

Programming
with RT-11
VOLUME 1
Program Development Facilities

Programming
with RT-11
VOLUME 1

Program
Development
Facilities

Simon Clinch

Stephen Peters

~DmDDmD
DECbooks

Copyright © 1984 by Digital Equipment Corporation.
All Rights Reserved. Reproduction of this book, in part or in
whole is prohibited. For information write Digital Press,
Digital Equipment Corporation, 30 North Avenue, Burlington,
Massachusetts 01803

Designed by Virginia J. Mason
Printed in the United States of America

10 9 8 7 6 5 4 3 2

Documentation number EY-00022-DP
ISBN 0-932376-32-0

The following are trademarks of Digital Equipment Corporation:

DEC
DECtape
DIBOL
MICROIPDP

PDP
PDT
Professional
RSTS

RSX
RT-ll
UNIBUS
VT

Library of Congress Cataloging in Publication Data

Clinch, Simon, 1959-
Programming with RT -11.

Includes index.
Contents: v. 1. Program development facilities.
1. RT-l1 (Computer operating system) 2. MACRO-

11 (Computer program language) 3. FORTRAN (Com
puter program language) 4. Basic (Computer program
language) I. Peters, Stephen, 1951- . II. Title.
QA76.6.C55 1984 001.64'2 84-5031
ISBN 0-932376-32-0 (v. 1)

Contents

Introduction vii

1 Developing Programs in MACRO-11
and FORTRAN IV 3

2 Executing Programs 43

3 Developing Programs in BASIC 59

4 Debugging Programs 75

5 Using Libraries 107

6 Designing and Implementing Overlay
Structures 121

7 Using Language Interfaces 133

Solutions to Practices 151

Index 173

v

Acknowledgment

We would like to thank all those who contributed to this
publication. In particular, we are grateful to Martin Gentry,
who reviewed and updated the material in this book and
Bernard Volz, who reviewed the material and revised prac
tice exercises. The staff at Digital Press deserve special
commendation for their invaluable assistance.

Introduction

Programming with RT -11 examines the RT -11 facilities that
enable you to develop executable programs in MACRO-ii,
FORTRAN IV, or BASIC-11. Programming with RT -11
comprises two volumes. Volume 1 covers the program de
velopment process, RT -11 debugging aids, libraries, over
lays, and the FORTRAN IV and BASIC-l1 subroutine con
ventions for MACRO-11 interfacing. Volume 2 discusses the
use of programmed requests to perform file and terminal
input/output, foregroundlbackground communication, and
synchronous and asynchronous input/output operations.

Volume 1 contains chapters 1 through 7. Chapter 1,
"Developing Programs in MACRO-11 and FORTRAN IV,"
describes the program development cycle for MACRO-11
and FORTRAN IV, focusing on the conventions for assem
bling, compiling, and linking source programs. Chapter 2,
"Executing Programs," examines the execution of fore
ground, background, and system jobs and discusses the
EXECUTE command. Chapter 3, "Developing Programs in
BASIC," gives an overview of the program development
cycle for BASIC-11 and discusses the procedures for in
voking the BASIC interpreter; creating, modifying, precom
piling, and saving programs; and leaving the interpreter.
Chapter 4, "Debugging Programs," explains the use of ODT
and VDT in debugging programs and the process of failure
analysis. Chapter 5, "Using Libraries," describes the crea-

vii

viii

Equipment

Resources

Introduction

tion, modification, and use of macro and object libraries.
Chapter 6, "Designing and Implementing Overlay Struc
tures," discusses the procedures for checking memory use
and implementing program overlays. Chapter 7, "Using
Language Interfaces," examines the functions of MACRO-11
subroutines in FORTRAN IV and BASIC-11 programs and
describes the FORTRAN/MACRO and BASIC/MACRO in
terfaces. (The introductory chapter of volume 2 describes
its thirteen chapters in detail.)

In order to do the practice exercises, you will need access
to a working RT -11 system with at least 500 blocks of disk
space for your files. By a working system, we mean that:

• The RT -11 monitor program has been transferred
from its storage disk to main memory (in other
words, the system has been bootstrapped)

• The FORTRAN IV compiler or BASIC-11 interpreter
has been installed and is available for use

Although every effort has been made to make Program
ming with RT-11 self-contained volumes, you may need to
refer to the following manuals from the RT -11 documen
tation set for additional information:

• RT -11 Installation Guide

• RT -11 Programmer's Reference Manual

• RT -11 Software Support Manual

• RT -11 System Generation Guide

• RT -11 System Message Manual

Introduction ix

• RT -11 System User's Guide

• RT -11 System Utilities Guide

The documentation to which we refer throughout the text
is written for RT-11 version 5.0. We also used a computer
system equipped with RT -11 version 5.0 to generate the
programs in our examples and practices. If you own a newer
version of RT -11, you may also need a copy of the latest
System Release Notes to determine the difference between
your system and the one described here.

Programming with RT -11 is written under the as
sumption that you know how to program in MACRO-11,
FORTRAN IV, or BASIC-11. The authors assume that you
can manipulate files and get directory listings on an RT -11
system and are familiar with RT -11 conventions for device
and file specifications, the operation of the Foreground/
Background monitor, and monitor components and their
functions. If you need additional information on RT -11
conventions and programming procedures, you may refer
to some of the publications listed below:

• Working with RT -11 (Digital Press, 1983)

• Tailoring RT -11: System Management and Program-
ming Facilities (Digital Press, 1984)

• MACRO-11 Language Reference Manual

• FORTRAN IV Language Reference

• RT -ll/RSTS/E FORTRAN IV User's Guide

• BASIC-11 Language Reference Manual

• BASIC-11/RT -11 Installation Guide

• BASIC-11/RT-11 User's Guide

For a directory of documentation products, write:
Digital Equipment Corporation
Circulation Department, MK01/W83
Continental Boulevard
Merrimack, NH 03054

x

Notations

Introduction

The following symbols are used in the two volumes to rep
resent specific elements:

(KEY) indicates keyboard and keypad keys, their func-
tions, or key combinations

COMMANDS (uppercase) indicates input

P romp t 5 (upper and lowercase) indicates computer output

[] indicates parts of a command that are optional (the
brackets are not part of the command string)

Programming
with RT-11
VOLUME 1
Program Development Facilities

1
2

Program Development
Assembly and Compilation

Controlling the Production of an Object Module

Generating Listings

Assembling or Compiling Multiple Source Files

Multiple MACRO-11 source files
Multiple FORTRAN IV source files

General form
Allocating Storage Space for Your Output Files

More MACRO-11 Assembler Options

Optional Information in MACRO-11 Listings

ISHOW option

INOSHOW option

Cross-Reference Listings
Interpreting CREF Listings

Controlling Code Recognition and Generation

More FORTRAN IV Compiler Options

Optional Information in FORTRAN IV Listings

Debugging Lines
FORTRAN IV Error Messages

Linking

Load Map Files

Load Image Files
Save image

Relocatable image

Absolute binary image

More Linker Options

Stack location and size
Base address

Debugging aids

Summary of Linker Options
References

1
Developing
Programs
in MACRO-11
and FORTRAN IV

RT -11 allows you to program in assembly, compiled, and
interpreted languages. In this chapter, you will learn the
basic command procedures and concepts needed to de
velop programs in MACRO-11, the language processed by
the RT -11 assembler, and FORTRAN IV, one of the com
piled languages you may use with RT -11. Options for the
FORTRAN IV compiler are generally different from those
for other compilers, but the phases of program develop
ment are the same for all compiled languages.

This chapter shows you how to use the commands,
MACRO, FORTRAN, and LINK, in program development.
When you have completed this chapter, you will be able to
produce an executable file, using error-free FORTRAN IV
or MACRO-11 source code. You will learn to control LINK,
the linking program, by enabling or disabling the options:
IBOTTOM, IFOREGROUND, ILDA, IMAP, and ISTACK.

In addition, you will learn to control the assembly of
MACRO-11 source programs by enabling or disabling the
options: IALLOCATE, ICROSSREFERENCE, IENABLE, ILIST,
IOB]ECT, and ISHOW. You will learn to control the com
pilation of FORTRAN IV source programs by enabling or
disabling the options: ICODE, IHEADER, ILIST, IOBJECT,
IONDEBUG, and ISHOW.

3

4 Programming with RT -11

Program Development

The process of writing a program in source code, translat
ing it into machine code, and producing an executable file
is called program development. The process is made up of
the following steps:

1. Create or Edit a Program. You use an editor program
to create or modify a file containing your MACRO-ll
or FORTRAN IV source code.

2. Assemble or Compile a Program. You use the
MACRO-ll assembler or the FORTRAN IV compiler
to check that the syntax of the source file is correct
and to produce an object module if there are no syn
tax errors. An object module contains the machine
code for your program. You can divide programs
across more than one source file, so that they com
pile into more than one object module. Because ob
ject modules contain relocatable code and code that
indicates how the modules can be linked together,
object modules cannot be executed.

3. Link Object Modules. You link object modules to
produce a file that can be loaded into memory and
executed. Such a file is called a load module. You
may specify whether the load module runs in fore
ground or in background.

4. Execute and Test the Load Module. You load the
load module into memory and execute it. For fore
ground or system programs, you must provide param
eters that control memory allocation.

Figures 1 and 2 show the sequence of steps used in devel
oping MACRO-l1 and FORTRAN IV programs.

Assembly and Compilation

To assemble a program written in MACRO-ll you type the
command, MACRO. To compile a program written in FOR-

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 5

Figure 1.
Program Development in MACRO-11

ASSEMBLY
LISTING
PROG. LST

LOAD MAP
PROG. MAP

EDIT OR
KED

MACRO
ASSEMBLER

LINK

RUN

KEY TO SYMBOLS

D = SYSTEM PROGRAMS
YOU WILL USE

o~

CJ=

FILES THAT YOU
WI LL CREATE OR
REFERENCE

DOCUMENTATION YOU
MAY GENERATE

6 Programming with RT -11

Figure 2.
Program Development in FORTRAN IV

COMPILER
LISTING
PROG. LST

LOAD MAP
PROG. MAP

EDIT OR
KED

FORTRAN
COMPILER

LINK

RUN

KEY TO SYM BOLS

D = SYSTEM PROGRAMS
YOU WILL USE

CJ FILESTHATYOU
= WILL CREATE OR

REFERENCE

CJ= DOCUMENTATION YOU
MAY GENERATE

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 7

TRAN IV you type the command FORTRAN. These com
mands, combined with various options, allow you to:

• Produce zero, one or more object modules

• Produce listings

• Process multiple source files

• Control the allocation of storage space to output files

Controlling the Production of an Object Module

When the MACRO-ll assembler or FORTRAN IV com
piler produces an object module, it automatically gives the
file containing the module the file name of the source file
with the file type .OBJ. If a file with the same file name and
file type already exists, that file is automatically deleted. To
prevent this, you can specify a unique file name and file
type for the new object module produced by using the IOB
JECT option in the following format:

MACROIOBJECT:NEW -FILESPEC SOURCE-FILESPEC

or

FORTRAN/OBJECT:NEW-FILESPEC SOURCE-FILESPEC

EXAMPLE

When assembling the program PROG.MAC, you could
specify that the object module file should be named
NEWPRG.OBJ, by using the command:

.MACRO/OBJECT:NEWPRG PROG

so that the previous module PROG.OBJ would not be
deleted.

You may want to see whether a source file is without
syntax errors, but not need to produce an object module.
You can use the INOOBJECT option to prevent the produc-

8 Programming with RT -11

tion of object modules. The INOOBJECT option is used in
the following format:

MACRO/NOOBJECT SOURCE-FILESPEC

or

FORTRAN/NOOBJECT SOURCE-FILESPEC

A previous version of an object module can also be saved
by making a copy of it in a file with a different name.

Generating Listings

When your assembler or compiler detects syntax errors in
your program, you need to know where they occurred.
MACRO-ll and FORTRAN IV listings can help because
they:

• List the lines of code in the source file

• Indicate where any syntax errors were detected

• Give details about the program sections

• List assembler or compiler statistics

In addition, MACRO-ll assembler listings can:

• Include the table of symbol names that were used in
the source code, together with their values

• Show the addresses that will be used by the load
module and the data that will be loaded into those
addresses

• Indicate which references are external or relocatable

FORTRAN IV compiler listings can:

• Include a table of variables, with their names, data
types, and offsets

• Include a table of arrays, with their names, data
types, section names, offsets, and dimensions

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 9

• Include a table of subroutines and functions refer
enced, with their names and types

• Provide each line of code with a sequence number

These listings will be discussed in detail later.
To get an assembler or compiler listing of a source file,

you can use the ILIST option. The default file type for a
listing is .LST.

EXAMPLE

The command:

.MACRO/LIST PROG

assembles the file PROG.MAC and tells the logical
device LP: to print a listing. The command:

.FORTRAN/LIST PROG

compiles the file PROG.FOR and prints a listing.

You can also specify the file name and file type of a
listing file. The command format is:

MACRO/LIST:FILESPEC SOURCE-FILENAME

or

FORTRAN/LIST:FILESPEC SOURCE-FILENAME

The ILIST option can store a listing in a file. The ben
efit of this is that the file need not be printed out immedi
ately and more than one copy can be printed. To store a
listing, you type the ILIST option after the file name.

EXAMPLE

.MACRO PROG/LIST

If you have the listing file PROG.LST and again pro
cess the source file PROG with the ILIST option, the pre-

10

Practice
1-1

Programming with RT -11

vious listing file is automatically deleted. To prevent this,
you cCin give the new listing a file name other than the de
fault file name, using the ILIST option but with a file name
qualifier. The command takes the form:

MACRO/LIST:LIST -FILESPEC SOURCE-FILENAME

or

FORTRAN/LIST:LIST -FILESPEC SOURCE-FILENAME

EXAMPLE

The following command to compile the FORTRAN IV
program PROG.FOR creates the listing file AAA.BBB
but does not delete PROG.LST:

.FORTRAN/LIST:AAA.BBB PROG

When you use a file name qualifier, listings are not au
tomatically sent to LP:. To get a hard copy, you must use a
separate PRINT command.

1. Type in either the MACRO-ll program PR0101.MAC
or the FORTRAN IV program PR0101.FOR:

MACRO-ll

. TITLE PR0101

.MCALL .PRINT,.EXIT
MESS: .ASCIZ ITHIS PROGRAM SHOULD ASSEMBLE WITHOUT ERRORSI

.EVEN
START: .PRINT #MESS

. EX IT

.END START

FORTRAN IV

PROGRAM PR0101
TYPE 1000

1000 FORMAT (1HO, 'THIS PROGRAM SHOULD COMPILE WITHOUT ERRORS')
END

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 11

2. Assemble or compile the program PR010l to produce
the object module PR0101.0BJ. Assemble or compile
the program PR010l again, to produce the listing
MESS.LST and the object module MESS.OBJ without
deleting the object module PR0101.0BJ.

Assembling or Compiling Multiple Source Files

You may want to process more than one source file using
only one command if:

• You have a source program that is divided across
more than one file

• You want to process more than one source program
in order to produce more than one object module

Multiple MACRO·11 source files

Assume that your MACRO-ll source program is made up
of the following five files:

COPRGT.MAC

PRJCMT.MAC

MACDEF.MAC

DATDEF.MAC

PROG01.MAC

Your own copyright text in the form of
MACRO-i1 comment lines

Comments that apply to every module
in the project for which this program is
written

Common macro definitions

Common data definitions

The code for the main part of your
program

To assemble the program into one object module and· pro
duce a complete listing, you issue the following command.

12 Programming with RT -11

EXAMPLE

.MAC/LIS:PROG01/OBJ:PROGOl COPRGT+PRJCMT+MACDEF+DATDEF+PROGOl

Usually, the file name of output files defaults to the first
file name in the list. Here it would be COPRGT.
ILIST:PROGOi overrides the default so that the listing file
PROGOi.LST and the object module PROGOi.0BJ are pro
duced.

You can also use one command to assemble. several
MACRO-ii programs into separate object modules. The
format of this command is:

MACRO FILENAME1,FILENAME2, ... ,FILENAMEn

This is the same as assembling each of the source files with
a separate command. Figure 3 shows a MACRO-ii pro
gram in which the source code is divided across more than
one file.

Multiple FORTRAN IV source files

Assume that you have a FORTRAN IV source program made
up of three files:

COPRGT.FOR Your own copyright text in the form of
FORTRAN IV comment lines

PRJCMT.FOR Comments that apply to every module in
the project for which this program is
written

PROG01.FOR The code for your program

To compile the program into one object module and pro
duce a listing that includes the comment lines, you use the
following command.

EXAMPLE

.FORTRAN/LIST:PROGOl/OBJECT:PROGOl COPRGT+PRJCMT+PROGOl

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 13

Figure 3.
Assembling Multiple MACRO-11 Source Files

.MACRO/L1ST: PROG/OBJECT: PROG COPRGT+PRJCMT+MACDEF+DATDEF+PROG

COPRGT.MAC
(A COPYRIGHT
NOTICE)

PRJCMT. MAC
(PROJECT
COMMENTS)

MACDEF. MAC
(COMMON MACRO f----I~~
DEFINITIONS)

DATDEF. MAC
(COMMON DATA I----I~
DEFINITIONS)

PROG. MAC
(PROGRAM CODE ~-I~
WITH COMMENTS)

MACRO
ASSEMBLER

PROG. LST
(COMPLETE
LISTING)

PROG.OBJ
(OBJECT
MODULE)

You can also use one command to separately process
more than one program producing more than one object
module. You can compile the three FORTRAN IV source
programs, PROG01.FOR, PROG02.FOR, and PROG03.FOR,
by using the following command.

14 Programming with RT -11

EXAMPLE

.FORTRAN PROG01,PROG02,PROG03

The object modules, PROG01.0BJ, PROG02.0BJ, and
PROG03.0BJ are produced. This ~ingle command is
equivalent to the following three .commands:

.FORTRAN PROG01

.FORTRAN PROG02

.FORTRAN PROG03

Figure 4 shows a FORTRAN IV program in which the source
code is divided across more than one file.

General form

You can use both the plus sign (+) and the comma (,) in a
command to assemble or compile more than one source file.
In general, you can assemble or compile more than one set
of source files so that each set produces one object module.
Each set is separated from the next by a comma and each
set is made up of one or more file names separated by a
plus sign.

EXAMPLE

The command:

.MACRO A+B,C,D+E+F

produces A.OBJ from A.MAC and B.MAC; C.OBJ
from C.MAC; andD.OBJ from D.MAC,.E.MAC, and
F.MAC.

Figure 5 illustrates a single MACRO-ll command caus
ing more than one module to be assembled. Some of these
programs are divided into more than one source file. A sim
ilar capability is available when you use FORTRAN IV.

Figure 5.

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 15

Figure 4.
Compiling Multiple FORTRAN IV Source Files

.FORTRAN/LlST: PROG/OBJECT: PROG COPRGT+PRJCMT+PROG

COPRGT. FOR
(A COPYRIGHT I-----,l~

NOTICE)

PRJCMT. FOR
(PROJECT
COMMENTS)

FORTRAN
COMPILER

PROG. LST
(COMPLETE
LISTING)

PROG.OBJ
(OBJECT
MODULE)

Producing Multiple Modules from Multiple MACRO-11 Source Files

MACRO A +B,C,D +E + F

MACRO
ASSEMBLER

16

Practice
1-2

Programming with RT -11

Using MACRO-ll

1. Type the following programs into three files. Name
them PR0102.MAC, PR0103.MAC, and PR0104.MAC.

PROI02.MAC:

. TITLE PR0102

; *
;* COPYRIGHT (c) 1984 A. N. Other

; *
;* This software was written by A. N. Other and may be
;* used by anyone. A. N. Other is not responsible for
;* any errors.

; *
; *

PROI03.MAC:

; * * *

; *

Project RTVS

This text describes the project RTVS, Program PR0104
is a part of this project.

PROI04.MAC:

.MCALL .PRINT,.EXIT
MESS: .ASCIZ ITHIS PROGRAM IS PART OF PROJECT RTVSI

.EVEN
START: .PRINT #MESS

.EXIT

.END START

2. Assemble the source files PR0102, PR0103, and
PR0104 to produce a single object module along with a
single listing file. The listing file should contain the
code from all three source files. Name the output files
PR1234.0BJ and PR1234.LST.

Practice
1-3

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 17

Using FORTRAN IV

1. Type the following programs into three files. Name
them PR0102.FOR, PR0103.FOR, and PR0104.FOR.

PR0102.FOR:

C *
C *
C *
C *

Copyright (c) 1984 A.N. Other

C * This software was written by A. N. Other and
C * may be used by anyone. A. N. Other is not
C * responsible for any errors.

C *
C *

PR0103.FOR:

C *
C Project RTVS

C -------------
C

C This text describes the project RTVS, Program PR0104
C is a part of this project.

C *

PR0104.FOR:

TYPE 1000
1000 FORMAT(1HO, 'THIS PROGRAM IS PART OF PROJECT RTVS')

END

2. Compile the source files PR0102, PR0103, and PR0104
to produce a single object module, along with a single
listing file. The listing file should contain the code
from all three source files. Name the output files
PR1234.0BJ and PR1234.LST.

18 Programming with RT -11

Allocating Storage Space for Your Output Files

The size of listing files and object modules does not de
pend on the size of the source files from which they are
produced. Listings can include or omit different types of
information, as we will discuss later. Lines of source code
generate any number of words of object code. For these
reasons, the MACRO-ll assembler and the FORTRAN IV
compiler are not able to determine the size of output files
in advance.

If you know the approximate size of the output files,
you can make sure that the assembler or compiler checks
whether there is enough room by using the IALLOCATE
option. Assume that you know that your source file PROG
will produce an object module of size 100 blocks, but you
are not sure if there is enough room on the disk. You can
check whether there will be enough room for this file.

EXAMPLE

.MACRO PROG/OBJECT/ALLOCATE:1QO

If there is not enough room for the allocation, the fol
lowing error message appears:

?MACRO-F-Device full DK:PROG.LST
DK:PROG,DK:PROG[200]=DK:PROG

You would use the FORTRAN command in the same
format to check if a disk has enough room for an object
module. You can make a similar check for listing files.

More Macro-11 Assembler Options

In addition to the options already discussed, you can use
other MACRO-ll assembler options to perform tasks. You
can control the selection of information appearing in list
ings and you can generate a cross-reference listing to assist

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 19

you in analyzing the source code. You can also control how
the MACRO-ll assembler interprets your source code and
generates your object code.

Optional Information in MACRO-11 Listings

Now that you know how to get a MACRO-ll listing, you
need to know how to control the information it contains.
You use the .LIST and .NLIST directives to select the in
formation to be included in an assembler listing. For the
lines of source code in which directives are not in opera
tion, the assembler makes a default selection. These de
faults are shown in table 1. To override the default selec
tions for one listing without having to edit the source code,
use the ISHOW and INOSHOW options.

/SHOW option

You use the ISHOW option to include listing information
that would otherwise be omitted by default. The format is:

MACRO/LIST/SHOW:ARGUMENT FILESPEC .

EXAMPLE

The command:

.MACRO/LIST:PROG/SHOW:ME:LD PROG

causes the assembler to generate the object module
PROG.OBJ and a listing file PROG.LST. This listing
includes the macro expansions (ME) of any macros
found in your program during assembly, and lists
those directives (LD) that have no arguments.

Refer to table 6-2 in the PDP-11IMACRO-ll Language
Reference Manual for a complete list of MACRO-ll listing
control directives.

20 Programming with RT -11

Table 1 .
. L1ST and .NLlST Directive Summary

Argument Default Controls

SEQ List Source line sequence numbers

LOC List Location counter

BIN List Generated binary code

BEX List Binary extensions

SRC List Source code

COM List Comments

MD List Macro definitions, repeat range expansions

MC List Macro calls, repeat range expansions

ME List Macro expansions

MEB Nolist Macro expansion binary code

CND List Unsatisfied conditionals, .IF and
.ENDC statements

LD Nolist Listing directives with no arguments

TOC List Table of contents

TIM Line printer Output format
mode

SYM List Symbol table

INOSHOW option

The INOSHOW option has the same general format as the
ISHOW option, but it has the opposite effect. Use it to pre
vent listing information that would otherwise be included
by default.

EXAMPLE

The command:

.MACRO/LIST:PROG/NOSHOW:BIN PROG

results in the generation of an object module
PROG.OBJanda listing file PROG.LST. The binary
expansions (BIN) of source code are not included in
the listing. file.

Practice
1-4

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 21

Note that the ISHOW and INOSHOW options may be
used only in conjunction with the ILIST option. If you do
not use the ISHOW or INOSHOW option, the default selec
tion of information appears in the listing.

Assemble the source file PR0101.MAC so that a listing file
is produced. Using the ISHOW and INOSHOW options,
specify the following types of information to be included in
the listing:

• The source code
• Comments
• Macro definitions
• Macro calls
• Macro expansions
• No other optional information

Study the listing and see where each type of information
appears.

Cross-Reference Listings

If you have a very complex MACRO-11 program that you
want to modify with only a normal listing, you may find it
difficult to do the following:

• Check whether the source file contains user-defined
symbols whose names are also Digital assembler
mnemonics

• Find the position of the definition of a symbol in or-
der to change that definition

• Identify all the places where a symbol is referenced

• Identify all the places where a symbol is modified

• Locate the specific positions at which errors are
flagged

22 Programming with RT -11

A cross-reference (CREF) listing can provide all of this
information for you. To get a cross-reference listing use the
ICROSSREFERENCE option. You can use the ICROSSREF
ERENCE option to include the following information in a
listing:

• The name of each symbol referenced

• The type of symbol it is

• The position at which each symbol is defined (if the
definition appears in the source files assembled)

• The positions at which each symbol is referenced

You give a code for each optional type of information
to be included. This one-character code or argument indi
cates the sections of a cross-reference listing the assembler
should include. Table 2 lists and describes these argu
ments. You must use the ICROSSREFERENCE option with
the ILIST option and issue the command in the form:

MACRO/LIST/CROSSREFERENCE:ARGUMENT FILESPECS

The ICROSSREFERENCE option does not enable cross-ref
erences on lines of code that are disabled with the .NO
CROSS directive.

Table 2.
Cross-Reference Sections

Argument

S

R

M

P

C

E

None

Section Type

User-defined symbols

Register symbols

Macro symbolic names

Permanent symbols (instructions, directives)

Control sections (.CSECT symbolic names)

Error codes

Equivalent to :S:M:E

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 23

Interpreting CREF Listings

A CREF listing includes the following information:

• A code letter with each page number for the argu
ment represented in that section (for example, S-l)

• The name of each symbol, together with a list of one
or more numbers specifying the page and lines on
which the symbol occurs

• Additional information about each symbol indicated
by a special character to the right of one of the line
numbers. The special characters are:

refers to a symbol definition

* refers to an operation that changes the contents of a
location

EXAMPLE

The CREF listing:

VAR
LF

1-20#
1-10#

2-17
2-20

2-24*
2-23

informs you that the symbol V AR is defined on line
20 of page 1, is referenced on line 17 of page 2, and
is modified on line 24 of the same page. LF is defined
on line 10 of page 1 and is used on page 2, line 20,
and page 2, line 23.

Controlling Code Recognition and Generation

The assembler interprets your source code and generates
your object code according to programmed defaults. You can
override these defaults in order to select from the options
that then become available.

24 Programming with RT -11

Table 3 lists the assembler features for controlling code
recognition and generation by means of .ENABL and .DSABL
directives in source files. Where these directives are not in
operation, the assembler makes a default selection.

You can use the IENABLE and IDISABLE options to
override default selections without having to edit the source
code. The !ENABLE option enables features that would
otherwise be omitted by default. Use it as follows:

MACRO/ENABLE:ARGUMENT FILESPEC

EXAMPLE

The command:

.MACRO/ENABLE:LC PROG

causes the assembler to recognize lowercase character
strings in the source code when building the object
module PROG.OB].

If this option is not enabled, all characters are con
verted to uppercase. This is also true for any listing file that
is produced when this option is selected.

More FORTRAN IV Compiler Options

In addition to the features we have discussed, you can use
the FORTRAN IV compiler to select the types of informa
tion that appear in a listing and to select whether debug
ging lines (lines of code with a "D" in the first column) are
treated as code or as comments. The compiler also tells you
when errors occur. FORTRAN IV compiler optimization
methods are discussed in chapter 6, "Designing and Imple
menting Overlay Structures."

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 25

Table 3 .
. DSABL and .ENABL Directive Summary

Argument

ABS

AMA

CDR

DBG

FPT

GBL

LC

LCM

LSB

PNC

REG

Default

Disable

Disable

Disable

Disable

Disable

Enable

Enable

Disable

Disable

Enable

Enable

Enables or Disables

Absolute binary output

Assembly of all absolute addresses as relative
addresses

Treating source columns 73 and greater as
comments

Generation of internal symbol directory (ISO)
records during assembly (See chapter 8 of the
RT-11 Software Support Manual for more
information on ISD records)

Floating-point truncation

Treating undefined symbols as globals

Accepting lowercase ASCII input

Uppercase and lowercase sensitivity of
MACRO-11 conditional assembly directives
.IF IDN and .IF DIF

Local symbol block

Binary output

Mnemonic definitions of registers

Optional Information in FORTRAN IV Listings

The types of information that you can select to appear in a
FORTRAN IV listing are:

• Source program

• Diagnostic messages

• Storage map

• Generated code

By default, the first three types of information are included
in the listing. You can override this default by using the
/SHOW option in the following format:

26 Programming with RT -11

FORTRAN/LIST/SHOW:code FILESPEC

The different selections you can make are shown in
table 4.

EXAMPLE

Either of the commands below:

.FORTRAN/LIST:PROG/SHOW:2 PROG

or

.FORTRAN/LIST:PROG/SHOW:MAP PROG

instructs the compiler to generate an object module
PROG.OBJ and a listing file PROG.LST. This listing
includes only the storage map and diagnostic
messages.

When you refer to a listing, it is often useful to know
which compiler options were in effect. You can make this
information appear in the listing by using the IHEADER
option. The IHEADER option results in the generation of a
listing that contains all the information generated by the
command in the previous example, in addition to a list of
compiler characteristics.

Table 4.
FORTRAN Listing Codes

Code

o
1 or SRC

2 or MAP

3

4 or COD

7 or ALL

Listing Content

Diagnostics only

Source program and diagnostics

Storage map and diagnostics

Diagnostics, source programs, and storage map

Generated code and diagnostics

Diagnostics, source program, storage map, and generated
code

Debugging Lines

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 27

EXAMPLE

.FORTRAN/LIST/SHOW:2/HEADER PROGA

During the development of your programs, you may want
to check run time and final data to determine whether rou
tines are performing as planned. The most direct way to do
this is to insert printing statements at carefully selected
points so that the information you need can appear at the
terminal. Because you may want to use these test state
ments regularly, the FORTRAN IV compiler has been de
signed to recognize all statement lines beginning with a "D"
in column 1 as special debugging lines. The advantage of
this is that you can choose to include debugging code
without having to edit your source program. Use the
/ONDEBUG option if you want the compiler to compile de
bugging lines.

EXAMPLE

The command:

.FORTRAN/ONDEBUG PROG

causes statements with "D" in column 1 of the
FORTRAN IV program PROG to be compiled.

FORTRAN IV Error Messages

Despite careful creation and editing of your source code,
errors do occur. During the first two phases of compilation,
the compiler checks for syntax and definition errors. FOR
TRAN IV includes the appropriate error messages in the

28

Linking

Programming with RT -11

listing. There are different message formats for the errors
detected in each of these two phases. Errors reported by the
first phase of compilation have the format:

***** c

Here "c" is a code letter. The meanings of the various code
letters are described in the table on page C-3 of the RT
lllRSTSIE FORTRAN IV User's Guide. For example, the
code letter "S" refers to a syntax error. Errors reported from
the second phase of compilation have the general format:

IN LINE nnnn, Error: description

Here "nnnn" is the internal sequence number of the state
ment in question, and "description" is a short description
of the error.

You can find a list of compilation error messages in
appendix C of the RT -11IRSTSIE FORTRAN IV User's
Guide. This appendix includes an explanation of the prob
able causes of all types of errors recognized by the com
piler.

Errors reported during the execution of your FOR
TRAN IV program are called OTS (Object Time System) er
rors. Appendix C of the RT -11 RSTSIE FORTRAN IV User's
Guide also describes OTS errors in detail.

You use the RT -11 LINK utility to:

• Join object modules and resolve references across
modules

• Relocate individual object modules as necessary, as
sign absolute (permanent) memory addresses, and, if
necessary, define overlay structures (discussed later)

• Produce an executable form of your program called a
load image and an optional load map

Load Map Files

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 29

One major advantage of program linking is that it al
lows you to implement your program designs in a modular
way. After you have assembled or compiled a number of
individual modules, use the linker to join them into a sin
gle running program.

You can also use the linker to obtain modules from an
object library and use them in building the program. An
object library is a single file that contains more than one
object module. You may join any combination of object
modules and object library modules at link time. The linker
produces two types of output files, load map files and load
image files.

As an option, the linker produces a load map. This is a list
ing file that describes how the save image file was put to
gether. It indicates the base address within the save image
of each module and named program section. It also lists the
addresses of globally defined symbols. The generation of load
maps is controlled by the IMAP option.

EXAMPLE

The command:

.LINK/MAP PROG

links the modules in file PROG.OBJ and generates a
load map, which is directed towards the line printer.
You can output the map to a file, using the :FILE
NAME qualifier:

.LINK/MAP:PROG.MAP PROG

This command additionally produces a file PROG.MAP,
which contains the map listing for PROG.OBJ.

30

Practice
1-5

Programming with RT -11

1. If you are using MACRO-ll, type the following pro
gram into a file and name it PROl 05 .MAC.

; This is text
.TITLE PR010S
.MCALL .PRINT,.EXIT

MESS: .ASCIZ ITHIS IS A MESSAGEI
.EVEN

START: .PRINT #MESS
.EXIT
.END START

If you are using FORTRAN IV, type the following pro
gram into a file and call it PR0105.FOR.

C This is text
TYPE 1000

1000 FORMAT (1HO, 'THIS IS A MESSAGE')
END

2. Produce an object module, a save image, and a load
map file for program PR0105. Print out the load map
and on it, circle the sections corresponding to the fol
lowing eight items and mark them with the letter indi
cated. Include the following:

a. The load module file name and type

b. The date of creation of the load module, provided
that the date was entered using the DATE moni
tor command

c. The time of creation of the load module

d. The title of the load module

e. The version number of the linker program

f. All section names, together with the address
where each section begins and the size of each
section (octal bytes)

g. The transfer address of the program (the starting
address or entry point)

Load Image Files

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 31

h. The high limit of the program in octal bytes and
decimal words

3. If any of the information listed above is missing, find
the reason for its absence.

The linker operates on the object module(s) that you in
clude in your command line to produce a load image file.
The three different types of load image files are save, relo
catable, and absolute binary.

Save image

A save image is required to run your program under the
Single Job (SJ) monitor, or as a background job under the
Foreground/Background (FB) or Extended Memory (XM)
monitors. The linker stores this image in a file which has a
.SAV file type.

This file is an image of your program as it appears in
memory immediately after you load it. Each word in the
file is loaded into a location in memory. The first block of
the file (block 0) contains the machine code that is loaded
into locations 0 to 776 (octal). Block 1 is loaded into loca
tions 1000 (octal) to 1776 (octal), and so on.

Figure 6 shows how a save image file is laid out. Lo
cations 40 to 50 in block 0 of such a file contain the control
parameters of your program. These are initialized by the
linker and contain the information shown in table 5.

Locations 360 to 377 in block 0 of the file are reserved
for use by RT -11. The linker stores the memory usage bits
in the eight words of this block. The bit map is organized
as follows: each bit of these words represents one 256-word
block of memory and is set to 1 if your program occupies

32 Programming with RT -11

Figure 6.
Save Image File Structure

BLOCK N-'

......-
-'"

BLOCK 2

BLOCK,

MEMORY USAGE BIT MAP

BLOCK 0

(TOTAL No. OF
BLOCKS=N)

PROGRAMS CONTROL
PARAMETERS

1000

400

360

MEMORY IMAGE
OF PROGRAM

BLOCK 0 MAY
CONTAIN PROGRAM
CODE BUT USUALLY

52 DOES NOT

40

o

(BYTE OFFSET
IN OCTAL)

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 33

Table 5.
Information in Block 0

Location

34

36

40

42

44

46

50

52

54

56

60

62

Information

Trap vector (TRAP)

Trap vector (TRAP)

Program's relative start address

Initial location of stack pointer (changed by 1M option)

Job Status Word

USR swap address

Program's high limit

Size of program's root segment, in bytes (used for .REL
files only)

Stack size, in bytes (changed by IR:n option, used for .REL
files only)

Size of overlay region, in bytes (0 if not overlaid, used for
.REL files only)

.REL file ID (.REL in Radix-50, used for .REL files only)

Relative block number for start of relocation information
(used for .REL files only)

that block of memory. Other locations in block 0 may con
tain program code, initial vector contents, or data, but un
der most conditions they are not used. The R, RUN, and
GET commands use this information when loading your
program. The information from block 1 to the last block of
your file contains the image of your program.

Relocatable image

In order to run a program in foreground under the FB mon
itor' you must first use the linker to produce a relocatable
image file. This allows the program to be loaded into higher
memory, leaving the lower memory available for use by a
normal save image. A relocatable image has the .REL file
type. The structure of this file is shown in figure 7. Block

34 Programming with RT -11

a of the .REL file contains the program control parameters
in locations 34 to 62 (see figure 8). Locations 40 to 50 have
the same contents as the save image file.

The remainder of the file is divided into two parts. The
first part begins in block 1 and occupies the number of
blocks necessary to contain the memory image of your pro
gram, as in the .SA V file. Relocation information occupies
the subsequent blocks, beginning with the block indicated
in location 62 of block a of the file. The linker links your
foreground program to start at location 1000 (octal) by de
fault. However, when you load and run your program with
the FRUN command, the FRUN processor uses this relo
cation information to load the program, not at location 1000,
but rather, just below the resident monitor or loaded de
vice handlers. During the relocation operation, the FRUN
processor modifies certain locations in your program ac
cording to the relocation information in order to ensure that
your program will run in available memory when started
(described in chapter 2, "Executing Programs.")

To generate a relocatable image file, use the IFORE
GROUND option of the linker. This option assigns the de
fault file type .REL to the load module.

EXAMPLE

The command:

.LINK/FOREGROUND PROG

links the filePROG.OBJandproduces arelocatable
image filePROG.REL.

Absolute binary image

Use an absolute binary image when you want a program to
run without the operating system controlling the system
resources. (Chapter 2, "Executing Programs," discusses how
you can load this type of image using the absolute loader.)
You must design this type of load module so that it can
control any system resources it needs. Use the ILDA option

Figure 7.
Relocatable Image File Structure

BLOCK N+R-1

BLOCK N

BLOCK N-1

-
,-

BLOCK 2

BLOCK 1

PROGRAM
CONTROL
PARAMETERS

BLOCK 0

(TOTAL No. OF BLOCKS N+R)
(R OF WHICH CONTAIN
RELOCATABLE INFORMATION)

1000

64

34

o

RELOCATABLE
INFORMATION

MEMORY
IMAGE

(BYTE OFFSET
IN OCTAL)

36 Programming with RT -11

in the linker command line to generate an absolute binary
image.

EXAMPLE

The command:

.LINK/LDA PROG

links the modules in file PROG.OBJ and produces an
absolute binary image in file PROG.LDA.

More Linker Options

Linker options which enable you to control certain features
of a load image when it is loaded and executed include stack
location and size, base address, and debugging aids.

Stack location and size

Unless you specify otherwise, the linker provides your load
module with a default stack location and size. If your pro
gram requires a greater stack depth, you will need to allo
cate more stack space. If, on the other hand, your program
does not need as great a stack depth, you can decrease the
allocated depth to make more space available for use by
program code and data.

For save images, the stack location, which is deter
mined by the initial value of the stack pointer (SP), deter
mines the size of the stack. You can override the default
location of 1000 (octal) by using the command:

LINKISTACK:location FILENAME

and giving your location in octal. If you omit the :location
qualifier, the system will prompt you for a stack location.
To make use of the space created, you must modify the base
address.

For relocatable images, you cannot modify the actual

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 37

Figure 8.
Layout of Program Control Parameters
for a .REL File

INFORMATION FOR
FOREGROUND
PROGRAM

RELATIVE BLOCK NUMBER FOR
START OF RELOCATION
INFORMATION

.REL INFORMATION

SIZE OF OVERLAY
REGION (BYTES)

STACK SIZE (BYTES)

SIZE OF ROOT SEGM ENT
(BYTES)

HIGHEST MEMORY ADDRESS

USR SWAP ADDRESS

JOB STATUS WORD

INITIAL SEITING OF
THE STACK POINTER

START ADDRESS

62

60

56

54

52

50

46

INFORMATION FOR
44 BACKGROUND OR

SJ PROGRAM

42

40

(BYTE OFFSET
IN OCTAL)

38 Programming with RT -11

location of the stack, since this is determined at run time,
but you can override the default stack size of 128 bytes by
using the command:

LINK/FOREGROUND:stack-size FILENAME

and giving the stack size in bytes (octal).

Base address

The base address of your program is located immediately
above the stack. If you raise the stack location for a save
image, you should raise the base address to prevent over
lap between the stack and the code. If you lower the stack
location, you also should lower the base address in order
to move down the program code and data, making use of
the unused space. To override the default base address of
1000 (octal), use the command:

LINK/BOTTOM:base-address FILENAME

and give the base address in octal. Relocatable images can
not be given a base address because the address is deter
mined at run time (discussed in chapter 2, "Executing
Programs").

Debugging aids

Debugging is the process of correcting run-time errors in a
program. Two commonly used debugging aids are the On
line Debugging Technique (ODT) and the FORTRAN IV
Debugging Tool (FDT). ODT is supplied with all RT-ll
systems as a standard system software item, whereas FDT
is available only as part of the FORTRAN IV Real-time Ex
tensions Package.

You use ODT by linking your object modules with ODT,
using the command:

LINKIDEBUG FILENAME

The resulting load module will be modified so that it
includes the necessary code to use ODT. ODT is further
discussed in chapter 4, "Debugging Programs." To use FDT,

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 39

you specify IDEBUG:FDT, which overrides the default tool
ODT. Instruction on the use of FDT is not given in this book.

Summary of Linker Options

LINK

IALPHABETIZE lists in the load map your program's
global symbols in alphabetical order

IBITMAP creates a memory usage bitmap

IBOTTOM specifies the lowest address to be
used by the relocatable code in the
load module

IBOUNDARY starts a specific program section in
the root on a particular address
boundary

IDEBUG links ODT (on-line debugging tech
nique) with your program

IDUPLICATE places duplicate copies of a library
module in each overlay segment that
references the module

IEXECUTE specifies a file name or device for the
executable file

IEXECUTEI ALLOCATE reserves space on a device for the ex
ecutable file

IEXTEND extends a program section to a spe
cific octal value

IFILL initializes unused locations in the
load module and places a specific
octal value in those locations

IFOREGROUND produces an executable file in relo
catable format for use as a fore
ground job under the FB or XM mon
itor

IGLOBAL generates a global symbol cross
reference section in the load map

40 Programming with RT -11

IINCLUDE

ILDA

ILIBRARY

ILINKLIBRARY

IMAP

IMAPI ALLOCA TE

IMAP/WIDE

INOBITMAP

INOEXECUTE

IPROMPT

IROUND

IRUN

IS LOWLY

ISTACK

ISYMBOL TABLE

takes global symbols from any library
and includes them in the linked
memory image

produces an executable file in LDA
format

same as ILINKLIBRARY

includes the library file you specify
as an object module library in the
linking operation

produces a load map listing

reserves space on a device for the
load map listing file

produces a wide load map listing

suppresses creation of a memory
usage bitmap

suppresses creation of an executable
file

tells the system to accept lines of
linker input until you enter two
slashes (//)

rounds up the section you specify so
that the size of the root segment is a
whole-number multiple of the value
you supply

initiates execution of a background
job which does not require responses
from the terminal, produces a .SAV
file

instructs the system to allow the
largest possible memory area for the
link symbol table

allows you to modify location 42, the
address containing the value for the
stack pointer (SP)

creates a file that contains symbol
definitions for all the global symbols
in the load module

References

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 41

ITOP

ITRANSFER

IXM

IXM/LIMIT

specifies the highest address to be
used by the relocatable code in the
load module

allows you to specify the start ad
dress of the load module

enables special .SETTOP and .LIMIT
programmed request features pro
vided in the XM monitor

limits the amount of memory allo
cated by .SETTOP

RT -11 System User's Guide. Chapter 4 discusses options to the
MACRO and FORTRAN commands.

RT -11IRSTSIE FORTRAN IV User's Guide. Appendix C con
tains material on error diagnostics.

RT -11 System Message Manual.

2
42

Program Execution

Using the Single Job Monitor

Terminating Jobs

Using the Foreground/Background Monitor
Initiating Jobs

Special Considerations for Foreground Jobs

Foreground/Background Communication

Terminating Jobs

Using the Extended Memory Monitor
Executing with System Jobs

Scheduling
Starting Systems Jobs

Communication
Executing Programs on Systems with Multiple Terminals

Executing MACRO-11 and FORTRAN IV Source Files

Debugging

Reference

2
Executing
Programs

After assembling or compiling your program source code
and linking the resulting object modules to produce a load
image file, you are now ready to execute the file. This
chapter discusses the monitor commands: EXECUTE, H,
HUN, FHUN, SHUN, and UNLOAD. When you have com
pleted this chapter you will be able to run background,
foreground, and system jobs, and send data from the ter
minal to one or more jobs running at the same time.

43

44 Programming with RT -11

Program Execution

Having produced a load module, you are ready to execute
it. To execute one program at a time, use the Single Job (SJ)
monitor. To execute two programs at the same time, use the
Foreground/Background (FB) monitor. If your machine has
more than 32 Kwords of memory, you can use the Ex
tended Memory (XM) monitor. Using the FB or XM moni
tor, you can run your programs and system jobs at the same
time.

The commands that specify program execution di
rectly are RUN, R, FRUN, and SRUN. When a save image
is on the logical device SY:, you can run the image by en
tering its file name.

Using the Single Job Monitor

When you execute a job, you perform two functions, load
ing the code and data from the image file into memory and
starting execution of the code. You can use a single com
mand to perform both functions. For the Single Job moni
tor this command is:

RUN FILESPEC

EXAMPLE

To load and execute the file RK3:PROG.SAV, you
type:

.RUN RK3:PROG

If the program is on the system device, you can shorten the
command to R. To run the program SY:PROG.SAV, use the
command:

RPROG

You can also run such a program just by typing its name:

Terminating Jobs

Chapter 2 Executing Programs 45

PROG

You will probably need to debug a program before run
ning it. To debug a program, load it into memory where you
can examine the contents of locations and modify the data
before starting execution. The commands you need in or
der to do this are discussed in chapter 4, "Debugging
Programs."

Normally a program exits via the .EXIT directive for
MACRO-ii, or CALL EXIT for FORTRAN IV; however, not
all programs terminate in this way. Some programs cause a
fatal monitor error before performing ~uch an exit, while
others "hang." A program hangs if it enters a permanent
loop or if it waits for an event to occur that does not take
place. You can abort a hung job by pressing (CTRUC) twice.

Using the Foreground/Background Monitor

All the facilities of the S] monitor are available in the FB
monitor, plus additional features that enable you to load
more than one program and schedule them for concurrent
execution.

When a foreground program is running, it cannot be
interrupted for the execution of background code. The
background program runs only if the foreground program
is waiting for an external event, such as the arrival of data
from a peripheral device. A job is said to be blocked if it is
waiting for an external event, for example, the performance
of 110 operations.

Perhaps you have a foreground program that uses the
CPU for long periods of time because no external events
occur. If you need to allow time for a background job to
execute, you should modify the foreground program so that
this is possible. You can do this by including calls to sys-

46

Initiating Jobs

Programming with RT -11

tern programmed requests (for example, I/O and timer re
quests) in the foreground program. RT -11 then blocks the
program until the requested operations are complete. Pro
grammed requests are discussed in volume 2.

When you issue a command to KMON to run a user pro
gram in background, KMON is suspended until that pro
gram terminates. This means that during execution of a
background job, you are not able to issue KMON com
mands, for example, to initiate a foreground job.

Thus, when you want to execute a foreground and
background job at the same time, you must run the fore
ground job first. You do this by using the FRUN command.

EXAMPLE

.FRUN PROGF

.RUN PROGB

Special Considerations for Foreground Jobs

A number of conditions must be met when loading and
running foreground jobs.

1. You must use the IFOREGROUND option to link the
foreground job:

.LINK/FOREGROUND PROG

2. You may need to alter the size of the foreground pro
gram stack. This is done by using the IFOREGROUND
option with an optional numeric argument. (See chap
ter 1, "Developing Programs in MACRO-11 and
FORTRAN IV.") The following command links PROG
as a foreground job with a stack size of 300 (octal) bytes:

Chapter 2 Executing Programs 47

.LINK/FOREGROUND:300 PROG

3. You must load required device handlers (programs to
control devices). For example, if your program uses an
RX50 diskette, you must load its handler using the
command:

.LOAD DU:

4. You may need to create more space in memory than
was allocated initially. For example, FORTRAN IV
programs, running in the foreground under the FB
monitor, need additional space for blocks of data that
are created when files are opened. To reserve more
space, you can use the IBUFFER option of the FRUN
command. For example, the following command re
serves 500 extra words of memory for the program
PROG.REL:

.FRUN PROG/BUFFER:500

A formula provided in the section on the FRUN com
mand in chapter 4 of the RT -11 System User's Guide
helps determine the space needed to run a FORTRAN
IV program as a foreground job. You need not reserve
more space for a program running under the XM mon
itor because such programs can use more space as
needed. Chapter 19, "Memory Use," has further dis
cussion of how a program can reserve more space for
itself at run time.

5. When you run a foreground or system job, any inac
tive jobs are removed from memory. If a foreground
program has terminated, however, and you want to run
a background job, then you must remove the inactive
job yourself. You do this by using the command:

.UNLOAD PROG

Foreground/Background Communication

You can run a foreground and a background program so that
each communicates with the console terminal. Messages
generated by jobs are indicated by the following prompts:

48

Practice
2-1

Programming with RT -11

F> for foreground

B> for background

To type data to a foreground program, press (CTRUF) followed
by the data. For a background program, press (CTRUB) fol
lowed by the data.

Running a MACRO-ll Program in the Foreground and a
FORTRAN IV Program in the Background

1. Type in the MACRO-ll program PR0201.MAC listed
below:

.MCALL . TWA IT, . GTLI N , . E X IT ;Declare macro calls

.MCALL .PRINT

.ENABL LC
START: .GTLIN #BUFF,#PROMPT ;Input line wi th prompt

TSTB BUFF ;Check for null line
BEG 1$; If null then exit
JSR PC,TWT ; If not then perform a wait
.PRINT #NOTIFY ;Print leader
.PRINT #BUFF ;Print the buffer
BR START ;Repeat process

1 $: .PRINT #EXMES ;Print exit message
. EX IT ;Program exit

TWT: . TWA IT #AREA,#TIME ;Perform first wait using
;EMT

Compute bound wa i t

CLR RO ; In it RO
MOV #2,R1 ; In it R1 =2

5$: DEC R1
10$: DEC RO

TST RO ;Has RO reached 0 yet?
BNE 10$; If not go back and deer.
TST R1 ;Has R1 reached 0 yet?
BNE 5$; If not go back and deer.
RTS PC ;Iteration complete so return

AREA: .WORD 0,0
TIME: . WORD 0,600 .
BUFF: .BLKW 41 .
PROMPT: .ASCII IPR0201- I, TEXT: 1<200>

NOTIFY: .ASCII IPR0201-I,Finished processing text: 1<200>

Chapter 2 Executing Programs

EXMES: .ASCIZ /PR0201-I,Normal successful completion/

.EVEN

.END START

2. Now type in the FORTRAN IV program PR0202.FOR
listed below:

C INPUT A LOAD OF DATA

C

100 TYPE 6000

READ (S,*)REALNO

IF (REALNO.EQ.-1 .0) GOTO 9999

TYPE 6001

TYPE *,REALNO

GOTO 100

6000 FORMATC1HO,'PR0202-I,Enter your data (-1 to finish): '$)

6001 FORMAT(1HO,'PR0202-I,Accepted data as: '$)

9999 END

3. Assemble PR0201.MAC by typing the command:

MACRO PR0201

Link PR0201 to run in the foreground (PR0201.REL).

4. Compile PR0202.FOR by typing the command:

FORTRAN PR0202

Link PR0202 to run in the background (PR0202.SA V).

5. Type in the command:

SET USR NOSWAP

An error will occur if you do not issue this command.

6. Run the program PR0201.REL in the foreground. It
gives you the prompt:

PR0201-I,TEXT:

Press (CTRUF) to communicate with this program and re
ply to the prompt by typing in a text string. PR0201
then waits, allowing you to perform background
operations.

7. Using (CTRUB) to communicate with KMON, run the pro-

49

50

Terminating Jobs

Programming with RT -11

gram PR0202.SA V in the background. PR0202 gives
you the prompt:

PR0202-I, Enter your data (-1 to finish):

Enter a number (56, for instance). Each time you enter
a number, PR0202 will accept and acknowledge the
data with a response. For example:

PR0202-I-Data accepted as: 56.00000

8. After some time, the foreground job finishes waiting
and tells you:

PR0201-I-Finished processing text: TEXT STRING

"TEXT STRING" is the text string you entered. The
foreground job then prompts you with:

PR0201-I, TEXT:

At this point you can no longer enter data in either the
background or the foreground without pressing (CTRUB)

or (CTRUF).

9. Continue to enter strings in the foreground and data in
the background for as long as you like. The foreground
job terminates when you enter a null string. The back
ground job terminates when you enter -1.

10. Unload the foreground job after its termination.

Jobs running under the FB monitor terminate in the same
way as jobs running under the SJ monitor, but to abort jobs
under FB, use the following key sequences:

(CTRUB)(CTRUC)(CTRUC)

(CTRUF)(CTRUC)(CTRUC)

for background jobs

for foreground jobs

Chapter 2 Executing Programs 51

Using the Extended Memory Monitor

The commands used when running jobs under the Ex
tended Memory monitor are the same as those used under
the FB monitor, but job execution under the XM monitor
can use more memory.

Under the S] and FB monitors, system and user jobs
share the 32 Kwords of addressable memory. By using spe
cial system services which manipulate windows into mem
ory, each job under the XM monitor may use its own 32
K words of memory or expand its usable address space to
128 Kwords. In this way, the total amount of memory
available becomes 32 to 128 Kwords for UNIBUS proces
sors. RT -11 version 5 supports Q-bus processors with 22-
bit . addressing such as the PDP-11/23-PLUS, so that a
maximum of 2048 Kwords is available for use.

Executing with System Jobs

Scheduling

Through the system generation process you can create an
FB or XM monitor capable of simultaneously running up
to six system jobs plus a foreground and a background job.
This feature was built into the RT -11 specifically to sup
port system programs supplied by Digital.

Digital now supplies two of these system jobs: an error
logger (ERRLOG) and a device queue program (QUEUE).
Digital does not encourage you to write your own system
jobs; the four remaining system job slots are reserved for
future use.

A monitor that supports system jobs provides the same type
of scheduler that ordinary FB and XM systems use. The
monitor services jobs according to their priority: the back
ground job always has the lowest priority (0); the fore
ground job always has the highest priority (7). You cannot
change these assignments. At any given time, the job that
runs is the highest priority job that is not blocked.

You assign a priority to a system job by using the SRUN
command in the format:

52 Programming with RT -11

SRUN PROGRAM

This causes the monitor to assign to that job the highest
unassigned priority. In order to give the job a specific
priority, you use the ILEVEL:priority qualifier.

EXAMPLE

.SRUN PROG/LEVEL:3

You can assign priority values from 1 to 6. You cannot
assign a priority to a job if another system job is running at
the same priority. For example, if you run QUEUE as a sys
tem job, you should assign it the lowest priority so that more
important jobs, such as the error logger, will not be blocked.
You can assign a priority only when you start a system job
with the SRUN command. The priority levels do not change
dynamically; that is, you cannot change the priority of a job
while it is running.

Starting System Jobs

Use the SRUN command to start system jobs. You refer
ence a system job by its logical name, which is, by default,
its file name. You may, however, assign a new logical name
when you start the job, using the SRUN command with the
INAME:logical-name option. This is of specific benefit when
you want to run multiple copies of a system or foreground
job. The following commands show how you can run two
system jobs, a foreground job, and a background job:

EXAMPLE

.SRUN SYS1/LEVEL:S/NAME:TEST

runs. the system job SYS1.REL at priority 5 with the
logical name TEST.

Communication

Chapter 2 Executing Programs

.SRUN SYS2/LEVEL:6

runs the system job SYS2.REL at priority 6 .

. FRUN FROG

starts execution of foreground job FROG.REL (fore
ground job always executes at highest priority, 7) .

. RUN PROG

starts execution of background job PROG.SAV (back
ground job always executes at lowest priority, 0).

53

In a system job environment, you use (CTRUX) to communi
cate with a system job in much the same way that you use
(CTRUF) for a foreground job and (CTRUB) for a background job.
This facility allows two or more jobs to share one terminal.
You can communicate with system jobs in the following
ways:

1. The system answers (CTRUX) with the prompt:

Job?

Respond to the prompt by typing the job's logical name,
followed by (RETURN). For example:

(CTRUX)

Job? SYS1

If the job you specify is not running or cannot be found,
the monitor prints a question mark immediately after
the name of the job:

(CTRUX)

Job? SYS1?

2. To abort (CTRUX) before you have completed typing the
job name, press (CTRUC). This does not abort any job; it

54 Programming with RT -11

only returns to the state at which the terminal was be
fore you pressed (CTRUX), for example:

.SRUN J1
Welcome to J1, please enter your data:
• (CTRUX)

Job? (CTRUC)

3. To actually abort a system job, press- (CTRUX), then type
in the job name, press (RETURN), and then press (CTRUC) twice:

• (CTRUX)

Job? 5 Y 5 1 (RETURN)

(CTRUC)(CTRUC)

While terminal input is routed to one system job, an
other may send data to the terminal. Thus, the monitor prints
out an identification label every time the output source
changes.

Executing Programs on Systems
with Multiple Terminals

If your system supports multiple terminals, you can exe
cute different jobs on different terminals. (The system gen
eration option allows RT-ll to support multiple termi
nals.) To direct a foreground or system job to a specific
terminal, use the ITERMINAL:n option with the FRUN or
SRUN command. In this case, "n" is the logical unit num
ber of the terminal.

EXAMPLE

The command:

.FRUN PROG/TERMINAL:2

executes the program PROC.REL in the foreground,
using the terminal, whose logical unit number is 2, as
its "private" console. Inputandoutputto and from
PROG.RELis then performed at that.terminal.

Chapter 2 Executing Programs 55

The fTERMINAL option is discussed in the sections on
FRUN and SRUN in chapter 4 of the RT -11 System User's
Guide.

Executing MACRO-11 and
FORTRAN IV Source Files

Debugging

At times you will keep only the source files of error-free
programs in order to save space on a storage device. When
you want to execute these programs, you can do so with
the single command EXECUTE. This command assem
bles/compiles, links, and then runs your program in the
background. It takes the form:

EXECUTE FILESPEC

You specify the language processor you wish to use by
one of two methods: either by giving the file type, for ex
ample .FOR, or, if the file type does not specify the lan
guage properly, by using the language option, for example
EXECUTE/FORTRAN.

If the file name uniquely specifies your program (that
is, there is only one type, whether in MACRO-ii, FOR
TRAN IV, or the DIBOL language) you can omit the file type.
EXECUTE searches for files of type .MAC, then .DBL, then
.FOR.

If a fatal error occurs during assembly/compilation or
linking, EXECUTE does not attempt to continue past that
phase, but exists in the normal way. Many of the options
available with the assembly and compilation commands and
with LINK and RUN are also available as options to EXE
CUTE. However, if you want to use these options it is
probably better to perform each step separately. The EXE
CUTE command does not work properly if the assembler'
or compiler and the linker are not on the system device.

You can often isolate program problems by examining se
lected memory locations before, during, and after program

56

Reference

Programming with RT -11

execution. Under the RT -11 operating system this debug
ging method is supported by a number of software tools. In
addition, tools are available that allow the more precise
control of program execution that is necessary during de
bugging. This phase of program development is discussed
in detail in chapter 4, "Debugging Programs."

RT -11 System User's Guide. Chapter 4 contains detailed ex
planation of the RUN command, the options of the FRUN com
mand, and the facilities available from the EXECUTE command.

3
58

Entering the BASIC Environment

Creating a Program

Entering New Lines of BASIC Program Code

Retrieving a Saved Program

Executing a BASIC Program

Editing a BASIC Program

Printing a Listing of a BASIC Program

Inserting New Lines of Program Code

Resequencing

Deleting Lines of Program Code

Changing Lines of Program Code

Saving a BASIC Program

Using Immediate Mode

Leaving the Interpreter

Reference

3
Developing
Programs
in BASIC

RT -11 allows you to create, edit, run, load, and save a
BASIC program without exiting from the interpreter.

In addition to these program development operations,
you can type some commands directly to the interpreter for
immediate execution. Commands discussed in this chap
ter include the monitor command, BASIC, and the BASIC
language commands, BYE, COMPILE, DEL, LIST, NEW, OLD.,
REPLACE, RESEQ, RUN, SAVE, and SUB.

In this chapter, you will learn to create or modify a
BASIC program using the BASIC interpreter, run a BASIC
program and save the standard or preprocessed form of a
BASIC program in a file, execute BASIC statements in im
mediate mode, and exit from the interpreter.

59

60 Programming with RT -11

Entering the BASIC Environment

You can use BASIC with any of the RT -11 monitors (SJ,
FB, or XM). When using either the FB or XM monitors, you
can run BASIC as either a foreground or background job.
To load and start the BASIC interpreter, simply type the
command BASIC. If there is not enough memory available
to contain BASIC, an error message is displayed.

EXAMPLE

NOT ENOUGH MEMORY FOR BASIC

or

1KMON-F-Not enough memory

This situation often results when a large foreground job has
been loaded.

BASIC is made up of a set of fixed language elements
and a set of optional elements. When you enter the BASIC
environment, you select which optional elements you wish
to use.

EXAMPLE

. BAS I C(RETURN)

BASIC asks you:

OPTIONAL FUNCTIONS (ALL, NONE, OR INDIVIDUAL)?

You type:

ALL(RETURN)

The response ALL allows you to use all of the optional
functions available with the RT-11 BASIC interpreter. If you
type NONE, the interpreter performs without any optional

Chapter 3 Developing Programs in BASIC 61

function. You may choose the NONE option when you want
a program to contain only standard BASIC functions. To
select the optional functions you want to use, you type IN
DIVIDUAL. After this response, the interpreter displays each
function and requests a YES or NO reply. YES includes the
function; NO excludes it.

The interpreter tells you that it is ready to accept BA
SIC commands and program lines by issuing the message:

READY

At this point, you can create new programs, retrieve old
ones, edit and insert new material, save, run, or delete pro
grams by issuing the appropriate BASIC commands to the
interpreter. After typing each complete command, press
(RETURN).

Creating a Program

Program lines, the program name, and any variables and
their values are stored by the interpreter in its own mem
ory. When you create a new program, you first initialize that
memory and give the new program a name. You do this us
ing the NEW command, which takes the form:

NEW PROGRAM-NAME

The program name may contain no more than six al
phanumeric characters. Examples of valid program names
include: 024680, STAR, or PROG01. Examples of invalid
program names are: MAINPROG (too long) or PROG/l
(contains a nonalphanumeric character).

If you type the command NEW without giving a pro
gram name, BASIC asks you for the program name with the
prompt:

NEW FILE NAME--

You should then supply the program name. If you press
(RETURN) without giving a program name, the program as
sumes the default name NONAME.

62 Programming with RT -11

Entering New Lines
of Basic Program Code

Each line of BASIC program code begin with a line num
ber. Line numbers must be in the range 1 to 32767. To in
sert a line of program code into a program, you type the
line number, the program code, and press (RETURN).

EXAMPLE

1 0 PR I NT "HELLOII(RETURN)

becomes line 1 0 of the program.

Retrieving a Saved Program

To avoid retyping, you can retrieve existing programs and
copy them into the interpreter's memory with the OLD
command, which takes the form:

OLD FILESPEC

The two types of saved programs which can be retrieved
are normal BASIC programs and preprocessed BASIC pro
grams. Normal BASIC programs are usually stored in a file
with the file type .BAS. Preprocessed BASIC programs are
usually stored in a file with the file type .BAC (or .BAX if
you are using double-precision BASIC).

The default file type for the OLD command is .BAC.
That is, if no file type is specified with a program name,
the interpreter will search first for a program file with the
file type .BAC.

EXAMPLE

If you have a program named PROG stored in the file
PROG.BAS and you type:

Chapter 3 Developing Programs in BASIC

OLD PRoG

the interpreter will search first for a program stored
in the file DK:PROG.BAC. If no .BAC file exists on
DK:, the interpreter searches for and loads your file
DK:PROG.BAS. If the file you specified does not ex
ist, the interpreter displays the following message at
the terminal:

?FILE NOT FOUND

63

When a program is retrieved, the interpreter initializes
its memory as with the NEW command. It then loads each
line from the file into its memory, using the file name as
the name of the program.

A line of program code can contain no more than 129
characters, in addition to the cha.racters that make up the
line number. If a line is too long, the interpreter does not
load the line but displays a message:

?LINE TOO LONG

If a line being loaded does not have a valid line number,
the interpreter does not load the line but displays the mes
sage:

?SYNTAX ERROR

Executing a BASIC Program

After a program is loaded into the interpreter's memory, you
can run it by typing the command RUN. The interpreter
executes the program, starting with the lowest numbered
line of code. You can also load a program from a file and
execute it by issuing the RUN command in the format:

RUN FILENAME

64 Programming with RT -11

EXAMPLE

RUN PRO G(RETURN)

has the same effect as the commands:

OLD PROG
RUN

If no such program exists, the interpreter displays:

?FILE NOT FOUND

When a program is executed, the interpreter normally
prints a header containing the program name and the sys
tem date and time. You can prevent this header from ap
pearing by using the command RUNNH in place of RUN.
To abort execution you press (CTRUC) twice~

Editing a BASIC Program

When you have loaded an old program or have typed in a
new program, you may wish to modify the program. The
BASIC interpreter has several commands that allow you to
edit a program in different ways.

Printing a Listing of a BASIC Program

To get a listing of the program at your terminal, use the LIST
command. When you use the LIST command the inter
preter prints a header for the program, followed by all the
lines of code in ascending order according to line number.
The header takes the same form as with the RUN com
mand. Specifying LISTNH prevents this header from ap
pearing. To list only a selection of lines from the program,
specify a range with the LIST command.

Chapter 3 Developing Programs in BASIC 65

EXAMPLE

LIS T 30 0 - 4 0 0 (RETURN)

This command causes all those lines between line num
bers 300 and 400 to be listed at the terminal. You can also
list more than one range of lines by using a comma as a
separator.

EXAMPLE

LIS T 2 0 0 - 25 0 , 5 0 0 - 55 0 (RETURN)

This command causes the ranges of lines from 200 to 250
and 500 to 550 to be printed at the terminal. When you
specify more than one range, the interpreter prints a blank
line between ranges.

Inserting New Lines of Program Code

To insert a new line of code between two consecutive lines,
type a line with a line number that falls between the line
numbers of the consecutive lines.

EXAMPLE

To insert a line between these two lines:

100 PRINT "WELCOME TO THE PROGRAM"
200 INPUT A$

assign a line number between 100 and 200:

150 PRINT "WHAT IS YOUR INPUT";

66

Resequencing

Programming with RT-11

You should increment your line numbers by at least five
when writing a program (for example 120, 125, 130). This
allows you to insert four new lines of program code if you
need to. However, you may run out of space between two
line numbers if you have to make many insertions. To rem
edy this situation, you can renumber lines of a program by
using the RESEQ command in the format:

RESEQ start -line-no ,range ,increment

In this command format, "start-line-no" is the new
lowest line number for the range; "range" is the range of
lines that is to be renumbered; and "increment" is the des
ignated increment between lines. The range of lines is re
numbered in the form nnn-mmm; "nnn" is the lower lim
its and "mmm" is the upper limts of the resequencing.

If you omit any of these parameters, the interpreter uses
default values which are as follows:

start -line-no:

range:

increment:

EXAMPLE

10

1 to 32767

10

If you have loaded the program:

10 PRINT "HELLO"
11 GOSUB 15000
12 PRINT G$
15 GOTO 32767
15000 G$="THIS IS A MESSAGE"
15001 RETURN
32767 END

and you type the command:

RES E Q(RETURN)

Chapter 3 Developing Programs in BASIC

then the program in the interpreter's memory
becomes:

1 0 PRINT "HELLO"
20 GOSUB 50
30 PRINT G$
40 GO TO 70
50 G$="THIS IS A MESSAGE"
60 RETURN
70 END

Deleting Lines of Program Code

67

In some cases you may want to remove a line of program
code. To delete a line of code, use the command:

DEL line-no

EXAMPLE

In the program:

10 A$="HELLO"
20 B$="WELCOME"
30 PRINT A$

you can delete the second line by using the
command:

DEL 20 (RETURN)

Then the program in the interpreter's memory
becomes:

10 A$="HELLO Il

30 PRINT A$

You can also specify one or more ranges of lines to be
deleted, separating the ranges with commas.

68 Programming with RT -11

EXAMPLE

DEL 1-250,20000-32766

Changing Lines of Program Code

To change a line of code, you can use the interpreter in two
ways: by retyping the line, or by making a substitution us
ing the SUB command. When you want to change a line of
code completely, simply type the new line with the same
line number.

EXAMPLE

The line

10 PRINT "HELLO"

can be changed simply by typing:

10 GOSUB 15000

When you make a minor error and need to change only a
few characters in the line, you may prefer to use the SUB
command, which takes the form:

SUB line-no delimiter old-string delimiter new-string

In this command format:

line-no is the line number of the line of code to be
changed

delimiter is any single character that appears neither in
the old string nor in the new string

old-string is the string whose first occurrence in the line
of code is to be substituted for new string

new-string is the new string that will appear in place of
the old

Chapter 3 Developing Programs in BASIC

EXAMPLE

When a program in the interpreter's memory contains
the line:

100 PRINT "ENTER YOUR DATA (-1 TO FINNISH)";

The command:

corrects the misspelled word and changes this line to:

100 PRINT "ENTER YOUR DATA (-1 TO FINISH)";

69

The SUB command may have an additional argument, a
number. This number indicates that a certain occurrence of
the old string should be replaced. For example, if the num
ber is "5," the fifth occurrence of the old string would be
replaced by the new string. The number goes at the very
end of the command line, preceded by a delimeter. The de
fault value is 1.

Saving a BASIC Program

When you have finished entering or editing the program in
the interpreter's memory, you may want to save the pro
gram so that it can be retrieved and executed later. You can
do this with one of three BASIC commands: SAVE,
REPLACE, or COMPILE.

If you want to store the program in the interpreter's
memory in a file that does not yet exist, use the SAVE com
mand. When you issue the SAVE command by itself, the
program will be saved as a file with the specification:

DK:PROGRAM-NAME.BAS

"PROGRAM-NAME" is the program name in the in
terpreter's memory.

You can choose the device name, file name, and file
type of the same file by using the command format:

70 Programming with RT -11

SA VE FILESPEC

For example, if your program's name is NONAME, the
SAVE command would use the file specification
DK:NONAME.BAS by default. To override the default file
specification, you can supply a file specification with SAVE.

EXAMPLE

SAVERK3:STAR.BAS

I£youuse the SAVE command and the file you spec:"
ify already exists, then the interpreter prints the
message:

?USEREPLACE

To delete an existing file and save a new file with the same
file name, you use the command:

REPLACE FILESPEC

If the file you wish to replace is DK:PROGRAM
NAME.BAS, then you need only type REPLACE.

The SAVE and REPLACE commands copy the lines of
a program from the interpreter's memory in the same for
mat as for a listing. As an alternative, you can create a pre
processed file, which stores the lines of a program in a for
mat that loads more quickly into the interpreter's memory.
To save the program in the interpreter's memory in a pre
processed file use the command COMPILE.

The default file-specification for a preprocessed file is:
DK:PROGRAM-NAME.BAC. To override this default, use
the command:

COMPILE FILESPEC

If you are using double precision BASIC, then prepro
cessed files assume the file type .BAX.

Chapter 3 Developing Programs in BASIC 71

Using Immediate Mode

If you want to execute BASIC language statements, without
creating and running a program, you can do so by typing
the statement without a line number.

EXAMPLE

The command:

PRINT IIHELLOII

causes the interpreter to execute that command
immediately.

This facility has a number of uses. You can use BASIC
as a calculator by issuing the command:

PRINT arithmetic-expression

For instance, you can instruct the computer to multiply two
values, divide by a third value, then print the result at the
terminal.

EXAMPLE

PRINT 327*128/61

You can also use immediate mode in lieu of some
monitor commands.

EXAMPLE

The BASIC command:

KILL IINONAME.BAS"

has the same effect as the monitor command:

.DELETE NONAME.BAS

72 Programming with RT -11

Leaving the Interpreter

Practice
3-1

To return control from the BASIC interpreter to the RT -11
keyboard monitor use the command BYE. If you want to
exit from a program to the monitor instead of the BASIC
interpreter, you can use the BASIC language statement:

numeric-variable = SYS(4)

In the following example, the program prints "HELLO"
at the terminal and then exits directly to the monitor.

EXAMPLE

10 PRINT IIHELLO II

20 A =SYS(4)
30 END

Enter the BASIC interpreter selecting all optional functions.
Create the program PR0301.BAS and save it:

10 PRINT "WHAT IS YOUR GAME?";
20 INPUT #O,A$
30 A=SYS(4)

Retrieve the program PR0301.BAS and run it. It will print
the message:

WHAT IS YOUR GAME?

and accept input. Abort the program and modify it so that it
gives the message:

WHAT IS YOUR NAME?

Save the program as a preprocessed file and leave the inter
preter. Now reenter the interpreter as before and run
PR0301 without using the OLD command.

Type your name and press (RETURN). The program should exit
to the monitor.

Reference

Chapter 3 Developing Programs in BASIC 73

BASIC-11IRT -11 User's Guide contains examples of commands
discussed in this chapter.

4
74

Testing Programs

Finding the Cause of an Error

Locating an Error

Gaining Access to Background Program Code
Loading Programs without Execution

Locating Values in a Loaded Program

Examining Locations

Modifying Loaded Programs

Executing the Code in Memory

Gaining Access to Foreground Program Code

System On-line Debugging Aids

Enabling On-line Debugging

Enabling debugging aids for background programs

Enabling debugging aids for foreground programs

Using ODT and VDT

Gaining access to addresses

Gaining access to registers

Setting a breakpoint

Starting execution

Examining and modifying locations

Proceeding from a breakpoint

Using the single-step mode
Exiting from ODT or VDT

Using VDT to Debug

Debugging BASIC Programs

Dummy Routines

Setting Breakpoints

References

4
Debugging
Programs

Program errors (bugs) can be difficult to find. Although there
are different methods for identifying these errors, all meth
ods include checking program code and data at different
points-either before, during, or after execution. RT -11
provides tools to help identify errors and make corrections
in MACRO-11, FORTRAN IV, and BASIC-11 programs.
These include, ODT (On-line Debugging Technique) and
VDT (Virtual Debugging Technique).

This chapter discusses the testing of MACRO-11,
FORTRAN IV, and BASIC programs to find errors. It also
covers the use of utility programs, together with certain
monitor commands and BASIC commands for debugging
your programs. The monitor commands discussed in this
chapter are: D, E, FR UNIPA USE, GET, RESUME, and
START.

You will learn how to stop a BASIC program after the
execution of different statements and then check data or
use ODT and VDT to check data at selected points during
the execution of a MACRO-11 program. You will also learn
to use GET, START, EXAMINE, and DEPOSIT to check data
at selected points during the execution of FORTRAN IV and
MACRO-11 programs.

75

76 Programming with RT -11

Testing Programs

After you have removed all compilation and linking errors,
you are ready to test your program. It is unlikely that you
will detect all errors immediately. To be sure that a pro
gram has as few errors as possible, you must test it thor
oughly. Here are some methods which you can use to do
this:

1. For a given set of test data, determine what action
the program should take.

2. Run the program with the test data and verify that
the program performs as expected. Change this data
again and again, and rerun the program so that every
conditional branch that depends on this data is
executed.

3. Examine any data output to the terminal and use the
DUMP utility to check the contents of any output
files.

4. Include printing statements to trace the path of exe
cution through the code and to check values of data
at key points. (FORTRAN IV programmers can use
the TYPE statement in a debugging line.)

If your program is designed in modules, you can test
each module in isolation. First, test the main module with
dummy modules for each subroutine referenced; then in
clude and test each subroutine referenced in turn until all
of the program is tested. This is called top-down testing.

Your dummy modules should be written so that they
accept and return only the arguments with which they are
called, and so they identify themselves. Assume that a sub
routine is designed to accept a single character from the
terminal without echo. Figure 9 shows dummy versions of
such a routine in FORTRAN IV and MACRO-1i. In this
case, the subroutine GETCHA has two arguments-the in
put channel and the byte value of the character. The dummy
routine sets the value of the input character to 64, which is
the ASCII code for a capital "A." The real routine would

Chapter 4 Debugging Programs

Figure 9.
FORTRAN IV and MACRO-11 Dummy Subroutines

C·····························
C

C Accept single character input
C
C DUMMY VERSION (FORTRAN IV)
C

C·····························
SUBROUTINE GETCHA(CHANNL,CHRCTR)
INTEGER CHANNL,CHRCTR
TYPE 8000

8000 FORMAT(' XDUMMY: GETCHA')
CHRCTR-64
RETURN
END

•••••••••••••••••••••••••••••

Accept Single Character Input

DUMMY VERSION (MACRO-11)

•••••••••••••••••••••••••••••
. TITLE GETCHA
.MCALL .PRINT

GETCHA: : jEntry point
.PRINT "TEST jPrint id message

77

MOV 4(RS),R1 jAddress of return paramo
MOVB "'A,(RD jPut "A" at that address
RTS PC jReturn from subroutine

TEST: .ASCIZ IXDUMMY: GETCHAI
.END

read a character from the channel specified. Using the
dummy subroutine, you can identify and correct errors
in the main program before testing the real subroutine
GETCHA. You can also write dummy subroutines to re
place any system subroutines that are referenced.

Finding the Cause of an Error

Your test program should be made up of modules that have
been tested and corrected, the module you want to test, and

78 Programming with RT -11

Locating an Error

dummy modules for those that have not yet been tested.
System subroutines should be treated as modules also. Each
time you test a module, one of the following situations
results:

1. There are no errors in the module.

2. The module does not produce the correct data.

3. The program fails and an error message is printed at
the terminal.

4. The program fails to continue executing at some
point, but no error message is printed.

When there are no errors found in the module, test an
other module by selecting a dummy routine, replacing it
with the real one, and executing the program again. If a
module's intermediate or final data does not have the ex
pected values, first check the code to see why it produces
incorrect data. At which line do data first go wrong? If a
line contains a wrong calculation, correct the line. If some
of the data is not structured correctly, restructure the data.

If an error message appears at the terminal, you may
refer to the RT -11 System Message Manual for further in
formation. If the program fails, with or without a message,
then find out at which line the error occurred. If you still
cannot find the cause of an error in a MACRO-ii or FOR
TRAN IV program, you should use the debugging aids dis
cussed later. These aids help you make a detailed exami
nation of the code and data of a program, but you must first
understand how your code behaves before you proceed to
debugging.

You may be able to identify the line at which an error oc
curred by looking at the source code. For example, if you
know what type of error occurred, then you can determine
which lines of code may contain the error.

If this fails, an effective way of finding an error is by

Chapter 4 Debugging Programs 79

inserting PRINT statements at checkpoints in your code. The
checkpoints could be before and after conditional branches,
inside loops, and in other critical places in the program.
When the program runs, the printed text will provide a trace
of the program's execution, indicating the path taken be
fore the error.

Gaining Access to Background
Program Code

The RT -11 system supplies monitor commands for exam
ining and modifying program machine code before and after
execution. These methods are especially helpful if you are
programming in MACRO-ll.

Loading Programs without Execution

The first step in the process of examining the machine code
of a program is to load the program into memory without
executing it. You do this with the GET command, which
takes the form:

GET FILENAME

"FILENAME" is the file in which the load image is stored.

Locating Values in a Loaded Program

The base address of each module is shown in the load map,
which can be produced using the LINKIMAP command. The
offset of a symbol in a module is shown in the assembler
listing. Thus, the absolute address of a symbol is:

module-base-address + symbol-offset

"module-base-address" is the base address of the module
and "symbol-offset" is the offset of the symbol, from the
start of that module.

80 Programming with RT -11

Figure 10.
Load Map for a Main Program Using Subroutine GETCHA

RT-11 LINK V08.00 Load Map Page 1
MAIN .SAV Title: MAIN Ident:
Section Addr Size Global Value Global Value

ABS. 000000 001000 . 256. words (RW,I,GBL,ABS,OVR)
001000 000140 . 48. words (RW,I,LCL,REL,CON)

GETCHA 001100
Tran~lfer addr • 001000, High limit . 001136 . 303. words

Figure 10 shows the load map for a program compris
ing a main routine and a subroutine. The base address of
the module is 1100 (octal). Figure 11 shows a listing of the
subroutine GETCHA. You can see that the offset of the
symbol TEST is 000020 (octal), so the absolute address of
TEST is 1120.

Examining Locations

When the program exits, or is aborted, you can examine the
contents of an address by using the E (Examine) command.

EXAMPLE

To examine the contents of location 1000 (octal) you
type:

.E 1000

and the monitor prints the value, in octal, stored at
thataddress~

Modifying Loaded Programs

Having used the GET command to load a program into
memory, you can modify the program code. Refer first to a
loap map (produced by the linker) to check where values

Chapter 4 Debugging Programs 81

are stored, then use the E command to verify that you have
the right address before changing the value. Use the D (De
posit) command to modify a value. The format is:

D address = value

Figure 11. Listing of Dummy Subroutine GETCHA
(Produced with the Command MACRO/SHOW:MEB/UST)

GETCHA MACRO V05.00dd 05:19 Page 1
1

2
3
4
5
6
7
8

9
10
1 1

12
13
14
15

GETCHAI

16
GETCHA
Symbol
GETCHA

000000
000000 012700
000004 104351
000006 016501
000012 112711
000016 000207
000020 045

000023 115
000026 072
000031 105
000034 1 1 0

000001
MACRO V05.00d

table
OOOOOORG

000020'

000004
000101

104 125

115 131
040 107
124 103
1 0 1 000

05:19 Page i-1

TEST 000020R

.***************************** 1

jACCEPT SINGLE CHARACTER INPUT

jDUMMY VERSION (MACRO)

j*****************************

.TITLE GETCHA

.MCALL .PRINT

.GLOBL GETCHA
GETCHA: .PRINT #TEST

MOV #TEST , XO

EMT A0351

MOV 4(R5), R1
MOVB #'A , (R1>

RTS PC
TEST: .ASCIZ IXDUMMY:

.END

. ABS. 000000 000 (RW , I,GBL,ABS,OVR)
000037 001 (RW , I , LCL,REL,CON)

Errors detected: 0
*** Assembler statistics
Work file reads: 159
Work file writes: 42
Size of work file: 154 Words
Size of core pool: 3328 Words
Operating system: RT-11

(1 Pages)
(13 Pages)

Elapsed time: 00:00:07.00
DK:GETCHA,DK:GETCHA/L:MEB=DK:DUM

82 Programming with RT -11

"address" is the absolute address in octal of the location to
be modified, and "value" is the new value in octal that the
address is to hold.

Executing the Code in Memory

After modifying the code, you can execute it by using the
START command. The program then begins execution at
the program's transfer address as shown in the map. If you
want, you can specify a different start address.

EXAMPLE,

.START 1400

Gaining Access to Foreground
Program Code

To load a foreground program into memory without exe
cuting it, use the FRUNIPAUSE command. This has the same
effect as the GET command for background programs, ex
cept that the base address of the program is printed out. To
start execution of a paused foreground program, use the
RESUME command. You cannot change the start address
of a foreground program once it has been loaded.

System On-line Debugging Aids

Another way of detecting program errors is to use an on
line debugging aid. RT-11 supplies two similar on-line de
bugging aids, ODT and VDT, to help you debug MACRO-
11 programs. ODT is for single-terminal systems; VDT for
multiterminal systems.

Many high-level languages have their own debugging
aids. For example, FORTRAN IV programs can be de-

Chapter 4 Debugging Programs 83

bugged using FDT. High-level language debugging aids are
not discussed in this course.

Enabling On-line Debugging

If your main program references subroutines that are as
sembled in separate object modules, always make sure that
the subroutine names are declared as globals (by using the
.GLOBAL directive) before continuing with the debugging
procedures.

Enabling debugging aids for background programs

To enable a debugging aid to be used with your back
ground program, you must first get an assembler listing of
your program, including all the addresses of the symbols
used, and the binary expansions of the instructions and data.
You then link your program modules with the debugging
module DK:ODT.OBJ, using the LINK/DEBUG command:

LINK/DEBUG OBJECT-MODULES

"OBJECT-MODULES" is the list of object modules that you
would normally use to produce your save image.

If the debugging module you want is not DK:ODT.OBJ,
qualify the /DEBUG option with the file specification of the
debugging module you want.

EXAMPLE

.LINK/DEBUG:SY:VDT.OBJ MAIN,SUBA,SUBB

Here the debugging module SY:VDT.OBJ has been
specified.

You need a load map when you are linking with de
bug, so that you can see which modules are included and
at what addresses in the load image. This information is
essential during debugging.

84 Programming with RT -11

EXAMPLE

Assume that you want to use VDT, which is con
tained in the file SY:VDT.OBJ. Assume also that the
save image you want to produce from the object mod
ules DK:PROG.OBJ, DK:SUBA.OBJ, and DK:SUBB.OBJ
is the program DK:PROG.SAV. To produce a debug
ging version of PROG.SAV, you would type:

.LIHK/DEBUG:SY:VDT/MAP:PROG.MAP PROG,5U8A,5U8B

When you run the load image that you have created,
control is initially passed to the debugging aid.

Enabling debugging aids for foreground programs

To enable a debugging aid to be used in your foreground
program, you first get an assembler listing that includes all
the addresses of the symbols used and the binary expan
sions of the instructions and data. You then get a relocat
able image and load map for your program by issuing the
command:

LINK/FORE/MAP:MAP-FILESPEC OBJECT -MODULES

"MAP-FILESPEC" is the file that is to contain the load map,
and "OBJECT-MODULES" is the list of object modules that
will be used to produce your relocatable image file. You can
then get a load image file from the debugging module.

EXAMPLE

To obtain a load image file from SY:ODT.OBJ, type:

.LINK SY:ODT

You can then run your program in foreground using
the command:

FRUN/PAUSE FILESPEC

Chapter 4 Debugging Programs 85

Make a record of the base address of your program and press
(CTRUB) to direct terminal input back to the monitor. Using
the command ODT, you can run the debugging aid load
image in the background.

Using ODT and VDT

ODT and VDT issue an asterisk (*) prompt and receive
commands from the terminal. ODT always receives input
from the system console terminal because it is designed for
single-terminal systems. VDT receives input from the ter
minal to which the console is set. On systems that have been
generated with multiterminal support, you must use VDT,
even on the console terminal TTO:.

ODT and VDT read characters as they are typed. You
do not need to terminate a command with (RETURN), because
(RETURN) has a special function in ODT and VDT. You cannot
simply correct input; (DELETE) cancels a command and you must
retype it.

Gaining access to addresses

We have discussed how the base addresses of the modules
of your program are shown in the load map. The addresses
of all your symbols are shown in the assembler listing. The
absolute address of a symbol can be calculated as the value
of the expression:

base-address + symbol-address

To avoid calculating this value each time you want to ac
cess a symbol, use a relocation register. There are eight such
registers, numbered from 0 to 7. You load the base address
of a module into a relocation register using the command:

*base-address;register-numberR

"base-address" is in octal and "register-number" must be
in the range 0 to 7.

)86 Programming with RT -11

EXAMPLE

To load the base address 1024 (octal) into the reloca
tion register OR, type:

*1024;OR

If you are debugging a foreground program, you should
load the base address of the program into a relocation
register. You should have a record of this address from
when you loaded the program using the FRUN/PAUSE
command. You can redefine any of the relocation registers
at any time. In addition, you can use the following
commands:

*;nR clears relocation register n

*;R clears all relocation registers

The notation register, offset may be used anywhere in
ODT or VDT instead of using an absolute address.

Gaining access to registers

The following commands allow you to examine the values
stored in the different types of registers:

*$Rn displays the value of relocation register n

*$Bn displays the value of breakpoint register n

*$n displays the value of the program's general
register Rn

Setting a breakpoint

If the program you are debugging crashes, link it with ODT
and execute it again, allowing it to crash. You can then study
the values stored at different locations at the time of the
crash. If you want to execute only part of a program before
examining locations, select a point at which the program

Chapter 4 Debugging Programs 87

must stop and return control to ODT. Such a point is called
a breakpoint. Good places to put a breakpoint include:

• Subroutine calls

• First instruction within a subroutine

• Branches and jumps

• Locations to which branching and jumping is carried
out

• The first instruction in a sequence of suspect code

ODT has eight breakpoint registers, numbered 0 to 7.
This means that you can have as many as eight breakpoints
at one time. You set a breakpoint using the command:

*address ;register-number B

It does not matter which breakpoint register is used for
which breakpoint address. You can use any breakpoint reg
ister that has not been used or one that contains a break
point that you no longer need.

EXAMPLE

To set a breakpoint at location 1666, select a break
point register not yet used or one that contains a
breakpoint that is no longer needed. If this applies to
breakpoint register 3, then you would type:

*1666;38

When the program is about to execute at location
1666, control is returned to ODT.

When control of the program is returned to ODT, you
may examine the registers and data before allowing the
program to continue executing.

You clear breakpoint registers in the same way that you
clear relocation registers:

88 Programming with RT -11

;nB clears breakpoint register n

;B clears all breakpoint registers

Starting execution

When your breakpoints are set, you can start execution with
the command:

*address;G

If no breakpoints are set, execution continues until the pro
gram exits in the usual way or aborts. If you have set break
points, the program will execute until it reaches a break
point and then ODT prints the message:

Bn;address

*
In this message "n" is the number of the breakpoint regis
ter that caused the break, and "address" is the address at
which execution stopped. At this point you can examine
and modify values stored at addresses.

Examining and modifying locations

With breakpoints set to permit partial program execution,
you should examine data before and after execution. By
modifying data before execution, you can test the effect of
that part of the program more thoroughly. To modify a value
or merely examine it, first open its location, by using the /
(Slash) command, which takes the form:

*addressl

EXAMPLE

To open location 1026 for examination and modifica
tion, type:

*10261

Chapter 4 Debugging Programs 89

If you have loaded the base address of a module into
a relocation register, you can also open an offset within the
module by using the command:

*register ,offset/

ODT accepts characters immediately, so it recognizes the /
command without waiting for a (RETURN).

EXAMPLE

If you type the command to open the location at an
offset of 2 from the relocation register 1, and the
value there is 20 (octal), the characters that appear at
the terminal are:

*1,21 000020 _

Note that the print head or cursor, (indicated by the
underline character "_") stays on the same line. If
you press (RETURN), the value stored at the address is
not changed. To modify the value, type in its octal
value and press (RETURN).

* 0 , 1 2 1 0 0 0 0 2 0 4 0 (RETURN)

The / command causes ODT to access the word start
ing at the given location. If you want to access a byte, you
use '" (Backslash) instead. You cannot modify a location
without opening it first. A location is opened when you use
the / or '" command. It is also opened when you perform
ASCII and RADIX-50 input and output. These modes are
discussed in chapter 18, "On-line Debugging Technique
(ODT)," of the RT -11 System Utilities Guide.

Proceeding from a breakpoint

After you have investigated the conditions at a breakpoint,
you can continue execution using the P (Proceed) com
mand, which takes the form:

90 Programming with RT -11

Execution then continues to the next breakpoint.
When you set a breakpoint in a loop, you can allow

the program to execute the loop a specified number of times
by setting a proceed count using the n;P command. The
count n is the number of times that ODT can reach the cur
rent breakpoint before it suspends the program. It will sus
pend if it meets any other breakpoint before the loop count
is exhausted.

Using the single-step mode

To perform a detailed examination of part of a program, you
can use ODT's single-step mode instead of setting a num
ber of breakpoints close together. This allows you to exe
cute single instructions or a specific number of instruc
tions. To enter single-step mode, you give the command:

*;ls

You can then execute a number of instructions by using the
command:

*n;P

Here "n" is the number of instructions to be executed.

EXAMPLE

The command:

*6; P

executes the next· six instructions.

To exit single-step mode, you give the command:

Chapter 4 Debugging Programs 91

Exiting from ODY or VDY

To exit from ODT or VDT, press (CTRUC) in response to the
asterisk prompt. Control is then returned to the keyboard
monitor.

Using VDY to Debug

Figure 12 shows a terminal session using VDT. The com
mands used are the same as for ODT. The comments de
scribe the action occurring. The operator first loads relo
cation registers with the base address of the modules to be
examined, then sets breakpoints before starting execution.
When the first breakpoint is reached, the operator switches
to single-step mode and steps until the message is printed.
At the end of the session a location is opened, and the
character A is changed to B. You will see that VDT prints
single-step messages as if they resulted from a breakpoint
at breakpoint register 8. You can set breakpoint registers only
from 0 to 7.

Debugging BASIC Programs

Dummy Routines

The procedure for testing BASIC programs is almost the
same as the procedure for testing MACRO-ll and FOR
TRAN IV programs. In BASIC, you remove all syntax errors
detected by the interpreter. You may produce a prepro
cessed (.BAC) version of the program before testing it. Other
than this, the test procedures listed in the section "Testing
Programs" at the beginning of this chapter apply the same
to BASIC as to FORTRAN IV and MACRO-ll.

Good BASIC programs are written in a modular way so that
each module in the program design is coded as a subrou-

92 Programming with RT -11

. Figure 12.
Using ODTIVDT

.MACRO/LIST:MAIN/SHOW:MEB MAIN,GETCHA

.LINK/DEBUG:SY:VDT MAIN,GETCHA/MAP:MAIN.MAP

.RUN MAIN
VDT V05.01

*1000;OR

*1100;1R

*0,30;OB

*1,0;1B

*O,O;G
BO;0,000030
*; P
B1;1,000000
* ; 1 S
*; P
B8;1,000004
*; P
XDUMMY: GETCHA

B8;1,000006
*;S
*0,34;OB

*;P
BO;0,000034
*0,75/101 =A 102<RET>

*/102 =B
*; P

The character is: B

(Set relocation register 0 to
base address of module MAIN)
(Set relocation
base address of
(Set breakpoint
instruction in
calls GETCHA)

register 1 to
module GETCHA)
register 0 to

MAIN that

(Set breakpoint register 1 to
first instruction in module
GETCHA)
(Execute from start of MAIN)
(Message at first breakpoint)
(Proceed to next breakpoint)
(Message at second breakpoint)
(Enter single step mode)
(Execute single step)
(Single step message)
(Execute single step)
(Output resulting from
execution of GETCHA)
(Single step message)
(Cancel single step mode)
(Set breakpoint to .PRINT
reguest in module MAIN)
(Proceed to breakpoint)
(Breakpoint message)
(Examine value of CHAR. It is
ASCII 101 . Modify it to
ASCII 102.)
(Verify the modified location)
(Proceed--there are no more
breakpoints)
(Output resulting from
execution of MAIN)

tine. When performing top-down testing on a BASIC pro
gram, you test the main program logic by writing dummy
subroutines to replace all the subroutines referenced.

Chapter 4 Debugging Programs

EXAMPLE

For a module designed to display a file containing a
list of employees, a dummy version of the subroutine
could be:

10000 REM SUBROUTINE TO DISPLAY EMPLOYEE FILE
10010 REM DUMMY VERSION
10020 PRINT "lIODUMMY - DISPLAY EMPLOYEE FILE"
10099 RETURN

93

When a BASIC error occurs at run time, BASIC prints
at the terminal a message that includes the line at which
the error was detected.

Setting Breakpoints

To set breakpoints in a BASIC program, insert STOP state
ments. You can then use immediate mode PRINT com
mands to analyze the contents of any open files or the val
ues of all the variables in use.

EXAMPLE

If your program contains the lines:

10 DIM #1 ,MO$(1 00)=1 0
20 OPEN "MASTER.DATII AS FILE #1
100 A%=VAL(SEG$(MO$(0),1 ,5»
110 B%=VAL(SEG$(MO$(0),6,10»

and you want to examine data in the virtual array
MO$, then you can insert the line:

95 STOP

so that the program would open the virtual array file,
and stop with the message:

STOP AT LINE 95

94

Practice
4-1

Programming with RT -11

When your program has stopped you can access the file in
teractively. You can use immediate mode statements to view
parts of your program and modify the data.

EXAMPLE

You can display the first record in the virtual array
file with the command:

PRINT MO$(O)

You can now modify this file data interactively, for
example with the command:

MO$(O)=II00123 11 +SEG$(MO$(O),6,10)

MACRO-ll, FORTRAN IV, and BASIC versions of a pro
gram are included in this exercise. The MACRO-l1
(PR0403.MAC, PR0404.MAC, and PR0405.MAC) and FOR
TRAN IV (PR0403.FOR, PR0404.FOR, and PR0405.FOR) ver
sions are modular. Each has a main program and two sub
routines. The BASIC program (PR0403.BAS) contains
equivalent subroutines and a function from lines 10000,
11000, and 15000.

The program is designed to accept twelve monthly values
(in the range 0 to 100) and plot them as a histogram. One
subroutine is designed to take a value and return the num
ber of units of height that represent that value in the histo
gram. On the histogram 20 units of height represent the
value 100, and other heights represent values in the same
proportion. The other subroutine is designed to convert a
string into the real number it represents.

The programs contain up to two errors each and will not
print the histogram properly. The errors are different in

Chapter 4 Debugging Programs

each language. Your task is to use the testing procedures we
have discussed to locate and correct the errors so that the
program accepts a value in the range 0 to 100 for each
month in the year and displays a histogram on the screen.
You must do the following:

1. Select the program in the language you know best and
create the files exactly as listed.

2. Assemble and run the program to see what happens.
The MACRO-11 and FORTRAN IV programs are made
up of three object modules each.

3. Write dummy subroutines (or, for BASIC, a dummy
function) to replace the original ones. If you are pro
gramming in BASIC-11, make a copy of the program,
calling it HISTO.BAS, instead of editing the original
program. You will need to refer to the original later.

4. Use printing statements to display data at key points
during the program. A list of the location of such
points is shown earlier in this chapter. In order to
print a message from a MACRO-11 program 'use the
macro:

.PRINT #string-address

where "string-address" is the address of an .ASCIZ
string. Then use ODTNDT to carefully debug the
program.

Note: The MACRO-11 exercise requires that your PDP-11
processor have the extended instruction set. The exercise
makes use of the DIV, MUL, and SOB instructions which
are not available on all PDP-11 models.

95

96

PR0403.MAC

Programming with RT -11

.TITLE PR0403 Debugging Exercise

.MACRO MONTH,NAME iMacro to set up month table

.PSECT MOVNAM
• $ $ •••

.ASCII INAMEI(200)

.PSECT

.WORD

. ENDM
• $S •

iEach entry points to string
iThis is the string

iThis is the space for entry

.MCALL .PRINT,.EXIT,.GTLIN

.GLOBL CNVSTR,HISPRT iDeclare subroutines
MTAB:: MONTH JAN iBuild months table

MONTH FEB
MONTH MAR
MONTH APR
MONTH MAY
MONTH JUN
MONTH JUL
MONTH AUG
MONTH SEP
MONTH OCT
MONTH NOV
MONTH DEC

START: MOV IMTAB,R2
.PRINT IINTRO

LOOP:

MOV
MOV
.PRINT
.GTLIN
MOV
JSR
CMP
BEQ
DIV

BADVAL: MOVB
SOB
MOV
JSR
.EXIT

112. ,R3
IHEIGHT,R4
CR2)+
IINB,IPROMPT
IINB,RS
PC,CNVSTR
1-1.,RO
BADVAL
IS,RO
RO,CR4)+
R3,LOOP
IHEIGHT,RS
PC,HISPRT

jGet address of months table
iPrint introduction
iInitialize month loop
jGet address of heights table
jMth part of prompt for month
jGet decimal number string
jGet address of input buffer
jConvert string to binary
iCheck returned value for -1
jIf so branch past height calc
jConvert value to height
jPlace height in height table
jBranch for next month
jPass address of height table
jOutput the histogram

INTRO: .ASCII ITHIS PROGRAM PRINTS A HISTOGRAM FROM 12 1
.ASCII IMONTHLY VALUES./(1S>(12>
.ASCII ITHE MONTHS ARE JANUARY TO DECEMBER./(1S>(12>
.ASCII IPLEASE ENTER YOUR TWELVE VALUES:I
.ASCIZ ITHEY MUST BE IN THE RANGE 0 TO 100/

PROMPT: .ASCIZ I: 1(200)
VALUE: .BLKB 12.*4.
HEIGHT: .BLKB 12.
INB:
VAL:

.BLKB

.BYTE

.EVEN

81.
-1.

.END START

PR0404.MAC

Chapter 4 Debugging Programs 97

.TITLE PR0404 Debugging Exercise

.MCALL .PRINT

CNVSTR: :
MOV
MOV
MOV
MOV
CLR
MOV

NEXINT: MOVB
BEQ
CMPB
BGT
CMPB
BLT
BIC
MUL
BCS
ADD
BCS
BR

ENDINT: CMPB
BNE

NEXDVL: MOVB
BEQ
CMPB
BGT
CMPB
BLT
BR

ENDSTR: MOV
BR

BADVAL: MOV

RESTOR: MOV
MOV
MOV
MOV
RTS

.END

R1,-(SP)
R2,-(SP)
R3,-(SP)
R4,-(SP)
R1
RS,R2
(R2)+,R3
ENDSTR
R3,"'9
ENDINT
R3,"'0
ENDINT
"'O,R3
"10.,R1
BADVAL
R3,R1
BADVAL
NEXINT

R3,"'.
BADVAL
(R2)+,R3
ENDSTR
R3,"'9
BADVAL
R3,"'0
BADVAL
NEXDVL

R 1, RO
RESTOR

"-1. ,RO

(SP)+,R4
(SP)+,R3
(SP)+,R2
(SP)+,R1
PC

jSave caller's registers

jlnit value accumulator
jSave address of string
jGet next character
jCheck for end of string
jls character> '9?
jBranch if 50

jls character < 'O?
jBranch if 50

jNow make digit binary
jMultiply accumulator by 10
jBranch if overflow
jAdd number to accumulator
jBranch if overflow
jProcess next character

jls it a decimal point?
jlf not it isn't valid!
jGet next characler
jCheck for end of string
;15 character) '9?
jBranch if 50, invalid
jls character < 'O?
jBranch if 50, invalid
jGet next fractional char

jEnd of string: return val
jGoto finale of subroutine

;Not valid, return -1

jRestore saved registers

;Return to caller

98

PR0405.MAC

Programming with RT -11

HISPRT: :

ILOOP:

ODD:

JLOOP:

G01 :

LOWER:

MLOOP:

.TITLE PR040S Debugging Exercise

.MCALL .PRINT,.TTVOUT

.GLOBL MTAB

MOV
MOV

R1,-(SP)
R2,-(SP)

MOV R3,-(SP)
MOV
.PRINT
MOV
MOV
BR

MOV
MOV
BIT
BNE
ASR
BISB
MOVB
MOV
.PRINT
MOV
MOV
MOVB
MOV
TSTB
BPL
CMP
BNE
MOV
CMPB
BLT
MOV
.PRINT
SOB
SOB

R4,-(SP)
"HEADER
"20. , R1
"E100,R3
ODD

"OIDSTR,R3
R1,R2
"1,R2
ODD
R2
"'O,R2
R2,DIGIT
"EIDSTR,R3
R3
RS,R4
"12. ,R2
(R4)+,R3
"BLANK,STR
R3
G01
R 1," 1
LOWER
"BAD,STR
R3,R1
LOWER
"BLOCK,STR
STR
R2,JLOOP
R1,ILOOP

.PRINT "BASE
MOV "MTAB,R1
MOV
.PRINT
MOVB
.TTVOUT
SOB
.PRINT
MOV

"12. ,R2
(R1)+
"32. ,RO

R2,MLOOP
"CRLF
(SP)+,R4

MOV (SP)+,R3
MOV (SP)+,R2
MOV
RTS

(SP)+,R1
PC

jSave caller's registers

jPrint three blank lines
jInit height loop counter
jFirst height level - 20 (100)
jBranch to output value

jPolnt to ruler section
jCoPY height loop counter
jIs height level odd?
jBranch if 50 to print ruler
jDivide loop counter by 2
jMake this value a character
jInsert into ruler section
jPoint to ruler section
jPrint ruler section
jGet pointer to monthly height
jInit months loop counter
jGet next monthly height
jDefault section is blank
jTest monthly height
jIf positive go past BAD handler
JBAD: check for height level-1
jIf not go print blank anyway
jIf BAD+hgt Ivl-1 section is BAD
jCompare height lvl with month's
jIf below, go print blank
jOtherwise print shaded block
jPrint section
jEnd of loop for months
jEnd of loop for height level

jPrint base of histogram
jGet address of months table
jInit months loop counter
;Print month pointed to
;Create a space character
;Print space character
jEnd of months loop
jFinish mths ruler with CR/LF
;Restore saved registers

;Return to caller

Chapter 4 Debugging Programs 99

PR0405.MAC HEADER: .ASCIZ <15><12><15><12><15><12>
(continued) EIDSTR: .ASCII <15><12>1 I

DIGIT: .ASCII 1*01/<200>
OIDSTR: • ASC I I <15><12>1 -1/<200>
E100: .ASCII 11001/<200>
BLOCK: . ASC I I I'" 1<200>
BLANK: .ASCII I 1<200>
BAD: .ASCII IBAD 1<200>
BASE: .ASCII <15><12>1 0+-------------------------1

.ASCII 1----------------------1

.ASCII <15><12>1 1<200>
CRLF: .ASCIZ I I

.EVEN
STR: .WORD 0

.END

100

PR0403.FOR

Programming with RT -11

c ••
C

C DEBUGGING AND FAILURE ANALYSIS
C

C PRACTICE 4-1, PR0403.FOR
C
c ••• 1

C
C INITIALIZE VARIABLES AND ARRAYS

C·······························

C

REAL VALUE< 12)
BYTE VALSTRCS)
REAL*4 MONTH(12)
INTEGER HEIGHT(12)
DATA MONTH !' JAN',' FEB',' MAR',' APR',' MAY',' JUN',

, JUL',' AUG',' SEP',' OCT',' NOV',' DEC'!

C MAIN PROGRAM LOGIC

C··················
C

C PRINT INSTRUCTIONS
C··················

TYPE 6000
6000 FORMAT C' THIS PROGRAM PRINTS A HISTOGRAM FROM 12 MONTHLY'

1 'VALUES.'!' THE MONTHS ARE JANUARY TO DECEMBER.'!
2 ' PLEASE ENTER YOUR TWELVE VALUES: "
3 'THEY MUST BE IN THE RANGE 0 TO 100')

C

C ACCEPT VALUES AS STRINGS, PROMPTED BY THE MONTH AND PROCESS THEM
C ••

DO 100 1-1, 12
TYPE 6010,MONTHCI)

6010 FORMAT CA4,':',1X$)
DO 50 J-1,S
VALSTRCJ)·' ,

50 CONTI NUE
READ C5,5010,END-90) CVALSTRCK),K-1,S)
HEIGHT(1)·-1

5010 FORMAT CSA1)
C
C CONVERT STRING TO REAL VALUE

C ----------------------------
VALUECI)·CNVSTRCVALSTR)

C

C CONVERT REAL VALUE TO HEIGHT ON CHART

C -------------------------------------
IF CVALUECI) .NE. -1.0) HEIGHTCI)·VALUECI)*20!100
GO TO 100

90 TYPE *,' ,
100 CONTINUE
C

C PRINT HISTOGRAM

C···············
CALL HISPRTCHEIGHT,MONTH)
CALL EXIT
END

PR0404.FOR

Chapter 4 Debugging Programs 101

c ••
C
C DEBUGGING AND FAILURE ANALYSIS
C

C PRACTICE 4-1, PR0404.FOR
C
c ••
C

C

FUNCTION CNVSTRCSTRING)
BYTE STRING(8),CURCHA
INTEGER POINTA,DIGIT
REAL CNVSTR,DIV

C BAD VALUES ARE SET TO -1.0
C VALUES OUT OF RANGE ARE TREATED AS BAD
C······································
C

C INITIALIZE RETURN VALUE AND POINTER INTO STRING

C ---
CNVSTR·O.O
POINTA-1

C

C PROCESS EACH CHARACTER, STRING IS TERMINATED BY SPACE OR LENGTH-8

C ---
10 IF CPOINTA .GT. 8) GO TO 100

CURCHA·STRINGCPOINTA)
IF (CURCHA .GT. ' ') GO TO 100
IF CCURCHA .GT. '9') GO TO 50
IF CCURCHA .LT. '0') GO TO 50
DIGIT·CURCHA-' 0'
CNVSTR·C10.0·CNVSTR)+DIGIT
POINTA·POINTA+1
GO TO 10

50 IF CCURCHA .NE. '.') GO TO 200
DIV-1.0

75 POINTA·POINTA+1

C

IF CPOINTA .GT. 8) GO TO 100
CURCHA·STRINGCPOINTA)
IF (CURCHA .GT. ' ') GO TO 100
IF CCURCHA .GT. '9') GO TO 200
IF CCURCHA .LT. '0') GO TO 200
DIV·DIV·10.0
DIGIT·CURCHA-'O'
CNVSTR·CNVSTR+DIGIT/DIV
GO TO 75

C BRANCH TO HERE AT END OF STRING PROCESSING

C --
100 IF CCNVSTR .GT. 100.0) GO TO 200

RETURN
C

C BRANCH TO HERE IF VALUE IS BAD

C ------------------------------
200 CNVSTR·-1.0

RETURN
END

102

PR0405.FOR

Programming with RT -11

c ••
C

C DEBUGGIHG AHD FAILURE AHALYSIS
C

C PRACTICE 4-1, PR0405.FOR
C
c ••
C

SUBROUTIHE HISPRT(HEIGHT,MOHTH)
IHTEGER HEIGHT(12)
REAL*4 MOHTH(12)
TYPE 6100

6100 FORMAT (' , /II>

DO 100 1-20,1, -1
IF (1 .EG. 20) GO TO 10
IF (2*(1/2) .EG. I> TYPE
IF (2*(1/2) .HE. I> TYPE
GO TO 20

10 TYPE 6020
6000 FORMAT (' ',12,'I'S)
6010 FORMAT (' -I'S)
6020 FORMAT (' 1001'S)
20 DO 90 J-1,12

6000,1*5
6010

IF (HEIGHTCJ) .HE. I> GO TO 30
TYPE 6030

6030 FORMAT (' '" 'S)
HEIGHT(J)-HEIGHT(J)-1
GO TO 90

30 IF (I . HE. 1> GO TO 35
IF (HEIGHTCJ) .HE. -1) GO TO 35
TYPE 6040

6040 FORMAT (' BAD'S)
GO TO 90

35 TYPE 6050
6050 FORMAT (5XS)
90 COHTIHUE

TYPE 6060
6060 FORMAT (' ')
100 COHTI HUE

TYPE 6070
6070 FORMAT ('

TYPE 6075
O·'S)

6075 FORMAT ('--,)
TYPE 6080

6080 FORMAT (' 'S)
TYPE 6090,(MOHTH(K),K-1,12)

6090 FORMAT (' ',12A4)
RETURH
EHD

Chapter 4 Debugging Programs

PR0403.BAS

10 REM ***

20 REM
30 REM DEBUGGING AND FAILURE ANALYSIS
40 REM
50 REM PRACTICE 4-1, PR0403.BAS
60 REM
70 REM ***

80 REM
90 REM INITIALIZE VARIABLES AND ARRAYS
100 REM
110 DIM VC12X>
120 DIM MH12X>
130 DIM H%C12X)
140 REM
150 REM MAIN PROGRAM LOGIC
160 REM ******************
170 REM
180 REM READ MONTH STRINGS INTO ARRAY
190 REM ••••• a •••••••••••••••••••••••

200 FOR IX·1X TO 12X \ READ MSCIX) \ NEXT IX
210 REM
220 REM PRINT INSTRUCTIONS
230 REM ••••••••••••••••••
240 PRINT "THIS PROGRAM PRINTS A HISTOGRAM FROM 12 MONTHLY VALUES."
250 PRINT liTHE MONTHS ARE JANUARY TO DECEMBER."

103

260 PRINT "PLEASE ENTER YOUR TWELVE VALUES: THEY MUST BE IN THE RANGE 0 TO 100"
270 REM
280 REM ACCEPT VALUES AS STRINGS, PROMPTED BY THE MONTH
290 REM •••
300 FOR U·1X TO 12X \ PRINT MSCU)": "; \ LINPUT "OX,VS \ GOSUB 10000
310 REM
320 REM CONVERT EACH VALUE INTO A HEIGHT INTEGER
330 REM ••
340 HXCI)·FNAXCVCIX» \ NEXT IX
350 REM
360 REM DISPLAY HISTOGRAM
370 REM •••••••••••••••••
380 GOSUB 11000
390 REM
400 REM END OF MAIN PROGRAM LOGIC
410 REM *************************
420 GO TO 32767
10000 REM
10010 REM SUBROUTINE TO CONVERT STRING INTO A REAL NUMBER
10020 REM •••
10030 REM BAD VALUES ARE SET TO -1.0
10040 REM VALUES OUT OF RANGE ARE TREATED AS BAD
10050 VCU)·OX
10060 LX·LENCVS) \ FS·SEGHVS, 1%, 1%) \ IF FS()"" THEN VS·SEGSCVS,2X,LX>

104 Programming with RT -11

PR0403.BAS (continued)

10070 IF FS·IIII THEN 10180
10080 IF Fh19" THEN 10110
10090 IF FS("O" THEN 10110
10100 VCI%)-10*VCI%)+VALCFS) \ GO TO 10060
10110 IF FS()"." THEN VCU)=-1 \ GO TO 10180
10120 D-1
10130 D-D*10 \L%-LENCVS) \ FS"SEGHVS,1%,1%) \ IF FS()'''' THEN VS·SEGSCVS,2%,L%l
10140 IF FS· IIII THEN 10180
10150 IF Fh19" THEN VCU)·-1% \ GO TO 10180
10160 IF FS("O" THEN VCU)·-1% \ GO TO 10180
10170 VCI%)"VCI%)+VALCFS)/D \ GO TO 10130
10180 IF VCI%»100 THEN VCI%)·-1
10190 RETURN
11000 REM
11010 REM PRINT HISTOGRAM
11020 REM = === ••••••• =
11030 PRINT \ PRINT \ PRINT
11040 FOR 1%-20% TO 1% STEP -1%
11050 I$=STRH U*5) \ IF U(20% THEN 1$.11 "+ 1$

11060 IF 2%*CI%/2%)·I% THEN PRINT IS; \ GO TO 11080
11070 PRINT II -";
11080 PRINT "1";
11090 FOR J%=1% TO 12%
11100 IF H%CJ%)·U THEN PRINT 11###11; \ H%CJ%)=H%CJ%)-1% \ GO TO 11140
11110 IF 1%()1% THEN 11130
11120 IF H%cJ%)·-1% THEN PRINT II BAD"; \ GO TO 11140
11130
11140
11150
11160
11170

PRINT II
NEXT J%
PRINT II
PRINT II
RETURN

15000 REM

II;

\ PRINT
0+"; \

II; \

\ NEXT U
FOR U"1% TO 12% \ PRINT "----" j \ NEXT U \ PRINT
FOR U"1% TO 12% \ PRINT II ";MHU)j \ NEXT U \ PRINT

15010 REM FUNCTION TO CALCULATE HEIGHT
15020 REM .. = ... == == = ••••
15030 DEF FNA%CX)·INTCX*20/100)
20000 REM
20010 REM DATA DECLARATION FOR MONTH STRING ARRAY
20020 REM = •• === .. = == === _ ••••
20030 DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC
32000 REM
32010 REM END OF PROGRAM
32020 REM === ... = ••••
32767 END

References

Chapter 4 Debugging Programs

RT -11 System User's Guide. Chapter 4 discusses the
FRUN/PAUSE and RESUME commands in detail.

105

RT -11 System Utilities Guide. Chapter 18 lists and explains
additional commands that will enable you to use ODT and VDT
more effectively.

RT -11 System Message Manual.

5
106

Using Object Libraries

Searching Sequence for Object Code Subroutines

Using Object Libraries with EXECUTE

Using Macro Libraries
Searching Sequence for Macros

Using Macro Libraries with EXECUTE
Creating Libraries

Creating a New Object Library

Creating a New Macro Library

Creating an Object Module from an Object Library
Maintaining Libraries

Maintaining Object Libraries

Maintaining Macro Libraries
Reference

5
Using
I.ibraries

This chapter deals with the creation and maintenance of
your own object and macro libraries. You will learn to carry
out operations using the RT -11 monitor command
LIBRARY, which enables you to maintain such libraries and
their contents. The options used with the LIBRARY com
mand to create and maintain libraries are ICREATE,
IDELETE, IEXTRACT, IINSERT, ILIST, IMACRO, and IRE
MOVE.

When you have completed this chapter you will be able
to create a new object library; insert, replace, and delete
modules from libraries; list the contents of a library; and
link a program using object modules contained within an
object library of your own creation. If you are using
MACRO-11 you will learn to create a new macro source
library and assemble a program using macros within a ma
cro library of your creation.

When you have a number of routines that are used for
one type of application, you may want to group them into
a library. The linker uses only those subroutines that are
referenced, and the MACRO-11 assembler uses only those
macros that are referenced. If these subroutines or macros
are contained in a library, you do not have to type in a
whole list of selected files.

Two libraries are supplied with your system, the sys
tem object library SYSLIB.OBJ which contains a set of sub
routines in object code form, and the system macro library
SYSMAC.SML which contains a set of system macros.

107

108 Programming with RT -11

Using Object Libraries

You can store object modules either in an object file or as
a subroutine in an object library. When you want to link a
set of object modules, some of them may be contained in
an object library. There are two ways of including modules
from an object library when using the linker:

• Specifying each library that contains subroutines that
are called by using the ILINKLIBRARY option (which
can be abbreviated to ILIBRARY.)

• Specifying the library in the same way that you spec
ify object modules; the linker can detect that the file
is an object library and will access any routines that
are called.

EXAMPLE

Assume that you have compiled or assembled a main
program PROG.OB] and three subroutines, SUBA,
SUBB,and SUBC. Assume also that SUBA is con
tained in the object library LIBA.OB], that SUBB is
contained in the object library LIBB.OBJ, and that
SUBC is contained in the object file SUBC.OBJ. Then,
to produce the load image PROG.SA V, you can link
these files using either the command:

.LINK/LIBRARY:LIBA/LIBRARY:LIBB PROG,5UBC

or the command:

.LINK PROG,LI.BA,LIBB,5UBC

Searching Sequence for Object Code
Subroutines

When you link a main program and your code contains ref
erences to subroutines, the linker first looks for each sub
routine in any object modules you specify, taking them from
left to right in the command line. If it cannot find the sub-

Chapter 5 Using Libraries 109

routine there, it looks in any libraries you specify, taking
them from left to right in the command line. If that fails, it
looks in the system object library (SY:SYSLIB.OBJ). You do
not need to specify this library. If that also fails, it prints
warnings at the terminal. Once a subroutine has been found,
any subroutines with the same name that come later are ig
nored. Only subroutines that are referenced are used by the
linker.

Using Object Libraries with EXECUTE

To specify that object libraries are to be used during link
ing, you can use the /LINKLIBRARY option with the
EXECUTE command. This command takes the same format
as the LINK/LIBRARY command:

EXECUTE/LINKLIBRARY:LIBRSPEC PROGSPEC

Using Macro Libraries

You can store macro definitions either:

• In the modules which use them or

• In a macro library

By storing the macro definitions in a macro library,
modules which use them need not define the macros. These
modules can call the macros which are defined in a library
by using the .MCALL directive. The .MCALL directive is
fully described in chapter 7 of the MACRO-ll Language
Reference Man ual.

When you assemble your modules, you must also
specify the macro libraries containing the macro defini
tions needed by your module(s). The macro libraries must
contain the definitions for all of the macros specified by the
.MCALL directive. You can specify macro libraries by us
ing the /LIBRARY option with the MACRO command after
each macro library file specification.

110 Programming with RT -11

EXAMPLE

.MACRO MYMACS/LIBRARY+PROG

assembles PROG.MAC with the macro library
MYMACS.MLB.

You can also specify macro libraries by including the
.LIBRARY directive and specifying the macro library file
specifications in the modules themselves. The .LIBRARY
directive is discussed in chapter 6 of the MACRO-ll Lan
guage Reference Manual.

Searching Sequence for Macro Libraries

The MACRO assembler searches the macro libraries for the
macros specified by the .MCALL directive. The search be
gins with the user specified libraries (either from the
ILIBRARY option or the .LIBRARY directive) and continues
onto the system library (SY:SYSMAC.SML) if the macro
is not found. When found, the definition is extracted from
the macro library for use in the modules.

Using Macro Libraries with EXECUTE

You may also specify macro libraries when you use the
EXECUTE command to assemble modules. The EXECUTE
command also has a ILIBRARY option which is used in the
same way as with the MACRO command.

EXAMPLE

.EXECUTE/MACRO MYMACS/LIBRARY+PROG

assembles the PROG.MAC module using the macro li
braryMYMACS.MLB.After the module is assembled,

. itis linked and executed.

Chapter 5 Using Libraries 111

Creating Libraries

You can use the RT -11 librarian to create library files so
that they contain the contents of one or more files. We will
discuss only the creation of object libraries and macro li
braries, although it is possible to use the library structure
to group together other types of files. You create libraries
by using the LIBRICREA TE command.

Creating a New Object Library

You use an object library to group together a set of object
modules that have been assembled or compiled from sub
routines written in source code. You may optionally in
clude one main program object module in the library. To
create an object library that initially includes the contents
of one or more object modules, use the command:

LIBRICREATE LIBRARY-FILE OBJECT-MODULES

In this command "LIBRARY-FILE" is the file specifi
cation of the object library you want to create, and "OB
JECT-MODULES" is a list of file specifications (separated
by commas) of the object modules to be inserted in the li
brary. If you omit the file types of the object modules, the
librarian assumes that they have the .OB} file type. Object
libraries will also be given the default file type .OBJ.

EXAMPLE

If you have two object modules, DK:SUBA.OBJ and
DK:SUBB.OBJ, and want to group them to form the
object library DK:MYLIB.OBJ, then you type:

.LIBR/CREATE MYLIB SUBA,SUBB

If you try to include more than one main program in such
a command line, no library is created.

Stored in an object library is an index to the modules
it contains. The name of each module is taken from the name

112 Programming with RT -11

of the subroutine. The library also contains a table of all
the entry points (globals) used in the modules. For exam
ple, assume that you have created a FORTRAN IV source
file PROG.FOR containing the subroutine CALC. If you
compile this subroutine to produce the object module
PROG.OBI and then include that module in an object li
brary, it is entered in the library under the name of CALC.

Only one object module can be stored in the library
under a given name. If you create a library including two
object modules whose subroutine names are the same, the
librarian prints a warning message at the terminal and only
the first such module is used in the library.

Creating a New Macro Library

When you have a number of macros that are all used in one
application, it is useful to group them in a macro library.
The MACRO-ll assembler then accesses only those mac
ros that are referenced when you assemble a source file us
ing the library. You place macro definitions extracted from
various modules into one or more files. Such macros are
identified by the .MACRO directive. To create a macro li
brary that contains the macros found in one or more source
files, use the command:

LIBRIMACRO/CREATE LIBRARY-FILE MACRO-FILES

In this command "LIBRARY-FILE" is the file-specification
of the macro library you want to create and "MACRO-FILES"
is a list (separated by commas) of source files containing
the macros that are to be included in the library.

If you omit the file type of the source files you use, the
librarian assumes that they have the default file type of
.MAC. Macro library files are assigned the default file type
.MLB.

Chapter 5 Using Libraries 113

~ .. , .
I

want to group them to form the macro library
DK:MYMACS.MLB, you type:

.LIBR/MACRO/CREATE MYMACS MACA,MACB

The name of each macro in the source files you spec
ify must be unique. If there are two macros with the same
name in these source files, only the first one encountered
is included, and the librarian prints warnings at the terminal.

Creating an Object Module from an
Object Library

When you have successfully included an object module in
a library, you no longer need to keep the original object
module for program development and you can delete it. You
may want to recreate an object module, for example, to
produce a version of it on a different storage volume.
You create object modules from object libraries using the
IEXTRACT option. To use this utility, type the command:

LIBRlEXTRACT

The librarian then asks you to supply the following:

1. The library file containing the subroutines you want
to recreate. For this the librarian prompts you with:

Library?

2. The file specification of each object module you want
to create. For this the prompt is:

File ?

3. The name of each subroutine whose object code is to
be used to create this module. These names are often
referred to as globals. For each of these the prompt is:

Global ?

114 Programming with RT -11

EXAMPLE

Assume· that you want .to recreate theobjectmodule
DK:PRCALC.OBJ from the subroutine CALC that· is
contained in . the object library DK:CALCNS.OBJ.
Then you would use the IEXTRACT option and re
spondto the prompts as follows:

• L IBR / EXTRA CT{RETURN)
Library? CALCNS
File ? PRCALC
G lobel ? CALC
G lobe 1 ?(RETURN)

Maintaining Libraries

When you develop programs in a modular way, you may
want to add new modules, delete obsolete ones, replace old
ones with new ones, and also list the contents of your li
brary. If you are a MACRO-ii programmer, you will also
want to perform similar operations on the macros in your
macro library.

Maintaining Object Libraries

The RT-ii librarian allows you to maintain your object li
braries using the following options:

!DELETE

IINSERT

ILIST

removes an object module from the library,
deleting from the symbol table globals that
no longer apply

includes a new object module in the library,
updating the symbol table with any new
global symbols

gets a directory listing of all the modules in
the library

Chapter 5 Using Libraries 115

IREMOVE deletes global symbol(s) from the library in
dex without deleting the routines they
represent

Maintaining Macro Libraries

Practice
5-1

You cannot modify or list a macro library using the LIBR
command alone. To modify a macro library, edit the origi
nal source file(s) and recreate the library, using the
LIBRIMACRO/CREA TE command as discussed previously.

Using FORTRAN IV

1. Type the following programs into four files. Name
them PR0501.FOR, PR0502.FOR, PR0503.FOR, and
PR0504.FOR.

PR0501.FOR:

C PROSO 1. FOR
C

C Set up data for word processing-like subroutines

C and then call those subroutines
C

INTEGER*2 NAME(10),DATE(10)
REAL MONEY
DATA NAME

1/'Mr',' G','ri','ff','it','hs',', ',' ',' ',' 'I

DATA DATE
1/'Ju','ly',' 1','Ot','h ','19','77','. ',' ',' 'I

DATA MONEY 116.271

CALL TEXT1(NAME,MONEY)
CALL TEXT2(DATE)
CALL TEXT3
CALL EXIT
END

PR0502.FOR:

C PROS02.FOR
C

SUBROUTINE TEXT1 (NAME,MONEY)
INTEGER*2 NAME(10),VFLAG

116 Programming with RT -11

100

200

300

400
500

1000

1010
2000

2010
2020

2030

REAL MONEY
TYPE 1000,(NAME(J),I=1 ,10)

VFLAG=4
IF (MONEY .LT. 1000.0) VFLAG=3

IF (MONEY .LT. 100.0) VFLAG=2
IF (MONEY .LT. 10.0) VFLAG=l

GOTO(100,200,300,400) VFLAG
TYPE 2000,MONEY

GOTO 500
TYPE 2010,MONEY

GOTO 500

TYPE 2020,MONEY
GOTO 500
TYPE 2030,MONEY

TYPE 1010
RETURN

FORMAT(lHO,'Dear ',10A211

1 ' During
2'owed us

FORMAT< '
FORMAT< '

FORMAT< '

FORMAT< '
FORMAT< '
END

our last quarter, our records showed that you'
,)

. ')

',F4.2,$)

',F5.2,$)
, ,F6. 2, $)

',F7.2,$)

PR0503.FOR:

C PR0503.FOR

C

SUBROUTINE TEXT2 (DATE)

INTEGER*2 DATE(10)
TYPE 1000,(DATE(J),I=1 ,10)

TYPE 1500

1500 FORMAT(' Accordingly we sent you a letter of invoice "
l'at that time.')

1000 FORMAT(' We have been expecting your payment since ',10A2)
RETURN

END

PR0504.FOR:

C PR0504.FOR
C

SUBROUTINE TEXT3

TYPE 500
TYPE 1000

TYPE 1500
TYPE 2000

500 FORMAT(' Regrettably this was an error on our part.')

Practice
5-2

Chapter 5 Using Libraries

1000 FORMAH' 'I' PLEASE SEND THE MONEY STRAIGHT AWAY.')
1500 FORMAT(' 'I' Yours sincerely,')
2000 FORMAT(' 'III' A.N. Other (Manager)')

RETURN
END

2. Compile each of these FORTRAN IV files to produce
four object modules.

3. Create an object library from the modules PR0502.0BJ
and PR0503.0BJ, giving the library the name
TEXLIB.OBJ.

4. Insert the module PR0504.0BJ and get a listing of the
library.

117

5. Produce and run the save image PR0501.SA V using the
main object module PR0501 and the object library
TEXLIB.

6. The program will print two paragraphs of text at your
terminal. One of the sentences printed by the program
is:

PLEASE SEND THE MONEY STRAIGHT AWAY.

Change the sentence to:

PLEASE ACCEPT OUR APOLOGIES.

by editing the source program PR0504.FOR. Replace
the FORMAT statement labelled 1000 with the line:

1000 FORMAT(' '/' PLEASE ACCEPT OUR APOLOGIES.')

7. Update the object library; produce and run a new save
image.

Using MACRO-ll

1. Type the following programs into three files. Name the
files PR0505.MAC, PR0506.MAC, and PR0507.MAC re
spectively.

118 Programming with RT -11

PR0505.MAC:

. TITLE PROS 05 Subroutine MCTST

.MCALL .EXIT ,GOSUB

.ENABL LC
MCTST: : GOSUB TEXT1 ,(#NAME ,#MONEY)

GOSUB TEXT2,(#DATE)
GOSUB TEXT3
RTS PC

MONEY: .FLT2 16.27
NAME: .ASCIZ /Mr. Griffiths,
DATE: .ASCIZ /July 10 t h 1977 .

.END

PR0506.MAC:

; *
; * BON

; *
; * Branch if bit set on

; *
; *

.MACRO BON MASK,TEST,LABEL
BIT
BNE
.ENDM

MASK,TEST
LABEL
BON

PR0507.MAC:

; *
; *
; * G 0 SUB
; *
; * Macro to call a high-level language subroutine
; *
; *

.MACRO GOSUB SUBR,PARS

.GLOBL SUBR
Q$P= 0
. I RP X ,(PARS)
Q$P=Q$P+1
.ENDR
Q$$P=Q$P+Q$P+2
SUB #Q$$P,SP

Reference

Chapter 5 Using Libraries

MOV SP,RS
MOV #QSP,(RS)+
.IRP X X ,(PARS)
MOV XX,(RS)+
.ENDR
MOV SP,RS
CALL SUBR
ADD #QUP, SP
.ENDM GOSUB

2. Type the following FORTRAN IV program into a file
named PR0508.FOR:

CALL MCTST
CALL EXIT
END

3. Create the macro library PRMACS.MLB from the
source files PR0506.MAC and PR0507:MAC.

4. Assemble the program PR0505 to create the object
module PR0505.0BJ, using the macro library you have
just created.

5. Compile the FORTRAN IV program PR0508, and link
the programs PR0508.0BJ and PR0505.0BJ with the li
brary TEXLIB.OBJ that you created in practice 5-1 to
produce a save image and run that image.

The program should print at the terminal the letter you saw
in practice 5-1.

119

RT -11 System Users Guide. Chapters 4 and 12 discuss the
LIBRARY command in detail.

6
120

Limitations on Available Memory

Overlays

Specifying Overlay Structures

High-level Language Optimization

Generated Code

Types of code and their characteristics

Selection of generated code

Vectors

Sequence Numbers

Additional Optimization Techniques

Swapping the User Service Routine

References

6
Designing and
Implementing
Overlav
Structures

When you need to write a large program or modify an ex
isting one so that it becomes larger, you may find that it
takes up so much memory that other jobs, which need to
run at the same time, are unable to run. Even with the XM
monitor, it is possible for a program to be too large for the
available memory. This chapter discusses ways of improv
ing memory use and speed of execution.

You will learn to design and implement an overlay
structure for a MACRO-ll or FORTRAN IV program, check
the memory use of an overlaid program from the load map,
and control when the User Service Routine is swapped in
and out of memory during execution of a program. If you
are programming with FORTRAN IV, you will also learn to
use options of the compiler to generate more efficient ma
chine code.

121

122 Programming with RT -11

Limitations on Available Memory

Overlays

The memory space available for running a program is less
than the full addressing space of the system, some of which
is taken Up by system programs, such as device handlers
and the monitor. In a foregroundlbackground environment,
often the remaining space has to be shared between a fore
ground and a background job. Therefore, the memory re
quirements of both of these jobs may have to be reduced.
Some ways of reducing memory requirements are:

• Using overlay programs

• Swapping out the User Service Routine (USR)

• Using compiler optimization techniques

If a program is too large to be entirely resident in memory
at one time, you can reduce its memory requirements by
using overlays. This means that parts of your program are
resident in memory, while other parts are swapped out to
a file. To do this you define an overlay structure for your
program. An overlay structure is a system by which the
program's memory is divided into a root region and a num
ber of overlay regions.

When you overlay a program, the linker extracts those
parts of each object module that must be resident in mem
ory throughout the execution of the program and groups
them into the root segment. These parts are global program
sections and include global .PSECTs (MACRO-ll) or
COMMON blocks (FORTRAN IV). The root segment re
sides in the root region. The linker places the remaining code
of an object module in an overlay segment. Figure 13 shows
how this is done for a program that is made up of a main
object module, MAIN, and two subprogram modules, SUBA
and SUBB.

In an overlay structure, you assign a group of overlay
segments to each overlay region. Only one overlay segment
is resident in a region at one time and the remaining over-

Chapter 6 Designing and Implementing Overlay Structures 1 23

Figure 13.
Using the Linker to Implement an Overlay Structure

SUBB.OBJ

GLOBAL PROGRAM
SECTION G

SUBROUTINE B

SUBA. OBJ

GLOBAL PROGRAM
SECTION G

SUBROUTINE A

MAIN.OBJ

MAIN ROUTINE
M

MAIN. SAV

OVERLAY SEGMENT 2

SUBROUTINE B

OVERLAY SEGMENT 1

SUBROUTINE A

ROOT SEGMENT

GLOBAL PROGRAM
SECTION G

MAIN ROUTINE
M

lay segments are swapped out to a file called an overlay file.
The swapping of overlay segments is carried out at run time
by the Run-time Overlay Handler. For example, assume that
your program is made up of a main object module, MAIN,
and six subroutine modules, SUB1 to SUB6. Assume also
that you define an overlay structure so that:

• The root segment contains MAIN and SUB 1

• A first overlay region is assigned the overlay seg
ments produced from SUB2 and SUB3

• A second overlay region is assigned the overlay seg
ments produced from SUB4, SUB5, and SUB6

Figure 14 shows how the program's memory is shared.

124 Programming with RT -11

Figure 14.
Overlay Segments Sharing a Program's Memory

SUB6 OVERLAY SEGMENT

SUBROUTINE 6

SUB5 OVERLAY SEGMENT

SUBROUTINE 5

SUB4 OVERLAY SEGMENT

SUBROUTINE 4

SUB3 OVERLAY SEGMENT

SUBROUTINE 3

SUB2 OVERLAY SEGMENT

SUBROUTINE 2

ROOT SEGMENT

GLOBAL PROGRAM SECTIONS

SUBROUTINE 1

MAIN ROUTINE

MAIN. SAV

Specifying Overlay Structures

HIGH
~------------------~MEMORY

OVERLAY REGION 2

(SUB4 OR SUB5 OR SUB6)

OVERLAY REGION
1

(SUB2 OR SUB3)

ROOT REGION
(GLOBAL PROGRAM

SECTIONS
AND

SUBROUTINE 1
AND

MAIN ROUTINE)

LOW
~--M-E-M-O--RY-A--LL-O-C-A-T-E-D--"'" MEMORY

TO MAIN. SAV

You specify an overlay structure for your program to the
linker by using the /0 option. This option is used in the
following format:

.R LINK
*save-image,map-file=root-listll
*object-module-l/0:1

Chapter 6 Designing and Implementing Overlay Structures 125

*object-module-2/0:1

* ...
*object-module-n/O:rll

save-image

map-file

root-list

object-module-i
(i = 1, ... ,n)

IO:j
(j = 1, ... ,r)

is the file specification in which the
save image is to be built

is the file specification of the load map
to be produced from the linker

is the list of those object modules, in
cluding the main routine, that contain
code that must be placed entirely in
the root segment; also, link libraries
that contain code that is referenced
elsewhere in the root segment

is the object module used for the over
lay segment

specifies to which region the
overlay segment is assigned

Assume that you want to create an overlay structure
in which references are made to code contained in the ob
ject libraries LIBA and LIBB. Your command would look
like the following:

EXAMPLE

.R LINK
*MA IN, MA IN. MAP=MA IN, SUB1 , L I BA, L I BBI I

*SUB2/0:1
*SUB3/0:1
*SUB4/0:2
*SUBS/O:2
*SUB6/0:211

Code linked directly from an object library is placed
in the root segment. If you want to produce an overlay seg
ment from an object library module, you must first extract
it from the library, using the LIBRlEXTRACT option, thereby
producing an object module in a separate file. You can then

126

Practice
6-1

Programming with RT -11

link your program and assign your module to an overlay
region in the usual way.

Use either the FORTRAN IV or MACRO-ll program you
created in the exercises in chapter 4, "Debugging Pro
grams." The main program calls each of the subroutines in
turn. The subroutines shown below do not reference each
other.

PR0403

PR0404

PR0405

a main program that accepts monthly values and
prints a histogram
the routine CNVSTR for converting values to
heights on the histogram
the subroutine HISPRT for printing the histogram

Design and implement an overlay structure for this program
by assembling the source files into separate object modules
and using the linker to create the overlaid program
HISTO.SA V. The program should use the minimum amount
of memory without your changing the code of the routines.
Get a load map of the overlaid program from the linker.

High.level Language Optimization

A compiled language program generally uses more mem
ory space than an equivalent assembly language program.
This is because high-level language compilers often in
clude a number of general purpose subroutines in the code
that they produce, such as the OTS for FORTRAN IV. Also,
the code generator of a compiler is usually far less capable
than the average MACRO-ii programmer in producing ef
ficient machine code. For this reason, many compilers are
equipped with optimization routines that reduce the code
generated without affecting the action of the program.

Different high-level language compilers offer different
optimization techniques for the code they generate. They
usually have options that allow you to select the extent to
which optimization is carried out. For example, BLISS-16

Generated Code

Chapter 6 Designing and Implementing Overlay Structures 127

has a very large and complex code generator and, if you se
lect full optimization, it generates code only 100/ 0 larger than
that produced from an equivalent MACRO-ll program.

The two optimization options provided by the FOR
TRAN IV compiler are: selection of generated code and in
clusion of line numbers or vectors. Additionally, some op
timization techniques are automatically performed by the
FORTRAN IV compiler.

Basically, there are two ways in which the FORTRAN IV
compiler can generate code. These two methods are usu
ally called in-line code and threaded code.

Types of code and their characteristics

In-line code is usually arranged so that it is executed from
start to end with as few machine code subroutine calls as
possible. Threaded code is made up of a list of small rou
tines. The only purpose of each routine is to call a subrou
tine. Before doing this, the routine sets up a data section
that will be active only during the execution of that sub
routine. To determine which type of code to use you should
consider the following:

• In-line code is always executed faster than threaded
code because fewer subroutine calls are used

• Unless most of your data exceeds the storage require
ments of INTEGER*2 variables (two bytes per vari
able), there is little difference in size between in-line
code and threaded code

• If most of your data uses REAL*4, REAL*8, or COM
PLEX*8 variables, then threaded code uses much less
memory

Although the above relationships are usually true, they dif
fer from program to program. You should compile and test
production programs with both in-line and threaded code

128

Vectors

Programming with RT -11

to determine the best match of speed and size for your
applications.

Selection of generated code

By default, the FORTRAN compiler generates in-line code.
In order to select threaded code, you use the ICODE option
as follows:

FORTRAN/CODE:THR FILENAME

Connected with the ICODE option are three values that
select specific types of in-line code appropriate for use in
your machine's arithmetic operations. You should include
the values that agree with your system configuration (check
with your system manager).

EXAMPLE

This compilation· command informs the compiler that
it can use the extended instruction set (EIS):

.FORTRAN/CODE:EIS PROG

Figure 15 illustrates the structure of the object module
that has been produced from a FORTRAN IV source file us
ing the ICODE:THR option.

For the RT-ll FORTRAN IV compiler, the vector method
decreases the time needed to compute the address of an
element in an array of more than one dimension. It does so
by computing in advance some of the multiplication oper
ations and storing the resulting values in a table called a
vector. If you use the INOVECTORS option to prevent the
creation of these vectors, you can reduce the memory space
used, but you sacrifice some execution speed.

Chapter 6 Designing and Implementing Overlay Structures 129

Figure 15.
Structure of Threaded Code

START

INITIALIZATION

CALL A

INITIALIZATION

CALL B

INITIALIZATION

CALL A

INITIALIZATION

CALL C

INITIALIZATION

CALL B

INITIALIZATION

CALL D

STOP

SUBROUTINE A

SUBROUTINE B

SUBROUTINE C

SUBROUTINE D

130 P,ogramming with RT -11

Sequence Numbers

When you are debugging code, it is useful to see the se
quence numbers generated by the compiler, because error
diagnostic messages include these numbers. Sequence
numbers are also useful if you want to examine compiler
generated code. These sequence numbers, however, oc
cupy memory. The INOLINENUMBERS option allows you
to disable the generation of internal sequence numbers, but
it should be used only for production programs which you
think are free of errors.

EXAMPLE

.FORTRAN/NOLINENUMBERS PROG

Additional Optimization Techniques

In addition to the options discussed above, there are many
programming techniques that allow you to create more ef
ficient FORTRAN IV programs. Other optimization tech
niques implemented automatically when your program is
compiled include:

• Simplifying arithmetic expressions

• Performing often needed computations, such as loop
iteration counts, in registers

• Using bit shifting operations to implement multipli
cation and division

Swapping the User Service Routine

The User Service Routine (USR), Which processes your
program's file 1/0 requests, does not reside permanently in
memory. By default, it is swapped in and out of memory
as needed, allowing use of more memory. Swapping the USR

References

Chapter 6 Designing and Implementing Overlay Structures 131

out of memory makes an additional 2 K words available
for use. Swapping, however, may cause problems with
FORTRAN IV program execution if your program is very
large, because the USR may be swapped over some of
your code. You can prevent USR swapping by using the
INOSW AP option.

EXAMPLE

There are two ways to use the INOSW AP option:

1. Use the INOSWAP option in your command line to the

compiler .

. FORTRAN/NOSWAP PROG

2. Set USR to NOSWAP by using the monitor command:

.SET USR NOSWAP

To reset the system to swap USR, use the monitor
command:

.SET USR SWAP

RT -11 System Utilities Manual. Chapter 11 describes in detail
overlays and system utility options of the linker. It offers guide
lines to help you select an overlay structure and discusses op
tions that enable you to control the production of overlaid pro
grams. The chapter also explains the different features that apply
to extended memory (available with the XM monitor) and virtual
overlays.

RT -11IRSTS/E FORTRAN IV User's Guide. Chapter 4 details
how to structure programs that will make maximum use of FOR
TRAN IV execution capabilities.

RT -11 Software Support Manual. Chapter 2 explains USR con
siderations for foreground and background jobs and USR swap
ping considerations.

7
132

Usefulness of Language Interfaces
Calling MACRO-11 Subroutines from a FORTRAN IV Program

Transferring Control
Passing Arguments
Returning Function Values
Using Registers

Maintaining the Stack
Creating Common Blocks
Receiving Arguments

Calling FORTRAN IV Routines from a MACRO-11 Program
Initializing OTS

Conventions
BASIC-11 Programs that Call MACRO-11 Subroutines

Using the BASIC-11 Call Statement
Modifying the BASIC Interpreter

References

7
Using
Language
Interfaces

In the first six chapters of this book, the development of
programs in MACRO-ll, FORTRAN IV, and BASIC-ll,
independent of one another, is discussed. In this chapter,
you will learn to write a FORTRAN IV program that calls
a MACRO-ll subroutine. You will also learn to write a
MACRO-ll program that calls a FORTRAN IV subroutine,
and learn to formulate MACRO-ll subroutines that can be
called from a FORTRAN IV or BASIC-ll program. If you
are using BASIC, you will be able to write a BASIC pro
gram that calls a MACRO-ll subroutine.

133

134 Programming with RT -11

Usefulness of Language Interfaces

When developing a program in FORTRAN IV or BASIC, you
may find that these languages cannot perform some opera
tions or that they perform them in a complex or inefficient
way. To solve this problem, you can write MACRO-ll
subroutines to be called by your high-level language pro
gram, or you can use existing MACRO-ll subroutines. For
example, you are programming in BASIC and you want to
manipulate a device. But BASIC-ll does not provide an
interface to the hardware address of devices, so you would
need to write a MACRO-ll subroutine to do the task.

If you are programming in FORTRAN IV, you may want
to create a data structure that is not available using the
FORTRAN IV language alone. You might use MACRO-ll
subroutines to create such a structure and then perform op
erations on it.

If you are programming in MACRO-ll, you may find
user-written FORTRAN IV subroutines and FORTRAN IV
library or SYSLIB routines useful. It is usually easier to
create an interface between a MACRO-ll program and
FORTRAN IV subroutines than to rewrite these routines from
scratch.

Calling MACRO-11 Subroutines from a
FORTRAN IV Program

To call a MACRO-ll subroutine from a FORTRAN IV pro
gram you use the FORTRAN IV CALL statement in the same
way that you call FORTRAN IV subroutines. The sections
which follow discuss the conventions used in this process:

• Transferring control

• Passing arguments

• Returning function values

• Using registers

Chapter 7 Using Language Interfaces 135

• Maintaining the stack

• Structuring common blocks

• Receiving arguments

Transferring Control

When the FORTRAN IV compiler processes a subroutine,
it generates the instruction that is created in MACRO-ll
by the line:

JSR PC, subname

Here "subname" is the global symbol for the entry point
into the subroutine. If the subroutine is written in
MACRO-ii, you must ensure that it contains a global dec
laration of this entry point. You can .do this using the
.GLOBL directive.

Because the MACRO-ll subroutine is called with JSR
PC,subname, it must return with the instruction:

RTS PC

Passing Arguments

When a FORTRAN IV program calls a subroutine, it passes
the arguments in a contiguous block of memory called an
argument block. This block contains n + 1 words where "n"
is the number of arguments to be passed.

The first word in the block is made up of two bytes.
The high-order byte contains an identifier for the calling
language. For FORTRAN IV calling routines, this identifier
is zero. The low-order byte contains the number of argu
ments "n." Each word that follows contains the address of
an argument. The structure of an argument block is shown
in figure 16. Before calling the subroutine, the main pro
gram stores in register R5 the address of the first word of
the argument block.

136 Programming with RT -11

Figure 16.
Structure of an Argument Block
in FORTRAN IV Subroutine Calls

R5 ... LANGUAGE I N ,.
IDENTIFIER

ADDRESS OF ARGUMENT 1

ADDRESS OF ARGUMENT 2

·
·
·

ADDRESS OF ARGUMENT N

Returning Function Values

Using Registers

You can also write MACRO-ll subroutines that behave like
FORTRAN IV FUNCTION subprograms. The argument block
has the same structure as that of a normal subroutine, but
additional values are returned. The calling FORTRAN IV
routine looks for these return values in one or more of the
registers RO to R3. The registers examined depend upon the
type of function called. These conventions are listed in
table 6.

The FORTRAN IV compiler generates code that uses reg
isters RO to R4. Your MACRO-ll subroutine may still use
these registers, because their values are saved whenever a
subroutine is called. You may use R5 in your MACRO-ll
subroutine after you have referred to it to access the argu
ment block.

Chapter 7 Using Language Interfaces 137

Table 6.
FORTRAN IV Function Return Conventions

Type of Function Return Register(s)

INTEGER*2 RD
LOGICAL*1
LOGICAL*2

INTEGER*4 RD (low order)
LOGICAL*4
REAL R1 (high order)

RD (highest order)

DOUBLE PRECISION
R1
R2
R3 (lowest order)

RD (high real)

COMPLEX
R1 (low real)
R2 (high imaginary)
R3 (low imaginary)

Maintaining the Stack

The value of the stack pointer (R6) must not change after a
subroutine execution. If you use the stack to store argu
ments or make computations as part of the execution of your
MACRO-ll subroutine, make sure that the number of stack
PUSHes equals the number of stack POPs.

Creating Common Blocks

When you use the FORTRAN IV COMMON statement to
create common blocks, the FORTRAN IV compiler gener
ates these blocks as named .PSECTs, using the name of the
common block as the .P SECT name.

138 Programming with RT -11

EXAMPLE

The FORTRAN IV statement:

COMMON IBUF/IA(10), IB(20)

is equivalent to the MACRO-ll code:

I A:
IB:

.PSECT

.BLKW

.BLKW

BUF,RW,D,GBL,REL,OVR
1 0 •

20.

FORTRAN IV assigns a blank COMMON block the
name:

• $ $ $ $ •

Receiving Arguments

Your MACRO-11 subroutine must be able to locate the ar
gument block with which it was called. The address of the
first word of the argument block is stored in R5 at the start
of execution of the subroutine. If the subroutine is to be
called by a variable number of arguments, then you must
read that number from the low-order byte of the first word
of the block.

For calling languages other than FORTRAN IV, the
high-order byte of the first word in the argument block
may not be zero. For example, when BASIC-11 calls a
MACRO-11 routine, it places the value 202 (octal) into this
high-order byte. Each word that follows in the block con
tains the address of an argument. Therefore, you can use
the auto-increment mode to access each argument, incre
menting R5 each time. Figure 17 shows a MACRO-11 sub
routine that accesses a variable number of arguments that
were passed by a FORTRAN IV routine. Each argument
points to an integer. The subroutine then returns the high
est integer that was received, using the convention of a
FORTRAN IV FUNCTION.

Chapter 7 Using Language Interfaces 139

Figure 17.
A MACRO-11 Subroutine that Can Be Called
as a FORTRAN IV Function

GETHST: :

10$:

15$:
20$:

.TITLE GETHST

MOV (R5)+,R1
BIC #177400,R1
BEQ 20$
MOV (R5)+,RO
DEC R1
BEQ 20$
MOV (R5)+,R2
CMP RO,(R2)
BGE 15$
MOV (R2),RO
BR 10$
RTS PC
.END

Calling FORTRAN IV Routines from a
MACRO-11 Program

;Put number of args in R1
;Clear high order byte
;Exit if no arguments
;Read 1s t argument value
;Decrement the argument
;Branch if no more args
;Get address of next arg
; Is highest exceeded?
;Branch if not
;Move new highest into RO
;Next argument
;Exit at end,
;Return highest in RO

If you are writing a MACRO-ll program, you may want to
use existing FORTRAN IV subroutines and functions rather
than rewrite them. You may also find that it is easier to write
a subroutine in FORTRAN IV than to write it in MACRO-
11. Two considerations apply:

1. You must initialize the Object Time System (OTS).

2. You must use the conventions for the passing of data
and control.

You need not initialize OTS if you are using FORTRAN IV
library routines written in MACRO-ii, such as those pro
vided in FORLIB and SYSLIB.

140

Initializing OTS

Programming with RT -11

When you link a MACRO-ll main program with object
modules that include FORTRAN IV routines, you must make
sure that all the Object Time System (OTS) routines refer
enced by the FORTRAN IV code are linked to the program.
The best way to do this is to write the MACRO-ll pro
gram as a subroutine and call it from a simple FORTRAN
IV program. The FORTRAN IV program will contain only
a call without arguments to the subroutine, followed by an
END statement. This coding causes the FORTRAN IV com
piler to reference the OTS routines automatically.

The following example shows a program MAIN.MAC
with an entry point at the symbol " START" which will be
linked to FORTRAN IV routines.

EXAMPLE

1. Insert a global declaration of the transfer symbol of the
main program so that it can become a subroutine module,
for example, using the directive:

.GLOBL START

2. Make sure that the main program terminates with the
instruction:

RTS PC

3. Remove the transfer symbol from the .END directive so
that the last line reads:

.END

and not:

.END START

4. Write a FORTRAN IV routine with the following code:

CALL START
CALL EXIT
END

Conventions

Chapter 7 Using Language Interfaces 141

You can now assemble and compile and link the mod
ules in the usual way to produce your load image.

Conventions similar to those discussed for the FORTRAN
IVIMACRO-11 interface apply to MACRO-11 routines that
call FORTRAN IV subroutines. Here is a summary of the
conventions that apply to the MACRO-11/FORTRAN IV
interface:

1. To call the FORTRAN IV subroutine, use the
MACRO-11 instruction:

JSR PC,subname

2. The MACRO-11 program must create an argument
block in the manner previously described and leave
R5 pointing to the first word in the block.

3. If the FORTRAN IV routine is a function, it returns
values in registers RO to R3 as discussed previously.

4. If you want the values to be kept, the MACRO-11
routine should save the registers RO to R4 before call
ing the FORTRAN IV routine.

5. If you want to access COMMON blocks that will be
used by your FORTRAN IV routines, they must be
declared as .PSECTs in the manner previously
described.

Figure 18 shows a MACRO-11 routine that calls a
FORTRAN IV function and subroutine, using these
conventions.

142 Programming with RT -11

Figure 18.
A MACRO-11 Routine that Calls a FORTRAN IV Function
and FORTRAN IV Subroutines

.TITLE CALLER, MACRO routine calling FORTRAH ~ubrout.

GOSUB Macro to call a high level language ~ubroutine

.MACRO GOSUB SUBR,PARS

.GLOBL SUBR
QSP-O
.IRP X,<PARS)
QSP-QSP+1
.EHDR
QUP-QSP+QSP+2
SUB 'QUP,SP
MOV SP,RS
MOV 'QSP,(RS)+
.IRP XX, <PARS)
MOV XX,(RS)+
.EHDR
MOV SP,RS
CALL SUBR
ADD 'QUP,SP
.EHDM GOSUB

Main Subroutine Code
START:: GOSUB GETVAL,'RVAL

CMPB , 1, RO
BEQ 20S
GOSUB RADD,<'RVAL,'C)
BR START

20$: GOSUB ROUT,"RVAL
RTS PC

RVAL: .FLT2 0.0
C: .FLT2 0.0

.EHD

;Declare ~ubroutine name
;Initialize arg count
;Start of loop to count ar9~
;Increment counter
iEnd of loop
iByte count for arg block
iSave ~pace on ~tack
iRS point~ to ~tart of block
iPu~h no. of argument~
iStart of loop to pu~h arg~
iPu~h next argument
iEnd of loop
iRe~tore RS to beg. of block
iCal1 the ~ubroutine
iPop the arguments off ~tack
iEnd of Macro definition

iCal1 FOR func to input RVAL
iRO - 1 if end of data
iIf end, print result, exit
iCal1 FOR routine to accu
imulate total, and repeat
iAt end, call FOR routine
ito print total, and return
iRVAL i5 floating point acc
iC i5 floating point overflow

BASIC-11 Programs that Call
MACRO-11 Subroutines

To call MACRO-ll subroutines from your BASIC-ll pro
gram, you must first assemble the subroutine with the
MACRO-ll source code of the BASIC-ll interpreter pro
vided in the distribution kit. You then link a new version
of the BASIC-ll interpreter that allows you to call
MACRO-ll subroutines, using the BASIC-ll CALL
statement.

Chapter 7 Using Language Interfaces 143

Using the BASIC-11 CALL Statement

In a BASIC-11 program, Assembly Language Routines
(ALRs) are accessed using the CALL statement, which takes
the form:

CALL string-expression (argument-list)

In this statement, "string-expression" is the name, en
closed in quotes or stored in a string variable, of the ALR.
"Argument-list" is a list of variables that are to be passed
to or from the ALR. For example, assume that the BASIC-
11 interpreter has been modified so that it includes an ALR
that performs single-character input from the terminal,
without echo or carriage return. Assume that the routine has
one argument-an integer containing the byte value of the
character to be returned. You need to use the CALL state
ment in your BASIC program to access the ALR.

EXAMPLE

The statement:

1010 CALL IIGETCHA" (CO%)

in your program places the byte value of the received
character in the variable CO%.

Modifying the BASIC Interpreter

To include a tested MACRO-11 subroutine in the BASIC-
11 interpreter, you must:

1. Insert the name of the routine in the user routine
name table in the BSCLI.MAC file. This procedure is
discussed in chapter 4 of the BASIC-11IRT -11
User's Guide.

2. Make sure that the argument list used in your
MACRO-11 subroutine uses the same convention as

144

Practice
7-1

Programming with RT -11

that described in the user's guide. For example, the
MACRO-ll routine must take care not to include the
high-order byte of the first word of the argument
block, when reading the number of arguments. For
BASIC-ll, this high-order byte is given the value
202 (octal).

3. Assemble your routine with the MACRO-ll source
files that make up the BASIC-ll kit. This procedure
is discussed in chapter 4 of the BASIC-11/RT -11
Installation Guide.

4. Build a version of the BASIC-ll interpreter that in
cludes support for the CALL statement. This proce
dure is discussed in chapter 4 of the BASIC-11
/RT -11 Installation Guide.

Writing a FORTRAN IV Program that Ca11s a MACRO-ll
Subroutine

1. Write a FORTRAN IV program (PR0702.FOR) that does
the following:

a. Accepts a REAL*4 value from the terminal. If the
value is -1, the program exits. If it is less than
-32767 or more than 32767, it repeats the accept
request.

b. Calls the subroutine SUBA with the REAL*4 vari
able as the argument. This subroutine is written
in MACRO-11 and is listed below. It performs an
operation which mayor may not divide the vari
able by 2.

2. Then print the returned value of the variable on the
terminal using format F10.3 and go back to step 1.
Compile your program. Create the MACRO-11 subrou
tine listed below, in file PR0701.MAC:

.TITLE PR0701
SUBA:: MOVB

BEQ
(RS),Rl
20$

jPut number of arguments in R1
jExit if no arguments

Practice
7-2

Chapter 7 Using Language Interfaces

TST (R5)+ ;Point to 1st argument

10$: BIC #200,(ct(R5)+ ;Clear 56th bit of high order

;and increment argument pointer

DEC Rl ;Repeat to end of argument lis t
BNE 10$

20$ RTS PC ;Return to caller
.END

3. Assemble this program using the command:

.MAC PR0701

4. Link your program with the subroutine, and run your
program.

Writing a MACRO-ll Program that calls FORTRAN IV
Subroutines

145

1. Write the following FORTRAN IV INTEGER*2 function
and FORTRAN IV subroutine:

a. NINPUT. This INTEGER*2 function takes one
REAL*4 argument. The subroutine accepts a
REAL*4 number from the terminal, giving the
prompt:

ENTER NUMBER)

It puts the number it reads into the REAL*4 func
tion argument. If the number is -1.0, the func
tion should return the value 1. Otherwise, the
function value should be O.

b. NOUT. This subroutine receives a REAL*4 argu
ment. It prints the value of the argument on the
terminal and returns.

2. Create the following MACRO-11 program
PR0704.MAC which calls both of these routines .

. TITLE PR0704

.GLDBL NINPUT,NDUT

146

Practice
7-3

Programming with RT -11

PR0704::MOV #ARG,R5 jPoint to argument blod

QUIT:

RVAL:
ARG:

JSR PC,NINPUT jRead a floating point number

CMP RO ,#1 j Is returned value = 1
BEQ QUIT jExit if it is

BIC #200,RVAL jClear 56th bit of high order

MOV #ARG,R5 jPoint to argument block

JSR PC,NOUT jPrint result

BR PR0704 jRepeat

RTS PC jReturn to OTSINI

.FLT4 0.0 jFloating point variable

.WORD 1,RVAL jArgument blod

.END

The logic is the same as for practice 7-1. The main
program must be called by the following FORTRAN IV
routine PR0703.FOR to initialize OTS.

PROGRAM OTSINI

c ... OTS INITIALIZATION PROGRAM FOR MACRO-11 PROGRAM

C ... WHICH CALLS FORTRAN IV SUBROUTINES

CALL PR0704

CALL EX IT

END

3. Compile your subroutines and PR0703. Assemble the
MACRO-11 program using the command:

.MAC PR0704

4. Link all of the object modules together, naming the
OTS initialization file first:

.LINK PR0703,PR0704,NINPUT,NDUT,SY:FDRLIB

5. Run the program.

Writing a MACRO-ll Subroutine

1. Write a MACRO-11 subroutine called SUBA, to do the
following:

Chapter 7 Using Language Interfaces

a. Receive any number of arguments from a pro
gram. These arguments are .FLT4 format.

b. Clear the least significant bit of the exponent (bit
7 of the most significant word) of each argument,
and then return. (Make sure that your subroutine
will work if it is called from a program that was
not written in FORTRAN IV.)

2. Create the FORTRAN IV program PR0702.FOR listed
below.

PROGRAM PR0702
EXTERNAL SUBA
REAL*4 RVAL

50 TYPE 100
100 FORMAT ('ENTER NUMBER)'$)

READ (5,*,ERR=1110,END=1000) RVAL
IF (RVAL .EQ. -1.0) GoTo 999
CALL SUBA (RVAL) !CALL MACRo-11 SUBROUTINE
TYPE 150,RVAL

150 FoRMAT('CHANGED To)',F10.3)
GoTo 50

999 STOP
C ... NUMBER OUT
1000 TYPE 1010
1010 FORMAT ('
1100 TYPE 1110
1110 FORMAT ('

GO TO 50
END

! REPEAT TILL -1.0 ENTERED

OF RANGE

,)

?VALUE BAD OR OUT OF RANGE')
!TRY AGAIN

147

3. This program reads a REAL*4 number from the termi
nal and calls this subroutine. It then prints the value
returned from SUBA and loops to get the next value. If
the number received is -1, it exits.

4. Assemble your subroutine. Compile the FORTRAN IV
program using the command:

.FORTRAN PR0702

5. Link PR0702.0BJ with your subroutine, and run the
program.

148

Practice
7-4

Programming with RT -11

Writing a MACRO-11 Program that calls FORTRAN IV
Subroutines

1. Write a MACRO-11 program (PROG.MAC), which will
call subroutines written in FORTRAN IV. Also write a
FORTRAN IV routine (OTSINI.FOR) to initialize OTS
for your program.

a. The MACRO-11 program should call the subrou
tine NINPUT, giving it the address of a .FL T4
variable as an argument. If, on return from the
subroutine, register RO contains 1, then exit. The
routine returns a floating point value in the argu
ment specified.

b. Clear the least significant bit of the exponent of
the floating point variable (bit 7 in the most signif
icant word).

c. Call the subroutine NOUT, giving it the address
of the floating point variable as an argument. This
subroutine prints the value of the variable. On re
turn from the subroutine go back to step (a).

2. Create the following subroutine NINPUT as file
PR0705.FOR:

FUNCTION NINPUT(RVAL)
C.FoRTRAN FUNCTION TO ACCEPT A REAL*4 NUMBER

INTEGER NINPUT
REAL*4 RVAL
DATA NINPUT/OI

50 TYPE 100
100 FoRMAT(' ENTER NUMBER)'$)

READ(5,*,ERR=1000,END=999) RVAL
IF (RVAL .EQ. -1.0) NINPUT=1
RETURN

999 TYPE 1099
1000 TYPE 1100
1099 FORMAT (' ')
1100 FORMAT ('?VALUE BAD OR OUT OF RANGE')

GoTo 50
END

Practice
7-5

Chapter 7 Using Language Interfaces

3. Create the following subroutine NOUT as file
PR0706.FOR:

SUBROUTINE NOUT(RVAL)
C ... SUBROUTINE TO OUTPUT A REAL*4 NUMBER

REAL*4 RVAL
TYPE 1000,RVAL
RETURN

1000 FORMAT(, ',F10.3)
END

4. Assemble your MACRO-ii program and com pile the
OTS initialization routines PR0705.FOR and
PR0706.FOR. Link all of the object modules together,
naming the OTS initialization file first, for example:

.LINK OTSINI,PROG,PR0705,PR0706

5. Run the program.

Using a BASIC-II Program to Ca1l a MACRO-1I
Subroutine

1. Create the following BASIC-ii program PR0708.BAS,
designed to call the assembly language routine SUBA
which you wrote in practice 7-3.

300 REM PR0708.BAS
310 REM
1000 PRINT IIENTER NUMBER)II;
1010 INPUT R
1020 IF R= -1 GOTO 32767
1030 CALL SUBA (R)
1040 PRINT R
1050 GOTO 1000
32767 END

2. Produce a new version of the BASIC-ii interpreter,
calling it MYBAS.SAV, to include the subroutine

149

150

References

Programming with RT -11

SUBA. You will have to create a new version of
BSCLI.MAC. When you do this, make a copy of
BSCLI.MAC and call it NEWBCL.MAC instead of edit
ing the original source file.

3. Run the program PR070B.BAS. It asks you to enter a
number. If the number is -1, then the program will
exit. Otherwise it will call SUBA, passing it the num
ber as an argument. On return it will output the num
ber and then repeat the process.

RT -11 Programmer's Reference Manual. Chapter 1 discusses in
detail the interfaces between MACRO-11 and FORTRAN IV pro
grams and offers programming examples.

BASIC-11/RT -11 Language Reference Manual. Chapter B ex
plains how to use assembly language routines with BASIC.

BASIC-11/RT -11 User's Guide. Chapter 4 describes the use of
assembly language routines with BASIC.

BASIC-11/RT -11 Installation Guide. Chapter 4 details the
process for installing different versions of the BASIC interpreter.

Solutions to Practices

CHAPTER 1

1-1. MACRO-11

.EDIT/CREATE PR0101.MAC

.MACRO PR0101

.MACRO/OBJECT:MESS/LIST:MESS PR0101

1-1. FORTRAN IV

.EDIT/CREATE PR0101.FOR

.FORTRAN PR0101

.FORTRAN/LIST:MESS/OBJECT:MESS PR0101

1-2. MACRO-11

.EDIT/CREATE PR0102.MAC

.EDIT/CREATE PR0103.MAC

.EDIT/CREATE PR0104.MAC

.MACRO/LIST:PR1234/0BJ:PR1234 PR0102+PR0103+PR0104

151

152 Programming with RT -11, Volume 1

1-3. FORTRAN IV

.EDIT/CREATE PR0102.FOR

.EDIT/CREATE PR0103.FOR

.EDIT/CREATE PR0104.FOR

.FORT/LIST:PR1234/0BJ:PR1234 PR0102+PR0103+PR0104

1-4. MACRO-11

.MACRO PR0101/LIST/SHOW:SRC:COM:MD:MC:ME

1-5. MACRO-11

.EDIT/CREATE PR010S.MAC

.MACRO PR010S

.LINK PR010S/MAP

e

RT - 11 LI HK (VOS. 0 1) LOBd MBp (FridBY 1 0-Feb-sv61: 05) PBge 1

(PR010s.SA0 Title: (PRO 1 05) Ident: b c

a d

Section Addr Size GlobBl VBlue GlobBl VBlue GlobBl VBlue

A8S. 000000 001000 - 256. words CRW,I,G8L,A8S,OVR)

001000 000032 - 13. words CRW,I,LCL,REL,COH)

Transfer Bddress - (001022,) High l1m1t -(001030 - 26S) words

9 h

1-5. FORTRAN IV

.EDIT/CREATE PR010S.FOR

.FORTRAN PR010S

.LINK PR010S/MAP,SY:FORLIB/LIBRARY

Solutions to Practices 153

e b

RT-11 LINK ~ Load Map (Friday 1 0 -Feb-8~ 61: 06) Page 1

(PR0105.SAV) Title: ~ Ident: FORV02 c

a d

Section Addr Size Global Value Global Value Global Value

. ABS. 000000 001000 • 256 . word5 CRW,I,GBL,ABS,OVR)

SUSRSW 000000 SRF2A1 000000 SHRDWR 000000

.VIR 000001 SNLCHH 000006 SWASIZ 000152

SLRECL 000210 $TRACE 004737

OTSSI 001000 013744 • 3058. word5 CRW,I,LCL,REL,COH)

UOTSI 001000 SOTI 001026 UOTI 001030

SSETOP 001240 USET 002712 SOPHER 003206

SCHKER 003244 SIOEXI 003270 SEOL 003336

EOLS 003340 IFWS 003510 SIFW 003514

UIFW 003520 IFWU 003556 MOISSS 003626

MOLSSS 003626 MOISSM 003632 MOISSA 003636

MOISI S 003642 MOL$! S 003642 RELS 003642

MOISIM 003646 MOISIA 003652 MOISMS 003656

MO ISMM 003662 MOISMA 003666 MOISOS 003672

MOISOM 003676 MOISOA 003702 MOlS1S 003706

MOlS1M 003714 MOIS1A 003722 ISHS 003730

SISHTR 003734 LSHS 003750 SLSHTR 003754

REHL 004110 REHF 004114 REHI 004122

REH 004124 SIHITI 004160 SCLOSE 004276

SERRTB 005054 SERRS 005161 SFCHHL 010722

SFIO 011564 UFIO 011570 SPUTRE 012734

SPUTBL 013242 SGETBL 013452 SEOFIL 013636

SEOF2 013652 SAVRGS 013672 THRDS 014050

SSTPS 014052 STPS 014060 SSTP 014060

FOOS 014064 SEXIT 014104 SWAIT 014230

SVRIHT 014272 SDUMPL 014574

OTSSP 014744 000054 • 22. word!! CRW,D,GBL,REL,OVR)

SYSSI 015020 000000 • O. word!! CRW,I,LCL,REL,COH)

USERSI 015020 000000 • O. word!! CRW,I,LCL,REL,COH)

SCODE 015020 000032 • 13. word!! CRW,I,LCL,REL,COH)

UOTSC 015020

OTSSO 015052 001140 • 304. word!! CRW,I,LCL,RE~,COH)

UOTSO 015052 SOPEN 015052

SYSSO 016212 000000 • O. words CRW,I,LCL,REL,COH)

SDATAP 016212 000040 · 16. words CRW,D,LCL,REL,COH)

OTSSD 016252 000010 • 4. word!! CRW,D,LCL,REL,COH)

HHCLHS 016256

OTSSS 016262 000002 · 1. word!! CRW,D,LCL,REL,COH)

SAOTS 016262

SYSSS 016264 000000 • O. word!! CRW,D,LCL,REL,COH)

SDATA 016264 000000 • O. word!! CRW,D,LCL,REL,COH)

USERSD 016264 000000 • O. word!! CRW,D,LCL,REL,COH)

. SUS. 016264 000000 • O . word!! CRW,D,GBL,REL,OVR)

Tran!!fer address • (015020J High limit -(016262 • 3673) words

9 h

154 Programming with RT -11, Volume 1

CHAPTER 2

2-1. Foreground/Background Jobs

.EDIT/CREATE PR0201.MAC

.EDIT/CREATE PR0202.FOR

.MACRO PR0201

.LINK PR0201/FOREGROUND

.FORTRAN PR0202

.LINK PR0202,SY:FORLIB/LIBRARY

.SET USR NOSWAP

.FRUN PR0201

F>
PR0201-I, TEXT: AFDATA FOR FOREGROUND JOB.

B>

.ABRUN PR0202
PR0202-I, Enter your data (-1
PR0202-I, Accepted data as:
PR0202-I, Enter your data (-1
PR0202-I, Accept
F>

to finish): 56
56.00000
to finish): 34

PR0201-I, Finished processing text: DATA FOR FOREGROUND JOB.
PR0201-I, TEXT: AFTHIS IS LINE TWO!

B>
ed data as: 34.00000
PR0202-I, Enter your data (-1 to finish): AB-1

STOP

F>
PR0201-I, Finished processing text: THIS IS LINE TWO!
PR0201-I, TEXT: AF
B>

F>

PR0201-I, Normal successful completion

B>

.UNLOAD F

Solutions to Practices

CHAPTER 3

3-1. BASIC-11

.R BASIC
BASIC-11/RT-11 V02-03
OPTIONAL FUNCTIONS CALL, NONE, OR INDIVIDUAL)? A

READY
NEW PR0301

READY
10 PRINT "WHAT IS YOUR GAME?"
20 INPUT 10,AS
30 A-SYS(4)
SAVE PR0301

READY
OLD PR0301

READY
LIST

PR0301 10-FEB-84 10:02:33
10 PRINT "WHAT IS YOUR GAME?";
20 INPUT 10,AS
30 A-SYS(4)

READY
RUN

PR0301 10-FEB-84 10:02:40
WHAT IS YOUR GAME?AC

STOP AT LI NE 20

READY
SUB 10!GAME!NAME
10 PRINT "WHAT IS YOUR NAME?"

READY
COMPILE PR0301

READY
BYE

.R BASIC
BASIC-11/RT-11 V02-03
OPTIONAL FUNCTIONS CALL, NONE, OR INDIVIDUAL)? A

READY
RUN PR0301
WHAT IS YOUR NAME?A.N. OTHER

155

156 Programming with RT -11, Volume 1

CHAPTER 4

4-1. MACRO-11

.EDIT PR0403.MAC
.TITLE PR0403 Debugging Exerci~e
.MACRO MO~TH,~AME jMacro to set up month table
.PSECT MOV~AM

• $$ ••.

.ASCII I~AME/<200>

.PSECT

.WORD . $$.

.E~DM

jEach entry point~ to ~trlng
jThis i~ the ~trlng

jThis is the ~pace for entry

.MCALL .PRI~T,.EXIT,.GTLI~

.GLOEL C~VSTR,HISPRT

MTAE: : MO~TH

MO~TH

JA~

FEE
MO~TH MAR
MO~TH APR
MO~TH MAV
MO~TH JU~

MO~TH JUL
MO~TH AUG
MO~TH SEP
MO~TH OCT
MO~TH ~OV

MO~TH DEC

START: MOV 'MTAE,R2
.PRI~T 'I~TRO

MOV '12.,R3
MOV 'HEIGHT,R4

LOOP: .PRI~T (R2)+
.GTLI~ 'I~E,'PROMPT

MOV 'I~E,RS

JSR PC,C~VSTR

MOV RO,R1
CMP
BEQ
CLR
DIV

BADVAL: MOVB
SOB
MOV
JSR
.EXIT

'-1. ,RO
BADVAL
RO
'S,RO
RO,(R4)+
R3,LOOP
'HEIGHT,RS
PC,HISPRT

jDeclare ~ubroutine~

jBuild month~ table

jGet addre~~ of month~ table
jPrint introduction
jInitialize month loop
jGet addre~~ of height~ table
jMth part of prompt for month
jGet decimal number ~tring

jGet addre~~ of input buffer
jConvert ~tring to binary
j ** Copy returned value (DIV)
jCheck returned value for -1
jIf 50 branch pa~t height calc
j ** Clear high order of value
jConvert value to height
jPlace height in height table
jEranch for next month
jPass addre~~ of height table
jOutput the hi~togram

I~TRO: .ASCII ITHIS PROGRAM PRI~TS A HISTOGRAM FROM 12 1

.ASCII IMO~THLV VALUES.I<1S><12>

.ASCII ITHE MO~THS ARE JA~UARV TO DECEMBER.I<1S><12>

.ASCII IPLEASE E~TER YOUR TWELVE VALUES:I

.ASCIZ ITHEV MUST BE I~ THE RA~GE 0 TO 1001

PROMPT: .ASCIZ I: 1<200>

VALUE: .BLKB 12.*4.
HEIGHT: .ELKB 12.
I~B:

VAL:
.BLKE
.BYTE
.EVE~

.E~D

81.
-1.

START

Solutions to Practices

.MACRO PR0403,PR0404,PR0405

.LINK/EXEC:HISTO PR0503,PR0404,PR0405

.RUN HISTO
THIS PROGRAM PRINTS A HISTOGRAM FROM 12 MONTHLY VALUES.
THE MONTHS ARE JANUARY TO DECEMBER.
PLEASE EHTER YOUR TWELVE VALUES: THEY MUST BE IN THE RANGE 0 TO 100
JAN: BAD
FEB: 100
MAR: 90
APR: 80
MAY: 70
JUN: 60
JUL: 50
AUG: 40
SEP: 30
OCT: 20
NOV: 10
DEC:

100 I "" -I III

901 III III

-I III III

801 III III III

-I III III III

701 III III III III

-I III III III III

601 III III III III III

-I III III III III III

501 III III III III III III

-I III III III III III III

401 III III III III III III III

-I III III III III III III III

301 III III III III III III III III

-I III III III III III III III III

201 III III III III III III III III III

- I III III III III III III III III III

1 0 I III III III III III III III III III III

-I III III III III III III III III III III

0+---
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

157

158 Programming with RT-11, Volume 1

4-1. FORTRAN IV

.EDIT PR0404.FOR
c ••
C

C DEBUGGING AND FAILURE ANALYSIS
C

C PRACTICE 4-1, PR0404.FOR
C
c ••
C

C

FUNCTION CNVSTRCSTRING)
BYTE STRINGCS),CURCHA
INTEGER POINTA,DIGIT
REAL CNVSTR,DIV

C BAD VALUES ARE SET TO -1.0
C VALUES OUT OF RANGE ARE TREATED AS BAD
C······································
C

C INITIALIZE RETURN VALUE AND POINTER INTO STRING

C ---
CNVSTR·O.O
POINTA-1

C

C PROCESS EACH CHARACTER, STRING IS TERMINATED BY SPACE OR LENGTH·S

C ---
10 IF CPOINTA .GT. S) GO TO 100

CURCHA·STRINGCPOINTA)
IF CCURCHA .EG. ' ') GO TO 100
IF CCURCHA .GT. '9') GO TO 50
IF CCURCHA .LT. '0') GO TO 50
DIGIT·CURCHA-'O'
CNVSTR·C10.0·CNVSTR)+DIGIT
POINTA·POINTA+1
GO TO 10

50 IF CCURCHA .NE. '.') GO TO 200
DIV-1.0

75 POINTA·POINTA+1

C

IF CPOINTA .GT. S) GO TO 100
CURCHA·STRINGCPOINTA)
IF CCURCHA .GT. ' ') GO TO 100
IF CCURCHA .GT. '9') GO TO 200
IF CCURCHA .LT. '0') GO TO 200
DIV·DIV·10.0
DIGIT·CURCHA-' 0'
CNVSTR·CNVSTR+DIGIT/DIV
GO TO 75

•• CORRECTION CGT --) EG)

C BRANCH TO HERE AT END OF STRING PROCESSING

C --
100 IF CCNVSTR .GT. 100.0) GO TO 200

RETURN
C

C BRANCH TO HERE IF VALUE IS BAD

C ------------------------------
200 CNVSTR·-1.0

RETURN
END

Solutions to Practices

.FORTRAH PR0403,PR0404,PR0405

.LIHK PR0403,PR0404,PR0405,SY:FORLIB/LIBRARY

.RUH PR0403
THIS PROGRAM PRIHTS A HISTOGRAM FROM 12 MOHTHLY VALUES.
THE MOHTHS ARE JAHUARY TO DECEMBER.
PLEASE EHTER YOUR TWELVE VALUES: THEY MUST BE IH THE RAHGE 0 TO 100
JAH: BAD
FEB: 100
MAR: 90
APR: 80
MAY: 70
JUH: 60
JUL: 50
AUG: 40
SEP: 30
OCT: 20
HOV: 10
DEC: 0

100 I '" -I '" 901 '" '" - I '" '" 801 '" '" '" -I '" '" '" 701 '" '" '" '" -I '" '" '" '" 601 '" '" '" '" '" -I '" '" '" '" '" 501 '" '" '" '" '" '" -I '" '" '" '" '" '" 401 '" '" '" '" '" '" '" - I '" '" '" '" '" '" '" 301 '" '" '" '" '" '" '" '" -I '" '" '" '" '" '" '" '" 201 '" '" '" '" '" '" '" '" '" -I '" '" '" '" '" '" '" '" '" 1 0 I '" '" '" '" '" '" '" '" '" '" - I '" '" '" '" '" '" '" '" '" '" 0+---
JAH FEB MAR APR MAY JUH JUL AUG SEP OCT HOV DEC

159

160 Programming with RT -11, Volume 1

4-1. BASIC-11

.R BASIC
BASIC-ll/RT-ll V02-03
OPTIONAL FUNCTIONS (ALL, NONE, OR INDIVIDUAL)? A

READY
OLD PR0403

READY
SUB 340! I> ! I X>
340 HX(IX)·FNAX(VX(IX» \ NEXT IX

READY
LIST

PR0403 10-FEB-84 15:34:18
10 REM •••

20 REM
30 REM DEBUGGING AND FAILURE ANALYSIS
40 REM
50 REM PRACTICE 4-1, PR0403.BAS
60 REM
70 REM ••••••••••••••••••••• ** ••

80 REM
90 REM INITIALIZE VARIABLES AND ARRAYS
100 REM •••••••••••••••••••••••••••••••
110 DIM V(12X>
120 DIM MH12X)
130 DIM HX< 12X>
140 REM
150 REM MAIN PROGRAM LOGIC
160 REM ••••••••••••••••••
170 REM
180 REM READ MONTH STRINGS INTO ARRAY
190 REM •••••••••••••••••••••••••••••
200 FOR IX·1X TO 12X \ READ M$(IX) \ NEXT IX
210 REM
220 REM PRINT INSTRUCTIONS
230 REM ••••••••••••••••••
240 PRINT "THIS PROGRAM PRINTS A HISTOGRAM FROM 12 MONTHLY VALUES."
250 PRINT "THE MONTHS ARE JANUARY TO DECEMBER."
260 PRINT "PLEASE ENTER YOUR TWELVE VALUES: THEY MUST BE IN THE RANGE 0 TO 100"
270 REM
280 REM ACCEPT VALUES AS STRINGS, PROMPTED BY THE MONTH
290 REM •••
300 FOR IX·1X TO 12X \ PRINT M$(IX)": "; \ LINPUT lOX,V$ \ GOSUB 10000
310 REM
320 REM CONVERT EACH VALUE INTO A HEIGHT INTEGER
330 REM ••
340 HX(IX)·FNAX(V(IX» \ NEXT IX
350 REM
360 REM DISPLAY HISTOGRAM
370 REM •••••••••••••••••
380 GOSUB 11000
390 REM
400 REM END OF MAIN PROGRAM LOGIC
410 REM •••••••••••••••••••••••••
420 GO TO 32767

Solutions to Practices

10000 REM
10010 REM SUBROUTI~E TO CO~VERT STRI~G I~TO A REAL ~UMBER

10020 REM •••

10030 REM BAD VALUES ARE SET TO -1.0
10040 REM VALUES OUT OF RA~GE ARE TREATED AS BAD
10050 VCIX>·OX
10060 LX·LE~CVS) \ FS·SEGSCVS,1%,1%) \ IF FS()"" THE~ VS·SEGSCVS,2X,LX>
10070 IF FS·"" THE~ 10180
10080 IF Fh"9" THE~ 10110
10090 IF FS("O" THE~ 10110
10100 VCIX)·10*VCIX)+VALCFS) GO TO 10060
10110 IF FS(>"." THE~ VCIX)·-1 \ GO TO 10180
10120 0·1

161

10130 0·0*10 \ LX·LE~CVS) \ FS·SEGSCVS,1X,1X) \ IF FS(>"" THE~ VS·SEGSCVS,2X,LX)
10140 IF FS·"" THE~ 10180
10150 IF Fh"9" THE~ VCIX>·-1% \ GO TO 10180
10160 IF FS("O" THE~ VCU)·-1% \ GO TO 10180
10170 VCIX)·VCIX)+VALCFS)/D \ GO TO 10130
10180 IF VCIX»100 THE~ VCIX)·-1
10190 RETUR~
11000 REM
11010 REM PRI~T HISTOGRAM
11020 REM •••••••••••••••
11030 PRI~T \ PRI~T \ PRI~T

11040 FOR IX·20X TO 1X STEP -1X
11050 I$·STRSCIX*5) \ IF IX(20X THE~ IS·" "+1$
11060 IF 2X*CIX/2X)·IX THE~ PRI~T IS; \ GO TO 11080
11070 PRI~T" -";
11080 PRI~T "I";
11090 FOR JX·1X TO 12X
11100 IF H%CJX)·IX THE~ PRI~T .. IU"; \ H%CJX>·HXCJX>-1% \ GO TO 11140
11110 IF IX(>1X THE~ 11130
11120 IF HXCJX>·-1% THE~ PRI~T .. BAD"; \ GO TO 11140
11130
11140
11150
11160
11170
15000

PRI~T ..
~EXT JX
PRI~T II

PRI~T ..
RETUR~

REM

". ,
\ PRI~T

0+";
". \ ,

~EXT IX
FOR U·1% TO 12X
FOR U·1% TO 12X

15010 REM FU~CTIO~ TO CALCULATE HEIGHT
15020 REM ••••••••••••••••••••••••••••
15030 DEF FNAXCX)·I~T(X*20/100)
20000 REM

PRI~T "----"; \ NEXT U \ PRI~T

PRI~T .. ";MSCU); \ ~EXT U \ PRI~T

20010 REM DATA DECLARATIO~ FOR MO~TH STRI~G ARRAY
20020 REM •••••••••••••••••••••••••••••••••••••••

20030 DATA JA~,FEB,MAR,APR,MAY,JU~,JUL,AUG,SEP,OCT,~OV,DEC
32000 REM
32010 REM E~D OF PROGRAM
32020 REM ••••••••••••••
32767 E~D

162 Programming with RT -11, Volume 1

READY
RUN

PR0403 10-FEB-S4 15:34:47
THIS PROGRAM PRINTS A HISTOGRAM FROM 12 MONTHLY VALUES.
THE MONTHS ARE JANUARY TO DECEMBER.
PLEASE ENTER YOUR TWELVE VALUES: THEY MUST BE IN THE RANGE 0 TO 100
JAN: BAD
FEB: 100
MAR: 90
APR: SO
MAY: 70
JUN: 60
JUL: 50
AUG: 40
SEP: 30
OCT: 20
NOV: 10
DEC: 0

100 I '" -I '" 901 '" '"
-I '" '" SOl '" '" '" -I '" '" '" 701 '" '" '" '" -I '" '" '" '" 60 '" '" '" '" '"

'" '" '" '" '" 50 '" '" '" '" '" '"
'" '" '" '" '" '" 40 '" '" '" '" '" '" '"
'" '" '" '" '" '" '" 30 '" '" '" '" '" '" '" '"
'" '" '" '" '" '" '" '" 20 '" '" '" '" '" '" '" '" '"
'" '" '" '" '" '" '" '" '" 1 0 '" '" '" '" '" '" '" '" '" '"
'" '" '" '" '" '" '" '" '" '" 0+---

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

READY
REPLACE PR0403

READY

Solutions to Practices 163

CHAPTER 5

5-1. FORTRAN IV

.EDIT/CREATE PROS01.FOR

.EDIT/CREATE PROS02.FOR

.EDIT/CREATE PROS03.FOR

.EDIT/CREATE PROS04.FOR

.FORTRAN PROS01,PROS02,PROS03,PROS04

.LIBRARY/CREATE TEXLIB PROS02,PROS03

.LIBRARY TEXLIB PROS04/INSERT

.LIBRARY/LIST:TT: TEXLIB

.LINK PROS01,TEXLIB/LIB,SY:FORLIB/LIB

.RUN PROS01
Dear Mr Griffiths,

During our last quarter, our records showed that you owed us
16.27.

We have been expecting your payment since July 10th 1977.
Accordingly we sent you a letter of invoice at that time.
Regrettably thi9 wa~ an error on our part.

PLEASE SEND THE MONEY STRAIGHT AWAY.

Yours sincerely,

A.N. Other (Manager)

. EDIT PROS04. FOR

.FORTRAN PROS04

.LIBRARY TEXLIB PROS04/REPLACE

.LINK PROS01,TEXLIB/LIB,SY:FORLIB/LIB

.RUN PROS01
Dear Mr Griffiths,

During our last quarter, our records showed that you owed us

164 Programming with RT -11, Volume 1

16.27.

We have been expecting your payment since July 10th 1977.
Accordingly we sent you a letter of invoice at that time.
Regrettably this was an error on our part.

PLEASE ACCEPT OUR APOLOGIES.

Yours sincerely,

A.N. Other (Manager)

5-2. MACRO-11

.EDIT/CREATE PROSOS.MAC

.EDIT/CREATE PROS06.MAC

.EDIT/CREATE PROS07.MAC

.EDIT/CREATE PROS08.FOR

.LIBRARY/MACRO/CREATE PRMACS PROS06,PROS07

.MACRO/OBJECT:PROSOS PRMACS/LIBRARY+PROSOS

.FORTRAN PROS08

.LINK PROS08,PROSOS,TEXLIB,SY:FORLIB

.RUN PROS08
Dear Mr Griffiths,

During our last quarter, our records showed that you owed us
16.27.

We have been expecting your payment since July 10th 1977.
Accordingly we sent you a letter of invoice at that time.
Regrettably this was an error on our part.

PLEASE ACCEPT OUR APOLOGIES.

Yours sincerely,

A.N. Other (Manager)

Solutions to Practices

CHAPTER 6

6-1. MACRO-11

.MACRO PR0403,PR0404,PR040S

.R LINK
*HISTO,HISTO=PR040311
*PR0404/0:1
*PR040S/O:111
*"C

RT-11 LINK VOS.01 Load Map
HISTO .SAV T1 tle: PR0403 Ident:

Sec tion Addr Size Global Value

ABS. 000000 001000 • 256. word5
.OHAND 000000

SOHAND 001000 000106 • 35. word5
SOVRH 001002
SODF1 001102

SOTABL 001106 000034 · 14. word5
001142 000626 • 203. word5

MTAB 001142
MOVNAM 001710 000060 • 24. word5
Segment 5ize • 002050 • 532. word5

Overlay region 000001 Segment 000001
002052 000126 • 43. word5

CNVSTR 002052
Segment 5ize • 000126 • 43. word5

Overlay region 000001 Segment 000002
002052 000376 · 127. word5

HISPRT 002052
Segment 5ize • 000376 · 127. word5

Tran5fer addre55 . 001172, High limit

6-1. FORTRAN IV

.

.FORTRAN PR0403,PR0404,PR040S

Friday 10-Feb-S4 11: 10

Global Value Global

(RW,I,GBL,ABS,DVR)

(RW,I,GBL,REL,CON)
OS READ 001024 OSDONE
SODF2 001104

(RW,D,GBL,REL,DVR)
(RW,I,LCL,REL,CON)

(RW,I,LCL,REL,CON)

(RW,I,LCL,REL,CDN)

(RW,I,LCL,REL,CON)

002446 • 659. word5

.R LINK
*HISTO,HISTO=PR0403,SY:FORLIBII
*PR0404/0:1
*PR040S/O:111
*"C

165

Page 1

Value

001036

166 Programming with RT-11, Volume 1

RT-11 llHK VOB.01 load Map
HISTO .SAV Title: .MAIH. Ident:

Friday 10-Feb-B4 11:13 Page 1
FORV02

Sec t1 on Addr Size Global Value Global Value Global Value

. AES. 000000 001000 • 256. words (RW,I,GEl,AES,OVR)
SUSRSW 000000 SRF2A1 000000 SHRDWR 000000
.OHAHD 000000 .VIR 000001 SHlCHH 000006
SWASIZ 000152 SlRECl 000210 STRACE 004737

SOHAHD 001000 000106 • 35.
SOVRH
SODF1

SOTAEl 001106 000034 • 14.
OTSSI 001142 017752 • 40B5.

UOTSI
SCVTCE
SCVTDI
CLCS
CIFS
CllS
DIFSMS
DIFSSS
MUFSMS
MUFSSS
UOT!
SIHITI
ElES
EGES
ElH
SClOSE
CMFSIS
SCMR
CMFSII
CMFSMP
CMFSPM
CMFSSM
ERRS
SOPHER
SEOl
SERRS
SFIO
MOFSPS
MOFSRA
HTYIH
ADUSM
ADUIM
ADUMM
CMUSM
CMISIM
CMISMM
UIFR
SIFW
IlWS
HVS
MOUSM
MOlSIS
MOUIA
MOISMA
MOUOA
MOIS1A

words
001002
001102

(RW,I,GEl,REl;COH)
OSREAD 001024 OSDOHE
SODF2 001104

words (RW,D,GEl,REl,OVR)
words (RW,I,lCl,REl,COH)
001142 SCVTFE 001142 SCVTFI
001156
001156
001170
001200
001312
001324
001354
001646
001676
002236
004414
004554
004566
004576
004644
005442
005462
005510
005532
005556
005576
006012
006064
006214
006473
013102
014264
014306
014372
014562
014576
014612
014626
014642
014656
014672
014752
015064
015212
016030
016040
016050
016064
016100
016120

SCVTCI
CICS
CLDS
ClFS
CLIS
DIFSIS
SDVR
MUFSIS
SMlR
SSETOP
HMIS1M
EEGS
ERAS
CAIS
CMFSPS
SCMPF
CMFSPI
CMFSSI
CMFSIP
CMFSMM
SDUMPl
SEHD
SCHKER
EOlS
EXIT
UFIO
MOFSRS
MOFSRP
ADISSS
ADI$lS
ADUMS
CMUSS
CMUIS
CMI SMS
IFRS
IFRU
UIFW
SllW
MOUSS
MOUSA
RElS
MOUMS
MOISOS

.MOU1S
ICUS

001156
001170
001170
001200
001316
001334
001354
001656
001676
002446
004532
004556
004570
004606
005422
005450
005474
005514
005542
005562
005630
006024
006122
006216
012234
013106
014270
014312
014552
014566
014602
014616
014632
014646
014662
014724
014756
015070
016024
016034
016040
016054
016070
016104
016126

SCVTDE
CIDS
SDI
SRI
DIFSPS
SDIVF
MUFSPS
SMUlF
SOT!
USET
HMU11
EGH
EHES
CAlS
CMFSMS
CMFSSS
CMFSMI
CMFSPP
CMFSSP
CMFSIM
EHDS
SERR
SIOEXI
SERRTE
SFCHHl
MOFSMS
MOFSRM
SGETRE
ADISSA
ADU IA
ADI SMA
CMUSI
CMUI I
CMISMI
SIFR
IFWS
IFWU
TVSS
MOlSSS
MOU IS
MOU 1M
MOUMM
MOISOM
MOU1M
ICUM

001036

001142
001156
001170
001170
001200
001320
001342
001642
001664
002234
004120
004544
004564
004574
004614
005426
005462
005500
005526
005546
005572
006000
006042
006146
006366
012240
014252
014276
014316
014556
014572
014606
014622
014636
014652
014666
014746
015014
015210
016024
016040
016044
016060
016074
016112
016132

Solutions to Practices

V08.01 Load Map RT-11 LI HK
HISTO .SAV Title: .MAIH. Ident:

Friday 10-Feb-84 11:13
FORV02

ICISP
DCISM
MOISIP
MOISMP
MOISPA
ISHS
SLSHTR
MOLSMS
MOL SSP
MOLSPM
MOLSIM
SPUTRE
REHI
SGETBL
SAVRGS
STPS
SEXIT
TVLS
$IVF
TVQS
$Ivp

SWAIT
SAFSSM
SAFSMM
SAISSM
SA ISMM
SALSSM
SALSMM

OTSSP 021114 000054 • 22.
SYSSI 021170 000000 • O.
USERSI 021170 000000 • O.
SCODE 021170 000506 • 163.

016136
016150
016162
016176
016222
016246
016272
016436
016456
016500
016520
016544
017064
017332
017552
017740
017764
020232
020240
020254
020262
020424
020772
021024
021036
021056
021070
021104

ICISA
DCISP
MOISSP
MOISPS
MOISOP
SISHTR
MOLSSM
MOLSMM
MOLSPP
MOLSPS
MOLSIA
REHL
RETS
SEOFIL
THRDS
SSTP
SOTIS
$IVL
TVDS
$IVQ

TV IS
SVRIHT
SVFSIM
SVFSMM
SVISIM
SVI SMM
SVLSlM
SVLSMM

016140
016154
016164
016206
016230
016252
016426
016446
016464
016506
016526
017052
017066
017516
017730
017740
020110
020232
020246
020254
020270
020466
021002
021030
021044
021062
021074
021110

DCISS
DCISA
MOISPP
MOISPM
MOlS1P
LSHS
MOLSSA
MOL SMA
MOLSMP
MOLSPA
MOLSIP
REHF
SPUTBL
SEOF2
SSTPS
FOOS
UOTIS
TVFS
$IVD
TVPS
$IVI
SAFSIM
SVFSSM
SAISIM
SVISSM
SALSIM
SVLSSM

word~ (RW,D,GBL,REL,OVR)
word~ (RW,I,LCL,REL,COH)
word~ (RW,I,LCL,REL,COH)
word~ (RW,I,LCL,REL,COH)

UOTSC 021170
OTSSO

SYSSO
SDATAP
OTSSD

OTSSS

SYSSS
SDATA
USERSD
. UU.

021676 001140 • 304.
UOTSO

023036 000000 • O.
023036 000310 • 100.
023346 000010 • 4.

HHCLHS
023356 000002 • 1.

SAOTS
023360 000000 • O.
023360 000220 • 72.
023600 000000 • O.
023600 000000 • O .

word~ (RW,I,LCL,REL,COH)
021676 SOPEH 021676
word~ (RW,I,LCL,REL,COH)
word~ (RW,D,LCL,REL,COH)
word~ (RW,D,LCL,REL,COH)
023352
word~ (RW,D,LCL,REL,COH)
023356
word~ (RW,D,LCL,REL,COH)
word~ (RW,D,LCL,REL,COH)
word~ (RW,D,LCL,REL,COH)
word~ (RW,D,GBL,REL,OVR)

Se9ment ~ize - 023600 - 5056. word~

Overlay re9ion 000001 Se9ment 000001
OTSSI 023602 001134 • 302. word~

ADFSIM 023602
SUFSMM 023620

(RW,I,LCL,REL,COH)
ADFSPM 023610 SUFSPM
ADFSMM 023632 SUFSIM

SUFSSM
SCVTIC
CDIS
CFIS
ADFSPS
ADFSMS

023646 ADFSSM
023706 SCVTlD
023720 SIC
023734 SIR
024026 SUFSPS
024050 SUFSIS

023652
023706
023720
023734
024032
024060

SCVTlF
CCIS
SID
ADFS IS
SUFSMS
SADDF

167

Page 2

016144
016156
016172
016214
016236
016266
016432
016452
016470
016512
016534
017056
017122
017532
017732
017744
020112
020240
020246
020262
020270
020770
021004
021034
021046
021066
021076

023614
023642
023672
023720
023720
024020
024036
024066

168 Programming with RT -11, Volume 1

RT-11 LIHK VOS.01 Loed Mep Fridey 10-Feb-S4 11:13 Pege 3

HISTO .SAV Title: .MAIH. Ident: FORV02

SSUEF 024102 SUFSSS 024114 SSER 024114
ADFSSS 024120 SADR 024120 ADDS 024134
MOFSSM 024560 MOFSSP 024570 MOFSIM 024574
MOFSIP 024606 MOFSOM 024614 MOFSOA 024624
MOFSOP 024630 SUISSS 024634 SUISSA 024640
SUISSM 024644 SUISIS 024650 SUISIA 024654
SUISIM 024660 SUISMS 024664 SUI SMA 024670
SUISMM 024674 CMLSMI 024700 CMLSSI 024702
SALSIP 024710 SALSSP 024712 SVLSIP 024716
SVLSSP 024720 SALSMP 024726 SVLSMP 024732

SYSSI 024736 000000 • O.
USERSI 024736 000000 • O.
SCODE 024736 000522 • 169.

word~ (RW,I,LCL,REL,COH)
word~ (RW,I,LCL,REL,COH)
word~ (RW,I,LCL,REL,COH)

OTSSO
SYSSO

CHVSTR 024736
025460 000000 • O. word~ (RW,I,LCL,REL,COH)
025460 000000 • O. word~ (RW,I,LCL,REL,COH)

SDATAP 025460 000032 • 13.
OTSSD 025512 000000 • O.

word~ (RW,D,LCL,REL,COH)
word~ (RW,D,LCL,REL,COH)
word~ (RW,D,LCL,REL,COH)
word~ (RW,D,LCL,REL,COH)
word~ (RW,D,LCL,REL,COH)
word~ (RW,D,LCL,REL,COH)
word~

OTSSS
SYSSS
SDATA
USERSD

025512 000000 • O.
025512 000000 • O.
025512 000020 • S.
025532 000000 • O.

Segment ~ize • 001730 • 492.

O~erley region 000001 Segment 000002
OTSSI 023602 000766 • 251. word~

DII SPS 023602
(RW,I,LCL,REL,COH)

DIISMS 023610 DIISIS 023614

SYSSI
USERSI
SCODE

OTSSO
SYSSO
SDATAP
OTSSD
OTSSS
SYSSS
SDATA
USERSD

DIISSS 023616 SDVI 023616 OCIS 023726
ICIS 023734 SECI 023750 OCOS 024130
ICOS 024136 ,CMISIP 024334 CMISSP 024336
CMISMP 024344 CMISPP 024354 CMISPS 024360
CMISPI 024366 CMISPM 024374 HMISII 024402
HMISMI 024440 HMISPI 024446 HPISII 024456
HPISMI 024462 HPISPI 024466 SAFSIP 024472
SAFSSP 024474 SVFSIP 024504 SVFSSP 024506
SAFSMP 024526 SVFSMP 024532 SAISIP 024536
SAISSP 024540 SVISIP 024546 SVISSP 024550
SAISMP 024560 SVISMP 024564

024570 000000 • O.
024570 000000 • O.
024570 000700 • 224.

word~ (RW,I,LCL,REL,COH)
word~ (RW,I,LCL,REL,COH)
word~ (RW,I,LCL,REL,COH)

HISPRT 024570
025470 000000 • O.
025470 000000 • O.
025470 000220 • 72.
025710 000000 • O.
025710 000000 • O.
025710 000000 • O.
025710 000022 • 9.
025732 000000 • O.

(RW,I,LCL,REL,COH)
(RW,I,LCL,REL,COH)
(RW,D,LCL,REL,COH)
(RW,D,LCL,REL,COH)
(RW,D,LCL,REL,COH)
(RW,D,LCL,REL,COH)
(RW,D,LCL,REL,COH)
(RW,D,LCL,REL,COH)

Segment ~ize • 002130 • 556.

word~

word~

word~

word~

word~

word~

word~

word~

word~

Tran~fer eddre~~ • 021170, High limit· 025730 • 5612. word~

Solutions to Practices

CHAPTER 7

7-1. FORTRAN IV

.EDIT/CREATE PR0702.FOR
PROGRAM PR0702

169

C ... READ A REAL*4 NUMBER, CALL SUBA AND PRINT RESULT
C ... SUBA IS WRITTEN IN MACRO-11

EXTERNAL SUBA
REAL*4 RVAL

50 TYPE 100
100 FORMAT (' ENTER NUMBER>',$)

READ (5,*,ERR=1100,END=1000) RVAL
IF CRVAL .EQ. -1.0) GOTO 999
CALL SUBACRVAL) !CALL MACRO-11 SUBROUTINE
TYPE 150,RVAL

150 FORMAT (' CHANGED TO>',F10.3)
GOTO 50 !REPEAT TILL -1.0 ENTERED

999 STOP
C ... NUMBER OUT OF RANGE
1000 TYPE 1010
1010 FORMAT C' ')
1100 TYPE 1110
1110 FORMAT C' ?VALUE BAD OR OUT OF RANGE')

GOTO 50 !TRY AGAIN
END

.FORTRAN PR0702

.EDIT/CREATE PR0701.MAC

.MACRO PR0701

.LINK PR0702,PR0701,SY:FORLIB/LIB

.RUN PR0702
ENTER NUMBER>123
CHANGED TO> 61.500
ENTER NUMBER>1
CHANGED TO> 0.500
ENTER NUMBER>2
CHANGED TO> 2.000
ENTER NUMBER>-1

STOP --

170 Programming with RT -11, Volume 1

7 -2. FORTRAN IV

.EDIT/CREATE HIHPUT.FOR
FUHCTIOH HIHPUT{RVAL}

C ... FORTRAH FUHCTIOH TO ACCEPT A REAL*4 HUMBER
IHTEGER HIHPUT
REAL*4 RVAL
DATA HIHPUT/O/

50 TYPE 100
100 FORMAT {' EHTER HUMBER)'$}

READ {5,*,ERR-1000,EHD E 999} RVAL
IF {RVAL .EG. -1.0} HIHPUT=1
RETURH

999 TYPE 1099
1000 TYPE 1100
1099 FORMAT {' '}
1100 FORMAT (' ?VALUE BAD OR OUT OF RAHGE')

GOTO 50
EHD

.EDIT/CREATE HOUT.FOR
SUBROUTIHE HOUT{RVAL}

C ... SUBROUTIHE TO OUTPUT A REAL*4 HUMBER
REAL*4 RVAL
TYPE 1000,RVAL
RETURH

1000 FORMAT {' ',F10.3}
EHD

.EDIT/CREATE PR0704.MAC

.EDIT/CREATE OTSIHI

.FORTRAH HIHPUT,HOUT,OTSIHI

.MAC PR0704

.LIHK PR0703,PR0704,HIHPUT,HOUT,SY:FORLIB

.RUH PR0703
EHTER HUMBER)123

61.500
EHTER HUMBER)1

0.500
EHTER HUMBER)2

2.000
EHTER HUMBER)-1

Solutions to Practices

7-3. MACRO-11

.EDIT/CREATE SUBA.MAC
. TITLE SUBA

SUBA: : MOVB (R5),R1
BEQ 20$
TST (R5)+

10$: BIC '200,@(R5)+
DEC R1
BI'IE 10$

20$: RTS PC
EI'ID

.EDIT/CREATE PR0702.FOR

.MAC SUBA

.FORTRAI'I PR0702

.LII'IK PR0702,SUBA,SY:FORLIB/LIB

.RUI'I PR0702
EI'ITER NUMBER>123
CHANGED TO>
ENTER NUMBER>1

61.500

CHAI'IGED TO> 0.500
EI'ITER NUMBER>2
CHANGED TO> 2.000
ENTER NUMBER>-1

STOP --

7-4. MACRO-11

.EDIT/CREATE PROG.MAC
• TI TLE PROG
.GLOBL NINPUT.I'IOUT

PROG: : MOV 'ARG,R5
JSR PC,NINPUT
CMP RO.'1
BEQ QUIT
BIC '200,RVAL
MOV 'ARG,R5
JSR PC,I'IOUT
BR PROG

QUIT: RTS PC
RVAL: .FLT4 0.0
ARG: .WORD 1.RVAL

.END

.EDIT/CREATE OTSII'II.FOR
PROGRAM OTSINI
CALL PROG
CALL EX IT
EI'ID

Get number of argument~
Branch if no argument~
Point to 1~t argument

171

Clear 56th bit of high order
Repeat to end of li~t

Return to caller

;Point to argument block
;Read a real number
; 15 returned value . 1
;Exit if it is
;Clear 56th bit of high order
;Point to argument block
;Print result
;Repeat
;Return to OTSINI
;Floating point variable
;Argument block

172 Programming with RT -11, Volume 1

.EDIT/CREATE PR070s

.EDIT/CREATE PR0706

.MACRO PROG

.FORTRAN OTSINI,PR070s,PR0706

.LINK/EXEC:PROG OTSINI,PROG,PR070s,PR0706,SY:FORLIB/LIB

.RUN PROG
ENTER NUMBER>123

61.500
ENTER NUMBER>1

0.500
ENTER NUMBER>2

2.000
ENTER NUMBER>-1

7-5. NEWBCL.MAC

FTABI:
FTBL:

SUBNM:

BKGI:

. TITLE BSCLI

.IDENT 10000081

ROOT
.GLOBL FTABI,BKGI
.GLOBL SUBA
.WORD FTBL
.WORD SUBNM
.WORD 0
.BYTE 4
.ASCII nSUBA n

.EVEN

.WORD SUBA

.WORD 0

jCopyright ec) 1974, 1975, 1976
jby Digital Equipment Corporation

-- Modification for practice

-- Modification for prac ti ce

-- Modifications for practice

-- End of modifications

Command to Reassemble Root of Interpreter

.MACRO/OBJECT:NEWBCL BSMAC+BSASM+NEWBCL

Replies to SUCNFG Program

MYBAS

Y

NEWBCL

SUBA

Index

Absolute binary image, 34-36
Addresses, gaining access to, 85-86
ALLOCATE, 18, 39, 40
ALPHABETIZE, 39
Arguments:

passing, 135-136
receiving, 138-139

Assembly Language Routines
(ALRs),143

;B,88
*$B,86
Background program code, gaining

access to, 79-82
Background programs, enabling de-

bugging aids, 83-84
\ (backslash) command, 89
Base address, 38, 85-86
BASIC command, 61
BASIC programs, 59-72

creation of, 61
editing of, 64-69
entering interprter, 60-61
entering new lines, 62
execution of, 63-64
leaving interpreter, 72
MACRO-ll subroutines in, 142-

144
optional functions in, 60-61
program names in, 61
retrieving saved program, 62-63
saving, 69-70
using immediate mode, 71

BITMAP, 39
BOTTOM,39
Breakpoint, 86-90
BOUNDARY, 39
BUFFER, 47
BYE,72

CALL,143
Code, 127-128

in-line, 127-128
threaded, 127-128, 129

CODE,128
COMPILE,70
CREATE,111-113
CROSSREFERENCE, 22
Cross-reference (CREF) listing, 21-23

D,81
DEBUG, 39, 83
Debugging, 55-56, 75-104

BASIC, 91-104
finding errors, 77-79
FORTRAN IV, 27-28, 38
gaining access to background pro

gram code, 79-82
gaining access to foreground pro

gram code, 82
on-line, 38-39, 85-91, 92
testing programs, 76-77

DEL,67-68
DELETE,114
Deletions (editing), 67-68
Delimiter, 68

173

174 Index

DEPOSIT,81
Device queue program, 51
DISABLE, 24, 25
Dummy routines, 76-77,81,91-93
DUPLICATE, 39

E, 80
Editing (BASIC), 64-69

changes, 68-69
deletions, 67-68
insertions, 65
listing, 64-65
resequencing, 66-67

ENABLE, 24, 25
ERRLOG,51
Error messages, FORTRAN IV, 27-28
Errors, 77-79

cause of, 77-78
location of, 78-79
See also Debugging

EXAMINE,80
EXECUTE/ALLOCATE, 39
EXECUTE command, 55, 110
EXECUTE option, 39
EXTEND,39
Extended Memory (XM), monitor, 51
EXTRACT, 113-114, 125

FB monitor. See Fore
ground/Background monitor

FDT (FORTRAN IV Debugging Tool),
38, 39, 83

FILL,39
FOREGROUND, 39, 46-47
Foreground/Background (FB) moni-

tor, 45-50
foregroundlbackground commu-

nication, 47-50
foreground jobs, 46-47
initiating jobs, 46
terminating jobs, 50

Foreground program code, 82
Foreground programs, enabling de

bugging aids, 84-85
FORTRAN command, 7
FORTRAN IV compiler options, 24-

28
ALLOCATE,18
CODE,128
HEADER,26-27
LIST,9-10
NOOBJECT, 7-8
OBJECT,7
ONDEBUG,27
SHOW, 25-26

FORTRAN IV Debugging Tool (FDT),
38, 39, 83

FORTRAN IV programs, 3-41
allocating storage space for output

files, 18
compilation of, 4, 7
controlling production of object

module, 7-8
debugging lines, 27
development of, 6
error messages, 27-28
executing source files, 55
generating listings, 8-11
linking, 28-41
MACRO-ll subroutines in, 134-

139
multiple source files, 12-14, 15
See also Debugging; Program exe

cution
FORTRAN IV subroutines, in a MA

CRO-ll program, 139-142
conventions, 141
initializing OTS, 140-141

FRUN, 46, 47, 54
FRUNIPAUSE, 82, 84

*;G,88
GET,79
GLOBAL,39

HEADER,26-27

Immediate mode, 71
INCLUDE,40
In-line code, 127-128
INSERT,114
Insertions (editing), 65
Interfaces. See Language interfaces
Interpreter, BASIC:

entering, 60-61
leaving, 72
modifying, 143-144

KMON,46

Language interfaces, 133-150
BASIC-ll programs calling MA

CRO-ll subroutines, 142-144
FORTRAN IV routines in MA

CRO-ll program, 139-142
MACRO-ll routines in FOR

TRAN IV program, 134-139
Language optimization, high level,

126-131
additional techniques, 130

Index

generated code, 127-128, 129
sequence numbers, 130
vectors, 128

LDA, 34, 36, 40
LEVEL,52
Libraries, 107-119

creation of, 111-113
macro, 109-110, 112-113, 115
maintenance of, 114-115
object, 108-109, 111-112, 113-115

LIBRARY option, 40,109-110
LIMIT,41
LINKIDEBUG, 38, 83-84
Linker options, 36-41

ALLOCATE, 39,40
ALPHABETIZE, 39
BITMAP, 39
BOTTOM,39
BOUNDARY, 39
DEBUG, 39, 83
DUPLICATE, 39
EXECUTE,39
EXECUTE/ALLOCATE,39
EXTEND,39
FILL, 39
FOREGROUND, 39,46-47
GLOBAL,39
INCLUDE,40
LDA, 34, 36, 40
LIBRARY, 40, 109-110
LIMIT,41
LINKLIBRARY, 40, 108, 109
MAP, 29,40, 79-80
MAP/ALLOCATE,40
MAPIWIDE, 40
NO BITMAP, 40
NOEXECUTE,40
PROMPT,40
ROUND,40
RUN,40
SLOWLY, 40
STACK, 36, 40
SYMBOLTABLE, 40
TOP, 41
TRANSFER, 41
WIDE,40
XM,41·
XM/LIMIT, 41

Linking, 4, 28-41
load image files, 31-36
load map files, 29-31

LINKLIBRARY, 40, 108, 109
LINK/MAP, 29, 79
LIST command, 64-65
LIST option, 9-10, 114

Listings:
FORTRAN IV:

generating, 8-11

175

optional information in, 25-27
MACRO-l1:

cross-reference, 21-23
generating, 8-11
optional information in, 19-21

LISTNH,64
LOAD,47
Load image files, 31-36

absolute binary image, 34-36
relocatable image, 33-34
save image, 31-33

Load map, 29-31, 79-80,84
Load module, 4

MACRO command, 4,109-110
MACRO directive, 112
MACRO-ll assembler options, 18-

24
ALLOCATE,18
CROSSREFERENCE, 22-23
DISABLE,24
ENABLE,24
LIST, 9-10
NO OBJECT, 7-8
NOSHOW, 20-21
OBJECT,7
SHOW, 19, 21

MACRO-ll programs, 3-41
allocating storage space for output

files, 18
assembly of, 4
controlling production of object

module, 7-8
development of, 5
executing source files, 55
FORTRAN IV subroutines in, 139-

142
generating listing, 8-11
linking, 28-41
multiple source files, 11-12, 13, 15
See also Debugging; Program exe-

cution
MACRO-l1 subroutines:

in a BASIC-ll program, 142-144
modifying interpreter, 143-144
using CALL statement, 143

in a FORTRAN IV program, 134-
139

creating common blocks, 137-
138

maintaining the stack, 137
passing arguments, 135-136

176 Index

MACRO, in FORTRAN IV (cont.)
receiving arguments, 138-139
returning function values, 136
transferring control, 135
using registers, 136-137

Macro libraries:
creation of, 112-113
maintenance of, 115
use of, 109-110

MACRO option, 112-113
MAP, 29, 40,79-80
MAP/ALLOCATE,40
MAPIWIDE, 40
MCALL directive, 109
Memory limitations, 122

See also Language optimization;
Overlays

Monitors:
Extended Memory, 51
Foreground/Background, 45-50
Single Job, 44-45

NEW, 61
NO BITMAP , 40
NOEXECUTE, 40
NOLINENUMBERS, 130
NO OBJECT , 7-8
NOSHOW, 20-21
NOSWAP, 131
NOVECTORS, 128

0,124-125
OBJECT,7
Object libraries:

creation of, 111-112
creation of object module from,

113-114
maintenance of, 114-115
use of, 108-109

Object modules:
controlling production of, 7-8
creation of, from object libraries,

113-114
linking, 4, 28-41

Object Time System (OTS), 139-141
Object Time System errors, 28
ODT. See On-line Debugging

Technique
OLD,62-63
ONDEBUG,27
On-line Debugging Technique

(ODT), 38-39, 85-91, 92
examining and modifying loca

tions, 88-89
exiting, 91

gaining access to addresses, 85-86
gaining access to registers, 86
proceeding from breakpoint, 89-90
setting breakpoint, 86-88
starting execution, 88
using single-step mode, 90

OTS (Object Time System), 139-141
OTS errors, 28
Output files, allocating storage space

for, 18
Overlays, 122-126

*;P, 89-90
Proceed command, 89-90
Program development, 4-41, 58-72

in BASIC, 59-72
creation of, 61
editing programs, 64-69
executing programs, 63-64
optional functions in, 60-61
program names in, 61
saving programs,69-70

in FORTRAN IV, 3-18, 24-41
compiler options, 24-28
compiling multiple source files,

12-14, 15
controlling production of object

module, 7-8
generating listing, 8-11
linking, 28-41
storage space for output files, 18

in MACRO-11, 3-24, 28-41
assembler options, 18-24
assembly, 4
compiling multiple source files,

11-12, 13, 15
controlling production of object

module, 7-8
generating listings, 8-11
linking, 28-41
storage space for output files, 18

process of, 4
Program execution, 43-56, 63-64

debugging, 55-56
source files, 55
with system jobs, 51-54
on systems with multiple termi

nals, 54-55
using Extended Memory Monitor,

51
using foregroundlbackground

monitor, 45-50
using Single Job Monitor, 44-45

Index

Program names, in BASIC, 61
PROMPT,40

QUEUE, 51, 52

R,44
*;R,86
*$R,86
Registers, 86-89, 136-137
Relocatable image, 33-34, 84
REMOVE,115
REPLACE,70
RESEQ, 66-67
Resequencing, 66-67
RESUME,82
ROUND,40
RUN command, 44, 63-64
RUN option, 40
RUNNH,64

*;S, 90
SAVE,69-70
Save image, 31-33
Sequence numbers, 130
SHOW, 19, 21, 25-26
Single Job (SJ) monitor, program ex-

ecution with, 44-45
Single-step mode, 90
SJ monitor. See Single Job Monitor
I (slash) command, 88, 89
SLOWLY, 40
Source files:

executing, 55
multiple, 11-17

SRUN, 51-52, 54
STACK, 36, 40
Stack location, 36-38
Stack pointer, 137
Stack size, 36, 38
START,82
SUB,68-69
Subroutines:

177

dummy, 76-77,81,91-93
FORTRAN IV, in MACRO-ll pro

grams, 139-142
MACRO-l1, in BASIC-ll pro

grams, 142-144
MACRO-11, in FORTRAN IV pro

grams, 134-139
SYMBOL TABLE, 40
System jobs, 51-54

communication, 53-54
scheduling, 51-52
starting, 52-53

TERMINAL, 54-55
Threaded code, 127-128, 129
TOP, 41
TRANSFER, 41

UNLOAD,47
User Service Routine (USR), 130-131

VDT. See Virtual Debugging
Technique

Vectors, 128
Virtual Debugging Technique (VDT),

82, 85-91, 92
examining and modifying loca-

tions, 88-89
exiting, 91
gaining access to addresses, 85-86
gaining access to registers, 86
proceeding from breakpoint, 89-90
setting breakpoint, 86-88
starting execution, 88
using single-step mode, 90

WIDE,40

XM,41
XM/LIMIT, 41
XM monitor. See Extended Memory

Monitor

