

Tailoring
RT-11
System Management and
Programming Facilities

Tailoring
RT-11
System
Management
and
Programming
Facilities

Simon Clinch
Stephen Peters
Kevin Small
Anne Summerfield

mamaama
DECbooks

Copyright © 1984 by Digital Equipment Corporation.
All Rights Reserved. Reproduction of this book, in
part or in whole, is prohibited. For information
write Digital Press, Digital Equipment Corporation,
30 North Avenue, Burlington, Massachusetts 01803

Designed by Virginia J. Mason
Printed in the United States of America

10 9 8 7 6 5 4 3 2

Documentation number EY -00024-DP
ISBN 0-932376-34-7

The following are trademarks of Digital Equipment Corporation:

DEC PDP RSX
DECtape
DIBOL
MICRO/PDP

PDT
Professional
RSTS

RT-ll
UNIBUS
VT

Library of Congress Cataloging in Publication Data
Main entry under title:

Tailoring RT -11.

Includes bibliographical references and index.
1. RT -11 (Computer operating system) 2. Electronic

digital computers-Programming. I. Clinch, Simon,
1959- II. Title: Tailoring R.T.-l1.
QA76.6.T34 1984 001.64'2 84-9405
ISBN 0-932376-34-7

Contents

Introduction vii

1 Volume Maintenance 3

2 Installation and System Generation 17

3 System Maintenance 37

4 The Queue Package and the Error Logger 45

5 PDP-11 Architecture 67

6 Extended Memory Management 77

7 Device Communication 95

8 Writing an Interrupt Service Routine 103

9 Writing a Simple Device Handler 115

10 Additional Features for Device Handlers 133

Index 147

v

Acknowledgment

We would like to thank all those who contributed to this
publication. In particular, we are grateful to Martin Gentry,
Dennis Jensen, and Bernard Volz for reviewing the mate
rial in this book. The staff at Digital Press deserve special
commendation for their invaluable assistance.

Introduction

Tailoring RT -11: System Management and Programming
Facilities describes the RT -11 tools you will need to man
age your system and use it efficiently. The first portion of
the book examines system management functions: install
ing the system, performing system generation, maintaining
the system volume, controlling the internal allocation of
system resources. The latter part of the book focuses on
system programming functions: using the scheduler, writ
ing a device driver, using memory management directives.

Chapter 1, "Volume Maintenance," explains how to
initialize and maintain system volumes by using DCL com
mands. Chapter 2, "Installation and System Generation,"
discusses how to install RT -11 by using the automatic in
stallation procedure and how to customize the system with
SYSGEN. Chapter 3, "System Maintenance," describes how
to update system software and how to select and imple
ment customizations. Chapter 4, "The Queue Package and
the Error Logger," examines how to run the system jobs
QUEUE and ERRLOG.

Chapter 5, "PDP-11 Architecture," describes how to
use the device registers, the memory management unit, and
the interrupt system. Chapter 6, "Extended Memory Man
agement," examines how to access memory above the 28-
Kword boundary. Chapter 7, "Device Communication," de
scribes how to communicate with devices that are not sup-

vii

viii

Resources

Introduction

ported by the standard RT -11 operating system. Chapter 8,
"Writing an Interrupt Service Routine," explains how to
write an interrupt service routine and how to use interrupt
vectors. Chapter 9, "Writing a Simple Device Handler," ex
amines how to write, assemble, link, install, and debug a
device handler. Chapter 10, "Additional Features for De
vice Handlers," describes how to add optional features to
a device handler.

In order to do the practice exercises, you will need access
to an RT -11 system that has been bootstrapped.

Although every effort has been made to make Tailor
ing RT -11 a self-contained volume, you may need to refer
to the following manuals from the RT -11 documentation
set for additional information:

• RT -11 Automatic Installation Booklet

• RT -11 Installation Guide

• RT -11 Programmer's Reference Manual

• RT -11 Software Product Description

• RT -11 Software Support Manual

• RT -11 System Generation Guide

• RT -11 System Message Manual

• RT-11 System User's Guide

• RT -11 System Utilities Guide

The documentation to which we refer throughout the text
is written for RT -11 version 5.0. We also used a computer
system equipped with RT -11 version 5.0 to generate the
programs in our examples and practices. If you own a newer
version of RT -11, you may also need a copy of the latest
System Release Notes to determine the difference between

Notations

Introduction ix

your system and the one described here. For a directory of
documentation products, write:

Digital Equipment Corporation
Circulation Department, MK01/W83
Continental Boulevard
Merrimack, NH 03054

For additional information on RT -11 conventions, you may
refer to the publications listed below:

• Working with RT -11 (Digital Press, 1983)

• Programming with RT -11, Volume 1
Program Development Facilities (Digital Press, 1984)

• Programming with RT -11, Volume 2
Callable System Facilities (Digital Press, 1984)

• PDP-11 Processor Handbook

The following symbols are used in this book to represent
specific elements:

(KEY)

COMMANDS

Prompts

[]

indicates keyboard and keypad keys, their
functions, or key combinations

(uppercase) indicates input

(upper and lowercase) indicates computer
output

indicates parts of a command that are op
tional (the brackets are not part of the com
mand string)

An example box acts as a window that shows either the in
teraction between the user and the computer or a portion
of the codes in a program. If the code in an example does
not have a label, blank spaces have not been included for
the label field.

Tailoring
RT-11
System Management and
Programming Facilities

1
2

Volume Structure

Bad Blocks

Initializing Volumes

Squeezing Volumes
Backup Operations

Archiving
Creating Working Copies of the System Disk

Data Recovery from Storage Volumes

Recovering a File Deleted in Error
Recovering a Storage Volume Initialized in Error

Recovering from Bad Blocks

Bad Blocks in the File Area

Bad Blocks in Directories
Bad Blocks Caused by Drive Failure or
Electromagnetic Noise

Bad Blocks Caused by a Damaged Medium

References

1
Volume
Maintenance

To make efficient use of physical storage media such as
disks and magnetic tapes, you will need to know how file
storage is organized in RT -11. This chapter discusses how
to initialize volumes for storage and make backup copies
of important volumes. We will also discuss bad blocks and
how to use the SQUEEZE command to improve disk orga
nization. The commands discussed in this chapter are: IN
ITIALIZE, BACKUP, FORMAT, COPY, and SQUEEZE.

When you have completed this chapter, you will be
able to describe the RT -11 disk and file structure; create a
bootab1e system volume; recover data from a volume con
taining bad blocks; prepare new volumes for use as system
or data volumes; and make backup copies of important
volumes, including the system disk.

3

4 Tailoring RT -11

Volume Structure

Bad Blocks

RT -11 supports two types of storage devices: random ac
cess devices such as disks, diskettes, or DECtape, and se
quential access devices such as magnetic tapes or cassettes.
Files are stored according to the type of storage device used.
On random access devices, the storage area is divided into
256-word blocks. A disk is known as a block-replaceable
device because each block can be independently ad
dressed, read from, or written to. Blocks are numbered
starting at block O. Figure 1 shows the structure of an
RT-11 disk.

RT -11 reserves blocks 0 to 5 for system use. Block 0
contains the boot block. The PDP-11 bootstrap loader al
ways reads in the contents of the boot block and then exe
cutes this code. If the storage device is a system volume,
the boot block will read in and execute the code in blocks
2 through 5. System volumes contain a bootstrap program
in blocks 2 through 5, but data volumes do not. If the stor
age volume is a data volume, then an error message will be
produced if you try to boot from that volume.

Block 1 is known as the home block and contains sys
tem data such as volume identification and owner name.

The device directory always starts at block 6, and user
data starts at the first block following the last directory block.
On sequential access devices there is no directory. Tape files
are preceded by file headers. Files are stored contiguously
from the start of the tape, with the rest of the tape left blank.
See figure 2 for the structure of an RT -11 magnetic tape.

If a hardware error is returned when you try to read from
or write to a block, the block is known as a bad block. Bad
blocks are caused by media failure, drive failure, or elec
tromagnetic noise. They have different effects in different
areas of the volume. For example, bad blocks in the direc
tory area may mean the loss of all files covered by that seg
ment of the directory, or they may mean a very long recov-

Chapter 1 Volume Maintenance

Figure 1.
Structure of an RT-11 Disk

GENERAL STRUCTURE

BLOCK # ,--------..,
o BOOT

1
2

HOME BLOCK

BOOT

51---------f"
6

DIRECTORY

DIRECTORY

FILE AREA

(FILES AND
EMPTY AREAS)

EXPANDED EXAMPLE

-SEGMENT #1-

-SEGMENT #2-

-SEGMENT #3-

-SEGMENT #4-

-SEGMENT #6-

-SEGMENT #7-

FILE #1

FILE #2

EMPTY

FILE #3

EMPTY

FILE #4 -

SEGMENTS
CURRENTLY
IN USE

5

SEGM ENTS NOT
YET IN USE

6 Tailoring RT -11

Figure 2.
Structure of an RT -11 Magnetic Tape

PHYSICAL BEGINNING __ _

OF TAPE

LOGICAL BEGINNING
OF TAPE (M ET AL STRI P ---.....,~ __ --.;.--.;. '"-'-~
ON TAPE)

LAST FILE -------..1
WRITTEN

LOGICAL END _____ -+-I

OF TAPE

PHYSICAL
OF TAPE

VOLUME LABEL

FILE HEADER LABEL

FILE

END-OF-FILE LABEL

FILE HEADER LABEL

FILE

Chapter 1 Volume Maintenance 7

ery procedure. Bad blocks in the home or boot block area
mean that a volume can no longer be used as a system vol
ume. In the file storage area, they may mean that one file is
lost.

The way you handle bad blocks depends on where they
are located. You should use the block numbers to deter
mine whether the bad blocks are in the home or boot block,
the first segment of the directory, a file, or the empty area
of the volume.

To determine whether there are bad blocks and what
their locations are, use the DIR command with the IBAD
and IFILES options. A sample directory listing showing po
sitions of bad blocks is shown in figure 3.

Initializing Volumes

The first thing you must do when you receive a formatted
physical storage volume from the manufacturer is to ini
tialize the volume. To do this, write on the volume the in
formation needed to identify it and the files the volume will
contain. If you receive an unformatted volume-for exam
ple, when you get a new RK05 disk-you will need to for
mat the device before initializing it. Look up the FORMAT
command in the RT -11 System User's Guide.

The INITIALIZE command clears the directory of a
directory-structured device. Initialization writes the home

Figure 3.
Directory Listing Showing Positions of Bad Blocks

.DIR/EAD/FILES
Elock Type File Elock

044632 18842. Replaced EASKIT.DSK 006335 3293.
077020 32272. Replaced < UNUSED) 000522 338.
077122 32338. Replaced < UNUSED) 000624 404.
077224 32404. Replaced < UNUSED) 000726 470.
107443 36643. Replaced < UNUSED) 011145 4709.
111047 37415. Replaced < UNUSED) 012551 5481.
?DUP-W-Ead blocks detected 6.

8 Tailoring RT -11

block, clears the boot blocks (except the block 0 message
telling you there is no bootstrap on the volume), and sets
up the directory. Before any files are created, the device di
rectory contains a single active segment with a single entry
that describes the available area of the disk, which extends
from the end of the directory to the end of the storage vol
ume. The number of segments in a directory varies and is
controlled with the ISEGMENTS option. Larger directories
allow for more file entries per volume.

Initializing a tape writes the volume label and places
an end-of-tape indicator directly after it. This is the wayan
empty volume is represented on a non-directory-structured
device. The boot for a tape is written as the first file, using
the IFILES option.

The IVOLUMEID option allows you to specify the vol
ume identification and owner name of the volume. To
change the identification of a block-replaceable volume
without initializing it, use the IVOLUME:ONL Y option.

You may also specify the number of blocks used as di
rectory segments on block-replaceable devices, using the
ISEGMENTS:n option of the INITIALIZE command. Table
1 shows the default number of segments in the directory
for standard RT -11 devices. Remember that one directory
segment is made up of two blocks of storage and can con
tain a maximum of 72 entries.

During the initialization phase, you may examine the
volume and protect it from bad blocks by using the
IBADBLOCKS option of the INITIALIZE command. Using
this option causes the system to write .BAD files over the
bad blocks. This ensures that the system will not try to ac
cess the bad blocks during routine operations. Any file with
the .BAD file type is generally treated as immovable. Avail
able space is segmented into noncontiguous areas as a re
sult of .BAD files. If the system finds a bad block in either
the boot block or the volume directory, it prints an error
message saying that the volume cannot be used.

If you use the IBADBLOCKS:RET option when you
initialize a used volume, then initialization will keep all files
with a .BAD file type that are found on the volume. This
option does not scan for new bad blocks and thus, saves
time during initialization. However, it does not give up-to
date information about the bad blocks on a volume, so you

Chapter 1 Volume Maintenance

Table 1.
Default Directory Sizes

Device

DO
DL (RL01)

DL (RL02)

OM
DU (disk)

DU (diskette)

OX
DY (single-density)

DY (double-density)

RK

Number (decimal) of
Segments in Directory

16

31

31

31

4

16

9

must make a choice between time and accuracy. The bad
block scan requires accessing every block; so the larger the
disk, the longer it will take.

If you are using an RK06, RK07, RL01, or RL02 disk,
or block-replaceable devices, you may use the IREPLACE
option to scan for bad blocks. If the system finds any bad
blocks, it creates a replacement table that maps a spare good
block for each bad one so that the disk appears to have only
good blocks. Use of a replacement table, however, makes
response time slower.

The software always considers devices such as the
RD51, RC25, and RA80 to be error-free. The devices cover
bad blocks through automatic revectoring to spare tracks.
Should bad blocks occur, .BAD files can be used to avoid
an area until the device can be updated.

Squeezing Volumes

RT -11 files are stored on contiguous blocks so that delet
ing files leaves empty areas on the volume. These areas may
be reused, but large numbers of creations and deletions will

10 Tailoring RT-11

Figure 4.
Using SQUEEZE on a Volume with .BAD Files

BEFORE

FILE 4

AFTER

leave many small areas that are not reusable because of their
size. SQUEEZE consolidates empty areas by moving all the
files to form one large block of contiguous data. This op
eration is modified in the case of bad blocks covered by .BAD
files. In order to prevent you from exposing bad blocks on
a disk, .BAD files are not moved in the SQUEEZE opera
tion. Files are inserted before and after the .BAD files until
the empty space between the last file moved and the bad
block is smaller than the next file to be moved. Figure 4
shows the effects of performing a SQUEEZE operation on a
volume with .BAD files. In the next section, we will dis
cuss using SQUEEZE to create backup copies of volumes.

Backup Operations

Archiving

Backup versions of files and volumes are used to make sure
that valuable information is not lost. Two types of backup
operations will be described: archiving and creating work
ing copies.

You may use COpy IDEVICE to make an exact copy of a
volume on an equivalent volume. The original file organi
zation is retained and the boot and the volume ID are copied.

Chapter 1 Volume Maintenance 11

In general, this command is quick and appropriate as long
as bad blocks are not a factor on either volume.

Another way of archiving is to use the BACKUP com
mand. The BACKUP command uses the BUP utility pro
gram to copy the contents of a large file or volume to a set
of smaller volumes for storage. The volumes generated by
BACKUP cannot be used in this fragmented form. BACKUP
is only used as a means of storing information for system
and data archives. BACKUP/RESTORE copies files or the
contents of volumes back to their original form for active
use.

Creating Working Copies of the System Disk

You will need to copy the system disk so that you have more
than one copy of the working system. By default, the COpy
command does not transfer system files and the contents of
blocks 0 through 5. If you want to create a bootable system
volume, you must copy the .SYS files as well as the data
files and then use the COPY/BOOT command to set up the
boot blocks.

You may use SQUEEZE to compress a volume onto a
new backup volume. Using SQUEEZE in this way is simi
lar in effect to a COPY/SYSTEM operation, except that
SQUEEZE compresses the directory and COpy does not.
COPY/SYSTEM/QUERY should be used if the new volume
is to be tailored differently from the input volume. The fol
lowing example describes how to copy a bootable volume
from DLO: to DL1:.

1. Initialize the new volume using the INITIALIZE com
mand. The format of the command is:

.INI/REP/VOL DL1:

2. Copy the files to the new volume using the
COPY/SYSTEM or SQUEEZE/OUTPUT commands.
The formats for these commands are:

.COPY/SYS DLD:*.* DL1 :*.*

.SQU/OUT:DL1: DLD:

12 Tailoring RT -11

3. Write the bootstrap program to the volume using
COPY/BOOT:. This assumes the Fore
ground/Background monitor is to be booted:

.COPY/BOOT DL1 :RT11FB.SYS DL1:

4. Boot the new system:

.BOOT DL1:

It is better to run the new copy of a system volume and
store the old one because this tests whether the copy was
successful (you know that the old version of the volume ran
correctly) and because the new system was squeezed, so the
files are contiguous and access is, therefore, more efficient.

Data Recovery from Storage Volumes

Before using any of the data recovery procedures described
here, try to find out as much as you can about the cause of
the error. For example, check that the drives are aligned
compatibly before you go through a possibly long recovery
procedure. Remember that data is lost most often because
of bad blocks or user errors resulting in corrupted files or a
corru pted directory.

Recovering a File Deleted in Error

The simplest type of recovery procedure is restoring a file
deleted in error. When you delete a file, its status in the
directory is changed, but the contents of the file stay on the
storage volume until they are overwritten. To recover the
file, you must restore its status to that of a permanent file.
To do this, find the starting block and length of the file, us
ing the command DIRIDELETEDIBLOCKSIFULL. Restore the
directory entry with the CREA TE/ ALLOC:size/ST ART:x
command. Here "size" represents the file length and "x"
represents the starting block position. Check the extent of
the newly created file to be sure it contains no unwanted
material.

Chapter 1 Volume Maintenance 13

Recovering a Storage Volume Initialized in Error

To recover a storage volume that was initialized in error,
use the INITIALIZE/RESTORE command. This command
will only be effective if the volume was not written to be
tween initialization and the recovery procedure. For ex
ample, any bad-block scan during initialization will pre
vent a recovery.

Recovering from Bad Blocks

If you find that blocks on a volume you have used have be
come bad, you should try selective copying to save any
valuable information stored on that volume. If the volume
was being used as a scratch volume or did not contain any
important files, then reformat the volume and initialize it
with a bad-block scan.

Bad Blocks in the File Area

Try to copy the file containing a bad block or blocks to an
other location on a volume by using the COPY/IGNORE
command. This copies one block at a time, so there is less
chance of an error than with multiple-block transfers. I/O
errors are reported on the terminal, but copying continues.
When you have copied the file, delete the original so that
the bad block is in an empty area of the volume. To avoid
the bad block prior to an initialization, use CREATE to cre
ate a .BAD file over the block.

Bad Blocks in Directories

Data recovery becomes more difficult when the directory has
been corrupted because the system accesses files through
the directory. If you access a bad block in a directory, an
error message:

14 Tailoring RT -11

?MoN-F-Directory I/O error

will be displayed. You also get this message if you access
a volume that has not been initialized in RT -11 format.

The procedure for recovering files when the directory
is corrupted involves patching around the bad blocks in the
directory segments. You will then be able to copy the files
to another storage medium. Refer to chapter 9 of the RT-
11 Software Support Manual. All files are block contig
uous, so if you have a current listing of DIR/BLOCKS, then
you know where the files reside physically on the volume.

Bad Blocks Caused by Drive Failure or
Electromagnetic Noise

If there is no damage to the storage medium itself, you can
correct bad blocks in the file area by rewriting the header
information. Check that the disk drive is correctly aligned
before you try to perform this operation.

First, take a directory listing of bad files to check
whether they are present. If so, note their position and copy
all files from the bad volume to a good one. Use
COPY/DEVICE if possible or COPY/IGNORE if errors are re
ported during the copying operation. Reinitialize the bad
volume and copy the files back. If bad blocks occur again,
compare their positions to those first recorded. If errors oc
cur in the same positions, you should assume that the vol
ume has physical damage. Cover the bad blocks or replace
the volume.

Bad Blocks Caused by a Damaged Medium

If bad blocks cannot be removed by rewriting or reformat
ting, they must be isolated in some way so that they will
not be accessed by normal file operations. There are two
ways to protect the volume from this class of bad blocks.
However, these methods should be used only when nec
essary because they result in a decrease in access speed
and/or available disk space.

References

Chapter 1 Volume Maintenance 15

The first method is replacement (available only on
RK06, RK07, RL01, or RL02 devices). With RK and RL vol
umes, a bad block is logically replaced by a good one, us
ing a replacement table stored in block 1 and spare blocks
reserved at the end of the disk. This removes bad blocks
from all operations. Use the command line INIT/REPLACE
dev: on the volume to scan for bad blocks and set up the
replacement table. Use the /REPLACE:RET AIN option in
future initializations to retain the replacements made pre
viously. The number of blocks that may be replaced is lim
ited physically to the replacement table space and avail
able spare blocks.

The second method is covering, which is available on
all devices, but file storage is segmented. To cover a bad
block, create a file with the file type .BAD at the location
of the bad block. The INIT/BADBLOCKS command covers
all bad blocks when the volume is initialized. To cover
without initializing, use the CREATE command to create a
file with the type .BAD at the position of a bad block. You
should not use COPY/DEVICE on any volume that has cov
ered bad blocks because this command ignores the file
structure and thus, will not pass over .BAD files.

RT -11 Software Support Manual. Chapter 9 describes how to
restore files when the device directory becomes corrupted. It also
offers examples of file recovery. Table 9-1 and figure 9-2 de
scribe the contents of the home block.

RT -11 System User's Guide.

2
16

Distribution Kit
Installation Procedures

Automatic Installation
Manual Installation

Changing RT -11 Features
System Generation

Planning a System Generation
Running SYSGEN
Assembling and Linking the Components
Backing Up the System
Using Generated Monitors and Handlers

Preparing a Working System
Special Considerations for Small Volumes
References

2
Installation
and System
Generation

The RT -11 software distribution kit, provided on magnetic
tape, diskette, or cartridge disk, contains all of the soft
ware for the RT -11 system: the monitors, device handlers,
utility programs. It also contains a number of other useful
files such as help text and notices.

You use the distribution kit as a base from which to
build the system volumes for your working system. The
process of copying the kit and selecting files to transfer to
a working volume is called installation. Certain system
configurations use an automatic procedure to install the
system for you.

The distributed monitors may be changed according
to the specific needs of your application and computer
configuration. Some of the changes may be made by using
monitor commands or patching specific files, but many of
the changes are implemented by using the system genera
tion procedure.

This chapter discusses installation and how to use the
automatic installation procedures. It also describes the
procedures for system generation and the options avail
able.

17

18

Distribution Kit

Tailoring RT -11

The RT-11 software, distributed on one or more volumes,
includes the monitors, device handlers, utility programs,
source files for SYSGEN, and command text files:

• Monitors include ready-to-run versions of the SJ, FB,
and XM monitors, the Base Line (BL) monitor (a sim
plified version of the SJ monitor), and an Automatic
Installation monitor (based on the FB monitor).

• Device handlers for the SJ and FB monitors are
named dd.SYS; "dd" is the two-character permanent
device name. The XM versions of these device han
dlers are named ddX.SYS.

• Utility programs include editors, libraries, and sub
routines for program development. File volume and
system maintenance utilities as well as other pro
grams not supported by Digital are distributed with
RT-11.

• Source files for SYSGEN include all files needed to
generate customized monitors and device drivers.

• Command text files, the remaining files on the distri
bution kit, include indirect control files for installing
and generating a working system, demonstration pro
grams to verify installation, and text files with release
notes.

Refer to table 2-1 of the RT -11 Installation Guide and ap
pendix A of the RT -11 System Release Notes for a com
plete list of RT -11 files.

The distribution kit is your master copy of RT -11;
therefore, do not write to it or use it as a system volume for
development and production. Instead, copy the distribu
tion software and work from the copy during installation.

Installing RT -11 requires at least one of the mass stor
age devices supported by RT-11. Although RT-11 sup
ports a large number of storage devices, RT -11 is not dis
tributed on all of the supported media. The software
distribution media include:

Chapter 2 Installation and System Generation 19

• RK05, RL01, or RL02 cartridge disk

• RXOl or RX02 diskettes

• RX50 diskettes

• RC25 (25-Mbyte removable disk cartridge)

• Magnetic tape (9-track, 800 bits-per-inch)

The RT -11 Software Product Description (SPD) has a com
plete list of RT -11 distribution media. The system device
(SY:) does not have to be the same type as the distribution
device. For example, if your system has an RX02 drive unit
and an RK07 drive, you may create an RK07 system vol
ume by installing RT -11 from the RX02 distribution kit.

When you have installed RT -lion a system volume,
you can run any of the distributed monitors and use the
device handlers and utility programs. The distributed RT-
11 software has the necessary features for most applica
tions.

Installation Procedures

When you install your system, you must perform the fol
lowing steps:

1. Boot the distribution volume.

2. Create a backup copy. Store the backup copy in a
safe place, separate from working volumes.

3. Create one or more boatable working system volumes
by copying selected software components from the
distribution kit. Make backup copies of these new
volumes.

4. Test the working system by editing, assembling, link
ing, and running the demonstration programs.

Recent versions of RT -11 are distributed with auto
matic installation and verification procedures, which sim
plify installation.

20 Tailoring RT -11

Automatic Installation

To use the automatic installation procedure, you must pos
sess the following minimum hardware configuration:

Processor

System Console

Mass Storage

PDP-ll or LSI-ll with 24 Kbytes of
memory

LA34, LA100 series, or VT100 series
terminal

dual RX02 diskettes, RD51/RX50 disks,
dual RL02 disks, or two RC25 disks
(one-drive unit)

If your configuration contains the hardware necessary
for an automatic i,nstallation, your manual set will include
an RT -11 Automatic Installation Booklet for your distri
bution kit. This booklet describes how to perform a hard
ware bootstrap from the distribution kit.

The automatic installation and verification procedure
installs RT -11 by running an interactive control file. It gives
you instructions to mount a volume in the destination de
vice and asks you to respond when you have done so. It
makes a backup copy of the distribution kit and creates a
working RT -11 system volume. When the installation is
complete, you must run a verification procedure to test the
working system.

To run the automatic installation procedure, you boot
the system from your distribution kit. The system automat
ically uses the automatic installation procedure when it
starts up. If you do not have the configuration necessary for
an automatic installation, the procedure displays an error
message and exits.

Figure 5 shows the operation of the automatic instal
lation procedure. Distribution kits on diskettes, such as
RX02, have multiple volumes so the process is repeated for
each volume.

When the working volume has been created, the pro
cedure bootstraps the system from the working volume. You
must then verify the installation by issuing the command:

.IND VERIFY

Chapter 2 Installation and System Generation

Figure 5.
Automatic Installation Procedure

BOOTSTRAP

INITIALIZE AND
COPY DEVICE

AUTOMATIC
INSTALLATION
PROCEDURE

QUESTIONS

ANSWERS

INITIALIZE
AND COpy
SELECTED FILES

21

The verification procedure carries out the following func
tions:

• Loads the LP or LS handler and FRUNs QUEUE

• Prints the RT -11 System Release Notes

• Assembles, links, and runs the terminal identification
program IVP .MAC

• Prints the program listing and link map for IVP .MAC

• Terminates QUEUE and unloads it and the LP or LS
handler

At the end of the procedure you will have a distribu
tion kit, a backup of the distribution kit, and an installed
working RT -11 system. If the verification procedure fails,
it will issue a warning message.

22 Tailoring RT -11

Manual Installation

Although Digital recommends installing RT -11 automati
cally, it is possible for you to install the system manually.
If your system configuration does not meet the require
ments for automatic installation, you may have Digital in
stall your system or follow the procedures described in the
RT -11 Installation Guide, which apply to computer sys
tems of various configurations.

To install a system, you will use a series of four com
mands: INITIALIZE, COPY/SYSTEM/QUERY, COPY/BOOT,
and SQUEEZE.

Changing RT -11 Features

When RT -11 has been installed, the working volume will
contain the software components you have selected, with
the standard set of features. Table 1-1 of the RT -11 Instal
lation Guide lists the features generated with each of the
distributed monitors.

Although you do not need to be familiar with RT -11
to install a distributed system, you should modify the sys
tem only if you are familiar with RT -11. There are a num
ber of ways to modify the RT -11 monitors and other soft
ware components, including:

• Issuing monitor commands to change device charac
teristics permanently (see SET dd: in the RT -11 Sys
tem User's Guide)

• Placing monitor commands in the startup command
file to initialize the system when it is bootstrapped

• Using system generation to implement major changes
to the RT-ll components

• Patching files to make permanent changes to the
monitor, device handlers, and utility programs

The features that you can select by patching compo
nents are listed in table 1-3 of the RT -11 Installation Guide.

Chapter 2 Installation and System Generation 23

Perform only the patches that are published by Digital.
Chapter 3, "System Maintenance," describes in greater de
tail the use of SIPP and the procedures for patching soft
ware components.

System Generation

Many permanent customizations cannot be implemented by
monitor commands or short patches. These customizations
are implemented by a process called system generation, or
SYSGEN, used to create RT -11 monitors and device han
dlers. Customization allows you to select system features
and devices to be supported and to specify details of the
configuration on which the software will be used. When you
have selected the features you want, the requested compo
nents are assembled (using conditional assembly code to
include the options you have selected) and linked.

The minimum hardware configuration recommended
to perform a system generation is:

• A dual RL01 disk (or larger)

• 32 Kbytes of memory (56 Kbytes is preferable)

System generation can be done on systems that have
only diskettes, but this is not recommended because of the
amount of media swapping needed. Chapter 3 of the RT-
11 System Generation Guide describes system generation
on small systems.

Table 1-4 in the RT -11 Installation Guide lists the
features that are available only through a SYSGEN. The
features most often needed include multiterminal support,
system job support, and error logging.

To perform a system generation, you should:

1. Plan the system generation

2. Run the SYSGEN command file

3. Assemble and link the components

4. Back up the generated system

24 Tailoring RT -11

Planning a System Generation

Running SYSGEN

Planning is the most important part of any SYSGEN. The
other steps use routine procedures.

First, you should collect information about the hard
ware configuration-what devices you have and their vec
tor and register addresses. Then, determine which moni
tors you want. Refer to the RT -11 Software Product
Description and the RT -11 Installation Guide, chapter 1,
to find out the differences between the RT -11 monitors.
Finally, study the available options, analyze the needs of
your application, and decide which options you want. The
features available through a SYSGEN are listed in table 1-1
of the RT -11 System Generation Guide.

You will hot want to perform a system generation often,
so you should plan for the needs of all the applications you
expect to run in the near future. If this creates too large a
system, you should consider generating a number of sys
tem volumes, one for each application.

SYSGEN is an indirect control file and uses .ASK and .ASKS
to issue questions. To run the SYSGEN command file, you
issue the command:

.IND SYSGEN

The system prompts you with the questions. Your re
sponses determine the programs that are built and the op
tions selected. The default answer to each question is shown
in brackets at the end of each question. If you want the de
fault, press (RETURN). If you do not understand a question, press
(ESCAPE)(RETURN); SYSGEN will type an explanation of the ques
tion and ask you again. You may abort SYSGEN at any time
by pressing (CTRUC) twice.

SYSGEN might not ask every question shown in the
manual. For example, question 20 asks:

"Do you want all the keyboard monitor commands [YJ?"

Chapter 2 Installation and System Generation 25

Questions 21, 22, and 23 determine which subset of com
mands you want. If you answer Y to question 20, SYSGEN
will not ask questions 21, 22, and 23. The SYSGEN ques
tions are arranged in the following groups:

Initialization

Monitor Type

Monitor Options

Device Options

determines whether you
want to use the answers
from a previous SYSGEN
and whether you want to
save the answers from this
SYSGEN. The default
name for the answer file is
SYSGEN.ANS. If you do use
a previous answer file, you
may change the answers to
any question by giving the
number of the question you
want to change.

determines which RT -11
monitors you want built.
The default is to build
SJ and FB but not XM.
The monitors will be gen
erated with the name
RTllmm.SYG; "mm" is SJ,
FB, or XM.

determine monitor options,
such as error messages on
system I/O errors, multiter
minal support, and user
command linkage.

determine which devices
the generated system will
support. SYSGEN generates
device handlers called
xx.SYG, where "xx" is the
permanent device name.
Type a question mark (?) to
get a list of the devices
available. You may also use
this section to add support
for user-written device han
dlers. Unless you select ad
ditional device slots, the

26 Tailoring RT -11

Graphics Options

system will only contain
enough slots for the devices
you specified.

determine the register and
vector addresses for VTll
or VS60 graphics display
terminals. Graphics support
is not available if you select
multiterminal support.

Terminal Interface Options determine the vector and
register addresses for local
and remote DLll and DZll
lines if you selected multi
terminal support. At this
stage SYSGEN asks if you
want to change any of your
responses. If you want to
make only minor changes,
you may go back to answer
some questions again; al
though in general, if you
have made a major mistake
it is best to abort the SYS
GEN and start again.

Physical Device Selection
and SYSGEN Cleanup

determines the devices for
the source input files, bi
nary output files, and link
maps and asks whether you
want to keep the SYSGEN
work files, object files, and
map listing files.

A number of files are used in the process of system
generation. These files are:

SYSGEN.COM

SYSGEN.ANS

is the indirect control file that performs
the system generation. It creates the
output files using the answers to the
SYSGEN questions.

saves answers from a system generation.
These answers can be used later in an
other system generation.

Chapter 2 Installation and System Generation 27

SYSGEN.eND

SYSGEN.TBL

SYSGEN.MON

SYSGEN.DEV

SYSGEN.BLD

contains conditional assembly values,
determined by the answers you give to
the questions. This file is assembled
with all of the software components
generated by the SYSGEN.

sets up device table entries for each de
vice you specify. SYSGEN uses some of
the conditionals to generate this file.

assembles and links the RT -11 moni
tors. SYSGEN creates this indirect com
mand file.

assembles and links the device han
dlers. SYSGEN creates this indirect
command file.

is the command file that runs
SYSGEN.MON and SYSGEN.DEV.

SYSGEN.ANS is the default file name for the answer
file. If you use a different file name with the .ANS file type,
that name will be used for all the other output files. For
example, if you call the .ANS file WORKFB.ANS, the other
files will be called WORKFB.CND, WORKFB.TBL,
WORKFB.MON, WORKFB.DEV, and WORKFB.BLD.

Assembling and Linking the Components

After completing the interaction with SYSGEN.COM, you
must assemble and link the components.

If necessary (for example, if you are doing a SYSGEN
on an RX01- or RX02-based system), enter the assembly and
link commands yourself, moving and deleting files as nec
essary. Refer to the .MON and .DEV files for the necessary
commands.

The rest of this section assumes that you are using the
command files generated by SYSGEN. COM to build the
components. You can do this by using one of the following
commands:

28 Tailoring RT -11

.$@SYSGEN.MON

.$@SYSGEN.DEV

.@SYSGEN.BLD

builds the RT -11 monitors

builds the device handlers

builds all the generated components
by executing both of the above indi
rect commands

SYSGEN.MON and SYSGEN.DEV refer to four logical
device names. You specify to which physical devices they
are assigned during the SYSGEN dialogue.

SRC:

OBJ:

BIN:

MAP:

is the source input device. All the source files
needed during assembly must be on this volume.

is the object output device. All the object (.OBJ)
files created during assembly will be written to
this volume.

is the binary output device. The generated com
ponents will be written to this volume.

is the load map output device. The load maps
(.MAP) from the linker will be written to this de
vice. It may be a listing device such as TT: or
LP:, but it is often useful to store the maps in
files. You will need to examine the load maps if
you want to patch the components later.

Use the largest, fastest storage devices available. If you
only have one block-replaceable device unit, mount a copy
of your installed system in it, and use that volume for all
logical names.

If you have two block-replaceable units, you may mount
the installed system in drive a and use it for SRC:, then
mount an initialized disk in drive 1 and use it for BIN:,
MAP:, and OBJ:. If you do this, the volume in drive 1 will
contain only the generated components; you will have to
transfer other components later.

After the assembly and link operations have been
completed, the following files are left:

MAP: contains .MAP files from linking the monitors
and device handlers, unless you asked for them
to be deleted.

Chapter 2 Installation and System Generation 29

BIN: contains the generated monitors and device han
dlers.

OBJ: contains the .OBJ files from the assemblies, un
less you asked for them to be deleted.

When the system has been generated, you should ap
ply any of the patches selected from the RT -11 Installa
tion Guide, RT -11 System Release Notes, or appendix D of
the RT -11 System Generation Guide. Remember that .SYG
is the file type given to all the device handlers and moni
tors created by SYSGEN. In general, patching should not
be necessary.

To make the volume BIN: a system volume, you must
change the .SYG files to .SYS. You should perform a soft
ware boot using the BOOT command to verify that the sys
tem you generated works:

EXAMPLE

.BOOT RT11SJ.SYS

You must then set up the bootstrap block with a
COpy IBOOT command and reboot the system. If the BIN:
volume is also the SY: volume during SYSGEN, you must
be careful about the transition to the new system. Do not
simply rename .SYG files as .SYS, for this may delete cur
rently active system components. Instead, build a new sys
tem volume on some device other than SY:, using the .SYG
components renamed .SYS., and then boot the new system
volume.

Backing Up the System

When you have installed your system and added all the
customizations you need (either by system generation or by
patching), you should make a backup copy of the system
volumes. You should keep backup copies of the following:

30 Tailoring RT -11

• Generated monitors, handlers, and utility programs

• Conditional files SYSGEN.CND and SYSGEN.TBL

• Command files SYSGEN.MON and SYSGEN.DEV

• Map files

If possible, you should also keep hard copy listings of the
SYSGEN session to show which options have been se
lected. If you perform more than one SYSGEN, be sure to
keep your files in order. For example, you may store the
backup of each SYSGEN on a separate small volume, or give
the files unique names.

Using Generated Monitors and Handlers

A monitor and the handlers it uses must be compatible. They
must match the following system generation options: mem
ory management, error logging, and device timeout sup
port.

If the options of a handler do not match those of the
running monitor, the monitor will not install the handler.
For safety, you should use the distributed handlers only with
the distributed monitors, and use monitors only with han
dlers that have been assembled using the same SYS
GEN.CND file. It is possible to maintain the SJ, FB, and XM
monitors on one system disk. You may then switch from
one system to another using the BOOT command.

If you want to maintain the results of more than one
system generation on one volume (or the distributed sys
tem and a generated system on one volume), you will have
to change the names of one set of handlers and monitors.
To identify different monitors, rename them any name you
like, but remember that a monitor must have .SYS as its file
type.

The default name for handlers is dd.SYS for SJ or FB
systems or ddX.SYS for XM systems, where "dd" is the
permanent device name. You may not have two handlers
for one device on a volume with the name dd.SYS, so you
must rename one set. A patch is given in appendix D, sec-

Chapter 2 Installation and System Generation 31

tion D.3 of the RT -11 System Generation Guide that en
ables you to specify a single-character suffix for the device
handlers used by a specific monitor. For example, if you
have two FB monitors on a volume-the distributed RTllFB
and a multiterminal version named RTllMT-you can patch
RTllMT to access handlers named ddM.SYS. You must
name the generated handlers ddM.SYS to match, and then
restore the original dd.SYS handlers from the distribution
kit if necessary.

Preparing a Working System

To create an RT -11 system volume to work with your ap
plication you must perform the following: install the dis
tributed system on a system volume, perform a system gen
eration if necessary, and apply any selected patches.

Automatic installation transfers all the RT-ll soft
ware to one or more volumes. If you have large system disks,
such as RK07s or an RA80, you may be able to fit all the
RT -11 software and all your own files on one volume. If
you have small volumes or do not want all of the RT -11
components on the production system disk, select which
files to put on the system volume. Refer to table 2-1 in the
RT -11 Installation Guide for a list and description of all
files in the distribution kit.

The system volume must contain the handler for the
system device, at least one RT -11 monitor to be used by
the hardware boot, and the swap file SWAP.SYS. If the sys
tem was built to support startup command files, the system
volume should also contain ST ARTS.COM for an SJ mon
itor, ST ARTF.COM for an FB monitor, and ST ARTX.COM
for an XM monitor.

To hardware boot the RT -11 monitor, the bootstrap
code must first be loaded on the volume using the
COPY/BOOT command. A volume that contains only the
files described above can boot RT -11, but you will not be
able to do anything useful on such a system unless it con
tains other software.

The programs you put on the system volume depend
on the size of the volume and the needs of your applica-

32 Tailoring RT -11

tion. On a large system volume you may keep programs that
you do not use often. On small volumes you must select
the components carefully. Here are some suggestions for
which components to include:

• Device Handlers. Include handlers for all devices on
your configuration. You should include TT.SYS if
you are using the S] monitor. Since TT.SYS is in
cluded with the FB and XM monitors, you do not
need to specify it.

• Utilities. PIP, DUP, and DIR are almost always
needed, as are RESORC and HELP. You do not need
to keep HELP. TXT unless you want to modify the
HELP text.

If you have a printer and will be using FB or XM, the
QUEUE package is useful for printing files. You will
need the files QUEUE.REL and QUEMAN.SA V. The
transparent spooling package (SPOOL) is especially
useful for sending files to serial output devices.
SPOOL consists of SPOOL.REL, SP[X].SYS, and
SPOOL.SYS.

You will probably need to create source files, so you
will need an editor. You can select EDIT or KED,
(KEX under the XM monitor). The terminal on which
you edit will, in part, determine which editor to use.

If you are going to develop programs on your system,
you will need the program development utilities. If
you are programming in MACRO-ll, you need the
assembler MACRO.SA V and the system macro library
SYSMAC.SML. For cross-references, you need
CREF.SAV.

If you are programming in FORTRAN IV, you need
the compiler FORTRA.SA V and the FORTRAN IV li
brary. The library may be a separate file FORLIB.OBJ,
or it may be included in the system library
SYSLIB.OB].

If you are using BASIC-ll, you need a BASIC-ll in
terpreter. The default interpreter is BASIC. SA V.

If you want to communicate with a host system, the
virtual terminal communication package (VTCOM)

Chapter 2 Installation and System Generation 33

changes your stand-alone system to a local terminal.
VTCOM consists of VTCOM.REL, VTCOM.SAV,
XC[X].SYS or XL[X].SYS, and TRANSF.SAV.

Special Considerations for Small Volumes

References

If you are using a small device such as RX01, RX02, or RX50
as the system device, you may not be able to fit all the soft
ware components on a single volume. Even if you can, it
may not have room for your own files.

You can avoid this problem if you:

• Keep the system volume (SY:) in unit 0, and assign
DK: to unit 1. If you create all user files on a data
volume in unit 1, then it does not matter if there is
very little room left on the system volume.

• Create a separate volume for utilities that are not
used very often. To use these utilities you must run
them directly, specifying the device. This means that
you may not use DCL commands that call those utili
ties unless you temporarily copy the utility to SY:
when you want to use it. Note that you should not
run PIP or DUP from any device other than SY:.

• Build special-purpose system volumes-for example,
one for MACRO-11 program development, one for
BASIC-11, and one for dedicated applications work.

• Keep only one monitor on a system volume and only
the device handlers that will be used.

RT -11 Installation Guide. Chapter 2 describes the software
components and discusses the arrangement of these components
on a working system. Table 2-2 lists the capacities of various sys
tem disks.

RT -11 Automatic Installation Booklet.

34 Tailoring RT -11

RT -11 System Generation Guide. Chapter 1 explains the pro
cedure for system generation. Appendix A contains an example
of system generation.

RT -11 Software Product Description.

RT -11 System Release Notes. Chapter 11 of the release notes
for RT -11 version 5.1 discusses SPOOL in detail. Chapter 12 de
scribes VTCOM.

Introduction to RT -11.

3
36

Updating the System

Customizing Software with Monitor Commands

Customizing Software with Patching Utilities

Source Code Patching

Object Code Patching

Memory-image Patching

References

Solutions to Practices

3
System
Maintenance

You will want to maintain up-to-date versions of the soft
ware products you use and be able to select from a range
of system modifications. This chapter discusses the proce
dure for updating system software and selecting and im
plementing customizations. Some customizations must be
implemented by patching system software components;
others may be implemented by giving commands to the
monitor or placing them in the startup command file. This
chapter discusses these commands-which have a perma
nent effect and which nlust be placed in a startup file.

You will learn to use a software update kit to replace
system software modules, use software patching utilities to
implement published customizations, and customize a
system by using monitor commands manually or by plac
ing them in the startup file.

System software may be modified at three levels: source
code level, object code level, or memory image leve1.

System updates are modifications issued by Digital to
replace old software modules with new ones. Software cus
tomizations are optional modifications to the RT -11 op
erating system. You may select from a range of published
modifications. For software customizations, old software
modules are modified using patching utilities (as opposed
to replacement). Other system customizations may be im
plemented by placing commands in the startup file. These
may include commands to run programs other than Digital
system programs.

37

38 Tailoring RT -11

Updating the System

Digital supplies updates to RT -11 in the form of update kits,
which enable the system to be updated automatically. Each
update kit includes:

• A letter from Software Product Services containing
special instructions about the update

• Release notes describing the update changes and re
lated user information

• User documentation on how to perform the update

• Distribution medium containing the new software
modules and automatic update command file(s)

The license and support terms that apply to your in
stallation will determine what updates you receive for your
RT -11 system.

Customizing Software
with Monitor Commands

Many customizations are best implemented using monitor
commands:

• You can mount a logical disk using the monitor com
mand MOUNT. The format of the command is:

MOUNT LDn: FILESPEC

The logical disk remains mounted even if you reboot
the system.

• You can use the SET command to modify the charac
teristics of a device handler, and the new characteris
tics remain even after a reboot. The format of the
command is:

SET LP: CSR = aaaaaa

Practice
3-1

Chapter 3 System Maintenance 39

In this example, the command modifies the line
printer device handler so that it uses the control sta
tus register (CSR) address "aaaaaa" (octal) for the
line printer controller. Note that only the device han
dler on the system volume is modified by most SET
commands. The device handler must be unloaded,
installed, and loaded (or the system rebooted) before
the change becomes effective.

By using these monitor commands you can perform
many modifications to system software without having to
perform a SYSGEN.

There will be other customization commands whose
effects do not remain after a reboot. If your system al
ways needs the effects of these commands, you should
place the commands in the startup file-for example,
SY:STARTF.COM for the FB monitor. Here are some other
examples:

• If your system needs QUEUE, SPOOL, or the error
logger, then the startup file should contain com
mands to run them.

• If your system console is a video terminal, you may
type SET TT SCOPE in the startup file. (SCOPE is the
default setting for RT -11 version 5.1.)

1. Perform a customization that will make the DIR com
mand produce directory listings with one column in
stead of two by default. Refer to the RT -11 Installation
Guide for details of the procedure.

2. Assume that all programs run on the system will need
to have the User Service Routine permanently resident
in memory. Make a backup copy of the startup file and
edit the startup file so that the User Service Routine
will not swap out during program execution.

40 Tailoring RT -11

Customizing Software
with Patching Utilities

Software customizations are usually small changes to sys
tem software in the form of input to patching utilities. You
make larger changes by performing a system generation.

The published customizations are found in appendix
D of the RT -11 System Generation Guide and chapter 2 of
the RT -11 Installation Guide. Other customizations are
found in the RT -11 System Release Notes. These sources
include procedures for implementing the customizations.

When you have generated a system, you should then
look at these customizations to see whether any of them are
needed for the specific applications you intend to use. For
example, if your terminal requires fill characters to follow
each carriage return, you need to implement a customiza
tion on the monitor to send the fill characters to the ter
minal.

The published customizations are implemented using
the following patching utilities: SLP.SAV, PAT.SAV, and
SIPP.SAV. All customizations published in chapter 2 of the
RT -11 Installation Guide are implemented using SIPP.

Source Code Patching

Source code patching is a source code modification to a
software component. The usual procedure is to run the
source language patch program (SLP) with the command
file to patch the program.

Object Code Patching

Object code patching is a technique for modifying the ob
ject code of a software component. Generally, you will per
form the following:

Chapter 3 System Maintenance

• Create a source file containing the patch by using
an editor

• Assemble the patch source file

41

• Run the object patch utility (PAT.SAV) to install the
patch to the object module

Memory-image Patching

Memory-image patching is a technique for modifying the
memory image of software components using the save im
age patch program (SIPP.SAV). The process for modifying
the memory image is described below:

1. Run SIPP using the command:

.R SIPP

2. When you have entered the command and pressed
(RETURN), SIPP replies with an asterisk (*) prompt. You
then reply with the file specification of the memory
image you want to modify and press (RETURN):

*FILESPEC

3. If the memory image is overlaid, SIPP then asks you
for the number of the segment that contains the data
you want to modify ("nnnnnn" represents the num
ber in octal):

Segment? nnnnnn

4. SIPP now prompts you for the base address and off
set of the location you want to modify, regardless of
whether the program is overlaid. You give these in
octal.

Base? bbbbbb

Offset? 000000

5. SIPP displays the contents of that location and
prompts you for new values starting with the loca-

42 Tailoring RT -11

tion you specified. The segment column is only used
for overlaid programs as shown:

Segment Base Offset Old New?

nnnnnn bbbbbb 000000 xxxxxx

6. You may give the new value in octal, ASCII, or
Radix-50 format as follows:

Octal

ASCII

;Oyyyyyy "yyyyyy" is the new value in octal.
Since octal is the default format,
you need to use ;0 only after
ASCII or Radix-50 input.

;Ay "y" is the character to be inserted
in the byte of the current location.

Radix-50 ;Ryyy "yyy" is up to three characters to
be inserted into the current word
location in Radix-50 format.

You must press (RETURN) after entering each value. You
can change the default radix by entering:

;0 (RETURN)

;A (RETURN)

;R (RETURN)

for octal

for ASCII

for Radix-50

7. To leave a value unchanged, press (RETURN).

8. To back up to a previous location, type a circumflex
and press (RETURN):

(RETURN)

9. When you have finished modifying values, you
press:

(CTRUY)(RETURN)

which returns you to the asterisk (*) prompt.

10. To exit from your session with SIPP, press (CTRUC)

after the * prom pt.

Let us assume that you want to implement a customi
zation on LINK. Instead of looking for SYSLIB on the sys
tem device SY:, LINK is to search for SYSLIB on DK:. To
accomplish this, run SIPP. When the system sends the off
set prompt, type in the offset of SYSLIB.

References

Chapter 3 System Maintenance

EXAMPLE

• R SIP P(RETURN)

*SY: LINK. SAV(RETURN)

Segment? O(RETURN)

Base?

Offset?

O(RETURN)

OOOOOO(RETURN)

Segment Base Offset

000000 000000 000000

Old New?

?????? ; RDK(RETURN)

000000 0000 0 0 000000 + 2 ? ? ? ? ? ? (CTRUY)(RETURN)

*(CTRUC)

RT -11 Update User's Guide.

43

RT -11 System Generation Guide. Appendix D contains infor
mation about published customizations and the procedure for
implementing them.

RT-ll System Utilities Manual. Chapter 19 explains PAT in
detail; chapter 20 covers SIPP in detail; and chapter 21 discusses
the Source Language Patch Program (SLP).

RT -11 System User's Guide. Chapter 4 discusses the argu
ments of the SET command-those that have a permanent effect
and those that reset to a default condition when the system is
rebooted.

RT -11 System Release Notes.

RT -11 Installation Guide. Chapter 2 discusses customizations
and the procedure for implementing them.

Solutions to Practices

3-1 (1) See Chapter 2 of the RT -11 Installation Guide for the custom i
zation procedure.

(2) The startup command file should now contain the command:

.SET USR NOSW AP

No other SET USR commands should be present in the com
mand file.

4
44

How QUEUE and ERRLOG Can Be Run

Queuing

Components of the Queue Package

Queuing Operations
Queuing a file

Deleting a job

Run-time QUEUE options

Stopping and restarting queuing

Interruptions

Aborting QUEUE

Suspending queuing with QUEMAN

Using the DCL command SUSPEND

Summary of Queuing
Error Logging

Components of the Error-logging System

Error-logging Support under the SJ Monitor

Error-logging Support under the FB or XM Monitor
Getting Reports

Analyzing a Report from the Error Logger

Storage device error report format

Memory error report format

Error summary report format
References

Solutions to Practices

4
The Queue
Package and
the Error L.ogger

When you issue the PRINT command to print a file, the
keyboard monitor (KMON) peIforms the print operations by
default. KMON runs in the background job environment,
which means that you must wait until the listing is com
plete before you issue another monitor command. When you
run a foreground or system job, you may continue using
the background environment to issue monitor commands
or run background programs independently while the other
job is running.

Digital supplies a queue package as part of RT -11 for
queuing output to any RT -11 supported device such as the
line printer. QUEUE runs as a system job (or foreground
job if the monitor does not have system job support). When
you issue the PRINT command, the utility program QUE
MAN sends information to QUEUE about the file to be
printed. QUEUE performs the listing operation from the
system job environment, so you may continue issuing
monitor commands while the file is being printed.

You may run one system job in the foreground if you
are using a Foreground/Background monitor. If the moni
tor has system job support, then you may run up to six sys
tem jobs, in addition to the foreground and background jobs.

45

46 Tailoring RT -11

Another package supplied with RT -11 that uses a
system job slot is the error-logging package. This records
I/O activity, device errors, and memory errors. Under the
FB and XM monitors, the system job ERRLOG receives in
formation about all errors and records them in a file. Un
der SJ, a pseudo C device handler EL receives the informa
tion and holds it in a buffer. You then use the SHOW
ERRORS command to get a report of the recorded infor
mation.

In this chapter you will learn how to use the queue
package to print or transfer files while the system is run
ning other operations, and you will learn to start error log
ging and produce error-logging reports.

How QUEUE and ERRLOG Can Be Run

If you are using a Foreground/Background or Extended
Memory monitor that does not have system job support, you
may run either queuing or error logging, but not both, as a
foreground job. If you want to run both queuing and error
logging at the same time or need to run a foreground job of
your own, you must generate a monitor that includes sup
port for system jobs, and run QUEUE or ERRLOG using the
SRUN command.

In a system job environment it is recommended that
you always use SRUN to run system jobs, so that they run
using their correct logical job names. There are only two
functional differences between running jobs as foreground
jobs or as system jobs:

1. To start a job, use:

FRUN for a foreground job

SRUN for a system job

2. To abort a foreground job, use:

(CTRUF)(CTRUC)(CTRUC)

or

ABORT F

Queuing

Chapter 4 The Queue Package and the Error Logger 47

To abort a system job, use:

(CTRux)JOBNAME(RETURN)

or

(CTRUC)(CTRUC)

or

ABORT JOBNAME

The RT -11 queue package is designed to allow files to be
printed on a line printer while normal operations, such as
program development, proceed in the background. In ad
dition to the printer, the queue package may also be used
with other peripheral devices. The queue package stores any
number of requests for transfers from one or more files to
either another file or to non-file-structured devices.

If a transfer is interrupted by some event, for instance
the printer runs out of paper, the queue package can restart
the transfer from the beginning so that acorn plete copy of
the requested file will be produced.

Components of the Queue Package

The queue package is made up of two programs and a data
file:

QUEUE.REL

QUEMAN.SAV

This is the main component of the
package. It maintains a list of requested
transfers and adds new requests to the
end of the list as they are made. It uses
this list to control the 110 transfers it
performs. After each transfer has been
completed, it deletes the appropriate
entry from the top of the list.

This utility communicates with the
queue. You may issue commands
using DeL (for example, PRINT

48 Tailoring RT -11

QUFILE.WRK

FILNAM.TYP) or ceL (for example,
QUEMAN FILNAM.TYP/P) to
QUEMAN in order to:

• Make a request for a transfer

• Check the status of waiting requests

• Delete a request from the queue

• Set control parameters of QUEUE

This work file on SY: is used by
QUEUE to maintain the list of waiting
requests. By keeping this list in a file
instead of in memory, the queue pack
age can continue from where it left off
(for example, if the system crashes and
is rebooted).

Queuing Operations

In using QUEUE, you should make sure that QUEUE is
running by issuing the appropriate SRUN or FRUN com
mand. If the queue package is to be used very often on a
system, this command should be placed in the startup file.

You may send files to the QUEUE device using the
QUEMAN utility, discussed in chapter 17 of the RT -11
System Utilities Manual. If that device is LP:, then the PRINT
command will direct output to QUEUE if it is running.

Because QUEUE runs as a foreground or system job,
you must load any device handler (other than SY:) that is
to be used by QUEUE. You may load the handler either be
fore or after running QUEUE, but you must load it before
QUEUE tries to execute a transfer that needs the handler.
Therefore, load the handler before issuing the queuing
command that needs it. This may be done by placing the
appropriate command in the startup file.

If you will be queuing files to a sequential device and
want to be sure that no program other than QUEUE uses
that device, assign ownership of that unit to QUEUE within
your LOAD command. If QUEUE is running in the fore
ground, use the command:

Chapter 4 The Queue Package and the Error Logger 49

LOAD dev:=F

But if QUEUE is running as a system job, use the com
mand:

LOAD dev: = QUEUE

Queuing a file

If QUEUE is running, the PRINT command causes QUE
MAN to run, which passes the request on to QUEUE. When
you issue a PRINT command that is passed on to QUEUE,
all the files in that command are printed as a single oper
ation. (You may use the /PROMPT option of PRINT to in
clude more files than would fit on one line.) All the files of
the command will be copied to the output device or file in
the order in which they appear in your command. This
constitutes one queue job.

By default, a queued file is sent to device LP:. Chapter
2 of the RT -11 Installation Guide documents a customi
zation patch that you can use to change this default. By de
fault, the job name is the same as the name of the first file
of the job. The /NAME option can be used to override this
default. The format is:

PRINT/NAME:[DEV:]JOBNAME

To check the status of a QUEUE job-whether it is
completed, in progress, or waiting-use the SHOW QUEUE
command to see a list of the current queue jobs and each
job's status.

Deleting a job

If, before a job has completed, you determine that you no
longer want the job to be run, you may delete that job from
the queue. For example, you might have requested that a
program listing file be queued to the printer; but before the
file is printed you find an error, correct it, and want to print
the later version instead. So, you would need to delete the
job from the queue. To do this, use the DCL command
DELETE/ENTRY.

50 Tailoring RT -11

Run-time QUEUE options

You may set the following options of the queue package:

• The default number of banner pages

• The status of the work file QUFILE.WRK (whether or
not to delete it if you halt QUEUE)

In the output from a queue job, a banner page identi
fying the output file may precede any file in a job. The ban
ner page contains the file name in large block letters, the
job name, and the date and time the file was printed. Ban
ner pages are useful when you are printing many files us
ing the QUEUE system because they help you separate one
listing from another.

When you first run QUEUE, it is set to a default of
no banner pages. To change this default you must run
QUEMAN directly and use the IP option. You may over
ride the current default within a specific PRINT command
by using the options IFLAGPAGE:n or INOFLAGPAGE.
These options set the number of banner pages to be used
for each file of the job that you create with that PRINT
command. They do not change the default for any other job.

If you want to set the number of banner pages for in
dividual files within a job, you must run QUEMAN di
rectly and use the IH:n and/or the IN option on the files of
the job. These options are not implemented in the DeL
PRINT command.

The IP option to the utility QUEMAN is also used to
determine whether QUFILE.WRK is to be deleted if you halt
QUEUE. If the work file is deleted when you halt QUEUE,
then you cannot restart QUEUE where it left off; you must
issue the commands again to queue any jobs that did
not complete. On the other hand, if you decide to keep
QUFILE.WRK when QUEUE is halted, the restart capabil
ity is enabled. By default, QUEUE is set to keep the work
file if QUEUE is halted.

Stopping and restarting queuing

QUEUE keeps its job list and current status in the work file
QUFILE. WRK. Keeping this information in a file allows

Chapter 4 The Queue Package and the Error Logger 51

queuing to be restarted without reentering the commands
for the jobs that were waiting to be run. Thus, the queue
package allows you to recover from interruptions. You may
also stop and restart queuing by aborting QUEUE, by sus
pending QUEUE using QUEMAN, or by using the monitor
SUSPEND command.

Interruptions

QUEUE's operation will be interrupted by a system crash
or fatal error. If this occurs, when you run QUEUE again, it
will automatically restart the printing at the beginning of
the file that was in progress at the time of the interruption.

Other interruptions can affect queuing but not abort
QUEUE. For example, the printer may be taken off-line, run
out of paper, or experience a paper jam. When you correct
the condition, queuing will continue; however, the listing
in progress at the time the condition took effect may not be
usable. To receive a clean copy of the file, use the fR option
of QUEMAN before bringing the printer back on-line.
Printing will restart at the beginning of the file that was in
progress at the time queuing was interrupted.

Aborting QUEUE

You may want to stop QUEUE during a file transfer. If so,
you should abort QUEUE, either by using (CTRUC) (in con
junction with either (CTRUF) or (CTRUX») or by using the fA op
tion of QUEMAN. As soon as QUEUE receives the abort re
quest, which may take a few seconds, it will stop its I/O,
close any output files, and exit.

When you abort QUEUE, QUFILE.WRK will be kept or
deleted according to the option you have selected with the
fP option of QUEMAN. If you are unsure of the current set
tings, run QUEMAN and reset the options. If you have not
set QUFILE.WRK to delete automatically, you may delete
it manually using the monitor command DELETE. If
QUFILE. WRK is deleted, either automatically or manually,
when you next run QUEUE, the queue will at first be empty.
If QUFILE.WRK is kept, then when you next run QUEUE,
queuing will restart at the beginning of the file that was being
transferred at the time that QUEUE was aborted.

52 Tailoring RT -11

Suspending queuing with QUEMAN

Although aborting QUEUE stops output immediately, sus
pending it allows QUEUE to complete the transfer of the
current input file. After the current file completes, QUEUE
will close the output file for the job and will not start any
new I/O until it receives a command to resume. You sus
pend queuing by using the IS option of QUEMAN and re
sume it by using the IR option of QUEMAN. When you use
the /R option to resume queuing, QUEUE starts with the file
immediately following the one completed after you issued
the suspend request.

Use the QUEMAN/S option to suspend queuing if you
want to perform routine operations without damaging the
output results-for example, to change paper in the printer
or separate the files that have been printed so far. Use this
method also if you are terminating your session on the
computer and want to resume the printing job next time you
reboot the system.

Using the DeL command SUSPEND

You can use the command SUSPEND to suspend QUEUE
if it is running as a foreground job or use SUSPEND QUEUE
if it is running as a system job. The DeL command RE
SUME (or RESUME QUEUE) will restart QUEUE. The I/O
operations stop immediately when you issue the SUS
PEND command; they start ,exactly where they left off when
you use the RESUME command.

Under most conditions, it is beneficial to restart QUEUE
(because QUEUE starts printing the current file again from
the beginning) or suspend QUEUE fro~ QUEMAN and re
sume it (allowing QUEUE to reach the end of the current
file). Using the SUSPEND command from KMON accom
plishes neither of these, nor does it provide for updating
QUFILE. WRK as the other methods do.

Summary of Queuing

The queue package uses two utilities, QUEUE and
QUEMAN. Queuing is used primarily to print files while

Error Logging

Chapter 4 The Queue Package and the Error Logger 53

the operator performs other operations. Once you start
QUEUE (using the FRUN or SRUN command), every PRINT
command creates a job for QUEUE. Each job causes the
copying of one or more input files to an output device or
output file.

When queuing is active, the following special com
mands and options are available:

SHOW QUEUE

DELETE/ENTRY

shows you the current status of jobs
waiting to be processed by QUEUE

removes a job from the queue

In the PRINT command, these special options are
available:

/FLAGPAGE:n controls whether files will be
or preceded by a banner page
/NOFLAGP AGE showing the file specification in

large block letters

/NAME:DEV:]OBNAME controls the name of the job
and the device to which the job
will be sent

/PROMPT allows you to specify more than
one line of files in the same job

QUEUE keeps its list of jobs in the file QUFILE.WRK.
This allows queuing to be restarted in the event of termi
nation of QUEUE, planned or otherwise. You may restart
QUEUE using the IR option of the queue manager utility
QUEMAN. Using the IS and IR options of QUEMAN, you
may also suspend queuing between files and resume queuing
at a later time.

During the normal running of system and user programs,
error messages will appear from time to time at the termi
nal. This information will not always be as complete as you

54 Tailoring RT -11

need it to be. The error-logging system is designed to pro
vide reports indicating the dependability of your system's
peripheral devices and, if present on your system, parity
and cache memory. These reports are useful as an indica
tor of developing hardware problems that could be pre
vented by maintenance. They also can help in the diagno
sis of serious hardware problems.

Components of the Error·logging System

The error-logging system is made up of four programs:

EL.SYS a pseudo device handler used with the SJ
monitor to collect information about er
rors that occur during 110 transfers and
store that information in an internal
buffer

ERRLOG.REL a foreground or system job that collects
information about the same types of er
rors and stores them in a file for FE and
XM systems

ELINIT.SAV a background job used to create and
maintain a file containing statistics used
by ERRLOG.REL

ERROUT.SAV a background program that creates a re
port of the error information collected by
EL.SYS under the SJ monitor or from the
storage file used by ERRLOG.REL under
the FE or XM monitor

Error.logging Support under the SJ Monitor

If you are using the SJ monitor, you must first load the
error-logger pseudo device handler EL.SYS, using the com
mand:

LOAD EL

Then to start error logging, use:

SET EL LOG

Chapter 4 The Queue Package and the Error Logger 55

The error logger then starts to collect I/O transfer and
error information in an internal buffer. When multiple er
rors are detected within a short time, it is possible for this
internal buffer to become full. Under these conditions, a
warning message is printed at the terminal and error log
ging is suspended.

You may clear the contents of the internal buffer when
it becomes full, or at any time, by issuing the command:

SET EL PURGE

Although logging is suspended when the internal buffer
becomes full, you may generate a report from the error log
ger before you purge the buffer. The generation of error
logging reports is discussed later in this chapter.

To suspend error logging you use the command:

SET EL NOLOG

and resume by starting error logging as described previ
ously.

To disable error logging, use:

UNLOAD EL

If you want to save the contents of the internal buffer,
before unloading the pseudo device handler, use the com
mand:

COpy EL: DEV:FILNAM.TYP

where "DEV:FILNAM.TYP" is the specification of the file
in which this buffer is to be stored.

Error.logging Support under the FB or
XM Monitor

You run the program ERRLOG.REL as a foreground or sys
tem job by using either the SRUN or FRUN command.
Running error logging as a foreground job means that you
may only use the background environment. You should,
therefore, run the error logger as a system job if you have

56

Getting Reports

Tailoring RT -11

system job support. When the error logger runs, it gives you
the message:

?ERRLOG-I-To initiate error logging, RUN ELINIT

To initiate error logging, issue the command:

R ELINIT

This program asks you for some statistics about the
ERRLOG.DAT file:

• The name of the device for the ERRLOG.DAT file (de
fault:SY:)

• Whether you want to initialize the ERRLOG.DAT file
(default:NO)

• The number of blocks for the ERRLOG.DAT file (de
fault:l00)

To indicate the default answer to any prompt, simply
press (RETURN).

When the error logger has been initiated, ELINIT prints
the following message at your terminal:

RT-11 VS.O ERROR LOGGING INITIATED

The information used to make up an error report is stored
in EL's internal buffer if you are using the SJ monitor, or in
ERRLOG.DAT if you are using the FB or XM monitor.

You may instruct ERROUT to print an error report at
the terminal, using the DeL command SHOW ERRORS. For
example, the command:

SHOW ERRORS/SUMMARY

prints at the terminal a summary of the 110 transfer, mem
ory parity, and cache memory errors that have occurred from
the time that the current error-logging file or EL internal
buffer was initialized.

Chapter 4 The Queue Package and the Error Logger 57

You may run ERROUT directly by using the com
mand:

R ERROUT

The Command String Interpreter then gives you an asterisk
(*) prompt. At this point you may type one or more of a
number of commands that enable you to control:

• The file specification of the report

• The file containing the error information for the re
port

• Whether the report is to include full information
about each error that is logged or only a summary of
the errors

• The dates of the earliest and latest errors that are to
be included in the report

To specify that all information is to be included in a
report, run ERROUT, using the IA option. For example, the
command:

ERROUT/A REPORT.TXT= SY:ERRLOG.DAT

produces a full report REPORT.TXT from SY:ERRLOG.DAT.
Used in the same way, the IS option limits the report to a
summary of the errors that were detected.

Analyzing a Report from the Error Logger

The information for each error will appear in one of two
formats, according to the type of error. These two types of
errors are storage device errors and memory errors. A sum
mary of these two types of errors appears after any report
that you request. Thus, there are three basic formats that
appear in an error-logging report:

• Storage device error report format

58 Tailoring RT -11

• Memory error report format

• Error summary report format

Storage device error report format

When a device handler detects an error during an liD
transfer, it attempts to repeat the transfer a number of times
before it gives up. When the transfer remains unsuccessful,
data about the error is sent to the error logger. The full in
formation available for this type of error is as follows:

• The type of error

• The date and time it was logged

• The physical unit number

• The device type

• The number of repeated attempts

• A dump of the appropriate device registers

• Whether the error occurred during a read or a write
operation

• The location and size of the data that was not trans
ferred because of the error

A sample storage device error report is shown in fig
ure 6. Table 2 is a key to the layout of this report.

Memory error report format

Memory parity errors and cache memory errors cause data
to be sent to the error logger. For memory parity errors, the
full information available is as follows:

• The type of error

• The date and time the error was detected

• A dump of the appropriate memory registers

A sample of the format of this information is shown in
figure 7. Table 3 is a key to the layout of this format.

Chapter 4 The Queue Package and the Error Logger 59

Figure 6.
Sample Storage Device Error Report

DISK DEVICE ERROR
LOGGED 27-APR-84 00:06:20

UtilT IDEtiTIFICATIOti
PHYSICAL UtilT
TYPE

tiUMBER 000001
RX211/RX02

SOFTWARE STATUS ItiFORMATIOti
RETRY 6. OF 8. POSSIBLE TOTAL

DEVICE ItiFORMATIOti
REGISTERS:
RX2CS 114560
RX2DB 010400
RX2ES 000400

ACTIVE FUtiCTI 01'1 READ
BLOCK 000001
PHYSICAL BUFFER ADDRESS START 003514
TRAtiSFER SIZE 11'1 BYTES 512.

Table 2.
Line-by-line Analysis of the Sample Storage Device Error Report

Line

1-4

6-8

10

12

13-16

18

19

Explanation

Report header. Includes the date and time the error was
logged.

Unit identification. Identifies the drive number, the device con
troller, and the storage device type.

Retry count.

Labels the section on device information. The lines that follow
provide statistics on the device registers and address informa-
tion.

Register contents. Each device has a number of hardware
registers, the contents of which are listed in these lines.

liD transfer type. Tells whether the liD transfer was a read or
write operation.

Device block number. Tells which device block the error oc
curred in.

20 Physical buffer start address. Tells the physical address in
memory of the user data buffer for this liD transfer.

21 Transfer size in bytes. Tells the size in bytes of the unit of
data the device handler has attempted to transfer.

60 Tailoring RT -11

Figure 7.
Sample Memory Parity Error Report

**
MEMORY PARITY ERROR
LOGGED 27-APR-84 00:06:20
**

DEVICE INFORMATION
MEMORY REGISTERS:
ADDRESS CONTENTS
172100 100001

ERROR TYPE IS MEMORY

Table 3.
Line-by-line Analysis of the Sample Memory Parity Error Report

Line Explanation

1-4 Report header. Includes the date and time the error was
logged.

6 Labels the section on device information.

7-9 Memory parity register contents. Identifies your system's
memory parity control and status register(s) and gives their
contents.

11 Error type. Tells whether the error was a memory error or a
cache memory error.

For cache memory errors, the full information avail
able is:

• The type of error

• The date and time the error was detected

• A dump of the appropriate memory registers

• A dump of the memory system error register, the
cache control register, or the hit/miss register

A sample of the format of this information is shown in
figure 8. Table 4 is a key to this format.

Chapter 4 The Queue Package and the Error Logger 61

Figure 8.
Sample Cache Memory Error Report

**
CACHE MEMORY ERROR
LOGGED 27-APR-84 00:06:20
**
DEVICE INFORMATION

MEMORY REGISTERS:
ADDRESS CONTENTS
172100 100001

MEMORY SYSTEM ERROR REGISTER:
CACHE CONTROL REGISTER:
HIT/MISS REGISTER:

ERROR TYPE IS CACHE

Table 4.

000200
000000
000032

Line-by-Iine Analysis of the Sample Cache Memory Error Report

Line

1-4

6

7-9

11-13

15

Explanation

Report header. Includes the date and time the error was
logged.

Labels the section on device information.

Memory parity register contents. Identifies your system's
memory parity control and status register(s) and gives their
contents.

Cache memory register contents. This information is displayed
for both a memory parity error and a cache memory error if
your system includes cache memory.

Error type. Tells whether the error was a memory error or a
cache memory error.

Error summary report format

The information included in the error summary report
com prises three sections:

• Device statistics

• Memory statistics

• Report file environment

62

Practice
4-1

Tailoring RT -11

A sample printout of a summary report, including all
three of these sections, is shown in figure 9. Additional in
formation on the three formats can be found in chapter 16
of the RT -11 System Utilities Manual.

If you have a system that supports the Foreground/
Background monitor and has a line printer, use it to per
form the tasks specified in questions 2 through 7. If your
system also includes a monitor that supports both error
logging and system jobs, perform all the tasks below.

For any tasks that you are not able to carry out because of
hardware or software limitations, write down the com
mands that you would use to perform the specified tasks.

1. Bootstrap a monitor with system job and error-logging
support. (If you have no such monitor, ignore this first
step and give the commands to carry out the remain
der of this question.) Start error logging. If a previous
data file is on the disk, initialize it. Accept all other
defaults.

2. Start the queuing system.

3. From a directory of your volume(s), identify some text
files. (Files with file types .MAC, .FOR, or .COM are
useful text files.) Queue two of these files to the line
printer, giving each a single banner page.

4. Set the banner page default to one banner page. (Do
not set QUFILE. WRK to be deleted.)

5. Queue a number of files to the printer. Make some
single-file jobs and some multiple-file jobs. Get a list
ing of the queue while the files are being printed.
Abort QUEUE while a file is printing.

6. Restart QUEUE. Notice which file is printed first.

7. Check the queue and make sure that there are at least
two files waiting in the queue. If not, queue up a few
more. Suspend QUEUE. Check the queue. Resume
QUEUE.

8. Get an error-logging report from the session.

Chapter 4 The Queue Package and the Error Logger 63

Figure 9.
All Three Sections of a Sample Error Summary Report

DEVICE STATISTICS
LOGGED SINCE 27-APR-84 00:06:20 ..

UNIT IDENTIFICATION
PHYSICAL UNIT NUMBER 000000
TYPE RK11/RK05

DEVICE STATISTICS FOR THIS UNIT:
NUMBER OF ERRORS LOGGED O.
NUMBER OF ERRORS RECEIVED O.
NUMBER OF READ SUCCESSES 49.
NUMBER OF WRITE SUCCESSES O.

UNIT IDENTIFICATION
PHYSICAL UNIT NUMBER 000000
TYPE RX211/RX02

DEVICE STATISTICS FOR THIS UNIT:
NUMBER OF ERRORS LOGGED 1.
NUMBER OF ERRORS RECEIVED 1.
NUMBER OF READ SUCCESSES 2.
NUMBER OF WRITE SUCCESSES O.

UNIT IDENTIFICATION
PHYSICAL UNIT NUMBER 000001
TYPE RX211/RX02

DEVICE STATI STI CS FOR THIS UNIT:
NUMBER OF ERRORS LOGGED 16.
NUMBER OF ERRORS RECEIVED 16.
NUMBER OF READ SUCCESSES O.
NUMBER OF WRITE SUCCESSES O .

..
MEMORY STATISTICS
LOGGED SINCE 27-APR-84 00:06:20 ..

STATISTICS:
NUMBER OF MEMORY PARITY ERRORS
NUMBER OF CACHE ERRORS

REPORT FILE ENVIRONMENT:
INPUT FILE SYO:ERRLOG.DAT
OUTPUT FILE RKO:ERRORS.TXT
OPTIONS IA
DATE INITIALIZED 27-APR-84
DATE OF LAST ENTRY 27-APR-84

TOTAL ERRORS LOGGED 22.
MISSED ENTRIES O.
MISSED ERROR ENTRIES O.
UNKNOWN DEVICE STATISTICS ENTRIES O.
UNKNOWN ERROR RECORD ENTRIES O.

5.
O.

64

References

Tailoring RT -11

RT -11 System Utilities Manual. Chapter 16 details the com
ponents of the error-logging system and explains ELINIT along
with the statistics it uses. Chapter 17 discusses the options of
QUEMAN in detail.

RT -11 System User's Guide. Chapter 4 describes in detail the
IENTRY option of the DELETE command, the INAME and
!PROMPT options of the PRINT command, PRINT/FLAGP AGE and
INOFLAGP AGE, SHOW QUEUE, as well as the ITO and IFROM
options of the SHOW ERRORS command.

RT -11 Installation Guide.

Solutions to Practices

4-1 (1) If you have a Foreground/Background monitor on the system
volume:

• BOOT INOQUERY RT11 FB(RETURN)

(2) If you have system job support:

• SRUN QUEUE(RETURN)

Otherwise:

• FRUN QUEUE(RETURN)

(3) .PRINT/FLAGPAGE:1 file1, file2(RETURN)

(4) . R QUEMAN(RETURN)

* / P(RETURN)

No. of banner pages? 1 (RETURN)

Delete workfile? NO(RETURN)

*(CTRUC)

(5) For each job, type:

• PR I NT f i 1 e(RETURN)

Then:

• SHOW QUEUE(RETURN)

To abort QUEUE if QUEUE is a system job, type:

(CTRUX)

Job? QUEUE(RETURN)

(CTRUC)(CTRUC)

Chapter 4 The Queue Package and the Error Logger

If QUEUE is a foreground job, type:

(CTRUF)

F) (CTRUC)(CTRUC)

Otherwise, type:

R QUEMAN(RETURN)

*1 A(RETURN)

*(CTRUC)

(6) . FRUN QUEUE(RETURN)

or

• SRUN QUEUE(RETURN)

65

The file that starts printing should be the same file that was
printing when you aborted QUEUE.

(7) QUEMAN continuing to run:

* I L(RETURN)

*f i 1 e 1, f i 1 e 2(RETURN)

* I S(RETURN)

* I R(RETURN)

*(CTRUC)

(8) . SHOW ERRORS/PR I NTER(RETURN)

This command produces a full error report at the printer.

5
66

The PDP-11 Computer

The Interrupt System

The Trap System

The Memory Management Unit
References

5
PDP-11
Architecture

In order to understand how the RT -11 operating system
supports device handlers and extended memory, you must
understand how the PDP-11 interrupt system and the
memory management unit function. This chapter dis
cusses the purposes of the fields within the processor sta
tus word, the operation of the processor when an interrupt
occurs, and the arrangement and operation of the memory
management registers.

67

68 Tailoring RT -11

The PDP-11 Computer

The PDP-11 is a 16-bit computer. The central processing
unit (CPU) is the heart of the system. It is connected to the
main memory and a number of peripherals by a bus (figure
10). The bus carries addresses and data for devices on the
bus. There are also a number of control signals on the bus
that enable the CPU and the other devices connected to the
bus to communicate with one another.

The memory is read by placing the address of the data
on the bus and then signaling a READ request. Similarly,
to write data into memory, both the address and the data
are placed on the bus and the WRITE control signal is raised.
These signals can be issued by the CPU or any bus master
device.

Usually, a device transfers data, at the request of the
CPU, between the device and the CPU. Then, the CPU
transfers that data to memory. Fast devices that transfer large
amounts of data often transfer the data directly into mem
ory on their own. This is called direct memory access
(DMA).

Every device connected to a PDP-11 computer is con
trolled by a set of registers. Each of these registers has an
address in the range 17760000 to 17777776. This 4-Kword

Figure 10.
System Bus Architecture

GENERAL REGISTERS

CPU MEMORY

MEMORY MANAGEMENT UNIT

DEVICE DEVICE DEVICE

Chapter 5 PDP-11 Architecture 69

address range is not actual memory; it is reserved for de
vice registers and is called the I/O page. The hardware au
tomatically changes references to addresses in the range
160000 to 177776 to the equivalent 18- or 22-bit address.

The CPU contains a number of registers. Seven of these
registers, called the general registers and numbered RO to
R7, are available to the software. R6 and R7 are used in a
special way by the CPU and are referred to in a program by
special names. R6 is the stack pointer register (SP), and R7
is the program counter register (PC).

The CPU executes instructions using the PC as the ad
dress of the next instruction to be fetched from memory.
Depending on the type of instruction, more information may
be fetched from memory and may be modified or written
into memory. During the execution of an instruction, the
PC is continually adjusted to contain the address of the next
instruction to be executed.

The stack pointer keeps track of the latest entry on the
stack. The stack is used for storing the information needed
to return from a trap or interrupt (or subroutine).

The other register in the CPU that can be accessed by
software is the processor status register (PS). This register
contains information about the current state of the CPU, as
shown in figure 11 and table 5.

Once started, the CPU fetches and executes instruc
tions, following the path of the program through branches
and subroutine calls until it executes a halt instruction. You
might think that you could predict which instruction in the

Figure 11.
Contents of the Processor Status Register

I I NOT USED PRIORllY I T I N I z I v I c I
15 14 13 12 11 10 8 7 5 4 3 2 a

CURRENTMOW~ I
PREVIOUS MODE' ~
GENERAL REGISTER
SET (0.1)

'MODE:OO = KERNEL
01 =SUPERVISOR
11=USER

70 Tailoring RT -11

Table 5.
Contents of the Processor Status Register

Bits

0-3

4

5-7

8-10

11

12-15

Information

Condition codes are set and cleared depending on the result
of previous instructions.

Trace trap forces a trap after the current instruction.

Current processor priority. Only devices with a priority higher
than the value in this field may interrupt the CPU. When the
CPU is running at priority 7, no interrupts will be accepted.
The priority can be changed by executing an RTI instruction
or by using other special instructions on some PDP-11 s, for
example, the MTPS instruction on an LSI-11/23.

Reserved.

Which of two sets of general registers in the CPU is active.

Previous mode (12,13) and current mode (14,15) bits show
which mode (kernel, supervisor, or user) the CPU is running
in and was running in before the last interrupt or trap. Some
instructions (HALT and RESET, for example) are illegal in
user mode. Only in kernel mode can all instructions be exe
cuted.

program the CPU would execute next, but there are two
events that can modify the path of control-device inter
rupts and traps.

The Interrupt System

A device usually interrupts the CPU to indicate that it is
ready to perform a transfer on the bus or has completed a
requested task. The interrupt will only be accepted by the
CPU if the priority of the device is higher than the current
CPU priority, as given by the priority bits (5-7) in the pro
cessor status register. If the priority of the device is not
higher, the interrupt request stays active until the CPU
priority is lower than the priority of the interrupt request;
then the CPU will accept the interrupt. When more than one
interrupt request is pending, the highest priority request that
is closest to the CPU on the bus will be acknowledged.

Chapter 5 PDP-11 Architecture 71

When the CPU accepts the interrupt, it must save
enough information about the current state of the program
it is running to be able to go back to it when the interrupt
has been serviced. The program counter register provides
one such item of information; the processor status register
provides the rest. These two registers are pushed onto the
system stack.

When a device's interrupt is acknowledged, the de
vice passes the address of an interrupt vector to the CPU.
The first word of the interrupt vector is the value to load
into the PC in order to find the software that processes the
interrupt, the interrupt service routine (ISR). The second
word of the interrupt vector is the new value to load into
the PS. It is as though the CPU had executed the following
sequence of instructions:

MOV PS,-(SP)

MOV PC,-(SP)

MOV INTVEC+2,PS

MOV INTVEC,PC

As the new value is placed in the PS, the CPU priority
is adjusted to the level given by the priority bits of the new
value, usually equal to or greater than that of the interrupt
ing device. The lSR continues execution until it has satis
fied the device's request. The lSR then executes an RTl in
struction to restore the PC and PS from the stack. The
interrupted process continues from the point of the inter
ruption.

The Trap System

A trap is similar to an interrupt but is not generated by a
device. Traps are generated by the CPU, either because it
has detected an error (illegal instruction, bus error, and so
on) or because it has executed a special instruction (BPT,
EMT, lOT, or TRAP). These events cause the CPU to follow
a sequence of operations similar to that of an interrupt.
The old PS and PC are stacked, and the new PC and PS
are loaded from the appropriate trap vector in memory.

72 Tailoring RT -11

(RT -11 programs execute EMT instructions to gain access
to functions that the RT -11 monitor will perform on their
behalf.)

The trap vectors (at addresses 0-36 in memory) and
fixed interrupt vectors (at addresses 60-276 in memory) are
set up by the operating system to point at routines within
the system that can handle each specific event. Vectors for
a variable number of additional devices are allocated in the
so-called "floating vector" space (starting at address 300 and
usually kept below address 400).

The Memory Management Unit

Programs on a PDP-11 address memory in individual bytes
using a 16-bit address. This means that the program can di
rectly address 65536 bytes of memory (32 Kwords) at any
given time. The bus and the memory, however, can use up
to 22 bits to specify an address.

Although a PDP-11 system may be expanded to con
tain as much memory as is possible (124 Kwords for a Uni
bus; 2044 Kwords for a Q-Bus), the program can only di
rectly address 32 Kwords. Of these addresses, the highest
4 Kwords (160000 to 177776) are normally reserved for
communicating with devices. This leaves only the lowest
28 Kwords of memory available to the program. Accessing
the additional memory requires additional hardware, called
the memory management unit (MMU). Only the RT-11 XM
monitor provides support for the MMU. In fact, the XM
monitor cannot be used on systems without the MMU
hardware.

When the MMU is disabled, addresses referred to by
the program correspond directly with physical locations in
memory. When the MMU is enabled, 16-bit virtual ad
dresses referenced by the program are converted to 18- or
22-bit physical addresses by a process called mapping. A
program's addressable region remains 16 bits wide but is
thought of as virtual in that the actual addresses used by
the program do not necessarily correspond directly to the
same physical address.

The MMU relocates a program's virtual addresses in

Chapter 5 PDP-11 Architecture 73

pages. A page is a range of contiguous virtual addresses that
starts on a 4-K word boundary; it can be from 32 words to
4 Kwords in length, measured in units of 32 words. The
virtual address space is divided into eight pages of 4 Kwords
each.

The MMU maps each page to physical memory inde
pendently of the other pages. This means that a contiguous
virtual address space can be mapped into regions of phys
ical memory that are not contiguous. If a virtual page is less
than 4 K words in length, the virtual addresses between the
end of one page and the start of the next are not mapped
into physical memory. As a result, these virtual addresses
cannot be used by the program unless the mapping is
changed; thus, the program has less than 32 Kwords of ad
dressable memory.

The MMU maps a program's virtual address space into
physical memory using a set of eight relocation registers
called active page registers (APRs). Each APR is made up
of a pair of 16-bit registers. The page address register (PAR)
and page descriptor register (PDR) work together to relo
cate a page.

The PAR, shown in figure 12, contains the base ad
dress of the page in physical memory. Because the MMU
considers memory in units of 32-word blocks, a page lliust
begin on a 32-word boundary in physical memory. There
fore, the base address of a page may be specified using the
12 most significant bits of the address (16 bits for 22-bit ad
dressing). The physical address of the page may be found
by multiplying the contents of the PAR by 64.

The PDR (figure 13) specifies the page length (in 32-
word blocks), the direction of expansion from the base ad
dress, and access control information. The MMU uses the
page length to determine whether the specified virtual ad-

Figure 12.
Page Address Register (PAR)

15 12 11 00

PAF (PAGE ORIGIN)

PAF - PAGE ADDRESS FIELD

74

Figure 14.

Tailoring RT -11

Figure 13.
Page Descriptor Register (PDR)

PLF

PLF - PAGE LENGTH FIELD

W _ WRITTEN INTO

ED - EXPANSION DIRECTION

ACF _ ACCESS CONTROL FIELD

dress is within the mapping limits of the page. If not, the
MMU generates a memory management fault. RT -11 ig
nores the remaining bits provided for use by the system
software.

When the MMU is active, it converts every virtual ad
dress into a physical address. The MMU interprets a vir
tual address as being made up of three fields, as follows:
page address field (PAF), block number (BN), and displace
ment in the block (DIB). These are shown in figure 14.

The last two fields, BN and DIB, are collectively called
the displacement field (DF). The mapping is shown in fig
ure 14. The PAF selects the APR that contains the origin of
the appropriate page in physical memory. The MMU then
adds the BN to the contents of the PAR and appends the
DIB to the sum to form the physical address.

The MMU has two modes of operation to separate sys
tem functions from user functions: kernel and user. The
MMU uses a separate set of APRs and a stack pointer for

Construction of a Physical Address

16·BIT VIRTUAL ADDRESS

15 13 12 06 05 00

15 12 11

I APF I BN DIS

LAR

I

00

,~ PAF I
I

17 06 05 00

l PAF + BN DIS

18 BIT PHYSICAL ADDRESS

References

Chapter 5 PDP-11 Architecture

Figure 15.
MMU Status Register 0

15 14 13 12 09 08 07

I - ~
A80RT MAINTENANCE
FLAGS MODE

I
13: PAGE IS READ ONLY
14: ADDRESS IS GREATER THAN PAGE LENGTH
15: PAGE IS NOT RESIDENT

75

06 OS 04 03 01 00

I
~ I

I
MODE OF PAGE KT11
OPERATION NUMBER ENABLE

each mode. The two current mode bits of the PS determine
which set of APRs will be used for the current operation.

Kernel mode is the hardware term for system state.
Because the two modes use different sets of APRs, it is not
possible for a program executing in one mode to access the
physical memory allocated to a program in the other mode
unless the APRs map the same physical memory. This fea
ture prevents user programs from modifying the monitor or
each other.

User mode prevents execution of HALT and RESET
instructions. Attempts to employ them in user mode will
generate a trap. Because all traps and interrupts are ser
viced in kernel mode, a return to the system results.

The MMU has four status registers: SRO, SR1, SR2, and
SR3. Status register 0, shown in figure 15, contains the
memory management enable bit, abort error flags, and other
information used by RT -11 to recover from an abort or to
service a memory management trap. Status register 1 is
available on some PDP-11s and is not used by RT-11. Sta
tus register 2 is a read only register that contains the vir
tual address currently being converted by the MMU. This
may be useful when analyzing faults. Status register 3 is
available on some PDP-11s and is used to control 18-bitl22-
bit mode. (See chapter 4 of the RT -11 Software Support
Manual.)

PDP-II Processor Handbook.

RT -11 Software Support Manual. Chapters 4 and 7 contain ad
ditional information on PDP-ii memory management.

6
76

The XM Monitor

Accessing Extended Memory

Creating Regions

Creating Windows

Mapping Windows to Regions

Job Mappings

Privileged Mapping

Virtual Mapping

Context Switching

Synchronous System Traps and Virtual Vectors

XM Bootstrap Action

XM Program Applications

XM Data Buffers

XM Overlays

Multiuser Applications

The XM .SETTOP Feature

Debugging an XM Application

Restrictions on XM Applications

Interrupt Service Routines in XM Systems

References

6
Extended
Memorv
Management

This chapter describes how RT -11 allows you to access
extended memory through a set of memory management
programmed requests. It also outlines some applications for
extended memory. Given the description of an operation
that requires memory management programmed requests,
you will be able to write and implement a simple program
that performs the specified operation.

77

78

The XM Monitor

Tailoring RT -11

RT -11 supports the use of extended memory (up to 22 bits
or 2044 Kwords on Q-bus and 18 bits or 128 Kwords on
Unibus) through the extended memory (XM) monitor. The
XM monitor is equivalent to the FB monitor plus the rou
tines to support memory management. The memory man
agement routines enable the monitor to control the map
ping of virtual addresses to physical memory by changing
the contents of the active page registers (APRs).

Because a working XM system is present on the distri
bution kit, a system generation is not necessary to create an
XM monitor and the XM device handlers. If you select the
XM monitor during the SYSGEN procedure, the monitor and
device handlers will be assembled with the prefix file
XM.MAC. This file contains the conditional assembly sym
bol definition MMG$T = 1, which will cause all of the
memory management support to be assembled in the mon
itor and the device handlers.

Your system must have the following hardware to run
an XM monitor:

• At least 32 Kwords of memory

• A memory management unit (KTll)

• An extended instruction set (EIS)

The XM monitor boots into memory immediately be
low the 28-K limit and runs with the User Service Routine
permanently resident (figure 4-22 in the RT -11 Software
Support Manual.) All monitor routines (RMON, USR) and
device handlers execute in kernel mode, which maps to low
memory (0-28K) and the physical I/O page. KMON exe
cutes in user mode, but with the same mapping (APR con
tents) as kernel mode. User programs always execute in user
mode. They expand their mapping using memory manage
ment programmed requests.

Accessing Extended Memory

In order to access extended memory in a user program you
must:

Creating Regions

Chapter 6 Extended Memory Management

• Specify the amount of physical memory needed

• Specify the virtual addresses you want to use

• Link the virtual addresses to the area of physical
memory

79

You perform these operations using a set of memory
management programmed requests that control the con
tents of the APRs. These programmed requests and the ma
cros that create the data structures are listed in table 4-6
in the RT -11 Software Support Manua1. The syntax of each
programmed request is described in chapter 2 of the RT-
11 Programmer's Reference Manua1. Chapter 4 in the RT-
11 Software Support Manual describes the sequence of op
erations the monitor performs for each request.

The XM monitor allocates physical memory to a program
in segments that are called regions. A region is a contig
uous segment of physical memory that starts on a 32-word
boundary and can be any size from 32 words to 96 Kwords
in units of 32-word blocks. A program may have up to four
regions at a time.

When the XM monitor runs a program, it automati
cally reserves one region for the program in low memory
(0-28 Kwords). For virtual jobs this is called the static re
gion, a fixed region the program cannot change. In addi
tion, the program can also create up to three dynamic re
gions in extended memory (above 28 Kwords) at one time.

A program describes a dynamic region that it wants to
create using a three-word block of memory called a region
definition block (figure 16). The program creates a region
definition block using the macro:

RGBLK: .RDBBK rgsiz

Here "rgsiz" is the region size in 32-word blocks.
The macro also defines the symbols shown in figure

16. The monitor uses the region definition block to return
information such as the region identification and status to

80 Tailoring RT -11

Figure 16.
Region Definition Block

OF FSET

REGION ID +

REGION SIZE'
32·WORD BLOCKS

REGION STATUS WORD +

REGION STATUS WORD

NOT USED

RS.NAL = 20000 RESERVED

'------ RS.UNM+ = 40000 ONE OR MORE WINDOWS
WERE UNMAPPED BY
.ELRG

'-------- RS.CRR+ = 100000 REGION CREATED

• SPECIFIED BY CALLING PROGRAM

+ RETURNED BY MONITOR

SUCCESSFULLY BY
.CRRG

SYMBOL

R.GID

R.GSIZ

R.GSTS

the program. The program creates a dynamic region using
the macro:

.CRRG area,rgblk

Here "rgblk" is the address of a region definition block
specifying the size of the requested region in 32-word blocks.

If the region is created successfully, the monitor re
turns the region number (ID) in the first word of the region
block and bit 15 is set in the status word (figure 16).

Each time the program creates a region in memory, the
monitor fills in a region control block in the job's impure
area. The region ID returned in the region definition block
is the number of the corresponding control block.

Creating Windows

In order to access a dynamic region in extended memory,
a program must specify to the monitor one or more contig-

Chapter 6 Extended Memory Management 81

uous ranges of virtual addresses that it wants to use to ac
cess that region. Each contiguous range of addresses is called
a virtual address window. More precisely, a virtual address
window is a contiguous segment of virtual address space
that starts on a 4-Kword boundary and may be any size fronl
32 words to 32 Kwords in units of 32-word blocks.

When the XM monitor runs a program, it automati
cally creates a virtual address window corresponding to the
region it created in low memory. This window includes all
of the instructions and data in the loaded program and the
program stack. For virtual jobs, this is the static window.
The program can also create up to seven additional dy
namic windows at one time.

A program describes a virtual address window to the
monitor using a seven-word memory block called a win
dow definition block (figure 17). The program creates this
block using the macro:

WNBLK: .WDBBK wnapr,wnsiz

Here "wnapr" is the number of the APR that maps the base
address of the page and "wnsiz" is the window size in 32-
word blocks.

This macro also defines the symbols shown in figure
17. The monitor uses the window definition block to re
turn information such as the window ID and status to the
program. The program creates a virtual address window
using the macro:

.eRA W area, wnblk

Here "wnblk" is the address of a window definition block
specifying the base APR to use for the window (0-7) and
the size of the window (32-word blocks).

If the window is created successfully, the monitor re
turns the following information in the window definition
block:

• The window number (ID)

• The virtual base address of the window

• Bit 15 set in the status word

82 Tailoring RT -11

Figure 17.
Window Definition Block

OFFSET SYMBOL

BASE APR' I WINDOW ID +
W.NAPR W.NID

VIRTUAL BASE ADDRESS +
W.NBAS

WINDOW SIZE' W.NSIZ

(32WORD BLOCKS)

REGION ID ••
W.NRID

10 OFFSET INTO REGION" W.NOFF

(32WORD BLOCKS)

12 LENGTH TO MAP" W.NLEN

(32·WORD BLOCKS)

14
WINDOW STATUS WORD +

W.NSTS

WINDOW STATUS WORD

N.U. NOT USED

WS.MAP··;400 CREATE AND
MAP WINDOW

WS.ELW+;20000 ONE OR MORE WINDOWS
ELIMINATED (.ELAW, .CRAW)

L...-__ WS.UNM+;40000 ONE OR MORE WINDOWS

UNMAPPED (.CRAW, .ELAW,
.MAP, .UNMAP)

~---- WS.CRW+;100000 WINDOW CREATED
SUCCESSFULL Y

SPECIFIED BY CALLING PROGRAM FOR .CRAW
•• SPECIFIED BY CALLING PROGRAM FOR .MAP

+ RETURNED BY MONITOR

Each time the program creates a window, the monitor
fills in a window control block in the job's impure area,
which describes the window. The window ID returned in
the window definition block is the number of the corre
sponding control block.

Mapping Windows to Regions

Although the program has created a region in physical
memory and a virtual address window, the virtual ad-

Chapter 6 Extended Memory Management 83

dresses within the window will not be converted into
physical addresses until the window is mapped to the re
gion. Mapping is the operation that connects the virtual
addresses within a window with a region in physical mem
ory. In hardware terms, the mapping operation inserts val
ues into the APRs so that the virtual addresses within the
window will be converted into physical addresses within
the appropriate region.

The program must specify the following information
in the window definition block when mapping a window
to a region:

• The region ID

• The offset into the region at which to start the map
(in 32-word blocks)

• The length of the window to map (in 32-word blocks)

The map may start anywhere in the region and extend
as far as needed. More than one window may be mapped
to different parts of the same region, and different win
dows may be mapped to the same area in a region.

There are two methods by which a program may map
a window to a region. First, the program may create and
map a window in one operation. This is done by setting
the bit WS.MAP in the window status word of the window
definition block and then using the programmed request:

.CRAW area,wnblk

Here "wnblk" is the address of the window definition block.
The program must supply information in the window def
inition block necessary to map the window as well as its
size and base APR. The program can do this by creating the
window definition block with the macro:

.WDBBK wnapr,wnsiz,wnrid,wnoff,wnlen,wnsts

Here "wnrid" is the region ID to which the window is being
mapped; "wnoff" is the offset into the region at which the
mapping starts; "wnlen" is the length of the window to map;
and "wnsts" sets the WS.MAP bit in the window status word

84

Job Mappings

Tailoring RT -11

to specify that the .eRA W request map the window after
creating it.

In the second method the program can map a previ
ously created window to a region using the macro:

.MAP area,wnblk

Here, the program must load the necessary mapping infor
mation into the window definition block. Either way, once
the window has been successfully mapped, the program can
access physical memory locations using the virtual ad
dresses in that window.

When you run a job in an XM system, the monitor auto
matically creates a default mapping for the job in the user
mode APRs. The monitor can create privileged or virtual
mapping for a job. The job may specify the type of map
ping it wants the monitor to create by using bit 10 in the
job status word (JSW).

Privileged Mapping

When bit 10 in the JSW is zero (the default value), the
monitor creates a privileged mapping. This mapping is
identical to kernel mode mapping; the job's virtual address
space is mapped to low memory (0-28K) and the I/O page.
Tha monitor creates a privileged mapping by copying the
contents of the kernel APRs into the user APRs. As a re
sult, a privileged job has access to the physical vector area
and the monitor.

A privileged job may change its mapping by creating
up to seven virtual address windows and mapping them to
dynamic regions in extended memory. When a privileged
job maps one or more virtual address windows, the moni
tor removes the privileged mapping and maps the virtual
addresses using the appropriate window control blocks.

Virtual Mapping

Chapter 6 Extended Memory Management 85

When the job unmaps its virtual address windows, the
monitor restores the privileged mapping.

Privileged mapping is the default in the XM systems
in order to provide upward compatibility with SJ and FB
systems. SJ and FB jobs will execute as privileged jobs in
the XM system with no change. All RT-11 utility programs
and the keyboard monitor (KMON) execute as privileged jobs
in user mode in an XM system.

If bit 10 in the JSW is set when the monitor loads the job
into memory, the monitor will create a virtual mapping.
With a virtual mapping, a job may use all 32 Kwords of vir
tual address space. On the other hand, a virtual job cannot
access the monitor, the physical vector area, or the I/O page.
To request a virtual mapping you must set bit 10 iIi the JSW,
either with an .ASECT directive or with a patch to location
44 in the job's memory-image file.

The monitor always loads a virtual job into a region in
low memory called the static region. The region ID for the
static region is 0 because the region is defined by the first
region control block. The job cannot modify the static re
gion.

The monitor then creates a virtual address window
called the static window (window ID 0), which extends from
virtual address 0 to the job's high limit, and maps this win
dow to the static region. A virtual job can access only those
virtual addresses within the limits of the job; the job can
not modify the static window.

The static region for a virtual background job extends
from physical location 500 up to the bottom of the USR.
The job is loaded starting at location 500. The static win
dow extends from virtual address 0 up to the job's high limit,
and it is mapped to the static region starting at physicallo
cation 500. Virtual location 0 to 500 make up the virtual
vector and system communication area.

The static region for a foreground job extends from
virtual location 0 up to the job's high limit. The foreground
job is loaded between the top of the USR and the last loaded

86 Tailoring RT -11

device handler or system job. The static window extends
from virtual address a up to the job's high limit, and it is
mapped to the static region starting at the first location above
the impure area. As with virtual background jobs, virtual
locations 0-500 are the virtual vector and system commu
nication area.

A virtual job may use the virtual address space left be
tween the job's high limit and the 32-Kword limit by cre
ating virtual address windows (in that part of the virtual
address space and dynamic regions in extended memory)
and by mapping the windows to the regions. If the job tries
to use a virtual address that has not been mapped, a mem
ory management fault (trap) will occur.

Context Switching

When the monitor switches from one job to another, it saves
the context of the job being switched out and restores the
context of the new job. The context of a job in an XM sys
tem includes the following locations not saved in an FB
system:

• Kernel PAR 1

• BPT vector

• lOT vector

• MMU fault vector

The monitor does not save the contents of the APRs as
a part of the job's context. It restores a job's mapping, using
the information in the job's region and window control
blocks. For this reason, a user job must always map using
the memory management programmed requests. It must
never change the APR's directly.

When the monitor switches to a new job, it starts by
copying the contents of the kernel APRs into the user APRs.
If the new job is KMON, it may start execution. If the job
is privileged but not KMON, the monitor scans the region
and window control blocks and restores any mapping the
job may have created. If the job is virtual, the monitor clears

Chapter 6 Extended Memory Management 87

the registers and restores the mapping defined by the re
gion and window control blocks. For more details about
context switching in XM systems, refer to chapter 4 in the
RT -11 Software Support Manual.

Synchronous System Traps and
Virtual Vectors

A synchronous system trap (SST) is a system-generated in
terrupt that occurs synchronously with program execution.
An SST can result from an error condition (bus time-out or
illegal instruction) or a special instruction that generates a
trap (TRAP, BPT, or lOT). Table 6 lists all of the SSTs with
their trap vectors.

A user application in an SJ or FB system can service
these traps by storing the address of the trap service rou
tine in the first word of the appropriate vector, either di
rectly or with a programmed request. When a trap occurs
in an XM system, the CPU enters the trap service routine
using the vector in kernel address space. This creates a

Table 6.
Synchronous System Traps and Their Vectors

Vector

4

10

14

20

34

114

244

250

Synchronous System Trap

Trap to 4, caused by a reference to an odd address or by a
bus time-out.

Trap to 10, caused by an attempt to execute a reserved in
struction.

Breakpoint trap, usually issued by a debugging utility program
such as DDT.

liD trap.

TRAP instruction, issued by a program to change the flow of
execution.

Memory parity trap, caused by a memory parity error.

FPU trap, caused by a floating point unit exception or error.

Memory management trap, caused by a program's attempt to
reference a virtual address that is not mapped to a physical
address.

88 Tailoring RT -11

problem for virtual jobs that want to service an SST be
cause the virtual vectors are mapped to physical memory
starting at or above location 500. A virtual job cannot ac
cess the kernel vector area to modify vector 34, for exam
ple. The XM monitor solves this problem by passing con
trol to the address specified in the virtual vector when an
SST occurs. Therefore, a virtual job can service SSTs by
modifying the appropriate virtual vector. Chapter 4 in the
RT -11 Software Support Manual describes how the moni
tor processes each SST listed in table 6.

XM Bootstrap Action

Booting an XM system performs the following for the
memory management system:

• Tests for the presence of a KTll and prints an error
message if it is absent

• Sets up both kernel and user APRs with the kernel
mapping

• Enables the KTll

• Computes the size of extended memory in 32-word
blocks

XM Program Applications

XM Data Buffers

This section outlines some of the most common applica
tions that use extended memory. It is planned as a guide
only. For full details of a specific application, read the
manual references given for that application.

The simplest type of XM application is probably the pro
gram that stores one or more large data buffers or arrays in

XM Overlays

Chapter 6 Extended Memory Management 89

extended memory. Chapter 4 in the RT -11 Software Sup
port Manual indicates how to design this type of applica
tion.

RT -11 supports' program overlays in extended memory.
These XM overlay segments may be either memory resi
dent or disk resident. You may, therefore, implement a
program that contains the following types of overlays in any
combination:

• Disk-resident overlays in low memory

• Disk-resident overlays in XM

• Memory-resident overlays in XM

When you link your program you specify the overlay
structure with the 10 and IV options. 10:n specifies a disk
resident segment for an overlay region in low memory. N:n
specifies a memory-resident segment in XM for virtual
overlay region n. IV:n:m specifies a disk-resident segment
for virtual overlay region n that shares XM partition m.

The linker adds all of the code necessary to control your
overlay structure in a transparent way.

Multiuser Applications

If you have generated an XM system that includes multi
terminal support, you may implement a multiuser appli
cation using XM data buffers or XM overlays. Chapter 4 in
the RT -11 Software Support Manual indicates a possible
design using each method.

The XM .SETTOP Feature

The XM .SETTOP feature in RT -11 permits a virtual job to
allocate additional virtual address space up to 32 Kwords

90 Tailoring RT -11

and map the additional addresses to an XM region in one
simple operation. The virtual overlay handler uses this fea
ture to create virtual overlays in extended memory. It is of
little use to privileged jobs, as it will only allocate addi
tional address space in low memory for these jobs.

To understand how the XM .SETTOP feature works, it
is useful to review how .SETTOP works in an SJ or FB en
vironment. Background or single-job tasks use the .SET
TOP request to allocate additional memory to the job par
tition. The .sETTOP request will allocate memory up to the
base of RMON if available. A .SETTOP to the base of the
USR prevents swapping. The .SETTOP request is of no use
to a foreground or system job unless memory has been pre
viously allocated with the IBUFFER option of the FRUN or
SRUN commands.

To understand how the .SETTOP request functions in
an XM environment, you must understand the following
concepts:

• The program high limit (PHL)

• The virtual high limit (VHL)

• The next free address (NF A)

The program high limit is the highest virtual address
used by the root segment of the program or its low memory
overlays, if there are any. The linker stores this address in
location 50 when the program is linked. In memory, this
location will always be lower than the base of the USR.

The virtual high limit is the highest virtual address used
by any XM virtual overlays, rounded up to a 32-word
boundary, minus 2. The octal address will always end in
76.

The next free address for programs with virtual overlays
is the virtual high limit rounded up to the next 4-Kword
boundary. The NFA will always be a multiple of 20000
(octal). For programs without virtual overlays, the NFA is
PHL+2.

The result of a .SETTOP request in an XM environ
ment depends on whether the XM .SETTOP feature is ac
tive. You enable the XM .SETTOP feature for a program

Chapter 6 Extended Memory Management 91

when you link the program. The following options enable
this feature:

• LINK/V creates virtual overlays

• LINK/XM is for programs without virtual overlays

If the XM .SETTOP feature is not active, the .SETTOP
request has limited value in an XM environment because it
only allocates physical memory below 28K. It is of no use
to virtual jobs. For a privileged job using the default map
ping, .SETTOP functions as it does in an SJ or FB system.
Even if the privileged job has mapped to extended mem
ory, .SETTOP returns the highest available address below
28K.

When the XM .SETTOP feature is active, the .SETTOP
request becomes a valuable tool for virtual jobs. When a
virtual job issues a .SETTOP request, the .SETTOP allo
cates virtual address space to the job beginning at the NF A
and automatically maps those virtual addresses to a dy
namic region. With privileged jobs, the XM .SETTOP is
useful only to background jobs because it only allocates
memory up to the base of the USR in low memory. Thus,
the XM .SETTOP feature provides a powerful and simple
means for virtual jobs to create and map virtual address
windows to dynamic regions without needing to go through
each individual step. For more details on the XM. SETTOP
feature, refer to chapter 4 in the RT -11 Software Support
Manual.

Debugging an XM Application

You may debug both privileged and virtual application jobs
in an XM environment using the virtual debugging tool
(VDT), distributed as an object file VDT.OBJ. You use VDT
in exactly the same way as ODT. Because VDT limits you
to the memory mapped by the job you are debugging, you
cannot access the monitor, the vector area, or the I/O page
when debugging a virtual job. Refer to chapter 4 in the RT-
11 Software Support Manual for more details on VDT.

92 Tailoring RT -11

Restrictions on XM Applications

Because of the way in which XM support has been imple
mented in RT -11, XM applications must conform to the
following restrictions to assure correct operation:

1. Queue elements must be 10 words in length.

2. Channels allocated with .CDFN, queue elements allo
cated with .QSET, and interrupt service routines
(ISRs) must reside in low memory.

3. User-allocated channels, queue elements, and ISRs
must not be located in the virtual addresses mapped
by APRl (20000-37777) because the monitor may
temporarily remap these addresses.

4. When the message handler (MQ) is active, user
allocated channels, queue elements, and ISRs must
not be located in the virtual addresses mapped by
APR2 (40000-57777) because MQ uses APR2. This
restriction is in addition to restriction 3.

5. Virtual jobs may not use the .CNTXSW programmed
request.

6. KTll must not be changed by the program except
through programmed requests.

Interrupt Service Routines in XM Systems

Chapter 8, "Writing an Interrupt Service Routine," de
scribes how an S} or FB user application program could
service device interrupts in-line, as a part of the applica
tion. An XM application may also service interrupts in-line;
however, there are additional restrictions when running
under an XM system.

First, the ISR must execute within a privileged job with
a mapping identical to the default (kernel) mapping. When
an interrupt occurs in an XM system, the CPU transfers
control to the ISR, using the interrupt vector in kernel ad-

References

Chapter 6 Extended Memory Management 93

dress space and kernel relocation for the ISR entry address.
Therefore, the ISR must reside in low memory and must
stay mapped while interrupts are enabled. In addition, it
must be able to access the monitor and the I/O page and,
therefore, must have a mapping identical to kernel map
ping.

Second, the ISR must not use the virtual addresses
mapped by APRl (20000-37777) because the monitor
changes APR1. In addition, if the MQ handler is active, the
ISR must not use the virtual addresses mapped by APR2
(40000-57777).

Third, the code following a .SYNCH request must not
use the virtual addresses mapped by APRl (and APR2 if
MQ is active) because the code executes using the user reg
ister contents, but with kernel mapping. For a more de
tailed discussion of these restrictions, refer to chapter 6 in
the RT -11 Software Support Manual.

RT -11 Programmer's Reference Manual. Chapter 2 describes
.SETTOP in detail.

RT-11 Software Support Manual. Figures 4-25 and 4-27 show
the mapping of virtual background and foreground jobs. Figures
4-28 and 4-29 show privileged mapping for background and
foreground jobs. Figure 4-33 illustrates the functions of .SET
TOP under the XM monitor. Figure 4-41 shows the monitor fill
ing in a region control block in a job's impure area. Figure 4-44
shows the monitor filling in a window control block in a job's
impure area.

RT -11 System User's Guide.

RT-11 System Utilities Manual. Chapter 11 discusses the de
sign and implementation of overlays.

7
94

The 1/0 Device
Communicating with the Device

Programmed 1/0

Interrupt Processing
Interrupt Service Routines
Device Handlers

7
Device
Communication

This chapter describes the methods for transferring data to
I/O devices that are not supported by the standard operat
ing system. To establish communication between the sys
tem and these devices, you will learn to use programmed
I/O, interrupt handling, interrupt service routines, and de
vice handlers. You will also learn the benefits and disad
vantages of each method and be able to determine the most
efficient way to carry out 1/0 transfers.

95

96

The 1/0 Device

Tailoring RT -11

It is possible to connect a wide range of 110 devices to a
PDP-11 computer system. For instance, you might want to
connect a peripheral device that is not supported by the
standard operating system or use a standard peripheral in
a way not supported by the operating system. Under such
conditions, you will have to write your own software to
handle the 110 transfers between your programs and the
device. The same means is used to communicate with a de
vice, regardless of how simple or complex the interface is
between the computer and the device.

To the PDP-11 hardware, the device appears to be no
more than a set of control and data registers and an inter
rupt vector. It is these items that a program uses to com
municate with the device. To the program, both the data
registers and the interrupt vector are normal memory ad
dresses.

The device's interrupt vector is made up of two words
in the interrupt vector area that are set up by the program.
The first word contains the address of the code that will
receive control when an interrupt occurs, and the second
carries the initial value of the PSW. If the program is cer
tain that the device will not raise an interrupt, the inter
ru pt vector may be ignored.

To the program, the device registers appear to be a few
memory locations (160000 through 177777) found in the I/O
page. The program reads and writes these registers to check
the status of the device and to cause some action to be per
formed by the device.

Since each device has its own arrangement of registers
and functional characteristics, the program has to issue
commands to the device in a way acceptable to it. Certain
operations may have to be performed in a specific order be
cause each device has its own characteristic protocol. The
program should also be capable of dealing with error con
ditions. When a device detects an error, it sets certain flags
in its registers. These flags may cause the program to per
form some special action, for example, trying the failing
operation again or resetting the device.

The primary purpose in having a device connected to

Chapter 7 Device Communication 97

the computer is to transfer data in one direction or the other.
The main consideration is that the transfer take place as
quickly as possible. The following sections examine the ways
in which the transfer may be performed.

Communicating with the Device

Programmed 1/0

The two methods of controlling a device are: programmed
I/O and interrupt processing.

With interrupt processing, RT -11 provides a number
of procedures to help the user's software perform inter
rupt-driven I/O. This support is provided for two forms of
programming: interrupt service routines (ISR) and device
handlers.

The simplest method of transferring data between memory
and a device is to use noninterrupt programmed I/O, often
called polling. Every device has a bit in its registers that
indicates a ready state when set. Using this method, the
program runs with the device's interrupts disabled and
checks this bit in the device's registers. When the ready bit
is set, the program may either transfer data or issue another
command to the device. The program either waits in a loop
for this bit to be set by the device or does other processing
while the device is busy, checking the status of the device
from time to time.

This method is very device specific and performs its
task with no help from the operating system. This means
that it cannot use any of the procedures provided by RT-
11 for performing I/O, and it also ties up the CPU when it
might possibly be better used. Nonetheless, there are times
when programmed I/O is the best method to use. In con
ditions where the device's data is very volatile and time
critical, the time needed by the system to respond to an in
terrupt may be unacceptable. A program loop with very few
instructions could possibly service the device faster than

98 Tailoring RT -11

the interrupt system, but only if the program controlling the
device were running as the highest priority job on the sys
tem and no other work could be done. It is usually better,
therefore, to make use of the PDP-II interrupt system.

Interrupt Processing

Interrupt processing is the second method of controlling a
device. The program sets up the interrupt vector assigned
to the device with the PC and PSW to be used by the CPU
when the device causes an interrupt. The program next starts
a data transfer by writing into the device registers. Then the
program may either do some other useful work or let RT-
11 pass control to another process.

When the transfer is complete, the device signals an
interrupt. The CPU loads the contents of the interrupt vec
tor into the PC and PSW, which starts up the interrupt ser
vice routine. The interrupt service routine, started in this
way, checks the device status registers to see if any errors
occurred. This routine may try the operation again, start
another transfer, or set completion status flags within the
main program. When the interrupt service routine has
completed its processing of the interrupt, control returns to
the activity that was interrupted via an RTI instruction.

The main benefits of interrupt-driven I/O are that it
enables two or more processes to run at the same time and
it allows the best use of a valuable system resource-the
CPU. There is, however, something that you should bear in
mind. RT -11 also uses the interrupt system. The operating
system does not automatically know when an interrupt oc
curs. In order to keep the operating system running cor
rectly, software that performs interrupt processing should
keep RT -11 informed of each event. If this rule is not ob
served, RT -11 may not be able to respond to an interrupt
in time. The total system interaction must be understood
in order to synchronize device activities and avoid con
tHcts. For this reason, there are a number of macros in the
system library that generate calls to RT-ll routines to help
the interrupt service routines and the operating system co
operate. These macros provide support for two forms of in-

Chapter 7 Device Communication 99

terrupt handler-the interrupt service routine and the de
vice handler.

Interrupt Service Routines

Device Handlers

An interrupt service routine (ISR), which is part of a pro
gram, does the interrupt processing for a device. The main
program sets up the device's interrupt vectors to point at
the routine and starts an 110 transfer by writing to the de
vice registers. When the device generates an interrupt, the
ISR takes control and performs the appropriate action.

Using an interrupt routine gives the program complete
control of the device. The program has full access to all of
the device's control and status registers as well as its data
buffer registers. Because there is no operating system over
head when making an actual data transfer, an ISR responds
to interrupts and transfers data between the device and the
program at very high speed. Thus, the ISR provides the
programmer with a great deal of flexibility. The program
mer selects the way the data transfers are invoked, the
amount of processing performed on the data, and the amount
of information passed back to the main program.

The application program with the ISR is very device
dependent. The program and the routine are linked into one
job, which has exclusive access to the device. If there were
a need to perform the same task using a different device,
the ISR would have to be modified to take into account the
differences in the device registers and vector addresses.

The use of an ISR enables only one application to
communicate with the device. Thus, the device is not
available to all of the programs on the system. The way a
device is made more widely available is by use of a device
handler, which we'll look at next.

A device handler is the standard software interface be
tween the RT -11 operating system and a peripheral de-

100 Tailoring RT -11

vice. It is stored on a mass storage device, usually the sys
tem device. When the operating system wants to
communicate with a peripheral device, it loads the appro
priate device handler into memory.

A program that wants to transfer data between itself
and a device controlled by a device handler does so by ask
ing the operating system to perform the transfer. The op
erating system passes the program's standard I/O transfer
request on to the appropriate device handler. The device
handler, which performs the transfer without any more ac
tion on the part of the program, starts the transfer by writ
ing into the device's registers. The device handler has an
interrupt service routine that processes interrupts gener
ated by the device. Any tasks that must be performed at the
end of the transfer, such as starting user completion rou
tines, are performed by the device handler and the operat
ing system.

Using a device handler to communicate with a device
makes the device generally available to those programs on
the system that use RT -11 programmed requests to per
form I/O. Using these programmed requests also makes a
program device independent because the form of the re
quests (.READ, .WRITE, and so on) is the same for all de
vices.

Because device handlers are the standard method of
communicating with a device under RT -11, they are very
simple to use. The operating system provides all of the
program interfaces for the device handler. The procedure
for writing a device handler is also very clear. RT -11 pro
vides macros that help you write a device handler, as well
as keyboard monitor commands that help you install the
device handler and load it into memory.

Using a device handler to communicate with a ran
dom access device such as a disk has another important
benefit. The RT -11 file structure is immediately available
for use, with no additional effort.

8
102

RT -11 Interrupt Service Protocol

Running at Priority Level Seven

Running at Device Priority

Running at Fork Level

Running at Synch Level
Preparing for the Interrupt

Lowering the Processor Priority

Creating a Fork Process

Issuing Programmed Requests
Leaving an Interrupt Service Routine

Planning the Interrupt Service Routine

References

8
Writing
an Interrupt
Service Routine

This chapter provides the system programmer with all of
the information needed to write an interrupt service rou
tine. First, we'll examine the general structure of an inter
rupt service routine and the actions such a routine may need
to perform. Then we'll discuss the interfaces to the oper
ating system that enable an interrupt service routine to
perform its task without affecting other processes on the
system. The programmed requests discussed in this chap
ter are: .PROTECT, .DEVICE, .IN TEN , .FORK, and .SYNCH.
Given the description of a device and an application, you
will be able to implement a simple interrupt service rou
tine that performs this task.

A program that uses the interrupt system may be di
vided into two parts. The first part, the main-line program
code, is the program that performs all of the usual opera
tions-modifying the general registers, issuing pro
grammed requests, and accessing all of the available mem
ory space. This ability to access memory at will also gives
the main program access to the interrupt vectors and reg
isters of the device. The second part of such a program is
the routine started when an interrupt occurs-the interrupt
service routine (ISR).

103

104 Tailoring RT -11

It is possible to write an ISH that performs all of its
tasks without communicating with the operating system.
This type of routine does its work quickly and then exits
with an HTI instruction. The problem with using such a
routine is that the time required to service the interrupt may
be too long, locking out other processes, especially other
interrupts. This could have a serious effect on the latency
of the system, the time taken for the system to respond to
an interrupt. This may not apply to the system for which
the program is being written. For example, a dedicated data
acquisition system running as the only job could be de
signed in this way. If, however, it became necessary to run
the same program as a job under the FB monitor, the pro
gram might have to be modified to allow the other jobs to
function correctly.

HT -11 provides a protocol for interrupt service rou
tines that enables the operating system to optimize the
performance of the system. You should follow the rules of
this protocol when writing an ISH so as to have the least
negative impact on the overall performance of the system.

RT -11 Interrupt Service Protocol

The RT -11 interrupt service protocol maximizes the re
sponse of the system to real-time events. It enables any ISR
to move from one priority level down to the next, as the
interrupt processing becomes less time critical. The lower
the level of priority, the more freedom the ISR has. In re
turn, as this ISR moves down to a less limited level, the
rest of the system is more responsive to other events. The
four levels in which an ISR can be running (from highest
to lowest) are:

• Priority level 7

• Device priority

• Fork level

• Synch level

Chapter 8 Writing an Interrupt Service Routine 105

Moving from one level to another involves calling rou
tines within the RT -11 operating system. Because the code
of RT -11 is not reentrant, the initial acceptance of the in
terrupt must raise the CPU priority to the highest level
priority level 7. This means that the second word in the in
terrupt vector, the new PSW, must contain the octal value
340.

Some of the operations that we will describe are used
by the FB and XM monitors but not by the SJ monitor. (Re
quests that are not required or used by the SJ monitor ex
ecute as no operation codes.) Nevertheless, you should al
ways include these macros and programmed requests in your
program so that the programs will run under any monitor.

Running at Priority Level Seven

When a device generates an interrupt, the CPU saves the
current PC and PSW on the stack. It then loads the PC and
PSW registers from the interrupt vector specified by the de
vice. Because the second word of the interrupt vector con
tains octal 340, the CPU starts running at priority 7, block
ing all other device interrupts. Keeping the CPU at this level
for too long a time could result in loss of data from other
sources, including the clock. So it is important that the
priority level be lowered as soon as possible.

The main reason for taking the interrupt at priority
7 is to allow the ISR to inform RT -11 of the interrupt.
All interrupts must be disabled when the ISR calls the
.INTEN macro. This macro causes RT-11 to switch the CPU
into system state and lower the CPU priority to the device
priority. If, however, there is a sequence of instructions you
need to perform without interruption, then the code should
be placed before the .INTEN macro. The sequence should
not be longer than about 50 microseconds, time for only a
few instructions. Check the PDP-ll Processor Handbook
for instruction timings. If the execution time at priority 7
is longer than this, the interrupt latency of the system will
be degraded.

106 Tailoring RT -11

Running at Device Priority

Following the call to the .INTEN macro, the ISR continues
at the priority you selected in the call. The ISR is now run
ning in system state. The current stack is the system stack.
Context switching is disabled. Interrupts at a lower or
equivalent level are still blocked.

The instructions executed should now reset or pre
pare the device for the next transfer. This is where most of
the actual device communication should be done. The de
vice registers may be read and written as needed.

Because the ISR is running in system state, the ISR
cannot issue any programmed requests. If the interrupt ser
vice needs a long time to perform additional processing, it
should drop its priority to execute some of the operations
at fork or synch level.

Running at Fork Level

Fork level may be entered when the ISR is running at de
vice priority. This state is used by an ISR to perform addi
tional operations in system state at priority O. The state is
changed to fork level by calling the .FORK macro, which
causes an entry to be made on a queue called the fork queue.
Execution of the ISR is suspended until all interrupts have
been dismissed. Before RT -11 returns control to the user
process, the entries in the fork queue are reactivated in the
order in which they were queued. When the ISR proceeds
from the .FORK macro as a fork process, it is again in sys
tem state but at priority 0 (interruptible). Context switch
ing is disabled, but all interrupt levels are active.

Because fork processes are executed in the order in
which they appear on the queue, they may be used to se
rialize access to a shared data structure or system resource.
If the ISR needs to issue a programmed request, this must
be done at synch level.

Running at Synch Level

An ISR enters synch level from either device priority level
or fork level. Interrupt service routines execute asynchro-

Chapter B Writing an Interrupt Service Routine 107

nously in system state. Programmed requests are only made
in user state with the correct job context. If you need to is
sue a programmed request from an ISR, you must first call
the .SYNCH macro. The .SYNCH macro causes the ISR to
be suspended until all interrupts have been dismissed and
all fork processes have completed. When RT -11 is ready to
return to the user process, the ISR is allowed to proceed.

When the ISR continues from the .SYNCH call, con
ditions are the same as with a completion routine for a
standard RT -11 I/O request. The ISR is running in user state
at priority O. As such, the ISR is permitted to issue pro
grammed requests within the context of the current job.

It could take a long time for the .SYNCH call to return
to the ISR. Any fork processes must run to completion be
fore the switch is made to user state. The actual switch needs
a scheduling pass and possibly a context switch. As the ISR
is now executing as a completion routine for the job, the
ISR may also have to wait for any higher priority compute
bound jobs to become blocked.

Preparing for the Interrupt

There are two things that the main-line program must do:

• Set up the interrupt vectors with the PC and the PSW
of the interrupt routine

• Prepare for transfers and set the interrupt-enable bit
in the device registers

This may not be the only application program that uses
this device. Therefore, the first thing that you should do
is allocate the interrupt vector for the device with a
.PROTECT request. This request asks RT -11 to make your
job the owner of the interrupt vector for the device, so that
no other job will be allowed to make use of it. If the
.PROTECT request returns an error status, the interrupt
vector has been given to another job or is in use by the op
erating system. Your program must not try to modify the
vector. If the .PROTECT request is successful, your pro-

108 Tailoring RT -11

gram may set up the interrupt vector to point to the first
instruction of the ISR.

Your program should also issue the .DEVICE request
to make sure that the device stops if the program is aborted.
This request asks RT -11 to write a given value into a given
device register. The most common use for this feature is to
disable interrupts when the program stops.

Your program should reset the device to put it into a
known state and then set the interrupt-enable bit in the
control status register (CSR) for the device to enable inter
rupts. When set, this may result in an immediate interrupt
that may need to be ignored. For you to know what is valid
at any given time, communication between the routine that
sets up transfers and the ISR must be established.

There are two basic methods for handling interrupt
driven transfers. The first method is to initialize the vector
and device prior to any transfers, leaving interrupts en
abled for the duration of all transfers. The second method
is to enable interrupts after a transfer has been set up, with
the interrupts being disabled after the ISR services the cur
rent transfer. The best method is application and device
dependent.

Once the device control has been initialized, the main
line program may now make transfer requests. Once com
pleted with transfers, the device should be cleared. From
the main program's point of view, the overall process is:

1 . Initialize

2. Transfer

3. Clear

Lowering the Processor Priority

The ISR is entered with the processor running at priority
7, with all interrupts blocked. In order to allow a higher
priority device to interrupt, you must lower the processor
priority to a value that reflects the relative priority of your
device. This is done by the .INTEN macro, which expands

Chapter 8 Writing an Interrupt Service Routine 109

into a call to the operating system routine $INTEN. This
routine takes as its argument the priority level at which you
want your code to continue running. Calling $INTEN in
forms RT -11 that an interrupt has occurred. The routine
$INTEN forces a switch to system state and lowers the pro
cessor priority to the device priority given in the call.

The format of the .INTEN macro call is shown below.
There are two expansions, depending on the presence or
absence of the argument PIC. Either way, the important ar
gument is the device priority you have selected. Location
54 is a pointer to the RT -11 routine $INTEN. If your code
is not position independent, the following may be used:

.INTEN PRIO

This macro expands to:

JSR

.WORD

RS,@S4

~ C(PR I 0*40)&340

If, however, you need to use position-independent code, you
should use the other call:

.INTEN PRIO,PIC

This macro expands to:

MOV
JSR

.WORD

@#S4,-(SP)

RS,@(SP)+

~ C(PR I 0*40)&340

When the $INTEN call returns, the ISR is no longer run
ning as an interrupt routine but as a subroutine of the op
erating system.

At the point at which the interrupt service routine is
entered, the registers and stack are those of the interrupted
process. Both the stack and the registers must be preserved
until the .INTEN macro is called. After the call, registers
R4 and R5 are available for use. If you need to use the other
registers, they must be saved and restored before you exit.

When you are running at device priority, you are us
ing the system stack, so you should not place too much data
on it. When you leave device priority level, the stack should
be returned to the state it was in when the .INTEN call re
turned to the ISR.

110 Tailoring RT -11

Creating a Fork Process

The fork process is used in an interrupt service routine when
the operations to be performed would hold up interrupts
too long if performed at device priority but are too impor
tant to wait until synch level could be entered.

A fork process is created when the ISR is running at
device priority and issues a .FORK request. This request calls
an RT -11 routine that places a packet called a fork block
on the fork queue. The ISR is then suspended until all in
terrupts have been dismissed. The .FORK request is ac
cepted only if the stack's setup is the same as it was after
the return from .INTEN. Also, your program must provide
the fork block and set up a pointer called $FKPTR.

The fork block is a block of four words. The first word
will be used as the link in the queue. This word must be
zero when you make the .FORK request. The second word
holds the address at which the ISR will continue as a fork
process. The third and fourth words are used to save R5
and R4.

The fork block cannot be used again until the fork pro
cess starts to execute. If the device handler is entered again
in response to another interrupt from the device before the
fork process has started, the link word in the fork block will
not be zero. If this happens, the ISR will not be able to use
this block to queue another .FORK request.

The pointer $FKPTR must be set up in the main pro
gram to point at the routine within RT -11 that queues the
block. The address of this routine is found in monitor fixed
offset 402.

The .FORK request takes the fork block as its argu
ment.

.FORK FKBLK
The macro expands to:

JSR R5,0$FKPTR
. WORD FKBLK - .

The instructions that set up $FKPTR will be in the main
program. The best way to set up this pointer is to use the
following sequence of instructions:

Chapter 8 Writing an Interrupt Service Routine

AREA:
$FKPTR:
FKBLK:

.GVAL
ADD
MOV

.BLKW

.WORD

.WORD

#AREA,#402
(£v#S4, RO
RO,$FKPTR

2

o
o ,0 ,0 ,0

111

When the .FORK request returns, the ISR is running in
system state at priority O. Registers R4 and R5 have been
preserved across the call. Registers RO through R3 are
available for use after the call.

Issuing Programmed Requests

RT -11 programmed requests are issued only from user state.
An ISR enters user state from either device priority level or
fork level by calling the .SYNCH macro. The .SYNCH ma
cro has two arguments. The first is the address of a seven
word synch block. The second, if present, causes the ma
cro to generate position-independent code. This macro is
unusual in that it returns to the instruction following the
call only if the call failed. If the call was successful, con
trol is returned to the second word following the call. The
general form of the request is:

SUCCESS:

SYNCH
BR

#SYNBLK[,PIC]
SYNERR

The macro generates a call to an RT -11 routine that
stores the successful return address of the ISR in the last
"'\ford of the synch block. The routine then enters the block
in the completion queue of the specified job.

112 Tailoring RT-11

There are two locations in the synch block that must
be set up by the program. The job number must be placed
in the second word. The value placed in the fifth word will
be loaded into RO when a successful return is made from
.SYNCH.

When the .SYNCH call returns successfully, the ISR is
running as a completion routine in user state at priority O.
Registers RO and Rl are available for use. You should note
that R4 and R5 should be saved before issuing the .SYNCH
since they are not saved across the .SYNCH call. The ISR
is now allowed to issue programmed requests.

Leaving an Interrupt Service Routine

When the ISR has completed all of the processing needed
to service an interrupt, it must return to RT -11. Once the
ISR has executed the .INTEN macro, it is running not as an
independent interrupt routine but as a co-routine of
RT -11. The ISR must not issue the RTI instruction after
executing .INTEN, .FORK, or .SYNCH because RT -11 will
have to restore some registers first.

The way to leave an ISR running at any level-device
priority level, fork level, or synch level-is to issue the in
struction:

RTS PC

This returns control to the operating system, which re
stores any registers it had saved. It is important that you
make sure that all registers and the stack are restored to their
initial state when you leave, that is, pop all data from the
stack that you pushed.

Planning the Interrupt Service Routine

Careful planning is the most important part of writing an
interrupt service routine. While every device and applica
tion have their own unique features, it is very important
that you:

References

Chapter 8 Writing an Interrupt Service Routine 113

• Study and understand all aspects of the operation of
the device

• Study and understand the structure of an interrupt
service routine

• Consider how including interrupt service routines in
the application program will affect the structure and
operation of the overall application

• Align the logic flow and methods of communication
between the main program, the transfer initiator, and
the ISR

Once you have completed these planning phases in an
organized manner, you may write, test, and debug the code.

PDP-11 Processor Handbook.

RT -11 Software Support Manual. Chapter 6 describes inter
rupt service routines in detail.

9
114

RT-11 Device Handlers

Queued I/O

Structure of a Device Handler

Preamble

Header

I/O Initiation

Interrupt Service

I/O Completion

Handler Termination

Installation, Testing, and Debugging

Installing a Device Handler

Testing and Debugging a Device Handler

References

9
Writing
a Simple
Device Handler

This chapter describes the principles involved in writing a
simple RT -11 device handler. The shape of a device han
dler is discussed in detail along with the use of the essen
tial macro definitions. The macros discussed in this chap
ter are: .DRDEF, .DRBEG, .DRAST, .FORK, .DRFIN, and
.DREND. Given a description of the operation of a device,
you will be able to write, install, test, and debug a simple
RT -11 device handler.

115

116 Tailoring RT -11

RT -11 Device Handlers

Queued 1/0

An RT -11 device handler is the standard software inter
face between the device and the RT -11 operating system.
A device made available to RT -11 through a device han
dler is also available to any programs on the system that
use RT -11 programmed requests to perform I/O.

The device handler is stored as a memory-image file
on a mass storage device. When the operating system needs
to communicate with a device, the appropriate device han
dler must be loaded from the file into memory. You can load
the device handler by the programmed request .FETCH or
by the console command LOAD. Once the correct device
handler has been loaded, utility programs or user programs
can access the device by using RT -11 queued I/O pro
grammed requests.

Before a program issues I/O requests, it must open a chan
nel to a file or a device with the .LOOKUP or .ENTER pro
grammed requests. Logically, a channel is a unique path to
a device or a file on a device. A channel is identified by a
number specified in the request to open the channel. After
the channel is open, all I/O requests refer to the channel by
this number. Physically, a channel is a data structure in
memory called a channel status block (CSB). When a chan
nel is opened, the operating system fills in the CSB with
information taken from both the programmed request and
the device.

A channel status block, shown in figure 18, is a block
of five words that contains all of the file and device infor
mation needed for the system to identify a file uniquely.
The first word of the channel status block records the cur
rent status of the channel. The channel status word is also
shown in figure 18.

An application program requests an I/O transfer by is
suing an RT-ll programmed request (.WRITE, .READC,
etc.). The request passes an EMT argument block to the res-

Chapter 9 Writing a Simple Device Handler

Figure 18.
Channel Status Block

CHANNEL
BUSY

EOF

RESERVED

OF FSET

10

CHANNELSTATUSWORD

STARTING BLOCK NUMBER OF FILE
10 IF NON·FILE·STRUCTURED)

LENGTH OF FILE
OR
TENTATIVE SPACE

HIGHEST BLOCK WRITTEN

DEVICE UNIT

I
PENDING REQUEST

NUMBER COUNT

CHANNEL STATUS WORD

DIRECTORY
SEGMENT
CONTAINING
ENTRY

OPENED
BY
.ENTER

RENAME
IN
PROGRESS

$PNAME
INDEX

117

HARD
ERROR

ident monitor RMON. The format of an EMT argument block
is shown in figure 19.

RMON builds an 110 queue element using the infor
mation contained in the argument block and the CSB. The
format of an I/O queue element is shown in figure 20. RMON
then adds this queue element to the appropriate device
handler queue.

Each device handler has its own queue of 110 requests.
Two one-word locations in the device handler are pointers
to the first and last elements in the queue. The monitor uses
these pointers to add queue elements to the handler queue.
Queuing 110 requests for each device handler permits 110
transfers to execute either synchronously or asynchro
nously with the main program. If the program had re
quested an asynchronous transfer, RMON returns to the
program as soon as the element has been queued. If, how
ever, the request had been for a synchronous transfer, the

118 Tailoring RT -11

Figure 19.
EMT Argument Block

OFFSET

o FUNCTION I CHANNEL

2 RELATIVE STARTING BLOCK

4 BUFFER ADDRESS

6 WORD COUNT

10 COMPLETION ROUTINE ADDRESS

monitor blocks the job and requests a scheduling pass to
run another job.

When the device is ready to perform another opera
tion, the device handler takes the element at the front of its
queue and issues the appropriate commands to the device.
After the operation has been performed, the device handler
checks to see if any errors occurred.

On completion of an 110 transfer, the device handler
calls the 110 completion routine in the monitor. The mon
itor removes the old queue element from the queue and
makes the device handler process the next request in the
queue (if one is present). The monitor then uses the old
queue element to start the user completion routine if there
is one. The queue element is returned to the list of avail
able queue elements.

Structure of a Device Handler

As stated before, an RT -11 device handler is stored in a
file that must be structured in a certain way. Any device
handler that conforms to this standard method for support
ing a peripheral device can be loaded by RMON. There are
a number of macros in the system macro library that make
device handlers easy to write by providing the proper for
mat for each element.

Chapter 9 Writing a Simple Device Handler

Figure 20.
1/0 Queue Element

OFFSET

o POINTER TO NEXT QUEUE ELEMENT

2 POINTER TO CSW IN CSB

4 ABSOLUTE STARTING BLOCK #

*
JOB # UNIT # .SPFUN CODE
(4 BITS) (3 BITS) (8 BITS) 6

10 BUFFER ADDRESS

>0 = READ
12 WORD COUNT <0 = WRITE

0 = SEEK

o = SYNCHRONOUS
14 1/0 MODE 1 = ASYNCH RONOUS

EVEN = EVENT DRIVEN

USER BUFFER RELOCATION CONSTANT
(XM ONLY)

16

20 RESERVED (XM ONLY)

22 RESERVED (XM ONLY)

* HIGH ORDER BIT RESERVED

119

FOR EVENT DRIVEN
1/0, TH IS WORD
CONTAINS THE
ADDRESS OF THE
COMPLETION
ROUTINE

An RT -11 device handler consists of six parts, as
shown in figure 21. Each part contains macro calls and code
to perform a particular function:

• Preamble

• Header

symbol definitions and
.MCALL directives

interrupt vectors and queue
pointers

120 Tailoring RT -11

• I/O initiation entry point to start a new I/O
transfer

• Interrupt service entry point for device inter
rupts

• I/O completion handler exit path back to the
monitor

• Handler termination table of monitor entry points

Figure 21.
The Six Parts of a Device Handler

PREAMBLE

HEADER

I/O INITIATION

INTERRUPT SERVICE

I/O COMPLETION

HANDLER TERMINATION

This chapter examines these parts in detail as well as
the macro calls that you will use when you write a device
handler for RT -11. Figure 22 shows the macros used in each
of the six sections of a device handler.

Figure 23 shows a skeleton outline of a device han
dler. A user-chosen, two-character name for the device is
used often in the code as a prefix to a symbol. This prefix
is represented by the letters "dd" (for example, ddCQE). In
the skeleton outline, the device name is SK, so ddCQE be
comes SKCQE.

It is important to write the device handler in position
independent code because it may be placed anywhere in
memory when loaded by the operating system. The PDP-
11 Processor Handbook contains a section that discusses
position-independent code.

Chapter 9 Writing a Simple Device Handler

Figure 22.
Device Handler Macros

SECTION NAME

PREAMBLE

HEADER

I/O
INITIATION

INTERRUPT
SERVICE

I/O
COMPLETION

HANDLER
TERMINATION

Figure 23.
Skeleton Device Handler

. TITLE SK VOS.OO

SK DEVICE HANDLER

.IDENT IVOS.OOI

.SBTTL PREAMBLE SECTION

.MCALL .DRDEF

.DRDEF

.QELDF

.DRBEG

.DRVTB

.DRAST

.DRFIN

.DREND

.DRDEF SK.377.WONLY$.0.177S14.200

SKBR
SKIE

• SK$CSR+2
• 100

.SBTTL HEADER SECTION

.DRBEG SK

.SBTTL lID INITIATION SECTION

MOV SKCQE.R4

iSK BUFFER REGISTER
ilNTERRUPT ENABLE BIT

iR4 POINTS TO CQE

121

ASL Q$WCNTCR4) iMAKE WORD COUNT BYTE COUNT
BEQ SKDONE iA SEEK COMPLETES IMMEDIATELY
BCC SKERR iTHIS IS A WRITE-ONLY DEVICE

RET: BIS "SKIE.@"SK$CSR" iENABLE INTERRUPTS
RTS PC i WA IT FOR OHE

122

Preamble

Tailoring RT -11

Figure 23. (continued)

.SETTL INTERRUPT SERVICE SECTION

.DRAST SK,4,SKDONE
MOV SKCQE,R4 jR4 POINTS TO CQE
EIT '100200,@'SKSCSRjERROR OR READY?
EMI RET jERROR-HANG UNTIL CORRECT
EMQ RET jNOT READY - EXIT AND WAIT
EIC 'SKIE,@'SKSCSR jDISAELE INTERRUPTS
.FORK SKFELK jPROCESS REMAINING CODE AT

jFORK LEVEL
ADD 'QSWCNT,R4 jOFFSET QUEUE ELEM POINTER

SKNEXT: TSTE @'SKSCSR jREADY FOR NEXT CHAR?
EPL RET JNO - ERANCH EACK
TST @R4 jANY LEFT TO PRINT?
EEQ SKDONE JNO - TRANSFER IS DONE
MOVE @-CR4),RS jGET A CHARACTER
INC (R4)+ jEUMP EUFFER POINTER
INC @R4 jEUMP CHARACTER COUNT
EIC ,AC<177),RS j7-EIT ASCII
MOVE RS,@'SKER jSEND CHAR TO DEVICE
ER SKNEXT jTRY FOR ANOTHER

.SETTL 110 COMPLETION SECTION

SKERR: EIS 'HDERRS,@-(R4) jSET ERROR EIT IN CSW
SKDONE: EIC 'SKIE,@'SKSCSR jDISAELE INTERRUPTS

.DRFIN SK jJUMP TO MONITOR

SKFELK: .WORD 0,0,0,0 jFORK QUEUE ELEMENT

.SETTL HANDLER TERMINATION SECTION

.DREND SK
.END

The first section in the device handler, the preamble, con
tains definitions that will be used by the other five sec
tions. It starts with a .MCALL directive for the .DRDEF ma
cro and a call to this macro. You should follow this call
with any other symbol definitions that you need.

The .DRDEF macro is called in this section to issue
.MCALL directives for the other device handler macros. The

Header

Chapter 9 Writing a Simple Device Handler 123

.DRDEF macro also defines symbols for device character
istics and offsets into device handler data structures. The
use of the .DRDEF macro is shown in chapter 2 of the RT-
11 Programmer's Reference Manual and is discussed in de
tail in chapter 7 of the RT -11 Software Support Manua1.

The second part of an RT -11 device handler, the header
section, is the first place that any code is produced. The
header section contains a call to the .DRBEG macro, which
takes one argument, the two-character name of the device.
The .DRDEF macro must have been called before this ma
cro because the .DRBEG macro uses some of the symbols
that the .DRDEF macro defines.

The .DRBEG macro sets up the first five words of the
handler. The data in these five words is shown in figure 24.
This macro also stores some data in block 0 of the device
handler file. This data, shown in figure 25, is used by the
operating system to load the handler into memory.

Figure 24.
Device Handler Header Words

XXSTRT:: VECTOR ADDRESS OR OFFSET TO
VECTOR TABLE

OFFSET TO ISR ENTRY

INTERRUPT VECTOR PRIORITY (340)

XXLQE::
POINTER TO LAST QUEUE ELEMENT

XXCQE:: POINTER TO CURRENT QUEUE
ELEMENT

124

1/0 Initiation

Tailoring RT -11

Figure 25.
Information in Block 0 of the Device Handler

LOCATION

52 HANDLER SIZE (BYTES)

54 NUMBER OF 256-WORD BLOCKS

56 DEVICE STATUS WORD

60 SYSGEN OPTIONS

~------------------------~

XXEND-XXSTRT

XXDSIZ

XXSTS

E R L$G+<MMG$T*2>+
<TIM$IT*4>

1761 ... _________ C_S R __ A_D_D_R_E_S_S ________ XX$CS R

The third part of the device handler, the I/O initiation sec
tion, contains the first exec~table instructions of the device
handler. This section is called by the operating system to
start a data transfer using the information contained in the
queue element at the head of the queue. The handler is en
tered by a JSR PC instruction at the first location after the
header. The CPU will be running in system state at priority
O. All registers are available for use by the device handler.
A normal device handler does not need to be reentrant be
cause the queued I/O system ensures that the next request
will not be passed to the device handler until the previous
one has completed.

The queue element your device handler will be ex
pected to work on will be pointed at by the fifth word of
the handler. The address in this location, ddCQE::, will be
the address of the third word of the queue element Q.BLKN.
The device handler may reference the fields of the queue
element using the queue element offset definitions of the
form Q$xxxx provided by the .DRDEF macro.

The I/O initiation section should check the request to
ensure that it is valid. If there is something wrong with it,

Interrupt Service

Chapter 9 Writing a Simple Device Handler 125

the device handler should branch to the I/O completion
section and signal a fatal error (by setting the hard error bit
in the channel status word).

If the request seems to be correct, the device handler
should issue commands to the device to start the transfer
and then return to the operating system to wait for the in
terrupt. Some requests may not use interrupts; these should
simply perform their operation and branch to the I/O com
pletion routine.

There are two entry points in the interrupt service section
of the device handler. The interrupt entry point is entered
when the device generates an interrupt. The abort entry point
is called by the operating system when the job that issued
the current request asks to abort or is forced to abort. The
.DRAST macro sets up both of these entry points. When the
device generates an interrupt, the processor enters the de
vice handler at priority level 7. As with interrupt service
routines, the first step that must be taken is to lower the
priority. This is another thing that the .DRAST macro does
for you. The format of the .DRAST call is:

.DRAST dd,pri(,abort)

In this call:

dd is the two-character device name

pri is the priority at which the interrupt service
routine is to execute (the device priority)

abort is the optional symbolic address of the abort
entry in the handler

Interrupt control starts in the handler at the instruc
tion following the call to the .DRAST macro. The processor
is running in system state at the priority given in the call.
Only R4 and R5 are available for use. Any other registers

126 Tailoring RT -11

must be saved before use and restored before returning to
RT -11 through either an RTS instruction or a request. The
interrupt routine has full access to the queue element
(pointed to by ddCQE) and can use it to complete the
transfer.

If an error has occurred, the handler should retry the
operation. If the error cannot be found, the device handler
should move on to the I/O completion section, signaling a
fatal error.

If there are more characters or blocks of data to trans
fer, the device handler may restart the device and return to
RT -11 (by means of an RTS PC instruction) to wait for the
next interrupt. If the interrupt signals the completion of the
requested transfer, the device handler may transfer control
to the I/O completion section.

At any point in the interrupt service routine, the de
vice handler may switch to a fork process by issuing a .FORK
request. This macro takes as an argument the address of a
four-word block called the fork block. The fork process
suspends execution of the device handler until all other in
terrupts have been dismissed. An example of the .FORK re
quest and its expansion follows.

EXAMPLE

RKFBLK:

.FORK
JSR
.WORD

. WORD

RKFBLK
RS ,@$FKPTR
'RKFBLK - .

The pointer $FKPTR is defined by the .DREND macro
described below. The actual address of the routine is filled
in when the device handler is loaded into memory by the
monitor.

Following the .FORK call, the processor is running in

I/O Completion

Chapter 9 Writing a Simple Device Handler 127

system state at priority O. Registers R4 and R5 are pre
served across that call. All registers are available for use
when the .FORK macro returns.

Fork level is useful for performing retries when an er
ror occurs during a transfer. It is important to remember,
however, that a fork block is queued when the fork process
is requested, and it cannot be used again before the fork
process has completed. Thus, the fork request must not be
used if the routine might be reentered in response to an
other interrupt that would use the same fork block. The fork
request also should not be used with a device having con
tinuous interrupts that cannot be disabled.

The I/O completion section of the device handler is a com
mon exit path from the device handler to the monitor I/O
completion code. The device handler should transfer con
trol to this section in the event that:

• A fatal error has occurred

• A recoverable error has exhausted its retry count

• A data transfer is complete

The code in this section must inform the monitor of
the conditions under which the device handler has fin
ished processing the current queue element. Chapter 7 of
the RT -11 Software Support Manual gives details of the
methods for flagging errors and other completion condi
tions.

The liD completion section transfers control back to the
operating system by calling the .DRFIN macro. This macro
generates position-independent code that performs a jump
into the operating system. When the operating system is
given control by this macro, it releas~s the current queue
element and takes care of any completion routines that the
user may have requested.

128 Tailoring RT -11

Handler Termination

The last section in the device handler, handler termina
tion, is a call to the .DREND macro. This macro marks the
end of the device handler, allowing its size to be known.
The .DREND macro also creates a table of pointers to rou
tines in the RT -11 operating system. This table is filled in
when the device handler is loaded.

Installation, Testing, and Debugging

Before you install and test a new device handler, you must
assemble and link the source file to create an executable
memory-image file. A device handler intended for the XM
operating system has to be treated differently.

Assuming that the device handler for the device dd is
in a file called dd.MAC, for the SJ and FB monitors use
commands in the form:

.MACRO/CROSS/LIST SYSGEN.CND+dd/OBJECT

.LINK/MAP/EXEC:dd.SYS dd/NOBITMAP

But for the XM monitor, use:

.MACRO/CROSS/LIST XM + SYSGEN.CND + dd/OBJ:ddX

.LINK/MAP/EXEC:ddX.SYS ddX/NOBITMAP

Note that when assembling the source file for the de
vice handler, you should include the system conditional file
SYSGEN.CND (or the name entered during SYSGEN) if the
monitor was created by a system generation. This ensures
that the handler includes the same system generation op
tions as the monitor. You will need the file XM.MAC when
assembling a device handler for the XM monitor. Chapter
10, "Additional Features for Device Handlers," discusses
how device handlers are affected by system generation fea
tures.

Chapter 9 Writing a Simple Device Handler 129

Installing a Device Handler

Once you have a memory-image device handler file (dd.SYS
or ddX.SYS) on your system device, you should install the
handler, either manually using the console INSTALL com
mand or automatically by booting the system device. It is
simplest to install the handler manually, using the com
mand INSTALL dd.

If the system device tables do not have a free slot, you
must use the REMOVE command to remove an installed
handler in order to make room for your new one. You may
also install the new device handler by booting your system
device. The bootstrap will install the new handler pro
vided that all of the following conditions are satisfied:

• The hardware driven by the new handler is present
on your system.

• The file xx.SYS (or xxX.SYS) is on the system device.

• There is a slot in the system device tables to hold dd.

• The SYSGEN options in word 60 of the handler file
match the system being booted.

See chapter 7 in the RT -11 Software Support Manual for a
more detailed description of the various methods of in
stalling a new device handler.

Testing and Debugging a Device Handler

Once the device handler is installed, you are ready to start
testing it. Chapter 7 of the RT -11 Software Support Man
ual lists the steps you should follow when testing and de
bugging your device handler. This list includes these steps:

1. Use ODT to trace the processing of an I/O transfer
through the handler.

130

References

Tailoring RT -11

2. Test the handler with as many system utility pro
grams and KMON commands as possible.

3. Give the handler as heavy a workout as possible with
an application program using all three 110 modes.

PDP-11 Processor Handbook.

RT -11 Programmer's Reference Manual.

RT -11 Software Support Manual. Chapter 7 describes RT -11
device handlers. Appendix A analyzes several distributed device
handlers.

10
132

System Generation Conditionals

Multiple Vector Support

Internal Queuing

Device 1/0 Timeout

Set Options
Error Logging

Extended Memory Support

Special Functions

System Device Handlers

References

10
Additional
Features for
Device Handlers

This chapter describes optional features that· may be added
to an RT-11 device handler, as well as the methods by which
these features are included. Among the features discussed
in this chapter are: multiple vector support, internal
queuing, device I/O timeout, SET options, error logging,
extended memory support, special functions, and system
device handlers. You will learn to write device handlers that
do the following: support devices with multiple interrupt
vectors, use internal queues, make use of the RT -11 de
vice timeout routines, have SET options, include error log
ging support, can transfer data to extended memory, can
peIjorm special functions, and can be used to bootstrap the
system.

In chapter 9, "Writing a Simple Device Handler," we
looked at a simple device handler and the macro calls
needed to make it work. In this chapter we will look at more
macros and monitor routines that are used in an RT -11
device handler for special purposes.

133

134 Tailoring RT -11

System Generation Conditionals

Some optional features depend on system generation con
ditionals and will work only if the appropriate system gen
eration conditional is enabled. These features include:

Device liD timeout

Error logging

Extended memory support

depends on TIM$IT

depends on ERL$G

depends on MMG$T

If you want the device handler to work in all condi
tions, you should use conditional assembler directives to
generate different code depending on the system genera
tion conditionals.

EXAMPLE

. IF EQ MMG$T ; If no memory management
MOV (RS)+,-(R4)
• IFF ;. I f memory management
JSR PC ,«I $MPPTR
MOV (SP)+,-(R4)
MOV (SP)+,RO
BIT #1700,RO

.ENDC ;EQ MMG$T

When you assemble the device handler, you must in
clude the files defining system generation conditionals, so
that the device handler can support those features that are
also supported by the system.

Multiple Vector Support

The device handler discussed in chapter 9, "Writing a
Simple Device Handler," was designed to work with a de-

Chapter 10 Additional Features for Device Handlers 135

vice that had only one interrupt vector. Some devices have
more than one vector. For example, the paper tape
reader/punch has two vectors-one for the reader (vector 70)
and another for the paper tape punch (vector 74). When the
device has more than one interrupt vector, the device han
dler must specify the following information for each inter
rupt vector:

• The address of the interrupt vector

• The interrupt entry point in the device handler

• The processor status (PS) value

These values are given by using the .DRVTB macro to
set up a table of three-word entries. The format of an entry
is shown in figure 26. Each occurrence of .DRVTB defines
one interrupt vector. You supply one call to .DRVTB for each
interrupt vector used by the device. Chapter 7 in the
RT -11 Software Support Manual describes the format and
use of the .DRVTB macro in detail.

The .DRVTB macro calls may be placed anywhere be
tween the .DRBEG and .DREND macros but must not be
placed in the path of the instructions. When an interrupt is
received from the device, the correct interrupt vector is used
to transfer control to the appropriate entry point within the
device handler.

Figure 26.
Multiple-vector Table Entry

WORD

VECTOR ADDRESS

2 OFFSET TO ISR

3 340!PS

136 Tailoring RT -11

Internal Queuing

Some device handlers perform more than one operation at
the same time. The RT-11 queued 1/0 system, however, will
not pass the next request to the device handler until it has
completed the last request. To allow multiple requests to
be active at the same time, the device handler is written in
such a way that it queues requests internally.

The method used by the device handler is as follows.
When RT -11 adds a queue element to an empty device
handler queue, it calls the I/O initiation code of the device
handler to start the request. If the request is invalid, con
trol is passed to the .DRFIN macro to return a hard error. If
the request is one that can be performed by the initiation
code, the request is completed and the device handler exits
via .DRFIN. In both cases, the queue element is returned to
the operating system immediately.

Should the request be one that would require a long
time to complete and could best be done asynchronously,
the device handler adds the queue element to an internal
queue. The next step is to clear ddCQE and ddLQE, mak
ing the device handler queue appear empty. The queue ele
ment is not returned to the available list. This ensures that
the next request RT -11 adds to the device handler queue
will once again be the first request and the I/O initiation
section will be called. If the request that has been added to
the internal queue is the first, the device handler starts the
operation. The I/O initiation code exists with an RTS PC
instruction.

On completion of an operation, the interrupt service
code looks at the internal queues to determine which re
quest caused the interrupt. The device handler must return
the queue element to the operating system when the re
quest is completed. This is done by setting the pointers
ddLQE and ddCQE to point at the element. The .DRFIN
macro passes the element back to RT -11 but the device
handler is not able to continue execution. This is a prob
lem because there may be other requests on the internal
queue waiting to be started.

There is another way of accomplishing the same thing
a .DRFIN macro does. Chapter 7 of the RT -11 Software

Chapter 10 Additional Features for Device Handlers 137

Support Manual shows the code that may be used in place
of the .DRFIN macro to allow the device handler to con
tinue running.

The last consideration with internal queuing is the abort
procedure. When a job aborts, all the requests that are
queued for I/O are also aborted. This is normally done by
RT -11 by calling the device handlers at their abort entry
points; however, the device handler is only called if there
is an active queue element that came from the aborting job.

Handlers that queue internally do not keep the queue
elements where RT -11 can locate them. To preclude this
problem, there is a special bit in the device status word that
has the symbolic name HNDLR$. If this bit (bit 11) is set in
the device status word, the device handler is always called
at its abort entry point whenever a job aborts. The handler
must return all of the queue elements of the aborting job to
the operating system. Chapter 7 in the RT -11 Software
Support Manual describes the abort procedure to be fol
lowed by a handler that queues internally.

Device I/O Timeout

Device I/O timeout is a method of taking action if an inter
rupt does not occur within a certain time. This is useful for
checking whether a device is ready to be used. For exam
ple, a line printer will not interrupt if it is not switched on.

The device handler may request that a completion
routine be run if an interrupt does not occur within a spec
ified time. This is the equivalent of a mark-time request.

Device I/O timeout needs some support from the op
erating system. This is an optional feature selected by sys
tem generation. If you enable device I/O timeout support
when performing a system generation, the system genera
tion conditional TIM$IT is set to 1. Two macros are called
by a device handler that uses timeout support. These ma
cros may be used within a device handler at any time ex
cept while the processor is running above priority level O.

The . TIMIO macro is used after the device handler has
started an operation that is expected to generate an inter
rupt when it completes. The main argument to the .TIMIO

138 Tailoring RT -11

Figure 27 .
. TIMIO Timer Queue Element Block

OFFSET

o HIGH-ORDER TIME

2 LOW-ORDER TIME

4 LINK POINTER

6 JOB NUMBER*

10 SEQUENCE NUMBER*

12 -1

COMPLETION ROUTINE*
ADDRESS

14

*MUST BE SUPPLIED BY CALLER

request is the address of a seven-word timer queue ele
ment. The format of this element is shown in figure 27. This
block contains:

• The time, specified as the number of clock ticks

• The job number of the request

• The sequence number of the request

• The address of the completion routine

If the time passes without an interrupt, the comple
tion routine is executed in the context of the specified job.
The sequence number of the .TIMIO request is passed to
the completion routine in RD. If the device handler does re
ceive the interrupt before the completion routine runs, the
.CTIMIO macro is called to cancel the timer request. Chap-

Set Options

Chapter 10 Additional Features for Device Handlers 139

ter 7 of the RT -11 Software Support Manual describes the
use of device 110 timeout in detail.

Giving a device handler SET options allows an operator to
change some characteristics of a device handler after it has
been assembled. The console command that the operator
uses is in the form:

SET dd [NO]keyword[=value]

EXAMPLE

.SET LP CR

.SET LP NOCR

. SET LP WIDTH=80

When a SET command is issued, the monitor looks for
the device handler file dd.SYS (ddX.SYS under XM) and
reads blocks 0 and 1 into memory. Block 0 contains a table
of valid option keywords and the forms the options may
take. Also in block 0 are routines that implement the op
tions by changing the code and data in blocks 0 and 1 of
the handler file. When the entry for the keyword is found,
the routine to support that option is called. After the rou
tine has executed, the monitor writes the blocks back into
the file.

The table of options starts at location 400 in block 0
and terminates with a zero word. Figure 28 shows the ar
rangement of each four-word entry in the table. The table
is set up by calls to the .DRSET macro. The form of the
.DRSET macro is:

.DRSET option,val,rtn[,mode]

140 Tailoring RT -11

Figure 28.
SET Option Table

VALUE TO PASS IN R3
TO THE SET ROUTINE

RADIX-50 FOR OPTION NAME
(TWO WORDS)

CODE FOR VALID SET I POINTER TO SET
COMMAN D TYPES

In this call:

option

val

rtn

mode

ROUTINE

is a keyword of up to six alphanumeric
characters

is the value to be passed to the routine in R3

is the name of the routine to process the op
tion

describes the forms the option may take

The mode argument is optional and takes the form of
a keyword or list of keywords. The word NO indicates that
the NO prefix is allowed; NUM specifies that a decimal value
must be provided; and OCT states a need for an octal value.
The words may be combined, as in (NO,NUM) or (NO,OCT)
where the NO prefix may be used, but a value must also be
provided.

EXAMPLE

If the macro call:

.DRSET FORM,66. ,SETERM,(NO,NUM)

appeared in the LPhandler,· the following commands
would be acceptable from the console:

• SET LP FORM= 20

Error Logging

Chapter 10 Additional Features for Device Handlers 141

The routines to process the options should follow the
calls to the .DRSET macro. Both the option table and all of
the routines must be contained completely in block O. In
formation is passed to a routine in the registers as follows:

RO the numeric value from the SET command (if any)

Rl the device unit number from the SET command (If
no unit was given, the sign bit is set.)

R3 the val word from the option table entry

If the carry bit is set when the routine returns to the
monitor, an error message is printed and the blocks are not
written back into the device handler file. Chapter 7 of the
RT -11 Software Support Manual discusses SET options in
more detail and gives some examples.

Error logging is a method used by a device handler to mon
itor the performance of the device. The device handler passes
information to the error logger after each transfer. The error
logger keeps a record of device activity to check the perfor
mance of the device. The error logger runs under the FB or
XM monitor as either a system job or normal foreground
job. For SJ, the error logger is a pseudo device handler. Er
ror-logging support is selected by performing a system
generation. Two system generation conditionals are in
volved in error logging:

• ERL$G is set to 1 if error logging is enabled.

• ERL$U is set to the maximum number of device units
for which the error logger can collect information.

A device handler calls the error logger after every
transfer and every retry. Calls to the error logger must be
made serially, so that the device handler only calls the er
ror logger during 110 initiation or at fork level.

The device handler makes a call to the error logger by
loading the registers as follows:

142 Tailoring RT -11

R2 is a pointer to a buffer in the handler that contains
the device registers to be logged.

R3 contains two bytes of information: the high byte
holds the initial retry count; the low byte contains
the number of device registers that shouid appear in
the error report.

R4 has the device identified code dd$COD in the high
byte. The low byte is -1 for a successful transfer, or
the number of retries that remain to be performed
for an error.

R5 points at the third word of the current queue ele
ment.

If the transfer is successful, only registers R4 and R5
are used by the error logger. When the registers have been
set up, the device handler issues the instruction:

J 5 R PC, (iv $ E L P T R

If the error logger is not running, this call returns to the de
vice handler immediately.

When you have written a device handler that uses the
error-logging support, you must change the reporting sys
tem so that the program that prints the reports, will print
the entries from your device in the correct format. Chapter
7 in the RT -11 Software Support Manual discusses error
logging in more detail as well as the procedure used to
make your device known to the error-reporting program
(ERROUT).

Extended Memory Support

Extended memory support is the main feature of the XM
monitor. Under this monitor, programs may access mem
ory above the lower 32 Kwords on a PDP-l1. Although
programs running on the PDP-11 are limited to using a 16-
bit address, the actual physical location to which a pro
gram refers is defined by the values in the memory man
agement hardware registers. The virtual memory address
space of the program is said to be mapped to physical

Chapter 10 Additional Features for Device Handlers 143

memory. This is explained in more detail in chapter 6,
"Extended Memory Management."

There are two sets of mapping registers. The mode of
the processor defines which set of registers is active. Ker
nel mapping is the set of register values that allows access
to the lower 28 Kwords of memory plus the I/O page. The
RT -11 monitor runs with kernel mapping. The other set of
registers defines the current user mapping. This is the set
of values that defines the user program's virtual address
space.

A user program may run with any mapping. Its code
and data areas may be anywhere in physical memory, not
necessarily in the lower 28 Kwords of memory. The rela
tionship between the program's virtual addresses and the
physical addresses is given by the values in the current
mapping registers. The mapping registers that are used to
determine the physical address are the page address regis
ters (PARO-PAR7).

Device handlers run with kernel mapping, whereas the
110 queue element passed to the device handler contains
the user virtual address of the buffer. This buffer address,
as mapped for the user, may not be the same address that
the device handler would use to reference the same loca
tion.

There are two features of the XM monitor that help the
device handler perform transfers to and from a buffer in
another address space. First, the 110 queue element con
tains, at offset Q.P AR, a value for a PAR1 register. This value
is used to map the user buffer. Second, the XM monitor
contains a number of routines that may be used to transfer
data between the device handler's address space and the
user's buffer. The routines and general considerations for
using extended memory support in a device handler are
discussed in detail in chapter 7 of the RT -11 Software
Support Manual.

Special Functions

Some devices perform operations that cannot be fully sup
ported by the standard queued 110 system programmed re-

144 Tailoring RT -11

quests-for example, rewinding a magnetic tape. When an
application program wants to request one of these special
operations, the device handler may make use of another fa
cility that RT -11 supports, the special function (SPFUN).
The application program issues the special function pro
grammed request:

.SPFUN area,chan,func,buf,wcnt,blk[,crtn]

The .SPFUN request is similar to the normal I/O re
quests .READ and .WRITE, except for the additional pa
rameter "func." As with a normal I/O request, when the
.SPFUN request is issued, a queue element is assembled.
The offset Q.FUNC in the queue element (zero for a normal
I/O request) contains the value of the func parameter.

A device handler that performs special functions must
have the SPFUN$ bit set in the device status word (one of
the arguments to the .DRDEF macro). If this bit is not set,
RT -11 will not accept any special function requests for the
device. When the device handler is entered, it should check
offset Q.FUNC (or Q$FUNC) in the queue element. If this
byte is zero, the request is a normal READ or WRITE. If,
however, this byte is not zero, a special function is being
requested.

The special function codes should be negative byte
values. The meaning of each of the function codes is deter
mined by the person who writes the device handler. Also,
for each of the legal function codes, you may interpret the
values passed as "buf," "wcnt," and "blk" in any way you
wish.

Chapter 7 of the RT -11 Software Support Manual dis
cusses special functions in more detail and gives some ex
amples of their uses.

System Device Handlers

A system device handler is one that can be used as the sys
tem device for RT -11. This means that the device can be
bootstrapped to load the RT -11 operating system into
memory from the device. A system device handler is cre-

Chapter 10 Additional Features for Device Handlers 145

ated by adding a primary driver to a standard device han
dler. When a PDP-ll bootstrap sequence is started, the
primary driver is loaded from the specified device into
physical memory at location o. The primary driver must be
less than 1000 octal bytes long because the secondary
bootstrap is loaded at location 1000.

To add a primary driver to a standard device handler,
issue the .DRBOT macro immediately before the .DREND
macro. Then insert the primary driver between the .DRBOT
and the .DREND. The primary driver that you add to a
standard device handler is in four parts:

• The bootstrap entry routine

• The software bootstrap routine

• The bootstrap READ routine

• The bootstrap error routine

The bootstrap entry routine is two instructions loaded
at location O. These instructions-a NOP followed by a
branch to the software bootstrap-are generated by the
.DRBOT macro.

The software bootstrap is entered from the bootstrap
entry routine. All registers are available for use by the soft
ware bootstrap, which performs the following operations:

• Sets up the stack at location 10000

• Saves the number of the device unit being booted
(usually found in the control status register of the de
vice)

• Calls the bootstrap READ routine to read in the sec
ondary bootstrap (blocks 2 to 5 loaded, starting at
1000)

• Sets B$READ to point to the bootstrap READ routine

• Sets B$DEVN to contain the Radix-50 device name

• Places the device unit number in B$DEVU

• Transfers control to the secondary bootstrap
OMP @#B$BOOT)

146

References

Tailoring RT -11

The bootstrap READ routine is called by both the soft
ware bootstrap of the primary driver and the RT -11 boot
strap, the secondary bootstrap. This routine reads the de
vice by non-interrupt-driven programmed I/O using the
following information passed in the registers:

RO the block number to read

Rl the number of words to read

R2 the address at which to store the data

If the bootstrap READ routine fails to make a transfer,
it should jump to the bootstrap error routine at location
BIOERR. If the transfer was completed successfully, the
routine should return via an RTS PC instruction with the
carry bit clear. The bootstrap error routine starts at location
BIOERR. The error routine is activated if the bootstrap fails
for any reason. This routine is generated by the .DREND
macro.

RT -11 Programmer's Reference Manual.

RT -11 Software Support Manual. Chapter 7 discusses the
functions of the bootstrap and the process by which a system de
vice handler is written and installed.

Index

Abort entry point, 125, 137
Active page register (APR), 73, 74-

75, 78, 81, 83, 84, 86, 93
Addresses, 69, 72-74
ALLOCATE option, 12
A option, 57
APR. See Active page register
Archiving, 10-11
ASECT directive, 85
Assembler, 32
Asterisk (*) prompt, 57
Automatic installation, 19-21
Automatic Installation monitor, 18

BACKUP command, 11
Backup operations, 10-12

archiving, 10-11
creating work copies, 11-12

BACKUP/RESTORE, 11
Bad blocks, 4

caused by a damaged medium, 14-
15

caused by drive failure or electro-
magnetic noise, 14

covering, 15
data recovery from, 13-15
in directories, 13-14
in file area, 13
location of, 7
protection from, 8
scanning for, 8-9
SQUEEZE operation and, 10

BADBLOCKS option, 8
BADBLOCKS:RET option, 8

BAD option, 7
Base Line (BL) monitor, 18
BASIC-11 interpreter, 32
BASIC.SA V, 32
BL monitor. See Base Line monitor
Block number (BN), 74
Block-replaceable device, 4, 9
Blocks, 4

See also Bad blocks
BLOCKS option, 12
BN. See Block number
BOOT command, 29, 30
Bootstrap entry routine, 145
Bootstrap loader, 4
Bootstrap READ routine, 145-146
BPT instruction, 71, 87
BUFFER option, 90
Buffers, data, 88-89
BUP utility program, 11
Bus, 68

Cache memory errors, 58, 60-61
Cassettes, 4
CCL commands, 48
CDFN request, 92
Central processing unit (CPU), 68-70

interrupt system and, 70-71
registers and, 68-70
trap system and, 71

Channel, 116
Channel status block (CSB), 116, 117
CNTXSW request, 92
Command String Interpreter, 57
Command text files, 18

147

148 Index

Completion routine, 118
Context switching, 86-87, 106
Control status register (CSR), 39, 108
COPY/BOOT command, 11, 12, 22,

29, 31
COpy command, 11, 12
COPY/DEVICE command, 10-11, 14,

15
COPY EL command, 55
COPY/IGNORE command, 13, 14
COPY/SYSTEM,ll
CPU. See Central processing unit
CRAW request, 81, 83
CREATE command, 12, 13, 15
CREF.SAV, 32
CRRG request, 80
CSB. See Channel status block
CSR. See Control status register
CTIMIO macro request, 138
Customization:

with monitor commands, 38-39
with patching utilities, 40-43
See also System generation

Data buffers (XM), 88-89
Data recovery, 12-15

from bad blocks, 13-15
from files deleted in error, 12
from storage volumes initialized

in error, 13
Data volumes, 4

See also Volumes
DCL commands, 33, 47

DELETE/ENTRY, 49
PRINT,50
RESUME,52
SHOW ERRORS, 56
SUSPEND,52

DECtape, 4
DELETED option, 12
DELETE/ENTRY command, 49, 53
DELETE monitor command, 51
Device communication, 95-100

interrupt processing, 98-100
programmed 110, 97-98

Device directory, 4, 8
bad blocks in, 13-14
default number of segments

in, 8, 9
number of segments in, 8

Device handlers, 115-146
compatibility with monitors, 30-31
debugging, 128, 129-130
in device communication, 99-100

device 110 timeout and, 134, 137-
139

in distribution kit, 18
error logging and, 141-142
extended memory support, 142-

143
handler termination, 120, 122, 128
header, 119, 121, 123, 124
installing, 128-129
internal queuing and, 136-137
interrupt service, 120, 122, 125-

127
110 completion, 120, 122, 127
110 initiation, 120, 121, 124-125
macros, 121
modification of, 38-39
multiple vector support and, 134-

135
preamble, 119, 121, 122-123
selection of, 32
SET options and, 139-141
skeleton, 121-122
special functions, 143-144
structure of, 118-128
system, 144-146
system generation conditionals

and, 134
testing, 128, 129-130

Device I/O timeout, 134, 137-139
Device options, in SYSGEN, 25-26
Device priority, 106
Device registers, 69
DEVICE request, 108
DIB. See Displacement in the block
Direct memory access (DMA), 68
DIRECTORY/BLOCKS, 14
DIRECTORY command, 7, 12
DIRECTORY utility, 32
Diskettes, 4, 19, 20, 23
Disks, 4, 5, 9

for automatic installation, 20
in distribution kit, 19
system generation and, 23
work copies of, 11-12
See also Volumes

Displacement in the block (DIB), 74
Distribution kit, 18-19
DLll lines, 26
DMA. See Direct memory access
DRAST macro request, 121, 125
DRBEG macro request, 121, 123, 135
DRBOT macro request, 145
DRDEF macro request, 121, 122-123,

124, 144

Index

DREND macro request, 121, 126,
128, 135, 145

DRFIN macro request, 121, 127, 136-
137

Drive failure, 14
DRSET macro request, 139-141
DRVTB macro request, 121, 135
DUP, 32, 33
Dynamic region, 79
Dynamic window, 81
DZll lines, 26

EDIT,32
Editors, 32
Electromagnetic noise, 14
ELINIT,56
ELINIT.SAV, 54
EL.SYS,54
EMT argument block, 116-117, 118
EMT instruction, 71
ENTER request, 116
ERL$G, 134, 141
ERRLOG. See Error logging
ERRLOG.DA T file, 56
ERRLOG.REL, 54
Error logging, 39, 53-63, 141-142

analyzing reports, 57-62, 63
components of, 54
getting reports, 56-57
running, 46-47
support under FB monitor, 55-56
support under SJ monitor, 54-55,

141
support under XM monitor, 55-56

Error reports, 56-62, 63
analyzing, 57-62, 63
error summary format, 61-62, 63
getting, 56-57
memory error format, 58, 60-61
storage device format, 58, 59

Error summary report format, 61-62,
63

ERROUT, 54, 57
Extended memory, 77-93

accessing, 78-84
bootstrap action, 88
creating regions, 79-80
creating windows, 80-82
data buffers, 88-89
debugging XM applications, 91
device handlers and, 142-143
interrupt service routines, 92-93
job mappings, 84-87

mapping windows to regions,
82-84

multiuser applications, 89
overlays, 89

149

program applications, 88-89
restrictions on XM applications,

92
SETTOP feature, 89-91
synchronous system traps, 87-88
virtual vectors, 87-88

Extended Memory (XM) monitor, 18,
78

device handler installation under,
128

error logging under, 46, 55-56, 141
memory management unit under,

72
QUEUE under, 46
in SYSGEN, 25

FB monitor. See Foreground/
Background monitor

FETCH request, 116
Files, restoration of, 12
FILES option, 7, 8
Fixed interrupt vectors, 72
$FKPTR, 110,126
FLAGPAGE option, 50, 53
Floating point unit (FPU) trap, 87
"Floating vector" space, 72
Foreground/Background (FB) moni-

tor, 18
device handler installation under,

128
device handlers with, 30, 31
error logging under, 46, 55-56, 141
QUEUE under, 46
in SYSGEN, 25

Fork block, 110, 127
Fork level, 106, 127
FORK macro request, 106, 110-111,

112, 126, 127
Fork process, 110-111
FORLIB.OBJ, 32
FORMAT command, 7
Formatting, 7
FORTRAN IV programming compo-

nents for, 32
FORTRA.SA V, 32
FRUN command, 48, 53, 55, 90
FULL option, 12

General registers, 69
Graphics options, in SYSGEN, 26

150 Index

HALT instruction 75
Handler termination (device han

dler), 120, 122, 128
Header (device handler), 119, 121,

123, 124
HELP, 32
HNDLR$ bit, 137

IND SYSGEN command, 24
IND VERIFY command, 20
Initialization, in SYSGEN, 25
INITIALIZE/BADBLOCKS command,

15
INITIALIZE command, 7-8, 11, 22
INITIALIZE/REPLACE command, 15
INITIALIZE/RESTORE command, 13
Installation procedures, 19-22

automatic, 19-21
manual,22

INSTALL command, 129
INTEN macro request, 105, 108-109,

112
$INTEN routine, 108-109
Internal queuing, 136-137
Interrupt entry point, 125, 135
Interrupt processing, 98-100
Interrupt service (device handler),

120, 122, 125-127
Interrupt service routine (ISR), 71,

103-113
creating a fork process, 110-111
in device communication, 98, 99
issuing programmed requests, 111-

112
leaving, 112
lowering processor priority, 108-

109
planning, 112-113
preparing for interrupt, 107-108
protocol, 104-112
running at device priority, 106
running at fork level, 106
running at priority level seven,

105
running at synch level, 106-107
in XM system, 92-93

Interrupt system, 70-71
Interrupt vector, 96
110 completion (device handler),

120, 122, 125-127
110 completion routine, 118
110 devices, 96-100

communicating with, 97-100
110 initiation (device handler), 120,

121, ·124-125

110 page, 69, 78
110 queue element, 117, 119, 143
lOT instruction, 71, 87
ISR. See Interrupt service routine

Job mappings. See Mapping
Job status word (JSW), 84, 85
JSW. See Job status word

KED, 32
Kernel mapping, 143
Kernel mode, 74, 75, 78
KEX, 32

LA34 terminal, 20
LA100 series terminal, 20
LINK,42
LINKIV,91
LINK/XM,91
LOAD command, 48-49, 116
LOAD EL command, 54
LOOKUP request, 116

MACRO-ll programming, compo-
nents for, 32

MACRO.SAV,32
Magnetic tape, 4, 6
Maintenance. See System main-

tenance
Manual installation, 22
MAP request, 84
Mapping:

context switching, 86-87
privileged, 84-85
virtual, 85-86
windows to regions, 82-84

Mapping registers, 143
MCALL directive, 119, 122
Memory error report format, 58, 60-

61
Memory-image patching, 41-43
Memory management unit (MMU),

72-75
Memory parity errors, 58, 60
Message handler (MQ), 92, 93
MMG$T, 78, 134
MMU. See Memory management

unit
MMU status registers, 75
Monitor commands, customizing

software with, 38-39
Monitor options, in SYSGEN, 25
Monitors, and compatible handlers,

30-31
Monitor type, in SYSGEN, 25

Index

MOUNT command, 38
MQ. See Message handler
Multiple vector support, 134-135

NAME option, 49, 53
Next free address (NF A), 90, 91
NOFLAGPAGE option, 50, 53

Object code patching, 40-41
Object patch utility. See PAT.SAV
OCT,140
o option, 89
Overlays, extended memory, 89

PAF. See Page address field
Page address field (PAF), 74
Page address register (PAR), 73, 143
Page descriptor register (PDR), 73,

74
Paper tape punch, 135
PAR. See Page address register
Patching, 40-43

memory-image patching, 41-43
object code, 40-41
source code, 40

PAT.SAV, 40, 41
Pc. See Program counter register
PDP-ll architecture, 67-75

interrupt system, 70-71
memory management unit, 72-75
trap system, 71-72

PDR. See Page descriptor register
PHL. See Program high limit, 90
PIC argument, 109
PIP, 32, 33
Polling, 97-98
P option, 50
Preamble (device handler), 119, 121,

122-123
PRINT command, 47-48, 49, 50, 53
Priority, lowering, 108-109, 125
Priority level 7, 105, 108, 125
Privileged mapping, 84-85
Processor status register (PS), 69, 70,

71, 75, 135
Processor status word (PSW), 96, 98,

105, 107
Program counter register (PC), 69,

71, 98, 105, 107
Program high limit (PHL), 90
Programmed 110, 97-98
Programmed requests, 111-112
PROMPT option, 49, 53
PROTECT request, 107

151

PS. See Processor status register
PSW. See Processor status word

Q-bus,72
QELDF macro request, 121
QSET request, 92
QUEMAN, 49, 50, 51, 52, 53
QUEMAN/S, 52
QUEMAN.SAV program, 32,47-48
QUERY option, 22
QUEUE, 21, 32, 39,46-53

aborting, 51
components of, 47-48
running, 46-47
summary of, 52-53

Queued 110, 116-118
Queue clements, 92, 117, 119, 124,

143, 144
QUEUE.REL program, 32, 47
Queuing, internal, 136-137
Queuing operations, 48-52

aborting QUEUE, 51
deleting a job, 49
interruptions, 51
queuing a file, 49
run-time QUEUE options, 50
stopping and restarting queuing,

50-51
suspending queuing with

QUEMAN,52
using SUSPEND command, 52

QUFILE.WRK file, 48,50,51,52,53

RA80 disk, 9, 31
Random access devices, 4
RC25 disks, 9, 19, 20
RDBBK macro, 79
RD51,9
READC requests, 116
Reader, 135
READ request, 68
Region definition block, 79-80
Region ID, 80, 85
Regions, 79-80
Registers, 68-70, 71, 73-75

active page (APR), 73, 74-75, 78,
81, 83, 84

bootstrap READ routine and, 146
error logging and, 142
general, 69
in ISRs, 105, 107, 109, 110-111,

112, 125-126, 127
mapping, 143
MMU status, 75
page address (PAR), 73

152 Index

Registers (continued)
page descriptor (PDR), 73, 74
processor status (PS), 69, 70, 71,

75
program counter (PC), 69, 71, 98,

105, 107
SET options and, 141
stack pointer (SP), 69

R ELINIT command, 5-6
REMOVE command, 129
Replacement, 15
Replacement table, 9, 15
REPLACE option, 9
REPLACE:RETAIN option, 15
R ERROUT command, 57
RESET instruction, 75
Resident Monitor (RMON), 117, 118
RESORC,32
RESUME command, 52
RESUME QUEUE, 52
RK05 disks, 19
RK06 disks, 9, 15
RK07 disks, 9, 19, 31
RLOl disks, 9,15, 19, 23
RL02 disks, 9, 15, 19, 20
RMON. See Resident Monitor
R option, 51, 52, 53
RTIIFB,31
RT -11 features, changing, 22-23
RTIIMT,31
RTI instruction, 98, 112
RTS instruction, 126
RTS PC instruction, 112, 126, 136,

146
RXOl diskettes, 19, 33
RX02 diskettes, 19, 20, 33
RX50 diskettes, 19, 20, 33

SEGMENTS option, 8
Sequential access devices, 4
SET command, 38, 39
SET EL LOG command, 54
SET EL NOLOG command, 55
SET EL PURGE command, 55
SET options, 139-141
SETTOP feature, 89-91
SET TT SCOPE, 39
SHOW ERRORS command, 56
SHOW QUEUE command, 49, 53
Single Job (SJ) monitor, 18

device handler installation under,
128

error logging under, 54-55, 141
in SYSGEN, 25

SIPP, 40, 41-43

SJ monitor. See Single Job monitor
SLP. See Source language patch

program
Software:

customizing with monitor com
mands, 38-39

customizing with patching utili-
ties, 40-43

distribution kit, 18-19
installation procedures, 19-22
modifying components, 22-23
system generation, 23-31
updating, 38

Software bootstrap, 145-146
S option, 52, 53, 57
Source code patching, 40
Source files, 18
Source language patch program

(SLP),40
SP. see Stack pointer register
SPFUN$ bit, 144
SPFUN request, 144
SPOOL, 32, 39
SPOOL.SYS file, 32
SP[X].SYS file, 32
SQUEEZE command, 10, 11, 22
SQUEEZE/OUTPUT command, 11
SRUN command, 46, 48, 53, 55, 90
SST. See Synchronous system traps
Stack pointer register (SP), 69
STARTF.COM, 31, 39
START option, 12
ST ARTS.COM, 31
Static region, 79, 85
Static window, 81, 85-86
Status registers (MMU), 75
Storage device error report format,

58, 59
Storage devices, 4

See also Volumes
SUSPEND command, 51, 52
SUSPEND QUEUE, 52
SWAP.SYS,31
Synch level, 106-107
SYNCH macro request, 93, 107, 111-

112
Synchronous system traps (SSTs),

87-88
SYS file type, 18, 30, 31
SYSGEN. See System generation
SYSGEN.ANS file, 25, 26, 27
CivSYSGEN.BLD command, 28
SYSGEN.BLD file, 27
SYSGEN.CND file, 27, 30, 128
SYSGEN.COM file, 26

Index

SYSGEN command file, 24-26
$«vSYSGEN.DEV command, 28
SYSGEN.DEV file, 27, 30
$«vSYSGEN.MON command, 28
SYSGEN.MON file, 27, 30
SYSGEN.TBL file, 27, 30
SYSLIB,42
SYSLIB.OBJ, 32
SYSMAC.SML, 32
System bus architecture, 68
System device handlers, 144-146
System generation (SYSGEN), 23-31

assembling and linking compo-
nents, 27-29

backup copies of system, 29-30
devices in, 28
files used in, 26-27
generated monitors and handlers,

30-31
planning, 24
running, 24
on small systems, 23
SYSGEN command file, 24-26

System generation conditionals, 134
System maintenance, 37-43

customizing software with moni
tor commands, 38-39

customizing software with patch
ing utilities, 40-43

updating, 38
SYSTEM option, 22
System volumes, 4, 29, 31-33

See also Volumes

Tape, magnetic, 4, 6
Terminal interface options, in

SYSGEN,26
Terminals, 20, 26
TIMIO macro request, 137-138
TIM$IT, 134, 137
TRANSF.SAV,33
Transparent spooling package, 32
TRAP instruction, 71, 87
Traps:

FPU, 87
memory management, 86, 87
synchronous system (SST), 87-88

Trap system, 71-72, 75
Trap vectors, 72
TT.SYS, 32

Unibus, 72
UNLOAD EL command, 55

Update kits, 38
User mapping, 143
User mode, 74, 75, 78
Utility programs, 18, 32

153

VDT. See Virtual debugging tool
Vectors, 72, 87-88, 134-135
Verification procedure, 20-21
VHL. see Virtual high limit
Virtual address, 74
Virtual address window, 81, 82, 84-

85, 86
Virtual debugging tool (VDT), 91
Virtual high limit (VHL), 90
Virtual mapping, 85-86
Virtual terminal communication

package (VTCOM), 32-33
Virtual vectors, 87-88
VOLUMEID option, 8
VOLUME:ONL Y option, 8
Volumes, 3-15

backup versions of, 10-12
bad blocks in, 4, 7
data recovery from, 12-15
initializing, 7-9
small, 33
squeezing, 9-10
structure of, 4, 5, 6

V option, 89
VS60 graphics display terminal, 26
VTCOM. See Virtual terminal com-

munication package
VTCOM.REL,33
VTCOM.SAV, 33
VTll graphics display terminal, 26
VT100 series terminal, 20

WDBBK macro, 81, 83
Window definition block, 81-82
Window ID, 81-82
Windows, 80-84
Working copies, creation of, 11-12
WRITE request, 116
WS.MAP bit, 83

XC[X).SYS, 33
XL[X).SYS.33
XM.MAC file, 78, 128
XM monitor. See Extended Memory

monitor

