
1EX and METAFONT
New Directions in Typesetting

Donald E. Knuth

'JEX: and METAFONT
New Directions in Typesetting

1FX and METAFONT
New Directions in Typesetting

Donald E. Knuth

Digital Press

American Mathematical Society

Copyright © 1979 by the American Mathematical Society

'J.Fj(. and METAFONT, New Directions in Typesetting is published
jointly by the American Mathematical Society and Digital Press.

All rights reserved. Reproduction of this book, in whole or in part, is
strictly prohibited. For copy information, contact Digital Press,
Educational Services, Digital Equipment Corporation, Bedford,
Massachusetts 01730.

Printed in U.S.A.

1st Printing, December 1979
Documentation Number EY-BX003-DP-001

Knuth, Donald E
Tp<and METAFONT, new directions in typesetting

Includes index.
I. Computerized typesetting.

Z253.3. K57 686.2'2544
ISBN 0-932376-02-9

I. Title.
79-25891

Cover illustration: the letter "S" as constructed by the Italian
calligrapher Giovanbattista Palatino, circa 1550.

Foreword

Don Knuth's Tau Epsilon Chi ('lEX) is potentially the most significant
invention in typesetting in this century. It introduces a standard language for
computer typography and in terms of importa~ce could rank near the intro
duction of the Gutenberg press. The 1EX system:

• understands typography from individual characters to page design;
• permits any typewriter, word processing system, computer-based editor,

or 'lEX system editor to be used as an input device with a standard
language;

• can typeset various formats and languages;
• is structured to be user-extendable to virtually all applications.

These improvements are benchmarks in typesetting and text creation. To
date, computer-based typesetting systems have simply facilitated typesetting.
Moreover, the proliferation of word processing systems makes possible the
widespread direct transmission of text to typesetting without the intervening
typesetting process-provided we use the standard language that 'lEX offers.

A direct link between text input and typesetting will permit a drastic
restructuring of the journal- and book-publishing industry, allowing it to be
oriented substantially more toward the author. Until now, even authors with
word processing equipment have been unable to participate in the representa
tion of their message in print. Prior to Gutenberg's invention, manuscripts
were conceived and designed simultaneously, and often the author's hand
shaped the entire final product. The results were beautiful and varied, in
contrast to the manufacture of most modern books, which vary only in cover
design. With 'lEX, moreover, not only can the author influence his own format
and representation, but he also can produce more accurate material that can
be rapidly mass-produced, shortening the time between idea and dissemina
tion.

'lEX is signifi£~ntt.as a standard i~nguagebecause of the· Wiy it under
stands typography using a framework·· or" boxe's and glue in a hierarchical
fashion so that any font, page layout, or other typesetting parameter can be
set. This is in striking contrast to most typesetting systems, which are built

v

with no generality. Finally, the input form is user-defined by means of a
macroprocessor so that virtually any text can be input and can control the
typography part of the program. It is this generality and segmentation of
function that makes 'lEX significant.

This book is about much more than just the 'lEX system. The Gibbs Lecture
presents the twin themes of how typography can help mathematics and how
mathematics can help typography, and the material on METAFONT is intrigu
ing and useful in its description of the use of mathematics in type design.

While the emphasis of TEX is on mathematics, the system is equally appli
cable to and will no doubt be used in many other domains. Don Knuth, in fact,
shows us precisely how the system can humanize basic communications.

At Digital, we hope to useTEX immediately. I urge others to adopt and use
it so that the language standard can be established.

vi

C. Gordon Bell
Vice President of Engineering
Digital Equipment Corporation

Preface

Leonardo da Vinci made a sweeping statement in his notebooks: "Let no
one who is not a mathematician read my works." In fact, he said it twice, so he
probably meant it.

Fortunately, a lot of people failed to heed, his injunction. It turns out that
non-mathematicians are quite capable of dealing with mathematical concepts,
when the description isn't beclouded with too much jargon. So I would like to
reverse Leonardo's dictum and say, "Let everyone who is not a mathematician
read my works." (Furthermore, mathematicians are invited too.)

Of course, every author likes to be read; but I have quoted Leonardo as a
sort of apology for the fact that the first part of this book is the text of a talk
that was addressed specifically to professional mathematicians. Two years ago
I was deeply honored by an invitation to give the 1978 Gibbs Lecture, a lecture
about applied mathematics that is delivered annually to the members of the
American Mathematical Society. Since such prominent mathematicians as
G. H. Hardy, Albert Einstein, andJohn von Neumann had previously been Gibbs
lecturers, I wanted to say something that wasn't completely trivial, so I threw
in some mathematics that was at least slightly sophisticated. The main point I
wished to make, however, was that mathematical ideas need not be confined to
the traditional areas of application and that I had found it especially exciting
to bring mathematics to bear on the field of typography. I hope some of my
excitement and the reasons for it will be understood by everybody concerned
with written communication and the making of books of high quality.

This book is in three parts, each of which is intended to be reasonably
self-contained. First comes the Gibbs Lecture, which gives an overview of the
typographic research I have been doing. Then comes a complete description of
the 1EX typesetting system, a new system that seems to incorporate the
"right" fundamental principles for computer-based composition in its notions
of horizontal and vertical lists of boxes and glue. The last part is a similar
description of METAFONT, a system for device-independent design of charac
ter shapes. Since the three parts are independent, each has separate page
numbers, and the 1EX and METAFONT descriptions have separate indexes.

My research on typography began only in 1977, so I can't claim that 1EX
and METAFONT are the best solutions to the problems they deal with. All I
can say is that they have been applied to a great variety of typographic

vii

applications, and that the results look extremely promising. These initial suc
cesses have made it desirable to publish the present book as an interim report.
In this way a larger community of people will be able to experiment with and
criticize the ideas, even though 'lEX and METAFONT are in their infancy, and
even though there hasn't yet been time for me to advance past the first draft of
my designs for the fonts used or to typeset the material on' a high-resolution
phototypesetter.

I have been helped by so many people it is impossible to thank them all, so
I must simply hit the highlights. In the first place, I want to thank the people
at Digital Press for their encouragement to prepare this book and for the care
with which they produced it. Second, I want to thank th~ American Mathemat
ical Society for its unexpectedly strong endorsement of this work, and for the
benefit of the experience and wisdom of several members of its editorial staff.
Third, I wish to thank the National Science Foundation, the Office of Naval
Research, and the IBM Corporation for supporting my research at Stanford.
Fourth, lowe an enormous debt of gratitude to Leo Guibas and his associates
at Xerox Research, who miraculously produced the camera-ready copy for
Parts 2 and 3 of this book on experimental printing equipment. Fifth, I want to
thank the hundreds of 'lEX users who have given me the benefit of their
experiences. And above all, I wish to thank my wife, Jill, for her support and
guidance.

viii

D.E.K.
Stanford, California
August, 1979

Acknowledgments

D. E. Knuth: "Mathematical Typography." Copyright © 1979 by the American
Mathematical Society. Reprinted with permission from the Bulletin (New
Series) o/the American Mathematical Society, March 1979, Vol. 1, No.2, pp.
337-372. Josiah Willard Gibbs Lecture, given under the auspices of the
American Mathematical Society, January 4, 1978; received by the editors
February 10, 1978. This research was supported in part by the National
Science Foundation grant MCS72-03752 A03, and by the Office of Naval
Research contract N0014-76-C-0330.

D. E. Knuth: Tjjj(, a system/or technical text. Copyright © 1979 by the Amer
ican Mathematical Society. Reprinted with permission. Originally pub
lished in June 1979 by the American Mathematical Society as a manual by
the same title. The version that appears here is based on Stanford Arti
ficial Intelligence Laboratory Memo AIM-317.3/ Computer Science De
partment Report No. STAN-CS-78-675, September 1979. This research was
supported in part by the National Science Foundation grant MCS72-03752
A03, and by the Office of Naval Research contract NOOI4-76-C-0330. The
author wishes to thank the many individuals who made helpful comments
on the first drafts of the manual.

D. E. Knuth: METAFONT, a system/or alphabet design. Copyright © 1979 by
the American Mathematical Society. The version that appears here is
based on Stanford Artificial Intelligence Laboratory Memo AIM-332/
Computer Science Department Report No. STAN-CS-79-762, September
1979. This research was supported in part by the National Science Foun
dation grant MCS72-03752 A03, and by the Office of Naval Research con
tract N0014-76-C-0330. The author wishes to thank the many individuals
who made detailed comments on pre-preliminary drafts.

Digital Press gratefully acknowledges the support and cooperation of the
American Mathematical Society.

ix

Table of Contents

Part 1 Mathematical Typography

Part 2 TEX., a system for technical text

Part 3 METAFONT, a system for alphabet design

xi

PART!

Mathematical Typography

Mathematical Typography
Dedicated to George P6lya on his 90th birthday

ABSTRACT. Mathematics books and journals do not look as beautiful
as they used to. It is not that their mathematical content is unsatis
factory, rather that the old and well-developed traditions of typeset
ting have become too expensive. Fortunately, it now appears that
mathematics itself can be used to solve this problem.

A first step in the solution is to devise a method for unambigu
ously specifying mathematical manuscripts in such a way that they
can easily be manipulated by machines. Such languages, when prop
erly designed, can be learned quickly by authors and their typists, yet
manuscripts in this form will lead directly to high quality plates for
the printer with little or no human intervention.

A second step in the solution makes use of classical mathematics
to design the shapes of the letters and symbols themselves. It is
possible to give a rigorous definition of the exact shape of the letter
"a", for example, in such a way that infinitely many styles (bold,
extended, sans-serif, italic, etc.) are obtained from a single definition
by changing only a few parameters. When the same is done for the
other letters and symbols, we obtain a mathematical definition of type
fonts, a definition that can be used on all machines both now and in
the future. The main significance of this approach is that new symbols
can readily be added in such a way that they are automatically con
sistent with the old ones.

Of course it is necessary that the mathematically-defined letters
be beautiful according to traditional notions of aesthetics. Given a
sequence of points in the plane, what is the most pleasing curve that
connects them? This question leads to interesting mathematics, and
one solution based on a novel family of spline curves has produced
excellent fonts of type in the author's preliminary experiments. We
may conclude that a mathematical approach to the design of al
phabets does not eliminate the artists who have been doing the job for
so many years; on the contrary, it gives them an exciting new medium
to work with.

1

2 Mathematical Typography

I will be speaking today about work in progress, instead of completed
research; this was not my original intention when I chose the subject of this
lecture, but the fact is I couldn't get my computer programs working in time.
Fortunately it is just as well that I don't have a finished product to describe to
you today, because research in mathematics is generally much more interest
ing while you're doing it than after it's all done. I will try therefore to convey in
this lecture why I am so excited about the project on which I am currently
working. .

My talk will be in two parts, based on two different meanings of its title.
First I will speak about mathematical typography in the sense of typography
as the servant of mathematics: the goal here is to communicate mathematics
effectively by making it possible to publish mathematical papers and books of
high quality, without excessive cost. Then I will speak about mathematical
typography in the sense of mathematics as the servant of typography: in this
case we will see that mathematical ideas can make advances in the art of
printing.

Preliminary examples. To set the stage for this discussion I would like to
show you some examples by which you can "educate your eyes" to see mathe
matics as a printer might see it. These examples are taken from the Transac
tions o/the American Mathematical Society, which began publication in 1900;
by now over 230 volumes have been published. I took these volumes from the
library shelves and divided them into equivalence classes based on what I
could perceive to be different styles of printing: two volumes were placed into
the same class if and only if they appeared to be printed in the same style. It
turns out that twelve different styles can be distinguished, and it will be
helpful for us to look at them briefly.

The first example (Figure 1a) comes from p. 2 of Transactions volume 1; I
have shown only a small part of the page in order to encourage you to look at
the individual letters and their positions rather than to read the mathematics.
This typeface has an old-fashioned appearance, primarily because the upper
case letters and the taller lower case ones like 'h' and 'k' are nearly twice as tall
as the other lower case letters, and this is rarely seen nowadays. Notice the
style of the italic letter 'x', the two strokes having a common segment in the
middle. The subscripts and superscripts are set in rather small type.

This style was used in volumes 1 to 12 of the Transactions, and also in the
first 21 pages of volume 13. Then page 22 of volume 13 introduced a more
modern typeface (Figure 1b). In this example the subscripts are still in a very
small font, and unfortunately the Greek a here is almost indistinguishable
from an italic 'a'. Notice also that the printer has inserted more space before

(a)

(c)

(e)

Mathematical Typography 3

there cOl"l"esponcl two quadric forms each contain
rameters. So much I-hLHEHT states. In order t
as known systems it will be convenient to use:
mental cubic, due to HESSE.'"

Referred to au inflexional triangle, the equati

(3)

All conic polars accordingly have tIle form:

(4) (l/'; = (Y1:l:i + Y2:l:; + Ya:l:;) + 2m(.IJ?~it:3

I call this ineffective part of x. "hmocuous"
validate the fundamental proposition

[f(x;) ~ f(x;)] = (x; ~

which was proved above (P. 4) for effective val
ineffective part of x. is innocuous is clear: it, Q5

that the variation of x. does not takc place in it
D. 3. But this consideration leads to the dcfin

of x. By this I mean the collection of values w}

i. e.,

in which the '1'0. are polynomials in YI, Y2, ..• , !
has been considered recently by W. D. ~I.-\

usual algebraic elimination theory to the pI

<I> (.1'1, .1'2, "', :rm: Yn) would be found fo
<I> (0, 0, ... , 0 : Yn) would be, say, of degree p •

theorem to <P (Xl, .1'2, ••• , .I'm : Yn), therefore,
degree p would appear. This is not in general t
is sought in this paper, as may readily be sho
The polynomials '1'0. may have roots for which

six planes Yi + Yk = 0, each counted three tim
type YI Yt - Y3 Vi = 0, each counted twice.

We have seen that any point on the line 1/1 +
image in (X) the whole line Xl + X~ = 0, X3
in (y) meets the line in one 1) oint, its image 89 co
the system 89 has also the three lines of this tn

12. Algebraic procedure. The plane COl

amI the vertex (1, 0, 0, 0) has the equation

11:11 ;r~ + 1)~~ ~'3 + P~3 :/:J,
Since (y) and (y') both satisfy this equation we

of systems of division algebras. The next syst.
of order p2q2 over F with the basal units iajbke (
with an irreducible equation of degree pq, three
rational functions O(i) and ifJ(i) with coeffici{ c C

n
is called a Reinhardt circular set if along w

iterative oq (i) of (}(i) is i, and likewise ifJp(i) = i lEE also the set
by {zllZt I = Iz~l, k= 1,2, ... ,n}

O~[1fr(i)]=.Jtr[Ok(i)] (k=O,l,' " q-l'
bounded closed subset of en, unisolvent with respecl

The complete multiplication table of the un . The function b(z) being defined and lower semic
associative law from

kj=ajk , ji=

FIGURE 1.. A sequence of typographical styles
in the AMS Transactions: (a) vol 1 (1900), p. 2; (b)
vol 13 (1912), p. 135; (c) vol 23 (1922), p. 216; (d) vol
25 (1923), p. 10; (e) vol 28 (1926), p. 207; (f) vol 105
(1962), p. 340;

Vo = C n - 1 •n - 1

(b)

(d)

(f)

4 Mathematical Typography

and after parentheses than we are now accustomed to. During the next few
years the spacing within formulas evolved gradually but the typefaces re
mained essentially the same up through volume 24: with one exception.

The exception was volume 23 in 1922 (Figure 1c), which in my opinion has
the most pleasing appearance of all the Transactions volumes. This modern
typeface is less condensed, making it more pleasant to read. The italic letters
have changed in style too, not quite so happily-notice the 'x', for example,
which is not as nice as before-but by and large one has a favorable impression
when paging through this volume. Such quality was not without its cost,
however; according to a contemporary report in the AMS Bulletin [45, p. 100],
the Transactions came out 18 months late at the time! Perhaps this is why the
Society decided to seek yet another printer.

In order to appreciate the next change, let's look quickly at two excerpts
from the Bulletin relating to the very first Gibbs Lecture (Figure 2). The
preliminary announcement in 1923 appeared in the modern typeface used
during that year, but the letter shapes in the report of the first lecture in 1924
were very cramped and stilted. The upper case letters in the title are about the
same, but the lower case letters in the text are completely different.

This same style appeared in volume 25 of the Transactions (Figure 1d),
which incidentally was set in Germany in order to reduce the cost of printing.
Note that the boldface letters and the italic letters in this example are actually
quite beautiful-and we're back to the good old style of 'x' again-so the
mathematical formulas looked great while the accompanying text was
crowded. Fortunately only three volumes were published in this style.

A new era for the Transactions began in 1926, when its printing was taken
over by the Collegiate Press in Menasha, Wisconsin. Volumes 28 through 104
were all done in the. same style, covering 36 years from 1926 to 1961, inclusive,
and this style (Figure 1e) was used also in the American Mathematical Monthly.
In general the typefaces were quite satisfactory, but there was also a curious
anomaly: Italic letters used in subscripts and superscripts of mathematical
formulas were in a different style from those used on the main line! For
example, notice the two k's in the first displayed formula of Figure 1e: the
larger one has a loop, so it is topologically different from the smaller one.
Similarly you can see that the p in k P is quite different from the p in p2. There
are no x's in this example, but if you look at other pages you will find that the
style of x that I like best appears only in subscripts and superscripts. I can't
understand why this discrepancy was allowed to persist for so many years.

Another period of typographic turmoil for the Transactions began with
volume 105 in 1962. This volume, which was typeset in Israel, introduced a
switch to the Times Roman typeface (Figure 1f); an easy way to recognize the

(g)

(i)

(k)

Mathematical Typography 5

1-1

0= r.x(Lria) - (Lriai)xr. = L I
i-1

The set N1 is nowhere dense in Z1 and thus N = pI (h)

This element is of lower length. It follows there
i = I, ... , k. Hence, (a) .yields that rj = Air., Ai

Now r. ~ 0, by the minimality of k, and LAic

which we deduce that LAiai = O. But the ai a
which is impossible since in particular A. = 1.

THEOREM 7. Let R be a dense ring of linear t.
F be a maximal commutative sub/ield D. If RF
tion of finite rank over F, then R contains also

The algebra P is nearly simple if and only if the

(a) ,'II isspamledby a, ... ,an- k - I , b
l

, •••

i, j = 1, ... , k.

(b) Either n"'; k = char F with k even or Ti

Proof. By Theorem 5.5, there are elements
n-k-I b b h a,···,a '1'···' k. Fun ermore, ab;=

for all i, j where each a _, '\ .. is in F. From t
I 11

space of the space spanned by a n - k - I , hI' ... ,

For each ~ E Y - N we must provc that.fr: satisfi.
be the unique projection in {Pa IdE D} such that
the algebra (EdE)·Po is finite and homogeneol
onal abelian projections E .. E2 , ••• , En such that
(l ~j, k ~ n) be partial isometric operators in (Ed_

(i) UjkU,m=(,m,U'k, where (, is the Kronecker d(
(2) ujt= Uk'; and
(3) UjJ=Ej ,

foralli ~j,k,l,m~n. For each A in (EdE)·Po, f
in fZ1PO such that

:tions in GL(W) and hall' a, [3 E I as coordinate
ined by the respective bases chosen above. If a,
lnction of I\P is the minor of Igijl determined by
columns [3(1), ... , f3(P). The coordinate ring of

1all together with JldetlhaPl, while that of GL(W)
)gcther with i/detlgijl. The coordinate functions
. so to show I\P is a morphism it suffices to show
nial in gij and I/detlgiji. For this, the following

Assume P is nearly simple. Then there is
haracter of GL(W) is an integral power of the

show that each hi is in M. To do this, it is nec

If Q, i.e.

.) = 0 for every x E A for which x(Q) = O}.

or rnA is equivalent to the one induced by the

{\x(z)l: x E A, !!x!! <; 1 and x(w) = O}.

'present the open unit disk in the complex plane, C,

t polydisk in ll·din~nsional complex space en. Til

loundary of Dr!, i.e.

:onverges pathwise to XA, and uniformly for t E
: for which X; is the (last) minimum of yA, let ljA,
llues of yA, and 1" the inter jump times for yA
st an i such that lj = 1jA = 00. Notice that y~ i
ld that as e - 0, y~ converges to IA = infsXsA. Le
ts of (-00,00). Then, for example, if i > 1

-I E B, y~+k - y~ E C, TJ+k E D,N > Q> i}

E A,'Ii~i E B,lJ~k - lJA E C,1i!k E D,N > Q

FIGURE 1 [continued]: (g) vol 114 (1965), p. 216;
(h) vol 125 (1966), p. 38; (i) vol 169 (1972), p. 232; (j)
vol 179 (1973), p. 314; (k) vol 199 (1974), p. 370; (1)
vol 225 (1977), p. 372.

(j)

(1)

6 Mathematical Typography

THE JOSIAH 'VILLARD GIBBS LECTURESHIP

The Council of the Society has sanctioned the establishment
of an honorary lectureship to be known as the Josiah 'Villard
Gibbs Lectureship. The lectures are to be of a popular nature
on topics in mathematics or its applications, ~lld are to be
giyen by invitation under the auspices of the Society. They
will be held annually or at such intervals as the Council may
direct. It is expected that the first lecture will be delivered
in Kew York City during the winter of 1923-24, and a com
mittee has been authorized to inaugurate the lectures by
choosing the first speaker and making the necessary arrange
ments.

R. G. D. RICHARDSON,

Secretary.

1'HE Fl Rsrr JOSIAH ,VILLAHD GIBBS LECTUR.E

The first Josiah ,Villard Gibbs Lecture was delivered
under the auspices of this Society on February 29, 1924,
by Professor ::\1. 1. Pupin, of Columbia University, in the
auditorium of the Engineering Societies' Building, Xe", York
City. A large and distinguished audience was present,
including, besides members of the Society, many phy:;:ici:;ts,
chemists, and engineers who had been invited to attend.

In introducing the speaker, President Veblen spoke as
follows:

"In instituting the "Tillard Gibbs Lectnres, the American
)fathematicnl Societ.y has recognized the dual character of
mathematics. On the one hand, mathematics is one of the
essp.ntial emanations of the human spirit,-a thing to be
valued in and for itself, like art or poetry. Gibbs made

FIGURE 2. A time of transition. (Excerpts from
the AMS Bulletin 29 (1923), p. 385; 30 (1924), p.
289.)

Mathematical Typography 7

difference quickly is to look at the shading on the letter "0", since it now is
somewhat slanted; in the previously used fonts this letter always was more
symmetrical, as if it were drawn with a pen held horizontally, but in Times
Roman it clearly has an oblique stress as if it were drawn by a right-handed
penman. Note that the three k's are topologically the same in the displayed
equation here; but for some reason the two subscript k's are of different sizes.
Many of the Times Italic letters have a somewhat different style than readers
of the Transactions had been accustomed to, and I personally think that this
font tends to make formulas look more crowded. Actually the changeover to
Times Roman and Times Italic wasn't complete; the italic letter g still had its
familiar shape, perhaps because the new shape looked too strange to mathe-
maticians. ~

Volumes 105 through 124 were all done in this style, except for a brief
interruption: In volumes 114, 115, and 116 the shading on the o's was symmetri
cal and the k's had loops (Figure 19). Another style was used for volumes
125-168 (Figure 1h): again Times Roman was the rule, even in the g's, except
for subscripts and superscripts which were in the style I prefer; for example,
compare the j's and k's. (These latter volumes were typeset in Great Britain.)

A greatly increased volume of publication, together with the rising
salaries of skilled personnel, was making it prohibitively expensive to use
traditional methods of typesetting, and the Society eventually had to resort to
a fancy form of typewriter composition that could simply be photographed for
printing. This unfortunate circumstance made volumes 169-198 of the Tran"s
actions look like Figure li, except for volumes 179, 185, 189, 192, 194, and 198,
which were done in a far better (yet not wholly satisfactory) style that can be
distinguished from Figure 1f by the italic g's. Figure 1j was composed on a
computer using a system developed by Lowell Hawkinson and Richard McQuil
lin; this was one of the fruits of an AMS research project supported by the
National Science Foundation [2], [3], [4], [5], [6].

Computer typesetting of mathematics was still somewhat premature at
the time, however, and another kind of "cold copy" made its appearance in
volumes 199 through 224-an "IBM Composer" was used, except for volumes
208 and 211 which reverted to the Varityper style of Figure 1i. The new
alphabet was rather cramped in appearance, and some words were even more
crowded than the others (see Figure 1k). At this point I regretfully stopped
submitting papers to the American Mathematical Society, since the finished
product was just too painful for me to look at. Similar fiuctuationsof typo
graphical quality have appeared recently in all technical fields, especially in
physics where the situation has gotten even worse. (The history of publication

8 Mathematical Typography

at the American Society of Civil Engineers has been discussed in an int~rest
ing and informative article by Paul A. Parisi [44].)

Fortunately things are now improving. Beginning with volume 225, which
was published last year, the Transactions now looks like Figure 11; like Figure
lj, it is computer composed, and the Times Roman typeface is now somewhat
larger. I still don't care for this particular style of italic letters, and there are
some bugs needing to be ironed out such as the overlap between lines shown in
this example; but it is clear that the situation is getting better, and perhaps
some day we will once again be able to approach the quality of volumes 23 and
24.

Computer-assisted composition. Perhaps the main reason that the situa
tion is improving is the fact that computers are able to manipulate text and
convert it into a form suitable for printing. Experimental systems of this kind
have been in use since the early 1960s (cf. the book by Barnett [10]), and now
they are beginning to come of age. Within another ten years or so, I expect that
the typical typewriter will be replaced by a television screen attached to a
keyboard and to a small computer. It will be easy to make changes to a
manuscript, to replace all occurrences of one phrase by another and so on, and
to transmit the manuscript either to the television screen, or to a printing
device, or to another computer. Such systems are already in use by most
newspapers, and new experimental systems for business offices actually will
display the text in a variety of fonts [26]. It won't be long before these ma
chines change the traditional methods of manuscript preparation in univer
sities and technical laboratories.

Mathematical typesetting adds an extra level of complication, of course.
Printers refer to mathematics as "penalty copy", and one of America's
foremost typographers T. L. De Vinne wrote that "[even] under the most
favorable conditions algebra will be troublesome." [17, p.171.] The problem used
to be that the two-dimensional formulas required complicated positioning of
individual metal pieces of type; but now this problem reduces to a much
simpler one, namely that two-dimensional formulas need to be represented as
a one-dimensional sequence of instructions for transmission to the computer.

One-dimensional languages for mathematical formulas are now familiar in
programming languages such as FORTRAN, but a somewhat different ap
proach is needed when all the complexities of typesetting are considered. In
order to show you the flavor of languages for mathematical typesetting, I will
briefly describe the three reasonably successful systems known to me. The
first, which I will call Type C, is typical of the commercially available systems
now used to typeset mathematical journals (cf. [12]). The second, which I will

Mathematical Typography 9

Formula Type C Type B Type T

J-- fls2$t lover 2 1 \over 2 Z

-(}Z
*gq"2 theta sup 2 \theta1'2

11('1." $rf(x'i)$t sqrt{f(x sub i)} \sqrt{f (x,H)}

FIGURE 3. Three ways to describe a formula.

call Type B, was developed at Bell Telephone Laboratories and has been used
to prepare several books and articles including the article that introduced the
system [27]. The third, which I will call Type T, is the one I am presently
developing as part of the system I call TEX [29].1

Figure 3 shows how three simple formulas would be expressed in these
three languages. The Type C language uses $f ... $s ... $t for fractions, *g
for "the next character is Greek", q for the Greek letter theta, /I for
superscripts, $r ... $t for square roots and I for subscripts. The Type B
language is more mnemonic, using "over", "theta", "sup", "sqrt", and "sub"
together with braces for grouping when necessary. The Type T language is
similar but it does not make use of "reserved words"; a special character ~ is
used before any nonstandard text. This means that spaces can be ignored,
while they need to be inserted in just the right places in the Type B language;
for example, the space after the "i" is important in the example shown, oth
erwise f(xj) would become f(xi) according to the Type B rules. Another reason
for the ~ delimiter in Type T is that it becomes unnecessary to match each
text item against a stored dictionary, and it is possible to use "sup" to mean
supremum instead of superscript. The special symbols ~ { } it in Type T can
be changed to any other characters if desired; although these five symbols
don't appear on conventional typewriters, they are common on computer ter
minal keyboards.

1 This has no connection with a similarly-named system recently announced by Honeywell
Information Systems, or with another one developed by Digital Research. In my language, the T,
E, and X are Greek letters and 'lEX is pronounced "tech", following the Greek words for art and
technology.

10 Mathematical Typography

Incidentally, computer typesetting brings us some good news: It is now
quite easy to represent square roots in the traditional manner with radical
signs and vincula, so we won't have to write xl/2 when we don't want to.2

None of these languages makes it possible to read complex formulas as
easily as in the two-dimensional form, but experience shows that it is not
difficult for untrained personnel to learn how to type them. According to [12],
"Within a few hours (a few days at most) a typist with no math or typesetting
background can be taught to input even the most complex equations." And the
Type B authors [27] report that "the learning time is short. A few minutes
gives the general flavor, and typing a page or two of a paper generally uncov
ers most of the misconceptions about how it works." Thus it will be feasible for
both typists and mathematicians to prepare papers in such a language, with
out investing a great deal of effort in learning the system. The only real
difficulties arise when preparing tables that involve tricky alignments.

Once such systems become widespread, authors will be able to prepare
their papers and see exactly how they will look when printed. Everyone who
writes mathematical papers knows that his intentions are often misun
derstood by the printer, and corrections to the galley proofs have a nontrivial
probability of introducing further errors. Thus, in the words of three early
users of the Bell Labs' system, "the moral seems clear. If you let others do your
typesetting, then there will be errors beyond your control; if you do your own,
then you have only yourself to blame." [1] Personally, I can't adequately
describe how wonderful it feels when I now make a change to the manuscript
of my book, as it is stored in the Stanford computer, since I know that the
change is immediately in effect; it never will go through any middlemen who
might misunderstand my intention.

Perhaps some day a typesetting language will become standardized to the
point where papers can be submitted to the American Mathematical Society
from computer to computer via telephone lines. Galley proofs will not be
necessary, but referees and/or copy editors could send suggested changes to
the author, and he could insert these ~nto the manuscript, again via telephone.

Of course I am hoping that if any language becomes standard it will be my
'lEX language. Well ... perhaps I am biased, and I know that 'lEX provides
only small refinements over what is available in other systems. Yet several
dozen small refinements add up to something that is important to me, and I
think such refinements might prove important to other people as well. There
fore I'd like to spend the next few minutes explaining more about 'lEX.

2 (ADDED IN PROOF). I was pleased to find that this announcement was greeted with an
enthusiastic round of applause when I delivered the lecture.

Mathematical Typography 11

The 'IEX input language. TEX must deal with "ordinary" text as well as
mathematics, and it is designed as a unified system in which the mathematical
features blend in with the word-processing routines instead of being "tacked
on" to a conventional typesetting language. The m~in idea ofTEX is to con
struct what I call boxes. A character of type by itself is a box, as is a solid black
rectangle; and we use such "atoms" to construct more complex boxes analo
gous to "molecules", by forming horizontal or vertical lists of boxes. The final
pages of text are boxes made out oflists of boxes made out of lists of boxes, and
so on down to the individual characters and black rectangles, which are not
decomposed further. For example, a typical page of a book is a box formed from
vertical lists of boxes representing lines of type, and these lines of type are
boxes formed from a horizontal list of boxes representing individual letters. A
mathematical formula breaks down into boxes in a natural way; for example,
the numerator and denominator of a fraction are boxes, and so is the bar line
between them (since it is a thin but solid black rectangle). The elements of a
rectangular matrix are boxes, and so on.

The individual boxes of a horizontal list or a vertical list are separated by a
special kind of elastic mortar that I call "glue". The glue between two boxes
has three component parts (x, y, z) expressed in units of length:

the space component, x, is the ideal or normal space desired between
these boxes;

the stretch component, y, is the amount of extra space that is tolerable;
the shrink component, z, is the amount of space that may be removed if

necessary.

Suppose the list contains n + 1 boxes B 0, B I! ••• ,B n separated by n globs of glue
having specifications (XI! Yb Zl), ..• ,(xm Yn, zJ. When this list is made into a
box, we set the glue according to the desired final size of the box. If the final size
is to be larger than we would obtain with the normal spacing Xl + ... + Xli! we
increase the space proportional to the y's so that the actual space between
boxes is

for some appropriate t > O. On the other hand if the desired final size must be
smaller, we decrease the space to

in proportion to the individual shrinkages Zi. In the latter case t is not allowed
to become greater than 1; the glue will never be smaller than X - z, although it

12 Mathematical Typography

might occasionally become greater than x + y. Once the glue has been set, the
box is rigid and never changes its size again.

Consider, for example, a normal line of text, which is a list of individual
character boxes. The glue between letters ofa word will have x = y = z = 0, say,
meaning that this word always has the letters butting against each other; but
the glue between words might have x equal to the width of the letter 'e', and
y = x, and z = !x, meaning that the space between words might expand or
shrink. The spaces after punctuation marks like periods and commas might be
allowed to stretch at a faster rate but to shrink more slowly.

An important special case of this glue concept occurs when we have "in
finite" stretchability. Suppose the x and z components are zero, but the y
component is extremely large, say y is one mile long. If such an element of glue
is placed at the left of a list of boxes, the effect will be to put essentially all of
the expansion at the left, therefore the boxes will be right-justified so that the
right edge will be flush with the margin. Similarly if we place such infinitely
stretchable glue at both ends of the list, the effect will be to center the line.
These common typographic operations therefore turn out to be simple special
cases of the general idea of variable glue, and the computer can do its job more
elegantly since it is dealing with fewer primitives. Incidentally you will notice
from this example that glue is allowed to appear at the ends of a list, not just
between boxes; actually it is also possible to have glue next to glue, and boxes
next to boxes, so that a list of boxes really is a list of boxes and glue mixed in
any fashion whatever. I didn't mention this before, because for some reason it
seems easier to explain the idea first in the case when boxes alternate with
glue.

The same principles apply to vertical lists. For example, the glue that
appears above and below a displayed equation will tend to be stretchable and
shrinkable, but the glue between lines of text will be calculated so that adja
cent base lines will be uniformly spaced when possible. You can imagine how
the concept of glue allows you to do special tricks like backspacing (by letting x
be negative), in a natural manner.

Line division. One of the more interesting things a system like 'lEX has to
do is to divide up a paragraph into individual lines so that each line is about the
right length. The traditional way to do this, which is still used on today's
computer typesetting systems, is to make the best possible line division you
can whenever you come to the right margin, but once this line has been output
you never reconsider i~you start the next line with no memory of what has
come before. Actually it often happens that one could do better by moving a
short word down from one line to the next, but the problem is that you don't

Mathematical Typography 13

know what the rest of the paragraph will be like when you have only look~d at
one line's worth.

The TEX system will introduce a new approach to the problem of line
division, in which the, end of a paragraph does influence the way the first lines
are broken; this will result in more even spacing and fewe~ hyphenated words.
Here is how it works: First we convert the line division problem to a precisely
defined mathematical problem by usingTEX's glue to introduce the concept of
"badness". When a horizontal list of boxes has a certain natural width w (based
on the width of its boxes and the space components of its glue), and a certain
stretchability y (the sum of the stretch components) and a certain shrinkabil
ity z (the sum of the shrinkages), the badness of setting the glue to make a box
of width W is defined to be 1 + 100t3 in our previous notation; more precisely, it
is

1, ifW = w,

1 + 100 (w : W r if w - z ~ W < w,

infinite, ifW < w - z.

Thus if the desired width W is near the natural width w, or if there is a lot of
stretchability and shrinkability, the badness rating is very small; but if W is
much greater than wand there isn't much ability to stretch, we have a lot of
badness. Furthermore we add penalty points to the badness rating if the line
ends at a comparatively undesirable place; for example, when a word needs to
be hyphenated, the badness goes up by 50, and an even worse penalty is paid if
we have to break up mathematical formulas.

The line division problem may now be stated as follows. "Given the text of
a paragraph and the set of all allowable places to break it between lines, find
breakpoints that minimize the sum of the squares of the badnesses of the
resulting lines." This definition is quite arbitrary, of course, but it seems to
work. Preliminary experiments show that the same choice of breakpoints is
almost always found when simply minimizing the sum of the individual bad
nesses rather than the sum of their squares, but it seems wise to minimize the
sum of squares as a precautionary measure since this will also tend to mini
mize the maximum badness.

Just stating the line division problem in mathematical terms doesn't solve
it, of course; we need to have a good }Yay to find the desired breakpoints. If

14 Mathematical Typography

there are n permissible places to break (including all spaces between words
and all possible hyphenations), there are 2n possible ways to divide up the
paragraph, and we would never have time to look at them all. Fortunately
there is a technique that can be used to reduce the number of computational
steps to order n 2 instead of 2n; this is a special case of what Richard B~llman
calls "dynamic programming." Let f(j) be the minimum sum of badness
squares for all ways to divide the initial text of the paragraph up to breakpoint
j, including a break atj, and let b(i, j) be the badness of a line that runs from
breakpoint i to breakpoint j. Let breakpoint 0 denote the beginning of the
paragraph; and let breakpoint n + 1 be the end of the paragraph, with
infinitely expandable glue inserted just before this final breakpoint. Then

f(O) = 0;
f(j) = min (I(i) + b(i,j)2), for 1 :::;,j :::;, n + 1.

Osi<)

The computation off(l), ... ,fen + 1) can be done in order n 2 steps, andf(n + 1)
will be the minimum possible sum of badnesses squared. By remembering the
values of i at which the minima occurred for each j, we can find breakpoints
that give the best line divisions, as desired.

In practice we need not test extremely unlikely breakpoints; for example,
there is rarely any reason to hyphenate the very first word of a paragraph.
Thus it turns out that this dynamic programming method can be further
improved to an algorithm whose running time is almost always of order n
instead of n 2, and comparatively few hyphenations will need to be tried. Inci
dentally, the problem of hyphenation itself leads to some interesting mathe
matical questions, but I don't have time to discuss them today. (Cf. [41] and the
references in that paper.)

The idea of badness ratings applies in the vertical dimension as well as in
the horizontal; in this case we want to avoid breaking columns or pages in a
bad manner. For example, penalty points are given for splitting a paragraph
between pages after a hyphenation, or for dividing it in such a way that only
one of its lines-a so-called "widow" line-appears on a page. The placement of
illustrations, tables, and footnotes is also facilitated by formulating appropri
ate rules of placement in terms of badness.

There is more to1EX, including for example some facilities for handling the
rather intricate layouts often needed to typeset tables without having to
calculate column widths; but I think I have described the most important
principles of its organization. During the next few months I plan to write the
computer programs for 1EX in such a way that each algorithm is clearly

Mathematical Typography 15

explained and so that the system can be implemented on many different
computers without great difficulty; then I intend to publish the programs in a
book so that everyone who wants to can use them.

Entr'acte. I said at the beginning that this talk would be in two parts,
discussing both the ways that typography can help mathematics and that
mathematics can help typography. So far we have seen a little of both, but the
mathematics has been comparatively trivial. In the remainder of my lecture I
would like to discuss what I believe is a much more significant application of
mathematics to typography, namely to the specification of the letter shapes
themselves. A more accurate way to describe the two parts of my lecture would
be to say that the first part was about 1EX, a system that takes manuscripts
and converts them into specifications about where to put each character on
each page; and the second part will be about another system I'm working on
called METAFONT, which generates the characters themselves, for use in the
inkier parts of the printing business.

Before I get into the second part of my lecture I need to discuss recent
developments in printing technology. The ~ost reliable way to print mathe
matics books of high quality during the past several decades has been to use
the mono type process3 , which casts characters in hot lead, together with hand
operations for complex built-up formulas. When I watched this process being
applied to my own books several years ago, I was surprised to learn that the
lead type was used to print only one copy; the master copy was then photo
graphed, and the real printing took place from the photographic plates. This
somewhat awkward sequence of steps was justified because it was the best
way known to give good results. During the 1960s, however, hot lead type was
replaced for many purposes by devices like the Photon machine used to pre
pare the printed programs for today's lecture; in this case the process is entirely
photographic aI, since the letter shapes are stored as small negatives on a
rotating disk, and the plates needed for printing are obtained by exposing the
film after transforming the characters into the proper size and position with
mirrors and lenses (cf. [10]). Such machines are limited by slow speed and the
difficulties of adding new characters.

"Third-generation" typesetting equipment. More recent machines, such as
the one used to prepare the current volumes of the Transactions, have re
placed these "analog" processes by a "digital" one. The new idea is to divide
the page or the photographic negative into millions of tiny rectangles, like a
piece of graph paper or like a television screen but with a much higher resolu-

3 Actually the Monotype Corporation now manufactures digital photosetting equipment as
well as the traditional 'monotype' machines.

16 Mathematical Typography

tion of about 1000 lines per inch. For each of the tiny "pixels" in such a raster
pattern-there are about a million square pixels in every square inch-the
typesetting machine decides whether it is to be black or white, and the black
ones are exposed on the photographic plate by using a very precisely controlled
electron beam or laser beam. Since these machines have few moving parts and
require little or no mechanical motion, they can operate at very high speeds
even though they are exposing only a tiny bit of the film at any time.

Stating this another way, the new printing equipment essentially treats
each page of a book as a huge matrix of O's and l's, with ink to be placed in the
positions that are 1 while the 0 positions are to be left blank. It's like the

. flashcards at a football stadium, although on a much grander scale. The total
job of a system like 1EX now becomes one of converting an author's manuscript
into a gigantic matrix of binary digits or "bits."

The first question we must ask, of course, is, "What happens to the qual
ity?" Clearly a television picture is no match for a photograph, and the digital
typesetting machines would be quite unsatisfactory if their output looked
inferior to the results obtained with metal type. In matters like this, I have to
confess being somewhat of a stickler and a perfectionist; for example, I refuse
to eat margarine instead of butter, and I have never heard an electronic organ
that sounds even remotely as beautiful as a pipe organ. Therefore I was quite
skeptical about digital typography, until I saw an actual sample of what was
done on a high quality machine and held it under a magnifying glass: It was
impossible to tell that the letters were generated with a discrete raster! The
reason for this is not that our eyes can't distinguish more than 1000 points per
inch; in appropriate circumstances they can. The reason is that particles of ink
can't distinguish such fine details-you can't print the edge of an ink line that
zigzags 1000 times on the diagonal of a square inch, the ink will round off the
edges. In fact the critical number seems to be more like 500 than 1000. Thus the
physical properties of ink cause it to appear as if there 1'Vere no raster at all.

It now seems clear that discrete raster-based printing devices will soon
make the other machines obsolete for nearly all publishing activity. Thus in
future days the fact that Gutenberg and others invented movable type will not
be especially relevant; it will merely be a curious historical fact that influenced
history for only about 500 years. The ultimately relevant thing will be mathe
matics: the mathematics of matrices of O's and l's!

Semiphilosophical remarks. I ~ave to tell the next part of the story from my
personal point of view. As a combinatorial mathematician, I really identify
with matrices of O's and l's, so when I learned last spring about such printing
machines it was impossible for me to continue what I was doing; I just had to

Mathematical Typography 17

take time off to explore the possibilities of the new equipment. My motivation
was also increased by the degradation of quality I had been observing in
technical journals; and furthermore the publishers of my books on computer
programming had tried valiantly but unsuccessfully to produce the second
edition of volume 2 in the style of the first edition without using the rapidly
disappearing hot lead process. It appeared that my books would soon have to
look as bad as the journals! When I saw that these problems could all be solved
by appropriate computer programming, I couldn't resist trying to find a solu
tion by myself.

One of the most important factors in my motivation was the knowledge
that the problem would be solved once and for all, if I could find a purely
mathematical way to define the letter shapes and convert them to discrete
raster patterns. Even though new printing methods are bound to be devised in
the future, possibly even before I finish volume seven of the books I'm writing,
any new machines are almost certain to be based on a high precision raster;
and although the precision of the raster may change, the letter shapes can
stay the same forever, once they are defined in a machine-independent form.
My goal·was therefore to give a precise description of the shapes of all the
symbols I would need.

I looked at the way fonts of type are being digitized at several places in
different parts of the world; it is basically done by taking existing fonts and
copying them using sophisticated camera equipment and computer programs,
together with manual editing. But this seemed instinctively wrong to me,
partly because the sophisticated equipment wasn't readily available in our
laboratory at Stanford, and partly because the copying of copyrighted fonts is
of questionable legality, but mostly because I felt that the whole idea of
making a copy was not penetrating to the heart of the problem. It reminded me
of the anecdote I had once heard about slide rules in Japan. According to this
story, the first slide rule ever brought to the Orient had a black speck of dirt on
it; so for many years all Japanese slide rules had a useless black spot in the
same position! The story is probably apocryphal, but the point is that we
should copy the substance rather than the form. I felt that the right question
to ask would not be "How should this font of type be copied?" but rather: "If
the great type designers of the past were alive today, how would they design
fonts for the new equipment?" I didn't expect to be capable of finding the exact
answer to this question, of course, but I did feel that it would lead me in the
right direction, so I began to read about the history of type design.

Well, this is a most fascinating subject, but I can't talk much about it in a
limited time. Two of the first things I read were autobiographical notes by two

18 Mathematical Typography

well-known 20th century type designers, Hermann Zapf [51] and Frederic W.
Goudy [20], and I was especially interested by some of Zapf's remarks:

With the beginning of the 'sixties ... I was stimulated by this new
field [photocomposing] ... The type-designer-or better, let us start
calling him the alphabet designer-will have to see his task and his
responsibility more than before in the coordination of the tradition in
the development of letterforms with the practical purpose and the
needs of the advanced equipment of today The new photocom
posing systems using cathode-ray tubes (CRT) or digital storage for
the alphabet bring with them some absolutely new technical prob
lems, many more than did the past ... [51, p. 71].

I have the impression that Goudy would not have been so sympathetic to
the new-fangled equipment, yet his book also gave helpful ideas.

Mathematical type design. Fortunately the Stanford Library has a wonder
ful collection of books about printing, and I had the chance to read many
rather.rare source materials. I learned to my surprise that the idea of defining
letters mathematically is by no means new, it goes back to the fifteenth
century and it became rather highly developed in the early part of the six-.
teenth. This was the time when there were Renaissance men who combined
mathematics with the real world, and in particular there was an interest in
constructing capital letters with ruler and compass. The first person to do this
was apparently Felice Feliciano, about 1460, whose handwritten manuscript in
the Vatican Library was published 500 years later [19]. Feliciano was an
excellent calligrapher who wanted to put the principles of calligraphy on a
sound mathematical foundation. Several other fifteen-century authors made
similar experiments ([8] gives a critical summary of these early developments),
but the most notable work of this kind appeared in the early sixteenth century.

The Italian mathematician Luca Pacioli, who had previously written the
most influential book on algebra at the time (one of the first algebra books ever
published), included an appendix on alphabets in his De Divina Proportione, a
book about geometry and the "golden section" that appeared in 1509. An
other notable Italian work on the subject was published by Francesco Tor
niello in 1517 [48], [33]; Figure 4 illustrates the letter B as constructed by
Pacioli, Torniello, and by Giovanbattista Palatino [43]. Palatino was one of the
best calligraphers of the century, and he did this work about 1550. Similar work
appeared in Germany and France; the German book was probably the most
famous and influential, it was Albrecht Durer's Underweysung der Messung
[18], a manual of instruction in geometry for Renaissance painters. The French
book was also rather popular, it was Champ Fleury by Geofroy Tory [49], the

Mathematical Typography

(a)

(c)

FIGURE 4. Sixteenth century ruler-and-com
pass constructions for the letter B by (a) Pacioli
[42], (b) Torniello [48], and (c) Palatino [43].

19

(b)

first royal printer of France and the man who introduced accented letters into
French typography. Figure 5 shows Tory's two suggestions for the letter B. Of
all these books I much prefer Torniello's, since he was the only one who stated
the constructions clearly and unambiguously.

Apparently nobody carried this work further to lower case letters, numer
als, or italic letters and other symbols, until more than 100 years later when
Joseph Moxon made a detailed study of some beautiful letters designed in
Holland [38]. The ultimate in refinement of this mathematical approach took
place shortly afterwards when Louis XIV of France commissioned the creation
of a Royal Alphabet. A commission of artists and typographers worked on
Louis's project for more than ten years beginning about 1690, and they made
elaborate constructions such as those shown in Figure 6 [24].

20 Mathematical Typography

(a) (b)

FIGURE 5. Two more B's, by Tory [49].

Thus it is clear that the mathematical definition of letter forms has a long
history. However, I must also report near-universal agreement among today's
scholars of typography that those efforts were a failure. At worst, the ruler
and-compass letters have been called "ugly" and at best they are said to be
"deprived of calligraphic grace" [8]. The French designs were not really fol
lowed faithfully by Phillipe Grandjean who actually cut Louis XIV's type, nor
by anybody else to date, and F. W. Goudy's reaction to this was: "God be
praised!" [20, p.139]. Such strictly geometric letter forms were in fact criticized
already in the sixteenth century by Giovan Cresci, a noted scribe at the
Vatican Library and the Sistine Chapel. Here is what Cresci wrote in 1560:

I have come to the conclusion that if Euclid, the prince of geometry,
returned to this world of ours, he would never find that the curves of
the letters could be constructed by means of circles made with com
passes. [16].

Well, Cresci was right. But fortunately there have been a few advances in
mathematics during the last 400 years, and we now have some other tricks up
our sleeves besides straight lines and circles. In fact, it is now possible to
prescribe formulas that match the nuances of the best type designers; and

Mathematical Typography

FIGURE 6. Roman and italic letters designed
for Louis XIV of France [24].

21

22 Mathematical Typography

perhaps a talented designer working with appropriate mathematical tools will
be able to produce something even better than we now have.

Defining good curves. Let's consider the following mathematical problem:
Given n points Zh Z2, ... ,ZII in the plane, what is the most pleasing closed
curve that goes through them in the specified order Zh Z2, ... ,ZII and then
returns to Zt? To avoid degenerate situations we may assume that n is equal to
4 or more. This problem is essentially like the dot-to-dot puzzles that we give to
young children.

Of course it is not a well-posed mathematical problem, since I didn't say
what it means for a curve to be "most pleasing". Let's first postulate some
axioms that the most pleasing curve should satisfy.

PROPERTY 1 (INVARIANCE). If the given points are rotated, translated, or
expanded, the most pleasing curve will be rotated, translated, or expanded in
the same way. [In symbols: MPC(azt + b, . .. ,az lI + b) = aMPC(zh' .• ,ZII) +
b.]

PROPERTY 2 (SYMMETRY). Cyclic permutation of the given points does not
change the solution. [MPC(Zh Z2, ••• ,z,J = MPC(Z2' .•• ,Z", Zt).]

PROPERTY 3 (EXTENSIONALITY). Adding a new point that is already on the
most pleasing curve does not change the solution. [If Z is between Zk and Zk+1 on
MPC(Zh' .. ,z,J then MPC(Zh' .• ,Zk, Z, Zk+h' •• ,z,J = MPC(Zh' .. ,Zk, Zk+h
••• ,ZII)']

These properties are rather easy to justify on intuitive grounds. For ex
ample, the extensionality property says that additional information won't lead
to a poorer solution.

The next property is not so immediately apparent, but I believe it is
important for the application I have in mind.

PROPERTY 4 (LOCALITY). Each segment of the most pleasing curve be
tween two of the given points depends only on those points and the ones
immediately preceding and following. [MPC(Zh Z2, .•• , ZII) is composed of
MPC(zlI' Zh Z2, za> from Zl to Z2, then MPC(Zh Z2, Z3, z.J from Z2 to Z3, ... ,then
MPC(Zn-h Z'" Zh Z2) from ZII to Zt.] According to the locality property, changes to
one part of a pattern won't affect the other parts. This simplifies our search for
the most pleasing curve, because we need only solve the problem in the case of
four given points; and experience shows that it is also a great simplification
when letters are being designed, since individual portions of strokes can be
dealt with separately. Incidentally, Property 4 implies Property 2 (cyclic sym
metry).

One way to satisfy all four of these properties is simply to let the most
pleasing curve consist of straight line segments. But this doesn't seem ade
quately pleasing, so we add another postulate:

Mathematical Typography 23

PROPERTY 5 (SMOOTHNESS). There are no sharp corners in the most pleas
ing curve. [MPC(Zb ... ,zJ is differentiable, under some parameterization.]

In other words, there is a unique tangent at every point of the curve.
The extensionality, locality, and smoothness properties taken together

imply, in fact, that the direction of the tangent at Zk depends only on Zk-b Zk and
Zk+1' For this tangent appears in two curves, the one from Zk-l to Zk and the one
from Zk to Zk+b hence we know that it depends only on (Zk~2' Zk-b Zk, Zk+J and that
it depends only on (Zk-b Zk, Zk+b Zk+~' By the extensionality property, we can
assume thatn is at least 5, so Zk-2 is different from Zk+2 and the tangent must be
independent of them both. We have actually used only a very weak form of
extensionality in this argument.

If we apply the full strength of the extensionality postulate, we obtain a
much stronger consequence, which is quite unfortunate: There is no good way
to satisfy Properties 1-5! For example, suppose we add one more axiom, which
is almost necessary in any reasonable definition of pleasing curves:

PROPERTY 6 (ROUNDNESS). If Zh Z2, Z3, Z4 are consecutive points of a circle,
the most pleasing curve through them is that circle.

This property together with our previous observation about the tangent
depending only on three points completely determines the tangent at each of
'our given points; namely, the tangent at Zk is the tangent to the circle that
passes through Zk-h Zk, and Zk+1' (Let's ignore for the moment the possibility
that these three points lie on a straight line.) Now the extensionality property
says that if Z is any point between Zl and Z2 on the most pleasing curve for Zr,

••• ,Zn, we know the tangent direction at z, as long as Z is not on the line from
Zl to Z2' But there is a unique curve starting at any Z off this line and having the
specified tangents at each of its points, namely the arc of the circle from Z to Z2

passing through Zl: No matter where you start, off the straight line, there is
only one curve having the correct tangents. It follows that the tangent at Z2

depends only on Zh Z2, and the tangent at Zr, and this is impossible.
The above argument proves that there is no way to satisfy Properties 3, 4,

5, and 6. A similar argument would show the impossibility for any reasonable
replacement for Property 6, since the tangents determined for all Z between Zl

and Z2 will define a vector field in which there are unique curves through
essentially all of the points z, yet a two-parameter family of curves is required
between Zl and Z2 in order to allow sufficient flexibility in the derivatives there.

So we have to give up one of these properties. The locality property is the
most suspicious one, but I mentioned before that I didn't .want to give it up;
therefore the extensionality property has to go. This means that if we take the
most pleasing curve through Zb ••• ,Zn and if we specify a further point Z

actually on this curve between Zk-l and Zk, where the tangent at Z is not the

24 Mathematical Typography

same as the tangent to the circle from Zk-l to Z to ZkJ then the "most pleasing"
curve through these n + 1 points will be different. A possible virtue is that we
are encouraged not to specify too many points; a possible drawback is that we
may not be able to get the curves we want.

A practical approximation. Returning to the question of type design, our
goal is to specify a few points Zk and to have a mathematical formula that
defines a pleasant curve through these points; such curves will be used to
define the shape· of the character we are designing. Ideally it should also be
easy to compute the curves. I decided to use cubic equations

z(t) = ao + a1t + a2t2 + a3t3

where ao, all a2, a3 are comp~ex numbers and t is a real parameter. The curves I
am dealing with are cubic splines, namely piecewise cubic equations, since a
different cubic will be used in each interval between two of the given points;
however, the way I am determining the coefficients of these cubics is dif
ferent from any of the methods known to me, in my limited experience with
the vast literature about splines. Perhaps my way to choose the coefficients is
more awkward than the usual ones; but I have obtained good results with it, so
I'm not ashamed to reveal the curious way I proceeded.

In the first place, I decided that the cubic equation between Zl and Z2

should be determined completely by Zl and Z2 and the directions of the tangents
at Zl and Z2' We have already seen that these tangents are essentially prede
termined if Properties 4, 5, and 6 are to be valid, and I have also found frequent
occasion in type design when it was desirable to specify that a certain tangent
was to be made horizontal or vertical. Thus, my method of computing a nice
curve through a given sequence of points is first to compute the tangent
directions at each point, then to compute the cubics in each interval based
solely on the endpoints of that interval and on the desired tangents there. By
rotation and translation and scaling, according to Property 1, we can assume
that the problem is to go iIi the complex pl~ne from 0 to 1, with given directions
at the endpoints. The most general cubic equation that does this is

z(t) = 3t2 - 2t3 + re iIJt(1 - t)2 - se-N't 2(1 - t),

and it remains to determine positive numbers rand s as appropriate functions
of (J and cpo

In the second place, I realized that it was impossible to satisfy Property 6
with cubic, splines, because you can't draw a circle as a cubic function oft. But I
wanted to be able to get curves that were as near to being circles as possible,
whenever four consecutive data points lay on a circle; the curves should

Mathematical Typography 25

preferably be indistinguishable from circles as far as the human' eye is con
cerned. Therefore when 8 = cp I decided to choose r = s in such a way that z(t)
was precisely on the relevant circle, hoping that the curve between 0 and t and
between t and 1 wouldn't veer too far away. Well, this turned out to work
extremely well: A little calculation, done with the help of a computer,4 showed
that the maximum deviation from a true circle occurs at the point t = (3 ±
V3)/6, and the relative error is negligibly small. For example, if we take four
points equally spaced at distance 1 from some center, the spline curve defined
by these points in the above manner stays between distance 1 and distance
71154 - 2V279 < 1.00055 from the center, an error of less than one part in a
thousand. If there are 8 points, the maximum error is less than 4 parts per
million; and if there are n points, the maximum error goes to zero as lin 6.

(Changing the notation slightly, let

z(t) = 1 + (eiIJ - 1)(3t 2 - 2t3) + 4it(1 - t)(1 - t - ei6t)(sin ~)/ (1 + cos :)

andf(t) = Iz(t)12. Then

[

8]2 cos --1
f'(t) = 8(sin2 :) ~ (t - 1)t (2t - 1)(6t 2 - 6t + 1)

cos 2" + 1

and

I (3 - v'3)1 8
6

8
10

:;:~ Iz(t)1 = z 6 = 1 + 55296 + 106168320 + ... ,

while mino:5t:51Iz(t)1 = z(O) = z(!) = z(1) = 1. The "two-point circle" has max Iz(t)1 =
Y28/27 = 1.01835, while the three-point circle has max Iz(t)1 = Y325/324 =
1.001542, and the eight-point circle has max Iz(t)1 = 1.0000042455.)

Another case when a natural way to choose rand s suggests itself is when
8 + cp = 90°; then the curve z(t) should be nearly the same as an ellipse having
the endpoints on its axes. (This boils down to requiring that (3t2

- 2t3 +
(rlcos 8)t(1 - t)2)2 + (3t2 - 2t3 - (slcos cp)t2(1 - t) - 1)2 be approximately equal to
1.) So far therefore I knew that I wanted

4 Thanks are due to the developers of the computer algebra system called MACSYMA at
MIT, and to the ARPA network which makes this system available for research work.

26 Mathematical Typography

2 2 when (J = cp; r=----
1 + cos (J ,

s=----
1 + cos cp

2 cos cp
s = -:-:------:"":"":":":'-:-----:~

(1 + cos 45°)(cos 45°)
when (J + cp = 90°.

So I tried the formulas

2 cos (J
r =------:---:-------

(1 + cos (J; cp) (cos (J; cp) ,
s = 2 cos cp

(1 + cos (J; cp) (cos (J; cp)'

which fit both cases. However, this didn't give satisfactory results, especially
when (J + cp approached 180°. My second attempt was

r=
2 sin cp

. (J+cp
sm---

2

s = 2 sin (J

(1 + cos (J ; cp)
. (J+cp

Sln---
2

and this has worked very well. Figure 7 shows the spline curves that result
from the above approach when cp = 60° and when (J varies from 0° to 120° in 5°
steps.

It can be proved that if (J and cp are nonnegative and less than 180°, the
cubic curve z(t) I have defined will never cross the straight lines at angles (J and
cp that meet the endpoints 0 and 1 respectively. This is a valuable property in
type design, since it can be used to guarantee that the curve won't get out of
bounds. However, I found that it also led to unsatisfactory curves when one of
(J or cp was very small and the other was not, since this meant that the curve z(t)
would be very close to a straight line yet it would enter that line from outside
at a rather sharp angle. In fact, the angle (J is not infrequently zero, and this
forces a straight line and a sharp corner at the right endpoint. Therefore I
changed the formulas by making sure that both rand s are always t or greater
unless special exceptions are made; furthermore I never let r or s exceed 4.
Figure 8 shows the spline curves obtained under the same conditions as Figure
7, but with s set to t if the above formula calls for any smaller value.

Using these techniques we obtain a system for drawing reasonably nice
curves, if not the most pleasing ones, and it is especially good at circles. If the
method gives the wrong tangent direction at some point, you can control this
by specifying the correct direction explicitly.

Mathematical Typography

FIGURE 7. Spline curves with () = 0° (5°) 120° and
cf> = 60°.

FIGURE 8. Same as Figure 7 but adjusted so
that r' = max(t, r), s' = max(t, s).

27

Application to type design. Now let's take a closer look at what can be
drawn with a mathematical system like this. I suppose the natural thing to
show you would be the letters A toZ; but since this is a mathematical talk, let's
consider the digits 0 to 9 instead. (See Figure 9.) Incidentally, the way I have

0123456789
FIGURE 9. Digits 0 to 9 drawn by the prototype
METAFONT programs. (Further refinements to
these characters will be made before the font
has its final form.)

arranged these numerals illustrates a fundamental distinction between a
mathematician and a printer: the mathematician puts 0 next to the 1, but the
printer always puts it next to the 9.

Most of these digits are drawn by using another idea taken from the
history of typography, namely to imitate the calligrapher who uses pen and
ink. Consider first the numeral '3', for example. The computer program that

28 Mathematical Typography

drew this symbol in Figure 9 can be paraphrased as follows. "First draw a dot
whose left boundary is i of the way from the left edge to the right edge of the
type and whose bottom boundary is ! of the way from the top to the bottom of
the desired final shape. Then take a hairline pen and, starting at the left of the
dot, draw the upward arc of an ellipse; after reaching the top, the pen begins to
grow in width, and it proceeds downward in another ellipse in such a way that
the maximum width occurs on the axis of the ellipse, with the right edge of the
pen ~ of the way from the left edge to the right edge of the type. Then the pen
width begins to decrease to its original size again as the pen traverses another
ellipse taking it down to a position 48% of the way from the top to the bottom of
the desired final shape. . . ."

Notice that instead of describing the boundary of the character, as the
renaissance geometers did, my METAFONT system describes the curve
traveled by the center of the pen, and the shape of this pen is allowed to vary as
the pen moves. The main advantage of this approach is that the same defini
tion readily yields a family of infinitely many related fonts of type, each font
being internally consistent. The change in pen size is governed by cubic splines
in a manner analogous to the motion of the pen's center. In order to define the
20 or so different type fonts used in various places in my books, I need for the
most part to use only three kinds of pens, namely (ir a circular pen, used for
example to draw dots and at the base of the numeral '7'; (ii) a horizontal pen,
whose shape is an ellipse, the width being variable but the height being
constantly equal to the height ofa hairline pen-such a pen is used most of the
time, and in particular to draw all of the numeral '3' except for the dots; (iii) a
vertical pen, analogous to the horizontal one, used for example to draw the
strokes at the bottom of the '2' and at the top of the '5' and the '7'. For the fonts
I am using, it was not necessary to use an oblique pen (i.e., an ellipse that is
tilted on its side) except to make the tilde accent for Spanish n's; but to produce
fonts of type analogous to Times Roman, an oblique pen would of course be
used. If this system were to be extended to Chinese and Japanese characters, I
think it might be best to add another degree of freedom to the pen's motion,
allowing an elliptical pen shape to rotate as well as to change its width.

The digit '4' shows another aspect of the METAFONT system. Although
this character is fairly simple, consisting entirely of straight lines, notice that
the thick line has to be cut off at an angle at the top. In order to do this, there
are erasers as well as pens. First the computer draws a thick line all the way
from top to bottom, like the upper case letter 'I', then it takes an eraser that
erases everything to its left and comes down the diagonal stroke, then it takes

Mathematical Typography 29

a hairline pen and finishes the diagonal stroke. Such an eraser is used also at
the top of the'!' and the bottom of the '2', etc.

Sometimes a simple spline seems to be inadequate to describe the proper
growth of pen width, so in a few cases I had to resort to describing the left and
right edges of the pen as separate curves, to be filled in afterwards. This occurs
for example in the main stroke of the numeral '2', whose edges are defined by
two splines having a specified tangent at the bottom and having vertical slope
at the right of the curve.

0ABCDEFGHIJKLMN
OPQRSTUVWXYZ["]-

• abcdefghijklmno

pqrst u vwxyzfffiflffiffi

0123456789:;<=>?

!"c;Q%&'O"'+,-.j'

relfureSLfA<E

A8ASIlE'Y'<l> 01 J

FIGURE 10. A font of 128 characters defined by
METAFONT with standard pen settings. (The
accent characters will be appropriately raised
and centered over other letters when used by
'lEX.)

With these techniques I found that it was possible to define a decent-look
ing complete font, containing a total of 128 characters, in about two months,
although it will still be necessary of course to do fine tuning when more trial
pages are typeset. (See Figure 10.) The most difficult symbol by far, at least for
me, was the letter 8 (and the numeral 8, which uses the same procedure); in
fact I spent three days and nights without sleep, trying to make the 8 look
right, before I got it. At one point I even felt it would be easier to rewrite all my
books without using any 8's! After the first day of discouraging trials, I
showed the meager results I had to my wife, and she said, "Why don't you
make it S-shaped?"

30 Mathematical Typography

(a) (b)

Dm.rtrllctzol7 de La b.urr S.

(c)

FIGURE 11. The letter S as defined by (a) Pacioli
[42]; (b) Torniello [48]; (c) Palatino [43]; (d)
French commission under Jaugeon [24].

(d)

31 l Mathematical Typography
________ --l....---..J

Figure 11 shows how this problem was solved by Pacioli, Torniello,
Palatino, and the French academicians; but the letter doesn't look like a
modern S. Furthermore I think the engraver of the French S cheated a little in
rounding off some lines near the middle-perhaps he used a French curve.
With my wife's assistance, I finally came up with a satisfactory solution,
somewhat like those used in the sixteenth century but generalized to ellipses.
Each boundary of each arc of my S curve is composed of an ellipse and a
straight line, determined by (i) the locations of the beginning and ending
points, (ii) the slope of the straight line, and (iii) the desired left extremity of
the curve. It took me three hours to derive the necessary formulas, and I think
Newton and Leibniz would have enjoyed working on this problem. Figure 12
shows various trial S's drawn by this scheme with different slopes; I hope you
prefer the middle one, since it is the one I am actually using.

sssssss
FIGURE 12. Different 8's obtained by varying
the slope in the middle. (This shows t, ~, t, 1, !, ~,
and 2 times the "correct" slope.)

Families of fonts. To extend the METAFONT system, one essentially
writes a computer program for the description of each character, in a special
language intended for describing pen and eraser strokes. My colleague R. W.
Gosper has observed that this is the opposite of Sesame Street: Instead of "This
program was brought to you by the letter S" we have "This letter S was
brought to you by a program." There are about 20 parameters to the program,
telling how big a hairline pen is, how wide it should be when drawing straight
or curved stem lines, and specifying the sizes and proportions of various parts
of the letters (the x-height, the heights of ascenders and descenders, the set
width, the length of serifs, and so forth). By changing these parameters, we
obtain infinitely many different styles of type, yet all of them are related and
they seem to blend harmoniously with each other.

For example, Figure 13 shows some of the possibilities. In Figure 13a we
have a conventional "modern" font in the tradition of Bodoni and Bell and
"Scotch Roman". Then Figure 13b shows a corresponding boldface, in which
the hairlines are slightly larger and the stem lines are substantially wider. By

32 Mathematical Typography

(a) Ma th eITIati cal Mathematical
'J'.Y pography Typography

(c)

Mathematical Mathematical'
TYPoe:raphy Typography

(e)

Mathematical A1;Jthematical
Typography TypogTtzph.Y

(g)

MATHEMATICAL M ATl-lcrnat.ie:d

rrYPOGRAPHY rrYPOg"aphy

(i)
M(ltham(lt\Q(l\

Ty pogr(lph y

FIGURE 13. Different styles of type obtained by
varying the parameters to METAFONT: (a)
Computer modern roman; (b) Computer modern
bold; (c) Computer modern sans serif; (d) Com
puter modern sans serif bold; (e) Computer mod
ern typewriter; (f) Computer modern slanted
roman; (g) Computer modern roman with small
caps; (h) Computer modern roman with small
caps and "small lower case"; (i) Computer mod
ern funny.

(b)

(d)

(f)

(h)

Mathematical Typography 33

making the hairlines and stem lines both the same size, and setting the serif
length to zero, we obtain a sans-serif font as shown in Figure 13c. All of these
examples are produced with the same programs defining the letter shapes;
only the parameters are being varied. Actually the particular font shown in
Figure 13c will have a different style of g, because the descenders are espe
cially short in this font, but I have shown this "g" in order to illustrate the
parametric variations. Figure 13d shows a boldface sans-serif style in which
the pen has an oval shape wider than it is tall; I find this style especially
pleasing, particularly because it came out by accident-I designed the pro
grams only so that two or three different fonts would look right, all the others
are free bonuses, and I had no idea that this one would be so nice.

With a suitable setting of the parameters, we can even imitate a type
writer with its fixed width letters, as shown in Figure 13e. There is also a
provision to slant the letters as in Figure 13f; here the pen position is varied,
but the actual shape of the pen is not being slanted, so circles remain circles.

Another setting of the parameters leads to caps and small caps as shown in
Figure 13gj small caps are drawn with the pens and heights ordinarily used for
lower case letters, but controlled by the programs for upper case letters.
Figure 13h shows something printers have never seen before: that is what
happens when you draw lower case letters in the small caps style, and we
might call it "small lower case". It actually turns out to be one of the most
pleasing fonts of all, except that the dots are too large.

Finally, Figure 13i illustrates the variations you can get by giving weirder
settings to the parameters.

When I was an assistant professor at Caltech, the math department sec
retaries used to send occasional "crank" visitors to my office, and I recall one
time when a man came to ask if anybody had calculated the value of 1T "out to
the end" yet. I tried to explain to him that 1T had been proved irrational, but
this didn't seem to sink in, so finally I showed him a table of 1T to 100,000
decimals and told him that the expansion hadn't ended yet. I wish I could have
had my typography system ready at that time, so that I could have shown him
Figure 14!

FIGURE 14. Variation in height, width, and pen
size.

34 Mathematical Typography

Figure 14 illustrates another principle of type design, namely that differ
ent sizes of type in the same style are not simply obtained from each other by
optical transformations. The heights and widths and pen stroke sizes change
at different rates, and a good typographer will design each size of type individ
ually. I'm not claiming that Figure 14 shows the best way for the proportions to
vary; it will take further experimentation before I have a good idea of what is
desirable. The point I wish to make is that the alteration of type sizes for
subscripts and so on is not as simple as it might seem at first, but a system like
METAFONT will be able to vary the parameters quite readily; and visual
experiments on different parameter settings can be carried out quickly. It
used to take months for a type designer to make his drawings and have them
converted to metal molds before he could see any proofs. One of the results was
that there simply wasn't time to give proper attention to all the mathematical
symbols and Greek letters, etc., as well as to the more common symbols, so a
printer of mathematics had to make do with a hodge-podge of available charac
ters in different sizes. (For example, he was often obliged to use different styles
of letters in subscript positions, as we have seen.) Under the approach I am
recommending, we automatically get consistency of all the symbols whenever
the parameters change.

FIGURE 15. Lettering equivalent to this raster
pattern appears in a Norwegian tapestry from
Gildeskaal old church, woven about 1500 [22, p.
116].

From continuous to discrete. The METAFONT system must not only define
the characters in the continuum on the plane, it must also express them in
terms of a discrete raster. Such squaring off of letters on graph paper has a
long history, going back far before the invention of computers or television; for
example, we all can remember seeing cross-stitch embroidery samplers from
the nineteenth century. The same idea on a finer scale has been used in
tapestries for many centuries: In our own home library, my wife found the

Mathematical Typography 35

example of Figure 15 which was woven in the northern part of Norway about
1500; this shows the name of St. Thomas in a style imitating contemporary
calligraphy. Examples that antedate the printing press can surely be found
elsewhere.

]11(1 th eI11 (lties

llla.tllelna.ties
ill,,'· ·1 tl h· Pli'" ·-i til" r~ .::.~. c... . _ c:.

-- -.--- t 1 t • ILl ~I.. _I l~ILl8 .. _Il t._. ~I

m:a. t.hem:3. t.il:~s
FIGURE 16. Adjusting the letters to coarser
rasters.

Figure 16 shows how METAFONT might produce the same letters from
the same parameters but with different degrees of resolution in the raster.
This digitization process itself is considerably more difficult than it may seem
at first, and some nontrivial mathematical concepts were needed before I could
obtain satisfactory results. In the first place, it is not sufficient merely to draw
or to imagine drawing the character with infinite precision and then to
"round" it by blackin'g in all the squares on graph paper that are sufficiently
dark in the true image. One of the reasons this fails is that the three stem lines
of the m, for instance, might be located in different relative positions with
respect to the grid, so that the first stroke might round to three units wide
(say) and the second might round to four. This would be quite unsatisfactory,
as the eye quickly picks up such a variation in thickness, but it is avoided by
METAFONT since the pen itself is first digitized and then the same digitized
pen is used for all three strokes. Another problem is that those three strokes
should be equally spaced; it would look bad if there were seven units between
the first two and eight units between the last two, so the program for 'm' needs
to round its points in such a way that this doesn't happen.

The process of digitizing the pen is not trivial either. Suppose, for example,
we want a circular pen that is 2 raster units wide; the appropriate pen is

36 Mathematical Typography

clearly a 2 x 2 square, which is the closest to a circle that we can come at this
low degree of resolution. Now notice that we can't center a 2 x 2 square on any
particular square, since none of the four squares is at its center; the same
problem arises whenever we have to deal with a pen having even dimensions.
One way to resolve this, would be to insist on working only with odd numbers,
but this would be far too limiting; so METAFONT uses a special rounding rule
for the position of the pen's center. In general, suppose the pen is an ellipse of
integer width wand integer height h; then if the pen is to be positioned at the
real coordinates (x, y), its actual position on the discrete grid is taken to be

(Lx - 8(w)J, Ly - 8(h)J)

where Lx J denotes the greatest integer less than or equal to x, and 8(even) = t,
8(odd) = O. The pen itself, if positioned at the origin, would consist of all
integers (x, y) that satisfy

(
2(X - 8(W)))2 + (2(Y - 8(h)))2 < 1 (28(W) 28(h))2

w h - + max w ' h .

This formula-which incidentally is not the first one I tried-ensures that the
discrete pen will indeed be w units wide and h units high, when wand hare
positive integers. Figure 17 shows the pens obtained for small wand h.

-------..... _--
1111 ••• --
II •••••
II ••••
II*Iee
II"

FIGURE 17. Discrete "elliptical" pens of small
integer width and height.

Mathematical Typography 37

Still another problem appears when we want curved lines to look right.
Figure 18(a) shows a semicircle of radius 10 units, drawn with a pen of height 1
and width 3, when the right boundary of the pen falls exactly at an integer
point; the pen sticks out terribly in one place. On the other hand if this right
boundary falls just shy of an integer point, we get the curve in Figure 18(b),
which looks too flat. The ideal occurs in Figure 18(c), when the right boundary
occurs exactly midway between integers. Therefore the METAFONT pro
grams adjust the location of curves to the raster before actually drawing the
curves, forcing the favorable situation of Figure 18(c); the actual shape of each
letter changes slightly in order to adapt that letter to the desired raster size in
a pleasant way.

(a) (b) (c)

FIGURE 18. Difficulties of rounding an arc
properly. (Three circles of radius 10 drawn with
a 1 x 3 pen.)

There is yet another problem, which arises when the pen is growing in
such a way that the edges of the curve it traces would be monotonic if the pen
were drawn to infinite precision~ yet the independent rounding of pen location
and pen width causes this monotonicity to disappear. The problem arises only
rarely, but when it does happen the eye immediately notices it. Consider, for
example, the completely linear situation in Figure 19, whJre each decrease by
one unit in y is accompanied by an increase of .3 units in x and an increase of .2
units in the pen width W; the intended pen height is constant and very small,
but in the discrete case the pen height is taken to be 1. The lightly shaded
portion of Figure 19 shows the true shape intended, but the. darker squares
show that the digitized form yields a nonmonotonic left boundary. META
FONT compensates for this sort of problem by keeping track of the desired
boundaries when the pen width is varying, plotting the two boundaries inde
pendently. In other words, tHe idea of rounding the pen location and the width

~ __ ~ __________ ~ ______ k1 __ a_th_e_m __ a_tt_·c_a_l_T_y_p_O_g_r_a_p_h_y __________________ ~

Pen width Rounded width
and location and location
(3.5, 0.5,10.5) (3, 0,10)
(3.7, 0.8, 9.5) (3, 0, 9)
(3.9, 1.1, 8.5) (3, 1, 8)
(4.1, 1.4, 7.5) (4, 0, 7)
(4.3, 1.7, 6.5) (4, 1, 6)
(4.5, 2.0, 5.5) (4, 1, 5)
(4.7, 2.3, 4.5) (4, 1, 4)
(4.9, 2.6, 3.5) (4, 2, 3)
(5.1, 2.9, 2.5) (5, 2, 2)
(5.3, 3.2, 1.5) (5, 3, 1)
(5.5, 3.5, 0.5) (5, 3, 0)

FIGURE 19. Failure of monotonicity due to in
dependent rounding. (Rounding takes (w, x, y)
into (LwJ, Lx - 5(LwJ)J, LyJ).)

independently is sometimes efrectively abandoned.
The final digitization problem that I needed to resolve was to make the left

half of an "0" look like the mirror image of its right half, to make a left
parenthesis look like the mirror image of a right parenthesis, and so on. This
was done by having the METAFONT programs in such cases choose a center
point that was either exactly at an integer or an integer plus }, and to intro
duce rounding rules depending on pen motion in such a way that symmetry is
guaranteed.

Alternative approaches. As I have said, I believe the METAFONT system is
successful as a way to define letters and other symbols, but probably even
better procedures can be devised with further research. Some of the lim
itations of my cubic splines are indicated in Figure 20. Part (a) of that illustra
tion shows a five-pointed star and the word "mathematics" in an approxima
tion to my own handwriting, done with straight line segments so that you can
see exactly what the data points are that I fed to my spline routine. Part (b)
shows the way my handwriting might look when I get older; it was obtained by
simply setting r = s = 2 in all the spline segments, therefore making clear what
tangent angles are prescribed by the system. Part (c) is somewhat more disci
plined, it was obtained by putting r = s = } everywhere. Figure 20(d) is like
Figure 20(c) but drawn with a combined pen-and-eraser. Such a combination
can lead to interesting effects, and the star here is my belated contribution to
America's bicentennial.

When the general formulas for cubic splines are used as I explained above,
we get Figure 20(e) in which the star has become a very good approximation to

Mathematical Typography 39

a circle (as I said it would). In this illustration the pen is thicker and has a
slightly oblique stress. Although my handwriting is inherently unbeautiful,
there are still some kinks in Figure 20(e) that could probably be ironed out if a
different approach were taken.

(a)*~

(b)~../d/
(e) Q}11#[ffhY7u;;r~/
(d)O~

(e) 0
FIGURE 20. Examples of the cubic splines
applied to sloppy handwriting.

The most interesting alternative from a mathematical standpoint seems
to be to find a curve of given length that minimizes the integral of the square of
the curvature with respect to arc length. This integral is proportional to the
strain energy in a mechanical spline (in other words, a thin slat or beam) of the
given length, going through the given points, so it seems to be an appropriate
quantity to minimize. E. H. Lee and G. E. Forsythe [31] have reviewed early
work on this variational problem, and shown that it is equivalent to having the
spline at equilibrium with forces applied only at the given points of support.
The Norwegian mathematician Even Mehlum [36] has shown that if we specify
a fixed arc length between consecutive points, the optimum curve will have
linearly changing curvature of the form ax + by + c at point (x, y), and he has
suggested choosing the constants by taking b /a = (Y2 - Yt)/(X2 - xJ between
(Xh yJ and (x 2, y~, and requiring that slope and curvature be continuous across
endpoints. Such an approach seems to require considerably more computation

40 Mathematical Typography

than the cubic splines recommended here, but it may lead to better curves, e.g.
satisfying the extensionality property.

Another interesting approach to curve-drawing, which may be especially
useful for simulating handwriting, is a "filtering" method suggested to me
recently by Michael S. Paterson of the University of Warwick (unpublished). To
get a smooth curve passing through points Zk, assuming that these points are
about equally spaced on the desired curve, one simply writes

Z(t) = ~ (-l)kzkf(t - k) / ~ (-l)"f(t - k)

wheref(t) is an odd function of order t-1 as t ~ 0, decreasing rapidly away from
zero; e.g.,

f(t) = csch t = 2j(e t - e-t).

I have not had time yet to experiment with Paterson's method or to attempt to
harness it for the drawing ofletters. It is easy to see that the derivativez'(zk) =
f(1)(Zk+l - Zk-l) - f(2)(Zk+2 - Zk-2) + ... lies approximately in the direction of
Zk+l - Z,...-l.

rnathematics
mathematics
mathematics
mathematics
mathema tics
mathematicB
mathematics
mathematics
math eIhf),t jcs
matnemat\c~
mat heD] l\tic$
IhaihelDtL\j es

FIGURE 21. Increasingly random pen positions;
a = 0,1,

Mathematical Typography 41

Randomization. In conclusion, I'd like to report on a little experiment that I
did with random numbers. One might complain that the letters I have de
signed are too perfect, too much like a computer, so they lack "character." In
order to counteract this, we can build a certain amount of randomness into the
choices of where to put the pen when drawing each letter, and Figure 21 shows
what happens. The coordinates of key pen positions were chosen indepen
dently with a normal distribution and with increasing standard deviation, so
that the third example has twice as much standard deviation as the second,
the fourth has three times as much, and so on. Note that the two m's on each
line (except the first) are different, and so are the a's and the t's, since each
letter is randomly drawn.

After the deviation gets sufficiently large the results become somewhat
ludicrous; and I don't want people to say that I ended this lecture by making a
travesty of mathematics. So let us conclude by looking at Figure 22, which
shows what is obtained in various fonts when the degree of randomness is
somewhat controlled. I think it can be said that the letters in this final example
have a warmth and charm which makes it hard to believe that they were really
generated by a computer following strict mathematical rules. Perhaps the
reason that the printing of mathematics looked so nice in the good old days was
that the fonts of type were imperfect and inconsistent.

mathematics
mathematics
mathematics

mat h Q m D. t \ (lQ
FIGURE 22. A bit of randomness introduced
into various styles of type.

Summary. I'd like to summarize now by pointing out the moral of this long
story. My experiences during the last few months vividly illustrate the fact
that there are plenty of good mathematical problems still waiting to be solved,
almost everywhere you look--especially in areas of life where mathematics has
rarely been applied before. Mathematicians can provide solutions to these
problems, receiving a double payoff-namely the pleasure of working out the
mathematics, together with words of appreciation from the people who can use
the solutions. So let's go forth and apply mathematics in new ways.

[42 Mathematical Typography

Acknowledgments. I would like to thank my wife Jill for the many impor
tant suggestions she made to me during critical stages of this research; also
Leo Guibas and Lyle Ramshaw for the help they provided in making illustra- .
tions at Xerox Palo Alto Research Laboratories; also Lester Earnest, Michael
Fischer, Frank Liang, Tom Lyche, Albert Meyer, Michael Paterson, Michael
Plass, Bob Sproull, Jean E. Taylor, and Hans Wolf, for helpful ideas and
stimulating discussions and correspondence about this topic; also Gordon L.
Walker, for verifying my conjectures about the printing history of the Trans
actions and for providing me with additional background information; also
Professor Dirk Siefkes for his help in acquiring Figures 4(c) and ll(c), and the
Kunstbibliothek Berlin der Staatlichen Museen Preussischer Kulturbesitz for
permission to publish them; and to Andre Jammes for permission to publish
Figures 6 and l1(d).

Bibliography. The references below include several articles not referenced
in the main text, namely a discussion of publishing at the American Institute
of Physics [37]; some experiments in typesetting physics journals with the Bell
Labs system [32], [7]; computer aids for technical magazine layout and editing,
together with a brief proposal for a standard typesetting language [11]; reports
about early computer programs for character generation and mathematics
composition [23], [30], [34], [35], [40], [46]; a description of the mathematics a
traditional printer needs to know [9]; three standard references on the
typesetting of mathematics [14], [47], [50]; some fonts of type and special
characters designed by the American Mathematical Society [39]; a recent and
highly significant approach to mathematical definition of traditional type
faces based on conic sections and on one-dimensional splines [15]; a proposal for
a new way to control the spacing between letters based on somewhat mathe
matical principles [28]; and two purely mathematical papers inspired by typog
raphy [13], [21].

I recently learned of another paper about the problem of drawing "most
pleasing curves" subject to the locality property: R. C. Johnson, Interpolation
by Local Space Curves, Journal of Computational and Applied Math. 3 (1977)
pp. 79-84. Johnson uses quintic splines in order to obtain continuous curvature
at the transition points.

Mathematical Typography 43

REFERENCES

1. A. V. Aho, S. C. Johnson, and J. D. Ullman, Typesetting by ACM considered
harmful, Communications of the ACM 18 (1975), 740.

2. American Mathematical Society, Development of the Photon for efficient math
ematical composition, Final report (May 10, 1965), National Science Foundation grant
G-21913; NTIS number PB168627.

3. American Mathematical Society, Development of computer aids for tape-control
of photocomposing machines, Report No.2 (July 1967), Extension of the system of
preparing a computer-processed tape to include the setting of multiple line equations,
National Science Foundation grant GN-533; NTIS number PB175939.

4. American Mathematical Society, Development of computer aids for tape-control
of photocomposing machines, Final report, Section B (August 1968), A system for
computer-processed tape composition to include the setting of multiple line equations,
National Science Foundation grant GN-533; NTIS number PB179418.

5. American Mathematical Society, Development of computer aids for tape-control
of photocomposing machines, Final report, Section C (January 1969), Implementation,
hardware, and other systems, National Science Foundation grant GN-533; NTIS num
ber PB182088.

6. American Mathematical Society, To complete the study of computer aids for
tape-control of composing machines by developing an operating system, Final report,
no. AMATHS-CAIDS-71-0 (April 1971), National Science Foundation grant GN-690;
NTIS number PB200892.

7. American Physical Society, APS tests computer system for publishing opera
tions, Physics Today 30, 12 (December 1977), 75.

8. Donald M. Anderson, Cresci and his capital alphabets, Visible Language 4
(1971), 331-352.

9. J. Woodard Auble, Arithmetic for printers, second ed., Peoria, 111., Bennett,
1954.

10. Michael P. Barnett, Computer typesetting: Experiments and prospects, Cam
bridge, Mass., M.I.T. Press, 1965.

11. Robert W. Berner and A. Richard Shriver, Integrating computer text process
ing with photocomposition, IEEE Trans. on Prof. Commun. PC-16 (1973), 92-96. This
article is reprinted with another typeface and page layout in Robert W. Berner, The
role of a computer in the publication of a primary}ournal, Proc. AFIPS Nat. Comput.
Conf. 42, Part II (1973), M16-M20.

12. Peter J. Boehm, Software and hardware considerations for a technical typeset
ting system, IEEE Trans. on Prof. Commun. PC-19 (1976), 15-19.

13. J. A. Bondy, The 'graph theory' of the Greek alphabet, Graph Theory and
Applications, Y. Alavi et a1., eds., Berlin, Springer-Verlag, 1972, pp. 43-54.

14. Theodore William Chaundy, Percy Reginald Barrett, and Charles Batey, The
printing of mathematics, Oxford, Oxford Univ. Press, 1954.

15. P. J. M. Coueignoux, Generation of roman printed fonts, Ph.D. thesis, Dept. of
Electrical Engineering, M.I.T., June, 1975.

16. Giovanni Francesco Cresci Milanese, Essemplare de piv sorti lettere, Rome,
1560. Also edited and translated by Arthur Sidney Osley, London, 1968.

17. T. L. De Vinne, The practice of typography: Modern methods of book composi
tion, New York, Oswald, 1914.

44 Mathematical Typography

18. Albrecht Durer, Underweysung der Messung mit dem Zirckel und Richtscheyt,
Nuremberg, 1525. An' English translation of the ·section on alphabets has been pub
lished as Albrecht Durer, Of the just shaping of letters, R. T. Nichol, trans., Dover,
1965.

19. Felice Feliciano Veronese. Alphabetum romanum, Giovanni Mardersteig, ed.,
Verona, Officina Bodoni, 1960.

20. Frederic W. Goudy, Typologia: Studies in type design and type making with
comments on the invention of typography, the first types, legibility and fine printing,
Berkeley, Calif., Univ. of California Press, 1940.

21. F. Harary, Typographs, Visible Language 7 (1973), 199-208.
22. Roar Hauglid, Randi Asker, Helen Engelstad, and Gunvor Traetteberg, Na

tive art of Norway, Oslo, Dreyer, 1965.
23. A. V. Hershey, Calligraphy for computers, NWL Report No. 2101, Dahlgren,

Va., U. S. Naval Weapons Laboratory, August 1967; NTIS number AD662398.
24. Andre Jammes, La reforme de la typographie royale sous Louis XIV, Paris,

Paul Jammes, 1961.
25. Paul E .. Justus, There is more to typesetting than setting type, IEEE Trans. on

Prof. Commun. PC-15 (1972), 13-16.
26. Alan C. Kay, Microelectronics and the personal computer, Scientific American

237, 3, September 1977, 230-244.
27. Brian W. Kernighan and Lorinda L. Cherry, A system for typesetting mathe

matics, Communications of the ACM 18 (1975), 151-157.
28. David Kindersley, Optical letter spacing for new printing systems, London,

Wynkyn de Worde Society, 1976.
29. Donald E. Knuth, Tau Epsilon Chi, a system for technical text, Stanford

Computer Science report CS675, September, 1978. [Reprinted with corrections as Part
2 of the present book.]

30. Dorothy K. Korbuly, A new approach to coding displayed mathematics for
photocomposition, IEEE Trans. on Prof. Commun. PC-18 (1975), 283-287.

31. E. H. Lee and G. E. Forsythe, Variational study of nonlinear splines, SIAM
Rev. 15 (1973), 120-133.

32. M. E. Lesk and B. W. Kernighan, Computer typesetting of technical journals
on UNIX, Computing Science Tech. Report 44, Murray Hill, N. J., Bell Laboratories,
June, 1976.

33. Giovanni Mardersteig, The alphabet of Francesco Torniello (1517) da Novara,
Verona, Officina Bodoni, 1971.

34. M. V. Mathews and Joan E. Miller, Computer editing, typesetting, and image
generation, Proc. AFIPS Fall Joint Computer Conf. 27 (1965), 389-398.

35. M. V. Mathews, Carol Lochbaum and Judith A. Moss, Three fonts of computer
drawn letters, Communications of the ACM 10 (1967), 627-630.

36. Even Mehlum, Nonlinear splines, Computer Aided Geometric Design, Robert
E. Barnhill and Richard F. Riesenfeld, eds., New York, Academic Press, 1974, pp.
173-207.

37. A. W. Kenneth Metzner, Multiple use and other benefits of computerized pub
lishing, IEEE Trans. on Prof. Commun. PC-18 (1975), 274-278.

38. Joseph Moxon, Regulae trium ordinum literarum typographicarum, or the
rules of the three orders of print letters: viz. the (roman, italick, english) capitals and

Mathematical Typography 45

small; Shewing how they are compounded of Geometrick Figures, and mostly made by
Rule and Compass, London, Joseph Moxon, 1676.

39. Phoebe J. Murdock, New alphabets and symbols for typesetting mathematics,
Scholarly Publishing 8 (1976), 44-53. Reprinted in Notices Amer. Math. Soc. 24 (1977),
63-67.

40. Nicholas Negroponte, Raster scan approaches to computer graphics, Comput
ers and Graphics 2 (1977), 179-193.

41. Wolfgang A. Ocker, A program to hyphenate English words, IEEE Trans. on
Prof. Commun. PC-18 (1975), 78-84.

42. Luca Pacioli, Divina Proportione, Opera a tutti glingegni perspicaci e curiosi
necessaria Ove ciascun studioso di Philosophia, Propectiva, Pictura, Sculptura: Ar
chitecturo: Musice: altre Mathematice: suavissima: sottile: e admirable et doctrina
consequira: e delectarassi: con varie questione de secretissima scienti.a (Venice, 1509).

43. Giovanbattista Palatino Cittadino Romano, Libro primo del Ie lettere maius
cole antiche romane (unpublished), Berlin Kunstbibliothek, MS. OS5280. Some of the
individual pages are dated 1543, 1546, 1549, 1574, or 1575. See James Wardrop, Civis
romanus sum: Giovanbattista Palatino and his circle, Signature, n.s. 14 (1952), 3-39.

44. Paul A. Parisi, Composition innovations of the American Society of Civil
Engineers, IEEE Trans. on Prof. Commun. PC-18 (1975), 244-273.

45. R. G. D. Richardson, The twenty-ninth annual meeting of the Society, Bull.
Amer. Math. Soc. 29 (1923), 97-116. (See also vol. 28 (1922) pp. 234-235, 378 for com
ments on the special Transactions volume, and pp. 2-3 of vol. 28 for discussion of
deficits due to increased cost of printing.)

46. Glenn E. Roudabush, Charles R. T. Bacon, R. Bruce Briggs, James A. Fierst,
Dale W. Isner and Hiroshi A. Noguni, The left hand of scholarship: Computer experi
ments with recorded text as a communication media, Proc. AFIPS Fall Joint Computer
Conf. 27 (1965), 399-411.

47. Ellen E. Swanson, Mathematics into type, Amer. Math. Soc., Providence, R. 1.,
1971.

48. Francesco Torniello, Opera del modo de fare Ie littere maiuscuole antique,
Milan, Italy, 1517.

49. Geofroy Tory, Champ fleury, Paris, 1529. Also translated into English and
annotated by George B. Ives, New York, Grolier Club, 1927.

50. Karel Wick, Rules for typesetting mathematics, translated by V. Boublik and
M. Hejlova, The Hague, Mouton, 1965.

51. Hermann Zapf, About alphabets: some marginal notes on type design, Cam
bridge, Mass. M.LT. Press, 1970.

PART 2
I

1FX
a system for technical text

TAU EPSILON CHI
a system for technical text

GENTLE READER: This is a handbook about 'lEX, a new typesetting system
intended for the creation of beautiful books-and especially for books that

contain a lot of mathematics. By preparing a manuscript in 'lEX format, you will
be telling a computer exactly how the manuscript is to be transformed into pages
whose typographic quality is comparable to that of the world's finest printers;
yet you won't need to do much more work than would be involved if you were
simply typing the manuscript on an ordinary typewriter. In fact, your total work
will probably be significantly less, if you consider the time it ordinarily takes to
revise a typewritten manuscript, since computer text files are so easy to change
and to reprocess. (If such claims sound too good to be true, keep in mind that
they were made by 'lEX's designer, on a day when 'lEX happened to be working,
so the statements may be biased; but read on anyway.)

This manual is intended for people who have never used 'lEX before, as well
as for experienced 'lEX hackers. in other words, it's the only manual there is.
Everything you need to know about ~ is explained here somewhere, and so are
.a lot of things that most users don't need to know. If you are preparing a simple
manuscript, you won't need to know much about 'lEX at all; on the other hand,
some things that go into the printing of technical books are inherently difficult,
and if you wish to achieve more complex effects you will want to penetrate into
some of 'lEX's darker corners. In order to make it possible for many types of users

2 Preface

to read this manual effectively, a special symbol is used to designate material
that is for wizards only: When the symbol

appears at the beginning of a paragraph, it warns of a "dangerous bend" in
the train of thought; don't read the paragraph unless you need to. Brave and
experienced drivers at the controls of 1EX will gradually enter more and more of
these hazardous areas, but for most applications the details won't matter.

All that you really need to know before reading on is how to get a file of text
into your computer using a standard editing program; this manual explains what
that file ought to look like so that 1EX will understand it, but basic computer
usage is not explained here. Some previous experience with technical typing will
be quite helpful if you plan to do heavily mathematical work with 1EX, although
it is not absolutely necessary. 1EX will do most of the necessary formatting of
equations automatically; but users with more experience will be able to obtain
better results, since there are so many ways to deal with formulas.

Computer system manuals usually make dull reading, but take heart: This
one contains JOKES every once in a while, so you might actually enjoy reading it.
(However, most of the jokes can only be appreciated properly if you understand
a technical point that is being made-so read carefully.)

Another somewhat unique characteristic of this manual is that it doesn't
always tell the truth. When informally introducing certain 1EX concepts, general
rules will be stated, but later you will find that they aren't strictly true. The
author feels that this technique of deliberate lying will actually make it easier
for you to learn the concepts; once you learn a simple but false rule, it will not
be hard to supplement that rule with its exceptions.

In order to help you internalize what you're reading, occasional EXERCISES are
sprinkled through this manual. It is generally intended that every reader should
try every exercise, except for exercises that appear in the "dangerous bend" areas.
If you can't solve a problem, you can always look at the answers at the end of
the manual. But please, try first to solve it by yourself; then you'll learn more
and you'll learn faster. Furthermore, if you think you do know the answer to an
exercise, you should turn to Appendix A and check it out just to make sure.

Table 01 Contents 3

CONTENTS
1. The name of the game ___________________ 4
2. Book printing versus ordinary typing ____________ 4
3. Controlling 'lEX _________________________________ 7
4. Fonts of type ______________________________________ 12
5. Grouping __ ---..,.. ______ ---..,.._______________________ 15
6. Running 'lEX _______________________________ 18
7. How ~ reads what you type ______________ 28
8. The characters you type ____________________ 33
9. 1EX's standard roman fonts _____________________ 36

10. Dimensions __________________________________ 40
11.Boxes __ ---..,.. _______________________________ 41
12. Glue __ 45
13. Modes _________________________________ 50

14. How ~ breaks paragraphs into lines ___________________ 52
15. How 'lEX makes lists of lines into pages ________________ 57
16. Typing math formulas ________________________ 60
17. More about math ______________________________ 64
18. Fine points of mathematics typing ___________________ 71
19. Displayed equations __________________ 91
20. Definitions (also called macros) ___________________ 96
21. Making boxes ___________________________ 99

22. Alignment 104
23. Output routines 109
24. Summary of vertical mode 114
25. Summary of horizontal mode 121
26. Summary of math mode 130
27. Recovery from errors 138
A. Answers to all the exercises 148
B. Basic 'lEX format 151
E. Example of a book format 154
F. Font tables 168
H. Hyphenation 180
I. Index 187
S. Special notes about using 'lEX at Stanford, 198
X. Recent extensions to 'lEX 199

4 Chapter 1

<1> The name of the game

English words like "technology" stem from a Greek ro~t beginning with the letters
T€X •. • ; and this same Greek word means art as well as technology. Hence the
name 'lEX, which is an upper-case form of T€X.

Insiders pronounce the X of 'lEX as a Greek chi, not as an "x", so that 'lEX
rhymes with the word blecchhh. It's the "ch" sound in Scottish words like loch
or German words like achi it's a Spanish "j" and a Russian "kh". When you say
it properly to your computer, the terminal may become slightly moist.

The purpose of this pronunciation exercise is to remind you that 'lEX is
primarily concerned with high-quality technical manuscripts: its emphasis is on
art and technology, as in the underlying Greek word. If you merely want to
produce passably good quality-something acceptable and basically readable but
not really beautiful-a simpler system will usually suffice. With 'lEX the goal is to
produce the finest qualitYi this requires more attention to detail, but fortunately
it is not that much harder to go this extra distance, and you can take special
pride in the finished product.

On the other hand you might find it more comfortable to pronounce 'lEX as
a Texan would and to shrug off all this high-falutin' nonsense about beauty and
quality. Go ahead and do what you want, the computer won't mind.

<2> Book printing versus ordinary typing

When you first started using a computer terminal, you probably had to adjust
to the difference between the digit "I" and the lower case letter "1". When you
take the next step to the level of typography that is common in book publishing,
a few more adjustments of the same kind need to be made.

In the first place, there are two kinds of quotation marks in books, but only
one kind on the typewriter. Even on your computer terminal, which has more
characters than an ordinary typewriter, you probably have only a non-oriented
double-quote mark ("), because the standard "ascii" code for computers was not
invented with book publishing in mind. However, your terminal probably does
have two flavors of single-quote marks, namely C and " which you can get by
typing .. and ... The second of these is useful also as an apostrophe.

To produce double-quote marks with 'lEX, you simply type two single-quote

Book printing 'UeTS'LL8 OTdin<Lry typi11.(j 5

marks of the appropriate kind. For example, to produce an output like

"I understand."

(including the quotation marks) you would type

"1 understand."

on your terminal.
A typewriter-like style of type will be used throughout this manual to indi

cate ~ constructions you might type on your terminal, so that the symbols
actually typed are readily distinguishable from the output ~ would produce
and from 'the comments in the manual itself. Here are the symbols to be used in
the examples:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789"#$%&0*+-=,. :;?!
()<>~~[]{}"~i~~\1/0#oo

If these are not all on your computer terminal, do not despair; ~ can make do
with the ones you have. One additional symbol

u

is also used to stand for a blank space, in case it is important to emphasize that
a blank space is typed; without such a symbol you would have difficulty seeing
the invisible parts of certain examples.

Another important distinction between book printing and ordinary typing is
the use of dashes, hyphens, and minus signs. In good math books, these symbols
are all different; in fact there are usually at least four different symbols in use:

a hyphen (-)i
an en-dash (-);
an em-dash (-);
a minus sign (-).

Hyphens are used for compound words like "daughter-in-law" and "X-rated".
En-dashes are used for number ranges like "pages 13-34" and also in contexts

6 Chapter 2

like "exercise 1.2.6-52". Em-dashes are used for punctuation in sentences-they
are what we often call simply dashes. And minus signs are used in formulas. A
conscientious user of ~ will be careful to distinguish these four usages, and
here is how to do it:

for a hyphen, type a hyphen (-);
for an en-dash, type two hyphens (--);
for an em-dash, type three hyphens (---);
for a minus sign, type a hyphen in mathematics mode ($-$).

(Mathematics mode occurs between dollar signs; it is discussed later, so you
needn't worry about it now.)

If you look closely at most well-printed books, you will find that certain
combinations of letters are treated as a unit. For example, this is true of the "f'
and the "i" of "find". Such combinations are called ligatures, and professional
typesetters have traditionally been trained to watch for letter pairs such as ff,
fi, fl, ffi, and ffl. (It's somewhat surprising how often these combinations
appear.) Fortunately you do not have to concern yourself with ligatures, since
~ is perfectly capable of handling such things by itself. In fact, 'lEX will also
look for combinations of adjacent letters (like "A" next to "V") that ought to be
moved closer together for better appearance; this is called kerning.

To summarize this chapter: When using 'IEtX for straight copy, you type
the copy as on an ordinary typewriter, except that you need to be careful about
quotation marks, the number 1, and various kinds of hyphens/dashes. 'IEtX will
take care of other niceties like ligatures and kerning.

~ In case you need to type quotes within quotes, for example a single quote followed
~ by a double quote, you can't simply type'" because 'lEX will interpret this as '"
(namely, double-quote followed by single-quote). If you have already read Chapter 5,
youmight expect that the solution will be to use grouping-namely, to type something
like {'}' , . But it turns out that this doesn't produce the desired result, because there
is usually more space following a double quote than there is following a single quote:
What you get is "', which is indeed a single quote followed by a double quote (if you
look at it closely enough), but it looks almost like three equally-spaced single quotes.
On the other hand, you certainly won't want to type 'U", because this space is much
too large-just as large as the space between words-and 1EX might even start a new
line at such a space when making up a paragraph! There are at least two ways to solve

ContTolling ~ 7

the problem, both of which involve more complicated features of 'lEX that we shall
study later. First, if you have a definition such as

\def\2{\hbox to 2pt{}}

in the format of your manuscript, you can type '\2". This definition puts 2 points
of blank space between the quotes, so the result is '''; you could, of course, vary the
amount of space, or define another control sequence besides \2 for this purpose. Second,
you could use the idea of "thin space" in math formulas: namely, if you type '$\ 1$' ,

the result will be '''.

~ ~Exercise 2.1: OK, now you know how to produce'" and'''; how do you get'"
'Si:::' and '''?

<3> Controlling ~

Your keyboard has very few keys compared to the large number of symbols you
may want to specify. In order to make a limited keyboard sufficiently versatile,
one of the characters you can type is reserved for special use, and it is called
the escape character. Whenever you want to type something that controls the
format of your manuscript, or something that doesn't use the keyboard in the
ordinary way, you type the escape character followed by an indication of what
you want to do.

You get to choose your own escape character. It can be any typeable symbol,
preferably some character found in a reasonably convenient location on your
keyboard, yet it should be a symbol that is rarely (if ever) used in the manuscript
you are typing. For our purposes in this manual, the "backslash" character "\"
will be used as the escape in all the examples. You may wish to adopt backslash
as your personal escape symbol, but ~ doesn't have any character built in for
this purpose. In fact, 'lEX always takes the first nonblank character you give it
and assumes that it is to be your escape character.

Note: Some computer terminals have a key marked "ESC", but that is not
your escape character! It is a key that sends a special message to the operating
system, so don't confuse it with what this manual calls "escape".

Immediately after typing "\" (Le., immediately after an escape character)
you type a coded command telling 'lEX what you have in mind. Such commands

8 Cha.pter S

are called control sequences. For example, you might type

\input rns

which (as we will see later) causes 'lEX to begin reading a file called "rns. TEX";
the string of characters "\input" is a control sequence. Here's another example:

George P\'olya and Gabor Szeg\"o.

'lEX converts this to "George P6lya and Gabor Szego." There are two control
sequences, \' and \", in this example, and they are used to indicate the special
accents.

Control sequences come in two flavors. The first kind, like \i nput, consists
of the escape character followed by one or more letters, followed by a space or by
something besides a letter. ('lEX has to know where the control sequence ends,
so you have to put a space after a control sequence if the following character is a
letter; for example, if you type "\inputrns", 'lEX will interpret this as a control
sequence with seven letters.) The second variety of control sequence, like \',
consists of the escape character followed by a single nonletter. In this case you
don't need a space to separate the control sequence from a letter that follows,
since control sequences of the second kind always have a single symbol after the
escape.

When a space comes after a control sequence (of either kind), it is ignored
by 'lEX; i.e., it is not considered to be a "real" space belonging to the manuscript
being typeset. Thus, the 'example above could have been typed as

George P\' olya and Gabor Szeg\" o.

1EX will treat both examples the same way; it always discards spaces after control
sequences.

So the question arises, what do you do if you actually want a space to appear
after a control sequence? We will see later that 'lEX treats two or more consecutive
spaces as a single space, so the answer is not going to be "type two spaces." The
correct answer is to type "escape space", namely

ControUing 'lEX 9

(the escape character followed by a blank space); ~ will treat this as a space not
to be ignored. Note that escape-space is a control sequence of the second kind,
since there is a single nonletter (U) following the escape character. According to
the rules, further spaces immediately following \u will be ignored, but if you want
to enter, say, three consecutive spaces into a manuscript you can type "\u\u\u".
Incidentally, typists are often taught to put two spaces at the ends of sentences;
but we will see later that 'lEX has its own way to produce extra space in such
cases. Thus you needn't be consistent in the number of spaces you type.

It is usually unnecessary for you to use "escape space" , since control sequences
aren't often needed at the ends of words. But here's an example that might shed
some light on the matter: This manual itself has been typeset by 'lEX, and one
of the things that occurs fairly often is the tricky logo "~", which requires
backspacing and lowering the E. We will see below that it is possible for any user
to define new control sequences to stand as abbreviations of commonly occurring
constructions; and at the beginning of this manual, a special definition was made
so that the control sequence

\TEX

would produce the instructions necessary to typeset "'lEX". When a phrase like
"'lEX ignores spaces after control sequences." is to be typeset, the manuscript
renders it as follows:

\TEX\ ignores spaces after control sequences.

Notice the extra \ following \ TEX; this produces the escape-space that is neces
sary because 'lEX ignores spaces after control sequences. Without this extra \,
the result would have been

'lEXignores spaces after control sequences.

Consider also what happens if \ TEX is not followed by a space, as in

the logo "\TEX".

It would be permissible to put a blank space after the X, but not an escape
character; if the manuscript were changed to read

the logo "\TEX\"

10 Chapter 9

the result would be curious indeed-can you guess it? Answer: The \ .. would be
a control sequence denoting an acute accent, as in our P\ "olya example above;
the effect would therefore be to put an accent over the next nonblank character,
which as it happens is a single-quote mark. In other words, the result would be

the logo "'IEX~

because the ligature that changes into" is not recognized.

~Exercise 3.1: State two ways to specify the French word "mathematique". Can
you guess how the word "centimetre" should be specified?

1EX understands almost 300 control sequences as part of its standard built-in
vocabulary, and all of these are explained in this manual somewhere. Fortunately
you won't have too much trouble learning them, since the vast majority are simply
the names of special characters used in mathematical formulas. For example,
the control sequences \Ascr, \Bscr, ... , \Zscr stand for the upper case script
letters .A, ~, ... , ~; and you can type "\al eph" to get N, "\doteq" to get -.:..,
"\opl us" to get EB, U\~" to get <=, etc.

As mentioned above, 1EX can be taught to understand other control sequences
besides those in its primitive vocabulary. For example, U\ TEX" is not one of
the standard control sequences; it had to be defined specially for producing this
manual. In general there will be special control sequences that define the style
of a book or a series of books: they will be used at the beginning of chapters,
or to handle special formats such as might be used in a bibliography, etc. Such
style-defining control sequences are usually defined once and for all by 'lFPCperts
skilled in the lore of control-sequence definition, and novice 1EX users don't have
to worry about the job of defining any new control sequences; the only problem
is to learn how to use somebody else's definitions. (The person who designs a
1EX style is obliged to write a supplement to this manual explaining how to use
his or her control sequences.)

In this manual we shall frequently refer to a so-called "basic 'lEX style"
consisting of the ~efinitions in Appendix B, since these basic definitions have
proved to be useful for common one-shot jobs; and since they probably also will
be included as a part of more elaborate styles. Appendix E contains an example
of a more elaborate style, namely the definitions used to typeset D. E. Knuth's
series of books on The Art of Computer Programming. There's no need for you
to look at these appendices now, they are included only for reference purposes.

Controlling 'lEX 11

The main point of these remarks, as far as novice 'lEX users are concerned,
is that it is indeed possible to define nonstandard 'lEX control sequences, but it
can be tricky. You can safely rely on the standard control sequences, and on
the basic extensions defined in Appendix B (which will be explained later in this
manual), until you become an experienced 'JEXnical typist.

~ Those of you who wish to define control sequences should know that 1F.::X has further
3r rules about them, namely that many different spellings of the same control sequence
may be possible. This fact allows 1F.::X to handle control sequences quite efficiently; and
'!EX's usefulness is not seriously affected, because new control sequences aren't needed
very often. A control sequence of the first kind (i.e., one consisting of letters only)
may involve both upper case and lower case letters, but the distinction between cases
is ignored after the first letter. Thus \ TEX could also be typed "\ TEx" or "\ TeX" or
"\ Tex"-each of these four has the same meaning and the same effect. But "\tex"
would not be the same, because there is a case distinction on the first letter. (Typing
"\gamma" results in 1, but "\Gamma" or "\GAMMA" results in r.)

~ Another rule takes over when there are seven or more letters after the escape: all
3r letters after the seventh are replaced by "x", and then groups of eight letters are
removed if necessary until at most 14 letters are left. Thus \underline is the same
as \underlixx; and it is also the same as \underlinedsymbols or any other control
sequence that starts with \u followed by n or N, then d or D, then e or E, then r or R,
then 1 or L, then i or I, then 2 or 10 or 18 or 26 or ... letters. But \underl ine is not
the same as \under! ines, because these two control sequences don't have the same
length modulo 8.

~ As a consequence of these rules, there are 128 essentially distinct control sequences
3r of length two-namely, escape followed by any 7-bit character, whether a letter or
not. There are 52 X 26 essentially distinct control sequences of length three, because
there are 26 + 26 = 52 choices for the first letter following the escape and 26 different
choices for the second letter; there are 52 X 26 X 26 essentially distinct control sequences
of length four, 52 X 26 X 26 X 26 of length five, 52 X 26 X 26 X 26 X 26 of length six,
52 X 26 X 26 X 26 X 26 X 26 of length seven. There are 52 X 26 X 26 X 26 X 26 X 26 X 26
essentially distinct control sequences of length 8 plus a multiple of 8, and the same
number holds for length 9 plus a multiple of 8, ... , length 15 plus a multiple of8. Thus
the total number of distinct control sequences available is exactly

128 + 52 . 26 + 52 . 262 + 52 . 263 + 52 . 264 + 52 . 265 + 8 . 52 . 266 = 129151507704;

that should be enough. Even though 'lEX accepts alternative spellings, you should be
consistent in each manuscript, since some implementations of 'lEX may not be exactly
the same in this respect.

12 Chapter 3

~ Nonprinting control characteTs like (carriage-return) might follow an escape charac
Y ter, and these lead to distinct control sequences according to the rules. Initially

1EX is set up to treat \(tab) and \(line-feed) and \(vertical-tab) and \(form-feed) and
\(carriage-return) the same as \u (escape space); it is recommended that none of these
six control sequences be redefined ..

<4> Fonts of type

Occasionally you will want to change from one typeface to another, for example
if you wish to be bold or to emphasize something. 1FX deals with sets of 128
characters called "fonts" of type, and the control sequence \: is used to select
a particular font. If, for example, fonts n, b, and s have been predefined to
represent normal, bold, and slanted styles of type, you might specify the last few
words of the first sentence of this paragraph in the following way:

to be \:b bold \:n or to \:s emphasize \:n something.

(Blank spaces after font codes like b are ignored by 'lEX just like the spaces after
control sequenc~s; furthermore, since a font code is always of length 1, you don't
need a space after it. Thus, \: bbold would be treated the same as \: UbWbold.
It is probably best to type a space after the font codes; even though you don't
really need one, for the sake of readability.)

You probably will never* use the \: sequence yourself, since the predesigned
format you are using usually includes special control sequences that give symbolic
names to the fonts. For example, the "basic 'lEX format" in Appendix B defines
three control sequences for this purpose.

\rm switches to the normal "Roman" typeface: Roman
\s 1 switches to a slanted typeface: Slanted
\bf switches to a boldface style: Bold

With such a system, you can type the above example as

to be \bf bold \rm or to \sl emphasize \rm something.

·Well ... , hardly ever.

Fonts of type 13

The advantage of such control sequences is that you can use the same abbrevia
tions \rm, \s 1, \bf in any size of type, although different font codes are actually
used for different sizes. For example I fonts a , n, q might be the normal, slanted I
and bold fonts in a standard "lO-point" size of type, while C , P, s might be the
corresponding fonts in a smaller "8-point" size. It would be difficult to remember
how the codes change in different sizes. So the· Art of Computer Programming
book design in Appendix E allows you to say

\tenpoint

whenever you are beginning to type material that belongs in lO-point size, after
which \rm will be equivalent to \: a , and \s 1 will be equivalent to \: n, etc.
Now if you switch to 8-point size (in a footnote , say) the instruction

\eightpoint

(which appears in the \footnote format) will cause \sl to be equivalent to \: p.
All you need to remember is the abbreviations \rm, \sl , and \bf regardless of
what type size you are using.

There actually is a better way yet to handle the above example, using 'lEX's
"grouping" feature, which we shall discuss in the next chapter. With this feature
you would type

to be {\bf bold} or to {\sl emphasize} something.

As we will see, switching fonts within { and} does not affect the fonts outside,
so you don't need to say explicitly that you are returning to \rm in this scheme.
Thus, you can pretty much forget about the other ways we have been discussing
for font switching; it's best to use grouping.

~ When you do use the \: instruction to change fonts, here are the rules you need
Y to know. 'lEX can handle up to 32 different fonts in any particular job (counting
different sizes of the sam~ style). These 32 fonts are distinguished by the least significant
five bits of the 7-bit ascii character code you type following "\ : "; if you don't understand

14 Chapter 4

what this means, use the following code names for your fonts:

Internal '.£EX Internal 'lEX Internal 1EtX Internal 'lEX
font font font font font font font font

number code number code number code number code

1 C or ' 9 H or h 17 P or p 25 X or x
2 A or a 10 I or 1 18 Q or q 26 Y or y
3 B or b 11 J or J 19 R or r 27 Z or z
4 Cor c 12 K or k 20 S or s 28 [or ;
5 D or d 13 L or 1 21 Tor t 29 < or ~
6 E ore 14 M or m 22 U or u 30] or =
7 For f 15 Nor n 23 V or v 31 > or T

8 G or g 16 o or 0 24 W or w 32 ? or +0

You never refer to a font by its number, always by its code. Code A is treated the
same as a, etc.; but a wise typist will consistently use the same codes in any particular
manuscript, because later 'JEXs may allow more than 32 fonts.

~ Of course 'lEX can make use of hundreds of different fonts in different jobs. The
y 32-font restriction applies only within a particular job, because 1EtX doesn't want
to keep the details about more than 32 X 128 = 4096 characters in its memory at once;
there isn't enough room. Thus the internal font codes will refer, in general, to different
"real" fonts. The first time you use a font code, you must define it by giving the full
name of the font in the system's collection. For example, when the basic 'lEX format
in Appendix B says

\:a=cmrl0

this selects font code a and defines it to be the system's font "cmrl0", an abbreviation
for "Computer Modern Roman 10 point". The rule for defining a font is that the font
code (a in this example) must be followed immediately by "=" or "+0" (not a space)
when it first appears, and this must be followed immediately by the system name of
the font file; then comes a blank space to denote the end of the font file name.

~ Once a font code is defined, it can never be redefined again. Thus if you type, say,
y "\: a=cmrl0" when font code a has already been defined, the characters "=cmrl0"
will be treated as part of your manuscript, and they will dutifully be set into type (in
font a). It's best to define all your fonts in format specifications at the very beginning
of your input.

When you change fonts within a line, 'lEX will line the letters up according
to their "baselines." For example, suppose that font codes a, b, c, d, e, f refer

Grouping 15

respectively to 10-point, 9-point, 8-point, 7-point, 6-point, and 5-point roman
fonts; then if you type

\:a smaller \:b and smaller \:c and smaller
\:d and smaller \:e and smaller \:f and smaller \:a

the result is smaller and smaller and smaller and smaller and smaller and .maller. Of course
this is something authors don't do very often at the moment, because printers
can't do such things easily with traditional lead types. Perhaps poets who wish to
speak in utill small voice will cause future books to make use of frequent font variations,
but nowadays it's only an occasional font freak (like the author of this manual) who likes
it. One should not get too carried away by the prospect of font switching unless
there is good reason.

~Exercise 4.1: Explain how to type the bibliographic reference "Ulrich Dieter,
Journal fiir die reine und angewandte Mathematik 201 (1959), 37-70."

<5> Grouping

Every once in a while it is necessary to treat part of a manuscript as a unit, so
you need to indicate in some fashion where that part begins and ends. For this
purpose 'lEX gives special interpretation to two "grouping characters" (just as it
treats the escape character in a special way). We shall assume in this manual
that { and} are the grouping characters, although any other typeable characters
may be reserved for this function.

We saw one example of grouping in the previous chapter, where it was pointed
out that font changes inside a group do not affect the fonts in force outside.
This gives the effect of what computer scientists call "block structure." Another
example of grouping occurs when you are using certain control sequences; for
example, if you want to center something on a line you can type

\ctrline{This information will be centered.}

using the control sequence \ctrl i ne defined in basic 'lEX format (Appendix B).
Grouping is used in quite ~ few of 'lEX's more complex instructions, although

it is largely unnecessary in simple manuscripts. Here's an example of a slightly
more complex case, the definition of a new control sequence \rm as mentioned

16 Chapter 5

in the previous chapter:
\def\rm{\:a}

This means that control sequence \rm is henceforth to be replaced in the input by
the control sequence \: followed by a. One can also have groups within groups,
e.g.,

\def\tenpoint{\def\rm{\:a}\def\sl{\:n}\def\bf{\:q}}

which means that the control sequence \ tenpo i nt is henceforth to be replaced
in the input by

\def\rm{\:a}\def\sl{\:n}\def\bf{\:q}

and these, in turn, describe replacements for the control sequences \rm, \s 1, and
\bf. If you are a novice 'lEX user, you will probably not be using \def yourself
to define control sequences; the point of this example is merely to demonstrate
that groups can indeed arise within groups.

~ Groups within groups will happen only in rather complicated situations, but in
"Y such cases it is extremely important that you don't leave out a { or a }, lest 'lEX
get hopelessly confused. For example, the \output routine in Appendix E has as many
as five levels of groups within groups within ... ; although each level is fairly simple by
itself, the total cumulative effect can boggle the mind, so the author had to try three
times before getting the {'s and }'s right. In such situations there is a handy rule for
figuring out which { goes with which }, and whether or not you have forgotten any
braces. Start with a mental count of zero, and go from left to right in your 'lEX input.
When you get to a {, add one to the count, and write the resulting number lightly above
the {. When you get to a }, write the current count lightly above it and tben subtract
one from the count. For example,

1 2 2 2 3 3 3 3 2 221
... { ... { ... } ... { ... { ... } ... { ... } ... } ... { ... } ... } ...

Current count: 0 1 2 1 2 3 2 3 2 1 2 1 0

If the input is properly grouped, your count will return to zero, and it will never become
less than zero. The { corresponding to any particular} is the nearest preceding { having
the same number as the}. (You need not apply this procedure to the entire input
manuscript, just to any part that is supposed to be understood as a unit. For example,
you can apply this procedure to the right-hand side of any definition that uses \def.)

Grouping

Suppose that you had typed

\ctr1ine{This information will be {\sl centered}.}

Then you would have gotten

This information will be centered.

Now suppose that you type

\ctrline{This information will be {centered}.}

What do you think will happen? Answer: you will get

This information will be centered.

17

The result looks just as if those innermost braces had not appeared at all, because
you haven't used the grouping to change fonts or anything. 1EJ(doesn't mind if
you want to waste your time making groups for no reason.

Actually there is a reason why you might want to use grouping without font
changes, etc., namely when you want to make sure that spacing comes out right.
In Chapter 3 we discussed the control sequence \ TEX that the author of this
manual has used to get the logo u'JE.X", and we observed that the space after \ TEX
is ignored since \ TEX is a control sequence. Thus it was apparently necessary to
type U\ TEX\U" when there was supposed to be a space following u'lEX", but it
was a mistake to type U\ TEX\" when the next character was to be a punctuation
mark or something else besides a space. Well, in all cases it would be correct to
type

{\TEX}

whether or not the following character is a space, because the} stops 'lEX from
looking for the optional space after \ TEX. This might come in handy when you're
using a text editor (e.g., when replacing all occurrences of a particular word by
a control sequence). Another thing you could do is type

\TEX{}

using an empty group for the same purpose: the {} here is a group of no charac
ters, so it produces no output, but it does have the effect of shutting off 1EJ('s
scan for blanks.
~Exercise 5.1: Suppose you want to specify two hyphens in a row; you can't type
U __ " because 'JE.X will read that as an en-dash, so what can you do?

18 Cha.pter 5

~ When 'lEX starts any job, all characters are alikej there is no escape character,
3L' and there are no grouping characters. 'lEX automatically makes the first nonblank
input character the escape, but if a manuscript is going to use grouping, the grouping
characters must be "turned on." The basic format in Appendix B does this, and you can
do it yourself in the following way: Type "\chcode(number)+-1" for the left delimiter
and "\chcode(number)+-2" for the right delimiter, where (number) is the numeric value
of the 7-bit code for the desired character. For example, "{" and "}" have the respective
codes ' 173 and ' 176 at Stanford-this is a local deviation from some ascii codes at
other places-so the instructions

\chcode'173+-1 \chcode'176+-2

appear among the basic format definitions in Appendix B. (Numbers beginning with
, are in octal notation, cr. Chapter 8.) It is possible to have several characters simul
taneously serving as group delimiters, simply by using \chcode to specify each of
them.

~ Font changes are not the only things that "stay inside" a group without affecting the
7 text outside. This same localization applies to any control sequences defined within
the group (except those using \gdef in place of \def)j to glue-spacing parameters such
as those set by \basel ineskip and \tabskipj to 'lEX control parameters such as those
set by \ trace and \j pari and to the character interpretations set by \chcode. But
localization does not apply to definitions of \output routines, or to the size parameters
set by \hsize, \vsize, \parindent, \maxdepth, and \topbasel ine. Furthermore,
if you type "{\: a=cmr10}", the "cmr10" part of this font definition still is irrevocably
tied to code a.

~ ~Exercise 5.2: Would \de f\rm{ {\: a}} have the same effect as the definition
3L' \def\rm{\: a}? (The only difference is an extra level of grouping.)

~ ~Exercise 5.3: Suppose \chcode'7 4+-1 \chcode '76+-2 appears near the begin-
3L' ning of a group that begins with {j these specifications instruct 'lEX to treat < and

> as group delimiters. According to the rules above, the characters < and> will revert
to their previous meaning when the group endsj but should the group end with } or
with >?

<6> Running 'lEX
The best way to learn how to do something is to do it, and the best way to
learn how to use 'lEX is to use it. Thus, it's high time for you to sit down at a

Running 'lEX 19

computer terminal and interact with the 'fEX system, trying things out to see
what happens. Here are some small but complete examples suggested for your
first encounter. The examples are presented in terms of the Stanford WAITS
system; slightly different conventions may be in use at other installations.

Caution: This chapter is rather a long one. Why don't you stop reading now,
and come back to this tomorrow?

OK, let's suppose that you're rested and excited about having a trial run of
'TEX. Step-by-step instructions for using it appear in this chapter. First do this:
Go to the lab where the graphic output device is, since you will be wanting to
see the output that you get-it won't really be satisfactory to generate new copy
with 'lEX from a remote location. Then log in; and when the operating system
types ".". at you, type back

r tex

(followed by (carriage-return)). This causes 1EX to start up, and when it is ready
it will type "*". Now type

\input basic

and (carriage-return); this causes the basic 'TEX format of Appendix B to be read
into the system. 'lEX will type

(basic.TEX 1 2 3 4)

on your terminal as it is processing this material, meaning that it has read pages
1, 2, 3, and 4 of this file. Then it types "*", waiting for more input. At this point
the \rm font has been selected, which is the "normal" cmrl0 font, and 'lEX is
ready to accept an input manuscript using the basic conventions.

Now type several more lines, each followed by (carriage-return):

\hsize 2 in
\vskip 1 in
\ctrline{MY STORY}
\vskip 36 pt
\ctrline{\sl by A. U. Thor}

20 Cha.prer 6

\vskip 2.54 cm
Once upon a time, in a distant
galaxy called \error \"O\"o\c c,
there lived a computer
named R. J. Drofnats. \par
Mr. Drofnats---or ~~R. J.," as
he preferred to be called--
was lousy at typesetting, but he
had other nice qualities. For
example, he gave error messages
when a typist forgot to end a paragraph
properly. \end
\par\vfill\end

This example is a bit long, and more than a hit silly, but it's no trick for a good
typist like you and it will give you some worthwhile experience, so please do it.
For your own good.

Incidentally, the example introduces a few more features that you might as
well learn as you are typing, so it's probably best for you to type a line, then
read the explanation that appears below, then type the next line and so on.

The instruction "\hs i ze 2 in" says that rather narrow lines will be set,
only 2 inches wide. (On a low-resolution device like the XGP currently used at
Stanford, "2 in" really means about 2.6 inches, because 'lEX expects that its
output on such devices will be used only for proofreading, or that the output will
be reduced to about 77% of its physical size hefore actual printing. The 10-point
type cmrlO will actually appear to be essentially the same size as 13-point type
in books; in other words, you should expect to see output "larger than life.")

The instruction "\ vsk i P 1 in" means a vertical skip of one inch. (Really
1.3 inches, on an XGP or VERSATEC, but from now on we won't mention
this expansion.) Then the instruction "\ctrl i ne{MY STORY}" causes a line
of type that says "MY STORY" to be centered in the 2-inch column. (Recall
from Chapter 5 that 'If.jX's basic formats, which we loaded by typing "\input
bas i c", include this \ctrl i ne and grouping facility for centering things.)

The instruction "\ vsk i P 36 pt" is another vertical skip, this time by the
amount 36 points-which is a printer's measure slightly less than half an inch.
Book m~asurements have traditionally been speCified in units of picas and points,

Running 1EX 21

and TEX does not want to shake printers up too badly, so it allows a variety of
different units of length to be specified.

The instruction U\ctrl i ne{\s 1 by A. U. Thor}" makes another cen
tered line, this time in the slanted 10-point font (because of the \s I). This \s 1
is inside a group, so it doesn't affect the type style being used elsewhere.

You can probably guess what U\vskip 2.54 em" means; or aren't you
ready for the metric system yet? It turns out that 2.54 centimeters is exactly one
inch.

The next line begins the straight text, which is what you will be typing most
of the time; don't be dismayed by the messy spacing instructions like \vskip
that you have been typing so far. Something messy like that is expected at the
beginning of a manuscript, but it doesn't last long. When TEX begins to read the
words

Once upon a time, in a distant

it starts up a new paragraph. Now comes the good news, if you haven't used
computer typesetting before: You don't have to worry about where to break lines
in the paragraph, 'lEX will do that for you. You can type long lines or short
lines, it doesn't matter; every time you hit (carriage-return) it is essentially the
same as typing a space. When 1EX has read the entire paragraph, it will try to
break up the text so that each line of output, except the last, contains about the
same amount of copy; and it will hyphenate words if necessary (but only as a
last resort).

After you type in the next input line,

galaxy called \error \"O\"o\c c,

something new will happen: 'lEX will type back an error message, saying

! Undefined control sequence.
(*) galaxy called \error

\"O\"o\c c,
i

What does this mean? It means, as you might guess, that an undefined control
sequence was found in the input. 1EX shows how far it has read your input by
displaying it in two lines; the first line shows what has been read before the error

22 Chapter 6

was detected (namely "galaxYUcalledu\erroru") and the next line shows
what 'lEX hasn't looked at yet but will see next. So it is plain that "\error"
is the culprit; it is a control sequence that hasn't been defined. After an error
message, all is not lost, you have several options:

(1) Type (line-feed). This will cause future error messages to be printed on
your terminal as usual, but 'lEX will always proceed immediately without waiting
for your response. It is a fast, but somewhat dangerous, way to proceed.

(2) Type "x" or "X". This will cause 'lEX to stop right then and there, but
you will be able to print any pages that have been completed.

(3) Type "e" or "E". This will terminate 1EX and activate the system editor,
allowing you to edit the input file that 1EX is currently reading. (Don't do this
unless there .is such a file.)

(4) Type "i" or "I". This will cause 1EX to prompt you (with "*") for text
to be inserted at the current place in the input; 'lEX will go on to read this new
text before looking at what it ordinarily would have read next. You can often
use this option to fix up the error. For example, if you have misspelled a control
sequtmce, you can simply insert the correct spelling. (The (carriage-return) that
you type after an insertion does not count as a space in the inserted text.)

(5) Type (carriage-return). This is what you should do now. It causes 1FX
to resume its processing.

(6) Type a number (1 to 9). 'lEX will delete this many tokens from the input
that it ordinarily would have read next, and then it will come back asking you to
choose one of these options again. (A "token" is a single character or a control
sequence. In certain rare circumstances 1FX will not carry out the deletions, but
you probably will never run into such cases.)

(7) Type "?" or anything else. Then 'lEX will refresh your memory about
options (1) to (6), and will wait again for you to exercise one of these options.

If you respond by (carriage-return) or (line-feed) or "i" or "I", 'IE'\(tries to
recover from the error as best it can before carrying on. For example, 'lEX simply
ignores an undefined control sequence like \error. If the error message is

! Missing} inserted.

1FX has inserted a } which it has reason to believe was missing. Chapter 27
discusses error messages and appropriate recovery procedures in further detail.

Running 1EX 23

OK, you were supposed to type this line containing an \error so that you
could experience the way 'lEX sometimes complains at you. Similar incidents
will probably happen again, since 'lEX is constantly on the lookout for mistakes.
The program tries to be a helpful and constructive critic, to catch errors before
they lead to catastrophes. But sometimes, like all programs, it really doesn't
understand what's going on, so you have to humor it a bit.

On the remainder of the \error line you will note the strange concoction

\"O\"o\C C

and you already know that \" stands for an umlaut accent. The \c stands for
a "cedilla" accent, so you will get

as the name of that distant galaxy.

The next two lines are very simple, except that we haven't encountered \par
before. This is one of the ways to end a paragraph. (Another way is to have
a completely blank line. A third way is to come to the end of a file-page in an
input file.)

The following lines of the example are also quite straightforward; they provide
a review of the conventions we discussed long ago for dashes and quotation marks.

But when you type "\end" in the position shown, you will get another error
message. The \end instruction is the normal way to stop 'lEX, but it has to occur
at a proper time: not in mid-paragraph. The error message you get this time is

! You canOt do that in horizontal mode.

As we will see later, 'lEX gets into various "modes," and it is in "horizontal mode"
when it is making a paragraph. If you try to do something that is incompatible
with the current mode, you will get this sort of error message. The proper response
here is, once again, to hit (carriage-return); 'lEX will resume and forget that you
said \end when you shouldn't.

The final line of the example says \par (to end the paragraph and get you
out of horizontal mode), then it says

\vfill

24 Cha.pter 6

(which means vertical fill-it will insert as much space as necessary to fill up the
current page), then it says

\end

and now 1EtX will end its processing gracefully. An "xspool" command will
appear on your terminal; just hit (carriage-return) and the XGP will print your
output. (At least, this is what will happen if you are at Stanford using the WAITS
system.)

The output corresponding to the above example will not be shown in this
manual; you'll have to do the experiment personally in order to see what happens.

At this point you might also like to look at the file called ERRORS. TMP on
your area, since it records the error messages that ~ typed back at you. Say
"type errors. tmp" to the operating system.

~Exercise 6.1: If you had typed the second line of the story as

galaxy called \"O\"o\cc.

1EtX would have issued an error message saying that the control sequence \cc is
undefined. What is the best way to recover from this error?

That was Experiment Number I, and you're ready for Experiment Num
ber 2-after which you will be nearly ready to go on to the preparation of large
manuscripts.

For Experiment 2, prepare a file called STORY. TEX that contains all the lines
of the above example from "\vskip 1 in" to "\par\vfill\end" inclusive;
but change the last line to

\par\vfill\eject

instead. (The \ej ect instruction is something like \end; it ends a page, but
not the whole job.) Note that the line that specifies \h s i z e is to be omitted
from your STORY file; the reason is that we are going to try typesetting the same
story with a variety of column widths.

Start 'lEX again (r tex), and \input basic again. But now type

\hsize 4 in
\input story

Running 'lEX 25

and see what happens. Guess what: 1EX is now going to set 4-inch columns, and
it is going to read your STORY. TEX file.

Again it is going to hiccup on the undefined control sequence \error. This
time try typing "e", so you can see how to get right to the system file editor
from 'lEX in case your file is messed up. Delete the offending \error from the
file, then start 'lEX off from scratch again.

Now try typing several instructions on the same line:

\input basic\hsize 4in\input story

If you don't put a blank space after the c of bas i c here, you'll get an error
message (a file name should be followed by a blank space), but in this case it's safe
to hit (carriage-return) and continue. ('lEX is just warning you that something
may have been amiss; the rule is that a space should be there, but it will be
inserted if you proceed. From now on, always leave a space after file names, to
avoid any hassle.)

Soon 1EX will be reading your story file again-and it will hang up on the
\end error. Instead of removing this error, just type (line-feed) since you know
it is harmless to bypass this error.

When 1EX asks for more input, type the following lines, one at a time:

\hsize 3in \input story
\hsize 1.5in \input story
\jpar 1000 \input story
\ragged 1000 \input story
\hsize 1 in \input story
\end

The results will be somewhat. interesting, so try it!
If you have followed instructions, your output will consist of six pages; the

first page has MY STORY set 4 inches wide, the next has it set 3 inches wide,
then come three pages where it is set I! inches wide, and a final page where
1EX tries to make I-inch columns. Since I-inch columns of lO-point type allow
only about 15 characters per line, the last four pages put quite a strain on 'lEX's
ability to break ·paragraphs up into attractive lines.

When 'lEX fails to find a good way to handle a paragraph, there usually is no
good way (except that 'lEX doesn't know how to hyphenate all words). In such
cases the symptom is that 'lEX reports an "overfull box," and lines that are too

26 Cha.pter 6

long will appear in the output. You probably noticed such a complaint about
overfull boxes when 'lEX was first trying to set the story with 1.5 inch columns.
(If you didn't notice it on your terminal, look at errors. tmp to refresh your
memory.) Several lines on page 3 of your output will be more than 1.5 inches
long-they are "overfull" and stick out like sore thumbs.

There are two remedies for overfull boxes: You can either rewrite the text of
the manuscript to avoid the problem (in fact, careful authors often do just that),
or you can tell 'lEX to consider larger spaces acceptable. The instruction \j par
1000 essentially makes 1EX look for more ways to break the paragraph, including
those with larger spaces; so the fourth page of the output shows a solution of the
problem without any overfull boxes.

~ The expandability of spaces is defined by the font, not by 'lEX. Standard 'lEX fonts
Y like cmr10 have fairly tight restrictions on spacing, in accordance with the recom
mendations of contemporary typographers. These strict standards are appropriate for
books, but not for newspapers, when more tolerance is needed. If you are setting a lot
of material with narrow margins, it would be better to use a font with more variability
in its spacing than to use a high setting of \j par, since 'lEX has to work harder when
\j par is large (it considers more possibilities). Chapter 14 explains more about \j par.

~ The instruction \ragged 1000 causes paragraphs to be set with a "ragged right
Y margin"-Le., the lines are broken as usual, but spaces between words don't stretch
or shrink very much. Chapter 14 tells more about \raggedness.

~ When \hs1ze was one inch in the above experiment, 'lEX again came up with an
Y overfull box, even when \j par was quite large. The reason is that 'lEX doesn't
know how to hyphenate "Drofnats", the second word of the second paragraph. To
remedy this, replace "Drofnats" by "Drof\-nats" in both places where it occurs in
your sto ry file, and try setting the story with

\hs1ze 1 1n \jpar 1000 \ragged 0

You'll see that the output is now quite reasonable, considering the extremely narrow
column width. The control sequence \- means a discretionary hyphen, namely a legal
place to hyphenate the word if 'IEX needs to.

At this point you might want to play around with 1FX a bit before you read
further. Try different stories, different measurements, and so on. One experiment
particularly recommended is to type

\ctrline{MY \ERROR STORY}

Running 'lEX 27

after basic has been \input. This produces a somewhat more elaborate error
message with which you should become acquainted, namely:

! Undefined control sequence.

<argument> MY \Error
STORY

plus1000cm minus1000cm #1

(*) \ctrline{MY \ERROR STORY}
\hskip Opt plus1000cm minu ...

The reason for all this is that \ctrl i ne is not a built-in 'lEX instruction, it is
a control sequence defined in the bas i c format. Thus 'lEX did not detect any
mistake when it read "{MY \ERROR STORY}", it simply absorbed this group
and passed the text "MY \ERROR STORY" as an argument to the \ctrl ine
definition. According to Appendix B, \ctrl i ne gets expanded into the text

\hbox to size{\hskipOpt'plus1000cm minus1000cm
#1\hskipOpt plus1000cm minus1000cm}

where the argument gets inserted in place of the "#1". (You don't have to un
derstand exactly what this means, just believe that it is a way to center something
on a line.) A fragment of this expansion is shown in the error message, preceded
and followed by " ... " to indicate that there was more to the expansion 'lEX
was reading. The error message shows that 1EX had read the expansion up to
the point "#1", because \hsk i p etc. appears on the next line. Furthermore the
error message shows that 'lEX was reading the argument, and the last thing it
read was the control sequence "\Error". (You actually typed "\ERROR", but
upper case and lower case are not distinguished by 'lEX after the first letter of a
control sequence.)

The point is that when you make an error within a routine controlled by a
defined control sequence like \ctrl i ne, the error message will show everything
'lEX knows about what it was reading; the display occurs in groups of two lines
per level of reading, where the first line shows what 'lEX has read at this level
and the second line shows what is yet to be read. Somewhere in there you should
be able to spot the problem, the thing 'lEX wasn't expecting.
~ Careful study of the 1.5-inch example shows that 'lEX does not automatically break
Y lines just before a dash, although it does do so just after one. Some printers will

start new lines with dashes; if you really want to do this you can type "\penal ty 0"

just before each dash. For example, "Drofnats\penal ty 0---".

28 Chapter i

<7> How 1EX reads what you type

While studying the example in the previous chapter, we observed that an input
manuscript is expressed in terms of "lines" ending with (~arriage-return)s, but
these lines of input are essentially independent of the lines of output that will
appear on the finished pages. Thus you can stop typing a line of input at any
convenient place. A few other related rules have also been mentioned:

• A (carriage-return) is like a space.

• Two spaces in a row count as one space.

• A blank line denotes end of paragraph.

Strictly speaking, these rules are contradictory: A blank line is obtained by typing
(carriage-return) twice in a row, and this is different from typing two spaces in
a row. So now let's see what the real rules are. The purpose of this chapter is to
study the very first stage in the transition from input to output.

In the first place, it's wise to have a precise idea of what your keyboard sends
to the machine. There are 128 characters that 1EX might encounter at each step
in a file or in a line of text typed directly on your terminal. These 128 characters
are classified into 13 categories numbered 0 to 12:

Category code

o
1
2
3
4
5
6
7
8
9

10
11
12

Meaning

Escape character (\ in this manual)
Beginning of group ({ in this manual)
End of group (} in this manual)
Begin or end math ($ in this manual)
Alignment tab (@ in this manual)
End of line ((carriage-return) and % in this manual)
Parameter (# in this manual)
Superscript (i in this manual)
Subscript (J. in this manual)
Ignored character
Space
Letter (A, ... , Z and a, ... , z)
Other character

It's not necessary for you to learn these code numbers; the point is only that
'lEX responds to 13 different types of characters. At first this manual led you to

How 1EX rends 'What 'You type 29

believe that there were just two types-the escape character and the others
and more recently you were told about two more types, the grouping symbols
like { and }. Now you know that there are really 13. This is the whole truth of
the matter; no more types remain to be revealed.

Actually no characters are defined to be of types 0 to 8 when 'lEX begins,
except that (carriage-return) and (form-feed) are type 5. But if you are using a
predefined format (like almost everybody does) you will be told which characters
have special significance. For example, if you are using the bas i c package of
Appendix B you need to know that the nine characters

\ { } $ 0 % * t ~

cannot be used as ordinary characters in your text; they have special meaning.
(If you really need any of these symbols as part of what you're typing, e.g., if you
need a $ to represent dollars, there is a way out-this will be explained later. A
list of control sequences for special symbols appears in Appendix F.)

When 1EX is reading a line of text from a file, or a line of text that you
. entered directly on your terminal, it is in one of three "states":

State N
State M
State S

Beginning a new line
Middle of a line
Skipping blanks

At the beginning it's in state N, but most of the time it's in state !v!, and after
a control sequence or a space it's in state S. Incidentally, "states" are different
from the "modes" mentioned in Chapter 6; the current state refers to 1EJX's eyes
and mouth as they take in characters of new text, but the current mode refers
to the condition of 'lEX's gastro-intestinal tract. Modes are discussed further in
Chapter 13.

You hardly ever need to worry about what state 'lEX is in, but you may
want to understand the rules just in case 'lEX does something unexpected to your
input file. In general, it is nice to understand who you are talking to.

Furthermore, if you faithfully carried out the experiment in the previous
chapter you will probably have noticed that there was an unwanted space after
the dash in "called---"; the (carriage-return) after this dash got changed into
a space that doesn't belong there. This error was purposely put into the example

30 Chapter i

because the author of this manual feels that we learn best by making mistakes.
But now let's look closely into 1EX's reading rules so that such mistakes will be
unlearned in the future.

Fortunately the rules are not complicated or surprising; you could probably
write them down yourself:

If in state N (new line) and 1EX sees

a) an escape character (type 0), 'lEX scans the entire control sequence, then
digests it (Le., sends the control sequence to the guts of lEX where it will be
processed appropriately) and goes to state S.

b) an end-of-line character (type 5), 'lEX throws away any other information
that might remain on the current line, then digests a "\par" instruction
(paragraph end) and remains in state N.

c) an ignored character or a space (types 9,10), 'lEX passes it by, remaining in
state N.

d) anything else (types 1,2,3,4,6,7,8,11,12), 1EX digests it and goes to state M.

In summary, when 1EX is beginning a line, it skips blanks, and if it gets to the
end of the line without seeing anything it considers that a paragraph has ended.

If in state M (middle of line) and 1EPC sees

a) an escape character (type 0), 'lEX scans the entire control sequence, then
digests it and goes to state S.

b) an end-of-line character (type 5), 1EX throws away any other information
that might remain on the current line, then digests a blank space and goes
to state N.

c) an ignored character (type 9), 1EPC passes it by, remaining in state M.

d) a space (type 10), 1EX digests a blank space and goes to state S.

e) anything else (types 1,2,3,4,6,7,8,11,12), 'I£iX digests it and remains in state
M.

In summary, when 'lEX is in the middle of a line, it digests what it sees, but
converts one or more blank spaces into a single blank space, and also treats the
end of line as a blank space.

How 'lEX reads what 'YOU t'YPe 31

If in state S (skipping blanks) and 1EX sees

a) an escape character (type 0), 1EX scans the entire control sequence, then
digests it, remaining in state S.

b) an end-of-line character (type 5), 'lEX throws away any other information
that might remain on the current line, then· switches to state N.

c) an ignored character or a space (types 9,10), 'lEX passes it by, remaining in
state S.

d) anything else (types 1,2,3,4,6,7,8,11,12), ~ digests it and goes to state M.

In summary, when 'lEX is skipping blanks, it ignores blanks and doesn't treat
the end of a line as a blank space.

So those are the rules. Only three major consequences deserve special em
phasis here:

First, a (carriage-return) always counts as a space, even when it follows a
hyphen. If you want to end a line with a (carriage-return) but no space, you can
do this by typing the control sequence "\!" just before the (carriage-return).
For example, the 7th-last line of MY STORY in Chapter 6 should really have
been typed as follows:

he preferred to be called---\!

A second consequence of the rules, if you are using the bas i c format of
Appendix B, is that the % sign is treated as an end-of-line mark equivalent to a
(carriage-return). This is useful for putting comments into the manuscript. For
example, you might include a copyright notice for legal protection; or you might
say

% Figure 5 belongs here;

or you might say

% This} is supposed to match the { of "\ctrline{".

Anything that you might want to remember but not to print can be included
after a %, because 1EX will never look at the rest of the line.

32 Cha.pter "'{

A third consequence of the rules is that you should indicate the end of a
paragraph either explicitly, by using the control sequence \par; or implicitly, by
having an entirely blank line. (The end of a file page also counts as a blank line,
because of the way files of text are conventionally represented in the computer.)
In the latter case, ~ has always read a space before it came to the end of the
paragraph, because it digested a space at the end of the line before the blank
line. In the former case, you mayor may not have typed a space before you
typed "\par". Fortunately, there's nothing to worry about; the result is the
same in either case, because ~'s paragraph processor discards the final item of
a paragraph when it is a space.

If you have several blank lines in a row, 'lEX digests a "\par" instruction for
each one, according to the rules. But this doesn't show up in the output, because
empty paragraphs are discarded.

~Exercise 7.1: If a line isn't entirely blank, but the first nonblank character on
the line is %, does this signify end-of-paragraph?

~ When 'I'EX first starts up, the 128 possible characters are initially interpreted as
Y follows. Characters "A" to "z" (ascii codes ' 101 to ' 132) and "a" to "z" (ascii

. codes' 141 to ' 172) are type 11 (letters). The characters (null), (line-feed), (vertical-tab),
(alt-mode), and (delete) (ascii codes 0, ' 12, '13, ' 175, and ' 177 at Stanford) are type
9 (ignored). The characters (tab) and () (ascii codes ' 11 and '40) are type 10 (spaces).
The characters (form-feed) and (carriage-return) (ascii codes '14 and ' 15) are type 5
(end of lin·e). All other characters are type 12 (other). The first non-space input by
'lEX is defined to be the escape character used in error messages, and it is set to type
o (escape). You can use \chcode to change the type code of any character, and it is
possible to have several characters each defined to be of type 0 or any other type. The
instruction

\ch cod e(numberl)+-(number2)

(where (numberl) is between 0 and 127 and (number2) is between 0 and 12) causes
the character whose 7-bit code is (numben) to be regarded as type (number2) for the
duration of the current group, unless its type is changed again by another \chcode.
For example, if for some reason you want 'lEX to treat the letter "a" as a non-letter,
you could say

\chcode'141+-12 .

But this would probably not be useful because, e.g., "\par" would no longer be a control
sequence; it would be read as "\p" followed by "a" followed by "r".

The characters you type 33

We will see later that spaces are sometimes ignored after other things besides
control sequences, since there are various 'lEX constructions that look better if.
spaces or end-of-line follow them. For convenient reference, here is a list of all
cases in which 1EX will ignore a space, even though most of these constructions
haven't been explained yet in the manual:

• After a space or end-of-line character.

• After a control sequence.

• After the} that ends a \defor \i f or \i feven or \else or \noal ign
or \output or \mark.

• Between $ signs, when 'lEX is in math mode.

• After the $$ that ends a display.

• After a file name or an already-defined font code or a unit of measure or
the words "to" or' "par" or "s i ze" in box specifications.

• Before or after a (number) or the sign preceding a (number).

• After a paragraph, or in general whenever 'lEX is in vertical mode or
restricted vertical mode.

~ 'lEX goes into reading state S only as shown in the detailed reading rules above.
Jr When it ignores spaces at other times, e.g. after a unit of measure, the spaces
it ignores are actually "digested" spaceSj the processing routine calls on 'lEX's input
mechanism to continue reading until a non-space is digested. This is a fine point, because
it hardly ever makes a differencej but here is a case where it matters: Suppose you make
the definition "\def\space{U}". Then if you type "\space\space", 'lEX will digest
two spaceSj these spaces would not be ignored after a space or end of line or control
sequence, because of TEX's reading rules, but they would be ignored in the other cases
listed above, because of 'lEX's digestive processes. On the other hand \U (control space)
is treated differently: it always means an explicit space and it is never. ignored in any of
the above cases except the last (in vertical mode). Sometimes 'lEX will ignore only one
digested space, but at other times it will ignore as many as are fed to it; if you really
need to know which cases fall into each category, you can find out by experiment.

<8> The characters you type

A lot of different keyboards are used with ~, but few keyboards can produce
128 different symbols. Furthermore, as we have seen, some of the characters that

34 Chapter 8

you can type on your keyboard are reserved for special purposes like escaping
and grouping. Yet when we studied fonts it was pointed out that there are 128
characters per font. So how can you refer to the characters that aren't on your
keyboard, or that have been pre-empted for formatting?

One answer is to use control sequences. For example, the bas i c format of
Appendix B, which defines % to be an end-of-line symbol so t)1at you can use it
for comments, also defines the control sequence \% to mean a per-cent sign.

To get access to any character whatsoever, you can type

\char{number)

where (number) is any number from 0 to 127 (optionally followed by a space),
and you will get the corresponding character from the current font. For example,
the letter "b" is character number 98, so you could typeset the word bubble by
typing

\char98u\char98\char98le

if the b-key on your typewriter is out of order. (Of course you need the \, c, h,
a, and r keys to type "\char", so let's hope they are always working.)

Character .numbers are usually given in octal notation in reference books
(i.e., using the radix-8 number system). A (number) in 'lEX's language can be
preceded by a " in which case it is understood as octal. For example, the octal
code for "b" is 142*, so

\char'142

is equivalent to \char98. In octal notation, character numbers run from '0 to
'177.

~ Formally speaking, a (number) in a 'lEX manuscript is any number of spaces fol
'3r lowed by an optional" '" followed by any number of digits followed by an optional

space. Or it can be any number of spaces followed by "\count(digit)" followed by an
optional space; in the latter case the specified counter is used (cf. Chapter 23).

You can't use \char in the middle of a control sequence, though. If you
type

\\char'142

*The author of this manual likes to use italic digits to denote octal numbers, instead of using
the ' symbol, when octal numbers appear in printed books.

The cha.racters 'YOU type 35

~ reads this as the control sequence \ \ followed by c, h, a, etc., not as the
control sequence \ b.

Actually you will hardly ever have to use \char yourself, since the characters
you want will probably be available as predefined control sequences; \char is
just a last resort in case you really need it (and it is also indispensible for the
designers of book formats).

Since ~ is intended to be useful on many different kinds of keyboards, it
does not assume that you can type very many of the exotic characters. For ex
ample, if your keyboard has an a on it (Greek lower case alpha)-this is character
code 2 at Stanford-you will be able to type "a" in a math formula and get an
alpha. But if you don't have a on your keyboard, 'lEX understands the control
sequence .\a I ph a just as well.

Character code 2 in 'lEX's font cmr10 is not really an alpha; it is actually
8, an upper case Greek theta! 'lEX doesn't want you to type "a" except in math
formulas. When you are typing straight text with ~'s special fonts like cmrlO,
you should confine yourself to the symbols usually found on a typewriter and a
few more that are listed in the next chapter. In fact, every font you use might
have a different way of assigning its symbols to the numbers 0 to 127. Whoever
designed the font should tell you what this encoding is. It's not even guaranteed
that an "a" will yield an "a". Your keyboard converts what you type into codes
between 0 and 127, and these codes will select the corresponding characters of
the current font, but a font designer can put whatever symbol he or she wants
into each position.

Furthermore, different fonts might also have different ligatures. It isn't true
that -- will give you a dash in all fonts with 'lEX, nor that will become ", nor
that ff I will become fil. Each font designer decides what ligature combinations
will appear in his or her font, and this person should tell you what they are. The
seven ligatures

ff fi fl ffi ffl

described in Chapter 2 are available in all the "standard" 'lEX roman and slanted
fonts, but you should not assume that they are present in all fonts;

Similarly, accents like \' and \ II can't be used with all fonts; the accent
characters have to be in certain positions within the font, and not all fonts have
them.

36 Cha.pter 8

~ If you want to use an accent on a nonstandard font (e.g., if you need a new accent
~ for some newly discovered African dialect), suppose you have a font that includes

this accent as character number '20. Then you can type "\accent '20a" to get this
accent over an "a", etc. In general, type

\accent(number)(char)

to get an accent over a character in the same font, or

\accent(number)\: (font)(char)

to get an accent over a character in a different font. You're not allowed to say things
like "{\: b\accent· 20}a", however; the character to be accented must immediately
follow the accent except for font changes.

<9> 'lEX's standard roman fonts

When you are qsing a standard roman font (like cmrlO, cmb10, cmslO, or cmss10,
which stand respectively for Computer Modern Roman, Bold, Slanted, or Sans
Serif, 10 points high), you need to know the information in this chapter.

These fonts are intended to contain nearly every symbol you will need for
non-math text, including accents and special characters for use with foreign lan
guages. When you are using such fonts you should confine yourself to typing the
following symbols only:

the letters A to Z and a to z

the digits 0 to 9

the standard punctuation marks, : ; ! ? () [] & ' , - * I .

You can also type + = < > and you will get the corresponding symbols, but this
is not recommended because these symbols should be used only in mathematics
mode (explained later). The result will look better in mathematics mode, because
TEX will insert proper spacing. When you use the "-" and "I" it should not be
for mathematics; do hyphens and slashes outside of math mode, but don't do
subtractions and divisions.

'lEX's standard roman jonts 37

Conspicuously absent from this list are the following symbols found on many
keyboards:

\ { } t $ % T ~ " C

Resist the temptation to type them. Also resist .the temptation to type mathe
matical symbols like

+-- a{3 f~ 7r'V 3 00

and so on, if your keyboard has them. Like + and =, they should be reserved for
mathematics mode; but unlike + and =, they don't give the results you might
expect, except in mathematics mode.

By using control sequences you can obtain the following special symbols
needed in foreign languages:

Type to get

\ss 13 (German letter ss)
\ae ce (Latin and Scandinavian ligature ae)
\AE IE (Latin and Scandinavian ligature AE)
\oe re (French ligature oe)
\OE <E (French ligature OE)
\0 ~ (Scandinavian slashed 0)
\0 0 (Scandinavian slashed 0)

For example, if you want to specify ".Esop's CEuvres en fran<;ais" you could type

\AE sop's \OE uvres en fran\c cais

(Note the spaces after these control sequences. Another way to separate them
from the surrounding text would be

{\AE}sop's {\OE}uvres en fran{\c c}ais

this looks a little nicer, perhaps, in the computer file, but it's harder to type.)

38 Chapter 9

The following accents are available in standard roman fonts, shown here with
the letter "0":

Type to get

\"0 0 (accent grave)
\'0 6 (accent aigu, acute accent)
\A 0 0 (accent circonflexe, circumflex or "hat" accent)
\v 0 0 (Slavic hacek accent, inverted circumflex)
\u 0 0 (breve, short vowel)
\=0 0 (macron or bar, long vowel)
\"0 0 (umlaut or double dot)
\H 0 0 (long Hungarian umlaut)
\b 0 0 (vector accent-used in mathematics)
\5 0 0 (tilde or squiggle)
\t 00 00 (ties two letters together)
\a a a (Scandinavian a with circle)
\1 1 I (Polish crossed I)
\c c ~ (cedilla accent)

The last three of these examples are shown with other letters instead of "0"
because they are somewhat special; the Scandinavian accent is shown over an
"a" since "0" isn't a Scandinavian letter. Similarly, the \1 accent is specifically
designed for the letter "I". Cedillas are usually associated with the letter "c"
(although it is true that "Q" appears in Navajo).

Spaces are obligatory where shown in these examples. But the space can
be omitted after the accent codes \", \', \=, and \", since they don't involve
letters.

Within a font, accents are designed to appear at the right height for letters
like "0"; but 'lEX will raise an accent if it is applied to a tall letter. For example,
the result oi "\" 0" is "0". This simple rule almost always works all right, but
sometimes it fails; for example, an upper case A with the circle accent tradition
ally has the circle touching the A (A), at least in Scandinavian books, while '''\a
A" yields "A". (Both of these forms are used by modern American printers to
denote angstrom units, but A is preferable.) The \1 doesn't work with a capital
L either; "\1 L" yields "l.". An even more conspicuous failure of 'lEX's rule
occurs if you try to put a cedilla on an upper case "C" by typing "\c e"; 'lEX

TEX's standard roman fonts 39

will raise the cedilla to give "G::"! (See below for how to handle these anomalous
cases.)

When the letters "i" and "j" are accented, it is traditional to omit the dots
they contain. Therefore standard roman fonts contain the dotless letters

and J

which you can obtain by typing "\ i" and "\j", respectively. For example, to
obtain "minus" you would type "m\=\i n\u us".

~Exercise 9.1: Explain what to type in order to get tl~e sentence

Commentarii Academ.-e Petropolitan.-e is now Doklady Akademii'a Nauk SSSR.

~Exercise. 9.2: How would you specify the names 0ystein Ore, furi IAnov, Ja'far
al-Khowarizmi, and Wladyislaw SiiJ3man?

~ The character to be accented must immediately follow the accent, except for the
3r fact that you are allowed to change fonts in between; see the remarks at the close

of the previous chapter. 'lEX adjusts for the slanted ness of characters when placing
accents, including the possibility that the accent comes from a font with a different
slant than the character being accented. For example, if you type

\'e \'E \sl\'e \'E \rm\'\sl e \rm\'\sl E \'\rm e \sl\'\rm E

using bas i c format, the result will be

e E e E e E e E.
~ The fonts are designed so that the anomalous cases of "bad accents" mentioned
3r above can be handled as follows, using the \spose (superpose) control sequence of
bas i c format: To get

type respectively

A Q L

\spose{\raise 1.667pt\hbox{\char·27}}A
\spose{\char'30}C
\spose{\raise 2.5pt\hbox{\char·31}}L

(This is for IO-point sizes; the amounts to raise the accents must be adjusted propor
tionately when working with other sizes. For example, "\ra i se 1. 667pt" would
become "\raise· 1. 5pt" in 9-point type.)

A complete list of the 128 symbols in W's standard roman fonts appears
in Appendix F. But everything a typist needs to know about them has already
been explained; it's not necessary for you to know the numeric character codes.

40 Chapter 10

<10> Dimensions

The example program used in the trial runs of Chapter 6 involved mysterious
~ instructions like "\ vs kip 2. 54cm". Now it is time to reveal part of this
mystery, by explaining what units of measure ~ understands.

"Points" and "picas" are printers' traditional basic units of measure, so ~
understands points and picas. ~ also understands inches and certain metric
units, but it converts everything internally to points. Each unit of measure is
given a two-letter abbreviation; here is a complete list of the units ~ knows
about:

pt point
pc pica (one pica equals 12 points)
in inch (one point equals 0.01383700 inches)
em centimeter (one inch equals 2.5400 centimeters)
mm millimeter (one centimeter equals 10 millimeters)
dd Didot point (one centimeter equals 26.600 Didot points)
em One "quad" of space in the current font (see Chapter 18)

When you want to express some physical dimension to ~, type it as

(optional sign)(number)(unit of measure)

or
(optional sign)(number). (number)(unit of measure)

(and in the second case your (number)s had better not be in octal notation or
~ will get confused). An (optional sign) is either a "+" or a "-" or nothing at
all.

For example, here are some typical lengths:

3 in
29 pc
-O.013837in
+ 42.1 dd

o mm

A plus sign is redundant, but some people like occasional redundancy.

Boxes 41

Spaces are optional before and after numbers and after the units of measure,
but you should not put spaces within a number or between the two letters in the
unit of measure.

In a manual like this it is convenient to use "angle brackets" in abbreviations
for various constructions like (number) and (optional sign). Henceforth in this
manual we will use the term (dimen) to stand for any dimension expressed in the
above form. For example,

\hs i ze(dimen)

will be the general way to define the page width 'lEX is supposed to use.
When a dimension is zero, you have to specify a unit of measure even though

it is redundant. Don't just say "0", say "Opt" or "Oi n" or something.

~ Chapter 6 mentions that units of measure may be inflated artificially on some
~ output devices. The following "rulers" have been typeset by 'lEX so that you can

calibrate the output device used to produce the copy of the manual you are reading;

iii I I iii iii I 14 in

i 1300 pt

110 cm

~Exercise 10.1: (To be worked after you know about boxes and glue and have read
Chapter 21.) Explain how to typeset a 10 em ruler like this using 'lEX.

<11> Boxes

'lEX makes complicated pages by starting with simple individual characters and
putting them together in larger units, and putting these together in still" larger
units, and so on. Conceptually, it's a big paste-up job. The 'lEXnical terms used
to describe such page construction are boxes and glue.

Boxes in 1EX are two-dimensional things with a rectangular shape, having
three associated measurements called height, width, and depth. Here is a picture

42 Chapter 11

of a typical box, showing its so-called reference point and baseline:

Baseline
Reference point ---i~-----I

width

1
height

I
depth
t

From ~'s viewpoint, a single character from a font is a box, one of the
simplest kinds of boxes. The font designer has decided what the height, width,
and depth of the character are, and what the symbol will look like when it is in
the box; ~ just uses these dimensions to paste boxes together, and ultimately
to determine the locations of the reference points for all characters on a page.
In the cmrl0 font, for example, the letter "h" has a height of 6.9444 points, a
width of 5.5556 points, and a depth of zero; the letter "g" has a height of 4.4444
points, a width of 5 points, and a depth of 1.9444 points. Only certain special
characters like ·parentheses have height plus depth actually equal to 10 points,
although cmrlO is said to be a "10 point" font. The typist doesn't have to know
these measurements, of course, but it is helpful for ~'s users to be aware of
the sort of information ~ deals with.

The character shape need not fit inside the boundaries of the box. For ex
ample, some characters that are used to build up larger symbols like square-root
signs intentionally protrude a little bit, so that they overlap properly with the
rest of the symbol. Slanted letters frequently extend a little to the right of the
box, as if the box were skewed right at the top and left at the bottom, keeping its
baseline fixed. For example, compare the letter "q" in cmr10 and cms10 fonts:

In both cases 'lEX thinks the box is 5 points wide, so both letters get exactly the
same treatment. 'lEX doesn't know exactly where the ink will go-only the font

Boxes 43

designer knows this. But the slanted letters will be spaced properly in spite of
'lEX's lack of knowledge, because the baselines will match up.

Actually the font designer also tells 'lEX one other thing, the so-called italic
correction: A number is specified for each character, telling roughly how far that
character extends to the right of its box boundary. For example, the italic cor
rection for "q" in cmrlO is zero, but in cmslO it is 0.2083 points. If you type the
control sequence

\/

following a character, 1E7C will effectively increase the width of that character
by the italic correction. It's a good idea to use \/ when shifting from slanted to
unslanted fonts without intervening spaces, for example when a slanted word is
immediately followed by an unslanted right parenthesis or semicolon. The author
typed

the so-called {\sl italic correction\/}:

when specifying the first sentence of the paragraph you are now reading. Of
course, there's no need to make the italic correction when a slanted letter is
followed by an unslanted period or comma.

Another simple kind of box 'lEX deals with might be called a "black box,"
a rectangle like "I" that is to be entirely filled with ink at printing time. You
can specify any height, width, and depth you like for such boxes-but they had
better not have too much area or the printer might get upset. (Printers generally
prefer white space to black space.)

Usually these black boxes are made very skinny, so that they appear as
horizontal lines or vertical lines. Printers traditionally call such lines "horizontal
rules" and "vertical rules," so the terms 'lEX uses to stand for black boxes are
\hrule and \vrule. We will discuss the use of rule boxes in greater detail later.

Everything on a page that has been typeset by 'lEX is made up of simple
character boxes or rule boxes, pasted together in combination. 'lEX pastes boxes
together in two ways, either horizontally or vertically. When 'lEX builds a horizon
tal list of boxes, it lines them up so that their reference points appear in the same
horizontal row; therefore the baselines of adjacent characters will match up as
they should. Similarly, when 'IF)(builds a verticallist of boxes, it lines them up
so that their reference points appear in the same vertical column.

There is also a provision for lowering or raising the reference points of in
dividual boxes in a horizontal list. This has been used, for example, to lower the

44 Chapter 11

"E" in "1£jX". Similarly, there is a way to move the reference points of boxes to
the left or to the right in a vertical list. This is us~d, for example, when centering
an accent over a letter, since an accented letter like E is essentially a box made
from a vertical list containing the two character boxes ",,, and "E".

~ When a big box has been made from a horizontal list of smaller boxes, the baseline
'Sr of the big box is the common baseline of the smaller boxes. (More precisely, it's the
common baseline they would share if they hadn't been raised or lowered.) The height
and depth of the big box are determined by the maximum distances that the smaller
boxes reach above and below the baseline, respectively; any raising and lowering of the
smaller boxes is taken into account during this calculation. The width of the big box
is determined by whatever 'lEX operation was used to create that box, as explained in
the next chapter.

~ When a big box has been made from a vertical list of smaller boxes, its reference
'Sr point is the reference point of the last (lowest) box in the list (but ignoring left

or right shifts). The depth of the big box is therefore equal to the depth of this last
smaller box. The width of the big box is determined by the maximum distance that
the smaller boxes reach to the right of the reference point; any left or right shifting of
the smaller boxes is taken into account during this calculation. (Note that if any of
the smaller boxes have been shifted left, they will protrude past the left boundary of
the big box.) The height of the big box is determined by whatever 'lEX operation was
used to create that box, as explained in the next chapter.

A page of text like the one you're reading is itself a box, in 'lEX's view: It
is a largish box made from a vertical list of smaller boxes representing the lines
of text. Each line of text, in turn, is a box made from a horizontal list of boxes
representing the individual characters. In more complicated situations, involving
mathematical formulas and/or complex tables, you can have boxes within boxes
within boxes ... to any level. But even these complicated situations arise from
horizontal or vertical lists of boxes pasted together in a simple way, so all that
you and 'IEX have to worry about is one list of boxes at a time. In fact, when
you're typing straight text, you hardly have to think about boxes at all, since
'lEX will automatically take responsibility for assembling the character boxes into
words and the words into lines and the lines into pages. You only need to be
aware of the box concept when you want to do something out of the ordinary,
like centering a heading or providing extra space, etc.

~ The height, width, or depth of a box might be negative, in which case it is a
j(' "shadow box" that is somewhat hard to draw. You might be able to think of some

Glue 45

tricky things to do with such boxes; 1£)C just lines things up and adds up dimensions
as if everything were positive or zero. Thus, for example, if a font designer specified a
character with negative width, it would act like a backspace. When forming a box from
a horizontal list, however, 1£)C sets the height and depth to zero if they turn out to be
negative, so only the width can be negative. Similarly, only the height and depth of a
box formed from a vertical list can be negative. Negat~ve dimensions are not allowed
in rule boxes.

<12> Glue

But there's more to the story than just boxes: there's also some magic mortar
called glue that 'lEX uses to paste boxes together. For example, there is a little
space between the lines of text in this manual; it has been calculated so that
the baselines of consecutive lines within a paragraph are exactly 12 points apart.
And there is space between words too; such space is not an "empty" box, it is
part of the glue between boxes. This glue can stretch or shrink so that the right
margin of each page comes out looking straight.

When 'lEX makes a large box from a horizontal or vertical list of smaller
boxes, there often is glue between the smaller boxes. Glue has three attributes,
namely its natural space, its ability to stretch, and its ability to shrink.

In order to understand how this works, consider the following example of
four boxes in a horizontal list separated by three globs of glue:

---------width 52-------_

The first glue element has 9 units of space, 3 of stretch, and 1 of shrink; the next
one also has 9 units of space, but 6 units of stretch and 2 of shrink; the last one

46 Cha.pter 12

has 12 units of space, but it is unable to stretch or to shrink, so it will remain
12 units of space no matter what.

The total width of boxes and glue in this example, considering only the space
components of the glue, is 5 + 9 + 6 + 9 + 3 + 12 + 8 = 52 units. This is
called the natural width of the horizontal list; it's the preferred way to paste the
boxes together. Suppose, however, that 'lEX is told to make the horizontal list
into a box that is 58 units wide; then the glue has to stretch by 6 units. Well,
there are 3 + 6+ 0 = 9 units of stretchability present, so 'fE'C multiplies each
unit of stretchability by 6/9 in order to obtain the extra 6 units needed. Thus,
the first glob of glue becomes 9 + (6/9) X 3 = 11 units wide, the next becomes
9 + (6/9) X 6 = 13 units wide, the last remains 12 units wide, and we obtain
the desired box looking like this:

····B··· Q ·EJ
---------width 58--------...

On the other hand, if 'lEX is supposed to make a box 51 units wide from the
given list, it is necessary for the glue to shrink by a total of one unit. There are
three units of shrinkability present, so the first glob of glue would shrink by 1/3
and the second by 2/3.

The process of determining glue thickness when a box is being made from
a horizontal or vertical list is called setting the glue. Once glue has been set,
it becomes rigid-it won't stretch or shrink any more, and the resulting box is
essentially indecomposable.

Glue will never shrink more than its stated shrinkability. The first glob of
glue above, for example, will never be allowed to become narrower than 8 units
wide, and 'lEX will never shrink the given horizontal list to make its total width
less than 49 units. But glue is allowed to stretch arbitrarily far, whenever it has
a positive stretch component.

Glue 47

~Exercise 12.1: How wide would the glue globs be if the horizontal list in the
illustrations were to be made 100 UnIts wide?

tZ:> 'lEX is somewhat reluctant to stretch glue more than its stated stretchability, as we
Y shall see later when we discuss the "badness" of particular glue settings. Therefore
if you are trying to decide how big to make each aspect of the glue in some layout, the
rules are: (a) The natural glue space should be the amount of space that looks best.
(b) The glue stretch should be the maximum amount of space that can be added to the
natural spacing before the layout begins to look bad. (c) The glue shrink should be the
maximum amount of space that can be subtracted from the natural spacing before the
layout begins to look bad.

In most cases the designer of a book layout will have specified all the kinds
of glue th'at are to be used, so a typist will not need to decide how big any glue
attributes should be. For example, the Art of Computer Programming layout in
Appendix E includes the definition of three control sequences \xsk i p, \ysk i p,
and \yysk i p. A typist for those books will insert \xsk i p within a paragraph
in certain places where a little extra stretchability is appropriate; and \ysk i p
is inserted between paragraphs when the paragraphs discuss somewhat different
topics. Even more space is inserted before and after theorems and algorithms,
etc.; this is called \yysk i p because it is twice as much glue as \ysk i p. (The
same three control sequences have been used when preparing this manual. For
example, . "\xsk i p" appears in the paragraph preceding this one, just before
U(a)", "(b)", and "(c)"; and "\yysk i p" is used before and after every "dangerous
bend" paragraph like the next one.)

tZ:> To specify glue in a horizontal list of boxes, without using a predefined format like
Y \xskip, type "\hskip(dimen) plus(dimen) minus(dimen)". The "plus(dimen)"

and "minus(dimen)" specify stretch and shrink components. They are optional; and
if left out, the corresponding glue component has length zero. The space component,
however, must always be given, even when it is zero; and if zero, you must remember to
type "Opt", not just "0" . If you are omitting the shrink component, the next characters
of your text had better not be "minus". If you are omitting both stretch and shrink
components, the next characters of your text had better not be "pl us". Similar remarks
apply to the specification of glue in vertical lists; the only difference is that you type
"\vskip" instead of "\hskip".

There is one aspect of glue that a careful typist will want to be aware of,
namely that 'lEX automatically increases the stretchability (and decreases the

48 Cha.pter 12

shrinkability) after punctuation marks. The reason for this is that it's usually
better to put more space after a period than between two ordinary words, when
spreading a line out to reach the desired margins. Consider, for example, the
following sentences from a classic kindergarten pre-primer:

"Oh, oh! ~~ cried Baby Sally. Dick and Jane laughed.

If 1E:JX sets this at its natural width, all the spaces will be the same:

"Oh, oh!" cried Baby Sally. Dick and Jane laughed.

But if the line needs to be expanded by 5 points, 10 points, 15 points, or more,
'IEX will set it as

"Oh, oh!" cried Baby Sally. Dick and Jane laughed.
"Oh, oh!" cried Baby Sally. Dick and Jane laughed.
"Oh, oh!" cried Baby Sally. Dick and Jane laughed.
"Oh, oh!" cried Baby Sally. Dick and Jane laughed.

and so on. There is no glue between adjacent letters, so individual words will
always look the same. The glue after the comma stretches at 1.25 times the rate
of the glue between adjacent words; the glue after the period and after the ! ~ ~
stretches at 3 times the rate. Furthermore if 'IEX had to shrink this line to its
minimum width, the result would be

"Oh, oh!" cried Baby Sally. Dick and Jane laughed.

The glue after a comma shrinks only 80 per cent as much as ordinary inter-word
glue, and after a period or exclamation point it shrinks by only one third as much.
~ The exact rule 'lEX uses at a space is this: Each font tells 'lEX what glue to use
Y for spaces when that font is active. When starting to process a horizontal list, 'lEX

sets an internal variable called the "space factor" to 1. When appending a character to
a horizontal list, the space factor is changed to 3 if the character is a period, question
mark, or exclamation point (as determined by its ascii code); it is changed to 2 if the
character is a colon, to 1.5 if a semicolon, to 1.25 if a comma. The space factor is left
unchanged if the character being appended is a) or] or ' or "i and it is reset to 1 whenever
any other character or math formula or non-character box is appended. Furthermore,
the space factor remains unchanged when appending a character immediately following
an upper case letter. (The reason for this is to avoid treating the period specially when
it merely follows an initial, like the periods in "P. A. M. Dirac".) When a space is
encountered, the glue space is taken from the current font glue space specification; the
stretch and ehrink are obtained by respectively multiplying and dividing the font glue

- stretch and shrink specifications by the space factor.

Glue 49

The only trouble with this rule is that it fails when a period isn't really a
period ... like when it is used (as in this sentence) to make an "ellipsis" of three
dots, or when it is used after abbreviations. If, for example, you are typing a
bibliographic reference to Proc. Amer. Math. Soc., you don't want the glue after
these periods to be any different from the ordinary inter-word glue. The best way
to handle this is to use "escape space" after a non-sentence-ending period, e.g.,
to type

Proc.\ Amer.\ Math.\ Soc.

This works because the space in "\u" always has the unmodified inter-word glue
of the current font. Granted that this input looks a bit ugly, it does give the best
looking output. It's one of those things we occasionally have to do when dealing
with a computer that tries to be smart.

~ ~Exercise 12.2: How can you defeat the rule the other way, for sentences like " ...
3r launched by NASA."?

Incidentally, if you try to specify" ... " by typing three periods in a row,
you get " ... " -the dots are too close together. The best way to handle this is to
go into mathematics mode, using the \ldots control sequence defined in basic
1EX format. For example, if you type

Hmmm \ldots I wonder why?

the result is "Hmmm '" I wonder why?" The reason this works is that math
formulas are exempt from normal text spacing rules. Chapter 17 has more to say
about \ldots and related topics.

One of the interesting things that happens when glue stretches and shrinks at
different rates is that there mig~t be glue with essentially infinite stretchability.
For example, consider again the four boxes we had above, with the same glue as
before except that the glue in the middle has stretchability 999997 (nearly one
million) instead of 6. Now the total stretchability is one million; and when the
line has to grow, almost all of the additional space will get put into the middle
glue. If, for example, a box of width 58 is desired, the first glue expands from 9
to 9.000018 units, the middle glue from 9 to 14.999982 units, and of course the
last glue remains exactly 12 units thick. For all practical purposes, the spacing
has gone from 9, 9, 12 to 9, 15, 12.

50 Cha.pter 12

If such infinitely stretchable glue is placed at the left of a row of boxes, the
effect is to right justify them, i.e., to move them over to the rightmost boundary
of the constructed box. And if you take two globs of infinitely stretchable glue,
putting one at the left and one at the right, the effect is to center the list of
boxes within a larger box. This in fact is how the \ctrl i ne instruction works:
it places infinite glue at both ends, then makes a box of width \hsize. [Actually
the stretchability is 1000 cm, namely 10 meters (about 33 feet); that isn't infinite,
but it's close enough.]

~ Theglue actually used in the definition of\ctrline is \hskip Opt plus 1000cm
Y minus 1000cmi in other words, both stretch and shrink components are essentially
infinite. The reason is that if you try to center something that is bigger than the actual
\hsize, it will be centered bu't will extend into the marginsi the glue at left and right
will shrink from 0 to something negative. Like box dimensions, glue components can
be negative, and this is occasionally useful for things like backspacing.

~ "Infinite" glue can be specified in a horizontal list by typing "\hf ill", or in a
Y vertical list by typing "\vfill". An \hfi11 instruction is equivalent to \hskip
Opt pI us 10000000000pt (that's ten billion points), and \ vf i 11 is equivalent to
\vskipping by the same amounts. We have already seen a typical use of \vfi 11 in
the example of <?hapter 6.

<13> Modes

Just as people get into different moods, 1EX gets into different "modes." (Except
that 'lEX is more predictable than people.) There are six modes:

• Vertical mode. [Building the vertical list used to make the pages of
output.]

• Restricted vertical mode. [Building a vertical list for a box within a
page.]

• Horizontal mode. [Building the horizontal list used to make the next
paragraph for the output pages.]

• Restricted horizontal mode. [Building a horizontal list for a box within
a page.]

• Math mode. [Building a mathematical formula to be placed in a
horizontal list.]

Modes 51

• Display math mode. [Building a mathematical formula to be placed
on a line by itself, temporarily interrupting the current paragraph.]

In simple situations, you don't need to be aware of what mode 'IE)(is in, because
it just does the right thing. But when you get an error message that says "You
can·t do that in horizontal mode", a knowledge of modes helps explain
why 'lEX thinks you goofed.

Basically 'lEX is in one of the vertical modes when it is preparing a list of
boxes and glue that will be placed vertically on top of one another; it's in one
of the horizontal modes when it is preparing a list of boxes and glue that will be
strung out horizontally next to each other with baselines aligned; and it's in one
of the math modes when it is reading a math formula.

A play-by-play account of a typical 1E;.X job should make the mode idea
clear: At the beginning, 'lEX is in vertical mode, ready to construct pages. If
you specify glue or a box when 1EX is in vertical mode, the glue or the box gets
placed on the current page below what has already been specified. For example,
the \vskip instructions in the sample run we discussed in Chapter 6 contributed
vertical glue to the page; and the \ctrl i ne{MY STORY} instruction contributed
a box to the page. While building the \ctrl i ne box, 'lEX went temporarily into
restricted horizontal mode, but returned to vertical mode after setting the glue
in that box.

Continuing with the example of Chapter 6, 'lEX switched into horizontal
mode as soon as it read the "0" of "Once upon a time". Horizontal mode is
the mode for making paragraphs. The entire paragraph up to the \par was input
in horizontal mode; then it was divided into lines of the appropriate length, these
lines were appended to the page (with appropriate glue between them), and 'lEX
was back in vertical mode.

In general when 'fEX is in vertical mode, the first character of a new paragraph
changes the mode to horizontal for the duration of a paragraph. If a begin
math character ($) appears when in horizontal mode, 'lEX plunges into math
mode, processes the formula up until the closing $, then adds the text of this
formula to the current paragraph and returns to horizontal mode. (Thus, in the
"I wonder why?" example of the previous chapter, 'fEX would go into math mode
temporarily while processing \ldots, treating the dots as a formula.)

However, if two consecutive begin-math characters appear in a paragraph
($$), 'lEX interrupts the paragraph where it is, contributes the paragraph-so-far to
the page, then processes a math formula in display math mode, then contributes

52 Chapter 1S

this formula to the current page, then returns to horizontal mode for more of the
paragraph. (The formula to be displayed should end with $$.) For example, if
you type

the number $$\pi \approx 3.1415926536$$ is important

~ goes into display math mode between the $$'s, and the output you get states
that the number

7r ~ 3.1415926536

is important.

~ 'lEX gets into restricted vertical mode when you ask it to construct a box from
Y a vertical list of boxes (using \vbox or \val ign) or when you do \topinsert

or \botinsert. It gets into restricted horizontal mode when you ask it to construct
a box from a horizontal list of boxes (using \hbox or \halign). Box construction is
discussed in Chapter 21. Restricted modes are like the corresponding unrestricted ones·
except that you can't do certain things. For example, you can't say $$ in restricted
horizontal mode, because you're not making a paragraph. You can't begin a paragraph
in restricted vertical mode, etc. All the rules about what you can do in various modes
are summarized ~n Chapters 24-26.

When handling simple manuscripts, 'lEX spends almost all of its time in
horizontal mode (making paragraphs), with brief excursions into vertical mode
(between paragraphs).

At the end of a job, you type "\end" at some point when ~ is in vertical
mode; this causes TEX to finish any unfinished pages and stop. (Actually it is
better to type "\ vf iII \end" in most cases, since \ vf iII inserts enough space
to fill up the last page properly. Without the \ vf iII, 'lEX attempts to stretch
out the lines it has accumulated for the last page, with the bottom line appearing
at the bottom of the page; you probably don't want this.)

<14> How TEX breaks paragraphs into lines

When the end of a paragraph is encountered, ~ determines the "best" way
to break it into lines. In this respect, ~ gives better results than most other
typesetting systems, which produce each separate line of output before beginning
the next, because the final words of a 'lEX paragraph can influence how the lines

How 'lEX breaks parQ.(Jraphs into lines 53

at the beginning are broken. 'lEX's new approach to this problem (based on
"sophisticated computer science techniques" -whew!) requires only a little more
computation than the traditional methods, and leads to significantly fewer cases
in which words need to be hyphenated.
~ does try to hyphenate words, but it uses a hyphenation only when there

is no better alternative. The complete rules by which 'lEX hyphenates words are
given in Appendix H. They are sufficiently simple that you could memorize them
and apply them by hand if you wanted to, but there probably isn't any need for
you to know them in detail. Basically 'fEP('s approach to hyphenation is one of
extreme caution: instead of trying to find all legitimate places where a hyphen
could occur, 'lEX sticks to hyphenations that appear to be quite safe.

In view of ~'s improved line-breaking methods, this cautious approach to
hyphenation is usually satisfactory; but every once in a while, like all automatic
approaches to language processing, it fails. The reason for failure is generally that
a rather long nonstandard word has occurred: 'lEX refuses to apply automatic
hyphenation to a sequence of boxes unless that sequence

a) consists entirely of lower case letters belonging to a single font; and

b) is preceded immediately by glue (e.g., a space); and

c) is followed immediately by glue or by a punctuation mark (something that
doesn't set the "space factor" to I, cf. Chapter 12).

One consequence of these conditions is that proper names and words containing
accented letters will not be hyphenated; but such words tend to disobey the
normal hyphenation rules anyway. Another consequence is that 'lEX won't mess
around with words for which you have explicitly prescribed the hyphenation.
And already-hyphenated compound words won't be broken up any further.

In spite of these apparently severe restrictions, experience shows that 'lEX
works amazingly well in practice, except when the margins are extremely close
together (small \hs i ze); and nothing works very well in that case. (A large
dictionary, combined with 'lEX's line-breaking method, would do the best con
ceivable job; but for normal books and journals it isn't worthwhile for the com
puter to waste time referring to a large dictionary. 1Ef'C's program and tables for
hyphenation require only about 3000 words of computer memory, so they place
little burden on the overall processing.) When proofreading the output of 1Ef'C,
the amount of additional work needed to correct missed hyphenations is quite
negligible compared to the amount of work that proofreading already involves.

54 Chapter 14

When you do find a word that 'lEX should have hyphenated but didn't, or
when you find one of the extremely rare cases in which 'lEX inserts a hyphen
in the wrong place, the remedy is to revise the manuscript, telling 'lEX how to
hyphenate the offending word by inserting discretionary hyphens. The control
sequence "\-" indicates a discretionary hyphen, namely a place where a word
may be hyphenated if there is no better alternative.

For example, if you run into a situation where the French word mathematique
must be hyphenated, you can type it as

math\-\'e\-ma\-tique

Another word 'lEX has trouble with is "onomatopoeia"; if necessary, type it in
as

on\-o\-mat\-o\-poeia

(Or you could use the fancy "re" ligature, cf. Chapter 9.) But don't bother to
insert any discretionary hyphens until after 'lEX has failed to find a good way to
break lines in some paragraph.

tZ> Before describing 'lEX's neat method for breaking a paragraph up into lines, we
~ should discuss the rules for all legal breaks in a paragraph. Here they are: Outside

of math formulas, you can break a paragraph

a) at glue, provided that the glue is immediately preceded by a character box or a
constructed box (but not a rule box), or by the end of a math formula, or by a
discretionary hyphen, or by an insertion (\topinsert or \botinsert, which are
explained in Chapter 15).

b) where a \penal ty has been specified in horizontal mode (see below), provided that
the penalty is less than 1000.

c) at a discretionary hyphenation (with the hyphen included in the text, taken from
the font that was current at the time the \- appeared), paying a penalty of 50.

d) where \eJ ect has been specified (see below-this is a way to end a page at a
particular place within a paragraph).

e) after "-" or any ligature that ends with "-" (thus, in standard roman fonts this
means after "-", "--", or "---").

Inside math formulas, you can break

How 'lEX breo.ks 'Po.r<l9To.'Phs into lines 55

a) after a binary operation like "+" (paying a penalty of 95), or after a relation like
"=" (paying a penalty of 50).

b) where a \penal ty has been specified (see below), provided that the penalty is less
than 1000.

c) at a "discretionary math hyphen" specified by "*" (this inserts a multiplication
sign X into the formula), paying a penalty of 50.

d) where \ej ect has been specified.

Note that some breaks are "free" but others have an associated penalty. Penalties
are used to indicate the relative desirability of certain breaks. Breaks at \ej ect are
compulsory; all other breaks are optional. When a break occurs at glue or just before
glue, this glue disappears.

rZ'> 'lEX's procedure for line breaking is based on the 'notion of the "badness" of glue
"7 setting. This is a technical concept defined by a formula that assigns a badness of
100 to a box in which glue had to stretch or shrink to its total amount of stretchability or
shrinkability, while the badness is near zero if the glue's stretchability or shrinkability is
not very fully utilized. Furthermore the badness increases rapidly when glue is stretched
to more than its stated limit; for example, the badness is 800 if the glue is stretched by
twice its stretchability. Here is a precise way to calculate the badness, given that the
total amount of glue stretch and shrink are y and z, respectively, and given that the
box is supposed to grow by an amount x more than its natural width when the glue is
set: Case 1, x > 0 (stretching). If y < 10-4, replace y by 10-4• Then the badness
is 100(x/y)3. Case 2, x < 0 (shrinking). If z < 10-4, replace z by 10-4 • Then the
badness is 1001x/z13 if Ixl < z, otherwise it is 00 (infinitely bad).

rZ'> When breaking lines of a paragraph, 'lEX essentially considers all ways to break
"7 the lines so that no line will have badness B exceeding 200. Such breaks are called
"feasible." Subject to this feasibility condition, 'IEX finds the best overall way to break,
in the sense that the minimum total number of demerits occurs, where the demerits for
each line of output are calculated as follows: If the penalty P for breaking at the end
of this line is > 0, the number of demerits is (B + P + 1)2; if P < 0, the number is
(B + 1)2 - P2. Furthermore an additional 3000 demerits are charged if two consecutive
lines are being hyphenated or if the second-last line of the paragraph is hyphenated.
A "dynamic programming" technique is used to find the breaks that lead to fewest
total demerits. A~ attempt is made to hyphenate all words that meet the requirements
mentioned earlier, whenever such words would straddle the end of line following some
feasible break. The hyphenation algorithm of Appendix H is used to insert discretionary
hyphens in all permissible places in such words. In practice the computation is quite
fast, and only a few hyphenations need to be attempted, except in long paragraphs.

56 Chapter 14

~ The current value of \hs i ze at the close of the paragraph is used to govern the width
Y of each line, unless you specify "hanging" indentation. If you type "\hangi ndent
(dimen) for (number)", the specified dimension is supplied as an extra indentation on
the first n lines of the paragraph, where n is the specifi~d number. (That's how the
second line of the paragraph you're reading was indented.) If you type "\hangindent
(dimen) after (number)", the specified dimension is supplied as an extra indentation
on all but the first n lines of the paragraph. If you type just "\hangi ndent(dimen)",
then "after 1" is assumed. If the specified dimension is negative, indentation occur·s
at the right margin instead of at the left.

~ 'lEX indents the first line of each paragraph by inserting an empty box of width
Y \parindent at the beginning, unless you start the paragraph by typing the control

sequence \noindent.

~ The number 200 used to determine feasibility can be changed to lOOn for any
Y integer n > 1 by typing "\j par(number)", where n is the specified number. A
large value of n will cause ~ to run more slowly, but it makes more line breaks feasible
in cases where lines are so narrow that n = 2 finds no solutions.

~ The instruction \ragged(number) specifies a degree of "raggedness" for the right
Y hand margins. If this number is r, the line width changes towards its natural width
by the ratio r /(100 + r). Thus, \ragged 0 (the normal setting) gives no raggedness;
\ragged 100 causes the width of each line to be midway between \hs i ze and its
natural width; .and \ragged 1000000 almost completely suppresses any stretching or
shrinking of the glue. Some people like to use this "ragged right margin" feature in
order to make the output look less formal, as if it hadn't actually been typeset by
an inhuman computer. (Some people also think that "ragged right" typesetting saves
money. On traditional typesetting equipment, this was true, but computer typesetting
has changed the situation completely: the most expensive part of the computation is
now the breaking of lines, while the setting of glue costs almost nothing.)

~ The numbers 50, 3000,95, and 50 used in the above rules for hyphenation penalties,
Y consecutive-hyphenation demerits, binary-operation-break penalties, and relation
break penalties, can be changed by typing \chpar2+-(number), \chpar3+-(number),
\chpar6+-(number), and \chpar7+-(number), respectively. Hyphenation penalties in
force at the end of a paragraph are used throughout that paragraph; relation and
operator penalties in force at the opening $ of a math formula are used throughout that
formula.

~ To insert a penalty at a specified point in a paragraph, simply type "\penal ty
Y (number)". Any penalty > 1000 is equivalent to a penalty of 00 (a non-permissible

How 'lEX makes lists of lines into p<UJes 57

place to break); any penalty < 1000 implies that a break at the current place is per
missible. The penalty may be zero or even negative, to indicate an especially desirable
break location.

~ The control sequence \ej ect forces a break at the position where \ej ect occurs,
'.S(::' and also causes 'lEX to begin the next line on a new page. This gives you a way to
remake page 100, say, without changing page 101, provided that it is possible to end
the new page 100 at the same place where page 101 begins. Note that \ej ect will make
the last line of the paragraph-so-far reach to the right-hand margin (if feasible); this
is what some printers call a "quad middle" operation. It is quite different from what
you would get if you simply typed "\par" at the spot that the revised page should
end. 'lEX's linebreaking algorithm is especially advantageous when handling \ej ect,
because it has an apparent ability to "look ahead."

~ Additional vertical glue specified by \parsk i p is inserted just before each para
'.S(::' graph. This glue gets added to the normal interline glue.

<15> How 'lEX makes lists of lines into pages

'I'EX attempts to choose desirable places to stop making up one page and start
another, and its technique for doing this usually works pretty well. But if you
don't like the way a page is broken, you can force a page break in your favorite
place by typing "\ej ect". An \ej ect command can occur in vertical mode
(e.g., between paragraphs) or in horizontal mode (within a paragraph) or even in
math mode; but you won't need to make much use of it.

~ 'lEX groups things into pages in much the same way as it makes up paragraphs,
'.S(::' except for the lookahead feature. Badness ratings and penalties are used to find
the best place to break, but each page break is made once and for all when this "best"
place is found-otherwise 'lEX would have to remember the contents of so many pages,
it would run out of memory space. Legal breaks between pages can occur

a) at glue, provided that the glue is immediately preceded by a constructed box (but
not a rule box). This includes the glue routinely inserted between lines, as explained
below.

b) where a \penal ty has been specified in vertical mode, provided that the penalty
is less than 1000. (Cf. Chapter 14.)

c) after an insertion (arising from \topinsert or \botlnsert, see below).

d) where \ej ect is specified.
Breaks at \ej ect are compUlsory; all other breaks are optional. When a break occurs
at glue or just before glue, this glue disappears.

58 Chapter 15

~ When boxes are appended to any vertical list (in particular, when they are ap
~ pended to the current page), glue is automatically placed between them so that
the distance between adjacent baselines tends to be t~e same. For example, the lines of
9-point text you are now reading have baselines 11 points apart. This implies that the
glue between lines is not always the same, because more glue space is inserted under a
line whose characters all stay· above the baseline than under a line having characters
that descend below it. Such interline glue is appended just before each box even when
you have explicitly inserted glue yourself with \ vsk i p or \ vf ill; any glue you specify
is in addition to the interline glue.

~ Here is how interline glue gets figured: The book designer has specified two kinds
~ of glue by using the operations \base1ineskip (glue) and \lineskip (glue).
Suppose the baselineskip glue has x units of space, y units of stretch, and z units of
shrink. (In this paragraph 'lEX is using x = 11 points, y = z = 0, but y and z need
not be zero.) Suppose we are appending a box of height h to a vertical list in which
the previous box (ignoring glue) had depth d. Then the interline glue inserted just
above the new box will have x - h - d units of space, y units of stretch, and z units
of shrink, whenever x - h - d > 0; but if x - h - d < 0, the interline glue will be the
gl.ue specified by \1 ineskip. For example, the basic 'lEX format in Appendix B says
"\baselineskip 12 pt \lineskip 1 pt"; this means that baselines will normally
be 12 points apart, but when this is impossible a space of 1 point will be inserted between
adjacent boxes or a vertical list. Exception: Interline glue is not inserted before or after
rule boxes, nor is it inserted before the first box or after the last box of a vertical list.

~ Contributions are made to the current page until the accumulated page height
~ minus the accumulated glue shrinkability first exceeds the specified page size. (Page

size is specified by the book designer using \vsize, see below.) At this point the break
is made at whatever legal break in the page-so-far results in fewest badness-plus-penalty
points B + P, where the badness B is defined as in Chapter 14 (except using vertical
glue), and where the penalty P is zero unless explicitly specified or included by the
paragraphing routine. The paragraphing routine inserts a penalty of 80 points just
after the first line and just after the penultimate line of a multi-line paragraph, with
an additional penalty of 50 points just after a line that ends with a hyphenation. This
tends to avoid so-called "widows" (i.e., breaks that leave only one line of a paragraph
on a page); for example, 'lEX breaks a four-line paragraph without 80 points of penalty
only by breaking it into 2 + 2 lines. A penalty of 500 points is charged for breaking
pages just before a displayed equation. Furthermore there is a penalty of 80 for breaking
after the first line of text that follows a display, unless the paragraph ends with such
a line. (There is no penalty for breaking before the last line of text that precedes a
display, since such a line is not considered to be a "widow.") Once the best break

Ho'Ul 'lEX ma.k.es lists of lines into pages 59

has been identifIed, the page is output, glue at the break is deleted, and everything
remaining is contributed to the following page. (To change the numbers 80, 50, and
500 relating to widow-line, broken-line, and display-break penalties, you can use the
\chpar instruction as explained in Chapter 24.)

~ The height of a page is the value of \ vs i ze, and the depth in most cases is the depth
Y of the bottom line on that page. Thus, if one page has lO-point type and the next
has 9-point type, the baselines at the bottoms of both pages will be at the same place
even though the descenders of lO-point letters go slightly further below the baseline than
the descenders of 9-point letters qo. However, the bottom line on a page is sometimes a
constructed box whose depth is very large, and .in such a case we want the baseline to
be higher. 'fEX deals with the problem as follows: Whenever a box having depth greater
than \maxdepth is contributed to the current page (where "\maxdepth(dimen)" has
been specified by the book designer), the depth of the page-so-far is artificially decreased
to \maxdepth, and the height of the page-so-far is correspondingly increased. (Interline
glue calculation is not affected by this artificial adjustment, except possibly afterwards
when the page is being dealt with as a completed box.) There is also another design
parameter, "\topbasel ine(dimen)", which is used to insert glue at the top of the page
so that the baseline of the first box will be at least this distance from the top (if it isn't
a rule box). All other glue is normally deleted at the top of each pagej to put glue there,
simply insert a \null box first. If several different values of \vsize, \maxdepth, or
\topbasel ine occur in the same 'lEX job, each page is governed by the values in force
when the first item was contributed to that page.

~ A "floating-insertion" capability is built into 'lEX so that, among other things,
Y illustrations can be placed at the top of the first subsequent page on which they fit,

and footnotes can be placed at the bottom of the page on which the footnote reference ap
pears. Here's how it works: You type "\ topinsert{(vlist)}" or "\botinsert{(vlist)}",
where (v list) is a sequence of instructions that specifies a vertical list of boxes and glue.
If such an insertion is made when 'lEX is in vertical mode, the specified vertical list
will be contributed to the first page on which there is room for it. If such an insertion
is made when '!EX is in horizontal mode, the specified vertical list will be contributed
to the same page on which the line containing the insertion appears. A \topinsert
is contributed at the top, a \botinsert at the bottom. Glue specified by \topskip
(glue) will be placed just below every \topinsertj glue specified by \botsk ip(glue)
will be placed just above every \botinsert.

~ You may be wondering how things like page numbers get attached to pages. Actually
Y 'lEX has two levels of control: when a complete page has been built, this page

is packaged as a box and another section of 'lEX input code comes into action. The
designer has specified this other piece of code by writing "\output{ ... }", and we will

60 Chapter 15

discuss the details of \output routines in Chapter 23. For now, it should suffice to give
just a small taste of what an \output routine looks like:

\output{\baselineskip 20pt
\page\ctrline{\:a\countO}\advcountO}

This routine (which appears in Appendix B) takes the current page number, typeset in
font a, and centers it on a new line below the contents of the current page; "\page"
means the current page, "\countO" means the current page number, and "\advcountO"
advances this number by 1. The baseline of the page number will be 20 points below
the baseline of the page-assuming that \maxdepth has been set small enough that
this is always possible. This setting of \baselineskip will be retracted at the end of
the \output routine, according to the normal conventions of grouping; thus there will
be no effect on 'lEX's page-building operations (which go on asynchronously).

<16> Typing math formulas

'lEX was designed to handle complex mathematical formulas in such a way that
most of them are easy to input. The basic idea is that a complicated formula is
composed of less complicated formulas put together in a simple way, and these
less complicated formulas are in turn made up of simple combinations of formulas
that are even less complicated, and so on. Stating this another way, if you know
how to type simple formulas and how to combine formulas into larger ones, you
will be able to handle virtually any formula at all. So let's start with simple ones
and work our way up.

The simplest formula is a single letter, like "x", or a single number, like "2".
In order to enter these into a 'lEX text, you type "x" and "2", respectively.
Note that all mathematical formulas are enclosed in special math brackets, and
we are using $ as the math bracket in this manual, in accord with the basic 'lEX
format defined in Appendix B. Note further that when you type "x" the "x"
comes out in italic type, but when you type "2" the "2" comes out normally.
In general, all characters on your keyboard have a special interpretation in math
formulas, according to the normal conventions of mathematics printing. Letters
now denote italic letters, while digits and punctuation denote roman digits and
punctuation; a hyphen (-) now denotes a minus sign (-), whiCh is almost the
same as an em-dash but not quite (see Chapter 2). So if you forget one $ or type
one $ too many, 1EX will probably become thoroughly confused and you will
probably get some sort of error message.

TypiTUJ 111.(Lth. fOTmula.s 61

Formulas that have been typeset by a printer who is unaccustomed to doing
mathematics usually look quite wrong to a mathematician, because a novice
printer usually gets the spacing all wrong. In order to alleviate this problem, 1EX
does most of its own spacing in math formulas; and it ignores any spaces you
type between $'s. For example, you can type U$ x$" and U$ 2 $" and they
will mean the same thing as Ux" and "2"; you can type "$ (x + y) / (x -
y) $" or "$ (x+y) / (x-y) $", but both will result in U(x + y)/(x - y)". Thus,
you are free to use blank spaces in any way you like. Of course, spaces are still
used in the normal way to mark the end of control sequences, as explained in
Chapter 7. In most circumstances 1EX's spacing will be what a mathematician
is accustomed to; but we will see in Chapter 18 that there are control sequences
by which.you can override 'lEX's spacing rules if you want.

One of the things mathematicians like to do is make their formulas look like
Greek to the uninitiated. In 1EX language you can type "$$\alpha, \beta,
\gamma, \d e Ita; $$" and you will get the first four Greek letters

el, /3, /, c5;

furthermore there are upper case Greek letters like 'T", which you can get by
typing either UΓ" or "\GAMMA". A few of the Greek letters deserve spe
cial attention: For example, lower case epsilon (f) is quite different from the symbol
used to denote membership in a set (E); type "$\epsi lon$" for t and "\in"
for E. Furthermore, three of the lower case Greek letters have variant forms
on 'IE}('s standard italic fonts; "(ϕ, θ, ω)" yields U(¢,O,w)"
while U$ (\ varph i , \ vartheta, \ varomega) $" yields U(SO, tJ, w)".

Besides Greek letters, there are a lot of funny symbols like "~" (which you
get by typing "\approx") and "1-+" (which you get by typing "\mapsto").
A complete list of these control sequences and the characters they correspond to
appears in' Appendix F. The list even includes some non-mathematical symbols
like

§tt,©$£
which you can get by typing "\section", U\dag", U\ddag", U\P",
"\copyright", "$\$$", and U$\sterl ing$", respectively; nearly all of the
special symbols that you'll ever want are available in this way. Such control
sequences are allowed only in math mode, i.e., between $'s, even when the cor
responding symbols aren't traditionally considered to be mathematical, because
they appear in the math fonts.

62 Chapter 16

Now let's see how more complex formulas get built up from simple ones. In
the first place, you can get superscripts and subscripts by using "i" and "J..":

Type and you get

$xi2$ x2

$xJ..2$ X2

$2ix$ 2X

$xi2yi2$ x2y2

$x i 2y i 2$ x2y2

$xJ..2yJ..2$ X2Y2
$J..2FJ..3$ 2F3

Note that i and J.. apply only to the next single character. If you want several
things to be subscripted or superscripted, just enclose them in braces:

$xi{2y}$ x 2y

$2i{2ix}$ 22%

$2i{2i{2ix}}$ 222%

$xJ..{yJ..2}$ x Y2

$xJ..{yi2}$ Xy2

It is illegal to type "xiyiz" or "xJ..yJ..z" ('lEX will complain of a "double
superscript" or "double subscript"); you must type "xi{yiz}" or "{xiy}iz" or
"xi{yz}" in order to make your intention clear. (Some commonly-used languages
for math typ"esetting treat xiyiz as xi{yiz} and others treat it as {xiy}iz or
xi{yz}; the ambiguous construction isn't needed much anyway, so 'lEX disallows
it.)

A subscript or superscript following nothing (as in the "J..2F J..3" example
above, where the J..2 follows nothing) is taken to mean a subscript or superscript
of an empty box. A subscript or superscript following a character applies to
that character only, but when following a box it applies to that whole box; for
example,

$«xi2)i3)i4$

${({(xi2)}i3)}i4$

((X2)3)4

((x2)3t

TypiTUJ 'J11.(Lth formula,s 63

In the first formula the i3 and i4 are superscripts on the right parentheses, but
in the second formula they are superscripts on the formulas enclosed in braces.

You can have simultaneous subscripts and superscripts, and you can specify
them in any order:

$xi2J.3$

$xJ.3i2$

$xi{31415}J.{92}+\pi$

$xJ.{yiaJ.b}i{zJ.cid}$

Note that simultaneous sub/superscripts are positioned over each other, aligned
at the left.

The control sequence \prime stands for the character "1", which is used
mostly in superscripts. Here's a typical example:

$yJ.1 i\prime+yJ.2i{\prime\prime\prime}$ y~ + y~'
Another way to get complex formulas from simple ones is to use the control

sequences \sqrt, \underl ine, or \overl ine. These operations apply to the
character or group that follows them:

$\sqrt2$

$\sqrt{x+2}$

$\underline4$

$\underline{\underline4}$

$xi{\underline n}$

$\overline{xi3+\sqrt3}$

~ If you need cube roots (or nth roots), 'lEX has no built-in mechanism for this. But
~ you can insert a 3 (or n) over a square root sign by using Appendix B's control

sequence \spose for superposition. Type

\spose{\ral se{dimen) \hbox{\hsk i p{dimen)$\scrl ptscrl ptsty 1 e{root)$}}

followed by \sqrt ... , where you can figure out appropriate dimensions by fiddling
around until the position looks right. (These dimensions depend on the size of the
formula, the current size of type, and the size of the square root sign.) For example,

"{/5" can be set with '!EX's normal lO-point fonts by typing

$\spose{\ralse5pt\hbox{\hsklp2.5pt$\scriptscrlptstyle3$}}\sqrt5$

64 Cha.pter 16

~ Accents in math mode work something like \overl ine; you can accent a single
~ character or a formula. (But the formula had better be short, since a tiny accent
will be centered over the whole thing.) For example,

$\=x+\overline x+\b x+\A x+\s x+\s{\s x}+\A{x+y}+ei{\=x}$

produces x+x+x+x+x+i+x+y+ef
•

~Exercise 16.1: What would you type to get the following formulas?

h~(x)

~Exercise 16.2: What's wrong with typing the following?

If$ x = y$, then x is equal to $y.$

~Exercise 16.3: Explain how to type the following sentence:

Deleting an element from an n-tuple leaves an (n - I)-tuple.

<17> More about math

Another thing mathematicians like to do is make fractions-and they also like
to build up symbols on top of each other, as in

1
2

and and and
3

I;Zn
n=l

You can get these four formulas by typing "$$1 \over 2$$" and "$$n+1 \over
3$$" and "$$n+1 \comb [] 3$$" and "$$\sumJ.{n=1}t3 ZJ.n$$"; we shall study
the simple rules for such constructions in this chapter.

First let's look at fractions, which use the -"\over" notation. The control
sequence \over applies to everything in the formula unless you enclose \over

More abO'lLt m.o.fu 65

in a { } group; in the latter "case it applies to everything in that group.

Type and you get

$$x+yi2\over k+1$$
x+y2
k+1

2

$$x+{yi2\over k}+1$$ x+ ~ +1

$$x+{yi2\over k+1}$$
y2

x+ k +1

·$$x+yi{2\over k+1}$$ x+ym

You aren't allowed to use \over twice in the same group; instead of typing a
formula like "a \over b \over 2", you must specify what goes over what:

$${a\over b}\over 2$$

$$a\over{b\over 2}$$
a

Note that the letters get smaller when they are fradions-within-fradions,
just as they get smaller when they are used as exponents. It's about time that
we studied how 'lEX does this. Actually 'lEX has eight different styles in which
it can treat formulas, namely

display style
text style
script style
scriptscript style

(for formulas displayed on lines by themselves)
(for formulas embedded in the text)
(for formulas used as superscripts or subscripts)
(for second-order superscripts or subscripts)

and four other styles that are almost the same except that exponents aren't raised
quite so much. For brevity we shall refer to the eight styles as

D, T, 8, S8, D', T', S', 88',

66 Chapter 11

so that T is text style, D' is modified display style, etc. 'fEY(also uses three sizes
of type for mathematics, called text size, script size, and script script size (t, 8,

and 88).

The normal way to typeset a formula with 'lEX is to enclose it in dollar signs
$... $, which yields the formula in text style (style T), or to enclose it in double
dollar signs $$... $$, which displays the formula in display style (style D). Once
you know the style, you can determine the size of type 'lEX will use:

If a letter is in style then it will be set in size

D, T,D', T'
8,8'

88,88'
8

5S

There is no "888" style or "SS5" size; such tiny symbols would be even less
readable than the S8 ones. Therefore 'lEX stays with 85 as its minimum size, as
shown in the following chart:

In a formula the superscript and the subscript
of style style is style is

D,T 8 8'
8,88 88 88'
D', T' 8' 8'
8',88' 88' 88'

For example, if xi{aJ.b} is in style D, then {aJ.b} is in style 8, and b is in style
88'.

So far we haven't seen any difference between styles D and T. Actually there
is a slight difference in the positioning of exponents: you get x2 in D style and
x2 in T style and x2 in D' or T' style-do you see the difference? But there is a
big distinction between D style and T style when it comes to fractions:

Ina formula the style of the and the style of the
a\over f3 of style numerator a is denominator f3 is

D T ~

T 8 8'
8,BB 88 88'

D' ~ ~

T'
B', B8'

8'
88'

8'
88'

More a.bout ma.th 67

Thus if you type "$1 \over2$" (in a text) you get ~, namely style S over style
S'; but if you type "$$1 \over2$$" you get

1
2

(a displayed formula), which is style T over style T'.
When a fraction like $x+y\over z$ is put into the text of a paragraph, the

letters are rather small and hard to read: X~Y. SO it is usually better to type
the fraction in the mathematically equivalent way "$ (x+y) /z$", which comes
out "(x + y)/t'. In other words, \over is useful mostly for displayed formulas
or for numeric fractions.

~ While we're at it, we might as well finish the style rules: \underl inedoes not
Y change the style; \sqrt and \overl ine both change D to D', T to TI, 8 to 81,88

to 881
, and leave V, TI, 81

, 881 unchanged.

There's another operation "\atop", which is like \over except that it leaves
out the fraction line:

$$x\atop y+2$$

The basic math definitions in Appendix B also define "\choose", which is like
\a top but it encloses the result in parentheses:

$$n\choose k$$

This is a common notation for the so-called "binomial coefficient" that tells how
many ways there are to choose k things out of n things; that's why the control
sequence is called \choose.

You can't mix \over and \atop and \choose with each other. For example,
"$$n \choose k \over 2$$" is illegal; you must use grouping, to get either
"$${n \choose k} \over 2$$" or "$$n \choose {k \over 2}$$", i.e.,

(~)
2

or (~)

68 Cha.pter 11

The latter formula, incidentally, would look better as "$$n \choose k/2$$"
or "$$n \choose {1 \over2}k$$", yielding

or

Suppose you don't like the style 'lEX selects by its automatic style rules.
Then you can specify the style you want by typing

\dispstyle or \textstyle or \scriptstyle or \scriptscriptstyle.

For example, if you want the (~) to be larger in the formula $${n\choose
k}\over 2$$, just type "$$\dispstyle{n\choose k}\over 2$$"; you will
get

2

because the numerator of the formula is now "\d i spsty 1 e{n \choose k}".
Here's another example (admittedly a rather silly one): $$n+\scri ptsty 1 e n
+\scriptscriptstyle n$$ gives

Note that the plus signs get smaller too, as the style changes; and there's no
space around + signs in script style.

~Exercise 17.1: Explain how to specify the displayed formula

(p) 2 p-2 1 1 x y ------
2 I-x l-x2

~ There are two other variants of \over, \atop, etc. First is "\above(dimen)",
Y" which is just like \over but the stated dimension specifies the exact thickness of

the line rule. For example,

$$\dispstyl~{x\over y}\above lpt\dispstyle{w\over z}$$

will produce

More about m.o.th

y

w

z

69

this sort of thing was once customary in arithmetic textbooks, but nowadays it is rare
(at least in pure mathematics). The second variant is a generalizati'on of \choose: You
can write "\comb(delim)(delim)", specifying any of the delimiters listed in Chapter 18i
"\choose" is the same as "\comb 0", and one of the examples at the beginning of this
section used "\comb []".

~ When you use \over, \atop, etc., the numerator and denominator are centered
y over ~ach other. If you prefer to have the numerator or denominator at the left,

follow it by "\h f 111" j if you prefer to have it at the right, precede it by "\h f 111" .
For example, the specification

yields

$$1+{1\hf1ll\over\d1spstyle a~1+{1\hf1ll\over\d1spstyle
a~2+{1\hf1ll\over\dispstyle a~3+{1\over a~4}}}}$$

while without the \hf 11ls you get

Mathematicians often use the sign l: to stand for "summatiqn" and the sign
J to stand for "integration." If you're a typist but not a mathematician, all you
need to remember is that \sum stands for l: and \int for J; these abbreviations
appear in Appendix F together with all the other symbols, in case you forget.

70 Cha.pter 17

Symbols like E and f (and a few others like U and nand j and ®I all listed
in Appendix F) are called large opera torsI and you type them just as you type
ordinary symbols or letters. The difference is that 1FX will choose a larger large
operator in display style than it will in text style. For examplel

$\sum xJ.n$ yields E Xn (T style)

$$\sum xJ.n$$ yields L: Xn (D style).

Usually E occurs with "limits/' i.e. 1 with formulas that are to appear below
it or to the right. You type limits just the same as superscripts and subscripts:
for examplel if you want

m

L:
n=l

you type either "$$\sumJ.{n=1}tm$$" or "$$\sumtmJ.{n=1}$$". According to
the normal conventions of mathematicsl TEX will change this to "E~l" if in
text style rather than display style.

Integrations are slightly different from summationsl in that the limits get set
at the right even in display style:

$\intJ.{-oo}t{+oo}$ yields (T style)

$$\intJ.{-oo}t{+oo}$$ yields (D style).

Note further that the subscript is not directly below the superscriptl in either
style; againl this isa mathematical convention that 'lEX follows automatically
(based on information stored with the fonts).

~ Some printers prefer to set limits above and below J signs; similarly I some prefer
~ to set limits to the right of E signs. You can change 'lEX's convention by simply
typing "\lim1 tsw1 tch" after the large operator. For example l

+00

$$\1nt\11m1tsw1tch~{-oo}i{+oo}$$ yields !
-00

$$\sum\11m1tsw1tch~{n=1}im$$ yields

Fine points of m,athematics typing 71

~ If you have to put two or more rows of limits under a large operator, you can do
Y this by using "\atop". For example, if you want the displayed formula

the correct way to type it is

:E P(i,J')
O<i<m
O<:/<.n

$$\sum~{\scriptstyleO~i~m\atop\scriptstyleO<j<n}P(i,j)$$

(perhaps with a few more spaces to make it look nicer in the manuscript file). Note that
the instru~tion "\scriptstyle" was necessary here, twice-otherwise "0 < i < m"
and "0 < j < n" would have been in scriptscript size, which is too small. This is one
of the rare cases where 1EX's automatic style rules need to be overruled.

p q r

~Exercise 17.2: How would you type the displayed formula 2: :E 2: aijbjkCki ?
i=lj=l k=l

<18> Fine points of mathematics typing

We have discussed most of the facilities needed to construct math formulas, but
there are several more things a good mathematical typist will want to watch for.

1. PUllctuation. When a formula is followed by a period, comma, semicolon,
colon, question mark, exclamation point, etc., put the punctuation after the $,
when the formula is in the text; but put the punctuation before the $$ when the
formula is displayed. For example,

If $x<O$, we have shown that $$y=f(x).$$

The reason is that ~'s spacing rules within paragraphs work best when the
punctuation marks are not considered part of the formulas.

72 Chapter 18

Similarly, don't type something like this:

for $x = a, b$, or c.

It should be

for $x = a$, b, or c.

The reason is that 'lEX will always put a "thin space" between the comma and
the bin $x = a, b$. This space will probably not be the same as the space 1EX
puts after the comma after the b, since the second comma is outside the formula;
and such unequal spacing would look bad. When you type it right, the spacing
will look good. Another reason for not typing "$x = a, b$" is that it inhibits
the possibilities for breaking Hnes in a paragraph: 1EX will never break at the
space between the comma and the b because breaks after commas in formulas
are usually wrong. For example, in the equation "$x = f (a, b) $" we certainly
don't want to put "x = /(a," on one line and "b)" on the next.

Thus, when typing formulas in the text of a paragraph, keep the math
properly segregated: Don't take operators like - and = outside of the $'s, and
keep commas inside the formula if they are truly part of the formula. But if a
comma or period or other punctuation mark belongs linguistically to the sentence
rather than to the formula, leave it outside the $'s.

2. Roman letters in formulas. The names of algebraic variables in formulas
are usually italic or Greek letters, but common mathematical operators like "log"
are always set in roman type. The best way to deal with such operators is to
make use of the following control sequences (all of which are defined in the bas i c
format of Appendix B):

\cos \exp \lim \log \sec
\cot \gcd \liminf \max ,"sin
\csc \inf \limsup \min \sup
\det \lg \In \Pr \tan

The following examples show that such control sequences lead to roman type as
desired:

Fine points 01 mathema.tics typing

Type and you get

$\sin2\theta=2\sin\theta\cos\theta$

$O(n\log n\log\log n}$

$\exp(-xi2)$

$$\max~{1~n~m}\log~2P~n$$

$$\lim~{x~O}{\sin x\over x}=1$$

sin 2(} = 2 sin (}cos ()

O(n log n log log n)

exp(-x2)

max log2Pn
l::;n::;m

1· sin x 1 Im--=
x-a X

73

In the second example, note that 0 is an upper case letter "oh", not a zero; a
formula should usually have "0" instead of "0" when a left parenthesis follows.
The fourth· and fifth examples show that some of the special control sequences
are treated by 'lEX as "large operators" with limits just like E; compare the
different treatment of subscripts applied to \max and to \log.

~ Another way to get roman type into mathematical formulas is to include constructed
Y boxes (cf. Chapter 21); such boxes are treated the same as single characters or

subformulas. For example,

$\exp(x+\hbox{constant})$ yields exp(x + constant)

The fonts used inside such boxes are the same as the fonts used outside of the math
brackets $... $; the characters do not change size when the style changes.

~ ~Exercise 18.1: Explain how to type the phrase "nth root", where "nth .. is treated
Y as a mathematical formula with a superscript. The letters "th" should be in font
d.

~ There is, of course, a way to specify characters that do change size with changing
Y styles; you can do it with the \char command. We studied \char in Chapter

8, but \char works a little differently in math mode because math mode deals with
up to ten fonts instead of. just one font. 'lEX keeps three fonts for text size, three for
script size, and three for scriptscript size, plus one font for oversize and variable-size
characters. The t~ree fonts of changing size are called rm, it, and sy fonts-short for
roman, italic, and symbols, according to 'lEX's normal way of using these fonts; and the
oversize font is called the ex font. (The rm and it fonts are essentially normal fonts
like all other fonts 'lEX deals with, but each sy and ex font must have special control
information stored with it, telling 'lEX how to do proper spacing of math formulas.

74 Chapter 18

Thus, 'lEX is able to do math typesetting on virtually any style of font, provided that
the font designer includes these parameters.) To specify which fonts you are using for
mathematics, you type

\ma thrm (font)(font)(font)
\ma th it (font) (font) (font)
\mathsy (font)(font)(font)
\mathex (font)

before getting into math mode, where the rm, it, and sy fonts are specified in the order
text size, script size, scriptscript size. For example, by typing "\ma th it tpk" you are
saying that 'lEX should use font t as the it font in text size math, font p as the it font
in script size math, font k in scriptscript size math. If you don't use scriptscript size in
your formulas, you must still specify a font, but you could say "\mathi t tpp" or even
"\mathi t ttt". (When you specify a font letter for the first time you must follow it
with the font file name, as described in Chapter 4; e.g., "\mathi t tt-cmi.l0 pt-cmi 7

p" would work. But it's best to declare all your fonts first, before specifying the ones
to be used for math.) Now ... about that "\char" operation in math mode: Although
\char selects up to 128 characters in non-math modes, it selects up to 512 characters
in math mode. Characters '000 to '177 are in the rm font of the current size, '200
to ' 377 are in the it font of the current size, ' 400 to ' 577 are in the sy font of the
current size, and '600 to '777 are in the ex font. For example, the "dangerous bend"
road symbol is in the ex font being used to typeset this user manual, and it is actually
character number' 177 in this font, so it is referred to by typing "$\char' 777$" . The
symbol 00 is character number '61 in 'lEX's standard symbol fonts; in math mode you
can refer to it either as "\infty" or as "\char'461", or simply as "00" if you happen
to have this key on your keyboard.

~ 1EX fonts used for variables ("i t" fonts) have spacing appropriate for math for
'Y mulas but not for italic text. You should use a different font for "italicized words"
in the text. For example:

This sentence is in jmt cmilO, uhich is intended for jmnulas, not text.
This sentence is in font cmtilO, which is intended for text, not formulas.

3. Larg~arentheses and other delimiters. Since mathematical formulas can
get horribly large, ~ has to have some way to make ever-larger symbols. For
example, if you type

$$\sqrt{1+\sqrt{1+\sqrt{1+
\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}}}$$

Fine points of TTlQ,theTTlQ,tics typiTlAJ 75

the result shows a variety of available square-root signs:

The three largest signs here are all essentially the same, except for a vertical
segment " I" that gets repeated as often as necessary to reach the desired size;
but the smaller signs are distinct characters found in 'fEj<'s math fonts.

A similar thing happens with parentheses and other so-called "delimiter"
symbols. ror example, here are the different sizes of parentheses that ~ might
use in formulas:

((((((««W »))))))))))))

The three largest pairs are made with repeatable extensions, so they can become
as large as necessary.

'fEj< chooses the correct size of square root sign by simply using the smal
lest size that will enclose the formula being \sq rted, but it does not use large
parentheses or other delimiters unless you ask it to. If you want to enclose a
formula in variable-size delimiters, type

\left(deliml) (formula) \right(delim2)

where each (delim) is one of the following:

blank () 1 vertical line (I)
(left parenthesis (() \1 double vertical line (II)
) right parenthesis ()) \langle or < left angle bracket· (()
[left bracket ([) \rangle or > right angle bracket ())
] right bracket (]) \lfloor left floor bracket (l)

\{ left brace ({) \rfloor right floor bracket (J)
\} right brace (}) \lceil left ceiling bracket (r)

/ slash (/) \rceil right ceiling bracket (1)

76 Chapter 18

For ex~mple, if you type "$$1+ \1 eft (1 \over1-xi2 \right) i3$$" you
will get

Notice from this example that \1 eft and \right have the effect of grouping
just as { and} do: The "\over" operation does not apply to the "1+" or to
the "t3", and the "t3" applies to the entire formula enclosed by \ 1 eft (and
\right) .

When you use \left and \right they must match each other, nesting like
braces do in groups. You can't have \left in one formula and \right in another,
nor can you type things like "\ 1 eft (... { ... \ r i gh t) ... }". This restriction
makes sense, of course, but it is worth explicit mention here because you do not
have to match parentheses and brackets, etc., when you are not using \left
and \right: 'lEX will not complain if you input a formula like "$ [0,1) $" or
even "$) ($". (And it's a good thing 'lEX doesn't, for such unbalanced formulas
occur surprisingly often in mathematics papers.) Even when you are using \1 eft
and \right, 'lEX doesn't look closely at the particular delimiters you happen to
choose; thus, you can type strange things like "\1 eft)" and/or "\right (" if
you know what you're doing. Or even if you don't.

If you type "\1 eft." or "\right.", the corresponding delimiter is blank
not there. Why on earth would anybody want that, you may ask. Well, there
are at least two reasons. One is to take care of situations like this:

Ixl={x,
-x,

if x >0;
if x < O.

The formula in this case could be typed as follows:

$$lxl=\left\{ .,. \right.$$

where " ... " stands for a ~ box containing the text

~x! If x > 0;1
if x < O.

Later in this chapter we shall discuss how you might specify such a box; just now
we are simply trying to discuss the use of a blank delimiter.

Fine points of mo.th.ema.tics typiruJ 77

The second example of a blank delimiter occurs when you want a variable
size slash; type either "\left/ ... \right." or "\left. '" \right/",
whichever will make the correct size slash (i.e., a slash that is just big enough for
the formula enclosed between \left and \right). For example, if you want to
get the formula

a+l/C+l
b d

you can type either "$$\left. a+1 \over b \right/ {c+1 \over d}$$"
or "$${a+1\over b} \left/ c+1 \over d \right.$$".

~ A third example, which occurs less often, is the problem of getting three large
"Y delimiters of the same size, as in a formula of the form "[a I 13]" where a and 13
are large formulas and, say, a is bigger than 13. You can type

\left. \left [a \right I f3 \right]

to handle this. Note that a construction like "\left(\left(... \rlght)\right)"
will always produce double parentheses of the same size.

The size chosen by 'lEX when you use \left and \right is usually ap
propriate, but there is an important exception: When the \left and \right
enclose a displayed 22 or IT, etc., with upper and/or lower limits, 'lEX will often
make the delimiters much too large. For example, if you type

$$\left(\sum~{i=1}in A~i \right)i2$$

the result is

(rather shocking). The reason is that 'lEX adds extra blank space above and below
the limits so that they don't interfere with surrounding formulas; usually this is
the right thing to do, except when large delimiters are involved. In fact, most
math compositors prefer to let the limits on 22's protrude above or below any
enclosing parentheses, so \left and \right aren't really the proper things to
type anyway. What you should do is use control sequences such as \ b i gg 1 P and

78 Chapter 18

\biggrp, which are defined in the basic 'lEX format (Appendix B). When the
above example is retyped in the form

$$\bigglp \sum!{i=1}in A!i \biggrpi2$$

it will come out right:

Incidentally, bas i c format also defines two other useful sizes of parentheses,
for those occasions when you wish to control the size by yourself in a convenient
manner: \biglp and \bigrp produce parentheses that are just a little bit bigger
than normal ones, while \biggglp and \bigggrp produce really big ones. Here
is a typical example of a formula that uses \biglp and \bigrp:

(x - s(x))(y - s(y)).

~Exercise 18.2: Explain exactly how to type this formula so that 1EX would
typeset it as shown.

~ Instead of using "bigg" delimiters, there is another way to get 'lEX to choose a
3(more reasonable size with respect to displayed E's with limits, namely to fool1E;X
into thinking that the formulas aren't as big as they really are. Using Appendix B, type
"\chop to (dimen){(formula)}" to produce a box containing the specified formula in
display style but with the depth of the box artificially assumed to be the specified
dimension. The (dimen) must be in points (pt). For example,

\sqrt{\chop to 9pt{\sum~{1~k~n}A~k}}

yields

Fine" points of 'I11.Q.thematics typing 79

~ You can also access other delimiters that might be present in your fonts by using
~ the versatile \char command. We saw above that \char has an extended meaning
in math mode; its meaning is even further extended when used to specify delimiters.
Besides the options listed above, any (delim) can be "\char'clc2" where Cl and C2 are
three-digit octal codes; Cl is the code for this delimiter in its smaller sizes (rm, it, or
sy fonts) and C2 is the code for this delimiter in the ex font. For example, it turns out
that the left brace delimiter can be specified as \char' 546610, since a normal size left
brace is character '146 in the sy font, and since all oversize left braces are reachable
starting at character '010 in the ex font. (Characters in an ex font are internally linked
together in order of increasing size.) You should let Cl or C2 equal 000 if there is no
corresponding character. 1EX handles variable-size delimiters in the following way: If
Cl ~ 000, the first step is to look at math character ' Cl in the current size, then in
any larger. sizes. (For example, in script style 'lEX looks first at script size character
, Cl, then at the corresponding character in text size.) If C2 ~ 000, the next step is to
look at all characters linked together in the ex font, starting at ' C2, in increasing order
of size. (This linked list might end with an extensible character.) The first character
'lEX sees that is large enough (Le., > the desired size) is chosen. Special note to those
who have read this far: Standard ex fonts for 'lEX often contain the "left pretzel" and
"right pretzel" delimiters that you can get by typing

\left\char'000656 and \right\char'000657,

respectively. Startle your friends by using these instead of parentheses around your
big matrices, or try typing "$$\left\char'656\quad\vcenter{\hbox par 250pt{

several sentences of text ... }}\quad\right\char'657$$".

4. Sp-acing.. Chapter 16 says that T£iX does automatic spacing of math for
mulas so that they look right, and this is almost true, but occasionally you must
give 'I.EX some help. The number of possible math formulas is vast, and 'lEX's
spacing rules are rather simple, so it is natural that exceptions should arise.
Furthermore there are occasions when you need to specify the proper spacing
between two formulas. Perhaps the most common example of this is a display
containing a main formula and side conditions, like

n>2.

You need to tell 'lEX how much space to put after the comma.

80 Chapter 18

The traditional hot-metal technology for printing has led to some ingrained
standards for situations like this, based on what printers call a "quad" of space.
Since these standards seem to work well in practice, ~ makes it easy for you
to continue the tradition. When you type "\quad", ~ converts this into an
amount of space equal to a printer's quad, approximately the width of a capital
M. (The em-dash discussed in Chapter 2 is usually one quad wide; and one quad
in 10-point type is usually equal to 10 points. This is where the name "quad"
comes from; it once meant a square piece of blank type. But of course a font
designer is free to specify any sizes that he or she wants for the widths of quads,
em-dashes, and M's.)

The abbreviation "\qquad" is defined in Appendix B to be the same as
"\quad\quad", and this is the normal spacing for situations like the Fn example
above. Thus, the recommended procedure is to type

$$ F~n = F~{n-1} + F~{n-2}, \qquad n ~ 2. $$

It is perhaps worth reiterating that ~ ignores all the spaces in math mode
(except, of course, the space after "\qquad", which is needed to distinguish
"\qquad n" from "\qquadn"); so the same result would be obtained if you were
to type

$$F~n=F~{n-1}+F~{n-2},\qquad n~2.$$

Thus, all spacing that differs from the normal conventions has to be specified
explicitly by control sequences such as \quad and \qquad.

Of course, \quad and \qquad are big chunks of space, more than the space
between words in a sentence, so it is desirable to have much finer units. The basic
elements of space that ~ deals with in math formulas are often called a "thin
space" and a "thick space", defined respectively to be t of a quad and fg of a
quad. In order to get a feeling for these units, let's take a look at the Fn example
again: thick spaces occur just before and after the = sign, and also before and
after the > sign. A thin space is slightly smaller, yet quite noticeable; it's a thin
space that makes the difference between "loglog" and "log log" .

'lEX has variable glue, as we discussed in Chapter 12, so spaces in ~'s
math formulas actually can get a little thicker or thinner when a line is being
stretched or squeezed. Here is a precise chart telling about all the different kinds
of spaces that you can specify in math formulas:

Fine pointa oj TT1.(l,thema.tics typiT1.9 81

Control
Name

Spacing in Spacing in styles
sequence styles D, T, D', T' 8,88,8',88'

\, Thin space (1/6, 0, 0) 1/6,0,0)
\u Control space (2/9, 1/9, 2/9) 1/6,0,0)
\> Op space (2/9, 1/9, 2/9) 0,0,0)
\; Thick space (5/18, 5/18, 0) 0,0,0)
\quad Quad space (I, 0, 0) 1,0,0)
\~ Conditional thin space (1/6, 0, 0) (0,0,0)
\! Negative thin space (-1/6, 0, 0) (-1/6,0,0)
\? Negative thick space (-5/18, -5/18, 0) (0,0,0)
\< Negative op space (-2/9, -1/9,-2/9) (0,0,0)
\~ Negative \~ (-1/6, 0, 0) (0,0,0)

(Don't try to memorize this chart, just plan to use it for reference in case of
need.) The spacing is given in units of quadsj thus, for example, the entry
"(5/18, 5/18,0)" for a thick space in D style means that a thick space in displayed
formulas is fg of a quad wide, with a stretchability of is quad and a shrinkability
of zero. Note that spacing is different in subscript or superscript styles: thick
spaces disappear while thin spaces stay the same. This reflects the fact that no
space surrounds = signs in subscripts, but there still remains a space in "log log"

when you type "\10g\10g" in a script style.
The control sequences in this table are allowed only in math mode, except

that \q uad is allowed also in horizontal mode. Actually \u and \! are used
in horizontal mode too, but with a different meaning explained earlier. It is
permissible to use \hsk i p explicitly in math mode, if you want to specify any
nonstandard glue.

As mentioned earlier, you will probably not be using any of these spaces very
much. You can probably get by with only an occasional \quad (or \qquad) and
an occasional thin space.

In fact, there are probably only three occasions on which you should always
remember to insert a thin space ("\, "):

a) Before the dx or dy or dwhatever in formulas involving calculus. For example,
type "$\ i n-tJ.Oiooeix\, dx$" to get "1000

eX dx" j type "$dx\, dy=r\, dr\,
d\theta$" to get "dxdy = rdrd()". (But type "dy/dx".)

b) After square roots that happen to come too close to the following symbol.
For example, "$O\big1p 1/\sqrt n\bigrp$" comes out as "OC1/Vii)",

82 Cha.pter 18

but "$O\biglp 1/\sqrt n\, \bigrp$" yields "O(l/v'n)". And it some
times looks better to put a thin space after a square root to separate it
visually from a symbol that follows: "V2 x" is preferable to "V2x", so type
"$\sqrt2\, x$" instead of "$\sqrt2 x$".

c) After an exclamation point (which stands for the "factorial" operation in
a formula) when it is followed by a letter or number or left delimiter. For
example, "$ (2n) ! \over n! \, (n+1) ! $".

Other than this, you can usually rely on TEX's spacing until after you look at
what comes out, and it shouldn't be necessary to insert optical spacing corrections
except in rather rare circumstances. (One of these circumstances is a formula
like" log n (log log n)2", where a thin space has been inserted just before the left
parenthesis; 1EX inserts no space before this parenthesis, because similar formulas
like "log f(x)" want no space there. Another case is a formula like Un/log n",
where a negative thin space has been inserted after the slash.)

~ Here are the rules 'lEX uses to govern spacing: The styles and sizes of all portions
~ of a formula are determined as explained in Chapter 17. We may assume that the
formula doesn't have the form "a\over {3" (or "a\atop {3", etc.), since numerators and
denominators of such formulas are treated separately. We may also assume that all
subformulas have been processed already (using the same rules) and replaced by boxes.
(Subformulas include anything enclosed in { .,. }, possibly combined with \sqrt,
\underl ine, \overl ine, or \accent; subformulas also include anything enclosed in
\left(deliml) ... \right(delim2), unless this turns out to be the. entire formula.
Subscripts and superscripts are attached to the appropriate boxes, and so any given
formula can be reduced to a list of boxes to be placed next to each other; all that remains
is to insert the appropriate spacing. The boxes are divided into seven categories:

• Ord box; e.g., an ordinary variable like x, or a subformula like \sqrt{x+y} that
has already been converted into a box.

• Op box; e.g., a 2: sign (together with its limits, if any), or an operator like \log
that has already been converted into a box.

• Bin box; e.g., a binary operator like + or - or \times (but not I, which is treated
as "Ord").

• ReI box; e.g., an = sign or a < sign or a ~.

• Open box; e.g., a left parenthesis or \left(delim).

• Close box; e.g., a right parenthesis or \right(delim).

• Punct box; a comma or semicolon (but not a period, which is treated as ICOrd").

Fine points of mathematics typiruJ 83

Every Bin box must be preceded by an Ord box or a Close box, and followed by an
Ord or Op or Open box, otherwise Bins are reclassified as Ords, from left to right. (For
example, in "-oo<x+y<+oo", only the + of "x+y" is a Bin box; the < signs are ReI boxes,
and all other symbols are Ord boxes.) The following table now determines the spacing
between pairs of adjacent boxes:

Righ t box type
Ord Op Bin ReI Open Close Punct

Ord 0 \, \> \; 0 0 0
Op \, \, * \; 0 0 0

Left Bin \> \> * * \> * *
box ReI \; \; * 0 \; 0 0
type Open 0 0 * 0 0 0 0

Close 0 \, \> \; 0 0 0
Punet \~ \~ * \; \~ \~ \~

Here "0" means no space is inserted; "\," is a thin space; and so on. Table entries
marked "*" are never needed, because of the definition of Bin boxes.

<§? For example, consider the displayed formula

$$x+y=\max\{x,y\}+\min\{x,y\}$$

which is transformed into the sequence of boxes

of respective types

Ord,Bin,Ord,Rel,Op,Open,Ord,Punct,Ord,Close,Bin,Op,Open,Ord,Punet,Ord,Close.

Inserting the appropriate spaces according to the table gives

Ord \>Bin \>Ord \; ReI \ ; Op Open Ord Punct\~Ord Close
\>Bin\>Op Open Ord Punct\~Ord Close

and the resulting formula is

i.e.,
x + y = max{x,y} + min{x,y}

84 Chapter 18

This example doesn't involve subscripts .or superscripts; but subscripts and superscripts
merely get attached to boxes without changing the type of box. If you have inserted
any spacing yourself by means of \quad or \, or \hskip or whatever, 1E;X's automatic
spacing gets included in addition to what you specified. Similarly, if you have included
\penal ty or \ej ect or * in a math formula, this specification is ignored for purposes
of calculating the automatic glue between components of formulas. For example, if you
type '''$. " =\penal ty100 x .. , $", there is a ReI box (=) followed by a penalty
specification (which tends to avoid breaking lines here) followed by an Ord box (x), so
1E;X inserts "\;" glue between the penalty and the Ord box.

~ You can make 1E;X think that a character or formula is Op or Bin or ... or
~ Punct by typing one of the instructions \mathop(atom) or \mathbin(atom) or
\mathrel(atom) or \mathopen(atom) or \mathclose(atom) or \mathpunct(atom),
where (atom) is either a single character (like x), or a control sequence denoting a math
ematics character (like \gamma or \approx), or "\char(number)", or "{(formula)}".
For example, "\mathopen I" denotes a vertical line (absolute value bracket) treated as
an Open box; and

\mathop{\char'155\char'141\char'170}

stands for the roman letters "max" in a size that varies with the math style. Control
sequences like \rna thop are used mostly in definitions of other control sequences for
common idioms; for example, "\max" is defined in Appendix B to be precisely the
above sequence of symbols. Note that there's no special control sequence to make a box
"ordinary"; you get an Ord box simply by enclosing a formula in braces. For example, if
you type "{+}" in a formula, the plus sign will be treated as an ordinary character like x
for purposes of spacing. Another way to get the effect of "{ +}" is to type "\char' 53" ,
since characters entered with \char are considered ordinary.

5. Line breaking~ When you have formulas in a paragraph, 'lEX may have to
break them between lines; it's something like hyphenation, a necessary evil that
is avoided unless the alternative is worse. Generally 'lEX will break a formula
after a relation symbol like = or < or +-, or after a binary operation symbol
like + or - or X, if these are on the "outer level" of the formula (not enclosed
in { ... } and not part of an "\over" construction). For example, if you type

$f(x,y) = xt2-yt2 = (x+y) (x-y) $

in mid-paragraph, there's a chance that 'lEX will break after either of the = signs
(it prefers this) or after the - or + or - (in an emergency). Note that there won't

Fine points of mo..thematics typiruJ 85

be a break after the comma in any case-commas after which breaks are desirable
shouldn't ever appear between $'s. If you don't want to permit breaking in this
example except after the = signs, you could type

$f(x,y) = {xt2-yt2} = {(x+y) (x-y)}$.

But it isn't necessary to bother worrying about such things unless 1EX actually
does break a formula badly, since the chances of this are pretty slim.

~ There's a "discretionary hyphen" allowed in formulas, but it means multiplication:
Y If you type "$ (x+y) * (x-y) $", 'lEX will treat the * something like the way it
treats \-j namely, a line break will be allowed at that place, with the hyphenation
penalty. However, instead of inserting a hyphen, 'lEX will insert a X sign in the current
size.

~ The penalty for breaking after a ReI box is 50, and the penalty for breaking after a
Y Bin box is 95. These penalties can be changed either by typing "\penal ty(number)"
immediately after the box in question (thus changing the penalty in a particular case)
or by using \chpar as explained in Chapter 14 (thus changing the penalties applied at
all subsequent ReI and/or Bin boxes of math formulas enclosed in the current group).

6. ElliQses ("three dots" 1. Mathematical copy looks much nicer if you are
careful about how "three dots" are typed in formulas and text. Although it
looks fine to type " ... " on a typewriter with fixed spacing, the result looks too
crowded when you're using a printer's fonts:

"$x ... y$" results in "::c ... y" ,

and such close spacing is undesirable except in sUbscripts or superscripts.
Furthermore there are two kinds of dots that can be used, one higher than the

other; the best mathematical traditions distinguish between these. It is generally
correct to produce formulas like

Xl + ... +Xn and

but wrong to produce formulas like

Xl + ... +::Cn and

86 Cha.pter 18

When using 'lEX with the bas i c control sequences in Appendix B, you can
solve the "three dots" problem in a simple way, and everyone will be envious of
the beautiful formulas you produce. There are five main control sequences:

\ldots
\cdots
\ldotss
\cdotss
\ldotsm

three low dots (...);
three center dots (...);
three low dots followed by a thin space;
three center dots followed by a thin space;
three low dots preceded and followed by thin spaces.

Of these, "\cdots" and "\ldotss" are the most commonly used, as we shall
see.

In general, it is best to use center dots between + and - signs, and also
between = signs or < signs or +- signs or other similar relational operations.
Lower dots are used between commas and when things are juxtaposed with no
signs at all. Here are the recommended rules for using the above control.sequences:

a) Use \cdots between signs inside of a formula; use \cdotss just before
punctuation at the end of a formula. Examples: "$xJ.1=\cdots=xJ.n=O$";
"the i nf i n i te sum $yJ.1+yJ.2+ \cdotss$.". (The extra thin space in
\cdotss will make the second example look better than if \cdots had
simply been used.)

b) Use \ldotss before commas. Example:

The vector $(xJ.1, \ldotss, xJ.n)$ is composed
of the components $xJ.1$, \ldotss, $xJ.n$.

This example deserves careful study. Note that the commas in the "vector"
are part of the formula, but in the list of the components they are part of the
sentence. Note also that you must be in math mode when using \ldotss.

c) Use \ldotsm in "multiplicative" contexts, i.e., when three dots are used
with no surrounding operator sign. Examples:

$xJ.1xJ.2\ldotsm xJ.n$; $(1-x) (1-xi2)\ldotsm(1-xik)$.

Exception: Type "$xi1xi2\ldotss xin$", because this formula when
typeset (x1x2 • .• xn) already has a "hole" at the baseline after x2•

Fine points of 'TT1.(Llliematics typing 87

d) Use \ 1 dots in those comparatively rare cases where you want three lower
dots without a thin space before or after them. Example: "$ (\ldots) $".

e) Use \cdotss between integral signs. Example:

$$\int~Oi1\cdotss\int~Oi1

f(x~1,\ldotss,x~n)\,dx~1\ldotsrn dx~n.$$

f) Use "$\ldotss\, $." when a sentence ends with three lower dots. Example:
"The periodic sequence 0, 1, 0, 1, 0, 1, $\ldotss\,$."

7. Handling vertical lines. Besides the "idioms" represented by \cdots and
\ 1 dotssj there are a few other situations that can be typeset more beautifully
with a little care. A vertical line "I" and a double vertical line "II" are used for
several different purposes in math formulas, and 'lEX will sometimes do a better
job if you tell it what kind of a vertical line is meant. The following control
sequences will help you in this task:

\leftv
\rightv
\relv

vertical line used as a left parenthesis;
vertical line used as a right parenthesis;
vertical line used as a relation.

For example, "$$\leftv +x \rightv = \leftv -x \rightv$$" specifies
the displayed equation

I+xl = I-xl .
If this equation had been typed "$$1 +x I = I-x I $$" the spacing would have been
quite wrong, namely

I+xl= I-xl,
because the I's get the same spacing as ordinary variables like x when you haven't
specified them to be \leftv or \rightv or \relv. Compare also the following
two formulas:

alb
$a\relv b$

alb ;
alb.

There are three more control sequences.\leftvv, \rightvv, and \re 1 vv, which
do the same for double vertical lines.

88 Chapter 18

Appendix B defines two control sequences of use when specifying formulas
like

{xlx>5} .

The best way to type this is "$$\leftset x \re1v x~5 \rightset$$", be
cause \1 eftset and \rightset introduce braces with spacing to match the
spaces surrounding the \re 1 v.

8. Number theory. To specify a formula like "z = y + 1 (mod p2)", type
"$x\eqv y+1 \mod{pi2}$", using the control sequences \eqv and \mod defined
in Appendix B. Note that you don't type the parentheses in this case; the control
sequence provides them for you, with proper spacing and line-breaking conven
tions. (There is also a control sequence "\neqv" that produces the inequivalence
symbol "¢".) To specify the formula

gcd(m,n) = gcd(nmodm,m) ,

type "$$\gcd (m, n)=\gcd (n\modop m, m) $$", using the control sequences
\gcd and \modop. (Actually this latter formula would look slightly better if
"\ ," were inserted after the second comma.)

9. Matrices'. Now comes the fun part. Many different kinds of matrices are
used in mathematics, and you can handle them in 'lEX by using the general
alignment procedures we shall be studying in a later chapter. For now, let's
consider only simple cases. Suppose you want to specify the formula

(

x-}..
A= 0

o

here's how to do it:

1
x-}..

o

$$A=\left(\vcenter{
\ha1ign{$\ctr{#}$\quad

~$\ctr{#}$\quad

~$\ctr{#}$\cr

x-\lambda~1~O\cr

O~x-\lambda~1\cr

O~O@x-\lambda\cr}}\right)$$

Fine points of m.athem.atics typi11.9 89

Explanation: We already know about "\left(" and "\right)", which make
the big parentheses that go around the matrix. The \vcenter control sequence
forms a box in restricted vertical mode, and centers that box vertically so that
the middle of the box is the same height as a minus sign. The \hal ign con
trol sequence is one of the things you can do in restricted vertical mode; it is a
general operator for producing aligned tables. After "\ha 1 i gn {OJ and up to the
first "\er" is a mysterious ritual for specifying three columns of a matrix. (We
will learn the rules of this later, let's take it on faith just now.) Then comes
a specification of the three matrix rows, with tab marks u@" between columns,
and with pseudo-carriage-returns "\er" at the end of each row. (Here @ is one
of the special characters mentioned in Chapter 8, it is not the (tab) key on
your keyboard; similarly, \cr is a control sequence, it is not (carriage-return).
Furthermore \cr need not come at the end of a line; you can type several rows
of a matrix on a single line of your 'lEX input manuscript.) After the final \cr
comes the "}" to end "\hal ign{"; then comes the "}" to end "\vcenter{".
Finally the "\r ight)" finishes off the formula.

If there were five columns instead of three, the \hal ign specification would
be about the same, only longer; namely,

\halign{$\ctr{#}$\quad
@$\ctr{#}$\quad
0$\ctr{#}$\quad
0$\ctr{:/I:}$\quad
0\ctr{t}\cr

followed by the individual rows. Here \ctr means that the corresponding column
is to be centered; if you change it to \ 1 ft or \rt, the entries in the corresponding
column will be set flush left or flush right, if they have different widths. When
all matrix entries are numbers, it is usually better to use \rt than \ctr.

The \quads in the \hal ign ritual are used to specify the space between
columns. If you want twice as much space you can replace \quad by \qquad.

~ Another way to specify the matrix equation in the above example is to use the
~ \cpi Ie control sequence of Appendix B for each column:

$$A=\left(\cpiIe{x-\lambda\er O\er O\er}\quad
\epile{l\er x-\Iambda\er O\er}\quad
\epile{O\er l\er x-\Iambda\cr}\right)$$

90 Chapter 18

However, this use of \cpile is not recommended, because it doesn't work in general:
Each column is being typeset independently as a separate \cpil e, so the rows won't
line up properly if some matrix entries are taller than others. It's best to use \ha I ign
as suggested above-those funny-looking column format specifications are scary only
the first few times you encounter themj afterwards they are quite simple to use. On the
other hand \cpi Ie (and its cousins \lpi Ie and \rpi Ie, which produce left-justified
and right-justified columns of formulas just as \cpi I e produces centered columns) can
be handy in simple cases.

~ How about matrices involving \ldots? The following example should help you
'Sr answer this question. Suppose you want to specify the matrix

One way to do it, using the "\ vdots" control sequence of Appendix B, is

$$\left(\vcenter{\halign{$\ctr{#}\;$\!
0$\ctr{#}\;$0$\ctr{#}\;$0$\ctr{#}$\cr

a~{11}0a~{12}0\ldots0a!{ln}\cr

a~{21}0a~{22}0\ldots0a~{2n}\cr

\vdots0\vdots0 0\vdots\cr
a~{ml}0a~{m2}0\ldots0a!{mn}\cr}}\right)$$

~ Long ago in this chapter you were promised a solution to the problem of typing a
'Sr displayed equation such as

Ixi = {XI
-x,

if X > 0;
ifx< O.

Here it is, using \vcenter and \hal ignj see if you can understand it now:

$$\leftv x \rightv = \left\{\vcenter{
\halign{\lft{$#$,}\qquad

0if \lft{$#$}\cr
x0x~O;\cr -x0x<O.\cr}}\right.$$

Note that the commas and ifs are generated by the \hal ign specificationj this trick isn't
necessary, but it saves some typing. Another solution could be devised using \lpile,
but (as in the discussion of matrices above) it is not recommended.

Displayed equations 91

~Exercise 18.3: Explain how to type

1 IVY(n) . 27r -00 ~ sin
2 Xk(t) (f(t) + g(t)) dt.

~ ~Exercise 18.5: How can you get ~ to typeset the column vector (~J 1

~ ~Exercise 18.6: Using Appendix F to find the names of special characters, explain
jL' how to type

evaluated at X(f) mod SL(n, C).

~ ~Exercise 18.7: Define a control sequence \e for the "colon-equal" operator in
jL' computer science, so that a formula like "x := 2 X x + 1" will be properly spaced

after it has been typed "$x\e2\times x+l$".

<19> Displayed equations

By now you know how to type mathematical formulas so that 'lEX will handle them
with supreme elegance; but there is one more aspect of the art of mathematical
typing that we should siiscuss. Namely, displays.

As mentioned earlier, you can type "$${formula)$$" to display a formula in
flamboyant display style. Another thing you can do is type

$$(formula) \eq no{formula)$$

this displays the first formula and also puts an equation number (the second
formula) at the right-hand margin. For example,

$$xt2-yt2 = (x+y) (x-y) .\eqno(15)$$

will produce this:
x2 _y2 = (x+y)(x-y). (15)

92 Chapter 19

~ Here's what $$ and \eqno do, in more detail: The formula to be displayed is made
Y into a box using display style (unless you override the style). If \eqno appears,

the formula following it is made into a box using text style. When the combined width
of these two boxes, plus one text size quad, exceeds the current line width, squeezing
is attempted as follows: If the shrinkability of the formula to be displayed would allow
it to fit, the formula is repackaged into a box that has just enough width; otherwise
the formula is repackaged into a box having the current line width, and the equation
number (if any) will be placed on a new line just below the formula box. The formula
to be displayed is centered on the line, where this centering is independent of the width
of the equation number, unless this would leave less space between the formula and the
equation number than the width of the equation number itself; in the latter case, the
formula is placed flush left on the line. Now 'lEX looks at the length of the previous
line of the current paragraph: if this is short compared to the size of the displayed
equation, vertical glue that the designer has specified by "\d i spask i p(glue)" will be
placed above the formula, and vertical glue specified by "\d i spbsk i p(glue)" will be
placed below. Otherwise vertical glue specified by "\dispskip(glue)" will be placed
both above and below. (The glue below is, however, omitted if an equation number
has to be dropped down to a separate line; this separate line takes the place of the glue
that ordinarily would have appeared.)

~ Another thing you can type for displays, when you know what you're doing, is
Y "$$\hal ign(spec){(alignment)}$$". This isjust like an ordinary \hal ign, except
that the $$'s interrupt a paragraph and insert \dispskip glue above and below the
aligned result. Note that \eqno cannot be used in this case, and no automatic centering
is done. Page breaks might occur in the midst of such displays.

OK, the use of displayed formulas is very nice, but when you try typing a lot
of manuscripts you will run into some displays that don't fit the simple pattern
of a single formula with or without an equation number. Appendix B defines
special control sequences that will cover most of the remaining cases:

1. Two or more equations that should be aligned on :=' signs. (The alignment
ca~ also be on other signs like <, etc.) For this case, type

$$\eqal ign{(left-hand sidel)0(right-hand sidel)\cr
(left-hand side2)0{right-hand side2)\cr

(left-hand siden)0{right-hand siden) \ c r }$$

with an optional \eqno{formula) just before the closing "$$" and after the closing
"\cr}". N.B.: Don't forget to type the final \cr! The relation symbols on which

Displayed equations 93

you are aligning should be the first symbols of the right-hand sides (not the last
symbols of the left-hand sides). If \eqno appears, the equation number will be
centered vertically in the display (or-if it doesn't fit-it will be dropped down
to the line following the display, as mentioned earli~r). For example, if you type

$$\eqalign{a~1+b~1w+c~1wi20=\alpha+\beta;\cr

b~2x+c~2xi20= O.\cr}\eqno(30)$$

the result will be
al + b1w + CIW

2 = a + {3;
~X+C2x2 = o. (30)

Note that the left-hand sides are right-justified and the right-hand sides are left
justified, 'so the = signs line up; the whole formula is also centered, and the
equation number (30) is halfway between the lines.

~ Sometimes you may want more or less vertical space between the aligned equations.
Y Type "\noal ign{\vskip(glue)}" after any \cr, to insert a given amount of extra
glue after any particular equation line. (You can even do this before the first equation
and after the last one.)

~ In general, the result of \eqal ign is a \vcentered box, so \eqalign can be used
Y in a fashion analogous to \ 1 P i 1 e or \cp 11 e. Thus, it is possible to type such

things as "$$\eqal ign{ ... } \qquad \eqal ign{ ... }$$", obtaining a display with
two columns of aligned formulas.

2. Two or more equations that should be aligned, some of which have equation
numbers. For this case you use \eqal ignno, which is something like \eqal ign,
but each line now has the form

(left-hand side)0(right-hand side)0(equation number)\cr

For example,

yields

$$\eqalignno~a~1+b~1w+c~1wi20=\alpha+\beta;0(29)\cr

b~2x+c~2xi20=O.0(30)\cr}$$

al + b1w + CIW
2 = a + P;

~X+C2x2 = O.
(29)
(30)

94 Chapter 19

You can't use \eqno together with \eqal ignno; the equation numbers now
must appear as shown.

If the (equation number) of some line is blank, you can omit the 0 before it.
Example:

$$\eqalignno{f(x)0=(x-1) (x+1)\cr
0=xT2-1.0(31)\cr}$$

This will produce the following display:

f(x) = (x - l)(x + 1)
= x 2 -1.

(Note the position of the equation number.)

(31)

~ You can use \noalign within \eqal ignno to insert new lines of text. For example,
3r' "\noalign{\hbox{implies}}" will insert a line containing the word "implies"
(at the left margin) between two aligned formulas.

3. A long equation that must be broken into two lines. You may want to type
this as

$$\ two 1 i ne{(first line)}{(glue)}{(second line)}$$.

The formula's first line will be moved to the left so that it is one text size quad
from the left margin, and its second line will be moved to the right so that it
is one text size quad from the right margin. The specified glue will be inserted
between these two lines in addition to the normal glue.

Another way to break a long equation is to use \eqal ign with appropriate
quads inserted at the beginning of the second line.

For example, here's an equation that is clearly too big to fit:

Let's break it just before the" + 7". One way to do this is to type

$$\twoline{\sigma(2T{34}-1,2T{35},1)=-3+(2T{34}-1)/
2T{35}+2T{35}/(2T{34}-1)}{2pt}{\null+7/2T
{35}(2T{34}-1)-\sigma(2T{35},2T{34}-1,1).}$$

Displo.yed equations 95

The two-line result will then be

0(234 -I, 235,1) = -3 + (234
- 1)/235 + 235 /(234 - 1)

+ 7/235(234
- 1) - 0(2 35 ,234 - 1,1).

The other alternative is to type

$$\eqalign{\sigma(2i{34}-1,2i{35},1)0=-3+(2i{34}-1)/
2i{35}+2i{35}/(2i{34}-1)\cr
0\qquad\null+7/2i{35}(2i{34}-1)
-\sigma(2i{35},2i{34}-1,1) .\cr}$$

which yields

0(234 - 1,235, 1) = -3 + (234 - 1)/235 + 235 /(234
- 1)

+ 7/235(234 -1) - 0(235, 234 - 1,1).

A couple of things should be explained and emphasized about this example:
(a) The second line starts with "\n u 11 + 7" instead of just "+7". The control
sequence \n u 11 is defined in Appendix B to mean a box of size zero, containing
nothing, and this may seem rather insignificant; but it makes a big difference to
'lEX, because a plus sign in the middle of a formula is followed by a space, but
a plus sign that begins a formula is not. Thus, you should always remember to
type "\n u 11" when you are continuing a multi-line formula. (b) When you use
\ two 1 i ne, never hit (carriage-return) on your keyboard just after the} that fol
lows the (first line), or just after the} that follows the (glue); this (carriage-return)
makes 'lEX think a space was intended, and \twol ine won't work correctly.
(You'll probably get some inscrutable error message like "\ha 1 i gn in d i sp 1 ay
math mode must be followed by $$.")

Breaking of long displayed formulas into several lines is an art; 'lEX never
attempts to do it, because no set of rules is really adequate. The author of a
mathematical manuscript should really decide how all such formulas should break,
since the break ·position depends on subtle factors of mathematical exposition.
Furthermore, different publishers tend to have different styles for line breaks.
But several rules of thumb can be stated, since they seem to reflect the best
mathematical practice:

96 Chapter 19

a) Although formulas within a paragraph always break after binary operations
and relations, displayed formulas always break before binary operations and
relations. Thus, we didn't end the first line of the above example with
"(2t{34}-1) + \n u 11", we .ended it with "(2t{34}-1)" and began the
second line with U\n u 11 + 7" .

b) The \twol ine form is generally preferable for equations with a long left
hand side; then the break usually comes just before the = sign.

c) When an equation is broken before a binary operation, the second line should
start at least two quads to the right of where the innermost subformula
containing that binary operation begins on the first line. For example, if you
wish to break

$$\sumJ.{1~k~n}\left «(formulal)+(formula2)\right) $$

at the plus sign between (formulal) and (formula2), it is almost mandatory
to have the plus sign on the second line appear somewhat to the right of the
large left parenthesis corresponding to U\ 1 eft (". [Note further that your
uses of \1 eft and \right must balance in both parts of the broken formula.
You could type, for instance,

\eqal ign{\sumJ.{1~k~n}~\left«(formulal)\right. \cr
~\qquad\1 eft. \nu 11+(formula2)\right) $$

provided that (formulal) and (formula2) are both of the same height and
depth so that the \ 1 eft (on the first line will turn out to be the same size
as the \right) on the second. But in such cases it's simpler and safer to
use, e.g., \bigglp and \biggrp instead of \left (and \right).J

<20> Definitions (also called macros)

You can often save time typing math formulas by defining control sequences as
abbreviations fot constructions that occur frequently in a particular manuscript.
For example, if some manuscript frequently refers to the vector U(XI, ... , xn)" I

you can type '
\def\xvec{(xJ.1,\ldotss,xJ.n)}

Definitions (0180 called Tl1.(lCTOS) 97

and \xvec will henceforth be an abbreviation for "(xJ.1, \ Idotss, xJ.n)" .
Formulas like

2: (f(Xl,"" xn) + g(Xb'" I xn))
(Xl, ... ,Xn)rf(O, ... ,O)

can then be typed simply as

$$\sumJ.{\xvec~(O,\ldotss,O)}\biglp f\xvec+g\xvec\bigrp$$

~ 'lEX's definition facility is what a designer uses to define all the standard formats,
3(' so Appendices Band E contain many illustrations of the use of \def. For example,
\ega! ign and \ega! ignno are both defined in Appendix B. Defined control sequences
can be followed by arguments, so we shall study the general rules for such definitions
in this chapter. It's a good idea for you to look at Appendix B now.

~ The general form is "\def(controlseq)(parameter text){(result text)}", followed
Y by an optional space, where the (parameter text) contains no { or }, and where all

occurrences of { and} in the (result text) are properly nested. in groups. Furthermore
the # symbol (or whatever symbol is being used to stand for parameters, d. Chapter
7) has a special significance: In the (parameter text), the first appearance of # must be
followed by 1, the next by 2, and so on; up to nine #'s are allowed. In the (result text)
each # must be followed by a digit that appeared after # in the (parameter text), or else
the # should be followed by another #. The latter case stands for insertion of a single
in the result of any use of the definitionj the former case stands for insertion of the
corresponding argument.

~ For exam pIe, let's consider a "ran dom" definition that doesn't do anything useful
3(' except that it does exhibit 'lEX's rules. The definition

\def\cs AB#1#2CO\$E#3 {#3{ab#1}#1 c\x ###2}

says that the control sequence \cs is to have a parameter text consisting of ten tokens

A, B, #1, #2, C, 0, \$, E, #3, U,

and a result text consisting of twelve tokens

#3, {, a, b, #1, }, #1, U, c, \x, #, #2.

Henceforth when 'lEX reads the control sequence \cs it expects that the next two input
tokens will be A and B (otherwise you will get the error message "Use of \cs doesn' t
match its def in1 t1on"); then comes argument #1, then argument #2, then C, then
0, then \$, then E, then argument #3, and finally a space. (It is customary to use the
word "argument" to mean the string of tokens that gets substituted for a parameterj
parameters appear in a definition, and arguments appear when that definition is used.)

98 Cha.pter 20

~ How does 'lEX determine where an argument stops, you ask. Answer: If a parameter
~ is followed in the definition by another token, the corresponding argument is the

shortest (possibly empty) sequence of tokens with properly nested { ... } groups that is
followed in the input by this particular token. Otherwise the corresponding argument is
the shortest nonempty sequence of tokens with properly nested { ... } groups; namely,
it is the next token, unless the token is {, when the argument is an entire group. In
any case, if the argument found in this way has the form "{(balanced tokens)}", where
(balanced tokens) stands for a sequence of tokens that is properly nested with respect to
{ and }, the outermost { and} enclosing this argument are removed. For example, let's
continue with \cs as defined above, and suppose that the subsequent input contains

\cs AB{\Look}ABCD\$ E{And }{look} F.

Argument :U will be the token \Look, since #1 is immediately followed by #2 in the
definition, and since {\Look} is the shortest acceptable sequence of tokens following
"\cs AB". Argument #2 will be the two tokens "AB", since it is to be followed by "c".
Argument #3 will be the twelve tokens "{And }{l oOk}", since it is to be followed by
a space. Note that the exterior { and} are not removed from #3 as they were from
#1, since that would leave an un nested string" And }{ look": Note also that the space
following "\$" is ignored since it isn't really a space (it follows a control sequence). The
net effect then, after substituting arguments for parameters in the result text, will be
that 'lEX's input will essentially become

{And }{look}{ab\Look}\LookUc\xfABF.

The space U here will be digested, even though it follows the control sequence \Look,
because it was part of the defined result text. The "F." here comes from the yet
unscanned input.

~ Definitions are not "expanded" (i.e., replaced by the result text) when they occur
~ in a \def or an argument. Thus \Look and \$ and \x are treated as single tokens
in the example above, even though \Look has presumably been defined elsewhere. If 0

or \cr occurs without being enclosed in { ... }, in a definition or an argument in the
midst of an alignment, 'lEX assumes that this 0 or \cr belongs to the alignment and
not to the definition or argument.

~ If you have difficulty understanding why some \def doesn't work as you expected,
~ try running your program with \ trace' 355 (see Chapter 27).

~ The effect of \def lasts only until the control sequence is redefined or until the
~ end of the group containing that \def. But there is another control sequence
\gdef that makes a "global" definition, i.e., it defines a control sequence valid in all

Making boxes 99

groups unless redefined. The \gdef instruction is especially useful in connection within
\output routines, as explained in Chapter 23.

~ ~Exercise 20.1: The example definition-of \cs includes a ## in its result text, but
~ the way #:fI: is actually used in that example is rather pointless. Give an example

of a definition where ## serves a useful purpose.

<21> Making boxes

In Chapters 11 and 12 we discussed the idea of boxes and glue; now it is time to
study the various facilities 'lEX has for making various kinds of boxes. In most
cases, you can get by with boxes that 'lEX manufactures automatically with its
paragraph builder, page builder, and math formula processor; but if you want to
do nonstandard things, you have the option of making boxes by yourself.

~ To make a rule box, type "\hrule" in vertical mode or "\vrule" in horizontal
~ mode, followed if desired by any or all of the specifications "width(dimen)",
"height(dimen)", "depth(dimen)", in any order. For example, you can type "\vrule
height 4pt width 3pt depth 2pt" in the" middle of a paragraph, and you will get
the black box "f. The dimensions you specify should not be negative. If you leave any
dimensions unspecified, you get the following by default:

width
height
depth

\hrule

*
0.4 pt
0.0 pt

\vrule
0.4 pt

*
*

(Here "*" means that the rule will extend to the boundary of the smallest enclosing
box.)

~ To make a box from a horizontal list of boxes, type "\hbox{(hlist)}", where (hlist)
~ specifies the list of boxes in restricted horizontal mode. For example, "\h box{Th i s
is not a box}" makes the box

IThis is not a boxl

(in spite of what it says). The boundary lines in this illustration aren't typeset, of course;
they merely indicate the box's actual extent, as determined by the rules of Chapters
11 and 12.

100 Chapter 21

~ Similarly, the instruction "\ vbox{ (vlist)}" makes a box from a vertical list of
Y boxes. If you type

\vbox{\hbox{T}\hbox{h}\hbox{i}\hbox{s}
\hbox{ }\hbo~{b}\hbox{o}\hbox{x}}

you will get this box:

Automatic baseline adjustment is done on vertical lists, as explained in Chapter 15.
The following example shows what happens if the baseline adjustment is varied:

\vbox{\def\\#l{\hbox{#l}}
\baselinesklp-lpt
\l1nesklp 3pt
\\T\\h\\l\\s
\\{}\\b\\o\\x}

Note that a specially defined control sequence \ \ saves a lot of typing in this example.

~ ~Exercise 21.1: When the author of this manual first prepared the above example,
Y he wrote "\base11nesklp Opt" instead of "\basellnesklp-lpt". Why didn't
this work?

~ ~Exercise 21.2: How would you change the above example so that the letters are
Y centered with respect to each other, instead of being placed flush left?

~ The phrase "list of boxes" in the above discussion really means a list of boxes and
Y glue. But if \hbox and \ vbox are used in the simple manner stated, the glue
does not stretch or shrink. When you want the glue to do its thing, type "\hbox to
(dimen)«hlist)}" and you will get a box of the specified width; or type "\vbox to
(dimen)«vlist)}" and you will get a box of the specified height. (The depth of a \ vboxed
box is always the depth of the last box in the vertical list, except that it is zero when glue
follows the last box.) You may also type "\hbox to slze{(hlist)}" or "\vbox to
s1ze{(vlist)}"j this means that the (dimen) is to be the most recently specified \hs1ze
or \ vs1ze, respectively. Finally, there's a further option of typing "\hbox expand
(dimen){(hlist)}" or "\vbC?x expand (dimen){(vlist)}"; these expand the box to its
natural width or height plus the (possibly negative) amount specified.

Making boxes 101

~ You can also get the effect of paragraphing and line-breaking with \hbox, in the
"Y following way: If you give the instruction "\hbox par (dimen)", 'lEX will use its
paragraph line-breaking routine to convert the horizontal list into one or more lines of
the specified width. In this case the \hbox will actually result in a box formed from a
vertical list o(horizontal lists of the desired width. The boxed paragraph that you get
is not indented.

For example, the box that you are now
reading was made by typing "\hbox
par 156pt{For example, the box
... five lines.}tI and 'lEX broke it
into five lines.

~ If you specify hanging indentation with such a boxed paragraph, it applies to the
"Y box and not to the paragraph (if any) containing the box. For example,

\hbox par 200pt{\hangindent to pt (text) }

will put the specified text into a box 200 points wide, where all lines after the first are
indented by 10 points at the left. However, all other parameters affecting the setting
of the boxed paragraph (the baseline skip, raggedness, etc.) should be set up before the
\hbox par.

~ You can save a constructed box for later use by typing "\save(digit)(box), where
~ (digit) is 0 or 1 or ... or 9 and (box) specifies a box. For example, "\save3\hbox
{The formu la "$x+y$".}" will save away the box

rrhe formula "z + y" .1

(Note that math formulas are allowed in (hlist)sj but displays are not.) Later you can
use this saved box by typing "\box(digit)tI. The \save and \box instructions are useful
for constructing rather complex layouts like those in a newspaper page. Caution: You
can use a saved box only oncej after you type "\box3" the contents of box 3 becomes
null. If you type "\save3\box2" the effect is to move box 2 to box 3 and then to make
box 2 empty.

~Exerci5e 21.3: Define a control sequence \boxi t so that "\boxi t{(box)}"
yields the given box surrounded by 3 points of space and ruled lines on
all four sides. For example, this exercise has been typeset by telling
'lEX to \boxi t{\boxi t{\box4}}, where box 4 was created by typing
"\save4\hbox par 300pt{\exno 21.3: Define ... }".

102 Chapter 21

~ To raise or lower a constructed box in a horizontal list, or in a math formula,
Y precede it by "\raise(dimen)" or "\lower(dimen)". For example, the \TEX con
trol sequence that prints the ~ logo in this manual is defined by

\def\TEX{\hbox{\:aT\hskip-2pt\lowerl.94pt\hbox{E}\hskip-2pt X}}

Similarly, you can move a constructed box left or right in a vertical list if you type
"\move 1 eft(dimen}" or "\moveright(dimen)" just before its description. The control
sequences \vcenter and \vtop are also useful for box positioning (see Chapter 26).

~ There is also a "way to repeat a box as many times as necessary to fill up some
Y given spacej this is what printers call "leaders." The general construction is
"\ 1 eaders(box or rule)(glue)", where (box or rule) is any box or rule specified by \hbox
or \vbox or \box or \page or \hrule or \vrule, and where (glue) is specified by
\hskip or \hfill in horizontal mode, \vskip or \vfill in vertical mode. 'lEX treats
the glue in the normal way, possibly stretching it or shrinking itj but then instead of
leaving the resulting space blank, 'lEX places the contents of the box there, as many
times as it will fit, subject to the condition that the reference point of each box will
be congruent to some fixed number, modulo the box's width (in horizontal leaders) or
modulo the box's height plus depth (in vertical leaders). This "congruence" means that
leaders in different places will line up with each other. For example,

\def\lead{\leaders\hbox to 10pt{\hfill.\hfill}\hfill}
\hbox to size{Alpha\lead Omega}
\hbox to size{The Beginning\lead The Ending}

will produce the following two lines:

Alpha
The Beginning

. . Omega
The Ending

(Here "\hbox to 10pt{\h f iII. \h f i 11}" specifies a box 10 points wide, with a period
in its centerj the control sequence \lead then causes this box to be replicated when
filling another box.) When a rule is used as a leader, it completely fills the glue spacej
for example, if we had made the definition "\def\lead{\leaders\hrule\hfill}",
the two lines would have come out looking this way instead:

Alpha ___ Omega

The Beginning The Ending

Making boxes 103

~ Leaders can be used in an interesting way to construct variable-width braces in the
~ horizontal direction. 'lEX's math extension font cmathx (used with bas i c format)

contains four characters that allow you to typeset such braces in the following way.
First make the definitions

Then

will produce

\def\bracex{\leaders\hrule height 1.5pt \hfill}
\def\dnbrace{$\char'772$\bracex$\char'775

\char'774\bracex\char'773$}
\def\upbrace{$\char'774$\bracex$\char'773

\char'772\bracex\char'775$}

"

\hbox to 100pt{\dnbrace}
\hbox to 200pt{\upbrace}

This is occasionally useful in connection with math formulas.

~ ~Exercise 21.4: How do you think the author of this manual made asterisks fill the
~ rest of the current page? (Hint: The asterisk used (in font cmrlO) has a height of

7.5 points.)

104 Chapter 22

<22> Alignment

A novice ~ user can prepare manuscripts that involve mathematical formulas
but no complicated tables; but a 'lEX Master can prepare complicated tables
using \halign or \valign. In this chapter, if you're ready for it, you can learn
to be a ~ Master. (And the next chapter-which talks about the design of
\output routines-will enable you to become a Grandmaster.)

~ For simplicity, let's consider \hal ign first; \val ign is similar, and it is used much
Y m<?re rarely. If you type .

\hal ign to (dimen){(alignment preamble)\cr(alignment entries)}

in vertical mode or restricted vertical mode, you append a list of aligned boxes that
are each (dimen) units wide to the current vertical list; these boxes are formed from
the (alignment entries) by using the specifications in the (alignment preamble). We've
already seen examples of alignment in Chapter 18, where \hal ign was used to construct
matrices. In general, the preamble tells how to format individual vertical columns whose
entries are going to be assembled into horizontal rows of the specified width. Before
we get into any details of the alignment, let's observe straightaway that "\hal ign
to (dimen)" can be changed to "\hal ign to size" if the (dimen) is to be the cur
rent \hsize; it can be shortened to simply "\halign" if the minimum size (without
shrinking) is desired, or replaced by "\hal ign expand (dimen)" if the boxes should be
stretched to a given amount in addition to this minimum size. In other words, \hal ign
has the same four options as \hbox.

~ The (alignment preamble) consists of one or more (format) specifications separated
Y by @'s. Each (format) specification is a sequence of tokens that is properly nested
with respect to { ... } groups and contains exactly one "#". For example, the (alignment
preamble) suggested for three-column matrices in Chapter 18 was

$\ctr{#}$\quad@$\ctr{#}$\quad@$\ctr{#}$

A (format) is essentially a simple \def with one parameter; the idea is to replace the
1= by whatever alignment entry is typed in that column position. For example, if the
(alignment entries) following this preamble are

x~1@x~2@x~3\cr y~1@y~2@y~3\cr

then there will be two rows of the matrix obtained by substituting these entries in the
preamble, namely

$\ctr{x~1}$\quad

$\ctr{y~1}$\quad

$\ctr{x~2}$\quad

$\ctr{y~2}$\quad

$\ctr{x~3}$

$\ctr{y~3}$

Alignment 105

The (alignment entries) consist of zero or more (row)s; and a (row) is one or more entries
separated by 0's and followed by \cr. In general if the preamble contains n (format)s

and if there are m rows each~containing n entries

we will obtain mn fleshed-out entries

(Ul)(Xll)(Vl) (U2)(X12)(V2)
(Ul)(X2l)(Vl) (U2) (X22)(V2)

(Un) (Xl n)(Vn)
(Un)(X2n) (Vn)

by repeatedly copying the preamble format information.

\cr
\cr

\cr

~ Now here's what 'lEX does with the mn fleshed-out entries: The natural width of
Y each entry \hbox{(Uj)(xij)(v;-)} is determined; and the maximum natural width is
computed in each column. Suppose that Wj is the maximum natural width in the jth
column; then each fleshed-out entry in that column is replaced by the box "\hbox to
Wj{(Uj) (Xij)(V;-)}" . Thus, all entries in a particular column now have the same width.
Finally these boxes are welded together to make the m rows, by inserting n+ 1 elements
of glue in each row (before the first box, between boxes, and after the last box). The
glue to use in this welding process has previously been specified by "\ tabsk i p(glue)" .
The m row boxes are finally appended to the current vertical list.

~ If you don't understand what was said so far, look back at the matrix example and
Y reread the above until you understand. Because there are also some refinements
that we shall now discuss. (a) After any \cr you can type "\noal ign{(vlist)}", and
this (vlist) will simply appear in its place among the aligned row boxes. The (vlist)
in this case usually contains vertical glue, penalty specifications, or horizontal rules;
but it might contain anything that is allowed in restricted vertical mode, even another
\hal ign. (b) If some row has fewer than n entries, i.e., if the \cr of some row occurs
before there have been n - 1 0's, all remaining columns of the row are set to null boxes

106 Cha.pter 22

regardless of their format. (This is not necessarily the same as "\hbox{(Uj)(vJ)}";

the preamble formats are simply ignored.) (c) If you specify \tabskip(glue) in the
preamble, the n+ 1 globs of glue that weld together the final row boxes will be different,
so you can get different spacing between columns. Here's how it works: The glue placed
before column 1 is the \tabskip glue in effect when the \halign control sequence
itself appears; the glue that replaces a 0 or \cr is the \.tabskip glue in effect when
that 0 or \cr appears in the preamble.

~ Warning: Any spaces you type in the (format)s of the preamble will be taken
Y seriously! Don't start a new line after a 0 unless you intend a corresponding space
to be there in every column. (You may, of course, start a new line after \cr without
inserting an unwanted space, or you can type "0\!" and go to a new line.) The same
applies to spaces in the aligned entries; always be extra careful with your use of spaces
inside \ha'l ign.

~ Another warning: Don't use a construction like "$#$" in your (format)s if the
Y corresponding column entries might be null. Otherwise 'lEX will scan "$$" and
think display math is intended, and this probably will lead to hopeless confusion. (The
matrix example above has "$\ctr{#}$" instead of "\ctr{$#$}" for precisely this
reason. Another safe possibility would be "\ctr{$# $}".)

~ You can have \halign or \valign within \halign or \valign (for example,
YY matrices within aligned equations). In order to allow this, 'I£IC insists that {
and} be balanced in alignment entries, so that it is possible to distinguish which level
of alignment corresponds to a given 0 or \cr. Consider, for example, the extremely
simple alignment

\halign{\ctr{#}\cr
(entry)\cr}

When 'lEX begins to scan the alignment entry, it scans the string of tokens "\ctr{
(entry)\cr} ... "; and the appearance of "\ctr" causes 'IE:;X to look for \ctr's argu
ment. This argument begins with "{", so the scanning continues until the matching
"}". However, when the \cr is encountered after (entry), 'IE;X is supposed to insert the
matching "}" from the preamble. If (entry) itself contains a use of \hal ign, there will
be \cr's in the middle of (entry); so rEX doesn't simply look for the first \cr. Instead
it ignores the tokens 0 and \cr until finding one that is not enclosed in braces, thereby
correctly determining the argument to \ctr.

~ Defined control sequences in the preamble are not usually expanded until the
1:1: alignment entries are being processed. However, a control sequence following
"\ tabsk i p(glue)" in the preamble might be expanded, since a (glue) specification might
involve control sequences. For example, "\ tabsk ip Opt \ctr{#}" will effectively be

Ali9nment 107

expanded by 'lEX to "\tabsk ip Opt \hf i 11 1ft \hf ill ,; while the preamble is being
scanned, because 'lEX won't know (when it gets to "\ctr") whether or not the expansion
of this control sequence will begin with "pl us 1pt" or some other continuation of the
glue specification.

~ In the rest of this chapter we shall discuss two worked-out examples. First suppose
'Y:' that we want to typeset three pairs of displayed formulas whose = signs are to be
aligned, such as

Vi = Vi - qiVj,

V;" = vJ",

Xi = Xi -qiXj,

Xj = xJ",

Ui = Ui, for i ~ j;
Uj = Uj + 2:i~j qiUi.

(13)

We could do this with three \eqal ign's, but let's not, since our current goal is to learn
more about the general \hal ign construction. One solution is to type

$$\ vcenter{\hal ign{(alignment preamble)\cr
V~i0v~i-q~iv~j,0X~i0x~i-q~ix!j,0U!i0u!i,\qquad\hbox{for }i~j;\cr

V~j0v~j,0X~j0x!j,0U!j0u!j+\sum!{i~j}q!iu!i.\cr}}\eqno(13)$$

with some suitable alignment preamble. (It sometimes helps to figure out how you
want to type the alignment entries before you design the preamble; there's a tradeoff
between ease of typing the entries and ease of constructing the preamble.) One suitable
preamble is

$\rt{#}$0\lft{$\null=#$}\qquad
0$\rt{#}$0\lft{$\null=#$}\qquad
0$\rt{#}$0\lft{$\null=#$}

Note the \nulls here: they ensure proper spacing before the = signs, because the
equations are being broken into two parts. Study this example carefully and you'll soon
see how to make useful alignments.

~ ~Exercise 22.1: What would happen if "\ vcenter" were replaced by "\ vbox" in
'Y:' the above example?

~ If we didn't have to include an equation number like "(13)", the \vcenter could
'Y:' have been omitted; but then there would have been a possible page break be
tween the two equations, and the equations would not have been centered on the line.
(The only effect of the $$'s in "$$\halign{ ... }$$" is to insert \dispskip glue
above and below the alignment.) One way to prevent a page break would be to insert
"\noal ign{\penal ty lOOO}" between the lines. And one way to center the equations
would be to vary the tabskip glue, as in the definition of \eqal ignno in Appendix B.
But it is much easier to use \ vcenter.

108 Cha.pter 22

~ The second example is slightly more complex, but once you master it you will have
~ little or no trouble with other tables. Suppose you want to specify this:

AT &T Common Stock
Year Price Dividend

1971 41-54 $2.60

2 41-54 2.70
3 46-55 2.87

4 40-53 3.24

5 45-52 3.40

6 51-59 .95*

*(first quarter only)

including all those horizontal and vertical lines. The table is to be 150 points wide. Here
is one way to do it, letting the tabskip glue expand to give the column widths (so that,
for example, the "Price" column will turn out to be exactly one en-dash-widthwider
than the "Yea"r" column):

$$\vbox{\tabskip Opt
\def\I{\vrule height 9.25pt depth 3pt}
\def\.{\hskip-10pt plus 10000000000pt}
\hrule
\hbox to l50pt{\I\.AT&T Common Stock\.\I}
\hrule
\halign to l50pt{#\tabskip Opt plus 100pt
@\hfill#@#@\ctr{#}@#@\hfill#@#\tabskip Opt\cr
\10\.Year\.\hfill@\I@\.Price\.@\I@\.Dividend\.\hfill@\I\cr
\noalign{\hrule}
\10l97l0\1@4l--54@\I@$\$$2.600\I\cr\noalign{\hrule}
\102@\104l--540\1@2.70@\I\cr\noalign{\hrule}
\103@\1046--55@\1@2.87@\I\cr\noalign{\hrule}
\104@\1040--53@\1@3.24@\I\cr\noalign{\hrule}
\105@\1@45--52@\1@3.40@\I\cr\noalign{\hrule}
\1060\1051--59@\I@.95\spose*@\I\cr\noalign{\hrule}}
\vskip 3pt
\hbox{*(first quarter only)}}$$

~ Here is an explanation of this rather long sequence of" commands: The control
Y sequence "\ I" is defined to be a vertical rule that guarantees appropriate spacing of

Output routines 109

baselines between individual rows. ('lEX doesn't use \base1 ineskip and \1 ineskip
before or after horizontal rules.) The alignment is defined in such a way that the
\tabskip glue is zero at the left and right of the alignment, but it is "Opt plus
100pt" between columns; this glue will therefore expand to make the columns equally
spaced. There are seven (not three) columns, since the vertical rules are considered to
be columns. The preamble has just ":jJ:" for the columns that are to be vertical rules; the
"Year" column and "Dividend" column both have format "\h fill f' , causing them to
be right-justified, while the "Price" column has format "\ctr{:jJ:}". The top row of the
table appears before the \ha1 ign, since it does not have to be aligned with the other
rows. In the second row of the table, an extra "\h fill" has been typed after "Year"
and "Dividend", to compensate for the fact that the columns are being right-justified
yet the titles are supposed to be centered. The special control sequence "\." is also
placed around these title words; this is somewhat tricky. It has the effect of telling TEX
to ignore the width of the title words when computing the column widths. The asterisk
in the final row of the table is preceded by "\spose" in order to make it zero-width,
otherwise the decimal points wouldn't line up properly.

~ Another way to get vertical and horizontal rules into tables is to typeset without
jt' them, then back up (using negative glue) and insert them.

~ The control sequence \ va 1 ign is analogous to \ha 1 ign, but with rows and columns
jt' changing roles. In this case \cr marks the bottom of a column. The boxes in each
row will line up as if their reference points were at the bottom; in other words, their
depth is effectively set to zero by modifying their height.

<23> Output routines

We discussed '!EX's page-building technique in Chapter 15. Constructed pages
will be output directly, if the book design you are using has not specified any
special \output routine. But usually a designer will have given special instruc
tions that attach page numbers, headings, and so on. Even the bas i c format in
Appendix B has a simple \output routine, described at the end of Chapter 15.

Complex \output specifications use the most arcane features of ~, so it
usually takes a designer three or four trials before he or she gets them right.
Thus, you'll want to skip the rest of this chapter when you're first learning the
~ language. But-like alignments-\output routines soon lose their mystery
after you have some experience with them.

110 Chapter 29

~ When you type "\output{(output list)}", the specified output list is stored away
3L' for later use, without expanding any of its defined control sequences. Then, when
'lEX decides to output a page, the saved output list is effectively inserted into the input,
wherever 'lEX happens to be reading the input at the time. The purpose of the output
list is to construct a box from a vertical list, as if one had typed

\ vbox{(output list)};

this box is what gets output. The output routine might, however, produce a null box,
if it saves away the current page in order to combine it with a later page.

~ This would be a good time for you to reread Chapter 15 if you don't recall 'lEX's
3L' mechanism for breaking pages. Since 'lEX looks ahead for a good place to break

it usually is well into page 109, say, before page 108 is output-some care is needed to
synchroniz'e this asynchronous mechanism. For example, if you want to put the current
section title at the top of each page, the section title might have changed by the time
that page is actually shipped off to the output routine, since 1EX might be working on
a new section before finding the most desirable break. An \output routine therefore
needs some way of remembering past history. Such coordination is provided by so
called marks; when you're in vertical mode, you can type "\mark{(mark text)}". This
causes the (mark text) to be invisibly attached to your current position in the vertical
list that is being broken into pages. If defined control sequences appear in a (mark text),
they are expanded at the time the mark appears, so that the \output routine will later
be able to make use of values that were current.

~ The best way to think of this is probably to regard vertical mode as the mode
3L' in which you generate an arbitrarily long vertical list of boxes that somehow gets
divided up into pages. The long vertical list may contain marks, and whenever you
are outputting a page the \output routine will be able to make use of the most recent
mark preceding the break at the bottom of the page (\botmark), the most recent mark
preceding the break at the top of the page (\topmark), and the first mark on the page
(\f i rstmark). For example, suppose your .manuscript includes four instances of \mark,
and suppose that the pages get broken in such a way that \mark{a} happens to fall
on page 2, \mark{,8} and \mark{,} on page 4, and \mark{6} on page 5. Then

On page \topmark is \f 1 rstmark is \botmark is

1 null null null
2 null a a
3 a a a
4 a ,8 ,
5 , S S
6 6 6 S

Output routines III

(When there is no mark, all three of these are equal.) The mark concept makes it
possible to typeset things like dictionaries, where you want to indicate the current word
interval at the top of each page, if appropriate marks are inserted just before and after
the space between entries.

~ 'lEX has four control sequences that you are allowed to use only in \ou tpu t routines:
1: (i) \page, which represents the box containing the current page being output; (ii)
\topmark, which represents the top mark for the current page (the corresponding (mark
text) is inserted into 'lEX's input at this point); (iii,iv) \bot-mark and \f i rstmark,
which are analogous to \topmark. The \output routine should use \page exactly once
each time a page is to be output, but it may use \topmark, \botmark, and \f i rstmark
as often as desired.

~ There are several other control sequences of special interest in connection with
1: output routines, even though they are allowed to appear almost anywhere in a 'lEX
manuscript:

\setcount(digit)(optional sign)(number) Sets one of ten "counters" to the specified
number (possibly negative). For example, "\setcount2 53" sets counter number
2 equal to 53.

\count(digit) The current value of the specified "counter" is inserted into the input.
If this number is zero, the result is the single digit "0"; if positive, the result
is expressed" as a decimal integer without leading zeros; if negative, the result is
expressed as a roman numeral with lower case letters. (For example, -18 yields
"xviii", -19 yields "xix".) As mentioned in Chapter 8, \count(digit) can also
be used when 'lEX is expecting a (number); for example, "\setcount4\count2"
sets counter number 4 equal to the current contents of counter number 2.

\advcount(digit) The specified "counter" is increased by 1 if it is zero or positive,
decreased by 1 if it is negative. (Thus, its magnitude increases by 1, but it retains
the same sign.)

\ifeven(digit){(true text)}\else{(false text)} If the specified "counter" is even, the
(true text) is input and the (false text) is ignored; if odd, the (true text) is ignored
and the (false text) is input.

\if (charl)(char2){(true text)}\else{(false text)} If the input (charI) is equal to the
input (char2), the (true text) is input and the (false text) is ignored; if not, the
(true text) is ignored and the (false text) is input.

Typical uses of \ i f have (charI) constant, while (char2) is specified by a control sequence
that has been defined elsewhere. For example, you might type

\def \firsttime{T}

112 Chapter 29

at the beginning of a chapter; then

\If T\fIrsttime{\gdef\firsttime{F}}\else{a}

will do a every time except the first, in each chapter. (Note that \gdef must be used
here instead of \def, otherwise the new definition of \firsttime would be rescinded
immediately!)

~ Now let's look at some examples. First, suppose you want your output pages to be
Y numbered consecutively, with a number in font c centered at the bottom of each

page. Suppose further that you want a running title in font b to be centered at the
top of each page, except on the first page of each chapter. Each page (not counting
margins) is to be 4~ inches wide and 7 ~ inches tall; but the pages output by 'lEX's page
builder will have a height of 6~ inches and a maximum depth of ts inch, so that you
can put the running title in a half-inch strip at the top of each page, and you can put
the current page number in a -le- to ~-inch strip at the bottom. Let's assume that font
z is a big bold font suitable for chapter titles. Then the \output might be designed as
follows:

\hsIze4.5In\vsize6.5In\maxdepth.0625In % inner page dimensions
\gdef\tpage{F} % \tpage will be T for title pages
\def\chapterbegin#i. #2{ % control sequence for new chapters

\vfill\eject % finish previous chapter and begIn a new page
\gdef\tpage{T} % first page of chapter is a title page
\vskip .5in % extra space above chapter title
\ctrline{\:z Chapter #i.} % first line of title
\vskip .25in % extra space between title lines
\ctrline{\:z #2} % second line of title
\vskip .5in % space between title and first paragraph
\mark{#2} % insert a mark containing the running title
\noindent % first paragraph will not be indented
\tenpoint\!} % and it will use 10-point type fonts

\output{\vbox to 7.5in{ % begin output of 7.5-inch page
\baselineskipOpt\lineskipOpt % turn off interline glue
\if T\tpage{ % test if title page

\gdef\tpage{F}\vskip.5in} % no running head on title page
\else{\vbox to.15in{\vfill % fill space above running head

\hbox to 4.5in{\hfill\:b\topmark\hfill}} % running head
\vskip .35in} % space between running head and inner page

Output Toutines

\page % place the compiled inner page just below top strip
\vfill % space between inner page and page number
\hbox to 4.5in{\hfill\:c\countO\hfill}} % page number

\advcountO} % increase page number, end the \output routine

113

With this setup one types, for example, "\chapterbegi n 13. {UNLUCKY NUMBERS}"

at the beginning of chapter number 13. Appendix E shows how the more elaborate page
layout of The Art of Computer Programming can be handled.

~ ~Exercise23.1: Why is it better for this \output routine to say "\hbox to 4.5in"
3r than to say "\hbox to size"?

~ ~Exercise 23.2: How would you change the above \output routine so that pages will
3r come out with the top line of non-title pages saying "(page number) __ {running
title)" on even-numbered pages and "{running title) __ (page number}" on odd-numbered
pages? (Leave the page number at the bottom of title pages.)

~ One more example should suffice to give the flavor of \output routines. Suppose
3r you wish to typeset three-column format: three individual columns 6" tall by 1~"
wide are to appear on a 7" X 5" page, with vertical rules between the columns. The
page number is to be placed in the upper left corner of even-numbered pages and in
the upper right ~orner of odd-numbered pages. For this application you should use
\hsize 1. 5in and \vsize 6inj and, say, \maxdepth. 2in. (Recall that \maxdepth
is the maximum amount by which the depth of the bottom line on a page is allowed
to overhang the \vsize.) The \output routine has to save the first two "pages" it
receives, then it must spew out three at once. There are at least two ways to do the
job:

Solution 1. \output{\outa}
\def\outa{\output{\outb}\savel\page}
\def\outb{\output{\outc}\save2\page}
\def\outc{\output{\outa}

\vbox to 7in{\baselineskipOpt\lineskipOpt
\vbox to 10pt{\vfill

\hbox to 5in{\:b
\ifevenO{\countO\hfill}\else{\hfill\countO}}}

\vf i 11
\hbox to 5in{\boxl\hfill\vrule\hfill\box2

\hfill\vrule\hfill\page}}
\advcountO}

114 Chapter 23

Solution 2. \def\firstcol{T}
\output{\if T\firstcol{\gdef\firstcol{F}

\gdef\secondcol{T}\savel\page}
\else{\if T\secondcol{\gdef\secondcol{F}

\save2\page}
\else{\gdef\firstcol{T}

\vbox to 7in{ ... (as before) ... }\advcountO}}}

Solution 1 is more elegant, but the switching mechanism of Solution 2 can be used in
more complicated situations.

<24> Summary of vertical mode

Now here is a complete specification of everything you are allowed to type in
vertical mode. This chapter and the following two are intended to be a concise
and precise summary of what we have been discussing rather informally. Perhaps
it will be a useful reference when you're stuck and wondering what 'lEX allows
you to do.

Chapter 13 explains the general idea of vertical mode and restricted vertical mode.
In both cases 'lEX is scanning a "(v list)" and building a vertical list containing boxes and
glue; this list might also contain other things like penalty and mark specifications. The
vertical list is empty when 'lEX first enters vertical mode or restricted vertical mode,
and it remains empty unless something is appended to it as explained in the rules below.
For brevity the rules are stated for vertical mode; the same rules apply to restricted
vertical mode unless the contrary is specifically stated.

When 'lEX is in vertical mode, its next action depends on what it sees next, according
to the following possibilities:

• (space) Do nothing.
This notation means: If 'lEX is in vertical mode and you type a blank space, nothing
happens and 'lEX stays in vertical mode. (The end of a line in an input file counts as
a blank space, and so do certain other characters, as explained in Chapter 7.)

• \pa r Do nothing.
End of paragraph is ignored in vertical mode. This applies also to the "end of paragraph"
signal that 'lEX digests when you have blank lines in the input or at the end of a file
page.

• (unknown control sequence) "! Undefined control sequence."
For example, if you type "\hbx" instead of "\hbox", and if \hbx hasn't been defined,
you get an error message showing that \hbx has just been scanned. To recover you can

Summary of "eriical mode 115

type "i" (for insertion); then (when prompted by "*") type "\hbox" and (carriage
return), and 'lEX ~ill resume as if the misspelling hadn't occurred.

• (defined control sequence) Macro call.
A control sequence that has, been defined with \def or \gdef, for example a control
sequence defined in a book format such as Appendix B or Appendix E, followed by its
"arguments" (if any), will be replaced in the input as explained in Chapter 20.

• { Begin a new group.
A new level of nomenclature begins, as explained in Chapter 5; a matching} should
appear later. The matching} usually occurs in vertical mode, but it might occur in
horizontal mode (in the midst of some paragraph). The beginning of a new group does
not affect the current vertical list.

• } End a group or an operation.
The matching { is identified, and all intervening \defs, \chcodes, \chpars, current
font definitions, and glue parameter definitions are forgotten. If the matching { is the
beginning of a group, 'lEX remains in vertical mode and the current vertical list is not
affected. Otherwise 'lEX finishes whatever the { marked the beginning of, or you get
an error message. The error messages are "Too many }' s", meaning that there was
no matching {; or "Extra }", meaning that an unmatched right brace appears in the
(vn) list of some alignment preamble; or "Missing \cr inserted", meaning that the
matching { was in "\val ign(spec){". In the former cases the} is ignored; in the latter
case a \cr is ins'erted.

• \hru 1 e(rule spec) Append a horizontal rule.
The specified horizontal line is appended to the current vertical list. (See Chapter 21
for further details.) 'lEX remains in vertical mode.

• (box) Append a box.
Here (box) means one of the following:

\h box(spec){ (hlist)}
\hbox par (dimen){(hlist)}
\ vbox(spec){(vlist)}
\box(digit)
\page

And (spec) is one of the following:

to (dimen)
to size
(nothing)
expand (dimen)

box formed in restricted horizontal mode
boxed paragraph in restricted horizontal mode
box formed in restricted vertical mode
saved box (e.g., \boxl was saved by \savel)
current page (allowed only in output routines)

desired width or height is specified
width \hsize or height \vsize
use natural width or height
augment natural width or height

116 ,Chapter 24

(Chapters 21 and 23 give further details.) The specified box is appended to the cur
rent vertical list, with appropriate interline glue depending on \baselineskip and
\1ineskip inserted just before it, as described in Chapter 15. (After using \box or
\page, that \box or \page becomes null, so it can't be used twice.) Then 'lEX resumes
scanning in vertical mode.

• / \moveleft)(dimen)(bOX) Append a shifted box.
\\moveright

The specified box is appended to the current vertical list as described above, but its
contents are shifted left or right by the specified amount. (The right edge of the shifted
box is used in figuring the maximum width of the box ultimately constructed from the
current vertical list; but if the left edge of the appended box extends to the left of the
current reference point, it will stick out of the constructed box.)

• \save(digit)(box) Save a box.
The specified box is stored away for possible later use by U\box(digit)". Then TEX
resumes scanning in vertical mode, having made no change to its current vertical list.

/ \vfi11)
• \ \ vsk i p(glue) Append glue.

The specified glue is appended to the current vertical list. (See Chapter 12 for details
about glue.) 'lEX remains in vertical mode.

\ (
(bOX))(\vfill) • leaders (rule) \ vsk i p(glue)

Append leaders.

The specified leaders are appended to the current vertical list; this will have an effect
like the specified glue except that the box or rule will be replicated in the resulting
space (see Chapter 21). TFX remains in vertical mode.

• \noindent Begin nonindented paragraph.
(Not allowed in restricted vertical mode.) The glue currently specified by \parskip is
appended to the current vertical list. Then 'lEX switches from page building to paragraph
building by going into horizontal mode: What you type from now on until the. next
\par will be assembled into a paragraph and appended to the current vertical list.

· (~~~:~») Begin indented paragraph.

(Not allowed in restricted vertical mode.) Here (char) stands for either (letter) or
(otherchar) or (nonmathletter) or \char(number), all of which are defined in Chapter
25. When any of these things occurs in vertical mode, 'lEX thinks it is time to start
a paragraph. The operations described above for \no indent are performed; then an

Summo.TY 01 'l:lerlical mode 117

empty box whose width is the current value of \parindent is placed at the beginning
of a horizontal list, which will become the next paragraph. Then processing continues
as if the (char) or (accent) or $ had appeared in horizontal mode. See Chapter 25 for a
description of what happens next. (Note that a paragraph won't start with a box; if
you really want to start a paragraph with a box, enclose it in $'s.)

• \penal ty(number) Append a page break penalty.
(Has no effect in restricted vertical mode.) If the specified number is 1000 or more,
page breaking is inhibited here; otherwise this number is added to the badness when
deciding whether to break a page at this place. A negative penalty indicates a desirable
place to break. (See Chapter 15.) 1EX remains in vertical mode.

• \ej ect Force a page break.
(Has no effect in restricted vertical mode.) A new page will start at this place in
the current vertical list, no matter how "bad" it may be to break a page here. Two
consecutive \ej ects count as a single one. 'lEX remains in vertical mode.

• \mark{(mark text)} Append a mark.
(Not allowed in restricted vertical mode.) The mark text is attached invisibly to the
current vertical list, with 'its defined control sequences expanded. 'lEX remains in vertical
mode.

• (stored mark) Insert the text of a stored mark.
(Here (stored mark) stands for one of the control sequences \topmark, \botmark, or
\f i rstmark. These are allowed only in \output routines.) 'lEX inserts the specified
mark text into its input; see Chapter 23.

• \x Extension to 'lEX.
The control sequence \x allows special actions that might exist in some versions of 'lEX.
(Such extensions are obtained by loading a separately compiled module with the 'lEX
system; individual users might have their own special extension modules.)

• \hal ign(spec){(alignment preamble)\cr(alignment entries)} Append alignment.
A vertical list of aligned rows is constructed as explained in Chapter 22, and this list
is appended to the current list. Interline glue will be calculated as if the aligned boxes
had been appended one by one in the ordinary way.

• (@) Spurious alignment delimiter. \cr
The symbols @ and \cr are detected deep inside 'lEX's scanning mechanism when they
occur at the proper nesting level of braces, because they cause 'lEX to start scanning a
"(Vj)" as explained in Chapter 22. Therefore if these symbols appear in vertical mode,
they are ignored, and you get the error message "There· s no \hal ign or \val ign
going on."

118 Chapter 24

• \ENDV End of alignment entry.
An \ENDV instruction is inserted automatically by 'lEX at the end of each "(Vj)" list of
an alignment format. (You can't actually give this control sequence yourself; it only
occurs implicitly.) If the alignment entry involves an unmatched {, you get the message
"Missing} inserted." Otherwise 'IFX finishes processing this entry, by \vboxing
the current vertical list, and appends the resulting box to the current column of the
current \ va 1 ign. (Interline glue is not used, but \ tabsk i p glue will be inserted.) If the
present \ENDV corresponds to an alignment entry that was followed by \cr, 'IFX looks
at the next part of the input as follows: Blank spaces are ignoredi "\noal ign{(hlist)}"
causes the (hlist) to be processed in restricted horizontal mode, and the resulting horizon
tal list is appended to the horizontal list of the current \ va lignmenti "}" terminates
the \va 1 igni and anything else is assumed to begin the next column of the alignment,
so (U.l) is inserted into the input. On the other hand, if this \ENDV corresponds to an
entry that was followed by 0, 'lEX inserts (U.J+l) into the input. In either case 'lEX
remains in restricted vertical mode to process the new alignment entry, beginning with
an empty vertical list .

• , \tOP1.' nsert){(VII'st)} FI . . . f t' II' oatmg msertlOn 0 aver Ica 1St.
\botlnsert

(Not allowed in restricted vertical mode.) 'IEfX reads the specified (vlist) in restricted
vertical mode and constructs the corresponding vertical list. This list wiIl be inserted
at the top or bottom of the next page on which it will fit, followed by \ topsk ip glue
or preceded by \botsk i p glue, respectively (see Chapter 15). If possible, two or more
inserts will appear on the same page in first-in-first-out order. Note that stretchable or
shrinkable glue in the vertical list is not set until the page is finally made up. After
the specified list has been constructed and stored in a safe place, 'lEX resumes vertical
mode where it left off.

o , \~de:f) (controlseq)(parameter text}{(result text)} Define a control sequence.

The specified control sequence is defined as described in Chapter 20. 'lEX remains in
vertical mode, and the current vertical list is not affected. You are not allowed to
redefine certain control sequences like \: and \base 1 i nesk i p, because 'lEX relies on
these to control its operations at critical points. Definitions with \def disappear at the
end of the current grouPi definitions with \gdef do not. It is best not to apply both
\def and \gdef to the same control sequence in different parts of a manuscript .

• / \ :) (font) Define the current font.
\\mathex

The specified font code is selected; "\:" selects the current font to be used in horizontal
mode, as explained in Chapter 4, while "\mathex" selects the current ex font to be

Summa.r'Y of 'Verlical mode 119

used in mathematics mode, as explained in Chapter 18. If this code is making its first
appearance in the manuscript it must be followed by the font file name (see Chapter 4
and Appendix S) followed by a space. Current font code selections are "local" and will"
be forgotten at the end of the current group. 1FX remains in vertical mode, and the
current vertical list is not affected.

(

\rnathrrn)
• \rna th it (font) (font)(font) Define current math fonts.

\rnathsy
The specified font codes are selected, providing up to three sizes of characters to be
used in math formulas as explained in Chapter 18. If any font code is making its first
appearance in the manuscript, it must be followed by the font file name (see Chapter
18 and Ap.pendix S) followed by a space. Current font code selections are "local" and
will be forgotten at the end of the current group. 'lEX remains in vertical mode, and
the current vertical list is not affected.

• (dimenparam)(dimen) Set a dimension parameter.
Here (dimenparam) stands for one of the control sequences \hs i ze, \ vs i ze, \rnaxdepth,
\parindent, \topbasel ine. The corresponding 'lEX parameter is set equal to the
specified dimension; 'lEX remains in vertical mode, and the current vertical list is not
affected. This assignment is "global," in the sense that it holds even after the end of a
group. The initial default values of these five parameters are (324,504,3,0,10) points,
respectively.

• (glueparam)(glue) Define a glue parameter.
Here (glueparam) stands for one of the control sequences \lineskip, \baselineskip,
\parskip,\dispskip,\dispaskip, \dispbskip, \topskip,\botskip, \tabskip.
The corresponding 'lEX parameter is set equal to the specified glue; 'lEX remains in
vertical mode, and the current vertical list is not affected. This assignment is "local,"
it will be forgotten at the end of the current group. The initial value for all these types
of glue is zero.

• \chcode(numberl)~(number2) Define a character interpretation.
The character whose seven-bit code is (numberl) is subsequently treated as being of
category (number2), where the category codes are described in Chapter 7. This definition
will be local to th~ current group. 'lEX remains in vertical mode, and the current vertical
list is not affected.

• \chpar(numberl)~(number2) Define an integer parameter.
'lEX's internal parameter (numberl) is set equal to (number2). Here is a table of the

120 Cha.pter 24

internal parameters:

Number Name Default value Reference

0 \trace '345 Chapter 27
1 \jpar 2 Chapter 14
2 hyphenation 50 Chapter 14
3 doublehyphen 3000 Chapter 14
4 widowline 80 Chapter 15
5 brokenline 50 Chapter 15
6 binopbreak 95 Chapters 14 & 18
7 relbreak 50 Chapters 14 & 18
8 \ragged 0 Chapter 14
9 displaybreak 500 Chapter 15

This definition will be local to the current group. 'lEX remains in vertical mode, and
the current vertical list is not affected.

(

for (number))
• \hanglndent(dimen) after (number)

(nothing)
Set up hanging indentation.

This instruction causes a specified number of lines of the next paragraph to be indented
either at the left margin or the right margin (see Chapter 14). 'lEX remains in vertical
mode, and the current vertical list is not affected.

• \output{(vlist)} Set the output routine.
The specified (vlist) is stored for later use when pages are output (see Chapter 23). 1EX
remains in vertical mode, and the current vertical list is not affected. This assignment
is "global," it will hold even after the end of the current group.

• \setcount(digit)(optional sign)(number) Set a specified counter.
One of ten counters, indicated by the specified digit, is set to the specified integer value
(see Chapter 23). This assignment is "global," it is not rescinded at the end of a group.
'lEX remains in vertical mode, and the current vertical list is not affected.

• \advcount(digit) Advance the specified counter.
The magnitude of the specified counter is increased by 1. 1E:X remains in vertical mode,
and the current vertical list is not affected.

• \count(digit) Insert the specified counter.
The specified counter is converted to characters (see Chapter 23) and inserted into the
input; this will cause 'lEX to begin a new paragraph as explained earlier.

SumTl1.(Lr'Y 01 horizontal mode 121

• /\~if(ehven)((dihgit))){(true text)}\e lse{(false text)} Conditional text.
\ 1 f carl c ar2

'lEX reads either the true text or the false text, see Chapter 23.

• \input (file name)(space) Insert a file of text.
The specified file of characters is inserted into the input at this place. After the file has
been read, 'lEX will resume input at the present position (unless \end occurred in that
file).

• \end Stop.
(Not allowed in restricted vertical mode.) The current page is ejected, followed if
necessary by pages containing leftover material, until there is nothing more to eject.
Then if the last call on the output routine produced only a null box-for example, two
out of three calls on the output routines at the end of Chapter 23 will do this-a page
containing an empty box of size \hs i ze X \ vs i ze is sent to the output routine, until
either getting a nonnull output or until 25 consecutive null outputs have appeared.
Then 'lEX terminates: the output files are tidied up, and a friendly warning message is
issued if there is an unmatched "{" still waiting for its "}".

• \ddt Print debugging data.
If bit 4 of the \trace parameter is 1, 1E;X prints out its current activities (the lists
and pages it is currently building). Furthermore if bit ' 40 of the \ trace parameter is
1, 'lEX will stop, giving you the chance to insert text on-line. 'lEX remains in vertical
mode, and the current vertical list is not affected.

• (anything else) "! You canet do that in vertical mode."
If anything not listed above appears in vertical mode, you get an error message. 'lEX
ignores the token of input that broke the rules, and remains in vertical mode; the current
vertical list is not affected.

<25> Summary of horizontal mode

Here is a complete specification of everything you are allowed to type in horizontal
mode. This chapter and the adjacent two are intended to be a concise and precise
summary of what we have been discussing rather informally. Perhaps it will be
a useful reference when you're stuck and wondering what 'lEX allows you to do.

Chapter 13 explains the general idea of horizontal mode and restricted horizontal
mode. In both cases 'lEX is scanning an "(hlist)" and building a horizontal list contain
ing boxes and glue; this list might· also contain other things like penalty and insertion
specifications. The horizontal list is empty when 'lEX first enters horizontal mode or
restricted horizontal mode, and it remains empty unless something is appended to it as

122 Chapter 25

explained in the rules below. For previty the rules are stated for horizontal mode; the
same rules apply to restricted horizontal mode unless the contrary is specifically stated.

When 'lEX is in horizontal mode, its next action depends on what it sees next,
according to the following possibilities:

• (unknown control sequence) "! Undefined control sequence."
For example, if you type "r\Aole" instead of "r\A ole", and if \Aole hasn't been
defined, you get an error message showing that \Ao I e has just been scanned. To recover
you can type "i" (for insertion); then (when prompted by "*") type "\A ole" and
(carriage-return), and 'lEX will resume as if the mistake hadn't occurred.

• (defined control sequence) Macro call.
A control sequence that has been defined with \def or \gdef, for example a control
sequence defined in a book format such as Appendix B or Appendix E, followed by its
"arguments" (if any), will be replaced in the input as explained in Chapter 20.

• { Begin a new group.
A new level of nomenclature begins, as explained in Chapter 5; a matching } should
appear later. The matching} usually occurs in horizontal mode, but it might occur in
vertical mode (after the end of some paragraph). The beginning of a new group does
not affect the ·current horizontal list.

• } End a group or an operation.
The matching -<: is identified, and all intervening \defs, \chcodes, \chpars, font
definitions, and glue parameter definitions are forgotten. If the matching { is the begin
ning of a group, 'lEX remains in horizontal mode and the current horizontal list is not
affected. Otherwise 'lEX finishes whatever the { marked the beginning of, or you get
an error message. The error messages are "Too many }' s", meaning that there was
no matching {; or "Extra }", meaning that an unmatched right brace appears in the
(vn) list of some alignment preamble; or "Missing \cr inserted", meaning that the
matching { was in "\hal ign(spec){". In the former cases the} is ignored; in the latter
case a \ c r is inserted.

(

letter))
• (nonmathletter)

(otherchar)
Append a character box.

Here (letter) normally means any of the characters A ... z and a ... z, and (otherchar)
normally stands for any other character that has not been given a special meaning like the
special meanings often assigned to $ and 0 and (carriage-return), etc. However, \chcode
can be used to reclassify any character, as explained in Chapter 7. A (nonmathletter) is
one of the control sequences \ss, \ae, \AE, \ce, \OE, \0, \0, mentioned in Chapter 9.
Each character has an associated 7-bit code that is used to select one of 128 characters
from the current font. (If no current font has been defined, you lose: 'lEX will come

Summa.T'Y oj horizontal mode 123

to a grinding halt.) Information stored with the current font is now examined to see
whether or not this character is the first of a ligature or kerned pair. If so, 'lEX looks
at the next character; when a ligature is completed, the two characters are replaced by
a new character (as specified in the font) and this new character might in turn be the
first of another ligature or kerned pair. In any event, a character box is appended to
the current horizontal list; and if a kerned pair is found, appropriate negative glue is
appended next, in such a way that the line-breaking and hyphenation algorithms will
not be confused. Furthermore if the character code is '055 (the code for ,,_to) or if a
ligature ends with this particular code, a "\penal ty 0" is automatically appended to
the horizontal list. 'lEX remains in horizontal mode.

• \char(number) Append a character box.
The (number) is reduced modulo 128, and 'lEX proceeds just as if an (otherchar) had
just been scanned having this 7-bit code.

• (accent)(accentee) Append an accented character.
Here (accent) stands for one of the control sequences \ - , \', \A, \ v, \u, \=, \ .. , \H, \b,
\s, \t, \a, \1, \c, discussed in Chapter 9, or for "\accent(number)"j and (accentee)
stands for either (letter) or (nonmathletter) or (otherchar) or \char(number), possibly
preceded by a new font definition "\: (font)". The accent and accentee are made into
character boxes, and the accent is superimposed on the accentee, moving the accent left
or right if necessary so that it is centered (also taking into account the slantedness of the
characters and their heights, based on information stored with the fonts). Furthermore
the accent is raised or lowered in case the height of the accehtee is different from the
"xheight" of the accent's font (the height of lower case "x"). The width of the resulting
box is the width of the accentee; this box is appended to the current horizontal list,
and 'lEX remains in horizontal mode .

• / (sp\aUce)) \ Append variable space glue.

Here (space) means either an explicit typed space or an implicit one obtained at the
end of a typed line. (Consecutive spaces are treated as single spaces, and spaces are
sometimes ignored, as explained in Chapter 7.) The current font specifies what sort
of glue should be inserted between words of a paragraph when they are typeset in that
font. The stretchability and shrinkability of this glue is modified by the "space factor,"
as explained in Chapter 12, except that no modification is made when "\u" has been
typed. 'lEX appends the glue to its current horizontal list and remains in horizontal
mode.

• \quad Append one quad of space.
Space glue amounting to one quad in the current font is appended to the current
horizontal list. 'lEX remains in horizontal mode.

124 Chapter 25

e \! Ignore space.
1EIC looks at the next token of the input (expanding it if is a defined control sequence),
and discards it if it is a (space). The current horizontal list is not affected, and 'lEX
remains in horizontal mode.

• \- Append discretionary hyphen.
A "discretionary" hyphen is appended to the current horizontal list. This means that
the current place is a legal place to break a line, with a specified penalty for hyphenation
(see Chapter 14). If the line actually breaks here, character number '055 from the
current font is inserted into the text, otherwise nothing is inserted. 'lEX remains in
horizontal mode.

• \1 Append italic correction.
If the final entry on the current horizontal list is not a character box, you get an error
message

! Italic correction must follow an explicit character.

Otherwise an empty box whose width is the italic correction for the corresponding
character is appended to the current horizontal list. (This information is stored in the
font with each character, except in "ex fonts"; don't try to use italic correction with a
character from an ex font.) 1EIC remains in horizontal mode.

• \vrule(rule spec) Append a vertical rule.
The specified vertical line is appended to the current horizontal list. (See Chapter 21
for further details.) 'lEX remains in horizontal mode.

• (box) Append a box.
Here (box) means one of the following:

\hbox(spec){(hlist)} box formed in restricted horizontal mode
\hbox par (dimen)«hlist)} boxed paragraph in restricted horizontal mode
\ vbox(spec){(vlist)} box formed in restricted vertical mode
\box(digit) saved box (e.g., \boxl was saved by \savel)
\page current page (allowed only in output routines)

And (spec) is one of the following:

to (dimen)
to size
(nothing)
expand (dimen)

desired width or height is specified
width \hsize or height \vsize
use natural width or height
augment natural width or height

(Chapters 21 and 23 give further details.) The specified box is appended to the current
horizontal list, and 'lEX resumes scanning in horizontal mode. (After using \box or
\page, that \box or \page becomes null, so it can't be used twice.)

Summ.o.T'Y of horizontal mode 125

· (~~:!:;)(dimen)(bOX) Append a shifted box.

The specified box is appended to the current horizontal list as described above, but its
contents are shifted up or down by the specified amount. (The top and bottom edges
of the shifted box are used to compute the height and depth of the box ultimately
constructed from the current horizontal list, as explained in Chapter 21.)

• \save(digit){box) Save a box.
The specified box is stored away for possible later use by "\box(digit)". Then 'lEX
resumes scanning in horizontal mode, having done nothing to its current horizontal list.

/ \hfill)
• \ \hskip(glue) Append glue.

The specined glue is appended to the current horizontal list. (See Chapter 12 for details
about glue.) 'lEX remains in horizontal mode.

• \leaders(i~:l:;)(\h~:~~(~~ue) Append leaders.

The specified leaders are appended to the current horizontallistj this will have an effect
like the specified glue except that the box or rule will be replicated in the resulting
space (see Chapter 21). 'lEX remains in horizontal mode.

• $(formula)$ Append a math formula.
The specified (formula) is scanned in math mode, as explained in Chapter 26. This
results in a horizontal list, which is appended to the current horizontal list. Then 'lEX
resumes scanning in horizontal mode. Mathematics fonts (the so-called rm and it and
sy and ex fonts) must have been defined earlier.

• \par End of paragraph.
(Ignored in restricted horizontal mode.) If the current horizontal list is empty, nothing
happens. Otherwise the current horizontal list is "justified" using 'lEX's line-breaking
routine described in Chapter 14j the resulting vertical list is appended to the current
vertical list of the page-builder, and 'lEX continues in vertical mode as described in
Chapter 24.

• $$(display)$$ Interrupt paragraph for display.
(Not allowed in restricted horizontal mode.) The current horizontal list is converted
to a vertical list just as if a paragraph had ended, except that hanging indentation
is not reset. The~ the (display) is processed, as explained in Chapter 26, resulting in
another vertical list that is given to the page-builder. (A displayed formula counts as
either two or three lines, with respect to the line count in hanging indentation, depend
ing on whether \dispaskip or \dispskip glue is appended above the formula, cr.
Chapter 19.) Then 'lEX returns to horizontal mode, ignoring a space if it follows the

126 ChClpter 25

closing "$$". At this point 'lEX's current horizontal list will be empty, so the paragraph
will continue without indentation. Mathematics fonts (the so-called rm and it and sy
and ex fonts) must have been defined earlier.

• \penal ty(number) Append a line break penalty.
If the specified number is 1000 or more, line breaking is inhibited here; otherwise this
number is added to the badness when deciding whether to break a line at this place. A
negative penalty indicates a desirable place to break. (See Chapter 15.) 'lEX remains
in horizontal mode.

• \eJ ect Force a page and line break.
(Forces only a line break when in restricted horizontal mode.) A new line will start at
this place in the current horizontal list, and a new page will start with this new line
when it is appended to the page builder's current vertical list, no matter how "bad" it
may be to break a page or line here. (See the discussion in Chapter 14.) 'lEX remains
in horizontal mode.

• (stored mark) Insert the text of a stored mark.
(Here (stored mark) stands for one of the control sequences \ topmark, \botmark, or
\f i rstmark. These are allowed only in \output routines.) 'lEX inserts the specified
mark text into its inputj see Chapter 23.

• \x Extension to 'lEX.
The control sequence \x allows special actions that might exist in some versions of 'lEX.
(Such extensions are obtained by loading a separately compiled module with the 'lEX
systemj individual users might have their own special extension modules.)

• \ va 1 i gn(spec){ (alignment preamble) \ c r(alignment entries)} Append alignment.
A horizontal list of aligned columns is constructed as explained in Chapter 22, and this
list is appended to the current horizontal list. Then 'lEX resumes scanning in horizontal
mode.

• / @) Spurious alignment delimiter.
\\cr

The symbols @ and \cr are detected deep inside 'lEX's scanning mechanism when they
occur at the proper nesting level of braces, because they cause 'lEX to start scanning a
"(Vj)" as explained in Chapter 22. Therefore if these symbols appear in horizontal mode,
they are ignored, and you get the error message "There"s no \halign or \valign
going on."

• \ENDV End of alignment entry.
An \ENDV instruction is inserted automatically by 'lEX at the end of each "(Vj)" list of
an alignment format. (You can't actually give this control sequence yourselfj it only

Summary of horizontal mode 127

occurs implicitly.) If the alignment entry involves an unmatched {, you get the message
"Missing} inserted." Otherwise 'lEX finishes processing this entry, by \hboxing
the current horizontal list, and appends the resulting box to the current row of the
current \halign. (The \tabskip glue will also be inserted.) If the present \ENDV

corresponds to an alignment entry that was followed by \cr, 'lEX looks at the next part
of the input as follows: Blank spaces are ignored; "\noal ign{(vlist)}" causes the (vlist)
to be processed in restricted vertical mode, and the resulting vertical list is appended to
the vertical list of the current \ha 1 ignment; "}" terminates the \ha 1 ign; and anything
else is assumed to begin the next row of the alignment, so ('1..1.1) is inserted into the input.
On the other hand, if this \ENDV corresponds to an entry that was followed by 0, 'lEX
inserts ('1..1.;+1) into the input. In either case 'lEX remains in restricted horizontal mode
to process the new alignment entry, beginning with an empty horizontal list.

• .(\top~nsert){(Vlist)} Bound insertion of a vertical list.
\botlnsert

(Not allowed in restricted horizontal mode.) 'lEX reads the specified (vlist) in restricted
vertical mode and constructs the corresponding vertical list. This list will be inserted
at the top or bottom of the same page on which the line containing the present place in
the current horizontal list, followed by \topskip glue or preceded by \botskip glue,
respectively. (See Chapter 15; this mechanism is intended primarily to accommodate
illustrations and footnotes.) If necessary, two or more inserts will appear on the same
page infirst-in-first-out order. Note that stretchable or shrinkable glue in the vertical list
is not set until the page is finally made up. After the specified list has been constructed
and stored in a safe place, 'lEX resumes horizontal mode where it left off.

· (\~~e:f) (controlseq)(parameter text){(result text)} Define a controlsequenee.

The specified control sequence is defined as described in Chapter 20. A (space) following
the definition will be ignored. 'lEX remains in horizontal mode, and the current horizontal
list is not affected. You are not allowed to redefine certain control sequences like \:

·and \baselineskip, because 'lEX relies on these to control its operations at critical
points. Definitions with \def disappear at the end of the current group; definitions
with \gdef do not. It is best not to apply both \def and \gdef to the same control
sequence in different parts of a manuscript.

• (\:) (font) Define the current font.
\mathex

The specified font code is selected; "\:" selects the current font to be used in horizontal
mode, as explained in Chapter 4, while "\mathex" selects the current ex font to be
used in mathematics mode, as explained in Chapter 18. If this code is making its first

128 Chapter 25

appearance in the manuscript it must be followed by the font file name (see Chapter 4
and Appendix S) followed by a space. Current font code selections are "local" and will
be forgotten at the end of the current group. 'lEX remains in horizontal mode, and the
current horizontal list is not affected.

(

\mathrm)
• \ma th i t (font) (font)(font) Define current math fonts.

\mathsy
The specified font codes are selected, providing up to three sizes of characters to be
used in math formulas as explained in Chapter 18. If any font code is making its first
appearance in the manuscript, it must be followed by the font file name (see Chapter
18 and Appendix S) followed by a space. Current font code selections are "local" and
will be forgotten at the end of the current group. 'lEX remains in horizontal mode, and
the current horizontal list is not affected.

• (dimenparam)(dimen) Set a dimension parameter.

Here (dimenparam) stands for one of the control sequences \hs ize, \ vs ize, \maxdepth,
\parindent, \topbasel ine. The corresponding 'lEX parameter is set equal to the
specified dimension; 'lEX remains in horizontal mode, and the current horizontal list
is not affected. This assignment is "global," in the sense that it holds even after the
end of a group. The initial default values of these five parameters are (324,504,3,0, 10)
points, respectively.

• (glueparam)(glue) Define a glue parameter.

Here (glueparam) stands for one of the control sequences \1 ineskip, \basel ineskip,
\parskip,\dispskip, \dispaskip,\dispbskip, \topskip, \botskip, \tabskip.
The corresponding 'lEX parameter is set equal to the specified glue; 'lEX remains in
horizontal mode, and the current horizontal list is not affected. This assignment is
"local," it will be forgotten at the end of the current group. The initial value for all
these types of glue is zero.

• \chcode(numberl)~(number2) Define a character interpretation.
The character whose seven-bit code is (numberl) is subsequently treated as being of
category (number2), where the category codes are described in Chapter 7. This definition
will be local to the current group. 'lEX remains in horizontal mode, and the current
horizontal list is not affected.

• \chpar(numberl)~(number2) Define an integer parameter.
'lEX's internal parameter (numberl) is set equal to (number2). Here is a table of the

internal parameters:

Number

o
1
2
3
4
5
6
7
8
9

Summary of horizontal mode

Name

\trace
\jpar

hyphenation
doublehyphen

widowline
broken line
binopbreak

relbreak
\ragged

displaybreak

Default value

'345
2

50
3000

80
50
95
50
o

500

Reference

Chapter 27
Chapter 14
Chapter 14
Chapter 14
Chapter 15
Chapter 15
Chapters 14 & 18
Chapters 14 & 18
Chapter 14
Chapter 15

129

This definition will be local to the current group. ~ remains in horizontal mode, and
the current horizontal list is not affected.

(

for (number))
• \hangindent(dimen) after (number)

(nothing)
Set up hanging indentation.

This instruction causes a specified number of lines of the next paragraph to be indented
either at the left margin or the right margin (see Chapter 14). In restricted horizontal
mode, this applies only to the paragraph being boxed, if any. ~ remains in horizontal
mode, and the current horizontal list is not affected.

• \output{(vlist)}(optional space) Set the output routine.
The specified (vlist) is stored for later use when pages are output (see Chapter 23).
~ remains in horizontal mode, and the current horizontal list is not affected. This
assignment is "global," it will hold even after the end of the current group.

• \setcount(digit)(optional sign)(number) Set a specified counter.
One of ten counters, indicated by the specified digit, is set to the specified integer value
(see Chapter 23). This assignment is "global," it is not rescinded at the end of a group.
'lEX remains in horizontal mode, and the current horizontal list is not affected.

• \advcount(digit) Advance the specified counter.
The magnitude of the specified counter is increased by 1. ~ remains in horizontal
mode, and the current horizontal list is not affected.

• \count(cligit) Insert the specified counter.
The specified counter is converted to characters (see Chapter 23) and inserted into the
input; ~ will read it in horizontal mode.

130 Cha.pter 25

• /\~ if(ehven)((dihgit) »){(true text)}\e 1 se{(false text)} Conditional text.
\ 1 f carl c ar2

'lEX reads either the true text or the false text, see Chapter 23. Spaces following the
"{(true text)}" and "{(false text)}" are ignored .

• \ddt Print debugging data.
If bit 4 of the \trace parameter is I, 'lEX prints out its current activities (the lists and
pages it is currently building). Furthermore if bit' 40 of the \ trace parameter is I,
'lEX will stop, giving you the chance to insert text on-line. 'lEX remains in horizontal
mode, and the current horizontal list is not affected .

• (anything else) "! You can't do that in horizontal mode."
If anything not listed above appears in horizontal mode, you get an error message. 'lEX
ignores the token of input that broke the rules, and remains in horizontal mode; the
current horizontal list is not affected.

<26> Summary of math mode

Here is a complete specification of everything you are allowed to type in math
mode or display math mode. This chapter and the previous two are intended
to be a concise and precise summary of what we have been discussing rather
informally. Perhaps it will be a useful reference when you're stuck and wondering
what 1FX allows you to do.

Chapter 13 explains the general idea of math mode and display math mode. In
both cases 'lEX is scanning an "(mlist)" and building a horizontal list containing boxes,
glue, and line-breaking information. The (mlist) is called a (display) if it is scanned
in display math mode, a (formula) if scanned in ordinary math mode. Mathematics
processing actually takes place in two stages: first the entire formula (up to the end
of math mode) is input and made into a "tree structure," then this tree is converted
into the desired horizontal list. The reason for doing the job in two steps is that 'lEX's
language makes it impossible in general to determine the style for setting formulas as
the formulas are being read in (e.g., a subsequent "\over" might change everything). It
is convenient, however, to describe the rules below as if 'lEX had clairvoyance, knowing
what style to use as it reads the input. Please keep in mind that the correct style will
be chosen for subformulas, according to the rules in Chapters 17 and 18, even though
the following description makes that seem somewhat miraculous. For brevity the rules
below are stated for math mode; the same rules apply to display math mode unless the
contrary is specifically stated.

When 1EX is in math mode, its next action depends on what it sees next, according
to the following possibilities:

SUm'TTt<LT'Y oj 'TTt<Lth mode 131

• (space) Do nothing.
This notation means: If 'lEX is in math mode and you type a blank space, nothing
happens and 'lEX stays in math mode. (The end of a line in an input file counts as a
blank space, and so do certain other characters, as explained in Chapter 7.)

• (unknown control sequence) "! Undef i ned contro 1 sequence."
For example, if you ty'pe "\al fa" instead of "\al pha", and if \al fa hasn't been
defined, you get an error message showing that \a 1 f a has just been scanned. To recover
you can type "i" (for insertion); then (when prompted by "*") type "\alpha" and
(carriage-return), and 'lEX will resume as if the mistake hadn't occurred.

• (defined control sequence) Macro call.
A control sequence that has been defined with \def or \gdef, for example a control
sequence defined in a book format such as Appendix B or Appendix E, followed by its
"arguments" (if any), will be replaced in the input as explained in Chapter 20.

• {(mlist)} Append a subformula.
The (mlist) is processed in math mode and \hboxed into a box having its natural width.
This box is then appended to the current list as an "Ord" box. Definitions inside the
subformula are forgotten afterwards.

• \left(delim)(mlist)\right(delim) Append a subformula with variable delimiters.
The (mlist) is processed in math mode, and surrounded by delimiters of sufficient size
to contain it, as explained in Chapter 18. The resulting list is \hboxed and appended
to the current list as an "Ord" box. Definitions inside the subformula are forgotten
afterwards .

• } "Extra }."
The matching {, if any, lies outside the $ or \left that precedes the current (mlist),
so an error message is issued and the} is ignored.

• \right "Extra \right." or "Mi ssing } inserted."
The matching \left, if any, lies outside the $ or {that preceded the current (mUst), so
an error message is issued. 'lEX automatically inserts a "}" if it appears to be missing.

• $ "Missing \right. inserted." or "Missing} inserted."
The matching $, if any, lies outside the \left or {that preceded the current (mUst), so
an error message is issued and 'lEX automatically inserts what it assumes was missing.

(

(letter))
• (mathchar)

(otherchar)
Append a character box.

Here (letter) normally means any of the characters A ••• z and a ... z, and (otherchar)
normally stands for any other character that has not been given a special meaning like the
special meanings often assigned to $ and 0 and (carriage-return), etc. However, \chcode

132 Chapter 26

can be used to reclassify any character, as explained in Chapter 7. A (math char) is
one of the many control sequences -'alpha, \beta, etc. listed in Appendix F. Each
(mathchar) has an associated 9-bit code that is used to select one of 512 characters from
'lEX's current math fonts in the desired size; each (letter) and (otherchar) also has an
associated 9-bit code, determined from its 7-bit code by using a table in Appendix F.
Each character also has an associated category (Ord or Op or'Bin, etc.), as explained
in Chapter 18 and Appendix F; these categories are used to determine spacing and
line-breaking. The character box is appended to the current list and 'lEX continues
scanning in math mode. (Note: The italic correction is included when computing the
width of this box. However, it will be removed by 'lEX if this box has a subscript but
no superscript; thus, subscripts will be closer to letters like "P". The spacing on 'lEX's
math fonts is intended to make formulas look right when typeset by 'lEX's rules, so it is
quite different from spacing that makes text look right; cf. the examples of fonts cmil0
and cmtil0 in Chapter 18.)

• \char(number) Append a character box.
The (number) is reduced modulo 512, and 'lEX proceeds just as if a (mathchar) of
category Ord has just been scanned having this 9-bit code.

• i(atom) Superscript the previous box.
(Here and in two rules that follow, an (atom) is either a single character (Le., (letter) or
(math char) or (otherchar) or \char(number)) or a subformula of the form "{(mlist)}".
Atoms may be re'garded as rigid boxes that will be combined to build up larger formulas.)
If the last element of the current list is not a box, append a null box. Otherwise if the last
box of the current list has already been superscripted, report a "Double superscript"
error. Attach the box corresponding to the (atom) as the superscript of the last box of
the current list.

• J.(atom) Subscript the previous box.
Subscripting is entirely analogous to superscripting .

• / (mathcontrOI))(atom)
\ (accent) Build up a formula.

Here (math control) stands for one of the nine control sequences \sqrt, \underline,
\overllne,\mathop, \mathbin, \mathrel, \mathopen, \mathclose, \mathpunct;
and (accent) stands for one of the control sequences \', \', \A, \v, \u, \=, \", \H, \b,
\s, \t, \a, \1, \c, discussed in Chapter 9, or for "\accent(number)". (The (number)
in the latter case is reduced modulo 512.) Each of these does something to the box
formed from the (atom): \sqrt inserts a variable-size radical sign in front of the box
and a line over the box (and a little blank space above that line); \underline and
\overline insert a line and a little blank space under or over the box; the control
sequences \mathop, ... , \mathpunct are simply used to classify the box as type Op,

Summary 01 math mode 133

... , Punct, respectively; and an accent is centered over the box. (Accents in horizontal
mode are corrected for slant, but in math mode they are simply centered; in both cases
they are raised or lowered by the same amount when applied to the same letter.) The
box resulting from the specified operation is appended to the current list, and 'lEX
continues in math mode.

• (mathglue) Append glue based on the current style.
Here (mathglue) means one of the control sequences \ I, \U, \>, \;, \quad, \~, \!, \?,
\<, \~, described in Chapter 18. The corresponding glue is appended to the current
list, and 'lEX continues in math mode.

I \hfill)
• \ \hskip(glue) Append explicit glue. .

The specified glue is appended to the current list. (See Chapter 12 for details about
glue, and see Chapter 17 for an example of \h f i 11 used in the numerator of a formula.)
'lEX remains in math mode.

• (box) Append a box.
Here (box) means one of the following:

\hbox(spec){(hlist) }
\hbox par (dimen){(hlist)}
\ vbox(spec){(vlist)}
\box(digit)
\page

And (spec) is one of the following:

to (dimen)
to size
(nothing)
expand (dimen)

box formed in restricted horizontal mode
boxed paragraph in restricted horizontal mode
box formed in restricted vertical mode
saved box (e.g., \boxl was saved by \savel)
current page (allowed only in output routines)

desired width or height is specified
width \hsize or height \vsize
use natural width or height
augment natural width or height

(Chapters 21 and 23 give further details.) The specified box is appended to the current
list as an Ord box, and 'lEX resumes scanning in.math mode. (After using \box or
\page, that \box or \page becomes null, so it can't be used twice.)

• (~~:::;) (dimen)(box) Append a shifted box.

The specified box is appended to the current list as described above, but its contents
are shifted up or down by the specified amount.

• \save(digit)(box) Save a box.
The specified box is stored away for possible later use by "\box(digit)". Then 'lEX
resumes scanning in math mode, having made no change to its current list.

134 Cha.pter 26

o * Append discretionary times sign.
A "discretionary" X is appended to the current list. This means that the current place
is a legal place to break a line, with a specified penalty for hyphenation (see Chapter
14). If the line actually breaks here, character number '402 from the current font is
inserted into the text; otherwise nothing is inserted. 'lEX remains in math mode.

• \1 imi tswi tch Change convention on displayed limits.
(Allowed only when the last item in the current list is an Op box; has an effect only
when setting a formula in display style.) 'lEX's normal convention for typesetting the
"limits" (Le., the superscript and subscript) of an operator in display style is to center
them above and below the Op box-unless that Op box is a single character in the
current ex font having a nonzero "italic correction" in the fonti in the latter case the
subscripts and superscripts are normally set to the right as usual. But \limitswitch
has the effect of reversing these conventions on the current operator: centering changes
to placement at the right and vice versa. 'lEX remains in math mode.

• / \abO~oev{~~men)) Separate numerator from denominator.
\ \atop

If a numerator has previously been set aside for the current formula, give an error
message

! Ambiguous; you need another { and }.

and ignore the input. Otherwise the current list is set aside to be the numerator, and
the list after this point until the end of the formula will be the denominator. Afterwards
the numerator will be centered over the denominator, essentially by inserting the glue
"\hskip Opt plus 100000pt" at the left and right of whichever one has less natural
width and \hboxing it to the width of the other. The fraction line inserted between
them will be at the height of the "axis" of the overall formula (a position specified
in the sy font of the appropriate size). The current ex font specifies a "default rule
thickness" to be used for the ruled lines in \sqrt, \under1 ine, and \overl ine; this
same thickness is used for the fraction line in \over, while \above lets you specify
any desired thickness. (See the examples in Chapter 11.) The thickness is zero for
\atop, Le., there is no fraction line at all; in this case, the positioning of numerator and
denominator is somewhat different in order to take advantage of the extra flexibility.
A little extra space is attached to the left and right of the formula after the numerator
and denominator have been pasted together.

• \comb{delim)(delim) Build a combinatorial formula.
This is like \atop, except that the specified delimiters are placed at the left and right
of the formula after the numerator and denominator have been positioned. (In fact,
"\atop" is precisely equivalent to "\comb .. ".) 'lEX chooses the size of the delimiters
based only on the current style, regardless of the sizes of numerator and denominator.

SUmTTtQ,TY of TTtQ,th mode 135

• (\ vcenter) Append a centered or top-adjusted box.
\vtop

The specified vertical list is constructed in restricted vertical mode, then it is \ vboxed
and the resulting box is moved up or down so that (\ vcenter) it is centered vertically
just as large delimiters are, or (\ vtop) the baseline of the topmost box in the vertical
list coincides with the baseline of the formula. Then 'lEX resumes its activities in math
mode.

• \penal ty(number) Append a line break penalty.
(This has no effect in a subformula or a displayed formula.) If the specified number
is 1000 or more, line breaking is inhibited here; otherwise this number is added to the
badness when deciding whether to break a line at this place. A negative penalty indicates
a desirable place to break. (See Chapter 15.) If this penalty is specified immediately
following a Bin or ReI box, it overrides the penalty ordinarily placed there (see Chapter
18). 'lEX remains in math mode.

• \ej ect Force a page and line break.
(This has no effect in a subformula or a displayed formula.) A new line will start at
this place in the current horizontal list, and a new page will start with this new line
when it is appended to the page builder's current vertical list, no matter how "bad" it
may be to break a page or line here. (See the discussion in Chapter 14.) 'lEX remains
in math mode.

• (mathstyle) Define the current style.
Here (mathstyle) stands for one of the control s~quences \dispstyle, \textstyle,
\scriptstyle, \scriptscriptstyle discussed in Chapter 17. The specified style
will apply from this point on, until it is redefined or until the end of the current formula
or subformula. 'lEX remains in math mode.

• \eqno Separate a display from its equation number.
(Allowed only in display math mode.) The current list is converted to a displayed
formula and saved away in a safe place; 'lEX now switches to non-display math mode.
The subsequent (mlist) will become an equation number, placed at the right of the
display as explained in Chapter 19.

• \x Extension to 'lEX.
The control sequence \x allows special actions that might exist in some versions of '!'EX.
(Such extensions are obtained by loading a separately compiled module with the '!'EX
system; individual users might have their own special extension modules.)

• (stored mark) Insert the text of a stored mark.
(Here (stored mark) stands for one of the control sequences \topmark, \botmark, or
\f i rstmark. These are allowed only in \output routines.) 'lEX inserts the specified
mark text into its input; see Chapter 23.

136 Chapter 26

• \hal ign(spec){(alignment preamble)\cr(alignment entries)} Append alignment.
This is allowed only in display math mode, and only if there are no formulas being
displayed outside of this alignment and no \eqno. The behavior is identical to \hal ign
when it appears in vertical mode, except that \dispskip glue is appended above and
below the resulting vertical list.

• / @) Spurious alignment delimiter.
\\cr

The symbols @ and \cr are detected deep inside 'lEX's scanning mechanism when they
occur at the proper nesting level of braces, because they cause 'IEX to start scanning
a "(V})" as explained in Chapter 22. Therefore if these symbols appear in math mode,
they are ignored, and you get the error message "There' s no \hal ign or \val ign
going on."

• /\ENDV) "Missing $ inserted."
\ \par

An \ENDV instruction is inserted automatically by 'lEX at the end of each "(Vj)" list of
an alignment format. (You can't actually give this control sequence yourselfj it only
occurs implicitly.) A \par token occurs either implicitly, as a result of a blank line in
the input, or explicitly. Neither case should happen in math mode, so 'lEX issues an
error message and inserts a $ in an attempt to keep going.

• \ \~dde:f) (controlseq)(parameter text){(result text)} Define a control sequence.

The specified control sequence is defined as described in Chapter 20. 1E;X remains in
math mode, and the current list is not affected. You are not allowed to redefine certain
control sequences like \baselineskip and \:, since 'IEX relies on these to control its
operations at critical points. Definitions with \def disappear at the end of the current
formula or subformulaj definitions with \gdef do not. It is best not to apply both \def
and \gdef to the same control sequence in different parts of a manuscript.

• (dimenparam)(dimen) Set a dimension parameter.
Here (dimenparam) stands for one of the control sequences \hs ize, \vs ize, \maxdepth,
\parindent, \topbasel ine. The corresponding 'lEX parameter is set equal to the
specified dimensionj 'IEX remains in math mode, and the current list is not affected.
This assignment is "global" -it holds even after the end of the current formula. The
initial default values of these five parameters are (324,504,3,0,10) points, respectively.

• (glueparam)(glue) Define a glue parameter.
Here (glueparam) stands for one of the control sequences \ 1 i nesk i p, \base 1 i nesk i p,
\parskip, \dispskip,\dispaskip, \dispbskip, \topskip, \botskip, \tabskip.
The corresponding 'IEX parameter is set equal to the specified glue; 1E;X remains in

Summary of mo.th. mode 137

math mode, and the current list is not affected. This assignment is "local," it will be
forgotten at the end of the current formula or subformula; so this construction is of
very limited utility in math mode. The initial value for all these types of glue is zero.

• \chcode(numberl)+-(number2} Define a character interpretation.
The character whose seven-bit code is (number I} is subsequently treated as being of
category (number2), where the category codes are described in Chapter 7. This definition
will be local to the current formula or subformula. 'lEX remains in math mode, and the
current list is not affected.

• \chpar(numberl}+-(number2} Define an integer parameter.
1EX's internal parameter (numberl) is set equal to (number2). See Chapter 25 for a
table of the internal parameters. This definition will be local to the current formula or
subformul~, and any new settings of "binopbreak" and "rei break" will disappear before
'lEX uses them in the present formula, so they are best defined outside of math mode.
1EX remains in math mode, and the current list is not affected.

• \output{(vlist)}(optional space) . Set the output routine.
The specified (vlist) is stored for later use when pages are output (see Chapter 23). 1EX
remains in math mode, and the current list is not affected. This assignment is "global,"
it will hold even after the end of the current formula.

• \setcount(digit)(optional sign)(number) Set a specified counter.
One of ten counters, indicated by the specified digit, is set to the specified integer value
(see Chapter 23). This assignment is "global," it is not rescinded at the end of the
formula. 1EX remains in math mode, and the current list is not affected.

• \advcount(digit} Advance the specified counter.
The magnitude of the specified counter is increased by 1. 'lEX remains in math mode,
and the current list is not affected.

• \count(digit) Insert the specified counter.
The specified counter is converted to characters (see Chapter 23) and inserted into the
input; 'lEX will read it in math mode.

(
\ifeven(digit))

• \ (h)(h) {(true text)}\else{(false text)} Conditional text.
if carl c ar2

1EX reads either the true text or the false text, see Chapter 23.

• \ddt Print debugging data.
If bit 4 of the \ t~ace parameter is 1, 'lEX prints out its current activities (the lists and
pages it is currently building). Furthermore if bit' 40 of the \trace parameter is 1,
1EX will stop, giving you the chance to insert text on-line. 'lEX remains in math mode,
and the current list is not affected.

138 Cha.pter 26

• (anything else) "! You can' t do that in math mode."
If anything not listed above appears in math mode, you get an error message. 'lEX
ignores the token of input that broke the rules, and remains in math mode; the current
list is not affected.

<27> Recovery from errors

OK, everything you need to know about 'lEX has been explained-unless you
happen to be fallible.

If you don't plan to make any errors, don't bother to read this chapter.
Otherwise you might find it helpful to make use of some of the ways lEX tries
to pinpoint bugs in your manuscript.

In the trial runs you did when reading Chapter 6, you learned the general
form of error messages, and you also learned the various ways you can respond to
1EX's complaints. With practice, you will be able to correct most errors "on line,"
as soon as 'lEX has detected them, by inserting and deleting a few things. On
the other hand, some errors are more devastating than others; one error might
cause some other perfectly valid construction to seem wrong. Furthermore, 'lEX
doesn't always ,diagnose your errors correctly, since it is a rather simple-minded
computer program that doesn't readily understand what you have in mind. (In
other words, let's face it: 'lEX can get hopelessly confused.)

By looking at the input context that follows an error message, you can often
tell what lEX will read next if you proceed by hitting (carriage-return). For
example, look again at the error message discussed at the end of Chapter 6; it
shows that 'lEX is about to read "STORY", then (since the <argument> will be
finished) will come "\hskip Opt" and so on. Here's another example:

! Missing { inserted.
<te be read again>

A

nether example.

In this case lEX has read the "A" and discovered that a "{" was mIssmg. The
missing left brace has been inserted and the "A" will be read again, followed by
"nether example." If you understand what ~ has read and is going to read

Reco'llery from errors 139

next, you will be able to make good use of the insertion and deletion options
when error messages appear on your terminal, because you'll be able to make
corrections before an error propagates.

Here is a complete list of the messages you might get from 'lEX, presented
in alphabetic order for reference purposes. Each message is followed by a brief
explanation of the 'problem, from 'lEX's viewpoint, and of any remedial action
you might want to take. (S~e also Appendix I.)

! A box specification was supposed to be here.
'lEX was expecting to see a (box) now, based on what it had recently seen (e.g.,
"\raise" or "\save" or "\leaders"), but what it now sees is not the beginning
of a (box). (See Chapter 24 or 25 or 26 for the definition of a (box).) Proceed,
and 'lEX will forget whatever led it to expect a (box).

! Ambiguous; you need another { and }.
You seem to be using \over or \atop or \above or \comb more than once in
the same formula or subformula. Proceed, and the formula will appear as if the
current \over (or whatever) weren't there.

! All mixed up, can"t continue.
'lEX is quitting, because it is confused about an alignment that has gone awry.

! Argument of (control sequence) can"t begin wi th }.
The first character of some argument to the specified macro is }. Proceed, and
this} will be ignored.

! Bad font link for large delimiter (number).
'lEX is trying to. make a variable-size delimiter, but either you gave it the wrong
code number or the font information of the current ex font is messed up. Maybe
the wrong ex font has been selected. Proceed, and the delimiter will be changed
to "." (blank).

! Blank space should follow file name.
'lEX usually continues to read a file name until seeing a blank space, so it may
have incorporated part of your input text into the file name. Proceed and you
might be lucky.

! Display math should end with $$.
'lEX got to a $ in display math mode, and it wasn't followed by another $. If you
simply have typed a single dollar sign instead of a double one, proceed and 'lEX
will happily pretend there were two. Otherwise you're probably in deep trouble-

140 . Chapter 27

but don't give up yet. (Perhaps you didn't want 'lEX to get into display math
mode at all; ate you doing an alignment with "$#$" in some format, where the
entry to be aligned is empty, contrary to the advice in Chapter 22?)
! Double subscript.
You can't apply J. twice to the same thing. Proceed, and the first sUbscript will
be ignored.
! Double superscript.
You can't apply i twice to the same thing. Proceed, and the first superscript will
be ignored.

! \else required here.
'lEX is processing conditional code initiated by \if or \ifeven, and the condi
tion was false, so the (true text) has just been skipped over. But the next token
was not \e 1 se; perhaps the (true text) contains improper grouping of braces.
Proceed, and 'lEX will resume reading the input.
(\end occurred on 1 evel (number»).
This message may appear on your terminal just before 'lEX signs off; it warns
you that the stated number of {'s still is waiting to be matched.
! Extra (something).
There are several messages telling you that your input text contains something
"extra"; for example, if your input contains a math formula like "$x}+y$", 'lEX
will say that you have an extra. "}" . Proceed, and 1EX will ignore what it claims
is extra. (If you forget to type "\cr" in an alignment, you may get the message
"Extra al ignment tab", meaning that there are more tabs than specified in
the preamble. Your alignment will probably be messed up and overfull boxes will
appear; it's too bad.)
! First use of font must define it.
A font code has appeared for the first time in your manuscript, and it wasn't
immediately followed by "=" or "fo". (This is a rather serious error-always make
it a habit to declare your fonts early in your manuscript.) Insert u=(font file
name)(space)" and 'lEX will be able to continue ..

! \halign in math mode must be preceded and followed by $$.
'lEX has just scanned the "}" that completes an \hal ign in display math mode.
You get this error if a non empty formula preceded the \ha 1 i gn or if the current
item of input isn't "$". Proceed, and 'lEX will continue in display math mode.
(Strange things may happen.)

Reco'l)er'Y trom errors ·1 141

! Illegal font code.
You should always refer to fonts as suggested in Chapter. 4; for example, you.
shouldn't type crazy things like "\: \hbox" unless you have redefined the control
sequence \h box. Insert the font code you intended, by first typing "i".

! Illegal parameter number in definition of (controlseq).
The result text of the stated definition contains. an appearance of =#= that isn't
followed by # or by the number of a parameter in the parameter text. Proceed,
and 'J.Ej(will assume that you meant to type u##".

! Illegal unit of measure (pt inserted).
'lEX is scanning a (dimen) (see Chapter 10), but the (number) isn't followed by
any of th~ two-letter codes 1EX knows. Proceed, and 1EX will assume that Upt"
was there.

! Improper code.
You are attempting to use \chcode or \chpar with an improper (numberl).
The operation is aborted, but you may proceed.

! Input page ended whi Ie scanning def of (controlseq).
The (parameter text) or the (result text) of a \def, or the (mark list) of a \mark,
or the (vlist) of an \output, has extended beyond the current file page of the
input file. This probably means that you forgot a U}" in some faraway part of
the input manuscript, so it's probably a disaster. Insert a right brace if you want,
and proceed if you dare.

! Input page ended wh i 1 e scann i ng use of (controlseq).
This message has been preceded by a "Runaway argument?" message that
shows what 'lEX thinks is the beginning of an argument to a defined control
sequence. For some reason, a file page in the input file has ended before the
text of that argument has ended. This probably is a serious error, because it has
presumably gone undetected for a while. You can try to insert something into
the input that will terminate the runaway argument, but you most likely should
start over, after fixing the argument so that it terminates where it should. (You
probably left out a"}".)

! Large deli~iter (numbe~ should be in mathex font.
You are specifying a (delim) by a 9-bit code, but you should have specified either
C2 = 0 or C2 > '600. Proceed, and the delimiter will be selected using Cl only.
(See Chapter 18 for the meaning of Cl and C2.)

142 Chapter 21

! Italic correction must fo~low an explicit character.
The control sequence \/ is supposed to follow a character from some font, but
your input tells 1EX to apply an "italic correction" to something else. Perhaps
you are using a defined control sequence that slants one of its arguments (e.g.,
\a1gbegin in Appendix E), where the argument ends with a math formula
instead of a word. Proceed.

! Limit switch must follow math operator.
If the control sequence \1 imi tswi tch doesn't follow an Op box, it doesn't
accomplish anything. Proceed.

! Lookup failed on file (filename).
'lEX can't find the file you indicated. Type "i" and insert the correct file name
(followed by a blank space and (carriage-return)). But be careful: You get only
one more chance to get the file name right, otherwise 1EX will decide not to input
any file just now.

! Missing (something) inserted.
This message can arise in lots of ways and it can name a variety of things that
1EX; sometimes thinks are missing. For example, if you type

\left(x+{\right)

in math mode, 'lEX thinks (correctly) that there's a missing "}". (See Chapter
26.) In general, when you get this message, 'lEX has already inserted what it
says was missing-don't insert another one. If 1EX has guessed correctly, just
proceed. Otherwise, it may be fun to try getting 'lEX back into synch; you might
get the message "Missing} inserted" followed by one that says "Too many
}" s", indicating a certain lack of logic on 'lEX's part.

! Missing digit (0 to 9), 0 inserted.
'lEX was expecting to see a decimal digit following \box or \save, but it isn't
there. Proceed; 'lEX has already inserted a "0".

! OK.
This isn't an error message. 'lEX is stopping because you asked it to (\ddt with
\trace bit' 40 set).

! Only one # allowed per tab.
A (format) in an alignment preamble must have exactly one :#:, but you seem to
have typed more than one. Proceed, and the extra :#: will be ignored.

Recovery from errors 143

! Only single characters can be accented in horizontal mode.
An (accent) has not been followed by a proper (accentee). Proceed, and the
(accent) will be ignored.

! \output routine didn"t use \page.
A page was assembled for output, but the \output routine didn't make use of
it, so it is lost forever. Proceed.

! Parameters must be numbered consecutively.
You must say #1, #2, etc., in order, when designating parameters in the (parameter
text) of a macro definition. When you get this message, 1EX has already inserted
the correct parameter number, so you may want to delete an incorrect one before
proceedin,g.

Overfu 11 box, '"
This is an information message, not an error message (i.e., 'lEX doesn't stop). The
box whose contents are partially displayed is "overfull" because it doesn't have
enough glue shrinkage to get down to the required size. Thus the box contents are
too wide or too high by the specified amount; in your output you will probably see
this box sticking out somewhere or overlapping another one, unless the excess is
very small. Overfull boxes can arise from a variety of reasons, notably when there
is no decent way to break the lines of certain paragraphs, or when a displayed
equation is too wide to fit on a single line. You may want to settle for badly
broken lines in a paragraph, by increasing the value of \j par as discussed in
Chapter 14; or you might be able to help by inserting discretionary hyphens,
especially if there is a word that 'lEX doesn't try to hyphenate (e.g., "Inter\
change" in the first line of Appendix F). But in a high-quality job an overfull box
usually means that the author should rewrite the text, eliminating the problem
entirely.

Runaway argument?
This message is followed by the tokens of a macro argument that didn't end
where you wanted it to. (See "! Input page ended while scanning use
of ... " above.)

! TEX capac i'ty exceeded, sorry [(size)={number)].
This is a bad one. Somehow you have stretched 'lEX beyond its finite limits. The
thing that overflowed is indicated in brackets, together with its numerical value
in the 'lEX implementation you are using. The following table shows the internal

144 Chapter 27

sizes that might have been exceeded:

alignsize
fmemsize
hashsize
idlevs
memsize
nestsize
parsize
savesize
stacksize
stringsize
varsize

the number of simultaneous alignments;
the number of words of auxiliary font information;
the number of different multiletter control sequences;
logarithm of the number of levels of grouping;
memory used to store tokens and many other types of things;
number of simultaneous partially-complete lists;
number of simultaneous partially-scanned arguments;
number of values to restore at end of group or formula;
number of simultaneous levels of input;
number of independent operations on typesetting device;
memory used to store boxes and many other types of things.

If your job is error-free, the remedy is to recompile the 'lEX system, increasing
what overflowed. However, there's probably something you can do to your job
that will make it run. Maybe you have specified an infinite macro-expansion;
then it would cause overflow no matter how big you make 'lEX. If saves i ze has
overflowed, you probably have started a group and forgot to finish it. (Every
time you change fonts, say, inside a group, an entry is being saved, unless you
are on level zero.) Or perhaps. you are trying to specify a gigantic alignment that
spans more than a page; 'lEX has to read all the way to the end of an alignment
before outputting any of it, so this consumes huge amounts of memory space.
(It's necessary to limit your alignments to reasonable size, by using a fixed format
for the multi page cases.) As the message says, it is a sorry situation.
! There's no \halign or \valign going on.
Your input contains a ~ or a \cr that didn't get recognized as part of an align
ment, perhaps because you didn't mean to type it, but most likely because some
alignment entry doesn't have properly-balanced grouping. 'lEX has deleted the
offending ~ or \cr; to recover, try to insert braces that balance the group, fol
lowed by the current token. For example, if your input was "{x~" up to this
point, the "{" is hiding the "~"; type "i" and then insert "}~".
! This can't happen.
Something really unexpected has caused 'lEX to come to a screeching halt.
! This is allowed only in output routines.
The current input token will be ignored, since it specifies an operation not avail
able except when 1EX is running an \output routine (and 1EX isn't).

Reco1ler'Y from errors 145

! This dimension shouldn"t be negative.
You were naughty and tried to specify a negative (dimen) where it isn't allowed.
Proceed, and the dimension will be assumed zero.

! Too many }"s.
You are not inside a group, so the "}" just scanned will be discarded when you
proceed.

! Too much stretch for proper line breaking.
This message usually occurs when you're doing something like "\hbox par
(dimen){ ... }" and 'lEX's line-breaking procedure is trying to produce a boxed
paragraph as described in Chapter 21. In such cases, "\h fill" shouldn't be
used in the box; 'lEX will not break lines in a paragraph when the glue has more
than one 'million points of accumulated stretchability. (The reason for this is
that the computations are performed with limited-precision arithmetic, and the
spacing will come out looking bad if 'lEX tries to make precise measurements
after subtracting infinity from infinity.) Proceed, and you'll probably see how
bad it looks.

! Undefined control sequence.
'lEX has encountered a control sequence it doesn't know; see Chapters 24, 25, or
26 for hints on how to fix this.

! Unknown delimiter.
The (delim) you have specified isn't one of those listed in Chapter 18. Proceed,
and TEX will use a blank delimiter.

! Use of (controlseq) doesn"t match its definition.
You have typed something that doesn't follow the rules of the specified control
sequence. (For example, consider the control sequence \ansno of Appendix E.
If you type U\ansno 5. No.", you have forgotten the space that's required after
u5 . " .) 'lEX will proceed by assuming that the thing you typed was tl1e thing
that was required; thus, in the above example, 'lEX will assume that the UN" is
a space, and your best strategy is to insert a new "N".
! Warning: Long input line has been broken.
Your input file contained a very long sequence of characters between consecutive
(carriage-return)s. 'lEX arbitrarily broke it after 150 characters.

! Whoa---you have to define a font first.
'lEX has aborted your job, because it can't do what you asked it to do without
having some font selected as the "current font."

146 Chapter 21

! You can only define a control sequence.
Your manuscript apparently contains \def or \gdef and the next thing wasn't
a control sequence. Proceed, and 'lEX forgets that the \def or \gdef occurred.
For example, if you typed "\def ansno" when you meant "\def\ansno", 'lEX
will read the "a" and complain; to recover, you should delete the next four tokens
(namely "nsno"), then insert "\def\ansno".

! You can't do that in (mode).
Your manuscript is trying to do something incompatible with 'lEX's current mode.
'lEX will ignore the token it has just read; so the proper way to recover is usually
to insert something that takes 'lEX into the correct mode (e.g., "\par" will usually
go from horizontal' mode to vertical mode, and "$" will usually go from math
mode to horizontal mode), followed by the current token again. For example,
suppose you have typed "\ vs kip .5 in" before ending a paragraph; 'lEX will
stop before it reads the ".5". To recover, type "i" for insertion, then type
"\par\ vsk i p" and (carriage-return).

! You can't redefine this control sequence,
You have discovered one of 'lEX's reserved control sequences. The \def or \gdef
will be ignored if you proceed.

~ "Exercise 27.1: What is the best way to recover from the following error?

! You can't do that in math mode.
\sl ~\:

n
p.3,l.307 $x+y is {\sl

not} zero.

~ "Exercise 27.2: And what about this one?

! Illegal units of measure.
<to be read again>

p
<to be read again> p

{

(*) \hbox to 50p{Test}

Reco'ller'Y from errors 147

~ You can get more information from ~ if you make use of its tracing capability.
~ Type "\trace'mmmnnnxy" (using the control sequence \trace defined in· Ap
pendix B) to set up the combination of tracing facilities you want, according to the
following cryptic encoding scheme:

mmm is an octal code for the number of items per list that will be shown when a
box is displayed. (If mmm = 0, it is automatically changed to 5.)

nnn is an octal code for the number of levels deep that will be shown
when a box is displayed.

x equals (1, if you want to see what replacements are being made
in macros as they are expanded)

plus (2, if you want each line of your input files to be entered on
your terminal before it is processed by 'lEX, giving you
a chance to edit it first)

plus (4, if you want 1E;X to stop whenever the control sequence \ddt
appears in the input).

y equals (1, if you want to be told about "overfull boxes")

plus (2, if you want to see the gory details about what is being typeset
on each page before it is shipped to the \output routine)

plus (4, if you want to see 1E;X's current activities whenever the
control sequence \ddt appears in the input).

The normal setting is \ trace' 345. Thus 1£IC normally shows boxes to depth 3,
with up to 5 items per list; it stops and dumps on \ddt calls; and it shows overfull
boxes. If you say "\traceO" you get nothing, while if you say "\trace '77777777"

you probably get too much. Boxes are displayed when they are overfull, or when they
are completed pages, or when they are in the list of current activities, but only if the
current x or y setting calls for information about these boxes. The contents will appear
on your terminal as well as on the "errors. tmp" file; and the format of this information
is self-explanatory, once you understand it. You can, of course, change the combination
of tracing facilities as many times as you want to, so that you aren't deluged with
information when you don't want any.

Final hint: When working on a long manuscript, it's best to prepare only a
few pages at a time. Set up a "galley" file and a "book" file, and enter your text
on the galley file. (Put control information that sets up your basic format and
fonts at the beginning of this file, so that you don't have to retype it each time.)

148 Chapter 27

After the galleys come out looking right, you can append them to the book file;
then you can run the book file through 'lEX once a week, or so, in order to see.
how the pages really fit together. For example, when the author prepared this
manual, he did one chapter at a time; and Chapter 18 was split into three parts,
because of its incredible length.

Final exhortation: Go FORTH now and create masterpieces of the publishing art!

<A> Answers to all the exercises

2.1: --$\,$- or --\2- (butnot---)j -{}-- or {-}--, etc.

3.1: math\'ematique, math\' ematiquej centim\-etre.

4.1: Ulrich Dieter, {\sl Journal f\"ur die reine und angewandte
Mathemati k \bf 201} (1959), 37--70. (Note in particular the use of U __ " to get
an en-dash, did you remember that?)
5.1: Type U{_}_" or U_{_}" or "{-}{-}" or "-{}-", etc.

5.2: No-the first definition is pretty lousy because it accomplishes nothing! (When
\rm appears in the subsequent text it will be replaced by {\: a}, but this font change
immediately disappears because it's inside a group.)

5.3: It could end with any character that has been \chcoded to 2 at the time the
group ends. After that point the effect of all \chcodes inside the group will be lost.

6.1: Type "i" (for insert). Then when 'lEX prompts you for more input, type "\c e" j
this will be inserted at the current place in the input (the undefined \ee has already
been discarded), and then 'lEX resumes reading the original line (i.e., it will then read
the commaj you shouldn't insert another comma, since the comma wasn't in error).

7.1: Yes, if the format you are using (e.g., bas i c) has defined % to be an end-of-line
character (type 5).

9.1: {\sl Commentarii Academ\ae\ Petropolitan\ae} is now {\sl
Doklady Akademi\t\i a Nauk SSSR}. .

9.2: \0 ystein are, \t lUri \t lAnov, Ja-far al-Khow\A arizm\A\i, and
W\l ladyis\l law S\"u\ss man.

10.1: Here is one of many possible solutions.

\def\l{\hbox to 5mm{\hfill\vrule depth 4pt}}
\def\2{\hbox to 5mm{\hfill\vrule depth 8pt}}
\vbox{\hrule\hbox{\vrule depth 8pt

\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2}}

Answers to all the exercises 149

12.1: 25, 41, and 12 units, respectively.

12.2: " ... launched by \hbox{NASA}."; or " ... launched by NASA \nu 11 ."

16.1: $2i{n+l}$, $ (n+l) i2$, $\sqrt{1-xi2}$, $\overline{w+\overli ne z}$,
$p~li{e~l}$, $a~{b~{c~{d~e}}}$,$h~ni{\prime\prime}(x)$.

16.2: No space will be typeset after the "If'. (Also, it would have been slightly better
to end with "y.".)

16.3: Deleting an element from an n-tuple leaves an $(n-l)$-tuple.

17.1: $${p \choose 2}xi2 yi{p-2} - {1 \over l-x}{l \over l-xi2}.$$

17.2: $$\sum~{i=l}ip\sum~{j=l}iq\sum~{k=l}ir a~{ij}b~{jk}c~{ki}$$

17.3: $$\sum~{{\scriptstylel~i~p\atop\scriptstylel~j~q}\atop
\scriptstylel~k~r}a~{ij}b~{jk}c~{ki}$$.

18.1: $ni{\hbox{\: d th}}$ root .

18.2: $$\biglp x-s (x) \bigrp\biglp y-s (y) \bigrp. $$ (Note that the period is
included in this display.)

18.3: $${1\over2\pi}\int~{-oo}i{\sqrt y}\bigglp\sum~{k=l}in
\sini2x~k(t)\biggrp\biglp f(t)+g(t)\bigrp\,dt.$$

18.4: $${(n~1+n~2+\cdots+n~m) !\over n~1!\,n~2!\ldotsm n~m!}=
{n~1+n~2\choo$e n~2}{n~1+n~2+n~3\choose n~3}\ldotsm

{n~1+n~2+\cdots+n~m\choose n~m}.$$

18.5: $\1 eft (\cpi 1 e{y~l \cr\ vdots\cr y~k\cr}\right) $.

18.6: $$\Pscr~{Lhj}(x)=\hbox{Tr}\left[{\partial F~{Li{-l}}\over
\partial t~h}\chi(L)\Mscr~{nj}(x)\right],\qquad\hbox{evaluated
at }\chi(\Gamma)\modop\hbox{\sl SL}(n,\hbox{\bf C}) .$$

(Here "\hbox{\sl SL}" gives slightly better spacing than simply SL, because it
suppresses the italic correction on the S.)

18.7: \def\e{\mathrel{{:}{=}}} . (The braces prevent space between: and =,
since they specify one-character subformulas that are converted into Ord boxes.) Another
solution is \def\e{\mathre l{\char '72.\char '75}}

20.1: The ## feature is indispensible when the result text of a definition contains other
definitions. (We will see later that #1 is also useful for alignments; cf. the definitions
of \eqal ign and eqal ignno in Appendix R)

21.1: When a null box was placed on the vertical list below the "s" box, the \1 ineskip
glue of 3 points was not inserted, because the \basel ineskip distance of 0 points was
not exceeded. Thus the interline glue was computed to be 0 points, and the blank line
didn't show up.

150 Appendix A

21.2: \vbox{\baselineskip-lpt\lineskip 3pt\halign{\etr{:fI:}\er
T\er h\er i\er s\er \er b\er o\er x\er}}

21.3: \def\boxit#l{\vbox{\hrule\hbox{\vrule\hskip 3pt
\vbox{\vskip 3pt #1 \vskip 3pt}\hskip 3pt\vrule}\hrule}}

21.4: \ 1 eaders\ehop to Opt{\hbox to size{\hf ill *\1 ower 3. 75pt
\hbox{*}*\lower 3. 75pt \hbox{*}*} }\vf i 11 . [For more interesting effects, try
\leaders inside of boxes used as leaders.]

22.1: The equation number "(13)" would appear on the bottom line instead of being
centered vertically. (A box constructed by \ vbox has the same baseline as the bottom
box in the vertical list.)

23.1: Since the \output routine might occur at an unpredictable time, the value of
\hs i ze may not be 4.5 inches. (On the other hand, if it is known that the manuscript
never diddles with \hsize, the output routine will be more readable if \etrl ine is
used for the running title and page number lines.)

23.2: For example, you can replace it by the following:

\output{\vbox to 7.5in{\baselineskipOpt\lineskipOpt
\if T\tpage{\vskip.5in}
\else{\vbox to.15in{\vfill

\def\lead{ \leaders\hrule\hfill\ }
\hbox to 4.5in{\ifevenO{\:b\countO\lead\topmark}

\else{\:b\topmark\lead\eountO}}}
\vskip .35in}

\page \ vf i 11
\if T\tpage{\gdef\tpage{F}

\hbox to 4.5in{\hfill\:e\eountO\hfill}}
\else{}}\advcountO}

27.1: (A U$" was forgotten after the "y".) If you just insert a dollar sign now, the U{"
will be unmatched in the math formula, so 'lEX will stop again after inserting aU}"
before the U$" you just insertedj this will cause unbalance and possible embarrassment.
The correct procedure is to insert U}${\:", then 'IEX will proceed almost as if the error
hadn't happened.

27.2: 'lEX has already decided that "pt" was intended but missing from the input. If
you simply proce~d now, 'lEX will insert a "{" and give you another error message (after
which you'll have to delete "p" and "{"). The correct procedure is to delete the up"
now (by typing "l")j then type (carriage-return). The error has been fully corrected
(unless picas were meant instead of points).

Basic 'lEX jormai 151

 Basic 'fEX format
The following listing of file "bas i c . TEX" shows how to give 'lEX enough knowledge to
do the "basic" things mentioned in the main text.

\chcode'173~1 \chcode'176~2 \chcode'44~3 \chcode'26~4

\chcode'45~5 \chcode'43~6 \chcode'136~7 \chcode 1~8

\def\%{\char'45} % Note, the space after 45 is needed! (e.g.\%O)

\def\lft#l{#l\hfill}
\def\ctr#l{\hfill#l\hfill}
\def\rt#l{\hfill#l}

\def\rjustline#l{\hbox to size{
\hskipOpt plusl000cm minusl000cm #1}}

\def\ctrline#l{\hbox to size{\hskipOpt plusl000cm minusl000cm
#l\hskipOpt plusl000cm minusl000cm}}

\def\trace{\chparO~} \def\jpar{\chparl~} \def\ragged{\chpar8~}

\def\log{\mathop{\char'154\char'157\char'147}\limitswitch}
\def\lg{\mathop{\char'154\char'147}\limitswitch}
\def\ln{\mathop{\char'154\char'156}\limltswitch}
\def\lim{\mathop{\char'154\char'151\char'155}}
\def\limsup{\mathop{\char'154\char'151\char'155

\,\char'163\char'165\char'160}}
\def\liminf{\mathop{\char'154\char'151\char'155

\,\char'151\char'156\char'146}}
\def\sin{\mathop{\char'163\char'151\char'156}\limltswitch}
\def\cos{\mathop{\char'143\char'157\char'163}\11mitswitch}
\def\tan{\mathop{\char'164\char'141\char'156}\limitswitch}
\def\cot{\mathop{\char'143\char'157\char'164}\limitswitch}
\def\sec{\mathop{\char'163\char'145\char'143}\limitswitch}
\def\csc{\mathop{\char'143\char'163\char'143}\limitswitch}
\def\max{\mathop{\char'155\char'141\char'170}}
\def\min{\mathop{\char'155\char'151\char'156}}
\def\sup{\mathop{\char'163\char'165\char'160}}
\def\inf{\mathop{\char'151\char'156\char'146}}
\def\det{\mathop{\char'144\char'145\char'164}}
\def\exp{\mathop{\char'145\char'170\char'160}\limitswitch}
\def\Pr{\mathop{\char'120\char'162}}
\def\gcd{\mathop{\char'147\char'143\char'144}}
\def\choose{\comb()}

152 Appendix B

\def\leftset{\mathopen{\{\,}}
\def\rightset{\mathclose{\,\}}}
\def\modop{\<\,\mathbin{\char'155\char'157\char'144}\penalty900\<\,}
\def\mod#1{\penaltyO\;(\char'155\char'157\char'144\,\,#1)}
\def\eqv{\mathrel\char'421 }
\def\neqv{\mathrel{\not\eqv}}

\def\qquad{\quad\quad}

\def\ldots{{.\~.\~.}}

\def\cdots{{\char'401\~\char'401\~\char'401}}

\def\ldotss{{.\~.\~.\~}}

\def\cdotss{\cdots\~}

\def\ldotsm{{\~.\~.\~.\~}}

\def\vdo'ts{\vbox{\basel ineskip 4pt\vskip 6pt
\hbox{.}\hbox{.}\hbox{.}}}

\def\eqalign#l{\vcenter{\halign{\hfill$\dispstyle{##}$\!
~$\dispstyle{\null##}$\hfill\cr#l}}}

\def\eqalignno#l{\vbox{\tabskipOpt plusl000pt minusl000pt
\halign to size{\hfill$\dispstyle{##}$\tabskip Opt
~$\dispstyle{\null##}$\hfill

\tabskipOpt plusl000pt minusl000pt
~$\hfil1##$\tabskip Opt\cr#l}}}

\def\cpile#l{\vcenter{\halign{$\hfill##\hfill$\cr#l}}}
\def\lpile#l{\vcenter{\halign{$##\hfill~\cr#l}}}
\def\rpile#l{\vcenter{\halign{$\hfill##$\cr#l}}}
\def\null{\hbox{}}
\def\twoline#1#2#3{\halign{\hbox to size{##}\cr$\quad\dispstyle

{#1}$\hfill\cr\noalign{\penaltyl000\vskip#2}
\hfill$\dispstyle{#3}\quad$\cr}}

\def\chop to#lpt#2{\hbox{\lower#lpt\null\vbox{\hbox{\lower99pt
\hbox{\raise99pt\hbox{$\dispstyle{#2}$}}}\vskip-99pt}}}

\def\spose#l{\hbox to Opt{#l\hskipOpt minusl0000000pt}}

\:C+-cmathx
\:a+-cmrl0 \:d~cmr7 \:f~cmr5
\:g+-cmil0 \:J~cmi7 \:1~cmi5
\:n+-cmsl0
\:q+-cmb10
\:u+-cmsyl0 \:x~cmsy7 \:z~cmsy5
\: ?+-cmtilO

Basic 'lEX format

\def\rm{\:a} \def\sl{\:n} \def\bf{\:q} \def\it{\:?}

\parindent 20pt \maxdepth 2pt \topbaseline 10pt
\parskip Opt plus 1 pt \baselineskip 12pt \lineskip lpt
\dispskip 12pt plus 3pt minus 9pt
\dispaskip Opt plus 3pt \dispbskip 7pt plus 3pt minus 4pt

\def\biglp{\mathopen{\vcenter{\hbox{\:@\char'O}}}}
\def\bigrp{\mathclose{\vcenter{\hbox{\:@\char'l}}}}
\def\bigglp{\mathopen{\vcenter{\hbox{\:@\char'22}}}}
\def\biggrp{\mathclose{\vcenter{\hbox{\:@\char'23}}}}
\def\biggglp{\mathopen{\vcenter{\hbox{\:@\char'40}}}}
\def\bigggrp{\mathclose{\vcenter{\hbox{\:@\char'41}}}}

\mathrm adf \mathit gjl \mathsy uxz \mathex @

\output{\baselineskip20pt\page\ctrline{\:a\countO}\advcountO}
\setcountO 1

\rm
\null\vskip-12pt % allow glue at top of first page

153

154 Appendix E

<E> Example of a book format
This appendix contains two parts: First comes a supplement to the 'lEX report, ex
plaining the main conventions a typist uses when entering material from The Art of
Computer Programming (ACP) into the system. Second is a listing of file acphdr. TEX, .

in which the precise format for those books is defined in terms of 'lEX control sequences.
As you read the first part of this appendix, try to imagine that you yourself are a typist
with the responsibility for inputting part of the manuscript for this series of books.

Several examples below are best understood if you have a copy of.ACP handy; so
why not go fetch your copy of Volume 1 now? (And if you have Volume 2, that will
help even more.)

• Since this appendix must cover a wide range of topics in a reasonably short space,
it is rather terse; please forgive the author for this. Every time you see "." in this
appendix, you're being hit with a new topic.

• Everything in Appendix B-the "basic" format that is explained throughout the
user manual-is used also in ACP, except that the conventions for number theory are
slightly different. (See Chapter 18, part 8, for a discussion of Appendix B's approach to
number theory.) To typeset "x = 0 (modulo pq)", type "$x \eqv 0 \modulo{pq}$";
and to typeset the operator "mod" you can use \mod instead of \modop. There also
is one further control sequence defined for mathematics, namely \deg for the degree
symbol: type "$45\deg$" to get "4SO".

• The style of typical bibliographic references is "(author name), U{\s I (name of
book or journal)U\bf(volume number)}u«(year) ,U(starting page)--(ending page)."
For example,

M. R. Garey et.\ al., {\sl SIAM J. Appl.\
Math.\ \bf34} (1978), 477--495.

Another example appears in the answer to exercise 4.1 (see Appendix A).

• Remember to type "\" after any abbreviation in which a lower case letter is fol
lowed by a period followed by a space, when this period is not the end of a sentence.
Abbreviations aren't used very much in ACP, but they do occur frequently in bibliog
raphic references (as in the example just given). Furthermore you should be on the
lookout for the following commonly-used abbreviations:

Eq.\ Eqs.\ Fig.\ Figs.\ cf.\ ed.\ etc.\

The special abbreviations "A.D." and "B.C.", sometimes used in dates, are typed "{\: m
A.D.}" and "{\: m B. C.}", respectively, in order to get them into the small caps font.

Example of a. book format 155

• Remember to type en-dashes, not only when giving page numbers in bibliographic
references but also in constructions like the following:

exercise 3.1--6 Table 3.2.1.1--1 Fig.\ A--1

• Each major section of ACP starts on a new page. (A major section is a section
whose number contains just one decimal point, for example "Section 3.2".) A separate
computer file is maintained for each major section; for example, file v232. TEX contains
Volume 2, Section 3.2. Such a file starts out with the following fixed information:

\input acpht;ir
\runn i ngl efthead{(chapter title with all letters capitalized)}
\titlepage\tenpoint
\vfill
\ctrl i ne{SECTION (major section number) OF

THE ART OF COMPUTER PROGRAMMING}
\ctrl i ne{\copyright (year)

Addison--Wesley Publishing Company, Inc.}
\vfill
\runn i ngrighthead{(section title with all letters capitalized)}
\section{(maJor section number)}
\ej ect \setcountO (starting page number)
\sectionbegin{(major section number) .u(section title with all letters capitalized)}

For example, the last four lines of this introductory information have the following
form on file v232 . TEX:

\runningrighthead{GENERATING UNIFORM RANDOM NUMBERS}
\section{3.2}
\eject\setcountO 9
\sectionbegln{3.2. GENERATING UNIFORM RANDOM NUMBERS}

The beginning of a major section is a major event in AOP, so you are asked to type all
of the above-no special control sequence has been made for it. *

One further piece of fanciness is used at the beginning of a major section: The first
words of the opening sentence are typeset with capital letters from font \: c in place

*The beginning of a chapter is an even more major event; the format for such a gala occasion
won't be described here, since the author will do the first page of each chapter by himself, just
to keep his hand in.

156 Appendix E

of lower case letters. For example, the four lines that we have quoted from v232. TEX
are immediately fol1owed in that file by

I{\:cN THIS SECTION} we shall consider methods

(and the result when typeset looks like this: "IN THIS SECTION we shall consider
methods") .

• A minor section of ACP is one whose number contains two decimal points, for
example "Section 4.2.2". Each minor section starts out with four special lines

\runningrighthead{(section title with al1 letters capitalized)}
\section{(minor section number)}
\sectionskip
\secti onbegi n{(minor section number) .u (section title partial1y capitalized)}

followed by the text of the first paragraph. "Partially capitalized" means that you
capitalize only major words, as in the title of a book. For example:

\runningrighthead{ACCURACY OF FLOATING-POINT ARITHMETIC}
\section{4.2.2}
\sectionskip
\sectionbegin{4.2.2. Accuracy of Floating-Point Arithmetic}
Floating-point computation is by nature inexact, and ...

Thus, a minor section has much less fanfare, and there is no messing around with font
\:c .

• A diminished section of ACP is one whose number contains three decimal points, for
example "Section 1.2.11.1". This is typed just the same as a minor section, except that
you omit the \sectionskip, you use \dimsectionbegin instead of\sectionbegin,
and you capitalize only the first word of the section title. For example:

\runningrighthead{THE O-NOTATION}
\section{1.2.11.1}
\dlmsectionbegin{\star 1.2.11.1. ~he O-notatlon}
A verl convenient notation for dealing with ...

This example il1ustrates another thing: you type "\star" just after "sectionbegin{"
when beginning a "starred" section or subsection. ('lEX wiI1 then insert an asterisk in
the left margin.) Such stars occur sometimes even in major sections.

ExampLe of Q, book format 157

• A subsection of ACP ranks lowest in the hierarchy. It is.part of a section that
is introduced by a bold-face subhead, but this subhead never gets into the running
headline at the top of right-hand pages. You specify the beginning of a subsection
simply by typing

\su bsect i onbeg i n{ (subhead)}

followed by the opening paragraph of the subsection. Don't type a period after the
subhead-1£:X will typeset one anyway, it's part of the subsection format-and if you
include another period there will be two! This is consistent with the titles of sections
in general (see the examples above); you never put a period before the }.

Here are two examples of subsection format, taken from within sections 1.3.3 and
3.3.2 of ACP:

\subsectionbegin{Products of permutations}
We can "multiply" two permutations together,

\subsectionbegin{E. Coupon collector's test}
This test is related to the poker test ...

• Special events like theorems and algorithms sometimes occur in the text of a section,
and they have their own special format. Type

\algbegin (name of algorithm .or program)u«descriptive title)) .u

at the beginning of an algorithm or program. For example (taken from pages 2 and 141
of Volume 1):

\algbegin Algorithm E (Euclid's algorithm). Given two ...

\algbegin Program M (Find the maximum). Register assignments:

Similarly, you type

\thbegin (name of theorem or lemma or corollary).u

at the beginning of a theorem or lemma or corollary. The text of a theorem or lemma
or corollary is set in slanted type, with any embedded math formulas set off by $'5 as
usual (50 that italic letters will be distinguishable from slanted ones). For example,

\thbegin Corollary P. {\sl If a $[0,1)$ sequence is
k-distributed, it satisfies the permutation test of
order k, in the sense of Eq.\ (10).}

Be sure to remember the final } that turns off the \s I, otherwise you'll see a lot of
slantedness in the following text. .

158 Appendix E

• When beginning the proof of a theorem, type "\proofbegin" (with no period
following it) instead of "Proof.". For example,

\proofbegin It is clear that ...

(But use \dproofbegin if the preceding paragraph ended with a display.) At the end
of the last paragraph of a proof, type the following ritual:

\quad\blackslug
(empty line to end the paragraph)
\yyskip

This typesets a "." and leaves extra space before the paragraph that follows. The same
ritual is used also at the end of the last step of an algorithm.

• Speaking of the steps of algorithms, each step is a separate paragraph. At the
beginning of that paragraph the instructions

\algstep (step number).u [(description of step)]

should be typed. For example, the following comes from page 2 of Volume 1:

\algstep El. [Find remainder.] Divide m by n and let r
be the remainder.\xskip (We will have $O~r<n$.)

\algstep E2. [Is it zero?] If $r=O$, the algori thm
terminates; n is the answer.

\algstep E3. [Interchange:] Set $m~n$, $n~r$, and go back
to step El.\quad\blackslug

\yyskip Of course, Euclid did not present his algorithm in
just this manner. The above format illustrates the style
in which all of the algorithms throughout this book will
be presented.

• Within a paragraph, type "\xsk i p" before and after parenthesized sentences. (For
example, there is an \xskip in the paragraph you're now reading, and in algstep E1
above.)

Em.mpte of a. book format 159

• Sometimes the author wants to insert extra space between paragraphs of a section,
in order to indicate a slight change of topic. For this you type "\yskip" just before
the new paragraph. (The space corresponding to \ysk i p turns out to be just half the
space corresponding to \yy sk i p.)

Another use of \ysk i p sometimes occurs when paragraphs appear in series, with
"a)" inserted in place of the indentation in the first paragraph, "b)" in the next, and
so on. For this you type "\yskip\textindent{a)}". Also add the control sequence
"\hang" if the entire paragraph (except for the "a)") is to be ind~nted. For example,
the paragraph you are about to read next has been typeset with the instructions

\yskip\textindent{\bullet}Sections normally end ...

• Sections normally end with a group of exercises. At this point you type

\exbegin{EXERCISES}

or (in some cases) "\exbegin{EXERCISES---First Set}", etc. Then come the exer
cises, one by one, each starting a new paragraph. At the beginning of this paragraph
you type

either
or

\exno (number).u [(rating)]
\ trexno (number). u [(rating)]

where \trexno is used if the exercise is supposed to have a triangle in the margin. For
example,

\exno 4. [M50] Prove that when n is an integer, $n>2$, the
equation $xin+yin=zin$ has no solution in positive integers
x, y, z.

After the" [(rating)]" of an exercise there sometimes is a parenthesized descriptive title,
or the name of the originator of the exercise. The descriptive title, if present, should be
slanted; names should not. The closing right parenthesis should be preceded by a period
and followed immediately by "\xsk i p" without any intervening space. For example
(see ACP Volume 1, page 20):

\exno 14. [50] (R. W. Floyd.)\xskip Prepare a computer program ...

\trexno 15. [HM28] ({\sl Generalized induction.})\xskip The ...

If the exercise contains subparts (a), (b), etc., there are two cases: The subparts
may be introduced by \texti ndents (as in the exercise 15 we were just looking at on

160 Appendix E

page 20 of Volume I), or they may be embedded in a paragraph (as in exercise 29 on
page 26). The first case should be treated by making separate paragraphs introduced
by "\hang\textindent{a) }"j put \yskip before the first such paragraph, but not
before the others. In the second case, type "\xsklp (a)" and "\xskip (b)", etc.,
where there is no space before the \xsk i p.

If the exercise contains a "hint" within a paragraph, you type "\xsk i p [{\s I
Hi n t : }U" i as usual, there should be no space before \xsk i p .

• Answers to the exercises appear at the back of the booki they are entered on a
separate file-e.g., v2ans. TEX for the answers of Volume 2. It is best to typeset the
answers for each individual section at the same time as you typeset the exercises for
that section, in order to ensure consistency. In the answer pages you say

\ansbegin{{section number)}

just before the answers to the exercises for a particular section. Then each answer is
preceded by

\ansno {number).u

For example (reading from Volume I, page 465),

\ansbegin{1.1}

\ansno 1. $t~a$, $a~b$, $b~c$, $c~d$, $d~t$.

\ansno 2. After the first time, ...

Now look at answer number 3 on that page of Volume Ii here you should not use
"\algbegin", since \algbegin is for algorithms in the text. By looking at the formal
definition of \algbegin in the later part of this appendix, you can see how to modify
it in order to handle this particular case, namely to type

\ansno 3. {\bf Algorithm F }({\sl Euclid's
algorithm\/}){\bf.}\xskip Given two positive

In still more complicated cases you may. have to typeset the exercise number yourself
in connection with \halign. Then you use \anskip just before the answer, in order
to get the proper spacing between answers.

Sometimes one answer is given for two or more exercises. In this case you use
"\ansnos" instead of "\ansno" . For example (please turn to page 599 of Volume I),

\ansnos 15, 16. $\rI1\eqv\.{PO}$, $\rI2\eqv\.{P1}, ...

E:romple oj a. book Jormai 161

• This last example leads to the question of MIX programs, which make you work a
bit harder. The word "MIX" should always be handled by typing the control sequence
\MIX. This will set it in typewri ter type, namely the fixed-width font used also for
examples in this manual. (Remember to type "\MIX\" when a blank space followsj it's
the same problem as using the \ TEX logo, see Chapter 3.)

When you want to typeset something else in typewriter type, use the abbreviation
\ttj for example, \MIX is short for "{\tt MIX}". Or if typewriter type is being used
in a math formula, you use the control sequence "\.", which comes in very handy. For
example, "\. {PO}" in the excerpt from page 599 above yields the "po" of the formula
"rll = Po". Another thing to keep in mind when doing formulas related to MIX is the
fact that "rA", "rX", "rAX", "rI", and "rJ" are supposed to be in roman type, not
italicsj so you use the control sequences \rA, \rX, \rAX, \rI, \rJ. (The example above
shows a typical use of "\rI".)

• For MIX programs themselves, further control sequences come into play. For ex
ample, let's continue with the example from page 599 of Volume 1:

{\yyskip\tabskip 25pt \mixthree{\!
D10LD10P00\understep{Dl.}\cr
0LD200,1(SIZE)\cr
0ENN600,20$\.N~\.{SIZE(PO)}.$\cr

0INC2@O,10$\.{Pl}~\.{PO}+\.N$\cr

0LD500,2(TSIZE)\cr
0J5N0D40To D4 if $\.{TAG(Pl)}=\hbox{"$-$"}$.\cr
\\D20LD50-1,1(TSIZE)0\understep{D2.}\cr

and so on, ending (on page 600) with

0ST60-1,2(TSIZE)0$\.{SIZE(Pl-l)}~\.N$,

$\.{TAG(Pl-l)}~\hbox{"$-$"}$.\quad\blackslug\cr}}

Explanation: (i) "\ tabsk i p 25pt" causes each line of the program to be indented 25
points. [For short programs, you can start with "$$\ vbox{\mixthree{\!" and end
with "\cr} }$$", if you want the program to be centered. But that would be a bad idea
on such a long program, because it would disallow breaks between pages.]

(ii) "\mi xthree{\!" is the way you begin MIX program format that has three
columns of special code before the right-hand columnj the right-hand column is typeset
normally. Sometimes there are four special columns, as in the program on page 568j
in this case the first column contains numbers in italics. The rule is to use \mixfour
when there are four such columns. The first line on page 568, for example, would be

162 Appendix E

typed
68~8H~CON~O~Zero constant for initialization\cr

provided that you are looking at the second edition of Volume I-the first edition has
a different line there, namely

65~~JMP~lF@\quad$\.{RLINK(U)}=\Lambda$.\cr

Sometimes, in fact, there are five special columns, as in the program on page 60li the fifth
column contains centered math formulas, and for this you use \mi xf i ve. (Incidentally,
when a program turns out to be too wide for the normal page size, as this one does, it
is typeset separately and reduced by the publisher's cameras.) At the other extreme,
there sometimes are MIX programs with only two special columns; for example, to get
the programs displayed at the bottom of page 242, you type

$$\vcenter{\mixtwo{LD1@I\cr LDA@L$!O$,l\cr}}
\qquad\hbox{to, e.g.,}\qquad
\vcenter{\mixtwo{LD1@I\cr LDA@BASE(O:2)\cr

STA~*+1(O:2)\cr LDA@*,l\cr}}\eqno(8)$$

(iii) When you type "\ \" at the beginning of a line of a MIX program, using either
\mixtwo or \mlxthree or \mixfour or \mixfive, it signifies a desirable place to
break the page if 'lEX needs to make a break. The author will tell you where to put
these.

(iv) "\understep" will underline a step description. This works nicely when the
step doesn't involve any letters or symbols that go below the line; but otherwise you
need to break the underline by brute force, discontinuing it so that it doesn't touch
letters with descenders. For example, here is the proper way to type line 22 of the
program on page 601 of Volume 1 (using \mixf i ve format):

22@R3~J3Z@DONE@1@\understep{R3. S}{\sl p\hskip-3pt}\!
\understep{\hsklp3pt lit re\hskip 2.5pt}{\sl\hskip-2.5pt q}\!
\understep{uired?}\cr

The \hskipping brings the underlines partway under the p and q, making it look as if
we have a special font with underlined symbols. This is messy in the manuscript, but
it looks nice in the output; you get

22. R3 J3Z DONE 1 R3. Split required?

(See also the examples in Chapter 18 of this manual-the boldface subheads were made
with such underlining. The underlines actually drawn on page 601 of the second edition
of Volume 1 are too low; the third edition-typeset by 'lEX-will look much better!)

Exa.mpte of (L book format 163

To sum up the last few paragraphs, we can say that MIX programs are indeed
troublesome to typesetj but by. using the control sequences \mixtwo, ... , \mixfive
you can avoid almost all of the difficulty of changing in and out of typewriter type
and lining up the columns. Incidentally, there is also another control sequence \mixans
that you can use for answers like number 2 on pages 523 and 524. Instead of beginning
that answer with "\ansno 2.", you type

\mixans 2. {~SHIFT~J5N~ADDRERROR\cr
@@DEC3~5\cr

~lH~SRC@l~\quad\blackslug\cr}

This works something like \mixthree, but each line begins with an additional ~ .

• For quotations you type

\quoteformat{(first line)\cr
(second line)\cr

(last line) \ c r
\author{(author information)}

For example, the quotation at the end of Chapter 2 (Volume 1, page 463) should be
done this way (including a few small changes that will be made in the third edition):

\quoteformat{You will, I am sure, agree with me ... that if page\cr
534 finds us only in the second chapter,\cr
the length of the first one must have been really intolerable.\cr}
\author{SHERLOCK HOLMES, in {\sl The Valley of Fear} (1888)}

Sans-serif 8-point fonts will automatically be used for quotations typed in this way.
The quotation itself is automatically set in a slanted font, while the author information
is automatically set in "roman"; you can vary these conventions if necessary by typing
"\s l" or "\rm" .

• To insert an illustration at the top of the next convenient page, type

\topinsert{\vskip (height of the illustration plus a little white space)
\ctrl ine{\capt ion Fig. \ (number). (text of the caption)}}

assuming that the caption fits on one line. This insertion usually goes into the manuscript
just after the paragraph that first refers to this particular illustration. For example,

164 Appendix E

the illustration in Volume I, page 121, would be handled by typing

\topinsert{\vskip 5in
\ctrline{\caption Fig.\ 13. The \MIX\ computer.}}

• The following example (see Chapter 4 of this manual) shows how footnotes are
treated:

... will never\footnote*{Well\ldotsm, hardly ever.} use the ...

• To get the heading "Table I" centered on a line, type

\tablehead{Table 1}

For the table itself, it's best to let the author tell you exactly what he wants, since
there are so many possibilities. The control sequence \9 gives a blank space equal to
the width of a digit in the current roman font; this is occasionally useful when tables
are being prepared.

• When you really get into typing the books, some things will occasionally arise that
aren't covered here, but this might add a little spice to the task. The manuscript for
Volume 2 of ACP (Second Edition) may be consulted for numerous examples of the
recommended format.

~ Here now are the 'lEX language definitions that explain the meanings of all these
Jr new control sequences very precisely. All of the standard definitions at the begin
ning of Appendix B are used, up until the font specifications, and it is unnecessary to
repeat them here. The remaining definitions are:

\def\mod{\<\,\mathbin{\char'155\char'157\char'144}\penalty900\<\,}
\def\modulo#l{\penaltyO\;

(\char'155\char'157\char'144\char'165\char'154\char'157\,\,#1)}
\def\deg{r{\hbox{\hskip-1pt\:w\char5}}}

\:C~cmathx \:a~cmr10 \:b~cmr9 \:c~cmr8

\:d~cmr7 \:e~cmr6 \:f~cmr5 \:g~cmi10

\:h~cmi9 \:i~cmi8 \:J~cm17 \:k~cmi6

\:l~cm15 \:m~cmscl0 \:n~cmsl0 \:o~cms9

\:p~cms8 \:q~cmb10 \:r~cmb9 \:s~cmb8

\:t~cmtt \:u~cmsyl0 \:v~cmsy9 \:w~cmsy8

\:x~cmsy7 \:y~cmsy6 \:z~cmsy5 \:;~cmtitl

\:<~cmssb \:~~cmss12 \:>~cmss8 \:?~cmsss8

\hsize29pc \vslze45pc \maxdepth2pt \parindent19pt
\topbasellnel0pt \parsklpOpt plus1pt \linesklplpt
\topsklp24pt plus6pt mlnus10pt \botskip3pt plus6pt

Exa.mpte oj Q, book jormat

\def\tenpoint{\baselineskip12pt
\dispskip12pt plus3pt minus9pt
\dispaskipOpt plus3pt \dispbskip7pt plus3pt minus4pt
\def\rm{\:a} \def\sl{\:n} \def\bf{\:q} \def\it{\:g}
\def\biglp{\mathopen{\vcenter{\hbox{\:C\char'O}}}}
\def\bigrp{\mathclose{\vcenter{\hbox{\:C\char'l}}}}
\mathrm adf \mathit gjl \mathsy uxz \rm}

\def\ninepoint{\baselineskipllpt
\dispskipllpt plus3pt minus8pt
\dispaskipOpt plus3pt \dispbskip6pt plus3pt minus3pt
\def\rm{\:b} \def\sl{\:o} \def\bf{\:r} \def\it{\:h}
\def\biglp{\mathopen{\hbox{\:a(}}}
\def\bigrp{\mathclose{\hbox{\:a)}}}
\mathrm bef \mathit hkl \mathsy vyz \rm}

\def\eightpoint{\baselineskip9pt
\dispskip9pt plus3pt minus7pt
\dispaskipOpt plus3pt \dispbskip5pt plus3pt minus2pt
\def\rm{\:c} \def\sl{\:p} \def\bf{\:s} \def\it{\:i}
\def\biglp{\mathopen{\hbox{\:a(}}}
\def\bigrp{\mathclose{\hbox{\:a)}}}
\mathrm cef \mathit ikl \m~thsy wyz \rm}

\mathex C \def\tt{\:t}
\def\bigglp{\mathopen{\vcenter{\hbox{\:C\char'22}}}}
\def\biggrp{\mathclose{\vcenter{\hbox{\:C\char'23}}}}
\def\biggglp{\mathopen{\vcenter{\hbox{\:C\char'40}}}}
\def\bigggrp{\mathclose{\vcenter{\hbox{\:C\char'41}}}}

\def\9{\hskip .5em}
\def\xskip{\hskip7pt plus3pt minus4pt}
\def\yskip{\penalty-50\vskip3pt plus3pt minus2pt}
\def\yyskip{\penalty-l00\vskip6pt plus6pt minus4pt}
\def\sectionskip{\penalty-200\vskip24pt plus12pt minus6pt}

\def\textindent#l{\noindent
\hbox to 19pt{\hskipOpt plusl000pt minusl000pt#1 }\!}

\def\hang{\hangindent19pt}

\def\tpage{F} \def\rhead{} \def\frstx{F} \def\csec{} \def\chd{}
\def\titlepage{\gdef\tpage{T}}
\def\runninglefthead#l{\gdef\rhead{\:m#l}}

165

166 Appendix E

\def\acpmark f 1 #2{\mark
{\ifevenO{\hbox to .45 in{\:a\countO\hfill}\rhead\hfill\:af2}

\else{\:a\csec\hfill\:m#l\hbox to .45 in{\:a\hfill\countO}}}}
\def\runningrighthead#l \section#2{\acpmark{\chd}{#2}

\gdef\csec{#2} \gdef\chd{#l}}
\output{\baselineskip Opt\lineskipOpt

\vbox to 48pc{
\if T\tpage{

\gdef\tpage{F}
\vskip24pt \page \vfill \ctrline{\:c\countO}}

\else{\baselineskip12pt \nuII
\hbox to size{\ifevenO{\topmark}\else{\botmark}}
\null \page \vfill}}

\advcountO}

\def\sectionbegin#1{\hbox{\:<#1}\penaltyl000\vskip6pt plus3pt
\acpmark{\chd}{\csec}\noindent\tenpoint\!}

\def\dimsectionbegin#l{\sectionskip
\acpmark{\chd}{\csec}\noindent{\bf#l.}\tenpoint\xskip\!}

\def\subsectionbegin#l{\yyskip\noindent{\bf#l.}\tenpoint\xskip\!}
\def\algbegin#1(f2). {\yyskip\noindent

{\bf #1}({\sl#2\/}){\bf.}\xskip}
\def\algstep #1. [#2J {\par\yskip

\hang\textindent{\bf#1.}[#2J\xskip\!}
\def\thbegin#l. {\yyskip\noindent{\bf#l.}\xskip}
\def\proofbegin{\penalty25\vskip6pt plus12pt minus4pt

\noindent{\sl Proof.}\xskip}
\def\dproofbegin{\penalty25\noindent{\sl Proof.}\xskip}
\def\exbegin#l{\sectionskip

\hbox{\:<#1}\penaltyl000\vskip8pt minus5pt
\gdef\frstx{T}\nlnepoint}

\def\ansbegin#l{\runningrighthead{ANSWERS TO EXERCISES}
\section{#l}\sectionskip
\hbox{\:<SECTION #1}\penaltyl000\vskip8pt minus5pt
\acpmark{\chd}{\csec}\gdef\frstx{T}\ninepoint}

\def\anskip{\par\if T\frstx{\gdef\frstx{F}}\else{\penalty-200}
\vskip3pt plus3pt minuslpt}

\def\exno #1. [#2J{\anskip\textindent{\bf#1.}[{\it#2\/}J\hskip6pt}
\def\trexno #1. [#2]{\anskip\noindent\hbox to 19pt

{\hskip-3.5pt\:O\char·170\hfill\bf#1. }[{\it#2\/}]\hskip6pt}

Example of a book format

\def\ansno #1. {\anskip\textindent{\bf#l.}}
\def\ansnos #1,#2. {\anskip\textindent{\bf#1,}\hbox{\bf\!#2. }}

\def\quoteformat#1{\baselineskip11pt \def\rm{\:>} \def\sl{\:?}
\vskip6pt plus2pt minus2pt {\sl\halign{\rjustline{##}\cr#l}}}

\def\author#1{\penaltyl000\vskip6pt plus2pt minus2pt
\rm\rjustline{---#1}\vskip8pt plus4pt minus2pt}

\def\tablehead#l{\ctrline{\:<#l}\ninepoint}
\def\caption Fig.\ #l.{\ninepoint{\bf Fig.\ #l.}\xskip\!}
\def\footnote#1#2{#1\botinsert{\hrule width5pc \vskip3pt

\baselineskip9pt\hbox par size{\eightpoint#1#2}}}

\def\star{\hbox to Opt{\hskip Opt minus 100pt *}}

\def\blackslug{\hbox{\hskiplpt
\vrule width4pt height6pt depthl.5pt \hskiplpt}}

\def\MIX{{\:t MIX}}
\def\.{\hbox{\:t#l}}
\def\rA{\hbox{\rm rA}} \def\rX{\hbox{\rm rX}}
\def\rAX{\hbox{\rm rAX}}
\def\rI{\hbox{\rm rI}} \def\rJ{\hbox{\rm rJ}}
\def\understep#l{$\underline{\hbox{\sl#l}}$}

\def\mixtwo#~{\ninepoint\def\\{\noalign{\penalty-200}}

\halign{\lft{\:t##}\quad\tabskipOpt
@\lft{\:t##}\qquad@\lft{\rm##}\cr#l\\}}

\def\mixthree#1{\ninepoint\def\\{\noalign{\penalty-200}}
\halign{\lft{\:t##}\quad\tabskipOpt

@\lft{\:t##}\quad@\lft{\:t##}\qquad@\lft{\rm##}\cr#l\\}}
\def\mixfour#1{\ninepoint\def\\{\noalign{\penalty-200}}

\halign{\rt{\it##}\quad\tabskipOpt
@\lft{\:t##}\quad@\lft{\:t##}\quad
@\lft{\:t##}\quad@\lft{\rm##}\cr#l\\}}

\def\mixfive#1{\ninepoint\def\\{\noalign{\penalty-200}}
\halign{\rt{\it##}\quad\tabskipOpt

@\lft{\:t##}\quad@\lft{\:t##}\quad
@\lft{\:t##}\quad@\ctr{$ ##$}\quad@\lft{\rm##}\cr#l\\}}

\def\mixans #1. #2{\def\\{\noalign{\penalty-200}}\anskip
\halign{\hbox to 19pt{##}@\lft{\tt##}\quad

@\lft{\tt##}\quad@\lft{\tt##}\quad@\lft{\rm##}\cr
{\hfill\bf #1. }#2}}

167

168 Appendix F

<F> Font tables

1. Standard "ascii" code. The American Standard Code for Information Inter
change deals with characters that print and actions that don't. The following
table of 128 codes shows "control" symbols for codes '001 to '032, since many
computer terminals generate these symbols when the typist holds the control key
down when typing a letter. These 26 codes also have other names not shown
here; for example, tG (control-G) is also called BEL (ring the bell). It is rarely
possible to transmit all 128 of these symbols from your terminal to a computer
and vice versa-something strange usually happens to a few of them. But the
most important ones get through.

'000

'010

'020

'030

'040

'050

'060

'070
'100

'110

'120

'130

'140

'150

'160

'170

o
NUL

tH

tP

tX

SP

(

0

8

C

H

P

X
..

h

p

x

1

tA

tI

tQ

ty

!

)

1

9

A

I

Q

Y

a

i

q

y

2 3

tB tC

tJ tK

tR tS

tZ ESC
.. #

* +

2 3

: ;

B C

J K

R S

Z [

b c

j k

r s

z {

4 5 6 7

tD tE tF tG

tL tM tN to

tT tU tV tW

FS GS RS US

$ % & ...

, - /
4 5 6 7

< = > ?

D E F G

L M N 0

T U V W

\] A

-
d e f r g

1 m n 0

t u v w

I } - DEL

Font tchles 169

2. Stanford "SUAI" code. The following table of 128 codes (develo'ped about 1965
at the Stanford Artificial Intelligence Laboratory) applies to numerous devices
now used in the vicinity of Stanford University. For the most part it is ascii
code but extended to include more printing characters. There's an unfortunate
discrepancy, however, with respect to "}" (' 175 in ascii, ' 176 at SUAI); also "_,,
(' 176 in ascii, something like '032 at SUAI); also ,,_II (' 136 in ascii, something like
'004 at SUAI); and also "_" (' 137 in ascii, '030 at SUA!). Essentially the same
code is used at Carnegie-Mellon University and at the University of Southern
California, but with ' 176 and ' 175 switched. At the Massachusetts Institute of
Technology the code is somewhat the same but there are ten discrepancies: codes
'010, '013, '030, '032, '033, '136, '137, '175, '176, '177 are respectively called
BS, T, +-, -=1=, ESC, ., _, }, -, DEL. .

'000

'010

'020

'030

'040

'050

'060

'070

'100

'110

'120

'130

'140

'150

'160

'170

o
NUL

X

c

-
SP

(

0

8

@

H
p

x
,

h

p

x

1 2

! a

TAB LF

~ n
--t "'"

! II

) *
1 2

9

A B

I J

Q R
y z
a b

i j

q r

y z

3 4 5 6

{3 /\ ., €

VT FF CR 00

u v 3 Q9

-::f. < > -

*
$ % &

+ -,
3 4 5 6

; < - >
C D E F

K L M N

S T U V

[\] T
c d e f

k I m n

s t u v

{ I ALT }

7
7r

a
+-+

v
,

/
7

?

G

0

W

+-

g

0

w

BS

170 Appendix F

3. 1EX standard roman fonts. The following table of 128 codes shows the form
~ expects its fonts to have when you use the control sequences for accents and
special foreign letters listed in Chapter 9, or when you use the control sequences
for upper case Greek letters listed later in this appendix. (Actually 'lEX never
addresses codes '042, ' 134, ' 136, ' 137, and ' 173 to ' 177 directly; they are ac
cessed indirectly via ligature information stored within the font itself.) Codes
'043 and '044 are undefined; special characters needed in particular jobs (e.g.,
inverted H?" and "!" for Spanish text) might be placed there. Note that there is
agreement with ascii code on all of its printing characters except for #, $, @, \,

... , _, {, I, }, and ,...,..., which 1EX gets from its "symbol" fonts. The same codes are
used for slanted roman fonts like cms10.

'000

'010

'020

'030

'040

'050

'060

'070

'100

'110

'120

'130

'140

'150

'160

'170

o
r
4>
..

.
~

(
0

8

0
H
p

X
,

h

p

x

1

Ll

\II

'"

,

!

)
1

9

A

I

Q
y

a

i

q

y

2 3

e A

n 1

- ..
.... 13

" undefined

* +
2 3

: ;

B C

J K

R S

Z [
b c

j k

r s

z if

4 5 6 7

.... II E 1
, , ...

J
- .. N 0

re 00 IE CE

undefined % &
,

- / ,
4 5 6 7

< - > ?

D E F G

L M N 0

T' U V W

"] - -
d e f g

I m n 0

t u v w

fi fl ffi ffl

Font tables 171

4. 'lEX typewriter fonts. Fixed-width fonts such as the cmtt font shown below are
sort of a cross between 'lEX roman and SUAI codes. All the accents and special
characters of a 'lEX roman font are present except for \b, \1, \0, \ss, \H, and
\0; and every ascii printing character is present. (SUAI code instead of ascii code
is, however, used for the character "}", and 'lEX roman code is used for "-".)
All SUAI characters that appear in these fonts appear in their SUAI positions,
except for 00, -, ~, ~, and J.. (Furthermore you may prefer to use codes '015 and
'016 in place of ' 140 and '047, as done in the examples of this manual.)

'000

'010

'020

'030

'040

'050

'060

'070

'100

'110

'120

'130

'140

'150

'160

'170

o
r
4>

-
.
U

(

0

8

C

H

p

X .
h

p

x

1

6

\If

-
-+

!

)

1

9

A

I

Q

Y

a

i

q

y

2 3

e A

n 1

- ..

~ ~
.. :fI:

* +

2 3

: ;

B C

J K

R S

Z [

b c

j k

r s

z {

4 5 6 7

... n E i

J
.. .. -

- (X) 0 .
ce a! .€ (E

$ % &

, - /

4 5 6 7

< = > ?

0 E F G

L M N 0

T U V W

\] i +-

d e f g

1 m n 0

t u v w

I J. } .

172 Appendix F

5. ~ standard italic fonts. The following table of 128 codes shows the form
'lEX expects the italic (i t) fonts to have in math mode, if you use the contro~
sequences for lower case Greek letters, upper case italic Greek letters, ar:td a few
other special symbols listed later in this appendix. The same codes apply to text
italic fonts like cmtil0 and cmul0 (the "unslanted" italic font used in the running
heads of this manual). Note that there is agreement with ascii code on all of its
printing characters, except for the % sign and the ten symbols that are missing
in ~ roman fonts (see the previous page).

'000

'010

'020

'030

'040

'050

'060

'070

'100

'110

'120

'130

'140

'150

'160

'170

o
r
«P

~

E
t

(
0

8

J

H
p

X
I

h

p

x

1

Ll

1/1

".,

7r

!

)
1

9

A

I

Q

Y

a

i

q

y

2 3

e A

{] a

0 L

P (J

" l

* +
2 9

: ;

B C

J K

R S

Z [

b c

j k

r s

z 'Ij;

4 5 6 7

.... II E Y

{3 i 8 E

K, ~ J.L v

T V 4> X

~ IJ 8
,

- / J

4 5 6 7

< - > ?

D E F G

L M N 0

T U V W
II J - -

d e f 9

I m n 0

t u v w

w <p iJ 'tV

Font tables, 173

6. 'lEX standard symbol fonts. The following table of 128 codes shows the form
1FX expects the symbol (sy) fonts to have in math mode, if you use the control
sequences for various special symbols listed later in this appendix, or if you use
special keys on your terminal in math mode as explained below in subsection 8.
Several positions are undefined; they can be filled with any special characters
that might be needed in a particular job.

'000

'010

'020

'030

'040

'050

'060

'070

'100

'110

'120

'130

'140

'150

'160

'170

o
-
ffi
...L

""

..-
~

I

'V

/
%

GJ

9;

~

(
y'
§

1

e
-
~

-+

~

00

3

.A.

j

~

'\J
-I
)

t

2 3

X *
@ 0
C ~

C ~

1 1
n II
E ~
-, N

S e
} %

~ :f

;6 u
l J
I II

V I
t ,

4 5 6 7

\ 0 ± =f
0 T •
< > -< >-
=rf - -< >-
+-+ « » ~

<:::> 1 r ~

0 L undefined -
~ ~ T undefined

~ g GJ Y
L .At,)f 0

rr CU r 'W

n l±J 1\ V

r 1 { }

IT TI undefined undefined

u n c: undefined

@ © £ $

174 Appendix F

7. 'lEX standard extension fonts. The table of 128 codes on the next page shows
the form 1F.;X expects the extension (ex) font to have in math mode, if you use
variable delimiters or the control sequences for large operators listed later in this
appendix.

Actually 'lEX addresses most of these characters indirectly;
for example, all left parentheses are addressed starting
with character '000, based on information stored in the
font itself, and the font also tells 1F.;X that arbitrarily large
left parentheses can be made from characters '060 (top),
, 102 (middle), ' 100 (bottom). The only codes explicitly
referred to by 1tJ(are '000 to '016, ' 110, ' 112, ' 114,
, 116, ' 120 to ' 127, and ' 160. Thus, a font designer can
move most of the other symbols if desired, subject only
to the restriction that the code number of a large symbol
be greater than the code numbers of its smaller variants.
(If codes are changed, however, it may be necessary to
change the definitions of control sequences like \biggl pin
Appendix B.) It is expected that positions marked "undefined"

in this chart win be filled with characters specially tailored
to specific jobs; for example, character ' 177 is used for the
"dangerous bend" symbol in this manual, but it might not
be present in all 'lEX extension fonts.

'000

'010

'020

'030

'040

'050

'060

'070

'100

'110

'120

'130

'140
'150

'160

'170

o
(
{

(

r
(
{
(
(

\
f
E

2:
undefined

undefined

J
~

1

)
}

)

1
)
} ,
)

)

f
II

II
undefined

undefined

J
.Jy+

Font tables

2 3

[]
()

()
{ }
[1
()
r 1
l)

I I

0 0
J u

I u
undefined undefined

undefined undefined

J J
,

1
175

1

4 5 6 7

l J r 1
I II / undefined

[1 l J

\) / undefined

l J r 1
/ undefined undefined undefined

l J I I

~ } I undefined

undefined undefined U U
EB E9 ® Q9

n l±l A V

n l±J 1\ V
undefined undefined undefined undefined

undefined undefined undefined undefined

~ I r undefined

"- ,- undefined undefined

176 Appendix F

8. 'lEX math mode. When 'lEX is in math mode, it converts 7-bit codes into 9-bit
codes according to the table below. Furthermore a "type" is associated with the
9-bit code, making (almost) a 12-bit code, since there are seven types (Ord, Op,
Bin, ReI, Open, Close, Punct); see Chapter 18. This conversion is based on the
SUAI code. For example, if you type "-+" at Stanford (character '031) the table
below says that this is converted to ReI 441, namely a mathematical "relation"
found in the sy font as character '041, and this is ".-t".

Not all of these 128 codes can appear in character files that are prepared
with ordinary software, but the chart shows what would happen if they could. If
people at MIT ever want to use .'IEX they will undoubtedly make changes to the
internal table that 'lEX uses for this conversion, because of the ten discrepancies
between MIT's code and the SUA I code. However, people at CMU or USC should
have no trouble, since 'lEX uses this table only for characters classified as (letter)
or (otherchar) (see Chapter 9).

'000

'010

'020

'030

'040

'050

'060

'070

'100

'110

'120

'130

'140

'150

'160

'170

o 1 234 5 6 7
Bin 401 ReI 443 Ord 213 Ord 214 Bin 536 Ord 472 Ord 217 Ord 231

Ord 225 Ord 215 Ord 216 Op 563 Bin 406 Bin 410 Ord 461 Ord 24-5

ReI 432 ReI 433 Bin 534 Bin 533 Ord 470 Ord 471 Bin 412 ReI 444

Ord 465 ReI 441" ReI 430 ReI 434 ReI 424 ReI 425 ReI 421 Bin 537

Ord 463 Close 041 Ord 541 Ord 561 Ord 577 Ord 045 Ord 046 Close 047

Open 050 Close 051 Ord 052 Bin 053 Pund 054 Bin 400 Ord 056 Ord 057

Ord 060 Ord 061 Ord 062 Ord 063 Ord 064 Ord 065 Ord 066 Ord 067

Ord 070 Ord 071 Ord 072 Punct 073 ReI 074 ReI 075 ReI 076 Close 077

Ord 574 Ord 301 Ord 302 Ord 303 Ord 304 Ord 305 Ord 306 Ord 307

Ord 310 Ord 311 Ord 312 Ord 313 Ord 314 Ord 315 Ord 316 Ord 317

Ord 320 Ord 321 Ord 322 Ord 323 Ord 324- Ord 325 Ord 326 Ord-327

Ord 330 Ord 331 Ord 332 Open 133 Bin 404 Close 135 ReI 442 ReI 440

Open 140 Ord 341 Ord 342 Ord 343 Ord 344 Ord 345 Ord 346 Ord 347

Ord 350 Ord 351 Ord 352 Ord 353 Ord 354 Ord 355 Ord 356 Ord 357

Ord 360 Ord 361 Ord 362 Ord 363 Ord 364 Ord 365 Ord 366 Ord 367

Ord 370 Ord 371 Ord 372 Open 546 Ord 552 Bin 405 Close 547 Bin 017

Font tables 177

9. Control sequences. The tables we have seen show all of the special symbols
that appear in 1EX's standard fonts. But the question remains, how can a person
specify them on an ordinary keyboard? Well, you can always define your favorite
control sequence in terms of the \char operation; and if you have a suitable
keyboard you can type the symbols of SUAI code directly. 1EX also recognizes
the control sequences listed below, when in math mo'de.

(aJ Lower case Greek letters:

a \alpha '" \kappa
\upsilon

f3 \beta X \lambda
v

"Y \gamma Il \mu
¢ \phi

8 \delta \nu X \chi
v

1/J \psi
t \epsilon E \xi

\zeta \pi
w \omega

~ 1('
\varphi

11 \eta p \rho
rp
1J \vartheta

() \theta (] \sigma
\varomega

\iota \tau
W'

L T

(b J Upper case Greek letters:

r \Gamma
E \Sigma

r \Gammait E \Sigmait
~ \Delta Ll \Deltait
e \Theta

y \Upsilon e \Thetait
y \Upsilonit

A \Lambda
<I> \Phi

A \Lambdait
if) \Phiit

W \Psi 1/1 \Psiit - \Xi n \Omega
.... \Xi it

{} \Omegait
II \Pi II \Piit

(cJ Script letters:

.A. \Ascr j \Jscr :f \Sscr
S \Bscr X \Kscr Gj \Tscr
e \Cscr L \Lscr CU \Uscr
~ \Dscr .At, \Mscr 'f \Vscr
g \Escr J{ \Nscr 'W \Wscr
GJ \Fscr 0 \Oscr ffi \Xscr
y \Gscr ~ \Pscr '\I \Yscr
% \Hscr Q \Qscr :zs \Zscr
3 \Iscr ~ \Rscr l \lscr

178 Appendix F

(d) Binar~ operators:

± \pm E9 \op1us * \ast

=F \mp e \ominus 0 \circ
X \times Q9 \otimes • \bul1et

\div 0 \odiv T \interc

\ \rslash 0 \odot U \lub
\cdot l±J \uplus n \glb

(e) Binary relations:

1 \up
1 \down

¢::: \+-
~ \-+
n \i

II \J.
~ \~

1 \lsh
r \rsh

-L \perp -< \prec

f-- \vdash -< \preceq

-1 \dashv >- \succ
1-+ \mapsto >- \succeq

I \re1v C \sqsub

II \re1vv « \lsls
C \subset » \grgr
:J \supset r-...I \simeq
E \in F:::j \approx

~ \notin - \doteq

You can also use the control sequence \not to negate or "cross out" most of the
relations above. For example, the symbol "g" is really two symbols, obtained by
typing "\not \su bset". (Character' 100 in the symbol font has a width of zero,
so it will overlap the following character.) But watch out: you should actually
type "\mathre1{\not\subset}", in order to prevent ~ from breaking a line
after \not. (See the definition of \neqv in Appendix B.)

(f) Brackets:

l \lf1oor J \rf1oor

r \lcei1 1 \rcei1
{ \{ } \}

(\lang1e) \rang1e

IT \d1eft] \dright

I \leftv I \rightv

II \leftvv II \rightvv

E

E9

J

§

Font tables 179

(g) "Large" operators (text and display styles):

2: \sum n n \inter
IT II \prod

E9
U U \union

\osum ~ Q9 \oprod

U U \squnion

I \int

1\
0 0 \odotprod

A \meet

f \oint
V V \join ttl l±J \munion

(h) Miscellaneous math symbols:

\iit 00 \infty a \partial

J \jit 0 \emptyset yo \nabla
~ \real # \# f \smallint
;s \imag II \1 v' \surd
N \aleph L \angle T \top

80 \wp , ' \prime J.. \bot

(i) Miscellaneous nonmath symbols (but allowed only in math mode):

§ \section
t \dag
t \ddag
, \P

@ \0
© \copyright
£ \sterling
$ \$

Some of the symbols in 'fEX's math fonts can be accessed directly only by
using the SUAI-oriented conversions in subsection 8. For example, the only way
to get a left arrow is by typing "$.. $"; no built-in control sequence has been
defined for it. If your keyboard doesn't have this symbol, the remedy is to define
an appropriate new control sequence, such as

\def\from{\mathrel{\char'440}}

180 Appendix H

<H> Hyphenation
The conditions under which 1EX will try to hyphenate a word are discussed in Chapter
14. Now let's consider how hyphenation is actually accomplished.

It seems to be undesirable to look for the set of all possible places to hyphenate
every given word. For one thing, the problem is extremely difficult, since the word
"record" is supposed to be broken as "rec-ord" when it is a noun but "re-cord"
when it is a verb. We might consider also the word "hyphenati on" itself, which appears
to be rather an exception:

hy-phen-a-tion vs. con-cat-e-na-tion

Why does the "n" go with the "a" in one case and not the other? Starting at letter
a in the d.ictionary and trying to find rigorous rules for hyphenation without much
knowledge, we come up against a-part vs. ap-er-ture, aph-o-rism vs. a-pha-sia,
etc. It becomes clear that what we want is not an accurate but ponderously slow routine
that consumes a lot of memory space and processing time; instead we want a set of
hyphenation rules that are

a) simple enough to explain in a couple of pages,

b) almost always safe,

and c) powerful enough that bad breaks due to missed hyphenations are very rare.

Point (c) means that a proofreader's job should be only negligibly more difficult than
it would be if an intelligent human being were doing all of the hyphenations needed to
typeset the same material.

So here are the rules 1FX uses (found with the help of Frank Liang):

1) Exception removal. If the first seven letters of the word appear in a small inter
nal dictionary of words to be treated specially (about 350 words in all, see below),
use the hyphenation found in that dictionary. Furthermore some of the entries in the
dictionary specify looking at more than seven letters to make sure that the exception
is real; e.g., "in-form-ant" wouldn't be distinguished from the unexceptional word
"in-for-ma-tion" on the basis of seven letters alone. If the given word has seven
letters or fewer and ends with "s", the word minus the s is also looked up. The dictionary
contains nearly all the common English words for which the rules below would make
an incorrect break, plus additional words that are common in computer science writing
and whose breaks are not satisfactorily found by the rules.

2) Suffix removal. A permissible hyphen is inserted if the word ends with -abl e
(preceded bye, h, i, k, 1, 0, u, v, w, x, y or nt or rt), -ary (preceded by ion

Hyphenation 181

or en), -cal, -cate (preceded by a vowel), -cial, -cious (unless preceded by s),
-cient, -dent, -ful, -ize (preceded by 1), -late (preceded by a vowel), -less, -ly,
-ment, -ness, -nary (unless preceded bye or iO), -ogy, -rapher, -raphy, -scious,
-scope,-scopic,-sion,-sphere,-tal,-tial,-tion,-tion-al,-tive, -ture.
Here a "vowel" is either a, e, i, 0, u, or Yi the other 20 letters are "consonants."

There is also a somewhat more complex rule for words ending with "ing": If ing
is preceded by fewer than four letters, insert no permi~sible hyphens. Otherwise if ing
is preceded by two identical consonants other than f, 1, s, or z, break between them.
Otherwise if it is preceded by a letter other than 1, break the -i ng. Otherwise if the
letter before ling is b, c, d, f, g, k, p, t, or z, break before this letter (except break
ck-l ing if the word ends with ckl ing). Otherwise break -ing.

Furthermore the same suffix removal routine is applied to the residual word after
having successfully found the suffixes -able, -ary, -ful, -ize, -less, -ly, -ment,
and -ness. If the original word ends in s and no suffix was found, the final s is removed
and the suffix routine is applied again. If the original word ends in ed the suffix routine
is applied to the word with the final d removed, and (if that is unsuccessful) to the word
with final ed removed.

Any suffixes found are effectively removed from the word, and not examined by
rules 3 and 4. If the original word ends with e or s or ed, this final letter or pair of
letters is also effectively removed.

3) Prefix removal. A 'permissible hyphen is inserted if the word begins with be
(followed by c, h, s, or w), com-, con-, dis- (unless followed by h or y), equi- (unless
followed by v), equiv-, ex-, hand-, horse-, hy*per-, im-, in- (but u~e in*ter- or
in*tro- if present), lex*i-, mac*ro-, math*e-, max*i-, min*i-, mul*ti-, non-,
out-, over-, pseu*do-, quad-, semi-, some-, sub-, su*per-, there-, trans
(followed by a, f, g, 1, or m), tri- (followed by a, f, or u), un*der-, un- (unless
followed by der or i). Here an asterisk denotes a second permissible hyphen to be
recognized, but only if the entire prefix appears.

After the prefixes dis-, im-, in-, non-, over-, un- have been recognized as
stated, the prefix routine is entered again. Any prefixes found are effectively removed
from the word, and not examined by rule 4.

4) Study of consonant pairs. In the remainder of the word, after suffixes and prefixes
have been removed, we combine the letter pairs ch, gh, ph, sh, th, treating them as
single consonants.

If the three-letter combination XYY is found, where X is a vowel and Y a consonant,
break between the y's, except if Y is 1 or s. In the latter case, break only if the following
letter is a vowel and the word doesn't end "XYYer" or "XYYers".

If the three-letter combination Xck is found, where X is a vowel, break after the
ck.

182 Appendix H

If the three-letter combination Xqu is found, where X is a vowel, break before the
quo

If the four-letter combination XYZW is found, where X and Ware vowels and Y and
Z are consonants, break between the consonants unless YZ is one of the following pairs:

bl, br, c1, cr, ch1, chr, dg, dr, fl, fr, ght, gl, gr, kn, 1k, 1q,
nch, nk, nx, phr, p1, pr, rk, sp, sq, tch, tr, thr, wh, w1, wn, wr.

Furthermore do not break between the consonants if the word ends with XYZer, XYZers,
XYZage, XYZages, or XYZest, when YZ is one of the pairs

ft, 1d, mp, nd, ng, ns, nt, rg, rm, rn, rt, st.

5) Retaining short ends. After applying rules 1, 2, 3, and 4, take back all "permissible"
breaks that result in only one or two letters after the break, or that have only one letter
before it, or that have only one letter between prefix and suffix. (Thus, for example,
the suffix rule will break -ly, but this won't count in the final analysis; it does affect
the hyphenation algorithm, however, since the suffixes in words like "rationally" will
be found by repeated suffix removal.)

Also, take back any break leading to the .syllable -e, -Xe, or -XYe, where X and
Yare any two letters and where this e occurs at the end of the shortest subword
on which suffix removal.was tried in rule 2. (This rule avoids syllables with "silent
e". For example, we do not wish to hyphenate rid-d1e, proces-ses, was-tefu1,
arran-gement, themse 1-ves, 1ar-ge1y, and so on.) Similarly, final syllables of the
form -Xed or -XYed (except -ized) are also disregarded.

Example of hyphenation:

su-per-ca1ifragi1is-ticex-pia1ido-cious.

(This is a correct subset of the "official" syllabification specified by the coiners of this
word, namely su-per-ca1-i-frag-i 1-is-tic-ex-pi-a1-i-do-cious.)

Now here's the dictionary of words that should be handled separately, as mentioned
in rule 1. (When an asterisk appears, it means that this letter is checked too, in addition
to the first seven letters.)

First, we include the following words since they are exceptions to the suffix rules:

(-able)

(-dent)

con-tro1-1ab1e eq-uab1e in-sa-tiab1e ne-go-tiab1e
so-ciab1e turn-table un-con-tro11ab1e un-so-ciab1e
de-pend-ent in-de-pend-ent

(-ing)

(-ize)

(-late)
(-ment)
(-ness)
(-ogy)

Hyphenation

any-thing bal-ding dar-ling dump-ling err-ing eve-ning
every-thing far-thing found-ling ink-ling main-spring
nest-ling off-spring play-thing sap-ling shoe-string
sib-ling some-thing star-ling ster-ling un-err-ing
up-swing weak-ling year-ling
civ-i-lize crys-tal-lize im-mo-bi-lize me-ta-bo-lize
mo-bi-lize mo-nop-o-lize sta-bi-li*ze tan-ta-lize
un-civ-i-lized
pal-ate
in-clem-ent
bar-on-ess li-on-ess
eu-logy ped-a-gogy

(-scious) lus-cious
(-sphere) at-mos-phere
(-tal) met-al non-metal pet-al post-al rent-al
(-tion) cat-ion
(-ti ve)
(-ture)

com-bat-ive
stat-ure

Exceptions to the prefix rules:

(be-)
(com-)
(con-)
(equ i-)
(hand-)
On-)

beck-on bes-tial
com-a-tose come-back co-me-dian comp-troller
cone-flower co-nun-drum
equipped
handle-bar
inch-worm ink-blot inn-keeper

(inter-) in-te-rior
(mini-) min-is-ter min-Is-try
(non-) none-the-Iess
(quad-) qua-drille
(some-) som-er-sault
(super-) su-pe-rior
(un-) u-na-nim-ity u-nan-i-mous unc-tuous

Exceptions to the consonant rules:

bt: debt-or
ck: ac-know-ledge

183

184 Append~H

ct: de-duct-i*ble ex-act-i-tude in-ex-act-i-tude
pre-dict-*able re-spect-*able un-pre-dict-able vict-ual

dl: needle-work idler

ff: buff-er off-beat off-hand off-print off-shoot off-shore stiff-en

ft: left-ist left-over lift-off

fth: soft-hearted

gg: egg-nog egg-head
gn: cognac for-eign-er vignette

gsh: hogs-head

Id: child-ish eld-est gold-en hold-out hold-over hold-up

If: self-ish

11:" bu~l-ish crest-fallen dis-till-*ery fall-out lull-aby
roll-away sell-out wall-eye

1m: psalm-ist

Is: else-where false-hood

It: con-suIt-ant volt-age

Iv: re-solv-able re~volv-er solv-able un-solv-able

mb: beach-comber bomb-er climb-er plumb-er

mp: damp-en damp-est

nch: clinch-er launch-er lunch-eon ranch-er trench-ant

nc: an-nouncer bouncer fencer hence-forth mince-meat si-lencer

nd: bind-ery bound-ary com-mend-*a-*t*ory de-pend-able
ex-pend-able fiend-ish land-owner out-land-ish round-about
send-off stand-out un-der-stand-able

ng: change-over hang-out hang-over ha-rangue me-ringue
orange-ade tongue venge-ance

ns: sense-less

nt: ac-count-ant ant-acid ant-eater count-ess per-cent-*age
rep-re-sentative

nth: ant-hill pent-house

pt: ac-cept-ab!e ac-ceptor adapt-able adapt-er crypt-analysis
in-ter-ru*p*t-*i*ble

qu: an-tiq-uity ineq-uity iniq-uity liq-uefy liq-uid liq-ui-date
liq-ui-da-tion liq-uor pre-req-ui-site req-ui-si-tion
sUb-sequence u-biq-ui-tous

rb: ab-sorb-ent carb-on.herbal im-per-turb-able

rch: arch-ery arch-an-gel re-search-er un-search-able

Hyphenation

rd: ac-cord-ance board-er chordal hard-en hard-est haz-ard-ous
jeop-ard-ize re-corder stand-ard-ize stew-ard-ess yard-age

rf: surf-er

rg: morgue

r1: cur1-i-cue

rm: af-firm-a*t*i*ve con-form-*ity de-form-ity in-form-a*nt
non-con-form-ist

rn: cav-ern-ous dis-cern-ib1e mod-ern-ize turn-about turn-over
un-gov-ern-ab1e west-ern-ize

rp: harp-ist sharpen

rq: torque

rs: coars-en ir-re-vers-ib1e nurse-maid nurs-ery
re-hears-a1 re-vers-ib1e wors-en

rt: art-ist con-vert-ib1e court-yard fore-short-en heart-ache
heart-i1y short-en

rth: apart-heid court-house earth-en-ware north-east north-ern
port-hole

rv: nerv-ous ob-serv-a*b1e ob-server pre-serv-*a*t*i*ve serv-er
serv-ice-ab1e

sch: pre-school
sc: con-de-scend cre-scendo de-cre-scendo de-scend-ent de-scent

p1eb-i-scite re-scind sea-scape
sk: askance snake-skin whisk-er
sl: cole-slaw

sn: rattle-snake

ss: c1ass-ify class-room cross-over dis-miss-a1 ex-press-*i*b1e
im-pass-ab1e less-en pass-able toss-up un-c1ass-i-fied

185

st: ar-mi-stice astig-ma-tism astir astonish-ment blast-off
by-stand-er candle-stick cast-away cast-off con-test-ant
co-star de-test-ab1e di-gest-ib1e east-ern ex-ist-ence
fore-stall in-con-test-ab1e in-di-ges*t-*i*b1e
in-ex-haust-ib1e life-style lime-stone live-stock mile-stone
non-ex-ist-ent per-sist-ent pho-to-stat re-start-ed
re-state-ment re-store shy-ster side-step smoke-stack
sug-gest-*i*b1e thermo-stat waste-bas-ket waste-land

sth: mast-head post-hu-mous priest-hood
sw: side-swipe

tt: watt-meter

186 Appendix H

tw: be-tween

tz: kib-itzer
zz: buzz-er

Of course, this is not a complete list of exceptioris. But it does seem to cover all
words that have a reasonably high chance of being mis-hyphenated in 1E;X's output,
considering the fact that 'lEX usually finds a good way to break a paragraph without
any hyphenation at all.

The following words have been also been included in the special dictionary, because
they are common in the author's vocabulary, and because they need more hyphens than
'lEX would otherwise find:

al-go-rithm
bib-li-og-raphy
bi-no-mial
cen-ter
com-put-a*bil-ity
dec-la-ra-tion
de-gree

es-tab-lish
gen-er-ator
hap-hazard
neg-li-gible
pe-ri-odic
pOly-no-mial
pre-vious

prob-abil-i ty
prob-able
pro-ce-dure
pub-li-ca-tion
pub-l ish
re-place-ment
when-ever

Index 187

<I> Index
This index includes all control sequences known to 'lEX or defined in Appendix B,
and it also lists error messages that are mentioned outside of Chapt~r 27.

\A (circumflex), 38, 64, 132.
\a (Scandinavian accent), 38-39, 132.
Abbreviations, 49, 154.
\above (general fraction), 68, 134, 139.
Absolute value, 76, 84, 87.
\accent (nonstandard accent character), 36,

82, 132.
(accent), 123, 132, 143.
Accents, 8, 10, 35-36, 38-39, 44, 53-54, 123,

143.
in math formulas, 64, 132-133.
table, 38.

Acute accent, 8, 10, 35, 132.
\advcount (advance a counter), 60, Ill, 113,

120, 129, 137, 199.
\AE (.E), 37, 122.
\ae (<e), 37, 122, 148.
after, 56, 120, 129.
\aleph (N), 10, 179.
Alignment, 104-109, 117-118, 126-127, 135,

140, 144.
alignsize, 144.
\alpha (a),35,61, 132, 177.
(alt-mode) (AL T), 32, 165.
! Ambiguous ... , 134, 139.
\angle (L), 179.
Angle brackets, 41, 75, see also \langle,

\rangle.
Angstrom unit, 38-39.
Answers to the exercises, 148-151.
Apostrophe, 4.
\approx (~), 52, 61, 178.
Argument, 97.
Ascii, 168.
\Ascr (.A), 10, 177.
\ast (*), 178.
AT&T,108.
(atom), 84, 132.
\atop (ruleless fraction), 67, 71, 134, 139,

149.

\b (vector accent), 38, 64, 132.
Backslash, 7, 28.
Backspace, 45, see also (delete), Negative

glue, \spose, \unskip.
Badness, 47, 55, 58.
Bar accent, 38-39, 64, 132.
Baseline, 14-15, 42-45.
\baselineskip (normal vertical spacing be

tween baselines), 18, 58, 60, 100, 109,
112, 115, 118, 119, 127, 128, 136, 149,
153, 199.

Basic TEX format, 10, 19, 151-153.
basi c. TEX, 19, 151-153.
\beta ((3), 61, 132, 177.
\bf (boldface), 12, 153.
Bibliographic references, 15, 154.
\bigggl p (superlarge left parenthesis), 78,

153.
\bigggrp (superlarge right parenthesis), 78,

153.
\ b i gg 1 P (large left parenthesis), 77-78, 96,

149, 153.
\biggrp (large right parenthesis), 78, 96, 149,

153.
\biglp (largish left parenthesis), 78, 81-82,

97, 149, 153.
\bigrp (largish right parenthesis), 78, 81-82,

97, 149, 153.
Bin box, 82-85, 132-133, 176.
Binary operation, 55-56, 82-83, 96, 178.
Black box, 43.
\blacksl ug (I), 158, 167.
Blank delimiter, 75-77.
Blank line, 23, 28, 32.
Blank space character, 5, 8-9, 12, 17, 25, 28,

30-33, 38, 41, 61, 80, 98, 106, 114.
summary, 33.

\bot (...L), 179.
\botinsert (insertion at bottom of page),

52, 54, 57, 59, 118, 127, 167.

188 Appendix I

\botmark (current mark at bottom of page),
110-111, 117, 126, 135, 166, 199.

\botsklp (glue above botlnsert), 59,119,
128, 136.

Bound insertion, 127.
\box (\saved box), 101, 102, 115-116, 124,

133.
(box), 115, 124, 133.
Boxes, 41-46, 99-103.
\box 1 t, 10l.
Braces, variable-width horizontal, 103, 174.
Braces, variable-width vertical, 75, 174.
Breaking lists of lines into pages, 57-60.
Breaking math formulas, in text, 54-55, 84-

85, 120, 129.
in displays, 94-96.

Breaking paragraphs into lines, 25-26, 52-57,
71, 10l.

Breaks between pages, legal, 57.
Breaks in paragraph, feasible, 55.

legal, 54-55.
Breve accent, 38-39, 132.
\Bscr (~), 10, 177.
\bullet (•), 159, 178.

\c (cedilla accent), 23, 38-39, 132.
Calculus, 81-82.
Capacity of 'lEX, 143-144.
\ (carriage-return) , 12.
(carriage-return) (CR), 21, 28, 29, 32, 95, 165.
Case shifts, 199.
\cdot (.), 178.
\cdots (...), 86, 149, 152.
\cdotss (\cdots followed by space), 86-87,

152.
Cedilla accent, 23, 37-39.
\char (specified character number), 34, 73-

74, 79, 84, 116, 123, 132.
(char), 116.
Character categories, table, 28.
Character conversion in math mode, 35, 60,

176.
\chcode (change category code), 18, 32, 115,

119, 128, 131, 137, 141, 148, 151, 200.
\chi (X),4, 149,177.
\choose (binomial coefficient), 67-69, 149,

152.

\chop (change depth of box), 78, 150, 152.
\chpar (change 'lEX integer parameter), 56,

59, 85, 115, 119-120, 128-129, 137, 14l.
\cire (0), 178.
Circumflex accent, 38, 64, 132.
Close box, 82-84, 133, 176.
em (centimeter), 10, 40-4l.
cmathx, 103, 153, 174-175.
cmb10, 36, 153, 170.
cmilO, 74, 132, 172.
cmr10, 14, 26, 36, 42, 103, 153, 170.
cms10, 36, 42, 153, 170.
cmsslO, 36, 170.
cmsylO, 153, 173.
cmtilO, 74, 153, 172.
cmul0,172.
Colon, 48.
Colon-equal operator, 9l.
\comb (combinatorial formula), 64, 69, 134,

139.
Comma, 48, 71-72, 82,85.
Computer Modern fonts, 14, 170.
Conditional text, 111-114, 121, 130, 137, 140,

150.
Consonant, 18l.
Contents of this manual, table, 3.
Continued fractions, 69.
Control sequences, 8-12, 21, 27, 30-31, 33,

98, 114-115, 122, 131, 20l.
complete list, 187-197.
how to define, 96-99.
tracing, 147.

Control space, 8-9, 12, 33, 49, 81, 123, 133.
Conversion of characters in math mode, 35,

60, 176.
\copyright (©), 61, 179.
\cos (cosine operator), 72-73, 15l.
\cot (cotangent operator), 72, 15l.
\count (value of a counter), 34, 60, 111-113,

120, 129, 137, 199.
Counters, 111, 120, 129, 137, 199.
\cplle (centered pile), 89, 93, 152.
\cr (end of row or column to be aligned), 88-

89, 104-107, 117-118, 126-127, 135, 140,
144.

\cse (cosecant operator), 72, 151.
\Cscr (e), 177.

Index

\ctr (centerify), 88-89, 104-106, 151.
\ctrline (centered line), 15-16, 20-21, 26-

27, 50, 112, 151.
Cube root, 63.
Current font selections, 12-15, 18, 36, 73,

115, 118-119, 127-128, 118-119, 127-
128, 140, 145.

Current math fonts, 73-74, 118-119, 127-
128.

\dag (t), 61, 179.
Dangerous bend, 2, 47, 74.
Dash, 5-6, 20, 27, 29, 35, 54, 80.
\dashv (-1), 178.
dd (Didot point), 40.
\ddag (+), 61, 179.
\ddt (debugging aid), 121, 130, 137, 142.
\def (define a control sequence), 7, 16, 18,

33, 96-99, 112, 115, 118, 122, 127, 131,
136, 141, 143, 146, 151-153.

Definition of control sequences, see \def.
\deg (degree symbol), 154, 164.
(delete) (8S), 32, 165.
(delim), 75, 79.
\De I ta (Do), 177.
\del ta (6), 61, 177.
\Deltait (.d), 177.
Demerits, 55-56.
Denominator, 66, 134.
Depth, 41-45.

of completed page, 59.
depth,99.
\det (determinant operator), 72, 152.
Dick and Jane, 48.
Didot point, 40.
Digit-width space, 164, 165.
(dimen), 41, 141.
(dimenparam), 119, 128, 136, 199.
Dimension parameters, 119, 128, 136, 199.
Dimensions, 40-42, 199-200.
Discretionary hyphen, 26, 54-55, 124, 143.
Discretionary times sign, 55, 85, 134.
\dispaskip (glue above display following

short line), 92, 119, 128, 136, 153.
\dispbskip (glue below display following

short line), 92, 119, 128, 136, 153.
(display), 125, 130.

Display break penalty, 120, 129.
Display math mode, 50-52.

summary, 130-138.
Display style, 65-67, 92.
Displayed formulas, 58,91-96.

189

\dispskip (glue above and below displays),
92, 119, 128, 136, 153.

\dispstyle (display style), 68, 135.
\d i v (+), 178.
\dleft ([), 178.
\doteq (==), 10, 178.
Dotless letters, see \1, \j, \!it, \j it.
Dots, 85-87, 90-91.
! Double ... , 132, 140.
\down (l), 178.
dp (depth of saved box), 200.
\dright (]), 178.
\Dscr (9\), 177.
Dynamic programming, 55.

Editing on-line, 22, 147.
\ej ect (force page break and line break), 24,

54-55, 57, 84, 112, 117, 126, 135.
Ellipses (three dots), 49, 85-87, 90-91.
\else (begin false text of conditional input),

33, 111-114, 121, 130, 137, 140.
em (ern unit), 40.
Em-dash, 5-6, 27, 29, 80.
\emptyset (0), 179.
En-dash, 5-6, 17, 35, 148, 155.
\end (terminate 'lEX), 23, 52, 121, 140.
End of line, 28, 30-31, 33.
End o(page in input file, 32, 141.
End of paragraph, 23, 28, 30-32, 51, 57, 114,

125, 135, 146.
\ENDV, 118, 126-127.
\epsilon (t), 4, 61, 177.
\eqalign (align equations), 92-96, 107, 152.
\eqal1gnno (align numbered equations), 93-

94, 107, 152.
\eqno (displayed equation number), 91-94,

135-136.
Equation numbers, 91-94, 135.
\eqv (==), 88, 152.
Error messages, 187, see also Error recovery.

complete list, 139-146.

190 Appendix I

Error recovery, 21-27, 114-115, 122, 131,
138-148.

errors. tmp, 24, 26, 147.
Escape character, 7, 18, 28, 30-32.
Escape space, 8-9, 12, 33, 49, 81, 123, 133.
\Escr (8), 177.
\eta (f/), 177.
ex fonts, 73-74, 79, 118, 124, 125, 127, 134,

174-175.
Exception dictionary, 182-186.
Exclamation point. 48, 71, 82.
Exercises, 2.

answers, 148-151.
\exp (exponential operator), 72-73, 152.
expand, 100, 104, 115, 124, 133.
Expansion 'of macros, 98, 106-107, 147, 199.
Extension fonts, 73-74, 79, 118, 124, 125,

127, 134, 174-175.
Extensions to TEX, 117, 126, 135, 198, 199.
! Extra \right, 131, 140.
! Extra }, 115, 122, 131, 140.

Factorial, 82, 91.
Feasible breaks in paragraph, 55.
fil, see Ligatures.
File name, 25, 33, 121, 139.
\f i rstmark (first mark on page), 110-111,

117, 126, 135, 166, 199.
Floating insertion, 59, 118, 127.
fmems1ze, 144.
(font), 74, 118-119, 127-128, see also Font

codes.
Font codes, 13-14, 33, 141, 201.

table, 14.
Font definition, 12-15. 18, 36, 73-74, 115,

118-119, 127-128, 118-119, 127-128,
140, 145.

Font tables, 168-179.
Fonts, 12-15.
\footnote (insert footnote), 13, 164, 167.
Footnotes, 12-13, 164.
Footnotes, 164.
for, 56, 120, 129.
Foreign language characters and accents, 37-

39, 53-54.
(form-feed) (FF), 29, 32, 165.
\(form-feed), 12.

(format), 104-106.
(formula), 91, 125, 130.
Fractions, 64-69, 134.
\Fscr (CJ),17

\Gamma (r), 11, 61, 177.
\gamma (I), 11, 61, 177.
\Gammai t (r), 177.
\gcd (greatest common divisor operator), 72,

88, 152.
\gdef (global \de!), 18, 98, 112, 115, 118,

122, 127, 131, 136, 146, 199.
\glb (n), 17S.
Glue, 41, 45-50, 54, 57-59, 80-S1, 116, 125,

133, 199.
above and below displays, 92.
above and below insertions. 59.
at top of page, 59, 153. .
before and after formulas, 199.
between lines, see Interline glue.
between paragraphs, 57.
between words, see Variable space.
between aligned columns or rows, 105-109.
setting of, 46, 99-103.

Glue parameter definitions, 115, 119, 128,
136.

(glueparam), 119, 128, 136.
Grave accent, 38, 132, 148.
\grgr (»), 178.
Grouping, 13, 15-1S, 28, 62-63, 76, 84, 98,

115, 122.
within groups, 15-16.

\Gscr (CJ), 177.

\H (long Hungarian umlaut), 38, 132.
\hal ign (horizontal alignment), 52, 88-89,

92, 104-109, 117, 127, 136, 140.
! \hal1gn in display ... ,95, 140.
\hangi ndent (hanging indentation), 56, 101,

120, 129.
Hanging indentation, 56, 101, 120, 129.
hashsize, 144.
Hat accent, 38, 64, 132.
\hbox (horizontal boxing), 52, 73, 93, 99-

103, 105, 115, 124, 133, 145.
Height, 41-45.

of completed page, 59.

Index

height, 99.
\hf il (horizontal glue semi-fill), 201.
\hfill (horizontal glue fill), 50, 69, 109, 113,

125, 133, 145.
\hfllneg (negative \hfil), 201.
(hlist), 99, 121.
ht (height of saved box), 200.
Horizontal braces, 103.
Horizontal glue, 45-47, 50, 84, 125, 133.
Horizontal list, 43-45, 99, 121.
Horizontal mode, 23, 50-52, 57.

summary, 121-130.
Horizontal rule, 43, 99, 101, 102, 105, 108-

109, 115.
\hrule (horizontal rule), 43, 99, 102, 108,

115, 148.
\Hscr (%), 177.
\hsize (page width), 18, 20, 24-25, 50, 53,

56, 112-113, 119, 121, 128, 136, 150.
\hsk i p (horizontal glue), 47, 50, 84, 125, 133.
\hss (horizontal stretch and shrink), 201.
Hyphen, 5-6, 54, see also Discretionary

hyphen.
Hyphenation, 53-56, 180-186.
Hyphenation pen~lties, 54, 56, 120, 129.

\i (dotless i), 39.
idlevs, 144.
\i f (test equality of characters), 33, 111-114,

121, 130, 137, 140, 150.
\i feven (test parity of counter), 33, 111-

113, 121, 130, 137, 140, 150.
\ifhmode (test horizontal mode), 200.
\i fmmode (test math mode), 200.
\i fpos (test sign of counter), 200.
\i fvmode (test vertical mode), 200.
Ignored character, 28, 30-31.
Ignore space, 31, 106, 112, 124, 133.
\ i it (dotless i), 179.
! Illegal ... , 141, 146.
\lmag (~), 179.
in (inch), 40-41.
\in (E), 61, 178.
Indentation, 56, 116-117, see also Hanging

indentation.
\inf (infimum operator), 72, 152.
Infinite stretchability, 49-50.

191

\lnfty (00), 74, 179.
\input (read specified file), 8, 19, 24-25, 121.
Insertions, into manuscript, 22.

into pages, 59, 118, 127.
\int (f), 69, 81, 149, 179.
Integration, 69-70, 91.
\inter (n), 179.
Inter-word glue, see Variable space.
\interc (T), 178.
Interline glue, 45, 58, 100, 109, 115, ·199.
\iota ("), 177.
\Iscr (j), 177.
it fonts, 73-74, 125, 172.
\ i t (italic), 153.
Italic correction, 43, 124, 132, 134, 142, 149.
Italic fonts, 73-74, 125, 172.
Italic letters, 74.

\j (dotless j), 39.
\j it (dotless j), 179.
\join (V),179.
Jokes, 2.
\j par Uustification feasibility paratneter),

18, 25-26, 56, 120, 129, 143, 151.
\Jscr (1), 177.

\kappa (K,), 177.
Kerning, 6, 123.
Knuth, Donald E., 1, 10, 15, 155.
\Kscr (X), 177.

\1 (Polish accent), 38, 132, 148.
\Lambda (A), 177.
\lambda (X), 88, 177.
\Lambdai t (A), 177.
\langle ((), 75, 178.
Large delimiters, 74-79, 141.
Large operators, 70, 73, 77-78.
\lceil (r), 75, 178.
\ldots ('"), 49, 51, 86-87, 152.
\ldotsm (\ldots in multiplication), 86-87,

149, 152.
\ldotss (\ldots followed by space), 86-87,

96-97, 152.
Leaders, 102-103, 116, 125, 139, 150.
\leaders (leaders), 102-103, 116, 125, 139,

150.

192 Appendix I

\left (variable-size left delimiter), 75-79,
82, 88-89. 96, 131.

Left brace, 75, 79, 88.
\leftset ({ in set definition), 88, 152.
\leftv (I), 87, 90, 178.
\leftvv (II), 87, 178.
Letter, 28, 32.
(letter), 122, 131.
\lfloor (l), 75, 178.
\1 ft (leftify), 89-90, 151.
\lg (binary logarithm operator), 72. 151.
Liang, Frank M., 180.
Ligatures, 6, 10, 35, 123.
\11m (limit operator), 72-73, 151.
\liminf (inferior limit operator), 72, 151.
Limits to operators, 70-71, 73, 134.
\11mi tswi tch (change position of limits),

70, 134, 142, 151.
\1 imsup (superior limit operator), 72, 151.
Line break penalties, 54, 56, 120, 126, 129,

135.
Line breaking, 25-26, 52-57, 71, 101.
(line-feed) (LF), 32, 165.
\(line-feed), 12.
Line rules, 43, 99, 101, 102, 105, 108-109,

115, 124.
\11neski p (vertical glue between boxes with

distant baselines), 58, 100, 109, 112, 115,
119, 128, 136, 149, 153, 199.

\11neski plimi t (threshold that determines
when \lineskip begins), 199.

\In (natural logarithm operator), 72, 151.
\ 1 og (logarithm operator), 72-73, 151.
\lower (shift a box down), 102, 125, 133.
\lowercase (no caps), 199.
\lplle (left-justified pile), 90, 93, 152.
\Lser (L), 177.
\lser (i), 177.
\lsh (i), 178.
\lsls («), 178.
\lub (U), 178.

Macron accent, 38":'39, 64, 132.
Macros, definition of, see \def.

expansion of, 98, 106-107, 147, 199.
tracing, 147.
use of, 96-99, 115, 122, 131.

\mapsto (I----t), 61, 178.
Margins, see \hsize, \hangindent.
\mark (define a mark), 33, 110-112, 117, 141.
Marks, 110-112, 117, 126, 135.
Math formulas, breaking, 54-55, 84-85, 94-

96, 120, 129.
t-.fath formulas, how to type, 60-96.
Math mode, 33, 49, 50-52, 57.

character conversion in, 35, 60, 176.
summary, 130-138. .

\mathbi n (Bin box), 84, 132.
(mathchar), 131-132.
\ma the lose (Close box), 84, 132.
(mathcontrol), 132.
\mathex (define ex font), 74, 118, 127, 153.
(mathglue), 133.
\mathit (define it font), 74, 119, 128, 153.
\mathop (Op box), 84, 132.
\mathopen (Open box), 84, 132.
\mathpunet (Punct box). 84, 132.
\mathrel (ReI box), 84, 132.
\mathrm (define rm font), 74, 119, 128, 153.
\mathsurround (spaces around formulas),

199.
\mathsy (define sy font), 74, 119, 128, 153.
(mathstyle), 135.
Matrices, 88-91, 104.
\max (maximum operator), 72-73, 83, 151.
\maxdepth (maximum page depth), 18, 59-

60, 112-113, 119, 128, 136, 153.
\meet (A), 179.
memsize, 144.
Metric units, 40.
\mi n (minimum operator), 72, 83, 151.
minus, 47, 50.
Minus sign, 5-6, 36, 60.
! Missing ... , 21, 142.

Missing \er ... , 115, 122, 142.
MiSSing \right, 131, 142.
Missing $... ,135,142.
Missing {, 138, 142.
Missing }, 118, 127, 131, 142.

(mlist), 130.
mm (millimeter), 40.
\mod (modulus operator), 88, 152.
Modes, 23, 29, 50-52, 146.
\modop (mod operator), 88, 149, 152, 154.

Index

\moveleft (shift a box left), 102, 116.
\moveright (shift a box right), 102, 116.
\mp (=r=), 178.
\Mscr (.Ab), 149, 177.
\mu (J.L), 177.
\mun i on (l±J), 179.

\nabla (V'), 179.
Karrow margins, 26, 53.
Natural width of list, 46, 48, 101, 105.
Negative dimensions, 44-45.
Negative glue, 50, 81, 109.
\neqv (¢), 88, 152, 178.
nestsize, 144.
Kewspapers, 26.
\noal ign (disable alignment), 33, 93, 105,

107-108, ll8, 127.
\no i nden t (begin nonindented paragraph),

56, 112, 116.
(nonmathletter), 122.
\not (cancel relation), 152, 178.
\noti n (~), 178.
\Nscr (.N'), 177.
\nu (v), 177.
\null (empty bOJ!: of size zero), 59, 95-96,

107, 149, 152, 153.
(null) (NUL), 32, 165.
(number), 33, 34, 40-41.
Number theory formulas, 88, 154.
Numerator, 66, 134.

o vs. 0, 73, 81-82.
\0 (0), 37, 122, 148.
\0 (0), 37, 122.
Octal notation, 34.
\odi v (0), 178.
\odot (0), 178.
\odotprod (0), 179.
\OE (<E), 37, 122.
\oe (00), 37, 54, 122.
\oint (f), 179.
\Omega (n), 177.
\omega (w), 61, 177.
\Omegai t ({}), 177.
\omi nus (e), 178.
On-line editing, 22, 147.
Op box, 82-84, 132, 134, 142, 176.

Open box, 82-84, 133, 176.
\opl us (EB), 10, 178.
\oprod (®), 179.
(optional sign), 40.
Ord box, 82-84, 132, 176.
Organs, 29.
\Oscr (0), 177.
\osum (EB), 179.
Other character, 28, 32.
(otherchar), 28, 32, 122, 131.
\otimes (Q9), 178.

193

\output (define output routine), 18, 33, 59-
60, 98, 104, 109-ll4, 120, 129, 137, 141,
147, 153, 166.

Output routines, see \output.
\over (specify built-up fraction), 64, 82, 130,

134, 139, 149.
\overl1ne (put line over formula), 63, 67,

82, 132, 134.
Overfull box, 25-26, 143, 147.

\P (,,),61,179.
\page (completed page), 60, 102, Ill, ll3,

115-116, 124, 133, 143.
Page break, 57-60, 201.
Page break penalties, 58-59, 117, 120, 129.
Page building, 57-60.
Page numbers, 59-60, 111-113.
par (dimen). 33, 101, 115, 124, 133.
par size, 167.
\par (end of paragraph), 23, 28, 30-32, 51,

57, 114, 125, 135, 146.
Paragraph, beginning of, 56, 116-117.

ending of, 201, see \par.
Parameter, 97.
Parameter text, 97-98.
Parameters to 'lEX, see \chpar, Glue

parameters, Dimension parameters, Size
parameters.

Parentheses, 42, 75. .
\parindent (amount of indentation at

beginning of paragraph), 18, 56, ll7, 119,
128, 136, 153.

parsize, 144.
\parskip (additional glue between para

graphs), 57, ll6, 119, 128, 136, 153.
\partial (IJ), 149, 179.

194

pc (pica), 40.
Penalties, 27, 54-59, 84, 105, 107, 117, 120,

126, 129, 135.
hyphenation, 54, 56, 120, 129.

\penal ty (line or page break penalty), 27,
54-57,84,107,117,126,135.

Period, 48-49, 71-72, 82.
\perp (..L), 178.
\Ph i (cP), 177.
\phi (<p), 61, 177.
\Phi it (cP), 177.
\Pi (II), 177.
\pi (7r), 52, 149, 177.
Pica, 40.
\Piit (II), 177.
plUS, 47, 50.
\pm (±), 178.
Point, 40-41.
Polish crossed I and L, 38-39.
\Pr (probability operator), 72, 152.
Preamble to an alignment, 104-109.
\prec (-<), 178.
\preceq (::5), 178.
Pretzels, 79.
\prime ('),63, 179.
\prod (II), 179.
Proper names, 53.
\Pscr (".P), 149, 177.
\Psi (W), 177.
\psi (¢), 177.
\Ps 11 t (tV), 177.
pt (point), 40, 78, 141.
Punct box, 82-84, 133, 176.
Punctuation marks, 48, 53.

in math formulas, 71-72.

\qquad (double quad space), 80, 89, 152.
\Qscr ((;l), 177.
\quad (quad space), 80-81, 88-89, 123, 133.
Quad middle, 57.
Quads, 40, 80.
Question mark, 48, 71.
Quotation marks, 4-7, 20, 35, 48.

Appendix I

\ragged (degree of raggedness), 25-26, 56,
120, 129, 151.

Ragged right margins, 26, 56.
\rai se (shift a box up), 63, 102, 125, 133,

139.
\rangl e ()), 75, 178.
\rce 11 (1), 75, 178.
\real (!R), 179.
Recovery from errors, 21-27, 114-115, 122,

131, 138-148.
Reference point, 42-45.
ReI box, 82-85, 133, 176.
Relations, 55-56, 82-83, 96, 178.
\rel v (I), 87-88, 178.
\relvv (II),87,178.
Restricted horizontal mode, 50, 52.

summary, 121-130.
Restricted vertical mode, 33, 50, 52.

summary, 114-121.
Result text, 97-99.
\rf I oor (J), 75, 178.
\rho (p), 177.
\right (variable-size right delimiter), 75-79,

82, 88-89, 96, 131.
Right brace, 88.
Right justification, 50, 151.
\rightset (} in set definition), 88, 152.
\rightv (I), 87, 90, 178.
\r1ghtvv (\I), 87, 178.
\r j ustl1 ne (right justify a line), 151.
rm fonts, 73-74, 125, 170.
\rm (roman), 12, 153.
Roman fonts, 170.
Roman letters in formulas, 72-74.
Roman numerals, 111.
Roots, 63.
\rpile (right-justified pile), 90, 152.
\Rscr (~), 177.
\rsh (r), 178.
\rslash (\),178.
\rt (rightify), 89, 151.
Rule box (line rule), 43, 99, 101, 102, 105,

108-109, 115, 124.
Rulers, 41.
Runaway argument, 141.
Running headline, 112, 155.
Running 'lEX, 18-27.

Index

\s (tilde), 38, 64, 132.
\save (save a box), 101, 113-114, 116, 125,

133, 139.
savesize, 144.
Scandinavian circle accent, 38-39, 132.
Script letters, 10, 177.
Script size, 65, 74.
Script style, 65-67.
Scriptscript size, 66, 74.
Scriptscript style, 65-67.
\scriptscriptstyle (scriptscript style),

63, 68, 135.
\scriptstyle (script style), 68,71,135,149.
\sec (secant operator), 72, 151.
\section (§), 61, 179.
Semicolon, 48" 71, 82.
\setcount (set a counter), 111, 120, 129, 137.
Sets in math, 61, 88.
Setting glue, 46, 99-103.
Shifted boxes, 102, 116, 125, 133.
Shrink component of glue, 45-50, 55, 58, 101.
\Sigma (}:), 177.
\s igma (0), 177.
\Sigmai t (E), 177.
\s imeq (:::::), 178.
\s i n (sine operator), 72-73, 151.
size, 33, 100, 104, 115, 124, 133.
\s 1 (slanted roman), 12, 17, 153.
Slanted type, 157.
Slash, 36, 82.
Slavic hacek accent, 38, 132.
\small int (J), 179.
Space, see Blank space character, Glue,

Variable space.
(space), 114, 121, 123, 124, 131.
Space component of glue, 45-50.
Space factor, 48, 53.
Spacing in math formulas, 79-84, 87-88, 200.

tables, 81, 83.
(spec), 33, 115, 124, 133.
\spose (superpose), 39, 63, 108-109, 152.
\sqrt (square root), 63, 67, 74-75, 78, 81-

82, 132, 134.
\sqsub (b), 1.78.
Square root, see \sqrt.
\squnion (U), 179.
\ss (f3), 37, 122, 148.

\Sscr (1), 177.
stacks i ze, 144.
Stanford conventions, 19, 24, 198.
States, 29-33.
\sterling (£), 61, 179.
Stopping 'lEX, 22, 121.
Stretch component of glue, 45-50, 55.

infinite, 49-50.
stringsize, 144.
Styles of math setting, 65-67, 130, 135.
SUA! code, 18, 35, 169.
Subformula, 82, 130-131.
Subscript, 62-63, 66, 84, 132, 134, 140.
\subset (~), 178.
\succ (>-), 178.
\succeq (;:::), 178.
\sum (E), 64, 69, 77-78, 96, 149, 179.
Summation, 69-71, 91.

195

\sup (supremum operator), 72, 152.
Superposition, 63, 101, 108-109, 152.
Superscripts, 62-63, 66, 78, 84, 132, 134, 140.
\supset (~), 178.
\surd (V), 179.
sy fonts, 73-74, 79, 125, 173.
Symbol fonts, 73-74, 79, 125, 173.

\t (tie), 38, 132, 148.
(tab) (TAB), 32, 165.
\(tab), 12.
\ tabski p (glue in alignments), 18, 105-109,

118, 119, 127, 128, 136.
\tan (tangent operator), 72, 151.
\tau (T), 4, 177.
\TEX (TEX logo), 9,17.
1EX, meaning of, 4.
1EX logo, 9, 17, 44.
Text size, 66, 74.
Text style, 65-67.
\textindent (insert text into paragraph

indent), 159, 165.
\textstyle (text style), 68, 135.
. TFX, 198.
Theorems, 157-158.
! There' s no ... , 117, 126, 135, 144.
\Theta (e), 177.
\theta (()), 61, 73, 177.
\Thetait (e), 177.

196 Appendix I

Thick space, 80-84.
Thin space, 7, 71, 80-84, 88, 133, 151-152.
Three-column format, 113-114.
Three dots, 85-87, 90-91.
Tie accent, 38, 132, 148.
Tilde accent, 38, 64, 132.
\times (X), 178.
to (dimen), 33, 100-101, 104, 115, 124, 133,

145.
to size, 100, 104, 115, 124, 133.
Tokens, 22, 97-98, 146.
! Too many ... , 115, 122, 145.
\top (T), 179.
\topbase line (normal position of top

baseline on page), 18, 59, 119, 128, 136,
153.

\topinsert (insertion at top of page), 52,
54,57, 59, 118, 127.

\topmark (current mark at top of page), 110-
112, 117, 126, 135, 166, 199.

\topskip (glue below \topinsert), 59, 119,
128, 136.

\trace (combination of tracing facilities), 18,
98, 120, 121, 129, 130, 137, 142, 147, 151.

Tracing, 147.
Translation of characters in math mode, 35,

o 60, 176.
Truth, 2.
\Tscr (~), 177.
Two-column format, 113-114.
\two11ne (two line display), 94-96, 152.
Typewriter fonts, 171.
Typewriter type used in this manual,S.

\u (breve), 38-39, 132.
Umlaut accent, 8, 23, 35, 38, 132, 148.
! Undef i ned ... , 21, 114, 122, 131; 145.
\underli ne (put line under formula), 11, 63,

67, 82, 132, 134.
Underlining, 162, see also \underli ne.
\union (U), 179.
Units of measure, 33, 40-41, 199-200.
\unskip (retract a space), 199.
\up (i), 178.
\uplus (W),178.
\uppercase (all caps), 199.
\Upsilon (1),177.

\upsilon (1)), 177.
\Upsilon1 t (r), 177.
\Uscr (CU), 177.
! Use of ... , 97, 145.

\v (Slavic hacek accent), 38, 132.
\valign (vertical alignment), 52, 104, 109,

115, 118, 126.
Variable-size delimiters, 74-79.
Variable space, 26, 48.
\varomega (147),61, 177.
\varph1 (r.p), 61, 177.
varsize, 144.
\vartheta (iJ),61, 177.
\varuni t (variable unit), 199.
\vbox (vertical boxing), 52, 100-103, 107,

112-113, 115, 124, 133.
\vcenter (vertically center a (vlist) box), 88-

89, 93, 102, 107, 135.
\vdash (r-), 178.
\ vdots (vertical ellipsis), 90-91, 152.
Vector, 85-86, 91, 96-97.
Vector accent, 38, 64, 132.
Vertical glue, 20, 40, 47, 58, 105, 112, 116,

146.
Vertical lines in math, 75, 87.
Vertical list, 43-45, 114.
Vertical mode, 33, 50-52, 57.

summary, 114-121.
Vertical rules, 43, 99, 101, 102, 108-109, 124.
\(vertical-tab), 12.
(vertical-tab) (VT), 32, 165.
\ vf 11 (vertical glue semi-fill), 201.
\vfi 11 (vertical glue fill), 23, 50, 52, 58, 112-

o 113, 116.
\vf11neg (negative \vfll, 201.
(vlist), 100, 105, 114.
Vowel, 181.
\vrule (vertical rule), 43,99, 108, 124, 148.
\Vscr (r),177.
\vs1ze (page height), 18, 59, 112-113, 119,

121, 128, 136.
\vsk1p (vertical glue), 20, 40, 47, 58, 112,

116, 146.
\ vss (vertical stretch and shrink), 201.
\vtop (make (vlist) box using top baseline),

102, 135.
vu (variable unit), 199.

Index

Warn i ng: ... , 145, 198.
wd (width of saved box), 200.
Widow lines, penalty for, 58-59, 120, 129.
Width, 41-45.
width,99.
\wp (~), li9.
\Wscr ('It'), 177.

\x (extension), 117,126,135.
\xdef (expanded definition), 199.
XGP, 20, 24, 198.
xgp, 198.
\Xi (::), 177.
\xi (E),177.
\Xiit (E), 177.
\Xscr (93), 177.
\xsk i p (additional space in text), 47, 158-

160, 165.

! You can' t ... , 121, 130, 138, 146.
\Yscr (~),177.
\yskip (extra space between paragraphs),

47, 159, 165.
\yyskip (double \yskip), 47, 159, 165.

\zeta (~), Ii7.
\Zscr (;Z;), 10, 177.

7-bit character codes, 32, 34-35; 122, 168-
173.

\9 (digit-width space), 164, 165.
9-bit'character codes, 74, 79, 132, ~41, 176.

(), (Sp), 32, 165.
U,5.
\U, 8-9, 12, 33, 49, 81, 123, 133.
\! (negative thin space or ignore space), 31,

81, 106, 112, 124, 133.
\. (umlaut), 8, 23, 35, 38, 132, 148.
#, 28, 97-98, 104-109, 142.
\# (#), 179.
tt, 97-99.
$, 28, 29, 51, 60, 66, 125, 131.
\$ ($), 61, 108, 179.
$$, 33, 51-52, 66, 125-126.
~, 28,34.
\~ (%), 34, 151.

\. (grave accent), 38, 132, 148.
, (octal number), 34.
\' (acute accent), 8, 10, 38, 132.
* (discretionary X), 55, 84, 85, 134.

197

\. (thin space), 7, 81-84, 88, 133, 151-152.
-, 36, 123.
\- (discretionary hyphen), 26, 54, 124.
I, 36, 82.
\1 (italic correction), 43, 124, 142.
\,7,28.
\: (select current font), 12-15, 18, 36, 118-

119, 127-128, 136.
\; (thick space), 81, 83-84, 133.
\< (negative op space), 81, 133, 152.
\~ (negative conditional thin space), 81, 133.
\= (macron), 38-39, 64, 132.
\~ (conditional thin space), 81, 83, 133, 152.
\> (op space), 81, 83, 133.
\? (negative thick space), 81, 133.
{, 15-16, 28, 62-63, 115, 121, 122, 131.
\{ ({), 75, 90, 178.
}, 15-16, 28, 62-63, 115, 121, 122, 131, 141.
\} (}), 75, 178.
T, 28, 62-63, 70, 132, 140.
\T (n), 178.
J., 28, 62-63, 70, 73, 132, 140.
\J. (U), 178.
+-, 179.
\+- (~), 10, 178.
-+, 176.
\-+ (=), 178.
\++ (~), 178.
\Q (@), 179.
a,35.
\ I (II), 75, 179.
8, 28, 88-89, 104-108, 117-118, 126-127, 135,

144.
... , 49, 85-87, 90-91.

198 Appendix S

<S> Special notes about using 1E;X at Stanford

(1) The standard 'lEX program that you get by typing "r tex" requires that.
fonts 0, a, d, f, g, j, 1, n, q, u, x, z, and? be reserved for the fonts declared
in Appendix B. (The reason is that the system program already has the font
information for these fonts in its memory; this avoids making 1EX reload thirteen
separate font information files each time.)

(2) The standard 'lEX program produces output for the XGP. To produce output
for the Alphatype (when it is available) we will use another program "texa".

(3) You can type "xgp" before a unit of measure, to avoid the expansion factor.
For example, "\hsize 3 xgpin" gives 3 X 200 pixels, which equals 3 inches
(more or ~ess) on our XGP.

(4) The extension ". TEX" is assumed to apply to \ in pu t file names if you do
not specify the extension. If 'lEX can't find the file in your area, it tries system
area [1,3] before giving up. (File basic. TEX is on this area.) Your output file
will have the same name as the first file you \i nput, except that the extension
will be changed to ". XGP" and the file will always be in your own area.

(5) The message "Warn i ng: page 1 imi ts exceeded!" is given when you try
to output something below the place where the output page is cut, i.e., more than
one xgp inch below the bottom of the box output by the \output routine.

~ (6) If a font you are using isn't on area [XGP I SYS] , you must mention the area
"3i:::' explicitly. 'IF){ ignores the extension on font file nameSj the XGP server will assume
that the extension is ". FNT", and 'IF){ assumes that the font information is on another
file with the extension ". TFX" .

~ (7) Documentation for the 'lEX processor appears in the file TEXSYS. SA I on
"3i:::' j(' area [TEX I DEK] , and in several other files mentioned there.

~ (8) The implementation of 'IF){ is explicitly designed so that extensions
"3i:::'j('"j('" can be written in SAIL and incorporated into your private version of the

system. You write a mod ule called TEXEXT . SA I and this replaces the dummy extension
module that is ordinarily loaded with the 'lEX processor.

Recent exlensions w 'lEX 199

<x> Recent extensions to 'lEX
Stop the presses! The following features were added to 'lEX just before this manual
was printed:

1. Several new (dimenparam)s have joined \hsize, \vsize, \topbase1 ine,
etc., namely \1 i nesk ip1 imi t, \mathsurround, and \varun i t. By typing
"\lineskip1imit (dimen)" you specify a dimension p such that \lineskip
glue is used as the interline glue if and only if x - h - d < p, in the notation
of Chapter 15. By typing U\mathsurround (dimen)" you specify an amount
of blank space to be inserted at the left and right of any formula embedded in
text (i.e., formulas delimited by $ and $). By typing U\varun it (dimen)" you
specify the current value of a variable-size unit; the code vu denotes such relative
units in a (dimen) specification. For example, after you define U\ varun it 2pt",
a (dim en) of 7vu would stand for 14 points. When 'lEX begins, the values of
\lineskip1imit, \mathsurround, and \varunit are Opt, opt, and 1pt,
respectively.

2. There is a new option to \advcount: If you type U\advcount (digit) by
(number)", the specified counter is increased by the specified number. (When the
"by" option is omitted, the counter is increased by plus-or-minus one as explained
before.) For example, U\advcountO by -\count1" subtracts counter 1 from
counter O.

3. The control sequence \unsk i p can be used in horizontal mode (or restricted
horizontal mode) to delete one glob of glue, if this glue was the last item added to
the horizontal list. The main use of this is to remove an unwanted space that may
have just appeared. For example, in a macro expansion the string u#1 \unskip"
denotes parameter #1 with a final blank space (or other glue) removed, if #1 ends
with a blank space (or other glue).

4. Typ,ing U\uppercase{(token list)}" in horizontal mode will change all lower
case letters of the token list into upper case. (But not the letters of control
sequences.) Similarly, U\lowercase{(token list)}" changes upper-case letters
into lower case.

5. Typing U\xdef(control sequence){(result text)}" is just like U\gdef(control
sequence){(result text)}" except that definitions in the result text are expanded.
For example, U\xdef\z{\z\y}" will append the current result text of macro
\y to the current result text of macro \z. You can also use \xdef to expand
\counts (as well as \topmarks, etc., in \output routines).

200 Appendix X

6. The new control sequence \ifpos is analogous to \ifeven; the \else code
is evaluated only if the specified counter is zero or negative. For example, you
can use \i fpos to test if a counter is zero in the following way:

\def\neg#1{\setcount#1-\count#1}
\def\ifzero#1#2\else#3{\ifpos#1{#3}\else{\neg#1

\ifpos#1{\neg#1 #3}\else{\neg#1 #2}}}

7. \chcode has been extended to give you the opportunity to change 'lEX's
math mode conversion (Appendix FS). Type

\chcode (ascii code plus '200)+-" (type)(char)

where (type) is 0, 1, 2, 3, 4, 5, 6 for Ord, Op, Bin, ReI, Open, Close, Punct,
respectively, and (char) is the three-octal-digit code. For example, a colon (ascii
code '072) is normally treated by 'lEX as Ord '072, according to Appendix FS.
It turns out this is usually a mistake in computer science papers, it should
rather be Rei '072 (treated as a relation box with respect to spacing in formulas,
see Chapter IS.4). You can get this by typing "\chcode '272+-' 3072". Then
formulas like "x := x + I" and "/: X -+ Y" will come out properly.

S. Three new units of measure are allowed: wd(digit), ht(digit), dp(digit},
denoting the width, height, and depth of a saved box. For example, if you type
"\save5\hbox{k}\hbox to 2wd5{}" you get an empty box that is twice the
width of the letter k in the current font.

9. You can use a single letter where 'IE1C expects a (number); the result is the
ascii code of that letter. For example, the definition of \max in Appendix B
would now more properly be

\def\max{\mathop{\char m \char a \char x}}

This works only for letters (characters of type 11, see Chapter 7).

10. The new control sequences \i fvmode, \i fhmode, \i fmmode (analogous to
other \i f'S) select text based on the current mode.

Recent extensions to TEX 201

11. The new control sequences \hf iI, \hf i I neg, \hss are short for \hsk i p Opt
plus 100000pt, \hskip Opt plus -100000pt, \hskip Opt plus 100000pt
minus 100000pt, respectively, and they take less 'lEX memory space. The
vertical analogs are \ vf iI, \ vf i In eg, and \ vs s.

Examples of use:

\vfil\penaltyO\vfilneg

specifies an optional page break, with a "short" page if the break occurs;

\penalty1000\hfilneg\U

at the end of a paragraph will force the last line of the paragraph to be right
justified (it cancels the paragraph-fill glue supplied automatically by W).
12. Control sequences of any length are now remembered in full; the seven-letter
truncation mentioned in Chapter 2 no longer happens.

PART 3

METAFONT
a system for alphabet design

METAFONT
a system for alphabet design

GENERATION OF TYPEFACES by mathematical means was first tried in the
fifteenth century; it became popular in the sixteenth and seventeenth cen

turies; and it was abandoned (for good reason) during the eighteenth century.
Perhaps the twentieth century will turn out to be the right time for this idea to
make a comeba,ck, now that mathematics has advanced and computers are able
to do the calculations.

Modern printing equipment based on raster lines-in which metal "type" has
been replaced by purely combinatorial patterns of zeros and ones that specify
the desired position of ink in a discrete way-makes mathematics and computer
science increasingly relevant to printing. We now have the ability to give a com
pletely precise definition of letter shapes that will produce essentially equivalent
results on all raster-based machines. Furrthermore it is possible to define infinitely
many styles of type at once; computers can "draw" new fonts of characters in
seconds, so that a designer is able to perform valuable experiments that were
previously unthinkable.

METAFONT is a system for the design of alphabets suited to raster-based
devices that print or display text. The characters you are reading were all designed
with METAFONT, in a completely precise way; and they were developed rather
hastily by the author of the system, who is a rank amateur at such things. It
seems clear that further work with METAFONT has the potential of producing
typefaces of real beauty, so this manual has been written for people who would
like to help advance the art of mathematical type design.

2 Preface

A METAFONT user writes a "program" for each letter or other symbol that
is desired. Ideally the programs will be expressed in terms of variable parameters,
so that a wide variety of typefaces can be obtained, simply by changing the
parameters; but METAFONT can also be used to define a single solitary font, or
even a single character, if anybody really wants to.

It is harder to write a METAFONT program than to draw a character with pen
and ink, but once the program has been written you can easily "parameterize"
it so that the letter shapes will adapt themselves to different specifications. And
it is easier to write a METAFONT program than to draw a character ten times.
Therefore METAFONT is usually used to provide an entire family of related fonts.
By varying the programs and the parameters, you will be able to determine the
most pleasing settings.

METAFONT programs are expressed in a declarative algebraic language that
is rather different from ordinary computer languages, since it has been developed
especially for the problems of type design. In this language you explain where the
major components of a desired shape are located, and you specify how the shape
is to be drawn using "pens" and "erasers." One of the advantages of METAFONT
is that it provides a discipline according to which the principles of a particular
alphabet design are stated explicitly-the underlying intelligence does not remain
hidden in the mind of the designer, it is spelled out in the programs. Thus it is
comparatively easy to obtain consistency where consistency is desirable, and to
extend a font to new symbols that are compatible with the existing ones.

This manual is not a textbook about mathematics or about computers. But if
you know the rudiments of those subjects (contemporary high school mathematics,
together with the knowledge of how to use the text editor on your computer),
you should be able to use METAFONT with little difficulty after reading what
follows. Some parts of the manual are more obscure than others, however, since
the author has tried to satisfy experienced METAFONTers as well as beginners
and casual users with a single manual. Therefore a special symbol has been used
to warn about esoterica: When you see the sign

at the beginning of a paragraph, watch out for a "dangerous bend" in the train
of thought-don't read such a paragraph unless you need to. You will be able to

Table 01 Contents 3

use METAFONT reasonably well, even to design characters like the dangerous
bend symbol itself, without reading the fine print in such advanced sections.

Computer system manuals usually make dull reading, but take heart: This
one contains JOKES every once in a while, so you might actually enjoy reading it.
(Most of the jokes can only be appreciated properly if you understand a technical
point that is being made, however-so read carefully.)

In order to help you internalize what you're reading, occasional EXERCISES

are sprinkled through this manual. It is generally intended that every reader
should try every exercise, except for the exercises that appear in the "dangerous
bend" areas. If you can't solve the problem, you can always look at the answer
pages at the end of the manual. But please, try first to solve it by yourself; then
you'll learn more and you'll learn faster. Furthermore, if you think you do know
the answer to an exercise, you should turn to the official answer (in Appendix A)
and check it out just to make sure.

CONTENTS

1. The basics 4
2. Curves 8
3. Pens and erasers 22
4. Running METAFONT 29
5. Variables, expressions, and equations 39
6. Filling in between curves 46
7. Discreteness and discretion 51
8. Subroutines 55
9. Summary of the language 61

10. Recovery from errors 69
A. Answers to all the exercises 81
E. Example of a font definition 82
F. Font information for ~ 95
I. Index _______________________ 102

4 Chapter 1

<1> The basics

To define a shape using METAFONT, you don't draw it; you explain how to
draw it. Explanation is generally harder than doing-for example, it's much
easier to walk than to teach a robot how to walk-but the METAFONT language
is intended to make the job of explanation relatively painless. Once you have
explained how to draw some shape in a sufficiently general manner, the same
explanation will work for related shapes, in different circumstances; so the time
spent in formulating a precise explanation turns out to be worth it. The "META
" of "METAFONT" is meant to indicate the fact that a general explanation of
how to draw a font of characters will transcend any particular set of drawings
for those characters.

To explain how to draw a shape, we need a precise way to specify various key
points of that shape. METAFONT uses standard Cartesian coordinates for this
purpose [following Rene Descartes, whose revolutionary work La geometrie in
1637 marked the beginning of the application of algebraic methods to geometric
problems]: The location of a point is defined by specifying its x coordinate, which
is the number of units to the right of some reference point, and its Y coordinate,
which is the number of units upwards from the reference point.

For example, the six points shown in Fig. 1-1 have the following x and Y
coordinates:

(XlJ Yl) = (0, 100);

(X4,Y4) = (0, 0);
(X2,Y2) = (100,100);

(xs, Ys) = (100, 0);

(X3, Y3) = (200, 100);

(~, 116) = (200, 0).

These six points will be used in several examples that follow.
All points in METAFONT programs are given an identifying number, which

should be a positive integer (or zero). The x and Y coordinates of each point are
specified by so-called x-variables and y-variables; for example, "X2" and "1J2" are
the coordinates of point 2.

In a typical ~pplication of METAFONT, you prepare a rough sketch of the
shape you plan to define, on a piece of graph paper, and you label the key points
on that sketch with any convenient numbers. Then you write a METAFONT
program that explains (i) how to figure out the coordinates of those key points,
and (ii) how to draw the desired lines and curves between those points.

METAFONT programs for individual characters consist of a bunch of "state
ments" separated by semicolons and ending with a period. The most common

The basics 5

! ~ ~

Fig. 1-1. Six points that will be used
in several examples of this chapter and
the next.

-: ~ £?

form of statement is an equation that expresses one or more algebraic relationships
between variables. For example, consider the equations

Xl = X4 = Y4 = Ys = Y6 = 0;

X2 = Xs = Yl = Y2 = Y3 = 100;

X3 = X() = 200;

these suffice to define the six points of Fig. 1-1.
Points are rarely specified in terms of fixed numbers like 100, however, since

we will see later that this means a distance of 100 units on the square grid or
"raster" that METAFONT works with. An alphabet defined in such absolute
terms would come out looking very tiny on high-resolution machines but very
large on machines with only a few raster units per inch. It is clearly better to
write something like this:

Xl = X4 = 0; X2 = Xs = d; X3 = X() = 2d;

Yl = Y2 = Y3 = h; Y4 = Ys = 116 = 0;

the auxiliary variables hand d, which we can assume have been defined at the
very beginning of our METAFONT specifications, can readily be adjusted to give
any desired scaling, without changing the rest of the program.

There are lots of other ways to specify the coordinates of those six points.
For example, the equation "X3 = X() =2d" could have been replaced by "X3 =
X() = X2 + d", or even by an implicit formula such as

The latter formula states that the horizontal distance from point 3 to point 2 is
the same as from point 6 to point 5 and from point 2 to point 1. METAFONT

6 Chapter 1

Fig. 1-2. A straight line drawn by
METAFONT with a circular pen.

will solve such implicit equations as long as they remain linear; further details
about equations are discussed in Chapter 5.

Of course there's no point in being able to define points unless there is some
thing you can do with them. In particular, we want to be able to draw a straight
line from one point to another. METAFONT uses "pens" to draw lines, and in
our first examples we shall be using a circular pen that is nine raster units in
diameter. We can write, for example,

cpen; 9 draw 1 .. 6;

these statements instruct METAFONT to take a circular pen ("cpen") of width 9
and to draw a straight line from point 1 to point 6, producing Fig. 1-2. We get
to Fig. 1-3 after the subsequent statements

draw 2 .. 5; draw 3 .. 4;

note that it is not necessary to respecify the "cpen" or the "9" when the pen does
not change.

If Fig. 1-3 were to be scaled in such a way that 100 raster units came out
exactly equal to the height of the letters in this paragraph, the character we have

Fig. 1-3. After two more lines we ob
tain a design something like the Union
Jack.

The basics 7

drawn would be ">1<". Just for fun, let's try to typeset ten of them in a row:
./T'............,"""'~",.................,I'-"~",..... __ "'""""""""". How easy it is to do this!*

The most important thing to notice about Fig. 1-3 is that the center of the
pen goes from point to point when drawing a line. For example, points 1 and 6
do not appear at the edge of the line we have drawn from 1 to 6; they appear
in the middle of the starting and stopping positions. In other words, we did not
describe the boundary of the character, we described the pen motion. This makes
it easy to do things like switch to a "boldface" >1<, namely to a >1<, merely by
using a cpen of width 15 instead of width 9.

Pen widths are usually specified by so-called w-variables, which are somewhat
analogous to x-variables and y-variables. For example, the normal procedure
would be to define WI = 9 at the beginning of our program, then to write

cpen; WI draw 1 .. 6; draw 2 .. 5; draw 3 .. 4;

by changing WI to 15 we would then get the boldface symbol without changing
the rest of the program.

Since METAFONT draws things by describing the motion of a pen's center,
it is desirable to have a way to specify the points so· that the edge of the pen will
be at a known place. For example, our character" >K" actually extends slightly
below the baseline (y = 0) of normal lines of type, because the pen of width 9
extends 4 units below the baseline when the center of the pen is on the baseline.
And the boldface >I< goes down even further. The remedy for this is to define
Y4 by using a special "bot" notation, e.g.,

botIY4 = 0,

which means that the bottom of the pen will be· at 0 when the pen of width
w is at point 4 (The "1" in "bot" refers to the "1" in "w'" thus the bot I . I I , ,
notation is meaningful only when the corresponding w-variable has a definite

*Now that authors have for the first time the power to invent new symbols with great ease, and
to have those characters printed in their manuscripts on a wide variety of typesetting devices,
we have to face the question of how much experimentation is desirable. Will font freaks abuse
this toy by overdoing it? Is it wise to introduce new symbols by the thousands? Such questions
are beyond the scope of this manual; but it is easy to imagine an epidemic of fontomania
occurring, once people realize how much fun it is to design their own characters, and it may
be necessary to perform fontal lobotomies.

8 Cha.pter 1

value.) Similarly,
tOPIYI = 100

would say that the top of the pen will be at 100 when the pen of width WI is at
point 1.

Using these ideas, we can revise our example program to obtain the following
statements (assuming that h, d, and WI have already been defined and that the
character's height and width have been set to hand 2d, respecti'vely):

Xl = X4 = 0; X2 = Xs = d; X3 = X{) = 2d;

YI = Y2 = Y3; Y4 = Y5 = ~;
tOPIYI = h; botlY4 = 0;

cpen; WI draw 1 .. 6; draw 2 .. 5; draw 3 .. 4.

This program gives the characters >K and >K when WI = 9 and WI = 15,
respectively; close inspection reveals that these characters just touch the baseline,
and they are exactly as tall as an "h".

~Exercise 1.1: Ten of the above characters will result in

note that adjacent characters join together, since the character width is 2d, so
that points 3 and 6 of one character coincide with points 1 and 4 of the next.
Suppose that we actually wanted the characters to be completely confined to a
rectangular box of width 2d, so that adjacent characters would come just shy
of touching (). Explain how to modify the ex
ample program above so that this would happen, assuming that METAFONT has
operations "1ft" and "rt" analogous to "top" and "bot".

<2> Curves

The sixteenth-century methods of mathematical type design failed because ruler
and compass constructions were inadequate to express the nuances of good callig
raphy. METAFONT attempts to get around this problem by using more powerful
mathematical techniques: it provides automatic facilities for drawing "pleasing"
curves,and this chapter explains how to use them.

OUT'Ues 9

The draw command introduced in Chapter 1 will produce curved lines, in
stead of straight lines, when it is given a list of more than two points. For example,
let's go back to the six points of Fig. 1-1 and consider the effect of

cpen; 9 draw 5 .. 4 .. 1 .. 3 .. 6 .. 5;

this produces a closed curve from point 5 to point 4 to point 1 to point 3 to point
6 to point 5, as shown in Fig. 2-1.

Fig. 2-1. A curve that passes through
five of the six example points.

The bean-shaped path of Fig. 2-1 isn't bad looking, but it might not be the
curve we had in mind. Indeed, if the draw command had been "draw 4 .. 1 .. 3"
instead of the more complicated example above, we would have gotten the curve
of Fig. 2-2, which is almost surely not what anybody wants. Something went
wrong here, so it is important to get a clear idea of how METAFONT actually
decides what curves to draw.

Fig. 2-2. If you don't understand how
METAFONT draws curves, you might
get ungraceful shapes.

#~~~~'~T

~,': ..• '",',:.:'""":""""',,,,"-'f~:;;:-;ii!='i?;;;:'H:{:,:,?, .. j 5 .
;'\"

:~

t£

~~

10 Chapter 2

METAFONT's rules are (fortunately) quite simple. The curve between two
points Zl and Z2 depends only on four things:

the location of Zl = (XI, Yl);

the location of Z2 = (X2' Y2);
the angle of the curve at Zl;

the angle of the curve at Z2;

Once these four things are given, METAFONT knows what curve it will draw.
But how are the angles at Zl and Z2 chosen? Again there is a simple rule: If

the curve goes from zo to Zl to Z2, the direction it takes as it passes through Zl

is the same as the direction of the arc of a circle from zo to Zl to.22. Thus, for
example, ·since both Figs. 2-1 and 2-2 have curves that run from 4 to 1 to 3,
both curves have the same direction as they pass point 1, namely the direction
of the circle determined by points 4, 1, and 3. (It is well known and not difficult·
to prove that there is a unique circle passing through any three distinct points
zo, ZI, and Z2, unless these points lie on a straight line. We will not worry just
now about the exceptional cases when the points are collinear or not distinct.)

An important locality property follows from the two rules just stated: Each
segment of a METAFONT curve depends only on the locations of the two endpoints
of that segment and the-locations of its two neighboring points. For if the segment
runs from Zl to Z2, and if the previous point is zo and the next point is Z3, the
angle at Zl is determined by ZQ, Zl, and Z2, while the angle at Z2 is determined by
ZI, Z2, and Z3. Other parts of the curve will have no effect; thus you can fix up
any segments you don't like without harming the segments you do like.

So far we have discussed what the curve depends on, but not what the curve
really is. METAFONT's curves satisfy an invariance property in addition to their
locality property, in the following sense: Shifting a curve to the left or right, or up
or down, does not change its shape, and rotation doesn't change the shape either.
Furthermore if all coordinates are multiplied by some factor, the curve simply
grows or shrinks by that factor. (In mathematical terms, using complex variable
notation, the curve through points azl + f3, ... , OZn + {3 is equal to a times
the curve through points ZI, ••. , Zn, plus f3.) Therefore we need only describe
the curve from .2'1 to Z2 when Zl = (Xl, Yl) = (0,0) and Z2 = (X2,1/l) = (150,0),
say, and when the curve leaves Zl at a given angle () and enters .22 at a given
angle if> with respect to the horizontal. These special curves will produce all other
METAFONT curves if we shift them, rotate them, and expand or contract them.

CUT'Ues

~~~~~) 
1 2 

11 

Fig. 2-3. Examples of METAFONT's 
standard curves, leaving point 1 at an 
angle of 60" from the horizontal and 
entering point 2 at various multiples 
of 30". 

Fig. 2-3 shows typical curves that leave Zl at an angle of 600, coming in to 
point 2.2 at angles of 120°, 900, 600, 300, and 0°. When both angles are 600, the 
curve is essentially the arc of a circle; when one angle is 60° and the other is 30°, 
the curve is essentially a quarter-ellipse. (METAFONT's circles and ellipses aren't 
absolutely perfect, since they are approximated by cubic curves, but the error is 
much too small to be perceived.) At other angles the curves in Fig. 2-3 are less 
familiar mathematical objects, but at least they have a reasonable shape. 

Fig. 2-4 shows several more curves that leave Zl at 600j but this time the 
curves have been forced to come into Z2 from below the horizontal, at angles of 
-30°, -600, -900, and -1200. Most of these curves (with the possible exception 
of the -600 on"e) are rather arbitrary, so you are taking a chance if you expect 
METAFONT to change directions so drastically. 

Now let's return to the problem of Fig. 2-2; why did METAFONT choose 
such an ugly curve when commanded to "draw 4 .. 1 .. 3"? The answer is that no 
angle was specified for the curve at its beginning point 4 or at its ending point 
3; so METAFONT used the directions from 4 to 1 and from 1 to 3, in order to 
be consistent with the two-point (straight line) case. In other words, the failure 
occurred because we didn't give METAFONT a clue about how the curve should 

......... ---.. -..... 
_".,01' ......... . 

/\~~(J~ 
1 .. _, 

Fig. 2-4. Examples of METAFONT's 
standard curves, when the outgoing 
and incoming angles have opposite 
signs. 



12 Chapter 2 

be started and stopped. When drawing curved lines, it is almost always desirable 
to specify the beginning and ending angles somehow, otherwise METAFONT will 
be forced to choose directions that have little probability of success. 

There are two main ways to specify directions at the endpoints. One way is 
to supply "hidden points" to the draw command, as in the following example: 

draw (5 .. )4 .. 1 .. 3( .. 6). 

The "(5 .. )" means that METAFONT is to imagine a curve that emanates from 
point 5, but the drawing doesn't actually begin until point 4; similarly, the "( .. 6)" 
means that the curve will stop at point 3 but act like it was going on to point 6. 
In this way METAFONT will select the same directions at points 4 and 3 that 
were chosen for the curve of Fig. 2-1 ("draw 5 .. 4 .. 1 .. 3 .. 6 .. 5"), so the result 
will be to reproduce the segment of Fig. 2-1 that runs from 4 to 1 to 3. 

The second way to specify a curve's directions is considerably more flexible: 
You simply state what direction is desired. Let's consider another problem, in 
order to illustrate this technique. Suppose we wish to draw a beautiful heart 
shape. One approach is to start with a definite idea of what the heart should look 
like, then try to get METAFONT to agree; i.e., we want METAFONT to produce 
a drawing that matches the given idea. Since candy shops probably represent 
the ultimate authority about the proper shape a heart should take, the author 
purchased a box of chocolates on Feb. 14, 1979, and traced the outline of the 
box's shape onto a piece of graph paper (after appropriately disposing of the 
box's contents). In this way the following points were found to lie on an authentic 
heart: 

see Fig. 2-5. 

Xl = 100; YI = 162; 

X2 = 200 - Xs = 140; Y2 = 118 = 178; 

X3 = 200 - X7 = 185; 113 = 'Y7 = 125; 

X4 = 200 - X6 = 161; Y4 = ~ = 57; 

X5 = 100; Y5 = 0; 

The naive way to ask METAFONT for the required drawing would be 

cpen; 9 draw 1 .. 2 .. 3 .. 4 .. 5; draw 5 .. 6 .. 7 .. 8 .. 1; 



Cur'Ves 13 

Fig. 2-5. Eight points to be used in 
the design of a "heart." 

but we don't expect this to be very successful, since it fails to specify proper 
directions at the endpoints. In fact, it produces the lumpy shape of Fig. 2-6, 
something one would hardly wish to leave in San Francisco. METAFONT will 
certainly have to do better than that. 

Fig. 2-6. The heart will look diseased 
if you repeat the mistake of Fig. 2-2. 

So now we come to the second way of providing the desired angles. By taking 
a ruler, and drawing a straight line on the graph paper in the direction that the 
correct heart shape takes at point 1, it is possible to specify the desired direction 
by counting squares. The author found that the correct line goes 40 units upwards 



14 Cha.pter 2 

when it goes 50 units to the right, so the direction at point I is specified by the 
numbers 50 and 40. At point 5 the corresponding line is not so steep, it goes 
down only 36 units per 50 units to the left; the direction in this case is specified 
by the numbers -50 and -36. METAFONT will adopt these directions if they 
are placed in braces following the names of the points: 

draw I{50, 40} .. 2 .. 3 .. 4 .. 5{ -50, -36}; 

this does the right half of the heart, and the left-hand portion is similar, namely 

draw 5{ -50, 36} .. 6 .. 7 .. 8 .. I{50, -40}. 

When you give explicit directions in this way, any positive multiple of the 
direction is satisfactory; "{5,4}" means the same thing as "{50, 40}", and you 
could even say "{I, 0.8}". However, the signs of these numbers must not be 
changed; "{-50, -36}" is emphatically not the same as "{50, 36}", since the 
former means that the curve is coming to the point from the upper right while the 
latter means that it is coming from the lower left. If the direction at point 5 had 
been specified as {50,36}, METAFONT would dutifully have drawn something 
that comes from point 4, hooks around, and enters point 5 from the lower left; 
the result is best not shown here. On the other hand the right-hand portion of 
the curve could equally well have been drawn in reverse order, 

draw 5{50, 36} .. 4 .. 3 .. 2 .. I{ -50, -40}; 

the signs are now reversed. A minus sign in the x part of a direction (the first 
part) means in general that the curve is going left, a plus sign means that it is 
going right, and zero means that it is going vertically. A minus sign in the y part 
(the second part) means that the curve is going down, a plus sign means that it 
is going up, and zero means that it is going horizontally. 

The two draw commands above give explicit directions at the endpoints, 
while taking METAFONT's standard directions at the interior points 2, 3, 4 and 
6, 7, 8. Unfortunately the result (Fig. 2-7) is still not quite right, the transition 
from 2 to 3 to 4 being somewhat disheartening. What we would like is to bring 
the curve a . little to the right, between 2 and 3, and a little to the left between 
3 and 4. 



Curues 

Fig. 2-7. Correction of the error leads 
to a better shape, but still further im
provement is desirable. 

15 

One remedy that immediately springs to mind is to add more points. After 
all, there's no obvious reason why exactly eight points should be the right number 
to define this shape. It is a simple matter to look at the correct curve on the 
graph paper and to add two more points where Fig. 2-7 is in· error, say 

Xg = 200 -:tlO = 181; va = YIO = 97; 

we can incorporate the new points by saying 
draw 1{50, 40} .. 2 .. 3 .. 9 .. 4 .. 5{ -50, -36}; 

draw l{ -50, 40} .. 8 .. 7 .. 10 .. 6 .. 5{50, -36}. 
The result in Fig. 2-8 is now satisfactory. 

Fig. 2-8. A satisfactory design can 
be obtained by inserting two extra 
points. 



16 Cha.pter 2 

But there is a better way, and a user of METAFONT should be encouraged to 
avoid introducing new points whenever possible. The improvement comes when 
we realize how points 2 and 3 were actually selected in the first place: point 2 
is the topmost point, where the heart shape reaches its maximum y coordinate, 
while point 3 is the rightmost point, where the maximum x coordinate is achieved. 
Thus we know the correct directions at these points: the curve is horizontal at 2 
and vertical at 3. METAFONT allows curve directions to be specified at all points, 
not only at the endpoints, hence the improved solution is to say· 

draw 1{50, 40} .. 2{1, O} .. 3{0, -I} .. 4 .. 5{ -50, -36}; 

draw 1{ -50, 40} .. 8{ -1, O} .. 7{0, -I} .. 6 .. 5{50, -36}. 

This leads to Fig. 2-9, which is quite suitable for one's true valentine. 

Fig. 2-9. Instead of specifying addi
tional points, it is better to specify 
where the curve is travelling horizon
tally and vertically. 

The success of this direction-specification approach suggests in fact that we 
might be better oft' with even fewer points. What would happen if we tried to get 
by with only four points instead of eight? Fig. 2-10 is the result of the commands 

draw 1{50, 40} .. 3{0, -I} .. 5{ -50, -36}; 

draw 1{ -50, 40} .. 7{0, -I} .. 5{50, -36}. 

It turns out that this curve doesn't come up high enough for point 2, but point 4 is 
very close. Thus points 2 and 8 should stay, but points 4 and 6 can be eliminated; 



Cur1les 17 

the candy makers probably wanted point 4 to be slightly to the left. * 

Fig. 2-10. This heart was drawn 
using only four of the eight given data 
points, specifying the desired direc
tions at points 1 and 5 and specifying 
that the curve be vertical at points 7 
and 3. 

It isn't clear what will turn out to be the best strategy for cajoling META
FONT into drawing the shapes that its users have in mind; only time will tell. 
However, one further example will help to reveal how points should be chosen 
when attempting to draw curves: Let us consider the shoemaker's problem. The 
author made a tracing on graph paper of the sole of one of his left shoes, and 
this led to the following data: 

Xl = 77; YI = 322; 

X4 = 120; Y4 = 100; 

X7 = 48; 'Y7 = 60; 

see Fig. 2-11. 

X2 = 132; Y2 = 220; 

X5 = 131; Y5 = 55; 

Xg = 38; Ys = 140; 

X3 = 117; 'Y3 = 150; 

X6 = 95; Ya = 2; 

Xg = 20; YJ = 200; 

* Another hypothesis is that the direction at point 5 isn't quite right in the author's data (since 
the box was in fact crumpled at point 5). 



18 Chapter 2 

Fig. 2-11. Another example, based 
-: on the shape of a shoe. 

Since the sole's boundary is a closed curve without sharp corners, it is natural 
to try to get METAFONT to draw it with a single draw command, using hidden 
points: 

draw (9 .. )1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 1( .. 2). 

But the result is a disaster (Fig. 2-12a); the author's feet are somewhat ungainly, 
but not so gnarled as that. The reason for this failure is what we alluded to in 
connection with Fig. 2-4. METAFONT needs help when you want the curve to 

. change directions. 
Imagine that you are driving along a curved highway; sometimes you are 

turning left, sometimes you are turning right, and you are at a so-called inflection 
point when you are momentarily going straight. The biggest problem in Fig. 2-12a 
occurs between ·2 and 3, when the shoe sole has an inflection point but there is 
no corresponding data point. Let's add one: 

XlO = 125; YlO = 184; 



Ourues 19 

in general it is a good idea to include inflection points and to specify the desired 
direction of the curve at such points. 

It turns out that all ten data points in this example are either inflection 
points or places where the curve travels horizontally or vertically. So the best 
way to draw the shoe sole is probably to specify directions at each point: 

draw I{I, O} .. 2{0, -I} .. IO{ -25, -60} .. 3{0, -I} .. 4{I8, -60} 

.. 5{0, -I} .. 6{ -1, O} .. 7{0, I} .. 8{ -30, 60} .. 9{0, I} .. I{I, O}. 

The result in Fig. 2-I2b does indeed capture the author's sole. 

a) b) 

~J:.~~ ... '("''''~ 

,.' < ";;~i\ 
/ \\ 

/:, ~\11 ';' f~ . 
. 

f 

[ 

•• ~"3 
~:r 

~;~ 

:~I~' ~:.' ;,t, 
'~'~~ 

.~ )5 .~~ ,:~ 
"~ "t 

"~~..<.;;!-i:' ,~) 
Fig. 2-12. METAFONT has difficulty changing from left turns to right turns; the remedy 
is to specify the proper direction at points of inflection. 



20 Cha.pter 2 

Note that when all of the directions are specified explicitly as in this example, 
the draw command could have been split up into individual segments:, 

draw l{l, O} .. 2{O, -I}; 

draw 2{0, -I} .. 10{ -25, -60}; 

draw 9{0, I} .. l{l, O}; 

the result would have been just the same. 

~ Here is how METAFONT chooses the angle at POintzl when the direction has not been 
3t explidtly given, for a curve from zo to Zl to Z2: Let Zk = (Xk, Yk), DoXk = Xk+l - Xk, 

AYk = Yk+l - Yk, and IAzkl2 = (AXk)2 + (AYk)2. Then if IAzol2 = 0 (i.e., if ZO = Zl), the 
direction is {DoXl, AYl} (i.e., the direction from Zl to Z2). If IAzll2 = 0 (i.e., if Zl = Z2), 

the direction is {Axo, Ayo} (i.e., the direction from ZO to Zl). Otherwise the direction is 

which corresponds to the direction of the circle through zo, Zl, Z2 if these points aren't 
collinear. The direction computed by these rules turns out to be {O, O} when ZO = Z2; in 
this degenerate case it is arbitrarily changed to {I, a}. When drawing a curve from Zl to 
Z2 to ... to Zn, METAFONT will set ZO = Zl if no hidden point is given at the beginning, 
and Zn+l = Zn if no hidden point is given at the end; thus, each point of the curve has 
a predecessor and a successor. 

~ ~Exercise 2.1: According to the rules in the preceding paragraph, what curve do 
jL' you get from the command "draw 1 .. 2 .. 2 .. 3"? , 

~ The actual curve drawn between Zl = (Xl, Yl) and Z2 = (X2, Y2), when the starting 
jL' direction makes an angle e and the ending direction makes an angle ¢ with respect 

to the straight line from Zl to Z2, can be defined in the language of complex variables 
by the formula 

Here rand s are special quantities explained below, while 01 and 02 are the specified 
directions of the curve at Zl and Z2, normalized so that 1011 = 1021 = IZ2 - zll, namely 



CUT'Ves 21 

Whenever rand s are positive real numbers, the stated formula for z(t) defines a curve 
having the specified directions at ZI and Z2; conversely, all curves from ZI to Z2 that have 
the specified directions, and that have degree 3 or less as a polynomial in t, can be 
put into this form for some rand s. We shall call rand s the "velocities" at ZI and Z2, 

since a large value of r means that the direction remains approximately equal to al for 
a long time after the curve leaves ZI and a large value of s means that the direction is 
approximately a2 for a long time before the curve reaches Z2. A small velocity means that 
the curve may be taking a sharp turn at ZI or Z2, since the directions al or ~ will have 
comparatively little influence. METAFONT chooses velocities by the following formulas: 

I 
2sin¢ I 

r = (1 + Icos¢1) sin ¢ , I 
2sin8 I 

s = (1 + Icos¢1) sin ¢ , 
~/. = 8 + 4> 
'f-' 2' 

provided that ¢ is not too near zero; otherwise the velocities are taken to be r = s = 2. 
These velocity formulas are rather arbitrary, but they have been chosen so that excellent 
approximations to circles and ellipses are obtained in the cases () = ¢ and () + 4> = 900. 
Furthermore the formulas have at least one nice mathematical property, namely the 
fact that they keep the curve "in bounds": If () and ¢ are nonnegative, the curve from 
ZI to Z2 will lie entirely between or on the lines ZI + tal and ZI + t(Z2 - ZI) and entirely 
between or on the lines Z2 - tSi and Z2 - t(Z2 - ZI) (for t > 0). 

~ Actually the velocities rand s are adjusted so that they aren't too large or too 
~ small; METAFONT's standard mode of operation will ensure that 0.5 < r, s < 4. 
(Small values of rand s usually make the curve turn too sharply at ZI or Z2, while large 
values usually make it wander erratically.) In the cases corresponding to Figs. 2-3 and 
2-4, for example, we have () = 600 and the following values of ¢, r, and s according to 
the formulas above: 

r 8 

1200 1.7321 1.7321 
900 1.6448 1.4245 
600 1.3333 1.3333 

r s 

300 0.8284 1.4349 
00 0.0000 1.8564 

-300 1.9653 3.4041 

r s 

-600 2.0000 2.0000 
-900 3.9307 3.4041 

-1200 1.8564 1.8564 

When ¢ = 00 the value of r was raised by METAFONT to 0.5, otherwise the curve 
would have been a straight line from ZI to Z2 (not having the correct, direction at ZI). 

METAFONT also gave the message "Sharp turn suppressed between points 1 

and 2 (r = . 0000)" when it drew the curve for ¢ = (f. 



22 Chapter 2 

~ There is a way to change METAFONT's velocity thresholds by altering maxvr, 
Y minvr, maxvs, and/or minvs, as explained in Chapter 9. For example, the com
mands "minvr O.Oi minvs 0.0" will allow arbitrarily sharp turns. This can be useful in 
certain circumstances, when it is desirable to ensure that the curves stay in bounds as 
explained above. Furthermore you can set rand s to any desired value (in case you 
don't like METAFONT's choice) by making maxvr and minvr be the desired r and by 
making maxvs and minvs the desired s. 

~ .. Exercise 2.2: According to these rules, what curve do you get from the sequence 
Y of commands "minvr O.Oi minvs O.Oi draw 1 .. 2 .. 3"? 

<3> Pens and erasers 

Our examples so far have drawn straight lines and curved lines using pens shaped 
like circles. As you might suspect, METAFONT also has access to several other 
kinds of scriveners' tools. A METAFONT user's program is supposed to select 
the particular type of pen needed, and this will be the so-called current pen type 
until another one is specified. The current pen type might be 

cpen, "circular pen," as in our previous examples; 
hpen, "horizontal pen," having a fixed height and varying width; 
vpen, "vertical pen," having a fixed width and varying height; 
lpen, "left pen," a rectangle at the left of the current position; 
rpen, "right pen," a rectangle at the right of the current position; 
spen, "special pen," a specially defined elliptical shape; 
epen, "explicit pen," a fairly arbitrary shape. 

Chapter 1 discussed briefly the fact that pen sizes are generally expressed 
in terms of METAFONT's w-variables, namely the variables named Wo, WI, 'tV2, 
etc. The command "W4 draw 1 .. 2 .. 3" will, for example, draw a curve using the 
size-w4 pen or eraser of the current type. 

Pens of types cpen, hpen, and vpen are ellipses whose axes run horizontally 
and vertically. The rules by which METAFONT creates a size-w pen of these 
types are simple: 

A cpen of size w has height wand width w; 
an hpen of size w has height ho and width w; 
a vpen of size w has height wand width Va. 



Peru; a.nd erasers 23 

Fig. 3-1. Circular pen, horizontal pen, 
vertical pen. 

Here ho and va are the current values of METAFONT parameters called hpenht 
and vpenwd. For example, consider Fig. 3-1, which was drawn with the following 
METAFONT program: 

Xl = 0; X2 = 100; X3 = 200; YI = Y2 = Y3 = 0; 
hpenht 25; vpenwd 25; 
cpen; 75 draw 1; hpen; 75 draw 2; vpen; 75 draw 3. 

(Note that draw can be used for single points as well as for lines.) The effect of 
such oval-shaped pens is illustrated in Fig. 3-2a, which shows the shoe sole of 
Chapter 2 drawn with an hpen, and in Fig. 3-2b, which shows Chapter 2's heart 
shape drawn with a vpen. In both cases the variable pen size was 9 and the fixed 
sizes (ho and vo) were 3. 

a) 

Fig. 3-2. The example 
shapes of Chapter 2, 
drawn with a horizon
tal pen (a) and with a 
vertical pen (b). 



24 Chapter S 

Erasers can be used to "clean off the ink" in unwanted sections of previously 
drawn lines. Any pen can be converted to an eraser by simply putting the symbol 
"t" after its name; for example, "cpen#" specifies a circular eraser. 

The rectangular-shaped pens lpen and rpen are most often used as erasers, 
since their shapes are convenient for typical cleanup operations. An lpen of size 
w is a rectangle w units wide and i1{J units high, lying to the left of the point 
being drawn and centered vertically with respect to this point. An rpen of size 
w is similar, but it lies just to the right of the point being drawn. For example, 
Fig. 3-3 shows the result of the METAFONT program 

Xl = 0; X2 = 100; X3 = 200; YI = Y2 = Y3 = 0; 
hpenht 25; 
cpen; 150 draw 2; 
lpen#; 35 draw 3; 
rpen#; 35 draw 1. 

Fig. 3-3. Rectangular erasers used in 
the middle of a large circular pen. 

~ The ellipses you get with hpen and vpen have both horizontal and vertical sym
Y rnetry. In order to get ellipses that are tilted obliquely, you can construct special 
pens (type spen). The general form of an spen definition is slightly complicated but not 
hopelessly so: you say 

spen(a, b, c, xo, Yo, x~, Yo) 

(optionally followed by "#" if you want an eraser instead of a pen), and the result is a 
pen or eraser consisting of all points (€, '7) such that 



Pens a.nd eTa.seT8 

Fig. 3-4. An oblique pen gives this 
splendid valentine. 

25 

When later drawing with this pen at point (x, y), it is offset so that it actually is placed 
at (x - xQ, y - Yo)' The main parameters a, b, c of spen must satisfy the condition 

Furthermore, they had better be pretty small numbers, or the pen will be too small to 
be seen. When drawing with an spen (e.g., W3 draw 1 .. 2), its "size" (i.e., W3) is ignored. 

~ For simplicity let us consider first the case Xo = Yo = xQ = Va = 0; these 
J(.' parameters are generally used only for fine tuning when the discreteness of the raster 
is considered. Here is a plug-in formula for generating a pen of height h and width w that 
has been rotated counterclockwise by an angle of (J degrees: Use spen(a, b, c, 0, 0, 0, 0) 
where 

a = 4 (cos
2

(J + sin
2
(J) 

. w2 h 2 ' 

c = 4(sin2(J + cos
2
(J). 

w 2 h2 

(When h or ware small, however, you may have to play with this formula a bit in order 
to avoid the effects of roundoff errors.) Fig. 3-4 shows what happens when such a pen 
is applied to the heart shape, using w = 9, h = 3, and an angle of 300. 

~ The quantities a, b, c, Xo, Yo, ra, Va are real numbers, but the discreteness of the 
~ raster implies that METAFONT's pen is actually the set of all integer points (e, '7) 

satisfying a(e - Xo)2 + b(e - Xo)('7 - Yo) + c(f7 - Yo)2 < 1. Therefore it is important 
for METAFONT to define its cpens, hpens, and vpens carefully in such a way that they 



26 Chapter S 

have the correct relation to the curve being drawn. Consider, for example, a cpen of 
size 7, which looks like this when enlarged: 

••• ••••• ••••••• ••••••• ••••••• ••••• ••• 
To "plot a point" with this pen at (x, y), when x and yare real numbers, METAFONT 
first rounds to the nearest integer point (x', y') and then blackens the pixels in locations 
(x' + e, y' + "') where € and", run through the 37 square dots of the pen image: 

(-1,3), (0,3), (1, 3), (-2,2), (-1, 2), ... , (1, -2), (2, -2), (-1, -3), (0, -3), (1, -3). 

This works fine because it gives three dots above and below and to the left and right of 
(x', y')j the pen has width 7 as desired. But now consider the problem of a cpen whose 
width is an even number, say 4. The desired pattern of dots is 

•• •••• •••• •• 
and this shape can't be centered at an integer point (x', y') since none of its dots is the 
center. METAFONT's remedy is to consider that the pen shape is actually centered at 
(~, ~)j to plot a point with this pen at (x,y), when x and yare real numbers, the idea 
is to round the shifted point (x - !, y - !) to the nearest integer coordinates (x', y'), 
and then to blacken pixels (x' + €, y' + "') for the appropriate values of (€, "'): 

(0,2), (1, 2), (-1, 1), (0, 1), (1, 1), (2, 1), (-1,0), (0, 0), (1,0), (2, 0), (0, -1), (1, -1). 

The net effect when drawing a curve is to have a pen of width 4 that is centered on 
that curve. 

~ A further complication arises from the need to make sure that exactly the right 
"7 number of integer points will satisfy the elliptical relation, since the discretized pen 

should occupy precisely w columns and h rows, for any given positive integers wand h. 
Letr6(n) be ° when n is odd and 6(n) = ! when n is evenj then METAFONT's discrete 
pen of width wand height h is defined by spen(a, 0, c, 6(w), 6(h), 6(w), 6(h)) where 

4 
a=----

(1 + P)w2
' 

4 
c=----

(1 + P)h2 ' 
f = maxe6~W) • 26t»). 



Pens a.nd era.sers 27 

~ The most general pen or eraser shape you can get with METAFONT comes from 
~ an epen specification, which has the form 

(followed by "#" if you want it to be an eraser). This denotes a pen positioned at 
(0,0) containing all integer points (€, '7) for 1T] ~. € < rT] and k > '7 > -m; each 1T] 
and rT] should be an integer, with 1T] < rT]. If there are no points with '7 < 0, the 
".(1-1, r-1) .•• (l-m, r-m)" part of this specification is omitted; on the other hand if 
m> 0 there should no space between the period and "(1-1, r-1)". 

~ Fig. 3-5 shows an example in which epen has been used to define an eraser in the 
~ shape of an isosceles triangle,S units high and 9 units wide. The illustration was 
generated by a rather simple METAFONT program: 

Xl = 0; Y1 = -20; X2 = 50; Y2 = 0; X3 = 100; Y3= 20; 
cpen; 150 draw 2; 
epen (0,0)(-1,1)(-2,2)(-3,3)(-4,4)#; 
draw 1 .. 3. 

Fig. 3-5. A straight line "drawn" with 
a triangular eraser. 

~ When METAFONT draws with an epen, it ignores the pen size, just as when it 
Y is using an speno However, you can set epenxfactor and epenyfaetor to a value 

greater than 1.0 if you wish to enlarge all of your epens (or to a value less than 1.0 
if you wish to shrink them). The expansion or shrinkage occurs by epenxfaetor in 
the horizontal dimension and by epenyfaetor in the vertical dimension. Two other 
parameters epenxcorr and epenycorr can be set to nonzero values Xo and Yo if you wish 
to replace (x, y) by (x-xa, y-Yo) before rounding and plotting with an epen. It should 
prove interesting to create alphabets whose letters have been drawn with normal pen 
motions but with abnormal epen shapes (triangles, diamonds, teardrops, and so on). 



28 Chapter S 

~ "Exercise 3.1: Explain how to specify an lpen of width 7 and height 5 using an epen. 
Y (When such a pen is "plotted" at point (x', y'), it whitens pixels (x' + e, y' + '7) for 
-7 < € < -1 and -2 < '7 < +2.) 

Chapter 1 mentioned notations such as "botlY4", meaning the y-coordinate 
of the bottom of a pen of size WI when the pen itself is positioned at Y4. These 
notations tOPi, boti' lfti, and rti always refer to the current pen type, and to 
size Wi (a w-variable that must have a known value). For example, you can't 
say "botIY4" unless the value of WI has been defined earlier. If WI = 9 and the 
current type is cpen or vpen, "botIY4" is equivalent to "Y4 - 4" . 

.. Exercise 3.2: Describe in words the difference between the shapes that would 
be drawn -by the following two METAFONT programs (without typing them into 
the computer): 

Program 1. Xl = YI = 0; hpenht 25; WI = 75; hpen; WI draw 1. 
Program 2. Xl = YI = Y2 = Y3 = 0; Wo = 25; WI = 75; cpen; 

lftixi = lftoX2; rtixi = rtOX3; Wo draw 2 .. 3. 

~ The following table gives the amount of offset produced by top, bot, 1ft, and rt 
Y" with respect to a pen of size w, when w is a positive integer: 

cpen hpen vpen lpen rpen spen,epen 

top (w -1)/2 (ho -1)/2 (w -1)/2 (ho -1)/2 (ho -1)/2 Ymax - Y~ 
bot (1- w)/2 (l- ho)/2 (1- w)/2 (1- ho)/2 (l-ho)/2 Ymin - Yo 
1ft (1- w)/2 (1- w)/2 (1- vo)/2 -w 1 Xmin -xC 
rt (w -1)/2 (w -1)/2 (Vo -1)/2 -1 w Xmax - xC 

For spen and epen, the quantities Xmin, Xmax, Ymin, Ymax denote the extremes of € and '7 
in the discrete pen, while xC and Yo denote the offsets subtracted from the coordinates 
before rounding and plotting. Note that pens of type cpen, hpen, vpen, lpen, rpen 
always have the property that 

in other words Yl = tOPiY2 if and only if Y2 = botiYl. Similarly, the operations 1ft and 
rt are inverses of each other, for types cpen, hpen, vpen. 



Running METAFONT 29 

<4> Running METAFONT 

It is high time now for you to stop reading and start playing with the computer, 
since METAFONT is an interactive system that is best learned by trial and error. 
(In fact, one of the nicest things about computer graphics is that your errors are 
often more interesting than your "successes.") 

The instructions in this chapter refer to the initial implementation of META
FONT with Datadisc terminals at Stanford's Artificial Intelligence Laboratory; 
similar rules will presumably hold if METAFONT has been transported to other 
environments. The first thing to do (assuming that you are logged in) is to tell 
the monitor 

r mf(carriage-return) 

(meaning Run METAFONT). After METAFONT has been loaded into the machine, 
it will type "*"; this means it wants you to instruct it about what to do. 

The second thing to do is type 

proofmode; drawdisplay; 

and hit (carriage-return) again. The proofmode command instructs METAFONT 
that you want to print hard-copy proofs of the characters you are generating. 
(Such proofsheets will contain enlarged versions of the characters together with 
labeled points, as in the illustrations of this manual.) The draw display command 
instructs METAFONT to display the current state of what has been drawn, after 
every draw command. 

Before doing anything else, you might as well make an intentional error, so 
that you won't be quite so frightened later on when METAFONT detects unin
tentional ones. Type 

error; another error; 

from now on the (carriage-return)s at the end of lines will usually not be men
tioned. METAFONT will try to figure out what you had in mind by typing this 
funny line, but pretty soon it will discover that the statements make no sense. 
The word "error" has no special meaning in the language, so METAFONT as
sumes that it is the name of one of your variables. Under this assumption, you 



30 Chapter 4 

might be typing a statement like "error = 5". But in fact you typed";" after 
"error", and that doesn't obey the rules of METAFONT's language, so you get 
the following response: 

! +1.0000 error + .0000 
! Missing = sign, command flushed. 
(*) error; 

another error; 
i 

The" ! Mis sing = sign" tells you what METAFONT thought was wrong about 
your statement; "command flushed" means that the statement has been ig
nored (the error didn't hurt anything); and "1. 0000 error + . 0000" is the 
algebraic value of the incomplete equation (in case you're interested). The" (*)" 

means that METAFONT was reading a line that you typed directly at your ter
minal, not a line from some file. The position where the error was detected is 
indicated by the fact that "another error;" appears on a separate line-this 
second line contains text that METAFONT hasn't looked at yet. 

The "i" means that META FONT wants you to respond to the error message, 
but since you haven't used METAFONT before you don't know how to respond. 
Type "?" (no (carriage-return) is needed) and it will say 

Type <cr> to continue, <If> to flash error messages, 
1 or ... or 9 to ignore the next 1 to 9 tokens of input, 
i or I to insert something, x or X to quit. 

OK, these are your options. If you type a digit (1 to 9) or the letter "i", you 
get the ability to change what METAFONT will read next; but these features are 
p_rimarily of interest when METAFONT is processing input from a file, so we shall 
discuss them later. The best thing to do at this point is type (carriage-return) 
("<cr>"), since (line-feed) ("<1 f>") would not give you a chance to stop and 
correct any future error messages. 

As you might have guessed, another error will now be detected. But you prob
ably didn't gues's what kind of error you were making, unless you've read Chap
ter 5. METAFONT believes that "another error" is wrong because "another" 
and "error" are the names of variables, and you are trying to multiply these vari
ables together (as if you had written "another*error" or "another. error"-



Running METAFONT 31 

multiplication signs need not be used in METAFONT formulas). But it is illegal to 
multiply two variables together unless at least one of them has previously been 
given an explicit value, as we shall see in Chapter 5, hence the error message is 

! +1.0000 another + .0000 
! Undefined factor, replaced by .1.0000. 
(*) error; another error; 

(The undefined value of "another" has been replaced by 1.0000 and the machine 
plans to continue evaluating the algebraic expression when you restart.) Hit 
(carriage-return) again. And again. 

Now you are once more prompted with "*" and we can proceed to do some 
real METAFONTing. For our first trick, let's try to produce the heart shape of 
Fig. 2-9, but without using points 4 and 6. Type the following four lines one at 
a time (without error, please): 

x1=100; y1=162; 
x2=200-x8=140; y2=y8=178; 
x3=200-x7=185; y3=y7=125; 
x5=100; y5=0; 

don't forget the semicolons after each equation. Note that subscripted variables 
like X2 are typed simply as "x2"; this works with w-variables, x-variables, y
variables, and with constructions like botlY4 (which would be typed "bot1y4"). 

At this point you might want to see if METAFONT was really smart enough 
to figure out the value of Xs from the equation 200-x8=140. So type "x8;" and 
hit (carriage-return). This produces an error message we've seen before, namely 

! +60.0000 
! Missing = sign, command flushed. 
(*) x8; 

but it also reports the value of the incomplete equation XS, namely 60 (as it 
should be). In this way you can use METAFONT as a handy on-line computer 
in case you've misplaced your pocket calculator; try typing "sqrt 2;" and see 
what happens. (Whoops, type (carriage-return) first, to get out of error-recovery 
mode.) 



32 Cha.pter 4 

In the midst of all these digressions about errors, we have been trying to 
draw a heart shape; and in fact, we have made progress, since the shape is almost 
ready to be drawn. Type 

vpenwd 3; vpen; 9 draw 1{50,40} .. 2{1,O}; 

you should now see a blip on your screen. Believe it or not, that's the arc from 
point 1 to point 2. The whole heart will appear after you type two more lines, 

draw 2{1,O} .. 3{O,-1} .. 5{-50,-36}; 
draw 1{-50,40} .. 8{-1,O} .. 7{O,-1} .. 5{50,-36}; 

right? 
Notice that the key points (Xi, Yi) in the heart figure don't appear on your 

screen (although they will appear in your proof copy). The following statements 
will draw some thin auxiliary lines so that you can identify points 2, 3, 7, and 8: 

wO=1; cpen; wO draw 2 .. 5; draw 8 .. 5; draw 3 .. 7; 

in general, some guidelines like this can be incorporated into your drawings while 
you are designing characters, thereby providing convenient reference points as 
you work on line. The example alphabet routines described in Appendix E include 
background grids to facilitate the design process. 

Now the heart.shape is complete; type a period (" . ") and hit (carriage-return). 
(The period could also have been substituted for the semicolon at the end of your 
previous statement.) At this point-or perhaps we should say "at this period"
METAFONT prepares the proof copy of what has been drawn, since proofmode 
was requested; then it gets ready for another drawing. All of the x-variables and 
y-variables that have been defined so far now become undefined again; but the 
w-variables (and any other variables, if there had been any) retain their values. 
The picture of a heart remains on your screen, but it will vanish when the result 
of the next draw command is displayed. 

You can test the fact that uu is still equal to 1 by typing 

wO=1; 

METAFONT will respond "Red undant eq uat i on ." You can also try typing 

5wO=6; 



Running METAFONT 33 

METAFONT will respond "I ncons i stent equati on." (If you really want to 
change Wo you can say, for example, 

new wO; 5wO=6; 

then Wo will become 1.2, which will be rounded to 1 if it is used as a pen size. 
Things like this will be explained later in more detail.) 

At this point you know enough about METAFONT to try a few experiments 
on your own. Perhaps you would like to play with it before finishing this run. Just 
remember to type semicolons after each statement, except that the last statement 
of any particular drawing should be followed by a period. The statements you 
know about so far are (i) equations, (ii) pen type specifications, (iii) draw. 

When you're all done, type "end" and METAFONT should stop. Afterwards 
something like" . r xgpsyn; mfput. xgp/L" will show up on your terminal. Hit 
(carriage-return) and your proof sheets will be printed on the XGP printer. 

After each run a record of what you typed and what error messages were 
issued will appear on your file errors. tmp; you can read this file to remind 
yourself about any errors that you would like to avoid next time. 

That finishes Experiment Number One. Are you ready for Number Two? If 
not, now's a good time to take a break and put this manual down for a while. 

Experiment Number Two should be fun, since you will learn (a) ~ow to create 
a new "font of type" that can be used in printing future documents, and (b) how 
to get METAFONT to read from a file instead of from the terminal. The font to 
be created consists of seven characters, 

a ="'\ b =J c = \. d = r e ="'\\. f=..Jr z = (blank), 

each of which is 10 points square (in printers' units). We shall name the font 
DRAGON, since it can be used to typeset so-called "dragon curves" [cf. C. D~vis and 
D. E. Knuth, J. Recreational Math. 3 (1970), 66-81, 133-149; see also D. E. Knuth 
and J. C. Knuth, J. Recreational Math. 6 (1973), 165-167]. For example, the 
text in Fig. 4-1 can be used with your font to produce Fig. 4-2, which is a dragon 
curve of order 9. Another thing you can do with DRAGON is (i) make a border 
of "dada ... da \par" at the top of a page; then (ii) type any number of pairs 
of lines having the form "cxx ... xb\par" followed by "dxx ... xa \par", where 
the x's represent any random mixture of e's and f's, all of these lines having the 
same length as the first line; then (iii) finish up with the line "cbcb ... cb\par". 
(Try it!) 



34 

\: b+-dragon [(your file area)] 
\baselinesk1p Opt \11neskip Opt 
zzzzzdazzda\par 
zzzzdfbzdfb\par 
zzzzceadeeada\par 
zzzzdfebcbcfb\par 
zdazcfeazzzca\par 
dfbzdbcbzzzdb\par 
ceadeazzzzcb\par 
dfefefa\par 
cbceefea\par 
zzdffbcb\par 
zzcbca\par 
zzzzdfadadazzzzdadazzzzdada\par 
zdazcfeeefeazzzcefeazzzcefea\par 

Cha.pter 4 

dfbzdfeffbcbzdadfbcbzdadfbcb\par 
ceadeeefeazzzcefeazzzcefea\par 
dfefefefffadadefffadadefffadada\par 
cbceebceebceefeeefeeebceebceefea\par 
zzdfbzdfbzdfffefffffbzdfbzdffbcb\par 
zzcbzzcbzzcbceefeeefazcbzzcbca\par 
zzzzzzzzzzzzdfefefefbzzzzzzzdfa\par 
zzzzzzzzzdazcfeeebceazzzzzzzcfea\par 
zzzzzzzzdfbzdfefbzdfbzzzzdzzdbcb\par 
zzzzzzzzceadeeefazcbzzzzzcadea\par 
zzzzzzzzdfefefefbzzzzzzzzzcbcb\par 
zzzzzzzzcbceebcea\par 
zzzzzzzzzzdfbzdfb\par 
zzzzzzzzzzcbzzcb\par 
\vf111\end 

Fig. 4-1. . The ~ typesetting system will produce the famous "dragon curve" from 
this input, if you create the Dragon Font described in this chapter. 

In order to get ready for Experiment Number Two, prepare a file called 
DRAGON. MF that contains the following data: 

"The Dragon Font, created by (your name)"; 
fntmode; % this causes a font for the XGP to be produced 
tfxmode; % this causes a TEX information file to be produced 
titletrace; % this prints out quoted strings when they occur 
points=10; % change this if you want a different size font 
pixels=3.6; % raster units per point for TEX on the XGP 
wO=pixels+l; % pen size is one point plus one raster unit 
cpen; maxht topO points.pixels. % tallest output in raster units 

(begin new file page) 
"a: From W to S"; 
input drag; charcode 'a; 
wO draw 4{1,O} .. 3{O,-1}. 

(begin new file page) 
"b: From W to N"; 
input drag; charcode 'b; 
wO draw 4{1,O} .. 1{O,1}. 

(begin new file page) 
"c: From N to E"; 
input drag; charcode 'c; 
wO draw l{O,-l} .. 2{1,O}. 

(begin new file page) 
"d: From S to E"; 
input drag; charcode 'd; 
wO draw 3{O,1} .. 2{1,O}. 



Running METAFONT 35 

, Fig. 4-2. Dragon curve of 
order 9, typeset by Fig. 4-1 
(and reduced in size). 

(begin new file page) 
Me: From W to S and from N to E"; 
input drag; charcode 'e; 
wO draw 4{l,O} .. 3{O,-1}; draw l{O,-l} .. 2{l,O}. 

(begin new file 'page) 
"f: From W to N and from S to E"; 
input drag; charcode 'f; 
~Exercise 4.1: Figure out what belongs here ... 

(begin new file page) 
HZ: Blank"; 
input drag; charcode 'z. 

(Material beginning with the symbol U%" is ignored by METAFONT, up to the 
end of a line; such comments often provide useful documentation.) Let us hope 
that you don't think preparing this longish file was a drag, because there is yet 
one other file that needs to be created, a shortish one called DRAG. MF containing 
the following: 

% Common routine for the DRAGON characters 
yl=x2=points.pixels; 
xl=x3=y2=y4=1/2 yl; 
y3=x4=0; 
error; 2.0 intentional errors to be removed later; 
cpen; 
charht points; charwd points; chardp 0; chardw round x2; 



36 Cha.pter 4 

METAFONT is asked to read this file seven times by the commands "input 
drag" in DRAGON. MF, since DRAG. MF contains information that is useful for all 
seven characters. The charht, charwd, and chardp commands on the bottom 

/line are for 'lEX's benefit, telling the character's height, width, and depth in units 
of points. The chardw command gives the character's approximate width in 
raster units. It is more interesting to draw the characters than to supply such 
information, but the information is necessary when a font is being made. 

OK, now you're ready for the real action to take place. Type "r mf" to 
the operating system; and when you get the "*", type "input dragon". The 
following data should soon appear on your screen: 

(drag~n. mf 1 2 3 
a: From W to S ... (drag.mf 1 2 
! + 1.0000 error + .0000 
! Missing = sign, command flushed. 
p.2,1.5 error; 

2.0 intentional errors to be removed later; 
t 

(If something else shows up, you might have forgotten a semicolon or made some 
other typing mistake. Chapter 10 contains a complete list of error messages in 
case you find METAFONT's remarks inscrutable.) The screen data shown above 
means that METAFONT has begun to read file DRAGON. MF; in fact it has gotten 
up to page 3 and passed the quoted statement It a: From W to Sit. Then it 
began to read DRAG. MF, where an error was encountered on page 2, line 5.* 

We inserted an intentional error into file DRAG. MF in order to get used to 
error correction when METAFONT is reading from a file. Type "3" now, just to 
see what happens. When you type a digit from 1 to 9 in response to an error, 
METAFONT will delete this many so-called tokens from the input. In this case 
the result after deleting three tokens is 

p.2,1.5 error; 2.0 intentional errors 
to be removed later; 

t 

*Page numbers are one higher on Stanford's system than they might be at other places, since 
the system text editor supplies a directory page called page 1. 



Running METAFONT 37 

so you can see that the constant "2.0" is considered to be a single token (not three), 
and that "intentional" and "errors" were the other two tokens deleted. 
Generally speaking, a token is a variable name or a constant or a special character 
like a semicolon. (Furthermore the two dots in a command like "draw 1 .. 2" 
count as a single token.) 

At this point it would be a good idea for you to type "e". This tells META
FONT that you wish to terminate the present run and that you wish to make a 
correction at the current place in the current file. Soon after typing "e" you will 
find that the system text editor has started, and the cursor shows that you are 
positioned at page 2, line 5 of DRAG. MF, the place where the error was detected. 
Delete this offending line from the file and exit from the editor. 

Are you continuing to follow these instructions faithfully? Please stick to the 
job just a little longer, then you'll be on your own. The next thing you should 
do is type COr mf" again; then type 

input mumble 

(and (carriage-return)). This will produce yet another error message, but it is 
useful for you to learn how to recover from the wrong-file-name error since some 
people don't fe"el that METAFONT's recovery procedure is completely obvious. 
What you should do in response to 

! Lookup failed on file mumble.mf. 
(*) input mumble 
t 

is (a) type "i" (meaning that you want to insert something into what METAFONT 
is reading), then (b) type "dragon" (the correct file name). This ought to work. 

Now you might think everything will go smoothly, but the author has planned 
one more instructive error for you. The message that you get is 

! Input page ended while scanning "a: From W to S". 
p.3,l.2 input drag 

; charcode -a; 

Actually this isn't an error, it's just a warning that an error may have occurred, 
since normal usage of METAFONT will not end a file in the middle of processing 



38 Chapter 4 

a character. We have used the short DRA9 file in this example to avoid repeating 
four lines of code in seven places, but in practice it is better to accomplish this 
by using subroutines (which we haven't learned yet) or by copying the four lines 
into the DRAGON file seven times using the system text editor. Since the file ended 
before II a: From W to S II was finished, METAFONT has issued a warning that 
an error might have occurred. To recover, you can either (a) hit the line-feed 
key now (so that METAFONT won't stop on future errors the next six times this 
happens), or (b) type "i" and then type "no pagewarning;" this suppresses 
the warning messages at the end of file pages. (If a no pagewarn i ng command 
had been included near the beginning of your DRAGON. MF file, METAFONT would 
not have stopped to give you this message in the first place.) 

Finally METAFONT will finish reading the last page of DRAGON. MFj it puts a 
")" on your screen when this happens. You can now type "end" and the program 
will stop. If you have carefully followed the above instructions, METAFONT's 
closing words to you will be 

Images written on DRAGON.FNT 
TEX information written on DRAGON.TFX 

so you will be able to use DRAGON as a font with your next 1EI'< manuscript. 

Note that the process of preparing a complete font is very much like the task 
of writing a medium-size computer program or technical paper. It takes a little 
while to get a correct computer file set up, and you have to dot the i's and cross 
the t's (perhaps literally)j but once you have reached this point it is fairly easy 
to make changes and to develop bigger and better things. 

~Exercise 4.2: Since this was a long chapter, you should go outside now and get 
some real exercise. 



VaTia.btes, expTessions, and equa.tions 39 

<5> Variables, expressions, and equations 

The examples we have seen so far give some idea of what METAFONT can do 
in simple cases, but in fact METAFONT knows a lot more mathematics than the 
above examples imply. In this chapter we shall discuss exactly what types of 
things are allowed in METAFONT equations. 

The basic components of an equation are variables and constants, both of 
which take real numbers as values-they need not be integers. Since the rules for 
constants are simplest, we shall discuss them first. A constant usually has one of 
the forms 

(digit string) or (digit string). (digit string) or . (digit string) 

denoting a number in decimal notation. (A (digit string) is a sequence of one or 
more of the ten characters 0, 1, ... , 9.) Or the constant may have one of the 
above forms preceded by an apostrophe, in which case it represents a number in 
octal notation. For example, ""100" is the same as "64"; ""10.4" is the same 
as "8. 5"; etc. One further form of constant is possible: A reverse apostrophe 
(i.e., a single open-quote mark) followed by any ch~racter denotes the 7-bit code 
for that character. For example, " .. a" is the same as ""141". This notation was 
used to identify the charcodes, i.e., the font positions of the characters, in the 
DRAGON example of Chapter 4. 

A variable is specified in METAFONT programs by typing its so-called 
(identifier), which is a sequence of one or more of the 26 letters a, b, ... , z, 
with upper-case and lower-case letters considered equivalent. However, the first 
letter must not be "w", "x", or "y", since these are reserved for the subscripted 
variables of METAFONT. Furthermore some letter strings like top and draw have 
a special meaning that precludes their being used as variables; all such "reserved 
words" are listed in boldface type in the index t~ this manual (Appendix I). 

A variable may also have the form w(digit string), x(digit string), or y(digit 
string), in which case it is said to be a w-variable (intended for pen widths), 
an x-variable (intended for x coordinates of points), or a y-variable (intended 
for y coordinates of points). We sometimes use the term wxy-variable to stand 
for any variable of one of these three types. Note that variables x3 and y3 are 
related to each other because they are the coordinates of point 3; but they have 
no connection to variable w3. In the examples of this manual we often use the 
notation X3 and WJ for what would actually be typed "x3" and "w3". 



40 Cha.pter 5 

~ Actually a wxy-variable can have the slightly more general form w(index), x(index), 
~ or y(index), where (index) is either a digit string or the name of an index parameter 

to a su broutine, as we shall see in Chapter 8. Thus "xj" and ICy j" stand for the coor
dinates of point j, inside of a subroutine having j as an index parameter; typographic 
conventions like Xj and tOPiYj are used for what would actually be typed as "xj" and 
"top i y j". 

It is important to keep in mind that variable names are composed of letters 
only, unless they are wxy-variables. You can't have variables called "s1" and 
"s2" ,. METAFONT will think you are talking about s times 1 and s times 2. One 
way out is to use roman numerals like "s i" and "s i i" . 

Stanford's current implementation of METAFONT will not distinguish two 
different .identifiers that begin with the same seven letters, unless .they have 
different lengths; other implementations may be even more fussy, requiring for 
example that the first six letters be distinct. Therefore, although you are allowed 
to invent long descriptive names for variables, don't try to use distinct names 
like "heightofa" and "heightofb" in the same program. 

No spaces should appear within the name of a variable or a constant; other
wise METAFONT may get confused. For example, Clal pha" would look like 
two variables, and the period in "3. 14" would look like a period instead of a 
decimal point following the 3. 

At the beginning of a METAFONT program, variables have no values; they 
get values by appearing in equations. It takes ten equations to define the values 
of ten variables, and if you have given only nine equations it might turn out that 
none of the ten variables has a known value. For example, if the equations are 

~=~=~=~=~=~=~=~=~=~ 

(which counts as nine equations, since there are nine = signs), we don't know 
what any of the x's is. However, a further equation like 

~+Xl = 1 

will cause METAFONT to deduce that all ten of these variables are equal to !. 
METAFON~ always determines the values of as many variables as possible, 

based on the equations it has seen so far. For example, consider the two equations 

Yl + 112 + 113 = 3; 

Yl - 112 - 113 = 1; 



Va.riables, expressions, a.nd equa.tions 41 

METAFONT will deduce (correctly) that Yl = 2, but all it will know about Y2 
and Y3 is that Y2 + Y3 = 1. At any point in a program a variable is said to be 
"known" or "unknown," depending on whether or not its value can be deduced 
uniquely from the equations that have been stated so far. * Sometimes you will 
have to be sure that a certain variable is known; for example, when drawing a 
curve, the x- and y-variables for all points on that curve must be known. 

~ You might wonder how META FONT keeps its knowledge up-to-date based on the 
'Sr partial information it receives from miscellaneous equations. The details aren't 
really very important when you use the language, but they may help in understanding 
some error messages. If there are n variables and if m equations have appeared so 
far, METAFONT will classify n - m of the unknown variables as "independent." The 
other m variables are expressed as linear combinations of the independent ones; if this 
linear combination has a constant value, the variable is "known", otherwise it is called 
"dependent." Every new equation, say the (m + l)st, can be rewritten in the form 

Co + CIVI + ... + Cn-mVn - m = 0 

where the c's are constants and VI, ••• , Vn - m are the independent variables. If Ck = 0 for 
all k > 0, the new equation is rejected; it is either redundant (if Co = 0) or inconsistent 
(if Co =;6- 0). Otherwise one of the variables Vk having maximum ICkl is selected. This 
variable ceases to be independent and the equation is used to express it in terms of the 
remaining independent variables v!, ... , Vk-l, Vk+l, ••• , Vn - m ; several of the dependent 
variables might now become known. 

~ You can experiment with METAFONT's equation-solving mechanism by typing 
'Sr "eqtrace;" near the beginning of your program. This causes the interpreter to tell 

you the values of all variables when they become known. Another way to experiment 
is to use the fact that METAFONT types out the value of an expression when there 
is no equals sign in a statement. For example, after "yl+y2+y3=3; yl-y2-y3=1;" 
you can type "yl; y2; y3;" -the result will be three harmless error messages in 
which you learn that YI = 2 and that Y2 and Y3 respectively have the current values 
"-Ya+ 1.000" and "Y3". (In other words, METAFONT has chosen to make Y2 dependent 
and Ya independent.) 

·This feature makes METAFONT different from most other computer languages; it tends to 
make your programs "declarative" more than "imperative" in that you say what relationships 
you want to achieve instead of how you want to compute the values that achieve them. 



42 Chapter 5 

From variables and constants you can build up more complicated formulas 
called expressions. In order to state the rules for expressions clearly and com
pletely, we shall discuss them in a rather formal manner. In order to state them 
in an understandable way, we shall also discuss informal examples. 

Expressions come in several flavors, depending on how complicated they are 
and how they interact with their environment. A primary expression is, in a 
sense, a basic building block; it is one of the following things: 

• a variable (whether known or unknown). 

o a constant. 

• nrand, denoting a random real number with the normal distribution, having 
mean 0 and standard deviation 1. 

• sqrt (term), denoting the square root of the value of the term (e.g., sqrt .09 
= .3). The term must have a known value. 

• cosd (term), denoting the cosine of the value of the term in degrees (e.g., 
cosd 60 = .5). The term must have a known value. 

• sind (term), denoting the sine of the value of the term in degrees (e.g., sind 30 
= .5). The term must have a known value. 

• round (term), denoting the value of the term rounded to the nearest integer; 
an integer plus .5 is rounded upwards (e.g., round 3.14 = 3.0; round 1.5 
= 2.0; round (-1.5) = -1.0). The term must have a known value. 

• good(index}(term}, denoting the value of the term rounded to the nearest 
"good" value, depending on the value of Wi (see Chapter 7), where i is 
the value of the (index). The term must have a known value. 

o lft(index)(term}, rt(index}(term}, top(index)(term}, or bot(index)(term}, 
denoting the value of the term plus or minus a correction based on the 
current pen and the value of Wi (see Chapter 3), where i is the value of 
the (index). The term need not have a known value. 

• an expression enclosed in parentheses, denoting the value of the expression 
as a unit in a larger expression. For example, we will see that "2 (u+v)" 
means something different from "2u+v", but the latter denotes exactly 
the same thing as "(2 u) +v" . 

In these rules "(index)" means either a (digit string), representing an integer 
subscript, or the name of an index parameter to a subroutine (see Chapter 8); 
"(term)" means an expression of the second flavor, which we shall describe next. 



Va.ria.bles, expressions, a.nd equa.tions 43 

A term expression is, in a sense, a building block for sums; it is somewhat 
like a primary but it also includes products and quotients. Formally speaking, a 
term is a primary followed by zero or more occurrences of the following things 
as many times as possible· in a given context: 

• *(primary) or . (primary) or simply (primary), denoting the product of the 
value of the term so far and the value of the primary. (At least one of 
these factors must have a known value; Le., you can't say "al pha*beta" 
when al pha's value is unknown unless beta's value is known. When 
multiplication is indicated by ".", no space should appear after the dot, 
and the primary should not be a decimal constant. 

• / (primary), denoting the value of the term so far divided by the value of 
the primary. (The primary must have a known value and it must not 
be zero.) 

• [(expressionl),(expression2)J, denoting VI + a(1l2 - VI), where a is the value 
of the term so far, VI is the value of the first expression, and V2 is the 
value of the second. (Either the value of a or the value of V2 - VI must 
be known.) 

For example, "a*b/e" is a term meaning a times b divided by c. One can also 
write it as "a. b/ e" or "a b/ e"; the space between "a" and "b" is essential in 
the last example, since "ab/ e" means the quotient of variable ab by variable c. 
Note also that "a/b*e" has the same meaning as "(a/b) *e", not "a/ (b*e)". 
Some computer languages treat this expression one way and some treat it the 
other way, but METAFONT prefers the former for two reasons: (i) Division 
in METAFONT is most often used when dividing an integer by an integer, and 
cases like "2/3 e" are very common. It is desirable to avoid parentheses in such 
common cases. (ii) This rule is easily remembered, since terms are consistently 
evaluated from left to right in all cases. 

The construction (term) [(expression 1) , (expression2)] deserves special dis
cussion since it is an operation that occurs frequently in font design but there is 
no existing notation for it in traditional mathematics. In general, "a[u, v]" means 
"a of the way from u to v"; thus "2/3 [xi, x2]" means the value obtained by 
starting at Xl and going two-thirds of the distance between Xl and X2. If Xl = 100 
and X2 = 160, this is 140; if Xl = 160 and X2 = 100 it is 120. 

~Exercise 5.1: What is the value of o [x!, X2]? Of 3/2 [x!, X2]? How would you 
express the value of the point midway between Xl and X2, using this notation? 



44 Chapter 5 

Fig. 5-1. The coordinates of point 5 
can be readily calculated from those 
of points 1, 2, 3, and 4, using META
FONT equations. 

One of the interesting applications of the bracket notation is to find the point 
(xs, Ys) where the line from (Xl, YI) to (X2, Y2) intersects the line from (X3, Y3) to 
(X4' Y4), assuming that points 1, 2, 3, and 4 are already known (see Fig. 5-1). The 
following equations can be written, involving two variables alpha and beta that 
are not used elsewhere: 

Xs = alpha [Xb X2] = beta [X3, X4]; 

Yo = alpha [Yb 112] = beta [Y3, Y4]; 

METAFONT will solve for alpha, beta, Xs, and Ys. The reasoning behind these 
equations is that there is some fraction a such that Xs is a of the way from Xl to 
X2 and Ys is a of the way from YI to 1/2; similarly there is some fraction relating 
Xs to X3 and X4 as Y5 is related to Y3 and Y4. We don't care what a and {3 are; 
but it doesn't hurt to ask METAFONT to compute more values than we really 
need, as long as it also computes the desired values Xs and Ys. (Note: If you are 
applying this trick more than once, it is necessary to say "new al pha, beta"; 
this allows you to reuse the same auxiliary variables alpha and beta in each 
place. See Chapter 9 for the rules of new.) 

Finally we come to expressions of the third flavor: general expressions. These 
consist of a term followed by zero or more occurrences of "+ (term)" or "- (term)" , 
meaning to add or subtract the value of the term following the plus or minus 
sign to or from the value of the expression so far. A general expression can also 
begin with a plus sign or a minus sign, in which case we interpret it as if it had 
been preceded by the constant zero. (For example, the expression "-2YI +'3112" 
means the same thing as "0 - 2YI + 3y{ , which means, "Take zero, then subtract 
twice the value of Yb then add three times the value of 112.") Like terms, general 
expressions are evaluated from left to right. 



Variables, expressions, and equations 45 

~ Readers familiar with B~F notation may appreciate the following summary of the 
~ syntactic rules for METAFONT variables, expressions, and equations: 

(digit) +- 0 11 I 2 I 3 I 4 I 5 I 6 11 I 8 I 9 
(digit string) +- (digit) I (digit string)(digit) 
(non wxy) +- a I b I c I die I fig I h I i I j I k II I min I 0 I p I q I r I sit I 'U I v I z 
(wxy) +- w I x I y 
(letter) +- (non wxy) I (wxy) 
(identifier) +- (non wxy) I (identifier)(letter) 
(index) +- (digit string) I (identifier) 
(variable) +- (identifier) I (wxy)(index) 
(radix) +- ' I (empty) 
(constant) +- (radix)(digit string) I (radix)(digit string) . (digit string) I 

(radix) . (digit string) I '(any character you can type) 
(unary operator) +- sqrt I cosd I sind I round I good(index) I (direction)(index) 
(direction) +- 1ft I rt I top I bot 
(primary) +- (variable) I (constant) I nrand I (unary operator)(term) I (expression)) 
(multiplication or division sign) +- * I . I (empty) I / 
(term) +- (primary) I (term)(multiplication or division sign)(primary) I 

(term) [ (expression) , (expression)] 
(addition or subtraction sign) +- + I -
(expression) +- (term) I (addition or subtraction sign)(term) I 

(expression)(addition or subtraction sign)(term) 
(equation statement) +- (expression) = (expression) I 

(equation statement) = (expression) 

Before we close this discussion of expressions, a few things deserve special 
emphasis: 

1) Blank spaces, (tab)s, and (carriage-return)s usually have no effect on a META
FONT program except for the fact that they may not appear within identifiers, 
constants, or file names, and the fact that they give a special meaning to 
each"." that they follow. A character that has no special meaning in the 
METAFONT language (e.g., "?" or "$" or ".1.") is treated as if it were a blank 
space. (Of course, blank spaces and other characters do represent themselves 
when they immediately follow a .. mark or when they appear between quotes 
in titles.) 

2) The symbol "." must be used carefully when not quoted, since METAFONT 
interprets it in four different ways depending on the immediate context: 



46 Chapter 5 

i) If "." is followed by a blank space (or (tab) or (carriage-return)), it 
denotes a period or "full stop" (the end or" a METAFONT routine or 
subroutine ). 

ii) If " ." is followed by a digit (0 to 9), it denotes a decimal point. 

iii) If " ." is followed by another ".", it denotes the " .. " symbol in a draw 
(or ddraw) command. 

iv) Otherwise" ." denotes multiplication. 

3) You don't need parentheses in expressions like "round 2z" or "sqrt u/v". 
(Most computer languages require you to write "round(2z)" and "sqrt(u/v)" 
and even "sqrt(2)".) 

~Exercise' 5.2: Does "sqrt xi+x2" mean the same as (a)" (sqrt xi) +x2"? 
(b) "sqrt(xi+x2)"? (c) "sqrt xi(+x2)"? 

<6> Filling in between curves 

Letter forms in modern alphabets are based primarily on the calligraphy of fine 
penmen in bygone ages; but they have gone through a long evolution so that a 
great many letters are quite different from what you would get using a fixed pen. 
Furthermore, real pens and brushes change their shape depending on how hard 
you press and on what direction you are moving, as you write or paint. Therefore 
METAFONT has provisions for producing shapes in which the pen seems to vary 
its proportions as it moves. 

The basic way to accomplish such special effects is to use the ddraw (double 
draw) command, which is like draw but you specify two curves instead of one. 
When you say 

W5 ddraw 1 .. 2 .. 3 .. 4, 5 .. 6 .. 7 .. 8 

(for example), the effect is essentially to take the current pen of size W5 and 
to draw the two curves 1 .. 2 .. 3 .. 4 and 5 .. 6 .. 7 .. 8, then to fill in the space 
between them. This filling-in process is achieved by drawing interpolating curves 
that are equally spaced between the corresponding pairs of points 1 and 5, 2 and 
6, 3 and 7, 4 and 8. 

Both curves in a ddraw command are specified exactly as in draw commands, 
with optional directions included in braces at each point, and with optional hidden 
points in parentheses at the beginning or end; the only proviso is that both curves 



Filling in between CUT1)eS 47 

must have exactly the same number of points (not counting hidden ones). You 
can say "ddraw 1,2" (which turns out to be equivalent to "draw 1 .. 2" since there 
is only one point in each "curve"), but you can't say "ddraw 1 .. 2( .. 3), 4 .. 5 .. 6" 
(since that's a two-point curve with a three-point one). 

Suppose, for example, that you wish to fill in the heart shape discussed in 
Chapter 2. Assuming that the points have been defined as in that chapter, and 
assuming that cpen has been selected, the following commands can be issued to 
METAFONT: 

Xg = ~ [Xli X3]; 119 = ~ [Yb YS]; 
9 ddraw 1{50, 40} .. 2{1, O} .. 3{0, -I} .. 4 .. 5{ -50, -36}, 9 .. 9 .. 9 .. 9 .. 9; 
ddraw 1{ -50, 40} .. 8{ -1, O} .. 7 {O, -I} .. 6 .. 5{50, -36}, 9 .. 9 .. 9 .. 9 .. 9. 

The outside boundary of the resulting shape will be precisely that of Fig. 2-9, 
while the interior will be solid black. Fig. 6-1 indicates how METAFONT actually 
does this, by showing the set of paths that a cpen of diameter 9 would take to 
fill in the middle; these paths are illustrated with a cpen of diameter 1 so that 
gaps are apparent. 

Fig. 6-1. The heart shape (or any 
other shape) can be filled in by "double 
drawing." 

There was, of course, no need for the example program above to define 
point 9 as it did; the two ddraw commands would have worked equally well if 
"9 .. 9 .. 9 .. 9 .. 9" had been replaced by "1 .. 1. .1 .. l. .1" or "1..1..5 .. 5 .. 5" 
or a host of other possibilities. The off-center point 9 was merely chosen to give a 
nice-looking illustration that shows a bit more of how METAFONT draws curves. 



48 Ch<Lpter 6 

~Exercise 6.1: On the other hand, the command 

9 ddraw 1{50, 40} .. 2{1, O} .. 3{O, -I} .. 4 .. 5{-50, -36}, 

1{-50,40} .. 8{-I,O} .. 7{O,-I} .. 6 .. 5{50,-36} 

does not draw a filled-in heart shape, although it might seem at first that it 
should. Why doesn't it? 

~ More precisely, suppose ddraw is given two curves that run through the points 
~ (Zl,Z2, ... ,Zn) and (Zl,Z2, ... ,Zn). The two curves z(t) and z(t) are computed as usual, 
then the curves (k/m)[z(t),z(t)] are drawn for 0 < k < m, where m is computed in such 
a way that the interior is probably (but not always) filled in by this means. Finally, 
straight lines are drawn from Zl to Zl and from Zn to zn. The value of m is determined as 
follows: For each j between 1 and n we compute ~Xj = Xj - Xj and ~Yj = Yj - Yj and 
m,j, where mj depends on the current pen type and size w according to the formulas 

cpen, spen, epen hpen vpen lpen,rpen 

w 

It follows that r mj + 11 equally-spaced pen images between Zj and zJ' would touch each 
other, making a connected set, if we weren't rounding to a discrete raster. (This is 
the only case where the "current size" is relevant for pens of type spen and epenj you 
should specify a size small enough that fill-in would occur properly if the pen were a 
cpen instead, but not so small that the filling-in takes extremely long.) The actual 
value of m is defined to be 

Ls max(m!t ... ,mn)J + 1 

where s is a "safety factor" that is normally equal to 2. You can change the safety factor 
by saying "safetyfactor 2.5", for example, if it turns out that 2.0 isn't safe enough, but 
actually you won't ever need to do this unless the curves are quite unusual. 

~ ~Exercise 6.2: How do you think the author produced Fig. 6-1, using a single ddraw 
~ command? (It was necessary to fool METAFONT into drawing curves that didn't 

really fill in the interior.) 



Filling in between C'lLT't)es 49 

Fig. 6-2 is another example of ddraw, a sort of calligraphic effect produced 
with the following program: 

Xl = 5; YI = 10; X2 = 300; Y2 = -5; 
X3 = 0; Y3 = 0; X4 = 298; Y4 = 10; 
cpen; 9 ddraw 1{X2 - Xli 2(Y2 - YIn .. 2{l,O}, 

3{1, O} .. 4{X4 - X3, 2(Y4 - Y3n. 

In this case the two ddrawn lines actually cross each other. 

Fig. 6-2. Typical effect 
obtainable with ddraw. 

METAFONT also provides a mechanism for dynamically varying the pen 
width while drawing lines or curves, using a generalized draw command. For 
example, you can say 

hpen; draw IWaI1 .. IWI12. ·IWaI3 

and METAFONT will draw a curve from point 1 to point 2 to point 3, starting 
with an hpen of size Wa but changing the size gradually to WI and than back to Wo 
again. You can also specify directions for the curve after the point specifications 
in the usual way, for example by saying 

draw IWoI1{l, O} .. IWlI2{O,l} .. IWoI3{l, O}; 

but we shall ignore this fact in order to simplify the following discussion. The 
general rule for draw is that you can specify a pen size enclosed in "I" signs just 
before giving a point number, and you can specify a curve direction enclosed in 
"{" and "}" just after giving a point number. (See Figs. 8-1 and 8-2 in Chapter 8 
for examples of this feature.) 

If you don't specify a new pen size at a point, the pen size from the previous 
point is used; if you don't specify a new pen size at the first point, the so-called 
"current pen size" is used. The current pen size is set to zero whenever a new pen 



50 Chapter 6 

type is specified, and it is changed to the value of any expression that appears 
immediately before draw or ddraw; it is not changed by values in "I" signs within 
a draw command. Thus, for example, consider the commands 

9 draw 1 .. 1512 .. 3; draw 4 .. 1815; 

the pen size at point 1 is 9, at points 2 and 3 it is 5, at point 4 it is 9 again, at 
point 5 it is 8, and after these two statements the current pen size is still 9. 

Important note: This generalized version of draw is allowed only when the pen is 
of type hpen, vpen, lpen, or rpen; you can't vary the size of a cpen, and it doesn't 
make sense to vary the size of an spen or epen. Furthermore the changing of pen 
widths is illegal in ddraw commands; in fact, as explained below, METAFONT 
actually implements variable-width draw commands by reducing them to ddraw. 

~ The pen width varies smoothly according to a cubic spline function w(t) analogous 
~ to the functions x(t) and y(t) used to control pen motion. Suppose we are drawing a 
curve from Zl to Z2 to ... to Zn, and let Zo and Zn+l be the hidden points at the beginning 
and end of the path, where Zo = Zl and/or Zn+l = Zn if hidden points were not specified. 
Similarly we will have pen sizes So, SI, ... , Sn, Sn+lj if all the pen sizes are equal, the 
draw command proceeds as described in Chapter 2, otherwise· we have to define the 
variation in pen size. First the derivatives (s~, ... ,s~), which express the rates of change 
in pen width as the curve passes points (Zl, ... ,Zn), are determined as follows: If no 
explicit pen size was given at Zj, or if a "#" appears just before the second "I" of a size 
specification at that point, we let sj = O. (The # mark signifies stable pen size in the 
vicinity of that point. For example, 

draw Is#11 .. 2 . . 12/3[s, t1l3 .. It#14 .. 5 

will draw a curve with pen size s between points 1 and 2, and pen size t between points 
4 and 5j the pen size will be stable at points I, 2, 4, and 5, and it will vary between 
points 2 and 4 in such a way that 2/3 of the change occurs between points 2 and 3.) 
Otherwise let ll.Sj = Sj+l - Sjj then sj = ll.Sj if ll.zj-l = 0, otherwise sj = ll.Sj-l if 
ll.zj = 0, otherwise 

sj = (ll.sj_l/lll.zj_112 + ll.sj/lll.zjI2) / (1/IAzj_112 + 1/Ill.zjI2) . 

The pen size sAt), as the curve z(t) of Chapter 2 is drawn from Zj to Zj+l for 0 < t < I, 
is defined by the formula 

sAt) = sJ" + (3t2 - 2t3)ll.sj + t(1 - t)2sj - t2(1 - t) s~+l" 



Discreteness a.nd discretion 51 

~ When the pen size varies, a draw command is essentially reduced to ddraw in the 
"Y following way: First the functions s(t), x(t), y(t) describing pen size and pen motion 
are determined as described above. The minimum pen size, i.e., s = min(sl, ... , Sn), is 
also determined. A pen of size s will now be used to fill in the curve with the method 
of ddrawj the two curves (x(t), y(t)) and (x(t), y(t)) between which ddrawing will take 
place are defined as follows, depending on the pen type: 

hpen vpen lpen rpen 

x(t) +- x(t) - Hs(t)-s) 

y(t) +- y(t) 

x(t) +- x(t) + Hs(t)-s) 

y(t) +- y(t) 

x(t) 

y(t) - Hs(t)-s) 

x(t) 

y(t) + Hs(t)-s) 

x(t) 

y(t) 

x(t) - (s(t)-s) 

y(t) 

x(t) 

y(t) 

x(t) + s(t) - s 

y(t) 

~ If the pen motion is being transformed by means of trxx, trxy, inc:x, tryx, tryy, 
"Y"Y or inc:y (see Chapter 9), the transformation applies to the original computation 
of x(t) and y(t) but not to the corrections by s(t) -s being applied here. In other words, 
transformations apply to the paths taken by pens, not to the pen shapesj you can use 
ddraw but not draw to get the effect of a rotated hpen. 

<7> Discreteness and discretion 

METAFONT does all of its drawing on a finite grid whose square pixels are either 
black or white; it does not actually draw continuous curves, it deals only with 
approximations to such curves. Such discreteness is not a severe limitation if the 
resolution is fine enough, i.e., if there are sufficiently many pixels per square unit, 
since physical properties of ink will smooth out the rough edges when material is 
printed. In fact, the human eye is itself composed of discrete receptors. However, 
the results of METAFONT might not look very good when the resolution is coarse, 
unless you are careful about how things are rounded to the raster. The purpose 
of this chapter is to explain the principles of "discreet rounding," i.e., tasteful 
application of mathematics so that the METAFONT output will look satisfactory 
even when the resolution is coarse. 

The rest of this chapter is marked with dangerous bend signs, since a novice 
user of METAFONT will not wish to worry about such things. However, an expert 
METAFONTer will take care to round things properly even when preparing high
resolution fonts, since the subtle refinements we are about to discuss will improve 
the quality of the output when it is viewed with discerning eyes. 



52 Cha.pter 7 

~ Chapter 3 mentioned the fact that pens are digitized before curves are drawn. This 
Y is important when low resolution is considered, otherwise vertical lines that would 
be 3.4 raster units wide (say) if drawn to infinite precision would be rounded sometimes 
to 3 units wide, sometimes to 4 units wide, depending on where they happen to fall. 
This looks bad, so METAFONT resolves the problem by drawing with a pen that is 
always 3 units wide or always 4 units wide. 

~ Chapter 3 also hinted at METAFONT's method of drawing a curve (x(t), yet)) as 
Y t varies, namely (a) to subtract offsets ro and Y6 from the x and y coordinates, 
depending on the pen being used, thereby compensating for the fact that the pen shape 
might be shifted by a non-integer amount with respect to the raster; then (b) to round 
(x(t) -xo, yet) - Yo) to a sequence of integer points (x, y); and finally (c) for each integer 
point (x, y) at which the curve is to be "plotted," the pixels (x + E, y + 17) are made 
either black or white, depending on whether a pen or eraser is involved, for all integer 
points (E,17) in the pen shape. 

~ Actually METAFONT does operation (c) at higher speeds than this description would 
Y imply, since it knows if it has reached (x, y) from an adjacent point, in which case 
most of the pixels (x + E, y + 17) are already known to be black or white. For example, 
when moving a pen one step upwards, only its top edge needs to be painted. METAFONT 
also gains speed by combining several horizontal and vertical steps into a single step. 

~ What Chapter 3 fai~ed to describe was how METAFONT chooses the sequence of 
Y points (x, y) that are to represent the curve (x(t), yet)). The rule is essentially this: 

The integer point (x, y) is plotted if and only if the curve (x(t) - ro, yet) - y'o) passes 
through the diamond-shaped region whose four corner points are 

(x,y +!) 

(x+ ~,y). 

(x,y -!) 

This rule implies that if the curve is travelling in a basically horizontal direction (with x 
changing more rapidly than y), there is exactly one point plotted in each column, while 
if it is going in a basically vertical direction (with y changing more rapidly than x), 
there is one point plotted in each row. Furthermore the rule leads to proper behavior 
at the endpoints: If a curve is broken up into two segments, for example by inserting 

. intermediate points in a draw command, you won't be plotting spurious points where 
the two curves join. (Exception: If an entire draw command has been processed but 
no point was plotted, because for example the command was trying to draw a tiny 



DiscTeteness and discTetion 53 

circle whose coordinates were all very close to (a + ~,b + ~) for some integers a and b, 
METAFONT will plot one point, obtained by rounding the first specified point Zl to 
integer coordinates. Each draw therefore plots at least once.) 

~ The diamond rule for plotting curves is ambiguous in one respect: It doesn't say 
Y what happens on the boundary of the diamond. For example, if a horizontal or 
nearly horizontal curve happens to pass exactly through the point (x, y + ~), when x 
and yare integers, will METAFONT plot (x, y + 1) or (x, y)? The answer is, sometimes 
(x + I, y) and sometimes (x, y), depending on the curve being drawn. The reason is that 
this behavior is what you want, although you may not realize it at first. If the same 
decision were made each time, independent of the path, the result would be undesirable 
because the curves would turn out to be unsymmetrical: the left half of an '0' might 
look slightly different from the right half, and the top half might look different from 
the bottom. Therefore METAFONT's rounding rule is such that reflection symmetries 
are preserved: 

a) If m is an integer then point (x, y) is plotted for the curve (x(t), y(t)) if and only if 
(m - x, y) is plotted for the curve (m - x(t), y(t)). 

b) If n is an integer then point (x, y) is plotted for the curve (x(t), y(t)) if and only if 
(x, n - y) is plotted for the curve (x(t), n - y(t)). 

(The only exceptions occur when it is essentially impossible to satisfy the conditions, 
namely when the curve (x(t), y(t)) in (a) is a vertical line with x(t) = constant = 
integer + ~, or similarly when the curve (x(t), y(t)) in (b) is a horizontal line with y(t) = 
constant = integer + ~.) In other words, you can almost always ensure symmetry of the 
rounding operation if you simply make the curve symmetric with respect to an integer. 
The precise rounding rule used by META FONT will not be explained here, since only the 
symmetry principle above is important in practice. Symmetry is achieved by internally 
converting every curve to subintervals such that some subset of the transformations 
x(t) --+ -x(t), y(t) --+ -y(t), x(t) f-+ y(t) produces a curve satisfying 0 < y'(t) < x'(t) 
throughout each subinterval. A particular rounding rule is used for curves satisfying 
o < y'(t) < x'(t), then the rounded points are untransformed again. 

~ There is an analogous kind of symmetry that METAFONT cannot guarantee: 
Y The result of "draw 1 .. 2 .. 3" might not be precisely the same as the result of 
"draw 3 .. 2 .. 1", since the rounding might be slightly different when a curve is being 
drawn in the opposite direction. 

~ The fact that METAFONT's rounding rule preserves certain symmetries is helpful 
Y in practice, yet it must be remembered that some asymmetry is inherent in the 

fact that rounding does take place. The curve (x(t), y(t)) will not, in general, look just 
like the curve (x(t) + i, y(t) + i), say, after rounding; so the question arises, do some 



54 

(;,:"" (,;" 
.~', }o"j 

,.\';, ,;:'. 

'.:.:.'.. ; .•. : .•. :, .•.. 

~:\ tl 
i~ \~ 

Chapter i 

Fig. 7-1. The effects of rounding are 
most noticeable at the extreme points 
of a curve. 

curves look much better than others? The answer is yes, but the only really critical 
places seem to be where the curve reaches a horizontal or vertical extreme (when it is 
travelling straight up or down, or when it is perfectly horizontal, if only for an instant). 
When a curve turns a corner in such places, its outside edge may look too flat after 
rounding (even when the resolution is fairly good), unless the turI\ing point is selected 
appropriately. For example, Fig. 7-1 shows three curves plotted with an hpen of width 9, 
when the hpenht is 3. Each of the three curves is essentially the same, starting at 
(x + 10,50) with a slope of {-1,-1}, then coming down and left to points (x, 0) where 
the direction is {O,-I}, then going down and right to point (x + 10,-50) where the 
slope is {+1,-1}. The only difference is that x = 0 (an integer) in the lefthand curve; 
x = 50.4999 (almost halfway after an integer) in the middle curve; and x = 100.5001 
(almost halfway before a~ integer) in the right-hand curve. The middle curve has an 
unfortunate glitch at y. = 0, and the righthand curve looks too flat near y = O. 

~ We can conclude that a curve going from right to left and back again has a good 
~ position with respect to the raster if its extreme point occurs at an integer, when 

an hpen with an odd width is being used. The reason is that an integer point is halfway 
between the places where rounding makes an abrupt transition, so no obvious anomalies 
will appear. Similarly we get a good position for hpens of even width when the extreme 
point occurs at an integer plus !, since an offset of ! is subtracted before rounding. 
Both of these cases can be summed up in one rule, that a good case for rounding occurs 
if the left (or right) edge of the pen is an integer at the extreme point. Thus, one can 
get good results by computing an approximate value 1 for the left edge of the pen and 
writing the equation 

IftiXj = roundl; 

here Wi is the pen width and Xj is the x coordinate of the extreme point. Another way 
to achieve the same objective is to compute an approximate value c for the center of 
the pen at its extreme point and then to write 

Xj = gOOdiC; 



Subroutines 55 

the good function produces the nearest integer to c if the pen width (round Wi) is odd, 
otherwise it yields the nearest point to c having the form integer +~. Appendix E 
contains examples that show how round and good can be used to enhance the appearance 
of letter shapes. 

<8> Subroutines 

When you sit down and try to design the lower case letters a to z, you will probably 
discover that most letters have features in common with other ones; for example, 
consider the relations between I and h, hand n, nand m, nand u. You will 
therefore wish that different characters could share common portions of META
FONT programs, with only minor variations made when these common portions 
are used in different places, so that you can avoid inconsistencies and tedious 
repetitions. Well, you are in luck: Common operations need to be programmed 
only once, and the way to do this is much better than the "input drag" solution 
used in Chapter 4. Subroutines are the answer to your problem. 

Subroutines are one level of complexity up from the simplest uses of META
FONT, however, so the rest of this chapter is marked off with dangerous bend 
signs. You should try to play around with the rest of METAFONT for at least 
a little while before you dive into the subroutine world. (Remember when you 
were learning other programming languages? Your first few programs probably. 
did not involve subroutines or macros.) On the other hand, subroutines aren't 
completely mysterious, and you will be quite ready to read on as soon as you 
have gotten some METAFONT experience under your belt. 

~ A subroutine begins with the reserved word subroutine and ends with a period. 
3: More precisely, a subroutine has the form 

subroutine (identifier)(arguments): (statement list). 

Here the (identifier) is the name of the subroutine; if that identifier has previously 
been used to stand for a variable or another subroutine, its old meaning is forgotten. 
The (arguments) represent special kinds of variables that correspond to any changeable 
parameters that this subroutine will have when it is called into action by a main routine 
or by another subroutine. 



56 Chapter 8 

~ Arguments to a subroutine can be of two kinds, "var" and "index"; the var kind 
Y represent real values, while the index kind represent subscripts. An example should 
make this clear, so let's take a look at the "dare" subroutine of Appendix E, used to 
draw an elliptical double-arc such as the left half or the right half of the letter "0": 

subroutine dare (index i, indexj, var maxwidth): 
Xl = Xs = Xi; X2 = X4 = l/sqrttwo [Xi,Xj]; X3 = Xj; 
YI = Yi; Ys = Yj; Y3 = ![Yi,YJ]; 
Y2 = l/sqrttwo [Y3, Yi]; Y4 = l/sqrttwo [Y3, YJ']; 
hpen; draw Iwoll{x3 - Xl, O} .. I ~[wo, maxwidth1l2{x3 - Xl, Y3 - Yl} .. 

Imaxwidth #13{O, Y3 - YI} .. 
1 ~ two, maxwidth11 4{X5 - X3, Ys - Y3} • • lwoI5{X5 - X3, O}. 

(Constructions like "![Yi,Yj]" would really be typed "1/2[yl,yj]"; it seems best to 
use special conventions when typesetting METAFONT programs in order to make them 
as readable as possible.) This particular subroutine deserves careful study, because it is 
a "real" example that illustrates most of METAFONT's conventions about subroutines 
in general. Therefore it will be explained rather slowly and carefully in the following 
paragraphs. 

~ In other parts of a METAFONT program containing the above subroutine, a state
Y ment like 

call dare (6, 7, Wg) 

will invoke dare with parameters i = 6, j = 7, maxwidth = Wg. The effeet of dare 
in general is that a half-ellipse will be drawn starting at point (Xi, Yi) with an hpen of 
size Wo; this arc will proceed to point (Xj, ~ [Yi, Yj]) with the pen's width having grown 
to size maxwidth, then it will finish at point (Xi, Yj) where the pen once again will come 
back to size woo The subroutine will work when Xi < Xj as well as when Xi > xJ', and 
when Yi < Yj as well as when Yi > Yj. 

~ The most important thing to remember about METAFONT subroutines is that each 
Y routine and each subroutine has its own x- or y-variables. When dare refers to 

Xl it is NOT the same as the Xl in the routine or subroutine that is calling dare; all 
x-variables and y-variables have a strictly local significance. (This is similar to the 
fact that x-variables and y-variables disappear at the end of each routine that defines a 
single character, i.e., they disappear when a period is reached; cr. the DRAGON example 
of Chapter 4.) The values of arguments (like i and j and maxwidth) are also local 
to a particular subroutine. On the other hand, w-variables and variables named by 
identifiers are global; they can be defined in one routine or subroutine and used in 
another. Thus, when dare refers to Wo and to sqrttwo, these variables should have 
values that were defined before dare was called. 



Subroutines 

a5 ~ 

57 

Fig. 8-1. This shape was drawn 
by calling the darc subroutine twice. 
Points labeled 1, 2, 3 were defined in 
the main routine; points whose labels 
begin with "a" were defined in the first 
call of darc; and points whose labels 
begin with "b" were defined in the 
second call. 

~ A subroutine is able to refer to x-variables and y-variables of its caller by means 
Y of index arguments. For example, suppose thatdarc has been called with i = 6; 
when it refers to Xi, this means X6 in the calling routine, it doesn't mean X6 local to 
darc. On the other hand a reference to Wi denotes the unique variable W6. 

~ Since subroutines and their calling routines often have their own points Xl and Yl, it 
Y is desirable to have some method of naming points meaningfully on the illustrations 
produced by prooCmode and in METAFONT's error messages. Lower case letters may 
be specified for this purpose in call statements. For example, consider the following 
routine that useS darc twice: 

Xl = 0; Yl = Y3 = 150; 
sqrttwo = sqrt2; Wo = 3; 
call' a darc(2, 1, WI); 

call' b darc(2, 3, WI). 

X2 = 50; 
WI = 9; 

Y2= 0; X3 =100; 

Fig. 8-1 shows the result together with the point labels. Here "1" denotes point (Xl, Yl) 

of the main routine, namely point (0,150); it doesn't happen to have been used directly 
for any of the curves drawn, but its coordinates Xl and Yl were used separately in dare's 
calculations. The point labeled "a5" is point 5 inside the first call of darc, since the 
code 'a was included in this call statement. Similarly, points whose name begins with 
"b" are the points defined in the second call. Points aI, bl, and b5 do not appear with 
these labels in Fig. 8-1, since they coincide with points that were already labeled. 

~ All the clues needed to understand darc have now been givenj please study that 
Y subroutine again now until you fully understand it. Incidentally, if the value of 

variable sqrttwo is made smaller than v'2 = 1.4142, the darc subroutine will draw a 
"superellipse" that opens wider than a normal ellipse does; this effect is occasionally 
desirable in font design. (Cf. Fig. 8-2.) 



58 Chapter 8 

Fig. 8-2. This shape was drawn by 
the same routine as Fig. 8-1, except 
that sqrttwo has been set equal to 
1.319507911 (the value 22/ 5 recom
mended by Piet Hein). 

~ The argument list in a subroutine definition is either empty or it is a list of one or 
j( more "var (identifier)" or "index (identifier)" entries enclosed in parentheses and 

separated either by commas or by") (to pairs. (Subroutine dare's definition might have 
begun 

subroutine dare (index i)(indexj)(var maxwidth): 

some people prefer this syntax.) Formally speaking, we have the following BNF 
definition: 

(arguments) +- (empty) I (argument list}) 
(argument list) +- (argument) I (argument list), (argument) 

I (argument list))( (argument) 
(argument) +- var (identifier) I index (identifier) 

A call command has a similar format. The parameters in a call must agree in number 
and kind with the arguments in the corresponding subroutine definition. 

~ .Exercise 8.1: Write a subroutine th~t will draw Fig. 2-3 when it is called by the 
j( following driver program: 

Xl = Yl = Y2 = 0; X2 = 150; 

call eurve(60, 120, 1,2); 

call eurve(60, 90,1, 2); 

call eurve(60, 60, 1,2); 

call curve (60, 30, 1,2); 

call eurve(60, 0,1, 2). 



SubrO'Utines 59 

~ Another example-this one contrived-should further clarify the general idea of 
~ index arguments. Consider the program 

subroutine sub(index i): 
... , call' a subsub(i,l)j 

subroutine subsub(index i, index J"): 
... , drawi .. j .. 2j 

call' b sub(3). 

Can you figure out what points the "draw i . . J .•. 2" command refers to in subsub, 
before the answer is revealed in the next sentence of this paragraph? Answer (don't 
peek): inside sub, "i" refers to point 3 of the main routine and "I" refers to local 
point blj therefore inside subsub, "i" and "l' refer to 3 and bl, while "2" refers to 
local point ba2. (Note the concatenation of labels since subsub is being used as a sub
subroutine.) If for some reason subsub forgot to define its local variable X2, you would 
get the error message "Variable xba2 is undefined" at the time "draw i .. j .. 2" 
was being interpreted. 

~ This example reveals two other things about subroutines: (1) It is permissible for 
~ different subroutines to have arguments with the same name. In fact, the name 

of an argument may also be identical to the name of a global variable or even to the 
name of another. subroutinej that identifier refers to the appropriate argument, within 
the subroutine being defined, but it reverts to its global meaning when the subroutine 
definition ends. (2) It is permissible to call subroutines that have not yet been defined. 
(Note that "call 'a subsub" appeared in the program before subsub was known to 
be the name of a subroutine.) In fact, it is even permissible for a subroutine to call 
itself, if you are careful to avoid infinite recursion, provided that the subroutine has no 
arguments (see below). However, when a call is actually being interpreted, the called 
subroutine definition must already have appeared. It is easy to understand this rule if 
you understand how subroutines are actually implemented: When METAFONT sees a 
subroutine definition, it stores away the text for future usej then when a call statement 
appears, the text of the subroutine is fed through METAFONT's reading mechanism in 
place of the text of the call. 

~ Since the previous paragraph mentions the possibility of recursion, an alert reader 
~ will have guessed that METAFONT has the capability of interpreting statements 
conditionally, Le., performing certain computations only if certain relations hold. Yes, 
alert reader, there is an if statement. It has two general forms, 

if (relation): (statement list); fi 

or if (relation): (statement listl}j else: (statement list2}j fi 



60 Cha.pter 8 

where the first is treated like the second but with (statement list2) empty. A (relation) 
has the form 

(expression 1) (relop) (expression2) 

where (relop) is one of the six relational operator symbols =, <, >, ¥-, <, >. 
The meaning of an if statement is that (statement listl) is interpreted if the relation 
is true, (statement list2) is interpreted if the relation is false, and the error message 
"Indeterminate relation" results if the relation cannot be decided due to unknown 
variables. The relation "z = z" is known to be true whether z is known or not, but 
the relation "z > 0" is indeterminate unless z is known. N.B.: Don't forget the fl that 
closes the if. 

~ When a subroutine is called, the current pen type and current pen size are remem-
7 bered ,so that they can be restored when the subroutine is finished. The "control 
bits" described in Chapter 9, governing tracing and output modes, are also saved and 
restored across calls. The subroutine must specify a new current pen type and current 
pen size before it draws any curves or uses some other operation that depends on the 
current pen type, since METAFONT considers the pen type to be undefined upon entry 
to a subroutine. This restriction tends to catch careless errorSj you can override it, if 
necessary, by saying "no penreset". 

~ Let us close this chapter with an example of a recursive subroutine. Devotees 
77 of structured programming who have the conventional misunderstanding of 
that term will rejoice in the fact that METAFONT has no go to statementj but such 
people might not be so happy about the fact that there is no while statement either. 
In the comparatively few cases where iterations are desirable in font design, there is no 
reason to despair, since iteration is easy to achieve via recursion (even when we must 
live with METAFONT's restriction that recursive procedures cannot have arguments). 
The following subroutine draws an indeterminate number of straight vertical lines, from 
point (a + lcd, b) to point (a + Jed, c) for k = 0, I, ... , as long as a + kd < t. 

subroutine for (var a, var b, var c, var d, var t): 
new aa, bb, CC, dd, ttj 
aa = aj bb = bj cc = Cj dd = dj tt = tj 
call ' a loop. 

subroutine loop: 
if aa < tt: Xl = X2 = aaj YI = bbj Y2 = CCj 

cpenj Wo draw 1 .. 2j 

fl. 

X3 = aa + ddj newaaj aa = Xaj 
call' b loopj 



61 

Note the use of new to emulate an operation that would be written "aa := aa + dd" 
in more conventional programming languages. 

~ ~Exercise 8.2: Continuing this example, suppose that the main routine is 
~y "proofmodej Wo = 3j call' C for (0, 0,100,50,150)." What labels would appear 
on the eight points between which the four vertical lines are drawn? 

<9> Summary of the language 

A METAFONT program consists of sections, each of which is terminated by a 
period. (This period is followed immediately by a (carriage-return) or by a blank 
space, as explained in Chapter 5, so that it is readily distinguishable from a 
decimal points or a multiplication signs or the" .. " of a draw or ddraw command.) 
The period that terminates the final section is followed by the word "end"; this 
terminates the program. 

The x-variables and y-variables of each section are "local" to that section, 
in the sense that Xl (say) in one section has no relation to Xl in another; but 
the other variables are shared by all sections. Within a section, you write one or 
more "statements" separated by semicolons. 

A typical METAFONT program starts out with a section in which you define 
important variables that will be used for all the characters you intend to generate, 
followed by sections for any subroutines you wish to define, followed by sections 
that draw each character. This order of sections is not absolutely necessary, but 
it is suitable for most purposes. 

Appendix E contains examples of complete METAFONT programs used to 
define characters in the "Computer Modern" family of fonts designed by the 
author for use in his books The Art of Computer Programming. Basic META
FONT setups for designing new characters or modifying the designs of existing 
ones, as well as for producing new fonts with particular settings of the variable 
parameters, are described in that appendix. 

The present chapter is intended to serve as a concise and precise summary 
of all of METAFONT's features. We have discussed most of these things already, 
but there are also a few more bells and whistles that you may want to use. The 
idea is now to get it all together. 



62 Chapter 9 

As stated above, a METAFONT program has the general form 

(sectionl)(section2) ... (section m ) end 

where each (section) is either a subroutine definition or has the form of a (statement 
list) followed by a period, namely 

(statementl); (statement2); ... ; (statementn ). 

The main question remaining is therefore, "What is a (statement)?" The various kinds 
of statements are enumerated below, with a bullet symbol (e) in front of each kind. 

e (empty) A null statement. 

One of the things you can do with METAFONT is nothing. The null statement does 
this. 

e (equation) An equation between variables. 

Equations, which consist of two or more (expression)s separated by "=" signs, are 
discussed thoroughly in Chapter 5. Each equals sign leads to the elimination of one 
independent variable, since an expression can be reduced to a linear combination of 
independent variables, unless the equation is redundant or inconsistent with respect to 
previous equations. The purpose of equations is to state the relationships you wish the 
variables of your program to satisfy; you must give enough equations so that META
FONT can solve them uniquely, obtaining known values for all variables that it needs 
to know. 

e new (variable list) Un defines variables. 

A (variable list) consists of one or more variable names separated by commas; for ex
ample, you can say "new alpha, beta, X3, Y2". Sometimes you will have used equations 
to define the value of some variable that you now wish to redefine. By listing this 
variable in a new statement, its old value becomes forgotten. (You should do this only 
when the variable has a known value, or when it is already new and you are just trying 
to be saf~-e.g., in a subroutine when the variable is to be used for temporary storage.) 

e (pen name)(optional #) Specifies the current pen or eraser type. 

At the beginning of each routine or subroutine, the current pen type is undefined, and 
you must define it before drawing anything or using an expression like top that requires 
knowledge of the pen type. The (pen name) statement defines the current pen type, and 
changes the pen to an eraser if a ";J" appears. It also resets the current pen size to zero; 
this is a useless pen size, so you should probably specify a useful value on the next draw 
or ddraw command. Allowable pen names are cpen, hpen, vpen, lpen, rpen, spen, and 



63 

epen, as described in Chapter 3. An spen or epen should be further specified, according 
to the rules in that chapter. However, if you wish the spen or epen to have the same 
specs as the most recent one that METAFONT has generated as it was interpreting your 
program, you can omit the specification and simply say "spen" or "epen" . 

• (drawing command) Draws a line or curve. 

The general format of a (drawing command) is either 

(expression) draw (path) 

or (expression) ddraw (pathl), (path2) 

where the (expression) represents the new pen sizej this can be omitted if the current 
pen size is to be used. The rules for draw and ddraw are explained in Chapters 2 and 
6, so we shall merely summarize here the precise rules for a (path). In general a (path) 
has the form 

(hidden beginning)(pointl).' (point2) .. ... .. (pointn)(hidden ending) 

for some n > I, where the two paths in ddraw must have the same length n. The 
(hidden beginning) is either empty, representing a copy of (pointl)' or it has the form 
"(pointo) .. )"; the (hidden ending) is either empty, representing a copy of (pointn), or 
it has the form ~'( .. (pointn+l))'" The form of a (point) is 

(optional pen size)(index)(optional direction) 

where (optional pen size) is either empty (meaning to use the pen size at the previous 
point, or to use the current pen size if this is the first point) or it has one of the two 
forms 

\ (expression)l or \(expression)#\. 

The (expression) denotes the desired pen size at the point; the # denotes stable pen size 
in the point's neighborhood, otherwise the pen size will change at a rate determined 
as explained in Chapter 6. A :f: is implied when the (optional pen size) is empty. The 
(optional pen size) must be empty for all points in the paths of a ddraw command. The 
(optional direction) is either empty (meaning to let METAFONT choose the direction in 
its standard way, as explained in Chapter 2), or it has the form 

{(expressionl), (expression2)}. 

In this case, if x is the value of (expressionl) and y the value of (expression2), the curve 
will move toward a position that is x units to the right and y units upwards, when it 
passes the current point. 



64 Cha.pter 9 

o .. (any desired title) N Names the font or the character being drawn. 

(Not allowed in subroutines. The title can be any string of characters other than quote 
marks or (carriage-return)s.) This statement has several effects: (i) The first time 
METAFONT interprets a title statement, it saves the string you ·have specified as the 
so-called main title that will appear in the computer file if you generate a font. (ii) If 
you are in titletrace mode, the title will be printed on your screen, as a sort of progress 
report. (iii) The title will appear on the proofsheet output if the current routine is used 
to draw a character in proof mode. (iv) A warning message will be printed (mentioning 
this title) if METAFONT scans the end of a file page before the current section ends, 
unless you are in no pagewarning mode. 

• (conditional statement) 

A construction like 

Chooses between alternative programs. 

if (relation): (statementl); (statemenh); else: (statement3); (statement4); fi 

will interpret (statementl) and (statement2) if the relation is true, (statement3) and 
(statement4) if the relation is false. Chapter 8 gives the general rules. 

• call (optional letter)(subroutine name)(parameters) Invokes a subroutine. 

The (optional letter) is either empty or an expression of the form ,,- (lower case letter)"; 
the (subroutine name) is the identifier of a subroutine that has already been defined; and 
the (parameters) part is either empty, or it is a parenthesized list of (expression)s to be 
substituted for var arguments, and/or (index)es to be substituted for index arguments, 
separated by commas or ")(" pairs. The parameters must be in the same order as the 
corresponding arguments, and there must be exactly as many parameters as arguments. 

• (parameter name)(expression) Defines a METAFONT parameter. 

A parameter statement like this is used to communicate values that METAFONT occa
sionally needs for its work. The parameters have "default" values when METAFONT 
begins; but once you change a parameter with an explicit parameter statement, its 
former value is forgotten. The value of the (expression) must be known at the time 
this statement is interpreted. Here is a list of the parameter names understood by the 
present implementation of METAFONT: 

trxx, trxy, incx, tryx, tryy, incy are used to rotate, translate, and/or expand 
or shrink the curves that METAFONT draws. After computing the functions 
z(t) and y(t) according to the rules described in Chapters 2 and 6, the actual 
curve that will be plotted-before subtracting the offsets z'o and 110 and before 
rounding, and before reducing variable-size draw to ddraw-is 



65 

where Ou, Oxy, Ox, Oyx, Oyy, Oy are the respective current values of the six 
parameters stated. (The default values are, of course, trxx Ij trxy OJ incx OJ 
tryx OJ tryy Ij incy 0.) By setting trxy to 0.15, your drawings will be slanted 
to the right as in the letters you are now reading; those letters were made 
with the same METAFONT programs that generated the unslanted letters you 
are now reading, changing only the setting of trxy. The six transformation 
parameters do not affect the size or shape of pens, only the locations of their 
motions. 

charwd, charht, chardp, charic are used to specify the width, height, depth, and 
italic correction for a character, in units of printers' points. These parameters 
are zero by default, and they are reset to zero at the end of every routine 
when a character is output. The parameters are used when preparing a font 
information file to be used by 'lEX; they do not affect the actual appearance 
of a character in a font. 

epenxfactor and epenyfactor (normally 1.0) are used to enlarge or smallify the 
dimensions of an epen when an explicit pen is specified. These parameters 
should change in proportion to the number of pixels per inch when you are 
designing fonts for a variety of machines. 

epenxcorr and epenycorr (normally 0.0) are used as the offsets x'o and Yo when an 
explicit pen (epen) is specified. 

safetyfactor (normally 2.0) is used to govern the number of curves plotted by ddraw 
when it is filling in between two curves (see Chapter 6). 

minvr,maxvr, minvs, maxvs (normally 0.5, 4.0, 0.5, 4.0) are used as velocity 
thresholds when computing the spline curves corresponding to a path, as ex
plained in Chapter 2. 

The following parameters are rounded to the nearest integer before METAFONT uses 
them: 

hpenht and vpenwd (normally 1) are used to specify the height of each hpen and the 
width of each vpen. It is best to adjust these infrequently, since METAFONT 
has to recompute its accumulated pen information when they are reset. 

nseed (normally set to a value based on the time of day, so that it will be different 
every time you run METAFONT) is used to start the pseudo-random number 
generator that produces the values of nrand. By setting nseed to a par
ticular integer at the beginning of your program-any integer will do-you 
can guarantee that the same sequence of nrand values will occur each time 
the program is run. 



66 Chapter 9 

maxht specifies the height (in pixels) of the tallest character in a font being gener
ated for the XGP. This parameter, which is initially zero, must be set before 
the first character of the font has been output. 

charcode is used to specify the 7-bit number of a character being output to a font. 
This parameter has the invalid value -1 when METAFONT begins, and it is 
reset to -1 after each character is output. No character will be output unless 
the charco de parameter has been set to a number between 0 and 127, inclusive, 
and it should be distinct from the numbers of other characters output. 

chardw specifies the current character's width (in pixels), when a font is being 
produced for the XGP printer; this information is also used when preparing 
font information for 'lEX to use with the XGP. Like charwd, this parameter 
i~ zero for each character until you set it explicitly. There is no automatic 
connection between charwd and chardw. 

crsbreak specifies the y coordinate at which a tall character will be broken into 
two pieces when preparing it for an Alphatype CRS font; the upper piece 
will contain raster positions for rows > y, the lower piece will contain rows 
< y. This parameter is normally set to an essentially infinite value, which 
is restored when a character is output, so that no characters will be broken 
unless a crsbreak has been explicitly specified. 

dumplength (normally 1000) is the number of characters before "ETC" that will be 
displayed in error messages when META FONT stops in the middle of a su b
routine. If you make an error in a long subroutine, you may need to increase 
this parameter in order to see where the error occurred. 

dumpwindow (normally 32) is the maximum number of characters displayed on 
each line of an error message when identifying the current program location . 

• (control code) Sets a "control bit." 

• no (control code) Unsets a "control bit." 

These statements are used to turn on or turn off certain actions tnat METAFONT 
is capable of doing. METAFONT maintains a so-called control word, a set of bits that 
govern whether or not certain optional actions are taken; after a subroutine call, this 
control word is restored to the state it had before entering the subroutine. Initially the 
bits for modtrace, pagewarning, and penreset are turned on, all the others are off. Here 
is a list of the control codes understood by the present implementation of METAFONT: 

eqtrace causes META FONT to tell you what values are defined by your equations. 

titletrace causes METAFONT to print title statements when they are encountered. 



SUmTTlQ,TY 01 the la:ruJUCLge 61 

calltrace causes METAFONT to print the name of a subroutine and its parameter 
values, whenever a subroutine is called, and also to print the name of a sub
routiq.e whenever the call is completed. 

drawtrace causes METAFONT to print out numeric specifications of the paths in 
draw or ddraw commands. 

plottrace causes METAFONT to print lots of detailed information: "Iwl" when 
generating a new pen of size Wi 'tz;, y)" when plotting raster point (x, Y)i 
"(XI:X2, y)" when plotting a horizontal sequence of raster points from (Xl, y) 
to (X2, y); "(X, YI:Y2)" when plotting a vertical sequence of raster points from 
(x, YI) to (x, Y2). 

modtrace causes METAFONT to tell you whenever it changes the "velocities" r or 
s when computing cubic curves. 

pause causes METAFONT to show each line of a text file that is being input, just 
before that line is scanned. This gives you a chance to edit the line before 
hitting (carriage-return), after which METAFONT will scan the edited line. If 
you want to get out of this mode, insert "no pause;" on the line as you are 
editing it. 

drawdisplay causes METAFONT to display the raster after completing each draw 
or ddraw command. (The present implementation allows this only when you 
are running METAFONT from a Datadisc terminal.) 

chardisplay causes METAFONT to display the raster after completing each sec
tion. (The present implementation allows this only when you are running 
METAFONT from a Datadisc terminal.) 

pagewarning causes METAFONT to give a warning message whenever a file page 
ends inside a subroutine definition or a section containing a title statement. 

penreset causes METAFONT to undefine the current pen whenever a subroutine 
call begins. 

proofmode causes METAFONT to output a file of proofsheets containing the raster 
images of each character for which proofmode was in effect at the end of the 
section. These proof figures contain point labels for all points that lie in the 
"active" rectangle, Le., in the smallest rectangle containing all pixels affected 
by the draw and ddraw commands for the current character, provided that 
the points became known when proofmode was on. Thus you can suppress 
all the points and labels if you turn off proofmode until just before finishing 
the section. (A point becomes known when both its x- and y-coordinates 
are known; if proofmode is on at that moment, the point's location (x, y) is 
recorded for proofing, after modifying (x, y) by the transformation parameters 
trxx ... incy currently in force and rounding to the nearest integer.) 



68 Chapter 9 

rntmode causes META FONT to output a file of font images in the format required 
by the XGP hardware and software. 

crsmode causes METAFONT to output a file of font images in the format required 
by the Alphatype eRS hardware and software. It is illegal to use both fntmode 
and crsmode in the same program; and it is also ridiculous to do so, since the 
eRS has more than 26 times the resolution of the XGP. 

chrmode causes METAFONT to output a text file of font images in the form of 
asterisks, dots, and spaces. (Such files can be edited with the system text 
editor, and there are auxiliary programs to convert font files into and out of 
this text format.) 

trxmode causes METAFONT to output a file of information that 'lEX needs for 
typesetting whenever it uses a font. 

• varchar (expression list) 

• charlist (expression list) 

• texinro (expression list) 

• lig (lig instruction list) 

Specifies a built-up character. 

Specifies a series of characters. 

Specifies 'lEX font parameters. 

Specifies ligature/kerning information. 

These four kinds of statements are relevant for tfxmode only, since they provide detailed 
information to 'lEX. See Appendix F for a detailed explanation. 

• invisible (expressionl), (expression2) Preempts a label position. 

(Ignored except in proofmode.) The command "invisible x, y" makes METAFONT think 
that a point with coordinates (x, y) is going to be labeled, while in fact it may not 
be. The purpose is to cause METAFONT to choose a nicer place for other point labels, 
since they will now avoid the vicinity of (x, y), thereby sprucing up proof mode output 
in certain cases. For example, Fig. 2-3 of this manual was produced using "invisible 
Xl, YI + Ij invisible X2, Y2 + Ij" this kept the labels 1 and 2 from appearing above points 
1 and 2, where they would have interfered with the illustration. In general, METAFONT 
places labels on points by using a fairly simple-minded scheme: From top to bottom 
and right to left, the label is put either above the point, or to the left, or to the right, 
or below, or off in the right margin, whichever of these possibilities is first found to be 

'\ feasible (with respect to the set of all points to be labeled, all invisible points, and all 
labels placed so far). Note that the label positions do not depend on the raster image, 
only on the locations of the visible and invisible points. 

That completes the list of METAFONT statements. You might wonder why 
input was not in this list, since input was used several times in the example of 
Chapter 4. The reason is that input is not officially part of a (statement); it has 



RecoueT'Y fTom eTTOTS 69 

the effect of redirecting METAFONT's eyes to a different file, even in the middle 
of some other statement. Chapter 4 used the construction 

input (file name); 

but this semicolon was unnecessary-META FONT just executed a null statement 
after the input was complete. A (file name) in the current implement of META
FONT is any sequence of letters, digits, periods, and/or brackets, so a semicolon 
is one way to terminate a file name specification. Another way is to type a space 
or a (carriage-return). 

So that's how METAFONT gets input; how does it decide where to put the 
output? Answer: It chooses an output file name as explained below, and uses 
the respective extensions . FNT, . ANT, . XG?, . CHR, . TFX for output produced 
by fntmode, crsmode, proofmode, chrmode, tfxmode. The output file name is 
the name of the first file you input, unless METAFONT has to output something 
before there has been any input from a file. In the latter case, the output file 
name is "mfput". 

<10> Recovery from errors 

OK, everything you need to know about METAFONT has been explained-unless 
you happen to be fallible. 

If you don't plan to make any errors, don't bother to read this chapter. 
Otherwise you might find it helpful to make use of some of the ways METAFONT 
tries to pinpoint bugs in your routines. 

In the trial runs you did when reading Chapter 4, you learned the general 
form of error messages, and you also learned the various ways you can respond to 
METAFONT's complaints. With practice, you will be able to correct most errors 
"on line," as soon as METAFONT has detected them, by inserting and deleting 
a few things. On the other hand, some errors are more devastating than others; 
one error might cause some other perfectly valid construction to be loused up. 
Furthermore, METAFONT doesn't always diagnose your errors correctly, since 
the number of ways to misunderstand the rules is vast, and since METAFONT 
is a rather simple-minded computer program that doesn't readily comprehend 
what you have in mind. In fact, there will be times when you and METAFONT 
disagree about something that you feel makes perfectly good sense. This chapter 



70 Chapter 10 

tries to help avoid a breakdown in communication by presenting METAFONT's 
viewpoint. Though it may seem like madness, there's method in 'to 

By looking at the input context that follows an error message, you can often 
tell what METAFONT would read next if you were to proceed by hitting {carriage
return}. For example, here is a slightly more complex error message than we 
encountered in Chapter 4, since it involves a subroutine call: 

! Extra code at end of command will be flushed. 
<subroutine> dot: xi = y1 = a; cpen w3 

draw 1. 
p.3,l.9 call dot; 

new a; 
i 

In this case the error has occurred in the middle of subroutine dot, where a semi
colon was forgotten after the pen name cpen. The next tokens that METAFONT 
will read are "draw" and "I" and then the period ending the subroutine call, 
after which METAFONT will read "new a;" and proceed to line 10 of page 3 of 
the current input file. Each pair of lines between the "!" line and the "i" line of 
an error message shows where METAFONT is currently reading at some level of 
input; in this example there are two levels, one in the subroutine and one outside 
in page 3 of the file. 

The best way to proceed after this particular error is to type "i" (for inser
tion), then (after getting prompted by "*") to type "; w3". This inserts the 
missing semicolon and reinserts the WJ specification that METAFONT is flushing 
away, so that the program will proceed as if no error had occurred. In general, it 
is usually wise to recover from errors that say "command flushed" by inserting 
a semicolon and as many tokens as needed to provide the desired next statement, 
after deleting any tokens you don't wish METAFONT to read. 

You can get more information about what METAFONT thinks it is doing by 
enabling the various kinds of tracing mentioned in Chapter 9 (calltrace, drawtrace, 
eqtrace, etc.). 

Here is a complete list of the messages you might get from METAFONT, presented in 
alphabetic order for reference purposes. Each message is followed by a brief explanation 
of the problem, from METAFONT's viewpoint, and of what will happen if you proceed 
by hitting (carriage-return). This should help you to decide whether or not to take any 



Reco'Ver'Y from errors 71 

remedial action. (See also Appendix I for references to these error messages in other 
parts of the manual.) 

! Bad path, command flushed. 
The (path) in the current draw or ddraw command does not follow the syntactic rules 
stated in Chapter 9. Proceed, and METAFONT will ignore all tokens up to the next 
semicolon or period. 

! Boundary too long. 
The current character was too complex to be drawn by the Alphatype CRS hardware. 
Perhaps it would have been okay if you had chopped it into two parts using crsbreak. 
Proceed; the character will not appear in the font output. 

! Character . (octal code) goes over the top ((constant) > (constant) . 
You didn't specify a large enough maxht. Proceed, and the top rows of the current 
character will be erased. 

! Character too tall. 
The current character covers more than 1023 consecutive rows of the raster, so it exceeds 
the hardware capacity of the Alphatype CRS. You need to break it into two pieces 
using crsbreak. Proceed, and a partly erased character will be output. 

! Comma substituted here. 
A missing "," has been substituted for the most recently scanned token. Proceed, after 
possibly deleting and/or inserting some tokens to make the remaining expression read 
as you intended it to. 

! Curve out of range. 
The current draw or ddraw command has requested METAFONT to plot a point whose x
coordinate or y-coordinate is too large or too small. Proceed; the remainder of the cur
rent drawing will be omitted. (It is possible to increase METAFONT's drawing range by 
recompiling the system with different values of its internal parameters called xrastm in, 
xrastmax, yrastmin, yrastmax.) 

! Curve too wild. 
The current curve (x(t), y(t)) being drawn undergoes extremely fast changes for small 
increments in t; are you trying to break METAFONT's plotting routine? Proceed, and 
the remainder of the current drawing will be omitted. 

! Division by O. 
The expression METAFONT is currently evaluating specifies a division by zero. Proceed, 
and the division will be bypassed. 

! Dupl icate charcode: • (octal code). 
Two routines have specified the same character code. Proceed, and the previous character 
will be overlaid by the present one. 



72 Chapter 10 

Duplicate ligature/charlist entry, command flushed. 
It is illegal to specify two ligature labels for the same character code, or to include a 
character in a char list when there is a ligature label for it. Proceed, and METAFONT 
will ignore all tokens up to the next semicolon or period. 

! Empty pen specification. 
The spen or epen you have specified contains no points. Proceed, and METAFONT will 
substitute a one-point pen. 

! epenxfactor must be positive (1.0 assumed). 
The value of epenxfactor cannot be zero or negative. Proceed, and METAFONT will 
reset it to 1.0 while making the current epen. 

! epenyfactor must be positive (1.0 assumed). 
The value of epenyfactor cannot be zero or negative. Proceed, and METAFONT will 
reset it to 1.0 while making the current epen. 

! Extra code at end of command will be flushed. 
METAFONT has read and interpreted a (statement), so it expected to find a semicolon or 
period as the next token. This expectation was not realized. Proceed, and METAFONT 
will ignore all tokens up to the next semicolon or period. 

! hpen height too small, set to 1. 
You shouldn't specify a setting of hpenht that is less than 0.5. Proceed, and its value 
will be set to 1. 

! Illegal pen size «constant}). 
The pen size you have specified is either too large or too small. Proceed, and METAFONT 
will use size 1 instead. 

! Image lost since charcode not specified. 
Your program drew something, but no information was output for that character since 
you failed to specify any charcode for it. Proceed. 

! Improper call, command flushed. 
There are extraneous tokens following the current call statement (e.g., you may be 
supplying too many parameters). Proceedj the call statement and all tokens up to the 
next semicolon or period will be ignored. 

! Improper charlist entry, command flushed. 
Your charlist doesn't follow the rules stated in Appendix F. Proceed, and META FONT 
will ignore all tokens up to the next semicolon or period. 

! Improper index argument, command flushed. 
You have just tried to call a subroutine having an index argument, but the parameter 
you are supplying isn't an (index). Proceed; the call statement and all tokens up to the 
next semicolon or period will be ignored. 



Reco'llery trom errors 73 

! Improper index specification. 
An (index) was supposed to have been here (either a digit string or the name of an index 
argument in a subroutine), for example after the word top. Proceed, and METAFONT 
will act as if the index were "0". 

! Improper ligature/kern entry, command flushed. 
The current (lig instruction) doesn 'tfollow the rules stated in Appendix F. Proceed, 
and METAFONT will ignore all tokens up to the next semicolon or period. 

! Improper name. 
This token can't be made new (e.g., "new 5"). Proceed, and it will be ignored. 

! Improper pen specs, command flushed. 
You have not followed the rules of an spen or epen specification. Proceed, and META
FONT will ignore all tokens up to the next semicolon or period. 

! Incompatible resolution. 
You can't simultaneously select output in fntmode and crsmode. 

! Inconsistent equation. 
The equation just given does not jibe with information METAFONT already knows from 
previous equations. (If you can't understand why, try running your program again 
with eqtrace on.) Proceed, and the inconsistent equation will be ignored. 

! Indeterminate relation. 
METAFONT has just scanned "if (relation):" but it was impossible to decide whether the 
relation is true or false based on the equations given so far. To recover, insert and/or 
delete tokens so that the next thing METAFONT reads is a correct conditional statement 
(you must reinsert the "ir' as well as a relation). 

! Input page ended while scanning def of (subroutine name). 
The end of a file page occurred between the beginning of a subroutine definition and 
the period ending that subroutine. (It is possible to suppress this message by putting 
METAFONT in no pagewarning mode.) 

! Input page ended whi le scanning -(title)-. 
The end of a file page occurred between a quoted title statement and the period ending 
that routinej this may indicate an if not closed by fi, or some other anomaly, or it might 
not be an error at all. (It is possible to suppress this message by putting METAFONT 
in no pagewarning mode.) 

! Ligature/kern table didn·t end. 
The final entry of your final (lig instruction list) was a continuation entry. Proceed, but 
don't be surprised if 'lEX blows up trying to use the font information produced on this 
run. 



74 Cha.pter 10 

Lookup failed on file (filename). 
METAFONT can't find the file you indicated. Type "itt and insert the correct file name 
(followed by a (carriage-return)). But be careful: You get only one more chance to get 
the file name right, otherwise METAFONT will decide not to input any file just now. 

! METAFONT capacity exceeded, sorry [(size}=(number)]. 
This is a bad one. Some how you have stretched METAFONT beyond its finite limits. 
The thing that overflowed is indicated in brackets, together with its numerical value in 
the METAFONT implementation you are using. The following table shows the internal 
sizes that might have been exceeded: 

epensize 
maxpoints 
memsize 
names 
namesize 
pmemsize 
proofmemsize 
stacksize 
vmemsize 
xpenmax 
xpenmin 
xrastmax 
ypenmax 
ypenmin 
yrastmax 

number of (l, r) pairs in an epen specification; 
number of points in a curve to be drawn; 
memory above vmems i ze used to store tokens; 
number of bits used to represent subscripts; 
memory used to store identifiers; 
memory used to store information about pens and erasers; 
number of visible and invisible points for proof sheets; 
number of simultaneous input sources; 
memory used to store variable values and many other things; 
largest x-coordinate of a pen or eraser; 
smallest x-coordinate of a pen or eraser; 
maximum x-coordinate allowed when plotting; 
largest y-coordinate of a pen or eraser; 
smallest y-coordinate of a pen or eraser; 
maximum y-coordinate allowed when plotting. 

If your job is error-free, the remedy is to recompile the METAFONT system, increasing 
what overflowed. However, you may be able to think of a way to change your program 
so that it does not push METAFONT to extremes. 

! Missing M(M, command flushed. 
You have just tried to call a subroutine without supplying enough parameters. Proceed; 
the call statement and all tokens up to the next semicolon or period will be ignored. 

! Missing M,M, command flushed. 
The first (path) in the current ddraw command, or the first coordinate in the current 
invisible command, was not followed by a comma. Proceed, and METAFONT will ignore 
all tokens up to the next semicolon or period. 
! Missing M:M. 

METAFONT has just scanned "if (relation)" and the next token should have been a 
colon. To recover, insert and/or delete tokens so that the next thing METAFONT reads 



RecO'Ver'Y from errors 75 

is a correct conditional statement (you must reinsert the "ir' as well as a relation and 
a colon). 

! Missing = sign, command flushed. 
A METAFONT statement began with an expression, but the next token was neither 
"=" nor "draw" nor "ddraw". The value of this expression, in terms of independent 
variables, has been printed out on the line just preceding this error message. (See 
Chapter 4 for several examples.) Proceed, and METAFONT will ignore the expression 
and all tokens up to the next semicolon or period. 

! Missing colon inserted. 
There should have been a ":" after the word else; METAFONT has inserted one. 

! Missing punctuation, command flushed. 
You are trying to call a subroutine, but you didn't supply a comma or a right parenthesis 
after the current parameter. Proceed; the call statement and all tokens up to the next 
semicolon or period will be ignored. 

! Missing relation. 
META FONT has just scanned "if (expression)" and the next token should have been 
one of the six relation symbols «, >, =, <, >, ~). To recover, insert and/or delete 
tokens so that the next thing METAFONT reads is a correct conditional statement (you 
must reinsert the "ir' and fix the relation). 

! Negative chardw, replaced by o. 
The value of chardw must not be negative. Proceed; it has become O. 

! No parameter name. 
The word "var" or "index" should be followed by an identifier that will be the name of 
the argument being specified. Proceed, and METAFONT will bypass the most recently 
scanned token and argument; you may want to insert another argument with the correct 
name. 

! No pen defined. 
You are trying to draw or ddraw, but the current pen type has not been defined. Proceed, 
and METAFONT will use cpen. 

! No subroutine name, command flushed. 
The word "subroutine" should be followed by an identifer that will be the name of the 
subroutine being defined. Proceed, and METAFONT will ignore all tokens up to the next 
semicolon or period. 

! Paths don"t match up, command flushed. 
The two paths in the current ddraw command have unequal numbers of points. Proceed, 
and METAFONT will ignore all tokens up to the next semicolon or period. 



76 Cha.pter 10 

! Pen size too small ((constant)), replaced by 1.0. 

The pen size enclosed in "I" signs (within a variable-size draw command) should not 
be less than 1.0. Proceed, and METAFONT will act as if it were 1.0. 

! Program ended while defining (subroutine name). 
Premature occurrence of the word end leads to a premature end. 

! Rectangle too wide. 
You have specified an lpen or rpen with too much width for METAFONT's capacity. 
Proceed, and METAFONT will cut the width to the maximum it can handle. 

! Recursive call not allowed, command flushed. 
You have just tried to call a subroutine having a parameter whose value is already 
defined from another call not yet complete. (Recursion is allowed only with parameter
less subroutines.) Proceed; the call statement and all tokens up to the next semicolon 
or period will be ignored. 

! Redundant equation. 
The equation just given does not present any information that METAFONT didn't al
ready know from previous equations. (If you can't understand why, try running your 
program again with eqtrace on.) Proceed; no harm has been done. 

! Right bracket substituted here. 
A missing "1" has been s~bstituted for the most recently scanned token. Proceed, after 
possibly deleting and/or inserting some tokens to make the remaining expression read 
as you intended it to. 

! Right parenthesis substituted here. 
A missing ")" has been substituted for the most recently scanned token. Proceed, after 
possibly deleting and/or inserting some tokens to make the remaining expression ·read 
as you intended it to. 

! Rounding of (char dimension) necessary, (constant) -+ (constant). 
The characters in the present font have too many distinct dimensions of the specified 
type for 'IE/C to handle. (For example, some versions of 'lEX will allow at most 16 
different values of charht per font.) The specified approximation has been used; if 
you want uniformity between different machines, you should redefine the dimensions 
in accordance with 'lEX's limits. , 

! Routine ended in skipped conditional text. 
Something is awry, since a period or end has occurred in the midst of part of your 
program that is being skipped over (because it's in the unselected part of a conditional). 
Proceed if you dare. 



Reco'Very from errOTS 77 

Sharp turn suppressed between points (point names) «(velocity)) 
(This is not really an error message, it's a warning that you get when modtrace is in 
effect.) The curve METAFONT is about to draw would have had a sharp turn at one 
of the stated points (the first point if the "r" velocity is given, the second if the "s" 
velocity is given), because of the angles the curve is supposed to take between those two 
points. The velocity derived by METAFONT's normal rules is below minvr or minvs, so 
METAFONT is suppressing the sharp turn by raising the velocity to the corresponding 
minimum value. (Cf. the latter part of Chapter 2 for further discussion.) This usually 
is a symptom of some problem in your program, although it may be perfectly all right. 

! Should be .(" or ",. or .:. here. 
One of these three tokens is needed, since an argument list is being scanned; you should 
insert and/or delete tokens so that METAFONT sees the correct one, to get it back into 
synch. 

! Should sayvar or index here. 
The word "var" or "index" should have appeared at this point, to define the next 
subroutine argument. Proceed, and the most recently scanned token will be ignored. 

! String must end on the line where it begins. 
A quoted title cannot contain a (carriage-return); the title you supplied therefore seems 
to have ended wi.thout its closing "." mark. Proceed, and METAFONT will act as though 
the "." had been present here. 

! Subroutine definition should follow·.·. 
A subroutine definition should not begin between a title statement and the period ending 
the corresponding routine. Proceed; METAFONT will define the subroutine and resume 
the routine, forgetting its title. 

! Subroutines can't be defined inside subroutines. 
Each subroutine should be a section unto itself. Proceed, and the word "subroutine" 
will be ignored; however, some other errors will probably show up unless you insert the 
text". subroutine" now to recover from this error. 

! This can't happen. 
An internal consistency check has failed, causing META FONT to be totally confused. 
Either you did something the author was unable to foresee, or somebody has been 
tampering with the METAFONT system programs. 

! Titles are ignored inside subroutines. 
You aren't supposed to have title statements in subroutines. Proceed, and this here one 
will be ignored. 



78 Cha.pter 10 

Too many different chardw values. 
Too many different charic/varchar values. 

The 'lEX character information for the current font is too complex; 'IE:;X puts limits on 
the maximum number of distinct values of chardw and charic/varchar in anyone font. 
(See Appendix F.) 

! Too many ligatures, command flushed. 
Your program is supplying more ligature/kern entries than 'lEX can tolerate in one 
font. (Some implementations of 'IE:;X have restricted capacity, but the present Stanford 
version allows 512, which should be plenty.) Proceed, and METAFONT will ignore all 
tokens up to the next semicolon or period. 

! Too much texinfo, command flushed. 
Your program is supplying more information parameters than 'IE:;X can understand. 
Proceed, and METAFONT will ignore all tokens up to the next semicolon or period. 

! Undef ined pen. 
You are using a (direction) operation like top, but the current pen type has not been 
defined. Proceed, and METAFONT will ignore the (direction) operation. 

! Undefined pen size. 
The current pen size being supplied before the word draw or ddraw does not have a 
known value; its value in terms of independent variables has been printed out on the 
line just preceding this error message. Proceed, and the current pen size will retain its 
former value. 

! Undef ined (something), replaced by (constant). 
The line before this error message shows the current value of the (something) that should 
have a definite value at this point, expressed as a linear combination of independent 
variables. The (something) might be any of the following: 

character code 
cosine 
divisor 
expression 
factor 
goodee 
interval fraction 
root 
roundee 
sine 

first (expression) in a ligature/kern instruction; 
operand of cosd; 
/3 in a term of the form 0//3; 
entire (expression) whose value is needed; 
one factor of a product, when neither are defined; 
operand of good i ; 

o in a term of the form o[f3, "Y]; 
operand of sqrt; 
operand of round; 
operand of sind. 

Proceed, and the computation will continue as though the (something) had the stated 
(constant) value. 



Reco'Ver'Y from erroTS 79 

! Undefined subroutine, command flushed. 
You have just tried to call a subroutine that isn't currently defined. Proceed; the call 
statement and all tokens up to the next semicolon or period will be ignored. 

! Undefined size w(digit string). 
Your program is using an operation like "tops" when the corresponding w-variable (e.g., 
ws) does not have a known value. Proceed, and the value will be assumed zero. 

:::h 
! Unknown control code, command flushed. "<." 

The word "no" must be followed by one of METAFONT's control codes. Proceed, and 
the tokens up to the next semicolon or period will be ignored. 

! Variable (variable name) never def ined. 
The stated variable is about to become undefined (e.g., it is being made new, or it is an 
x-variable and a routine or subroutine is ending), but it has never gotten a fully known 
value. Thus, other variables might be depending on this one, because of equations that 
gave incomplete information. Proceed, and METAFONT will try to keep going. (If this 
variable is independent, it will essentially be replaced by 1.0 in the equations for all 
variables that depend on it.) 

! Variable x(point number) is undefined, 0.0 assumed. 
METAFONT is about to carry out a draw or ddraw command, but the x-coordinate 
of this particular point does not have a known value. (The point number may be 
preceded by lower case letters if the point is defined within a subroutine, as explained 
in Chapter 8.) Proceed, and the drawing will take place using zero as the x coordinate. 

! Variable y(point number) is undefined, 0.0 assumed. 
METAFONT is about to carry out a draw or ddraw command, but the y-coordinate 
of this particular point does not have a known value. (The point number may be 
preceded by lower case letters if the point is defined within a subroutine, as explained 
in Chapter 8.) Proceed, and the drawing will take place using zero as the y coordinate. 

Veloci ty reduced between pOints (point name) and (point name) «velocity)) 
(This is not really an error message, it's a warning that you get when modtrace is in 
effect.) The curve METAFONT is about to draw would have had unusual behavior 
near one of the stated points (the first point if the "rn velocity is given, the second if 
the "s" velocity is given), because of the angles the curve is supposed to take between 
those two points. The velocity derived by METAFONT's normal rules is above maxvr or 
maxvs, so METAFONT is suppressing the wildness of the curve by lowering the velocity 
to the corresponding maximum value. (Cf. the latter part of Chapter 2 for further 
discussion.) This usually is a symptom of some problem in your program, although it 
may be perfectly all right. 



80 Cha.pter 10 

! vpen width too small, set to 1. 
You shouldn't specify a setting of vpenwd that is less than 0.5. Proceed, and its value 
will be set to 1. 

! w-variable not followed by proper subscript. 
An identifier can't start with the letter Wi thus you can't use a variable named width 
except in a subroutine having an index parameter named idth. Proceed, and META
FONT will ac~ as though the offending w-variable were zero. 

! Whoops, you need a Datadisc for display modes. 
The drawdisplay and chardisplay control bits of META FONT can be turned on only if 
you are using it from a Datadisc terminal. Proceed, and these bits will be turned off. 

! x-variable not followed by proper subscript. 
An identifier can't start with the letter Xi thus you can't use a variable named xheight 
except in a subroutine having an index parameter named height. Proceed, and META
FONT will act as though the offending x-variable were zero. 

! y-variable not followed by proper subscript. 
An identifier can't start with the letter Yi thus you can't use a variable named year 
except in a subroutine having an index parameter named ear. Proceed, and METAFONT 
will act as though the offending y-variable were zero. 

! You can't begin a ·primary" like that. 
At this point in your program, METAFONT is expecting to see a (primary), but the 
token it has just scanned cannot be used at the beginning of a (primary) expression. 
(Perhaps it is a reserved word that you intended to use as the name of a variable.) 
Proceed, and METAFONT will pretend that the token it has just scanned was "0". 

! You can't begin a statement like that, command flushed. 
The token METAFONT has just read was supposed to be the first one of a (statement), but 
no (statement) can possibly start with this particular token. Proceed, and METAFONT 
will ignore all tokens up to the next semicolon or period. 

! You can't start an expression like that. 
At this point in your program, METAFONT is expecting to see an (expression), but the 
token it has just scanned cannot be used at the beginning of an (expression). (Perhaps 
it is a reserved word that you intended to use as the name of a variable.) Proceed, and 
METAFONT will pretend that the token it has just scanned was a (term) of value zero. 

! You can't vary the pen size with (pen type). 
A draw command with varying sizes cannot be performed with a cpen, spen, or epen. 
Proceedi the current drawing will be omitted. 



Answers to all the exercises 81 

<A> Answers to all the exercises 

1.1: Replace the first line by "Xl = X4; X2 = X5; X3 = Xe; X2 - Xl = X3 - X2; IftlXI = 0; 
rtlx3 = 2d - 2;". (Adjacent characters will be separated by exactly one white pixel, 
not two, if the width of the character is 2d pixels, because a character of width 2d 
extends from column ° to column 2d -1, inclusive.) 

2.1: A straight line from point 1 to point 2, and another from point 2 to point 3. 

2.2: The same "curve" as in exercise 2.1(!). 

3.1: epen (-7, -1)(-7, -1)(-7, -1).(-7, -1)(-7, -1); if the height were 4 instead 
of 5, the final "(-7, -1)" would be omitted and "epenycorr 0.5" would be used to 
center the pen vertically. 

3.2: Program 1 yields an ellipse of width 75 and height 25, centered at the origin (i.e., at 
point (0,0)). Program 2 draws a shape of the same width and height-but it is composed 
of two semicircles of diameter 25 at the left and right, connected in the middle by a 
25 X 50 rectangle. 

~1: wO draw 4{l,O} .. 1{O,l}; draw 3{O,l} .. 2{l,O}. 

4.2: Yes. 

5.1: (a) Xl. (b) If Xl is on one side of X2, this point is on the opposite side, at a distance 
from X2 that is half the distance from X2 to Xl. (Imagine walking from Xl toward X2 at a 
constant speed that gets you there after one day; keep walking for a total of 3/2 days.) 
(c) 1/2[XI, X2]. The formula (Xl + X2)/2 is one symbol shorter, but it is less descriptive 
once the bracket notation is understood. 

5.2: (a) Yes. (b) No. (c) No (that one means v'XIX2). 

6.1: The curve would be filled in between points 2 and 8, obliterating point 1, since 2 
and 8 are corresponding points. 

6.2: At least two ways will work. (a) By setting "safetyfac~or 0.22222" and using "I 
ddraw ... " , the value of m is computed as if the pen size were 9 instead of 1. The safety 
factor must be reset to 2. (b) By using "epen (O,O)j 9 ddraw ... " you get the effect of 
a width-9 cpen but with an explicitly defined pen that blackens only one pixel at each 
point. Similarly an spen could be used. 

8.1: subroutine curve(var theta, var phi, index i, index i): 
cpenj 1 draw i{ cosd theta, sind theta} . . j{ cosd phi, -sind phi}. 

8.2: cal, ca2, cabl, cab2, cabbl, cabb2, cabbbl, cabbb2. (The value of xca3 is the 
same as that of xcabl, but no point is labeled ca3 since yca3 is never defined.) 



82 Appendix E 

<E> Example of a font definition 

The alphabets used to typeset this manual belong to the "Computer Modern" 
family of fonts developed by the author at the same time as METAFONT itself 
was taking shape. Further experience will doubtless suggest many improvements, 
and in fact the design of Computer Modern is still far from finished. The purpose 
of this appendix is to illustrate what the author has learned so far about the task 
of designing a fairly complete alphabet, so that you can get an idea of why he 
finds it such a pleasant undertaking. 

A complete font design is, of course, a complex system, so there are several 
levels at which one might understand it and use it-depending on how much of the 
"black box" is being opened. At the outermost level, all of the details can be left 
alone and we simply generate a particular font. For example, there is a file called 
"cmr10. mf", and when METAFONT is applied to that file it will produce the 
"Computer Modern Roman 10 point" font. Another file "cmsss8. mf" produces 
"Computer Modern Slanted Sans Serif 8 point," and so on. But if we actually look 
into files like. cmr10. mf and cmsss8. mf, we find that they are quite short; they 
merely set up the valu'es of certain parameters and input the file "roman. mf", 
which contains the actual METAFONT programs for individualleters. Therefore 
it is easy to make up a customized font for a particular application, simply by 
setting up new values of those parameters and inputting roman. mf ourselves. 

At a still deeper level, we can also look at the file roman. mf, which consists 
of 128 short programs for the individual character shapes (followed by ligature 
and kerning definitions). These short programs are fairly independent, and they 
aren't completely inscrutable; it isn't difficult to substitute a new routine or two 
for characters that we wish to modify, since the programs make use of some fairly 
flexible subroutines that appear in file cmbase. mf. 

At the deepest level, we could also fiddle with the subroutine definitions in 
cmbase. mf-and of course that would essentially amount to the creation of a 
new family of fonts. 

In this appendix we shall study the Computer Modern fonts by working our 
way in from the outermost level. File cmr10. mf looks like this: 

II Computer Modern Roman 10 point "; 

ph = W-; px = .1fj; pe = W; pd = ~; 
pb = 'i; po = fs; ps = i; pa = .5(ph - pd); 



E:ro.mpte oj a.Joni deJinition 

pw = fB; pwi = *; pwii = H; pwiii = j; 
pwiv = ~; pwv = I; aspect = 1.0; 

pu =~; lcs = 1.075; ucs = 1.7; sc = 0; 

slant = 0; sqrttwo = sqrt 2; Dxwidth = 0; 

halfd = 0; varg = O. 

input cmbase; call fontbegin; 

input roman; 

end. 

83 

In other words, the file sets up a lot of parameters and then it does "input roman" 

to create the font. 

We can obtain a great variety of related fonts by setting these parameters 
in different ways, once we know what they mean; and here's what they mean: 

By convention, all of the parameters whose name begins with "p" are in units of 
printers' points. First come eight parameters covering important vertical dimen
sions: 

ph is the h-height, the distance from the baseline to the top of an "h". 

px is the x-height, the distance from the baseline to the top of an "x". 

pe is the e-height, the distance from the baseline to the bar of an "e". 

pd is the descender depth, the distance from the baseline to the bottom of 
a "p". 

pb is the border height; characters extend as much as ph + pb above the 
baseline and pd + pb below it. 

po is the amount of overshoot for optical adjustments at sharp corners; e.g., 
"A" is this much taller than "B". 

ps is the vertical distance at which serif bracketing is tangent to the stems. 

pa is the axis height, the distance from the baseline to the point where 
mathematical symbols like "+" and "=" have vertical symmetry. 

Then there are seven parameters affecting the pen sizes: 

pw is the hairline width, used in the thinnest parts of letters. 

pwi is the stem width, used for the vertical strokes in an "h". 



84 Appendix E 

pwii is the curve width, used in an "0" at its widest point. 

pwiii is the dot width, the diameter of the dot on an "i". 

pwiv is the upper-case stem width, used for the vertical strokes in an "H". 

pwv is the upper-case curve width, used in an "0" at its widest point. 

aspect is the ratio of a hairline pen's width to its height. 

Next come four parameters concerning horizontal dimensions: 

pu is the unit width, 1/18 of an em. 

1cs is the amount by which serifs of lower-case letters project from the stems, 
in units of pu. 

ucs is the amount by which serifs of upper-case letters project from the stems, 
in units of pu. 

sc is the serif correction in units of pu i each letter specifies multiples of sc 
by which its width is to be decreased at the left and the right. 

Finally we have miscellaneous parameters that control special effects: 

slant is the amount of additional increase in x per unit increase in y, used 
to slant letters either forwards or OQ.o~wQ.ra~. 

sqrttwo is used to control the ellipticity of the bowls of letters, as explained 
in Chapter 8. 

halfd is nonzero if certain characters like "," are to descend only half as far 
as lower-case letters do. 

varg is nonzero if the simple "g" shape is to replace the classical "g". 

File cms10. mf ("Computer Modern Slanted 10 point") is exactly the same 
as file cmr10. mf, except for its title and the fact that slant = 0.15. Similarly, 
the settings of parameters in file cmb10. mf ("Computer Modern Bold 10 point") 
are nearly identical to those of cmr10 . mf, except that the pens are bigger: 

pw = H; pwi = j; pwii = i; pwiii = j; 
pwiv =~; pwv = ~; 

furthermore serifs are shorter (Ics = .85, ucs = 1.5). 
File cmr5. mf generates 5-point type, but it is not simply obtained by halv

ing the parameters of cmr10. The eight vertical dimensions ph, px, ... , pa are 



Exa.mpte oj a. jont dejinition 85 

exactly half as large as before, but the pen sizes and the horizontal dimensions 
get smaller at different rates 10 as to enhance the readability of such tiny letters. The following 
settings are used: 

pw=-1rI, 

pwiii = 5g, 
pu =~, 

pwi = *, 
pwiv =~, 

lcs = 0.92, 

pwii = *; 
pwv =~; 
ucs = 1.32. 

Two more examples should suffice to illustrate the variation of these pa
rameters. The bold sans-serif font used in this sentence and in the chapter 
headings of this manual is called e'(omputer Modern Sans Serif 10 point 
Bold Extended" (cmssb). It uses the same vertical dimensions and miscellaneous 
settings as cmr10, and gets its other characteristics from the following parameter 
values: 

pw = pwi = pwii = pwiii = i; 
pwiv = pwv = H; aspect = *; 
pu = Fs; lcs = ucs = 0; sc = ~. 

To get the typewriter font "cmtt" used in this sentence, set 

ph = 2fR-; px = W; pe = H; pd =~; 

pb =~; po = 0; ps = 0; pa = ~; 

pw = pwi = pwii = pwiv = pwv = i; 
pwiii = j; aspect = 1.0; 

pu = H; 1cs =!; ucs =~; sc = 0; 
slant = 0; sqrttwo = sqrt 2; fixwidth = 1; 

halfd = 1; varg = O. 

By mOo\(\t\~ ~trOot\~Qi ~Qtt\t\~~ Of tM pOoiOomQtQi~ you GOot\ OO\~O ~Qt ~tiOot\~Q font~ \\\(Q tt\\~. 

The programs for Computer Modern can be used in several ways. The general 
procedure is to run METAFONT and type 

mode = (mode number); input (font name); 

the routines will act differently depending on the specified mode. At present 
mode 0 generates proof sheets and shows the letters as they are being drawn, 



86 Appendix E 

Fig. E-l. Two characters of font cmrlO, as they appear when drawn with "mode 0". 
The horizontal guidelines indicate the h-height, x-height, e-height, and the depth of 
descenders in this font. The vertical guidelines are one "unit" apart, where there 
are 18 such units to an em. 

with a resolution of 36 pixels per pointj mode 1 generates a font for the XGP 
with a resolution of 3.6 pixels per point, displaying the letters on a Datadisc just 
after they are drawnj and mode 2 generates a font for the eRS with a resolution 
of 73.7973 pixels per point, displaying the titles of the letters as they are being 
drawn. In mode 0 the letters appear on a background grid as shown in Fig. E-l, 
so that you can see the settings of the parameters in a convenient way. 



Exa.mpte oj a. Jom deJinition 87 

Actually mode 0 is rarely used with an entire font like cmrlO, it is generally 
used to test out new characters. In that case you can make up a file called 
"test. mf" containing the characters you wish to try, and simply input the 
system file "proof. mf", which has the following form: 

mode = 0; 

ph = 2fR; 
input test; 

input cmbase; 

... (set up for cmrlO) ... ; call fontbegin. 

new pw, ... (set up for cmblO) ... ; call fontbegin. 

input test; 

new pw, ... (set up for cmssb) ... ; call fontbegin. 

input test; 

new ph, ... (set up for cmtt) ... ; call fontbegin. 

input test; 

new ph, ... (set up for cmsss8) ... ; call fontbegin. 

input test; 

end. 

Thus, it runs your test file against five different settings of the parameters. 
Let's go one level deeper and take a look at the programs for individual letters; 

examples appear in Figs. E-2 and E-3 later in this appendix. Such programs are ex
pressed in terms of variables something like the parameters we have been discussing, but 
the variables are slightly different since the letters are to be drawn on a raster and we 
need to work in raster units instead of printers' points. The point-oriented variables ph, 
px, pe, etc., have corresponding raster-oriented variables, satisfying the approximate 
relation 

(raster-oriented variable) ~ pixels·(point-oriented variable), 

where pixels is the number of pixels per point. This relation is only approximate, not 
exact, because the raster-oriented variables have been rounded to values that help to 
provide satisfactory discretization of the characters. As explained in Chapter 1, good 
designs are written with discreteness in mind, although METAFONT tries to do the right 
thing automatically when it can. 

There are seven raster-oriented variables corresponding to seven of the eight pixel
oriented vertical dimensions, namely 

h i-+ ph, C i-+ px, e i-+ pe, d i-+ pd, b i-+ pb, 0 i-+ po, a i-+ pa; 



88 Appendix E 

in other words, we just drop the "p", except in the case of "px" (since a variable can't 
be named "x"). Fortunately the height of a "c" is the same as the height of an "x", 
so we can use the term c-height in place of the traditional term x-height. The baseline 
of each character is row 0, so the bottom pixel of a letter like "h" has y-coordinate O. 
The top pixel of an "h" is in row h, which is always an integer. (Note that there are 
actually h + 1 occupied rows, not h, although h is called the h-height.) The top pixel 
of a "c" is in row c, and the bottom pixel of the descender letters (g,j,p,q,y) appears 
in row -d. All three of these variables (h, c, d) are integers, and so is the overshoot 
variable 0 (which is used as a correction to h, c, or d in certain cases). Variable e is 
either an integer or an integer plus!, whichever is better for a pen of the hpen height, 
since the bar of an "e" is drawn with an hpen and its y-coordinate is e. Variable b is 
an integer calculated in such a way that tall characters can run up to row h + band 
deep characters can descend to row -d - bi more precisely, it is the smallest integer 
such that h + d + 2b + 1 rows of the raster occupy a vertical distance that exceeds or 
equals the true point size ph + pd + 2pb. 

The pen sizes in Computer Modern programs for individual letters are generally 
expressed in terms of the following variables, each of which has a positive integer value 
intended to approximate the "true" infinite-resolution value (and slightly increased in 
order to look right on the output device): 

Wo, the hairline width; 
Wl, the stem width; 
W:2, the curve width; 
W:3, the dot diameter; 
W4, the upper-case stem width; 
Ws, the upper-case curve width; 
W6, the hairline height; 
W7, the stem height; 
Ws, the upper-case stem height. 

Note that the last three of these variables have no "p-variable" equivalent; they satisfy 
the approximate relation 

The hpenht is w~ and the vpenwd is woo Thus, an hpen of size Wo is equivalent to a 
vpen of size W6; we may call it the "hairline pen" for the font. 

In the horizontal dimension, the Computer Modern programs make frequent use 
of variable 11., the approximate unit width when there are 18 units to an em. The width 
of a character is expressed in terms of units (e.g., an "h" is 1011. wide, unless there is a 



Example of a. foni definition 89 

serif correction se =rf 0), and key positions can be specified as a certain number of units 
from the left (e.g., the stems of an "h" are centered at 2.5u and 7.5u). The vertical 
guidelines in Fig. E-l indicate the unit spacing for a 13-unit-wide "A" and a 12-unit
wide "B". 

If the character is t units wide, variable u has been calculated so that t times u is 
an integer r, the rightmost column of the character. (The value of u itself is usually 
not an integer, nor need t be an integer.) Just as a character typically occupies rows 
o through h, inclusive, in the vertical direction, we use columns 0 through r inclusive 
in the horizontal direction, although most characters leave white space at the left and 
right· boundaries. The integer r is calculated so that r + 2 is the nearest integer to 
the character's true width (t·pu·pixels); the reason for this extra "+ 2" is that low
resolution devices should keep a blank column (column r + 1) between adjacent charac
ters. However, it is best for conceptual purposes to think of r as the character's actual 
width, and to think of "r - 2.5u" as a point 2! units from the right edge, etc. 

We're ready now to look more closely at a program for the upper-case letter "A" 
(Fig. E-2). The first line of that program simply gives the title that will appear on 
proof sheets, or possibly on the terminal when the character is being drawn. Then 
comes a call to the eharbegin subroutine, with seven parameters: the character code, 
the width of the character in units, the multiples of se that are to be trimmed from the 
left and right, and the character's height, depth, and italic correction. These last three 
parameters must be in absolute units of printers' points, hence ph (not h) is used here 
for the height. 

The next few lines give eight equations to define the locations of points 1, 2, 3, 
and 4. First point 1 is positioned so that, using an hpen of size Wo (the hairline pen), 
the pen's left edge will be 1.5 units from the left edge of the character, and the bottom 
will be on the baseline. Similarly point 4 is placed so that the pen's right edge will be 
1.5 units from the right edge of the character and the bottom will be on the baseline, 
where this time the pen is an hpen of size Ws. (The upper-case curve width Ws is used 
here in preference to the stem width W4, since a diagonal stroke tends to decrease the 
effective pen width.) The positioning of points 2 and 3 is more interesting: the idea is 
that we want to draw a line from 2 to 4 with an hpen of width Ws, and another from 3 
to 1 with an hpen of width woo First we define Y2 and Ya so that the top occurs at the 
h-height h, plus the "overshoot" 0 that gives this letter a touch of class. Then we state 
that Xa - Xl = X4 - X2, so that the two diagonal strokes will have the same slopes (the 
same amount of change in the X direction). Finally we stipulate that rtsX2 = rtoxa, so 
that the line from 2 to 4 will have the same top right boundary as the line from 1 to 
3. These equations give METAFONT enough information to determine points 2 and 3 
uniquely. 

After drawing the right diagonal stroke, we need to erase part of the stem line at 



90 

.. The letter A" j 
call charbegin (' A, 13,2,2, ph, 0, O)j 
hpenj 

Appendix E 

lftoxl = round 1.5uj botOYl = OJ 
rtSx4 = round(r - 1.5u)j botsY4 = OJ 
tOPoY3 = tOPsY2 = h + OJ 
X3 - Xl = X4 - X2j rtsx2 = rtoX3j 
Ws draw 2 .. 4j 
Ys = Ys = ej 
Xs - 1 = (US - Yl)/(Y3 - Yl)[Xl, X3]j 
X6 + 1 = (Y6 - Y4)/(Y2 - Y4)[X4, X2]j 
Wo draw 5 .. 6j 
lpen#j Ws draw 3 .. 5j 
hpenj Wo draw 3 .. 1; 
if ues ~ 0: 
call' a serif (1, 0, 3, -.5ues)j 
call' b serif (1, 0, 3, +ues)j 
call' c serif (4, 5, 2, -ues)j 
call'd serif (4,5,2, +.5ues)j 
fl. 

% right diagonal stroke 

% bar line 
% erase excess at upper left 

% left diagonal stroke 

% left serifs 

% right serifs 

Fig. E-2. A METAFONT program for upper-case "A". 

the top, where it protrudes to the left of the left stroke (which is thinner). Before erasing 
anything, however, we may as well draw the bar line. Computer Modern fonts place 
this line at the e-height, the same level as the bar line in an "e", hence Ys = Ys = e. 
The calculation of xs and X6 is slightly trickierj Xs lies between Xl and X3, and the ratio 
of its distance is the same as the same as the ratio of Ys - Yl to Y3 - Yl. The equation 
"xs = (US - Yl)/(Y3 - Yl)[Xl, X3]" would almost surely work to define a suitable pointj 
but the program actually uses Xs - 1 instead of X5, just to be absolutely safe against 
weird possibilities of rounding that might cause the bar line to stick out at the left. (It 
doesn't hurt to start a line one pixel to the right of a point that lies on another line.) 

Now the lpen# is used to erase unwanted black pixels, changing them back to 
white. Actually this erases more than we wanted to get rid of, since it has a rectangular 
shape and we are erasing at an anglej but that doesn't matter, because the left diagonal 
stroke blackens all the necessary pixels. (Note that the eraser has also done away with 
part of the guidelines in Fig. E-l.) 

Finally the serif subroutine is used to attach fancy serifs at points 1 and 4j these 



Eromple of a. foni definition 

M The letter B M; 
call eharbegin('B, 12, 2, 0, ph, 0, ph·slant - 2pu}; 
hpen; 
Ift4xI = lft4X2 = round 2u; top 4Yl = h; bot4Y2 = 0; 
W4 draw 1 .. 2; 

91 

if ues -:I:- 0: call 'a serif(I,4,2,-ues); call 'b serif (1, 4, 2, .Sues); 
call' c serif (2, 4,1, -ues}; call' d serif (2, 4, 1, .Sues); 

% stem 
% upper serif 
% lower serif 

fi; 
X3 = ~ [2u, r]j Y3 = Ylj 
rtsx4 = round(r - u); Y4 = goodo ~h; 
Wo draw 1 .. 3; 
call' e dare(3, 4, ws}; 
Xs = Xl; X6 = X3 + !u; Y4 = Ys = Y6; 
rtsx7 = round(r - !u); botsY7 = 0; 
Wo draw S .. 6; 
call' f dare (6, 7, Ws)j 
Xs = X6; Ys = Y7; Wo draw 2 .. 8. 

% upper bar line 
% upper counter 

% middle bar line 
% lower counter 
% lower bar line 

Fig. E-3. A META FONT program for upper-case "B". 

serifs extend .5ues units outwards and ues units inwards. Details of this subroutine 
appear below. 

Once you understand this program for "A", you will have no trouble writing 
programs for "V" and "v", as well as for the Greek letter "A"; and you will be well 
on your way to having a "w" too. Similarly, the code for "B" in Fig. E-3, which is 
presented here without further comment, leads to "D" and "P" with little further ado. 

~ We shall now plunge into the deepest level, the subroutines in cmbase. mf that take 
Y care of nasty details. Four of the most important subroutines are given here, as 

examples of how this level operatesj the four subroutines (fontbegin, eharbegin, serif, 
and darc) suffice to do everything required by the programs for "A" and "B". 

eps = .000314159j % a very small random positive number 
if mode = 0: proofmode; drawdisplay; pixels = 36; blacker = 0; 
else: if mode = 1: fntmode; tfxmode; chardisplay; pixels = 3.6; blacker = 1.2; 

else: crsmode; tfxmodej titletrace; pixels = 73.7973; blacker = Ij 
fi; 

fi· , 



92 Appendix E 

subroutine fontbegin: 
no eqtracej 

% Initialize before making a font: 
% Turn off tracing within this subroutine. 

% the vertical size of the font new typesize j 
new cfj 
new h,d,c,e,o,b,s,aj 

% conversion factor, approximately equal to pixels 
% raster-oriented vertical dimensions 

Wo = round(pixels·pw + blacker)j 
WI = round(pixels.pwi + blacker)j 
'W:2 = round(pixels.pwii + blacker)j 
'W3 = round(pixels·pwiii + blacker)j 
W4 = round(pixels.pwiv + blacker)j 
Ws = round(pixels·pwv + blacker)j 
t.LJe = round(pixels.pw / aspect + blacker)j 
W7 = round(pixels.pwi/aspect + blacker)j 
'Ws = round(pixels·pwiv / aspect + blacker)j 
hpenht W6j vpenwd Woj 

typesize = ph + pd + 2pbj cf·typesize = pixels·typesize -lj 
h = round cf·phj d = round cf·pdj c = round cf'pxj 
0= round cf,poj s = cf,psj a = .5 round 2cf·paj 
b = -round{.5(h + d - typesize'pixels))j 
hpenj e = goo do cf· pe j 

maxht h +bj 
trxy slantj 
if mode :rf 0: texinfo slant,6pu,3pu,3pu,px,18pu,2puj 
fl. 

subroutine charbegin (var charno) 
(var charuw) 

(var lftcorr, var rtcorr) 
(var charh, var chard, var chari): 

no eqtracej no calltracej 
new UWj 

new fj 
new t/.; 
new tUj 
new italcorrj 

% seven-bit character code 
% character width in units 

% serif-oriented corrections in units 
% charht, chardp, charic values in points 

% Shut oft'tracing in this subroutine. 
% the correct character width in units 

% raster-oriented character width 
% raster-oriented design unit 

% unmodified raster-oriented unit 
% italic correction 

if chari > 0: italcorr = chari j else: italcorr = OJ 
flj 
charcode charno j charht charh; chardp chard j chark italcorr j 
tu = pu ·pixelsj 



E:ro.mple oj Q, Jont definition 93 

if fixwidth = 0: r + 2 = round charuw·tui 
uw = charuw - sc·(lftcorr + rtcorr)i 

else: r + 2 = round((9 + sc.(lftcorr + rtcorr)).tu)i 
uw = 9i 

fli 
'U·charuw = ri charwd uw·pUi chardw UW·tui 
incx round(-sc·lftcorr·tu)i 
if mode = 0: call box (round sc·lftcorr·tu)i 
fl. 

subroutine box(var offset): 
no drawtracei no proofmodei 
new topp, bott, left, right, pOSi 
topp = h + bi bott = -d - bj 

% Draw guildelines and box around a character: 

left = offseti right = offset + 'U·UWj 
Xl = X3 = X5 = X7 = Xg = Xll = X13 = XIS = X17 = left i 
X2 = X4 = Xs = Xs = X10 = X12 = X14 = X16 = X18 = rightj 
Y1 = Y2 = OJ cpenj 1 draw 1 .. 2j % baseline 

% e-height 
% x-height 
% h-height 

Y3 = Y4 = ej draw 3 .. 4j 
Ys = Y6 = Ci draw 5 .. 6i 
Y7 = Ys = hj draw 7 .. 8j 
yg = Y10 = topp i draw 9 .. lOi 
yu = Y12 = -dj draw 11 .. 12i 
Y13 = Y14 = bottj draw 13 .. 14j 
trxy 0i 
Y15 = Y16 = tOPPi Y17 = Y18 = bott; 
draw 15 .. 17i draw 16 .. 18i 

% top of character 
% descender line 

% bottom of character 
% Temporarily turn off the slant. 

% left and right edges 
if ita1corr > 0: X19 = X20 = right + ita1corr·pixels; 

Y19 = tOPPi Ylo = 0i draw 19 .. 20i % show italic correction 
fl· , 
trxy slanti 
pos = 0i call unitlines. 

% Restore slanted transformation 
% Draw the unit guidelines. 

subroutine unitlines: % Recursive subroutine to draw guidelines: 
Xl = X2 = pOSi Y1 = tOPPi Y2 = bott; cpeni 
if pos > left: 1 draw 1 .. 2i 
fli 
new pos i pos = Xl + 'Uj 
if pos < right: call unitlinesj 
fl. 



94 Appendix E 

subroutine serif (index i) 
(index k) 
(index J") 

(var sl): 

YI = Yij 
if Yi < yj: Y2 = Yi + Sj else: Y2 = Yi - s; 
fij 
hpenj 
if sl < 0: IftOXI = IftkXi + sl·u - eps; 

1ftoX2 = Iftk(Y2 - Yi)/(Yj - Yi)[Xi, Xj); 
else: rtoxi = rtkxi + sl·u + eps; 

rtox2 = rtk(Yl - Yi)/(Yj - Yi)[Xi, Xj); 
fi; 
no proofmodej 
X3 = ~ [Xl - sl·u, ~ [Xl, X2]] j Y3 = ~ [Yi, ~ [YI, Y2]h 
minvr OJ minvs 0; 
Wo ddraw l{xi - Xl, O} .. 3 .. 2{xj - Xi, Yj - Yi}, 
minvr 0.5; minvs 0.5. 

subroutine darc(index i) 
(index j) 

(var maxwidth): 

% point where serif appears 
% w-variable for stem line 

% another point on the stem line 
% serif length 

1..1.. i; 

% starting point 
% opposite corner point 

% the pen grows from Wo to this size 

Xs = Xi; X2 = X4 = 1/ sqrttwo [Xi, xjoj; X3 = Xj; 
Ys = Yjj Y3 = ! fYi, Yj]; 
Yl = 1/ sqrttwo [Y3, Yi]j Y4 = 1/ sqrttwo [Y3, Yj]; 
hpen; draw Iwoli{X3 - Xi, O} .. 1 ~ two, maxwidth1l2{x3 - Xi, Y3 - Yi} .. 

Imaxwidth #13{O, Y3 - Yi} .. 
I~[wo, maxwidth]14{xs - X3, Ys - Y3} . . lwoI5{xs - X3, O}. 



Font information for 'lEX 95 

<F> Font information for 'lEX 
The 'lEX typesetting system assumes that some "intelligence" has been built into 
the fonts it uses. In other words, information stored with 1EX's fonts has an 
important effect on 'lEX's behavior. This has two consequences for people who 
use~: (a) Typesetting is more flexible, since fewer conventions are frozen into 
the computer program. (b) Font designers have to work a little harder, since 
they have to tell 'lEX what to do. The purpose of this appendix is to explain how 
you, as a font designer, can cope with (b) in order to achieve spectacular success 
with (a). (You should of course be somewhat familiar with 'lEX if you expect to 
provide it with the best information.) 

In the first place, 'lEX needs to know how big a box each character is supposed to 
occupy, since 'lEX is based on the primitive concepts of boxes and glue. When it typesets 
a word like "box", it places the first letter "b" in such a way that the METAFONT pixel 
whose x and y coordinates are (0,0) will appear on the baseline of the current horizontal 
line being typeset, at the left edge of the "b" box. The second letter "0" is placed in a 
second box adjacent to the first one, so it is obvious that we must tell 'IEX how wide 
to make the "b". In fact, 'lEX also learns how tall the "b" box should be; this affects 
the placement of accents, if you wish to write "box", and it also avoids overlap with 
unusual constructions in an adjacent line. 

A total of four dimensions is given for each character of a font to be used by 'lEX, 
in units of printers' points: 

charwd, the width of the box containing the character. 

charht, the height (above the baseline) of the box containing the character. 

chardp, the depth (below the baseline) of the box containing the character. 

charic, the "italic correction". This amount is added to the width of the box (at 
the righthand side) in two cases: (a) When a 'lEX user specifies an italic 
correction ("\/") immediately following this character, in horizontal mode. 
(b) Whenever this character is used in math mode, unless it has a subscript 
but no superscript. (For example, the italic correction is applied to P in the 
formulas P(x) and p2, but not in the formula Pn .) 

If you don't specify one or more of these four dimensions, METAFONT assumes that 
you intended any missing dimensions to be zero. For example, the italic correction for 
most letters in non-slanted fonts is zero, so you needn't say anything about it. 

It is important to note the difference between charwd (the width of the character 
box) and chardw (the character's device width, discussed in Chapter 9). The former is 
given in units of points, and it affects 'lEX's positioning of text, while the latter is an 



96 Appendix F 

integer number of pixels that has no influence on the appearance of 'lEX output. The 
purpose of chardw is merely to compress the data that 'IEX transmits to a typesetting 
machinej for example, 1E;X needn't specify where to put the "0" following a "b", in the 
common case that the typesetting device will figure the correct position by its knowledge 
of the approximate size chardw. Furthermore chardw is the width of the character if 
for some reason you are (shudder) typesetting something without using 1E;X. 

The next kind of information that 1EX wants is concerned with pairs of adjacent 
characters within a font, namely the data about ligatures and kerning. For example, 
1EX moves the "x" slightly closer to the "0" in the word "box", because of information 
stored in the font you are now reading. Otherwise (if the three boxes had simply been 
placed next to each other according to their charwd) the word would have been "box", 
which looks slightly less attractive. Similarly there is a difference between "difference" 
and "difference", because the font tells 1EX to substitute the ligature "ff" when there 
are two fs in a row. 

Ligature and kerning information is specified by giving 'lEX short programs to 
follow. For example, the font you are now reading includes the following programs 
(among others): 

lig 'f: 'i = ' 174, 'f = ' 173~ 'I = ' 175j 
lig '173: 'i = '176, 'I = '177j 
lig 'V: 'F: 'A kern -2.5ru, • 

'X: 'K: 'Okern-.5ru, 'Ckern-.5ru, 
'G kern -.5ru, 'Q kern -.5ru; 

information like this can appear anywhere in a METAFONT program after tfxmode has 
been specified. Both ligatures and kerns are introduced by the keyword lig, and this 
example can be paraphrased as follows: 

Dear 'IF)C, when you are typesetting an "f" with this font, and when the fol
lowing character also belongs to this font, do this: If the following character 
is an "i", change the "f" to character code octal 174 [namely "fi"] and delete 
the "i" j if it is an "f" or "I", similarly change the pair of characters to octal 
173 ["ff"] or 175 ["fl"]. When you are typesetting character code 173 [off"~] 
and the next character is an "i" or "I", change to codes 176 ["ffi"] or 177 
["ffl"]. When you are typesetting a "V" or an "F" and the next character 
is an "A" in this font, delete 2.5ru of space before the "A". [Variable ru 
has been defined elsewhere in the program to be fa of a quad, i.e., ~ of a 
point in 10-point type.] If the next character is "0" or "C" or "G" or "Q", 
delete t ru of space between the letters. These last four instructions apply 
after "X" and "K" as well as after "V" and "F". 



Font information for 'lEX 97 

The general form of ligature/kerning statements is 

lig (lig instruction list) 

where (lig instruction list) is a list of one or more (lig instruction)s. There are three 
kinds of (lig instruction)s, which may appear intermixed in any order: 

1) Labels, having the form "(expression):". The (expression) is usually a constant, as 
in our examples above; it denotes a character code, which is rounded to an 
integer that should be between 0 and 127 (octal 177). At most one label should 
appear for each character code. The label means that the ligature/kerning 
program for the specified character starts here. Note that the program for 
characters 'X and 'K in our example starts in the middle of the program for 
characters 'v and 'F, while the latter two letters have identical programs; 
this device saves space inside 'lEX, and it also saves time since 1EX has fewer 
instructions to load with the fonts. 

2) Ligature replacements, having the form "(expressionl) = (expression2)". Both 
(expression)s are rounded to integers that should be between 0 and 127; they 
are usually constants. The meaning is that if the current character is followed 
by the character whose code is (expressionl), this pair is replaced by the 
character whose code is (expression2). 

3) Kern specifications, having the form "(expressionl) kern (expression2)". The first 
expression is usually constant; it is rounded to an integer that should lie be
tween 0 and 127. The second expression is usually negative, but it need not be. 
The meaning is that if the current character is followed by the character whose 
code is (expressionl), in the same font, additional spacing of (expression2) 
points is inserted between the two. 

Instructions of types (2) and (3) must be followed by commas, unless they are the final 
instruction of the (lig instruction list); labels, on the other hand, are never followed by 
commas. 

We have said that the ligature/kerning program for each character starts at the 
corresponding label, but where does that program stop? Answer: It stops at the end 
of the (lig instruction list) containing the label, unless the last (lig instruction) of that 
list is a label, or unless that last (lig instruction) is followed by a comma. In the latter 
cases, the ligature/kerning program continues into the next (lig instruction list) that 
METAFONT interprets. Thus you can use METAFONT's subroutines and/or conditional 
statements to generate intricate patterns of ligature/kerning instructions, if you really 
want to. 

Caution: Novices often go overboard on kerning; restraint is desirable. It usually 
works out best to kern by at most half of what looks right to you at first, since kerning 



98 AppendixF 

should not be noticeable by its presence (only by its absence). Kerning that looks right in 
a logo often interrupts the rhythm of reading when it appears in other textual material. 

The remaining information that 'lEX needs in a text font can be provided by the 
command 

texinfo (expression list) 

where the (expression list) is a list of seven (expression)s separated by commas. The 
seven (expression)s should contain the following data, in order: 

1) "slant". The change in x coordinate per unit change in y coordinate when 'lEX is 
raising or lowering an accent character. 

2) "space". The amount of space (in points) between words when using this font. 

3) "stretch". The amount of stretchability (in points) between words when using this 
font, according to 'lEX's notion of glue. (This is the maximum amount of 
additional space that would look tolerable.) , 

4) "shrink". The maximum amount of shrinkage (in points) between words when 
using this font, according to 'lEX's notion of glue. 

5) "x height" . The height of characters (in points) for which accents are correctly 
situated. An accented character has the accent raised by the difference between 
its charht and this value. 

6) "quad". The width of one em unit (in points) when using this font. 

1) "extraspace". The amount of additional space inserted after periods when using 
this font. (Strictly speaking, it is the amount added to "space" when 'lEX's 
"space factor" exceeds 2.) 

The DRAGON example of Chapter 4 gave no texinfo, so all seven of these parameters 
were set to zero in that font. 

If your font is for use in 'lEX math mode, as a mathsy or a mathex font, you need 
to specify still more information. Otherwise, you can stop reading this appendix, right 
now. 

Math symbols fonts (mathsy) require more texinro. In fact, you can give several 
texinro comman~s in a single METAFONT program, and their (expression list)s can 
contain more then or fewer than seven (expression)s; each texinro appends one or more 
values to the 'lEX information. The total number of parameters 'lEX uses in a mathsy 
font is 22, and they must consist of the first six above and the following additional ones 
in order: 



Ford information for 'lEX 99 

7) "math space" . If this is not zero, it denotes the amount of space in points that will be 
used for all nonzero space (except \quad) in math formulas: thin spaces, thick 
spaces, control spaces, and op spaces, whenever these are nonzero according 
to 'lEX's rules. The parameter is generally zero unless ~ is outputting to a 
fixed-width device like a typewriter or line printer. 

S) "numl". Amount to raise baseline of numerators in display styles. 

9) "num2". Amount to raise baseline of numerators in non-display styles, except for 
"\atop" . 

10) "num3". Amount to raise baseline of numerators in non-display \atop styles. 

11) "denoml". Amount to lower baseline of denominators in display styles. 

12) "denom2". Amount to lower baseline of denominators in non-display styles. 

13) "supl". Amount to raise baseline of superscripts in unmodified display style. 

14) "sup2". Amount to raise baseline of superscripts in unmodified non-display styles. 

15) "sup3". Amount to raise baseline of superscripts in modified styles. 

16) "subl". Amount to lower baseline of subscripts if superscript is absent. 

17) "sub2". Amount to lower baseline of subscripts if superscript is present. 

IS) "supdrop". Amount below top of large box to place baseline if the box has a 
superscript in this size. 

19) "subdrop". Amount below bottom of large box to place baseline if the box has a 
subscript in this size. 

20) "delim1". Size of \comb delimiters in display styles. 

21) "delim2". Size of \comb delimiters in non-display styles. 

22) "axisheight". Height of fraction lines above the baseline. (This is usually midway 
between the two bars of an = sign.) 

Similarly, a mathex font requires 13 items of texinfo, namely the standard first seven 
and the following additional things in order: 

S) "defaultrulethickness". The thickness of \over and \overl ine bars. 

9) "bigopspacing1". The minimum glue space above a large displayed operator. 

10) "bigopspacing2". The minimum glue space below a large displayed operator. 

11) "bigopspacing3". The minimum distance between a limit's baseline and a large 
displayed operator, when the limit is above the operator. 

12) "bigopspacing4". The minimum distance between a limit's baseline and a large 
displayed operator, when the limit is below the operator. 



100 Appendix F 

13) "bigopspacing5". The extra glue placed above and below displayed limits, effectively 
. enlarging the corresponding boxes. 

If you supply fewer than 22 items of texinfo for a mathsy font, or fewer than 13 for a 
mathex font, 'lEX will probably do very strange and undesirable things. So don't. 

Still more information is needed in mathex fonts. In the first place, the italic 
correction for symbols used as \mathops (e.g., summation and integral signs) has a 
special significance: If it is zero, the limits for this operator will be centered above and 
below the operator. If it is nonzero, the limits will be set immediately to the right, with 
the lower limit shifted left by the amount of charic. (A 'lEX user writes \11m1 tsw1 tch 
to reverse these conventions; when limits are set above and below the operator, the 
upper limit is charic points to the right of the lower limit.) 

Another difference for mathex fonts is the provision of "built up" symbols 
that· can get arbitrarily large. Such symbols are manufactured from up to 
four pieces, including a mandatory extension part and optional top, middle 
and bottom parts. For example, the left brace at the left of this paragraph 
has all four pieces, while the norm symbol at the right is made up solely 
of extension pieces. Similarly, floor and ceiling brackets (L J and r 1) are 
built up from the same components as regular brackets, but without top or 
bottom, respectively. 1E:X makes the smallest symbol meeting a given size 
constraint, using zero or more copies of the extension component. If there 
is a middle, the same number of extension components will appear above 
and below. 

Suppose c is the 7-bit code representing a built-up character. 1E:X requires the 
following conventions: (1) The charht field for code c must be zero, and there must be 
no ligature program for C. (2) The command 

varchar (expressionl), (expression2), (expression3), (expression4) 

is given for c in lieu of a charic command, where the four (expression)s stand respectively 
for the character codes of the top, middle, bottom, and extension components. These 
codes should be zero if the component doesn't exist, otherwise they should round to 
numbers between 1 and 127. For example, the left brace symbol in font cmathx has 
been defined by "varchar '070, '074, '072, '076". (Code c itself need not be any of 
these four.) (3) The charwd of the extension component is taken to be the charwd of 
the entire built-up symbol. 

One final kind of information appears in mathex fonts, namely the lists that ,tie 
related characters together in increasing order of their size. For example, all of the left 
parentheses in cma thx have been specified by the command 

charlist '000, '020, '022, '040, '060, O. 



F011i inlormation lor 'lEX 101 

(Cf. Table 7 of Appendix F in the 1EX manual.) When 1EX needs a variable-size left 
parenthesis, it looks first at character '000, then (if this is too small) at '020, and so on, 
until either finding one that is large enough or reaching '060 (the end of the list). The 
zero following '060 indicates that -060 is a built-up symbol that can grow arbitrarily 
large. If the last entry of a charlist is not zero, this symbol is not of the built-up variety, 
and it is used by 'lEX whether or not it is large enough. For example, the slash symbols 
in cmathx are specified by "charlist -016, '036, -054", the latter being the largest slash 
present. A charlist in general consists of (expression)s (usually constants) that are in 
increasing order except that the last one may be zero. The nonzero (expression)s should 
round to integer character codes between 1 and 127. None of these characters should 
have a ligature/kern program, since 1EX stores the eharlist information in the same 
place that is usually used for ligatures and kerns. 

The charlist for square root symbols should start at character position ' 160 in a 
mathex font. These symbols should be designed so that they look right when a horizontal 
rule of the default rule thickness is placed with its upper left corner coinciding with the 
u.pper right corner of the character box. 



102 Appendix I 

<I> Index 
This index shows all of METAFONT's "reserved words" in boldface type, and it 
also lists error messages that are mentioned outside of Chapter 10. 

Addition, 44. 
Alphatype, see CRS. 
Angle of a curve, see Direction. 
Apostrophe, 39. 
Arguments. 55-56, 64. 
Assignment operation, 60-61. 

Bean shape, 9. 
Blank spaces, 40, 45. 
BNF notation, 45, 58. 
bot, 7, 28, 42. 
Bracket notation, 43-44, 56, 94. 
Built-up symbols, 100. 

call, 56-59, 64. 
call trace, 67. 
(carriage-return), 29-30, 45. 
Cartesian coordinates, 4. 
Character width, 8. 
charcode, 34-35, 39, 66. 
chardisplay, 67. 
chardp, 35-36, 65, 95. 
chardw, 35-36, 66, 95-96. 
charht, 35-36, 65, 95, 98, 100. 
charic, 65, 95. 
charlist, 68, 72, 100-101. 
charwd, 35-36, 65, 95, 100. 
chrmode, 68-69. 
Circles, 11, 21. 
Circular pen, 6. 
Comments, 35. 
Computer Modern fonts, 82-94. 
Conditional statements, 59-60, 64. 
Constants, 39, 45. 
Contents of this manual, table, 3. 
Control bits, 60, 66-68. 
Coordinates, 4, 39; 71. 
cosd, 42, 81. 
cpen, 6, 22-23, 28, 48-50, 62. 
<cr>,30. 
CRS (Cathode Ray Setter), 66, 68, 71, 86. 

crsbreak, 67, 71. 
crsmode, 68-69. 
Cubic spline functions, 20-22, 50. 
Current pen size, 6, 48-50, 60. 
Current pen type, 22, 60, 62. 
Curved lines, 8-22. 

Dangerous bend, 2. 
Datadisc (video terminal), 29, 67, 80. 
Davis, Chandler, 33. 
ddraw, 46-49, 51, 63, 65. 
Declarative language, 41. 
Deletion (on line), 36-37. 
Dependent variables, 41, 79. 
Descartes, Rene, 4. 
Diamond rule, 52-53. 
(digit), 45. 
Direction of a curve, 10-20, 63. 

Explicit, 13-20. 
Implicit, 10-13, 18, 20. 

Discreteness, 25-27, 51-55. 
Division, 43. 
Double drawing, 46-49, 51. 
DRAGON, 33-38. 
Dragon curve, 33, 35. 
draw, 6, 8-22, 49-53, 63. 
drawdisplay, 29, 67. 
drawtrace, 67. 
dumplength, 66. 
dumpwindow, 66. 

Ellipses, 12, 21. 
Elliptical pens, 22-25. 
else, 59, 64. 
end, 33, 38. 
epen, 27-28, 48-49, 63, 65, 81. 
epenxcorr, 27, 65. 
epenxCactor, 27, 65, 72. 
epenycorr, 27, 65. 
epenyCactor, 27, 65, 72. 
eqtrace, 41, 66. 



Equations, 5-6, 31-33, 39-46, 62. 
Erasers, 24, 27-28, 62, 90. 
Errors, 29-33, 36-38, 69-80. 
errors. tmp, 33. 
ETC, 66. 
Exercises, answers, 3, 81. 
Explicit directions for a curve, 13-20. 
Explicit pens, 27-28. 
Expressions, 42-45. 
Extreme points, 16, 19, 54. 

fl, 59, 64. 
File names, 37, 69, 74. 
Filling in between curves, 46-51. 
fntmode, 34, 68-69. 
Fontomania, 7. 
Full stop, 46 

Global variables, 56, 61. 
good, 42, 54-55. 

ho, 22-23, 28, 48. 
Heart, 12-17, 23, 47. 
Heart and sole, 23. 
Hein, Piet, 58 
Hidden points, 12; see also invisible. 
Horizontal extrema, 16, 19, 54. 
hpen, 22-23, 28, 48-50, 62, 65. 
hpenht, 23, 65, 88. 

(identifier), 39, 45, 55. 
if, 59-60, 64. 

Index 

Implicit directions for a curve, 10-,13, 18, 20. 
"! Inconsistent equation", 33, 73. 
inex, 51, 64-65, 67. 
iney, 51, 64-65, 67. 
Independent variables, 41, 62, 79. 
"! Indeterminate relation", 60, 73. 
index, 56, 58, 64. 
(index), 40, 42, 45. 
Index arguments, 57, 59. 
Inflection points, 18-19. 
input, 68-69. 
"! Input page ended", 37-38, 73. 
Insertion (on line), 37-38, 70. 
Intersection of straight lines, 44. 

103 

Invariance property of META FONT curves, 
10. 

invisible, 68. 
Italic correction, 65, 92, 95, 100. 
Iterations, 60. 

kern, 96-97. 
Kerning, 96-98. 
Known variables, 41, 79. 
Knuth, Donald Ervin, 1, 12, 17, 33, 61. 
Knuth, Jill Carter, 33. 

Labels of points, 57-59, 61, 67-68. 
<If>, 30. 
1ft, 8, 28, 42, 54. 
lig, 68, 96-97. 
Ligatures, 96-97. 
Local variables, 56, 61. 
Locality property of METAFONT curves, 10. 
"! Lookup failed", 37, 74. 
lpen, 24, 28, 48-50, 62. 

mathex font for 'lEX, 99-101. 
mathsy font for 'lEX, 98-99. 
maxht, 34, 66, 71. 
maxvr, 22, 65. 
maxvs, 22, 65. 
METAFONT, meaning of, 4. 
mfput, 33, 69. 
minvr, 22, 65. 
minvs, 22, 65. 
"! Missing = sign", 30-31, 75. 
modtraee, 66-67, 77, 79. 
Multiplication, 30-31, 43, 46. 

Names of points, 57-59, 61. 
new, 33, 44, 60, 62, 73. 
no, 38, 60, 66. 
nrand, 42, 65. 
nseed,65. 
Null statement, 62. 

Oblique pen, 25. 
On-line error correction, 36-38, 70. 



104 

pagewarning, 38, 64, 66-67, 74. 
Parameters, 55-56, 64. 
Parentheses, 46, 58. 
(path), 63. 
pause, 67. 
Pen size, 6-7, 22, 56. 
penreset, 60, 66-67. 
Pens, 22-28, 62-63. 
Period, 40, 45-46, 61-62. 
Pixels (picture elements), 51. 
Plotting points, 26-28, 52-53. 
plottrace, 67. 
Points, 4-5, 39. 

names of, 57-59, 61. 
Primary expressions, 42. 
Product, 30'-31, 43. 
proofmode, 29, 32, 57, 61, 64, 67-69. 

Quoted strings, 34-35, 45, 64, 77. 

Raster, 1, 5, 51-54. 
Recursion, 59-60, 93. 
'" Redundant equation", 32, 76. 
Reflection symmetry, 53. 
(relation), 59-60. 
Reserved words, 39. 
Reverse apostrophe, 39. 
round, 42, 46, 54. 
Rounding, 51-55, 92-93. 
rpen, 24, 28, 48-50, 62. 
rt, 8, 28, 42. 
Running METAFONT, 29-38. 

safetyCactor, 48, 65, 81. 
Scaling, 5, 10, 51, 64-65. 
Sections of a program, 61-62. 
"Sharp turn suppressed ... ", 21, 77. 
Shoemaker's problem, 17-19. 
sind, 42, 81. 
Slanting, 65, 84. 
Sole, 17-19, 23. 
Solution of equations, 5-6, 31-33, 40-41. 
Spaces, 40. 
spen, 24-25, 28, 48-49, 62. 
Spline functions, 20-22, 50. 
sqrt, 42, 46. 
Square root symbols, 101. 

Appendix I 

Stable pen size, 50, 63. 
Statements, 4, 62-68. 
Straight line, 6. 
Subroutines, 55-61, 91-94. 
Subscripts, 31. 
Subtraction, 44. 
Summary of the language, 61-69. 
Superellipse, 57-58. 
Symmetry, 53. 

Term expressions, 43. 
'lEX, 34, 38, 65, 68, 73, 78, 95-101. 
texinCo, 68, 98-100. 
Text editor, 36-37. 
trxmode, 34, 68-69, 96. 
Titles, 34-35, 45, 64, 77. 
titletrace, 34, 64, 66. 
Tokens, 36-37, 70. 
top, 8, 28, 42. 
Tracing, 66-67, 70. 
Transformation, 51, 64-65, 67. 
Triangular pen, 27. 
trxx, 51, 64-65, 67. 
trxy, 51, 64-65,67. 
tryx, 51, 64-65, 67. 
tryy, 51, 64-65, 67. 
Turning points, see Extreme points, 

Inflection points. 

'" Undefined factor", 31,78. 
Union Jack (partial), 6. 
Unknown variables, 41. 

Vo, 22-23, 28, 48. 
var, 56, 58, 64. 
varchar, 68, 100. 
Variable-size delimiters, 100-101, 
Variables, 39-40, 45, 56-57, 61. 
Velocities, 21-22, 65, 77, 79. 
Vertical extrema, 16, 19, 54. 
vpen, 22-23, 28, 48-50, 62, 65. 
vpenwd, 23, 65, 88. 

w-variables, 7, 32, 39, 56-57. 
wxy-variables, 39. 

x-variables, 4, 32, 39, 56-57, 61. 
XGP (Xerox Graphics Printer), 33, 68, 86. 



y-variables, 4, 32, 39, 56-57, 61. 

", 34-35, 45, 64, 77. 
#, 24, 27, 45, 50, 62-63. 
~, 35. 
',39. 
',39. 
(, 45-46, 58. 
), 45-46, 58. 
*,43. 
+,44. 
" 14, 24, 27, 46, 58, 63, 68. 
-,44. 
1,43. 
:,55,59. 
<,60. 
S;,60. 
=, 5, 30, 40, 45, 60. 
~, 60. 
>",60. 
[, 43-44, 56, 94. 
], 43-44, 56, 94. 
{, 14, 63. 
}, 14, 63. 
I, 49-50, 63 . 
. , 40, 45-46, 61-62 . 
. . , 6,46,63. 

Index 105 





About the Author 

Donald E. Knuth is Professor of Computer Science and Professor of Elec
trical Engineering at Stanford University. He has in the past served as Guest 
Professor of Mathematics, University of Oslo; Staff Mathematician, Institute 
for Defense Analysis-Communications Research Division; Associate Profes
sor of Mathematics, California Institute of Technology; and Consultant, Bur
roughs Corporation, Pasadena, California. 

His honors and awards include a Guggenheim fellowship; membership in 
the American Academy of Arts and Sciences and the National Academy of 
Sciences; the Grace Murray Hopper award and the Alan M. Turing award of 
the Association for Computing Machinery; the Lester R. Ford Award of the 
Mathematical Association of America; the Distinguished Alumni award of the 
California Institute of Technology; and he is the first holder of the Fletcher 
Jones professorship in computer science, the first endowed chair in computer 
science at Stanford. 

Dr. Knuth is the author of The Art of Computer Programming: Volume 1, 
Fundamental Algorithms; Volume 2, Semi-Numerical Algorithms; and Volume 
3, Sorting and Searching-the first three of a projected series of seven. Each 
has received universal acclaim. Among his other publications is perhaps the 
world's only mathematical novelette, Surreal Numbers. 





'lEX Users' Group 

The American Mathematical Society has an advisory Standing Committee 
on Composition Technology. Currently the Society contemplates the addition 
of aTEX capability to its other typesetting facilities. In addition, the committee 
is investigating the development of a TEX-based system to permit authors of 
papers for AMS (and eventually other) journals to "typeset" their papers 
themselves on their own institutions' computer systems. Because of this ex
pected involvement with TEX, the AMS has a natural interest in seeing the 
development of a, strong and healthy TEX users' group for such purposes as 
overseeing the certification of and the distribution of information on im
plementations of the TEX system, their maintenance and upward-compatible 
enhancements. The above committee announces its readiness to help in the 
initial organization of such a users' group. If you feel you might be interested 
either in belonging to such a group or in receiving information from it, please 
fill out and return one of the attached reply forms. 





, 

Please fill out and return this sheet to the American Mathe
matical Society if you have an interest in participating in a'lEX 
users' group. 

Date ______________________ ___ 
Name __________________________________________________________________ _ 

Title 

Institution 
Mailing address __________________________________________________ ___ 

Phone _________________________________ __ 

How do you plan to make use of 'lEX? ---------------------------------_ 

To what kind of computing equipment do you have access? __________ _ 

Is 'lEX presently running on that equipment? If not, when will 'lEX probably be installe 

+------- ----------------------- ----- ------

Please fill out and return this sheet to the American Mathe
matical Society if you have an interest in participating in a'lEX 
users' group. 

Date _____________ _ 
Name _____________________________________________________________ _ 

Title ______________________________________________________ _ 

Institution _______________________________________________________ _ 
Mailing address ____________________________________________________ _ 

Phone ________________________ _ 

How do you plan to make use of 'lEX? __________________________________ ___ 

To what kind of computing equipment do you have access? __________________ _ 

Is 'lEX presently running on that equipment? If not, when will 'lEX probably be installe, 



IIIIII 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 3356 PROVIDENCE, R. I. 

POSTAGE WILL BE PAID BY ADDRESSEE 

AMERICAN MATHEMATICAL SOCIETY 

P.O. Box 6248 

Providence, Rhode Island 02940 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

- --- - - - - - - - - - - - -"- - - - - -- -- -" - - - - -- - - ~- - .;....;,- - -~ - -- -

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 3356 PROVIDENCE, R. I. 

POSTAGE WILL BE PAID BY ADDRESSEE 

AMERICAN MATHEMATICAL SOCIETY 

P.O. Box 6248 

Providence, Rhode Island 02940 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

,I 

It 



"Don Knuth's Tau Epsilon Chi (TEX) is 
potentially the most significant 
invention in typesetting in this century. 
It introduces a standard language for 
computer typography and in terms of 
importance could rank near the 
introduction of Gutenberg press." 

C. Gordon Bell 
Vice President of Engineering 
Digital Equipment Corporation 

ISBN 0-932376-02-9 


