records two displacement values in the T-reg node: 

• The displacement of the allocated memory from FP 



The Register Allocator 

Stack size 

l 
FP 

Stack for automatic 

f 

variables and for 
string and decimal 
temporaries whose 

J 
size is known 
at compile time 

com pu ted by -f----r-I ----r"t--'--I -----1} } 
front end 

I I 1 ® 

j ~I-I- --- C!) 

I ® ~~-I-----
Adjusted I 

~~:~k ~ __ l ____ _ 

j 
C!) Stack space for memory 

temporaries for allocation partition 1 

® Stack space for memory 
temporaries for allocation partition 2 

® Stack space for memory 
temporaries for allocation partition 3 

! Indicates direction of growth 

Figure 70. Stack allocation for register temporaries. 

• The difference between the computed stack size and the adjusted stack 
size. 

Normally, the Register Allocator will fill in the address of the temporary 
using its displacement from FP. However, because displacements from the 
adjusted stack size (which becomes SP-the Stack Pointer) are generally 
smaller numeric values than displacements from FP, it attempts a final opti
mization that, if successful, will shorten the size of the operand specifier: the 
Register Allocator determines whether it can use the SP displacement instead 
of the FP displacement to address the temporary. It can use SP only if the 
block does not perform any activity that would change SP in such a way that 
the Register Allocator cannot calculate its displacement from FP. For exam
ple, if the block contained any automatic string or array variables whose sizes 
were specified dynamically, the Register Allocator would have no way to cal
culate the stack offset; it then would be forced to use FP addressing. Such 
information about the block's dynamic use of memory is readily obtained from 
its block node in the Symbol Table. 

185 



186 Engineering a Compiler 

When it determines that it can address temporaries using SP, the Register 
Allocator "reverses" the allocations so that displacements for temporaries of 
higher usage weights are smaller numbers. Figure 71 shows a T-reg node for 
a temporary allocated to memory, which is then addressed using SP rather 
than FP. 

FP displacement 

Stack size 
com puted by ---l~-----'--+-+-...,.......,r--r---i.. 

T124 front end 

I 
Adjusted 
stack 
size 

I 

T123 

T124 
offset1 SP displacement 

T125 
offset2 FP displacement 

'--y---/ '--y---/ 

offset2 offset1 

.---------.FP 

T125 
~-------,-

T124 

~T12;_---1'-c- -

~ _____ ____I__'_-'--' SP d isp lacement 

'--y---/ 

offset 

Figure 71. Addressing temporaries by FP and SP. 



The Register Allocator 

Updating Operand Specifiers in Code Blocks 

Mter it has processed all the prologue descriptors and T -reg nodes and as
signed either hardware register numbers or stack memory locations for each, 
the Register Allocator begins reading the intermediate code list. Depending 
on the type of code block, the Register Allocator updates addressing mode 
codes, register numbers, and displacements in operand specifiers, using the 
allocation information it has stored in the T -reg nodes. Figure 72 shows a sim
ple example of how the Register Allocator fills in the code block for an in
struction with two operands that were assigned to hardware registers. 

Processing the Intermediate Code List 

As it reads and processes the intermediate code list, the Register Allocator 
tracks all register usage and maintains the following information for each pro
logue descriptor: 

• The operand counter. Each time the Register Allocator reads a code 
block header or a code block operand, it increments the operand 
counter. 

T-reg nodes 

Register numbers 
assigned by 
register allocator 

Code block operand 
specifiers for MOVAB 

I 0 
1 

0 
1 

0 
1 EDOO 1

4600 
1 

1 

3 
1 

0 
1 

0 
1

5200 
1 

0 
1 

MOVAB - 033C(FP) [R6), R2 

Figure 72. Updating the code block operand specifiers. 

FFFFFCC4 I® 
0 

1 

® 

187 



188 Engineering a Compiler 

• The register state mask. Each time a specific hardware register is allo
cated or freed, the Register Allocator updates the register state mask to 
indicate the new register state. This mask always indicates which regis
ters are available for allocation and which are in use. 

• The held register list. The Register Allocator uses this list to record 
allocations of hardware registers to temporaries previously allocated to 
memory. 

The held register list works as follows. When the Register Allocator deter
mines that a temporary representing an index register for a machine instruc
tion has been allocated to memory, it must allocate a hardware register and 
generate an instruction to load the index value into the register. When it does 
so, it allocates a free register (determined by the register state mask) and 
places the address of the T -reg node whose value is to be loaded in the posi
tion corresponding to the hardware register number in the held register list. 
A node remains in this list until the corresponding hardware register is re
quired for some other purpose or until the Register Allocator flushes the list. 
By "holding" registers in this way, the Register Allocator avoids the overhead 
of releasing the register after each allocation, when in fact the register may 
immediately be needed again. 

During its final pass through the intermediate code list, the Register 
Allocator performs the following five steps on each code block that represents 
an executable machine instruction. 

1. It processes the first-use list of T -reg nodes (constructed during code 
generation), updating the register state mask in the prologue descriptor 
to indicate new registers that now contain valid values and are therefore 
not available for allocation. 

2. It processes the register ki11list. If the ki11list contains an entry corre
sponding to the current value of the operand counter, the Register 
Allocator updates the register state mask to indicate that those regis
ters are now available and removes the addresses of any related T -reg 
nodes from the held register list. 

3. It processes the explicit allocation list. It updates the register state 
mask to indicate which T -regs are no longer allocated and which are to 
be allocated for the current instruction. When it allocates registers for 
the current instruction, it removes the addresses of previous entries for 
any related T-reg nodes in the held register list. 

4. It processes instruction operands, in reverse order, modifying the ad
dressing information to reflect the allocation of a hardware register or 
memory for each operand requiring either a base register or an index 
register. By processing them in reverse order, the Register Allocator 
ensures that if it is forced to compute the addresses of any operands 



The Register Allocator 

using the stack, the operand addresses will be pushed onto the stack in 
the correct order. 

5. It processes the final-use list of T-regs and updates the register state 
mask to reflect all T-regs that no longer have values and thus have be
come available. 

As it reads code blocks from the intermediate code list, the Register 
Allocator is concerned mainly with processing the operands of instruction 
code blocks and branch code blocks. It also, however, makes the final determi
nation as to whether the instructions represented by conditional move code 
blocks are needed. If they are, it processes them; otherwise, it removes them 
entirely from the code list. 

The Acquisition of Base and Index Registers 
When it processes code block operands, a primary concern of the Register 

Allocator is to ensure that temporaries representing base registers or 
context-index registers have been allocated to registers and not to memory. If 
it determines that a temporary required to hold a base address or a context
index value has been assigned to memory, the Register Allocator has two re
maining courses of action. 

First, it looks at the register state mask in the prologue descriptor to see if 
a register is now free. During register allocation, it had to mark all registers 
unavailable that were allocated to T -regs whose usage spans overlapped that 
of the current temporary. However, when the Register Allocator processes 
the code list, it can try to use registers that may be available for only a single 
instruction (such as a register allocated to· two T -regs whose spans do not 
overlap); it keeps track of these usages in the held register list. 

If it finds a register in this way, the Register Allocator generates an instruc
tion to load the contents of the memory location allocated for the T -reg into 
the free register and inserts the code block and operands for this instruction 
into the code list just before the current instruction. For example, an ADD 
instruction using aT-reg base register that was assigned to a hardware regis
ter (say, Rn) might look like this: 

ADDL2 x(Rn)[R4] ,destination 

However, if the temporary was allocated to memory and if the Register 
Allocator determines that a register, say R3, is available at this point, it gen
erates two instructions instead of one for this ADDL2, as follows: 

MOVL offset(SP),R3 

ADDL2 x(R3)[R4] ,destination 

If no registers are available, the Register Allocator next checks the held 
register list to see if there are any registers whose values are not already 
being held for this code block. If there are any registers in the list whose final 

189 



190 Engineering a Compiler 

use is beyond that of the current temporary, it allocates one of these registers 
on the assumption that it is better to free registers that would otherwise hold 
values too long. When it locates a register, it stores its number in the operand 
specifier and generates the MOVL instruction required to load the operand's 
value into the register. 

If it cannot allocate a register using the held register list, it inserts instruc
tions to compute the operand address on the stack and updates the operand 
specifier with a stack-deferred addressing mode. Figure 73 illustrates this sit
uation. Assume that if T-reg 123 had been allocated to a register, say Rn. 
Then, this SUBL2 instruction might be as follows: 

SUBL2 x(Rn)[R4],destination 

Context 
Flags 

Psect Addr1 Addr2 

T-reg nodes before code block processing: 

\ 

\ 
\ I 0 I 

~ 

offset 1 

offset 2 

identifier 

SP displacement 

FP displacement 

operand 1 specifier for SUBL2 

\ 
f\ 
\ IR41 

~ identifier 

Operand 1 specifier block following code block processing: 
Context 

Flags 
Psect Addr1 

mode = autoincrement deferred 

Figure 73. Emulating base register usage on the stack. 



The Register Allocator 

After failing to allocate a register for T -reg 123, the Register Allocator 
generates the following instruction to push the address of the operand onto 
the stack: 

ADDL3 *x,offset(SP),-(SP) 

The notation -(SP) indicates that it is pushing the resultant value onto the 
stack and decrementing SP. The Register Allocator then modifies the operand 
specifier in the code block, as illustrated in Figure 73, to use the computed 
value. The resulting instruction is 

SUBL2 @(SP)+[R4],destination 

where the notation @(SP)+ indicates that the operand's base address is taken 
from the stack and the stack pointer incremented. 

Effects of Register Allocation on a Sample Program 

The sample program shown in Figure 74 illustrates the effectiveness of our 
Register Allocator. 

Figure 74. Disjoint register allocation example. 

2 

reg __ example: PROCEDURE(a); 

REG __ EXAMPLE: 

.entry REG __ EXAMPLE,<r2,r3,r4,r5,r6,r7,r8> 

movab -164(sp) ,sp 

3 DECLARE (a,b) FIXED BINARY(31), 

4 (i,j(32» FIXED BINARY(31), 

5 char1 CHARACTER(32), 

6 extern __ func ENTRY(FIXED BINARY(31),FIXED BINARY(31» 

7 RETURNS(FIXED BINARY(31»; 

8 

9 DO i = a TO 32; 

movl @04(ap),r3 

NOTE 1 (Refer to text.) 

vcg. 1: 

movl 

cmpl 

bgtr 

moval 

r3,r4 

r4,*32 

vcg.2 

-164(fp) [r3] ,r2 

191 



192 Engineering a Compiler 

Figure 74 (continued) 

vcg.2: 

vcg.3: 

movb $CODE+12,-33(fp)[r4] 

clrl (r2)+ 

aobleq *32,r4,vcg.1 

cmpc5 *32,-32(fp),*32,*11,$CODE+1 

bneq vcg.3 

movl -164(fp)[r4],r8 

brb vcg.4 

NOTE 2 (Refer to text.) 

movl *1,-164(fp) 



The Register Allocator 

Figure 74 (concl uded) 

21 

22 

pushal -164(fp) 

movl -164(fp),r2 

pushal -164(fp)[r2J 

calls 82, EXTERN ___ FUNC 

NOTE 3 (Refer to text.) 

movl rO,rS 

END; 

vcg.4: 

23 label1: 

24 DO i b TO 32; 

25 

NOTE 4 (Refer to text.) 

vcg.5: 

movl 

cmpl 

bgtr 

moval 

rS,r7 

r7,832 

vcg.6 

-164(fp) [rSJ ,r6 

SUBSTR(Char1 , i, j (i) ) 

cvtlw (r6)+,r2 

'b' ; 

movcS 81,$CODE,832,r2,-33(fp)[r7J 

26 END: 

aobleq 832,r7,vcg.5 

vcg.6: 

'27 END; 

ret 

193 



194 E ngi neeri ng a Compiler 

In this program, the variable i has three distinct usages. Because the 
Optimizer phase of the compiler can detect these distinctions (or lives), the 
Register Allocator can, and does, assign i to different registers or to memory 
depending on its use. 

In the sample program, we show both the PL/I source lines and the gener
ated assembly-language code. The i, whose value is derived from the param
eter a, is assigned to a register (R4 at note 1) for its first use. It is assigned to 
memory (note 2) for its second use because it is used as a parameter to be 
passed by reference in the call to extern_func. Last, it is assigned to a differ
ent register (R7 at note 4) for its third use. 

This program also demonstrates the effects of gathering information about 
register use and destruction. Because we always try to assign registers using 
lower-numbered registers first, the register assignments in the first DO-loop 
(line 9) are registers R2, R3, and R4. In the last DO-loop (line 25), however, 
we are using registers R6, R7, and R8. We do not use R2 and R5 in this in
stance because the MOVC5 instruction is known to destroy the contents of 
registers RO through R5. Thus, the Register Allocator does not use those 
registers for T -regs whose usages overlap this instruction. 

In both cases, we have avoided using RO and R1 because they are either 
used by the string instructions or are destroyed by the procedure calls. 
Moreover, because RO is used to pass return values, it does contain the value 
of b on return from the call to extern_func (note 3); but its value is immedi
ately loaded into another register, R8, because there is another definition of b 
in the THEN clause and both values must be in the same register. 

Conclusions 

An early article by Edward 5. Lowry and C.W. Medlock on object code opti
mization in the 05/360 FORTRAN compiler concluded that register alloca
tion provided one of the most important techniques for optimization (in 
"Object Code Optimization," Comm. ACM, 12 no. 1 [1969] pp. 13-22). In our 
case, the payoff has been very high: the Register Allocator makes a significant 
contribution to optimization, yet it represents less than 2 percent of the total 
execution time of the compiler. 

We believe that the single most important aspect of our Register Allocator 
is that it executes after code generation. Because there is some debate as to 
whether register allocation may be more efficient if performed during code 
generation, we state here some of the benefits of our approach, many of 
which became apparent only after we had begun implementing and using the 
technique we have just described. 

We can assign temporaries to registers based on total register usage. Our 
technique not only assigns temporaries by giving weights to those more heav-



The Register Allocator 

ily used, but also ensures that there will be no interfering register usage be
cause of an intervening instruction or sequence of instructions. 

We could have used more than 16 registers. Once we had generalized the 
assignment of temporaries to registers without regard to which phase allo
cated the temporary or for what purpose, we discovered that we could put as 
many objects into temporaries during code generation as we wanted to, with
out having to worry about conflicts in assigning them to registers. For exam
ple, the conditional loading of base pointers into registers is possible for just 
this reason. We allocate the temporaries during code generation and, if during 
register assignment we determine that there are insufficient registers or that 
a pointer is not referenced, we eliminate the instruction required to load the 
pointer into a register. 

Knowledge of register use and destruction is confined to a single phase of 
the compiler. Only the Local Code Generator knows about specific register 
use. This knowledge is confined to small portions of the TBL that interprets 
the operator file. The Optimizer never needs to know about register use, and 
it can freely assign local variables to registers without regard to (possibly) 
generating code sequences that would destroy specific registers. 

The Optimizer, Local Code Generator, and Register Allocator remain to
tally independent phases. When we modify the Optimizer, we do not affect 
any part of the Register Allocator. Although there was interplay between 
these phases during our development work-for example, when improve
ments in the Register Allocator encouraged us to modify the Optimizer to 
generate more temporaries-they are and have always been fully distinct 
phases. 

Our design is suitable for a language-independent common code gener
ator. By removing all knowledge of the machine and its registers beyond the 
generation of local code sequences, we ensure that the majority of optimiz
ations remain language independent. In fact, the article by Lowry and 
Medlock mentioned above presaged the development of machine-dependent 
optimizers for multiple source languages. In it, the authors suggested that 
"the area of analysis and transformation of programs is extremely fruitful for 
programming research." ~ur experience shows that these techniques were 
indeed fruitful in the implementation of a successful, highly optimized com
piler and code generator. 

195 



10 
Peephole 

Optimization 

Mter the Register Allocator completes its processing of the intermediate 
code list, and just before final code binding, the VAX-II Code Generator ex
ecutes a phase that attempts final optimizations on the instructions in the in
termediate code list. The Peephole Optimizer scans generated object code for 
certain patterns within small ranges of instructions (the so-called peepholes). 
When it detects a pattern, it replaces the instruction sequence with a more 
efficient instruction sequence. 

The classic candidates for peephole optimization are redundant move 
instructions and branches over branches. For example, code generators com
monly produce the pattern: 

labe11: 

branch-if-operand-equal labe11 

unconditional-branch labe12 

A peephole optimizer can readily detect this pattern and replace it with the 
obviously more efficient: 

branch-if-operand-not-equal labe12 

labe11: 

Moreover, a peephole optimizer will then check whether labell is ref
erenced; if not, it removes the label from the generated code. 

Another common property of peephole optimizers is that they continually 
backtrack over instructions that were previously optimized to see if any opti
mizations have produced new patterns that are eligible. 

This chapter describes how we implemented the Peephole Optimizer phase 
of the VAX-II Code Generator, some of the peepholes we chose to detect, 
and our success in meeting our objectives. 

Objectives 

The original peephole phase in our bootstrap compiler had a very different 
structure from the one we now use. It defined classes of peephole; when it 
detected a pattern of code belonging to a given class, it executed a chain of 
routines. If a given routine could not apply a peephole, it passed control to the 
next routine, and so on until it reached the end of the chain. A particular 

196 



Peephole Optimization 

peephole routine could not be used for several different patterns because the 
routines were ordered in a fixed way. 

Our goals in redesigning the peephole optimizer were threefold: to detect 
and optimize as many patterns as possible, to make its execution time negligi
ble, and to make it very simple to add new patterns. We also hoped to develop 
more comprehensive peepholes, ones that would do more than merely look at 
and reduce operand specifiers. 

Design 

The Peephole Optimizer executes after the Register Allocator. (Although, 
like other optimizations, its execution can be suppressed by a command op
tion.) Its primary inputs are a series of tables-describing instructions, 
peephole classes, and pattern-matching routines-and the intermediate code 
list. 

To achieve our goal of detecting and matching as many patterns as possible, 
we classified instructions according to peephole classes and put this informa
tion in a table indexed by machine instruction opcode values. Each peephole 
class comprises a set of related instructions, any of which might begin a 
pattern we are looking for. For example, the peephole class for fixed-point 
binary test instructions includes the instructions TSTB, TSTW, and TSTL. 
(These instructions compare a byte, word, or longword datum with zero.) 
This classification of instructions by the Peephole Optimizer reflects yet an
other exploitation of the V AX-II's orthogonal instruction set. Given three 
instructions differentiated only by the size of their operands, a peephole 
pattern can match all three. Another, more complex example is the peephole 
class of three-operand instructions on fixed-point binary (integer) data. This 
class comprises the following instructions: 

ADDB3, SUBB3, MULB3, DIVB3, BISB3, BICB3, XORB3 

ADDW3, SUBW3, MULW3, DIVW3, BISW3, BICW3, XORW3 

ADDL3, SUBL3, MULL3, DIVL3, BISL3, BICL3, XORL3 

Thus, a sequence beginning with any of these instructions will match a sin
gle pattern defined in the Peephole Optimizer. 

We have defined approximately 25 peephole classes. For each class, we 
define a table that lists which peephole pattern-matching routines might find a 
match on a peephole in that class. A given peephole pattern-matching routine 
is not restricted to a single peephole class, but in fact many pattern-matching 
routines are applied to more than one peephole class. This scheme greatly 
enhances the number of possibilities for finding matches: the Peephole 
Optimizer can potentially detect and ()ptimize approximately 1,000 different 
patterns. 

Figure 75 illustrates the organization of the peephole tables and routines. In 
the drawing, the lists of pattern-matching routines for the classes described 

197 



198 

Peephole 
classes 

ADR2 

LLRG 

FIX3 

Patterns 
to match 

P2 

P13 

P14 

P37 

P3 

P12 

P19 

P37 

Engineering a Compiler 

Pattern-matching 
routines 

~
1 

P2 

P3 

P37 

Figure 75. Peephole tables and pattern-maching routines. 

above overlap at peephole routine P37. Optimization of this peephole consists 
of detecting and removing redundant tests that follow instructions that set a 
condition code. That is, given the pattern 

instruction op1,op2,op3 

conditional-branch label-n 

conditional-branch label-m 

test-instruction op3 

it detects that the test-instruction is redundant (because op3 has already been 
tested) and removes it. 

Scanning the Intermediate Code List 
The second major input to the Peephole Optimizer is the intermediate code 

list, which at this point has been processed by the Register Allocator but not 
by the Code Binder. The Peephole Optimizer can modify the target addresses 
of branch instructions, change addressing modes in operand specifiers, re
move dead code, and so on. When it processes the code list, the Peephole 
Optimizer performs the following tasks: 



Peephole Optimization 

1. It reads the next code block and checks the type code. If the code block 
is a branch or instruction code block, the Peephole Optimizer begins its 
search for a peephole pattern (step 3). 

2. If the code block is a label code block, it checks the Symbol Table to see 
if the label is referenced. If not, it removes it and returns to read the 
next code block. For any code block type other than branch, instruction, 
or label, it merely reads the next block. 

3. When it reads an instruction or branch code block, it reads the instruc
tion table to get the peephole class and locates the list of pattern
matching routines for that class. 

4. It dispatches control to the first, or next, pattern-matching routine. The 
pattern-matching routine executes and, if it detects its given pattern, 
performs its optimization. 

5. If the optimization is successful, the pattern-matching routine sets a flag 
called reduced and returns; otherwise, it returns without setting this 
flag. 

6. When a pattern-matching routine returns with a reduced status, the 
Peephole Optimizer backs up over the code list, usually about five code 
blocks (not counting statement code blocks) and continues. The number 
of code blocks it backs up represents the maximum number of instruc
tions in any peephole sequence. 

7. If the pattern-matching routine returns without a reduced status, the 
Peephole Optimizer tries the next pattern-matching routine in the table 
(step 3). It continues through the table until a routine returns a reduced 
status, or until all routines have been tried and none returned reduced. 

Figure 76 summarizes this control flow. 

Some Peepholes 

This section presents some examples to illustrate some of our consider
ations in selecting and optimizing peepholes. 

Peepholes Involving Temporaries 

A number of peephole patterns involve the use of temporaries that are sub
sequently reused, as in: 

ADDL3 x,y,temp 

MOVL temp,z 

Here, the values of x and yare added and the result is stored in a tempo
rary. The temporary is subsequently the source operand of the MOVL in-

199 



200 

no 

Get next code 
block from 
code block list 

Get peephole 
class 

Look at next 
pattern matching 
routine 

Back up over 
5 code blocks 

no 

Engineering a Compiler 

no no 

yes 

no 

Remove it 

Figure 76. Control flow in the Peephole Optimizer. 

struction, which stores it in z. This pattern occurs frequently and clearly is 
eligible for transformation to: 

ADDL3 X,Y,z 

The primary consideration in performing peephole optimizations on this and 
similar sequences is the need to verify that the temporary is no longer needed 



Peephole Optimization 

following the MOVL instruction. Because information in the operand specifier 
indicates whether that use of the operand is the last use of a temporary, the 
Peephole Optimizer can easily test whether this is the last use and, if so, per
form the optimization. Most peephole optimizers would have to look ahead to 
see whether the operand is used again; ours has the information readily en
coded. This is a major factor in the success of our second goal-a fast 
Peephole Optimizer. 

Generating Stack Addressing 
In a similar optimization, the result of an operation is pushed onto the stack. 

For example, the Peephole Optimizer transforms instruction sequences such 
as 

ADDL3 x,y,temp 

PUSHL temp 

to the single instruction 

ADDL3 x,y,-(SP) 

where the destination operand of the generated ADD instruction indicates 
that the result is to be pushed onto the stack and the SP register decremented 
accordingly. In this peephole, the limiting criteria are that no intervening in
struction may modify the stack and that the PUSHL must represent the last 
use of the temporary. 

Operand Reduction 
As the preceding example shows, the Peephole Optimizer can in some cases 

eliminate instructions because it knows more about the program than does the 
Local Code Generator. The Local Code Generator produces only one instruc
tion at a time, without regard to whether operands will eventually be in regis
ters or in memory. The Peephole Optimizer, however, does have such 
information, which lets it detect and optimize patterns such as 

ADDL3 x,y,temp 

MULL3 z,temp,w 

in which a three-operand instruction storing its result in a temporary is fol
lowed by a three-operand instruction that consumes that temporary. For a 
pattern like this (which it detects for both integer and floating-point oper
ations), the Peephole Optimizer can change the second three-operand instruc
tion to a two-operand one, as follows: 

ADDL3 x,y,w 

MULL2 z,w 

201 



202 Engineering a Compiler 

Here, it stores the result of the ADD instruction directly in the destination 
for the MULL2 instruction because in a two-operand multiply instruction the 
destination operand contains one of the multipliers. This optimization de
creases the execution speed of the resulting program in only two cases: 

• If the temporary, temp, is in memory. In this case, the Peephole 
Optimizer eliminates the addressing base and displacement that would 
be required to specify the temporary as an operand in two places. 

• If both the temporary, temp, and the final destination, w, are registers. 

Thus, the Peephole Optimizer performs this peephole only iJ the execution 
speed will improve, which is not the case if we end up with additional memory 
accesses in the interests of shortening the instruction stream. 

Conclusions 
Our approach to peephole optimization has proved very efficient. Not only is 

it simple to add peephole pattern-matching and optimization routines, but the 
cost of adding them-in terms of both development time and compiler execu
tion time-is so small that we can add them whenever we see a pattern in 
generated code that can be reduced. 

For comparison purposes, we compiled the source code of the Optimizer 
(written in PL/I) without running the peephole optimization phase, built a ver
sion of the PL/I compiler using this Optimizer, and then used this version of 
the compiler to compile the Optimizer's sources. The following figures show 
the differences in object module size and execution time in the resulting 
compilers. 

Size 

Time 

Optimizer Compiled 
with Peephole 

25,630 bytes 

57.65 seconds 

Optimizer Compiled 
without Peephole 

27,618 bytes 

61.04 seconds 

Thus the effect of performing peephole optimizations on the Optimizer is a 
7 percent space reduction and a 5.5 percent reduction in run time. (Additional 
statistics on the effect of peephole optimization are illustrated in Figures 44 
through 49 at the end of Chapter 7.) 

We successfully met our original goals. Our Peephole Optimizer recognizes 
10 to 20 times as many patterns as do other peephole optimizers. Moreover, 
in an average compilation, the peephole optimization phase consistently repre
sents less than 2 percent of the total time required for compilation. Third, 



Peephole Optimization 

other programmers who subsequently worked on the compiler found it quite 
simple to contribute and incorporate peepholes (and not only simple, but fun). 
This is one of the few areas of compiler design and development in which 
there is a nearly instant improvement in generated code. Discovering a 
peephole, adding it to the Peephole Optimizer, and incorporating the aug
mented Peephole Optimizer in the compiler could take as little as 20 minutes. 
Finally, we have documented in this chapter not only peepholes that reduce 
the size of operands in the code list, but also some that remove entire instruc
tions; thus we met our underlying goal of developing comprehensive 
peepholes. 

203 



11 
Beauty and the 

Beast 

The traditional topics of books about compiler design are parsing, symbol ta
ble construction, and simple semantic analysis. Other topics of interest in this 
specialized field-such as code generation-have been slighted. Computer 
science courses in compiler construction reinforce the tradition by ending the 
semester before reaching the topic of code generation. It was our intention to 
break with this tradition. Most of our discussion is devoted to the lesser 
known part of a compiler, the back end. We found working on the code gen
eration phases very interesting and gratifying. 

We include this chapter for readers who may feel that our book would not 
be complete without more information on parsing and semantic analysis and 
for readers who are curious about how we approached design considerations 
in building the front ends of compilers for two different programming lan
guages. Here, we discuss from an engineering standpoint how we addressed 
parsing and semantic analysis for the two languages, and we compare not only 
the two front ends but the techniques we used in their implementation. 

Background 
Before we finished the PL/I compiler, we wanted to prove that we could use 

our back end in constructing another compiler. To do this, we had to imple
ment another front end. Because Digital already had corporate compiler prod
ucts for most of the interesting modern languages (and because we had to find 
a project for which we could be funded), we were limited in our choice. We 
chose C (or C chose us: given the growing interest in the language, the his
torical relationship between PDP-lIs and UNIX, and the growing relationship 
between VAX/VMS and VAX/UNIX, a union seemed inevitable). 

Although C is also a procedure-based language that provides for declara
tions of data in structures, it has little else in common with PL/I. Yet, to prove 
our point about common code generation, we needed to construct a C com
piler front end that was "plug-compatible" with our PL/I front end. That is, it 
had to produce a Symbol Table and a set of trees for C statements that could 
then be processed by the back end with no language-specific changes to the 
latter. 

204 



Beauty and the Beast 

Our first task was to organize the major functions of the compiler so that it 
consisted of an execution envelope containing all processing that was not spe
cific to PL/I. It was in the middle of this envelope that we would put the 
language-specific front end. In addition to the code generation routines in the 
back end, the envelope had to contain common procedures and routines that: 

• Initialized common data structures 

• Processed compiler command lines into a common data structure 

• Allocated and manipulated the Symbol Table 

• Allocated and manipulated trees 

• Provided I/O functions for source, preprocessor, object, and listing files 

• Issued error messages in the standard format required by the V AX/ 
VMS operating system. 

The compiler's common routines perform initialization and command inter
pretation and then invoke the language-specific front end for each source file. 
When the front end-working with Write Tree-is complete, the envelope 
enters the optimization phase, which is the beginning of the back end's work. 
At the end of code generation for a given source file, the compiler can 
reinitialize itself and perform another compilation without having to be 
reloaded. 

If the back end were indeed language independent, the details of the input 
language syntax and semantics should be unimportant. Our approach to imple
menting a C front end was indeed diametrically opposite to the original PL/I 
approach. Our title for this chapter is an appropriate metaphor for our expec
tations about the distinctions between the two projects (if not about the dis
tinctions between the languages themselves). We already had a solid, well
engineered PL/I compiler, and we were proud of its performance. Given our 
experience with it and the relative simplicity of the C language compared with 
PL/I, we thought that a C compiler would be significantly smaller and faster 
than our PL/I compiler. The PL/I compiler, previously beautiful, would begin 
(we thought) to look like a beast in comparison. 

The Beast 

One of our important initial goals (and a self-imposed constraint) in building 
the PL/I compiler was to minimize the changes to the compiler's front end. 
We knew that it was a well-tested, solid design. We also wanted to avoid de
signing any new language features until we had acquired sufficient expertise 
in both the compiler internals and the PL/I language. (One lesson we learned 
the hard way was that it was imprudent to add new features to the language 
simply because we knew how to implement the change in the compiler. 
Adding new language features requires careful consideration. We have seen 

205 



206 Engineering a Compiler 

compiler designers fall into the trap of trying to solve everyone's problems 
and ending up with poor language design.) 

The PL/I parser and semantic analysis phases were based on mature de
signs for processing the PL/I language and not on current state-of-the-art the
ories and techniques. Each method used, though simple and elegant, was 
specific to the processing of PL/I. We think this approach has real merit and 
should be considered by serious compiler designers and implementors who 
want to build production-quality compilers. In fact, our experience showed 
that once the parser was designed and stabilized, it not only worked very well, 
it was easy to modify and understand. 

PL/I Syntax 

Before describing the PL/I front end, we present a short introduction to the 
language syntax. This should help those who are not familiar with PL/I as well 
as those who want to understand just how we see it in order to parse it. 

PL/I is syntactically a well-defined language. Most PL/I source code con
sists of sequences of identifiers that may be followed by comma-delimited lists 
of items enclosed in parentheses. Related sequences are separated from other 
sequences by semicolons. Assignment statements and arithmetic expressions 
require a special treatment; assignments because they involve a punctuation 
separator (an equal sign), arithmetic expressions because they represent ei
ther constant or computed values. 

From this perspective on the language, it appears that a very general, 
straightforward parser can be built and combined with a more complex se
mantic analyzer to form the basis for a PL/I front end. Although this general 
approach is not necessarily the most efficient way of parsing and semantically 
analyzing a PL/I program, it demonstrates that the task is intuitively 
uncomplicated. Take a simple example, a stream output statement. 

PUT SKIP(2) FILE(outfile) 

LIST( 'Values are:' ,array( 1 ,2,3) ,h,c); 

Here, the identifiers are PUT, SKIP, FILE, and LIST. Some are followed by 
parenthesized expressions or lists of items. A language defined in this way can 
be parsed with a generalized syntax scanner that recognizes these simple re
peated sequences and records their presence in a table. The semantic proces
sor must then assign meaning to the combination of sequences, write a symbol 
table, and emit a set of trees. 

Experienced PL/I programmers will no doubt think of some exceptions to 
this simplified set of syntax rules. Exceptions do exist, and in fact our PL/I 
front end handles much more complicated cases than the one described above. 
However, many commonly encountered parsing problems are really no more 
complicated than this one. 



Beauty and the Beast 

The Structure of the Beast 
The PL/I compiler front end consists of four separate parts that communi

cate via the Symbol Table and the operator trees. The multiphase structure of 
the PL/I front end is dictated by PL/I semantics, which allow free ordering of 
declarations and usage. Because names are not necessarily declared before 
their use, the compiler must process the entire source file before the Symbol 
Table is complete. 

Though necessitated by the PL/I declaration semantics, the division of the 
front end into several phases also provides programming modularity and func
tional separation of tasks. Given a well-defined input, each phase had a well
defined result. We built diagnostic aids to dump the contents of the Symbol 
Table and operator trees at the divisions between the phases. Thus, we could 
divide the work on the compiler front end among ourselves. This arrangement 
worked quite well, and we can recall few instances in which debugging in
volved more than one phase of the compiler. In the PL/I compiler, the distinct 
phases are: 

• PASS1, the syntactic parser and token recognizer 

• The lexical analyzer, which includes the source file 1/0 and preprocessor 
routines (this phase is essentially a slave of PASS1) 

• DECLARE, the declaration processor 

• PASS2, the semantic analyzer that merges parse and declaration infor
mation. 

With the exception of the lexical analyzer, all of these front end procedures 
are written in PL/I or TBL programs whose interpreters are written in PL/I. 

PASS1: PASSl embodies the parser and syntactic recognizer for the PL/I 
language. The result of PASSl is the Symbol Table and a linear representa
tion of the program trees. The trees are functionally correct after PASS1, but 
references to the Symbol Table remain unresolved. References to identifiers 
and constants in the program are passed to the next phases as textual infor
mation in a special form of REF operator called an SREF. Symbol Table lookups 
are not allowed in PASSl because the total Symbol Table is not formed until 
the entire source program has been processed. Thus, trees created by PASSl 
have neither data type nor size information. 

The structure and methodology of PASSl is simple and elegant. The actual 
logic for the parser is encoded and written in TBL. The TBL for PASSl im
plements a high-level language specifically designed to parse PL/I source text. 
Actions in PASS1's TBL include actions that match the token type, save and 
restore information on a parse stack, and write trees from the contents of the 
stack. The PASSl TBL logic is interpreted at compile time by an interpreter 
written in PL/I. Though using TBL results in a table-driven parse, it is impor
tant to remember that in TBL a table is expressed in algorithmic form rather 

207 



208 Engineering a Compiler 

than a numerical form consisting of arrays of small, constant integers. 
Moreover, the logic of the parse is easy to discern from reading the TBL pro
gram. This logic is simply a top-down, left-to-right, predictive scheme that 
uses a recursive descent logic with operator precedence for parsing 
arithmetic expressions. Recursive descent parsers are considered inefficient, 
usually because they require extensive look-ahead (to find a particular token) 
or backtracking (when a prediction proves wrong). If carefully planned and 
implemented, however, these problems can be avoided in a recursive descent 
parser. For example, the PL/I parser never backtracks and it needs a look
ahead only in one case, and that is to recognize an assignment statement. 
Since it is only a single case, we put the logic to recognize an assignment 
statement in the lexical scanner, which records the occurrence of assignment 
statements as a side effect of its scan. 

Statements are parsed as follows: at the start of a statement, the lexical 
analyzer is called to return a vector of recognized tokens. The token vector 
spans the start of the statement to a semicolon or the keyword THEN. The 
token vector contains values corresponding to the type of token recognized. 
The values themselves are tightly encoded to optimize run-time efficiency. All 
white space and noise in the source (including comments and line marks) are 
removed in the process of building the recognized token vector. When it has a 
complete vector of tokens, PASS! predicts the statement type by examining 
the first token after the last label (indicated by a colon). Because PL/I state
ments generally start with standard keywords, only a simple table lookup is 
required. Assignment statements, the noted exception, are recognized as 
statements that end in semicolons and have equal signs that are not embedded 
in parentheses. 

IF statements can also have equal signs at this level, but they terminate 
with the keyword THEN. THEN keywords require even more special pro
cessing. Because PL/I has no reserved words, the parser must be able to dis
tinguish uses of names as keywords and uses of the same names as user
defined identifiers. Given 

IF then THEN then = A then ; 

ELSE then = then & else; 

the lexical scanner must differentiate the keywords (shown here in uppercase) 
from their other uses (shown here in lowercase). To do so, it asks two ques
tions: is the THEN beyond two tokens of the previous label or start of a state
ment? Is the THEN preceded by a right parenthesis, an identifier, or a 
constant? If both of these are true, then this occurrence is the keyword 
THEN. 

Having found the statement keyword and knowing the statement type, 
PASS! begins executing the TBL source that has the logic to parse that 
statement's syntax. The output of a set of trees for this statement is then well 
defined. 



Beauty and the Beast 

When it encounters a PROCEDURE statement, PASSl's TBL performs a 
recursive transition. It parses and recognizes the new procedure before re
turning to the containing (outer) procedure. For example, the syntax of the 
PL/I RETURN statement is as follows: 

optional __ label: RETURN; 

Or, if the procedure is a function, it is the following: 

optional __ label: RETURN(expression); 

For a program source statement like 

end __ of __ program: RETURN(arg1+1); 

the lexical analyzer would produce a token vector something like: 

identifier 'end __ of __ program' 

colon 

identifier 'return' 

left paren 

identifier 'arg1' 

plus sign 

fixed point decimal constant 1 

right paren 

semicolon 

The TBL routine that processes RETURN statements in PASSl, shown be
low, is entered after the label and the keyword RETURN have been 
processed. 

return __ stmnt: 

if current __ token(semi __ colon) 

THEN 

ELSE 

emit __ operator(return __ op) ; 

1* The procedure is a function and the 

1* RETURN must be followed by a left paren 

match __ current __ token(left __ paren) ; 

call(process __ expression); 

save __ on __ stack; 1* Save the value of the 

1* expression on the stack 

match __ current __ token(right __ paren) ; 

match __ current __ token(semi __ colon) ; 

I~ Emit valued return operator 

1* using the value on stack 

emit __ operator(return __ op,top __ element); 

RETURN; 

209 



210 Engineering a Compiler 

This routine emits one of two trees depending on whether the optional ex
pression is present and whether the presence of the expression is detected by 
the placement of the semicolon. The action match_current_token issues an 
error message if it does not find what it is looking for. 

Advocates of state-of-the-art parsing techniques might dismiss this direct 
method of parsing as uninteresting. Most will think it inadequate for produc
ing meaningful error messages. They may also think that this form of parser 
is hard to modify. From our standpoint, all these assessments are simply 
wrong. Meaningful, pinpoint-location error messages result from a careful de
sign. Ease of modification comes from careful implementation. 

In fact, the PL/I compiler can produce explicit error messages for syntax 
problems. The logic for the parse scan is controlled by the actions in the TBL 
program like those shown in the fragment above. At any point, a general error 
or mismatched token can result in an error as specific as: 
'+' found where ';' was expected 

This is a very fine level of detail. 
The Lexical Analyzer: The job of a lexical scanner is to differentiate se

quences of input characters into recognizable units. Each programming lan
guage may have different names for the units, but generally they include: 

• Identifiers 

• Numbers 

• Punctuation characters. 

In our compiler, the lexical analysis routines also perform all source input 
and preprocessor functions. Because source file I/O routines perform similar 
functions in all compilers, we packaged these routines in our common enve
lope. 

Preprocessor functions are modifications of the source text at compile time 
by lexically recognizable directives in the source file. PL/I has several com
mon preprocessor functions. The ones supported in our compiler are 

%REPLACE token1 BY token2; 

which replaces all occurrences of tokenl with token2, and 

%INCLUDE file-name; 

which copies text from the given file into the current source. These state
ments are processed entirely by the lexical analyzer and are never seen as 
tokens by PASSl. Many compilers implement preprocessor functions as a 
separate pass over the source. We think that this is wasteful and that most 
users have no need for the intermediate, preprocessed source representation. 

The best lexical analyzers keep per-character processing time to the abso
lute minimum. One of our goals for the PL/I compiler was to make the compi
lation as fast as possible. Since the lexical scanner is the only part of the 
compiler that processes each character of the source, we wanted very much 



Beauty and the Beast 

to reduce that per-character processing time in order to decrease the overall 
compilation time. 

Like many traditional lexical analyzers, the bootstrap compiler's was a 
finite-state automaton. It was written in PLjI with a table of state transitions 
that were driven by individual input characters. On the VAX-II, we had a 
unique opportunity to use the machine's extensive set of character-string 
instructions; we therefore rewrote the lexical analyzer in assembly language, 
without changing its basic algorithms. For example, we designed the new lexi
cal scanner to use the string instructions called SPANC and SCANC. These 
are single instructions that skip over long sequences of related characters and 
interpret a table of values much like a translation instruction. They stop on 
certain values encoded in the tables. For instance, a SCANC instruction can 
be set up to scan for legal characters in identifiers, numbers, and constants. 
U sing these instructions in conjunction with the other VAX-II string instruc
tions meant that we rarely had to process single characters in the source file. 
By rewriting and restructuring the lexical scanner in VAX-II assembly lan
guage to use these string instructions, we reduced the compilation time re
quired by PASS 1 by half and increased the overall performance of the 
compiler by one-tenth. This was our first major compile-time improvement. 

We made further improvements by tightly encoding the token vector given 
to PASSl. Since the PASSI source refers to token types by using named 
constants, there was no reason to give the token type constants reasonable 
values. In fact, to minimize the lexical processing time, we gave the punctua
tion tokens their corresponding ASCII values in decimal. For example, the 
plus sign (+) was assigned the value 43. This meant that the other token 
types, such as identifiers, had to be given values that overlapped the ASCII 
set but that were invalid characters in a PLjI source file. For example, the 
token type for identifiers was given the value 25, the ASCII code for the 
CTRL-keyjletter-Y sequence. 

A third improvement we made to this pass was to make the tokens for all 
identifiers and constants canonical, so that all identifiers were made upper
case and all numbers were made well formed. Syntactic errors such as invalid 
numerical characters are covered up by passing on a correct constant to 
PASS I-usually a I-thus eliminating the need to check whether this error 
caused additional errors that should not be reported. 

DECLARE: We call the second phase of the PLjI front end DECLARE. It 
gives order to lexically unrelated declaration information and forms a well
structured Symbol Table. The result is that declarations appear to occur in a 
lexically correct order even though they were not specified that way in the 
source file. To do this, DECLARE scans the rough Symbol Table constructed 
by PASSI and analyzes the data. It performs consistency checks on all attri
bute information and applies the PLjI language defaults (for example, if a vari
able is declared only FIXED, DECLARE will add the attribute BINARY and a 

211 



212 Engineering a Compiler 

precision attribute of 31). This is the phase that detects and reports user dec
laration errors and inconsistencies. 

DECLARE also processes expressions specifying extent and size informa
tion and reduces them to their simplest forms. In most cases these are 
constants, but PL/I also allows run-time evaluation of such expressions. 

When DECLARE has finished, the Symbol Table is in a state that will allow 
later phases to perform lookup functions on specific identifier strings. 

PASS2: The workhorse of the PL/I front end is PASS2. It combines the 
syntactically correct trees produced by PASSI and the validated Symbol 
Table produced by DECLARE into fully expanded and semantically correct 
trees. These trees are then given to Write Tree for simplification and even
tual output to the Optimizer. 

PASS2 sequentially processes individual trees created by PASSl. Each tree 
is rooted in a node that does not yield a value. For example, the ADD operator 
yields a value, but the ASSIGN operator does not. Therefore, when it encoun
ters an ASSIGN operator, PASS2 stops building the tree and begins processing 
it. 

The logic for PASS2's tree processing is encoded in another TBL program. 
Like those written for PASSI and the Local Code Generator, the TBL for 
PASS2 is unique: it is written for the specific purpose of semantically analyz
ing trees. These TBL actions are operations that verify the data type and in
sert a new operator if a conversion is needed. 

During expansion of the PASSI trees into fully expanded trees, PASS2 per
forms all of the following functions: 

• Expands references from textual form into Symbol Table references 
with addressing information and data type. 

• Expands array references or dynamic extents into offset calculations. 

• Checks each operator for semantic correctness. If necessary, it inserts 
operator trees for data type conversions. If it cannot determine any se
mantic meaning, it issues an error message. 

• Adds operators to the procedure prologue to cause proper initialization 
and dynamic storage allocation. 

When a tree is fully processed, it is passed on to Write Tree to be reduced 
for processing by the Optimizer. 

Domesticating the Beast 
Our PL/I compiler front end is not the pinnacle of compiler technology. We 

took a well-proven design and implementation and tailored it to fit the 
VAX-II architecture and VAX/VMS methodology. We took full advantage of 
the VAX-II instruction set and our experience with it. The resulting high
quality compiler is a successful tool for producing quality software. 



Beauty and the Beast 

We were comfortable with the structure of the PLjI front end, mainly be
cause it fit well with our earlier operating system software methodology. In 
its modularity, functional separation of components, and approachability, it re
sembles an operating system. We borrowed many internal concepts of V AXj 
VMS in our construction of the Local Code Generator and in our memory allo
cation and data structure design. 

Implementing our second compiler front end was less gratifying. We started 
the C compiler project with less expertise in the language than we had with 
PLjI at the same point. Moreover, we lacked a language expert. We also soon 
discovered that the C language was a moving target: gone were the advan
tages of ANSI standards and competitors' reference manuals documenting a 
relatively stable language. For answers to troublesome questions, we used 
several C compilers to which we had gained access for experimentation. 

Each C compiler that we tried had different levels of sophistication and sup
port. Some checked for a particular error, some did not. Some laid out mem
ory for structures on VAX-II one way and some another. Compatibility with 
UNIX was also an important goal. Eventually, we gravitated to a "standard," 
but one that might be uniquely ours! We wanted to implement the compiler 
front end using C as the implementation language and to bootstrap our com
piler from another C compiler in much the same way that we had 
bootstrapped PLjI. We did this bootstrapping backward, as we had with PLjI. 
We had the additional advantage of knowing that the back end was thoroughly 
debugged, so we could concentrate on debugging the front end. This did re
quire work. 

A first major decision in the actual design of the C front end was to ignore 
the lessons that we had learned in doing the PLjI front end. This time we 
would do a textbook implementation. The C language is simply structured, 
regular, and modern, and as such seemed a perfect candidate for building- a 
state-of-the-art front end. We have come to refer to it as the Beauty. 

The Beauty 

The Beauty-our C compiler-is constructed around an LALR(1) grammar 
and a parser that traverses the LALR(l) description tables using the source 
token sequence to drive the traversal. The result is a single-pass front end 
that generates trees directly, source statement by source statement. Unlike 
PLjI, the C language adapts well to this scheme because all declarations must 
precede use. As a reference is processed, all of the Symbol Table information 
needed for that reference must already have been processed or an error 
results. 

In the implementation of C, we encountered several technical issues we had 
not foreseen and for which we had to supply solutions. We had expected the 
LALR(1) parser to be easy and fast to implement. Many tools exist to build 

213 



214 Engineering a Compiler 

such parsers, and we in fact borrowed both an internal Digital parse table gen
erator and a parser that had been successfully used to build other parsers. 
However, we soon found we had to spend considerable development time in 
generating the LALR(l) grammar. Many common programming languages 
are not strictly context free. LALR(1) parse schemes work best for context
free grammars, less well for context-sensitive cases. And C did not form a 
natural LALR(1) grammar. Although the language definition in the C Pro
gramming Language (Brian W. Kernighan and Dennis M. Ritchie, Prentice
Hall, 1978) closely resembles an LALR(l) grammar description, it is not a 
formal LALR(l) definition, and we in fact had several problems trying to 
adapt C into the framework of the grammar. For example, our parse table 
generator did not allow operator precedence to be incorporated in the gram
mar description. This meant that our LALR(1) description for Chad 13 levels 
of reduction just to parse expressions (in addition to the parsing of the state
ments surrounding the expression). Languages like PASCAL have only three 
or four precedence levels and as a result have far less complex grammars. 
The level of complexity in the C grammar was also not without cost in terms 
of execution time. 

The development of the C parser was also frustrated by our desire to incor
porate the LALR(l) grammer in a single-pass semantic phase. One of the sub
tle problems we encountered in C was the syntactic distinction between a 
function declaration and a function definition. The distinction is not necessar
ily in the syntax of the function declarator itself, but rather in the presence of 
a trailing H}" character. Potentially, a LALR(l) parser cannot detect the pres
ence of the H}" if it is more than a token away; thus, the parser must process 
function declarations and function definitions the same way and then perform 
the specific semantic checks later. For example: 

struct tnode *f ( ) { 1* a definition of a function *1 

1* returning a pointer *1 

1* to tnodes *1 

struct tnode *f(); 1* a declaration of the same *1 

This syntax is not ambiguous to a human reader; our parse problem was a 
result of the structure of the compiler-in this case, because the semantic 
analysis phase needed to know whether a definition or a declaration is in 
progress when it is processing the Hf" token. If the compiler checked syntax 
independently from semantics, this would have been easier. As it was, we had 
to put special cases in the grammar to process this correctly. 

Depending on the sophistication of the LALR(l) tools available, the devel
opment of a grammar description can be a frustrating process of primarily 
blind iteration. Each change to our grammar caused a potentially substantial 



Beauty and the Beast 

loss of time, in contrast to the comparative ease with which we had changed 
the TBL for the PL/I front end. Once the grammar was complete-and its 
development took four months-we could begin building a compiler. 
Remarkably, the grammar remained relatively stable during the compiler de
velopment. 

One potential benefit of LALR(1) parsing is that error messages can be 
very explicit; in addition, it can incorporate simple local error correction. 
Since we had borrowed our parser from another compiler group, we had a 
chance to experiment with automated local error correction. Although we 
were impressed by the success of the error correction technique for other 
languages, we soon removed much of it because C proved to have many con
structions that cause problems for recovery schemes. For example, consider 
the, difference between 

+ + 

and 

++ 

The first of these is an error, the second is not! We also found that 
nonsyntactic errors were handled no better than in our PL/I compiler, al
though we had been led to believe that with LALR(l) they would be. 

While constructing the lexical analyzer for the C compiler, we had to con
tend with the fact that the C language has rich and powerful preprocessor 
functions. We constructed the C lexical analyzer to behave like the PL/I lexi
cal scanner and to process all preprocessor and I/O functions. This prevented 
the parser from knowing the actual nuances of the input source. We consid
ered making the lexical scanner a part of the common compiler envelope; but 
we felt that, because the lexical scanner for C was more complex than its PL/I 
counterpart, it would be unreasonable to make a common routine. It should be 
possible to construct a common lexical scanner, but we chose not to do so. 

The parser was implemented to traverse the LALR(1) tables based on 
lexically recognized token sequences and to call a semantic action routine 
when it reached a reduction point. The semantic action routine would perform 
its processing on the basis of context information maintained on a semantic 
stack. The semantic action routines themselves are usually small, but because 
C requires more than 100 different actions, the technique was cumbersome. 
The parser would call one large routine that processed all actions, specifying 
which action it was to perform. This meant that the action processing routine 
became a monolithic module starting with a C SWITCH statement (a case con
struction). This lack of modularity in our semantic actions became a major 
problem. Moreover, because each semantic action routine was intimately in
volved with actions in other routines, it was not easy to break up the module. 
Although we were never able to separate all the actions, we moved as much 
code as possible from this module into external subroutines, some of which 
were used only in one place. 

215 



216 Engineering a Compiler 

Typically, a semantic action processes the current token and either places a 
tree address on the semantic stack or combines a stacked tree with the cur
rent token and leaves a new tree on the top of the stack. Even in simple cases, 
this scheme is conceptually difficult because the predecessor and successor 
states of a semantic action are hidden in the order of the LALR(1) table tra
versal. Of course, this might not be true of a simpler grammar specification. It 
helped to remember that the processing usually proceeded left to right. 

Another cumbersome problem of the "do it all at once" method was that 
even though error detection and diagnostic output were easy to implement, 
semantic error recovery was difficult. An example of a semantic error is a 
data type mismatch in an assignment. At first, instead of recovering from the 
error, the compiler terminated after the first such error. Our final implemen
tation took a nondetection and nonpropagation approach: the semantic action 
routine issued an error, set a static variable that recorded the occurrence of 
the error, and then left the stack in a state as if the error had not occurred. 
During the final reduction for a statement, the statement trees could be dis
carded without further error, based on the value of the static error flag. This 
scheme minimized the severity of semantic errors because in most cases we 
found routes to clean recovery. As a result, our C compiler has many "warn
ing" diagnostics and few severe semantic error diagnostics. (Though benefi
cial to future users of the compiler, this scheme was frustrating to us as the 
initial implementors and would be to future modifiers of the compiler. This is 
probably an axiom of software engineering.) 

Near the end of the first stage of our implementation, we discovered sev
eral more flaws in the single-pass design. One problem was that trees need to 
be written in lexical order. Sometimes not all of the necessary semantic infor
mation is available when the tree should be completed. This is the case when 
processing the SWITCH construction. It is necessary at the point of the SWITCH 
invocation statement to generate trees to verify that the index value is within 
the range of the specified options. Until the SWITCH construction is fully 
processed, however, these limits are not known. We considered several solu
tions to this chicken-and-egg problem. 

l. Create trees referencing memory temporaries that are initialized to the 
constant extents of the SWITCH options. We dismissed this solution be
cause we invariably received comments on how terrible the generated 
code looked. 

2. Put a branch around the SWITCH construction and delay the SWITCH 
trees until after the entire construction has been passed to Write Tree. 
Our inspection of other compilers dealing with this problem shows that 
this is a popular approach. Unfortunately, it causes real havoc during 
optimization. We rejected it for basically the same reasons we had re
jected solution 1. 



Beauty and the Beast 

3. Implement solution 2, but have the Optimizer rearrange the construc
tion. Since our Optimizer was to be a common part of all compilers, we 
did not want to clutter it up with language-specific items. Thus we re
jected this approach. 

4. Backpatch the operators when the values are known. We unanimously 
rejected this because it violated our sense of software engineering es
thetics. 

5. Rescan the operators after reading the entire source file and fill in the 
proper construction. 

We chose the last option. The front end recognizes the occurrence of 
SWITCH statements and forces a second pass over the program. This second 
pass constructs and inserts the optimal SWITCH trees for the limit value tests. 
The code generated using this approach looks better than that for any of the 
other solutions; the total cost for rescanning the trees is less than 5 percent of 
the total compilation time. Later, we found several other language constructs 
that could make use of the second pass. If a program contains none of these 
constructs, the compiler does not perform the second pass. 

We expected the single-phase C front end to outperform the three-phase 
PLfI front end in every respect. We were disappointed. Each front end re
quires about the same time on an equivalent program. The bottleneck in the C 
compiler is the parse table traverse loop. In searching the LALR(I) tables, the 
parser consumes up to 25 percent of the front end processing time in an 
eight-instruction loop. However, because the compiler met our initial goal of 
compiling source code at a rate of more than 2,000 lines per minute, and be
cause we were not positive that we could obtain any substantial improvement 
without significant redesign, we did not go back to fix the problem. 

Wha t Is the Moral? 

Our experience with using the same code generator for two different lan
guage compilers has proved to be a success. Although we encountered prob
lems in implementing the C compiler, they were front end problems that we 
would have faced had we been implementing a compiler from scratch. The 
fact that we had a code generator made the time to commercial production 
very short for the second compiler. And, given the proven worth of the back 
end's optimization and code generation techniques, we feel that this is another 
production-quality compiler. 

The development effort for the VAX-II C compiler required only 2 man 
years, compared with 11 for the PLfI compiler and its large run-time library 
(not including the years of development spent by Freiburghouse on his earlier 
versions of both a full PLjI and the subset). Comparing the relative merits of 

217 



218 Engineering a Compiler 

the internal designs requires more thought, and such thought yields an apt 
analogy to most areas of applied engineering. The PL/I front end had the 
benefit of several generations of design and implementation, spanning the 
time from the origination of Freiburghouse's compilers through almost two 
product releases of V AX-II PL/I. The C compiler's front end had the benefit 
of modern theory in computer science. What distinguishes the two is simply 
the level of real engineering experience that they embody. Although the 
dragon sometimes wins, it is engineering, not science, that is the best 
weapon. 



12 
Concluding 

Remarks 

The three years we devoted to the design and development of compilers re
sulted in two products-the VAX-II PL/I and VAX-II C compilers. The PL/I 
compiler has been available on VAX-II systems since November of 1980. 
The C compiler was made available in the spring of 1982. Our back end also 
contributed to work on two other compiler projects: a PEARL compiler com
pleted in Digital's European Software Engineering group in Reading, England, 
concurrently with the PL/I project, and a fourth compiler still under develop
ment at Digital Equipment Corporation in the United States. 

In preceding chapters, we have summarized our opinions about different 
phases of the compiler and explained, whenever possible, why we made cer
tain design decisions and what their ultimate effect has been. Here, we dis
cuss compiler design as an engineering experience and conclude with some 
statistics illustrating the comparative weights of the language-specific and the 
common phases in each of our compilers. 

We feel strongly that a fundamental element of our success is that we 
approached the problems as engineers and not as theoreticians. Although we 
benefited from current literature on the subject of compiler design and from 
an existing design and its documentation, we approached our task-writing 
and debugging code-empirically. It was not until we had written essentially 
the entire compiler that we thoroughly understood it. Once we understood all 
the pieces and how they interacted, we began the process of reengineering. 

More than half this book is devoted to some aspect of optimization-the 
Optimizer itself, Write Tree's reductions, the Register Allocator, and the 
Peephole Optimizer-because these are the phases of the compiler that were 
most frequently revised and rewritten. We have concluded that, when it 
comes to optimization, engineering is far more important than theory. Our 
basic technique could actually be called repeated engineering. By continually 
looking at the code we were generating, we continually saw areas for poten
tial improvement. The solutions always lay in better software engineering, es
pecially in the cases of the Optimizer and the Register Allocator. For example, 
because significant portions of the compiler itself are written in PL/I 
-including the Optimizer-each optimization we added further increased the 
compile-time performance of the compiler. 

219 



220 

PASS 1 

DECLARE 

PASS 2 

Optimizer (total) 

Assignment of local 
variables to register 1------,----..1 

Removal of invariant 
expressions from loops 

Engineering a Compiler 

I-----r-----,---.J 

Elimination of common 
subexpressions I----'----y---' 

Result incorporation 

Storage Allocator 

Code generation (total) 

Local code generator 

Register allocator 

Peephole optimizer 

Code binder 

Object module and 
listing file writer 

5 10 

% of Compilation Time 

Figure 77. PL/I compiler execution-time summary. 



Concluding Remarks 

Parser and semantic 
analysis 

~--~----~----~----~--------

Optimizer (total) 

Assignment of local 
variables to registers 

Removal of invariant 
expressions from loops 1-------.------' 

Elimination of common 
subexpressions 

Result incorporation 

Storage allocator 

Code generation (total) 

Local code generator 

Register allocator 

Peephole optimizer 

Code binder 

Object module and 
listing file writer 

o 10 20 40 
% of Compilation Time 

Figure 78. C compiler execution-time summary. 

50 

In modifying existing phases to increase optimization, we did adhere to the 
basic payoff rule: the change had to improve the generated code without de
grading compile-time performance. For example, the development of a com
prehensive algorithm for the removal of invariant expressions from loops 

221 



222 Engineering a Compiler 

required us to restructure the way the front end built the loop control opera
tors. This change did not affect the performance of the compiler but made a 
large improvement on the generated code. One rule we never followed: "If it 
works, don't touch it." 

An obvious corollary to repeated engineering is never to be afraid to try 
something even though there is no guarantee that it is exactly the right thing 
to do. In some cases, this attitude leads to felicitous results. Our decision to 
use TBL, for example, was made hastily with the assumption that it was prob
ably not the best way to do code generation. Since we wanted to get the com
piler running, we used TBL for expedience. And we never abandoned it. On 
the other hand, our original register allocation scheme was far from optimal; 
but by going ahead and doing it, we at least created a compiler that gave us 
something to look at-real code-and something to fix-a working compiler. 

Several engineering tools enabled us to revise and rewrite substantial por
tions of the compiler without jeopardizing other portions. Most important is 
the overall compiler design and its division into unique phases. Because the 
inputs and outputs of each phase were well defined, changes in one phase did 
not necessarily affect any other. This modularity also allowed us to work in 
parallel on the various parts of the compiler, without affecting one another's 
work. Second, the diagnostic tools that dumped the intermediate program re
presentations following each phase and the debugger we adapted to the spe
cific purpose of debugging the compiler were invaluable. And finally, it was 
well worth the effort to write a comprehensive test system against which we 
could measure each new version of the compiler. 

And measure we did. The compiler itself, when requested, outputs statistics 
indicating how much time it spends in each of its phases. Throughout our de
velopment work on the compiler, we watched these numbers closely. Their 
final (current) values are shown in Figures 77 and 78. These figures summa
rize, in terms of execution time, what percentages of time each of our compil
ers spends in its major phases. The optimization and code generation phases 
are broken down into more detailed categories. 



Appendix 

Optimized 
Code Examples 

On the following pages, we present some examples of optimized PLfI pro
grams and a C program. Explanatory notes accompany the first few; after
ward, the reader is invited to discover independently the optimizations and 
permutations. 

Figure 79. A binary search program, optimized. 

2 I 

3 

4 

5 

6 

7 

8 

9 

10 

binsearch: procedure; 

BINSEARCH: 

.entry BINSEARCH,<r2,r3,r4,rS,r6,r7> 

NOTE The base address of static data (in the program section named $DATA) is loaded 
into a register. 

movab $DATA,r1 

1* 

binary search 

*1 

declare (i,il,it,iu,k,mid) fixed bin(31); 

declare vn fixed bin(31); 

declare (nhits,misses) fixed bin(31); 

declare ibuf(10000) fixed bin(31) static; 

do i = 1 to 10000; 

NOTE The first value of the variable i is loaded into register R3. 

movl #1,r3 

223 



224 Engineering a Compiler 

Figure 79 (continued) 

1 1 

12 

13 

14 

15 

16 

17 

NOTE The base address of the array ibuf is assigned to a register outside the loop. 

moval (r 1) , r2 

vcg. 1: 

2 ibuf(i) 7 * i; 

NOTE References to successive elements of the array ibuf are made using autoincre
ment addressing mode. 

2 

mull3 #7,r3,(r2)+ 

end; 

aobleq #10000,r3,vcg.1 

nhits = 0; 

misses = 0; 

NOTE The variables nhits and misses are assigned to consecutive registers (R5 and 
R6) and therefore can both be cleared with a single instruction. 

clrq r5 

do i 1 to 10; 

NOTE The second instance of the variable i is assigned to register R7. 

movl # 1 , r7 

vcg.2: 

2 do it 1 to 17500; 

NOTE The variables it, ii, and iu are also assigned to registers. 

movl # 1, r4 

vcg.3: 

3 il 1 ; 

movl # 1, r3 



Appendix: Optimized Code Examples 

Figure 79 (con ti n ued) 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

3 iu 10000; 

movzwl H10000,r2 

3 lab_100: 

3 if iu < i1 

then goto lab_140; 

LAB_100: 

cmpl r2,r3 

blss LAB_140 

3 mid posint ( (i1 + iu) , 2, 31) ; 

addl3 r3,r2,ap 

extzv H1,H31,ap,rO 

3 vn = posint(ibuf(mid), 3, 16) ; 

NOTE The reference to ibufis based on the register (Rl) holding the base address of 
the static program section. 

3 

ashl H-2,-04(r1)[rO],ap 

movzwl ap,ap 

k it - vn; 

NOTE The value of the variable k has been propagated and the subtract reduced to a 
compare, because the actual value is never required. 

cmpl r4,ap 

3 if k = 0 

3 then goto lab_130; 

beql LAB_130 

3 if k > 0 

3 then goto lab_120; 

bgtr LAB_120 

3 lab_110: 

3 iu mid - 1 ; 

subl3 H1,rO,r2 

225 



226 Engineering a Compiler 

Figure 79 (coneZ uded) 

31 

32 

33 

34 

3.5. 
36 

38 

39 

4.0 

41 

42 

3 goto lab_100; 

brb LAB_100 

3 lah:....:.-120: 

3 il = mid + 1 ; 

LAB_120: 

addl3 #1,rO,r3 

3 goto lab_100; 

brb LAB_100 

3 lab.-:-130: 

3 nhits = nhits + 1 ; 

NOTE Addition and assignment are reduced to a single increment instruction. 

LAB_130: 

3 

3 

3 

3 

3 .. 

2 

,1 

incl r6 

goto lab_150; 

brb LAB_150 

LAB_140: 

incl r5 

LAB_150: 

lab_1.40: 

misses 

lab.,.;-150: 

,end; 

aobleq #17500,r4,vcg.3 

aobleq #10,r7,vcg.2 

ret 

misses + 1; 



Appendix: Optimized Code Examples 

Figure 80. Strength reduction. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

2 

example: PROCEDURE; 

*1 

EXAMPLE: 

.entry EXAMPLE,<r2,r3,r4,r5,r6,r7> 

movab -800(sp),sp 

variables addressed within loops 

DECLARE (i,k,loop) FIXED BINARY(31); 

DECLARE (iter1,iter2,iter3) FIXED BINARY(31); 

DECLARE (a,b,x) FLOAT BINARY(24); 

DECLARE (y(100),z(100» FLOAT BINARY(24); 

vcg.1 : 

iter1 

iter2 

iter3 

10; 

1000; 

100; 

DO i = iter3 TO 1 BY -1; 

movzbl 8100,r5 

moval -400(fp),r3 

y( i) float(i, 24) * 2.; 

cvtlf r5,r2 

NOTE This instruction represents a strength reduction; a multiplication by 2 has been 
reduced to an add operation. 

addf3 r2,r2,-(r3) 

2 END; 

sobgtr r5,vcg.1 

227 



228 Engineering a Compiler 

Figure 80 (continued) 

16 DO k = 1 TO iter3 BY 1; 

17 

18 

19 

20 

21 

22 

movl It 1, r4 

moval -400{fp),r3 

vcg.2: 

2 z{k) FLOAT(k, 24) / 2.; 

cvtlf r4,r2 

NOTE Here, division by 2 has been reduced to a multiplication by 1/2. This is another 
example of strength reduction. 

mulf3 It.S,r2,(r3)+ 

2 END; 

aobleq 1t100,r4,vcg.2 

DO loop = 1 TO iter1; 

movl It 1, r7 

vcg.3: 

2 a = 0; 

clrl r3 

2 DO i 1 TO iter2; 

movl It 1, r6 

vcg.4: 

3 DO k 1 TO iter3; 

movl It 1 , r4 

moval -800(fp),rO 

moval -400(fp),ap 



Appendix: Optimized Code Examples 

Figure 80 (concl uded) 

23 

24 

25 

NOTE The conversion of i to a floating-point value followed by the computation of 
( (x-I. )/ (x+ 1. ) ) X xX .39 has been moved outside of the loop because it is an invariant 
expression. The instructions between the CVTLF and the compiler-generated label 
vcg.5 compute the expression. 

4 

4 

vcg.5: 

cvtlf 

subf3 

addf3 

divf2 

mulf2 

mulf2 

r6,rS 

#1. ,r5,r2 

#1.,r5,r1 

r1,r2 

r5,r2 

#.39,r2 

x=FLOAT(i,24); 

a=«x-1.)/(x+1.»*x*.39+a; 

NOTE The resultant inner loop requires only an update of the variable a and then an 
addition. Both y( k) and z( k) are addressed using autoincrement addressing modes. 

addf2 r2,r3 

4 y(k) z(k) + a; 

addf3 r3, (ap)+, (rO)+ 

26 4 END; 

aobleq #100,r4,vcg.5 

27 3 END; 

aobleq #1000,r6,vcg.4 

28 2 END; 

aobleq #10,r7,vcg.3 

29 END; 

ret 

229 



230 Engineering a Compiler 

Figure 81. relax2, optimized. 

2 

3 

4 

5 

6 

7 

S 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

1 

1 

1 

1 

1 

2 

rel*x2i PROCEDURE(epS); 

RELAX2: 

.entry RELAX2,<r2,r3,r4,r5,r6> 

movab X,r3 

%REPLACE false BY 'O'B: 

%REPLACE m BY 40; 

%REPLACE n BY 60; 

%REPLACE true BY , 1 'B; 

DECLARE x(O:m,O:n) FLOAT BINARY(24) EXTERNAL, 

~new FLOAT BINARY(24), 

e.ps FLOAT BINARY ( 24); 

DECLARE i FIXED BINARY(31), 

j FIXED BINARY(31); 

DECLARE done BIT(1) ALIGNED; 

start: 

done true; 

START: 

movb 111, r5 

DO i 1 TO m - 1 ; 

movl 111, r6 

vcg.1 : 

DO j 1 TO n - 1· i 

movl 111, r4 

NOTE The base address of x( i,l) is computed and moved outside of the loop. 

vcg.2: 

mull3 1161,r6,rO 

moval 04(r3)[rO),r1 



Appendix: Optimized Code Examples 

Figure 81 (concl uded) 

20 

21 

22 

23 

24 

25 

26 

27 

28 

3 xnew x(i-1,j)+ 

x(i+1,j)+ 

x(i,j-1)+ 

x(i,j+1) ) / 4; 

NOTE Array references to successive elements x( i,j ) are made by using Rl as a base 
address. The last reference in the loop to x( i,j) uses autoincrement addressing. 

3 

3 

3 

3 

2 

vcg.3: 

addf3 -244(r1) ,244(r1) ,r2 

addf2 -04(r1),r2 

addf2 04(r1),r2 

mulf2 #.25,r2 

IF abs(xnew - x(i,j» > eps 

THEN done = false; 

subf3 (r1),r2,rO 

bicw2 #8000,rO 

cmpf r 0, @l04 ( ap ) 

bleq vcg.3 

clrb r5 

x( i, j) 

movf r2,(r1)+ 

END; 

aobleq #59,r4,vcg.2 

END; 

IF "done 

xnew; 

THEN GOTO start; 

blbc r5, START 

END; 

ret 

231 



232 Engineering a Compiler 

Figure 82. The towers of Hanoi, optimized. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

hanoi: PROCEDURE RETURNS(FIXED BINARY(31»; 

HANOI: 

L1 : 

1* 

*1 

.entry HANOI,<r2,r3,r4> 

movab $DATA,r1 

towers of hanoi 

DECLARE nf(1:20) FIXED BINARY 

no( 1: 20) FIXED BINARY 

nt(1:20) FIXED BINARY 

(31 ) STATIC, 

(31 ) STATIC, 

( 31 ) STATIC; 

DECLARE (i,jp,k,n) FIXED BINARY (31) ; 

i=1 ; 

mov1 # 1, r4 

k=2; 

mov1 #2,r3 

n=20; 

mov1 #14,r2 

jp=1 ; 

mov1 # 1, rO 

11 : 

IF n=1 

THEN GOTO 13; 

cmpl r2,#1 

beq1 L3 

no(jp) n; 



Appendix: Optimized Code Examples 233 

Figure 82 (continued) 

movl r2, 76(r1) [rOJ 

18 nf(jp) = i; 

movl r4, 156(r1) [rOJ 

19 nt(jp) = k; 

movl r3,-04(r1)[rOJ 

20 k = 6-k-i; 

sub13 r3,#6,r3 

sub12 r4,r3 

21 12: 

22 n = n- 1 ; 

L2: 

dec1 r2 

23 jp jp+1 ; 

inc1 rO 

24 GOTO 11 ; 

brb L1 

25 13: 

26 jp jp-1; 

L3: 

decl rO 

27 IF jp=O 

28 THEN GOTO 15 ; 

beql L5 

29 n = nO(jp) ; 



234 Engineering a Compiler 

Figure 82 (concluded) 

.3If·. 

·3L. 

.32 

33 

3.8 .. 
. ~9 

L5: 

mov1 76(r1)[rO],r2 

IFh<=O 
Xt,H~N' GO'TO, i,"3.·" , .> t .. 

b1eq L3 

14: 

i= nf{ jpJ; 

mov1 156(r1) [rOJ ,r4 

mov1 -04(r1) [rOJ ,r3 

mneg1 r2,76(r1)[rOJ 

i ?6-:i-k; 

sub13 r4,H6,r4 

sub12 r3,r4 

brb L2 

ret 



Appendix: Optimized Code Examples 

Figure 83. A shell sort, written in PLfI, optimized. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

2 

3 

3 

shell: PROCEDURE(v, n); 

SHELL: 

.entry SHELL,<r2,r3,r4,r5,r6,r7> 

shell sort 

*1 

DECLARE n FIXED BINARY(31) VALUE, 

v(0:100) FIXED BINARY(31); 

DECLARE strcmp ENTRY(FIXED BINARY(31) VALUE, 

FIXED BINARY(31) 

VALUE) RETURNS(FIXED BINARY(31»; 

DECLARE i FIXED BINARY(31), 

vcg. 1: 

vcg.2: 

vcg.3: 

j FIXED BINARY(31), 

gap FIXED BINARY(31), 

temp FIXED BINARY(31); 

gap := DIVIDE(n, 2, 31, 0); 

moval @08(ap),r7 

divI3 1I2,r7,r5 

DO WHILE(gap > 0); 

bIeq vcg.7 

deci r7 

moval @04(ap),r4 

DO i = gap TO n - 1; 

movi r5,r6 

cmpi r6,r7 

bgtr vcg.6 

j 

subI3 r5,r6,r3 

i-gap; 

DO WHILE (j >= 0); 

biss vcg.5 

235 



236 Engineering a Compiler 

Figure 83 (concluded) 

vcg.4: 

vcg.s: 

vcg.6: 

vcg.7: 

addl3 r3,rS,r2 

pushl (r4) [r2) 

pushl (r4) [r3) 

calls 1t2,STRCMP 

tstl rO 

bleq vcg.4 

movl (r4)(r3),rO 

str,~mp(v(j h' V(j+gap.) ),>,0 
'l'HEN D9; 

v(j) ; 

mo v I ( r 4 ) [ r 2 ) , ( r 4 ) [ r 3 ] 

movl rO,(r4)[r2] 

subl2 rS,r3 

bgeq vcg.3 

aobleq r7,r6,vcg.2 

divl2 1t2,rS 

bgtr vcg. 1 

ret 

'EN!); 

j, -g'iiP;" 



Appendix: Optimized Code Examples 

Figure 84. A shell sort, written in C, optimized. 

2 

shell: 

3 

shell(v,n) 

int v [ ), n; 

.entry shell,<r2,r3,r4,rS,r6,r7> 

moval (ap),r7 

4 int gap,l,j,temp; 

5 

6 for (gap = n/2; gap> 0; gap /= 2) 

vcg. 1: 

7 

vcg.2: 

8 

vcg.3: 

movl 08(r7),r6 

divl3 #2,r6,r4 

bleq vcg.6 

movl 04(r7),r3 

for (1 

movl r4,rS 

cmpl r5,r6 

bgeq vcg.S 

gap; 1 < n; ++1) 

for (j = i-gap; 

j >= 0 && 

subl3 r4,r5,r1 

blss vcg.4 

addl3 r4,r1,r2 

v [j] > v [j+gap J ; 
j :-= gap), { 

cmpl (r3)[r1],(r3)[r2) 

bleq vcg.4 

237 



238 Engineering a Compiler 

Figure 84 (concl uded) 

9 2 ,t~1l1P .YFj'J; 

moyl (r3)[r1),r2 
10 . 2 v {.j) = y( j+gapl; 

addI3 r4,r1,rO 

moyl (r3)[rO),(r3)[r1) 

11 2 y [j+qap) = temp; 

moyl r2,(r3)[rO) 

12 2 '} 

subI2 r4,r1 

bIss vcg.3 

addI3 r4,r1,rO 

cmpl (r3)[r1),(r3)[rO) 

bgtr vcg.3 

vcg.4: 

incl rS 

cmpl rS,r6 

bIss vcq.2 

vcg.S: 

divI2 #2,r4 

bqtr vcg.1 

vcg.6: 

13 

ret 



Glossary 

ADD_OFFSET operator Intermediate Language operator used to repre
sent an address within an aggregate or string. Its operands represent the 
position of the referenced item from a base address. 

addressing mode On the VAX-II, a code indicating the manner in which 
operands in a machine instruction are to be addressed. 

alias Denotes variables whose values might be modified under some other 
name, such as variables that share the same storage. 

alias node A node in the flow graph generated by the Optimizer. This node 
does not represent any sequence of program operators but provides the 
Optimizer with a way to generate graph edges to represent hidden flow 
caused by alia sed labels. 

allocation partition A span of program execution during which some val
ues must be maintained in register temporaries. The Register Allocator 
uses the division between partitions to determine at what points all regis
ters are available. 

AP The Argument Pointer register on the VAX-II. When a procedure is 
invoked, this register always points to the argument list of the called 
procedure's parameters. When not in use for procedure calling, AP may be 
used as a general register. 

argument In PLfI, the expression or reference associated with a proce
dure's parameter in a particular invocation of the procedure. For example, 
in CALL p (x, 3 Xi), the arguments of p are a reference to x and the ex
pression 3 X i. In PLfI, the arguments as written are analyzed by the com
piler to determine actual arguments. 

ARG_ V AL operator Intermediate Language operator that denotes stor
age containing the value of its operand. 

array node A data structure in the Symbol Table that describes an array, 
including its dimensions, bounds, and the data type and size of its elements. 

assembly language A language closely related to a computer's machine 
language. Assembly language allows locations and other values to be refe
renced symbolically. 

assignment statement Statement in a programming language that as
signs a value to a variable. 

239 



240 Engineering a Compiler 

ASSIGN_REGTEMP operator Intermediate Language operator intro
duced by the Optimizer. This operator specifies a variable that the Opti
mizer has determined is a candidate for assignment to a register and 
contains the operator identifiers of the first and last operators that refer
ence the variable. 

ASSIGN_REPEAT operator Intermediate Language operator that as
signs a specified value to all elements of a given array. 

attribute Anyone of a set of bits in a symbol node that specify various 
properties such as data type and storage class. 

autodecrement addressing mode VAX-II addressing mode in which a 
register contains the address of the operand and is decremented by the size 
of the operand prior to evaluation of the operand specifier. 

AUTO_DECREMENT operator Intermediate Language operator intro
duced by the Optimizer so that an autodecrement addressing mode will be 
generated to address an array whose elements are visited in descending 
order during execution of a loop. 

autoincrement addressing mode VAX-II addressing mode in which a 
register contains the address of the operand and is incremented by the size 
of the operand following evaluation of the operand specifier. 

AUTO_INCREMENT operator Intermediate Language operator intro
duced by the Optimizer so that an auto increment addressing mode will be 
generated to address an array whose elements are visited in ascending or
der during execution of a loop. 

automatic A class of PL/I variables for which storage is allocated when the 
block that declares the variable is activated. The storage is released when 
the block is deactivated. 

back end Collectively, the phases of the VAX-II Code Generator that ex
ecute after all language-specific work of parsing and semantic analysis has 
taken place. These phases are Write Tree, the Optimizer, Local Code Gen
erator, Register Allocator, Peephole Optimizer, Code Binder, and Object 
Module and Listing File Writer. 

based A class of PL/I variables for which unique storage is not allocated, 
but for which storage is described. A pointer is always used to specify the 
storage actually accessed. 

base pointer (1) In an array or structure reference, the memory location 
of the beginning of the aggregate from which successive elements are ad
dressed. (2) In references to variables that do not have explicit storage al
located for them, the address of the variable's storage. 

base register The register containing a memory location to be used in ad
dressing a program variable. 

basic block See basic node. 



Glossary 

basic node A sequence of operations in a flow graph that can be entered at 
only one point even though that sequence of operations may have more 
than one exit. In this book, the term node is used to avoid confusion with 
other types of block. 

begin block A block in PL/I delimited by BEGIN and END statements. A 
begin block is activated when control reaches the BEGIN statement as a 
result of normal control flow in the containing block. 

bind To associate one object with another in order to control the interpre
tation of references to the first object. Examples are binding a procedure 
parameter to an argument and binding references to labels to unique mem
ory locations. 

block A construction in a programming language that both defines a scope 
for interpreting names and controls the allocation of variables declared 
within the block. 

block activation VAX-II hardware context created each time a block is 
entered, including information on the allocation of storage for automatic 
variables declared in the block and hardware information required to con
nect this block activation to the previous block activation. 

block node A node in the Symbol Table representing a procedure or begin 
block in the source program. 

Boolean minimization See Boolean optimization. 
Boolean optimization Optimization in which logical and relational tests 

followed by branch instructions are short-circuited so that if part of a test 
fails, for example, the code to compute the second part of the test is not 
executed. 

bootstrap Technique for implementing a compiler on one hardware ma
chine by using an existing compiler for the same language on a host ma
chine (usually a different machine). The technique requires compiling all 
parts of the compiler on the host machine with a code generator that gen
erates code for the target machine, and then taking this output to the tar
get machine. 

bootstrap compiler The VAX-II PL/I compiler as it existed after its boot
strap to the VAX-II and before extensive modifications for optimization. 

BUILD_STRUCTURE operator Intermediate Language operator that 
builds a single aggregate value from a list of element values. 

call frame V AX-II hardware context, created each time a call instruction 
is executed. It contains saved copies of registers specified by the call tar
get, the saved PC (Program Counter), AP (Argument Pointer), FP (Frame 
Pointer), the processor status, and a longword that specifies the address of 
a condition handler. 

Code Binder The phase of the VAX-II Code Generator that performs fi
nal address displacement calculations, binding branch instructions to their 
target addresses. 

241 



242 Engineering a Compiler 

code block Data structure created by the Local Code Generator to hold 
information about instructions that are being emitted, including the in
struction opcode, skeletal addressing information about the operands, and 
the addressing mode. 

code improvement See optimization. 
common subexpression elimination The program optimization in which 

a compiler detects expressions that are computed more than once with ab
solutely equivalent results and then reorders the program so that the com
putation is performed only once. 

compilation unit The part of a source program that is processed by a sim
ple invocation of the compiler. In V AX-II PL/I, this unit can contain one or 
more external procedures and related declarations. 

compiler A program that translates a program written in a language such 
as PL/I, C, and FORTRAN into object code. 

compile time Existing or taking place during compilation of a program. 
Contrast with run time. 

condition handler A procedure designated to receive control when an ex
ception condition (either hardware or software generated) occurs. 

constant (1) A value that does not change during program execution. (2) 
The source language construction denoting such a value. 

constant folding The optimization in which expressions containing con
stants are detected, the operation performed, and the expression replaced 
with the result (such as the reduction of 2 + 7 to 9). 

constant identifier (1) A named constant. (2) In the TBL compiler, a nu
meric constant defined by a LET directive. 

CONSTANT operator Intermediate Language operator denoting a con
stant value. The value is defined by a token node in the Symbol Table. 

containing Denotes the programming construction that contains another. 
For example, a block b is the containing block of x if b contains x but does 
not contain a nested block that itself contains x. 

CONVERT operator Intermediate Language operator specifying the con
version of a variable or result to the data type required for an operation or 
result. 

copy propagation See value propagation. 
copy subsunlption See value propagation. 
cross-compiler A compiler that runs on one machine producing code that 

executes on another machine. 
current block The block containing the program element being processed. 

DAG See directed acyclic graph (DAG). 
data type Classification of variables, constants, and operators that speci

fies the set of values an object may assume and the internal representation 
of those values. 



Glossary 

declaration A construction in a programming language that establishes a 
specific meaning for a name. In most languages a name may be declared 
more than once, each declaration having a different scope. 

DECLARE (1) The phase specific to the front end of the VAX-II PL/I 
compiler that verifies that all data declarations are consistent, fills in de
fault attributes if necessary, and builds permanent trees needed by PASS2. 
(2) The PL/I language keyword that identifies a data declaration. 

defined A class of PL/I variables in which a variable's storage is specifically 
associated with the storage of another, as in: 

DECLARE a(10) FIXED; 

b FIXED DEFINED(a(2»; 

Here, b references the second element of a. 

definition point A point in the execution of the program at which a vari
able is potentially assigned a value or modified. 

depth-first order The ordering of nodes in a flow graph so that the first 
node in the list is the outermost node (leaf) in the graph. 

descriptor Data structure containing the address of a procedure argument 
and other information describing the argument. 

directed acyclic graph (DAG) A directed graph with no cycles. In com
piler theory, a DAG may be used to represent a set of computations that 
involve no control flow. A vertex that has exiting edges represents an op
eration; the opposite vertices of the exiting edges are the operands of the 
operator. 

discrete lifetime See disjoint lifetime. 
disjoint lifetime The differentiation between different instances of a vari

able, that is, program spans in which the value that a variable holds is dis
tinct. The Optimizer computes disjoint lifetimes so that the Register 
Allocator can more efficiently assign registers to local variables. 

display pointer Pointer to the stack frame of a block activation that is an 
ancestor of another block. Display pointers are used to resolve uplevel 
references, that is, references to names declared in containing blocks. 

dominator See loop dominator. 
dope vector See descriptor. 
DO statement PL/I statement that begins a DO-group. The statement 

may specify repetitive execution of the group, or it may be used simply for 
syntactic grouping. 

dynamically sized Denotes items whose sizes, which are not known at 
compile time, must be computed at run time. 

END statement PL/I statement denoting the end of a procedure, begin 
block, or DO-group. 

243 



244 Engineering a Compiler 

entry point Point in a sequence of executable statements (in a procedure) 
at which execution of the procedure can be invoked. The beginning of the 
sequence is the normal entry point. In PLfI, a procedure may have addi
tional entry points. 

executable statement In PLfI, a statement that does something when the 
program is executed, in contrast to statements such as DECLARE which 
are processed entirely at compile time. 

explicit allocation list A list of T -reg nodes maintained by the Register 
Allocator to keep track of all registers that are currently allocated. 

expression A construction in a programming language that denotes the 
computation of a value, such as x+ 2. 

external procedure In PLfI, a procedure that is not contained in any other 
procedure. 

flow graph Series of data structures built to gather information about a 
program in order to perform optimizations. The program flow information 
in a flow graph (whose principal structures are called either basic blocks or 
nodes) describes the control flow in the program based on labels, branches, 
calls to external procedures, and so on. 

FP The Frame Pointer register on the VAX-II. This register points to the 
call frame for the current block and is linked by a pointer to the previous 
block. 

front end Collectively, the procedures and phases specific to the compila
tion of source programs for a single programming language. The primary 
tasks of a front end are parsing and semantic analysis. 

function procedure A procedure that returns a value. 

global optimization Optimization of a program an entire block at a time, 
in contrast to optimizations that examine and optimize only a single node of 
the program at a time. 

grammar The rules governing the syntax of a programming language. 

held register list List of pointers to register temporary nodes for hard
ware registers, used by the Register Allocator to record registers allocated 
for use in hardware instructions requiring operands to be in registers. 

identifier (1) Numerical value used to identify a Symbol Table node, an 
operator, or a register temporary node. See node identifier, operator 
identifier, and T-reg identifier. (2) In VAX-II PLfI, a sequence of let
ters, digits, underscores, and dollar signs specifying a program entity such 
as a procedure or variable name. 



Glossary 

IF statement PL/I statement specifying conditional execution of a state
ment or group. It may have the form IF-THEN-ELSE. In the PL/I front 
end, PASSI translates IF statements and ELSE clauses by generating LA
BEL, BILTRUE, and BILFALSE operators. 

IMMEDIA TE operator Intermediate Language operator denoting a value 
that is stored immediately in the operator. 

indexed addressing mode VAX -11 addressing mode in which an index 
register specifies an offset from the beginning of a data structure whose 
base address is also in the operand specifier. This addressing mode is al
ways used in conjunction with another addressing mode. 

index register On the VAX-II, a register whose contents are used to ad
dress a program variable by first multiplying the contents of the index reg
ister by the size (in bytes) of the variable being addressed. 

intermediate code list List of data structures, called code blocks, created 
by the Local Code Generator. It contains a lexical sequence of the gener
ated instructions of the source program. 

intermediate language Within a compiler, a language into which a pro
gram is translated before its final transformation into object code. The ele
ments of the language are normally some specific type of data structure 
(such as trees), not characters as in the original source language. A com
piler may use several intermediate languages. In our compiler, the Inter
mediate Language is the set of operators defined in Chapter 5. 

interpreter A program that faithfully performs the actions specified byele
ments in another program. For example, when a computer is implemented 
using microcode, the microcode is an interpreter for the computer's ma
chine language. 

keyword In PL/I, an identifier with a language-defined function, for exam
ple, IF. 

kill list A list of T -reg nodes maintained by the Register Allocator to keep 
track of all points in the program at which the contents of specific registers 
are destroyed. 

label In the Intermediate Language, a symbol node denoting a point in the 
program that can be the target of a GOTO operator or any of the various 
branch operators. A LABEL operator in the operator file relates the symbol 
node to the actual point in the program. In a source program, the user
specified identifier denoting such a point. 

LALR(1) Acronym for a parsing technique known as "Look ahead 1 mov
ing left to right." LALR(I) is a refinement on the more complex LR par
sing technique for the bottom-up parsing of context-free grammars. 

245 



246 Engineering a Compiler 

level-one (1) Denotes a variable that is not a member of a structure. (2) 
Denotes a variable that is itself a structure but not a member. 

lexical Denotes the source program form of the program, that is, as a se
quence of characters. 

lexical analyzer In a compiler, the phase or routine that scans the source 
text. While scanning, it identifies and separates the lexicons (vocabulary) of 
the language to be parsed. Common terminology refers to these recog
nized lexicons as "tokens." 

limit of an operator The identifier of the operator that most recently de
fined or potentially defined a value for any of the current operator's ope
rands, and thus the farthest point backward in the program that the 
operator can be moved. The limit of an operator is very important in both 
elimination of common subexpressions and removal of invariant expres
sions from loops. 

linker A system program that can combine several object modules into a 
single object program that is ready to load and execute. Its functions in
clude resolving intermodule references, finding modules in libraries, and 
assigning storage locations. 

live variable analysis Analysis of specific program variables to determine 
precisely when they are assigned values and the duration of the program 
for which those values must remain valid. The information gathered during 
live variable analysis helps the Optimizer determine when the value of a 
variable may be assigned to a register. 

loader A system program that will load an object program into memory and 
initiate its execution. On the VAX-II, the functions of the linker and loader 
are combined; the image activator executes a bound program image. 

Local Code Generator Phase of the VAX-II Code Generator that reads 
the linear file of operators and operands and constructs an intermediate 
form of the program's instructions and operand specifiers. 

loop dominator A node in the flow graph that is always executed if the 
loop of which it is part is executed. 

loop invariant removal The optimization technique in which computa
tions that are performed within loops but that do not change during execu
tion of the loop are reordered in the program so that the computation 
occurs only once and not each time through the loop. 

machine language The language actually accepted by the computer. 
MACRO The VAX-II assembly language. 
member See structure. 
memory temporary The result of an operation which must be kept for 

later use and for which the compiler allocates dynamic memory in the stack 
frame for the block activation. For example, the compiler generates mem
ory temporaries to hold the results of string operations. 



Glossary 

MULTICS A timesharing operating system that runs on certain Honeywell 
computers. The system features virtual memory and is implemented 
mostly in PL/1. 

nesting level The lexical nesting level of blocks in the program. The 
imaginary outermost block has a nesting level of zero, each external proce
dure has a nesting level of one. 

node A data structure that has a distinct relationship to other, similar 
structures. In the VAX-II Code Generator, the term describes the struc
tures in the Symbol Table as well as the basic nodes in a flow graph. 

node identifier An unsigned 15-bit value that uniquely identifies a node in 
the Symbol Table. 

n-tuple An n-operand operator. See also triple and quad. 

object code The representation of a program produced by a compiler, usu
ally machine code or something closely related that will be accepted by a 
system's linker. Sometimes, however, the compiler may produce an inter
mediate form of code that will be processed by an interpreter. 

object module Output from a compiler consisting of the object code pro
duced by a single invocation of the compiler. 

object module analyzer VAX/VMS system program that reads object 
modules and reports on the syntactic correctness of its records. 

Object Module and Listing File Writer Phase of the VAX-II Code Gen
erator that writes out the object module records created during compila
tion and a listing file showing the program's source code and, optionally, 
the generated machine language instructions. 

object program A program in a form ready for loading into a computer's 
memory and execution. 

ON-unit The PL/I language construct for the definition of condition han
dlers for specific purposes. 

operand In the Intermediate Language, an argument to an operator that 
specifies the parameters of the operation. 

operand counter A field in the prologue descriptor for a block that is up
dated by the Local Code Generator each time it emits an instruction to the 
intermediate code list. The value of this field is particularly important in 
the recording of the first and last uses of register temporaries. 

operand specifier In the encoding of a VAX-II instruction, the informa
tion required to address an instruction operand, including the addressing 
mode, displacement from a base register (if any), the name of the register, 
and index register (if any). 

247 



248 Engineering a Compiler 

operator In the Intermediate Language, the collector of information about 
a specific program statement or action. Operators can have from 0 to 255 
operands. 

operator file Internal file of operators in a linear format, in which opera
tors are arranged in buffers for easy access by the back end of the VAX-II 
Code Generator. 

operator identifier A IS-bit negative value that uniquely identifies an op
erator, both in its tree form on input to Write Tree and in its linear form on 
output from Write Tree. 

operator node A structure built by the Local Code Generator to describe 
an Intermediate Language operator. 

optimization The attempt to decrease the execution time of generated 
code. 

Optimizer Phase of the VAX-II Code Generator that performs global opti
mizations such as loop invariant removal and common subexpression elimi
nation. 

parameter (1) A name declared as a procedure parameter and bound to an 
argument when the procedure is invoked. (2) A class of PL/I variables in 
which a variable's storage is associated with the storage of a corresponding 
procedure argument. 

P ARAM_PTR operator Intermediate Language operator that references 
an item in a parameter list. 

parent block The block containing the current block. See also containing. 
parsing The process of converting a source program to trees (or one very 

big tree) in accordance with a grammar. 
PASS! Phase specific to the front end of the VAX-II PL/I compiler that 

reads the source file, performs syntactic parsing and lexical analysis, and 
begins building the Symbol Table. 

PASS2 Phase of the front end of the VAX-II PL/I compiler that combines 
the syntactically correct trees produced by PASS 1 and the validated Sym
bol Table produced by the DECLARE phase into fully expanded and seman
tically correct trees. 

pattern matching (1) Code generation technique in which patterns of 
code to be generated and patterns of operands are predefined in a table and 
code is generated based on selection of a pattern from the table. (2) Opti
mization technique in which a specific pattern of operations is replaced 
with a shorter pattern. 

PC The Program Counter register on the VAX-II, used to point to the in
struction currently being executed. 

peephole A pattern of code easily distinguished as a pattern that can be 
reduced to a shorter, more efficient form. 



Glossary 

Peephole Optimizer Phase of the VAX-II Code Generator that performs 
peephole optimization by recognizing and reducing peepholes. 

predecessor In the flow graph constructed by the Optimizer, a node that 
precedes another node in the graph such that execution can flow from it 
into a successor. 

procedure A part of a program that can be invoked from one or more 
points in the program. The invocation is referred to as a procedure call. In 
general, a procedure has a set of parameters which are bound to specific 
arguments when the procedure is invoked. If a procedure invocation re
turns normally, control returns to the point of invocation. 

program Specification of a computation in some language. The term usu
ally means an object that can be manipulated with its entire structure as 
determined by the rules of the language. 

prologue code Code generated by the compiler to initialize the call frame 
on block activation. It executes before the first executable statement at 
any entry point. 

prologue descriptor Data structure built by the Local Code Generator to 
accumulate information about a program block. It contains pointers to lists 
of register temporaries allocated in the block, a mask containing a summa
tion of all registers used, and various control information. 

quad An operator with four operands; used in some compilers in the con
struction of trees. 

recursive descent parse A common parsing technique for programming 
languages, usually combined with expression analysis using operator prece
dence. A recursive descent parser analyzes a program's syntax using mutu
ally recursive routines that scan the current input stream. 

reduction (1) In Write Tree, the process of following trees to their roots 
and performing optimizations on them so they represent a computation 
more efficiently. (2) In the Peephole Optimizer, the process of replacing 
instruction sequences with shorter or faster instruction sequences. 

reference In PLfl, a construction which denotes a name declared in the 
program. 

REF operator Intermediate Language operator representing a reference 
to data and to all the information required to locate it in memory. 

region (1) A collection of one or more nodes in a flow graph that are con
nected via a unique flow path. (2) The nodes in the flow graph that repre
sent a discrete, disjoint lifetime of a variable. 

Register Allocator Phase of the VAX-II Code Generator that determines 
what registers are available for allocation to temporaries created by the 
Local Code Generator and assigns specific registers to temporaries. 

register temporary Result of an operation that must be kept for later use 
and assumed to be assignable to a register during program execution. In 

249 



250 Engineering a Compiler 

the VAX-II Code Generator, the use of register temporaries is extended 
to apply to local variables that the Optimizer determines can be assigned to 
registers. 

register temporary node See T -reg node. 
result incorporation Optimization in which two instructions are replaced 

with a single instruction. On the VAX-II, this involves replacement of a 
two-operand arithmetic instruction that is followed by a move instruction 
that stores the result of the first instruction with a single three-operand 
instruction. 

run time Existing or taking place during a program's execution. Contrast 
with compile time. 

SAVE_RESULT operator Intermediate Language operator used to cap
ture the value of a variable and save it for later reference. 

scope The part of the source program in which the interpretation of a de
clared name supersedes other declarations with the same name. 

semantic analysis The process of transforming parse trees into an ex
plicit form from which code can be generated. 

SETS operator Intermediate Language operator used by the front end to 
tell the Optimizer about definitions of variables that the Optimizer could 
not otherwise detect, such as when a variable is modified as a side effect of 
an input/output operation. 

source language The programming language accepted by a compiler, 
such as PL/I, C, and PASCAL. 

source program The sequence of characters that is the original written 
form of the program, as distinct from the various forms into which the 
compiler transforms it. 

SP The Stack Pointer register on the VAX-II, whose contents always point 
to the top of the stack. 

stack frame Software context created each time a block activation occurs. 
The stack frame is created immediately below the call frame created by 
the hardware and consists of a saved parent pointer, saved AP, pointer to a 
linked list of ON-unit descriptors, and stack memory allocated for auto
matic variables and compiler temporaries. 

statement In PL/I, one component of the sequence forming a source pro
gram. PL/I statements are frequently referred to by their identifying key
words, such as DO, CALL, END. 

static Class of PL/I variable for which storage is allocated in a fixed mem
ory location and retained throughout the execution of a program. 

Storage Allocator A language-specific phase that reads the Symbol Table 
and writes object module records describing how storage is to be allocated 
for static variables. 



Glossary 

storage class Classification of variables according to the way in which 
storage is allocated for them. In PL/I, the storage classes are automatic, 
based, defined, parameter, and static. 

strength reduction An optimization in which a single operation is replaced 
by a faster operation, such as replacing division by 2 with multiplication by 
1/2• (See result incorporation.) 

structure A variable composed of member variables that may themselves 
be structures. In PL/I, structures are declared using level numbers, as in: 

DECLARE 1 s, 

2 x, 

3 (a, b) FIXED, 

2 Y CHARACTER(6); 

Here, s is a structure. x, y, a, and b are members. x is a substructure. See 
also level-one. 

subgraph A collection of related nodes in the flow graph, usually those re
presenting a discrete lifetime of a variable. 

subroutine See procedure. 
successor In the flow graph constructed by the Optimizer, a node that fol

lows another node in the graph such that execution can flow into it from a 
predecessor. 

symbol node A node in the Symbol Table representing a name declared in 
the program, in contrast to compiler-generated labels or variables. 

Symbol Table A collection of data structures, called nodes, that contain 
information about the program's structure, variable names, and tokens. 

TBL (Table Building Language) (1) A high-level language designed to 
function as a machine tailored to a specific use. (2) A compiler that com
piles statements written in a TBL program into a binary form that must 
then be interpreted by a user-written interpreter. 

temporary Variable generated by the compiler to hold the result of an 
operation. See also register temporary and memory temporary. 

token node In the Symbol Table, a data structure representing an identi
fier or constant and containing its spelling. 

Translation Systems, Inc. A private corporation founded by R. A. Frei
burghouse to develop and market PL/I compilers to various manufacturers. 
This ancestor of the VAX-II Code Generator uses a common PL/I front 
end, for which code generators produce code for different hardware com
puters. 

tree In the VAX-II Code Generator and its compilers, a tree-like data 
structure that represents a statement, expression, or reference in the pro
gram. 

T -reg See register temporary. 

251 



252 Engineering a Compiler 

T-reg identifier A I2-bit value that uniquely identifies a T-reg node and 
which the Register Allocator uses to indicate the T -reg allocated for a par
ticular instance of a variable or a temporary. 

T-reg node In the VAX-II Code Generator, a data structure representing 
a register temporary introduced by the Local Code Generator to hold a 
temporary result or the value of a variable designated by the Optimizer as 
a candidate for assignment to a register. 

triple An operator with three operands; used in some compilers in the con
struction of trees. 

uplevel (1) Denotes a reference to a variable declared in a containing 
block. (2) An attribute applied by the code generator to a block in which 
such references can be made. 

use-definition list In the flow graph of a program developed by the Opti
mizer, the list of all operators that either assign values to or reference the 
value of the variable for which the list is constructed. There is one such list 
for each of up to 32 variables selected as candidates for assignment to reg
isters. 

USE operator Intermediate Language operator that refers to a value pro
duced by a previous operator. 

VALUE operator Intermediate Language operator that produces the cur
rent value of a reference. 

value propagation Optimization in which variables that are used only to 
assign values to other variables are removed from the computation. 

variable (1) An entity to which values may be assigned in the course of a 
computation. (2) In the VAX-II Code Generator, a symbol node in which 
the variable attribute is set. 

V AX-11 Computer architecture developed by Digital Equipment Corpora
tion. It is a 32-bit machine with memory management capabilities to sup
port multiprogramming. 

VAX-11 Code Generator The common routines that make it possible to 
write compilers for various programming languages by writing front ends 
that produce a Symbol Table and well-structured trees that express the 
source program in terms of the Intermediate Language. 

VAX/VMS Operating system for the VAX-II hardware. 

Write Tree Phase of the VAX-II Code Generator that accepts trees from 
the front end, reduces them, and writes them into a linear form that is then 
passed to the Optimizer. 



Index 





Index 

ACTION directive (TBL), 21 
examples, 21, 22 

actions (TBL), 18 
definition, 21 
in Local Code Generator, 153 
in PASS1, 207 
in PASS2, 212 
recognized, 22 
references, 21 

ADD_COMPARLAND-BRANCH operator, 56, 125 
example, 134 

ADD_OFFSET operator, 55, 60 
adjusted by Optimizer, 134 
computing address of array element, 60, 65 
defined, 239 
participating in reduction by Write Tree, 79 
semantics, 62 

ADDR-BASE operator, 57 
introduced by Optimizer, 134 

address 
See also references 
condition handler, 48 
next instruction, 48 
of a reference, 63 
space, for Symbol Table, 38 
of Symbol Table node, 38 
uplevel, 108 
of a variable, 55 
virtual, of Symbol Table node, 38 

addressing 
arrays, 60 
arrays in loops, 88 
arrays using ADDR-BASE operator, 134 
control variable of a loop, 130 
parameters, 63,168 
temporaries on stack, 50 
temporaries using FP, 184 
VAX-II operand specifiers, 175 

addressing information 
in code blocks, 155 
in machine instruction operands, 159 

addressing mode 
autodecrement, 130, 161 
autoincrement, 130, 161, 166 
autoincrement deferred, 161 

changed by Peephole Optimizer, 201 
defined, 239 
displacement, 161, 166 
displacement deferred, 161 
indexed, 161, 165 
literal, 161, 166 
in operand specifier, 160 
register, 161, 165 
register deferred, 161, 166 
shortening displacements, 185 
strength reduction optimization, 145 
summary of, 161 

addressing mode code, 161 
in operand specifier, 161 

aggregates 
See also arrays, structures 
operations on, 58 
references, 62 

Aho, Alfred V., 4, 111, 112 
alias 

defined, 239 
represented in flow graph, 106 

alias class, 92 
definition points, 94 
relationship to other classes, 94 
variable, 143 

alias labels 
detected by Write Tree, 75 

alias node 
defined, 239 
illustrated, 107 
predecessors, 106 
successors, 106 

alias variable 
limit, 92 
references to, 61 
treatment by front end, 61 

allocation 
of registers, 169 
of T -reg nodes, 156 

allocation descriptor (in T-reg node), 157, 159 
allocation of memory 

Symbol Table, 38 
allocation partition, 179 

contents, 179 

255 



256 

defined, 239 
how used by Register Allocator, 181 

ALLOCAUTO operator, 57 
ALLOC~EM operator, 57 
AP (Argument Pointer), 47,169 

after call instruction, 48 
defined, 239 
in operand specifier, 168 
in resolving references to parameters, 63 
saved, 50, 51 
set by call instructions, 66 
usage detected by Write Tree, 74 

ARG_ VAL operator 
defined, 239 
for dummy arguments, 67 
used to specify argument in a call, 67 

argument 
pointer, See AP (Argument Pointer) 
allocated on stack, 47 
defined, 239 
Intermediate Language representation, 67 
position in argument list, 66 
TBL actions, 21, 22 

argument list, 66 
format, 66 
location, 48 
parameter access, 63 

argument passing 
expressions, 67 
noncomputational data, 67 

arithmetic expressions 
parsing, 208 
rewriting, 79 

array 
addressing in loops, 88 
addressing with ADDILBASE operator, 134 
ASSIGN-REPEAT operator, 56 
base address in references, 60 
bound checking operator, 57 
extent expressions, 64 
of labels, 56 
multipliers, 43, 65 
offset calculation in addressing, 62 
passed as argument, 68 
references, 60, 134 
size, 64 
Symbol Table representation, 43 
variable extents, 44 
virtual origin, 66 

array element 
addressing, 65 
definition point, 95 
initialization, 56 
offset calculation, 66 
reference to, 60 

array node, 43 
defined, 239 

Engineering a Compiler 

assembly language, 8 
in compiler listing, 16 
decision to use, 7 
defined, 239 

assignment 
register, See also register assignment 
as definition point, 89 
Intermediate Language representation, 56, 59 
register, 177 

assignment statement 
handled by lexical analyzer, 208 

ASSIGN operator, 56 
as a definition point, 94 
processed by PASS2, 212 

ASSIGN-REGTEMP operator, 57, 116, 159 
defined, 240 
handled in code generation, 159 
meaning of temporary, 124 
operands, 125 

ASSIGN-REPEAT operator, 54, 56 
defined, 240 

attribute 
automatic, 36 
defined, 240 
symbol node, 42 
in Symbol Table, 36 

autodecrement addressing mode, 130, 161 
defined, 240 
eligibility criteria, 130 

AUTO-DECREMENT operator, 57, 130 
defined, 240 
example, 134 

autoincrement addressing mode, 130, 161 
deferred, 161 
defined, 240 
eligibility criteria, 130 
in operand specifier, 166 

AUTO--INCREMENT operator, 57, 130 
defined, 240 

automatic storage class, 35 
automatic variable 

extent expression trees, 65 
storage, 47 
storage in stack frame, 50 

back end, 12 
decision to make common, 12 
defined, 240 
requirements, 36, 54 

backward flow, 112, 141, 144 
base address 

array, 88, 130 
program section, 160 

based storage class 
defined, 240 

based variable 
computation of extent expressions, 64 



Index 

reference to, 60, 168 
base pointer 

defined, 240 
in reference to procedure parameter, 63 
in REF operator, 60 

base register 
addressing external variables, 181 
allocated by Register Allocator, 189 
defined, 240 

basic block, 82, 105 
basic node 

See also basic block 
defined, 241 

begin block 
block node for, 38 
defined,241 
handled by PL/I compiler, 40 

BEGIN operator, 55 
benchmarks, 148, 149, 150, 151 
binary search program, 223 
bit data 

addressing on VAX-11, 8, 58 
aligned, 58 
representation, 58 

bit expressions 
reduced by Write Tree, 76 

bit offsets 
calculation in data references, 64 
optimized by Write Tree, 73 

bit vector 
in flow graph, 119 

block 
code, See code block 
defined, 241 
display level, 74 
flow graph for, 105 
flush-on-call, 74, 94 
node, 40 
operators processed by 

Local Code Generator, 155 
operators that delineate, 55 
register allocation for, 176 
represented in pointer array, 96 
stack required, 184 
stack use detected by Write Tree, 74 
temporaries allocated for, 157 
T-regs associated with, 157 

block activation, 47, 48 
defined, 241 
FP,48 
of parent, 67 
parent block, 63 
PL/I requirements, 48 
prologue code, 48 
prologue descriptor, 156 
representation on stack, 48 
restoring stack on exit, 50 

stack frame, 170 
temporaries, 172 

block end 
effect on Local Code Generator, 156 
operator for, 55 
represented in code block, 160 

BLOCLEND operator, 55 
effect on Local Code Generator, 156 

block invocation, 56 
block node 

contents, 41 
defined, 241 
usage information supplied by Write Tree, 74 

Boolean minimization 
See Boolean optimization 

Boolean optimization, 76, 100 
defined, 241 
patterns tested for, 101 

bootstrap compiler, 12 
peephole phase, 196 
size of Optimizer phase, 88 

bootstrapping, 5, 9, 241 
C compiler, 213 
description, 7 
order, 9 
problems, 7, 10 
time to complete, 10 

branch 
effect on flow graph, 105 
flow graph edges generated, 106 

branch code block, 160, 199 
branch instruction, 160 
branch/jump resolution 

See Code Binder 
BRANCH operator, 56 

substituted for GOTO operator by Write Tree, 
75 

branch operators, 56 
optimization, 100 
relational, 56 

branch resolution, 16 
BRANCH-SAVE operator, 55 
BUILD_STRUCTURE operator, 67 

defined, 241 
used to specify argument in a call, 67 

C 
See C compiler, C programming language 

call 
action (TBL), 23 
operators, 56 
standard for VAX-11, 48 

cdll frame 
addressing temporaries in, 184 
contents, 48 
defined, 241 

CALL-FUNCTION operator, 68 

257 



258 

CALL-FUNCTION_STORAGE operator, 68 
call instructions, 48 

effect on FP, SP and AP, 48 
effect on RO and R1, 177 
VAX-11,48 

CALL operator, 66 
argument operands, 67 
entry point operand, 66 
representing a use of a variable, 89 
representing definition point, 94 

call operators 
effect on building flow graph, 105 
effect on variable analysis, 110 

calls to external procedures 
effect on variable analysis, 92 

case action (TBL), 23 
case construction 

C compiler, 215 
in flow graph, 106, 141 

C compiler, 12, 204 
argument passing, 67 
bootstrapping, 213 
compilation rate, 147 
grammar description, 213 
operators specific to, 57 
performance compared with PL/I, 217 
phases, 17 
references to unions, 62 
semantic actions, 215 
time spent in each phase, 221 
trees for SWITCH statement, 216 

character data 
representation, 58 
varying-length, 58 

character string instructions on VAX-11, 211 
chronological array, 176 
class definition point, 92 

effect on operator limit, 92 
occurring as side effect of other class 

definitions, 94 
variables, 143 

classes of variables, 92 
alias, 92 
external, 92 
last definition points, 92 
static, 92 
uplevel,92 

Code Binder, 16,241 
code block, 16, 159, 242 

block end, 160 
conditional move, 160, 175 
contents, 159, 172 
diagnostic output, 11 
instruction, 160 
label, 160 
literal, 160 
load base, 160, 166 

Engineering a Compiler 

operand processing, 189 
operand specifiers, 160, 161, 163, 166, 187 
processing by Peephole Optimizer, 198, 199 
processing by Register Allocator, 188 
prologue, 160 
register addressing information, 187 
statement, 160 

code generation, 13, 152 
See also Local Code Generator 
implementation, 8 
traditional methods, 5 

code improvement, 86 
See also optimization 

common subexpression 
in DAG, 81 
handled by Write Tree, 82 

common subexpression elimination, 134,242 
canonical state of operators, 98 
hash table, 137 
limit variable, 90 
operator equivalence, 138 
role of operator limit, 137 
use of flow graph, 137 

comparison operators, 56 
reductions by Write Tree, 76 

compiler 
See also TBL compiler, PL/I compiler, C 

compiler, PEARL compiler 
diagram of, 14 
generic definition, 242 
implementation languages, 6, 8 
initialization, 13 
machine independence, 3, 13 
shell, 17 
structure, 2, 13 
Symbol Table allocation, 38 

conditional move code block, 160, 175 
processed by Register Allocator, 189 

condition handler, 242 
See also ON-unit 
in flow graph, 106 
PL/I requirements, 49 

condition handler address 
after call instruction, 48 
location in call frame, 48 

constant, 242 
folding, 76 
in code block, 160 
in Intermediate Language, 55 
part of offset, 79 
reducing in offsets, 79 
in source program, 211 
in Symbol Table, 44 

constant folding, 242 
constant identifier, 242 

TBL, 18,20 
CONSTANT operator, 55, 85, 242 



Index 

converted by Write Tree, 75 
control flow 

hidden, 106 
Peephole Optimizer, 198 

control variable of a loop 
as definition point, 110 
incrementing, 56 
optimized addressing of, 130 

conversion of data 
in argument passing, 67 
by Write Tree, 75 

CONVERT operator, 57, 76, 242 
CONVERT_UNITS operator, 57 

removed by Optimizer, 78 
copy propagation, 87 

See also value propagation 
copy subsumption, 87 

See also value propagation 
coroutine relationship of PASS2 and Write 

Tree, 71 
C programming language 

See also C compiler 
decision to implement, 204 
++ operator parsing, 215 
shell sort program, 237 
suitability of LALR(I), 214 
tree for ++ operator, 83 

cross-compiler, 7, 242 
debugging, 9 

cycles in flow graph, 119 

DAG (directed acyclic graph), 81 
data (immediate) 

in code block, 160 
in VAX-II instruction, 161, 166 

data declarations 
in Symbol Table, 36 
validated by DECLARE phase, 211 

data flow equations, 112 
data type 

defined, 242 
encoding in tree nodes, 45 
information in Symbol Table, 35 
information in trees, 36 
size, 58 
summary of supported types, 57 

data type conversions 
inserted by PASS2, 212 

data type information 
specified for a reference, 61 

debugging the compiler 
test system, 11 
tools, 11 

decimal numbers, representation in compiler, 
58 

DECLARE phase, 36, 211, 243 
handling of nonconstant extents, 64 

place in compiler shell, 17 
definition point, 89 

alias class, 94 
of an array element, 95 
ASSIGN operator, 94 
CALL operator, 94 
class, 92, 94 
defined, 243 
of external variable, 92 
last, 92 
last for a class, 92 
number assigned by Optimizer, 96 
of a structure member, 95 
rules, 95 
rules for determining, 94 
use in limit computation, 90 

de/set, 108, 119 
interrogated, 110 

depth-first order, 111 
Aho' and Ullman algorithm, 111 
defined, 243 
illustration, 111 
in live variable analysis, 112 

descriptor 
allocation, 157, 159 
defined, 243 
extent information, 64 
for passing arguments, 68 
prologue, 155, 156 
prologue defined, 249 
when needed, 68 

diagnostic messages, compiler 
C compiler, 216 
in listing file, 16 

diagnostic tools, 11 
directed acyclic graph (DAG) 

defined, 243 
disjoint lifetime 

defined, 243 
effect on register assignment, 191 

displacement addressing mode, 161, 166 
deferred, 161 

display level 
calculated by Write Tree, 74 

display pointer 
conditional move instructions to load, 175 
defined, 243 
register allocation, 51 
set in prologue code, 49 
in stack frame, 63 
for uplevel references, 50 

display temporaries for pointers 
saved in stack frame, 50 

DO-loop, use of SAVE-RESULT operator, 84 
dominator, loop, 127 

exit, 129 
dope vector, 64 

259 



260 

See also descriptor 
dummy arguments, 67 
dynamically sized temporaries 

allocating, 50 
freeing, 50 

dynamically sized variables 
computed stack size, 185 
references, 63 

edges, 106 
examples, 106 
initial node, 106 
successors and predecessors, 106 

element (array) 
See also array element 
address calculation, 65 

elimination of common sUbexpressions, 134 
END_OFJROLOGUE operator, 55 
END statement 

defined, 243 
ENTRY operator, 55 
entry point, 244 

Intermediate Language representation, 66 
specified by CALL operator, 66 

equivalence of operators, 138 
error control operators, 57 
error messages 

C compiler, 216 
from PL/I compiler, 210 

ERROR operator, 57 
EXIT operator, 55 
explicit allocation list, 173, 174, 244 

scanned, 177 
use in code block processing, 188 

expressions 
invariant removed from loops, 125 
LALR(l) parse, 214 
parsing arithmetic, 208 
reducing in offsets, 79 
rewriting arithmetic for optimization, 78, 79 

extent expressions 
arrays, 44 
automatic variables, 65 
based variables, 64 
computation, 64 
nonconstant, 64 
permanent trees for, 46 
reduced by DECLARE, 212 
run-time evaluation, 64 

extent information 
descriptor for, 64 
encoded in Symbol Table, 42 

external class, 92 
definition points, 94 

external declarations 
Symbol Table representation, 40 

external procedure, 244 

Engineering a Compiler 

in code generation, 156 
effect on variable analysis, 92 
Symbol Table representation, 41 

external variable 
addressing, 175 
addressing with PC, 181 
in code block operand specifier, 161, 166 
storage allocation, 13 

file 
constant (in PL/I), 61 
operator, 13 

floating-point data 
representation, 58 

flow graph 
alias node, 106 
backward flow, 119 
constructing, 98, 105 
defined, 244 
depth-first order, 111 
edges, 106 
effect of call operators, 105 
example, 113 
information collected, 107 
initial node, 105 
live variable analysis, 111, 118 
loop dominators, 127 
ordering, 111 
region, 116 
uplevel node, 106 
use, 87, 137 
with alias node, 107 
with uplevel node, 107 

flow graph node 
contents, 109 
sets, 109 

flow path 
backward, 137 
moving operators backward, 90 
structured, 141 

flush-on-call attribute, 94 
detected by Write Tree, 74 
example, 94 

FP (Frame Pointer), 47, 170, 244 
addressing temporaries, 184, 185 
after call instruction, 48 
use in procedure calls, 67 

frame pointer 
See FP (Frame Pointer) 

FREE operator, 57 
Freiburghouse, Robert A., 2,152,169 
front end, 12, 244 

bootstrapping, 9 
common functions in, 205 
differences between PL/I and C, 17 
handling of aliased variables, 61 
requirements, 35, 54 



Index 

function 
data types for return value, 68 
declaration, in C, 214 
definition, in C, 214 
PL/I built-in, 57 
preprocessor, in PL/I, 210 
return value, 56, 68 
return value expressed in symbol node, 43 
return value passed in RO, 194 

function call 
as definition point, 94, 95 
effect on flow graph, 105 
expressed in Intermediate Language, 56 

global optimization 
defined, 244 

golo action (TBL), 22 
GOTO operator, 56 

differentiation from branch operators, 56 
reduced to BRANCH operator by Write Tree, 

75 
uplevel,106 

grammar, 244 
LALR(l), 213 
LALR(l) development, 214 

graph, flow 
See flow graph 

HANOI program, 9, 232 
hash table for common subexpression 

elimination, 137 
heap storage allocation, 57 
held register list, 188, 189 

defined, 244 

identifier, 244 
See also node identifier, operator identifier, 

T -reg identifier 
source program, 38, 211 
Symbol Table node, 38 
T-reg node, 157, 172 
virtual memory address of, in Symbol Table, 

38 
if_not action (TBL), 23 
if action (TBL), 23 
IF statement 

handled by PL/I, 208 
imaginary block, 41 
immediate data in VAX-II instruction, 161, 

166 
IMMEDIATE operator, 55, 245 

converted by Write Tree, 75 
converted to CONSTANT operator, 76 
as operand of ADD_OFFSET operator, 62 
participation in constant folding, 76 
value saved, 85 

INCREMENT_USAGE operator, 56 

introduced by Write Tree, 85 
indexed addressing mode, 165, 245 

T-reg identifier, 162 
index register, 161 

allocated by Register Allocator, 189 
defined, 245 

initialization 
compiler, 13,38 

initial node, 105 
edges, 106 

in set, 118 
computation, 112, 115 
example, 118 
in flow graph node, 109 
in live variable analysis, 112 

instruction 
branch, represented in code block, 160 
counter, 48 
machine, represented in code block, 160 
operands in machine, 159 
operand specifier, 160, 165 

instruction code block, 160 
handled by Peephole Optimizer, 199 
handled by Register Allocator, 188 

instructions, VAX-11 
classes defined, 197 

instruction set, VAX-11, 1 
call instructions, 48 
optimizations, 145 
register destruction, 175 
string instructions, 211 

integers 
computations reduced, 78 
representation, 58 
sizes on VAX-11, 78 

intermediate code list, 16, 155, 159, 175, 245 
processed by Peephole Optimizer, 196 
processing by Register Allocator, 188 

Intermediate Language, 52 
error handling operators, 57 
generic definition of, 245 
logical operators, 56 
loop control, 127 
loop control operators, 56 
mathematical operators, 56 
memory allocation operators, 57 
operators representing program structure, 55 
operators to support C, 57 
operators to support PL/I, 57 
operators used by the Optimizer, 57 
program control operators, 56 
relational operators, 56 
requirements for operators, 53 
summary of operators, 54 

internal procedure 
effect on definition points, 94 
Symbol Table representation, 41 

261 



262 

interpreter (TBL), 18, 20 
example, 24 
implementation of variables, 23 
in Local Code Generator, 153 
requirements, 22 
requirements for argument processing, 21 

interprocedural analysis, 148 
invariant expressions 

removed from loops, 125 

keyword 
defined, 245 
handled by PL/I compiler, 208 
Symbol Table representation, 44 

kill list, 173, 175 
defined, 245 
illustration, 177 
scanned, 177 
used in code block processing, 188 

label array 
for case construction, 106 

label code block 
handled by Peephole Optimizer, 199 

label node 
in code block operand specifier, 166 

LABEL operator, 56 
labels 

aliased, 106 
arrays of, 56 
arrays SUbscripts reduced by Write Tree, 75 
compiler-generated, 56 
defined, 245 
in flow graph, 107 
Intermediate Language representation, 56 
passed as arguments, 67 
represented in code block, 160 
resolution, 16 
Symbol Table representation, 38 
usage detected by Write Tree, 75 

LALR(l) 
defined, 245 
grammar, 213 
grammar development, 214 
suitability for C, 214 

languages 
See also assembly language, C, PEARL, PL/I 
compiler implementation, 8 
used in VAX-II Code Generator, 6 

LET directive (TBL), 20, 21 
lexical analyzer, 208, 210 

token vector, 211 
limit of an operator, 89, 246 

for alias variable, 92 
computation, 90 
definition point rules, 95 
inclusion of class definition points, 92 
use in common subexpression elimination, 

137,140 

Engineering a Compiler 

use in invariant removal, 127 
limit variable of a loop 

saving, 56, 84 
testing, 56 

linker,8 
defined, 246 

listing files, output, 16,54 
literal 

code block, 160 
literal addressing mode, 166 
live variable analysis, 111, 118,246 

computation of in and out sets, 112 
in and out sets, 112, 118, 119 
use of depth-first order, 112 

load base code block, 160 
operand specifier example, 166 

Local Code Generator, 13, 152 
allocation of temporaries, 156 
building display pointers, 49 
code block emission, 159 
control flow in, 153 
debugging, 9 
defined, 246 
design decisions, 152 
development, 8 
emission of code blocks, 163 
implementation of procedure calls, 67 
use of TBL, 18, 153 

local variables 
assign to registers, 99, 124, 169 
values propagated, 113 

logical operators, 56 
LOOP-BODY operator, 56 
LOOP-BOTTOM operator, 56, 127 

in DO-loop, 84 
example, 134 

loop control variable 
as definition point, 94 
optimized addressing of, 130 

loop dominator 
defined, 246 

loop invariant removal 
defined, 246 
role of operator limit, 127 

loops 
addressing arrays, 88 
control operators, 56 
exit dominators, 129 
incrementing a control variable, 56 
removal of invariant expressions, 125 
representation in Intermediate Language, 121 
testing limit variable, 56 

LOOP_TOP operator, 56, 127 

machine instruction 
operand, 159 
operand specifier, 160, 165 
represented in code block, 160 

MACRO (assembly language), 7 



Index 

See also assembly language 
mathematical operators, 56 
memory 

allocated for temporaries, 184 
allocated in stack frame, 184 
allocated on stack, 184 
temporary assigned to, 172, 173 
variables requiring, 108, 111, 121, 181 
variables that must be in, 100 

memory allocation 
Intermediate Language operators, 57 
Symbol Table, 38 
trees, 46 

memory temporaries 
allocated on stack, 184 

MULTICS 
b{)otstrapping PL/I compiler on, 7 
defined, 247 

multiple-entry-point procedures 
Intermediate Language operators, 55 

multipliers in arrays, 43 
calculate element addresses, 65 
computing element offsets, 66 

nesting level 
block, 41, 47 
defined, 247 

node 
alias, 107 
array, 43 
block, 40 
defined, 247 
edges, 106 
identifier, 38 
initial (in flow graph), 105 
memory allocation in Symbol Table, 38 
operator, 153 
register temporary, 157 
successors, 106 
symbol, 42 
Symbol Table, 38 
T-reg,156 
token, 44 
tree, 35, 45 
ur;level, 107 

node (fl0w graph), 105, 115 
added to region list, 117 
contents, 109 

node identifier, 45 
defined, 247 
maximum number of, 39 
to link Symbol Table nodes, 41 
T-reg,157 

n-tuple,53 
See also cperator 
defined: 247 

object module 
defined, 247 

writing, 16 
object module analyzer, 9 

defined, 247 
Object Module and Listing File Writer, 184 

defined, 247 
offset 

separation of constant part, 79 
offsets in references 

array elements, 60 
bit offsets, 64 
calculations done by PASS2, 212 
collecting constant part, 79 
computation, 62, 64 
constant part, 73 
expressed in REF operator, 59 
run-time evaluation, 64 
structure members, 65 
units, 62 
variable part, 62, 73 

ON-unit 
See also condition handler 
defined, 247 
located via stack frame, 49 
Symbol Table representation, 40 
usage detected by Write Tree, 74 

opcodes 
encoding in tree nodes, 45 
TBL,20 

operand 
counter, 173 
data type and size, 57 
defined, 247 
ll1achine instruction, 159 
representation in a tree, 45 
use of negative identifiers, 45 

operand addressing 
on VAX-11, 175 

operand counter 
defined, 247 
in register kill list node, 175 
updated by Register Allocator, 187 

operand specifier 
code block, 160 
defined, 247 
displacement values, 163 
examples, 163 
format, 161 
updated by Register Allocator, 187 

operand specifiers, 166 
operator, 13 

as definition point, 89 
defined, 248 
distinguishing operands, 45 
equivalency criteria, 138 
interpretatiorrin TEL routine, 153 
limit, 89 
limit of, 90 
representation in tree node, 45 
synonymous with tree, 46 

263 



264 

transformation to code blocks, 152 
variable-length vs fixed-length, 53 

operator file, 13, 99 
defined, 248 
order of operands, 122 
output, 11 
processed by Optimizer, 96 

operatoridentnier 
assigned by Write Tree, 73 
defined, 248 
positive values, 134 
uniqueness within block, 52 

operator node, 153 
contents, 52 
defined, 248 
identnier,52 
relation to T-reg node, 159 
when result is assigned to a temporary, 157 

operator precedence, 208 
optimization 

addressing modes, 130 
addressing using SP, 185 
assignment of local variables to registers, 99 
Boolean branch expressions, 100 
common subexpression elimination, 134 
concepts and assumptions, 88 
defined, 248 
in generating procedure prologue, 51 
on integer expressions, 76 
loop invariant removal, 125 
result incorporation, 145 
statistics, 147,202 
suppressed for interactive debugging, 99 . 
tradeoffs,147 
value of Write Tree, 71 

optimized code examples, 223 
Optimizer phase, 13, 86 

at first release of PL/I compiler, 87 
control flow, 96 
dependence on Symbol Table, 37 
evolution, 86 
Intermediate Language operators, 57 
size, 88 
structure, 96 

out set, 118, 119 
computation, 112, 115 
example, 118 
in flow graph node, 109 
in live variable analysis, 112 

parameters 
as members of alias class, 92 
base pointer in reference, 63 
computing address in a reference, 63 
containing extent information, 64 
defined, 248 
reference detected by Write Tree, 74 

Engineering a Compiler 

references, 63 
specified using descriptors, 68 

PARAMJTR operator, 55, 63 
defined, 248 

parent block 
defined, 248 
finding, 47 
locating, 63 
Symbol Table representation, 41 

parent pointer, 51 
saved on block activation, 49 
usage detected by Write Tree, 74 
use in procedure calls, 67 

parser 
bootstrapping, 9 
PL/I,207 

parser, PL/I 
use of TBL, 19 

parsing, 36 
defined, 248 
PL/I,206 

partition, allocation, 179 
PASS1 phase, 36, 207 

defined, 248 
place in compiler shell, 17 
use of TBL, 18, 19, 207 

PASS2 phase, 36, 212 
changes after bootstrap, 12 
defined, 248 
interaction with Write Tree, 71 
memory allocation, 39 
place in compiler shell, 17 
resolution of variable names, 44 
use of TBL, 18, 212 

passed by reference 
variables requiring memory, 111 

pattern matching 
code generation techniques, 5, 153 
defined, 248 
in Peephole Optimizer, 196 

PC (Program Counter), 48, 170 
addressing external variables, 181 
defined, 248 
saved by call instruction, 48 

PEARL compiler, 17, 54, 219 
use of Optimizer, 37 

peephole 
defined, 248 

Peephole Optimizer, 16, 196 
control flow, 198 
defined, 249 
instruction classes, 197 

performance 
comparison of PL/I and C compilers, 217 
goals, 11 
Peephole Optimizer, 202 
Symbol Table memory allocation, 39 



Index 

ofTBL,20 
tradeoffs,221 

performance improvements 
tree allocation, 46 
using VAX-II string instructions, 211 
Write Tree, 71 

permanent trees, 46 
phases (compiler), 3 

bootstrapping, 9 
evolution, 12 
language independent, 13 
summary, 13 
time spent in each, 220, 221 

PL/I 
General Purpose Subset, 1, 10 
as source language, 6 
support of VAX-II hardware, 47 
syntax, 206 

PL/I compiler 
argument passing, 67 
bootstrapping, 8 
compilation rate, 147 
data types required, 57 
front end, 36 
Intermediate Language operators, 57 
on MULTICS, 7 
performance compared with C, 217 
phases, 17 
PL/I-specific details, 71 
size of Optimizer phase, 88 
structure, 207 
time spent in each phase, 220 

pointer 
as base in reference to procedure parameter, 

63 
as base reference in REF operator, 60 
display See display pointer 

pointer array 
built, 96 
null pointers, 124 
reflecting changed operators, 99 
removing operators, 138 
shuffled during loop invariant removal, 129 

posttree field, 83 
precision reduction, 79 
predecessor, 106, 109,249 
preprocessor functions, 210 
pretree field, 83 
PRINTOPS, 11 
priority 

of register temporary, 173 
procedure 

defined, 249 
operators that delimit entry point, 55 
Symbol Table representation, 40 

procedure calls 
as definition points, 94, 95 

effect on flow graph, 105 
implementation, 47, 66 
Intermediate Language operators, 56 
VAX-II hardware processing, 48 

PROCEDURE operator, 55 
procedure parameters 

addressing, 63 
as members of alias class, 92 
references, 63 

procedure prologue, 48 
multiple-entry-point, 55 
represented in code block, 160 

program 
defined, 249 
flow of control, 105 

program control 
Intermediate Language operators, 56 

programs 
benchmarks for various optimizations, 148 

program section 
base address, 160 
number in code block operand specifier, 161, 

166 
prologue code 

represented in code block, 160 
prologue code, 48 

building stack frame, 50 
calculation of extents, 65 
defined, 249 
operators that delimit, 55 

prologue descriptor, 155, 156 
access to T-reg nodes, 157 
defined, 249 
fields used by Register Allocator, 172 

quad, 53,249 

RANGE operator, 57 
output in pretree field, 83 

recursive descent parse, 208 
defined, 249 

reduction 
of comparison operators, 76 
defined, 249 
of integer computations, 78 
of integer expressions, 76 
of offset expressions, 79 
on offsets in REF operators, 79 
by Optimizer, 96 
by Peephole Optimizer, 199 
of precision in integer arithmetic, 79 

redundancy elimination, 137, 144 
reference count, 52 

calculated by Write Tree, 73 
references 

to aggregates, 62 
alias, 92 

265 



266 

to arrays, 60 
to arrays in loops, 88, 129 
to arrays using ADDILBASE operator, 134 
to based variables, 60 
base pointer operand, 63 
complete, 63 
to constants handled by PASS1, 207 
defined, 249 
to external variables, 166 
obtain the value of, 59 
to procedure parameters, 63 
to propagated variables, 122 
to register variables, 116 
temporaries on stack, 50 
to variables, 55, 59, 60, 89 
uplevel, 47, 49,108 

REF operator, 55 
base pointer operand, 63 
complete address of a variable, 63 
defined, 249 
examples, 60 
handling of aliased variables, 61 
offset operand, 62 
operands, 59 
reduction of offset expressions, 79 
symbol node operand, 61 
used to specify argument in a call, 67 

refset, 108 
in flow graph node, 109 

region, 113, 117 
computation, 118 
defined,249 
instance of a variable, 118 

region list, 119 
computation, 119 

register 
See also Register Allocator 
addressing mode, 161 
assignment, 175, 177 
assignment of local variables, 99 
base, allocated by Register Allocator, 189 
criteria for assignment of locals, 100 
deferred addressing mode, 166 
destruction by VAX -11 instructions, 175 
function value returned in, 68, 194 
index, allocated by Register Allocator, 189 
kill list, 173, 175 
summary of V AX-11, 169 
usage on VAX-11 , 47 
used in deferred addressing mode, 161 
used in indexed addressing mode, 161 

register allocation, 169 
bootstrap compiler, 10 
display pointers, 51 
explicit allocation list, 173 

Register Allocator, 16, 169 
assignment of temporaries to memory, 184 

Engineering a Compiler 

and base or index register, 189 
control flow, 176 
data structures, 172 
defined, 249 
development of, 169 
processing of intermediate code list, 175 

register assignment 
explicit, 125 
sample program, 191 
selection algorithm, 181 

register destruction 
call instructions, 177 

register kill list 
scanned, 177 
used in code block processing, 188 

register masks 
available mask, 177, 181 
in register kill list node, 177 
use mask, 181 

register save mask 
used by call instruction, 48 

register state mask, 188 
register temporary 

allocated on stack, 184 
for ASSIGN-REGTEMP operator, 124 
for compiler-generated variables, 156 
defined, 249 
for local variables, 159 
node, 173 
philosophy of Local Code Generator, 156 
usage priority, 173 
usage span, 176, 177 
weight calculation, 176 

relational operators, 56, 75 
reduced, 101 
reductions by Write Tree, 76 

removal of invariant expressions from loops, 
125 

result incorporation, 87, 145 
defined, 250 

results, temporary, 157 
return instruction, 50 
run time, 250 
run-time support procedures, 11 

implementation, 68 

SAVE operator, 55 
SAVE-RESUL T operator, 56 

defined, 250 
eliminated by Optimizer, 85 
freed by LOOP -BOTTOM operator, 85 
used for ++ operator, 83 
used in PL/I DO-loop, 84 
valid operands, 85 

scope of a variable 
defined, 250 
reflected in Symbol Table, 41 



Index 

semantic analysis, 35, 36 
C compiler, 215 
defined, 250 
in overall compiler, 13 
by PASS2, 207, 212 
resolution of variable names, 44 

SETS operator, 56, 89 
defined, 250 
as definition point, 94 

sets used by the Optimizer 
def, 108, 110 
in, 112 
in and out, 118 
out, 112 
ref, 108 
use, 107, 110 

shell sort program, 235 
size of data 

in calculation of array offsets, 60 
encoding in tree nodes, 46 
expressed in operator, 58, 61 
unit encoding in tree nodes, 45 

source languages, 250 
in V AX-11 Code Generator, 6, 8 

source program 
attributes, 42 
defined, 250 
input functions, 210 
preprocessor functions, 210 
statement identification, 54 

SP (Stack Pointer), 48, 170 
addressing temporaries with, 185 
after call instruction, 48 
defined, 250 
used to address temporaries on the stack, 50 

SREF operator, 207 
stack 

pointer, See SP (Stack Pointer) 
base, 50, 184 
memory allocation, 57, 184 
usage detected by Write Tree, 74 
used for block activations, 47 
use in argument passing, 66 

stack frame, 48 
defined, 250 
description, 48 
dynamic predecessors, 48 
on leaving a block, 50 

statement 
in code block, 160 
defined, 250 
number in source file, 54 

STATEMENT operator, 54 
static class, 92 

definition points, 94 
static variable storage allocation, 13, 36 
storage allocation, 13 

Storage Allocator, 13, 37 
defined, 250 

storage classes 
automatic, 47 
defined, 251 

storage management 
in Symbol Table, 46 

storage requirements 
detected by Write Tree, 73 
encoded in Symbol Table, 42 

strength reduction, 127,227 
defined, 251 

string data 
passed as arguments, 68 
representing the size, 61 

string instructions on VAX-II, 211 
structure 

defined, 251 
Symbol Table representation, 43 

structure member 
definition point, 95 

subexpressions, common 
inDAGs,81 
detected by Write Tree, 80 
eliminating, 134 
handled by Write Tree, 82 

subgraph,116;251 
list, computation of, 119 

successor, 106, 109,251 
SWITCH statement processing, 216 
symbol node, 251 

contents, 42 
identifier in REF operator, 59, 61 
information supplied by Write Tree, 73 
marked alias, 61 

Symbol Table, 13,35,36,37,251 
contents, 35 
maximum address space, 38 
memory allocation, 38 
overview, 37 
processed by DECLARE phase, 211 
storage management, 46 
tree allocation, 46 

TBL (Table Building Language), 18,21,54 
actions, 21 
advantages, 153,215 
argument interpretation, 22 
compiler, 6, 18, 23 
compiler output, 22 
compiler variables, 152 
decision to use, 6, 152 
defined, 251 
interpreter, 18 
in Local Code Generator, 153 
in PASS1, 207 
in PASS2, 212 

267 



268 

performance, 20 
program example, 19 
program structure, 19 
sample interpreter, 24 
sample program, 24 
syntax requirements, 20 
in Write Tree, 71 

temporaries 
allocated by Local Code Generator, 156 
allocated to stack memory, 184 
associated with block activation, 47 
defined, 251 
for display pointers, 51, 63 
for dummy arguments, 67 

temporary trees, 46 
testing the compiler 

during bootstrapping, 9 
test system, 9,11 

token node, 44, 45 
defined, 251 
representation of constant, 55 

token vector, 208 
encoding, 211 

Towers of HANOI, 232 
Translation Systems, Inc. (TSI), 2 
tree node contents, 52 
trees, 13, 35, 251 

after execution of PASS1, 207 
compared to triples and quads, 53 
contents, 45 
for nonconstant extents, 64 
identifiers, 45 
leaves, 35 
memory allocation in Symbol Table, 39 
output, 11 
posttree field, 83 
pretree field, 83 
reduction, 70, 72 
size, 46 
storage management, 46 

T-reg 
for ASSIGNJEGTEMP operator, 124 
allocated on stack, 184 
allocation, 156 
for local variables, 159 
maximum number, 157 
usage priority, 173 
usage span, 176, 177 
weight calculation, 176 

T-reg identifier, 244 
in code block operand specifier, 161 

T-reg node 
See also register temporary node 
access through prologue descriptor, 157 
for an ASSIGNJEGTEMP operator, 159 
associated with block activation, 172 
defined, 252 

Engineering a Compiler 

identifier, 157 
information in, 173 

triple, 53, 252 
TSI (Translation Systems, Inc.), 251 

Ullman, Jeffrey D., 4, 111,112 
unions 

references, 62 
units of size information, 45 
uplevel, 252 

class, 92, 94 
uplevel addressing 

requirements on block activation, 47 
uplevel node 

illustrated, 107 
uplevel references, 49 

detected by Write Tree, 73, 74, 75 
display pointers, 50 
ref set, 108 
represented in flow graph, 106 

uplevel set, 100 
uplevel variables 

requiring memory, 111 
usage 

counts for register allocation, 169 
of register temporary, 173 

use-definition list, 109 
defined, 252 

use of a variable, 89 
USE operator, 57, 138 

defined, 252 
use set, 107, 119 

in flow graph node, 109 
interrogated, 110 
scan of VALUE operators, 109 

VALUE operator, 55, 59, 85 
data type information, 61 
defined, 252 
referring to ASSIGNJEGTEMP operator, 159 
representing a use of a variable, 89 
rules for use, 59 
scanned for use information, 109 
updated with ASSIGNJEGTEMP operators, 125 

value propagation, 88, 113 
criteria, 122 
defined, 252 

variable 
address of, 55 
aliased,92 
analysis, 112 
candidate for register assignment, 109, 159 
capture value of, 83 
classes of, 92 
constant part of offset, 79 
declaration, 41 
defined, 252 



Index 

definition and use, 89 
last definition point, 92 
live, 112 
memory required, 108 
obtain the value of, 59 
Optimizer's definition of, 88 
passed by reference, 95 
passed by reference, as definition point, 89 
region of discrete lifetime, 116 
requiring memory, 100, 111, 181 
rules for definition and use, 94 
scope, 88 
static, 92 
storage location determination, 63 
uplevel,92 
use-definition list, 109 
use and definition, 107 
value propagation, 116 

variable analysis, 111, 118, 246 
disjoint lifetimes, 99,191 
sets used, 112 
use of depth-first order, 112 

variable names 
match to symbol nodes, 44 

variables 
passed by reference, 108 
value propagation, 119 

VAX-II architecture 
addressing bit data, 58 
argument passing conventions, 67 
block activations, 47 
call instructions, 48 
condition handling, 48 
instruction set, 1 
interlanguage call standard, 11,48,66,68 

optimizations on instruction set, 145, 185 
peephole classes for instruction set, 197 
registers, 47 
representation of bit strings, 8 
return from a call, 50 
sizes of integers, 78 
string instructions, 211 
word size, 8 

VAX-ll C, 17 
See also C compiler 

VAX-ll Code Generator 
control flow, 13 
implementation languages, 6 
overview, 12 
structure, 17 

VAX-ll MACRO, 7 
See also assembly language 

VAX-ll PEARL, 17 
See also PEARL compiler 

VAX-ll PL/I, 17 
See also PL/I compiler 

VAX/VMS, 1 
virtual address 

computed from node identifier, 38 
virtual origin, of array, 66 

Write Tree, 12, 13,46, 70 
coroutine linkage to front end, 72 
defined, 252 
handling of common subexpressions, 82 
modifications to support the Optimizer, 87 
motivation for making separate, 70 
summary offunctions, 72 
use of TBL, 18 

269 






